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Abstract 

 

ZNF335: A Novel Regulator of Stem Cell Proliferation and Cell Fate 

in the Cerebral Cortex 

 

Though development of the cerebral cortex is of singular importance to 

human cognition, it remains very poorly understood.  Microcephaly, or “small 

head,” is a neurodevelopmental disorder causing significantly reduced cerebral 

cortex size, and the disease has proved to be a useful model system for 

elucidating the steps essential for proper cortical development and cognitive 

function. Many known microcephaly gene products localize to centrosomes, 

regulating cell fate and proliferation, however, the elucidation of different 

microcephaly genes with different functions may shed light on previously 

unidentified key steps of brain development. 

We identify and characterize a nuclear zinc finger protein, ZNF335/NIF-1, 

as a causative gene for severe microcephaly, small somatic size, and neonatal 

death. Znf335-null mice are embryonically lethal and conditional knockout leads 

to severely reduced cortical size. RNA-interference and postmortem human 

studies show that Znf335 is essential for neural progenitor self-renewal, 

neurogenesis, and neuronal differentiation. ZNF335 is a component of a 

vertebrate-specific, trithorax H3K4-methylation complex, directly regulating 



	  iv	  

REST/NRSF, a master regulator of neural gene expression and cell fate, as well 

as other essential neural-specific genes. Our results reveal ZNF335 as an 

essential link between H3K4 complexes and REST/NRSF, and provide the first 

direct genetic evidence that this pathway regulates human neurogenesis and 

neuronal differentiation.  
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“Biology gives you a brain. Life turns it into a mind” 

Jeffrey Eugenides, Middlesex. 
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“As long as our brain is a mystery,  

the universe, the reflection of the structure of the brain will also be a mystery.”  

–Santiago Ramón y Cajal. 

 

  As human beings, even after centuries of scientific advancement, 

we are still rattled with the complex question of what it is that makes us human. 

What sets us apart from all of the other species both past and present? While 

philosophers, economists, artists, and scientists may offer differing insights, they 

converge on the idea that the roots of these “distinctions” may lie within our brain 

(Baumeister and Leary, 1995; Jablonka et al., 2012; Kahneman, 2011; Pinker, 

2011; Prinz, 2012; Trivers, 2011). Movement of the opposable thumb, our upright 

gait, the use of tools, and the process of communication and generation of 

philosophical thought stems from the only organ where medical and scientific 

advancements have not yet made possible removal or transplantation of the 

organ to be compatible with life (Jablonka et al., 2012; Robbins and Cotran, 

1979). 

 

Brain size 

 So what then makes the brain so special, and what specifically makes the 

human brain so unique? The human brain is a massive structure made up of 86 

billion neurons and 85 billion non-neuronal cells (Azevedo et al., 2009). 

Throughout the course of mammalian evolution, the cerebral cortex has 

undergone extensive expansion both radially to create more layers, as well as 
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tangentially turning the brain from lissencephalic (smooth) to gynrencephalic 

(folded) (Molnar et al., 2006). While the brain is thought to be the root of our 

cognitive advancements, the larger size of the human brain still does not live up 

to our mammalian order. Although listed under Primata, or “first rank,” humans 

are in fact far from advanced in absolute brain size or even in the relative brain 

size (when compensated for the change in body mass) (Herculano-Houzel, 

2012). Given this discrepancy, newer fields of thinking emerged based on the 

assumption that complexity and cognitive abilities may actually lie in neurons--the 

processing unit of the brain--thus it is not the size of the brain that matters, but 

rather the number of neurons and the subsequent connections of those neurons 

that contribute to our higher brains powers (Kaas, 2000; Ringo, 1991; Roth and 

Dicke, 2005; Tramo et al., 1998). This increase is not evident when looking at the 

ratio of neurons to non-neuronal cells, which in humans resemble just a scaled 

up version of other primates who are thought of as “inferior” (Gabi et al., 2010), 

but rather the increase is in the sheer count of neurons (Herculano-Houzel, 

2012), with an expansion seen specifically in the upper cortical layer neurons in 

mammals (Marin Padilla, 2004), as well as an increase in the diversity of such 

neurons (Edlund and Jessell, 1999; Peters and Jones, 1988; Ramon y Cajal, 

1995). Due to this, the question now shifts to what creates neurons, and in 

essence, what is essential for these neurons to develop and to function properly? 

 

Development of the Brain 

Early Brain Development 
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 To study neuronal development, one must study brain development as a 

whole. The brain, housed inside the cranium, functions as an intricate and 

delicate structure composed of billions of fine-tuned connections which properly 

receives, processes, and delivers signals to the rest of the body along with the 

rest of the nervous system. The mammalian cerebral cortex makes up two-thirds 

of the mass and three-fourths of all the synapses of the nervous system (Rakic, 

1988). The brain, along with the rest of the nervous system, starts out more 

simply as a hollow tube called the neural tube (Rao and Jacobson, 2005). 

Subsequent patterning and regionalization, defined by FGF, BMP, Wnt, SHH, 

and other secreted morphogens, help to specify the anterior or rostral end of the 

neural tube as the telencephalon, and the future cerebral cortex (Jessell and 

Sanes, 2000; Monuki et al., 2001; Monuki and Walsh, 2001; Rallu et al., 2002; 

Rash and Grove, 2007; Vaccarino et al., 1999). Further signaling, balanced 

between the extracellular signal gradients and intracellular molecular signals, 

continue to subdivide the brain into functional or morphologically distinct regions. 

Together this signaling balance also guides the developmental programs 

necessary for progenitor cell maintenance and proliferation, and subsequent 

neuronal cell fate establishment, differentiation, maturation, and connectivity to 

form a fully functioning brain.  

 

Cortical Progenitors 

The adult cerebral cortex ultimately stems from a finite population of 

neuroepithelial progenitors that lie within the anterior end of the developing 
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neural tube. It is the size as well as the rate of expansion of this pool of 

progenitor cells that help to dictate cortical size (Kornack and Rakic, 1998; 

Takahashi et al., 1999). The tight control of cortical progenitor cell development 

also helps to set the proper cytoarchitecture of the cerebral cortex (Hill and 

Walsh, 2005; Hofman and Falk, 2012).  

The complex architecture and growth pattern of the brain can be attributed 

to the presence of many different types of neural progenitor cells whose 

individual patterns of proliferation and development help to synchronize brain 

development and dictate the final makeup of the adult brain (Angevine et al., 

2005; Fietz and Huttner, 2011; Kriegstein and Alvarez-Buylla, 2009; Kriegstein et 

al., 2006). These progenitors not only differ in morphology, but also in gene 

expression patterns which affect proliferative and differentiation potential. Along 

with earliest neuroepithelial progenitor cells, the developing neuroepithelium 

begins to house apical progenitors, called radial glial progenitors, which extend 

both a basal as well as an apical process from a cell body residing in the 

ventricular zone (VZ) (Gal et al., 2006; Gotz and Huttner, 2005; Stancik et al., 

2010). These progenitors can give rise to identical daughter cells, to neurons, or 

to another subclass of progenitors. The intermediate progentior cells (IPC), or 

basal progenitors, that derive from these apical progenitors (and some from the 

neuroepithelial progenitors), both lack basal processes and move away from the 

VZ to reside in the subventricular zone (SVZ). Mammalian evolution has led to 

the dramatic increase of the SVZ and the IPC progenitors as well as subsequent 

formation of an additional outer subventrizular zone (OSVZ) to house a third 
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progenitor cell population, called the outer radial glia cells (oRG). It is still 

debated whether this population of oRGs may directly account for the larger 

cerebral cortical size as well as the formation of gyri seen in gyrencephalic brains 

(Fietz et al., 2010; Garcia-Moreno et al., 2012; Hansen et al., 2010; Kelava et al., 

2012; Reillo et al., 2011; Shitamukai et al., 2011; Smart et al., 2002; Wang et al., 

2011). As the brain grows, the subsequent progenitor population undergoes rapid 

expansion and finally depletion as it is replaced by an ever-expanding population 

of neurons that go on to populate and create the laminar structure of the cortex. 

 

Progenitor Cell Development 

Progenitor cell division dictates the tempo and progress of brain 

development as it dictates the number as well as the subtypes of neurons 

produced.  The basic principle of progenitor cell division is that symmetric 

division give rise to identical daughter cells to replenish the progenitor pool and 

cause tangential expansion of the cortex, while asymmetric divisions give rise to 

postmitotic neurons (and later, other cell types of the brain) to cause radial 

expansion and increased cortical thickness (Chenn and McConnell, 1995; Rakic, 

1988; Thornton and Woods, 2009). Neuroepithelial progenitors undergo mainly 

symmetrical divisions, but the radial glial progenitors undergo mainly symmetric 

divisions at first, and as development picks up, they then undergo asymmetric 

divisions to produce one progenitor daughter cell and one early neuronal cell 

(Haubensak et al., 2004; Noctor et al., 2004; Noctor et al., 2007; Rakic, 1988). 

Basal progenitors, on the other hand, mainly undergo symmetric divisions to form 
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two postmitotic neurons (Kriegstein et al., 2006; Martinez-Cerdeno et al., 2006), 

while the oRGs break the mold and seem to be able to undergo proliferative 

divisions as well as neurogenic divisions  (Fietz et al., 2010; Hansen et al., 2010).  

 The type of cell division that a progenitor cell undergoes not only affects 

the size of the progenitor cell pool, but also dictates cell fate. Thus the factors 

that influence the decision between symmetric and asymmetric division of the 

progenitors is of great importance. Both intrinsic and extrinsic factors play a role 

in dictating progenitor cell division. A number of transcription factors such as 

bHLH transcription factors (Ngn2/Ngn1, Mash1, NeuroD) have been shown to be 

necessary and sufficient to promote neurogenesis (Bertrand et al., 2002; 

Schuurmans and Guillemot, 2002). Aside from the transcriptional program, 

another intrinsic factor is the mitotic spindle, whose orientation sets the plane of 

division (Bond et al., 2005; Chenn and McConnell, 1995; Lizarraga et al., 2010). 

In fact, not only does the cleavage plane affect the distribution of a complex of 

proteins along the apical surface (apical complex), composed of the 

Par3/Par6/aPKC proteins and their interactors (Kim et al., 2010; Kosodo et al., 

2004; Siller and Doe, 2009), but it also affects the distribution of cytoplasmic 

regulators of cell fate such as the Numb protein, (Rhyu et al., 1994), Notch 

(Chenn and McConnell, 1995) and Minibrain (Hammerle et al., 2002). Other 

intrinsic factors include possible differences in the two centrioles that are each 

separately inherited during division to play a role in dictating the daughter 

progenitor cell fate vs. the neuronal fate (Wang et al., 2009). 
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Many extrinsic signals may also play a role in dictating progenitor cell 

division. In fact, signaling from the pia on the basal surface (Siegenthaler et al., 

2009), from the extracellular matrix (Wilsch-Brauninger et al., 2012), or even from 

the apical surface of the cell may all play a role. Signaling or maintenance of the 

apical complex affects cell division or even progenitor cell survival (Huttner and 

Kosodo, 2005; Kim et al., 2010; Kosodo et al., 2004; Lehtinen and Walsh, 2011; 

Wilsch-Brauninger et al., 2012). Progenitor cells also extend a single cilium into 

ventricular system filled with the cerebral spinal fluid (CSF) (Lehtinen et al., 2011; 

Zappaterra et al., 2007). The CSF establishes an external niche through a rich 

mixture of growth factors and other proteins, and the composition of the CSF as 

well as signaling of through the cilium both play roles in regulating the progenitor 

cell maintenance and proliferation (Lehtinen and Walsh, 2011; Lehtinen et al., 

2011).  

 

Cortical Neurogenesis 

Once asymmetrical division does occur, the newly generated postmitotic 

neuron migrates along the radial glia to reside in the cerebral cortex.  The 

cerebral cortex is formed in an inside-out manner, where the earliest born 

neurons reside at the bottom and the newer born neurons reside nearer the top 

of the cerebral cortex, closer to the pia (Angevine and Sidman, 1961; Bayer and 

Altman, 1991; Noctor et al., 2004). The molecular makeup, location, morphology, 

and electrophysiological properties (together summarized as cell identity) of each 
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subset of neuron differ drastically, and careful characterization of differential cell-

specific markers have been performed (Molyneaux et al., 2007).  

The asymmetrical divisions from the different subset of progenitor cells 

lead to sequential waves of neuronal production. At embryonic day 11 (E11), the 

first wave of postmitotic neurons migrate radially out of the VZ to form the early 

preplate. Newer neurons then divide the preplate into the superficial marginal 

zone (MZ) and a subplate that becomes the future cortical plate (CP) (Gupta et 

al., 2002; Hatten, 1999). The cortical plate can be divided into roughly 6 layers 

(layers I-VI) (Molyneaux et al., 2007). The newly born postmitotic neurons 

migrate to their final position either radially along radial glial processes, or 

tangentially through translocation of the nucleus or along axons in the 

intermediate zone (Hatten, 1999; Kriegstein and Noctor, 2004). Key lineage 

tracing and genetic fate mapping studies have revealed that single progenitors 

cells have the potential to form multiple neuronal subtypes at different times, and 

that the different subtypes reside in different layers within a restricted radial 

column, although there is also evidence of wide dispersal of many if not all cell 

lineages (Luskin et al., 1988; Walsh and Cepko, 1988; Walsh and Cepko, 1992, 

1993; Walsh and Reid, 1995). 

The intricate control of laminar cytoarchitecture can be studied using 

genetically engineered mouse mutants such as the Dcx mouse or naturally 

occurring mutants such as the reeler mouse, whose loss of the Reelin protein 

leads to an inversion of the cortical lamination (Gupta et al., 2002; Hatten, 1999). 

However, whether cell fate dictates migration location, or whether timing of birth 
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and environment dictate cell fate is still under debate. Cortical progenitor cell 

studies which have been able to recapitulate the step-wise pattern of 

development in an in vitro system hints that the cell fate is controlled in a cell-

intrinsic manner (Gaspard et al., 2009; Shen et al., 2006). Studies where Notch-

mediated inhibition of neurogenesis followed by subsequent adoption of a cell 

fate matching the now older environment once this inhibition is removed hints 

away from the idea that cell fate dictated by the number of cell cycles but rather 

towards the strong roles of environmental influences (Mizutani and Saito, 2005). 

Early transplantation experiments also add to the argument for the strong 

influence of cellular environment on cell fate, as well as reveal a progressive 

restriction of cell fate. Transplantation of deep layer progenitors from a younger 

brain can adopt a older superficial cell fate if transplanted into an older brain, but 

the later superficial progenitors seem unable to revert to a younger fate when 

transplanted into an earlier brain (Desai and McConnell, 2000). This cell fate 

commitment is dependent on the cell cycle, with progenitor cells in the S-phase 

able to adopt a new cell fate, while those past S-phase are unable to change 

their cell fate (McConnell, 1992; McConnell and Kaznowski, 1991). Recent 

studies, however, have suggested that cell fate reversions might be possible 

within a tighter time window of development (McConnell, unpublished), or 

through changing specific molecular programming (Lai et al., 2008; Molyneaux et 

al., 2005) in order to regain multipotency. 
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Genetics and Epigenetics of Brain development 

Microcephaly 

Many complex regulatory steps are needed for the formation of the brain. 

Human genetics studies have provided key insights into the specific genes 

essential for brain development (Walsh and Engle, 2010). Microcephaly, or small 

head, is a clinical disorder that is diagnosed by a smaller than average head 

circumference, and is frequently accompanied with a decrease in the size of 

nearly all brain structures (Mochida and Walsh, 2004).  Primary microcephaly is 

frequently characterized by a small head at birth and hints at a genetic or 

neurodevelopmental disorder affecting progenitor cell number, while secondary 

microcephaly may be caused by a variety of different genetic or environmental 

factors and is linked with brain degeneration (Bond and Woods, 2006; Dobyns, 

2002; Woods, 2004). Genetic causes of primary microcephaly have provided a 

wealth of genes involved in neurogenesis, such as MICROCEPHALIN, WDR62, 

NDE1, CDK5RAP2, CEP152, ASPM, CENPJ, and STIL. These genes can be 

categorized broadly as components of the mitotic spindle (Alkuraya et al., 2011; 

Bakircioglu et al., 2011; Mahmood et al., 2011), and proteins involved in DNA 

repair (Buck et al., 2006; Matsumoto et al., 2011; O'Driscoll et al., 2006; 

Renbaum et al., 2009; Shen et al., 2010). Unlike the majority of previously 

identified microcephaly genes that encode a structural protein, we identify a new 

microcephaly gene that encodes a zinc finger protein recently identified as a part 

of a chromatin remodeling complex and regulates brain development through 

regulation of global patterns of gene expression. 
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Epigenetics 

Many recent studies have now shed light on another level of regulation 

that goes beyond genetics. Epigenetics is the control of the expression pattern of 

a gene without actually involving changes in the DNA sequence. DNA 

methylation, and histone changes can directly alter the expression capability and 

expression patterns of specific genes (Berger, 2002; Holliday, 2006; Jones and 

Takai, 2001). There also exists another level of regulation such as recruitment of 

transcriptional machinery, the alternative splicing of the transcripts, and the 

stability and turnover of the transcripts via non-coding RNAs (Landry et al., 2003; 

Qureshi and Mehler, 2012). This does not even begin to unravel other epigenetic 

and non-epigenetic mechanism that affect the actual protein activity output such 

as protein modification, protein interaction, degradation, and the role of prions to 

name a few (Hochstrasser, 1996; Prusiner, 2001).  

 This global impact makes epigenetics a powerful tool to directly affect 

evolution, medicine, and large aspects of biology. Epigenetic changes make up a 

secondary layer of the genetic code that can be passed down from generation to 

generation in direct response to changes in the environment. These changes can 

occur much faster--on a multigenerational timescale—and can occur in a 

reversible format allowing for quick changes in gene expression and fast 

adaptive responses by an organism (Gilbert and Epel, 2009; Jablonka and Raz, 

2009).  
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Diseases can also present on the backdrop of epigenetics. Genes where 

single copies are silenced or affected through epigenetic mechanisms make 

diseases much more penetrant even in the heterozygous state (Jakovcevski and 

Akbarian, 2012). Also, genes activated or inactivated upon diseases may be due 

to epigenetic changes adding diagnostic difficulties. Conversely, epigenetic 

mechanisms can also prove to be extremely important to consider for drug 

targeting and medical therapies (Egger et al., 2004). 

There are now emerging roles of non-coding RNAs, transcription factors, 

and DNA modifying as well as histone modifying proteins that have been shown 

to play key roles in regulating development, plasticity and neurological disease 

(Jakovcevski and Akbarian, 2012; Qureshi and Mehler, 2012). Epigenetics is 

perfectly suited for the process of development and differentiation as a progenitor 

cell with the same DNA makeup must change in a way to form the myriad cells 

within the brain that also contain the same DNA makeup. Focusing on brain 

development, many examples exist, but we will focus specifically on the effects of 

histone modification and the roles of associated proteins. 

 

Histone Modification and Brain Development 

 Within the finite space of the cellular nucleus, DNA is carefully compacted 

by wrapping around octamers of histone proteins to make a package unit called 

nucleosomes. This packaging not only helps to condense the DNA material from 

1.8 meters into 0.090mm, but the tight windign also affects the accessibility of the 

DNA to the transcriptional machinery ultimately affecting gene expression 
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(Peterson and Laniel, 2004). The histone proteins of the nucleosomes have a tail 

that can undergo posttranslational modifications such as methylation, acetylation, 

phosphorylation, ubiquitination, sumoylation, citrullination, and ADP-ribosylation. 

The modification of the histone tails and the modification of the histone cores 

together make up the histone code, and these modifications affect how tightly or 

loosely the DNA is wound (Jenuwein and Allis, 2001). Posttranslational 

modifications can occur on any of the histone tails, and within each tail 

modification can also occur on a variety of different residues. The combination of 

the specific modification to the specific residue on the specific histone affects the 

gene expression in different ways.  

Trimethylation of histone 3 lysine 4 (H3K4me3) is one of the most well-

studied histone modifications and linked with active transcription. H3K4 

trimethylation occurs at the promoter regions of genes as a marker of gene 

activation or genes primed for activation (Steward et al., 2006). H3K4 

trimethylation is performed by histone modification complexes that contains an 

enzyme aptly named histone methyltransferase. One histone methyltransferase 

complex, Trithorax/COMPASS, is well-studied from yeast to mammals (Miller et 

al., 2001; Schuettengruber et al., 2007). TrxG regulates developmental 

expression of many genes important for patterning, cell proliferation, and stem 

cell identity by maintaining genes in an active state (Fisher and Fisher, 2011). 

The TrxG complex activates gene expression through the methylation of Lysine 4 

on histone H3 (H3K4) (Papp and Muller, 2006), a marker of actively transcribed 

genes or genes poised for transcription (Bernstein et al., 2005). SET1 
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methyltransferases (MLL1, MLL2, and SET1A/B) are the major enzymes carrying 

out H3K4 methylation, functioning in a multiprotein complex with Ash2L, WDR5, 

and RbBP5 (Schuettengruber et al., 2011). The complex has been shown to play 

important roles in progenitor cell development, ES cell development, as well as 

drosophila development (Bernstein et al., 2006; Fouse et al., 2008; Hanson et al., 

1999), but its roles have never been studied in the mammalian system let alone 

mammalian brain development. 

 Histone acetylation on histone lysine residues is also a modification linked 

with gene expression. It increases access by transcriptional proteins by 

decreasing the interaction of negatively charged DNA with the histone tails (Gray 

and Ekstrom, 2001). However, most of the well studied epigenetic regulations of 

brain development have been through gene repression (Huang et al., 1999). A 

well-studied epigenetic regulator of mammalian brain development is epigenetic 

regulator of neurogenesis is the repressor element 1 (RE1)-silencing 

transcription factor (REST)/neuron-restrictive silencer factor (NRSF) (Chong et 

al., 1995; Schoenherr and Anderson, 1995). REST/NRSF recruits histone 

modification complexes that contain an enzyme which remove the acetyl 

residues, also known as histone deactylases (HDACs), and thus to repress gene 

expression. REST/NRSF has been shown to be essential for maintaining 

mammalian progenitors cells in the multipotent, proliferative state through the 

specific inhibition of neuronal gene expression and ultimately differentiation 

(Hsieh et al., 2004). 
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Conclusions 

 Understanding brain development must stem from a better understanding 

of the genes within the brain. However, the answer does not lie simply at the DNA 

code, but rather also at the level of DNA regulation. While a progenitor cell and the 

differentiated neuron both have the same genetic code, the morphology, 

localization, and activity of these two cell types become increasingly divergent. To 

complicate the coordination of bran development even further, the changes in 

phenotype output from the same genotype input also shifts continuously as 

development progresses. Through the course of development, a single progenitor 

must give rise to overlapping waves of neurons each with an unique cellular 

identity, function, and localization. While signaling from the environment has been 

shown to contribute to dictating changes in cell development, there are also 

internal changes in how receptive a cell is to the environmental cues as well a 

strong role of cell autonomous regulation in development. The regulation of the 

dynamic development of the cells within the brain must occur through the 

regulation of DNA expression levels and timing. 

 Genetic studies in patients with neurodevelopment diseases allow us to 

figure out essential genes of brain development. However, insight into the steps 

necessary for brain development cannot be gained from the simple identification of 

the genes, but rather it comes from understanding the mechanism of function of 

each of these genes. Together, the interplay of forward and reverse genetics as 

well as the usage of two different model systems provides a powerful paradigm to 

gain great strides in uncovering the complex steps needed to create such an 
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intricate and powerful organ. This study is divided into three global parts that 

allowed for the understanding of gene and function of a new microcephaly gene: 

ZNF335. 1) Obtaining and understanding patient clinical information and 

phenotype; 2) Understanding the roles of ZNF335 in the brain and in brain 

development through studying its mechanism of function; 3) Verifying the essential 

roles of ZNF335 brain development through the creation of a conditional knockout 

mouse and the recapitulation of the human phenotype. In this study, we show that 

ZNF335 is essential for progenitor cell proliferation and proper neuronal 

differentiation, morphology, and fate. ZNF335 regulates these diverse processes 

through the regulation of expression of a wide array of genes via association with 

a histone modification complex. While a global knockout of Znf335 lead to early 

embryonic lethality, the brain-specific conditional knockout of Znf335 leads to the 

formation of a mouse with the essential loss of all brain structure, mimicking 

directly the human phenotype. Through this study, we are able to identify a new 

microcephaly gene with master regulatory roles of brain development.  
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HIGHLIGHTS 
 

• Mutation in ZNF335, an essential brain development gene, leads to 

severe microcephaly 

• ZNF335 is essential for progenitor maintenance and prevents 

premature differentiation 

• ZNF335 interacts with a H3K4 methyltransferase complex to 

regulate gene expression 

• ZNF335 is upstream of REST/NRSF, a master regulator controlling 

key neuronal genes 
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INTRODUCTION 

Brain development requires carefully regulated yet continuously changing 

patterns of gene and protein expression. Cerebral cortical neurons are formed 

from progenitors that at the earliest stages divide mainly symmetrically to expand 

the progenitor population.  At later stages, these apical progenitors divide 

increasingly in an asymmetrical fashion to produce one progenitor cell and a 

second, more differentiated cell, either a neuron, or a transit-amplifying 

progenitor cell that resides in the subventricular zone (Haubensak et al., 2004; 

Lui et al., 2011). Eventually, symmetrical divisions of progenitors are increasingly 

replaced by neurogenic cell divisions that produce the neurons of the cerebral 

cortex in an inside-first, outside last sequence (Fietz and Huttner, 2011; Gotz and 

Huttner, 2005; Kriegstein and Alvarez-Buylla, 2009).  Although much is now 

understood about the cellular patterns of neurogenesis, the molecular controls of 

this process remain relatively poorly understood. 

Naturally occurring mutations of human cerebral cortical development 

have provided surprising genetic insights into the process of neurogenesis in 

vertebrates.  Microcephaly reflects small cerebral cortical and other brain 

structures, and genetic causes of microcephaly have provided a wealth of genes 

involved in neurogenesis, especially components of the mitotic spindle (Alkuraya 

et al., 2011; Bakircioglu et al., 2011; Mahmood et al., 2011), and proteins 

involved in DNA repair (Buck et al., 2006; Matsumoto et al., 2011; O'Driscoll et 

al., 2006; Renbaum et al., 2009; Shen et al., 2010).  However, human 

microcephaly genes have so far not highlighted the transcriptional pathways that 



 34 

animal studies have implicated as essential to the process of cerebral cortical 

neurogenesis (Molyneaux et al., 2007; Sur and Rubenstein, 2005). 

A key aspect of the regulation of gene expression during neurogenesis 

occurs at the level of chromatin structure. Acetylation, methylation, and 

phosphorylation of histone proteins affect the accessibility of transcriptional 

proteins to DNA wrapped around nucleosomes (Bannister and Kouzarides, 

2011), though their role in brain development and developmental disease remain 

poorly understood (Clowry et al., 2010; Lessard and Crabtree, 2010; Yoo et al., 

2009). The activity, targeting, and regulation of chromatin remodelers to different 

sites of chromatin contribute to the complex control of gene expression. The 

Trithorax (trxG) complex maintains developmental expression of many genes 

important for patterning, cell proliferation, and stem cell identity through a well 

studied function of maintaining genes in an active state (Dou et al., 2005; Hughes 

et al., 2004; Ingham, 1985; Petruk et al., 2001; Terranova et al., 2006; Wysocka 

et al., 2003). While trxG proteins generally promote proliferation, defects of trxG 

proteins have been linked to altered stem cell fate and cancer (Djabali et al., 

1992; Fisher and Fisher, 2011; Martinez et al., 2006; Schuettengruber et al., 

2009). The trxG complex activates gene expression through the methylation of 

Lysine 4 on histone H3 (H3K4) (Beisel et al., 2002; Papp and Muller, 2006), a 

marker of either actively transcribed genes or genes poised for transcription 

(Bernstein et al., 2005; Schneider et al., 2004).  SET1 methyltransferases (MLL1, 

MLL2, and SET1A/B) are the major enzymes carrying out H3K4 methylation, 

functioning in a multiprotein complex that contains essential proteins for global 



 35 

methylation of H3K4, namely Ash2L, WDR5, and RbBP5 (Cosgrove and Patel, 

2010; Dou et al., 2005; Nakamura et al., 2002; Schneider et al., 2005; Steward et 

al., 2006; Tenney and Shilatifard, 2005; Wang et al., 2010; Yokoyama et al., 

2004). While the trxG complex has been implicated in Drosophila development 

(Paro et al., 1998), and while members of the complex have been implicated in 

vertebrate development and embryonic stem cells (Ang et al., 2011; Bi et al., 

2011; Wysocka et al., 2005), the role of the trxG complex has not been studied in 

neural stem cells or human brain development (Schuettengruber et al., 2011).  

Another critical epigenetic regulator of neurogenesis is the repressor 

element 1 (RE1)-silencing transcription factor (REST)/neuron-restrictive silencer 

factor (NRSF) (Chong et al., 1995; Schoenherr and Anderson, 1995). 

REST/NRSF acts as a transcriptional repressor of neuronal differentiation genes 

through the recruitment of histone deacetylases (HDACs), which place chromatin 

in a condensed state via the removal of acetyl residues (Ballas et al., 2005; Su et 

al., 2004). REST/NRSF is expressed in neural stem cell lines and is essential for 

maintaining progenitor cell fate by inhibiting neuronal specific genes and hence 

premature neuronal differentiation (Chen et al., 1998; Sun et al., 2005). 

REST/NRSF has also been suggested to play roles in embryonic stem cells as 

well as mature cell types (Ballas et al., 2005; Johnson et al., 2008); however, the 

upstream regulation of REST/NRSF, as well as the interaction of REST/NRSF 

and TrxG, two central epigenetic regulators of neurogenesis, is completely 

unknown. 
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In this study, we identify a new regulator of vertebrate neurogenesis, 

ZNF335, in a family that presents with one of the most severe cases of 

microcephaly documented. Znf335 was previously identified as a potential co-

regulator (NRC-Interacting Factor 1) of nuclear hormone signaling in HeLa cell 

lines (Garapaty et al., 2008; Mahajan et al., 2002), and as part of a H3K4 

methylation complex, but its functions have never been studied in vivo, let alone 

the brain.  We show that ZNF335 is essential for normal brain development in 

human and mouse, and that ZNF335 interacts with a H3K4 chromatin 

methyltransferase complex. ChIP-Seq, RNA-Seq and microarray studies reveal 

that ZNF335 is essential for expression of a host of brain-specific genes including 

the master progenitor regulator REST/NRSF, and its target genes. Knockdown of 

ZNF335 disrupts progenitor cell proliferation, cell fate, and neuronal 

differentiation. Together, these data implicate a new type of microcephaly gene 

that coordinates global transcriptional regulation in brain development, and 

defines an essential control system for REST/NRSF expression. 
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RESULTS 
 

A new syndrome of profound microcephaly, neuronal degeneration, and 

neonatal death 

 A large consanguineous Arab Israeli pedigree (Fig 1A) presented with 

seven individuals (two of them identical twins) affected with one of the most 

severe cases of microcephaly (MCPH) seen to date (head circumference 9 

standard deviations below mean), and death by one year of age in all but one 

case. MRI at 3 months of age compared to an age-matched control (Fig 1C) 

revealed extreme microcephaly with a severely simplified gyral pattern. The 

cerebral cortex was even more notably smaller than the skull, with subarachnoid 

fluid separating the two, an indication of secondary shrinkage of the brain relative 

to skull usually reflecting degeneration (Barkovich, 2007). Histopathology of 

Patient 5 at 7 months of age revealed a thinned cerebral cortex with only about 

20% of the cortex showing the normal six cortical layers, and neuronal 

disorganization (Fig 1B). The few neurons that were present demonstrated little 

apparent polarity or dendritic maturation. Layer I, a normally cell-sparse layer 

containing many neuronal processes, was severely reduced in thickness, 

potentially reflecting defects in process outgrowth and/or defects of Layer I Cajal-

Retzius cells. Layers II-VI, normally neuron-rich, showed sparse neurons of 

abnormally small size, suggesting incomplete neuronal differentiation. Well-

differentiated pyramidal neurons, normally the most abundant neuron in the 

cortex, were also almost completely unidentifiable either because of aberrant
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Figure 1 (Continued). A new syndrome of severe microcephaly and 
neuronal degeneration 
(A) Pedigree of family with severe microcephaly. Double lines: consanguineous 
marriages. Black shading: known affected. Diagonal line: deceased at time of 
publication. Asterisk (*): sequence analysis was completed on the individual. 
(B) Cortical histology of patient vs. age-matched controls at 10X (left panels) and 
40X (right panels) magnification. Patients show decreased cortical thickness and 
abnormal cortical layers. Scale: 300µm. 
(C) MRI of patient vs. age-matched controls show decreased brain size including 
cerebellum and brain stem, increased extraaxial space, and enlarged ventricles. 
Whole brains are outlined in yellow, showing separation of brain from skull. 
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differentiation, or severely reduced numbers (Fig 1B).  

