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Gene-drug interactions and the evolution of antibiotic resistance 

 

Abstract 

  The evolution of antibiotic resistance is shaped by interactions between genes, 

the chemical environment, and an antibiotic's mechanism of action. This thesis explores these 

interactions with experiments, theory, and analysis, seeking a mechanistic understanding of 

how different interactions between genes and drugs can enhance or constrain the evolution of 

antibiotic resistance. 

 

 Chapter 1 investigates the effects of the chemical decay of an antibiotic. Tetracycline 

resistant and sensitive bacteria were grown competitively in the presence of tetracycline and 

its decay products. Antibiotic decay did not only remove selection for resistance, but long-

lived decay products favored tetracycline sensitivity by inducing costly drug efflux pumps in 

the resistant strain. Selection against resistance by antibiotic-related compounds may 

contribute to the coexistence of drug-sensitive and resistant bacteria in nature. 

 

 Chapter 2 investigates how genetic interactions can favor particular combinations of 

resistance-conferring mutations. All possible combinations of a set of trimethoprim 

resistance-conferring mutations in the drug's target gene were constructed and phenotyped. 

Incompatibilities between mutations arose in a high-order, not pairwise, manner. One 

mutation was found to induce this ruggedness and create a multi-peaked adaptive landscape. 
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 Chapters 1 and 2 observed that non-optimal expression of a drug resistance gene or a 

drug's target could compromise antibiotic resistance. Chapter 3 broadly characterizes non-

optimal gene expression under antibiotic treatment, using a functional genetic screen to 

identify over one hundred pathways to antibiotic resistance through positive and negative 

changes in gene expression. Genes with the potential to confer antibiotic resistance were 

found to often go unused during antibiotic stress. The optimization of gene expression for 

drug-free growth was found to cause non-optimal expression under drug treatment, creating 

a situation where regulatory mutations can confer resistance by correcting errors in gene 

expression. 

 

 Chapter 4 investigates whether it is beneficial to up-regulate the genes encoding 

antibiotic targets when they are inhibited. Drug target genes were quantitatively over-

expressed, and drug resistance was found to not always increase, but alternatively to remain 

unchanged or even decrease. These diverse effects were explained by simple models that 

consider toxicity arising from gene over-expression, and mechanisms of drug action in which 

drugs induce harmful enzymatic reactions. 
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A cell can regulate some genes perfectly all of the time, and all genes perfectly some of the time, 

but a cell can not regulate all genes perfectly all of the time. 

 

-with apologies to Abraham Lincoln 
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Chapter 1. 

Chemical decay of an antibiotic inverts selection for resistance 

 

Adam C. Palmer1, Elaine Angelino1, Roy Kishony1,2  

1Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115. 

2School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138. 

 

Antibiotics are often unstable, decaying into a range of compounds with potential biological 

activities.  We found that as tetracycline degrades, the competitive advantage conferred to 

bacteria by resistance to it not only diminishes, but reverses to become a prolonged 

disadvantage due to the activities of more stable degradation products.  Tetracycline decay 

can therefore lead to net selection against resistance, which may help explain the puzzling 

coexistence of sensitive and resistant strains in natural environments. 
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More than half of all known antibiotics are secreted by soil bacteria (Kieser et al., 2000), 

mediating communication (Fajardo and Martinez, 2008; Linares et al., 2006; Yim et al., 2007), 

metabolism (Dantas et al., 2008; Price-Whelan et al., 2006) and warfare (Walsh, 2003). While 

resistance to these naturally-occurring antibiotics is prevalent in the soil environment, the 

genes conferring resistance do not seem to take over and fixate in these natural populations; 

instead resistant and sensitive bacterial strains coexist (D'Costa et al., 2006). It is therefore 

likely that while antibiotics select for resistant strains, other natural mechanisms might exist 

which select against resistance. Indeed, several natural chemicals are known to specifically 

inhibit growth of strains resistant to certain antibiotics (Bochner et al., 1980; Halling-

Sorensen et al., 2002). The ability of any compound to select for or against resistance depends 

not only on the selective pressure it exerts, but also on the duration of its activity, determined 

by its chemical stability. Many antibiotics are short-lived in the natural environment; they 

decay to an assortment of chemical species which may be more stable than the precursor 

drug, and may therefore have significant ecological impacts. Thus, competition between 

antibiotic resistant and sensitive strains may be influenced both by the short-term effect of an 

antibiotic and by the potential long-term effects of its degradation products (Figure 1.1a). 

Here we ask how the chemical decay of tetracycline influences selection for resistant strains. 

Tetracycline is widely used clinically (Chopra et al., 1992) and agriculturally(Sarmah et al., 

2006), its major degradation pathway is well characterized (Yuen and Sokoloski, 1977), and 

its decay products are found in soil, wastewater, and market tetracyclines (Jia et al., 2009; 

Sarmah et al., 2006; Walton et al., 1970). One of its decay products, anhydrotetracycline, is 

known to preferentially inhibit the growth of bacteria carrying the Tn10 tetracycline 



 3

resistance determinant, by binding the tetR regulator to induce expression of the costly tetA 

efflux pump (Eckert and Beck, 1989; Lederer et al., 1996; Moyed et al., 1983; Nguyen et al., 

1989). We investigated the selective advantage/disadvantage of resistance throughout the 

degradation process, by directly competing fluorescently labeled tetracycline resistant and 

sensitive strains of Escherichia coli. 

 

Tetracycline (Tet) undergoes reversible epimerization to epitetracycline (ETC) and also 

irreversible dehydration to anhydrotetracycline (ATC), with both epimerization and 

dehydration yielding epianhydrotetracycline (EATC) (Yuen and Sokoloski, 1977) (Figure 

1.1b). To accelerate the degradation process to convenient timescales we exposed tetracycline 

to phosphoric acid and high temperatures (Yuen and Sokoloski, 1977); Methods). At different 

time-points of exposure to these degrading conditions (tdeg), samples of the chemical reaction 

were taken and the reaction was stopped by shifting to neutral pH and freezing. To track the 

abundance of tetracycline and its degradation products over time, we measured the 

absorbance spectrum of each sample and compared it to the spectra of the individual 

compounds (Supplementary Figure 1.1). A previously established kinetic model (Yuen and 

Sokoloski, 1977), extended to account for the loss of the degradation products at very long 

timescales, was fully consistent with the spectral data (Figure 1.1c; Methods and 

Supplementary Figs. 1.2-1.4). 
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Figure 1.1. Tetracycline degrades into a range of longer lived compounds, with potential 

ecological impacts on selection for resistance. a, While an antibiotic selects for strains 

resistant to it, it is not clear what selective pressure is imposed by its soup of degradation 

products. b, Tetracycline degrades into a range of bioactive compounds, which themselves 

slowly decay further. c, Tetracycline decay products have different concentration profiles 

through time. Degradation is accelerated by pH of 1.5 and temperature of 75°C (Yuen and 

Sokoloski, 1977). Shaded areas in this stacked plot represent the kinetic model of (Yuen and 

Sokoloski, 1977) with a correction for long-term decay (Methods). Points are estimated 

fractions of Tet and its degradation products, obtained by fitting the spectra of pure 

compounds to a spectrum of the degraded Tet solution at each individual timepoint 

(Methods). ATC and EATC are not well distinguished spectrally, and so are plotted as their 

sum. These fitted points confirm the consistency of our samples with the kinetic model of 

(Yuen and Sokoloski, 1977).  
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Figure 1.1. Tetracycline degrades into a range of longer lived compounds, with potential 

ecological impacts on selection for resistance. (Continued) 
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To measure the selective pressure for tetracycline resistance imposed by samples of Tet that 

had been exposed to degrading conditions for different times, we used a fluorescence-based 

competition assay between resistant and sensitive E. coli (Chait et al., 2007; Hegreness et al., 

2006). Matching Tet resistant (TetR) and sensitive (TetS) strains were generated by supplying 

MG1655 with a plasmid carrying the tetR-tetA genes from the Tn10 transposon, or with the 

non-resistant parental plasmid, respectively (Lenski et al., 1994). These TetS and TetR strains 

were differentially labeled with chromosomally encoded cyan and yellow fluorescent proteins; 

pairs of strains were constructed in both dye permutations. Direct competition between the 

strains, as well as high-resolution measurements of their individual growth rates (Kishony 

and Leibler, 2003; Yeh et al., 2006), showed equal fitness of the TetS and TetR strains in the 

absence of Tet (Supplementary Figure 1.5). To measure selection for or against resistance, 

TetS and TetR strains were mixed 1:1 in fresh media, a sample of untreated or degraded Tet 

was added, and the cultures were grown overnight to stationary phase; the final ratio of 

sensitive cell count (NTet
S) to resistant cell count (NTet

R) was then measured by flow cytometry 

(Figure 1.2a). 

 

While Tet strongly selects in favor of resistance, we found that its cocktail of degradation 

products actually shows selection in favor of sensitivity (Figure 1.2c,d, trajectory 1). Solutions 

of Tet with little or no exposure to degrading conditions (tdeg < ~50 min), applied at high 

concentrations (1000 ng/mL), strongly favored the growth of resistant bacteria. However, 

following substantial degradation (tdeg > ~50 min), not only did the loss of Tet abolish 

selection for resistance, but the accumulation of its degradation products caused strong 



 7

selection against resistance (Figure 1.2c,d, change from red to green along trajectory 1; similar 

results are seen with chromosomally-integrated tetracycline resistance, in the presence of the 

naturally occurring compound fusaric acid, Supplementary Figure 1.6). Importantly, while 

the initial selection in favor of resistance was short lived, the subsequent selection in favor of 

sensitivity lasted for much longer times, and had not weakened much even at the latest time 

point of tdeg~450 min. 

 

We consider the full ecological impact of an antibiotic as the selective pressure of the 

antibiotic and its degradation products integrated over time. This integrated selective 

pressure is represented by the area between the curve of the fold changes in log(NTet
S / NTet

R) 

and the line log(NTet
S / NTet

R) =0 (no selection) (Figure 1.2d). When degradation is the primary 

means of loss (trajectory 1), the initial selection for resistance by Tet is greatly outweighed by 

the subsequent longer selection against resistance by more stable degradation products 

(Figure 1.1c). 

 

In a natural scenario, an initial drug dosage may not only be lost due to degradation, but also 

due to dilution, or diffusion (Figure 1.2b). To account for dilution in addition to degradation, 

we applied our TetR-TetS competition assay across a 2D gradient created by serial dilution of 

each of the time samples of the degradation reaction (Figure 1.2c). Dilution of the drug and 

its degradation products can profoundly affect the overall selection pressure: if Tet loss is 

dominated by dilution, degradation products do not appear at substantial concentration and 

so the selective pressure of the initial compound, Tet, is dominant, favoring resistance (Figure 
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1.2c,d, trajectory 3). In these conditions the net selection is in favor of resistance, 

demonstrating that dilution can eliminate the ability of degradation products to invert the 

selective pressure. Tet clearance in the clinical setting and in treatment of farm animals is 

dominated by dilution rather than degradation (Kelly and Buyske, 1960), consistent with the 

selective advantage of resistance in these settings (Levy et al., 1976). 

 

More generally, we envision that in the environment a drug may be lost simultaneously by 

both degradation and dilution. An environment initially containing a fixed dose of Tet will 

then move through different chemical environments along a linear trajectory across Figure 

1.2c, with a slope defined by the ratio between the dilution rate and the degradation rate 

(-λdil/λdeg, where λdil, λdeg are the reciprocals of the drug’s half-life due to dilution and 

degradation, respectively). We find that when both degradation and dilution are active, 

selective pressure can vary over time in a complex non-monotonic manner. For example, in 

trajectory 2 (Figure 1.2c,d), the initial selection in favor of resistance is followed by selection 

against resistance, but then at low concentrations of degradation products weak selection in 

favor of resistance returns. Since degradation products select in opposing directions 

depending upon their concentration, net selection depends non-trivially upon both the 

means of loss and the initial concentration of antibiotic (Supplementary Figure 1.7). 

 

We next asked to what extent these complex trajectories of selective effects, exerted 

throughout Tet decay, can be rationalized in terms of the individual selective pressures 

exerted by the drug and each of its degradation products. We measured the effect on the TetS-
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TetR competition imposed by Tet, ETC, ATC and EATC as a function of concentration 

(Supplementary Figure 1.8). We found that each of the degradation products has a different 

selective impact and that selection against resistance is mediated by ATC. This observation is 

consistent with the known action of ATC as a strong inducer of the costly tet operon (Eckert 

and Beck, 1989; Lederer et al., 1996) and adds to the growing evidence of signaling roles for 

antibiotics (Goh et al., 2002; Linares et al., 2006; Yim et al., 2007). In principle, ‘non-additive’ 

interactions may be present in drug combinations, producing effects not explainable by the 

sum of individual drug effects. We adopt the Bliss definition of additivity, where the effect of 

drugs in combination is equal to the multiplication of their individual effects (Bliss, 1939). To 

test for non-additive drug interactions, we measured selective pressures across a 2D gradient 

of Tet vs. a 1:1 mixture of ATC and EATC, chosen to approximately represent the chemical 

environments encountered following Tet decay (the epimerization is a relatively fast reaction 

leading to nearly equal amounts of ATC and EATC at late times, Figure 1.1c). We found that 

Bliss additivity reproduced all features of the measured 2D gradient, with quantitative 

deviations only at high drug concentrations, suggesting that interactions amongst Tet and the 

decay products ATC and EATC are primarily additive (Supplementary Figure 1.9). 

 

An additive model of the selective pressures throughout Tet degradation and dilution was 

then constructed from the kinetic model of chemical composition (Figure 1.1c, 

Supplementary Figure 1.3) and the selective effects of each of the individual compounds 

(Supplementary Figure 1.8). This additive model shows very good qualitative and quantitative 

agreement with the measured selective pressures along trajectories 1, 2 and 3 (Figure 1.2d, 
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compare dashed line with filled area). Selection by Tet and its degradation products can 

therefore be understood as the additive sum of the effects of each of the compounds. 
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Figure 1.2. Tetracycline degradation inverts the overall selective advantage of resistant 

strains. a, To measure selection for/against resistance by degraded tetracycline solution, a 

sample of the degradation reaction is taken at timepoint tdeg and is added to a 1:1 mixture of 

resistant (TetR) and sensitive (TetS) cells inoculated into fresh media. Fluorescent labels (YFP 

or CFP) allow changes in the ratio NTet
S / NTet

R  to be measured by flow cytometry, after 

overnight competition. b, Loss of the initial drug can occur by either degradation to alternate 

compounds (across x-axis), or by dilution (down y-axis). c, Selective pressure in favor (red) or 

against (green) resistance as a function of the degradation time tdeg and dilution (axes 

definitions match panel b). Black points mark measurements, between which the color map is 

interpolated. Numbered black lines are trajectories representing Tet loss by degradation alone 

(1), dilution alone (3), or a combination of both with respective rates λdeg and λdil (2). d, 

Selective pressure changes over time as Tet is lost along the three trajectories of panel c. 

Shaded areas represent the integrated selective pressure in favor (red) or against (green) 

resistance. The time axis is normalized by net rate of Tet loss (λdeg + λdil). Dotted black lines 

are an additive model of selective pressure, constructed by summing the changes in log(NTet
S / 

NTet
R) produced by each of the individual compounds (Supplementary Figure 1.8), given their 

concentrations from the kinetic model of Tet decay (Figure 1.1c). 
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Figure 1.2. Tetracycline degradation inverts the overall selective advantage of resistant 

strains. (Continued) 
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In the natural environment, antibiotics are not static - a single drug can decay into a range of 

compounds, each accumulating and degrading with different kinetics and displaying different 

selective effects. The simple additive sum of the effects of each of the degradation products 

can lead to complex, non-monotonic, patterns of selections for and against resistance. 

Consequently, the net evolutionary impact of a drug depends upon the manner of its eventual 

loss from the environment. When Tet loss is dominated by degradation, the initial selection 

for resistance by tetracycline can be substantially outbalanced by the prolonged selection 

against resistance imposed by its longer lived degradation products. While these results were 

demonstrated for accelerated degradation of tetracycline, they depend on relative, rather than 

absolute, stabilities of the drug and its degradation products, and therefore may be of 

relevance also to the natural environment. Interestingly, ATC is a biosynthetic precursor to 

Tet in the drug producing microbes (McCormick et al., 1968), and induces Tet efflux pump 

expression prior to the imminent production of the drug. This provides an evolutionary 

rationale for non-toxic drug derivatives to be potent inducers of resistant genes. It will be 

interesting to test the selective effect of decay of other drugs on various resistance 

mechanisms and via multiple decay pathways; different decay pathways will produce different 

metabolites, which could be affected by the environment and even by other surrounding 

microbes (Dantas et al., 2008). Selection against resistance by antibiotic decay may help 

explain the puzzling coexistence of antibiotic resistant and sensitive microbial strains in the 

natural soil environment. 
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Methods 

Strains and Media 

Fluorescently labeled strains MC4100-YFP and MC4100-CFP, described 

previously(Hegreness et al., 2006), were transformed with plasmid pBT107-6A to create a Tet 

resistant strain, or with the parent plasmid pACYC177 to create a Tet sensitive strain. 

pBT107-6A carries the Tn10 tetracycline resistance determinant, with a tetA promoter down-

mutation which has been demonstrated to provide higher fitness in the presence of 

10 μg.mL−1 Tet than either stronger or weaker promoters(Daniels and Bertrand, 1985; Lenski 

et al., 1994). 

 

All fitness measurements were performed in M63 minimal medium (2 g.L–1 (NH4)2SO4, 

13.6 g.L–1 KH2PO4, 0.5 mg.L–1 FeSO4•7H2O) supplemented with 0.2% glucose, 0.1% casamino 

acids, 1mM MgSO4 and 1.5 μM thiamine, and also 100 μg.mL–1 ampicillin and 50 μg.mL–1 

kanamycin for the maintenance of pACYC177 based plasmids. Drug solutions were made 

from powder stocks (Sigma, Vetranal analytical standard: tetracycline hydrochloride, #3174; 

epitetracycline hydrochloride, #37918; anhydrotetracycline hydrochloride, #37919; 

epianhydrotetracycline hydrochloride, #37921) dissolved in ethanol, with drug gradients 

made by serial dilution in M63 medium. 
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Tetracycline degradation 

Powdered tetracycline was dissolved in 1M phosphoric acid, pH 1.5, at 400μg/mL. Aliquots 

were incubated at 75°C and transferred to ice at various time points. These frozen samples 

were diluted 40× into M63 media for fitness assay, or into water for spectroscopy. 

