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A genome-wide study of homologous recombination in mammalian cells 

identifies RBMX, a novel component of the DNA damage response 

 

Abstract 

 Repair of DNA double-strand breaks is critical to the maintenance of genomic stability, and 

failure to repair these DNA lesions can cause loss of chromosome telomeric regions, complex 

translocations, or cell death.  In humans this can lead to severe developmental abnormalities and cancer.  

A central pathway for double-strand break repair is homologous recombination (HR), a mechanism that 

operates during the S and G2 phases of the cell cycle and primarily utilizes the replicated sister chromatid 

as a template for repair.  Most knowledge of HR is derived from work carried out in prokaryotic and 

eukaryotic model organisms.  To probe the HR pathway in human cells, we performed a genome-wide 

siRNA-based screen; and through this screen, we uncovered cellular functions required for HR and 

identified proteins that localize to sites of DNA damage.  Among positive regulators of HR, we identified 

networks of pre-mRNA-processing factors and canonical DNA damage response effectors.  Within the 

former, we found RBMX, a heterogeneous nuclear ribonucleoprotein (hnRNP) that associates with the 

spliceosome, binds RNA, and influences alternative splicing.  We found that RBMX is required for 

cellular resistance to genotoxic stress, accumulates at sites of DNA damage in a poly(ADP-ribose) 

polymerase 1-dependent manner and through multiple domains, and promotes HR by facilitating proper 

BRCA2 expression.  Screen data also revealed that the mammalian recombinase RAD51 is commonly 

off-targeted by siRNAs, presenting a cautionary note to those studying HR with RNAi and highlighting 

the vulnerability of RNAi screens to off-target effects in general.  Candidate validation through secondary 

screening with independent reagents successfully circumvented the effects of off-targeting and set a new 

standard for reagent redundancy in RNAi screens.
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I.  DNA damage 

1-1.  The DNA molecule 

To understand DNA damage and repair, one must begin by understanding the structure of DNA 

itself.  Deoxyribonucleic acid (DNA) is a macromolecule that encodes the genetic instructions necessary 

for coordinating cellular life in all organisms, prokaryote to eukaryote.  Fundamentally, DNA is 

composed of five organic elements –hydrogen, oxygen, nitrogen, carbon, and phosphorous– which are 

organized into highly ordered substructures called nucleotides (Figure 1).  Single DNA molecules are 

polymers of repetitive nucleotides each containing a five-carbon sugar residue (deoxyribose), an aromatic 

nitrogenous base called a nucleobase (or base), and a phosphate group.  Alternating phosphate and sugar 

residues form the backbone of the DNA polymer, with a phosphodiester bond spanning the fifth and third 

carbons of deoxyribose moieties in adjacent nucleotides.  The deoxyribose is covalently linked to one of 

four bases, adenine, thymine, guanine or cytosine, by a β-N-glycosidic bond from its first carbon.  

Thymine (T) and cytosine (C) are aromatic ring compounds known as pyrimidines that have nitrogen at 

ring positions 1 and 3.  Adenine (A) and guanine (G) are larger bases called purines that are composed of 

a pyrimidine fused to an imidazole ring.    

In vivo cellular DNA rarely exists as a single molecule but forms a paired helical structure in 

which two DNA polymers (or strands) are linked by matched nucleobases in an inverted, anti-parallel 

alignment (Figure 1).  Hydrogen bonds and base-stacking interactions between base pairs mediate linkage 

of the stands to form an ordered structure known as the double-helix.  This structure was first describe by 

James D. Watson and Francis H. C. Crick in a 1953 Nature publication as, “two helical chains each coiled 

round the same axis. . . .related by a dyad [of bases] perpendicular to the fibre axis . . . .[These] follow 

right handed helices, but owing to the dyad the sequences of the atoms in the two chains run in opposite 

directions” (Watson and Crick, 1953).  In properly aligned molecules, pyrimidine bases are paired 
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exclusively with purines (T to A and G to C), so that “if the sequence of bases on one chain is given, then 

the sequence of the other chain is automatically determined” (Watson and Crick, 1953). 

  

 
Figure 1.  Schematic of anti-parallel pairing between two DNA strands 

1-2.  DNA lesions and repair pathways 

As with any ordered structure, DNA is subject to error, modification and deterioration.  The 

dynamic chemical nature of the cellular environment and frequent in vivo processing provide an 

endogenous baseline of DNA damage that is compounded by exposure to sources of environmental stress.  