 The cerebellum showed severely reduced external as well as internal 

granule cell layers (EGL, IGL)--which normally contain granule precursors and 

granule cells at this age (Fig 2D)--suggesting widespread loss of these cell types 

as well.  There were few Purkinje cells, and increased numbers of eosinophilic, 

gemistocytic astrocytes in the Purkinje cell layer (PCL) consistent with a 

degenerative process. Calbindin immunoreactivity (Fig 2D) highlighted the 

severely reduced number, and abnormal localization and orientation of the rare 

remaining Purkinje cells (Fig 2D). A few mature granule cells persisted in the 

EGL, from which they normally have migrated into the IGL (Fig 2E, Top), 

suggesting defective migration. There is also a strikingly cell-sparse IGL, 

normally the location of countless mature granule cells, the most abundant 

neuronal type in the entire brain (Fig 2E, Bottom), suggesting profound defects in 

generation and/or survival. These post-mortem histological studies suggest that 

the responsible gene has essential roles in normal neurogenesis, neuronal 

migration, neuronal polarity, as well as neuronal survival.  The small birth weight 

(1.3 kg, <5% of normal for Patient 7), birth length (51 cm, <2% of normal for 

Patient 8) and other somatic features (Supplementary Clinical Information) 

indicate that somatic size was affected, as well as brain size, though there were 

no specific clinical manifestations in other organs (Supplemental Clinical 

Information). 
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Figure 2 (Continued). A new syndrome of severe microcephaly and 
neuronal degeneration 
 (D) Cerebellar histology. Calbindin-stained sections of patients vs. age-matched 
controls. Patients have persistent external granule cell layer (EGL), decreased 
molecular layer (ML), abnormal Purkinje cell layer (PCL), and decreased internal 
granule cell layer (IGL). Scale: 100µm. 
(E) Patients have unmigrated EGL cells above a thinner molecular layer (top 
panels, arrow). Patients have severely reduced granule cell density compared to 
control (bottom panels, arrowhead). Scale: 50µm. 
See also Supplemental Experimental Procedures. 
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A splice donor/missense mutation of ZNF335/NIF1 causes severe 

microcephaly 

 The genetic mutation was identified by conventional linkage mapping and 

gene sequencing, and was confirmed and further characterized using mRNA-

transcriptome sequencing. Mapping using single nucleotide polymorphism (SNP) 

arrays, followed by fine mapping, identified a single, ~2Mb interval that was 

homozygous and identical-by-descent in all affected pedigree members (Fig 3A), 

and in none of the unaffected individuals (multipoint logarithm of odds (LOD) = 

4.54).  Sequence analysis of the 40 genes in the minimal linked region showed 

only one homozygous nonsynonymous change not already identified in dbSNP: a 

G to A transition at position 3332 of the coding sequence of the ZNF335 (Zinc 

Finger Protein 335) gene, also known as NIF-1. All affected individuals were 

homozygous for this mutation, all parents were heterozygous, and an unaffected 

sibling was wild type consistent with an autosomal recessive mode of inheritance 

(Fig 3A).  This change was absent from 100 Middle Eastern control patients, 200 

sequenced unaffected Arabic control exomes and 2500 European control 

exomes (NHLBI GO Exome Sequencing Project), confirming it is not a rare 

benign change. This c.3332g>a mutation results in a predicted change of Arg 

(CGC) at amino acid position 1111 of the ZNF335 protein to His (CAC) (Fig 3B).  

Moreover, the c.3332g>a transition is located at the final position of the splice 

donor site of exon 20, and a G at this position is highly conserved in mammalian 

splice donor sites (Cartegni et al., 2002) 

 Northern blot analysis of RNA and high throughput mRNA-sequencing from 
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Figure 3 (Continued). Severe microcephaly reflects a splicing/missense 
mutation ZNF335 
(A) Patients show linkage at chromosome 20q13.12. Sequencing shows a 
c.3332g>a mutation in gene ZNF335. Upper panel: schematic of chromosome 
20. Middle panel: single nucleotide polymorphism genotyping. Each column 
represents a SNP, and the red and blue indicate homozygosity, whereas yellow 
shows heterozygosity. A large region (boxed) shows mainly red and blue SNPs 
in affected patients with heterozygosity in parents. Bottom panel: representative 
sequencing data. 
(B) Mutation is at 5’ Splice site of ZNF335 and leads to R1111>H missense 
mutation. 
(C) Northern blot shows production of a new larger transcript (*) in heterozygous 
parents and homozygous patients. 
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lymphocyte cell lines derived from an affected patient (Patient10) and a 

heterozygous parent (Patient4) confirmed that this mutation disrupted normal 

splicing.  Whereas a cell line from an unrelated individual showed a normal 5Kb 

transcript (Fig 3C), both affected patient and heterozygous carriers showed a 

larger transcript, which was absent in the control, suggesting that the c.3332g>a 

mutation produces a larger transcript with intron retention. Some normally-sized 

transcripts in homozygous mutant lymphocytes suggests that some normally-

spliced RNA (albeit encoding a R1111H mutation) may still be formed. To 

determine the identity of the larger mutant transcript, and to systematically rule 

out any other possible mutations in the coding portion of the entire genome, we 

performed mRNA-sequencing of cytoplasmic RNA. mRNA-sequencing verified 

the ZNF335 mutation, and also revealed the production of abnormal ZNF335 

transcripts that show inclusion of both the introns (introns 19, 20) flanking the 

mutation-containing exon (Fig 4D, S1A). An unbiased genome-wide search 

across all 354,244 Refseq-annotated introns for differentially transcribed introns 

showed that the retained long intron of ZN335 was significantly higher than in 

control cells (p-value of 1.57*E-31). The inclusion of introns 19 and 20 (Fig 4D, 

S1A) account for the increased size of the mutant transcript, which was verified 

with RT-PCR, and confirms that RNA-Sequencing is a useful tool for unbiased 

identification of patient mutations and splice mutants (data not published). 

 Western blot analysis of homozygous patient cell line showed severely 

reduced ZNF335 protein levels at the previously reported size of ~190kD (Fig 

4F). The inclusion of introns 19 and 20 leads to a premature stop codon that 
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Figure 4 (Continued). Severe microcephaly reflects a splicing/missense 
mutation ZNF335 
(D) Schematic of exons and intronic splicing for a control and the predicted 
problems with intronic splicing in a patient with a c.3332g>a mutation. Schematic 
of RNA-sequencing data shows detection of reads within exons (blue), and within 
introns (yellow) upstream and downstream of the mutation-containing exon. 
Incomplete splicing is present in heterozygous parents and homozygous patients 
but not in control cells. RNA-sequencing data also detected the base change 
mutation (*). 
(E) Predicted structure of ZNF335. Mutation lies in the last zinc finger motif. 
(F) Western blot of patient lymphoblast cell lines show heterozygous parents and 
homozygous patients produce a reduced amount of full length ZNF335 protein, 
and no evidence of larger or degraded protein products. 
See also Fig S1. 
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could cause transcript degradation (Isken and Maquat, 2007). Yet, a small 

amount (≈16% of control levels) of full-length, R1111H-mutated protein is still 

formed, suggesting that some transcript might have escaped incomplete splicing. 

No larger protein or degraded protein products were detected in the 

heterozygous parent or affected patient. Evolutionary analysis of available 

Znf335 orthologues indicates that the Arginine at position 1111 falls in the 13th 

zinc-finger domain (Fig 4E), and this Arginine is absolutely conserved in all 

known Znf335 sequences (Fig S1B). Interestingly, no clear ZNF335 orthologue 

can be identified outside of vertebrates. These results are all consistent with the 

hypothesis that the identified mutation in ZNF335 is the causative mutation in this 

family. 

 

ZNF335 is essential for early embryonic mouse development 

 In order to confirm that Znf335 is essential in early brain development, we 

examined mice with engineered null Znf335 mutations and observed that 

homozygous loss of Znf335 leads to early embryonic lethality as early as 

embryonic day 7.5 (E7.5), (Fig 5A, S2C). The essential requirement of Znf335 in 

early embryonic development suggests that the human ZNF335 mutation could 

be hypomorphic, since the human mutation results in some stable protein, albeit 

carrying a missense mutation.  Examination of 100 individuals with varying 

degrees of MCPH—though none as severe—showed no other patients with 

homozygous ZNF335 mutations or deletions, suggesting that null ZNF335 

mutations in humans may also be lethal prenatally.  In summary, our data 
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suggest that ZNF335 encodes a gene essential for normal human brain 

development and mouse development, and prompted us to examine its function 

in more detail. 

 The pattern and timing of ZNF335 expression are consistent with roles in 

neurogenesis, as well as potentially in other processes.  Northern analysis from 

adult (Fig S2A) and embryonic (Fig S2B) human tissues revealed widespread 

expression of ZNF335, including during embryonic brain development.  Western 

blot analyses of wild type (WT) mouse brain tissue show that Znf335 is 

expressed throughout cortical development with expression peaking at the height 

of neurogenesis from E13-E15 (Fig 5C). Similarly, Znf335 is also expressed at 

the peak of hippocampal development and cerebellar development (Fig 5C, Fig 

S2D).  To localize the expression of Znf335 in specific cell populations, 

heterozygous genetrap mice containing a B-galactosidase fusion reporter gene 

were stained histochemically. Znf335-lacZ was expressed in the developing 

forebrain and midbrain of E8.5 embryos (Fig 5B, 5D). Immunofluorescence 

analysis using antisera raised against Znf335 confirmed expression in the 

ventricular zone (VZ), subventricular zone (SVZ), as well as at lower levels in the 

developing cortical plate, but showed low or undetectable expression in NeuN-

labeled neurons of the cortical plate at E12.5 and E14.5 (Fig 5D). At P20 and 

P30, Znf335 expression returns at low levels in the adult cerebral cortex possibly 

linked with neuronal maturation (Fig 5C, 5D, 5F, and data not shown). Higher 

magnification showed Znf335 immunoreactivity in nuclei of progenitor cells where 

it co-localizes with DAPI-stained DNA (Fig 5E), but is largely or completely 
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Figure 5 (Continued). Znf335 is essential for mouse development and is 
expressed in nuclei of progenitor cells. 
(A) Location of genetrap insertion of two genetrap mice leading to early 
truncation of protein to mimic a null allele. 
(B) Znf335 is expressed at E8.5 in developing forebrain (fb), midbrain (mb), 
somites (S), Branchial arch (ba), Forelimb bud (flb). Scale: 300µm. 
(C) Western blot analysis of Znf335 protein expression throughout brain 
development. In the cortex, expression is highest at E13.5 before tapering off 
and returns slightly postnatally. 
(D) Immunohistochemistry shows Znf335 expression in progenitor cells at E8.5 
and in the ventricular zone of developing cortex and not in NeuN+ neurons at 
E12.5 and E14.5. Protein is also expressed throughout cortical plate later in 
development. Scale: 50, 50, 50, 400µm. 
(E) Znf335 localizes to the nucleus, and colocalizes with euchromatin of 
progenitor cells in the ventricular zone of developing mouse brain, while Znf335 
is excluded from heterochromatic foci. This colocalization disappears in cells in 
the M-Phase of the cell cycle. Scale: 10µm. 
(F) Sparse expression of Znf335 in adult cerebral cortex. Scale: 100µm. 
See also Fig S2. 
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absent in heterochromatic foci. This expression pattern is consistent with roles of 

Znf335 in the progenitor cells prenatally and with possible roles in gene 

expression. 

 

ZNF335 regulates neural progenitor self renewal and neurogenesis 

 The expression of Znf335 in progenitor cells along with the severely 

reduced brain size of patients hint at a role of Znf35 in regulating proliferation. In 

addition, lymphoblast cells lines from patients show decreased growth rate (Fig 

6A) and the p.Arg1111His mutation in ZNF335 leads to decreased interaction 

with Ki-67, a component of a chromatin complex expressed in virtually all 

proliferating cells, and required for growth and survival (Fig S3A) (Garapaty et al., 

2009). To assess roles of Znf335 in progenitor proliferation directly, we 

selectively removed Znf335 from cerebral cortical progenitor cells by 

electroporating GFP expressing plasmids that express either an shRNA against 

Znf335 (shRNA-ZNF335, Fig S3B-C), or an shRNA containing silent mutations, 

making it unable to target Znf335 (UT-Control). Electorporation was performed 

into neural progenitor cells of E9.5 and E12.5 cerebral cortices, which are made 

up of a high proportion of progenitor cells. Targeted cells were selected upon 

dissociation using Fluorescent Activated Cell Sorting (FACS) 24 hours post 

electroporation, and the formation of proliferating reaggregate spheres was used 

to assess progenitor cell proliferation. Knockdown of ZNF335 in both E9.5 and 

E12.5 progenitor populations led to a decrease in reaggregate sphere formation 

(Fig 6B), confirming the important role of Znf335 in progenitor cell proliferation 
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Figure 6 (Continued).  Znf335 is essential for progenitor cell proliferation 
and cell cycle maintenance.  
(A) Growth curves of lymphoblast cell lines derived from heterozygous parent, 
homozygous patient and control shows decreased growth rate in cells from 
patient with low levels of mutated ZNF335. 
(B) Knockdown of Znf335 leads to decreased formation of progenitor cell 
reaggregates in E9.5 and E12.5 progenitor cell cultures showing decreased 
proliferation upon knockdown of Znf335. E9.5: UT-Control, 15.25 +/- 4.3; ShRNA-
ZNF335, 7.1 +/-2.9, T-test, p=0.0032, n=6; E12.5 UT-Control, 82.2 +/- 11.5; 
ShRNA-ZNF335, 51.6+/- 11.6, Data are representated as mean +/-SD. T-Test, 
p=0.001; n=6 rounds of FACS sorting. Each sort is from pooled embryos from 3 
different dams with roughly half of their embryos electroporated with either 
shRNA-Znf335 or UT-control constructs. 
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and self-renewal. 

 In utero electroporation into developing cortices allowed targeting of cortical 

progenitor cells along the ventricular zone and follow-up studies in the native 5D 

architecture of the brain. 48 hours post electroporation, fewer Znf335-deficient 

cells were observed in the VZ--an area where most progenitor cells localize in 

the developing cortex—compared to controls (Fig 7C, 7E). This phenotype could 

be rescued by WT Znf335 but not by Mutated Znf335, containing the c.3332g>a 

mutation (Fig 7C, 7E, S3D). Bromodeoxyuridine (BrdU) pulse labeling 

experiments showed that this decrease was most likely due to the fact that fewer 

progenitor cells were still undergoing DNA synthesis even 24 hours post 

knockdown compared to the UT controls (Fig 7F). A BrdU/Ki67 co-labeling 

experiment was performed to mark progenitor cells that either remained in the 

cell cycle (P Fraction), or exited the cell cycle (Q Fraction). By 48 hours post 

knockdown, a greater proportion of targeted progenitor cells exited the cell cycle 

as compared to UT-Control and wildtype (WT) unelectroporated controls (Fig 7D, 

7G). Taken together, these data show that Znf335 is important for self-renewal of 

progenitor cells by keeping progenitors in the cell cycle and preventing premature 

cell cycle exit. 

 We confirmed the premature exit of Znf335-deficient cells from the cell cycle 

by allowing the electroporated mice to develop until adulthood. A higher 

proportion of Znf335-deficient neurons were present in deeper layers of the 

cortex (Fig 7H, 7I), consistent with early cell cycle exit, and fewer Znf335 

deficient neurons occupied more superficial layers, usually the location of later 
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Figure 7 (Continued).  Znf335 is essential for progenitor cell proliferation 
and cell cycle maintenance.  
(C) shRNA-ZNF335 knockdown leads to fewer cells present within the ventricular 
zone when compared to UT-Control. WT-ZNF335 rescues the number of 
progenitors but MUT-ZNF335 does not. Scale: 10µm. 
(D) shRNA-ZNF335 knockdown leads to fewer cycling progenitors in the 
ventricular zone as compared to the UT-Control. Scale: 10µm. 
(E) Quantification of 7C. Knockdown of Znf335 leads to fewer percentage of 
targeted cells present within 250µm2 of the ventricular zone as compared to UT-
Control. WT-ZNF335 rescues the amount of GFP-staining cells in the VZ while 
MUT does not. UT-Control: 7.59 +/- 0.09; ShRNA-ZNF335: 4.0 +/- 0.25; 
shRNA+WT: 6.27 +/- 0.7; shRNA+MUT: 4.74 +/- 0.8, mean+/-SD, T-test, 
P=0.0001; n=12 means of different electroporated litters. 
(F) Knockdown of Znf335 leads to fewer cells that are BrdU positive 48hours post 
knockdown within 50µm2 of the ventricular zone as compared to UT-Control. UT-
Control: 38.8 +/- 2.9; shRNA-ZNF335: 20.4 +/- 1.7, mean +/-SEM, T-test, 
P=0.0001; n=12 electroporated brains that were analyzed using serial sections). 
(G) Knockdown of Znf335 leads to increased cell cycle exit (decreased 
BrdU+/Ki67+ cells out of total BrdU+ cells) as compared to UT-Control. (WT-
Control: 0.34 +/- 0.03; UT-Control: 0.30 +/- 0.02; ShRNA-ZNF335: .66 +/- 0.04, 
mean+/-SD, ANOVA, P<0.0001; n=12 electroporated brains that were analyzed 
used serial sections). 
(H) Knockdown of Znf335 leads to more targeted cells in the lower layers of the 
mouse cortex and fewer targeted cells in upper layers of the mouse cortex, 
indicating more premature neurogenesis upon knockdown of Znf335. Earlier born 
neurons reside in deeper layers vs. later born neurons that reside in the upper 
layers. Scale: 50µm. 
(I) Cortex was divided into equal-sized bins and counted for proportion of 
targeted cells present in that bin. UT-Control: Bin1: 10.6 +/- 4.9; Bin2: 25.8 +/- 
3.7; Bin3: 34.6 +/- 5.2; Bin 4: 29.1 +/- 4.8; shRNA-ZNF335: Bin1: 8.1 +/- 7.1; 
Bin2: 16.5 +/- 6.1; Bin3: 20.7 +/- 3.6; Bin4: 54.7 +/- 5.1. mean+/-SD, T-test; 
Bin3:P=0.0003, Bin4:P=0.0001; n=12 electroporated brains. Only matching 
sections between conditions were compared. 
See also Fig S3. 
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born neurons. ZNF335-deficient neurons also exhibited abnormal cell fates. 

While the majority of the control neurons were Cux1-positive and FoxP1-negative 

(markers of Layers II-IV and layers III-V, respectively), knockdown neurons 

instead took on the identity of the lower layer, earlier born neurons (Cux1-

negative, FoxP1-positive) (Fig 8A, 8C). These data indicate that Znf335 

deficiency leads to premature cell cycle exit and premature neuronal fate 

determination. Premature neuronal generation leads to a depletion of dividing 

cells and is consistent with our patient phenotype of the severely reduced cortical 

size and abnormal cortical layering.  

 

ZNF335 also regulates neuronal morphogenesis and dendrite outgrowth 

 Further analysis of Znf335-deficient neurons demonstrates abnormal 

neuronal morphology reminiscent of the patient histology (Fig 1B, 2D). 

Knockdown cells analyzed at P0 showed abnormal cell orientation and radial glia 

(Fig 8B-a,b). By P6 and P8, knockdown neurons showed smaller cell bodies and 

lacked normal vertical apical dendritic process (Fig 8B-c-f). By P16, the dendritic 

outgrowth of knockdown cells was disorganized, abnormally oriented (Fig 8B-

g,h), and only 25% of cells exhibited the stereotypical orientation perpendicular to 

the pial surface versus 95% in the controls (Fig 8D). By adulthood, knockdown 

neurons showed disorganized dendritic branching, abnormal dendritic 

orientation, and signs of dendritic breakdown (Fig 8B-i-n). WT-Znf335 but not 

Mut-Znf335 rescued the orientation phenotype, confirming the specificity of this 

phenotype, as well as confirming that the p.H1111R mutation is deficient but 
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Figure 8 (Continued). Znf335 deficiency leads to decreased cell size, and 
abnorm 
al dendritic shape and orientation. 
(A) Knockdown of ZNF335 leads to reduction of cells in the cortical plate and 
production of Cux1-negative (white circles) and FoxP1-positive (blue circles) cells 
showing a change in cell fate. Dashed line represents end of zone containing 
GFP-positive cells. Scale: 50µm. 
(B) Knockdown and control cells were targeted at E14.5 and analyzed at P0 
(a,b), P6 (c,d) to show abnormal radial glia (P0, arrowhead) and abnormal cell 
body shape and size (P6, dashed circle). There is abnormal dendritic arborization 
(arrowhead) and orientation in knockdown cells at P8 (e,f), P16 (g,h), P22 (i,j,k), 
and P30 (l,m,n). Scale: 50µm. 
(C) Analysis of 8A. Knockdown showed production of more Cux1-negative cells 
as compared to Control, and production of more FoxP1-positive cells as 
compared to Control. 
(D). Knockdown cells show abnormal orientation based on orientation of their 
basal dendritic process which is normally perpendicular to the pial surface of the 
brain. WT-ZNF335 rescues the orientation but MUT-ZNF335 does not. Scale: 
50µm. 0.92 of total UT-Control cells have apical process orientated perpendicular 
to pial surface (0o), 0.03 at 22.5o, and 0.04 at 337.5o. shRNA-ZNF335 knockdown 
cells have only 0.25 of total cells oriented at 0o, 0.13 at 22.5o, 0.11 at 45o, 0.08 at 
67.5o, 0.04 at 90o, 0.04 at 270o, 0.08 at 292.5o, 0.12 at 315o, and 0.13 at 337.5o. 
WT-ZNF335 rescue of shRNA-ZNF335 knockdown have 0.7 cells at 0 o, 0.03 at 
22.5 o, 0.05 at 45 o, 0.3 at 67.5 o, 0.04 at 90 o, 0.02 at 270 o, 0.03 at 292.5 o, 0.07 
at 315 o, and 0.05 at 337.5 o. MUT-ZNF335 rescue of shRNA-ZNF335 knockdown 
have 0.4 cells at 0 o, 0.1 at 22.5 o, 0.11 at 45 o, 0.06 at 67.5 o, 0.01 at 90 o, 0.03 at 
270 o, 0.06 at 292.5 o, 0.08 at 315 o, and 0.14 at 337.5 o. Data presented as 
proportion of total cells oriented in +/-11.25 o of radial direction n=6 electroporated 
brains. Only matching sections were analyzed between different conditions. 
See also Fig S4. 
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likely hypomorphic (Fig 8D). These phenotypes are reminiscent of the sparse 

neurons with reduced dendrites and abnormal orientation seen in patient 

histology studies.   Microarray analysis of such neurons with decreased ZNF-335 

expression showed decreased expression levels of genes important for brain 

development, such as neuron-specific transcription factors, dendritic branching 

and pruning genes, cell cycle and specific signaling factors, and neuronal specific 

microtubule binding partners (Fig S4), all of which could account for the neuronal 

and patient phenotypes. 

 

ZNF335 interacts with a chromatin remodeling complex 

 In order to elucidate how loss of ZNF335 could have such broad roles, we 

identified candidate interacting protein partners by complex purification. 

Immunoprecipitations (IPs) were performed on FLAG-tagged ZNF335 in stable 

HeLAS3 cell lines as well as on endogenous E14.5 developing mouse brain 

lysates. Experiments utilizing IP followed by mass spectrometry (MS) and 

western verification revealed that ZNF335 pulled down members of a human 

H3K4 methyltransferase complex such as MLL, SETD1A, CFP1, ASH2, RbBP5, 

and WDR5 (Fig 9A, Table S1, and online data), (Garapaty et al., 2009; 

Schuettengruber et al., 2011). Together, these proteins form a complex 

analogous to that of the Trx complex in Drosophila, or the complex COMPASS 

(Complex Proteins Associated with Set1) in Saccharomyces cerevisiae—two 

complexes shown to be required for activation of specific patterns of gene 

expression (Schuettengruber et al., 2011). Knockdown of members of this 
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methyltransferase complex have been shown to cause stunted embryonic 

development and death, while WDR5 expression has been shown to activate 

self-renewal genes in embryonic stem cells (Ang et al., 2011). The interaction of 

ZNF335 with a H3K4 methyltransferase complex presents an avenue that would 

allow ZNF335 to regulate a large number of genes, consistent with the 

widespread effects of loss of ZNF335 in brain and other tissues. 

 

ZNF335 regulates histone methylation and expression of specific genes 

 Chromatin IP followed by deep sequencing (ChIP-Seq) identified ZNF335-

bound promoters representing possible ZNF335-regulated genes. ChIP-Seq was 

performed on developing mouse E14.5 lateral telencephalon with two separate 

antisera and two biological replciates. Znf335 peaks overlapped with the 

promoter region (Fig 9B-C) of a variety of genes; for example, genes that play 

roles in cell proliferation, somatic development, cell death, neuronal maturation, 

and signaling pathways, among others (Fig S5, Table S3). Since ZNF335 

interacts in a methyltransferase complex, we looked at the methylation patterns 

of these ZNF335-bound promoters (Shen, 2012), and the peaks of ZNF335-

binding overlapped with the H3K4trimethylation (H3K4me3) peaks (Fig S5A). 

Similarly, in patients with decreased levels of ZNF335, H3K4me3 marks at the 

promoters of Znf335 bound genes were also decreased, while control H3K27me3 

marks were not changed (Fig S5B). Finally, since H3K4me3 is linked with gene 

expression, RNA-seq data from the parents and patients who have low 

H3K4me3 marks also showed decrease levels of gene expression of these 
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Figure 9 (Continued). Znf335 interacts with trithorax complex proteins and 
is upstream of many neuronal differentiation genes including REST/NRSF. 
(A) Blots show co-immunoprecipitation of Znf335 with members of the trithorax 
complex in human cell lines and mouse E14.5 cortex indicating an interaction of 
Znf335 with the histone mehtyltransferase complex. 
(B) Znf335 binds to promoter region of REST/NRSF, and overlaps peaks of 
H3K4me3 binding. 
(C) Promoter Binding consensus motif for Znf335 with GAGAG motif that is 
predicted for C2H2 zinc fingers (Omichinski et al., 1997). 
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ZNF335 target genes (Table S2, S3). Together, these data hint at a role of 

ZNF335 in a methyltransferase complex that is important for the 

H3K4trimethylation and ultimately the expression levels of a large variety of 

genes. GeneGO analysis performed on the genes identified through ChIP-Seq, 

microarrays, and RNA-seq data from patients showed that the genes affected by 

Znf335 were involved in a variety of pathways important for both somatic 

development as well as brain development (Table S4-7). 

 

ZNF335 is upstream of NRSF/REST 

 Interestingly, we observed Znf335 bound to the promoter region of the 

known progenitor cell master regulator REST/NRSF (Fig 9B). A direct 

relationship between ZNF335 and expression of REST/NRSF is suggested by 

decreased Trx complex binding and decreased H3K4me3 marks at the 

REST/NRSF promoter (Fig 10D-E), as well as decreased mRNA levels of 

REST/NRSF in heterozygous parents and ZNF335-mutant patient cell lines (Fig 

10F). Decreased REST/NRSF expression was also seen upon ZNF335 

knockdown of HeLA and Hek293 cells (Fig 10G), supporting a close, potentially 

direct, relationship. Conversely, expression of a dominant-negative REST (DN-

REST)--which contains the DNA binding domain only (Chong et al., 1995; 

Schoenherr and Anderson, 1995)--as well as overexpression of REST/NRSF, did 

not significantly alter ZNF335 expression (Fig 10H). Rescue experiments also 

showed that the premature cell cycle exit and premature migrating neurons seen 

in the absence of ZNF335 could be rescued by REST, but not by DN-REST, 
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Figure 10 (Continued). Znf335 interacts with trithorax complex proteins and 
is upstream of many neuronal differentiation genes including REST/NRSF. 
(D) Decreased binding of trithorax complex proteins such as WDR5 to the REST 
promoter under low levels of Znf335. WDR5: Control: 1.09 +/- 0, Het Parent: 0.16 
+/- 0.25, Hom Patient: 0.28 +/- 0.27; chromatin was obtained and compiled from 
3 different growth cultures. Two IPs were performed for each pooled set of 
chromatin isolated from lymphoblast cell lines, and qPCR was run in triplicates in 
comparison to input. All qPCR runs were normalized to GAPDH. 
(E) Decreased H3K4 trimethylation (marker of gene activation) of the REST 
promoter under low levels of Znf335, but no changes in H3K27 trimethylation. 
H3K4me3: Control: 4.5 +/- 0.39, Het Parent: 2.25 +/- 0.53, Hom Patient: 0.84 +/- 
0.3; H3K27me3: Control: 0.95 +/- 0.37; Het Parent: 0.85 +/- 0.29; Hom Patient: 
0.6, +/- 0.25; chromatin was obtained and compiled from 3 different growth 
cultures. Two IPs were performed for each pooled set of chromatin isolated from 
lymphoblast cell lines, and qPCR was run in triplicates in comparison to input. All 
qPCR runs were normalized to GAPDH. 
(F) qPCR measurement show lower levels of properly spliced ZNF335 
expression and hREST expression in het parents and hom patients as compared 
to controls. ZNF335 analysis was done with primers specific to only the properly 
spliced mRNA. Incomplete splice forms would not have been picked up with 
primer pairs (Exon19F, Exon 20R, Exon21R): Control: 1 +/- 0.28, Het Parent: 
0.80 +/- 0.21, Hom Patient: 0.15 +/- 0.03; hREST: Control: 1 +/- 0.25; Het Parent: 
0.59 +/- 0.18; Hom Patient: 0.05, +/- 0.01; Mean+/-SD, T-test compared to 
control, homozygous patients p<0.001; n=9 qPCR readouts from 3 different 
growth cultures. RNA was extracted from lymphoblast cell lines. All qPCR runs 
were normalized to NMYC and GAPDH. 
(G) Decreased levels of hREST expression is seen upon direct knockdown of 
ZNF335. Control: 1, ZNF335: 0.41 +/- 0.12, P=0.0001; hREST: 0.48 +/- 0.20, 
P=0.0001; Mean+/-SD, T-test; n=6 individual transfections of HeLa cell lines. All 
qPCR runs were normalized to GAPDH. 
(H) Converserly, ZNF335 expression is not significantly changed upon 
expression of Dominant-Negative REST, or overexpression of hREST. GFP 
Control: 0.85 +/- 0.09; DN-REST: 0.97 +/- 0.14; Over-hREST: 0.92 +/- 0.08; 
Mean+/-SD, T-test, non-significant; n=3 sets of transfections of HeLa cell lines. 
Similar results also seen with Hek293 cells lines (data not published). All qPCR 
runs were normalized to GAPDH. 
(I) Schematic of Znf335 interacting with the trithorax complex to trimethylate 
H3K4 at the promoter of REST to turn on REST expression. 
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Figure 11 (Continued). Znf335 interacts with trithorax complex proteins and 
is upstream of many neuronal differentiation genes including REST/NRSF. 
(J) Knockdown of Znf335 leads to premature cell cycle exit and neuronal 
migration in cortical plate. Addition of REST rescues the phenotype and 
recapitulates control while addition of dominant-negative REST mimics Znf335 
knockdown phenotype. Dashed line represents bottom of cortical plate. Scale: 
50µm. UT-Control: 9.32 +/- 3.57; shRNA-ZNF335: 25.6 +/- 8.34; shRNA+REST 
rescue 11.92 +/- 5.1; UT+DN-REST rescue: 37.6 +/- 0.3. UT-shRNA P=0.0001, 
UT-DNREST rescue P=0.0001; Mean+/-SD, T-test; n=3 different electroporation 
litters, and analysis from each litter was pooled. 
See also Fig S5 and Tables S1-S7. 
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which caused a phenotype similar to ZNF335 deficiency (Fig 11J). These data, 

along with the promoter binding of REST/NRSF by Znf335, suggests direct 

regulation of REST/NRSF expression by Znf335 (Fig 10I), and may provide an 

avenue for abnormal neurogenesis secondary to abnormal REST regulation. 