 

Spectroscopy and determination of chemical composition from spectra 

All spectra were recorded at 10 μg/mL in aqueous solution, on a Cary 300 spectrophotometer 

(Varian). The kinetic model of (Yuen and Sokoloski, 1977), modified to include a reaction for 

the slow further decay of Tet degradation products with rate constant kloss, successfully fitted 

the time series of spectra (Supplementary Figs. 2, 3) using all other rate constants as 

previously measured by HPLC (Yuen and Sokoloski, 1977). Allowing all rate constants to be 

simultaneously fitted to all spectra produces only a 2% reduction in the sum of square errors; 

the previously measured parameters have values that minimize errors in the spectral 

alignment, for all parameters for which a well defined minimum exists (Supplementary 

Figure 1.4, Supplementary Table 1.1). Species concentrations were estimated from spectra at 

individual timepoints (points in Figure 1.1c) by numerically searching for the local minimum 

in alignment error over the characteristic wavelength ranges 250-290nm and 325-400nm, 

starting from the composition predicted by the kinetic model; numerical minimization was 

performed by the FindMinimum function of Mathematica 7.0 (Wolfram).  
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Competitive fitness assay 

Selection between resistant and sensitive cells by a particular chemical environment was 

measured by mixing stationary phase cultures of resistant and sensitive strains at 1:1 ratio, 

and further diluting 1:100 into fresh media containing the chemical environment of interest. 

Competitive growth occurred throughout 24 hours of growth with shaking at 30°C in clear, 

flat bottomed 96-well plates (Corning #3595), sealed with adhesive lids (Perkin Elmer 

#6005185). Sensitive and resistant cells were differentially labeled with a chromosomally 

integrated YFP or CFP gene driven by the Plac promoter, which is constitutive in the lacI 

strains used here. To obtain stronger fluorescence signals, the stationary phase cultures 

obtained after 24 hours of competition were subcultured 1:100 into fresh drug-free media, 

and grown as before for between 90 and 180 minutes, before the ratio of yellow to cyan 

fluorescent cells was counted by flow cytometry (Becton Dickinson LSRII; CFP excited at 

405nm, emission detected through 505LP and 525/550nm filters; YFP excited at 488nm, 

emission also detected through 505LP and 525/550nm filters). Plating and colony counting of 

selected wells confirmed that the final subculturing and brief growth did not alter the ratio 

NTet
S / NTet

R, within the margin of error of counting 200 - 500 colonies per plate. The selective 

pressures presented in Figure 1.2c and Supplementary Figure 1.8 are the average of two 

experiments, one where fluorescent labels were swapped between TetS and TetR strains. No 

substantial difference was detected between dye-swaps, indicating that the use of differential 

dyes does not influence NTet
S / NTet

R ratio (Supplementary Figure 1.10). At least 16 wells per 

plate were drug-free, for precise measurement of NTet
S / NTet

R ratio in non-selective conditions. 
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The mean ratio NTet
S / NTet

R (mean determined on log scale) in these drug-free wells provided 

the reference point, determined separately for each plate, for the fold change in NTet
S / NTet

R. 

For Supplementary Figure 1.6, fusaric acid was applied uniformly across the plate, including 

reference wells, such that any selection (changes in NTet
S / NTet

R) due solely to fusaric acid is 

removed in the normalization to reference wells. Thus, the selective effects seen in 

Supplementary Figure 1.6 are due to tetracycline and its degradation products, or drug-drug 

interactions between these compounds and fusaric acid. Sample flow cytometry data from 

three points in Figure 1.2c are presented in Supplementary Figure 1.11, demonstrating 

selection for, against, and neutral with respect to resistance. 

 

Growth rate assay 

TetS and TetR strains were transformed with a plasmid-borne, constitutively expressed 

bacterial bioluminescence operon(Kishony and Leibler, 2003). Photon counting of growing 

bioluminescent cultures allows precise measurements of cell densities over many orders of 

magnitudes (e.g. Supplementary Figure 1.5). Cultured were grown in black 96-well plates 

(Corning #3792) sealed with clear adhesive lids (Perkin Elmer #6005185). Readings were 

made by a Perkin Elmer TopCount NXT Microplate Scintillation and Luminescence Counter, 

stored in a 30°C room at 70% humidity, with duplicate 1 second readings per well. Wells 

contained 100μL of media inoculated with approximately 10 to 100 cells from fresh -80°C 

frozen cultures. Growth rate is the slope of the logarithm of photon counts per second (c.p.s.), 

and is taken from the line of best fit spanning the fastest 5 doublings. 
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Multiple sets of mutations can arise under antibiotic selection, all producing strongly drug-

resistant genotypes. We investigated the genetic interactions that separate adaptive peaks, by 

constructing and characterizing all combinatorial sets of trimethoprim resistance-conferring 

mutations in the DHFR gene, drawn from the results of parallel evolution experiments. The 

resulting adaptive landscape is almost maximally rugged, with direct and indirect 

evolutionary trajectories leading to multiple distinct peaks. Pairwise interactions could not 

explain the existence of multiple peaks, but rather, high-order genetic interactions were 
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responsible for a rugged and multi-peaked adaptive landscape. One mutation could 

profoundly influence the course of evolution: its presence or absence strongly altered the 

ruggedness or smoothness of the adaptive landscape. High-order genetic interactions 

constrain but do not confound the evolution of antibiotic resistance: evolution can always 

find a way to a highly drug-resistant genotype. 
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Antibiotic resistance can evolve through the sequential accumulation of multiple resistance-

conferring mutations in a single gene (Lozovsky et al., 2009; Toprak et al., 2012; Weinreich et 

al., 2006). These evolutionary pathways have been studied by examining the feasibility of all 

possible genotypic transitions leading from the ancestor to the evolved drug resistant 

genotype. Across different experimental systems, these studies have observed that only a 

limited number of pathways lead to a single adaptive genotype (Lozovsky et al., 2009; 

Weinreich et al., 2006). However, since these studies examined sets of mutations drawn from 

a single adaptive genotype, it is known a priori that it is ultimately beneficial to acquire all 

mutations, even though the sequence of acquisition may be constrained. However, in a recent 

laboratory evolution experiment where five isogenic, drug-sensitive Escherichia coli 

populations were evolved in parallel under dynamically sustained trimethoprim selection, 

multiple distinct genotypes that shared similar drug resistant phenotypes were observed 

(Toprak et al., 2012). Across all replicate experiments a total of six types of mutations were 

observed  in the dihydrofolate reductase (DHFR) gene (five amino acids were mutated and 

the DHFR promoter was mutated), but each evolving population accumulated a total of four 

of these mutations. Furthermore, the evolutionary trajectories had significant similarities: of 

five drug-adapted cultures, there were two pairs of genotypes that contained the same set of 

mutated residues. This observation suggests that some combinations of mutations were 

superior to others, and yet the different final adaptive genotypes reached remarkably similar 

levels of trimethoprim resistance. We sought to understand the nature of the genotypic 

landscape that produces multiple adaptive genotypes sharing a common drug-resistant 

phenotype.
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To map genotype to phenotype, we constructed and characterized all combinatorial sets of 

the six types of trimethoprim resistance-conferring mutations previously observed in DHFR 

(Toprak et al., 2012). We studied the effects of one promoter mutation (-35C>T, position 

indicated relative to the transcription start site) and five mutated amino acids; one site had 

been observed to have two different amino acid changes in different adaptive genotypes, 

making for six mutations in total: P21L, A26T, L28R, W30G, W30R, and I94L (Figure 2.1a). 

All combinations amounted to 96 possible variants of DHFR (25×31), which were synthesized 

and recombined into the E.coli chomosome in place of the wildtype DHFR gene (Methods) 

(Bershtein et al., 2012; Datsenko and Wanner, 2000). We were unable to generate 6 mutant 

strains out of 96 despite repeated attempts; we hypothesize that these particular combinations 

of mutations in an essential gene may be unviable (Supplementary Figure 2.1). The 

trimethoprim resistance of the mutant strains was quantified by measuring all strains’ growth 

rates across a gradient of trimethoprim concentrations (Figure 2.1b and Supplementary 

Figure 2.1). Each mutant strain was characterized by two parameters derived from these 

measurements: r0 is the growth rate in the absence of drug, and IC50 is the trimethoprim 

concentration that inhibits growth to 50% of the uninhibited wildtype growth rate (r0
WT/2) 

(Figure 2.1c). From this network of genotypes and their associated growth rates in 

trimethoprim we assembled the adaptive landscape of trimethoprim resistance (Figure 2.1d). 

Amongst each set of genotypes with the same overall number of mutations, a wide 

distribution in trimethoprim resistance was observed. Although each mutation conferred 

significantly increased trimethoprim resistance when acquired on a wildtype background, 

many combinations of two to five mutations generated approximately wildtype susceptibility 
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to trimethoprim. This indicates the presence of strong genetic interactions, in particular 'sign 

epistasis', where a mutation that is beneficial when it arises on one genetic background is 

deleterious when acquired on a different genetic background. 
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Figure 2.1. Synthetic construction and phenotyping of all combinations of seven 

trimethoprim resistance mutations. a, Trimethoprim resistance can be conferred by any of 

seven different mutations in the target of trimethoprim, DHFR. Each combination of these 

mutations was synthesized and recombined into the E.coli DHFR gene. b, The growth rate of 

each mutant strain was measured in liquid cultures spanning a range of trimethoprim (TMP) 

concentrations. Growth rate is the slope of a linear fit to log(OD600) over time (gray lines). c, 

Fitness costs of mutations are measured by the growth rate in the absence of trimethoprim 

(r0). The trimethoprim concentration that inhibits growth to 50% of the wildtype growth rate 

(IC50) is the intersection of the inhibition curve with the horizontal line where growth 

rate = r0
WT / 2. The growth rates marked by squares (no drug) and triangles (11 μg/mL TMP) 

are derived from the growing cultures shown in Figure 2.1b. d, Mutant strains are distributed 

in rows sorted by number of mutations. Each mutant's genotype is represented by colored 

circles atop a column (see colors in Figure 2.1a) whose height is proportional to the 

trimethoprim resistance (IC50) of that genotype. Each gain of mutation throughout the 

network of genotypes is shown as a line colored by the mutation gained; the series of thick 

lines starting at wildtype are adaptive trajectories observed in a long-term evolution 

experiment (Toprak et al., 2012). The trimethoprim resistance of the wildtype strain and each 

single mutant is shown in a vertically enlarged box for contrast. 



 28

 

 

 

Figure 2.1. Synthetic construction and phenotyping of all combinations of seven 

trimethoprim resistance mutations. (Continued) 
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We investigated the prevalence of fitness costs in the evolution of trimethoprim resistance by 

determining the correlation between growth rates in the absence of drug (r0) and either the 

number of mutations, or the level of trimethoprim resistance (IC50) (Figure 2.2).  While the 

fitness r0 declined with an increasing number of mutations (r = −0.41, P<10−4), there was no 

correlation between fitness and IC50 (r = −0.02 against log(IC50), P = 0.8). Indeed, many 

combinations of mutations produced high trimethoprim resistance with no significant fitness 

cost, and some other combinations of mutations were not particularly resistant but did incur 

large costs to fitness. Thus, while drug resistance mutations may compromise native protein 

function and incur fitness costs, such fitness costs are not an inevitable consequence of drug 

resistance, because selected combinations of mutations can ameliorate one another's 

deleterious effects and compensate for fitness costs. These observations in E.coli are 

consistent with a previous study of the evolution of pyrimethamine resistance through 

multiple mutations in the dihydrofolate reductase gene of Plasmodium falciparum (Brown et 

al., 2010). 
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Figure 2.2. Though the accumulation of resistance mutations on average incurs fitness 

costs, genotypes exist with high resistance and no cost. a, Fitness costs of mutations are 

assessed by the growth rate in the absence of trimethoprim, and are seen to gradually accrue 

with increasing numbers of mutations. Each point is a genotype positioned by its number of 

mutations and drug-free growth rate; points are color coded green to blue by the number of 

mutations, and a small horizontal scatter is added to improve the visibility of overlapping 

data. b, Each point is a genotype positioned by its trimethoprim resistance (IC50) and drug-

free growth rate (no added scatter), color coded by the same scheme as Figure 2.2a. Because 

of the existence of highly resistant genotypes with no fitness cost, and also weakly resistant 

genotypes with significant fitness costs, IC50 does not correlate negatively or positively with 

growth rate in the absence of trimethoprim. 
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Figure 2.2. Though the accumulation of resistance mutations on average incurs fitness 

costs, genotypes exist with high resistance and no cost. (Continued) 
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We examined how evolving populations might move through this landscape by evaluating all 

possible adaptive trajectories. We find 423 possible trajectories along which new mutations 

may be gained, previously acquired mutations may be lost, or an existing mutation can 

convert to a different (non-ancestral) mutation at the same locus; this latter option is possible 

at W30 where two different drug resistance alleles were observed in evolutionary experiments 

(Toprak et al., 2012). Every step in these 423 trajectories continuously improves IC50; neither 

drift nor transient decreases in resistance are permitted, and so they terminate at locally 

adaptive peaks. Examining the mutations that are acquired, and possibly lost, along these 

trajectories, we find that only the promoter mutation (−35C>T) is always acquired, and all 

but one of the amino acid changing mutations has some probability of being acquired and 

subsequently lost or converted in the process of adaption to trimethoprim (Figure 2.3a). 

These instances of mutational reversions must arise from sign epistasis, and demonstrate that 

strong negative genetic interactions produce a landscape on which both direct and indirect 

paths can be taken to adaptive peaks. These observations are supported by the observation of 

indirect adaptive trajectories in the experimental evolution studies that identified this set of 

mutations (Toprak et al., 2012), and are consistent with the fitness landscape of the TEM-1 

β-lactamase which also produces indirect adaptive trajectories (DePristo et al., 2007). 

 

It is unclear whether evolutionary trajectories in a rugged, multi-peaked adaptive landscape 

are guaranteed to find a path to a highly adaptive peak, or whether evolution might be 

trapped at local optima (Poelwijk et al., 2007). The rugged and multi-peaked landscape of 

trimethoprim resistance through mutations in DHFR allows us to address this question. For 
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each genotype we asked what is the most advantageous step (best change in IC50) accessible 

from that genotype? Genotypes have neighbours that are accessible by gaining, losing, or 

converting a mutation; for example, a genotype with four mutations (Figure 2.3b, pillar at 

center) can make seven possible genetic changes, including two gains of mutation, four losses 

of mutation, and possibly a conversion of a mutation. In the example in Figure 2.3b, only two 

changes can improve trimethoprim resistance: either loss of P21L or conversion of W30G to 

W30R, with the latter being the most advantageous step. The best possible improvement in 

IC50 from each genotype is plotted as a function of that genotype's initial IC50 (Figure 2.3c, 

black points), and when the best step is not to gain a mutation, we also show what the best 

step would be if only the gain of mutations was permitted (Figure 2.3c, orange points show 

best possible gain when this is an inferior option to a loss or conversion). We found that the 

best possible steps starting from low resistance were very large, and with increasing levels of 

initial resistance, the best possible steps became smaller in proportion to the reduced 

difference between the initial IC50 and the largest observed IC50. Any genotype where the 

best possible step is negative is a local optima within this set of mutations, since no further 

change in genotype can improve resistance - it is these points that may reveal the existence of 

'evolutionary dead-ends'. This landscape contained seven adaptive peaks, all carrying 4 

mutations, where no further gain, loss or conversion of mutations could improve resistance 

(Figure 2.3c, blue points). These genotypes can be thought of as three truly distinct peaks: two 

genotypes that are not neighbours of any other peaks (Figure 2.3d, two genotypes to far 

right), and a set of five genotypes that are connected by almost neutral drift through two 

other genotypes that carry 5 mutations (Figure 2.3d, connected set of genotypes). At many 
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genotypes the best possible gain of a new mutation confers less improvement in resistance 

than is possible by loss or conversion of a previously held mutation. In particular, many of 

these genotypes would be a local optimum if there were not advantageous steps out of these 

states through the loss or conversion of mutations. Thus, this adaptive landscape would be 

difficult to navigate by only gaining mutations: evolutionary trajectories could be trapped by 

many local optima, but these evolutionary 'dead-ends' are escaped by beneficial losses or 

conversions of mutations. Strong genetic interactions are thus the antidote to their own 

poison: sign epistasis can give rise to genotypes where the further gain of usually beneficial 

mutations is instead deleterious, but sign epistasis also acts upon previously acquired and 

previously beneficial mutations to make their loss or conversion a beneficial step facilitating 

continued adaptation. 
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Figure 2.3. Conversion and reversions bypass evolutionary dead ends, guaranteeing a path 

to reach one of several highly adaptive peaks. a, Simulated evolutionary trajectories over the 

adaptive landscape of DHFR (Figure 2.1d) show that when evolving trimethoprim resistance, 

it can be advantageous to lose a previously acquired 'resistance' mutation. b, Genotypes can 

change by the gain, loss, or conversion of mutations. Starting from the genotype encircled in 

black, the best possible improvement in IC50 is shown as a black arrow. Alternatively, one 

can evaluate the accessibility of the landscape if only the gain of new mutations is permitted; 

the best gain of mutation is shown as an orange arrow, which in this example lowers 

resistance. c, Determining the best possible improvement in IC50 shows that significant steps 

towards the maximum trimethoprim resistance are possible from all genotypes, provided that 

gain, loss, or conversion of mutations are permitted (black points). For genotypes where the 

best step is a loss or conversion of a mutation, the inferior option presented by only gaining 

new mutations is shown in orange. Orange points within the gray zone (below '×1' change in 

IC50) would be local optima, where an evolving population could be trapped at intermediate 

trimethoprim resistance, if it were not for escape by the loss or conversion of mutations. True 

peaks (blue points) are genotypes where no further gain, loss, or conversion of mutations can 

improve IC50. d, Seven genotypes each with 4 mutations are adaptive peaks. Five of these can 

be conceived of as a single 'adaptive plateau' (genotypes on left side) since they are connected 

through almost neutral transitions to two genotypes with 5 mutations (colored lines indicate 

the mutations gained or lost in these transitions). No pair of mutated sites is intrinsically 

incompatible - every possible pair co-exists in an adaptive peak. 
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Figure 2.3. Conversion and reversions bypass evolutionary dead ends, guaranteeing a path 

to reach one of several highly adaptive peaks. (Continued)  
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We next investigated the genetic interactions that produce distinct adaptive peaks. It can be 

proven mathematically that an adaptive landscape can only contain multiple peaks in the 

presence of peak-separating 'reciprocal sign epistasis', where two mutations (e.g. A → a and 

B → b) each change the sign of their effect when applied together; i.e. the transition AB → aB 

has an opposite effect to Ab → ab, and AB → Ab also has an opposite effect to aB → ab. This 

scenario is necessary to create losses of fitness along all genetic paths between two adaptive 

peaks, without which there would only be a single adaptive peak (Poelwijk et al., 2011). The 

separation of adaptive peaks by reciprocal sign epistasis has been previous observed as arising 

from pairwise incompatibility between two mutations; i.e. mutations a and b are individually 

beneficial, but deleterious when applied in combination. This interaction creates two separate 

evolutionary lineages, one with a and one with b, leading to separate adaptive peaks (Kvitek 

and Sherlock, 2011; Salverda et al., 2011). However, simple pairwise incompatibility cannot 

explain the multiple adaptive peaks observed in this landscape, because each possible pair of 

mutations is found to co-occur in an adaptive peak (Figure 2.3c). Since there are no 

intrinsically incompatible pairs of mutations, the genetic interactions that separate adaptive 

peaks must be more complex in nature. 

