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A realistic interpretation of the measured contact potential difference (CPD) in Kelvin probe 

force microscopy (KPFM) is crucial in order to extract meaningful information about the sample. 

Central to this interpretation is a method to include contributions from the macroscopic 

cantilever arm, as well as the cone and sharp tip of a KPFM probe. Here, three models of the 

electrostatic interaction between a KPFM probe and a sample are tested through an electrostatic 

simulation and compared with experiment. In contrast with previous studies that treat the KPFM 

cantilever as a rigid object, we allow the cantilever to bend and rotate; accounting for cantilever 

bending provides the closest agreement between theory and experiment. We demonstrate that 

cantilever dynamics play a major role in CPD measurements and provide a simulation technique 

to explore this phenomenon. 
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I. Introduction 

Electrostatic force microscopy (EFM) is a widely used technique for nanoscale electrical 

characterization.1-3 Among the many EFM techniques, Kelvin probe force microscopy (KPFM) 

has proven to be a powerful technique to measure the local work function.4-7 A central challenge 

in KPFM is to achieve nanoscale spatial resolution, despite the large size of the probe and the 

long range of the electrostatic interaction.8-10 While modifications to the basic KPFM 

experimental technique exist to improve spatial resolution,8,11-13 in many circumstances the 

measurement is complicated through the electrostatic contributions from the macroscopic 

cantilever of the probe. Theoretical studies have been used extensively to analyze the resolution 

of EFM techniques such as KPFM. The electrostatics of the tip of a probe has been studied 

independently,14-16 and the cantilever has been included as a cylindrical plate,17 a square box,18 

and as a full three-dimensional cantilever.8,19-21 Recently, it has become apparent that the 

dynamics of the cantilever are important when considering electrostatic forces.22  

In this work, we demonstrate a novel method to simulate KPFM that includes the 

dynamics of the cantilever arm. We first overview the operating principles of KPFM and 

describe the fabrication of an experimental step sample. We then simulate the ideal KPFM step 

function at the boundary between two different materials using a finite-element electrostatic 

method that takes into account three models of cantilever dynamics: translation, rotation, and 

bending. The dynamics of the cantilever arm is found to be important, and increasing the realism 

of the model of cantilever dynamics greatly improves the agreement with experiment. 
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II. Kelvin Probe Force Microscopy 
 

In KPFM, we seek to map the tip-sample contact potential difference (CPD) VC.4 A 

conducting probe is brought within a few 10's of nm of a sample surface, and the probe-sample 

system is treated as a capacitor with capacitance C. The vertical component of the electrostatic 

force F on the probe is given by, 

 , (1) 

where z is the vertical tip-sample distance, and V is the applied voltage between the probe and 

sample. By setting V = VDC + VAC sin(ωt), the force will have a DC term, a term that oscillates at 

ω (with amplitude Fω), and a term that oscillates at 2ω. The cantilever mechanical resonance 

angular frequency ω0 is utilized to amplify Fω by setting ω = ω0. We adjust VDC in a feedback 

loop to null Fω. We define the value of VDC for which Fω = 0 as the Kelvin voltage VK. In the 

case of a uniform sample, VK = VC. 

In a real KPFM experiment, the probe may interact with multiple regions i of the sample 

with different CPDs VCi. In this case, we treat the probe-sample interaction as a set of parallel 

capacitances,17 each with capacitance Ci. The total vertical component of the electrostatic force F 

on the probe is given by, 

 
, (2) 

Applying the KPFM technique by adjusting VDC to null Fω gives, 

 
, (3) 

In which VK is a weighted average of the local CPDs. The probe is scanned across the sample 

surface to obtain a map of VK representing the local CPD. 
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III. Experimental Procedure 
 
 Metallic KPFM calibration samples were fabricated with photolithography, as shown in 

Fig. 1(a), with a schematic side view in Fig. 1(b). First, a heavily n-doped Si wafer (Silicon 

Quest International, Inc.) is coated with an insulating layer consisting of ~ 400 nm of SiO2 and ~ 

100 nm of Si3N4 by low-pressure chemical vapor deposition to form an insulating substrate. 

