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DEFECTS IN HARD-SPHERE COLLOIDAL CRYSTALS

ABSTRACT

Colloidal crystals of 1.55 pm diameter silica particles were grown on
{100} and flat templates by sedimentation and centrifugation. The particles
interact as hard spheres. The vacancies and divacancies in these crystals are
not in equilibrium, since no movement of single vacancies is observed. The
lack of mobility is consistent with the extrapolation of earlier simulations
at lower densities. The volume of relaxation of the vacancy has a plausi-
ble value for these densities as the volume of formation is approaching the
volume in a close-packed crystal. The volume of relaxation for the diva-
cancy is smaller than that of two vacancies, so that the association of two
vacancies into a divacancy requires extra volume, and hence extra entropy.
The mean square displacement of the nearest neighbors of the vacancies is
an order of magnitude larger than that of the nearest neighbors of parti-
cles. The mobility of the divacancies is consistent with the extrapolation
of older simulations and is similar to that associated with the annihilation
of the vacancy-interstitial pair. The volume of motion of the divacancies
is AV, = 0.19V,, (V,: close-packed volume) and the entropy of motion is
AS,, = 0.49kpT. Dislocation-twin boundary interactions can be observed
by introducing strain via a misfit template. The dislocations formed are
Shockley partials. When a dislocation goes through the boundary, two more
dislocations are created: a reflected dislocation and one left at the boundary,

both with the same magnitude Burgers vector. The dislocations relieve a to-
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tal of about a third of the misfit strain. The remaining strain is sufficiently
large to move the dislocation up to the boundary and close to sufficient to
move the dislocation through the boundary. A small amount to extra strain
energy is needed to cause nucleation of the two additional dislocations after

a waiting time.
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Introduction

OLLODIAL CRYSTALS CAN BE STUDIED to mimic atomic crystals [ [2].
C Due to the size of atoms, observing atomic crystals can be difficult
because the resolution at such a small scale is limited, and the time scale at
which movements happens is faster than the imaging processing. Therefore,
scientists through the years have sought alternative methods to study atomic
interactions. One such model was developed by Lawrence Bragg, who in-

vented the bubble raft where small soap bubbles formed close-packed 2D



crystals [B]. Locally, the 2D crystals could be perfect, but grain boundaries
were observed when crystals were grown on a larger scale. Other defects
could also be introduced. Vacancies could be created by destroying single
bubbles and watching them migrate. Dislocations were studied by perform-
ing compression and shear. This model worked very well in 2D, but it was
not effective for 3D observation.

A better 3D model is the hard-sphere system. Colloidal crystals can
be used as a hard-sphere system in which point and line defects are created
during growth. The defects can also be introduced by manipulating the
growth [4] [5] or by using external forces on an already grown crystal [6]. The
best way to observe these crystals and their defect interactions is confocal
microscopy [[7]. This thesis covers some aspects of point and line defects in
hard-sphere colloidal crystals and their interactions.

Chapter 2 focuses on the methods and theory of obtaining colloidal
crystals with different orientations, structures, and defect densities. The
formation of hard-sphere crystals driven by entropy and volume fraction is
described. The important ingredients for successful synthesis of a colloidal
system that can easily be observed and imaged in a confocal microscope are
provided. A large part of the chapter is devoted to the actual fabrication
steps involved in growing a crystal.

Chapter 3 explores point defects, with a particular emphasis on va-
cancies. Statistical measurements are made of volumes, concentrations,
and movement. There have been computer simulations of hard-sphere sys-
tems [§] [9] and experiments on colloidal crystals [10], but no work so far

has shown experimental vacancy motion in hard-sphere colloidal crystals. A



straightforward method for finding the vacancies in the crystal is described.
Moving vacancies are found close to distortions, grain boundaries, and dis-
location lines, but no single vacancies move. In contrast, motion can be
observed for divacancies and the jump frequency can be compared to previ-
ous simulation work at lower densities. Also, interstitials next to vacancies
are briefly discussed.

Chapter 4 investigates the interaction between a twin boundary and a
dislocation. Many experiments and simulations have been performed on this
topic [11] [12], but this experiment offers a unique view of the interaction on
the particle level. The dislocation - twin boundary interaction is important in
order to understand work hardening, yield stress, and ductility of a material
[13]. Grain boundaries in general are well-known to hinder the motion of
dislocations, leading to higher yield strength [13]. However, grain boundaries
can also decrease the elongation to failure ratio in a tensile test; in other
words, decrease the ductility of the material. Simulations and experiments
on dislocation - twin boundary interactions indicate that a dislocation can
be divided into two parts, one that piles up in the boundary and one that
penetrates [14] [15] [16]. This leads to higher yield strength and leaves
the ductility unchanged, and therefore increases the overall toughness of
the material [16]. In this chapter a Shockley partial dislocation in a face-
centered cubic (FCC) crystal, introduced by lattice strain, moves towards a
¥ 3 {111} twin boundary during the growth of the colloidal crystal. When
the partial dislocation hits the boundary, the motion stops for a while before
penetration, indicating that a build-up in strain energy by the growth of the

crystal is needed to drive the process.



Methods and Theory for Obtaining and
Observing a Colloidal Hard-Sphere Crystal

ARD-SPHERE COLLOIDAL PARTICLES are ten thousand times larger
H than atoms, but the behavior of defects in their respective crystals
are strikingly similar. This chapter will give a detailed description to how
one can obtain colloidal crystals with different structures and orientation,
as well as how to introduce defects. An overview of methods for observing

and securing particle locations is given as well.



2.1 COLLOIDAL SUSPENSION

2.1.1 RECIPE

The colloidal particles in this experiment were provided by mircomod Par-
tikeltechnologie GmbH. They are amorphous silica particles with a diameter,
d, of 1.55 um, polydispersity, o/d (o: variance), <3.5%, and a density of
2.0 g/cm?®, which gives a mass of 3.9 x 107! kg. This raw stock of col-
loids (1.5%) is mixed into a solution with deionized water (35.4%), dimethyl
sulfoxide (DMSO) (61.9%) and fluorescein (1.2%). The DMSO is used for
matching the index of refraction between the colloids and the solution. This
is important for two reasons: 1) it makes it possible to scan deep into the
sample with a confocal microscope, since scattering from particles above and
below is limited; 2) it minimizes van der Waals forces between the particles,
which is important to obtain a hard-sphere interaction between the spheres.
The fluorescein is used to create a good contrast between the colloids and
the fluid in the microscope (the particles appear as black dots in the bright
scattering liquid). The fluorescein also adds some salt ions, which reduces
the Debye screening length to less than 10 nm [17]. The density of the so-

lution is just a little higher than that of water, 1.10 g/cm?

. Sometimes, a
more concentrated version of colloids is desirable. With more colloids in
the suspension, the crystal grows higher. If more raw stock is added to the

suspension to obtain a new total fraction, frawstock, the fraction of water,

fwater, decreases in order that the index of refraction of the water-DMSO



solution remains the same:

fwater = 0.369% — fRawStock (21)

The fraction frawstock is used to predict experimental crystal height in Sec-

tion .

2.1.2 MINIMIZATION OF POLYDISPERSITY

The polydispersity of the raw stock g has been measured to be <3.5% [17]. In
order to improve the polydispersity further and remove secondary particles,
the colloidal suspension is sonicated and vortexed, then left to have the
colloids settle for about 3 hours. This time is determined by the settling
velocity, Vsettiing. These colloids accelerate due to gravity, g, until the drag
force, F;, equals the gravitational force Fj;. At that moment, the colloid has

reached Vgertring. The gravitational force is [18]:

4
Fy=mg= gwa?’Apg (2.2)

where the radius of the sphere is a (= d/2) and the difference in density
between the particle and the liquid, is Ap. The drag force depends on the

viscosity of the liquid, 7, the velocity, v, and again the radius of the particle,

a [18):
Fy = 6mnav (2.3)
Usettling 1S then [18]:
4a’A
Usettling = Tnpg (24)



For the conditions described above, and with viscosity, n, found to be ~
1.6x1073 Pa.s [17], the settling velocity is 2.7 mm /hour (7x10~7 m/s). Since
this velocity is proportional to a?, a 6 hour wait (with a traveling distance of
16mm) before the colloids are drawn from the sample is sufficient to be out
of the range of those particles that are half the size (with a traveling distance
of 4mm) or twice as big (with a traveling distance of 64mm). Colloids are

then drawn with a pipette 1-2 cm below the liquid height.

2.1.3 CHOOSING THE PARTICLE SIZE

The particles size needs to be small enough for gravity not to overcome the

thermal energy that is the source of Brownian motion. The thermal energy

of a single hard-sphere particle in a liquid is Uspermal = 3k§3T. In this case

the particle has 3 degrees of freedom (translational only). By comparing the
thermal energy with the kinetic energy, Uginetic = mT”Q, the particles have an

average Brownian velocity, <vj, >, of [L§]:

3kpT

m

<y >= (2.5)

where kp is the Boltzmann constant, T is the temperature and m is the mass
of the particle. For the particles in these experiments, at room temperature,

the value is 2 x 1073m/s, 10% times larger than the settling velocity [18].



2.2 CRYSTAL GROWTH

2.2.1 HARD-SPHERE COLLOIDAL CRYSTALS ARE FORMED DUE TO EN-

TROPY

In atomic crystals, at a given pressure, the temperature determines what
phase the matter exists in. For hard-sphere systems, instead, the volume
fraction, ¢, is the variable that determines the phase. Consider Helmholtz

free energy, F, at constant volume:

F=U-TS (2.6)

where U is the internal energy and S is the entropy. For the internal energy
we only need to consider the kinetic energy of the particles, Ushermar = %kz BT,

and the Helmholtz free energy becomes:

F= (ng — 9T (2.7)

For any temperature, minimizing F occurs only by maximizing the entropy,
S. The entropy depends on the volume fraction of the particles, ¢ [18]. As
the volume fraction, ¢, increases the colloidal suspension goes from a fluid
phase to fluid-crystal coexistence at ¢$=0.494 and to a crystalline phase at
¢$=0.545 [19] [20], as shown in Figure @ If the colloids are compressed
together quickly (e.g. by centrifugation) with the right boundary conditions
on a template, an amorphous structure can be obtained above ¢=0.58 (~
glass transition) [21]. The closest-packed amorphous structure has ¢=0.64
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The equation of state for colloidal crystals is similar to that of an ideal
gas. If P is the osmotic pressure, p is the number density of particles, kp is

the Boltzmann’s constant, T is temperature, then:

P = phpTZ(9) (2.8)

where Z is the compressibility factor that only depends on ¢ [1§8]. By fitting
the molecular dynamics data by Alder and Wainwright [23], Hall [24] pro-
vided the following expression for the compressibility factor of a hard-sphere

FCC crystal:

Z(B) = 2.557696 + 0.12530773 + 0.17623935% — 1.0533083°

_ (2.9)
+2.8186218% — 2.9219343° + 1.1184133°% + 1230
where (:
B() = 4(1- ) (2.10)

and ¢, is the close-packed packing fraction.

2.2.2 CRYSTAL HEIGHT

The height to which we grow the crystals is important and can be obtained
from the colloid concentration of the suspension, the volume of the suspen-
sion and the volume fraction of the crystal. The company that fabricates
the colloids, Micromod, specifies 50 mg silica per milliliter of raw stock, i.e.
pSilicaRawStock=b0 mg/cm?. The suspension of colloids used for imaging, can

be made with different fractions, frawstock, Of the raw stock. The volume of



raw stock needed is:

VRawStock = VCellfRawStock (211)

where Vi is the volume in the cell that depends on the cross-sectional
area of the cell, Agey, and the height to which one fills the sample heoey;.