 

Inspecting the genetic interactions between pairs of mutations revealed high-order genetic 

interactions where a given pair of mutations could display a variety of qualitatively different 

interactions with each other, depending upon the presence of yet other mutations (Figure 

2.4a). 'Ruggedness' is the propensity for genetic interactions to change the sign of a mutation's 
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phenotypic effect (from advantageous to deleterious or vice versa); to understand the 

ruggedness of this adaptive landscape we investigated higher-order interactions by 

quantifying how each mutation affects the interactions amongst all other mutations. We 

defined a metric for ruggedness where each mutation i is assigned an information entropy Hi, 

calculated from the probability that acquiring the mutation has a beneficial (p+) or deleterious 

(p−) effect, over all possible genotypes on which it could be acquired: Hi = −p+.ln(p+) 

−p−.ln(p−). The overall ruggedness is the sum of each mutation's information entropy (∑i Hi). 

When the IC50s of two neighboring genotypes are within experimental error (Methods), we 

regard this as a neutral transition that does not contribute to the calculation of ruggedness. 

This definition permits that even if some mutations are beneficial and some are deleterious, 

the ruggedness is 0 provided each mutation is always beneficial or neutral, or always 

deleterious or neutral. Ruggedness is maximized when every mutation has equal chance of 

being beneficial or deleterious. Strikingly, by this metric the adaptive landscape as a whole 

(Figure 2.1d) is 83% as rugged as the theoretical maximum. For each mutation, ruggedness 

was calculated for the subset of the adaptive landscape lacking that mutation, and over the 

subset of the landscape always possessing that mutation (Figure 2.4b). For four mutations 

(−35C>T, A26T, W30R, I94L) their presence or absence had no effect on ruggedness, two 

mutations (L28R, W30G) modestly increased ruggedness when present, and one mutation, 

P21L, was the largest contributor: its presence nearly doubled ruggedness (49% vs. 90% of the 

theoretical maximum). Importantly, P21L is not simply incompatible with other mutations; 

P21L exists together with every other type of mutation in adaptive peaks, whose resistance 

would (by definition) decrease if P21L reverted to wildtype (Figure 2.3d). Rather, the presence 
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of P21L dramatically increases the likelihood that acquiring other commonly beneficial 

mutations will instead be deleterious (Figure 2.4b). We viewed the relation between IC50 and 

number of mutations, with or without P21L, to investigate how this ruggedness-inducing 

mutation affects the evolutionary process. Without P21L the maximum possible resistance 

increases rapidly at first before reaching a peak at certain combinations of 4 mutations, and 

including all 5 mutations besides P21L is approximately equal in resistance to the peak 

(Figure 2.4c, Figure 2.3d). This 'diminishing returns' epistasis is consistent with other studies 

of interactions between advantageous mutations, and may be a general property of adaptive 

evolution (Chou et al., 2011; Khan et al., 2011). However, in the presence of P21L the 

continued accrual of 'trimethoprim-resistance' mutations generates worse than diminishing 

returns: after resistance reaches a maximum at a combination of 4 mutations, the resistance 

of any set of 5 or 6 mutations is lower (Figure 2.4c). Similarly, many combinations of 3 to 5 

mutations that include P21L produce lower trimethoprim resistance than is found with any 

single mutation. 
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Figure 2.4. Ruggedness is the result of high-order genetic interactions, which are strongly 

induced by one mutation. a, P21L (red) and W30R (green) possess widely varying genetic 

interactions with one another when acquired on different genetic backgrounds. Mutations are 

indicated by colored dots and column height represents trimethoprim resistance (IC50). Red 

and green arrows point in the favorable direction for gaining or losing the P21L or W30R 

mutations, respectively. b, Ruggedness is calculated from the information entropy of 

mutations' effects: zero when each mutation's effect has a consistent sign, and maximised 

when each mutation has equal chance of being beneficial or deleterious. Calculating 

ruggedness from subsets of the adaptive landscape that excluding or including each mutation 

reveals that P21L is most responsible for ruggedness; when absent, other mutations are rarely 

deleterious, but when present, beneficial or deleterious effects are equally probable (pie charts 

over P21L). In contrast the presence or absence of I94L, for example, does not substantially 

alter the probability that other mutations are beneficial or deleterious (pie charts over I94L). 

c, Without P21L, trimethoprim resistance evolves with diminishing returns: fold-increases in 

IC50 become progressively smaller, until the addition of further 'resistance' mutations makes 

no significant change to resistance. Adaptation in the presence of P21L is much more rugged: 

acquiring fifth or sixth 'resistance' mutations lowers resistance from the peak, and many 

genotypes of 3 to 5 mutations are almost equally or even more susceptible to trimethoprim 

than wildtype. Solid red and black lines show the maximum level of trimethoprim resistance 

obtained with a given number of mutations (with or without P21L respectively). Points are 

shown with a small horizontal scatter to improve the visibility of overlapping data. 
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Figure 2.4. Ruggedness is the result of high-order genetic interactions, which are strongly 

induced by one mutation. (Continued)  
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The evolution of trimethoprim resistance through mutations in the drug's target DHFR is 

characterized by erratic genetic interactions. Adaptive pathways can take indirect paths, 

gaining, losing, or converting mutations along the way to any of several adaptive peaks. These 

multiple adaptive peaks are separated not by consistent pairwise incompatibilities between 

mutations, but by high-order genetic interactions where the genetic interaction between a 

pair of mutations widely varies depending on other mutations in the background genotype. 

One mutation has the ability to induce a level of ruggedness that is close to the theoretical 

maximum, giving rise to 'worse than diminishing' returns that prevent the continued gain of 

otherwise advantageous mutations. Despite these effects, indirect mutational paths can 

circumvent dips in fitness and thereby guarantee evolving populations a path to a highly 

drug-resistant genotype. 

 



 43

Acknowledgements 

We thank Nathan D. Lord for gift of a strain, and Ilan Wapinksi and Dirk Landgraf for 

technical assistance. This work was supported in part by grants from the US National 

Institutes of Health (GM081617), The New England Regional Center of Excellence for 

Biodefense and Emerging Infectious Diseases (AI057159), and the Novartis Institutes for 

BioMedical Research. 

 

Author Contributions 

E.T., S.K., A.V. and S.B. performed experiments; A.C.P., E.T. and R.K. analyzed data and 

wrote the manuscript. 

 



 44

Methods 

 

Strains and media 

All DHFR mutant strains were constructed in MG1655 attTn7::pRNA1-tdCherry (gift from 

N.D. Lord). Growth rate measurements were performed in M9 minimal medium (6 g.L–1 

Na2HPO4, 3 g.L–1 KH2PO4, 1 g.L–1 NH4Cl, 0.5 g.L–1 NaCl, 3 mg.L–1 CaCl2) supplemented with 

0.4% glucose, 0.2% casamino acids, and 1mM MgSO4. Drug solutions were made from 

powder stock (Sigma Aldrich: chloramphenicol, C0378; kanamycin, K1876; trimethoprim, 

T7883). 

 

Chromosomal Integration 

Mutant DHFR strains were constructed by replacing the endogenous (coding and noncoding 

regions) of the DHFR gene with chemically synthesized mutant DHFR sequences, following 

the method of (Datsenko and Wanner, 2000) specifically adapted for DHFR (Bershtein et al., 

2012). Briefly, mutant DHFR genes, including the native DHFR promoter, were synthesized 

and cloned into a plasmid with flanking kanamycin and chloramphenicol resistance genes. 

The integration cassette was PCR-amplified with primers possessing 60 nucleotide homology 

to the genes immediately upstream (kefC) and downstream (apaH) of DHFR in the E.coli 

chromosome. PCR products were DpnI digested (New England Biolabs, R0176) and 
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electroporated into strains carrying the lambda Red recombinase expression plasmid pKD46 

(Datsenko and Wanner, 2000). Integrants were selected on Lysogeny Broth (LB) agar with 30 

mg.L–1 kanamycin and 25 mg.L–1 chloramphenicol. Colony purification at 42°C removed the 

pKD46 plasmid, which was confirmed by a failure to grow on LB agar with 100 mg.L–1 

ampicillin. Single colonies were Sanger sequenced to verify the sequence of the mutated 

DHFR locus. Mutated DHFR genes were transduced by phage P1 into naive MG1655 

attTn7::pRNA1-tdCherry, transductants were selected on LB agar with kanamycin and 

chlorampenicol, and single transductant colonies were sequenced to again confirm the 

mutated DHFR sequence. Gene synthesis services were provided by GenScript, and DNA 

sequencing services were provided by GENEWIZ. 

 

Phenotyping assay 

Frozen stocks of all mutant strains were prepared in one master 96-well plate (LB with 15% 

glycerol). Approximately 0.3μL of each frozen stock was transferred by a pin replicator (V&P 

Scientific, VP408) to the corresponding wells of a range of 96-well plates, with 150μL of M9 

minimal media per well. Each of these plates possessed one trimethoprim concentration out 

of a 23-point range from 0.2 to 3000 μg.mL–1, plus duplicate cultures with no trimethoprim. 

Plates were incubated with shaking at 30°C and 70% humidity in an environmental room, 

and each well’s optical density at 600nm (OD600) was measured every 60 minutes. To more 

precisely measure growth rate in the absence of drug, the assay was repeated with fewer plates 

(duplicate cultures with no trimethoprim) and more frequent measurements (every 15 
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minutes); additionally growth was measured at 3600 μg.mL–1 trimethoprim to verify that this 

concentration inhibited the growth of all mutant strains. 

 

Growth rate and IC50 determination 

A background optical density of 0.03 units was subtracted from each OD600 measurement, 

based upon the optical density of a control empty well present in all assays. Along the 

experimentally measured functions of log(OD600) over time, linear fits were made to each 

series of four data points (four hours of growth). A time series of growth rates was 

constructed from the slopes of these linear fits, which was then smoothed by a median filter 

(median of 3 consecutive growth rates). The most rapid growth rate of this median-smoothed 

series was taken as the growth rate of that culture at that trimethoprim concentration. For the 

more frequently measured cultures with no trimethoprim, the same protocol was applied 

except that linear fits were made to every 7 consecutive log(OD600) measurements, and the 

median filter was taken over 5 consecutive growth rates. 

 

The trimethoprim resistance of each strain was quantified by the IC50, as calculated from the 

function of growth rate versis trimethoprim concentrations. Specifically, linear interpolations 

of growth vs log([trimethoprim]) were constructed, and IC50 was calculated as the largest 

trimethoprim concentration at which this linear interpolation of growth rate was equal to half 

of the uninhibited wildtype growth rate (half of 0.7 doublings/hour = 0.35 doublings/hour). 
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To quantify the experimental error in IC50 measurements, a distribution of IC50 estimates 

was acquired by performing the above protocol on an ensemble of 1000 functions of growth 

rate versus trimethoprim, where for every member of the ensemble each growth rate 

measurement is multiplied by a number drawn from a normal distribution with a mean of 1 

and a standard deviation of 0.07; chosen such that the artificially 'noisy' data set has a Z-score 

that is twice the Z-score of the duplicate experimental measurements with no trimethoprim. 

From this ensemble, a standard deviation was calculated for each genotype's IC50; this 

standard deviation was small when growth is inhibited over a narrow range of trimethoprim 

concentrations, and large when growth gradually declines over a wide range of trimethoprim 

concentrations. When simulating evolutionary trajectories (Figure 2.3a) and calculating 

landscape ruggedness (Figure 2.4b), we required 99% confidence that the IC50 values of 

neighboring genotypes were not equal, or else they were considered to be connected by 

neutral drift. Drift transitions between genotypes were not permitted in simulated 

evolutionary trajectories, and drift transitions did not contribute to the calculation of 

ruggedness, where information entropy was calculated only from confidently beneficial or 

confidently deleterious transitions. 
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The effects of antibiotics are mediated by their direct or indirect interactions with individual 

proteins in the cell, as well as by the abundance of those proteins. Hence, antibiotic resistance 

can evolve not only by mutations that change the amino acid sequences of proteins, but also 

by mutations that change the expression level of proteins. To explore the potential of changes 

in gene expression to confer antibiotic resistance, we implemented a pooled diffusion-based 

assay to screen all viable gene over-expression and gene deletion mutants of Escherichia coli 

against a broadly representative panel of 31 antibiotics. We found 136 positive or negative 

changes in gene expression that confer drug-specific or multi-drug resistance. These genes 

span a diverse range of functions and most were not previously associated with antibiotic 

resistance; only 4 are drug targets. By quantitatively adjusting gene expression and measuring 

resistance, we find that intrinsic antibiotic defense systems, and also 'protoresistance' genes 

that hold enormous potential for resistance, are often regulated so as to actually confer little 

resistance to the wildtype strain. We rationalize the abundance and diversity of hits by 
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viewing gene-regulation as an optimization problem: because antibiotic treatment results in 

the non-optimal expression of some genes, there exist many possibilities for the evolution of 

drug resistance through regulatory mutations that deploy latent defense capabilities or correct 

other errors in gene expression. 
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Mutations can confer antibiotic resistance by changing the amino acid sequence of a protein 

(coding mutations) or by altering the expression level of proteins in a cell (non-coding, 

regulatory mutations). Resistance mutations have been identified in regulatory sequences in 

antibiotic resistant isolates from the clinic and from laboratory evolution experiments. These 

mutations have been found to confer antibiotic resistance by mechanisms such as over-

expression of a drug’s target, over-expression of drug defense systems, and the down-

regulation or deletion of genes required for drug entry or enzymatic activation of a pro-drug. 

Examples include: trimethoprim resistance acquired by over-expression of its target enzyme 

dihydrofolate reductase (Flensburg and Skold, 1987); penicillin resistance acquired by the 

over-expression of drug degrading beta-lactamases (Bergstrom and Normark, 1979); and 

cephalosporin resistance acquired  by loss of porins through which the drug enters the cell 

(Curtis et al., 1985). However, these and other examples have generally been identified 

individually, and because regulatory mutations can act in trans it remains challenging to 

systematically identify regulatory pathways to drug resistance by genotypic approaches 

(Courvalin, 2005). This limitation can be overcome through the use of genome-wide libraries 

of strains where each has a defined change in gene expression, e.g. deletion or over-

expression. Genome-wide screens with such libraries have identified gene deletions which 

confer antibiotic hypersensitivity (Girgis et al., 2009; Tamae et al., 2008), and gene 

duplications which confer stress resistance; although the latter study utilized a competitive 

growth method that only identified 1 to 3 genes per stress (Soo et al., 2011). The most 

comprehensive such studies screened all viable homozygous and heterozygous gene deletions 

in diploid S. cerevisiae or all viable gene deletions in E. coli against hundreds of chemical 



 53

stresses (Hillenmeyer et al., 2008; Nichols et al., 2011). However, as both of these studies 

aimed to measure phenotypic signatures for each gene, stresses were applied only at sub-

inhibitory levels, and so gene deletions that confer survival at normally lethal stress levels 

were not identified. Thus, a systematic and sensitive screen for positive and negative changes 

in gene expression that confer antibiotic resistance is absent. 

 

In this study, we perform functional genetic screens in E. coli for drug-specific and multi-

drug resistance conferred by increasing or decreasing gene expression levels, using a panel of 

antibiotics representing most classes effective against gram-negative bacteria. To accomplish 

this, we developed a robust genome-wide screen to identify gene expression changes 

conferring drug resistance. We employ two E.coli strain libraries: the 'KEIO' collection of 

strains containing each viable gene deletion (Baba et al., 2006), and the 'ASKA' collection 

wherein each gene is individually expressed from an IPTG-inducible promoter on a plasmid 

(Kitagawa et al., 2005). The ASKA collection of plasmids was transformed from its host 

cloning strain to the 'wildtype' MG1655 ΔlacIZYA for healthy growth; additionally the 

lacIZYA deletion allows IPTG to exclusively induce plasmid-based expression without fitness 

effects from induction of the lac operon. Screening large strain collections for drug-resistant 

mutants typically requires exploring a range of discrete, finely-tuned drug concentrations 

using high-throughput laboratory automation. We have addressed these challenges with a 

simple two-step pooled diffusion-based screen on agar (Figure 3.1a): (1) a strain library 

(deletion or over-expression) is pooled and seeded as a lawn on agar. An aliquot of 

concentrated drug solution is spotted in the center of the plate, as in a classical disc-diffusion 
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assay, and diffuses through the media to form a continuous spatial gradient of drug 

concentrations. Typically, following incubation, the wild type strain will grow into a dense 

lawn across the plate, except in a zone of clearing surrounding the drug source, where drug 

concentrations are high enough to preclude growth. Strains with enhanced resistance to the 

drug can grow in the higher drug concentrations closer to the center, and are thus visible as 

individual colonies inside the zone of inhibition; (2) Drug resistant colonies are picked and 

identified by Sanger sequencing of the expression plasmid or of the chromosome adjacent to 

the site of a gene deletion (Supplementary Methods).  Because the diffusion gradient samples 

a continuum of drug concentration space, this rapid and inexpensive assay is robust with 

respect to drug concentrations and sensitively detects improvements in drug resistance.  

 

We employed our assay on 31 antibiotics, representing all major classes of antibiotics effective 

against gram-negative bacteria (Table 3.1). The gene deletion collection represents the 

extreme case of down-regulation, and utilizing the IPTG-inducible promoter driving the gene 

over-expression collection, we screened against both weak and strong up-regulation (using 

15μM and 150μM IPTG, respectively). 48 colonies were picked and sequenced for each of 

three expression conditions per drug (deletion, weak over-expression, strong over-

expression). Inspection of the assay plates reveals discrete colonies within the high drug 

concentration zones of clearing, showing that both gene deletion and gene over-expression 

can confer drug resistance. The presence and abundance of drug-resistant gene expression 

mutants is highly variable across drugs, with very strongly resistant mutants appearing on 

some drugs (e.g. penicillin G, trimethoprim) while some drugs permitted no resistant 
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mutants (e.g. colistin) (Figure 3.1b). In contrast, the ‘wildtype’ reference plates rarely show 

colonies in the zone of inhibition, representing infrequent spontaneous drug resistance 

mutations. To avoid false identifications from the occurrence of spontaneous resistance 

mutations, we required two or more observations of each specific gene-drug interaction (false 

discovery rate ≤ 1%). We also noted a few interactions where a change in gene expression that 

had been repeatedly observed to resist one drug (satisfying the previous criteria) was also 

observed once with a second drug of the same mode of action (false discovery rate ≤ 5%). 
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Table 3.1. List of antibiotics used in this study, mechanism of action, and abbreviation. 
 

Mechanism 
of action 

Drug class Drug name Abbr. 