 

ZNF335 is essential for neuronal production and brain formation 

 Further analysis of Znf335-knockdown neurons showed stereotypical 

neuronal morphology (small cell bodies, dendrites, axons), but with a surprising 

loss of immunoreactivity for D11Bwg0517e/Fox3, or Neuronal nuclei (NeuN), an 

ubiquitous marker of all differentiated neurons (Dredge and Jensen, 2011) (Fig 

12A, 12B, S6A), suggesting an apparent state of incomplete neuronal 

differentiation. This failure to express mature neuronal markers could reflect the 

abnormal premature neurogenesis caused by early progenitor cell cycle exit (Fig 

7D), or—perhaps more likely—could reflect direct requirements for Znf335 in 

controlling gene expression in postmitotic neurons or in neuronal maturation and 

activity. The altered morphology (Fig 8B), and the arrested development (Fig 

12A) exhibited by Znf335 knockdown neurons is reminiscent of the altered 

neuronal phenotype, altered cortical layers and decreased cortical size 

phenotype seen in patients (Fig 1B, 1C).  

 Similar to Znf335-deficient cortical neurons, Znf335 knockdown cerebellar 

granule cells showed abnormal cell migration, morphology, and differentiation. 

Znf335-deificient cerebellar granule cells also showed migration arrest with 

decreased migration into the IGL (Fig S6B-D) recapitulating the human 
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Figure 12 (Continued). Znf335 is essential for neuronal differentiation and 
brain development. 
(A) Knockdown of Znf335 leads to presence of NeuN- cells (blue circles) that 
nonetheless have neuronal morphology in 14 day culture systems. NeuN is a 
marker of differentiated neurons. Scale: 20µm. 
(B) Quantification of NeuN+ and NeuN- cells upon knockdown of Znf335 in short 
and long term culture shows decreased production of NeuN+ cells over long term 
culture. Control NeuN+: 4day: 48.2+/-14.1; 7day: 81.5+/-12.1; 10day: 100+/-0.9; 
14day: 100+/-1.5; shRNA-ZNF335 NeuN+: 4day: 30.7+/-12.3; 7day: 50.0+/-7.0; 
10day: 35.7+/-18.1; 14day: 22.9+/-19.1); Mean+/-SD, T-test, 7,10,14day: 
P<0.0001; n=12 separate cortical neuron cultures from 12 litters. 
(C) Knockdown of Znf335 leads to Mef2C- cells (arrows), while UT Control shows 
Mef2C+ cells (arrowhead). Scale: 20µm. 
(D) Quantification of Mef2C+ and Mef2C- cells shows decreased production of 
Mef2C+ cells upon knockdown of Znf335 in short and long term cultures. Control 
Mef2C+: 9day: 100+/-0.8; 16day: 93.0+/-8.2; shRNA-ZNF335 Mef2C+: 9day: 
48.5+/-12.1; 16day: 44.0+/-15.2); Mean+/-SD, T-test, 9Day:P=0.0018, 
16day:P=0.008; n=3 separate granule cell cultures from 3 different litters. 
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phenotype (Fig 2D, 2E). Znf335-deificient granule cells also showed decreased 

Mef2C expression even after long-term culture (Fig 12C, 12D), and long-term 

Znf335 knockdown in cortical neurons also lead to decreased Mef2C transcript 

expression, again suggesting an arrest of normal transcriptional patterns. A 

decrease in Mef2C has been implicated in cell death (Mao et al., 1999), and our 

findings that knockdown of Znf335 also led to increased cell death (Fig 12D) 

might suggest that this effect is mediated through Mef2c. 

 Finally, to confirm the essential role of Znf335 in cerebral cortical 

neurogenesis, we created a brain-specific, conditional knockout of Znf335 to 

bypass the embryonic lethality of a global knockout (Fig 5A). Emx1-Cre mediated 

removal of Znf335 (Znf335 CKO) (Fig S7) produced a brain with an essentially 

absent cortex lacking all cortical neurons at sites of Emx1 expression (Fig 13E, 

13F) (Gorski et al., 2002). The lack of cortical plate and cortical neurons is in 

accordance with the essential role of Znf335 in progenitor cells and postmitotic 

neurons. The small brain phenotype of the Znf335 CKO further confirms that 

Znf335 is responsible for the severe phenotype seen in our patients, and verifies 

Znf335 as a new microcephaly gene essential for brain structure formation and 

development. 
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Figure 13 (Continued). Znf335 is essential for neuronal differentiation and 
brain development. 
(E) Znf335 CKO (Znfloxp/loxp;Emx1Cre+) shows decreased formation of 
cerebral cortex in all areas where Emx1-Cre is expressed, and a small lateral 
cortex in areas where Emx1-cre is reduced or turned on later at both P0 and P7. 
(F) H&E stain of coronal brain sections of ZnfCKO (Znfloxp/loxp;Emx1Cre+), 
ZnfHet (Znf+/loxp;Emx1Cre+), and ZnfWT (Znf+/+;Emx1Cre+) shows that 
ZnfCKO lack all cortical structure and cortical neurons. The loss of cortical brain 
structure leads to the formation of a small brain with a thin sheath of tissue and 
enlarged ventricles. Blue dashed boxed represent enlarged cortical sections 
(Right panels). 
See also Fig S6 and S7. 
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CONCLUSIONS 

 Here we identify ZNF335/NIF1 as a central regulator of mammalian 

neurogenesis and neuronal differentiation. ZNF335 was identified in a large 

Arab-Israeli family with 7 of 10 kids affected with sever microcephaly. The 

affected patient presented with severely reduced brain structure as well as 

aberrant cortical and cerebellar architecture and histology. The mutation 

identified was a c.3332g>a transition at an intron exon junction leading to 

incomplete splicing and the creation of a larger transcript. While most of the 

transcripts are degraded, some transcript is made into protein although with a 

R1111H missense mutation.  

 Global knockout of ZNF335 leads to embryonic lethality due to the global 

roles of ZNF335 in development. In the brain, ZNF335 is expressed in the 

progenitor population of the developing brain and seems to localize to the 

nucleus hinting at a role in gene regulation. ZNF335 is important for proper cell 

proliferation and knockdown of ZNF335 leads to decreased progenitors cells and 

increased progenitor cell cycle exit leading to premature neurogenesis. The 

neurons formed exhibit abnormal morphology, orientation and branching 

patterns. The neurons also exhibit abnormal cell fate and incomplete neuronal 

differentiation.  

 Biochemistry studies showed that ZNF335 interacts with members of a 

histone H3K4 methyltransferase complex, the Trithorax complex. ChIP-

sequencing analysis shows that ZNF335 binds to the promoter regions of a 

larger number of genes important for growth and development. The binding 
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pattern of ZNF335 overlapped with the H3K4me3 marks of those genes. 

Correspondingly, ZNF335 expression is also important for the H3K4me3 levels of 

the promoters of these genes, and ZNF335 is essential for gene expression.  

 One of the genes that ZNF335 regulates is REST/NRSF, a known master 

regulator of brain development. ZNF335 binds to the promoter or REST/NRSF 

and is also essential for H3K4 trimethylation levels of REST/NRSF. Knockdown 

of REST/NRSF recapitulates the ZNF335 knockdown phenotype, while addition 

of REST/NRSF rescues the ZNF335 knockdown phenotype.  

 The brain specific conditional knockout of ZNF335 bypasses the embryonic 

lethality of the global ZNF335 knockout. The conditional knockout of the ZNF335 

leads to the essential loss of all cortical structure and recapitulates the human 

phenotype. We show that ZNF335 is an essential gene of brain development and 

proves to be a new type of microcephaly gene that is responsible for proper gene 

activation. 
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CLINICAL INFORMATION 
 
 
The overall pedigree is one of a family of Israeli Arab ancestry with multiple loops 

of consanguinity, consisting of two main nuclear branches. 

 

Nuclear family A: This family includes parents who are first cousins of Israeli 

Arab ancestry and multiple affected children.  They first came to attention with 

the birth of male twin infants, Patients 7 & 8.  Prenatal ultrasound examination at 

28 weeks gestation revealed microcephaly in both feti and the twins were 

delivered by cesearean section at 35 weeks for intra uterine growth restriction. 

 At birth both children were noted to have severe microcephaly, dysmorphic facial 

features including prominent nasal bridge, arthrogryposis, choanal atresia and 

bilateral cataracts.  Postnatal renal ultrasound was normal.  Birth weight for 

patient7 was 1395 grams and he was hospitalized at 8 weeks old with 

hypothermia.  Sepsis work up was negative but he died at 3 months old.  The 

second twin's birth weight was 1700 grams and he was hospitalized at 2 months 

old with pneumonia and hypothermia.  By age 3 months his head circumference 

was 27.5 cm (-9.0 Standard Deviations) and length was 51 cm (-4.3 Standard 

Deviations).  Physical exam revealed the slow sloping forehead, micrognathia, 

prominent helicies, bilateral simian creases, flexion contractures of both hands 

with overriding fingers, dorsiflexion of both feet with overriding toes and 

increased tone and spasticity.  MRI of the brain revealed obvious microcephaly 

with a cortex with normal thickness, very few sulci and no observable basal 

ganglia, absence of the corpus callosum, enlarged ventricles, lack of olfactory 
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sulci, markedly reduced white matter volume, delayed myelination and 

hypoplastic  cerebellar hemispheres, vermis and brainstem.  This family also had 

another son and two daughters with similar features.  All died by age 18months 

old with the exception of a female, who was still living at age 5 years old with 

severe psychomotor retardation and dysmorphisms. 

 

Nuclear family B: This family is related to the previous family (A) as the father of 

Family A is siblings with the mother of Family B.  Also, the mother of Family A is 

first cousin once removed to the father of Family B.  The parents in this nuclear 

family B are related as first cousins once removed.  This nuclear family includes 

two affected males with similar clinical features to the previously described 

children and there are also two unaffected siblings, a male and a female.  The 

first affected male died at 2.5 months old.   The second affected male, patient 5, 

had negative genetic workup including a karyotype and FISH for 17p13.3 (Miller-

Dieker syndrome).  Post-mortem Histology: Lissencephalic cortex with reduced 

white matter and abnormal lamination lacking the normal six layers. Grey-white 

matter boundary is preserved but signs of cell degeneration, abnormal cell 

orientation, and gliosis. Cerebellum showed severely reduced molecular layer 

external granule layer, molecular layer, and internal granule layer. Bergmann glia 

was present in the purkinje cell lyaer, and there were few purkinje cells, with 

abnormal polarity, and cell-sparse internal granule layer. 
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Patient Studies 
 
Peripheral blood samples were collected from patients and unaffected family 

members and mapping was performed using single nucleotide polymorphism 

(SNP) arrays and microsatellite markers to narrow down the boundaries of 

shared homozygosity. All coding exons were sequenced in the area of 

homozygosity on chromosome 20q13.2 to reveal the only homozygous coding 

mutation in the gene ZNF335. All human studies were reviewed and approved by 

the institutional review board of the Children's Hospital, Boston, the Beth Israel 

Deaconess Medical Center and local institutions. 

Genome-wide linkage scans: We collected peripheral blood samples from the 

affected children and their parents and grandparents after obtaining written 

informed consent according to the protocols approved by the participating 

institutions. All human studies were reviewed and approved by the institutional 

review board of the Children's Hospital, Boston, the Beth Israel Deaconess 

Medical Center and the local institutions. A total of 22 individuals (indicated with 

an asterisk in Figure 1A) were genotyped via Affymetrix 10K Xba121, Affymetrix 

250K Nsp, Affymetrix 250 Sty, and Affymetrix 5.0. One block of homozygosity on 

chromosome 20q13.12 emerged as being shared by all affected individuals 

(shaded in in Figure 1A). To refine the region of homozygosity, samples 

underwent a microsatellite genome-wide linkage screen using ~400 markers in 

the ABI linkage mapping set MD v2.5 at ~10cM average density (Applied 

Biosystems). Fine mapping was done using polymorphic microsatellite markers 

from the ABI linkage mapping set HD v2.5 at a 5cM average density (Applied 
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Biosystems) and additional microsatellite markers identified using the UCSC 

Human Genome Browser. The candidate interval was defined by markers 

D20S838-6 and D20S197-12 giving an interval of a 2MB locus. Singlepoint and 

multipoint LOD scores were calculated using Allegro, assuming a recessive 

mode of disease inheritance, full penetrance and a disease allele frequency of 

0.0001. The LOD score is 4.538 (P<0.0001). 

DNA sequence analysis: Sequence analysis of the coding exons of the 40 

protein-coding RefSeq genes in the linked interval (Fig 2A) revealed a candidate 

mutation in ZNF335 (Zinc Finger Protein 335 also known as NIF1, NRC 

Interacting Factor 1. Location 20q13.12, MIM 610825, NM 022095). The change 

was a c.3332g>a. All affected children were homozygous for this change and the 

parents, who were obligate carriers, were all heterozygous.  

Sequencing of ZNF335 in controls: Coding ZNF335 exons and at least 50 

basepairs of flanking sequence were PCR amplified and submitted for Sanger 

capillary electrophoresis (Polymorphic DNA Technologies) in accordance with 

standard methods. Samples included 100 neurologically normal patients. We 

also reviewed whole exome sequencing for 200 unaffected Arabic control 

patients and 2500 European control patients. 



	  

	   93	  

 
EXPERIMENTAL PROCEDURES 

Animals 

Timed pregnant CD1, and Swiss Webster dams (Charles River Laboratories and 

Taconic). Genetrap 1 and 2 (AY0030 and XG241) (The Genetrap Consortium).  

Ex-Utero and In-Utero electroporations were performed on timed pregnant E9.5-

E14.5 embryos. All animal experimentation was carried out under protocols 

approved by the IACUCs of Harvard Medical School and Children’s Hospital 

Boston. 

 

Culture Systems 

Primary cortical neurons were isolated from E14.5 mouse cells and dissociated 

by the Papain Dissociation System (Wothrington Biochem. Corp). Cells were 

grown on Poly-L-Ornithine coated plates (Sigma) in Neurobasal (Gibco) with 

0.6% glucose, B27 (Gibco), N2 (Gibco), 1mM Penicillin, Streptomycin, L-

glutamine, and transfected 1hr post plating. Primary granule neurons were 

isolated from P5 mouse pups and grown on Poly-L-Ornithine coated cover slips 

in Basal Medium, Eagle (Gibco), with 10% Calf Serum (Hyclone), 1mM penicillin, 

streptomycin, L-glutamine; 25mM KCl. Neurons were transfected 2 days post 

plating with calcium phosphate. All experiments were analyzed in a double blind 

manner using an unpaired T-test. 
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Immunostaining 

Paraffin sections (5uM) of brains were dehydrated and subjected to antigen 

retrieval with Antigen Unmasking Solution (Vector), followed by blocking 

(PBS/5% serum), permeabilization (0.04% Tween20), and antibody incubation. 

Alternatively, cryosections (8um-16um) and vibratome sections (50um-200um) 

were permeabilized (0.04% Tween20, 0.1% Triton X100), blocked, and incubated 

with antibodies (24h-48h). For the migration assays, slices were immunostained 

with rabbit anti-GFP antibody (Invitrogen) and mouse anti-Calbindin antibody 

(Swant). All samples were counterstained with Hoechst 33258 (Sigma). All 

images were taken with Zeiss 510. For morphology analysis and images of thick 

sections (>16um), Z-stack images were obtained using Zeiss 510. Sections were 

morphologically matched before comparing experimental to control conditions. 

Data analysis was performed through a double-blind method using ImageJ 

Software.  

 

Antibodies:  

Znf335/Nif1 (797, 798A, IHC specific, 2000, Bethyl); BrdU (250, AbD Serotec); 

Ki67 (250, Abnova); Vimentin 4A4 (500, Assay Designs); GLAST (250, 

Chemicon); NeuN (4000, Millipore); FLAG (500, Sigma); GFP (500, Abcam); 

ASH2 (500, Bethyl Laboratories); MLL/HRX (1000, Millipore); RbBP5 (500, 

Bethyl Laboratories); SETD1A (200, Novus Biologicals); CGBP (200 Gene Tex); 

MATR3 (Aviva Systems Biology); WDR5 (200 Milipore); FoxP1 (500 Abcam); 

Cux1/CDP (500 Santa Cruz). 
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X-gal Staining 

Embryos and adult animals were perfused with 4% PFA and brains were 

sectioned (50um) then stained with 1g/L X-Gal (Invitrogen). 

 

FACS Sort 

Tissues and cells were dissociated using either the Papain Dissociation System 

(Worthington Biochem Corp) or Neurocult (Stem Cell). Dissociated cells were 

sorted for GFP using FACSVantage under lowest sustainable pressure. Cells 

were only used if re-sort verification of >95% pure GFP-positive population was 

obtained.  

 

Microarray 

RNA was isolated with RNeasy Mini Kit (Qiagen), and processed with the 

Microarray Core Facility (DFCI) using Mouse 430.2 microarray chips. Gene 

expression was analyzed using DChip Software. All of the raw microarray data 

were deposited to NCBI’s Gene Expression Omnibus 

(http://www.ncbi.nlm.nih.gov/geo/) under deposition number GSE36386. 

 

Neurospheres 

E19.5 and E12.5 mouse cortex was dissected in sterile HBSS and dissociated by 

the papain Dissociation System (Worthington Biochem Corp). Suspension 

cultures were transfected with either Lipofectamine 2000 (Invitrogen) or Calcium 
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Phosphate (Clontech). 24hrs post, cells were dissociated using Neurocult 

(Stemcell) and FACS sort was used to isolate and plate only GFP-positive 

(transfected) cells and cells were plated at 56K/cm2.  

 

In Utero Electroporations 

Plasmid DNA suspended at 1ug/ul in ddH2O was stained with DNA Loading Dye 

(Invitrogen) and microinjected into the lateral ventricle of developing embryos by 

eye or using ultrasound guidance (Olson et al., 2006). Moms were allowed to 

recover and embryos were harvested at different stages. All animal surgical 

experiment was carried out under protocols approved by the IACUCs of Harvard 

Medical School, and Children’s Hospital Boston. For cell cycle analysis 70 ug 

BrdU/g body weight was administered via an intraperitoneal injection at 32 hours 

post electroporation and animals were examined at 48 hours post 

electroporation. Analysis were done on serial 5-16um paraffin sections and only 

analyzed between sections in matching brain regions and well as matching 

medial to lateral orientation of cells between knockdown and control. Rescues 

were performed by co-electroporating the expression constructs at the same time 

at the knockdown and control constructs while keeping the amount of shRNA-

ZNF335 and UT-Control constructs equal to non-rescue experiments. 

 

Cerebellar Slices 

For ex vivo cerebellar electroporations, P8 cerebella were dissected, soaked in 

endotoxin free plasmid DNA suspended at 2 µg/µl in complete Hanks Balance 
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Salt Solution (HBSS), transferred to a CUY520-P5 Platinum Block Petridish 

Electrode (Protech International) and electroporated with an ECM 830 square 

wave electroporator (BTX Genetronics) at 80 V, 5 pulses, 50 ms pulse, and 500 

ms interval.  Electroporated cerebella were embedded in 3% low melting point 

agarose in HBSS, and 250 µm coronal or sagittal cerebellar slices were prepared 

using a VT1000S Vibratome (Leica Microsystems).  Slices were transferred to 

Millicell tissue culture inserts (Millipore) and cultured in Basal Medium Eagle 

supplemented with 2 mM L- glutamine, 0.5% glucose, 1x ITS (Sigma), and 50 

U/ml Penicillin-Streptomycin, at the air-medium interface.  In experiments where 

proliferation was assayed, 25 µM EdU was added to the culture medium at 24 

hours in culture.  Slices were fixed after 48 hours and 72 hours in culture using 

ice-cold 4% paraformaldehyde/4% sucrose/1x PBS for two hours.   

 

Northern Blot 

Mouse probes were generated from mouse Zfp335 cDNA (Clone ID 6848450, 

Open Biosystems) to contain a 960-bp sequence corresponding to nucleotide 

position 2,227–3,231 of the cDNA or a 560-bp sequence corresponding to 

nucleotide position 3,922-4,475 of the cDNA. Human probes were generated 

from human ZNF335 cDNA (Clone ID 5285131, Open Biosystems) to contain a 

446-bp sequence corresponding to nucleotide position 2,073-2,519 of the cDNA 

or a 584-bp sequence corresponding to nucleotide position 2,587-3,171 of the 

cDNA. Probes were generated using pCRII (Invitrogen), Northern blots were 

done with RNA extracted from human patient lymphocytes or using Mouse 
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Embryo MTN Blot (Clontech), Human 12-Lane MTN Blot (Clontech), and Human 

Fetal MTN Blot II (Clontech).  

 

Western Blot 

Bands were either detected with Pico-ECL or Femto-ECL detection kits 

(Invitrogen), or with the Odyssey Infrared Imaging System (Li-Cor Biosciences). 

Quantitation was achieved with Odyssey Infrared Imaging System (Li-Cor 

Biosciences).  

 

CO-IP/Mass Spectrometry 

HelaS3 Co-IP: Protein complex of NIF1 was isolated and purified as described 

previously (Ogawa et al., 2002). Briefly, nuclear extract was prepared from 10L of 

HeLa S3 cells stably expressing Flag-NIF1 fusion protein. NIF1 complex was 

purified using anti-Flag M2 mAb-conjugated agarose beads (Sigma) in a buffer 

containing 20  mM Tris-HCl, pH 7.9, 100mM KCl, 5  mM MgCl2, 10% glycerol, 

1  mM phenylmethylsulphonyl fluoride (PMSF), 0.1% Nonidet P40, and 10  mM 2-

mercaptoethanol.  

Mouse E14.5 Co-IP: Nuclear lysates of mouse E14.5 brains form 20 litters were 

pooled for analysis following the published methods (Chen et al., 2009). IP 

material was separated by 4–12% gradient SDS–polyacrylamide-gel 

electrophoresis (SDS–PAGE) and stained with Coomassie blue. Protein bands 

were excised and analyzed by mass spectrometry at the Harvard Medical School 

Taplin Biological Mass Spectrometry Facility.  
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RNA-Sequencing Analysis 

EBV-transformed lymphoblastoid cell lines from Het Parents (LIS-4411), 

Homozygous Patients (LIS-4421), and 7 unrelated individuals were cultured in 

RPMI-1640 media supplemented with 10% FBS and penicillin-streptomycin. 

Approximately 80 million cells from each cell line were fractionated with Cell 

Fractionation Buffer (PARIS kit, Ambion) to separate cytoplasmic and nuclear 

lysates. RNA was purified from the lysates with the mirVana PARIS kit (Ambion). 

RNA was DNase treated (Qiagen) and cleaned-up (RNeasy, Qiagen). 

Cytoplasmic and nuclear RNA yields and integrity were confirmed on a 

NanoDrop spectrophotometer (Thermo Scientific) and RNA 6000 Bioanalyzer 

(Agilent). Separation of cytoplasmic from nuclear RNA was confirmed by 

electrophoresis (unspliced rRNA visible only in nuclear fraction, data not shown), 

and by qPCR for U1 snRNA enrichment in the nuclear fraction (data not shown). 

 

PolyA-tailed mRNA from cytoplasmic RNA fractions was purified with two rounds 

of polyA-selection: a first purification with Poly(A)Purist MAG (Life technologies), 

and a second purification with the Oligotex mRNA kit (Qiagen). Absence of rRNA 

following polyA(pA)-selection was confirmed by RNA 6000 Bioanalyzer. About 

200-400ng of pA-cytoplasmic RNA was fragmented using RNaseIII as specified 

in the SOLiD Whole Transcriptome Analysis Kit (Applied Biosystems). Initial 

sequencing of Het Parent (LIS-4411), Homozygous Patient (LIS-4421) and 3 

unrelated controls revealed a strong bias in the protocol’s enzymatic 
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fragmentation, leading to reduced library diversity. In a subsequent experiment 

we employed an alternative more random RNA heat-fragmentation method. pA-

cytoplasmic RNA from homozygous patient  (LIS-4421) and 7 unrelated controls 

was heat fragmented by incubation with 1ul RNase III reaction buffer (SOLiD, 

Applied Biosystems) in a 10ul volume for 10 mins. at 95oC to obtain a more 

random fragmentation. Heat-fragmented RNA was end-repaired with 1ul T4 PNK 

(10U/ul) and 1ul ATP (10mM) in a 12ul volume, incubated for 30 mins. at 37oC. 

The RNA was cleaned-up with the RiboMinus Concentration Module (Invitrogen). 

 

Fragmentation by both methods was confirmed with the RNA 6000 Bioanalyzer 

chip. Barcoded sequencing libraries preserving strand-information were prepared 

with the SOLiD Whole Transcriptome Analysis Kit (Applied Biosystems). 

RNaseIII-fragmented and heat-fragmented libraries were sequenced to an 

average depth of 56 million and 70 million reads per sample, respectively, on the 

SOLiD version 3 Plus sequencing system. 

 

Sequencing reads were spectrally corrected using the SOLiD Accuracy Enhancer 

Tool (Applied Biosystems) and mapped with standard settings using Bioscope 

software v1.3 (Applied Biosystems) to the human genome reference (hg19) and 

splice-junctions obtained from the UCSC Genes annotation track (Kent et al., 

2002). All differential gene and intron expression analyses were performed with 

sequencing data from the heat-fragmented libraries. The number of uniquely 

mapped reads per gene and per-intron were counted using htseq-count (Anders, 
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2007) and the RefSeq gene and intron annotations. Differential gene and intron 

expression analysis were performed with DESeq (Anders and Huber, 2010). 

 

Consensus Sequence Motif Analysis 

Consensus sequencing binding motif was achieved using the Meme and Dreme 

softwares (meme.ncbr.net) and our ChIP-Seq data sets. Promoter sequences 

with Znf335-binding peaks were utilized to generate the binding motif, and 

analyzed over controls using promoter sequences of genes that did not exhibit 

Znf335-binding. 

 

ChIP-Sequencing Analysis 

Embryonic cerebellum tissue was isolated from mouse embryos at E14.5. 

Cross-linking, chromatin isolation, sonication and immunoprecipitation using two 

distinct rabbit polyclonal antibody raised against Znf335/Nif1 were performed as 

previously described (Barrera et al., 2008; Renthal et al., 2009; Tsankova et al., 

2004). Sequencing libraries were generated from 1-10 ng of ChIP DNA by 

adaptor ligation, gel-purification and 18 cycles of PCR, according to standard 

Illumina protocols (http://www.illumina.com/support/documentation.ilmn). 

Gel-purified amplified ChIP DNA and control DNA between 175 and 400 bp were 

sequenced on the Illumina Genome Analyzer II platform according to the 

manufacturer’s specifications by ELIM Biopharmaceuticals 

(http://www.elimbio.com/) to generate 36-bp reads.  
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ChIP-seq Data Analysis: Sequence reads were aligned to the mouse reference 

genome (mm9) using Bowtie (Langmead et al., 2009). Only reads which mapped 

uniquely to the genome were retained. Table 1 CHIP shows a summary of the 

alignment and mapping statistics. The peak calling program MACS (Zhang et al., 

2008) was used to identify peaks with the mapped reads. Table 2 MACS shows 

the parameters used when running MACS (mainly default parameters).  Enriched 

intervals were identified by comparison of the mean fragment count in 1-kb 

windows against a sample-specific expected distribution obtained by sequencing 

the control DNA. Enriched intervals, or peaks, were normalized based on the 

total number of reads per ChIP-seq library (reads per million) and mapped to 

their corresponding genomic position using custom Python scripts. 

 All of the raw ChIP-seq data were deposited to NCBI’s Gene Expression 

Omnibus (http://www.ncbi.nlm.nih.gov/geo/) with the deposition number 

GSE36386 for genome-wide maps of Znf335 localization in embryonic 

cerebellum tissue at E14.5. 
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Table 1 CHIP.  Summary of ChIP-seq and mapping results: 
 
Tissue 

 
Total 
Reads 

 
Alignable 
to Mouse 

Unique 
unambiguously 
aligned 

Peaks 
Genome-Wide 
(p-value<0.05) 

E14.5 
cerebellum 
797 IP 

19,990,327 12,686,545 
(63.46%) 

9,269,198  
(46.37%) 

329 

E14.5 
cerebellum 
798a IP 

23,444,810 13,833,985 
(59.01%) 

9,938,918  
(42.39%) 

307 
 

Input DNA 20,809,489 20,169,768 
(96.93%) 

15,099,608  
(72.56%) 

N/A 

 
This table shows a summary of the alignment statistics obtained from Bowtie 

(ref). Default parameters were used except when generating alignment files for 

unique, unambiguously aligned reads, in this case the mismatch variable (-m) 

was set to 1. 
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Table 2 MACS. MACS program parameters: 
Name Value Description 
mfold 12 threshold for high quality peaks when 

determining d 
gsize 1.87E9 effective genome size 
tsize 36 tag length 
bw 250 bandwidth (length of sheared fragments) 
p-value 0.05 p-value to determine significant peaks 
 
This table shows the parameters that were used when running MACS. Default 

parameters were used for all other values. 
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Ontological, pathway and network analysis: Ontological analysis used Gene 

Ontology (GO) categories to determine processes or functional categories that 

were represented in both ChIP data sets or commonly expressed in the short and 

long-term microarray data sets, as described previously (Ashburner et al., 2000) 

using the GeneGo functional annotation module of Metacore 

(http://www.genego.com/genego_lp.php). This analysis determined the number 

of genes in a category present in the i) ChIP-seq, ii) microarray or iii) RNA-seq 

data and the number of chromatin-binding or expression changes that would be 

part of that category by random chance given the number of commonly 

expressed genes. Statistical significance of each process or category was 

established by p-value (p-value<0.01). Only the processes or categories which 

passed this threshold were grouped by common function are represented for 

each genome-wide data set (Fig. 6D).  

 

ChIP-qPCR  

Analysis were done on human lymphoblast cell lines harvested on the 

exponential growth stage. ChIP-qPCR was performed following published 

methods (Kim et al., 2010), 3ug of antibodies were used for each ChIP. 

Antibodies used were: H3K4me3 (Millipore), H3K27me3 (Millipore), WDR5 

(Abcam), MLL (Millipore). 

 

ChIP-qPCR Promoter Primer Sequences 

AIMP1,  
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Forward: TTAGTGCACCAGACGCTGCATTTC,  

Reverse: TATGTCCTTTCGTGGCCAGTTTGG.  

Rbbp5,  

Forward: TTCTACCTCACCTACATGTTCCCG,  

Reverse: CTCCGAAGACTTTCGGCCTTAGAA. 

Caprin1,  

Forward: AACGATTTCGCCTGAAGGACCCTA  

Reverse: ACTTAGCCAGCCAGCAGC.  

Pes1,  

Forward: CCTGGACTTGTACAGGCATCTCAT 

 

Reverse: TTCTTCTTCTCAAGGCCTCCCATC.  

Pdap1,  

Forward: AACACATACCGGAAGCTCCT,  

Reverse: AGCGGCTCTGGAATTCTATACAGG.  

Hspa9,  

Forward: CGCAATTTATCCCGTGTGACCTTG,  

Reverse: AGCATGATGGTTGGAGAAAGCCTG  

Taf9,  

Forward: TCATCGAAAGCCAGGTAACCAGTG,  

Reverse: AGGATGTTCGGAAGCAACATGGTC.  

Suds3,  

Forward: ACACTGCTAGGCAGACGG,  
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Reverse: TCTCCAGCTCTTCATCCTCCT.  

Dand5,  

Forward: GGAACCCAGCTGGTCTGAATTTAC,  

Reverse: AAGCAGGCACAGAAGAGTGGATAG.  

REST/NRSF,  

Forward: TGCTGTGATTACCTGGTCGGTGAA,  

Reverse: TCTTCGAGCTCTTGCCTTTGTCCT. 