Therefore, the amount of raw stock becomes:

VRawStock = AC’elth’ellfRawStock (212)

The mass of silica in the cell, mgjjicq, 18 the volume of raw stock, Vizewstock,

multiplied by the density of silica in that stock, pgiiicaRawStock:

MmgSilica = VRawStockPSilicaRawStock = ACelthellfRawStackpSilicaRawStock

(2.13)
The volume of silica, Vgjica, is the mass of silica, mg;icq, divided by the

density of silica itself, pgica=2 g/cm?;

_ MSilica ACelthellfRawStockpSilicaRawStock 4
Vsitica = = (21 )
PSilica PSilica

The volume of the crystal, Vorystar, depends on the volume of silica, Vsiiica,

and the volume fraction of the crystal, ®cpystar:

Vsitica _ AC’ellhC’ellfRawStoCkpSilicaRawStock
q)C’rystal pSilica(I)Crystal

VCrystal = (215)

The volume of the crystal, Voyystal, is the cross-sectional area of the crystal,

Acen, multiplied by the height of the crystal, hcyystar; hence the height will

10



not depend on the cross-sectional shape of the cell:

hCell fRawStock‘pSilicaRawStock
pSilicaq)C'rystal

hCrystal = (216)

For any given frawstock and ®crysiar, we need to fill the cell to the height

hcen in order to obtain a specific crystal height, hoyystal:

hCellfRawStock:50 mg/cm3 —0.025 hCellfRawStock
(I)Crystal2 g/Cm3 q)CTystal

hCTystal = (217)

2.2.3 STRUCTURE, ORIENTATION, AND DEFECTS

When colloidal particles settled onto a flat glass slide, close-packed hexagonal
crystals form with many grain boundaries, stacking faults and point defects.
The crystals are random hexagonal close-packed (RHCP) where the layers
occur in a random order in positions ABCACABCBA of a hexagonal close-
packed layer (see Figure @), rather than perfect hexagonal close-packed
(HCP) with order ABABAB, or face-centered cubic (FCC) with order AB-
CABC. A layer in a RHCP crystal grown on a flat glass slide is shown in
Figure @ and @ Figure @ focuses on point defects where the yellow
arrows indicate vacancies, the blue arrows indicate split intersitials and red
arrows indicate substitutional impurities. Figure @ focuses on the line de-
fects with two dislocations indicated in red and an unrelaxed grain boundary
indicated in green. The yellow triangles indicate that three crystals with the
same orientation come together, which is a way to tell that the defect in

between is a dislocation or stacking fault, not a grain boundary.
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Figure 2.1: A phase diagram for hard sphere colloidal crystals. As the volume frac-
tion, ¢, increases the colloid solution goes from a fluid phase to fluid-crystal coexistence
at =0.494 and to a crystalline phase at ¢=0.545. If the colloids are compressed to-
gether quickly (by centrifugation) with the right boundary conditions in a template, an
amorphous structure can be obtained above ¢$=0.58. The most close-packed amorphous
structure has a ¢=0.64.

Figure 2.2: Crystal indicating position for an A (black), a B (red), and a C (blue)
layer.
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Figure 2.3: A layer in a random hexagonal close-packed crystal grown on a flat glass
slide showing the point defects. The yellow arrows indicate vacancies, the blue arrows
indicate split intersitials and red arrows indicate substitutional impurities.
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Figure 2.4: Same crystal as in Figure @ with line defects. Two dislocations are in-
dicated in red and an unrelaxed grain boundary in green. The yellow triangles reveal
that three crystals with the same orientation come together, indicating either a disloca-
tion or a stacking fault.
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2.2.4 THE IMPORTANCE OF A TEMPLATE

If a specific structure or orientation is desired, the glass slide needs to contain
a template, a pattern of holes, to direct the colloids by making them each
settle into one hole. Once the first layer has been arranged, the layers above
follow. Templates work very well for {100} and {110} FCC structures, in
which there is only one way each layer can be arranged. However, if a {111}
orientation is patterned, a RHCP will grow rather than a HCP or FCC.
This is due to the two positions the next layer can chose. It could still be
worthwhile to make a template even in this case if a less defective or strained
crystal in the {111} orientation is desired. The ideal lattice spacing for a
desired thickness of the crystal can be found from the equation of state [[L7].
If a particular tilt grain boundary is desired, it can be patterned into the
template [5]. Amorphous structures, and an interface between an amorphous
phase and a crystal can be formed on appropriate templates as well. Finally,
dislocations can be introduced by either as misfit dislocations by increasing
or decreasing the lattice spacing [4], or by indentation of the crystal [6]. (See
Chapter @ for more details). The crystals are grown overnight, or centrifuged
in a few minutes. Centrifugation decreases the sample preparation time and
leaves fewer defects, but is only ideal for {100} FCC crystals [17]. When
manufacturing the templates it is also important that the holes are deep

enough so that the particles have stable positions. This critical depth, d.,

2
m'ub

corresponds to the kinetic energy from Browinian motion, Uginetic = —52,

being equal to the potential energy, mgd, where d is the depth of the hole:

vg
.= — 2.1
d % (2.18)
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Given v, above, d. ~ 100nm. Our holes have been measured to be
around ~ 700nm. Appendix A gives step-by-step instructions on how to

make templates.

2.3 SAMPLE PREPARATION

The sample preparation is straightforward once the templates and the col-
loidal suspension have been obtained. A small cylinder is cut from a plastic
cylindrical pipette. Both the cylinder and the template are cleaned with
isopropanol and dried with air. The cylinder is glued onto the glass slide
with the desired pattered and cured under UV light for at least one hour.
The glue used here is "Norland optical adhesive 81”. Curing time depends
on the amount of glue used. It is important that the cell be completely
sealed to prevent leaks. The colloidal suspension, prepared using the recipe
described in Section , is sonicated and vortexed. The desired amount
of suspension is pipetted and dropped down into the cell. The sample is left
on a flat dark surface overnight to crystallize. If a {100} pattern is used, a
crystal can be obtained faster by centrifuging [[17]. The height of the crystal
is determined by the amount of raw stock colloids used frawstock and the

height to which the cell is filled, h¢ey, as discussed in Section .

2.4 CONFOCAL MICROSCOPE

The optical microscope has been widely used for centuries. However, at high
magnification, the depth of focus becomes limiting. Marvin Minsky invented
a solution to this problem in 1957 [25]. Minsky placed a pinhole in front of

the detector that blocks all light other than that from the point confocal with

16



the pinhole. That point is scanned in the sample by two rotating mirrors
(x,y) and a translation of the sample in the z-direction (along the optic axis).
The computer constructs the image from the signals given by the detector.
The data presented in this work was all taken on a tandem Leica confocal

microscope with a 100x objective lens.
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Point Defects in Hard-Sphere Colloidal

Crystals

ERFECT CRYSTALS ARE VERY HARD TO FIND. When a crystal forms,
P multiple defects work themselves into the crystal. Defects can be di-
vided into three categories; point, line, and planar. Point defects, include
vacancies, interstitials, and substitutional impurities; line defects are dislo-
cations or disclinations; and planar defects include stacking faults and grain

boundaries. When sufficient time has passed, these defects should come to

18



equilibrium with each other. However, given the duration of our experi-
ments, and the mobility of the defects, equilibrium is not established. This
chapter will focus on vacancies and divacancies in hard-sphere colloidal crys-

tals. There will also be a brief discussion of interstitials.

3.1 INTRODUCTION

3.1.1 VACANCIES

A vacancy is an empty lattice sight that would be occupied with an atom in
a perfect crystal. The colloidal hard-sphere crystals have many vacancies,
just like atomic crystals. In order to understand how many vacancies to
expect, one needs to turn to thermodynamics: the state of thermodynamic
equilibrium at constant pressure and temperature is reached when the Gibbs

free energy, GG, is a minimum.

G=H-TS (3.1)

Therefore, the degree to which the increase in entropy, AS, compensates
the increase in enthalpy of forming the point defect, AH, determine their
concentration.

When a vacancy is formed, one can imagine removing an atom from
the bulk and placing it at the surface of the crystal. If there are n vacancies,

AH is the sum of each individual enthalpy increases, Ah [26]:

AH =nAh (3.2)

19



For hard-sphere crystals the internal energy is zero and AH only depends
on the pressure, p, and the volume difference creating a vacancy, AV, called
volume of formation:

AV;) = Vp + Av;“elax (33)

where V,, is the crystal volume per particle and AV, is the amount of
volume change in the surrounding crystal due to the presence of the empty

space created by removal of the particle [§]. Our enthalpy becomes:

AH =npAV, (3.4)

The entropy change, AS, to consider is both the entropy change of
configuration, As., and entropy change of vibration, As, per particle. As.
is determined by the number of ways N particles and n vacancies can be
arranged into N + n lattice sites [26]:

(N +n)!

AS. = kpln( Ninl

) = kg[(N + n)In(N +n) — Nin(N) — nin(n)] (3.5)

Therefore, the free energy change obtained by introducing n vacancies into

a crystal is:

AG = nAh —nTAs, — kgT[(N + n)in(N +n) — Nin(N) — nin(n)] (3.6)

The equilibrium vacancy concentration is obtained by minimizing the free

20



energy with respect to the number of vacancies:

0AG N
02% _ Ah—TAsy — kgTlIn(N +n) + —" —in(n) = ]
on N+n n (3.7)
n
= Ah —TAs, + kTl =
Sot B n(N + n)
Therefore, the equilibrium fraction of vacancies, ,:
n _ Ah—TAsy

— — kT

T =N, ¢ B (3.8)

The vacancy equilibrium concentration for different low density hard-
sphere crystals close to melting point, obtained through simulations [8], has
been found to be on the order of 1076 — 1073, Numerical studies for polydis-
persed hard-sphere colloidal crystals have shown vacancy equilibrium con-
centration on the order of 10~ for 3.5% polydispersity [27] and theoretical
values for monodispersed crystals shows 10~7 — 10~* equilibrium concentra-
tion close to freezing point, where the vacancy concentration increases with
decreasing density [2§].

However, ours and others experimental results for hard-sphere colloidal
crystals are not at equilibrium (see later for kinetic justification). We will
show that we get 1073, others get 1072 — 1073 [10].

If a particle moves into the free space of the vacancy, the vacancy
moves one lattice spacing to the original position of that particle. This can
occur multiple times, as a random walk through the crystal. The motion
also requires that the nearest neighbors next to the particle move slightly
to open up a passage. The jump frequency of the vacancy, I, is related to

the Gibbs free energy of motion (the increase in free energy of the activated
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state), AG,, = AH,, — TAS,, = pAV,,, — TAS,,, in the following way:

m

kT

pAV,, — TAS,,
kgT

I'=v x exp(

) (3.9)

) =v x exp(

where kp is the Boltzmann constant and T is the temperature. AV}, is the
change in volume due to expansion of channel. AS,, is the change in local
vibrational entropy. v is the attempt frequency of the vacancy to move and
can be related to the diffusion rate, D, and the jump distance, A, in the
following way [29].

6D

Diffusivity, D, can can be expressed in terms of viscosity, 7, Boltzmann
constant, kp, temperature, T, and the radius, a, by applying Stokes-Einstein

equation we get [29]:

 kgT

D=
6mna

(3.11)

Since A in Equation is equal to two particle radii, 2a, we can find the

following expression for v:
kgT

= 12
v 4mna3 (3.12)

Since kg = 1.38 x 10723 J/K, T'= 300 K, n = 1.6 x 1073 Pa.s [17] and

a=1.55x107%/2 ym, v ~ 0.6 sec™!.
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3.1.2 DIVACANCIES

When two vacancies occur next to each other at adjacent lattice sites, they
form a divacancy. In a hard-sphere crystal, the overall free energy becomes
smaller when two vacancies associate even though no bonds are present.
The proximity of the two vacancies could allow extra volume relaxation,
AV,, as well as extra space for the neighbors to sample, thereby increasing
the vibrational entropy by AS,. The free energy of association AG, =
pAV, — TAS,, relates the equilibrium concentration of vacancies, x,, and

divacancies, x,, [30] [8]:

TAS, — pAV,
kT

) (3.13)

The extra freedom of the neighbors of a divacancy also makes it easier for the
associated vacancies to jump. The jump frequency of divacancies has been
found in computer simulations to be larger than for vacancies in hard-sphere

crystals [8]. We also will confirm this in our much denser system.

3.1.3 INTERSITIALS

An interstitial is an atom occupying a space in a crystal which is not a lattice
site. These are much less common than vacancies due to their large enthalpy
of formation. If an atom inside the crystal moves into position that is not a
lattice site, leaving a vacancy behind, the vacancy-intersitial pair is called a
Frenkel defect. The interstitial are non-equilibrium defects and will usually

fall back into the vacancy if kinetics allows [30] [26].
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3.2 ANALYZING DATA

3.2.1 PARTICLE LOCATING

In this chapter two sets of data are used. First, a RHCP crystal is grown
on a flat surface, and a single vacancy is slowly scanned in the confocal
microscope. This "zoomed-in” {111} data-set is used to get precise mea-
surements of how the vacancy’s nearest neighbors relax into the free open
space. Second, a large sample with many vacancies is recorded over time to
learn about vacancy statistics and observe possible movements. This large
sample is centrifuged at 2200 rpm onto a {100} oriented template, creat-
ing a 50 pm thick FCC crystal, and referred to as the "zoomed-out” {100}
data-set [31]. In order to process the first set of data (the vacancy layer is
shown in Figure Ell) the following parameters were used in particle location

functions presented in Appendix B.

X y z
um/pixel | 0.034 | 0.034 | 0.042
Inoise 2 2 2

lobject 31 31 15
diameter 35 35 19
masksz 21 21 11
Xyzmax 512 512 281
sep 21 21 9

Table 3.1: Parameters used for particle location in the “zoomed-in” {111} data-set

Using the 3D mask operation described in Appendix B together with
the parameters in Table El], Figure @ was obtained and the centers of the

particles were found. For precision on the sub-micrometer scale (as this set of
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Figure 3.1: A raw 512 x 512 pixel high-resolution confocal image cutting through
the middle of the vacancy in the ”zoomed-in” {111} data-set.
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Figure 3.2: A 3D mask operation was preformed (as described as the bpass3dMB
method in Appendix B) on the vacancy of in Figure EI with parameters given in Table

. The colors represents the intensity of the pixels in the picture which have arbitrary
units, see Appendix B for more details. The more intense pixels are the ones closer to
the center of the vacancy, meaning that the vacancies nearest neighbors spend more
time trying to penetrate into the free space of the vacancy.
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measurements requires) dimensional calibration is essential. To this purpose,
a template with a {100} pattern and known dimensions was placed with its
<100 >direction lined up with confocal’s x-axis and its <010 >direction lined
up with the confocal’s y-axis. Through this method a correction with respect
to the nominal microscope settings of +1% was obtained in x-direction and
-4% in y-direction. To calibrate z, a more advanced method was used with
the template coming in at an angle over the confocal lens [32] and a -10%
correction was needed.