The maintenance of DNA fidelity, however, is a task essential to both cellular function and survival 

because as a “blueprint” molecule DNA sits at the foundation of a dynamic central dogma that turns 

nucleic acid-encoded information into functional cellular processes (Crick, 1970).  Even one mutated 

nucleobase (out of ~4.6x106 for the bacteria Escherichia coli, ~1.2x107 for the budding yeast 

Saccharomyces cerevisiae, and ~3.3x109 for humans) placed in the right genomic position can have 

functional consequences that are deleterious even fatal to an organism, and the accumulation of many 
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mutations, especially in the gamete cells of multicellular organisms, amplifies the probability of such 

problematic events.  

To maintain cellular function throughout the growth of a cell population or development of an 

organism, DNA must also be faithfully replicated and distributed as cells divide; however, errors in DNA 

replication are not uncommon.   In Escherichia coli (E. coli), DNA polymerases have been estimated to 

incorporate the wrong nucleotide into newly replicated DNA –causing a mismatched nucleobase dyad– at 

a rate of approximately 10-7 - 10-8 (Kunkel, 2004), which is an estimated 1 mutation per replication event.  

Left unrepaired such mismatches will result in full the mutation of nucleotide pairs during the next round 

of replication (mutation fixation), after which they cannot be distinguished from properly preserved 

nucleotides in the surrounding DNA sequence.  While a majority of these errors are fixed by the 

proofreading activities of DNA polymerases, mutations that escape proofreading must be repaired by 

other means.   

Happily for all cellular life, comprehensive mechanisms of DNA repair that fix a variety of DNA 

lesions, including nucleobase mismatches, have evolved and been conserved.  In general, DNA lesions 

are diverse, but they can be classified in two ways, by their structural manifestation and by the 

mechanisms that engage them for repair (Figure 2).  Structurally, DNA lesions are divided into two major 

categories: those that involve only one strand of the DNA double-helix and those that affect both, and 

both single- and double-strand DNA lesions can be further subcategorized based on their chemical 

makeup.  Among single-strand DNA (ssDNA) lesions are base-base mismatches from DNA replication 

errors, apurinic  / apyrimidinic (AP) sites formed by base hydrolysis, structural base alterations caused by 

chemical modification, and regions of missing nucleotides known as single-strand breaks.  Chemical 

modifications to DNA bases include small changes generated by deamination, alkylation (commonly 

methylation) or oxidation, larger modifications that distort helical structure (such as addition of bulky 

adducts, including aromatic amines and hydrocarbons), and covalent intrastrand linkages between 

nucleobases (such as pyrimidine dimers).  Base-base mismatches from replication errors are repaired by a 

mechanism aptly named mismatch repair (MMR), AP sites and small base modifications caused by 
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endogenous reactive oxygen species, X-rays, or chemical agents are repaired through base excision repair 

(BER), and bulky adducts and intrastrand crosslinks, which arise from exposure to UV-light and 

environmental chemicals (often found in soot, tar and cigarette smoke), rely on nucleotide excision repair 

(NER) for repair (Figure 2).  The mechanism for repair of single-strand breaks (SSBs) is called single-

strand break repair (SSBR).  This mechanism is often engaged downstream of BER and NER once 

damaged bases have been removed.

 
Figure 2.  DNA lesions and repair pathways. 

Although the particulars of MMR, BER, NER and SSBR vary, these mechanisms all share one 

important feature: genomic fidelity is maintained by engaging the complementary and undamaged DNA 

strand as a template for repair.  In these mechanisms nucleotides are removed from the damaged strand 

and DNA polymerases facilitate DNA re-synthesis guided by the readily available compliment strand.  In 

contrast, repair of double-strand DNA (dsDNA) lesions requires the repair of missing or damaged bases 

without an obvious template.  Double-strand DNA lesions include double-strand breaks (DSBs) and 

covelant interstrand crosslinks (ICLs) caused by abortive topoisomerase activity, collapsed replication 

forks, exposure to radiation (X- and γ−rays), and various chemical agents, such as nitrogen mustard and 
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chemotherapeutics (chlorambucil, mitomycin C, cisplatin and bleomycin).  DSBs are widely considered 

to be the most cytotoxic form of DNA lesion (Jackson, 2002; Khanna and Jackson, 2001), and cleavage 

of both strands present a unique challenge for repair.  To repair this form of DNA damage cells have 

evolved at least three types of mechanism: non-homologous end-joining (NHEJ), homologous 

recombination (HR), and single-strand annealing (SSA).  The two primary and most well studied 

pathways are NHEJ and HR.  NHEJ is a direct and “error-prone” religation of DSB ends, and HR is a cell 

cycle-regulated mechanism that uses a newly replicated DNA strand (sister chromatid) as a template for 

“error-free” repair by DNA synthesis.  The details of NHEJ, HR, SSA, and their sub-pathways are 

described in greater detail below (Chapter 1, III). 