Cell Wall 
Synthesis 

Cephalosporin 
Cephalexin CLX 
Cefoxitin FOX 
Cefsulodin CFS 

Glycopeptide Vancomycin VAN 

Penicillin 

Ampicillin AMP 
Carbenicillin CRB 
Mecillinam MEC 
Penicillin G PEN 

Cell Membrane 
Polypeptide 

Colistin COL 
Polymyxin B PMB 

Fatty acid synthesis inhibitor Triclosan TCL 
Transcription Rifamycin Rifamycin SV RIF 

Translation 
 

Aminoglycoside 
Amikacin AMK 
Streptomycin STR 
Tobramycin TOB 

Macrolide 

Azithromycin AZI 
Erythromycin ERY 
Spectinomycin SPX 
Spiramycin SPR 

Lincosamide Clindamycin CLI 

Tetracycline 
Doxycycline DOX 
Tetracycline TET 

DNA Synthesis 

Quinolone 
Ciprofloxacin CPR 
Lomefloxacin LOM 
Nalidixic acid NAL 

Folate synthesis inhibitor 
Trimethoprim TMP 
Sulfacetamide  SCM 
Sulfamethoxazole SMX 

Free radical 
production 

Glycopeptide 
Bleomycin BLM 
Phleomycin PHM 

Nitrofuran Nitrofurantoin NIT 
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Figure 3.1. A genome-wide screen identifies changes in gene expression that confer 

antibiotic resistance. a, A library of  E.coli strains with genes deleted or overexpressed is 

pooled and plated as a lawn on agar.  A drug spot is applied which creates a zone of growth 

inhibition. Members of the strain library with increased drug resistance grow inside the zone 

of inhibition (yellow colonies), and are picked and identified by DNA sequencing. b, 

Photographs of assay plates for five example drugs (out of 31 drugs in total) illustrate that 

both gene deletion and over-expression can confer drug resistance, and the possible levels of 

resistance range from none at all (e.g. colistin), to modest (e.g. clindamycin, vancomycin), to 

very strong (e.g. penicillin, trimethoprim). Plate images of all drugs are shown in 

Supplementary Figure 3.1. 



 58

 

 

Figure 3.1. A genome-wide screen identifies changes in gene expression that confer 

antibiotic resistance. (Continued) 
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We sequenced over 2400 drug resistant colonies and identified over 200 gene-drug 

interactions where a change in gene expression was repeatedly observed to increase resistance 

to an antibiotic. These changes in gene expression consisted of a mixture of over-expression 

and deletion (59% and 41% of genes, respectively) (Figure 3.2). For only 4 of 31 drugs did we 

not identify any changes in individual gene expression that confer resistance, and 2 of these 

were the membrane-disrupting drugs colistin and polymyxin B where it is unclear how an 

internal change in gene expression might improve resistance. The majority of expression 

changes were observed to increase resistance to drugs only within a single mechanistic class 

(93% of genes), and have not been previously associated with drug resistance (83% of genes). 

Amongst those genes known to be associated with antibiotic resistance, we have reproduced 

several drug-specific and multi-drug resistant regulatory mutations previously identified in 

clinical isolates or experiments (Supplementary Table 3.1). These results demonstrate that for 

most antibiotics there are many regulatory mutations with the potential to increase resistance.  
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Figure 3.2. Many positive and negative changes in gene expression can confer drug 

resistance. Drugs (black hexagons) are grouped by mechanism of action (see Table 3.1 for 

abbreviations). E. coli genes are marked by red circles when deletion confers drug resistance 

and blue circles when over-expression confers drug resistance; known drug targets whose 

over-expression confers resistance are outlined in dark blue. Changes in gene expression that 

resist only one mechanism of drug action are grouped around the drugs of that mechanism, 

while those that resist multiple classes of drug are shown in the center. Pale colored links 

denote changes in gene expression that were identified only once as resisting a particular 

drug, that are included because they were repeatedly observed to resist another drug of the 

same mechanism of action. Supplementary Table 3.1 lists all gene-drug interactions 
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Figure 3.2. Many positive and negative changes in gene expression can confer drug 

resistance. (Continued) 
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A multitude of drug-specific pathways to resistance were observed. Amongst those genes with 

annotated functions, a diverse range of possible resistance mechanisms are demonstrated or 

suggested. Resistance mechanisms suggested by functional annotations include modification 

of the cellular process affected by a drug, increased flux through a drug-inhibited pathway, 

modification of cell permeability, chemical modification of a drug, and the activation of drug 

efflux and acid resistance systems (Table 3.2). Additionally, resistance to various antibiotics 

resulted from changes in the expression levels of numerous genes involved in the metabolism 

or transport of lipopolysaccharide, enterobactin, polyamines, and ubiquinone. These cases 

where a resistance mechanism can be inferred, or at least a particular metabolic process is 

implicated, represent only one third of the changes in gene expression that increase antibiotic 

resistance, while the remaining two thirds act by yet unclear mechanisms. 
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Table 3.2. Mechanisms of drug resistance mediated by changes in gene expression. 
See Supplementary Table 3.1 for all gene-drug interactions and functional annotations. 
Genetic change Putative resistance mechanism 

Modification of a cellular process affected by drug 
sbmC Inhibits DNA Gyrase and confers resistance to DNA damage by phleomycin
ΔdacA Alters the peptidoglycan moiety bound by vancomycin
ΔrodZ Loss of a binding partner of the target of mecillinam confers mecillinam resistance

ΔdksA 
Loss of an RNA Polymerase binding protein increases resistance to the RNA 
Polymerase inhibitor rifamycin SV 

hflX 
Over-expression of ribosome component increases resistance to the translation 
inhibitors clindamycin and erythromycin 

ΔrpmG Loss of ribosome component increases clindamycin resistance  
Alteration of cell permeability 

ΔompF, ΔompR, ΔasmA Loss of the porins through which cephalosporins enter the cell 
ΔsbmA Loss of a transporter through which antimicrobial peptides enter the cell 
amiA Increased expression of a peptidoglycan amidase 
bssR Increased expression of a biofilm regulator

Increased flux through drug-inhibited pathway 
nudB Increased rate of first reaction in folic acid synthesis pathway 

ΔfolM, ΔfolX 
Increased flux through folic acid synthesis pathway by preventing substrate use for 
tetrahydromonapterin synthesis 

folM Drug-insensitive replacement for a drug-inhibited enzyme 
folA, mrcB, mrdA, fabI Increased expression of a drug-inhibited enzyme

Drug modification 
ΔnfsA Loss of enzyme that catalyzes pro-drug activation 
ampC Expression of enzyme that inactivates drug

Drug resistance / drug efflux systems 
marA, soxS Transcriptional activation of multidrug resistance systems 
Δlon, ΔrsxC Loss of enzyme required for inactivation of mar or sox systems, respectively 
ycjR Component of SdsRQP efflux pump
baeR Increased transcription of MdtABC efflux pump

Acid resistance systems 
cadA, cadB Activation of Lysine-dependent acid resistance system
gadE, gadW, ydeO Activation of Glutamic acid decarboxylase acid resistance system 

Lipopolysaccharide metabolism 
 ΔlpcA, ΔrfaC, ΔrfaD Defects in lipopolysaccharide synthesis and modification
eptB Increased phosphoethanolamine modification of lipopolysaccharide 

Enterobactin transport and modification 
ΔfepB, ΔfepC, ΔfepG Loss of ferric enterobactin ABC transporter
Δfes Loss of ferric enterobactin hydrolysis
entS Increased expression of enterobactin transporter

Polyamine metabolism and transport 
puuP Increased expression of putrescine transporter
rpmH Decreased polyamine synthesis, but increased intracellular polyamines 
ΔspeA, ΔspeB Loss of putrescine biosynthesis

Ubiquinone metabolism 
ΔubiF, ΔubiG, ΔubiH Loss of ubiquinone biosynthesis 
nuoI Increased expression of NADH:ubiquinone oxidoreductase 
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We also identified 9 genes whose over-expression increases resistance against multiple 

mechanisms of drug action (e.g. both cell wall synthesis drugs and DNA synthesis drugs), 

including the known multi-drug resistance genes marA and soxS, and 7 novel multi-drug 

resistance genes of varied functions. gadW is a transcriptional regulator of acid resistance; 

bssR regulates biofilm formation and may confer multidrug resistance through altered 

permeability; and ddpF is a putative component of an ABC transporter. The functional 

annotations of the remaining 4 multi-drug resistance genes (hemD, yhbT, gmr, and rbsR; see 

Supplementary Table 3.1) do not suggest potential mechanisms of resistance.  

 

Regulatory mutations in the specific targets of drugs are of particular interest. While many 

antibiotics are not inhibitors of a single protein (instead inhibiting a large complex, a family 

of related enzymes, or damaging a non-protein target such as the cell membrane), 10 of the 31 

antibiotics in our screen specifically bind to one or two enzymes. If an antibiotic acts by 

disrupting the activity of its target, a higher concentration of the target might be able to 

restore its activity. Strikingly, only 4 of these 10 antibiotics were resisted by over-expression of 

their target gene, and 2 of these only when over-expressed weakly, not strongly (Figure 3.2, 

Table 3.3). Thus, a drug's direct target can be absent from the set of regulatory mutations that 

confer drug resistance. 
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Table 3.3. Many specific inhibitors are not resisted by over-expression of their target. 

Only 4 antibiotics were resisted by over-expression of their specific target gene(s), and for 2 of 

these resistance was only conferred by weak, but not strong, target over-expression (genes 

with *). Conversely, antibiotic resistance can often be increased by the over-expression of 

certain non-target genes. 

Antibiotic 
Target over-expression 

confers resistance? 
Non-target genes that 
confer resistance when 

over-expressed (#) Yes No 
Cephalexin  ftsI 12
Cefsulodin mrcB* mrcA 3
Mecillinam mrdA* 11
Trimethoprim folA 2
Sulfamethoxazole  folP 3
Sulfacetamide  folP 6
Ciprofloxacin  gyrA, parC 4
Lomefloxacin  gyrA, parC 0
Nalidixic acid  gyrA, parC 2
Triclosan fabI 0
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These gene-drug interactions identify genes for which a change in expression improves 

survival, and therefore are not optimally regulated under antibiotic stress in the wildtype cell. 

For these genes the response of a wildtype cell to antibiotic treatment produces less than, or 

perhaps even none, of its maximal potential for antibiotic resistance that could be achieved 

with an optimal regulatory response. We investigated what fraction of the maximum 

potential resistance is realized by E. coli for the 2 most broadly protective multi-drug 

resistance genes, marA and soxS, and for 2 strong drug-specific resistance genes, ampC and 

sbmC. To answer this question it is necessary to remove the native transcriptional regulation 

mechanisms and obtain full experimental control over these genes’ expression. We achieve 

this by constructing hybrid ‘gene deletion - gene expression’ strains in which a plasmid 

bearing IPTG-regulated gene expression is transformed into a strain where the matching gene 

is deleted from the chromosome (Figure 3.3a). Two-dimensional gradients of drug dose and 

IPTG-controlled gene dose were constructed across microtiter plates and bacterial growth 

rates were measured using a bioluminescence assay with sensitivity far exceeding optical 

density techniques (Kishony and Leibler, 2003). These experiments assessed how drug 

resistance depends on gene expression and how the maximal possible drug resistance 

compares to the resistance of the wildtype strain and a strain lacking the gene. 

 

MarA and SoxS are global regulatory transcription factors with partially overlapping sets of 

target genes whose activation confers resistance to multiple antibiotics, organic solvents, and 

oxidative stresses through mechanisms such as upregulation of efflux pumps and 

downregulation of porins (Alekshun and Levy, 1999; Martin and Rosner, 2002). The growth 
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of strains with regulated expression of either marA or soxS were examined in concentration 

gradients of 9 antibiotics representing the 4 modes of action that were observed to interact 

with marA and soxS. We find that marA and soxS have the potential to boost resistance to 

ampicillin, mecillinam, clindamycin, doxycycline, ciprofloxacin and trimethoprim (Figure 

3.3b). However, this potential for resistance is only well used by the wildtype strain in the case 

of clindamycin (marA and soxS) and trimethoprim (soxS only), and then only under strong 

growth inhibition, and not at moderate growth inhibition. (Figure 3.3c, Supplementary 

Figure 3.3a). Thus, many antibiotics could potentially be resisted by intrinsic stress response 

systems, but remain effective because of a regulatory failure to fully utilize those defenses. 

This phenomenon underlies the clinical observation of mutations that activate the mar or sox 

operons in multi-drug resistant E. coli isolates (Koutsolioutsou et al., 2005; Maneewannakul 

and Levy, 1996). 
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Figure 3.3. Multi-drug resistance systems are often poorly utilized. a, The optimality of a 

gene's response to antibiotic treatment was investigated by comparing the drug susceptibility 

of three E. coli strains: one lacking the gene (black), one with wildtype gene regulation 

(green), and one where susceptibility can be measured over a range of experimentally 

controlled gene expression levels (red). b, The optimality of the responses of the multi-drug 

resistance factors marA and soxS were studied in 9 antibiotics. Drug concentrations are 

normalized by the IC50 (concentration for 50% inhibition) of the strain lacking the gene of 

interest. For regulated gene over-expression, the growth rate shown is the highest over all 

expression levels. For those drugs where gene expression (red) increased resistance relative to 

gene deletion (black), the wildtype strain (green) frequently used only a fraction of the 

potential for drug resistance. c, On an empirical fitness landscape (growth rate vs drug dose 

and gene expression) the gene expression response that maximizes growth at each drug dose 

(red line) can be compared with the wildtype response (green), which is inferred by matching 

the wildtype growth rate to the level of controlled gene expression producing the same 

growth rate. In ampicillin and ciprofloxacin, a sub-optimal use of marA is observed. In 

clindamycin the wildtype cell does not use marA for drug resistance until growth inhibition is 

greater than 50%, after which marA use becomes optimal. 
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Figure 3.3. Multi-drug resistance systems are often poorly utilized. (Continued) 
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AmpC is both a beta-lactamase and a peptidoglycan hydrolase required for normal cell 

morphology (Bishop and Weiner, 1993; Henderson et al., 1997). Regulatory mutations that 

increase ampC expression have been observed in clinical and experimental isolates and confer 

strong penicillin and cephalosporin resistance (Bergstrom and Normark, 1979). Under 

treatment by either a penicillin or a cephalosporin, we observe that wildtype ampC expression 

levels provide negligible resistance relative to a ΔampC strain, despite the potential to confer 

100-fold resistance when over-expressed (Figure 3.4a, Supplementary Figure 3.3b). The lack 

of ampC-mediated resistance in wildtype E. coli suggests that rather than being a drug 

resistance gene, ampC is a 'protoresistance' gene (Morar and Wright, 2010); the primary role 

of ampC is in cell morphology, but it has the capacity to evolve into a beta-lactam resistance 

gene through mutations that increase its expression level. 

 

SbmC is a DNA gyrase inhibitory protein that acts as an antitoxin to DNA gyrase-specific 

protein toxins such as microcin B17, and is induced by the SOS response to DNA damage 

(Baquero et al., 1995; Chatterji and Nagaraja, 2002; Nakanishi et al., 1998; Oh et al., 2001). 

Here we observed that sbmC over-expression confers resistance to phleomycin, a 

glycopeptide that generates free radicals leading to DNA cleavage. Comparing the 

phleomycin susceptibility of ΔsbmC, wildtype, and sbmC over-expressing strains we found 

that, despite the SOS-inducibility of sbmC, only a small fraction of the potential sbmC-

mediated phleomycin resistance was used by a wildtype strain (Figure 3.4b, Supplementary 
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Figure 3.3b). Thus even a specific stress-inducible toxin resistance gene can be inadequately 

utilized against toxins that it can resist.  
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Figure 3.4. Proto-resistance genes hold unrealized potential for strong drug resistance. 

The use of ampC and sbmC under antibiotic treatment was examined by comparing the drug 

resistance of E. coli strains lacking the gene of interest (black), wildtype strains (green), and 

strains with experimentally controlled gene expression that demonstrate the potential for 

drug resistance (red) (see Figure 3.3a). a, ampC encodes a potent beta-lactamase: over-

expression can confer 100-fold resistance to penicillins or cephalosporins. However, with 

wildtype expression regulation of ampC (green) almost none of this potential resistance (red) 

is used. b, sbmC encodes a DNA gyrase inhibitor whose over-expression confers resistance to 

the DNA-damaging drug phleomycin. However, a wildtype strain (green) treated with 

phleomycin uses very little of the potential resistance offered by sbmC (red). 
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Figure 3.4. Proto-resistance genes hold unrealized potential for strong drug resistance. 

(Continued)
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In principle, a mutation can only produce a beneficial effect by changing a gene's expression 

level if that gene's expression was initially sub-optimal, i.e. fitness would be larger at either 

higher or lower expression. Therefore, all non-coding mutations that are beneficial only 

under antibiotic treatment are made possible by a non-optimality in gene expression in the 

presence of the drug. To illustrate this phenomenon, we measured growth rate as a function 

of gene expression for nfsA under nitrofurantoin treatment, and ampC under ampicillin 

treatment. As expected from the previous theoretical arguments, the optimum nfsA 

expression level is lowered by increasing doses of nitrofurantoin, until the expression level 

that is optimal for growth without the drug is lethally sub-optimal in its presence (Figure 3.5). 

In scenarios such as this, mutations that lower or abolish gene expression will confer drug 

resistance. Conversely, the optimum ampC expression level increases with increasing doses of 

ampicillin (Figure 3.5). If actual ampC expression is maintained at the level that optimizes 

growth without drug, the strain will die at drug doses that could have been resisted with 

greater ampC expression; in this type of scenario, gene over-expression will confer drug 

resistance. These two examples illustrate a universal phenomenon: non-optimal gene 

expression is the pre-condition for a change in gene expression to be beneficial. The simplest 

situation that may give rise to non-optimal gene expression under antibiotic treatment is if a 

gene's expression is optimized for growth in the absence of drug and is not differentially 

regulated in response to drug treatment. There are also examples of more elaborate reasons 

for sub-optimal gene expression: a drug or drug mixture may induce serious physiological 

imbalances between cellular components, outside the usual range of  their global regulation 
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(Bollenbach et al., 2009) or may even induce a harmful regulatory response in drug resistance 

systems (Palmer et al., 2010). 
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Figure 3.5. Antibiotic treatments can change optimal gene expression levels. The growth 

rate of E. coli was measured as a function of nfsA or ampC expression levels when grown in 

variable doses of nitrofurantoin or ampicillin, respectively; using strains for experimentally 

controlled gene expression as per Figure 3.3a. Nitrofurantoin concentrations were 3μg.mL−1 

(subinhibitory to the wildtype strain) and 4.4μg.mL−1 (inhibitory to the wildtype strain); and 

ampicillin concentrations were 16μg.mL−1 (subinhibitory) and 100μg.mL−1 (inhibitory). Plots 

at top zoom in on growth rates in the absence of drug; gray lines highlight the gene 

expression level that optimizes growth without drug. Nitrofurantoin treatment lowers the 

optimal nfsA expression level, thus selecting for mutations that lower nfsA expression. 

Ampcillin treatment raises the optimal ampC expression level, thus selecting for mutations 

that elevate ampC expression. 
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Antibiotics inhibit or damage essential processes at micromolar to nanomolar concentrations 

and come in diverse structural forms; the task of detecting and responding to these 

compounds must be a challenge, at which drug-sensitive bacteria succeed partially at best. 