Wafer chips are then chemically cleaned, a photoresist is spun on, and a 100 µm wide strip is 

patterned with photolithography. Electron beam evaporation is used to deposit 10 nm of Ti 

followed by 50 nm of Au to form a long strip electrode. A focused ion beam (NVision 40 - Carl 

Zeiss Inc.) is used to mill a ~ 500 nm wide trench across the electrode to make two electrically 

insulated electrodes. In this configuration, we have two electrodes to which we can apply 

independent potentials -1 V to the first and 1 V to the second, as indicated in Fig. 1(b). The 

choice of Au is ideal as it does not oxidize readily. The electrode configuration and large 

potential difference minimize the effects of surface charging on the KPFM measurement. 

Additionally, comparing the same material held at two different potentials is found to be more 

reproducible than comparing two materials with different work functions.  

KFPM measurements are performed as two-pass measurements using a commercial AFM 

system (MFP-3D - Asylum Research) and commercial EFM probes (Arrow-NCPt - NanoWorld 

AG). KPFM scans are taken over the maximum lateral range 90 µm with the tip held 50 nm 

above the sample, with the result indicated in Fig. 1(c). An average line scan is found by 

centering lines of VK together about the topographic feature at the step and averaging. 
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IV. Electrostatic Simulation 
 
 We performed finite-element electrostatic simulations of KPFM measurements of VK, by 

calculating the capacitance Ci between a realistic EFM probe model and each region i of the 

sample. By calculating Ci for many values of tip-sample separation z, we estimate ∂Ci/∂z using a 

finite-difference method. These derivatives are used with Eq. (3) to calculate VK. To simulate a 

KPFM scan, we repeat the same procedure at different lateral positions x along the sample. 

Cantilever dynamics are incorporated by controlling the displacement profile of the cantilever at 

a given z, including cantilevers that translate, rotate, or bend. 

 Three-dimensional (3D) finite-element electrostatic simulations (Maxwell 11 - Ansys 

Inc.) of the capacitances Ci between a probe and the two half-planes, are shown in Fig. 2(a). 

Finite-element simulation is necessary to determine the capacitances due to the complicated 

geometry in the simulation.23 The 3D probe model is constructed from manufacturer specified 

parameters of the probe used in the experiment; an image of the actual probe and the probe 

model are compared in Fig. 2(b). The tip of the probe is truncated in the model, terminating in a 

triangular surface with sides of length 10 nm parallel to the sample surface, as shown in 

Fig. 2(c). This tip size is commensurate with the specified tip radius. The probe is positioned 

with its tip 50 nm from the surface and with the cantilever tilted 11º with respect to the sample, 

as in our experimental setup. During simulations, the probe is held at 1 V while the substrate and 

boundaries are grounded. 

To overcome the difficulty imposed the large discrepancy of length scales in the 

simulation10 (cantilever length 160 µm vs. tip-sample separation 50 nm), we separate the 

cantilever and cone, as indicated in Fig. 2(b). As depicted in Fig. 2(a), the cantilever simulation 

consists of two adjacent 1 × 1 mm2 squares forming the substrate with the simulation volume 

extending 1 mm above the substrate, while the cone simulation consists of two 400 × 400 µm2 

squares with the simulation volume extending 100 µm upward. The total capacitance between the 

probe and each sample region is given by Ci = Ci
cone + Ci

cant, where Ci
cone is the cone- substrate 

capacitance with the cantilever removed, while Ci
cant is the cantilever-substrate capacitance with 

the cone removed. We analyze the effect of treating the cone and cantilever separately by 

considering the capacitance between the probe and the entire sample region. In this simplified 

simulation, where only one probe-sample capacitance is present, we are able to simulate the 

entire probe (cone and cantilever) at once. We consider the change in probe-sample capacitance 
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ΔC with the change in probe-sample displacement Δz, comparing the result from the simulation 

of the whole probe to the result from simulating the cone and cantilever separately and adding 

their capacitances together. Determining ∂Ci/∂z for each case, we observe only small 

discrepancies between the whole-probe simulation and the split-probe simulations of 0.1% for 

translation, 5% for rotation, and 2% for bending. 