 

Gene Expression Validation 

hREST  

F&R: Mm0083268_m1 (Taqman);  

GAPDH-F: 5’CCAAGGTCATCCATGACAAC;  

GAPDH-R: 5’GGCCATCCACAGTCTTCTG;  

ZNF335-F: 5’GTCTGTCACACAGGCTCAAC;  

ZNF335-R: 5’GCACTGGTCTCGTCTGTACCAA;  

ZNF-Exon19F: GCTGAGATGGAGAGTCACAAG 

ZNF-Exon20R; CTGCACTGGCTACACTGG;  

ZNF-Exon21R; TGGATGTGGAACTTGAGGTG 

shRNA constructs 

shRNA-ZNF335: 

CAGCAGCTTCCTCAACAAAGTTCAAGAGACTTTCTTGAGGAAGCTGCTC 

UT-CONTROL: 

CTGCTGCATCGTCTACTAAGTTCAAGAGACTTAGTAGACGATGCAGCAG 
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Znf335 CKO mouse generation 

Design: In mouse, the ZNF335 gene is called Zfp335 for Zinc finger Protein 335. 

A Loxp (L83) site and a FNFL (Frt-Neo-Frt-Loxp) cassette were engineered to 

flank promoter and exon1/2 (2kb) of the Zfp335 allele to generate “L83/FNFL” 

Zfp335 allele on a Bacterial Artificial Chromosome (BAC). A gene targeting 

vector was constructed by retrieving the 2kb short homology arm (5’ to L83), the 

floxed sequence containing promoter and exon1/2, the FNFL cassette, and the 

5kb long homology arm (end of FNFL to 3’) into a plasmid vector carrying a DTA 

(Diphtheria Toxin Alpha chain) negative selection marker. The FNFL cassette 

conferred G418 resistance during gene targeting in PTL1 (129B6 hybrid) ES cells 

and the DTA cassette provided an autonomous negative selection to reduce the 

random integration event. Several targeted ES cells were identified. These 

targeted ES cells were injected into C57BL/6 blastocysts to generate chimeric 

mice. Male chimeras should be bred to homozygous ACTB(Flpe/Flpe) females 

(in C57BL/6 background, Jackson labs) to transmit the floxed ZFP335 allele 

(L83/FL146 allele with neo cassette removed by Fple recombinase) Mice 

carrying floxed ZFP335 allele were crossed to Emx1-Cre mice (in C57BL/6 mice, 

Jackson labs) to generate ZFP335 conditional knockout study. The mice are 

maintained on a mixed C57/Bl6 and 129B6 background.  

For histological analysis, brains were perfused with PBS and then followed by 

4% PFA before paraffin embedding and sectioning. 
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Summary 

 This dissertation research has aimed to elucidate an essential gene and its 

mechanisms of action in regulating brain development.  The research paradigm 

used in this project provides a useful avenue for shedding light on and 

understanding key regulatory steps of mammalian development. In this chapter, I 

will consider the implications of these findings and describe future directions. 

 We use human genetics to identify genes that are essential for brain 

development. Although a very useful technique for searching for causative genes, 

it is not possible to find all mutations such as non-coding mutations, or genes of 

complex traits due to gene-gene and gene-environment interactions, genetic 

heterogeneity, low penetrance, and limited statistical power. Since this 

technology is also biased towards finding recessive alleles, it is also possible that 

we may be missing some of the key master regulators of brain development, 

where a null mutation would unanimously lead to embryonic lethality. New 

technologies such as whole exome and whole genome sequencing are now 

available for a more comprehensive search of disease genes as well as genes of 

complex traits; however, obstacles in data analyses for such large datasets still 

remain (Bilguvar et al., 2010; Choi et al., 2009; Lupski et al., 2010; Ng and 

Kirkness, 2010; Pan et al., 2008).  

 In this study we identify ZNF335/NIF1 as a central regulator of mammalian 

neurogenesis and neuronal differentiation. A splice donor/missense mutation of 

ZNF335 results in an extremely small brain in humans, and genetic ablation 

leads to early embryonic lethality in mice, while Emx1-Cre driven knockout leads 
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to virtual absence of cortical structure. Loss of Znf335 causes premature cell 

cycle exit of progenitors, precociously depleting the progenitor pool. ZNF335 is a 

part of a H3K4 methyltransferase complex and associates with the promoters of 

many key developmental genes to affect H3K4me3 as well as expression levels 

of target genes. A critical downstream target of ZNF335 is REST/NRSF (master 

regulator of neurogenesis) representing a pathway critical for this neurogenetic 

function. Beyond its effects on progenitor cell proliferation, ZNF335 also has 

essential effects on cell fate and cell morphology (and ultimately survival). 

 

Mutation 

 The mutation can affect protein function through two ways: 1) either via the 

production of a mutated protein containing a missense mutation, or 2) via the 

decrease in overall expression levels of the protein (even if mutated). Despite the 

profound phenotype of ZNF335 mutation in humans, the mutation we describe is 

almost certainly hypomorphic. While overexpression of the wildtype protein can 

rescue Znf335 deficiency, overexpression of the human mutation can only 

partially rescue Znf335 deficiency. Also, conditional ablation of Znf335 in mouse 

cortex results in loss of essentially the entire cortex. Thus, null mutations in 

ZNF335 in humans are presumably embryonically lethal as in mice, illustrating 

the utility of unusual, partial loss-of-function mutations in humans to elucidate 

essential early embryonic functions of such genes.  

 We still cannot be sure how the mutation directly affects protein function 

since the mutation is near the C-terminus of the protein but also at the last zinc 
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finger. The mutation might easily affect the binding of ZNF335 specific DNA 

targets but also the mutation might affect the protein’s interactions with other 

binding partners that may be needed for regulating DNA expression. In vitro DNA 

binding experiments such as electrophoretic mobility shift assays or protein 

binding microarrays between the WT and MUT proteins can help to better verify 

the sites of DNA binding obtained through the ChIP-seq experiments as well as 

to study the effects of the mutation on gene target binding (Geertz and Maerkl, 

2010). In vitro binding assays and in vivo Co-IPs can study the effects of the 

mutation on protein-protein interactions. 

 

Complex Interaction 

 This study provides direct insight into the function of TrxG complex proteins 

in embryonic neurogenesis. The interaction of Znf335 with proteins of the H3K4 

methyltransferase complex suggests roles for Znf335 in the regulation, targeting, 

or stability of the complex. Epigenetic regulation causes programming of gene 

expression, and specific histone methylation can further orchestrate gene 

regulation in a cell type and tissue dependent manner. Mutations in neural 

specific chromatin regulatory complexes, nBAF, have been shown to affect 

proliferation and are linked with microcephaly (Hoyer et al., 2012), and Polycomb 

gene repressing complexes have been studied in the development of the 

nervous system; however, very little is know about the role of activating 

complexes, especially the TrxG complex, on brain development, let alone 

mammalian brain development. This interaction provides a potential role for the 
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broad effects of the ZNF335 mutation on human patients, the large number of 

genes and developmental processes altered by Znf335 knockdown, as well as 

the embryonic lethality in Znf335-null mice, especially since knockouts of other 

histone methyltransferases are also lethal embryonically (Glaser et al., 2009).  

 These studies do not rule out the possibility that ZNF335 may interact with 

proteins other than members of the TrxG complex. ZNF335 may only interact 

with the TrxG complex at a specific time point or in a specific population of cells, 

and ZNF335 may thus regulate gene expression in a dynamic fashion. For 

development to occur, genes must be both turned on as well as turned off. 

Genes that are important for progenitor cells must be turned off for proper 

neuronal differentiation and genes important for neuronal cells must not be 

turned on until time of differentiation.  For this transition, ZNF335 may play an 

important role in bringing different complexes to a specific subpopulation of 

genes. ZNF335 could either interact with another activating complex with 

different activating dynamics, ZNF335 could switch to interact with an inhibitory 

complex, or ZNF335 itself can also be regulated and decreased over time.  

 Further analyses of the changing interaction patterns of ZNF335 with other 

proteins can be accomplished through Co-IP experiments utilizing different 

populations of cells. Co-IP experiments performed on separated populations of 

cells (such as progenitors vs. neurons) might help to elucidate cell type specific 

complex proteins. At the same time, co-IP studies using human control as well as 

the patient cell lines can elucidate any effects of the mutation on these 

interactions.   
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Gene Regulation 

 Loss of Znf335 alters expression levels of many key genes--including DLX 

homeobox genes (early brain development), Neurogenin, Nfib, Olig1, Math1, 

REST/NRSF, Co-REST 2 (neurogenesis)--among many other genes important 

for dendritic branching, cell adhesion, and signaling. Changes in these genes 

could explain phenotypes seen in the patients and correlate with abnormal 

neurogenesis evident in mouse models and account for the virtual absence of 

cortical neurons in the Znf335 CKO. Genes whose expression changes upon 

Znf335 deficiency could be primary targets of Znf335, or secondary targets of 

other regulatory genes downstream of Znf335 such as REST/NRSF revealing 

Znf335 as a critical regulator of gene expression essential for proper neuronal 

development.  

 In order to better study the effects of mutated ZNF335 on gene regulation, 

ChIP-seq experiments looking at ZNF335 binding either in stable cell lines 

(expressing the WT-ZNF335 vs the MUT-ZNF335), or in patient cell lines (control 

vs. patient cell lines) can help to distinguish any binding differences. At the same 

time ChIP-seq for H3K4me3 marks in the patient cell lines vs. the control cell 

lines would prove to be a useful way of assaying global changes in H3K4me3 

marks and gene regulation upon ZNF335 mutation. These global sequencing 

data sets will prove powerful when cross-referenced with changes in transcript 

expression using the RNA-seq data sets to identify genes not only directly 

targeted but also regulated by ZNF335. 
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Neuronal Function 

 Znf335 also regulates differentiation and gene transcription in postmitotic 

neurons. Znf335 deficiency blocks normal expression of ‘canonical’ neuronal 

marker genes such as NeuN and Mef2C, which could be either a secondary 

effect of premature and improper neurogenesis or may hint at a role of Znf335 in 

regulating cell identity, survival, and activity of mature neurons. ZNF335 

regulates a variety of non-REST/NRSF targets that are important for the final 

stages of neuronal differentiation, such as genes regulating dendritic branching, 

and ion channels, which may suggest roles of ZNF335 in other neuron specific 

transcriptional complexes.  

 The regulation of so many neuronal genes helps to confirm that ZNF335 

must play a role in differentiated neurons. ZNF335 expression does return at low 

levels by postnatal day 20-30 in the adult cerebral cortex where mature neurons 

reside. This re-expression in differentiated neurons hints at the fact that ZNF335 

must play a different role than just activating genes in progenitor cells, and thus it 

must do so through the interactions with different complexes. The effects of 

ZNF335 knockdown on neuronal morphology and dendritic branching hint at the 

fact that ZNF335 is essential for neuronal activity. Electrophysiological studies on 

the control and knockdown neurons may help to identify the essential roles of 

ZNF335 in differentiated neurons. Pathological findings also suggest 

neurodegeneration in the patients, thus ZNF335 might play an important role in 

regulating neuronal survival. 
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Regulation of ZNF335 

 If ZNF335 is so important for proper progenitor cell development, then it 

must be regulated in some way. First point of regulation is that ZNF335 must be 

kept on and expressed at adequate amounts in order to ensure progenitor cell 

proliferation and survival. RNA-seq analysis showed that the heterozygous 

parents actually produced a higher amount of the transcript seeming as if an 

autoregulatory mechanism was in play to stimulate the amount of ZNF335 

production should it fall below threshold. To understand autoregulation, we must 

first study the dosage effects of ZNF335 on brain development, as well as to 

carefully track the effects that decreasing levels of ZNF335 has on ZNF335 

transcript levels using the heterozygous parent cell lines and the heterozygous 

mouse model system. Autoregulation of ZNF335 may occur through a completely 

independent mechanism distinct from the TrxG complex. Conversely, there must 

also be control systems set in place such that overstimulation and thus 

overexpression of ZNF335 does not occur.  

 On the other end of the development spectrum, just like the genes that 

ZNF335 controls, ZNF335 itself must also be turned off in order to prevent 

constitutive progenitor cell proliferation and the disease state. In fact, we know 

that ZNF335 expression decreases as the progenitor population decreases 

throughout the course of embryonic brain development. However, the decrease 

in ZNF335 expression might be due to transcriptional regulation, alternative 

splicing, or protein degradation. ZNF335 itself might control genes that later play 
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a role in inhibiting its own expression.  

 

Conditional Knockout 

  The generation of the conditional knockout mouse is a useful model system. 

Not only does the mouse bypass many laborious in vitro experiments, but it also 

helps to overcome the embryonic lethality of the global knockout. The conditional 

knockout recapitulates the patient phenotype and helps to reconfirm the essential 

roles of ZNF335 in brain development. The conditional knockout mouse provides 

the ability to not only study the dosage effects of ZNF335 in the heterozygous 

animals, but it also allows for careful analysis of the functions of ZNF335 in 

different cell systems through the use of different cre-driver lines. The conditional 

knockout mouse model provides a useful tool for further studies in both 

biochemistry as well as animal behavior. 

 

Conclusions 

 Identifying and understanding the function of specific disease genes can 

help us to gain a better understanding of brain development and ultimately 

contribute to medical advancements. Genetic causes of microcephaly continue to 

grow in diversity, and include proteins involved in vesicle trafficking, mitotic 

spindle organization, and DNA repair (Thornton and Woods, 2009). With each 

gene, we have gained a better understanding of the specific steps that govern 

normal brain development, and teased out the independent needs of distinct 

subpopulations in the brain. Premature neuronal fate specification, with 
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consequent loss of progenitor cells, could be a frequent cellular mechanism 

resulting in microcephaly (Lehtinen and Walsh, 2011). ZNF335 deficiency causes 

additional feature of neuronal degeneration, making it strikingly different, and 

more severe, than other microcephaly syndromes, which are typically compatible 

with postnatal survival and in many cases some intellectual function. Thus our 

data reveal ZNF335 as a unique type of microcephaly gene, and provides 

evidence of a new upstream regulator of the balance between progenitor cell 

division and differentiation. Studies of the roles of ZNF335 not only highlighted a 

new type of gene that regulates brain development, but studies in its function 

also helped to shed light on large cohorts of genes that act in unison as essential 

players in normal brain development. A deepening understanding of these 

complex steps can help to guide future therapeutic interventions as we bridge the 

fundamental gap between the lab bench and the bedside. 
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Supplemental Figure S1 (Continued), related to Figures 3-4, Znf335 RNA-

seq data and Znf335 amino acid conservation.  

(A) RNA-seq schematic of the data along with the raw reads picked up by RNA-

seq showing the presence of the intron both before and after exon 20 containing 

the mutation (red). With an unbiased genome-wide search across all 354,244 

Refseq-annotated introns for differentially transcribed introns in our patients 

compared to 7 control cell lines, the retained long intron of ZN335 is ranked as 

the 4th most significant differentially transcribed intron with an adjusted p-value of 

1.57*E-31. Many of the other top entries are included in the following chart. Many 

of the top entries are not really included introns, but rather true differentially 

expressed genes in patient, but in which there is an intron annotation that 

overlaps an alternative isoform’s exon, thus making it a false positive. 

 (B) Analysis of the amino acid conservation of the arginine R 1111 in Znf335 

across a variety of different species. Top to bottom: human, chimp, macaque, 

cow, horse, dog, mouse, rat, opossum, chicken, zebrafish. ZNF335 is highly 

divergent in zebrafish and not detectable outside of vertebrates. 
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Supplementary Figure S2
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Supplemental Figure S2 (Continued), related to Figure 5, Znf335 is 

expressed in a variety of tissues and is essential for mouse development.  

(A, B) Northern blot analysis of Znf335 expression in a variety of adult (A) and 

embryonic (B) organ systems shows that Znf335 is ubiquitously expressed and 

might play more roles than just brain development.  

(C) Genotype segregation, as confirmed by PCR, of litters from Znf335Gentrap/+ 

and Znf335Gentrap/+ crosses show a complete absence of homozygous genetrap 

mice in both strains as early as E7.5 showing that Znf335 is essential for mouse 

development and possibly implantation. n represents number of individual pups 

analyzed and found to contain that specific genotype. 

(D) LacZ staining of developing hippocampus and developing cerebellum from a 

P10 Znf335Gentrap/+ shows that Znf335 is expressed in the developing 

hippocampus and developing cerebellum.  
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Supplemental Figure S3 (Continued), related to Figures 6-7, Knockdown 

efficiency of shRNAs targeted against Znf335 and characterization of 

knockdown-resistant rescue constructs.  

(A) ZNF335 interacts with Ki67, a marker of proliferation. The mutations R1111H 

leads to a decrease of ZNF335 interaction with Ki67. The antibody is MIB1, 

which is a mouse monoclonal. It identifies two forms ~350kDa and 395 kDa in 

Western blotting.  Ki-67 is a highly phosphorylated protein and as a result in 

some cells is detected in Western blotting as a broad band. 

(B) Three different knockdown constructs were designed and shRNA that we 

utilized knockdown up to 95% of protein after 24 hours. 

(C) IHC analysis of cells 48 hours electroporation with shRNA-ZNF335 shows the 

lack of ZNF335 protein expression in comparison to control.  

(D) The expression constructs containing the silent mutation (sm) prevent the 

rescue constructs from being targeted by the shRNA-ZNF335. Co-transfections 

of shRNA-ZNF335 along with the rescue constructs (sm) allows for knockdown of 

endogenous ZNF335 and expression of the (sm) rescue construct at the same 

time. 
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INCREASE DECREASE

Brain Development Brain Development
snail homolog-early TF (neural tube) distal-less homeobox 2 (DLX2)-forebrain development

DLX4-Craniofacial development

DLX6

Hormone Signaling Neuron Development
growth hormone receptor neurogenin-TF for neurons

NREF2-thyroid hormone Nuclear factor I/B-Transcription factor

olig transcription factor 1

Math1-granule neurons

REST corepressor 2-neuronal differentiation

Microtubule/Actin Dendrites
Dynein light chain Neuritin-Neurite arborization/activity

MAP7 Tubulin tyrosin ligase-neurite outgrowth

synaptopodin 2-bnds actin in dendrites Disabled homolog 1-Regulate Reelin  (neurogenesis, dendrites)

Cell Adhesion
NCAM1-Cell adhesion

Cadherin-Call adhesion

Neurexin III-receptor adhesion

Gene Regulation
WDR61-transcription regulation through SKI/PAF (Histone)

MeCP1-binds methylated DNA

Vesicle Vesicle
Synaptojanin-vesicle traffic synaptic nuclear envelope

syntaxin binding protein 3A-SNARE Complexin 2-regulate SNARE/VAMP

Intersectin 2-Clatherin Endocytosis dynamin-clatherin coated cell membrane

DDEF2-golgi plasma in brain

Activity Activity
annexin A11-calcium binding protein Hippocalcin-Neuronal calcium sensor

chloride intracellular channel 5 Sodium channel, Type IV, beta-voltage gated

Cell Cycle
CDC7

Signaling Signaling
SKI like-inhibit TGFB IGFBP1

BMP5-TGFB family Secreted frizzled related protein 1-Wnt signaling

sorting nexin 6-TGFB family

OTHER OTHER
Histone H1C Amyloid beta (APP)

Notable Gene Chages

Supplementary Figure S4
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Supplemental Figure S4 (Continued), related to Figure 8, Microarray 

Analysis of changes in gene expression upon long-term knockdown of 

Znf335.  

Cells electroporated with shRNA-ZNF335 vs. UT-Control at E14.5 were allowed 

to mature until embryos were P0 and the dissociated. GFP-positive (targeted 

cells) were selected for using FACS analysis and RNA from the two cell 

populations were utilized for microarray analysis. Knockdown of Znf335 for four 

days led to changes in expression of genes important for neuronal differentiation 

and activity. S1-3 (shRNA knockdown cells), U1-U3 (UT control cells) as 

summarized in the tables next to the heat map of changes in gene expression. 

Red=increase in expression, Blue=decrease in expression. Genes presented 

show a greater than 1.5 fold change with a P value of equal or less than 0.05. 

Microarray data is available online. Please see supplemental materials & 

methods.  
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Supplementary Figure S5
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   4) Znf335 Ab#2 (E14.5 mouse cortex)

   5) H3K4me3 (E14.5 mouse cortex)
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Supplemental Figure S5 (Continued), related to Figures 9-11, ChIP-Seq 

binding of Znf335 and Changes in histone modifications in the absence of 

Znf335.  

(A) Znf335 bound to promoter regions of a variety of different genes, and this 

binding overlapped with the H3K4me3 binding sites but not the H3K4me1 binding 

sites. ChIP-Sequencing peaks show that the Znf335 complex binds to promoter 

regions of several genes important in brain development such as Aimp1, 

Caprin1, Pdap1, Hspa9, Supv3l1, Suds3, Rbbp5, Pes1, Lrr1, Eif4enif1, Taf9, 

Dand5. Top two tracks (blue) show H3K4me1 peaks at these promoters (Shen, 

2012), Middle two tracks (orange) per gene is from ChIP-Seq data with two 

different antisera raised against Znf335. Bottom two tracks (blue) show 

H3K4me3 peaks at these promoters (Shen, 2012). The Znf335-bound peaks 

overlap with H3K4me3 peaks of these promoters, but not with the H3K4me1 

peaks. See also Table S3. 

(B) Close up analysis of the overlap of the peaks for Znf335 binding (orange) and 

H3K4me3 (blue) peaks at the promoter region of representative genes. ChIP-

qPCR Analysis of changes in H3K4me3 levels (black bars) vs. the control 

H3K27me3 levels (white bars) show that there is a decrease in the levels of 

H3k4me3 levels in the heterozygous parents and homozygous patients while 

there is no change in H3K27me3. (AIMP1: K4: Control: 4.63 +/- 0.58, Het Parent: 

1.02 +/- 0.3, Hom Patient: 1.94 +/- 0.93; K27: Control: 0.12 +/- 0.05, Het Parent: 

0.08 +/- 0.04, Hom Patient: 0.05 +/- 0.03. Rbbp5: K4: Control: 5.5 +/- 2.15, Het 

Parent: 1.08 +/- 0.81, Hom Patient: 1.57 +/- 0.69; K27: Control: 0.37 +/- 0.2, Het  
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Supplemental Figure S5 (Continued), related to Figures 9-11, ChIP-Seq 

binding of Znf335 and Changes in histone modifications in the absence of 

Znf335.  

Parent: 0.12 +/- 0.05, Hom Patient: 0.12 +/- 0.03.Caprin1: K4: Control: 6.56 +/- 

0.01, Het Parent: 0.95 +/- 0.75, Hom Patient: 2.11 +/- 1.8; K27: Control: 0.62 +/- 

0.23, Het Parent: 0.95 +/- 0.43, Hom Patient: 0.95 +/- 0.54. Pes1: K4: Control: 

6.63 +/- 2.54, Het Parent: 0.7 +/- 0.23, Hom Patient: 0.14 +/- 0.11; K27: Control: 

0.41 +/- 0.16, Het Parent: 0.89 +/- 0.45, Hom Patient: 0.19 +/- 0.09. Pdap1: K4: 

Control: 4.28 +/- 1.11, Het Parent: 2.1 +/- 1.05, Hom Patient: 0.96 +/- 0.08; K27: 

Control: 0.11 +/- 0.02, Het Parent: 0.03 +/- 0.02, Hom Patient: 0.05 +/- 0.02. 

Hspa9: K4: Control: 6.2 +/- 0.78, Het Parent: 2.36 +/- 1.8, Hom Patient: 3.2 +/- 

0.5; K27: Control: 0.14 +/- 0.04, Het Parent: 0.12 +/- 0.02, Hom Patient: 0.1 +/- 

0.05. Taf9: K4: Control: 3.38 +/- 0.73, Het Parent: 0.45 +/- 0.26, Hom Patient: 

0.63 +/- 0.32; K27: Control: 0.23 +/- 0.01, Het Parent: 0.32 +/- 0.02, Hom Patient: 

0.27 +/- 0.03. Suds3: K4: Control: 3.79 +/- 1.6, Het Parent: 1.31 +/- 0.49, Hom 

Patient: 1.84 +/- 0.41; K27: Control: 0.91 +/- 0.46, Het Parent: 0.81 +/- 0.45, Hom 

Patient: 0.50 +/- 0.09. Dand5: K4: Control: 1.56 +/- 0.2, Het Parent: 0.45 +/- 0.2, 

Hom Patient: 0.85 +/- 0.18; K27: Control: 0.83 +/- 0.19, Het Parent: 1.04 +/- 0.46, 

Hom Patient: 1.1 +/- 0.45. All numbers were normalized to input and compared to 

GAPDH control. IP DNA was pooled from two separate IPs from pooled 

chromatin form 3 cell lines. qPCR analysis was done using triplicates. 
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Supplemental Figure S6 (Continued), related to Figures 12-13, Incomplete 

neuronal differentiation and granule cell migration upon Znf335 

knockdown.  

(A) Similar to cortical cultures (Fig 7A, 7B), knockdown of Znf335 in vivo through 

in utero electroporations also causes a lack of NeuN expression hinting at a state 

of incomplete neuronal differentiation.  

(B) To assess the affects of knockdown of ZNF335 on migration, we selectively 

removed Znf335 from granule cell progenitors using shRNA-ZNF335 and UT-

Control, and then prepared cerebellar slice cultures. At 48hrs post 

electroporation, developing knockdown granule cells exhibited delayed axon 

extension, sending out shortened filopodia-like extensions, although these axons 

extended by 72hrs. Abnormal axonal extension (upper panel, arrowhead) and 

delayed migration of granule neurons (lower panels, arrows) past the Purkinje 

cell layer (Calbindin-stained) upon knockdown of Znf335 at 48hours and 72hours 

post electroporation, respectively. 

(C) By 72hrs post knockdown, granule cells that would normally have migrated 

past the Purkinje cell layer into the IGL were retarded in their migration. Not only 

did fewer cells migrate, they also migrated a shorter distance past the Purkinje 

cells. Since proper migration and interaction with Purkinje cells strongly influence 

the survival of granule cells (Morrison and Mason, 1998; Smeyne et al., 1995), 

the roles of Znf335 in regulating proliferation, migration, and differentiation of 



	  

	  

136	  

 

 

Supplemental Figure S6 (Continued), related to Figures 12-13, Incomplete 

neuronal differentiation and granule cell migration upon Znf335 

knockdown.  

granule cells provide a likely cause for the cell sparse granule cell layer (GCL) 

seen in the patients (Fig 2D). Granule cells, in turn, also regulate Purkinje cell 

orientation (Adams et al., 2002; Morrison and Mason, 1998; Nagata et al., 2006), 

thus the decreased number of granule cells present in the patients, and also 

seen in our explant experiments, could be one of the reasons for the poorly 

oriented Purkinje cells present in the patients (Fig 2D). Distance of granule cell 

migration past the purkinje cell layer. (UT-Control: 50um: 33.5+/-5.6; 100um: 

26.2+/-8.3; 150um: 22.8+/-4.1; 200um: 23.1+/-8.1; shRNA-ZNF335: 50um: 

84.2+/-7.3; 100um: 18.5+/-4.3; 150um: 2.4+/-1.8; 200um: 0.8+/-0.4); Mean+/-SD, 

T-test, Pvalues: 50um=0.0007; 100um:0.2268; 150um:0.0014; 200um:0.0089; 

n=3 separate experiments using 3 pups each. 

(D) Granule Cell Survival Assay (UT-Control Alive: 5day:85.0+/-5.5; 

16day:64.0+/-9.2; shRNA-ZNF335: 5day:91.0+/-5.2; 16day: 47.1+/-6.1). Mean+/-

SD, T-test, Pvalues: 5dayP=0.0302; 16dayP=0.0008; n=9 separate experiments 

using 3 pups each.  
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Supplemental Figure S7 (Continued), related to Figures 12-13, Znf335 

Conditional Knockout 

(A) The creation of the Znf335-floxed allele containing two loxp sites flanking the 

Promoter, Exon1, and Exon2 of Znf335 essentially bypassing the initiation of 

Znf335 transcript expression. No other putative promoters were found through 

the genome browser or while looking at H3K4me3 peaks or PolII peaks as a 

marker of gene promoter. See supplemental Materials & Methods. 

(B) Analysis and verification of the Znfloxp/loxp:Emx1Cre+, Znfloxp/+:Emx1Cre+, and 

Znf+/+: Emx1Cre+ mouse genotype. L83 products were from tail genomic DNA and 

L85 products were from DNA of developing forebrain tissue, where Cre is 

expressed. 
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Supplemental Table S1, related to Figure 6, ZNF335 Complex. Mass spectrometry of 
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Supplemental Table S1 (Continued), related to Figures 9-11, ZNF335 

Complex. Mass spectrometry of purified complex of ZNF335-Interacting proteins 

from Human Cell Lines. Compiled data from our studies and from (Garapaty et 

al., 2009) (Left panel). Mass spectrometry of purified Znf335-Interacting proteins 

from nuclear lysates of developing brains from mouse E14.5 embryos. Compiled 

data from our studies (right panel). Additional sheets in excel include mass 

spectrometry peptide results from HeLaS3 Control, HeLaS3 ZNF335, E14.5m 

Control, and E14.5m ZNF335 samples. 
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Total Genes
399

H3K4 at Promoter Both ZNF & H3K4 at Promoter
332 245

(83.21%)   (61.40%)

Genes Containing RNA-Sequencing Reads
279

(69.92%)

Decrease Comparable Increased
230 13 36

(82.44%) (4.66%) (12.90%)

Decrease Comparable Increased
205 22 52

(73.47%) (7.89%) (18.64%)

Homozygous Heterozygous

258 196
(92.47%) (70.25%)

Average Change compared to control
0.6287

Average Change compared to control
0.6273

RNA-Seq Patient Data

H3K4 at Promoter Both ZNF & H3K4 at Promoter

Supplementary Table S2

Supplemental Table S2, related to Figure 6, ChIP-seq data analysis with H3K4me3 bidning and gene 
expression levels. A total of 399 genes were picked up by both ChIP-seq using two distinct Znf335 anti-
sera. 83.21% of the genes had a peak at the H3K4 promoter while 61.40% had a peak that overlapped for 
Znf335 and H3K4. Of all the genes detected, 69.92% of genes also had data for transcript expression levels 
in the heterozygous parents and homozygous patients as compared to the controls. The group of genes that 
were bound to by Znf335 collectively showed a 0.6287 fold in expression in the homozygous patients and 
0.6273 in the heterozygous parents as compared to the controls. As a whole, this pool of genes which are 
putative Znf335 targets are significantly decreased in expression as compared to the global aveage of 
changes in all gene expression which normalized out to only 1.04, indicating roughly no change.
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Supplemental Table S2 (Continued), related to Figures 9-11, ChIP-seq data 

analysis with H3K4me3 binding and gene expression levels.  

A total of 399 genes were picked up by both ChIP-seq using two distinct Znf335 

antisera. 83.21% of the genes had a peak at the H3K4 promoter while 61.40% 

had a peak that overlapped for Znf335 and H3K4. Of all the genes detected, 

69.92% of genes also had data for transcript expression levels in the 

heterozygous parents and homozygous patients as compared to the controls. 