Fitness is an environment-dependent function of gene expression (Dekel and Alon, 2005), 

and antibiotic treatment changes the optimal expression level of many genes that can 

influence drug susceptibility. For each and every such gene, if there is a failure to 

appropriately respond to drug treatment, then regulatory mutations can exist that change 

gene expression, correct this non-optimality, and thereby improve drug resistance. We have 

identified an abundance of functionally diverse pathways to antibiotic resistance by such 

changes in gene expression. While many of these changes have modest drug-specific effects, 

even potent drug resistance genes and multi-drug resistance systems are subject to mutations 

that change gene expression, due to their inadequate or complete lack of usage against many 

antibiotics. Thus, while bacteria can achieve antibiotic resistance by acquiring functional 

mutations and specific resistance mechanisms, we find that they can also draw on an 

unappreciatedly vast pool of mutations that correct gene-regulatory failures and activate 

latent defense mechanisms.  
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Methods 

Strains and Media 

All selection experiments and growth rate assays were performed in M63 minimal medium 

(2g.L–1 (NH4)2SO4, 13.6g.L–1 KH2PO4, 0.5mg.L–1 FeSO4•7H2O, adjusted to pH 7.0 with KOH) 

supplemented with 0.2% glucose, 0.1% casamino acids, 1mM MgSO4 and 0.5mg.L–1 thiamine. 

 

Escherichia coli strain BW25113 is the host for the KEIO gene deletion library (Baba et al., 

2006; Datsenko and Wanner, 2000). The strains of the KEIO gene deletion library (Baba et al., 

2006) were grown individually in 384-well plates with 80μL of Lysogeny Broth (LB) per well, 

with incubation at 37°C and shaking at 900rpm for 24 hours. All cultures were then collected 

in a single beaker and mixed, passed through 5 micron cellulose acetate filters to disrupt cell 

clumps, and frozen in aliquots at −80°C in 10% glycerol. As the ASKA Open Reading Frame 

(ORF) library of plasmids was supplied in the AG1 cloning strain (Kitagawa et al., 2005), the 

plasmids were purified and transformed in pools into the ‘wildtype’ strain MG1655 rph+ 

ΔlacIZYA (gift from K.E. Shearwin; constructed from BW30270 (CGSC7925) by precise 

deletion of lacIZYA (EcoCyc MG1655: 360527-366797) by recombineering) to minimize 

artifacts arising from the poor health of the cloning strain; additionally the lacIZYA deletion 

allows the use of IPTG to exclusively induce plasmid-based expression without additional 

fitness effects due to induction of the lac operon. No such alterations were required for the 

deletion library as BW25113 has only minor perturbations relative to wildtype MG1655, and 

IPTG was not required to induce a change in gene expression. The AG1 strains of the ASKA 
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library were grown by the same protocol as described for the KEIO library, and the 

chloramphenicol resistance and ORF-encoding pCA24N plasmids were isolated as a pooled 

mixture from each 384-well plate by a QIAGEN Spin Miniprep kit. Plasmid pools were 

transformed into MG1655 rph+ ΔlacIZYA by the one-step protocol of (Chung et al., 1989). To 

enrich for plasmid transformed cells, liquid cultures of transformed E. coli (~109 c.f.u) were 

inoculated into 10mL of M63 minimal medium with 30μg.mL–1 chloramphenicol and were 

incubated overnight at 37°C with shaking at 300rpm. All transformant pools were added to a 

single flask, mixed, and frozen in aliquots at −80°C in 10% glycerol. A wildtype reference for 

the ASKA library was constructed by transforming MG1655 rph+ ΔlacIZYA with a pCA24N 

plasmid encoding yellow fluorescent protein (yfp), but with the promoter deleted (pCA24N-

ΔpT5lac-yfp). 

 

In growth rate assays (Figures 3.3 and 3.4), 'wildtype' refers to BW25113, 'gene deletion' refers 

to the member of the KEIO deletion library lacking the gene of interest (BW25113 -

gene::KanR), where the Kanamycin resistance cassette was been excised by FLP recombinase 

from a temperature-sensitive helper plasmid, yielding a strain BW25113 gene::FRT (Datsenko 

and Wanner, 2000). Excision of kanamycin resistance and loss of the helper plasmid, by 

colony purification at 43°C, was verified by testing for loss of antibiotic resistances. 

Controlled gene expression was produced by complementing a gene deletion strain with a 

pCA24N plasmid with isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible expression 

of the deleted gene; these plasmids were obtained from the ASKA library and the Open 
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Reading Frames were sequenced to confirm gene identity (Kitagawa et al., 2005). As lacIZYA 

is deleted in BW25113, IPTG does not incur fitness costs for lac operon production (Stoebel 

et al., 2008), and graded induction is possible without the LacY permease, that would 

otherwise cause all-or-none induction of LacI-regulated promoters (Choi et al., 2008; Novick 

and Weiner, 1957). For consistency both 'wildtype' and 'gene deletion' strains were 

transformed with pCA24N-ΔpT5lac-yfp. All strains were then transformed with plasmid 

pCSλ which encodes a constitutively expressed bacterial bioluminescence operon (Kishony 

and Leibler, 2003). 

 

Drug solutions were made from powder stocks (from Sigma Aldrich unless specified 

otherwise: amikacin, A1774; ampicillin, A9518; azithromycin, Tocris 3771; bleomycin, Selleck 

S1214; carbenicillin, C1613; cephalexin, C4895; cefoxitin, C4786; cefsulodin, C8145; 

ciprofloxacin, 17850; chloramphenicol, C0378; clindamycin, Indofine C0117; colistin, C4461; 

doxycycline, D9891; erythromycin, Fluka 45673; isopropyl β-D-1-thiogalactopyranoside, 

Omega Bio-Tek AC121; kanamycin, K1876; lomefloxacin, L2906; mecillinam, 33447; 

nalidixic acid,N3143; nitrofurantoin, N7878; ortho-nitrophenyl-β-galactoside, N1127; 

penicillin G, Fluka 13750; phleomycin, P9564; polymyxin-B, P0972; rifamycin SV, 

Biochemika 83909; spectinomycin, S9007; spiramycin, S9132; streptomycin, S6501; 

sulfacetamide, S8627; sulfamethoxazole, S7507; tetracycline, 87128; tobramycin,T4014; 

triclosan, TCI America T1872; trimethoprim, T7883; vancomycin,V8138). Drug and IPTG 

gradients were made by serial dilution in M63 medium. 
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Pooled-library drug diffusion assay 

Frozen aliquots of BW25113 (deletion library host), pooled deletion library, MG1655 rph+ 

ΔlacIZYA pCA24N-ΔpT5lac-yfp (over-expression library host), or pooled over-expression 

library were thawed, and 107 cells were spread by glass beads on wet 10cm petri dishes 

containing 25mL of 1.5% agar M63 minimal media; with 15μM or 150μM IPTG only when 

plating the pooled over-expression library. Plates were briefly dried in a biosafety cabinet 

before an aliquot of antibiotic was pipetted in the center of the plate. Plates were incubated at 

37°C for 48 hours before being photographed by a custom plate imager (Chait et al., 2010). 

Plates treated with sulfacetamide and sulfamethoxazole were instead incubated for 1 week 

due to the slow growth of drug resistant colonies; in all other drugs, resistant colonies either 

appeared within 48 hours or were not apparent even after 1 week. Up to 48 drug resistant 

colonies per plate (not including wildtype reference plates) were viewed in a Nikon SMZ-

745T stereomicroscope, picked by a flame-sterilized 0.25mm nichrome wire, and struck on 

selective agar: 50 μg.mL–1 kanamycin for the gene deletion library and 30 μg.mL–1 

chloramphenicol for the gene over-expression library. Streak plates were incubated at room 

temperature for several days, a single colony from each plate was inoculated into a liquid 

culture of selective LB in a 96-well microtiter plate. Microtiter plates were incubated 

overnight at 37°C with shaking at 900 rpm, and glycerol was added to each well to a final 

concentration of 15%. Microtiter plates were stored frozen at -80°C. The genes that confer 

drug resistance to selected members of the gene over-expression library were identified by 

sending bacterial cultures to GENEWIZ to Sanger sequencing the Open Reading Frame 

(ORF) of the pCA24N plasmid using the primer ASKAseqLF (CACCATCACCATCACCAT
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ACG). The gene deletions that confer drug resistance to selected members of the KEIO 

library were identified by Sanger sequencing the products of a 2-step hemi-nested PCR 

reaction that amplified a portion of chromosome adjacent to the Kanamycin resistance 

cassette that replaces each deleted gene. Both PCR steps used 20μL reactions with 2 units of 

OneTaq DNA Polymerase (New England Biolabs M0480), 200nM of each primer (Integrated 

DNA Technologies), and 200μM of each dNTP (New England Biolabs N0447). The first PCR 

reaction was inoculated with 1μL of liquid bacterial culture, and used the three primers 

KEIOseq1 (TGAAGTTCCTATTCCGAAGTTCCTATTCTC), CEKG2C (GGCCACGCGTC

GACTAGTACNNNNNNNNNNGATAT), and CEKG2D (GGCCACGCGTCGACTAGTAC

NNNNNNNNNNACGC) in the following reaction cycle: first 5’ at 95°C; 6 cycles of 30'' at 

95°C, 30’’ at 42°C (lowering by 1°C per cycle), 3’ at 68°C; then 24 cycles of 30’’ at 95°C, 30’’ at 

45°C, 3’ at 68°C; and finally 5’ at 68°C. The second PCR reaction was inoculated with 0.5μL 

per well of the completed first PCR reaction, and used the primers KEIOseq3 (TCGAAGCAG

CTCCAGCCTAC) and CEKG4 (GGCCACGCGTCGACTAGTAC) in the following reaction 

cycle: 30 cycles of 30'' at 95°C, 30’’ at 56°C, 3’ at 68°C; and finally 5’ at 68°C. Products of this 

final PCR reaction were sent to GENEWIZ for sequencing by the KEIOseq3 primer. 

Sequences were aligned with blastn to the E. coli MG1655 genome (NC_000913.2) to 

determine gene identity (Altschul et al., 1990; Blattner et al., 1997). Alignments that started 

more than 100 nucleotides from the expected start of alignment were discarded: gene over-

expression sequences should align shortly after the start codon of an ORF; gene deletion 

sequences should align shortly after the stop codon of an ORF. 

 



 84

Growth rate assay  

pCSλ confers constitutive bioluminescence that enables cell densities in growing cultures to 

be precisely measured over many orders of magnitude by photon counting (Kishony and 

Leibler, 2003). Cultures were grown in black 96-well plates with white wells (Perkin Elmer 

6005039) sealed with clear adhesive lids (Perkin Elmer 6005185). Wells contained 200μL of 

media inoculated with approximately 100 to 300 cells from freshly thawed -80°C frozen 

cultures. Plates were incubated in a 30°C room at 70% humidity, and growth was assayed by a 

Perkin Elmer TopCount NXT Microplate Scintillation and Luminescence Counter that 

measured each well for 1 second. Experiments of 10 to 20 plates allowed each plate to be 

measured every 30 to 60 minutes. Plate stacks were ventilated by fans to eliminate spatial 

temperature gradients and ensure uniform growth conditions across each plate. In each 

experiment, distributed throughout the plate stack were 3 control plates of uniform media 

conditions to verify the absence of growth rate gradients within plates or across the plate 

stack. Growth rate is the slope of the logarithm of photon counts per second (c.p.s.), and is 

taken from the fastest growing line of best fit observed in any 6 hour timespan; this time 

corresponds to 5 doublings of a healthy culture. The slope of the logarithm of c.p.s. is 

unaffected by changes in luminescence per cell, such as might result from antibiotic 

treatments or changes in gene expression (Kishony and Leibler, 2003).
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Beta-galactosidase assay 

The transcription rates of genes encoded in the pCA24N plasmid at different IPTG 

concentrations were measured by kinetic beta-galactosidase (LacZ) assays of pCA24N-lacZ, 

using a method adapted from (Dodd et al., 2001). Liquid cultures of BW25113 pCA24N-lacZ 

were prepared in a 96-well plate in the same manner as for growth rate assays. The plate was 

incubated at 30ºC with shaking until the plate average OD600 equalled 0.1 (mid log phase), as 

measured by a Perkin Elmer Victor plate reader. 20μL of each well was promptly transferred 

to the corresponding well of a microtiter plate pre-warmed to 30ºC, in which each well 

contained 30μL of sterile media and 190μL of  lysis / assay buffer, consisting of 100mM Tris-

HCl pH 8.0, 1mM MgSO4, 10mM KCl, 10g.L–1 β-mercaptoethanol, 100mg.L–1 polymyxin B, 

and 850mg.L–1 ortho-nitrophenyl-β-galactoside. The lysis / assay plate was transferred to a 

Tecan Sunrise plate reader in a 30°C room at 70% humidity, and OD410 was measured every 

minute for 2 hours, with 20 seconds of shaking between each reading. For each well, 

promoter activity in Miller Units was calculated from the slope of OD410 versus time, 

multiplied by 200,000, divided by the OD600 of the culture that was transferred to that well, 

and divided by the volume (in μL) of the culture assayed (here 20μL) (Supplementary Figure 

3.2). 
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Chapter 4. 

The dependence of antibiotic resistance on target expression 

 

Adam C. Palmer1 & Roy Kishony1,2  

1Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115. 

2School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138. 

 

Increased expression of a drug's target gene sometimes confers drug resistance; this can  

facilitate the evolution of drug resistance in bacteria, protozoa, and cancer, and can be used to 

identify drugs' molecular targets. However, it is unclear why this phenomena occurs with 

some drugs but not others. Here we quantitatively over-expressed Escherichia coli genes 

encoding antibiotic targets and observed that drug resistance does not only increase: it can 

remain unchanged, decrease, or first increase and then decrease. We explain these effects with 

simple models of drug action that consider toxicity from gene over-expression, and drugs that 

do not inhibit an enzyme but instead induce harmful enzyme-catalyzed reactions. The 

relation between drug resistance and target expression may reveal unexpectedly complex 

mechanisms of drug action. 
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Many drugs that inhibit an enzyme’s function can be resisted by over-expression of the gene 

encoding their target protein. For drugs where this is true, this principle has two important 

effects. Firstly, disease-causing organisms from bacteria to tumor cells can evolve strong drug 

resistance by gene amplification or over-expression of the drug’s target (Chen et al., 2009; 

Coderre et al., 1983; Flensburg and Skold, 1987; Schimke et al., 1978; Then, 1982). Secondly, 

the molecular target of the drug can be identified by a genetic screen for over-expression 

mutants that are drug resistant (Banerjee et al., 1994; Belanger et al., 1996; Luesch et al., 2005; 

Payne et al., 2004; Rine et al., 1983; Tokunaga et al., 1983). Resistance by target over-

expression is common but not universal, and despite its importance in the evolution of drug 

resistance and as a tool in drug discovery, it remains unclear why this property applies to 

some drugs but not others. Here we use antibiotics of known mechanisms in Escherichia coli 

as a case study to understand the general factors that enable or prevent the acquisition of drug 

resistance by target over-expression. 

 

The principle of resistance through target over-expression is most relevant for drugs with a 

single protein target. There are three broad mechanisms of action in which a drug does not 

act on a single protein target: (1) drugs may target multi-protein complexes (e.g. ribosome, 

RNA polymerase, or proteasome inhibitors), (2) a drug’s efficacy may rely upon 

polypharmacology (e.g. many beta-lactams and kinase inhibitors), and (3) drugs may act 

primarily upon non-protein targets (e.g. polymyxins, nitrofurans, vancomycin, DNA 

intercalators, artemisinin). It is easy to understand that for these mechanisms, resistance 

cannot result from over-expression of 'the target gene' for the simple reason that no such gene 
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can be defined. We therefore focused on drugs that primarily target a single protein and 

investigated how drug resistance changes when the target gene is over-expressed. 

 

We selected six antibiotics that primarily target a single protein, spanning a variety of 

essential targets (Table 1; for two drugs we investigated both the primary and a secondary 

target). For each drug we constructed a strain expressing the target gene from an IPTG-

inducible promoter (Figure 4.1a) (Kitagawa et al., 2005). This target over-expression strain 

was grown in liquid cultures spanning two dimensional gradients of drug-dose and IPTG-

induced gene expression; the latter was quantified by beta-galactosidase assays of a strain 

expressing lacZ in place of a drug target (Supplementary Figure 4.1). A sensitive 

bioluminescence-based assay was used to measure bacterial growth rates and thereby to 

determine how drug susceptibility is altered as a function of target gene expression. 
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Table 1. List of drugs and drug targets utilized in this study. * indicates primary target 

when there is a secondary target of lower affinity or lesser importance to growth (Drlica and 

Zhao, 1997; Kong et al., 2010). 

 

 

 

Over-expression of a drug's target gene had qualitatively different effects on drug resistance 

for different drugs (Figure 4.1b). The drug concentration that inhibits growth by 50% (IC50) 

was increased by expressing the targets of trimethoprim (DHFR) and triclosan (ENR), and 

decreased when expressing the targets of cefsulodin (PBP1A, PBP1B) and ciprofloxacin 

(Gyrase, Topo IV). Resistance to sulfamethoxazole, a sulfonamide-class antibiotic, was 

independent of its target (DHPS) expression level, and most curiously, the IC50 of 

mecillinam increased with mild over-expression of its target (PBP2) but decreased with 

stronger over-expression. 

Drug name Target Target function Target process Gene 

Trimethoprim DHFR Dihydrofolate reductase Folate synthesis folA 

Sulfamethoxazole DHPS Dihydropteroate synthase Folate synthesis folP 

Triclosan ENR Enoyl acyl carrier protein reductase Fatty acid synthesis fabI 

Ciprofloxacin Gyrase * 
Topo IV 

DNA gyrase 
Topoisomerase IV 

DNA replication gyrA 
parC 

Cefsulodin PBP1A 
PBP1B * 

Murein polymerase 
Murein polymerase 

Cell wall synthesis mrcA 
mrcB

Mecillinam PBP2 Peptidoglycan transpeptidase Cell wall synthesis mrdA 
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Figure 4.1. Over-expression of a drug’s target gene can increase, decrease, or have no 

effect on drug resistance. (a) E. coli strains were constructed with IPTG adjustable over-

expression of drug target genes. (b) For each drug-gene pair, bacterial growth rates were 

measured over gradients of drug dose (vertical axis) and IPTG-induced gene dose (horizontal 

axis). Additional target expression is quantified in Miller Units (MU) from kinetic beta-

galactosidase assays of a matching plasmid encoding lacZ (Supplementary Figure 4.1). 

Heatmap color indicates growth rate, from uninhibited growth (yellow) to no growth (black). 