We calculate VK by approximating ∂Ci/∂z between the probe and each region of the 

substrate. Capacitances C1 and C2 are calculated over a range of tip-sample separations z and fit 

the resultant function to a power law, as shown in Fig. 3(a) for the cone and Fig. 4(b) for the 

cantilever. The power law fit allows us to extract ∂Ci/∂z at a particular x value. By assigning 

values to V1 and V2, we may use Eq. (3) to find the predicted Kelvin voltage VK. We repeat these 

steps for x from -100 µm to 250 µm to simulate a KPFM line scan. We also employ 

phenomenological fitting of ∂Ci/∂z vs. x to analytic functions for further analysis. The curve 

∂Ci
cone/∂z vs. x is found to fit well to a sum of two Gompertz functions,24 shown in Fig. 3(b).  

We incorporate cantilever dynamics by modifying the cantilever deflection profile and 

observe a strong change in ∂C/∂z. The deflection of the cantilever can be parameterized as the 

deviation δ(y) from rest at a position y along the axis of the cantilever, where y = 0 corresponds 

to the fixed end of the cantilever and y = L corresponds to the free end. We consider three 

cantilever deflection profiles δ(y) that determine the physical interaction we are considering, 

which are illustrated in Fig. 4(a). (1) The translation method is what has been used previously - 

here the cantilever moves uniformly (δ(y) = z). (2) The rotation method takes into account that 

the fixed end is immobile and allows the cantilever to rotate about it (δ(y) = z (y/L)). (3) The 

bending method has the cantilever obey the Euler-Bernoulli beam equations;25 δ(y) = z f(y) where 

f(y) is the first normal mode given as Eq. (8) in Ref. 25. The deflection profiles are enforced by 

defining the cantilever deflection parametrically. The curve ∂C/∂z vs. x for each of these methods 

is plotted in Fig. 4(c-e) and fit to a linear function times a logistic function added to a Gompertz 

function times a logistic function.26 
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V. Results and Discussion 
 
 The cantilever plays a large role in KPFM experiments, as demonstrated by the similarity 

of the simulated magnitudes of ∂C/∂z for the cone and cantilever. The maximum absolute value 

of ∂Ccone/∂z estimated from fitting Fig. 3(b) is ∂Ccone/∂z = 0.118 fF µm-1. In contrast, ∂C/∂z for 

the cantilever undergoing translation, rotation, and bending, found from Fig. 4(c), Fig. 4(d), and 

Fig. 4(e) respectively, gives ∂Ctrans/∂z = 0.139 fF µm-1, ∂Crot/∂z = 0.080 fF µm-1, and ∂Cbend/∂z = 

0.066 fF µm-1. Because these values are of similar size, no matter the model of cantilever 

dynamics used, cantilever and the cone will play similar roles in determining the measured value 

of the CPD. 

Increasing the realism of the modeled cantilever dynamics (from translation to rotation 

and finally to bending) improves the agreement with experimental data, as shown in Fig. 5. The 

cantilever is oriented with the base toward the left and the tip on the right.  The experimental step 

in VK between the two electrodes is shown in Fig. 5 along with the simulated steps for 

translating, rotating, and bending cantilevers calculated using Eq. (3). While the simulated traces 

show good agreement for x < 0 while the entire probe is held above one electrode, they show 

significant disarrangement with the experimental data for x > 0 while the cantilever arm is 

gradually crossing the step between the two electrodes. All simulated traces fall below the 

experimental data, indicating that the contribution for the cantilever is overestimated. The large 

variation in the simulated traces for x > 0 demonstrates that picking the correct mode of 

cantilever dynamics is of high importance. Increasing the realism of the model greatly helps 

agreement with experiment. 

The discrepancy between the most realistic model of cantilever dynamics and the 

experimental data likely comes from differences in the simulated and experimental systems. 

Experimental traces of VK were consistently seen to reach higher voltages than theoretically 

predicted at a given distance from the step, indicating that the theoretical treatment over-

emphasized the contribution of the cantilever. The equation of bending used here is precise for a 

beam with a uniform rectangular cross section. Modifying the bending profile to be accurate for 

the arrow-style probe shown in Fig. 1(b) would improve agreement. Further, while breaking up 

the probe into cantilever and cone sections is necessary due to computational restrictions, it 

introduces x-dependent error. Noncontact friction interactions have been observed between 

metal-coated cantilevers and metal surfaces; the effect is especially pronounced for z < 10 nm.27 
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Cantilever vibration itself displaces charge, damping the vibration, and changing electromagnetic 

fields induce Casimir forces that are significant for small z.28  These effects are not taken into 

account in our electrostatic simulations, and CPD measurements taken with small probe-sample 

separations and inhomogeneous samples would display these effects. 