The group of genes that were bound to by Znf335 collectively showed a 0.6287 

fold in expression in the homozygous patients and 0.6273 in the heterozygous 

parents as compared to the controls. As a whole, this pool of genes which are 

putative Znf335 targets are significantly decreased in expression as compared to 

the global aveage of changes in all gene expression which normalized out to only 

1.04, indicating roughly no change. 
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Binding At Promoter RNA-Seq Normalized Data Ratio of Expression to Control
Name 797 798 H3K4 Hom Het Control Hom/Control Het/Control

1 1700012A03Rik N/A N/A NO H3K4ME3 PEAK
2 1700057K13Rik N/A N/A NO H3K4ME3 PEAK
3 2310015B20Rik N/A N/A NO H3K4ME3 PEAK
4 7420461P10Rik N/A N/A NO H3K4ME3 PEAK
5 B3gnt6 N/A N/A NO H3K4ME3 PEAK 0 0 0
6 Cib4 N/A N/A NO H3K4ME3 PEAK 0 0 0
7 Gm10220 N/A N/A NO H3K4ME3 PEAK
8 Gm10754 N/A N/A NO H3K4ME3 PEAK
9 Gm14047 N/A N/A NO H3K4ME3 PEAK

10 Gm7550 N/A N/A NO H3K4ME3 PEAK
11 Hmx3 N/A N/A NO H3K4ME3 PEAK 1.6337 0.9013 3.4539 0.47301996 0.26095719
12 Il34 N/A N/A NO H3K4ME3 PEAK 0 0 0.1014 0 0
13 Insig2 N/A N/A NO H3K4ME3 PEAK 6.1755 5.9212 14.289 0.43217442 0.41437999
14 Itln1 N/A N/A NO H3K4ME3 PEAK 0.135 0 0.1526 0.88458816 0
15 Mir138-1 N/A N/A NO H3K4ME3 PEAK 0 0 0
16 Olfr161 N/A N/A NO H3K4ME3 PEAK
17 Pkhd1 N/A N/A NO H3K4ME3 PEAK 0.2456 0.2504 0.1996 1.23075304 1.25476884
18 Prg4 N/A N/A NO H3K4ME3 PEAK 0.0632 0 0
19 Rassf8 N/A N/A NO H3K4ME3 PEAK 0.0544 0 0
20 Siglec15 N/A N/A NO H3K4ME3 PEAK 0.318 0.1286 3.557 0.08939159 0.03616485
21 Tubb2a-ps2 N/A N/A NO H3K4ME3 PEAK 15.271 50.941 43.104 0.35429195 1.18182303
22 Vmn1r2 N/A N/A NO H3K4ME3 PEAK
23 1700044K03Rik N/A N/A NO H3K4ME3 PEAK
24 4922501L14Rik N/A N/A NO H3K4ME3 PEAK
25 4930525F21Rik N/A N/A NO H3K4ME3 PEAK
26 AA986860 N/A N/A NO H3K4ME3 PEAK
27 Acacb N/A N/A NO H3K4ME3 PEAK 0.069 0.1465 0.2742 0.25162147 0.53443729
28 Adcy10 N/A N/A NO H3K4ME3 PEAK 0.1765 0.1429 0.2859 0.617613 0.49973238
29 Amn N/A N/A NO H3K4ME3 PEAK 0.2049 1.3678 0.1158 1.76917498 11.8098692
30 Ankar N/A N/A NO H3K4ME3 PEAK 0.289 0.3507 0.36 0.80270223 0.9742416
31 Cyp2b19 N/A N/A NO H3K4ME3 PEAK
32 Gjd4 N/A N/A NO H3K4ME3 PEAK 0 0 0
33 Gm10466 N/A N/A NO H3K4ME3 PEAK
34 Gm13034 N/A N/A NO H3K4ME3 PEAK
35 Gm14496 N/A N/A NO H3K4ME3 PEAK
36 Gm1821 N/A N/A NO H3K4ME3 PEAK
37 Gm5458 N/A N/A NO H3K4ME3 PEAK
38 Gm6194 N/A N/A NO H3K4ME3 PEAK
39 Gm765 N/A N/A NO H3K4ME3 PEAK
40 Gtdc1 N/A N/A NO H3K4ME3 PEAK 7.875 6.324 17.604 0.44733924 0.35923654
41 Izumo1 N/A N/A NO H3K4ME3 PEAK 0 0 0
42 Mir101c N/A N/A NO H3K4ME3 PEAK
43 Mir128-2 N/A N/A NO H3K4ME3 PEAK 0 0 0
44 Mir17 N/A N/A NO H3K4ME3 PEAK 0 0 0
45 Mir3059 N/A N/A NO H3K4ME3 PEAK
46 Mir3108 N/A N/A NO H3K4ME3 PEAK
47 Nav2 N/A N/A NO H3K4ME3 PEAK 0.6524 1.0733 1.4084 0.46321137 0.76209377
48 Nt5c1b N/A N/A NO H3K4ME3 PEAK 0 0 0.1234 0 0
49 Pgk2 N/A N/A NO H3K4ME3 PEAK 0 0 0
50 Pglyrp4 N/A N/A NO H3K4ME3 PEAK 0.9572 1.7955 1.7346 0.55185576 1.03512625
51 Phc1 N/A N/A NO H3K4ME3 PEAK 2.4654 5.2365 4.4908 0.54899228 1.16604577
52 Ptprd N/A N/A NO H3K4ME3 PEAK 0.1104 0.1532 0.1427 0.7740136 1.07362114
53 Rgs18 N/A N/A NO H3K4ME3 PEAK 0 0 0
54 Rinl N/A N/A NO H3K4ME3 PEAK 11.99 10.186 12.493 0.95969743 0.8153526
55 Rprl1 N/A N/A NO H3K4ME3 PEAK
56 Speer7-ps1 N/A N/A NO H3K4ME3 PEAK
57 Tex16 N/A N/A NO H3K4ME3 PEAK
58 Tgif2lx2 N/A N/A NO H3K4ME3 PEAK
59 Tmem30c N/A N/A NO H3K4ME3 PEAK 0 0 0
60 Ttc36 N/A N/A NO H3K4ME3 PEAK 0 0 0
61 Ttr N/A N/A NO H3K4ME3 PEAK 0 0 0
62 Tyms-ps N/A N/A NO H3K4ME3 PEAK
63 Tyrp1 N/A N/A NO H3K4ME3 PEAK 0 0 0.049 0 0
64 Ugt1a5 N/A N/A NO H3K4ME3 PEAK 0 0 0
65 Vmn1r238 N/A N/A NO H3K4ME3 PEAK
66 Whsc1l1 N/A N/A NO H3K4ME3 PEAK 14.512 13.156 20.755 0.69919201 0.63388276
67 Zfp541 N/A N/A NO H3K4ME3 PEAK 0.0344 0 0.2725 0.12637004 0

68 1600021P15Rik N N H3K4 Peak
69 1700003E16Rik N N H3K4 Peak
70 1700012B15Rik N N H3K4 Peak
71 1700034H14Rik N N H3K4 Peak
72 2210408I21Rik N N H3K4 Peak
73 2810405K02Rik N N H3K4 Peak
74 2810429I04Rik N N H3K4 Peak
75 6330578E17Rik N N H3K4 Peak
76 Anxa3 N N H3K4 Peak 3.1548 1.9145 19.939 0.15822454 0.09601876
77 Arhgap15 N N H3K4 Peak 52.324 54.261 70.018 0.7473014 0.77496008
78 Arhgap5 N N H3K4 Peak 0.6311 0.5241 1.2204 0.5171456 0.42945273
79 Armc4 N N H3K4 Peak 0.4466 0.0542 0.1972 2.26458716 0.2748537
80 Arv1 N N H3K4 Peak 21.195 19.829 25.348 0.83615541 0.78227696
81 Asrgl1 N N H3K4 Peak 0.9232 2.0809 5.9984 0.15390428 0.3469036
82 Atf7ip N N H3K4 Peak 5.6125 5.0674 9.169 0.61212061 0.55266926
83 Atp6v1h N N H3K4 Peak 39.415 39.296 42.269 0.93248023 0.9296531
84 Atp7a N N H3K4 Peak 1.0712 1.4826 2.3794 0.45019102 0.62308827
85 Atxn7 N N H3K4 Peak 1.3688 1.6078 1.9717 0.69423495 0.81541403
86 Avpr1a N N H3K4 Peak 0 0 0
87 Bbx N N H3K4 Peak 4.4279 4.0905 5.492 0.80624727 0.74480335
88 Bcl2 N N H3K4 Peak 0.8108 1.163 1.9721 0.41114638 0.58974099
89 Cbr3 N N H3K4 Peak 0 0.3482 1.1351 0 0.30675165
90 Cdh2 N N H3K4 Peak 0.5844 0.4877 0.9033 0.64702509 0.53989133
91 Cdk5rap2 N N H3K4 Peak 17.18 17.682 30.866 0.55660778 0.5728652
92 Cdk8 N N H3K4 Peak 23.264 26.375 21.169 1.09898058 1.24594687
93 Chl1 N N H3K4 Peak 1.9603 0.3037 7.9564 0.24637931 0.03817416
94 Chordc1 N N H3K4 Peak 34.41 26.145 29.858 1.15248095 0.87566608
95 Chrdl1 N N H3K4 Peak 0.0778 0.0944 0.044 1.76917811 2.14725488
96 Clic5 N N H3K4 Peak 0.0267 0.0648 0.0603 0.44229437 1.07362625
97 Col12a1 N N H3K4 Peak 0.3168 0.3177 0.5597 0.56614676 0.56763339
98 Crtc3 N N H3K4 Peak 3.4549 4.9795 7.5737 0.45617635 0.65747427
99 D0H4S114 N N H3K4 Peak

100 Dapk1 N N H3K4 Peak 12.25 11.966 21.954 0.55797481 0.54504293
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Supplementary Table S3 (Continued) 
Supplementary Table S3-2

101 Dfna5 N N H3K4 Peak 96.475 96.994 177.77 0.54268782 0.54561067
102 Dlg2 N N H3K4 Peak 0.119 0.2406 0.3513 0.33863929 0.68501265
103 Dmrt2 N N H3K4 Peak 0 0.5937 0.0602 0 9.86418295
104 Dnahc11 N N H3K4 Peak
105 Dock2 N N H3K4 Peak 72.732 61.633 115.94 0.62729939 0.53157904
106 Dsel N N H3K4 Peak 0 0 0
107 Eif5a N N H3K4 Peak 876.32 895.71 775.78 1.12959602 1.15458893
108 Epha6 N N H3K4 Peak 0.0434 0.1053 0.3065 0.14153657 0.34356821
109 Fam196b N N H3K4 Peak 0 0 0
110 Fam19a4 N N H3K4 Peak 0.0715 0.0867 0
111 Fstl5 N N H3K4 Peak 0 0.0802 0.0875 0 0.91617962
112 Fzd8 N N H3K4 Peak 0 0 0
113 Galnt11 N N H3K4 Peak 3.8677 7.0413 6.9868 0.55356642 1.00779752
114 Gda N N H3K4 Peak 1.0282 0.3209 0.2325 4.42291643 1.38037615
115 Gk5 N N H3K4 Peak 1.4607 1.8438 2.1931 0.6660587 0.84073302
116 Hsf1 N N H3K4 Peak 39.952 49.12 48.1 0.83061052 1.02120799
117 Igsf10 N N H3K4 Peak 0 0.0226 0
118 Ipo11 N N H3K4 Peak 19.827 15.492 18.619 1.06489712 0.83203983
119 Kcnv1 N N H3K4 Peak 0 0.1983 0.3848 0 0.51535187
120 Kctd16 N N H3K4 Peak 0 0.0374 0.1044 0 0.35787648
121 Lhfpl4 N N H3K4 Peak 0 0 0
122 Luzp2 N N H3K4 Peak 0 0.1841 0.1344 0 1.37002894
123 Ly6c2 N N H3K4 Peak
124 Ndufb3 N N H3K4 Peak 59.368 61.286 69.252 0.85727653 0.88496233
125 Negr1 N N H3K4 Peak 0 0.0342 0.0623 0 0.54801124
126 Nf2 N N H3K4 Peak 5.6585 6.677 5.946 0.95165625 1.12294398
127 Nnat N N H3K4 Peak 0 0 0.7574 0 0
128 Nppc N N H3K4 Peak 0 0 0
129 Ntm N N H3K4 Peak 0 0 0.0529 0 0
130 Parl N N H3K4 Peak 102.58 104.07 114.81 0.89344134 0.90642801
131 Pik3cg N N H3K4 Peak 3.1434 2.3395 2.6714 1.17669585 0.87576038
132 Plxdc2 N N H3K4 Peak 0.4305 0.2239 3.693 0.11655993 0.06062958
133 Poc5 N N H3K4 Peak 8.7101 6.54 19.296 0.45138784 0.33892476
134 Polr3b N N H3K4 Peak 5.5249 4.6667 5.6634 0.97554641 0.82401499
135 Ppp2r2b N N H3K4 Peak 0 0 0
136 Pthlh N N H3K4 Peak 0 0 0
137 Rab28 N N H3K4 Peak 6.9583 7.697 18.747 0.37116674 0.41056963
138 Scn2b N N H3K4 Peak 0.0324 0 0.0286 1.13229519 0
139 Sepsecs N N H3K4 Peak 2.7127 1.9892 2.3958 1.13227314 0.83027381
140 Slc24a2 N N H3K4 Peak 0 0 0
141 Slc2a8 N N H3K4 Peak 1.2061 1.2809 1.92 0.62819792 0.66714063
142 Slc4a10 N N H3K4 Peak 0.0838 0.1695 0.444 0.18871565 0.38174108
143 Smarca2 N N H3K4 Peak 66.177 128.35 75.277 0.87911113 1.70502701
144 Snord88c N N H3K4 Peak 0 0 0
145 Spock3 N N H3K4 Peak 0 0 0.0591 0 0
146 Tmem169 N N H3K4 Peak 0.0922 0.1119 0.0521 1.76917644 2.14726199
147 Tmem38b N N H3K4 Peak 7.069 6.2482 6.7752 1.04335973 0.92221756
148 Trpc4 N N H3K4 Peak 0 0 0
149 Ttll7 N N H3K4 Peak 0 0 0
150 Usp39 N N H3K4 Peak 25.418 19.895 20.231 1.25640113 0.98338672
151 Vps13c N N H3K4 Peak 7.792 9.3246 11.761 0.6625135 0.79281712
152 Yars N N H3K4 Peak 58.8 62.111 82.786 0.71026709 0.75026303
153 Zfp770 N N H3K4 Peak 1.0248 0.995 1.655 0.61921134 0.60122964
154 Znhit1 N N H3K4 Peak 14.355 27.518 17.679 0.81197819 1.55653664
155 Adk N VERY SMALL H3K4 Peak 51.409 47.796 57.311 0.89701279 0.83397254
156 Ankfy1 N VERY SMALL H3K4 Peak 4.3491 3.7947 5.8587 0.74232002 0.64769217
157 Asxl3 N VERY SMALL H3K4 Peak 0 0 0
158 Basp1 N VERY SMALL H3K4 Peak 7.7226 15.298 10.813 0.71421939 1.41485475
159 Col8a1 N VERY SMALL H3K4 Peak 0 0 0
160 Entpd6 N VERY SMALL H3K4 Peak 10.742 11.846 14.689 0.73127561 0.80643185
161 Lrig2 N VERY SMALL H3K4 Peak 1.5097 1.9288 2.1558 0.70030151 0.89468875
162 Mpdz N VERY SMALL H3K4 Peak 0.0858 0.1041 0.0727 1.1794508 1.43149807
163 Pou4f1 N VERY SMALL H3K4 Peak 0 0 0
164 Prkab2 N VERY SMALL H3K4 Peak 0.5883 0.7497 0.7014 0.83873713 1.06887619
165 Rtel1 N VERY SMALL H3K4 Peak 6.7094 8.1015 7.4679 0.89843116 1.08483732
166 Rwdd3 N VERY SMALL H3K4 Peak 4.2623 8.3084 14.601 0.29192099 0.56903526
167 Vwc2l N VERY SMALL H3K4 Peak 0 0 0
168 Inhba N Y H3K4 Peak 0 0 0
169 Manf N Y H3K4 Peak 151.36 137.31 206.25 0.73386053 0.66576808
170 Mdm2 N Y H3K4 Peak 5.112 6.073 7.2504 0.70507022 0.83761656
171 Polr3k N Y H3K4 Peak 22.456 23.965 25.939 0.86572136 0.92391648
172 Ptprz1 N Y H3K4 Peak 0.0782 0.0475 0.0433 1.80608001 1.09602234
173 Pxmp3 N Y H3K4 Peak
174 Pxmp3 N Y H3K4 Peak
175 Spink10 N Y H3K4 Peak
176 Zfp330 N Y H3K4 Peak
177 Bcl6 VERY SMALL N H3K4 Peak 0.0436 0 0.0483 0.90303757 0
178 Galnt9 VERY SMALL N H3K4 Peak 0 0.0727 0
179 Ifngr2 VERY SMALL N H3K4 Peak 28.154 33.56 53.423 0.52698916 0.62818658
180 Pik3c2a VERY SMALL N H3K4 Peak 4.8116 4.6485 7.2234 0.66610599 0.64352936
181 Rnf216 VERY SMALL N H3K4 Peak 12.789 15.991 14.027 0.91174562 1.14004919
182 Samd14 VERY SMALL N H3K4 Peak 0.1716 0 0.682 0.25162128 0
183 Sorcs1 VERY SMALL N H3K4 Peak 0.0877 0.0266 0.0972 0.90303876 0.27400565
184 Sulf1 VERY SMALL N H3K4 Peak 0.0837 0.1016 0.0986 0.84922076 1.030703
185 Trim7 VERY SMALL N H3K4 Peak 0.2651 0.0643 0.4696 0.56439963 0.13700253
186 Wdpcp VERY SMALL N H3K4 Peak
187 Adamts3 Y N H3K4 Peak 0.0274 0.0333 0.0968 0.28307348 0.34356732
188 Bod1 Y N H3K4 Peak 9.485 7.2075 7.8547 1.2075519 0.91759849
189 Ccdc68 Y N H3K4 Peak 0.3474 0.2811 0.4702 0.73885093 0.59782962
190 D10Wsu52e Y N H3K4 Peak
191 Galr1 Y N H3K4 Peak 0 0 0
192 Itpk1 Y N H3K4 Peak 6.3389 11.196 7.91 0.80137218 1.41539465
193 Lmo1 Y N H3K4 Peak 0 0 0
194 Mill2 Y N H3K4 Peak
195 Naa20 Y N H3K4 Peak 29.419 27.991 21.673 1.35739234 1.29148576
196 Nkain2 Y N H3K4 Peak 0 0 0
197 Ptn Y N H3K4 Peak 12.35 15.7 13.388 0.92246215 1.17262834
198 Spock1 Y N H3K4 Peak 0 0 0.0292 0 0
199 St3gal5 Y N H3K4 Peak 2.2099 2.8447 1.409 1.56844055 2.01899273
200 Zadh2 Y N H3K4 Peak 0.5225 0.5989 0.6429 0.81273584 0.93161873
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Supplementary Table S3 (Continued) Supplementary Table S3-3
201 1500016L03Rik VERY SMALL VERY SMALL H3K4 Peak
202 Akr1b3 VERY SMALL VERY SMALL H3K4 Peak
203 Bach1 VERY SMALL VERY SMALL H3K4 Peak 0.8571 0.6712 2.4693 0.34711764 0.2718049
204 Csda VERY SMALL VERY SMALL H3K4 Peak 89.615 93.564 82.593 1.08501578 1.13283224
205 Ddhd1 VERY SMALL VERY SMALL H3K4 Peak 3.4214 4.1077 4.2825 0.79893052 0.95919859
206 E130203B14Rik VERY SMALL VERY SMALL H3K4 Peak
207 Garnl3 VERY SMALL VERY SMALL H3K4 Peak 0.3414 0.4661 2.2236 0.15353196 0.20963459
208 Gata6 VERY SMALL VERY SMALL H3K4 Peak 0 0 0.5242 0 0
209 Gtf2ird1 VERY SMALL VERY SMALL H3K4 Peak 3.0272 5.2004 1.3925 2.17397611 3.73458337
210 Jarid2 VERY SMALL VERY SMALL H3K4 Peak 3.2978 2.489 3.3285 0.99075868 0.74776553
211 Khdrbs2 VERY SMALL VERY SMALL H3K4 Peak 5.8257 7.4073 11.638 0.50059463 0.63650526
212 Lrrc4c VERY SMALL VERY SMALL H3K4 Peak 0 0 0
213 Mtx2 VERY SMALL VERY SMALL H3K4 Peak 71.039 62.993 132.12 0.53770654 0.47680581
214 Ntrk2 VERY SMALL VERY SMALL H3K4 Peak 3.3535 0.5349 6.3634 0.52699963 0.08406439
215 P4ha2 VERY SMALL VERY SMALL H3K4 Peak 6.6386 15.512 11.503 0.57713908 1.34858206
216 Ptprr VERY SMALL VERY SMALL H3K4 Peak 0.0914 0 0.1033 0.88459216 0
217 Rpp21 VERY SMALL VERY SMALL H3K4 Peak 59.588 77.885 55.496 1.07373504 1.40343989
218 Slco3a1 VERY SMALL VERY SMALL H3K4 Peak 0 0 0.0276 0 0
219 Tbx3 VERY SMALL VERY SMALL H3K4 Peak 0 0 0
220 Tcf4 VERY SMALL VERY SMALL H3K4 Peak 7.4472 3.9501 11.752 0.63370973 0.33612638
221 Tle3 VERY SMALL VERY SMALL H3K4 Peak 14.123 14.2 21.088 0.6697269 0.67335935
222 Tmem117 VERY SMALL VERY SMALL H3K4 Peak 0.9463 2.2971 1.8339 0.51602085 1.25259289
223 Trpc7 VERY SMALL VERY SMALL H3K4 Peak 0 0 0.048 0 0
224 Tspan12 VERY SMALL VERY SMALL H3K4 Peak 2.2396 3.8509 3.1318 0.71513325 1.22961064
225 Ttc7b VERY SMALL VERY SMALL H3K4 Peak 0 0.1691 0.2872 0 0.58897293
226 Wbscr17 VERY SMALL VERY SMALL H3K4 Peak 0 0 0
227 Xylt1 VERY SMALL VERY SMALL H3K4 Peak 0.4784 0.6636 0.5676 0.84283696 1.16908853
228 4930473A06Rik VERY SMALL Y H3K4 Peak
229 Ctsc VERY SMALL Y H3K4 Peak 47.399 40.614 67.028 0.70714776 0.60591842
230 Dbc1 VERY SMALL Y H3K4 Peak 0.0499 0.1212 0
231 Fam19a5 VERY SMALL Y H3K4 Peak 0 0 0
232 Mxd1 VERY SMALL Y H3K4 Peak 0.1713 0.5892 0.6133 0.27934432 0.96061283
233 Rpn1 VERY SMALL Y H3K4 Peak 95.19 108.67 120.78 0.78811734 0.89971105
234 Syt10 VERY SMALL Y H3K4 Peak 0 0 0
235 2510009E07Rik Y VERY SMALL H3K4 Peak
236 Axin2 Y VERY SMALL H3K4 Peak 0 0.0457 0.2087 0 0.21920458
237 Bambi Y VERY SMALL H3K4 Peak 0.0925 0 0
238 Dbndd2 Y VERY SMALL H3K4 Peak 0 0.1263 0
239 Dpy19l1 Y VERY SMALL H3K4 Peak 3.2788 1.4326 4.3435 0.75486354 0.32982544
240 Foxo1 Y VERY SMALL H3K4 Peak 0.2502 0.8098 0.9235 0.27091199 0.87681655
241 Kdm3b Y VERY SMALL H3K4 Peak 9.0374 10.258 8.8706 1.01880139 1.15643551
242 Kin Y VERY SMALL H3K4 Peak 18.998 21.737 36.217 0.52455228 0.60019162
243 Malt1 Y VERY SMALL H3K4 Peak 10.816 11.934 18.572 0.58237267 0.64256985
244 Npr3 Y VERY SMALL H3K4 Peak 0 0.0732 0
245 Rab14 Y VERY SMALL H3K4 Peak 11.772 11.936 10.978 1.07235314 1.08729197
246 Rps17 Y VERY SMALL H3K4 Peak 11854 13495 16019 0.73998077 0.84245156
247 Sesn3 Y VERY SMALL H3K4 Peak 6.1814 7.5024 3.8116 1.62174479 1.96831498
248 Sorcs3 Y VERY SMALL H3K4 Peak 0.0554 0.1345 0.1227 0.45152041 1.09602379
249 St6galnac2 Y VERY SMALL H3K4 Peak 0.1516 0.092 0
250 Tgfa Y VERY SMALL H3K4 Peak 0 0 0
251 Ttc14 Y VERY SMALL H3K4 Peak 2.5325 1.9413 2.2366 1.13229574 0.86795912
252 Wdr75 Y VERY SMALL H3K4 Peak 56.074 49.74 60.691 0.92392143 0.81955209
253 1110032F04Rik Y Y H3K4 Peak
254 2510012J08Rik Y Y H3K4 Peak
255 3000002C10Rik Y Y H3K4 Peak
256 4921530L18Rik Y Y H3K4 Peak
257 Actr10 Y Y H3K4 Peak 14.769 26.728 29.664 0.49785936 0.90103155
258 Aimp1 Y Y H3K4 Peak 32.46 31.949 41.569 0.7808781 0.76856848
259 Akr1c14 Y Y H3K4 Peak
260 Alkbh5 Y Y H3K4 Peak 7.8525 13.253 11.924 0.65857257 1.11146895
261 Anapc1 Y Y H3K4 Peak 70.757 67.285 61.698 1.14682672 1.09055089
262 Ankle2 Y Y H3K4 Peak 17.068 19.76 26.009 0.656219 0.75972163
263 Ankrd28 Y Y H3K4 Peak 9.8727 8.7063 17.01 0.58041753 0.51184449
264 Arhgap11a Y Y H3K4 Peak 11.617 12.824 21.523 0.53975356 0.59583879
265 Arnt2 Y Y H3K4 Peak 0.0486 0.059 0.0215 2.26459635 2.74854525
266 Atp5l Y Y H3K4 Peak 36.581 38.553 42.131 0.86827483 0.91507896
267 Atpbd4 Y Y H3K4 Peak 2.6809 4.3113 5.6232 0.47675599 0.76669921
268 BC018507 Y Y H3K4 Peak
269 Bckdha Y Y H3K4 Peak 21.22 26.956 25.391 0.83575482 1.06163674
270 Caprin1 Y Y H3K4 Peak 83.628 100 91.491 0.91405403 1.09303408
271 Ccdc103 Y Y H3K4 Peak 0.635 1.079 1.2921 0.49143817 0.83503982
272 Ccdc43 Y Y H3K4 Peak 7.0878 8.693 6.0312 1.17518765 1.44134242
273 Ccdc58 Y Y H3K4 Peak 51.097 56.624 40.839 1.25119801 1.38653287
274 Cct4 Y Y H3K4 Peak 413.07 345.56 318.16 1.29828107 1.08611309
275 Cdc73 Y Y H3K4 Peak 6.6072 7.2694 12.813 0.51566222 0.56734566
276 Cdkn2a Y Y H3K4 Peak 4.7271 12.275 6.5866 0.71768482 1.86365976
277 Cog4 Y Y H3K4 Peak 62.46 62.979 71.248 0.87665444 0.88393607
278 Cox5a Y Y H3K4 Peak 1073 1128.3 1896.9 0.56564783 0.59477369
279 Cox7a2l Y Y H3K4 Peak 21.745 30.386 38.409 0.56614708 0.7911094
280 D11Wsu99e Y Y H3K4 Peak
281 Dand5 Y Y H3K4 Peak 0.01 0.02 0.1 0.1 0.2
282 Ddx39b Y Y H3K4 Peak
283 Dgkz Y Y H3K4 Peak 6.6756 14.925 20.491 0.32578033 0.7283712
284 Dhx15 Y Y H3K4 Peak 131.42 107.24 142.09 0.92489971 0.75469773
285 Dync1li2 Y Y H3K4 Peak 8.3509 11.118 10.527 0.79330274 1.05615245
286 Eif2s3x Y Y H3K4 Peak
287 Eif4enif1 Y Y H3K4 Peak 16.076 15.589 18.369 0.87520007 0.84864933
288 Eif4h Y Y H3K4 Peak 113.46 121.44 135.21 0.83917372 0.89815691
289 Fam58b Y Y H3K4 Peak 0 0 0
290 Farsb Y Y H3K4 Peak 106.51 112.97 114.07 0.93372374 0.99037416
291 Fgfbp3 Y Y H3K4 Peak 0 0 0.2067 0 0
292 G530011O06Rik Y Y H3K4 Peak
293 Golga5 Y Y H3K4 Peak 16.001 15.001 33.495 0.47771011 0.44784296
294 Gorab Y Y H3K4 Peak 1.5415 1.7961 3.4155 0.45132031 0.5258572
295 Gtf3c4 Y Y H3K4 Peak 6.9748 5.9608 7.9781 0.87424215 0.74714437
296 Habp4 Y Y H3K4 Peak 6.587 10.588 14.021 0.46980607 0.75513348
297 Hadha Y Y H3K4 Peak 105.78 164.91 182.63 0.57920933 0.90299513
298 Hs2st1 Y Y H3K4 Peak 5.2636 5.7582 8.672 0.60696404 0.66399715
299 Hspa9 Y Y H3K4 Peak 375.49 390.63 349.75 1.07358071 1.11686281
300 Il1rapl1 Y Y H3K4 Peak 0 0 0.0659 0 0  
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Supplementary Table S3 (Continued) 
Supplementary Table S3-4