In the "zoomed-out” {100} data-set the particles were found with the
function parameters shown in Table @ Due to the size of the data set, this
was only done for one quarter of the sample hence the 512 x 512 parameters

for xyzmax instead of the whole set, 1024 x 1024.

X y Z
um/pixel | 0.1515 | 0.1515 | 0.1300
Inoise 1 1 1
lobject 9 9 12
diameter 9 9 12
masksz 6 6 8
Xyzmax 512 512 475
sep 3 3 4

Table 3.2: Parameters used for particle location in the ”zoomed-out”{100} data-set

As before, the obtained values need to be corrected. This is done
differently in this data set to above since we have a known lattice spacing in
the template. The template has two repeat distances, Tiempiate a0d Ytemplate
both equal to 1.63 um, in two orthogonal directions. Unfortunately, the two
directions are not lined up exactly with the x and y axis as in the previous

calibration. Also, the template is not completely level; it has a slight tilt.
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Therefore, each nearest neighbor vector has an x-, y-, and z-component in
the confocal framework. Let’s call these components’ magnitudes az, ay,
and az for one direction with the total magnitude of xiempiate and bz, by,
and bz in the perpendicular direction with total magnitude yempiate- The

following equations can thus be obtained:

(az x 6x)% + (ay x 6y)% + (az x §2)? (3.14)

_ .2
- xtemplate

(bx x (53:)2 + (by x <5y)2 + (bz x 52)2 = ytzemplate (3.15)

where dz, dy, and 0z are the pixel/um conversion factors. These three
variables are unknown. However, we only have two equations and need a
third one. To obtain the crystal spacing in z close to the template, call it
Ztemplate, We need to use the equation of state and geometry. At a crystal
depth of 50 pm, the unstrained lattice parameter is 1.56 pm [17]. Imagine a
unit cell with lengths x, y, and z. The body diagonal, Dpg,q,, which is twice

the nearest neighbor distance 1.56 pum, can be expressed as.
D%Ody =22 % 4 22 (3.16)

Solving for z gives the following:

z :\/D%Ody — 22 —y? (3.17)

For an unstrained case, distances in x and y will both be d = 1.56 ym:

p :\/D?Body — a2 — 2 =/(2d)% — 242 =v/2d =2 % 1.56 = 2.21um _ (3.18)

However, both x and y are strained due to the template spacing. We know
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that the strain in z, €,, for an isotropic system is related to the strain in x,

€z, and y, gy , by Poisson’s ratio, v.

€r+ eV +eyr =0 (3.19)
In our case,
1.63 — 1.56

We take from density functional calculations [33] Poisson’s ratio to be 0.37.
e, = —2e5,v = —2 x 0.045 x 0.37 = —3.3% (3.21)

We can solve for ziempiate:
Ztemplate = 2(1 +€,) = 2.21 x (1 —0.033) = 2.14pm (3.22)

A third equation can now be obtained similarly to equation and .

(cx x 6x)% + (cy x 0y)% + (cz x 62)% = ztzemplate (3.23)

Calculating all nearest neighbor distances in the template plane and the
distances perpendicular and close to the template, averages were made to

find ax, ay, az, bx, by, bz, cx, cy, ¢z and solve for dz, dy, dz:

dz = 0.1538um /pixel (3.24)
dy = 0.1553um/pixel (3.25)
dz = 0.1099um /pixel (3.26)
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3.2.2 METHOD TO LOCATE VACANCIES

Since the main interest with the "zoomed-out” {100} data-set was to find the
center of many vacancies as time-efficiently and accurately as possible, a few
methods were tried. The hope was to identify vacancies by finding significant
increases in Voronoi volume for particles close to vacancies, decreases of
coordination number of particles close to vacancies, or differences in nearest
neighbor orientation of particles close to vacancies compared to the average
particle. However, the most efficient way yet has been to invert the images
before running the 3D mask method. (This is equivalent to not use the XYZ
= 255-XYZ step described in Appendix B). Different parameters from those
finding particles (Table @) are also needed. This is due to the spacing
between vacancies being much greater than for particles. The parameters

used are presented in Table @

X y z
pm/pixel | 0.1515 | 0.1515 | 0.1300
Inoise 3 3 3
lobject 9 9 12
diameter 19 19 25
masksz 12 12 16
Xyzmax 1024 1024 475
sep 7 7 9

Table 3.3: Parameters used for vacancy location in the "zoomed-out” {100} data-set

Figure @ compares the same layer in the crystal with the two differ-
ent 3D mask methods. The upper left image shows the 3D mask used to find
particle centers. The upper right image uses the 3D mask parameters de-

scribed in Table @ to find vacancies. The color scale on the right represents
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Figure 3.3: 3D mask applied to a {100} templated crystal to find particle and va-
cancy centers. The color scale on the right represents the intensity of the pixels in the
picture, which have arbitrary units, see Appendix B for more details. The upper left im-
age is used to locate particles. The upper right image shows the 3D mask performed on
the same picture but inverted to locate vacancies. The lower left image uses a threshold
of 36% of maximum pixel intensity to eliminate noise. Finally, the lower right image il-
lustrates how to find the center of the vacancies by choosing the right parameters in the
particle location method described in Appendix B.
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the intensity of the pixels in the picture.

Since this 3D mask still leaves some area of undetermined space that
is neither single vacancy nor divacancy, a threshold was applied to eliminate
noise. Examples of noise could be grain boundaries with extra space, a
stacking fault where the particles are out of plane, or a large distortions
that increases the volume. The threshold was set at 36% of maximum pixel
intensity in each image. The result is shown in the lower left images of
Figure @ Finally, the centers obtained from the particle location method

described in Appendix B, are shown in the lower right image of Figure @
3.2.3 NEAREST NEIGHBORS

For the ”zoomed-out” {100} data-set, not every feature detected by the
method above is a single vacancy. Many vacancies are close to a stacking
fault or other defects. Some are also divacancies. Therefore, each detected
vacancy was evaluated by close observation of its nearest neighbors, after
which 1115 "perfect” single vacancies were retained for further investigation.
Furthermore, for a fourth of the sample, the nearest neighbors for each
particle and single vacancy were found. If a particle or vacancy had 12
nearest neighbors within 80-120% of the template’s lattice spacing, it was
considered an FCC particle or a single vacancy. This range was chosen to
include, with some margin, the width of the first peak in the pair distribution
function shown in Figure @ This procedure identifies about 220 single
vacancies and 76000 particles for any given time step in that specific fourth
of the sample. Figure @ shows the distribution of particles, evenly dividing

the height of the crystal into quarters.
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Figure 3.4: Pair distribution of the “zoomed-out” {100} data-set after using the par-
ticle locating parameters described in Table and the confocal correction in equations
, 7 and . The numbers above the peak indicated the peak location for a per-
fect FCC crystal with lattice parameter 1.56 um, distance taken from equation of state.
The height of the dashed lines indicated the predicted height based on the height of the
first peak.
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Figure 3.5: Histogram showing the number of particles with 12 nearest neighbors in
the four quarters that divide up z evenly for one time step of the ”zoomed-out” {100}
data-set. Quarter 1 is next to the template.
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3.2.4 VORONOI VOLUME

The Voronoi cell is the part of space closer to the center of a particle than
to the center of any other. Its volume is a measure of the local volume per
particle. The average Voronoi volume is the average volume per particle.
The Voronoi cell for a perfect FCC particle is a rhombic dodecahedron, as
shown in Figure @, with 24 edges and 14 vertices.

MATLAB has many functions that can be used to obtain the volume
and shape of the Voronoi cell. (1) For large data-sets where only the Voronoi
volume of each particle is desired, vorn_ vols.m can be used; (2) If both the
shape and the volume are desired, voronoin.m and convhulln.m are used
to obtain the vertices of the Voronoi cell for each particle as well as the
volume contained within those vertices. In order to plot the Voronoi shape
VoronoiShape.m was written to determine which vertices belong to which
faces and edges. One can also calculate the average particle volume by
hand using the raw image by counting the number of particles in a box of
measured volume. Figure @ shows how a parallelogram can be fitted on to
the "zoomed-in” {111} crystal layers. Each layer has 36 particles enclosed
within the drawn area however the top and bottom layers only contain half
that amount since the box will cut these layers’ particles in half. Therefore,
the total number of particles, Npuysicies(111) in the box is 36 X 3 = 108. The
volume of the box, Vpgy(111), Was calculated by finding the center of the
particles at each vertex, calculating the vectors of the sides of the boxes,
and taking an average in each direction. The angle between the vectors

was also calculated and Vp,;(111), was found to be 326.5 pum3. The average
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Figure 3.6: Voronoi cell surrounding a particle in an perfect FCC structure. It has
12 faces, 24 edges, and 14 vertices.
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particle volume in the "zoomed-in” {111} data-set was therefore 3.02 pm3.

The same method was used for the "zoomed-out” {100} data-set to
obtain a more accurate average particle volume for the whole crystal. Fig-
ure @ shows the top and bottom layers of the box. (1st and 48th layer,
respectively.) There are more defects in this data and stacking faults had
moved through the upper layers of the box. Npg,icies(100) in each layer is
169 and Vpog(100) 1s 21724 wm? so that the average particle volume here is
2.74 pm3.

The particle volume does vary with height. The same method was used
to calculate the particle volume in the first (bottom) 9 layers and the result
was slightly larger, 2.85 pm3. This difference is due to the fact that the set
boundary condition in the template affects the first few layers by straining
them. Therefore, as more stacking faults are introduced, the crystal relaxes
(contracts), and the particle volume decreases in value. (See Chapter @ for
more details on the relationship between stacking faults and the nearest
neighbor distance.) When equal amounts of stacking faults are present in
the layers, the particle volume increases with height because of the smaller

pressure head.

3.3 RESULTS AND DISCUSSION

3.3.1 SINGLE VACANCIES

3.3.1.1 CONCENTRATION OF VACANCIES IN OUR SAMPLES

The number of lattice sites per vacancy was calculated by dividing the total
volume, in which the 1115 single vacancies are contained by 2.74 um?, the

average particle volume for the ”zoomed-out” {100} data-set. This gives
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384640 lattice sites, or ~ 345 lattice sites/vacancy. This is similar to the
result of Lee at al. [10] who reported 1-5 vacancies per 1000 particles. If we
divide the height of the sample into four quarters (with the same number
of particles in each), we observe an uneven distribution of the single vacan-
cies with respect to height, as shown in Figure @ The concentration of
vacancies varies only slightly in the lower three quarters, but is significantly
smaller in the top quarter. The decrease can be explained by the larger
amount of time the particles at the top have had to settle and rearrange
without a large pressure head from above. As we shall see, the mobility of
the vacancies strongly depends on the local density. It could also be due
to a larger number of stacking faults that have travelled through the top
volume and allowed the vacancies to climb out when next to their bounding
dislocation. (See Section for an example of this.) Not all stacking
faults at the top travel down towards the template. Only if the stacking
fault’s movement relieves misfit strain does the stacking fault travel down
into the crystal. The first few layers contain fewer stacking faults because
the dislocations stay at an offset distance above the template due to the zero
displacement boundary conditions at the template. (See Chapter @ for a

more detailed description of stacking faults, dislocations, and offset.)
3.3.1.2 NEAREST NEIGHBORS OF VACANCIES

Using the "zoomed-in” {111} data-set, we find that the nearest-neighbor
shell around the vacancy is more compact than the nearest-neighbor shell
around the average particle, as shown in Figure . The average distance

between the nearest neighbors in the vacancy cluster is 1.50 um, while that
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Figure 3.8: Bottom (the first layer of the crystal) and top layers (the 48th layer of
the crystal) of the box used to obtain average particle volume in the sample. In between
there are 46 layers with colloids not shown.
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Figure 3.9: Histogram showing the number of vacancies in four quarters that divide
up z evenly. Quarter 1 is next to the template.
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Figure 3.10: Two views of a particle’s nearest neighbor shell (green with red center
particle in the center) and the vacancy nearest neighbor shell (blue) in the ”zoomed-in”
{111} data-set. The vacancy shell is noticeably smaller.
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same average for the shell around a particle is 1.62 um, a 7% difference.
The average distance of a particle in the second nearest neighbor shell to the
center of the shell is 2.26 um for the vacancy and 2.29 um for the particle, a
1% difference. This difference can be explained by continuum mechanics [34].
The displacement vector @ at distance r from a spherical vacancy center takes

the form (from spherical symmetry):

U=—=—cV-— (3.27)

where ¢ is a constant that measures the defect strength. The volume asso-

ciated with this displacement is:

AV = /udS = udnr? (3.28)
So that:
AV

Therefore, the elastic displacement decreases with increasing distance. For

the two shells we measured, this gives:

Ul _ ARl . R%

2 =_2 3.30
us ARQ R% ( )
So that:
2.292

The measured AR is 0.12 pgm, which is much larger, however the "zoomed-

in” {111} data-set gives R; to be 1.50 pm, which is smaller than the diameter
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of the particles, 1.55 pm, simply not possible. (Please see below for an ex-
planation.) If we instead consider 1.55 pm as the minimum nearest neighbor
distance then AR; is 0.07 pm, which is well within our uncertainty. Figure
shows the horizontal layer cutting through the vacancy, also indicating
the relative contraction of the first nearest neighbors.