 

1-3.  Medical rationale for the study of DNA repair 

Although the various mechanisms of DNA repair have been defined in copious detail (reviewed 

herein), there remains much to be learned and potential medical applications inspire continued study.  

Loss-of-function and hypomorphic mutations in many repair genes have been causally associated with 

human pathologies.  Among these are neurodegenerative syndromes and defects in neurodevelopment 

thought to arise from a strong dependency of non-proliferative neuronal cells on DNA repair, 

immunodeficiency disorders caused by defects in antigen receptor molecule generation by NHEJ 

mechanisms, and premature ageing disorders (Ciccia and Elledge, 2010).   

Perhaps the most common pathology associated with DNA repair dysfunction, however, is 

cancer.  In particular, germline mutations in MMR genes (MSH2, MSH6, and MLH1) carry risk associated 

with hereditary nonpolyposis colorectal cancer (HNPCC).  NER gene mutation (XPA-G) causes 

xeroderma pigmentosum (XP), a disorder associated with an increased risk of skin cancer and melanoma 

(Ciccia and Elledge, 2010).  Mutations in double strand break repair genes (ATM, NBS1, LIG4, and 

ARTEMIS) predispose to lymphomas and leukemias, and in the HR pathway specifically, BRCA1 and 

BRCA2 mutations have been found to be strongly predictive of hereditary breast and ovarian cancer 

(Ciccia and Elledge, 2010).  Germline mutations in additional HR-associated genes, including BACH1, 
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PALB2, RAD51C, CHK2, ATM, NBS1, and RAD50, have also been correlated with breast cancer (Ciccia 

and Elledge, 2010).  The normal cellular functions of each of these genes are discussed in detail 

throughout Chapter 1.  Interestingly, because somatic mutations in some DNA repair-associated genes 

have been found in tumor samples at frequencies suggestive of cancer-driving events, for example ATM 

mutations in primary lung adenocarcinoma, the development of sporadic cancers, although not 

predisposed by any known germline mutations, is also thought to be linked to dysregulation of DNA 

repair at some level (Ciccia and Elledge, 2010; Ding et al., 2008). 

In this manner, the study of DNA repair can be thought of both as an academic exercise aimed at 

achieving a better understanding of our own cellular nature and an endeavor of current medical relevancy.  

To this point, much consideration has recently been given to the potential for developing cancer 

treatments that target specific DNA repair deficiencies with a synthetic lethality-based approach.  The 

defining logic here being that cancer cells deficient in one repair pathway will have an increased 

dependency on alternative repair mechanisms, more so than normal cells, and by targeting these 

mechanisms a cytotoxic differential between normal and malignant cells may be reached (Luo et al., 

2009). 

 

II.  The vertebrate DNA damage response (DDR) 

2-1.  Signaling and checkpoint activation 

The first step towards efficiently managing DNA damage, regardless of the physical lesion 

sustained, is recognition of the lesion site.  To this end, a broad cellular response has evolved that 

coordinates DNA lesion identification and facilitates subsequent repair; in aggregate this system is 

referred to as the DNA damage response (DDR) (Ciccia and Elledge, 2010; Zhou and Elledge, 2000).  

Herein, discussion is focused primarily on mechanisms of DNA repair as the primary objective of the 

DDR; however, it should be understood that the DDR is a diverse mechanism.  Cell fate in response to 

DNA damage is variable and depends on cell type and condition, as well as the variety and number of 
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DNA lesions sustained.  Conditions of high genotoxic stress or unrepairable DNA lesions can lead to 

outcomes of regulated cell death through apoptosis or an irreversible condition of cell quiescence called 

senescence.  In multicellular organisms these mechanisms serve to remove damaged cells, which may 

have acquired deleterious mutations, from contributing to future cell lineages.  Apoptosis and senescence 

are achieved in part through DDR-regulated transcriptional control; and recent evidence suggests that the 

DDR also regulates splicing and metabolic function after damage (Ciccia and Elledge, 2010). 