301 Ipo13 Y Y H3K4 Peak 8.5559 10.096 12.069 0.70891706 0.83651504
302 Irgq Y Y H3K4 Peak 0 0 0.0547 0 0
303 Large Y Y H3K4 Peak 1.0252 9.5395 6.6014 0.15529911 1.44507142
304 Lgr4 Y Y H3K4 Peak 0.4256 0.4059 1.1545 0.3686531 0.35155565
305 Lnpep Y Y H3K4 Peak 6.8159 6.54 9.9905 0.68223481 0.65462054
306 Lrr1 Y Y H3K4 Peak
307 Lyrm4 Y Y H3K4 Peak 7.4261 4.0859 8.832 0.84081349 0.46262524
308 Mapkapk5 Y Y H3K4 Peak 23.412 19.512 23.202 1.00903798 0.84094112
309 Mcph1 Y Y H3K4 Peak 4.3968 4.7207 7.2168 0.60925233 0.65413107
310 Mier3 Y Y H3K4 Peak 1.0121 2.2334 2.6815 0.37743378 0.83289018
311 Mir181a-1 Y Y H3K4 Peak 0 0 0
312 Mrpl11 Y Y H3K4 Peak 44.467 46.506 44.946 0.9893427 1.0347041
313 Mrps5 Y Y H3K4 Peak 59.349 67.836 110.26 0.53827387 0.61524787
314 Mrps7 Y Y H3K4 Peak 29.197 24.491 25.841 1.12988862 0.94776437
315 Mrto4 Y Y H3K4 Peak 74.177 64.051 74.371 0.99739951 0.86124068
316 Mthfs Y Y H3K4 Peak 9.3619 9.1775 9.9728 0.93874621 0.92025185
317 Nbea Y Y H3K4 Peak 0.6599 0.4527 0.4378 1.50707683 1.03386192
318 Ncln Y Y H3K4 Peak 22.092 23.753 20.442 1.08071775 1.16198341
319 Ndufa10 Y Y H3K4 Peak 34.499 38.641 32.668 1.05602968 1.18283724
320 Ndufa4 Y Y H3K4 Peak 194.79 188.19 250.47 0.77767974 0.75134147
321 Neurl1b Y Y H3K4 Peak 0 0 0
322 Nhlrc3 Y Y H3K4 Peak 0.2697 1.7456 2.2356 0.12062551 0.78081793
323 Nr2f2 Y Y H3K4 Peak 0 0.0758 0.2481 0 0.30539342
324 Nsun2 Y Y H3K4 Peak 76.965 79.519 87.692 0.87767641 0.90679537
325 Nup205 Y Y H3K4 Peak 32.157 32.076 58.779 0.54708857 0.54571221
326 Nup85 Y Y H3K4 Peak 56.323 50.934 63.397 0.88841726 0.80341941
327 Nup98 Y Y H3K4 Peak 27.725 29.347 24.243 1.14365974 1.21054586
328 Papd4 Y Y H3K4 Peak 16.028 16.046 24.466 0.65511336 0.65585724
329 Pcbd2 Y Y H3K4 Peak 2.1465 1.8725 5.5094 0.38960725 0.33987244
330 Pcbp1 Y Y H3K4 Peak 0 0 0
331 Pdap1 Y Y H3K4 Peak 50.739 49.883 44.994 1.12768204 1.10865942
332 Pdia6 Y Y H3K4 Peak 202.2 224.04 304.1 0.6649063 0.73671749
333 Pes1 Y Y H3K4 Peak 101.1 107.74 75.843 1.3330626 1.42055868
334 Pi4kb Y Y H3K4 Peak 12.684 13.498 16.285 0.77887355 0.82886495
335 Pin4 Y Y H3K4 Peak 6.2612 5.6693 10.015 0.62517998 0.56607523
336 Plekhf2 Y Y H3K4 Peak 0.9146 1.6324 1.966 0.46520242 0.83031786
337 Pno1 Y Y H3K4 Peak 20.887 19.282 19.647 1.06312066 0.9814369
338 Polr2e Y Y H3K4 Peak 43.802 48.974 58.859 0.74417976 0.83205883
339 Polr3f Y Y H3K4 Peak 8.6684 9.5317 11.516 0.75271576 0.82768125
340 Ppp1r15b Y Y H3K4 Peak 2.147 1.2479 1.9485 1.10185679 0.64040913
341 Psmd1 Y Y H3K4 Peak 109.24 93.045 103.12 1.05936091 0.90234011
342 Psmd12 Y Y H3K4 Peak 71.19 69.274 76.967 0.92495176 0.90005262
343 Psmg2 Y Y H3K4 Peak 155.7 198.41 298.3 0.52197117 0.66512906
344 Rabggtb Y Y H3K4 Peak 71.439 72.989 73.407 0.97319204 0.99429485
345 Rabl2 Y Y H3K4 Peak 8.0124 10.706 10.647 0.75256227 1.00556036
346 Rbbp5 Y Y H3K4 Peak 10.451 11.85 14.691 0.71137628 0.80663803
347 REST/NRSF Y Y H3K4 Peak 0.6526 0.9504 1.364 0.47843533 0.69681376
348 Rexo1 Y Y H3K4 Peak 5.3624 6.0012 5.861 0.91492066 1.02391401
349 Rpl21 Y Y H3K4 Peak 0.2818 0.3421 0.3121 0.90303893 1.09602222
350 Rpl35a Y Y H3K4 Peak 1034.7 1043 1297.2 0.7976318 0.80401483
351 Rpl7 Y Y H3K4 Peak 3881.7 3891.2 4654.5 0.8339657 0.8360175
352 Rps10 Y Y H3K4 Peak 4180.6 3280.6 4240.5 0.98588135 0.77362758
353 Rps12 Y Y H3K4 Peak 2177.7 1945.6 2869.8 0.75883169 0.67797183
354 Rps23 Y Y H3K4 Peak 2034.9 1986.7 2679.6 0.75940529 0.74141759
355 Rps24 Y Y H3K4 Peak 486.53 461.62 538.77 0.90303786 0.85680081
356 Rps27a Y Y H3K4 Peak 1583.2 1536.7 1667.8 0.94924543 0.9213529
357 Rrbp1 Y Y H3K4 Peak 17.541 17.563 11.841 1.48141611 1.48324029
358 Rufy2 Y Y H3K4 Peak 1.169 0.9029 3.5039 0.33362349 0.2576759
359 Sart3 Y Y H3K4 Peak 38.911 32.031 47.99 0.8108089 0.66743974
360 Sec61b Y Y H3K4 Peak 271.06 287.99 225.04 1.20447203 1.27971099
361 SEP15 Y Y H3K4 Peak
362 Shisa2 Y Y H3K4 Peak 0 0 0
363 Skp1a Y Y H3K4 Peak
364 Slc16a12 Y Y H3K4 Peak 0 0 0
365 Slc22a23 Y Y H3K4 Peak 0.1039 0.3782 0.3164 0.32837788 1.19565863
366 Slc35b1 Y Y H3K4 Peak 42.097 54.032 65.33 0.64437931 0.82706107
367 Slc39a10 Y Y H3K4 Peak 0.891 0.6488 1.2422 0.71723608 0.52230684
368 Smc2 Y Y H3K4 Peak 15.93 14.821 20.801 0.76585178 0.71253095
369 Smox Y Y H3K4 Peak 0.073 0.0886 0.4515 0.16175654 0.19632444
370 Spcs1 Y Y H3K4 Peak 75.783 89.835 107.46 0.70520835 0.83596992
371 Ssb Y Y H3K4 Peak 219.03 189.12 240.25 0.91165489 0.78718923
372 Stam2 Y Y H3K4 Peak 6.6592 6.0108 11.54 0.57705699 0.5208676
373 Stk39 Y Y H3K4 Peak 0.2436 0.7096 0.5163 0.47179002 1.37426938
374 Suclg1 Y Y H3K4 Peak 58.9 77.467 104.04 0.56614762 0.74460817
375 Suds3 Y Y H3K4 Peak 5.3981 7.2477 12.783 0.42230002 0.56700489
376 Supv3l1 Y Y H3K4 Peak 22.373 21.833 19.388 1.15395526 1.12609797
377 Taf9 Y Y H3K4 Peak 114.56 119.18 118.65 0.96556985 1.00450078
378 Tcf7l1 Y Y H3K4 Peak 0.0578 0.0701 0.3199 0.18060791 0.21920452
379 Tm9sf1 Y Y H3K4 Peak 2.4218 3.1777 2.9718 0.81493583 1.06928844
380 Tmem48 Y Y H3K4 Peak 29.489 34.708 45.839 0.6433162 0.75716199
381 Tomm20 Y Y H3K4 Peak 21.583 19.446 34.893 0.61853735 0.55730409
382 Trap1 Y Y H3K4 Peak 206.89 200.26 180.1 1.14876015 1.11193657
383 Tsn Y Y H3K4 Peak 15.31 13.752 13.584 1.12707142 1.01235304
384 Ttc8 Y Y H3K4 Peak 0.6517 1.5819 2.0847 0.3125897 0.75878295
385 Txnrd2 Y Y H3K4 Peak 2.1117 8.2803 13.198 0.15999803 0.62738349
386 Tysnd1 Y Y H3K4 Peak 4.8248 4.1246 3.9026 1.2363034 1.05687732
387 Ufm1 Y Y H3K4 Peak 10.242 9.3042 17.956 0.57037441 0.51816096
388 Upf2 Y Y H3K4 Peak 12.216 11.157 20.404 0.59870714 0.54680631
389 Usp1 Y Y H3K4 Peak 7.5727 7.225 9.5517 0.79280904 0.75640932
390 Vars Y Y H3K4 Peak 49.69 89.177 66.26 0.74991548 1.34585967
391 Vdac2 Y Y H3K4 Peak 192.01 208.44 213.25 0.90036717 0.97742587
392 Vps26b Y Y H3K4 Peak 3.2172 4.3796 3.4895 0.92196326 1.25508452
393 Vti1b Y Y H3K4 Peak 31.639 52.655 53.218 0.59451872 0.98942453
394 Vwf Y Y H3K4 Peak 0.0361 0.2411 0.2711 0.13321113 0.88923354
395 Wdr92 Y Y H3K4 Peak 5.6156 5.1765 13.246 0.42393952 0.39078762
396 Zfp365 Y Y H3K4 Peak 0.6065 0.3221 0.4617 1.31351083 0.69746702
397 Zfp777 Y Y H3K4 Peak 0.3635 1.5755 1.955 0.18591918 0.8058977
398 Zkscan2 Y Y H3K4 Peak 0.291 0.2173 0.1384 2.10283703 1.57060065
399 Zranb2 Y Y H3K4 Peak 76.13 75.963 121.08 0.62877177 0.62739331
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Supplemental Table S3 (Continued), related to Figures 9-11, Znf335 ChIP-

Seq analyzed with H3K4me3 peaks and changes in gene expression. Genes 

that are bound to by Znf335 from two separate antisera are listed in the table with 

annotations of whether or not Znf335 was bound to the promoter region of the 

gene or instead throughout the body. Presence or absence of a H3K4me3 peak 

for these same genes in the mouse developing E14.5 brain were also noted. 

RNA-seq normalized expression data are listed from controls, heterozygous 

parents, or homozygous patiends. The data is from two separate RNA-seq 

experiments with a total of 7 controls. The ratios of gene expression in 

comparison to the controls are in the last two columns showing downregulated 

more than 10% (green), no change within 10% of control (yellow), or upregulated 

greater than 10% genes (red). The majority of the genes that are bound to by 

Znf335 show decreased expression in the homozygous patients that have 

decreased Znf335 expression. There are many genes showing the expected, 

intermediate result in het parents compared to homozygous patients, and others 

seemingly showing as severe decreases in hets as in homozygotes. 
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# Maps pValue enrichment
1 Development_WNT signaling pathway. Part 1. Degradation of beta-catenin in the absence WNT signaling9.336E-05 3 19 4.03
2 PGE2 pathways in cancer 1.289E-04 4 55 3.89
3 Oxidative stress_Role of ASK1 under oxidative stress 5.485E-04 3 34 3.26
4 Cell adhesion_Tight junctions 6.502E-04 3 36 3.19
5 Apoptosis and survival_HTR1A signaling 1.704E-03 3 50 2.77
6 Cytoskeleton remodeling_TGF, WNT and cytoskeletal remodeling 1.866E-03 4 111 2.73
7 Development_WNT signaling pathway. Part 2 2.016E-03 3 53 2.70
8 Development_Regulation of epithelial-to-mesenchymal transition (EMT) 3.458E-03 3 64 2.46
9 Protein folding_Membrane trafficking and signal transduction of G-alpha (i) heterotrimeric G-protein3.626E-03 2 19 2.44

10 Apoptosis and survival_Beta-2 adrenergic receptor anti-apoptotic action 5.301E-03 2 23 2.28
11 Development_Glucocorticoid receptor signaling 5.765E-03 2 24 2.24
12 Apoptosis and survival_p53-dependent apoptosis 8.353E-03 2 29 2.08
13 Proteolysis_Putative SUMO-1 pathway 8.353E-03 2 29 2.08
14 DNA damage_ATM/ATR regulation of G1/S checkpoint 1.011E-02 2 32 2.00
15 Autophagy_Autophagy 1.011E-02 2 32 2.00
16 Immune response_IL-7 signaling in T lymphocytes 1.408E-02 2 38 1.85
17 Apoptosis and survival_APRIL and BAFF signaling 1.479E-02 2 39 1.83
18 Transcription_P53 signaling pathway 1.479E-02 2 39 1.83
19 Translation_Non-genomic (rapid) action of Androgen Receptor 1.553E-02 2 40 1.81
20 Development_Role of Activin A in cell differentiation and proliferation 1.553E-02 2 40 1.81
21 Apoptosis and survival_Anti-apoptotic TNFs/NF-kB/Bcl-2 pathway 1.627E-02 2 41 1.79
22 Apoptosis and survival_Apoptotic TNF-family pathways 1.704E-02 2 42 1.77
23 Signal transduction_AKT signaling 1.781E-02 2 43 1.75
24 Cell adhesion_Ephrin signaling 1.941E-02 2 45 1.71
25 Neurophysiological process_Receptor-mediated axon growth repulsion 1.941E-02 2 45 1.71
26 Mechanisms of CFTR activation by S-nitrosoglutathione (normal and CF) 2.023E-02 2 46 1.69
27 Signal transduction_PTEN pathway 2.023E-02 2 46 1.69
28 Development_WNT5A signaling 2.023E-02 2 46 1.69
29 ATP/ITP metabolism 2.025E-02 3 122 1.69
30 Some pathways of EMT in cancer cells 2.455E-02 2 51 1.61
31 G-protein signaling_Proinsulin C-peptide signaling 2.546E-02 2 52 1.59
32 Muscle contraction_ACM regulation of smooth muscle contraction 2.922E-02 2 56 1.53
33 Muscle contraction_Regulation of eNOS activity in endothelial cells 3.735E-02 2 64 1.43
34 Cell adhesion_Role of CDK5 in cell adhesion 4.226E-02 1 9 1.37
35 Muscle contraction_GPCRs in the regulation of smooth muscle tone 5.958E-02 2 83 1.22
36 CFTR folding and maturation (norm and CF) 6.497E-02 1 14 1.19
37 GTP-XTP metabolism 6.868E-02 2 90 1.16
38 DNA damage_Role of SUMO in p53 regulation 7.835E-02 1 17 1.11
39 Cell adhesion_Chemokines and adhesion 8.242E-02 2 100 1.08
40 Transcription_Assembly of RNA Polymerase II preinitiation complex on TATA-less promoters8.277E-02 1 18 1.08
41 Cytoskeleton remodeling_Cytoskeleton remodeling 8.526E-02 2 102 1.07
42 Development_Alpha-1 adrenergic receptors signaling via cAMP 8.717E-02 1 19 1.06
43 Cytoskeleton remodeling_Role of Activin A in cytoskeleton remodeling 9.154E-02 1 20 1.04
44 CTP/UTP metabolism 9.397E-02 2 108 1.03
45 Cell cycle_Chromosome condensation in prometaphase 9.590E-02 1 21 1.02
46 Transcription_Role of heterochromatin protein 1 (HP1) family in transcriptional silencing1.002E-01 1 22 1.00
47 Proteolysis_Putative ubiquitin pathway 1.045E-01 1 23 0.98
48 Immune response_IL-15 signaling via JAK-STAT cascade 1.045E-01 1 23 0.98
49 Cell adhesion_Endothelial cell contacts by non-junctional mechanisms 1.088E-01 1 24 0.96
50 Translation_Opioid receptors in regulation of translation 1.088E-01 1 24 0.96

Ratio

Supplementary Table S4

GeneGo ChIP-Seq Pathway Analysis

Supplemental Table S4, related to Figure 6, Znf335 ChIP-Seq Pathways. GeneGo pathway analysis 
of all genes that Znf335 was bound to in developing mouse E14.5 lateral telencephalon.

 
 



	  

	  

149	  

 
 
 
 
 
 

 

 

 

 

 

Supplemental Table S4 (Continued), related to Figure 9-11, Znf335 ChIP-

Seq Pathways. GeneGo pathway analysis of all genes that Znf335 was bound to 

in developing mouse E14.5 lateral telencephalon. 
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# Maps Ratio pValue
1 Cytoskeleton remodeling_TGF, WNT and cytoskeletal remodeling 52 1.863E-13
2 Cytoskeleton remodeling_Cytoskeleton remodeling 43 1.496E-09
3 Development_Role of HDAC and calcium/calmodulin-dependent kinase (CaMK) in control of skeletal myogenesis28 4.155E-09
4 Some pathways of EMT in cancer cells 27 4.337E-09
5 Signal transduction_Activation of PKC via G-Protein coupled receptor 27 7.575E-09
6 Development_WNT signaling pathway. Part 2 27 1.297E-08
7 Cell adhesion_Histamine H1 receptor signaling in the interruption of cell barrier integrity24 2.617E-08
8 Transport_Clathrin-coated vesicle cycle 31 1.107E-07
9 Signal transduction_PKA signaling 25 1.197E-07

10 Cell adhesion_Integrin-mediated cell adhesion and migration 24 1.327E-07
11 Protein folding and maturation_POMC processing 18 1.335E-07
12 Development_IGF-1 receptor signaling 25 1.937E-07
13 Immune response_Gastrin in inflammatory response 30 1.985E-07
14 Immune response_Innate immune response to RNA viral infection 17 2.358E-07
15 Development_Hedgehog signaling 23 2.426E-07
16 Immune response_Function of MEF2 in T lymphocytes 24 3.533E-07
17 Development_PIP3 signaling in cardiac myocytes 23 3.993E-07
18 Immune response_CD40 signaling 28 6.372E-07
19 Development_S1P1 receptor signaling via beta-arrestin 18 9.554E-07
20 Development_Melanocyte development and pigmentation 23 1.022E-06
21 Cell adhesion_Chemokines and adhesion 37 1.087E-06
22 Signal transduction_AKT signaling 21 1.335E-06
23 Neurophysiological process_Corticoliberin signaling via CRHR1 23 1.591E-06
24 Immune response _IFN gamma signaling pathway 24 2.036E-06
25 Transcription_Androgen Receptor nuclear signaling 21 3.390E-06
26 Cell adhesion_ECM remodeling 23 3.675E-06
27 G-protein signaling_Regulation of p38 and JNK signaling mediated by G-proteins19 4.472E-06
28 Signal transduction_PTEN pathway 21 5.249E-06
29 Blood coagulation_GPCRs in platelet aggregation 28 5.264E-06
30 Immune response_IFN alpha/beta signaling pathway 14 5.501E-06
31 Development_Glucocorticoid receptor signaling 14 5.501E-06
32 Development_Mu-type opioid receptor signaling via Beta-arrestin 14 5.501E-06
33 Development_GM-CSF signaling 22 6.628E-06
34 Cardiac Hypertrophy_NF-AT signaling in Cardiac Hypertrophy 26 8.374E-06
35 Development_WNT signaling pathway. Part 1. Degradation of beta-catenin in the absence WNT signaling12 8.413E-06
36 G-protein signaling_RhoA regulation pathway 17 9.173E-06
37 Signal transduction_cAMP signaling 18 1.312E-05
38 G-protein signaling_Proinsulin C-peptide signaling 22 1.430E-05
39 Development_Angiopoietin - Tie2 signaling 17 1.504E-05
40 Cytoskeleton remodeling_Regulation of actin cytoskeleton by Rho GTPases 13 1.925E-05
41 Development_Regulation of epithelial-to-mesenchymal transition (EMT) 25 2.026E-05
42 Cell cycle_Influence of Ras and Rho proteins on G1/S Transition 22 2.058E-05
43 Development_TGF-beta-dependent induction of EMT via RhoA,  PI3K and ILK.20 2.153E-05
44 Development_VEGF signaling and activation 19 2.614E-05
45 Translation_Non-genomic (rapid) action of Androgen Receptor 18 3.147E-05
46 Cytoskeleton remodeling_Role of PKA in cytoskeleton reorganisation 18 3.147E-05
47 Regulation of lipid metabolism_Insulin signaling:generic cascades 20 3.156E-05
48 Development_TGF-beta-dependent induction of EMT via MAPK 20 3.156E-05
49 Apoptosis and survival_Anti-apoptotic TNFs/NF-kB/IAP pathway 14 3.388E-05
50 Development_Gastrin in cell growth and proliferation 24 3.524E-05

Supplementary Table S5
GeneGo Microarray Pathway Analysis

Supplemental Table S5, related to Figure 6, Pathway analysis of Znf335 knocdown microarray 
data. GeneGo pathway analysis of all genes that were altered upon knockdown of Znf335 in the E14.5 
mouse lateral telencephalon.
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Supplemental Table S5 (Continued), related to Figure 9-11, Pathway 

analysis of Znf335 knockdown microarray data. GeneGo pathway analysis of 

all genes that were altered upon knockdown of Znf335 in the E14.5 mouse lateral 

telencephalon. 
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# Maps Ratio min(pValue)
1 Development_Delta- and kappa-type opioid receptors signaling via beta-arrestin5 1.008E-04
2 Apoptosis and survival_Endoplasmic reticulum stress response pathway 7 1.172E-04
3 Proteolysis_Role of Parkin in the Ubiquitin-Proteasomal Pathway 5 1.251E-04
4 Cytoskeleton remodeling_Neurofilaments 5 1.755E-03
5 Development_Angiotensin signaling via beta-Arrestin 4 1.755E-03
6 Translation _Regulation of translation initiation 4 2.355E-03
7 Regulation of lipid metabolism_Stimulation of Arachidonic acid production by ACM receptors5 2.367E-03
8 Cell adhesion_Gap junctions 4 3.500E-03
9 Development_Glucocorticoid receptor signaling 3 3.541E-03

10 Regulation of degradation of deltaF508 CFTR in CF 2 4.472E-03
11 Development_WNT signaling pathway. Part 2 5 5.142E-03
12 Cytoskeleton remodeling_Keratin filaments 4 6.817E-03
13 Cardiac Hypertrophy_Ca(2+)-dependent NF-AT signaling in Cardiac Hypertrophy6 7.010E-03
14 Mechanisms of CFTR activation by S-nitrosoglutathione (normal and CF) 3 1.262E-02
15 Development_Hedgehog signaling 4 1.604E-02
16 Chemotaxis_Leukocyte chemotaxis 5 2.132E-02
17 Apoptosis and survival_Role of IAP-proteins in apoptosis 3 2.738E-02
18 Cell cycle_Role of Nek in cell cycle regulation 3 2.975E-02
19 Immune response_IL-22 signaling pathway 3 3.223E-02
20 Development_S1P1 receptor signaling via beta-arrestin 3 3.223E-02
21 Oxidative stress_Role of ASK1 under oxidative stress 3 3.481E-02
22 Chemotaxis_CXCR4 signaling pathway 4 3.481E-02
23 Immune response_Antigen presentation by MHC class II 1 4.392E-02
24 Cardiac Hypertrophy_NF-AT signaling in Cardiac Hypertrophy 5 4.893E-02
25 CFTR folding and maturation (norm and CF) 1 5.106E-02
26 Apoptosis and survival_Apoptotic TNF-family pathways 3 5.912E-02
27 Cytoskeleton remodeling_TGF, WNT and cytoskeletal remodeling 4 6.410E-02
28 Regulation of degradation of wt-CFTR 1 6.518E-02
29 Transcription_Assembly of RNA Polymerase II preinitiation complex on TATA-less promoters2 6.518E-02
30 Immune response_MIF - the neuroendocrine-macrophage connector 3 7.359E-02
31 Immune response_ICOS pathway in T-helper cell 3 7.359E-02
32 Atherosclerosis_Role of ZNF202 in regulation of expression of genes involved in Atherosclerosis1 7.563E-02
33 Neurophysiological process_Dopamine D2 receptor signaling in CNS 3 7.743E-02
34 Transcription_Role of heterochromatin protein 1 (HP1) family in transcriptional silencing2 7.850E-02
35 Cytoskeleton remodeling_ESR1 action on cytoskeleton remodeling and cell migration2 7.909E-02
36 Immune response_IL-12 signaling pathway 3 8.254E-02
37 Proteolysis_Putative ubiquitin pathway 2 8.254E-02
38 Immune response_MIF-JAB1 signaling 2 8.597E-02
39 Glycolysis and gluconeogenesis p.3 / Human version 2 8.597E-02
40 Glycolysis and gluconeogenesis p.3 2 8.597E-02
41 Development_Signaling of Beta-adrenergic receptors via Beta-arrestins 2 9.280E-02
42 Immune response_NFAT in immune response 3 9.365E-02
43 Transcription_Role of Akt in hypoxia induced HIF1 activation 1 9.620E-02
44 Immune response_T cell receptor signaling pathway 3 9.790E-02
45 Cell adhesion_ECM remodeling 3 9.790E-02
46 Cell cycle_Transition and termination of DNA replication 2 9.959E-02
47 Apoptosis and survival_nAChR in apoptosis inhibition and cell cycle progression2 1.030E-01
48 Development_Osteopontin signaling in osteoclasts 2 1.063E-01
49 Cytoskeleton remodeling_RalA regulation pathway 2 1.063E-01
50 Immune response_Th17 cell differentiation 2 1.097E-01

Supplementary Table S6
GeneGo RNA-Seq Pathway Analysis

Supplemental Table S6, related to Figure 6, Pathway analysis of RNA-Seq data from patients vs. 
controls. GeneGo pathway analysis of all genes that were altered from the RNA-sequencing datasets 
of the homozygous patients, heterozygous parents, vs. controls.
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Supplemental Table S6 (Continued), related to Figures 9-11, Pathway 

analysis of RNA-Seq data from patients vs. controls. GeneGo pathway 

analysis of all genes that were altered from the RNA-sequencing datasets of the 

homozygous patients, heterozygous parents, vs. controls. 
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Supplementary Table S7
GeneGo COMBINED Pathway and Proccesses Analysis

Supplemental Table S7, related to Figure 6, Pathway analysis of RNA-Seq data from patients vs. 
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Supplemental Table S7 (Continued), related to Figures 9-11, Pathway 

analysis of data from Microarray, ChIP-Seq, and RNA-Seq combined. 

GeneGo pathway analysis of all genes that were altered from all datasets 

combined. 
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SUMMARY

Cortical development depends on the active integra-
tion of cell-autonomous and extrinsic cues, but the
coordination of these processes is poorly under-
stood. Here, we show that the apical complex protein
Pals1 and Pten have opposing roles in localizing the
Igf1R to the apical, ventricular domain of cerebral
cortical progenitor cells. We found that the cerebro-
spinal fluid (CSF), which contacts this apical domain,
has an age-dependent effect on proliferation, much
of which is attributable to Igf2, but that CSF contains
other signaling activities as well. CSF samples from
patients with glioblastomamultiforme show elevated
Igf2 and stimulate stem cell proliferation in an Igf2-
dependent manner. Together, our findings demon-
strate that the apical complex couples intrinsic and
extrinsic signaling, enabling progenitors to sense
and respond appropriately to diffusible CSF-borne
signals distributed widely throughout the brain. The
temporal control of CSF composition may have crit-
ical relevance to normal development and neuro-
pathological conditions.

INTRODUCTION

Neural development involves a dynamic interplay between cell
autonomous and diffusible extracellular signals that regulate
symmetric and asymmetric division of progenitor cells
(Johansson et al., 2010). In mammalian neural progenitors,
homologs of C. elegans and Drosophila polarity proteins,

including Par3 (partitioning defective protein 3) and Pals1
(protein associated with Lin 7), assemble as apical complexes
that play essential roles in regulating self-renewal and cell fate
(Margolis and Borg, 2005). The unequal distribution of apical
surface components during mitosis is a key determinant of
daughter cell fate in C. elegans and Drosophila (Fishell and
Kriegstein, 2003; Kemphues, 2000; Siller and Doe, 2009; Wo-
darz, 2005). Recently, mammalian Par3 was shown to promote
asymmetric cell division by specifying differential Notch
signaling in radial glial daughter cells (Bultje et al., 2009), sug-
gesting that the inheritance of the apical complex guides progen-
itor responses to proliferative signals as well.
Secreted signals can act at a distance to guide decisions gov-

erning progenitor proliferation and cell fate (Johansson et al.,
2010), but little is known of how secreted signals interact
with cell-autonomous ones. Insulin-like growth factor 1 (Igf1)
promotes progenitor proliferation (Hodge et al., 2004;
Popken et al., 2004). Insulin/Igf1 signaling is regulated by E-cat-
enin in keratinocytes (Vasioukhin et al., 2001) and b-catenin in
oligodendrocyte progenitors (Ye et al., 2010), suggesting that
cell polarity proteins govern cellular responses to extrinsic cues.
Direct interactions between Par3 and Pten (phosphatase and

tensin homolog) (Feng et al., 2008; Pinal et al., 2006; von Stein
et al., 2005; Wu et al., 2007) suggest that the apical complex
interacts with growth factor signaling pathways. Indeed, disrupt-
ing the apical complex via Pals1 leads to attenuated pS6
signaling, premature cell cycle exit, and rapid cell death, result-
ing in the absence of nearly the entire cerebral cortex (Kim et al.,
2010). In turn, Pals1-deficiency can be partially rescued by
concomitant activation of mTOR (mammalian target of rapamy-
cin) (Kim et al., 2010), a downstream effector of growth factor
signaling. Growth factor signaling, in particular via the type 1
Igf receptor (Igf1R), mediates powerful, age-dependent effects
on the development and maintenance of many organ systems
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including the brain through the regulation of progenitor cell divi-
sion (Baker et al., 1993; Hodge et al., 2004; Liu et al., 2009;
Popken et al., 2004; Randhawa and Cohen, 2005). Nevertheless,
the mechanisms coordinating the availability of Igf ligands to
cortical progenitor cells have remained unclear.

Though vascular sources of secreted proliferative signals are
well characterized (Palmer et al., 2000; Shen et al., 2004, 2008;
Tavazoie et al., 2008), the apical surfaces of early cortical precur-
sors and their primary cilia do not approximate blood vessels but
instead directly contact the cerebrospinal fluid (CSF) (Fuchs and
Schwark, 2004; Kim et al., 2010), suggesting that secreted
factors may interact with progenitor cells at this interface. The
CSF proteome shows a complex and dynamic pattern of protein
expression (Dziegielewska et al., 1981; Parada et al., 2005;
Zappaterra et al., 2007), suggesting important roles beyond
provision of a fluid cushion for the central nervous system and
maintenance of extracellular ionic balance. The CSF has recently
been implicated in carrying secreted proteins in several
contexts, including Fgf2 to midbrain progenitors (Martı́n et al.,
2006), Sonic hedgehog to cerebellar progenitors (Huang et al.,
2010) and Slit guidance of neuroblasts in adult brain (Sawamoto
et al., 2006). Regulation of cerebral cortical progenitor cells by
growth factors distributed in the lateral ventricular CSF would
provide potentially global control over cerebral cortical neuro-
genesis, but this hypothesis has not been examined.

Here, we show that the apical complex couples autonomous
regulation of progenitor proliferation to CSF-borne signals in
the developing cerebral cortex. Pals1 and Pten interact geneti-
cally to regulate cerebral cortical size and progenitor proliferation
and have opposing roles in localizing the Igf1R to the apical
domain of cortical progenitors. Apically localized Igf1Rs respond
to CSF-borne Igf ligands, particularly Igf2, and CSF regulates
cortical progenitor proliferation in an Igf2-dependent fashion.
Finally, CSF Igf2 concentration is elevated in patients with malig-
nant glioblastoma, suggesting that CSF proteins may regulate
CNS tumorigenesis. Our findings suggest that the apical
complex couples autonomous and extrinsic signaling in cerebral
cortical progenitors, enabling these cells to respond appropri-
ately to diffusible CSF-borne signals that regulate cortical neural
stem cells during development and disease.