We can confirm the contraction towards the center of the vacancy
visually by plotting the locations of particles in the vacancy layer (green in
Figure ) and compare them to locations in a theoretical crystal layer
(blue) centered at the vacancy (red). Here it becomes clear that the first
nearest neighbors have moved into the open space (as previously noted), but
we can also see that the third and fourth nearest neighbors also locating
themselves slightly closer to the center of the vacancy.

To investigate further, two cuboctahedra, formed by the centers of the
nearest neighbors surrounding a particle and a vacancy were constructed,
as shown in Figure . The volume of the vacancy cuboctahedron is 7.86
um? while that for the particle is 9.24 um?. Therefore, the contraction in
volume is 15%, which translates to a 5% difference in distance to center.

The obtained nearest neighbor distance of 1.50 pm (as mentioned
above) is not the true average of the distance between first nearest neigh-
bors since the average diameter of the particles is 1.55 um. Instead, when a
slow scan is performed for a high-resolution ”"zoomed-in” image, the image
will show a particle center that is the average position of particle during

that scan. That average position is different from the actual relative to the
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Figure 3.11: The particles (green) in the vacancy layer of the "zoomed-in” {111}
data-set together with the locations of particles in a perfect crystal (blue) centered at
the vacancy (red). Top picture shows a {111} plane parallel to the template, while the
bottom picture depicts one {111} plane that extends through the thickness of the crys-
tal.
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Figure 3.12: Reconstructed image of all particles in the vacancy layer of the
7zoomed-in” {111} data-set. The first nearest neighbors are contracted into the vacancy
space, giving 1.50 um spacing between the nearest neighbors, versus 1.62 ym for the
nearest neighbors around a particle. The second nearest neighbor distance to the center
of the shell is, 2.26 pum for the vacancy and 2.29 pum for a particle.
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Figure 3.13: The cuboctahedra formed by the centers of the nearest neighbors
surrounding a particle (left) and a vacancy (right) in the “zoomed-in” {111} data-set.
The volume of the vacancy cuboctahedron is 7.86 pm? while the volume of the particle
cuboctahedron is 9.24 pm?®.
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Figure 3.14: Three possible movements of nearest neighbors in a close-packed plane
around a vacancy (1-3). The blue particles indicate perfect HCP configuration. The red
particles indicates positions (still maintaining hard-sphere distances) when one particle
moves in towards the center, pushing its neighbors slightly to the side. The black par-
ticles are the average center position for each nearest neighbor when positions from 1-3
are added up.

47



particle positions at a given moment. A nearest neighbor can find its way
into the free space of the vacancy by pushing the other particles slightly
sideways, as shown schematically in Figure . Since the sideways move-
ment of the neighbor particles does not leave these particle much further
away from the center than originally, but at the same time, the gain for the
particle moving closer to center is large, the average particle position taken
over many fluctuating configurations can be closer to the center than for a
close-packed shell. This idea explains the larger intensity on the half of the
particle facing the vacancy in Figure @

The statement above is confirmed by observations on the ”zoomed-
out” {100} data-set. Figure shows the nearest neighbor distances for
the nearest neighbor shells of all particles (red) and vacancies (blue) for one
time step. Here the average of the nearest neighbor distance in the particle
shell is 1.59 um whereas the same average for the vacancies’ nearest neighbor
shell is 1.58 pum, only a 1% difference. Figure shows an initial decrease
in nearest neighbor distance from the first to the second quarter. This can
be attributed to the layers just above the template being strained due to the
offset of the misfit dislocations. The slight increase in the 3rd and 4th layers

correlates with the pressure head getting smaller.
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Figure 3.15: The average distance between the particles in the nearest neighbor
shell of a particle (red) and the average distance between the particles in the nearest
neighbor shell of a vacancy (blue) for one time step plotted as a function of heigh in the
crystal in the "zoomed-out” {100} data-set. The average for the particles is 1.59 um and
the average of the vacancies 1.58 um.
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Figure 3.16: The distances of Figure averaged per quarter of the crystal; red:
particle; blue: vacancy.
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3.3.1.3 VORONOI VOLUME OF THE BULK PARTICLES

The shape of the Voronoi cells of the actual particles in the crystal is not
as perfectly symmetrical as shown in Figure @ The cells might be slightly
distorted by nearby line and point defects, or by thermal fluctuations. There-
fore, the faces of the Voronoi cells are generally not regular, and sometimes
more faces are created. Figure M shows the Voronoi cell of a particle in
the "zoomed-in” {111} data-set.

The particle still has 12 nearest neighbors (as defined by the 80-120%
rule of the template spacing), but the number of vertices is now 24 and the
number of faces has increased from 12 to 14. This observation applies to
307 particles that have been defined with 12 nearest neighbors in this data
set, where the average number of faces is 14. The increase in the number
of vertices and faces corresponds to a slight distortion of the cuboctahedral
coordination [35]. The two extra faces occur at the vertices where four faces
meet. The volume per particle in a perfect FCC crystal with a nearest
neighbor distance of 1.62 ym is 3.01 gm?, which is very close to the average
measured Voronoi volume in this crystal, 3.00 pm?3.

Figure shows a histogram of the Voronoi volume distribution in
the "zoomed-out” {100} data-set. The peak of the histogram occurs at the
average particle volume found in Section , 2.74 pum3. The distribution
is not symmetric and has a tail at larger volumes. This tail can be the
result of polydispersity. For the polydispersity, a small increase in radius,
has a cubic increase in Voronoi volume which, for larger spheres, shows a

significant difference in the Voronoi volume distribution.
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Figure 3.17: Voronoi cell of a particle in FCC structure. This Voronoi cell has 14
faces, compared to a 12 faces for the perfect FCC particle in Figure
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Figure 3.18: Histogram of Voronoi volume of particles in the large {100} data set.
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The semi-log plot of Figure shows that the top of the right side of
the curve looks linear. This can be interpreted by free volume fluctuations

which occur with a probability [36]:

v e —vy

P =
(Uf) <wvf > :L‘p< vf >

(3.32)

where vy is the local free volume, < vy > is the average free volume per
particle, and ~ is an overlap factor commonly set at 0.5. The slope of the
line is -9.62 ym™2 and corresponds to —y/< vy > so that < vy > = 0.052

pum3. This gives an average particle volume (crystal volume per particle) of:

< Vparticle >=< Vo > + < vf >= %(%)%/0.74 +0.052 = 2.69um3
(3.33)
where v, is the crystal volume per particle for a close-packed crystal.
<Uparticle™> is 2% smaller than the value found in Section . Since this
value of < vy > is an upper limit (all other possible contributions to the

tail are ignored), the simple free volume theory can not account for the

distribution quantitatively.
3.3.1.4 THE VORONOI VOLUME OF THE VACANCY

The center of the vacancy is defined by the average of the coordinates of
its 12 neighbors. The Voronoi cell of the vacancy is shown in Figure .
Figure m shows Voronoi cells of six of the twelve nearest neighbors when

the Voronoi cell from the vacancy center, is removed for the "zoomed-in”
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Figure 3.19: Semi-In histogram of Voronoi volume of particles in the ”zoomed-out”
{100} data-set.
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Figure 3.20: Voronoi cell of the vacancy when an artificial data point is put at its
center. The Voronoi volume is 2.34 pm?.
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Figure 3.21: Voronoi cells of six nearest neighbors to a vacancy on the same plane,
with the Voronoi cell of the vacancy itself removed. The average Voronoi volume here is
2.81 pum?®, 6% smaller than that of an average particle.
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{111} data-set. The average Voronoi volume is now 2.81 um?, 6% smaller
than the average for particles in the defect-free crystal. The Voronoi volume
of the vacancy itself is 2.34 pm?®, 22% smaller than that of the average
particle in the crystal. This confirms that the 12 particles surrounding a
vacancy take up significantly less space than a cluster of 13 particles would
in a perfect crystal. In fact, if we try to find the volume of a vacancy by
taking the sum of the 12 nearest neigbors’ Voronoi volumes and subtracting
12 average particle Voronoi volumes, then the resulting volume is 0.21 pm3,
meaning almost no extra space. It should be kept in mind that the degree of
relaxation in this "zoomed-in” {111} data-set is larger than the actual one
due to the averaging of the particle positions, as discussed above.

The Voronoi volumes of particles (red) and vacancies (blue) in the
"zoomed-out” {100} data-set are shown in Figure . Here, again, an arti-
ficial point is put at the center of the vacancy. The average Voronoi volume
of the particles is 2.76 pm?, but, surprising, the average of the vacancies is
slightly larger, 2.78 ym?®. Bennett and Alder [§] point out that at the lower
densities the nearest neighbor particles to a vacancy have more room for
vibrational entropy and actually expand the lattice. It is surprising, though,
that this should hold for the higher densities of our crystals.

Taking out the artificial point in the center of the vacancies, the
Voronoi volume of the nearest neighbors of the particles (red) and of the
nearest neighbors of the vacancies (blue) is plotted in Figure and Fig-
ure m for the "zoomed-out” {100} data-set. The average of the particles

nearest neighbors is found to be 2.80 ym3, while the mean for the vacancies
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Figure 3.22: The Voronoi volumes of the particles (red) are plotted together with
the Voronoi volumes of the vacancies when when an artificial data point is put in the
center of the vacancy (blue) for the large "zoomed-out” {100} data-set. The average of
the particles is found to be 2.76 um?®, while the mean for the vacancies is only slightly
larger, 2.78 um?.
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Figure 3.23: The average of Figure averaged over the quarters of the crystal
height. Particles: red; vacancies: blue.
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nearest neighbors is only slightly larger, 2.97 pm3.

3.3.1.5 MEAN SQUARE DI1SPLACEMENT OF THE NEAREST NEIGHBORS
OF A VACANCY

For the single vacancies in the "zoomed-out” {100} data-set, the mean square
displacements of the nearest neighbors were calculated and compared to
those of the neighbors of a particle. The results are shown in Figure
and Figure .

Due to the increase in free volume in which they can move, the neigh-
bors of a vacancy have a mean square displacement of, 0.0053 xm?, which is
an order of magnitude larger than the corresponding value for the neighbors

of a particle (0.0003 pm?).
3.3.1.6 VOLUME OF FORMATION OF VACANCIES

The volume of formation, AV,, of vacancies is the volume change of the

crystal upon removing a particle, placing it at the surface, and letting the

lattice relax (See Equation )
AVy = AVy + AViclan (3.34)

In the Sections above several values for these quantities have been calculated
for the two data sets. Table @ provides a summary. Equation is used
to obtain the volume of formation for the "zoomed-out” {100} data-set and

plotted versus reduced pressure together with Bennett and Alder’s data [§]

. . ] PV, . . .
in Figure . The reduced pressure LT for our experiment is obtained
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Figure 3.24: The Voronoi volumes of the particles nearest neighbors (red) are plot-
ted together with the Voronoi volumes of the vacancies nearest neighbors (blue) for one
time step in the "zoomed-out” {100} data-set. The average of the particles nearest
neighbors is found to be 2.80 um?®, while the mean for the vacancies nearest neighbors

is only slightly larger, 2.97 pm?®.
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Figure 3.25: The values of Figure averaged over the quarters of the crystal

height. Particle: red; vacancies: blue.
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Figure 3.26: The mean square displacement average of the nearest neighbors of
particles (red) and vacancies (blue) for the "zoomed-out” {100} data-set as a function
of height in the crystal. The average value for the vacancy neighbors is 0.0053 pm?, and
for bulk particles 0.0003 pm?.
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Figure 3.27: The values of Figure averaged over the quarters of the crystal
height. Particle: red; vacancies: blue.
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”Zoomed-in” {111} data set | Vacancy | Particle | AV, AV,
Nearest neighbor distance 1.50 pm 1.62 ym | -0.62 pm?3
Voronoi volume of center 2.34 pm? | 3.00 pm? | -0.66 pm3

Voronoi volume nearest neighb. 3.01 pm3
Volume of cuboctahedron 7.86 ym? | 9.24 ym? | -1.38 pm3

Particle Volume 3.02 pm?

”Zoomed-out” {100} data set | Vacancy | Particle | AV, AV,
Nearest neighbor distance 1.58 pm 1.59 ym | -0.18 pum? | 2.56 pm3
Voronoi volume of center 2.78 ym? | 2.76 ym? | 0.04 pm> | 2.78 pm3

Voronoi volume nearest neighb. 2.97 pm? | 2.80 pm? | 0.02 pm?® | 2.76 pm?
Particle Volume 2.74 pm?