WT denotes a strain without any additional drug target expression, since its plasmid contains 

neither a promoter nor a drug target gene. At each level of gene expression, the drug 

concentration that inhibits growth to 50% of the uninhibited wildtype growth (IC50) is 

overlaid in white. 
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Figure 4.1. Over-expression of a drug’s target gene can increase, decrease, or have no 

effect on drug resistance. (Continued) 
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There was no trend within target pathways as to which target genes conferred drug resistance 

upon over-expression; for example both DHPS and DHFR are enzymes in the folate 

biosynthesis pathway, but only DHFR confers resistance to its inhibitor when over-expressed. 

These observations are consistent with clinical isolates of drug resistant bacteria: 

trimethoprim resistant mutants have been reported with promoter mutations and elevated 

DHFR expression (Flensburg and Skold, 1987; Then, 1982), but DHPS regulatory mutations 

have not been reported in sulfonamide resistant mutants, despite characterization of many 

resistant mutants (Skold, 2000). Similar supportive results have also been observed for 

triclosan where resistant mutants have been found with elevated ENR expression (Chen et al., 

2009), and for ciprofloxacin where, while amino acid changes in Gyrase and Topoisomerase 

IV are associated with resistance, no regulatory mutations have been reported (Ruiz, 2003). 

 

We sought to understand the relation between drug resistance and drug target expression 

levels using simple mathematical models of the fitness costs of gene expression and enzyme 

inhibition. We define the target enzyme concentration as the sum of a wildtype level of 

enzyme (Ewt) and an additional amount (Eadditional). We built mass action models of 

competitive and non-competitive inhibition and calculated drug susceptibility under the 

simplifying assumption that 50% growth inhibition (IC50) occurs when the net flux through 

an essential enzyme is 50% inhibited. Both the competitive and non-competitive inhibition 

models yield a linear dependence of IC50 on the fold over-production of the enzyme: 

IC50/IC50wt = 2×(Ewt+Eadditional) / Ewt −1 (Figure 4.2a, h–; Supplementary Figure 4.2a,b). For 

example, if the enzyme is over-expressed 100-fold then 99.5% of the enzyme will have to be 
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inhibited in order to have half of the flux of the wild-type, which will require 200 times more 

drug. We observed that many drug targets incurred small to lethal fitness costs when over-

expressed, even in the absence of drug (Figure 4.1b). When the models include the fitness cost 

of over-expression as an independent mechanism of toxicity (treated as a second drug that is 

'Bliss additive' with the actual drug(Bliss, 1939)), we find that 

IC50/IC50wt = 2×(Ewt+Eadditional) / Ewt × (1 - cost(Eadditional) −1 (Figure 4.2a, h–c+; Supplementary 

Figure 4.2a,b). This simple model quantitatively explains the increase in resistance from over-

expressing the targets of both trimethoprim (DHFR) and triclosan (ENR) (Figure 4.2b, h–c–), 

as well as the increase and subsequent decrease in IC50 resulting from over-expression of 

mecillinam's target (PBP2) (Figure 4.2b, h–c+). Thus, drug target over-expression can confer 

resistance by compensating for inhibited target genes, but the potential for resistance may be 

limited if target gene over-expression is costly. Additionally, the level of resistance depends 

on the magnitude of Ewt, which can explain the differences between trimethoprim and 

triclosan (Supplementary Figure 4.3).  

 

If drug target over-expression induces large fitness costs before there is a significant fold-

increase in expression, then there might be no expression level that increases drug resistance. 

This alone might explain the lack of resistance from over-expressing the targets of 

ciprofloxacin and cefsulodin, but it cannot explain the absence of sulfamethoxazole 

resistance, whose target DHPS incurs no significant fitness cost upon over-expression. 

Sulfonamide antibiotics inhibit the synthesis of dihydropteroate from pteridine diphosphate 
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and para-aminobenzoic acid (PABA) by competing with PABA for binding to the enzyme 

DHPS(Brown, 1962). Interestingly, sulfonamides do not simply inhibit DHPS, but are 

covalently attached to pteridine diphosphate in place of PABA, yielding a dihydropterin-

sulfonamide product (Bock et al., 1974; Roland et al., 1979) (Supplementary Figure 4.4). 

While dihydropterin-sulfonamide is not toxic to E. coli (Roland et al., 1979), this reaction is 

harmful to growth by depleting the essential metabolite pteridine diphosphate. We modeled 

this system treating pteridine diphosphate as being synthesized at a constant rate by the 

upstream folate synthesis enzymes, and consumed by DHPS-catalyzed condensation to 

dihydropteroate or dihydropterin-sulfonamide. Strikingly, this model shows that when a drug 

induces a harmful enzyme-catalyzed reaction with a rate-limiting substrate, pathway 

inhibition is independent of the enzyme concentration (Figure 4.2a, h+; Supplementary Figure 

4.2c). Taking sulfonamides as an example, the fraction of pteridine diphosphate that is 

converted to the correct product dihydropteroate is defined not by the abundance of 

uninhibited enzyme, but only by the ratio of sulfonamide to PABA. This result is consistent 

with the observation that increased PABA synthesis confers sulfonamide resistance (Landy et 

al., 1943) and explains why, in contrast, increased expression of DHPS confers no protection 

against a sulfonamide (Figure 4.2b, h+c–). Sulfonamides may thus be more accurately 

described as poisons that deplete pteridine diphosphate, rather than inhibitors of DHPS. 

While this modeling framework is not appropriate to describe the DNA damage that results 

from the binding of ciprofloxacin to Gyrase or Topo IV near the DNA replication fork, it 

nonetheless illustrates a principle that applies to ciprofloxacin and other drugs: drugs that 
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only inhibit an enzyme's catalytic activity may be resisted by additional enzyme production, 

while drugs that induce an enzyme to catalyze harmful reactions will not be resisted by an 

excess of that enzyme; to this category belongs antibiotics such as aminoglycosides (Davis, 

1987), fluoroquinolones (Pan et al., 2001), and sulfonamides. Indeed, the over-expression of a 

drug target that does not confer resistance but does incur fitness costs will only decrease drug 

resistance (Figure 4.2b, h+c+). 
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Figure 4.2. Over-expression of drug target genes can confer both resistance and fitness 

costs, resulting in diverse changes in drug resistance. a, Mass-action models of enzyme 

inhibition quantified the relation between drug concentration, growth inhibition, and enzyme 

expression (wildtype enzyme abundance = Ewt, additional enzyme = Eadditional). Drug-induced 

growth inhibition and fitness costs due to gene over-expression are treated as independent 

mechanisms of toxicity. Changes in the drug concentration that inhibits growth by 50% 

(IC50) are found to depend upon two factors: whether drug binding only inhibits the enzyme 

(h–) or also induces harmful reactions when bound (h+), and the degree of fitness costs from 

additional drug target expression; for example lethal, partial, or no fitness costs (c+ lethal 

/ c+partial  / c–). Mechanistic models demonstrate that drug target over-expression protects 

against enzyme inhibitors (h–), but not against drugs that damage an enzyme's substrate (h+) 

(Supplementary Figure 4.2). b, The theory presented in (a) results in diverse changes in drug 

resistance as drug targets are over-expressed. Possible changes in drug resistance upon drug 

target over-expression include an increase, decrease, first increase then decrease, or no 

change; differences in Ewt influence the level of resistance that may be achieved. This theory 

rationalizes the diverse experimentally observed behaviors (IC50 lines from Figure 4.1b). 
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Figure 4.2. Over-expression of drug target genes can confer both resistance and fitness 

costs, resulting in diverse changes in drug resistance. (Continued) 
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This study shows that increasing the expression of drug’s target gene can have a wide range of 

effects on resistance to that drug; the simple expectation that resistance will monotonically 

increase is one of several possibilities. These diverse effects can be understood as the result of 

two factors: firstly whether a drug solely inhibits a beneficial reaction or induces a harmful 

reaction; and secondly whether drug target over-expression incurs fitness costs. These results 

suggest that efforts to identify the molecular targets of compounds by searching for drug 

resistance via target over-expression will, for better or worse, yield predictably biased results. 

This approach will succeed in identifying the targets of compounds that are strictly an 

inhibitor of a single non-costly gene, but may fail for compounds that inhibit costly genes, 

that act upon multiple targets, or that induce harmful reactions such as damaging a substrate. 

However, unexpectedly complex mechanisms of drug action can be revealed if the over-

expression of a known drug target fails to confer resistance. Finally, these results suggest that 

the development of compounds that inhibit costly genes, or that inhibit a pathway by 

damaging pathway-essential metabolites, will produce drugs less prone to the evolution of 

resistance through target over-expression. 
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Methods 

Strains and Media 

E. coli strain BW25113 was the host for all studies(Datsenko and Wanner, 2000). As lacZYA is 

deleted in BW25113, IPTG does not incur fitness costs for lacZYA production(Stoebel et al., 

2008), and graded induction is possible without the LacY permease, that would otherwise 

cause all-or-none induction of LacI-regulated promoters(Choi et al., 2008; Novick and 

Weiner, 1957). BW25113 was transformed with plasmid pCSλ, encoding a constitutively 

expressed bacterial bioluminescence operon(Kishony and Leibler, 2003). Plasmids encoding 

each target gene (in a pCA24N backbone) were obtained from the ASKA E. coli Open 

Reading Frame collection(Kitagawa et al., 2005), sequenced to confirm gene identity, and 

were transformed into BW25113 pCSλ. The cefsulodin target gene PBP1B (mrcB) was not 

found at the expected position in the ASKA collection, and was instead isolated by plating a 

pooled mixture of the entire ASKA collection on 1.5% agar plates of Luria Bertani broth with 

a range of isopropyl β-D-1-thiogalactopyranoside (IPTG) concentrations, and screening for 

colonies resistant to a 100μg point source of cefsulodin. At 15μM IPTG, many mildly resistant 

colonies were isolated that carried pCA24N plasmids encoding PBP1B, according to 

sequencing. This IPTG concentration corresponds to the point in Figure 4.1B where PBP1B 

over-expression confers modest cefsulodin resistance. Wildtype drug susceptibilities were 

determined using a matching strain with no additional drug target gene expression; BW25113 

pCSλ pCA24N-Δpromoter-yfp; where the IPTG-inducible promoter in pCA24N had been 

deleted, and yellow fluorescent protein was encoded in place of a drug target gene. All 
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experiments were performed in M63 minimal medium (2g.L–1 (NH4)2SO4, 13.6g.L–1 KH2PO4, 

0.5mg.L–1 FeSO4•7H2O, adjusted to pH 7.0 with KOH) supplemented with 0.2% glucose, 

0.01% casamino acids, 1mM MgSO4 and 0.5mg.L–1 thiamine, and also 10mg.L–1 

chlorampenicol and 25mg.L–1 kanamycin for the maintenance of the pCA24N and pCSλ 

plasmids, respectively. Drug solutions were made from powder stocks (from Sigma Aldrich 

unless otherwise specified: cefsulodin, C8145; chloramphenicol, C0378; ciprofloxacin, 17850; 

isopropyl β-D-1-thiogalactopyranoside (IPTG), Omega Bio-Tek AC121; kanamycin, K1876; 

mecillinam, 33447; ortho-nitrophenyl-β-galactoside, N1127; polymyxin-B, P0972; 

sulfamethoxazole, S7507; triclosan, TCI America T1872; trimethoprim, T7883). Drug and 

IPTG gradients were made by serial dilution in M63 medium. 

 

Growth rate assay  

The constitutive bioluminescence that results from pCSλ enables cell densities in growing 

cultures to be precisely measured over many orders of magnitude by photon 

counting(Kishony and Leibler, 2003). Cultures were grown in black 96-well plates with white 

wells (Perkin Elmer 6005039) sealed with clear adhesive lids (Perkin Elmer 6005185). Wells 

contained 200μL of media inoculated with approximately 100 to 300 cells from freshly thawed 

-80°C frozen cultures. Plates were grown in a 30°C room at 70% humidity, and growth was 

assayed by a Perkin Elmer TopCount NXT Microplate Scintillation and Luminescence 

Counter that measured each well for 1 second. Experiments of 10 to 16 plates allowed each 

plate to be measured every 30 to 50 minutes. Plate stacks were ventilated by fans to eliminate 

spatial temperature gradients and ensure uniform growth conditions across each plate. In 
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each experiment, distributed throughout the plate stack were 3 control plates of uniform 

media conditions to verify the absence of growth rate gradients within plates or across the 

plate stack. Growth rate is the slope of the logarithm of photon counts per second (c.p.s.), and 

is taken from the fastest growing line of best fit observed in any 6 hour timespan; this time 

corresponds to 5 doublings of a healthy culture. The slope of the logarithm of c.p.s. is 

unaffected by changes in luminescence per cell, such as might result from antibiotic 

treatments or changes in gene expression(Kishony and Leibler, 2003). 

 

Beta-galactosidase assay 

The transcription rates of genes encoded in the pCA24N plasmid at different IPTG 

concentrations were measured by kinetic beta-galactosidase (LacZ) assays of pCA24N-lacZ, 

using a method adapted from (Dodd et al., 2001). Liquid cultures of BW25113 pCA24N-lacZ 

were prepared in a 96-well plate in the same manner as for growth rate assays. The plate was 

incubated at 30ºC with shaking until the plate average OD600 equalled 0.1 (mid log phase), as 

measured by a Perkin Elmer Victor plate reader. 20μL of each well was promptly transferred 

to the corresponding well of a microtiter plate pre-warmed to 30ºC, in which each well 

contained 30μL of sterile media and 190μL of  lysis / assay buffer, consisting of 100mM Tris-

HCl pH 8.0, 1mM MgSO4, 10mM KCl, 10g.L–1 β-mercaptoethanol, 100mg.L–1 polymyxin B, 

and 850mg.L–1 ortho-nitrophenyl-β-galactoside. The lysis / assay plate was transferred to a 

Tecan Sunrise plate reader in a 30°C room at 70% humidity, and OD410 was measured every 

minute for 2 hours, with 20 seconds of shaking between each reading. For each well, 
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promoter activity in Miller Units was calculated from the slope of OD410 versus time, 

multiplied by 200,000, divided by the OD600 of the culture that was transferred to that well, 

and divided by the volume (in μL) of the culture assayed (here 20μL) (Supplementary Figure 

4.1).
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Supplementary Material for Chapter 1. 

Chemical decay of an antibiotic inverts selection for resistance 

 

 

 

 

Supplementary Figure 1.1. Absorbance spectra and structures of tetracycline and its 

degradation products. Absorbance spectra measured in aqueous solution, at 10μg/mL, of 

tetracycline (Tet; gray), epitetracycline (ETC; cyan), anhydrotetracycline (ATC; magenta) and 

epianhydrotetracycline (EATC; dark blue). 
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Supplementary Figure 1.2. Measured and modeled spectra of degraded tetracycline 

solutions. Measured spectra of tetracycline solutions exposed to degrading conditions for 

different lengths of time (black), aligned with modeled spectra (gray). Modeled spectra are 

calculated as a linear combination of the spectra of individual compounds (Supplementary 

Figure 1.1), with coefficients given by the kinetic model of tetracycline decay (Supplementary 

Figure 1.3), which describes the proportion of each compound as a function of time in 

degrading conditions (see Figure 1.1c). After very prolonged degradation (tdeg = 2500 min) the 

spectrum is flat but non-zero, and so the linear combination of spectra also contains a term 

for the tdeg =2500 min spectrum, with coefficient given by the proportion of further 

degradation products, i.e. following further decay of ATC and EATC (denoted “∅” in the 

kinetic model; Supplementary Figure 1.3). The parameter kloss is fitted to minimize the sum of 

square errors between these measured and modeled spectra. To maximize distinction 

between the similar spectra of epimers, errors were only summed over the most characteristic 

absorption peaks, located at the wavelength ranges 250-290nm and 325-400nm. 
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Supplementary Figure 1.2. Measured and modeled spectra of degraded tetracycline 

solutions. (Continued) 



 113

 

 

 

Supplementary Figure 1.3. Kinetic model of tetracycline decay. Reaction scheme for the 

kinetic model of tetracycline decay constructed by (Yuen and Sokoloski, 1977), extended to 

account for the slow loss of degradation products at very long timescales (kloss). The shaded 

areas in Figure 1.1c are constructed from this model, utilizing values of k1, k-1, k2, k-2, k3 and k4 

which were experimentally determined by (Yuen and Sokoloski, 1977), and a fitted value of 

kloss (Supplementary Table 1.1). 
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Supplementary Figure 1.4. Parameter sensitivity of the kinetic model of tetracycline 

decay. Plotting the error between measured and modeled spectra of degraded tetracycline 

solutions (Supplementary Figure 1.2) demonstrates the consistency of the rate constants 

measured by (Yuen and Sokoloski, 1977) with this study. Note that only the characteristic 

wavelength ranges 250-290nm and 325-400nm were utilized. The parameter values used in 

the kinetic model (Supplementary Table 1.1) are marked in red. kloss was absent from the 

kinetic model of (Yuen and Sokoloski, 1977), and so was fitted to minimize the sum of square 

errors. 
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Supplementary Figure 1.4. Parameter sensitivity of the kinetic model of tetracycline 

decay.  (Continued) 
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Supplementary Figure 1.5. TetS and TetR strains have equal growth rates in the absence of 

tetracycline. Growth rates were measured with high resolution over the course of 15 

doublings using bioluminescence based measurements of cell density (Kishony and Leibler, 

2003; Yeh et al., 2006) (Methods). Six representative growth curves each are presented for the 

TetS (green) and TetR (red) strains. Inset: Boxplot of growth rate measurements of the TetS 

and TetR strains (n=36 each). 
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Supplementary Figure 1.6. Tetracycline degradation products and fusaric acid select 

against chromosomally-integrated tetracycline resistance. The cost of expression of 

tetracycline resistance is dependent upon the dosage of resistance genes(Lenski et al., 1994; 

Moyed et al., 1983). We have observed that Tet degradation products select against resistance 

(Fig 2c,d) when resistance is provided from a plasmid whose level of expression of the tetA 

efflux pump maximizes fitness in 10μg/mL Tet (Daniels and Bertrand, 1985; Lenski et al., 

1994); Methods). When tetracycline resistance is supplied by a lower dosage of resistance 

genes, the extent of selection against resistance will presumably be weaker, as the phenotype 

approaches that of a fully sensitive strain. We therefore measured the effect Tet degradation 

products on competition between sensitive and resistant strains, when the Tn10 tetracycline 

resistance determinant was integrated in single-copy in the chromosome. In this scenario we 

can reproduce the net selection against resistance seen in Figure 1.2c,d (trajectory 1) when 

Tet degradation products (initial Tet concentration 2000 ng/mL) are supplied together with 

40 μg/mL fusaric acid, a naturally-occurring compound which sensitizes bacteria to the 

expression of the tetA efflux pump(Bochner et al., 1980). Fold change in Ntet
S / Ntet

R is 

determined relative to wells lacking Tet or its degradation products, but containing fusaric 
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acid (Methods), and so excludes the selection imposed by fusaric acid alone, but reflects its 

combined effect with Tet and Tet degradation products. Fusaric acid is produced by many 

species of the Fusarium fungi (Bacon et al., 1996) and thus may be an ecologically relevant 

factor contributing to selection against low-copy or high-copy tetracycline resistance. In poor 

nutritional conditions and specific salt concentrations, fusaric acid can be made to select 

against tetracycline resistance in Salmonella typhimurium and Escherichia coli (Bochner et al., 