RESULTS

Genetic Interactions of Pals1 and Pten
at the Apical Surface Region
Since Pals1 loss disrupts growth factor signaling and cortical
development (Kim et al., 2010), we looked for potential interac-
tions of Pals1 with other regulators of growth factor signaling
and found genetic interactions between Pals1 and Pten (Groszer
et al., 2001). Cerebral cortex-specific deletion of Pals1 was
achieved by crossing mice with a conditional Pals1 allele
(Pals1loxP/loxP) (Kim et al., 2010) with mice carrying Emx1-
promoter-driven Cre recombinase (Emx1Cre+/!) (Gorski et al.,
2002). Pals1loxP/loxP/Emx1Cre+/! mice lacked nearly the entire
cortical structure due to premature cell cycle exit and cell death
(Kim et al., 2010), with heterozygotes having an intermediate
phenotype (Figure 1A). In contrast, Pten deficiency, obtained
by crossing PtenloxP/loxP mice (Groszer et al., 2001) with either

Emx1Cre+/! or NestinCre+/! mice, resulted in cortical hyper-
plasia arising from excessive and extended proliferation of apical
progenitors (Figure 1A; see Figures S1A–S1E available online;
Groszer et al., 2001). While the broadest groupings of cells
were preserved in Pten mutants, the cortical plate was disorga-
nized across its entire radial extent (Figures S1A–S1C). No
phenotypic abnormalities were observed in either heterozygous
PtenloxP/+/NestinCre+/! mice or in PtenloxP/loxP/NestinCre!/!

littermate controls (Figure S1A and data not shown). Conditional
deletion of Pten in the Pals1loxP/+/Emx1Cre+/! mice resulted in
an almost normal cortical size (Figure 1A). Histological analyses
of Pals1loxP/+/Emx1Cre+/! mice or PtenloxP/+/Pals1loxP/+/
Emx1Cre+/! mice revealed a severely disrupted laminar organi-
zation of the dorsomedial cortex (Figure 1B; Kim et al., 2010).
Double mutants showed a relatively normal organization of the
marginal zone (Figure 1B), consistent with a genetic interaction
between the apical complex and Pten. The expression of apical
complex components, especially Cdc42, were abnormal in Pten
cortex (Figure S1F and data not shown). The proportion of prolif-
erative progenitor cells marked by Ki67-positive staining cells
was greater in the doublemutant cortex compared to conditional
Pals1 heterozygotes (Figure 1C) and brain size was also
more normal by embryonic day (E) 14.5 (Figures S1G and S1H).
Proportions of early-born neurons marked by Tbr1 and
Ctip2 were also more normal in the PtenloxP/loxP/
Pals1loxP/+/Emx1Cre+/!mice than in either Pals1 or Ptenmutants
alone (Figure 1D and data not shown). However, cells in the
double mutant brain appeared irregular in size and lamination
(Figure 1D), a finding consistent with roles for Pten in the regula-
tion of cell size and polarity (Figure S1C; Chalhoub et al., 2009;
Groszer et al., 2001) and with a role for Pten downstream of
the apical complex.
The genetic interaction between Pals1 and Pten and the

decreased proliferation of progenitors and prominent cell death
in Pals1 mutants (Kim et al., 2010) prompted us to test whether
the apical complex interacts with Igf signaling, since Igfs play
a prominent role in cell cycle kinetics of cortical progenitors,
cell survival, and brain size (Hodge et al., 2004; Liu et al., 2009;
Popken et al., 2004; Schubert et al., 2003). The Igf1R, which
binds both Igf1 and Igf2, mediates the proliferative response to
Igf signaling (Weber et al., 1992). Surprisingly, Igf1R was en-
riched in cortical progenitors at the apical, ventricular surface,
interdigitating with b-catenin (Figures 2A–2D), suggesting the
apical region as the likely site for binding of Igf1R ligand. Apical
Igf1R expression was strikingly decreased in Pals1loxP/loxP/
Emx1Cre+/! mice (Figure 2E). By contrast in the absence of
Pten, Igf1R immunoreactivity demonstrated a considerable ba-
solateral spread in clusters of radial glia (Figure 2F and data
not shown). Analyses of downstream signaling events, using a
specific antibody against the phosphorylated form of Rsk
substrate S6 ribosomal protein (phospho-S6rp), revealed an
apical pattern of activity within control brains (Figure 2G). In
contrast in Pten mutants, phospho-S6rp showed a broad distri-
bution across the cortical tissue, with many robust phospho-
S6rp-positive cells extending basally away from the lateral
ventricle (Figure 2G). While the majority of cells positive for
Igf1R were clearly apical progenitors, some upregulation of
Igf1R in basal progenitors is possible. Though we cannot rule
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out that Pals1 and Pten could function independently to regulate
Igf signaling and cortical growth, we interpret our data to suggest
that within the cortical ventricular zone, Pals1 and Pten spatially
restrict IgfR expression and Igf signaling to the apical membrane
domain.
Loss and gain of Igf signaling in mutant mice produced pheno-

types similar to those seen when apical complex signaling is
disrupted. Mice with Igf1R deficiency limited to neural precur-
sors (Igf1RloxP/loxP/NestinCre+/!) were microcephalic (Fig-
ure 2H–2J; Kappeler et al., 2008; Liu et al., 2009) and had
a reduced frequency of phospho-Histone H3 (PH3, a marker of
cell division) proliferative progenitors in the ventricular zone
(PH3-positive cells/100 mm VZ ± SEM at E16.5: control, 2.9 ±
0.3; Igf1RloxP/loxP/NestinCre+/!, 1.7 ± 0.1; unpaired t test, p <
0.01; n = 4 and n = 3, respectively). We did not observe differ-
ences in progenitor cell survival at the ventricular zone in these
mice as assessed by cleaved caspase 3 (CC3) immunoreactivity
(data not shown). Conversely, mice with increased Igf activity

(Igf1 expressed from the humanGFAP promoter) were macroce-
phalic (data not shown) (Ye et al., 2004) and had increased prolif-
erative progenitors at the ventricular surface (PH3-positive cells/
100 mm VZ ± SEM at E18.5: control, 0.9 ± 0.08; Igf1_Tg, 1.2 ±
0.07; unpaired t test, p < 0.05, n = 3 and n = 4, respectively).
Together with published work demonstrating that Insulin
receptor substrate 2 (Irs2) deletion leads to microcephaly
(Schubert et al., 2003), these data suggest that Igf signaling in
cortical progenitors, facilitated at the apical surface via Pals1
and an intact apical complex, regulates cortical development.

CSF-Borne Igf Signaling
The normal apical localization of the Igf1R, and the fact that we
did not observe Igf1 or Igf2 mRNA in neural progenitor cells by
in situ hybridization (Figures 3A, 3B, and data not shown; Ayer-le
Lievre et al., 1991), suggested that progenitor cells may be
exposed to Igfs derived from the lateral ventricle CSF. We
confirmed the presence of Igf2 in an unbiased tandem mass

Figure 1. The Apical Complex and Pten
Modulate Brain Size
(A) Conditional Pten deletion (PtenloxP/loxP/

Pals1+/+Emx1Cre+/!) resulted in hyperplasia and

an enlarged cerebral cortex. Ablation of Pten in

PtenloxP/loxP/Pals1loxP/+/Emx1Cre+/! mice largely

restored the small brain phenotype of PtenloxP/+/

Pals1loxP/+/Emx1Cre+/! neonates.

(B) H&E staining of PtenloxP/+/Pals1loxP/+/

Emx1Cre!/!, PtenloxP/+/Pals1loxP/+/Emx1Cre+/!,

and PtenloxP/loxP/Pals1loxP/+/Emx1Cre+/! neo-

nates. Arrowheads point to marginal zone.

(C) The proportion of Ki67-positive staining

progenitors was restored in the E14.5

PtenloxP/loxP/Pals1loxP/+/Emx1Cre+/! cortex

compared to PtenloxP/+/Pals1loxP/+/Emx1Cre+/!

(percent Ki67-positive staining cells ± SEM;

PtenloxP/+/Pals1loxP/+/Emx1Cre!/!, 65.6 ± 2.3;

PtenloxP/+/Pals1loxP/+/Emx1Cre+/!, 58.4 ± 2.0;

PtenloxP/loxP/Pals1loxP/+/Emx1Cre+/!, 75.8 ± 0.4;

ANOVA, p < 0.01, n = 3).

(D) Left panels: representative images of

Ctip2-positive and Tbr1-positive staining

neurons analyzed in PtenloxP/+/Pals1loxP/+/

Emx1Cre!/!, PtenloxP/+/Pals1loxP/+/Emx1Cre+/!,

and PtenloxP/loxP/Pals1loxP/+/Emx1Cre+/! neo-

nates. Right panels: the cortical plate was

subdivided into six equal bins and Ctip2 and

Tbr1 positive cells quantified per bin are ex-

pressed as percent of total cells per bin. Pten

deletion in thePtenloxP/loxP/Pals1loxP/+/Emx1Cre+/!

mice restored the proportions of early-born cells

marked by Tbr1 and Ctip2 (percent positive stain-

ing cells/total: PtenloxP/+/Pals1loxP/+/Emx1Cre!/!

Ctip2 = 8.13 ± 2.0, Tbr1 = 38.7 ± 2.4; PtenloxP/+/

Pals1loxP/+/Emx1Cre+/! Ctip2 = 1.6 ± 1.2, Tbr1 =

18.8 ± 3.1; PtenloxP/loxP/Pals1loxP/+/Emx1Cre+/!

Ctip2 = 8.5 ± 1.6, Tbr1 = 39.1 ± 2.6; ANOVA,

p < 0.05, n = 3).

See also Figure S1.
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spectrometry (LC-MS/MS) analysis of CSF (Table S1; Binoux
et al., 1986) and detected Igf1 in CSF by ELISA (E14 CSF
[Igf1], 72.2 ng/ml, n = 2; E17 CSF [Igf1], 69.6 ng/ml; adult
CSF [Igf1], 68.8 ng/ml, n = 3). Igf1 expression in the CSF re-
mained stable across the ages sampled (see above). In contrast,
expression of Igf2 in rat CSF was temporally dynamic; it peaked
during periods of neurogenesis and declined in adulthood (Fig-
ure 3C). High levels of Igf2 mRNA expression by the choroid
plexus suggested this as a source of CSF Igf2 (Figure 3B), and
quantitative PCR revealed that rat choroid plexus expressed
10.7-fold more Igf2 than its cortical counterpart at E17 (data
not shown). We confirmed that Igf2 mRNA was also expressed
in vascular endothelial cells, and leptomeninges in the rat
embryo at E14 and E17 as well as pericytes at E17 (Figures
3A, 3B, and data not shown; Bondy et al., 1992; Dugas et al.,
2008; Stylianopoulou et al., 1988), suggesting that extrachoroi-

dal sources of Igf2 may contribute to CSF-Igf2 content as well.
Immunogold labeling revealed Igf2 binding to progenitors along
the apical, ventricular surface (Figure 3D). Moreover, Igf2 binding
to progenitors was highly enriched along primary cilia (Figure 3E),
which extend directly into the ventricular space (Figure 3F;
Cohen et al., 1988). We did not observe enriched Igf2 binding
beyond the apical surface of ventricular zone progenitor cells
(data not shown). Thus, the robust expression of Igf2 by the
choroid plexus and the apical binding of Igf2 to progenitors along
the ventricular zone strongly suggest that the CSF distributes
choroid plexus secreted Igf2 to cortical progenitor cells.
Purified rat E17 CSF directly stimulated Igf1R mediated

signaling activity, reflected by Igf1Rb phosphorylation as well
as phosphorylation of Akt and MAPK (Figure 3G), two down-
stream targets of Igf signaling as well as other growth factors
that may be present in CSF. Igf2 treatment by itself induced Igf

Figure 2. Igf1R Expression in Cortical Progenitor Cells
(A) Left panel: Igf1R in situ hybridization at E14.5 mouse. Right panel: high-magnification image of area denoted in left panel.

(B) Igf1R enriched along the ventricular surface of E17 rat cortex.

(C) Confocal images of Igf1Rb and b-catenin immunostaining in rat E17 ventricular zone.

(D) En face view of the mouse E16.5 ventricular zone immunostained with Igf1Rb and b-catenin.

(E) Ventricular Igf1R expression was disrupted in E12.5 Pals1loxP/loxP/Emx1Cre+/! cortex.

(F) Left panel: Igf1R expression was enriched along the apical, ventricular zone of E14.5 PtenloxP/+/NestinCre+/! controls. Right panel: Igf1R expression expanded

basolaterally in PtenloxP/loxP/NestinCre+/! radial glia.

(G) Left panel: pS6rp activity along the ventricular progenitors of E14.5 PtenloxP/+/NestinCre+/! controls. Right panel: pS6rp localization extended basolaterally

in PtenloxP/loxP/NestinCre+/! radial glia. See also Figure S1.

(H) Igf1R deficiency in NestinCre expressing cells diminished brain size at E16.5.

(I) Brain weights of Igf1RloxP/loxP/NestinCre+/! and controls at E16.5 (brain weight (g) ± SEM: Igf1RloxP/loxP/NestinCre+/!: 0.06; Igf1RloxP/loxP/NestinCre+/!:

0.03 ± 0.001; n = 2 [+/+], n = 3 [!/!]).

(J) H&E staining of brains shown in (H).

Neuron

The CSF Instructs Cortical Progenitor Proliferation

896 Neuron 69, 893–905, March 10, 2011 ª2011 Elsevier Inc.



	  

	   161	  

signaling similar to embryonic CSF (Figure 3G). Igf2 binding to
progenitors, the localization of the Igf1R, its phosphorylation,
as well as the phosphorylation of its downstream targets Akt
and MAPK in response to CSF, strongly suggest that the CSF
is a primary source of Igf ligands for cerebral cortical neuroepi-
thelial cells, although additional sources cannot be completely
excluded.
We next tested whether Igf2 supports progenitor proliferation

in a cerebral cortical explant system. In this system, rat embry-
onic cortex dissected from the lateral pallium is placed on
polycarbonate membranes and floated on defined media (Fig-
ure 3H). We found that Igf2 added to neurobasal medium
(NBM) with 20% artificial CSF (ACSF) stimulated the prolifera-
tion of progenitor cells marked by phospho-Vimentin 4A4 in
rat cortical explants (Figure 3I; Noctor et al., 2002). In addition,
Igf2 treatment alone maintained GLAST-positive neurospheres,
an in vitro model of neural stem cells, even in the absence of
Fgf2 (fibroblast growth factor 2) and Egf (epidermal growth
factor) (Figure 3J; Vescovi et al., 1993). Finally, pharmacologic
activation of the signaling pathway with insulin demonstrated
that activation of Igf signaling by ligands other than Igf2 is
sufficient to stimulate proliferation (PH3-positive cells/100 mm
VZ ± SEM in E16 rat explant: control mean, 5.6 ± 0.7; insulin
(10 mg/ml) mean, 11.2 ± 0.4; Mann-Whitney, p < 0.05; n = 6).
Therefore, Igf signaling modulates proliferation of isolated

cortical precursors or those maintained in their pallial environ-
ment in vitro.

CSF Promotes Proliferation of Progenitor Cells
in an Age-Dependent Manner
Since the CSF is a complex fluid containing many factors
including Igf binding proteins that may modulate Igf2 bioavail-
ability and signaling (Figures 4A and 4B; Table S1; Clemmons,
1997; Zappaterra et al., 2007), we tested whether native CSF
alone could support cortical tissue growth. We used a hetero-
chronic ‘‘mix-and-match’’ approach for exposing cortical tissue
to CSF collected at different ages. E16 rat cortical explants with
intact meninges and vasculature cultured with 100% E17 rat
CSF for 24 hr, without any additional exogenous media or
factors, retained remarkable tissue architecture, cell viability,
and proliferation, approximating in vivo E17 rat cortex (Fig-
ure 4C). In contrast, E16 explants cultured with 100% artificial
CSF failed to thrive, had decreased mitotic activity, disorganized
neuronal morphology, and increased cell death (Figures 4C,
S2A, and S2B). Filtration analysis of E17 CSF showed that the
sizes of CSF factors that support stem cells likely range from
10 kDa–100 kDa, suggesting that they are proteins (Table S2
and data not shown). Thus, the embryonic CSF proteome
provides essential growth and survival factors for the developing
cortex.

Figure 3. Igf2 Is Expressed in Cerebrospinal Fluid
and Stimulates Progenitor Proliferation
(A and B) Igf2 in situ hybridization of rat E14 and E17

cortex. Arrow points to choroid plexus.

(C) Transient Igf2 expression in rat CSF.

(D) Immunogold labeling of endogenous Igf2 in E17 rat

brain. Left panel: no primary control. Right panel: Igf2

binding to ventricular surface of cortical progenitors. Scale

bar represents 500 nm.

(E) Igf2 binding to primary cilium of cortical progenitor cell.

Arrow points to ciliary basal body. Scale bar represents

500 nm.

(F) Scanning EM of mouse ventricular surface at E12.5.

Arrowheads point to primary cilia projecting into the

ventricular space. Scale bar represents 2 mm.

(G) Lysates of cortical cells deprived of growth factors for

6 hr and treatedwith ACSF, E17CSF, or Igf2 for 5minwere

immunoblotted with antibodies to P-Igf1R, P-Akt, Akt,

P-ERK1/2, and ERK1/2.

(H) Schematic of cortical explant dissections: explant

placed on membrane with ventricular side down contact-

ing CSF and notch making medial-caudal side.

(I) Left panel: E16 explants cultured with NBM plus 20%

ACSF (control) or with supplemental Igf2 immunostained

with anti-Vimentin 4A4 and Hoechst represented as

mean ± SEM (Igf2 mean, 36.7 ± 2.1; control mean, 20.4 ±

4.46; n = 8; Mann-Whitney; p < 0.005). Vimentin 4A4-

positive cells increased in explants cultured with Igf2

compared to control. Right panels: representative images

of explants quantified in left panels.

(J) Single cells dissociated from primary neurospheres

cultured in control media or control media containing

Igf2 (20 ng/ml). Igf2 stimulated secondary sphere forma-

tion after 10 DIV (Igf2 mean, 39.3 ± 4.1; control mean,

2.2 ± 0.75; n = 3; t test; p < 0.005).

See also Table S1.
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By comparing rat CSF from several ages, we determined that
the effects of CSF on survival and proliferation are strikingly age
dependent and mimicked the temporal profile of CSF-Igf2
expression (Figure 3C). E17 CSF (near the middle of neurogene-
sis) maintained the healthiest explants and produced the
maximal increase in the frequency of PH3-labeled proliferating
cells in E16 cortical explants compared to explants cultured
with E13 (early in neurogenesis), P6, or adult CSF (Figures 4D,
4E, S2C, and data not shown). Many mitotic cells were identified

as proliferating neuroepithelial progenitor cells by their immuno-
reactivity for phospho-Vimentin (4A4; Figures 4F and S2C). In
contrast, no differences were seen in Tbr2-positive basal
progenitors, which do not contact the CSF directly (data not
shown). Together, these data suggest that age-dependent
differences in CSF signals are both supportive and instructive
for neuroepithelial precursor proliferation in the developing
cortex. The CSF effects may be specific to neuroepithelial
progenitors, which contact the ventricle through the apical

Figure 4. Embryonic CSF Supports Cortical
Explant Viability and Stimulates Prolifera-
tion of Neural Progenitor Cells
(A) TotalCSFprotein concentration over thecourse

of rat development.

(B) Silver stain of embryonic rat CSF revealed

a dynamic fluid with numerous changes in

protein composition over time. Asterisks indicate

proteins with varying CSF expression during

development.

(C) E17 rat cortex and E16 explants grown for

24 hr in 100% embryonic E17 CSF or 100%

artificial CSF, respectively. Upper panels: anti-

PH3 (red), and anti-Tuj1 (green), Hoechst (blue)

immunostaining. Lower panels: anti-BrdU (red)

and anti-Tuj1 (green) immunostaining. Explants

cultured in 100% E17 CSF in vitro maintained

tissue histology similar to embryo in vivo. Survival

and proliferation of explants cultured with E17

CSF indicated by immunoreactivity for PH3

along the ventricular surface, BrdU incorporation

in the ventricular zone, and Tuj1-positive-staining

neurons in the developing cortical plate.

(D) E16 explants cultured in 100% E13, E17, P6,

or adult CSF for 24 hr were immunostained with

anti-PH3 (see Figure S2C). Quantification of total

PH3-positive-staining cells per 400 mm explant

showed that proliferating cells increased in

explants cultured with E17 CSF compared to

E13, P6, or adult CSF. Immuno-positive cells

are represented as mean ± SEM (E17 mean,

44.1 ± 1.43; E13 mean, 25 ± 4.2; P6 mean, 9.2

± 0.8; adult mean, 9.6 ± 0.9, n = 4; Kruskal-

Wallis; p < 0.005).

(E) Quantification of ventricular PH3-staining cells

in explants (D). PH3-positive cells along the

ventricle were significantly increased in explants

cultured with E17 CSF compared to E13, P6, or

adult CSF (E17 mean, 32.3 ± 0.79; E13 mean,

12.8 ± 3.9; P6 mean, 4.9 ± 1.0; adult mean, 6.9 ±

0.73; n = 4; Kruskal-Wallis; p < 0.01).

(F) E16 explants (D) immunostained with anti-

Vimentin 4A4 (see Figure S2C) were quantified.

Vimentin 4A4-positive cells were significantly

increased in explants cultured with E17 CSF

compared to E13, P6, or adult CSF (E17 mean, 37.1 ± 1.4; E13 mean, 14.9 ± 1.9; P6 mean, 6.1 ± 1.05; adult mean, 7.3 ± 0.6; n = 4; Kruskal-Wallis; p < 0.005).

(G) Left panel: E16 explants cultured in control E17 CSF or E17 CSFwith Igf2 neutralizing antibody (Igf2 NAb), immunostained with anti-Vimentin 4A4 andHoechst

(E17 controlmean, 28.8 ± 4.3; E17 IGF2NAbmean, 13.9 ± 2.0; n = 4;Mann-Whitney; p < 0.05). Vimentin 4A4-positive cells decreased in explants culturedwith E17

CSF plus Igf2 NAb compared to control. Right panels: representative images of explants quantified in left panels.

(H) Primary neurospheres derived fromE14 cortexwere grown in 20%artificial (A), E14, E17, P6, or adult CSF for 10 days in vitro (DIV). E17CSF generated themost

spheres/cm2 (E17 mean, 274 ± 8.0; E14 mean, 77 ± 7.0; P6 mean, 110 ± 17.5; adult mean, 81 ± 8.8; n = 3; ANOVA; p < 0.005). See also Figure S2.

(I) Neurospheres derived from adult rat SVZ were cultured in artificial (A)CSF, Igf2 (20 ng/ml), E17 CSF, or adult rat CSF for 10DIV. Igf2, E17 CSF, and adult CSF

supported the growth andmaintenance of adult neurospheres (ACSF, 4.76 ± 0.67; Igf2, 17.3 ± 3.2; E17 CSF, 101.7 ± 15.8; adult CSF, 67.8 ± 12.6; Kruskal-Wallis,

Igf2 versus E17 CSF, p < 0.05; E17 CSF versus adult CSF, N.S.; n = 3).

See also Figure S2 and Tables S2 and S3.
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complex, without affecting the intermediate progenitors of
the SVZ.
We tested directly whether CSF-borne Igf2 was necessary to

explain the effects of age-specific CSF on rat cortical explants.
The frequency of proliferating cells declined in explants grown
in E17 CSF in the presence of Igf2 neutralizing antibodies
(Igf2 Nab; Figure 4G). Igf2 neutralization with Igf2 NAb did not
interfere with Igf1 levels in CSF compared to control as assayed
by ELISA (data not shown). While Igf signaling is known to
promote neuronal survival (Popken et al., 2004), we did not
observe differences in ventricular progenitor cell survival in these
explant experiments (data not shown), suggesting that Igf
actions on neural cell survival likely depends on the cell type,
developmental stage, and microenvironment. These data
confirm the important role for CSF borne Igf2 in regulating cere-
bral cortical progenitor cells but do not rule out roles of other CSF
borne factors as well.

CSF Influence on Isolated Neural Stem Cells
Requires Igf Signaling
Neural stem cells cultured as neurospheres confirmed the age-
dependent capacity of CSF to maintain neural stem cells
(Reynolds and Weiss, 1996) and provided additional evidence
suggesting that Igf2-mediated signaling is an essential determi-
nant of CSF activity on neural stem cells. CSF from any age sup-
ported the proliferation and maintenance of isolated cortical
stem cells cultured as primary or secondary neurospheres (Fig-
ure 4H and data not shown; Vescovi et al., 1993). However, E17
CSFwasmaximally effective in generating increased numbers of
neurospheres, larger neurospheres, and maintained neuro-
spheres even in long-term cultures for up to 44 days in vitro
(Figures 4H, S2D–S2G, and data not shown). Neurospheres
grown in CSF retained responsiveness to Fgf2 and Egf, indi-
cating that the CSF maintains stem cells in an uncommitted
fate (Figure S2H). CSF generated neurospheres from adult
SVZ precursors as well (Figure 4I). Consistent with these obser-
vations and our explant studies, the Igf1R inhibitor picropodo-
phyllin blocked the formation of spheres in the presence of E17
CSF (data not shown). Our data suggest that the choroid plexus
is the most prominent source of Igf2 in CSF (Figures 3 and S3A).
Accordingly, media conditioned with E17 choroid plexus
provided enhanced support for neurosphere formation com-
pared tomedia conditionedwith embryonic cortex, adult choroid
plexus, or adult brain (Table S3), demonstrating that one or more
factors actively secreted from the embryonic choroid plexus,
including potentially Igf2, is sufficient for stem cell growth and
maintenance. Thus, distinct factors secreted by the choroid
plexus into the embryonic CSF, including Igf2, confer E17 CSF
with an age-associated advantage to stimulate and maintain
neural stem cell proliferation, and Igf signaling is likely one
pathway that promotes this process.

Genetic Inactivation of Igf Signaling Impairs
Brain Development
Mouse explant experiments confirmed a requirement for Igf
signaling in the proliferation of progenitor cells. Mouse embry-
onic CSF supported the survival and proliferation of mouse
cortical progenitors (C57BL/6 explants: 20% ACSF in NBM

mean, 7.4 ± 0.2; 20% E16.5 CSF in NBM mean, 14.1 ± 1.4;
Mann-Whitney; p < 0.01; n = 3), and purified Igf2 in 20% ACSF
in NBM stimulated cortical progenitor proliferation (Figure 5A).
When the Igf1R was genetically inactivated in cortical progeni-
tors (Igf1RloxP/loxP/NestinCre+/!) (Liu et al., 2009), wild-type
CSF no longer stimulated cortical progenitor proliferation
(ACSF, 17.6 ± 2.9; E16.5 CSF, 16.4 ± 3.0; Mann-Whitney; N.S.;
n = 3). Importantly, CSF obtained from Igf2!/! mice failed to
stimulate progenitor proliferation in wild-type explants
compared to control (Figure 5B), suggesting that Igf2 in its native
CSF environment stimulates proliferation of progenitor cells
during cerebral cortical development.
As expected for the roles we have shown for Igf2 in regulating

proliferation, we found that Igf2-deficiency reduced brain size
(Figure 5C). Igf2!/! brain weight decreased by 24% at P8
compared to controls (Figure 5D). Accordingly, the overall
cortical perimeter and surface area were reduced in Igf2!/!

brains compared to controls as well (Figures 5E–5G). Profound
defects in somatic size couple to brain size (Purves, 1988). As
previously reported (DeChiara et al., 1991; Baker et al., 1993),
Igf2!/! body weight was reduced compared to control (mean
body weight (g) at P8: Igf2+/+, 5.6 ± 0.01; Igf2!/!, 2.8 ± 0.1;
Mann-Whitney; p < 0.0001; n = 11), suggesting that Igf2 may
be a secreted factor that scales brain size to body size. Consis-
tent with the mouse CSF Igf2 expression pattern that is signifi-
cantly increased during later embryonic development (Fig-
ure S3B), blunting Igf2 expression markedly reduced the
proliferating progenitor cells at E16.5 compared to controls
(PH3-positive cells/100 mm VZ ± SEM at E16.5: Igf2+/+, 2.5 ±
0.3; Igf2!/!, 1.7 ± 0.1; Mann-Whitney; p < 0.05; n = 5). NeuN-
and late-born Cux1-staining neurons were reduced in Igf2!/!

mice (Figure 5H and data not shown), confirming that Igf2
contributes to cortical progenitor proliferation and to late stages
of neurogenesis. Taken together, our genetic experiments
support a model in which the apical complex localizes Igf
signaling in progenitors by ensuring the apical, ventricular local-
ization of the Igf1R. In this manner, the apical complex couples
cell autonomous and extracellular signals to the regulation of
cortical development.

Glioblastoma CSF Expresses High Igf2
Our data, together with recent findings implicating Igf signaling in
the maintenance of adult neural stem cells (Llorens-Martı́n et al.,
2010), raised the possibility that abnormalities of the CSFmay be
relevant to conditions showing abnormal proliferation, including
in glioblastoma multiforme (GBM), a malignant astrocytic brain
tumor. Igf-PI3K-Akt signaling has been implicated as a key regu-
lator of gliomagenesis (Louis, 2006; Soroceanu et al., 2007), and
mutations in PTEN are commonly found in patients with GBM
(Louis, 2006). We analyzed Igf2 concentration in a panel of 56
human GBM patient CSF samples collected from 21 individuals
representing the full range of disease progression and 8 disease-
free controls and found that CSF from GBM patients contained
significantly more Igf2 than CSF from disease-free controls
(Igf2 concentration expressed asmean ± SEM for GBM patients,
340.4 ± 12.9 ng/ml; n = 56; disease-free controls, 222.9 ±
41.5 ng/ml; n = 8; Mann-Whitney, p < 0.01). Three GBM samples
containing the highest Igf2 concentrations (605.8 ng/ml,

Neuron

The CSF Instructs Cortical Progenitor Proliferation

Neuron 69, 893–905, March 10, 2011 ª2011 Elsevier Inc. 899



	  

	   164	  

502.8 ng/ml, and 468.7ng/ml) came from patients with advanced
disease (Figure 6A and Table 1). By contrast, the three patients
with the lowest levels of Igf2 (142.1 ng/ml, 145.4 ng/ml, and
153.9 ng/ml) all had early or stable glioma (Figure 6A andTable 1).
Similar to rodent ventricular CSF, human lumbar CSF stimulated
cortical progenitor cell proliferation in our explant assay, with
CSF from GBM patients causing greater proliferation than CSF
from disease-free controls (Figure 6B). Moreover, human GBM
patient CSF neutralized with Igf2 antibodies failed to stimulate
the proliferation of progenitor cells (Figure 6B; Igf2 concentration
following NAb absorption, GBM1(PBS): 605.8 ng/ml; GBM1
(NAb), 45.6 ng/ml; GBM2(PBS), 502.8 ng/ml; GBM2(NAb),
218.3 ng/ml; GBM3(PBS), 468.7 ng/ml; GBM3(NAb),
248.8 ng/ml). Taken together, these data suggest that beyond
embryonic brain development, CSF-Igf2, in particular, is a poten-
tial mediator of GBM pathology and that the CSF mechanisms
that normally regulate neural stem cells are misregulated
in GBM.

CSF-Mediated Long-Range Distribution
of Additional Secreted Factors
Whereas our studies suggest an important role for Igf2 in control-
ling proliferation in late stages of neurogenesis and potentially

postnatally, they do not rule out the presence of other secreted
factors that may act at long ranges via the CSF, and so we per-
formed functional screening tests for several other families of
factors. The CSF contained Wnt signaling activity (Zhou et al.,
2006), based upon phosphorylation of LRP6, a Wnt coreceptor
in response to CSF exposure (Figure 7A). Several Wnt ligands
were expressed along the ventricular surface and in the choroid
plexus (Figure 7B and data not shown; Grove et al., 1998). Friz-
zled (Fz) receptors, which bind LRP6 to transduce Wnt signals,
showed enhanced expression in ventricular progenitors (Fig-
ure 7B and data not shown; Zhou et al., 2006), suggesting that
CSF may distribute Wnts to precursors throughout the ventric-
ular surface. Additional signaling activities that influence cortical
development were also found in the CSF, with responsive cells
seen broadly in the ventricular zone. There were dynamic levels
of bone morphogenetic protein (Bmp) activity in the CSF during
different stages of cortical development (Figure 7C). Using
a luciferase-based assay in which overall Bmp activity can be
quantified between 0.1 and 100 ng/ml (data not shown), we
found that Bmp activity in the CSF decreased during embryo-
genesis and peaked in adulthood (Figure 7C). CSF-borne Bmp
activity may be responsible for stimulating progenitors widely
throughout the cortical ventricular zone in vivo, based on

Figure 5. CSF Igf2 Regulates Progenitor
Proliferation and Brain Size
(A) Left panels: E15.5 C57BL/6 explants cultured

in NBM supplemented with 20% ACSF or

ACSF/Igf2. Igf2 stimulated the proliferation of

PH3-positive cortical progenitor cells (C57BL/6

explants: ACSF mean, 7.4 ± 0.2; Igf2 mean, 11.2

± 0.3; Mann-Whitney, p < 0.05; n = 3). Right

panels: representative images of explants quanti-

fied in left panels.

(B) E15.5 C57BL/6 explants cultured in NBM sup-

plemented with 20% E16.5 wild-type or Igf2!/!

CSF. Igf2-deficient CSF failed to stimulate progen-

itor cell proliferation compared to control

(Igf2+/+,17.9 ± 0.8; Igf2!/! CSF, 11.4 ± 1.0;

Mann-Whitney; p < 0.06; n = 3 and n = 4, respec-

tively).

(C) Representative images of P8 Igf2!/! and

control brains.

(D) Igf2deficiency reducedP8brainweight (Igf2+/+,

0.34 g ± 0.008; Igf2!/!, 0.26 g ± 0.004;Mann-Whit-

ney, p < 0.0001, n = 11).

(E) Igf2 deficiency reduced P8 cortical perimeter

(Igf2+/+, 30.9 mm ± 0.01; Igf2!/!, 26.4 mm ± 0.1;

Mann-Whitney, p < 0.0001, n = 11).

(F) Igf2 deficiency reduced P8 cortical surface area

(Igf2+/+, 13.0mm2 ± 0.1; Igf2!/!, 9.4 mm2 ± 0.1;

Mann-Whitney, p < 0.0001, n = 11).

(G)H&E staining of Igf2!/! and control brains at P8.

(H) Left panels: Igf2!/! brains have reduced

numbers of upper layer neurons marked by Cux1

(total Cux1-positive staining cells in equally sized

cortical columns expressed as mean ± SEM:

Igf2+/+, 157 ± 1.5; Igf2!/!, 131.3 ± 3.3; t test,

p < 0.005, n = 3). Right panels: representative

images of Igf2!/! and control brains quantified in

left panels.