Table 3.4: Volume relaxation summary of different measurements presented above.

by using the equation of state (Equation @) Since p (the number density

of particles) =N/V, L7 = 2N and we get:

PV,  ZV,
NkgT V

(3.35)

Our predicted value for the volume of formation over the close-packed
volume in Figure should be close to 1 because as the density approaches
that of close-packed crystals, the volume of formation the close-packed vol-

ume should be about the same.
3.3.1.7 MOVEMENT OF VACANCIES

After observing the "zoomed-out” {100} data-set for 13.5 hours, none of the
single vacancies had moved. Vacancies close to stacking faults sometimes
moved, but these vacancies are not included in our count. Figure shows
the motion of such a vacancy. These figures are part of a different data-
set, in which pictures were taken every minute for 76 minutes. A vacancy,
noticeable in the first 7 minutes underneath a layer containing a dislocation

line, climbs up to the dislocation in the next time step. The dislocation
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Figure 3.28: Volume of formation over close-packed volume vs. pressure extracted
from the different measurements of volume relaxation in Table B.4. Blue indicated Ben-
nett and Alders data and red indicated our data. VV indicated the volume of forma-
tion obtained by creating an artificial point in the center of the vacancy to obtain the
Voronoi volume of the vacancy, NN indicates the volume of formation obtained from the
nearest neighbor distance around a vacancy, and VVNN stands for Voronoi volume of
nearest neighbors, where each nearest neighbor obtains one 12th of the space of the va-
cancy. The volume of formation is calculated by adding the 12 nearest neighbor Voronoi
volumes and subtracting 12 particle Voronoi volumes. See values in Table @
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line had in the same time period moved towards the vacancy and the jog
straightens out as a result of the climb, as shown in Figure . This
phenomenon illustrates our earlier explanation why layers with dense line
defects contain fewer vacancies.

Since no single vacancies are moving on their own, it is impossible to
get an accurate jump frequency. However, an upper limit can be obtained by
assuming that one vacancy would have moved in the next time step, meaning

after 14 hours. This corresponds to a jump frequency of:

1 1

_ _ 8,1
= TT15 % T4 % 3600 = 1.8 x 10~ °sec (3.36)

Using the attempt frequency, v = 0.6 sec™! (Equation ), we obtain
%BL;J = 17.5 from Equation @ We compare that value with Bennett and
Alder’s simulations [§] taken on hard sphere systems of much lower density

in Figure . Here, the jump frequency over attempt frequency (g) &

Ni‘;"T for both Bennett and Alder’s data (blue) and ours (red) is plotted.

PV,
NkgT

particle volume [17], as described in Equation

can be obtained for our crystal from the equation of state [24] and the

The best fit straight line through Bennett and Alder’s data (blue) is

shown in Figure . For NT;OT of our data, their extrapolated value for
-log(g) is 73.2. In other words, we would need to wait 10%! years in order

for a jump to occur.
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Figure 3.29: A vacancy has been at the same spot of 7 minutes, top left picture.

In the layer above a dislocation line with a jog moves over the vacancy, bottom left pic-

ture. After 8 min, the vacancy has climbed to the dislocation line (top and bottom right
@ure respectively). The jog disappeared in the next time step as shown in see Figure
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Figure 3.30: One minute later, the jog that was previously present in the disloca-
tion line before the vacancy climb (Figureg@) has disappeared.
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Figure 3.31: Jump frequency over attempt frequency vs reduced pressure for Ben-
nett and Alder’s vacancy data (blue) and the upper limit (red) for the "zoomed-out”
{100} data-set. The line is a linear fit through Bennett and Alder’s data.
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3.3.2 DIVACANCIES

3.3.2.1 CONCENTRATION OF DIVACANCIES IN OUR SAMPLES

The number of divacancies in the "zoomed-out” {100} data-set is 18. They
are distributed unevenly throughout the sample, as depicted in Figure .
There are more divacancies in the top half of the sample, indicating that
divacancies might be more likely to form at lower density, where vacancies

may briefly have higher mobility and hence a greater chance at associating.
3.3.2.2 VORONOI VOLUME OF DIVACANCIES

Figure shows the Voronoi volumes around the divacancies, plotted by a
color code for each particle on a scale between 2.3 and 3.3 um3. This Figure
clearly shows that some Voronoi volumes around the divacancies are slightly
larger, which might explain the higher likelihood of movement compared to
single vacancies. We calculated the average Voronoi volume of the center of
the divacancies vs time (as shown in Figure ) The centers of the two
vacancies, 7,1 and e, were determined for each time step by solving these

simultaneous equations:

11

1 o _
12(; Fi + To2) = Tol (3.37)

11
1 o _
E(Z Tj + Ty1) = T2 (3.38)
j=1
where the 7; and the 7; are positions of neighbors of each vacancy. The mean

Voronoi volume over time is 5.59 pum?, giving 2.80 um? per vacancy, which
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Figure 3.32: Distribution of divacancies in the four quarters of the height. Quarter
1 is closest to the template.
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Figure 3.33: Voronoi volumes of particles in layers around the divacancy.
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Figure 3.34: Voronoi volume of a divacancy vs. time.
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is larger than that of the single vacancy (2.34 um?, Figure ) Since the
Voronoi volume of a divacancy is greater than twice the Voronoi volume of a
vacancy, the contribution of the volume of association, AV,, to the enthalpy
of formation of the divacancy, AH,, is positive, the increase in the entropy
of vibration upon association, AS,, must be sufficiently large to result in a
negative free energy of association AG, = AH, — TAS,. The calculations
of Bennett and Alder indicate that AG, is indeed negative. The Voronoi
cells for three different time steps are shown in Figure . The average
Voronoi volume for the 18 nearest neighbors around the divacancy over time
is shown in Figure . The overall average Voronoi volume is 3.13 pm? per
nearest neighbor. This divacancy is in the third quarter, which according
to Figure gives a particle Voronoi volume of 2.75 ym?, the AV, for the

divacancy can be calculated:
AV, =18 x (3.13 — 2.75)um? = 6.84pum?> (3.39)

This gives 3.42 um? per vacancy, which is much larger than that of a single
vacancy. AV, gives a Vyeae= 0.98 um? according to Equation , which

is also significantly larger than that of a single vacancy.
3.3.2.3 MOTION OF DIVACANCIES

Out of the 18 divacancies, only three moved. The three divacancies make a

total of four jumps over 13.5 hours, giving a jump frequency of:

4 1
I'=—

46 x10 sec! 4
18 * 135 x 3600 0 x 10 Tsee (340)
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Figure 3.35: The divacancy’s voronoi cell.
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time.
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The error is v/4, giving a jump frequency error of 2.3 x 1075, With the
attempt frequency v = 0.6 sec™! the free energy of motion of the divacancy
is obtained from Equation @ to give %BL’T" = 11.8, with an error of £0.7.
The one divacancy that moved twice is featured in Figure . The first
jump happened between 2.5 and 3 hours after the experiment started and

the second movement happened between 4 and 4.5 hours.
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Figure 3.37: The only divacancy to move twice during the 13.5 hours is indicated
above with two yellow particles situated at the divacancy’s two centers. The first jump
occurred after 3 hours. The second jump occurred 4.5 hours into the experiment.
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The time of movement of the divacancy vs their height is shown in
Figure . Three out of the four movements happened at the top of the
crystal, presumably because of the lower density.

The jump frequency over attempt frequency vs reduced pressure is
plotted for Bennett and Alders’s data (blue) and our crystal (red) in Fig-
ure . Our data are close to the extrapolation of the simulation data.

Considering Equation @, we now have:

r pAV,,  ASp,
log — = — 2om A1
%8 kel | kg (3.41)

We can multiply top and bottom of the first term with Vj:

log — = — 3.42
8T TkaT Vo | kp (3.42)

The slope of a line through both our and Bennett and Alder’s is AV%: 0.18.
The intercept of the line with the frequency axis is %: 0.49. Both these

values are plausible.

3.3.3 VACANCY - INTERSTITIAL PAIRS

3.3.3.1 CONCENTRATION

There are five vacancy - interstitial pairs in the "zoomed-out”{100} data-set,
in which a vacancy is adjacent to an interstitial. Four of these interstitials
are located in the second quarter and one in the third quarter (Figure )
of the sample. There are no intersitials in the upper quarter. The higher
mobility in the top layer might limit the chance for them to be trapped as

defects.
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Figure 3.38: Time of the movement of the divacancies as a function of their height.
The circled dots indicate the same divacancy.
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Figure 3.39: Jump frequency of the divacancy over attempt frequency vs reduced
pressure for Bennett and Alder’s data (blue) and our crystal (red). The line is a fit to

Bennett and Alder’s data.
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Figure 3.40: Distribution of interstitial - vacancy pairs across four quarters of the
height.
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3.3.3.2 MOTION OF THE INTERSTITIAL INTO THE VACANCY (ANNIHILA-
TION).

An example of an interstitial that moves into the vacant space is shown in
Figure 7?7. Three out of five move into the vacant lattice site during the

duration of the observation, 13.5 hours, which gives a jump frequency of:

1

_ -5 -1
X 135 % 3600 1.2 x 10 °sec

3
r== 3.43

The error is v/4, giving a jump frequency error of +0.7 x 107°. With the
attempt frequency v = 0.6 sec™! this give from Equation @, %BL%" = 10.8,
with an error of £0.8. A summary of the vacancy, divacancy, and interstitial-

vacany pair’s jump frequency and Gibbs free energy is displayed in Table @

AG’"l
ksT
Jump frequency, | Gibbs free energy extraSolated
I (sec™!) of motion, % from simulation
B
Vacancy 1.8 x 1078 17.5 73.2
(upper limit) (lower limit)
Divacancy | (4.6 £2.3) x 1076 11.8£0.7 12.3
Vacancy -
interstitial | (1.2+0.7) x 107° 10.8 +0.8
pair

Table 3.5: Jump frequency and Gibbs free energy for the vacancy, the divacancy,
and the vacancy - interstitial pair.
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Figure 3.41: Annihilation of a vacancy - interstitial pair. The interstitial is next
to a vacancy in the layer below. The right figures show the layers 30 min later. The
interstitial has moved into the vacancy.
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Figure 3.42: Time of the annihilation of the interstitial - vacancy pairs, as a func-
tion of their height.
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Interaction Between A Dislocation and A
Twin Boundary In A Hard-Sphere
Colloidal Crystal

HEN A MATERIAL IS UNDERGOING PLASTIC DEFORMATION, dislo-

V V cations nucleate and travel through the material to release strain
energy [13]. The dislocation density increases with continuous deformation.
When the number of dislocations is sufficiently large the dislocations start to
run into each other. The energy required for dislocations to pass or cut one
another leads to work hardening. Other defects can have a similar effect:
grain boundaries are known to stop dislocations and lead to strengthening of
the material by the Hall-Petch mechanism [13] [B7]. A grain boundary with
high symmetry and low energy is the twin boundary [13] [11]. It presents
a well characterized, uniform obstacle for dislocation motion. This chapter

investigates the interaction between a dislocation and a twin boundary in a
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hard-sphere colloidal crystal.

4.1 INTRODUCTION

4.1.1 TwIN BOUNDARIES

Twin boundaries are grain boundaries. Their energy of formation is much
lower than that of other grain boundaries since they have no density deficit
and the coordination number of all the particles is maintained. The energy
of formation of a {110} "3 coherent twin boundary is also lower than that of
a stacking fault [13]. This can easily be seen when writing the different ABC
layer arrangements. (See Figure @ for showing an A layer, B layer, and a
C layer in relation to each other). A perfect FCC has layer arrangements
ABCABCABCARBC. In a stacking fault, two HCP layers occur right next to
each other producing layer arrangement of ABCABABCABC. For a twin
boundary the layer structure is ABCABCBACBACB, only leaving on HCP
layer in the middle. However, in hard-sphere colloidal crystals, both these
energies are zero. Figure @ shows the first layer of a {100} " 5 tilt grain
boundary and a twin boundary. The density deficit in the Y 5 boundary
should be noted.