Our simulation methodology can also be used to provide insight into frequency 

modulated KPFM5 (FM-KPFM) and explain the improvement in spatial resolution that is 

achieved. FM-KPFM, in which VK depends on ∂2C/∂z2, has superior spatial resolution to standard 

amplitude-modulated KPFM (AM-KPFM), which can be explained by the near linear 

relationship between Ccant and z. Although this dependence of Ccant on z introduces a significant 

contribution of the cantilever to AM-KPFM measurements, where ∂C/∂z is important, the second 

derivative ∂2C/∂z2 for the cantilever is quite small. Hence the contribution of the cantilever in 

this alternative technique will not be as significant. Although the cantilever interacts with the 

sample via long-range interactions, the extent to which long range interactions affect the 

measurement depends greatly on the technique in use. 

In summary, we have developed a method to simulate KPFM measurements that includes 

three models of cantilever dynamics, and we have used this method to demonstrate the 

importance of cantilever dynamics. Through comparison of finite-element simulations with 

experiment, we find that improving the realism of the model of cantilever dynamics significantly 

increased agreement with experimental results. Our analysis here has centered around amplitude 

modulated KPFM, but these findings and methods are relevant to any AFM technique that uses a 

long-range interaction, including other types of EFM and Magnetic Force Microscopy.29 
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FIG. 1. (Color online) (a) Scanning electron micrograph of a test sample for KPFM. The light 

strip running left to right is a gold electrode which has been separated into two regions by a 

narrow cut with a focused ion beam (FIB). The FIB cut is visible as a thin vertical black line in 

the center of the image. (b) Schematic cross-section of the test sample. The left and right gold 

regions are electrically isolated and held at -1 V and 1 V, respectively. (c) Image of the Kelvin 

voltage VK at the interface between the two gold regions. The plot smoothly and quickly 

transitions from -1 V on the left to approaching 1 V on the right. 
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FIG. 2. (a) Schematic of the region used for electrostatic simulation shown in (left) isometric and 

(right) top and side views. The larger rectangular prism outlined in black and the smaller 

rectangular prism outlined in gray outline the simulation volumes used for simulations of the 

cantilever and cone, respectively. The floor of the model is split into two square regions, which 

act as the sample electrodes. The probe is positioned near the center of the sample. (b) An SEM 

micrograph of an AFM probe of the same model as the one used in the experiment above a 

schematic of the probe model used in the simulation, at the same scale. On the schematic, the 

white section is the cantilever, and the gray section is the cone. (c) Schematic of the electrostatic 

simulation, side view. The tip of the probe is suspended 50 nm above the two sample electrodes. 

The capacitance between the probe and the left and right sample electrodes are C1 and C2, 

respectively. 
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FIG. 3. (Color online) (a) Simulated capacitance C between the cone and an element of the 

sample vs. the change in probe-sample separation Δz. The points are from electrostatic 

simulations, and the lines are power law fits to the points. (b) The derivative of the cone-sample 

capacitance ∂C/∂z vs. lateral position x of the cone along the sample. Each point represents the 

derivative of the power law fit to C vs. Δz for a particular x value. The lines are fit to the sum of 

two Gompertz functions. 
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FIG. 4. (Color online) (a) Simulated cantilever deviation δ from rest vs. position y along the axis 

of the cantilever for each of the translation, rotation, and bending profiles. (b) Typical plot of 

capacitance between the cantilever and a sample element C vs. the change in probe-sample 

separation Δz, in this case using the translation profile. The points are from electrostatic 

simulation, and the curve is a power law fit to C vs. Δz. (c-e) The derivative of the cantilever-

sample capacitance ∂C/∂z vs. lateral position x of the cantilever along the sample. The 

translation, rotation, and bending models are in use on (c), (d), and (e), respectively. Each point 

represents the derivative of the power law fit to C vs. Δz for a particular x value. The lines are 

each a linear function times a logistic function added to a Gompertz function times a logistic 

function, fit to the points. 
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FIG. 5. (Color online) Plot of Kelvin voltage VK vs. lateral position x for the experiment, along 

with simulation results for the bending, rotation, and translation models. Each curve has -1 V 

assigned to the left sample electrode and 1 V assigned to the right sample electrode. Allowing 

the cantilever to bend produces the closest agreement with the experiment. 

 