See also Figure S3.
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widespread labeling for nuclear phospho-SMAD1/5/8 (Figure 7D)
in the absence of any known Bmp ligands localizing to the
ventricular zone (Shimogori et al., 2004), whereas Bmps 2, 4, 5,
and 7 are expressed in embryonic and adult choroid plexus (Fig-
ure 7E; Hébert et al., 2002; Shimogori et al., 2004). Moreover,
growth and differentiation factors 3 and 8 (GDF3 and GDF8),
both members of the TGF-b superfamily of proteins that can
influence Bmp signaling (Levine and Brivanlou, 2006) were found
in our MS analyses of CSF (data not shown), though we do not
consider our MS analysis to have recovered all potential smaller
ligands in the CSF. Retinoic acid (RA) (Haskell and LaMantia,
2005; Siegenthaler et al., 2009) activity in CSF also varied over
the course of cortical development (Figure 7F). A luciferase-
based assay that quantifies RA activity ranging between 10!9

and 10!6M (data not shown) revealed that RA activity in CSF
peaked early and decreased in adulthood (Figure 7F). In parallel,
RA responsive cortical progenitors localized to the developing
ventricular zone (Figure 7G). Similar to Wnts and Bmps, RA is
most likely released into CSF since RA synthetic and catabolic
enzymes were expressed in the choroid plexus (Figure 7H) and
meninges (data not shown). Thus, CSF shows bioavailability of
a wide range of activities known to regulate neurogenesis,
patterning, and neuronal survival in the cerebral cortex and
throughout the CNS.

DISCUSSION

We show that the CSF plays an essential, active role in distrib-
uting signals in the central nervous system. The key findings of
our study are (1) the apical complex is essential for the apical
localization of Igf1R; (2) Pten deficiency in the Pals1 background
results in an almost normally sized brain; (3) CSF Igf2 binds to the
apical domain of cortical progenitor cells, stimulating their prolif-
eration in an age-dependent manner; (4) Igf2 is upregulated in
GBM patient CSF, contributing to the range of proliferative activ-
ities of GBM patient CSF; and (5) the CSF provides an adaptive
library of secreted factors throughout life. Thedynamic regulation
of several potent modulators of neural stem cells reinforces the
central relationship between local signaling at the apical surface
via ligands delivered by the CSF during cortical neurogenesis.

Asymmetric Growth Factor-Based Signaling
It has been suggested that asymmetry of signaling at the apical
versus basolateral aspect of cortical progenitors regulates
progenitor progress through the cell cycle (Bultje et al., 2009;
Sun et al., 2005). The basolateral expansion of the Igf1R
signaling domain we report in Pten mutants suggests
potential links between asymmetric growth factor signaling and
proliferation. Although asymmetric localization of the EgfR in
cortical progenitors has previously been reported (Sun et al.,
2005), the ventricular enrichment of the Igf1R was not known
and raises the possibility that the apical enrichment of the
Igf1R along with other apical proteins confers a differential
responsiveness to mitogenic signals, akin to Notch signaling
(Bultje et al., 2009). Since Igfs are potent mitogens for cortical
progenitors (Hodge et al., 2004; Popken et al., 2004), one model
might suggest that inheritance of the apical complex promotes
progenitor fate by differentially concentrating Igf1R and its

Figure 6. Glioblastoma CSF Igf2 Supports Progenitor Proliferation
(A) MRI scans from subjects with low and high CSF Igf2 levels. Gadolinium-

enhanced T1-weighted (T1-Gad) MRI sequence delineated the contrast-

enhanced portion of the tumor where tumor angiogenesis developed. Fluid

attenuation inversion recovery (FLAIR) images included area of nonvascular-

ized and invasive tumor (Macdonald et al., 1990).

(B) Twenty percent humanGBMCSF in NBM stimulated PH3-positive proliferating

cells compared to an average of three disease-free control CSFs in E16 rat

explants (control = 16.0 ± 4.1 [n = 3]; GBM1 = 32.3 ± 4.3 [n = 4]; GBM2 = 23.0 ±

2.8 [n = 5]; GBM3 = 23.4 ± 3.8 [n = 4]; Mann-Whitney, p < 0.05). Igf2(NAb) inhibited

GBMCSF-stimulated progenitor proliferation (GBM1 = 13.5 ± 2.9 [n = 4]; GBM2 =

9.0 ± 2.7 [n = 4]; GBM3 = 13.0 ± 1.5 [n = 3]; Mann-Whitney, p < 0.05). CSF Igf2

concentration before and after Igf2 NAb absorption: GBM1(PBS) = 605.8 ng/ml;

GBM1(NAb) = 45.6 ng/ml; GBM2(PBS) = 502.8 ng/ml; GBM2(NAb) = 218.3 ng/ml;

BM3(PBS) = 468.7 ng/ml; GBM3(NAb) = 248.8 ng/ml).
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downstream signaling proteins into cells that retain their peri-
karya or at least a process (likely a cilium) in the ventricular
zone, causing these cells to remain in the cycling pool. The pres-
ence of proliferation-inducing factors in the CSF suggests that
withdrawal of the progenitor’s apical ventricular process may
be an important step in neuronal differentiation (Cappello et al.,
2006), by insulating progenitor cells from proliferative signals in
CSF, with vascular niches potentially supplying sources of
secreted factors for stem cells at other stages (Palmer et al.,
2000; Shen et al., 2004, 2008; Tavazoie et al., 2008).

Our data provides a new perspective on the production and
provision of Igf ligands, which are known to regulate stem cell
populations in the brain and other proliferative epithelia
(Bendall et al., 2007; Hodge et al., 2004; Liu et al., 2009; Popken
et al., 2004; Ye et al., 2004; Zhang and Lodish, 2004). In the E17
rat brain, the choroid plexus was the strongest source of Igf2,
though we cannot discount a contribution by the vasculature or
other cellular sources of Igf2 that may percolate into the CSF.
Indeed, both pericytes and endothelial cells express Igf2 (Dugas
et al., 2008), and Igfs from vascular tissue may have local effects
beyond apically mediated Igf1R signaling shown here. Thus,
locally derived Igf2 may play distinct roles at different develop-
mental time points and in different cellular contexts, and Igf
signalingmayalsobe influencedbyCSF Igf1and insulin.Although
Igf2 availability decreased in adult CSF (Figures 3C andS3B), Igf2
continued to be expressed in adult choroid plexus (data not
shown) and maintained adult neurospheres (Figure 4I), suggest-
ing that low levels of CSF Igf2 contribute to the maintenance of
adult neural stem cells. The aberrant increase in Igf2 in advanced
GBM patients reinforces the hypothesis that Igf signaling has an
influence on proliferation of cortical precursors. Our identification
of Igf2 regulation of neurogenesis and brain size complements
a literature in which Igf signaling is well known to influence body
and brain size (Baker et al., 1993; DeChiara et al., 1991; Purves,
1988), raising the intriguing possibility that Igf2 represents
a secreted factor that may scale brain size to body size.

Fluid-Based Signaling in the CNS and Beyond
The activity of growth promoting factors in the CSF and their
action on progenitors across the apical surface may be a model
for other epithelia including lung, gut, and vascular endothelia

that develop in relation to extracellular fluids (Bendall et al.,
2007; Scadden, 2006). Extracellular fluid apparently regulates
the microenvironment of hematopoietic stem cells, where Igf
signaling regulates progenitor proliferation (Orkin and
Zon, 2008; Zhang and Lodish, 2004). The differential capacity
of Igf signaling to confer a proliferative advantage to stem cells
may be regulated in part by Igf’s interactions with binding
proteins or other secreted factors in the environment (Clem-
mons, 1997). Our experiments focused on the age-associated
effects of CSF on survival and proliferation across the cortical
ventricular zone. However, the distribution of CSF resident
proteins, as well as the flow of the CSF, may also influence ciliary
orientation andmaturing ependymal cell polarity (Mirzadeh et al.,
2010), which create activity gradients as has been shown for Slit
(Sawamoto et al., 2006).
If a major component of the stem cell niche reflects secreted

factors acting at long distances from their sources, modulation
of the proteomic composition of extracellular fluids may also
provide unexpected ways to regulate stem cell behavior in
health and disease. For example, while Igf2 activity peaked
in embryonic CSF, some CSF-borne Igf persisted in adulthood
(Figures 3, S3B, and data not shown). Igf2 and Igf1 in adult CSF
may contribute to the retention of neural stem cell properties in
the adult SVZ (Doetsch et al., 1999). Importantly, the regulation
of CSF growth factors may also extend to pathologic states.
Igf2 and other diffusible growth factors that drive neural progen-
itor proliferation during development are upregulated in some
GBM patients (Louis, 2006; Soroceanu et al., 2007), and GBM
patients have elevated Igf2 levels in their CSF. CSF Ab1–42 and
phosphorylated Tau levels were recently shown to assist in
Alzheimer’s disease diagnosis (De Meyer et al., 2010). Thus,
modulation of the proteomic composition of extracellular fluids
together with the integration of cell autonomous determinants of
self-renewal by the apical complex may ultimately provide unex-
pected ways to regulate stem cell behavior in health and disease.

EXPERIMENTAL PROCEDURES

Animals
Time pregnant Sprague-Dawley, C57BL/6, and Swiss Webster dams were

purchased from Charles River Laboratories and Taconic. Pals1loxP/loxP/

NestinCre+/!, Pals1loxP/loxP/Emx1Cre+/!, Igf1RloxP/loxP/NestinCre+/!, and

Table 1. Clinical Presentation of GBM Patients with Lowest and Highest CSF Igf2 Concentrations

Patient [Igf2] ng/ml

Clinical Presentation

Tumor size:

T1-Gad (cm2)

Tumor size:

FLAIR (cm2) Life Span

Low CSF Igf2 L1 142.1 7.14 6.46 Stable disease at follow-up; 3 weeks post-CSF collection

L2 145.4 8.50 54.12 Stable disease at follow-up; 3 weeks post-CSF collection

L3 153.9 5.94 20.5 Stable disease at follow-up; 5 weeks post-CSF collection

High CSF Igf2 H1 605.8 47.31 102.83 Deceased at 1 week post-CSF collection

H2 502.8 13.69 53.90 Deceased at 52 weeks post-CSF collection

H3 468.7 23.94 36.48 Deceased at 30 weeks post-CSF collection

Patientswith the lowest CSF Igf2 concentrations (L1–L3) had early or stable GBMdisease state, while patients with the highest CSF Igf2 concentrations

(H1–H3) had advanceddisease and aggressive tumor progression at time ofCSF collection. Tumor sizewas determined byMacdonald’s criteria, where

T1-Gad MRI sequence delineated the contrast-enhanced portion of tumor, and FLAIR images include areas of nonvascularized and invasive tumor
(Macdonald et al., 1990). High-CSF Igf2 patients had larger T1-Gad tumor sizes compared to low-CSF Igf2 patients (Mann-Whitney; p < 0.05; n=3).
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GFAP:Igf_1Tg mice were obtained from heterozygous breedings, and

PtenloxP/+/Pals1loxP/+/Emx1Cre+/!, and PtenloxP/loxP/Pals1loxP/+/Emx1Cre+/!

mice were obtained from PtenloxP/+/Pals1loxP/loxP/Emx1Cre+/! and

PtenloxP/loxP/Emx1Cre!/! crosses (Groszer et al., 2001; Kim et al., 2010; Liu

et al., 2009; Ye et al., 2004). Igf2!/! and control CSF was collected from

embryos obtained from homozygous breedings. Igf2!/! and control P8 brains

were obtained from homozygous crosses or paternal heterozygotes mated

with homozygous knockouts (DeChiara et al., 1991). All animal experimenta-

tion was carried out under protocols approved by the IACUCs of Harvard

Medical School, Children’s Hospital Boston, and UNC-Chapel Hill.

Antibodies
The following antibodies were purchased: Ctip2, Igf2 (for EM), Tbr2 (Abcam);

BrdU (AbD Serotec); Ki67 (Abnova); Vimentin 4A4 (Assay Designs); Pax6

(Developmental Studies Hybridoma Bank); b-catenin, Cdc42 (BD Biosci-

ences); AKT, phospho-AKT, Igf1R, phospho-Igf1R, CC3, and phospho-S6rp

(Cell Signaling); GLAST (Chemicon); Tuj1 (Covance); HRP conjugated anti-

Transferrin (Immunology Consultants Laboratory, Inc.); Igf2 (NAb; Millipore);

Cux1, Igf2 (for WB) (Santa Cruz Biotechnology); and phospho-Histone H3

(Upstate). Tbr1 was a kind gift of R. Hevner.

CSF Isolation
Embryonic rodent CSF, isolated as described (Zappaterra et al., 2007), was

kept on ice during collection, centrifuged at 10,000 3 g at 4"C for 10 min.,

and stored at !80"C. Human GBM and disease-free CSF samples were

collected by lumbar puncture from patients undergoing clinical evaluation.

The 56 GBM samples tested were obtained from 21 individuals representing

the full-range of disease progression. The samples used in analyses of highest

and lowest CSF Igf2 concentration were obtained from distinct individuals. All

research was approved by the IRBs at BIDMC and Children’s Hospital Boston.

Cortical Explants
The telencephalic wall was dissected onto polycarbonate membranes

(Whatman; 13 mm, 8.0 mm) and cultured for 24 hr as described in text. Artificial

(A)CSF (NaCl 119 mM, KCl 2.5 mM, NaHCO3 26 mM, NaH2PO4 1 mM,

glucose 11 mM, MgCl2 2 mM, CaCl2 2.8 mM) was supplemented with Igf2

(2 ng/ml; US Biologicals) as indicated. Igf2 NAb antibody was incubated

with E17 CSF for 1 hr at 4"C. Explants were pulsed with BrdU for 30 min

and fixed (60% methanol, 30% chloroform, and 10% acetic acid; 10 min).

For in vivo BrdU labeling, pregnant dams were administered a 3 hr BrdU

(60 mg/kg) pulse. Tissue was paraffin sectioned (5 mm).
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supported by a Sigrid Jusélius Fellowship, an Ellison/AFAR Postdoctoral

Fellowship, and Award Number K99NS072192 from the NINDS (M.K.L);

a Stuart H.Q. & Victoria Quan Fellowship (M.W.Z.), a NIH MSTP grant

(M.W.Z. and Y.J.Y.); the Child Neurology Foundation (X.C.); A Reason To

Ride research fund (M.L. and E.T.W.), a NINDS grant (RO1 NS048868)

(A.J.D. and P.Y.), a NICHD grant (RO1 HD008299) (A.J.D.), a NIH grant

Figure 7. The CSF Proteome Coordinates
Multiple Signaling Pathways that Regulate
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(A) Lysates of cortical cells were left untreated or

treated with 20% ACSF or E17 CSF and 10%

Wnt3a conditioned medium or its control medium

for 2 hr and subjected to immunoblotting with the

P-LRP6 or LRP6 antibodies.

(B) In situ hybridization forWnt5a and Fz1 inmouse

E14.5 cortex.

(C) Bmp activity was measured in E14, E17, and

adult rat CSF as luciferase signal in a clonally

derived Bmp-sensitive cell line. Responses were

compared to linear responses generated in the

same cell line by pure ligand (Bmp4; data not

shown). Bmp activity levels varied with age and

were statistically significant between E17 and

adult (ANOVA, p < 0.001; n = 4).

(D) Toppanel: expressionandnuclear localizationof

phospho-Smad (P-SMAD) 1/5/8 in E14 rat cortical

ventricular cells. Bottom panel: arrow points to

expression and nuclear localization of P-SMAD1/

5/8 in E16.5 mouse cortical ventricular cells.

(E) qPCRmeasurement ofBmps2, 4, 5, and7 in the

E16, E18, P0, and adult rat choroid plexus (CP).

(F) Quantification of RA activity in E14, E17, and

adult rat CSF. RA activity declined, based on

comparison of CSF activation of anRA responsive,

clonally derived cell line with response to RA at

known concentrations, frommidgestation through

adulthood (ANOVA, p = 0.07; n = 4).

(G) RA responsive progenitor cells at the cortical

ventricular zone from an E16.5 DR5-RARE trans-

genic mouse (LaMantia et al., 1993).

(H) qPCR of Raldh1, 2, 3, and Rdh10, in rat CP.
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The Cerebrospinal Fluid Provides 

a Proliferative Niche for Neural Progenitor Cells 
Maria K. Lehtinen, Mauro W. Zappaterra, Xi Chen, Yawei J. Yang, Anthony Hill, Melody Lun, 
Thomas Maynard, Dilenny Gonzalez, Seonhee Kim, Ping Ye, A. Joseph D’Ercole, Eric T. Wong, 
Anthony S. LaMantia, and Christopher A. Walsh 
 
Inventory of Supplemental figures and tables. 
 
We present 3 Supplementary Figures and 3 Supplementary Tables as further support of the main 
Figures 1-7 and Table 1.  
 
Supplemental Figure S1, related to Figure 1, presents data characterizing the 
PtenloxP/loxP/NestinCre-/- mouse and PtenloxP/loxP/Pals1loxP/+/Emx1Cre+/- mice. The following data 
are presented in the figure panels: 
 

A. Brain sizes of PtenloxP/loxP/NestinCre+/- and control mice.  
B. H&E staining of samples presented in (A). 
C. Higher magnification images of H&E staining shown in (B). 
D. Analysis of progenitor exit from cell cycle using Ki67 and BrdU immunostaining in 

embryonic PtenloxP/loxP/NestinCre+/- and control mice.  
E. Analysis of ratio of apical to basal progenitors in PtenloxP/loxP/NestinCre+/- and control     

mice. 
F. Cdc42 staining in PtenloxP/loxP/NestinCre+/- and control mice at E17. 
G. Brain sizes of PtenloxP/loxP/Pals1+/+/Emx1Cre+/-, PtenloxP/+/Pals1loxP/+/Emx1Cre+/-,    

PtenloxP/loxP/Pals1loxP/+/Emx1Cre+/-, and control mice at E14.5 
H. H&E staining of samples presented in (G). 

 
Supplemental Figure S2, related to Figure 4, presents data characterizing the role of 
embryonic CSF in supporting cortical explant survival and proliferation of neurospheres, an in 
vitro model of neural stem cells. The following data are presented in the figure panels: 
 

A. Representative images of E16 rat explants cultured with artificial or 100% E17 CSF and 
 immunostained with cleaved caspase 3. 
B. Quantification of embryonic CSF’s support of cortical explant survival compared to adult 
 CSF.  
C. Representative images of E16 explants cultured with E13, E17, P6, or adult CSF. 
D. Quantification of long-term neurospheres maintained by E17 CSF.  
E. Quantification of relative size of long-term neurospheres maintained by E17 CSF. 
F. Quantification of circularity of long-term neurospheres maintained by E17 CSF. 
G. Representative images of long-term neurospheres maintained by E17 CSF.  
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H. Neurospheres cultured with E17 CSF maintained responsiveness to Egf and Fgf. 
 
 
 

Supplemental Figure S3, related to Figure 5, presents Igf2 expression in mouse brain and CSF.  
 

A. Igf2 in situ hybridization at E14.5. 
B. Mouse CSF Igf2 expression by immunoblotting. 
 

Supplemental Table S1, related to Figure 3, presents tandem mass spectrometry (LC-MS/MS) 
analyses of rat E17 CSF. See separate Excel spreadsheet. 
 
Supplemental Table S2, related to Figure 4, presents data in which the CSF fraction containing 
proteins from 10-100kDa contained activities essential for neurosphere growth.  
 
Supplemental Table S3, related to Figure 4, presents data in which media conditioned with 
E17 choroid plexus provided enhanced support for neurosphere formation compared to media 
conditioned with embryonic cortex, adult choroid plexus, or adult brain. 
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SUPPLEMENTAL FIGURE LEGENDS 

Supplemental Figure S1, related to Figure 1.  Pten deletion results in increased brain size, 

progenitor proliferation, and partially restores the Pals1-deficienct brain phenotype.  (A) 

Representative brains from PtenloxP/+/NestinCre+/- and PtenloxP/loxP/Emx1Cre+/- mice at P0. Loss 

of Pten function in the developing neural tube increased brain size.  (B) H&E stained serial 

sections of PtenloxP/+/NestinCre+/- (top) and PtenloxP/loxP/NestinCre+/- (bottom) brains. Sections 

separated by approximately 160µm showed that both the radial thickness and the tangential 

extent of the cerebral cortex were increased in brains lacking Pten expression.  (C) Higher 

magnification images of sections from panel (B). The cortical plate appears disorganized in 

PtenloxP/loxP/NestinCre+/- mice.  (D) PtenloxP/+/NestinCre+/- and PtenloxP/loxP/NestinCre+/- pulsed 

with BrdU for 24 hours were analyzed at E14, E17, or E19 for proliferation. A greater percentage 

of BrdU positive cells remained in the cell cycle in PtenloxP/loxP/NestinCre+/- mutants compared to 

control littermates at all ages examined (E14: Control 70.1 ± 2.8%, PtenloxP/loxP/NestinCre+/- 85.5 

± 5.3%; E17: Control 28 ± 6.9%, PtenloxP/loxP/NestinCre+/- 44 ± 6.1%; E19: Control = 3.4%, 

PtenloxP/loxP/NestinCre+/- 8.4 ± 1.8%; t-test, p<0.05).  (E) PtenloxP/+/NestinCre+/- and 

PtenloxP/loxP/NestinCre+/- mutants were analyzed for numbers of apical (Pax6) and intermediate 

progenitors (Tbr2) and revealed a relative increase in numbers of Pax6-positive apical 

progenitors in PtenloxP/loxP/NestinCre+/- mutants at E16 and E17 (Numbers of positive staining 

cells per section at E17: PtenloxP/+/NestinCre+/- Tbr2 = 424 ± 43, Pax6 = 432 ± 52, Tbr2/Pax6 = 

99 ± 0.06; PtenloxP/loxP/Emx1Cre+/- Tbr2 = 529 ± 54, Pax6 = 651 ± 26, Tbr2/Pax6 = 0.80 ± 0.05. A 

similar trend was observed for Tbr2 positive progenitors labeled with BrdU 24 hours earlier at 

E16, where 36.0 ± 1.8% of BrdU positive cells were Tbr2 positive in PtenloxP/+/NestinCre+/- 

compared with 29.4 ± 1.3% in PtenloxP/loxP/NestinCre+/-. Collectively, these data demonstrate a 
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shift in Pten-deficient mutants from epithelial, Pax6-positive progenitors that divide 

asymmetrically to produce neurons or intermediate progenitors, towards symmetric divisions that 

produce two radial glia. Data are presented as mean r SD. (F) Apical marker expression 

including Cdc42 was disrupted in E17 PtenloxP/loxP/NestinCre+/- mice compared to littermate 

controls. (G) Conditional Pten deletion (PtenloxP/loxP/Emx1Cre+/-) resulted in an enlarged cerebral 

cortex already by 14.5. The small brain size of Pals1 heterozygotes appeared more normal in the 

double mutants by E14.5. (H) H&E staining of brains shown in panel (G). 

 

Supplemental Figure S2, related to Figure 4.  Embryonic CSF supports cortical explant 

survival and proliferation.  (A) E16 explants cultured for 24 hours in 100% E17 CSF or 100% 

artificial CSF were immunostained with the apoptotic cell death marker cleaved caspase 3 

(CC3).  Explants cultured in 100% embryonic CSF has decreased CC3 immunoreactivity 

compared to explants grown in ACSF.  (B) CC3-positive dying cells were quantified in E13 

explants cultured for 24 hours in 100% E17 CSF or 100% adult CSF and in E16 explants 

cultured for 24 hours in 100% E16 CSF or 100% adult CSF.  Embryonic CSF supports 

embryonic tissue viability and survival (E13 explant + E17 CSF = 39.5 ± 3.9; adult CSF = 163.5 

± 10.4; Mann-Whitney, p<0.05, n=3; E16 explant + E16 CSF = 33.7 ± 4.4; adult CSF = 122.1 ± 

19.4; Mann-Whitney, p<0.05, n=3 and n=4, respectively).  (C) Representative images of E16 

explants cultured with E13, E17, P6, or adult CSF quantified in Figure 4D-F).  (D) Dissociated 

cells from primary neurospheres cultured in E17 CSF for 44 DIV maintain GLAST-positive 

neural progenitors when cultured in embryonic CSF, n=2.  Quantification of number of 

spheres/cm2 when cultured for 10 DIV vs. 44 DIV.  (E) Quantification of relative colony size of 

spheres cultured for 10 DIV vs. 44 DIV.  (F) Quantification of circularity of spheres cultured for 
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10 DIV vs. 44 DIV. (G) Representative images of neurospheres quantified in D-F.  (H) Left and 

middle panels: Dissociated cells from primary neurospheres cultured in E17 CSF for 5 DIV and 

then supplemented with Egf and Fgf.  GLAST-positive-staining cells cultured in E17 CSF 

maintain responsiveness to Egf and Fgf suggesting that stem cells cultured in CSF maintain 

undifferentiated and uncommitted state.  Right panels: Dissociated cells from primary 

neurospheres cultured in Egf and Fgf for 10 DIV.  

 

Supplemental Figure S3, related to Figure 5.  Igf2 expression in mouse choroid plexus and 

CSF.  (A) Igf2 in situ hybridization at E14.5.  Igf2 levels are highest in the choroid plexus, 

leptomeninges, and vasculature. (B) Igf2 is transiently expressed in mouse CSF. 
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SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

Immunostaining 

Paraffin sections (5Pm) of brains or explants were dehydrated and subjected to antigen retrieval 

with Antigen Unmasking Solution (Vector), followed by blocking (PBS/5% serum), 

permeabilization, and antibody incubation. Alternately, cryosections (14-50Pm) were blocked, 

permeabilized, and incubated with antibodies. Immunostained cells counted in serial explants are 

expressed as numbers of cells along the ventricular surface as detailed in figure legends. All 

samples were counterstained with Hoechst 33258 (Sigma).  For quantification of cells in distinct 

cortical laminae, the radial extent of the cortex was either divided into six equally sized bins 

(Figure 1D) and quantified, or all positive staining cells were counted in an area of cortex of 

equal width across all samples (Figure 5H). All quantification was carried out using ImageJ 

software.  

 

Neurospheres 

E14, E17, or adult rat cortex was dissected in sterile HBSS and dissociated by the Papain 

Dissociation System (Worthington Biochem. Corp).  Primary spheres were generated in either 

CSF or DMEM/F12 supplemented with heparin, N2, Fgf2 (10ng/ml), and Egf (20ng/ml), and 

collected after 7-9 DIV.  In the latter case, primary spheres were then re-suspended in media 

without Egf or Fgf, dissociated, plated at a final density of 2,500 cells/cm2, and cultured as 

described in text.  Fresh media was supplemented at 4 DIV.  Cells were fixed in 4% 

paraformaldehyde and stained for GLAST.  
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Cortical cell cultures 

Rodent E13.5 cortices were isolated and dissociated by the Papain Dissociation System 

(Worthington Biochem. Corp).  Cells were cultured in NBM supplemented with penicillin-

streptomycin, glutamine, N2, and Fgf (10ng/ml) for 24 hours.  For Igf signaling experiments, 

cells were deprived of growth factors for 6 hours, followed by a 5 minute pulse of 20% ACSF, 

20% embryonic CSF, or Igf2 (20ng/ml). For P-LRP6 experiments, cells were left untreated, or 

treated with 20% CSF, 10% L-cell conditioned media, or 10% Wnt3a conditioned media (ATCC) 

for 2 hours.  

 

Tissue-conditioned media 

Rat tissue was dissected in approximately equal mass, washed in HBSS, and placed in 250 Pl of 

embryonic neurosphere media without Egf or Fgf at 37qC for 2-3 days. Dissociated primary 

neurospheres were added to the centrifuged conditioned media free of tissue content. The 

numbers of secondary neurospheres generated were assayed at 10 DIV. 

 

Indicator cell experiments 

Luciferase reporter constructs were generated using synthetic responsive elements (3xDR5-

RARE (Balkan et al., 1992) or 2xBMP responsive element (Korchynskyi and ten Dijke, 2002)), 

fused to a thymidine kinase minimal promoter and inserted into the Luciferase reporter of pGL3 

(Promega). Reporter cassettes were inserted into a vector containing a constitutive neomycin 

cassette, and electroporated into L-Mtk- (RA) or 3T3 (BMP) cell lines, and grown in DMEM 

containing 10% charcoal-stripped calf serum, antibiotic/antimycotic solution (Gibco/Invitrogen) 

and 750Pg/ml of G418. Clonal cell lines were produced by dilution cloning. Samples were 
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screened by adding CSF (20%) to assay media (as above, but with 5% charcoal-stripped calf 

serum and 25mM HEPES, pH 7.4). Cells were treated for 48 hours, with the sample refreshed 

after 24 hours. Effective ligand concentration was calculated by assaying wells using a luciferase 

assay, and comparing activity to assays treated with a dilution series of known concentrations of 

all-trans RA (Sigma) or recombinant mouse BMP4 (R&D Systems) prepared in ACSF.   

 

Electron microscopy 

Scanning electron microscopy (SEM): E12.5 mouse cortex fixed in 2% glutaraldehyde was 

processed for SEM according to standard procedures. Samples were examined using a Carl Zeiss 

1450 VP Scanning Electron Microscope. Transmission electron microscopy (TEM):  Pre-

embedding and immunogold labeling were carried out E17 rat embryos perfused with 0.5% 

glutaradlehyde / 2.5% paraformaldehyde and postfixed overnight.  Briefly, 100µm vibratome 

sections were blocked with 5% BSA / 5% goat serum in PBS, immunostained with anti-Igf2 

antibodies (Abcam) followed by incubation with a secondary antibody conjugated to colloidal 

gold, enhanced with silver, postfixed with 0.5% osmium tetroxide, and embedded.  Ultrathin 

sections were stained on copper grids stained with lead citrate and examined in a JEOL 1200EX 

Transmission electron microscope.   

 

In Situ hybridization 

Non-radioactive in situ hybridization was performed as described (Berger and Hediger, 2001), 

using digoxigenin (DIG)-labeled cRNA probes generated from a TA vector (Invitrogen) clone of 

Igf2 and Igf1R. 
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Brain size measurements 

Cortical perimeter was measured using ImageJ by tracing the edges of both hemispheres.  

Cortical surface area was measured similarly using ImageJ.  

 

Biochemical assays 

Igf1 concentration in rat CSF was measured using the Active Mouse/Rat Igf-1 ELISA 

(Diagnostic Systems Laboratories) according to the manufacturer’s instructions.  Igf2 

concentration in human CSF was measured using the Non-extraction Igf2 ELISA (Diagnostic 

Systems Laboratories) according to the manufacturer’s instructions.  

 

RNA quantification 

Expression of Bmp and RA synthetic and catabolic enzymes relative to Gapdh was measured in 

embryonic rat choroid plexus by Sybr-green qPCR.  The following primer sets were used: Bmp2 

forward (F): CGGGACCCGCTGTCTTCTAGTGTTG, Bmp2 reverse (R): 

GGGCACCACGACGTCCTTGCTG; Bmp4 (F): GGAGGCGCGAGCCATGCTAGTTTG, 

Bmp4 (R): CCCGGTTCCCTGGCTCTGCTCTTC; Bmp5 (F): 

GAAGACACGGGCCTCAGTCAAAGCAG, Bmp5 (R): 

CCATCCCAGATCGCGGAAACTCAC; Bmp7 (F): GGCAGGGAGTCCGACCTCTTCTTG, 

Bmp7 (R): CTTGGAGCGGTTCTGGCTGCGTTG; Raldh1 (F): 

TTCCTCCTGGCGTGGTGAACATTG, Raldh1 (R): ACGCAGCATTGGCCTTGATGGTAG; 

Raldh2 (F): GCAGGGGCAGCAATAGCGTCTCAC, Raldh2 (R): 

GCGCCTCTTGGCTCTTTCCACAC; Raldh3 (F): GCGGCCTCCAGGGTGTTTGTG, Raldh3 

(R): CCGCCGTGAGCCCATAGTCAGTG; Rdh10 (F): GCTGGTGCGGCCCAAGGAGAAG, 
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Rdh10(R): CCAGCGTTATTGACCAGGACCGAGAC; Ttr (F): 

GCCCTGGGGGTGCTGGAGAATC, Ttr (R): GAGCAGGGCTGCGATGGTGTAGTG; Gapdh 

(F): GGCATGGCCTTCCGTGTTCCTAC, Gapdh (R): GCCAGCCCCAGCATCAAAGGTG. 

Reactions were carried out 4 separate times in duplicate and mRNA expression levels were 

calculated by the comparative CT method. 
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