Twins can arise during crystal growth or from shear deformation [[13].
In FCC, the deformation twin is formed by displacing successive {111} planes
by %a < 112 > vector in the plane (i.e. A — B, B — C, C — A, see Figure

@), which produces a homogeneous shear of @

85



Figure 4.1: Top: the first layer of a {100} > 5 tilt grain boundary. Bottom: first
layer of a {110} >3 twin boundary for FCC crystals.
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4.1.2 GRAIN BOUNDARIES AS BARRIERS TO DISLOCATION MOTION

The ability of grain boundaries to strengthen materials by acting as barriers
to dislocation motion has long been known [13]. When the grain size is
reduced, the yield stress, flow stress and hardness of metals and alloys usually
increases. Hall and Petch found that the yield stress, o, of polycrystalline

a-iron is varies according to the relation [13] [37]- [Bg]:

Oy = 0o+ kd 2 (4.1)

where d is the grain size. The increase in yield strength arises from disloca-
tion pile-up at the boundary [13]. This suggests that nanocrystalline metals
should be materials with high hardness [37]. There is a limit, however, to
how small these grains can be. Decreased hardness has been observed on
nanostructures with grain size less than 10 nm [14] [16] [37]- [39]. If, however,
twin boundaries are created in the grains, it is possible to create even harder
materials. In pure Cu with an high concentration of twin boundaries in the
normal grains, the yield strength has been found to reach four times its value
without twins. Since twin boundaries block the motion of dislocations, their

spacing must be considered as well in the Hall-Petch relationship [38]- [40].
4.1.3 CRYSTALLOGRAPHY OF TWIN-DISLOCATION INTERACTIONS IN FCC

When dislocations pile-up next to a twin boundary, their combined stress
field helps to press one or a few dislocations into and through the boundary.
Sometimes the dislocations dissociate into two dislocations, where one stays
at the boundary and the other one goes through. The crystallography of

these interactions is presented below. [[13] [14] [16] [41] [39]
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4.1.3.1 DISLOCATION INTERACTION WITH A TWIN BOUNDARY IN FCC

In FCC crystals, the slip and the coherent twinning planes are {111}. A slip
and a twinning plane meet at a <110 >. For an (111) slip plane with lattice
parameter a, the possible Burgers vectors for perfect dislocations are [42]:
+3a[011] (parallel to the slip and twin plane intersection ), £3a[110] (with
an angle of 7/3 to the slip and twin plane intersection), and £3a[101] (with
an angle of /3 to the slip and twin plane intersection).

When a dissociated dislocation glides into a coherent twin {111}
boundary, two reactions can occur. A cross-slip, which transforms the
incoming dissociated dislocation into a dissociated dislocation in the twin
plane, can happen if the incident Burgers vector is parallel to the twin.
Burgers vectors not parallel to the twin plane can create an untwinning
interaction or a climb in the twin boundary [43]. The first Burgers vec-
tor listed above is parallel with the slip plane-twin boundary intersection
and therefore becomes a dislocation in the twin plane (indicated with a T’
below) [42]:

1 1 -

5al011] = Zaf011] (4.2)

The other two, £3a[110], £3a[101], must undergo dissociation reac-
tions where each dislocation creates one slip dislocation in the twin plane
and a partial dislocation at the interface. There are two possibilities for each

case. For example the 3[110] can dissociate as [42]:

1 1 1
5a[110] = al110}r + 2 x ca[112] (4.3)
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%a[llO] - %a[lol]T + %a[ﬂﬂ (44)

These reactions are easily checked on a Thompson tetrahedron [42] [44].

In our colloidal crystals, the most common dislocation by introduced
strain is not a full dislocation but a Shockley partial. In an atomic crystal,
two Shockley partials bound a stacking fault and minimize its size. In the
hard-sphere colloidal crystal, stacking faults have zero energy and therefore
the repulsion between the partial dislocation makes them extend all the way

through the crystal. For more details, see Section
4.1.4 SIMULATIONS AND EARLIER EXPERIMENTS

In a simulation by Zhang et al. [14], a perfect dislocation with b=2[101] sit-
uated next to a ¥ 3 (111) twin boundary in an FCC crystal was propagated
through the boundary via glide. A partial Shockley dislocation with #[112]
remained in the boundary as the perfect dislocation moved through, leav-
ing a step in the boundary [14] [15]. Twin boundaries containing Shockley
partial dislocations with a Burgers vector of %a[ﬁﬂ, have been found exper-
imentally following tensile testing of FCC materials [41]. When the twins are
far apart the dislocations pile-up next to the boundary. The stress concen-
tration from that pile-up allows dislocations to slip through the boundary.
A nanometer scale spacing is necessary to obtain high hardness [14]. The
shorter the spacing between the twin boundaries, the higher the external
stress required for the dislocation to cross the twin boundary, since fewer
dislocations can pile-up at one boundary. If the spacing is so small that no
dislocations can pile-up, a dislocation can still penetrate the twin boundary,

but a very high stress is required [41].
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4.1.5 DISLOCATIONS IN COLLOIDAL CRYSTALS

Dislocations in colloidal crystals can be introduced by either deforming the
crystal (i.e. by indentation) [6], by introducing a strain in the template
(by patterning the holes at distance different from the ideal one for a given
crystal height), or by growing a crystal thicker than the critical thickness
for a given template [4]. The work in this chapter has concentrated on the
third approach.

In order to understand the dislocation behavior in a strained crystal,
we need to know the elastic constants of colloidal crystals. The discussion

below follows the approach described in Schall and Spaepen’s review [1§]:
4.1.5.1 ELASTIC BEHAVIOR OF COLLOIDAL CRYSTALS

Colloidal crystals have small elastic moduli. The equation of state is:

pV =Z(V)kgT (4.5)

The bulk modulus defined as:

Vdp

K=-
av

which for the above equation of state is:

For our crystals, K is 1-10 Pa [17].
The shear modulus, u, can be found by taking the second derivative of

the Helmholtz free energy density, Helmholtz free energy over volume, with
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respect to the shear strain, ~:

1 6%2F

I

Since the only internal energy to consider that does not depend on ~ is the

thermal energy, Ushermal, We get:

T §%S
=—=— 4.9
In hard-sphere colloidal crystals under our conditions p has been computed
to be 5.0 Pa for the parallel shear and 0.8 Pa for the shear at 45° [33], which

is surprisingly anisotropic.
4.1.5.2 CRITICAL THICKNESS OF A STRAINED COLLOIDAL CRYSTAL

By introducing strain into the template, coherency (or misfit) dislocations
may appear to relieve the strain by creation of Shockley partial dislocations
with Burgers vectors b=g<112>. Only the component parallel to the tem-
plate relieves strain, so that the effective Burgers vector becomes bcos(a),
where « is the angle between the plane and the vector.

The growing crystal needs to reach a critical thickness for misfit dis-
locations to be formed. The strain relieved by dislocations spaced L apart
is:

_ beos(a)

e=— (4.10)

If the crystal has a Young modulus E and height h, the elastic energy

per unit area is:

91



1
Uslastic = §E52 h (4.11)

elastic

where the elastic strain, €qqstic, is the difference between the initial strain,

€9, and the strain relief provided by the dislocations, e:

Eelastic =— €0 — € (412)

Using equation and , ULlastic becomes:

1 beos(a
Uelastic - 7E(50 - L( )

5 )2h (4.13)

The energy per unit area of the dislocations is:

1 pb? R
———In— 4.14
L4r(1 —v) nro (4.14)

Udislocation =
Here, v is Poisson’s ratio, computed to be 0.37 under our conditions [33], R
is the distance away from the dislocation at which the crystal still feels its
strain. In this case, R is the height of the crystal, h. r, is the effective core

radius equal to b/4 [13]. By minimizing the total energy with respect to the

dislocation spacing, we obtain:

T SIS S e
L beos(a) 4n(l —v) E cos?(a)h "

(4.15)

At the critical thickness, h., the dislocation spacing is infinite. This

gives:

1 wl b 4h,
— In

he = —
dm(1 —v) Eegcos(a) b

(4.16)

For an isotropic medium, Young modulus, the shear modulus, and
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Poisson’s ratio are related:
FE
—=2(1+v) (4.17)
1

This is a simplified version. Jensen et al. [17] have incorporated the
dependence of the bulk and shear moduli on the compressibility factor, Z,
which further depends on the volume fraction, which varies with crystal

depth due to the pressure head [24].
4.1.5.3 OFFSET DISTANCE FROM TEMPLATE

Once the dislocations have nucleated, they move to relieve as much strain
energy as possible. However, since there is a boundary condition of zero
displacement at the template, the dislocation motion must stop a few mi-
crometers above the glass slide. This offset distance, z,, can be calculated
by considering the elastic energy per unit area. The energy below the dislo-

cations at height z is given by.

1
Uelastic = §E5%Z (418)

The force acting to pull the dislocation towards the template, when

the dislocations are separated L apart, is the vertical gradient of Ugjgspic:

1
Ferastic = §LE5(2) (419)

The zero-displacement boundary condition is applied by placing an image
dislocation at a distance z below the template, which repels the real disloca-
tion. The vertical repulsive force between the image and the real dislocation

is:
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p(beos(a))? (120)

Fo o, —
repel Ar(l —v)z

The offset distance z, is found by balancing the forces and solving for

(beos(a))? p

= = (4.21)
2n(l1 —v)Le2 E

Zo

This predicts an offset distance of one or two crystal planes, in accordance

with observation [4].

4.2 EXPERIMENTS

4.2.1 CRYSTAL GROWTH

The colloidal suspension was prepared as described in Chapter E The sample
cell was filled halfway and the crystal was left to grow overnight. Then
the sample cell was filled to the top and at the same time placed on a
microscope to be scanned during growth every 15 min for 17.5 hours. A grid
was mounted 50 pum over the template so that a shearing experiment could
be performed after 17.5 hours. However, the event presented in this chapter
occurred before shearing started due to 4.5% strain via a misfit template. For
the amount of colloids in our sample, and the volume fraction, the expected
height can be obtained from Equation as 71 pm, which matched the
experimental value (Figure @)

The color scheme in Figure @ indicates the order parameter of each
particle, based on the nearest neighbor arrangement, as described by Ram-

steiner et al. [45]. With nearest neighbors defined within distance 1.025a,
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Figure 4.2: Position of an A layer, B layer, and C layer drawn along with the
<110> and the %a < 112 > direction. The red arrow indicates A - B — C.
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Figure 4.3: Crystal growth versus time after Omin, 317 min, 604 min, and 893 min.
The color scheme indicates the order parameter of each colloid. A colloid with an order
parameter of 20 or above is considered crystalline.
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where a is the template lattice parameter (2.31 um), a particle is considered
to be crystalline if it has an order parameter of 20 or larger. In order to
obtain the growth rate of the crystal, shown in Figure @, the number of
particles with order parameter equal to 20 or above were counted. That
number was divided by the number of colloids that would ideally make up
one layer. Each layer is a {110} plane with lattice parameter a, leaving an

area per particle, Apqrtice:

a?

Aparticle = E
From the radial distribution, Figure @, the lattice parameter is 2.30 pum.

(4.22)
The number of particles in a layer is simply the area of a square with length
L divided by Aparticie-

2
Atotal - \/iL
Aparticle a?

Nigyer = (4.23)

Excluding the edges of the layers (since for these no order parameters
can be defined), by choosing L to be 85 pm, Njgyer was 1947. However,
each layer has some particles with non-crystalline coordination, as shown in
Figure @ The fraction of non-crystalline particles in the first 20 pym of
the crystal height is on average 10%. This needs to be taken into account if
the right crystal growth rate is to be found. The result is shown in Figure
@. We can see a constant growth rate for the first 900 min, whereafter the
growth levels off due to lack of colloids in the fluid above.

A linear line of best fit can be performed on the first 900 min data in

Figure @ A few layers needs to be added since the bottom layers do not
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Figure 4.4: Pair distribution of the crystal. The nearest neighbor peak is located at
1.62 pum, and the second nearest neighbor distance (the lattice parameter a) is located
at 2.30 pm.
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Figure 4.5: Number of crystal layers vs. time. The crystal growth rate is constant
for the first 900 min.
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show an order parameter of 20 or above, even though they are crystalline

(an artifact due to the edge effect of missing neighbors). The result is:
h(Number of layers) = 0.022t 4 28.38 (0 <t < 900min) (4.24)
Or, since the thickness of one layer, t;,ye, is ﬁ: 0.82 pm:
h(pm) = 0.018t + 23 (0 < t < 900min) (4.25)

The expected growth rate can be calculated by considering the flux, J, the
settling velocity, vsettiing, times the number density of colloids in the solution,
NColloidsInSolution:

J = UsettlingM ColloidsInSolution (426)

The total amount of particles per time, I'; is the flux multiplied by the cross

sectional area, AcrossSection:

'=JA= UsettlingnColloidsInSolutionACrossSection (4-27)

In order to find the number density of colloids in our solution, ncoieidsinSolution
we need the density of silica in the raw stock, pgiiicarnRawStock, and the mass

of a colloid, M¢eeid, from Chapter E and the fraction of raw stock used,

f RawS'tock -

PSilicalnRawStock
NColloidsInSolution = fRawStock (428)
Meolloid

Dividing the I' by the number of particles per layer, Nigye, = ACrossSection —

particle

A rossSection 1 1 3 1
£drossSection we get the number of layer per time. Further, multiplying this

V2a

with the thickness per layer, #;,ycr, We get the rate at which the crystal
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should grow, Arpeory:

settling P Silicaln RawStoc awStock‘1particle Vlayer
r UsettlingPSilicalnRawStock J RawStock Aparticie tl

hThem" = t
y ayer
Nlayer Meolloid

(4.29)
From Chapter E we can find pgiticalnRawStock, Vsettling, a0d Meolioid- Aparticle
and ;4 are both given above. With a frawstoct of 0.087 we obtain that
the crystal grows at a speed of 0.15 pum/min, about an order of magnitude
faster than our experiment shows. One reason for the difference could be
the presence of a grid covering the top. Some particles settle on top of the
grid, as shown in Figure @, but more importantly, due to the grid holder,
the density of colloids settling in the liquid, pcoiioidsinSolution, directly above

the grid will be less than that of the suspension as a whole.