1980; Maloy and Nunn, 1981). In these rich nutritional conditions, fusaric acid combined 

with undegraded tetracycline continues to select for resistance, but as tetracycline degrades, 

the combination of fusaric acid and decay products selects against resistance. This 

demonstrates that degradation influences the interaction between an antibiotic and its decay 

products (collectively) with other compounds which may conditionally select against 

resistance. 
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Supplementary Figure 1.7. Net selection for/against tetracycline resistance depends upon 

both the means of drug loss and the initial drug concentration. For any given initial drug 

concentration and rates of dilution and degradation (λdil and λdeg, respectively), a linear 

trajectory is defined across the surface of Figure 1.2c, describing how selective pressure 

changes over time as the drug and its degradation products are lost from the environment: 

examples are trajectories 1, 2, and 3 from Figures 1.2c and 1.2d. Integrating log(NTet
S / NTet

R) 

along a trajectory provides the net selective pressure resulting from a given initial drug 

concentration and ratio of dilution and degradation rates, λdil / λdeg. On the left edge of the 

plot drug loss is by degradation only, with the dilution rate increasing in relative magnitude 

towards the right; on the right edge drug loss is by dilution only. Trajectory 1 illustrates a 

timecourse of selection resulting in net selection against resistance. Trajectory 2 illustrates 

neutral net selection, where periods of selection for and against resistance cancel out over 

time. Trajectory 3 illustrates net selection for resistance. 
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Supplementary Figure 1.7. Net selection for/against tetracycline resistance depends upon 

both the means of drug loss and the initial drug concentration. (Continued) 
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Supplementary Figure 1.8. Tetracycline and its degradation products each have a different 

impact on selection for resistance. Selective pressures of Tet and individual degradation 

products ETC, ATC, and EATC, measured by competition between TetS and TetR strains (see 

Figure 1.2a).  
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Supplementary Figure 1.9. Combinations of tetracycline and its degradation products 

produce selective pressures which are well predicted by Bliss additivity. Selective pressure 

for (red) or against (green) resistance across a drug gradient of Tet and a 1:1 mixture of ATC 

and EATC; on the left experimentally measured (as per Figure 1.2a) and on the right 

(‘Additive Model’) calculated from the effects along the axes of the ‘Experimental’ panel, 

assuming additive drug interactions, i.e. by summing the changes in log(NTet
S / NTet

R). 
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Supplementary Figure 1.10. Different permutations of fluorescent labels do not influence 

selection for/against resistance by tetracycline degradation products. Selective pressure for 

(red) or against resistance (green) by Tet and its degradation products (Figure 1.2c) was 

measured by averaging the results of two competition experiments: between TetS-CFP and 

TetR-YFP; and between TetS-YFP and TetR-CFP. Here these measurements are presented 

separately, where it can be seen that competition between TetS and TetR strains is not 

influenced by the permutation of fluorescent labels.  
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Supplementary Figure 1.11. Measurement of selection for/against resistance by flow 

cytometry. Flow cytometry measurements of NTet
S and NTet

R, for representative data points in 

Figure 1.2c (reproduced here with selected data points marked in purple). These scatter plots 

of raw measurements of cyan and yellow fluorescence are presented in ‘logicle’ scale to 

prevent distortion of low signals by logarithmic scaling(Parks et al., 2006). These points 

demonstrate selection for resistance (circle), no selection (triangle), and selection against 

resistance (square). Above the cyan-yellow scatter plots are histograms summing the number 

of resistant cells (red; NTet
R) and sensitive cells (green; NTet

S). 
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Supplementary Figure 1.11. Measurement of selection for/against resistance by flow 

cytometry. (Continued) 
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Supplementary Table 1.1. Parameter values of the kinetic model of tetracycline decay 

 

 

 

 

 

 

 

The consistency of parameters measured in (Yuen and Sokoloski, 1977) with this study’s 

spectra of degraded tetracycline solutions (Supplementary Figure 1.2) can be quantitated by 

the error in the alignment between measured and modeled spectra. Specifically, we define the 

error E as  

  , 

where λ is integrated over the ranges 250-290nm and 325-400nm. E can be evaluated with 

modeled spectra produced either by the parameters in (Yuen and Sokoloski, 1977), or by 

parameters which are fitted to minimize E. For each single parameter then, we determine 

ΔE = E ((Yuen and Sokoloski, 1977) parameter) / E(best fit parameter)  -1, which describes 

how close the parameters in (Yuen and Sokoloski, 1977) are to minimizing E. We see that 

they are indeed extremely close to minimizing the alignment error (see also Supplementary 

Figure 1.4). When all parameters are simultaneously fitted, ΔE = 2%. Values taken from 

(Yuen and Sokoloski, 1977) are averages of duplicate measurements at 75°C. Note that 

Parameter 
Value 
(min-1) 

Source ΔE (%) 

 k1 0.0265 (Yuen and Sokoloski, 1977) 0.04 

 k-1 0.0207 (Yuen and Sokoloski, 1977) 0.04 

 k2 0.0317 (Yuen and Sokoloski, 1977) 0.06 

 k-2 0.0352 (Yuen and Sokoloski, 1977) 0.08 

 k3 0.0209 (Yuen and Sokoloski, 1977) 0.09 

 k4 0.0169 (Yuen and Sokoloski, 1977) 0.001 

 kloss 0.00147 fitted* N/A* 
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although Tet and ATC exert the strongest selective effects (Supplementary Figure 1.8), the 

kinetic model cannot be accurately simplified to these two compounds alone. The 

equilibrium constant for epimerization between Tet and ETC (k1/k-1 = 1.3) is different from 

the equilibrium constant between ATC and EATC (k2/k-2 = 0.90). Consequently, even after 

epimerization reactions have reached equilibrium, the dehydration reaction does not bring 

about a net 1:1 conversion between Tet and ATC. 
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Supplementary Material for Chapter 2. 

A multi-peaked adaptive landscape arising from high-order genetic 

interactions 

 

Supplementary Figure 2.1. Growth rates of E.coli strains with mutant DHFR genes as a 

function of trimethoprim concentration. The growth rates of strains carrying all possible 

combinations of seven trimethoprim resistance-conferring mutuations were measured across 

a range of trimethoprim concentrations. Each column is one strain, whose mutations are 

indicated in the color coded grid atop the plot. Mutant strains are sorted by the overall 

number of mutations. A black to yellow heatmap indicates growth rate. Six columns that are 

entirely black are genotypes that could not be successfully integrated into the chromosome of 

E.coli despite repeated attempts. 
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Supplementary Figure 2.1. Growth rates of E.coli strains with mutant DHFR genes as a 

function of trimethoprim concentration. (Continued)



 130

Supplementary Material for Chapter 3. 

Diverse pathways to drug resistance by changes in gene expression 

 

Supplementary Figure 3.1. Pooled diffusion-based selection for changes in gene 

expression that confer antibiotic resistance. 107 colony forming units of a clonal wildtype 

strain or a pooled library of gene deletion or gene over-expression mutants were plated on 

M63 glucose minimal media agar. An aliquot of antibiotic was added to the center and plates 

were incubated for 48 hours at 37°C before imaging. Images here show the presence of gene 

expression mutants with resistance to antibiotics that act upon: a, cell wall synthesis; b, the 

cell membrane; c, transcription; d, e, translation; f, DNA synthesis; g, free radical production. 

Plates treated with sulfacetamide and sulfamethoxazole were incubated for 1 week before 

imaging due to the slow growth of sulfonamide resistant colonies. 
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Supplementary Figure 3.1 (continued). 
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Supplementary Figure 3.1 (continued). 
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Supplementary Figure 3.1 (continued). 
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Supplementary Figure 3.1 (continued). 
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Supplementary Figure 3.1 (continued). 
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Supplementary Figure 3.1 (continued). 
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Supplementary Table 3.1. Changes in gene expression that increase antibiotic resistance. 

Gene-drug interactions from Figure 3.2 are tabulated with gene functions curated from the 

Ecocyc database (Keseler et al., 2011)
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Change in 
gene 
expression 

Gene 
name 

Drugs resisted Gene function 

Previously 
associated 
with drug 
resistance? 

Notes 

Overexpression hemD 
AMK, MEC, PHM, 
TOB 

uroporphyrinogen III synthase N  

Overexpression yhbT AMK, PHM, TOB predicted lipid carrier protein N  

Overexpression ampC 
AMP, CLX, CRB, 
FOX, PEN β-lactamase Y (Linstrom et al., 1970) 

Overexpression marA 

AMP, BLM, CLI, 
CLX, CPR, DOX, 
ERY, NAL, PEN, 
TET 

MarA DNA-binding transcriptional 
dual regulator 

Y (Cohen et al., 1993) 

Overexpression nanA AMP N-acetylneuraminate lyase N 
nanA is the first enzyme in pathway for degradation 
of sialic acid (Vimr and Troy, 1985). 

Overexpression soxS 

AMP, AZI, BLM, 
CLI, CPR, DOX, 
ERY, FOX, NAL, 
PEN, SPR, TET, 
TMP 

SoxS DNA-binding transcriptional 
dual regulator 

Y (Amabile-Cuevas and Demple, 1991) 

Overexpression yidF AMP, CLX, PEN 
predicted DNA-binding 
transcriptional regulator N  

Overexpression gadW AZI, BLM GadW DNA-binding transcriptional 
dual regulator 

N gadW is a regulator of Glutamic acid decarboxylase 
(GAD) acid resistance system (Tucker et al., 2003). 

Overexpression rpmH AZI, ERY, SPR 50S ribosomal subunit protein L34 N 
Overexpression of rpmH decreases the production of 
polyamine (Panagiotidis et al., 1995). 

Overexpression ydeO AZI 
YdeO DNA-binding transcriptional 
dual regulator N 

ydeO activates transcription of acid resistance genes 
(Masuda and Church, 2003). 
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Change in 
gene 
expression 

Gene 
name 

Drugs resisted Gene function 

Previously 
associated 
with drug 
resistance? 

Notes 

Overexpression yeaH AZI, ERY, SPR conserved protein N  

Overexpression sbmC BLM, PHM DNA gyrase inhibitor Y 
Overexpression of sbmC confers resistance to 
mitomycin C (Wei et al., 2001) and microcin B17 
(Baquero et al., 1995). 

Overexpression yjcH BLM conserved inner membrane protein N  

Overexpression ddpF CFS, CLX, MEC, 
PHM 

putative ATP-binding component of 
an ABC transporter

N While ddpF overexpression resists CFS, CLX, MEC, 
PHD, ddpF deletion resists AMK

Overexpression degQ CFS serine endoprotease N  

Overexpression mrcB CFS Murein polymerase (PBP1b) Y mrcB and mrcA are the primary targets of Cefsulodin 
(Kong et al., 2010). 

Overexpression nlpE CFS, CRB, PEN outer membrane lipoprotein N  

Overexpression adk CLI adenylate kinase N  

Overexpression cadA CLI lysine decarboxylase 1 N cadA is part of the lysine-dependent acid resistance 
system 4 (Takayama et al., 1994). 

Overexpression hflX CLI, ERY 
GTPase associated with the 50S 
subunit of the ribosome N  

Overexpression lepA CLI elongation factor 4 N  

Overexpression proQ CLI RNA chaperone N  

Overexpression ybiT CLI putative ATP-binding component of 
an ABC transporter 

N  
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Change in 
gene 
expression 

Gene 
name 

Drugs resisted Gene function 

Previously 
associated 
with drug 
resistance? 

Notes 

Overexpression yheS CLI 
putative ATP-binding component of 
an ABC transporter 

N  

Overexpression aroB CLX 3-dehydroquinate synthase N  

Overexpression bssR 
CLX, CPR, FOX, 
NIT regulator of biofilm formation N  

Overexpression gmr CLX, FOX, NIT, 
PEN 

modulator of RNase II stability N  

Overexpression gntT CLX gluconate transporter N  

Overexpression nanK CLX, FOX N-acetylmannosamine kinase N  

Overexpression rcsD CLX 
Regulator of capsular polysaccharide 
synthesis

N  

Overexpression rluA CLX 
23S rRNA and tRNA pseudouridine 
synthase N  

Overexpression yccT CLX, PEN, VAN conserved protein N  

Overexpression yjjQ CLX, PEN predicted DNA-binding 
transcriptional regulator 

N yjjQ is associated with methylglyoxal sensitivity (Kim 
et al., 2007). 

Overexpression rbsR CPR, FOX, PEN 
'Ribose Repressor' DNA-binding 
transcriptional repressor N  

Overexpression baeR CRB BaeR transcriptional regulator Y baeR activates the MdtABC drug efflux system 
(Nagakubo et al., 2002). 

Overexpression iap CRB, PEN 
alkaline phosphatase isozyme 
conversion protein N  
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Change in 
gene 
expression 

Gene 
name 

Drugs resisted Gene function 

Previously 
associated 
with drug 
resistance? 

Notes 

Overexpression amiA ERY, SPR 
N-acetylmuramoyl-L-alanine 
amidase 1 

N  

Overexpression appY ERY 
'acid phosphatase' DNA-binding 
transcriptional activator 

N  

Overexpression rluE ERY, SPR 23S rRNA pseudouridine synthase N  

Overexpression rng ERY ribonuclease G N  

Overexpression btuE FOX thioredoxin/glutathione peroxidase N  

Overexpression ycgZ FOX, PEN predicted protein N ycgZ is a member of the cold shock stimulon (Polissi 
et al., 2003). 

Overexpression dxs MEC 
1-deoxyxylulose-5-phosphate 
synthase N 

Dxs is the first enzyme in the methylerythritol 
phosphate pathway of isoprenoid biosynthesis 
(Sprenger et al., 1997). 

Overexpression gcvA MEC 
'Glycine cleavage A' DNA-binding 
transcriptional dual regulator N  

Overexpression glnB MEC nitrogen regulatory protein P-II 1 N  

Overexpression glyQ MEC glycyl-tRNA synthetase, α subunit N  

Overexpression mrdA MEC peptidoglycan synthetase (PBP2) Y mrdA is the primary target of Mecillinam (Kong et 
al., 2010). 

Overexpression rplJ MEC 50S ribosomal subunit protein L10 N  

Overexpression rutR MEC, PEN 
'pyrimidine utilization, rut 
repressor' DNA-binding 
transcriptional dual regulator 

N  
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Change in 
gene 
expression 

Gene 
name 

Drugs resisted Gene function 

Previously 
associated 
with drug 
resistance? 

Notes 

Overexpression trpR MEC tryptophan transcriptional repressor N  

Overexpression yehK MEC predicted protein N  

Overexpression ygbE MEC conserved inner membrane protein N  

Overexpression ycjR NIT predicted component of the SdsRQP 
multidrug efflux pump

Y (Dinh et al., 1994) 

Overexpression yibF NIT glutathione transferase-like protein N  

Overexpression eptB PEN, VAN phosphoethanolamine transferase N eptB modifies lipopolysaccharide (Reynolds et al., 
2005). 

Overexpression nadK PEN NAD kinase N  

Overexpression cpdA PHM cAMP phosphodiesterase N Overproduction of cpdA confers acid resistance 
(Barth et al., 2009). 

Overexpression frsA PHM 
fermentation/respiration switch 
protein

N  

Overexpression metB PHM 
O-succinylhomoserine lyase / 
O-succinylhomoserine(thiol)-lyase 

N  

Overexpression pdhR PHM 
pyruvate dehydrogenase complex 
DNA-binding transcriptional dual 
regulator 

N  

Overexpression slyA PHM 
SlyA DNA-binding transcriptional 
activator N  

Overexpression yejG PHM predicted protein N  
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Change in 
gene 
expression 

Gene 
name 

Drugs resisted Gene function 

Previously 
associated 
with drug 
resistance? 

Notes 

Overexpression ylcG PHM 
DLP12 prophage; small membrane 
protein 

N  

Overexpression yrbL PHM predicted protein N  

Overexpression entS RIF enterobactin efflux transporter Y 
An entS insertion mutant has increased susceptibility 
to mitomycin C (Han et al., 2010). 

Overexpression gadE RIF 
'Glutamic acid decarboxylase' DNA-
binding transcriptional activator 

Y 
gadE activates the glutamic acid decarboxylase 
(GAD) acid resistance system, and multi-drug efflux 
genes (Tucker et al., 2003). 

Overexpression gfcC RIF conserved protein N  

Overexpression nuoI RIF NADH:ubiquinone oxidoreductase, 
chain I 

N  

Overexpression cynS SCM cyanase N 
cynS may function in detoxification of cyanate 
(Anderson et al., 1990).

Overexpression nudB SCM, SMX 
dihydroneopterin triphosphate 
pyrophosphohydrolase N 

nudB catalyzes the first committed step in the 
synthesis of folate (Suzuki and Brown, 1974). 

Overexpression pyrG SCM, SMX CTP synthetase N  

Overexpression ydiZ SCM predicted protein N  

Overexpression ykfF SCM predicted protein N  

Overexpression ymgG SCM predicted protein N  

Overexpression dksA SMX 
RNA polymerase-binding 
transcription factor 

N 
While dksA overexpression resists SMX, dksA 
deletion resists RIF 
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Change in 
gene 
expression 

Gene 
name 

Drugs resisted Gene function 

Previously 
associated 
with drug 
resistance? 

Notes 

Overexpression puuP SPX 
proton dependent putrescine 
transporter 

N  

Overexpression fabI TCL enoyl acyl carrier protein reductase Y fabI is the target of Triclosan (Heath et al., 1998). 

Overexpression folA TMP dihydrofolate reductase Y 
folA is the target of Trimethoprim (Miovic and Pizer, 
1971). 

Overexpression folM TMP 
dihydromonapterin reductase / 
dihydrofolate reductase Y 

folM is a dihydromonapterin reductase with weak 
activity as a dihydrofolate reductase (Giladi et al., 
2003). While folM over-expression confers 
trimethoprim resistance, folM deletion confers 
sulfonamide resistance. 

Overexpression creA VAN conserved protein N  

Deletion ddpF AMK 
putative ATP-binding component of 
an ABC transporter

N 
While ddpF overexpression resists CFS, CLX, MEC, 
PHD, ddpF deletion resists AMK

Deletion gnsA AMK 
predicted regulator of 
phosphatidylethanolamine synthesis N  

Deletion pheM AMK phenylalanyl-tRNA synthetase 
operon leader peptide 

N  

Deletion ydjI AMK predicted aldolase N  

Deletion sbmA BLM peptide antibiotic transporter Y 
Loss of sbmA function confers resistance to proline-
rich antimicrobial peptides (Mattiuzzo et al., 2007). 

Deletion asmA CFS 
predicted outer membrane protein 
assembly protein N 

asmA is required for assembly of the porins through 
which cephalosporins enter the cell (Misra and Miao, 
1995). 
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Change in 
gene 
expression 

Gene 
name 

Drugs resisted Gene function 

Previously 
associated 
with drug 
resistance? 