4.2.2 DETERMINATION OF DISLOCATIONS, STACKING FAULTS, AND TWIN
BOUNDARIES

The dislocations and stacking faults in our sample were identified by the
method of Schall et al. [§]. Every particle with twelve nearest neighbors
where all opposite pair neighbors make an angle close to 180° are counted
as perfect FCC. If the particle has three opposite pair nearest neighbors
with angles near 180° but also three with angles less than 1559, its local
coordination is that of HCP and its presence indicates a stacking fault or
twin boundary, as discussed in Section . A particle that does not meet
either the HCP or FCC conditions, with angles between 155-160°, often lies

in a dislocation core.
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4.2.3 OBSERVATION OF THE INTERACTION BETWEEN A STACKING FAULT
AND A TWIN

Figure @ depicts the development of a stacking fault (red particles) as
it approaches and traverses the twin boundary. The stacking faults are
bounded by the dislocations (yellow particles) that drive the motion. The
FCC-coordinated particles have been taken out for an easier visualization.
The boundary halts the motion of the dislocation for some time. When
the dislocation does go through, another dislocation moves backwards, which
can be seen from the bottom of the stacking fault, as shown in Figure @
This dislocation creates a twin plane between the two stacking faults.
Figure @ shows a cross-section view perpendicular to the twin bound-
ary with the FCC-coordinated particles shown. The formation of the new
twin plane is clearly visible. We can also see a shift in the position of the
boundary, indicating that the event left behind a dislocation at the bound-

ary.
4.2.4 ANALYSIS OF THE DISLOCATION - TWIN INTERACTION

First, we need a crystallographic analysis of the conservation of Burgers
vectors throughout the entire interaction. Secondly, we need to understand
why the dislocation stays a certain amount of time at the boundary and why

it stops moving once it has passed through.
4.2.4.1 ROTATION OF COORDINATE SYSTEM

In Figure @ the crystal directions for the left-hand crystal are shown. The

unit vectors of the microscope coordinates (Z, 9, Z) correspond to the three
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Figure 4.6: Snap shots of a stacking fault and a dislocation moving towards a twin
boundary, stopping at the boundary, and later passing through. The red particles indi-
cate stacking faults and twin configurations among nearest neighbors. The yellow par-
ticles indicate dislocations. Particles with perfect FCC coordination have been taken
out.
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Figure 4.7: Same event as in that shown in Figure @ but with images taken from
the bottom. Note that when the dislocation is passing through the boundary, another
dislocation is reflected back.
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min

Figure 4.8: Side view of a 5um thick cut through the stacking fault plane. The blue
particles indicate particles with FCC coordination, the red particles indicate the stacking
fault and the twin boundary. The yellow particles indicate the dislocation. One can see
a step left behind in the twin boundary when the transmitted and reflected dislocation
have nucleated.
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crystal unit vectors:

500] - 16[1211 (4.30)
050] — 13[111] (4.31)
002] - \/15[101] (4.32)

These unit vectors are then used to create a rotation matrix to express the

particle coordinates in the crystal coordinate system:

[100] | [010] | [001]
[200] | -% Z =
ool |5 | % |
[002] [ -% 0 -

V2 2

Table 4.1: Rotation matrix for left side of the crystal.

Here, the new, desired, coordinates are written at the top and the old equiv-
alent coordinates in the microscope coordinate system are written on the left

side. The same procedure was performed for the right side (Figure ):

[200] — 16[121] (4.33)
050] — \%[111] (4.34)
[002] = ——[101] (4.35)

3

These unit vectors are now used to create the right hand side rotation matrix:

Figure shows the twinned crystal with its stacking faults and disloca-
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<101>

{101} <111>

<127>

Figure 4.9: Crystallographic directions of the crystal to the left of the twin bound-
ary.
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<101>

{101} <11 1>
<107>
=
T
<010>

; Y <121>

Figure 4.10: Crystallographic directions of the crystal to the right of the twin
boundary.
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[100] | [010] | [001]
- T 2 T
A
[Oy?] 7z Ne 7

Table 4.2: Rotation matrix for right side of the crystal.

tions.
4.2.4.2 DETERMINATION OF THE BURGERS VECTORS

Following rotation, the Burgers vectors were found by tracing Burgers cir-
cuits around the initial and final states of the process. Figure shows the
procedure. A Shockley partial dislocation is coming in towards the boundary
with a Burgers vector of §[112]. When it penetrates the boundary it creates
three dislocations: one that goes through the boundary with Burgers vector
§[112], one that moves back, with Burgers vector §[112], and one that stays
in the boundary with Burgers vector b;.
Conservation of Burgers vector requires:

2[ @

G 112] e ftCrystalSystem = %[1 12] LeftCrystalSystem~+ G [112] RightCrystalSystem bt
(4.36)
Hence
by = — % [112] RightCrystalSystem (4.37)

If we rotate b; back to the microscopic coordinate system and multiply by

-1, we obtain:

by = [0.2556, —0.8944, —0.1278] (4.38)

This Burgers vector was measured in our experiment in multiple steps as
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Figure 4.11: The stacking faults (red particles), the twin boundary (red particles),
and the dislocations (yellow particles) in the microscope coordinate system. Particles
with perfect FCC coordination have been removed.
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Twin boundary

Figure 4.12: Conservation of the Burgers vectors in the interaction between a stack-

ing fault and a twin boundary.
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shown in Figure . First the crystal was rotated to a {100} crystal plane.
Second, the two extra half planes were identified. It is easy to see here
that the Burgers vectors are equal and opposite. Third, we can find the
Burgers vector’s direction, identified with help of a Burgers circuit, of the
transmitted dislocation. Fourth, the average direction and magnitude of
two vectors were found, whose difference is the desired Burgers vector of the
transmitted dislocation. Finally, the vector was rotated back to microscopic

coordinate system and the result of the vector in the boundary becomes:

bt cap = [0.2756, —0.7203, —0.2759)] (4.39)

The magnitude of the computed Burgers vector is 0.94 pum, while the exper-
imental value is 0.81 ym. A small part of this difference can be explained
by the change in nearest neighbor distance as we move away from the tem-
plate. The computed value is based on the spacing in the template but, when
stacking faults relieve this strain energy, they shorten the lattice parameter.

Some uncertainty also lies in each rotation performed.
4.2.4.3 DISLOCATION MOTION

By plotting the number of particles in the stacking fault belonging to the

dislocation versus time, one can see how the dislocation moves forward in
steps, as shown in Figure , and previously observed in Figures @, @,

and @

Both steps involve a build-up time of 4.5 hours before the dislocation

moves again. The jumps in stacking fault particles are about the same, 336
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Figure 4.13: The Burgers vector at the boundary was found in four steps: 1. Rotate
the crystal to find the perpendicular {100} plane to the template. 2. Identify the two
extra half planes. Their Burgers vectors are equal and opposite. 3. Create a Burgers cir-
cuit and identify the direction of the Burgers vector around the transmitted dislocation.
4. Find the Burgers vector by measuring the average of the two types of vectors indi-
cated green and black in the picture, subtract the two, and rotate the vector back again.
The Burgers vector in the boundary will be equal and opposite.

112



2100

1900 R
A98 :
1700 H
A151 I
2 1500 d
3 A375
2 " T N
£ 1300
i v
£ i A183
2 1100
b
900 A336
700 T
/ b
1. T=4.5 hours
500
200 300 400 500 600 700 800 900 1000 1100 1200
Time (min)
Dislocation moves forward | | Dislocation touches the Dislocation goes through
toward the twin boundary twin boundary the twin boundary
4000
3500
3000 s -
g
2
£ 2500
o
E 2000
5
2 1500
E A
z
1000
500
[ T T T T T 1
o 200 400 600 BoD 1000 1200
Time {min)
Dislocation moves forward | | Dislocation touches the Dislocation goes through
toward the twin boundary twin boundary the twin boundary

Figure 4.14: Top: the number of particles in the stacking fault bounded by the
moving dislocation as a function of time. Bottom: the crystal growth with the dislo-
cations major movements indicated.
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at the first step and 373 at the second. The build-up in particles is also
similar: 183 and 151.

When the dislocation penetrates the boundary, it leaves a stacking
fault behind on one side (penetrated stacking fault) and a twin plane on
the other (reflected stacking fault). Figure shows that, following pen-
etration, the number of particles in the penetrated stacking fault (blue) is
similar to the number of particles in the reflected stacking fault (red).

We will later discuss the strain relieved by the stacking fault. For that
analysis we need the area of the stacking faults. Since there are two layers
in a stacking fault the area per particle in a stacking fault is half that of a

particle in a {111} plane:

V3a?
AperParticle = 4 (440)

where a is the lattice parameter.

The length travelled by the stacking fault is compared to the length
travelled by the reflected dislocation, featured in Figure . The reflected
dislocation reaches almost twice the distance compare to the transmitted
dislocation. However, the reflected stackingfault retracts slightly at the end
as the transmitted grows further. The velocity of the dislocation can be
extracted from the slopes of this graph. The velocity is high at the beginning,
about 0.324 pm/min, and then it levels of to be close to zero. For a more
details on the dislocation velocity, see Section . The dislocation does go
through the boundary just shortly after the crystal has stopped growing as

seen in Figure . When there is no more strain energy left to relieve, the
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Figure 4.15: Number of particles in the stacking fault following the dislocation go-
ing through the twin boundary (blue) and the stacking fault behind the dislocation that
is reflected (red)
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Figure 4.16: Distance travelled by the edge of the stacking fault following the dislo-

cation going through the twin boundary (blue) and by the dislocation that gets reflected
(red)
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dislocation stops.
4.2.5 STRAIN RELIEVED

The dislocation will travel in the crystal until is relieves as much strain
energy as possible. The amount of strain relieved by our dislocations can be
found by considering the area they sweeps out. In reference to Figure ,
the strain relieved by the extra half plane of width Ly and Burgers vector,

b, in a box of length L is:
b

Ae = —
e L1

(4.41)

More generally, if the dislocation has a irregular shape, corresponding to a
half plane with area A as in Figure , we need to consider the fraction

crystal plane covered by the half plane:

b, 6 A bA

= E(E) =— (4.42)

A
c %

In this experiment the stacking fault is coming in at an angle depicted
in Figure , for which we introduce the effective area, A.ffective, the area

perpendicular to Lq:

Aeffective = Asina (443)

with @ =35.26°, the angle between [110] and [111]. The Burgers vector
is also at an angle and only the component in the L; direction should be
considered:

Eeffective = BCOSO& (444)
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Figure 4.17: Parameters for the strain relieved by an edge dislocation in 3D
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Figure 4.18: Dislocation with an irregular half plane with area A.
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Figure 4.19: Edge dislocation with a general half plane comes in at an angle a to
the template.
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Therefore we get:

A — bcosa{;lsina (4.45)

Since the volume, V, depends on the height, which in turn depends on
time, as the crystal grows during the experiment, Equation needs to be
applied. The strain relieved by the dislocation is shown in Figure

The dislocation relieves ~ 8.3 x 10™% of strain at its first move forward.
Then it remains in the same position until it builds up again to relieve
another ~ 9.9 x 1074, As it is now stuck at the twin boundary, more strain
energy needs to build up before it can penetrate through the boundary. It
finally relieves another ~ 4.0 x 10™*. Figure shows all the stacking
faults. Each stacking fault has been colored to be easily tracked through
the strain relief process. Figure shows the strain relief for each stacking
fault.

About the same time as the penetrating dislocation makes its first
move, another dislocation makes a large contribution to strain relief, relieving
~ 6 x 1073 in as short time as 100 min (black). Another dislocation relieves
almost ~ 2 x 1073 during this same time. This could be the reason why
the penetrating dislocation does not make the jump towards the boundary
all at once. Instead, it makes its first initial jump and then needs to wait
for the crystal to build up more strain. When it finally does make another
jump, it has very little competition from the stacking faults around it. Only
one of the other stacking faults relieves a slight amount of strain during

this time (purple). However, one stacking fault decreases slightly, or heals,
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Figure 4.20: The strain relieved by the dislocation versus time.
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Figure 4.21: Each stacking fault in the sample has been identified and drawn with
separate colors. The incoming and transmitted stacking faults in Figures .4, §.7, and
@ are indicated.
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Figure 4.22: Strain relief versus time by each stacking fault in the sample. The
stacking fault that penetrates the twin boundary is marked T.
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shortly thereafter. In order to get a full picture of the strains evolution the
cumulative strain of all stacking faults is plotted in Figure . Here we
can clearly see how the second jump comes after there has been a decline in
strain relief (or an increase in strain energy due to crystal growth without

any relief from the dislocations.)
4.2.6 DISLOCATION DYNAMICS

The force that drives the motion of dislocations is the Peach-Koehler force,
Fpg. In Figure we can see how it drives the dislocation to expand in
all directions.

Fpg depends on the Burgers vector, b, the external stress, &, and the

length of the dislocation, ds, that the force is acting on:

Fpi = (5 -b) x ds (4.46)

For motion to occur, the Peach-Koehler force must overcome the drag
force and the line tension. Figure shows a force balance diagram, from

which we get:

In our case, the dislocation grows in the <101> direction, bounded by
the template and the free surface above, as seen in Figure . Therefore,

we only have one line tension to consider in our force balance equation:
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Figure 4.23: Cumulative strain relief versus time by each stacking fault in the sam-
ple. The stacking fault that penetrates the twin boundary is marked T.
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Figure 4.24: The dislocation moves forward due to the Peach-Koehler force, Fpx,
acting on all sides.
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Figure 4.25: The Peach-Koehler force, Fpr, is balanced by the line tension, Fj, and
the drag force, Fy.
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Figure 4.26: The dislocation of interest coming in towards the twin boundary.
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Fpx = Fqg+ F (4.48)

The drag force has been calculated as [46]:
4
Fy=1ASv (4.49)
T

where AS is the width of the stacking fault perpendicular to the direction
of motion of the dislocation, which here is about 50 ym. 7 is 1.6 x 1072 Pa.s
[17] and the velocity was calculated for both the transmitted and reflected
dislocation (See Figure ) and found to have a maximum at 0.9 ym/min.
We obtain a magnitude of the drag force of 1.5 x 107° N.

An approximate expression for the line tension is [[13]:

1
F = §u62 (4.50)

With p = 2 Pa and b = 0.81um, the line tension is 6.5 x 1073 N, two orders
of magnitude larger than the drag force. We will therefore ignore the drag
force in the force balance equation.

An approximate expression for Peach-Koehler force is:
Fpg=0bAS (4.51)

where the 0 = pAe = u(e, — €). Using Equation and solving for strain

we get:

l,ub2
Ae = /fbAS =8x107° (4.52)

which is the strain needed to drive the motion of the dislocation. Since the

strain relieved by the stacking faults is € = 0.016, the remaining strain, €, —¢
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= 0.045-0.016 = 0.029, is clearly sufficient to drive dislocation motion.
When the dislocation goes through the boundary, the work done by
the Peach-Koehler force needs to supply the energy for two more dislocation
of length AS, one that stays at the boundary and one that goes through.
Define the length the dislocation travels when it goes through the boundary
as Ar. The work done by the Fpg on the transmitted dislocation is Fpy Ar;
the work done on the reflected dislocation is Fpr2Ar, since it travels about
twice as far as the transmitted one (Figure ) and it has the same Burgers

vector. The total work balance is then:

Fpr(3Ar) = T(3Ar) + 2T AS (4.53)

Solve for Fpg per unit length:

Fpg T 2T
— =4 — 4.54
AS ~ AS T 3Ar (4.54)
ALS is found above to be 8 x 1073ub N/m, hence the strain needed for the

dislocation to go through the boundary, Aey, is:

2AS8

Agp, =8 x 1073(1
€b % ( +3AT

) (4.55)

Ar can be found in Figure to be about 12 pm.

Equation tells us that the strain needed is 0.030. This value is
close to the remaining strain in the lattice (¢, — £=0.029). Most likely, the
reason for the dislocation to hold up at the boundary is the need to build-
up a small amount of extra strain (by growth, see Figure ) to make

nucleation of the new dislocations possible.
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Figure 4.28: The dislocation configuration before and after penetration through the
boundary.
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Conclusions

HIS THESIS HAS SHOWN HOW colloids can be used to study the complex
T dynamics of defects in hard-sphere crystals.

The vacancies and divacancies in the colloidal hard-sphere crystals
studied here are not in equilibrium, since no movement of single vacancies is
observed. The lack of mobility is consistent with the extrapolation of earlier
simulations at lower densities.

The volume of relaxation of the vacancy has a plausible value for these
densities as the volume of formation is approaching the volume in a close-
packed crystal. The volume of relaxation for the divacancy is smaller than
that of two vacancies, so that the association of two vacancies into a diva-
cancy requires extra volume, and hence extra entropy.

The mean square displacement of the nearest neighbors of the vacan-

cies is an order of magnitude larger than that of the nearest neighbors of
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particles.

The mobility of the divacancies is consistent with the extrapolation
of older simulations and is similar to that associated with the annihilation
of the vacancy-interstitial pair. The volume of motion of the divacancies
is AV, = 0.19V, (V,: close-packed volume) and the entropy of motion is
AS,, = 0.49kpT.

Dislocation-twin boundary interactions can be observed by introducing
strain via a misfit template. The dislocations formed are Shockley partials.
When a dislocation goes through the boundary, two more dislocations are
created: a reflected dislocation and one left at the boundary, both with the
same magnitude Burgers vector.

The dislocations relieve a total of about a third of the misfit strain.
The remaining strain is sufficiently large to move the dislocation up to the
boundary and close to sufficient to move the dislocation through the bound-
ary. A small amount to extra strain energy is needed to cause nucleation of

the two additional dislocations after a waiting time.
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Appendix A

THIS APPENDIX IS A SUPPLEMENT TO EXPLAIN the procedure to pro-

duce templates.

6.1 MASK MANUFACTURING

Templates are made by lithography where UV light shines through a pat-
terned mask and replicates the structure. The first step in template produc-

tion is manufacturing of the masks.
6.1.1 THE DESIGN OF THE PATTERN

The mask production starts with designing the desired pattern in the com-
puter programs Microsoft word and LayOutEditor. A special script is used
where position and diameter of the holes are specified in a .cif file (written

in Word but saved as .cif.) Below is an example:

136



DS111

L CM;

R 105 50 50
DF;

DS211

L CM:

C 1T 100 100
C 1T 100 200
C 1T 100 300
DF;

The first four lines determine the size of the holes (starting with DS 1 1 1)

and the rows that follow determine the locations of the holes (starting with

DS 21 1). The file always ends with an E. In this code a hole with diameter

105 is repeated three times in a vertical row with spacing 100. The specific

locations are:

Xy
150 150
150 250
150 350

The .cif file is read when opened in LayOutEditor with a desired scaling

factor. In the example above the scaling factor is ax10™%, where a is the
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desired lattice spacing in pm. This is not translatable to a 105x1.63 pum
radius on the final template, as one might think. Instead the radius will
later be determined by the two exposure times: the laser exposure time on
the mask and the UV light exposure time on the template. Other factors
also play a role as will be discussed below. However, the number is not
arbitrary. In our case a ratio of 1.05 between the radius and the spacing was
ideal. When the code is written, the .cif file can be opened in LayOutEditor
and the pattern will be drawn. At this point it is useful to check that the
distances between the holes and the ratio of diameter/spacing of the holes
are as desired. This is also where a conversion from .cif to .gds is made. The

mask machine prefers .gds files.
6.1.2 WRITING THE PATTERN

The mask maker used throughout this work was the Heidelberg TM mask
maker (DWL66). A 2 mm write head directs the laser to print the pre-
designed pattern on a chrome-coated glass substrate. Two filters (1% and
50%) are placed to block some of the intensity of the laser. If these filters
are not in place, a dense, micrometer precision pattern will not be easily
obtained. However, it does not matter which order they are placed in. One
can chose to do one pattern at a time, repeat the pattern multiple times,
or draw different patterns on the same mask. The limit of size on one
specific pattern is the amount of time it takes to upload the .gds file to the
computer. A large pattern takes hours, sometimes days, so smaller patterns
are preferred. Therefore, it can be ideal to repeat the same patterns right
next to each other to obtain a large but more manageable mask construction.

A maximum of 25 patterns can be written in one run. Our patterns have

138



mostly been sub 5x5 mm? and repeated if needed. There are two main
parameters that determine the quality of the pattern, the defocus and the
energy. The optimal values of each depend on the age and alignment of
the laser. Therefore, a test run is required where a small pattern is written
multiple times with defocus ranging from 1500 to 1900 and energy ranging
from 70 to 110. After the test mask has been developed and etched, the

ideal defocus and energy can be determined under the microscope.
6.1.3 DEVELOPING AND ETCHING THE PATTERN

After the substrate has been exposed to the laser it is time for developing the
substrate in 1 part MF351 and 2 parts water for 2-3 min. The substrate is
rinsed with water immediately afterwards and then blow-dried with air. One
could use this opportunity to examine the pattern under a microscope but
this should only be done in the event that something is wrong with the laser
exposure or developing step. This is because the microscope light destroys
the chrome. If the substrate has not been exposed to a microscope, the
next step is to etch in a chromium etching solution 1020 for 3-3.5 min. The
time varies depending on the intensity of the laser, the age of the substrate,
and the desired radius of the holes. Finally, the substrate is rinsed in water
immediately and dried with blowing air. A microscope with light shining
from underneath will reveal how well the UV light goes through the mask.
If the crome is not completely gone, little or no light will shine through. In
this case, the developing time was too short or the energy of the Heidelberg

TM was too low.
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6.2 TEMPLATE PROCESSING

VWR micro cover glass slides No. 1.5 are first cleaned for 10 min in acetone,
10 min in methanol, and blow-dried with air. The next step is to coat the
slides with a photoresist. In order to get the photoresist to stick to the glass
a layer of primer is first spin-coated for 5 seconds at 500 rpm and then 40
seconds at 4000 rpm. Directly thereafter a layer of photoresist Shipley S1805
was spin-coated for the same amount of time and at the same rpm. The glass
slide is placed on a 110°C hot plate for 3 min in order to polymerize. The
slide is placed in a mask aligner (Suss TM MJB3) for 2-2.5 sec together with
the mask. The slides are developed in 1 part MF 351 and 5 parts water
for 60-90 sec. Both the exposure time and the developing time vary due to
the hole size in the mask, the age of the photoresist, calibration of the mask
aligner, and the premixed developer. Usually a few tries are required each
time to determine the ideal procedure. (One efficient way to do this is to
expose the same glass slide with different exposure times next to each other
before developing.) After developing, the slides are dropped into water for
60 seconds and blown-dried with air. For etching the a reactive ion etcher
(STS ICP RIE 8 ) was used. To start off, the chamber needs to be treated
with oxygen cleaning plasma for 20 min. Then the RIE will perform 8-10
min etching on the slides, which are attached to a glass wafer with thermal
paste. After 10 min oxygen cleaning plasma is introduced again to remove
the photoresist from the slide, without etching the glass any further. Once
the thermal paste is fully removed with isopropanol the templates are ready
to be used. As for the developing time, the etching time is also dependent

on the pattern and the quality of the photoresist. The smaller the radii the
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longer etching time is required to create deep enough holes for the colloids to
fall into (see Section in Chapter E) It is not a problem if the holes are
too deep, and as long as the photoresist is not etched away, little variation in
diameter is found with increasing etching time. Figure @ shows a layout of

the template processing and Figure @ shows the result of a 110 template.
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Figure 6.1: Templates are produced in multiple steps: 1) The glass slide is cleaned
in acetone and methanol; 2) a primer is spin-coded on top of the glass slide; 3) a layer of
photoresist is spin-coded on top of the primer; 4) the glass slide is exposed to UV light;
5) the glass slide is developed to remove the exposed photoresist; 6) the glass slide is
etched and the photoresist is removed.
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Figure 6.2: Microscope image of a 110 template.
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Appendix B

THIS APPENDIX IS A SUPPLEMENT TO EXPLAIN image processing used

in Chapter E and @ .
7.0.1 IMAGE PROCESSING

The raw data from the confocal microscope is processed using Maria Kilfoil’s
MATLAB package to find particle centers in 3D. [47] (The package can be
found at http://people.umass.edu/kilfoil/downloads.html). The are three
functions used in this thesis:

1) read_ xyz reads in a set of images into MATLAB.

2) bpass3dMB preforms a 3D mask on the raw images to find the center of
each particle by labeling it with the most intense pixels.

3) feature3dMB obtains the coordinates of these centers.
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There are four code lines written in order to obtain these centers:

XYZ = read_ xyz(Foulder,NameOfFiles,[z_start,z_end]);

XYZ=255-XYZ; %(To invert the image and give the center the max inten-
sity)

res=bpass3dMB(XYZ,Inoise,lobject,inputv);

r=feature3dMB(res,diameter,masksz,xyzmax,inputz,sep,masscut,threshold);

The images’ pixels intensity ranges from 0 to 255, 2% possible values,
indicating a range of photons hitting detecter at that specific scanned point.
When the 3D mask is performed, using the bpass3dMB function, weighted
numbers of intensity from the considered pixels of the mask are summed
up, leaving a possible intensity larger than 255.

For detailed descriptions of the parameters above, see the website.
The parameter values will be presented in the relevant chapters with excep-
tion of the few that do not change between the different data-sets:
inputv=[0 0];
inputz = [1 0 1];
masscut = 0;

threshold = 0.1;
The stored variable r will give the coordinates in pixels. The confocal

microscope gives a conversion between pixels and pum for each data-set. This

conversion will also be presented in relevant sections.
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