Notes 

Deletion hrpB CFS predicted ATP-dependent helicase N  

Deletion yceG CFS, VAN predicted aminodeoxychorismate 
lyase

N  

Deletion cadB CLI lysine:cadaverine antiporter N 
cadB is part of the lysine-dependent acid resistance 
system 4 (Meng and Bennett, 1992). 

Deletion rpmG CLI 50S ribosomal subunit protein L33 N  

Deletion speA CLI biosynthetic arginine decarboxylase N speA catalyzes the first step in putrescine 
biosynthesis (Wu and Morris, 1973). 

Deletion speB CLI agmatinase N 
speB catalyzes the second step in putrescine 
biosynthesis (Satishchandran and Boyle, 1986). 

Deletion lon CLX DNA-binding, ATP-dependent 
protease 

Y Loss of lon function stabilizes marA to confer 
antibiotic resistance (Nicoloff et al., 2006). 

Deletion ompF CLX, FOX outer membrane porin F Y 
ompF is the primary route of cell entry for many 
beta-lactams, particularly cephalosporins (Nikaido, 
1989). 

Deletion ompR CLX, FOX OmpR response regulator Y ompR is the transcriptional activator of ompF; loss of 
ompR prevents synthesis of ompF (Tsui et al., 1988). 

Deletion atpB CRB 
ATP synthase F0 complex - a 
subunit 

N  

Deletion atpE CRB 
ATP synthase F0 complex - c 
subunit 

N  

Deletion cpxA CRB CpxA sensory histidine kinase N 
cpxA is part of the stress response pathway to cell 
envelope damage (Pogliano et al., 1997). 

Deletion rnhA ERY RNase HI N  
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Change in 
gene 
expression 

Gene 
name 

Drugs resisted Gene function 

Previously 
associated 
with drug 
resistance? 

Notes 

Deletion sulA ERY SOS cell division inhibitor N  

Deletion ycbZ ERY, SPR putative ATP-dependent protease N  

Deletion fepB MEC ferric enterobactin ABC transporter N  

Deletion fepC MEC ferric enterobactin ABC transporter N  

Deletion fepG MEC ferric enterobactin ABC transporter N  

Deletion fes MEC enterochelin esterase N 
fes hydrolyzes ferric enterobactin (Langman et al., 
1972).

Deletion glnD MEC uridylyltransferase N  

Deletion pdxA MEC 4-hydroxy-L-threonine phosphate 
dehydrogenase, NAD-dependent 

N pdxA is required for pyridoxal phosphate synthesis 
(Lam et al., 1992). 

Deletion rodZ MEC 
transmembrane component of 
cytoskeleton 

N 
rodZ interacts with the target of mecillinam (mrdA) 
through the MreB cytoskeleton (Bendezu et al., 
2009). 

Deletion ybjI MEC FMN phosphatase N 
ybjI possesses phosphatase activity against pyridoxal 
phosphate (Kuznetsova et al., 2006). 

Deletion dbpA NIT ATP-dependent RNA helicase, 
specific for 23S rRNA 

N  

Deletion lpcA NIT 
D-sedoheptulose 7-phosphate 
isomerase N 

lpcA catalyzes the first step in the synthesis of a core 
component of lipopolysaccharide; lpcA deletion 
confers sensitivity to some antibiotics by increasing 
cell permeability (Tamaki et al., 1971).  



 

Supplementary Table 3.1. Changes in gene expression that increase antibiotic resistance. (continued) 

147 

Change in 
gene 
expression 

Gene 
name 

Drugs resisted Gene function 

Previously 
associated 
with drug 
resistance? 

Notes 

Deletion nfsA NIT NADPH nitroreductase Y 
nfsA is required to activate nitrofurantoin to toxic 
reactive species, and so nfsA deletion confers 
nitrofurantoin resistance (McCalla et al., 1978). 

Deletion pstC NIT phosphate ABC transporter -
membrane subunit

N  

Deletion rfaC NIT 
ADP-heptose:LPS 
heptosyltransferase I N 

rfaC transfers heptose onto lipopolysaccharide 
(Kadrmas and Raetz, 1998) 

Deletion rfaD NIT ADP-L-glycero-D-mannoheptose-6-
epimerase 

N rfaD catalyzes a step in the synthesis of 
lipopolysaccharide (Kneidinger et al., 2002). 

Deletion sspA NIT stringent starvation protein A N  

Deletion ybjC NIT predicted inner membrane protein N 
ybjC is co-transcribed with nfsA (Paterson et al., 
2002). Polar effects on nfsA are a likely mechanism of 
resistance to nitrofurantoin. 

Deletion ratA PHM 
toxin of a predicted toxin-antitoxin 
pair

N  

Deletion ubiF PHM 2-octaprenyl-3-methyl-6-methoxy-
1,4-benzoquinone hydroxylase 

Y 
uniF catalyzes a step in the ubiquinone biosynthesis 
pathway. Previously identified as a phleomycin 
resistant mutant (Collis and Grigg, 1989). 

Deletion ubiG PHM 

bifunctional 3-demethylubiquinone-
8 3-O-methyltransferase and 2-
octaprenyl-6-hydroxyphenol 
methylase

Y 
ubiG catalyzes a step in the ubiquinone biosynthesis 
pathway. ubiG deletion produces a similar defect to a 
Phleomycin-resistant mutation in ubiF 

Deletion ubiH PHM 2-octaprenyl-6-methoxyphenol 
hydroxylase 

Y 
ubiH catalyzes a step in the ubiquinone biosynthesis 
pathway. ubiH deletion produces a similar defect to a 
Phleomycin-resistant mutation in ubiF 
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Change in 
gene 
expression 

Gene 
name 

Drugs resisted Gene function 

Previously 
associated 
with drug 
resistance? 

Notes 

Deletion ycgB PHM conserved protein N  

Deletion ymgG PHM predicted protein N  

Deletion dksA RIF 
RNA polymerase-binding 
transcription factor DksA 

N 
While dksA overexpression resists SMX, dksA 
deletion resists RIF 

Deletion marC RIF predicted transporter N  

Deletion ptsN RIF 
phosphotransferase system enzyme 
IIA, regulation of potassium 
transport 

N  

Deletion rlmL RIF fused dual 23S rRNA 
methyltransferase 

N  

Deletion yfgH RIF predicted outer membrane 
lipoprotein 

N  

Deletion ccmH SCM, SMX cytochrome c biogenesis protein N  

Deletion folM SCM, SMX 
dihydromonapterin reductase / 
dihydrofolate reductase 

Y 

While folM over-expression confers trimethoprim 
resistance, folM deletion confers sulfonamide 
resistance. A folM deletion has been previously 
observed to confer sulfonamide resistance (Girgis et 
al., 2009). 

Deletion folX SCM, SMX dihydroneopterin triphosphate 2'-
epimerase 

Y A folX deletion has been previously observed to 
confer sulfonamide resistance (Girgis et al., 2009). 

Deletion ybiP SPR 
predicted hydrolase, inner 
membrane N  
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Change in 
gene 
expression 

Gene 
name 

Drugs resisted Gene function 

Previously 
associated 
with drug 
resistance? 

Notes 

Deletion ygeO SPR predicted protein N 
ygeO is involved in the production of Extracellular 
Death Factor (Kolodkin-Gal et al., 2007). 

Deletion ymfJ SPR predicted protein N  

Deletion rsxC TMP member of SoxR-reducing complex Y 
rsxC deletion produces constitutive transcription of 
sox operon (Koo et al., 2003). 

Deletion dacA VAN 
D-alanyl-D-alanine 
carboxypeptidase IA (PBP5) 

N 

dacA is involved in production of the cellular target 
of vancomycin binding (D-alanyl-D-alanine). dacA 
deletion confers increased beta-lactam susceptibility 
(Sarkar et al., 2010).

Deletion ycgB PHM conserved protein N  
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Supplementary Figure 3.2. Measurement of IPTG-induced transcription of antibiotic 

resistance genes by beta-galactosidase assays. The pCA24N plasmid used to express Open 

Reading Frames in the ASKA library was engineered to express lacZ, and transformed into 

BW25113. Liquid cultures of this strain were prepared as for growth rate assays, across a 

gradient of IPTG concentrations. In early log phase, promoter activity was measured in Miller 

Units by a kinetic beta-galactosidase assay (black points). The resulting data is well described 

by two straight lines on a double-log plot (gray lines). From this data, eight IPTG 

concentrations were chosen for the growth rate assays in Figures 3 and 4, that produced 

evenly log-distributed amounts of promoter activity (in Miller Units) over a 50-fold dynamic 

range (red crosses). 
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Supplementary Figure 3.3. Non-optimal use of antibiotic resistance genes under antibiotic 

stress. Microtiter plates containing 2-dimensional gradients of IPTG and antibiotic were 

inoculated with either a wildtype strain (WT = BW25113 pCA24N-ΔpT5lac-yfp pCSλ), a 

strain lacking a gene of interest (Δgene = BW25113 gene::FRT pCA24N-ΔpT5lac-yfp pCSλ), 

or a strain with experimentally controlled expression of the gene of interest (BW25113 

gene::FRT pCA24N-gene pCSλ). Plates were incubated at 30°C in a scintillation counter and 

growth rates were measured based on bioluminescence, generated by the pCSλ plasmid 

(Methods). a, The use of marA and soxS was measured in a panel of 9 antibiotics. b, The use 

of ampC was measured in ampicillin and cephalexin, and the use of sbmC was measured in 

phleomycin. 
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Supplementary Figure 3.3 (continued).  
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Supplementary Figure 3.3 (continued).  
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Supplementary Material for Chapter 4. 

The dependence of antibiotic resistance on target expression 

 

 

 

Supplementary Figure 4.1. Measurement of IPTG-induced transcription of drug target 

genes by beta-galactosidase assays. A strain was constructed where lacZ was encoded in 

place of a drug target gene (BW25113 pCA24N-lacZ). Liquid cultures of this strain were 

prepared as for growth rate assays, across a gradient of IPTG concentrations. In early log 

phase, promoter activity was measured in Miller Units by a kinetic beta-galactosidase assay 

(black points). The resulting data is well described by two straight lines on a double-log plot 

(gray lines). From this data, eight IPTG concentrations were chosen for the growth rate assays 

in Figure 1b, that produced evenly log-distributed amounts of promoter activity (in Miller 

Units) over a 50-fold dynamic range (red crosses). 
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Supplementary Figure 4.2. Mass-action kinetic models reveal the relations between 

enzyme concentration and drug resistance. 

In sections a and b we first derive the relation between drug target over-expression and drug 

resistance for the simple model shown in Figure 4.2a. In sections c, d, e and f we show that 

mass-action kinetic models of competitive and non-competitive inhibition produce identical 

results to the initial simple models. 

 

(a) Simple model of a drug that solely inhibits an enzyme 
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Supplementary Figure 4.2. (continued) 

Let [E]total = ( Ewt + Eadditional ). 

Solve for IC50, first without considering fitness costs of additional enzyme production: 
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Supplementary Figure 4.2. (continued) 

Solve for IC50, considering fitness costs of additional enzyme production, cost(Eadditional): 
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Supplementary Figure 4.2. (continued) 

(b) Simple model of a drug that induces a harmful enzyme-catalyzed reaction.  

The mechanism of inhibition modeled here can result in a depletion of substrate S, and so to 

model this effect S is treated as a dynamical variable, synthesized at rate α. 
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Supplementary Figure 4.2. (continued) 
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Supplementary Figure 4.2. (continued) 

Let [E]total = ( Ewt + Eadditional ). Note that in contrast to the model of enzyme inhibition in 

Supplementary Figure 4.2a, this substitution now has no effect on reaction rate. 

 

Solve for IC50, first without considering fitness costs of additional enzyme production: 
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Solve for IC50, considering fitness costs of additional enzyme production, cost(Eadditional): 
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Supplementary Figure 4.2. (continued) 
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Supplementary Figure 4.2. (continued) 

(c). Competitive enzyme inhibition 

Example: E = Dihydrofolate reductase (DHFR), S = dihydrofolic acid, P = tetrahydrofolic 

acid, I = trimethoprim (Supplementary Figure 4.4b). 
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Supplementary Figure 4.2. (continued) 

Let [E]total = ( Ewt + Eadditional ). 

Solve for IC50, first without considering fitness costs of additional enzyme production: 
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Supplementary Figure 4.2. (continued) 

Let [E]total = ( Ewt + Eadditional ). 

Solve for IC50, considering fitness costs of additional enzyme production, cost(Eadditional): 
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Supplementary Figure 4.2. (continued) 

(d). Non-competitive enzyme inhibition 
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The remainder of the derivation is identical to that in Supplementary Figure 4.2a, yielding 
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depending on the absence or presence of fitness costs for drug target over-expression.  
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Supplementary Figure 4.2. (continued) 

(e). Competitive substrate damage 

The mechanism of inhibition modeled here can result in a depletion of substrate S2, and so to 

model this effect S2 is treated as a dynamical variable, synthesized at rate α; while S1 is treated 

as a constant. 

Example: E = Dihydropteroate synthase (DHPS), S1 = para-aminobenzoic acid (PABA), S2 = 

pteridine diphosphate, P = dihydropteroate, I = sulfamethoxazole, I-S2 = dihydropterin-

sulfamethoxazole (Supplementary Figure 4.4a). 
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Supplementary Figure 4.2. (continued) 
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Supplementary Figure 4.2. (continued) 

Let [E]total = ( Ewt + Eadditional ). 

Solve for IC50, considering fitness costs of additional enzyme production, cost(Eadditional): 
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Supplementary Figure 4.2. (continued) 

(f). Non-competitive substrate damage 

The mechanism of inhibition modeled here can result in a depletion of substrate S, and so to 

model this effect S is treated as a dynamical variable, synthesized at rate α. 
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Supplementary Figure 4.2. (continued) 

The remainder of the derivation is identical to that in Supplementary Figure 4.2b, yielding
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depending on the absence or presence of fitness costs for drug target over-expression.
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Supplementary Figure 4.3. Wildtype enzyme abundance quantitatively affects the 

resistance obtained upon drug target over-expression. Over-expression of a non-costly 

target gene of an enzyme inhibitor confers increased drug resistance according to the 

equation IC50/IC50wt = 2×(Ewt+Eadditional) / Ewt − 1 (Supplementary Figure 4.3a, b). 

Consequently, variation in Ewt affects the change in resistance for a given value of Eadditional: 

when plotted against log(Eadditional) the response curve retains its shape but is translated along 

the log(Eadditional) axis by the log of the ratio of Ewt values. This phenomenon explains the 

quantitative difference in resistance between trimethoprim and triclosan on the over-

expression of each drug's target (DHFR and ENR, respectively). Known differences in Ewt 

explain most of the observed variation: Taniguchi et al measured wildtype protein 

abundances in E. coli with single-molecule sensitivity using fluorescent protein 

fusions(Taniguchi et al., 2010), and measured the mean single-cell abundance of DHFR (folA) 

as 38 proteins / cell, while ENR (fabI) was more highly expressed at 342 proteins / cell 

(Supplementary Table 6 of (Taniguchi et al., 2010). While log10(Ewt ENR / Ewt DHFR) ≈ 1,  the 

measured curves (IC50/IC50wt)DHFR and (IC50/IC50wt)ENR differ by 1.5 units on the 

log10(Eadditional) axis (Figure 4.2b). The additional difference of 0.5 may be explained by 

differences in transcript stability or translation efficiency between the exogenous (plasmid-

expressed) transcript and the endogenous (chromosomal) transcript. An altered number of 

proteins produced per exogenous transcript can be characterized by a coefficient in front of 

Eadditional, which is mathematically equivalent to variation in Ewt and thus results in a shift along 

the log(Eadditional) axis. One feature of the response to ENR over-expression is still not 
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explained by this theory: an elevated baseline level of resistance, conferred by carriage of the 

ENR-expressing plasmid even without IPTG (Figure 4.1b). This effect, and a similar effect for 

DNA Gyrase and Topo IV (reduced baseline resistance), can be explained by an elevated 

baseline transcription of these genes from weak internal promoters (Supplementary Figure 

4.5). 

 

 

 

 

Supplementary Figure 4.3. Wildtype enzyme abundance quantitatively affects the 

resistance obtained upon drug target over-expression. (Continued) 
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Supplementary Figure 4.4. Sulfonamides and trimethoprim inhibit their targets by 

different molecular mechanisms. (a) Sulfonamide class antibiotics, such as 

sulfamethoxazole, compete with para-aminobenzoic acid for binding to Dihydropteroate 

synthase (DHPS). When sulfonamides bind to DHPS they do not inhibit catalysis, but are 

covalently linked by DHPS to the substrate pteridine diphosphate. This substrate-diverting 

reaction constitutes a distinction from competitive inhibition that profoundly changes the 

relation between enzyme concentration and drug resistance (Supplementary Figure 4.2) (b) 

Trimethoprim competes with dihydrofolic acid for binding to Dihydrofolate reductase 

(DHFR), and exemplifies the traditional concept of a competitive enzyme inhibitor: DHFR 

has no catalytic activity when bound by trimethoprim. 
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Supplementary Figure 4.4. Sulfonamides and trimethoprim inhibit their targets by 

different molecular mechanisms. (Continued) 
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Supplementary Figure 4.5. Small differences in baseline drug resistance can be explained 

by weak internal promoters in drug target genes. Plasmids encoding the drug target genes 

ENR, Gyrase, and Topo IV induce small changes in resistance that do do not appear to be 

caused by basal IPTG-regulated transcription (Supplementary Figure 4.1), since this baseline 

change in resistance does not change further until a greater than 5-fold increase in IPTG-

induced transcription (Figure 4.1b). These effects may be explained by weak internal 

promoters in these drug target genes, that will induce a baseline level of additional 

transcription that is not IPTG-responsive. This figure demonstrates the theoretical responses 

to ENR (h–c–), Gyrase (h+c+ lethal) and Topo IV (h+c+ partial) in the presence of a weak 

internal promoter. Small amounts of additional drug target production have the effect of 

inducing small changes in drug resistance; positive for h–c– and negative for h+c+; that persist 

even as IPTG-regulated Eadditional approaches zero. In the examples shown here, the h–c– gene 

(compare to ENR, Figure 4.1b) contains an internal promoter of 0.5% of the wildtype 

promoter strength. As this gene is encoded on a plasmid with, conservatively, 50 copies per 

cell(Kitagawa et al., 2005; Lutz and Bujard, 1997), this 0.5% activity per gene copy leads to a 

baseline synthesis of 25% of Ewt, and consequently a measurable increase in baseline IC50. 

This quantitative calibration (internal promoter = 0.5% of Ewt) is made possible by the relative 

increase in drug resistance; such an estimation is not possible for genes that only incur costs, 

not protection (e.g. Gyrase and Topo IV). 
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Supplementary Figure 4.5. Small differences in baseline drug resistance can be explained 

by weak internal promoters in drug target genes. (Continued) 
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