Protein mediators of the DDR can be broken down into three subcategories: lesion sensors, signal 

transducers and outcome effectors (Zhou and Elledge, 2000).  Sensors, the “first responders” of the DDR, 

recognize and bind distinct DNA structures at the sites of DNA damage in order to recruit and activate 

transducer enzymes; transducers then initiate signaling cascades that serve to functionally coordinate 

effector proteins, many of which are directly responsible for lesion repair.  Distinct sensor proteins have 

evolved with varied affinities for different DNA lesions and repair intermediates.  The MRN complex 

(MRE11-RAD50-NBS1) and the Ku70-Ku80 heterodimer, for example, bind DNA ends present at DSBs 

(Blier et al., 1993; de Jager et al., 2001; Mimori and Hardin, 1986), while the heterotrimeric complex 

RPA recognizes and binds single-strand DNA formed at various lesion types and stalled / broken 

replication forks (Wold, 1997).  The poly(ADP-ribose) polymerase PARP1 senses both single- and 

double-strand breaks (D'Amours et al., 1999), while the MMR heterodimers MSH2/MSH6 and 

MSH2/MSH3 are specific for identification of mismatched and improperly inserted or deleted nucleotides 

(Germann et al., 2010). 

Once activated, DDR transducer enzymes go on to modify downstream effector proteins through 

post-translational modifications, including phosphorylation, ubiquitylation, sumoylation, PARylation, and 

possibly others, to disseminate the message that DNA damage has occurred and to functionally initiate 

response mechanisms (Branzei et al., 2008; D'Amours et al., 1999; Dianov et al., 2011; Galanty et al., 

2009; Morris et al., 2009).  Central transducer enzymes in vertebrates are the phosphatidylinositol-3-

kinase (PI3K) family proteins ATM (ataxia telangiectasia mutated), ATR (ATM and Rad3 related), and 

DNA-PKcs (DNA-dependent protein kinase, catalytic subunit), which are activated in response to DNA 
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damage through the MRN complex, RPA, and the Ku70-Ku80 heterodimer, respectively (Lieber, 2010; 

Smith et al., 2010).   

ATM activation occurs in response to the formation of DSBs, which are DNA substrates 

particular to the MRN sensor complex (Figure 3b) (Lamarche et al., 2010).  MRN is composed of 

MRE11, RAD50 and NBS1 (Falck et al., 2005).  MRE11 has two C-terminal DNA-binding domains and 

an affinity for DNA ends that is stimulated by RAD50 and NBS1 (de Jager et al., 2001; Paull and Gellert, 

1999).  In response to DSB formation, nuclear MRN binds DNA ends and through a direct interaction 

with the C-terminal region of NBS1 facilitates ATM recruitment and subsequent ATM activation (Falck 

et al., 2005).  In undamaged cells, ATM is maintained as an inactive homodimer, a structure that 

conformationally inhibits the kinase domain by holding it in an inhibitory state near serine residue 1981.  

However, once at sites of DNA damage, autophosphorylation of S1981 facilitates dimer disruption and 

consequent kinase activation (Bakkenist and Kastan, 2003).  ATM autophosphorylation primarily requires 

binding to MRN; however, recent work has shown that the sensor protein PARP1 also partially controls 

ATM activation and mediates the earliest recruitment of MRE11 and NBS1 to DNA damage, which 

occurs within the first minute after damage (Haince et al., 2007; Haince et al., 2008).   

Like ATM, ATR is activated through a mechanism of recruitment to sites of DNA damage; ATR 

however, is recruited to ssDNA structures coated with RPA, a single-strand binding heterotrimer (Figure 

3e).  In vivo, ATR forms an obligate heterodimer with the ATR-interacting protein ATRIP, and consistent 

with this, the stabilities of ATR and ATRIP are interdependent and phenotypes caused by individual ATR 

or ATRIP loss are observed to be strikingly similar (Cimprich and Cortez, 2008).  ATRIP binds the large 

subunit of RPA (RPA1) to facilitate ATR localization to ssDNA structures (Ball et al., 2007; Cortez et al., 

2001; Zou and Elledge, 2003), and colocalization of ATR-ATRIP with the independently recruited 

TopBP1 promotes activation of ATR kinase activity through stimulatory binding between ATR-ATRIP 

and TopBP1 (Kumagai et al., 2006; Mordes et al., 2008).  TopBP1 accumulates on RPA-coated ssDNA 

through the coordinated actions of the RAD17-RFC2/4 damage-specific clamp loader and the 9-1-1 

complex (RAD9-RAD1-HUS1).  First, RAD17-RFC2/4 loads on to RPA-coated ssDNA structures, 
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preferentially those with 5’-recessed ssDNA / dsDNA junctions (Ellison and Stillman, 2003), and 

facilitates docking of the 9-1-1 complex (Bermudez et al., 2003).  9-1-1 then recruits TopBP1, at least 

partially through a constitutively phosphorylated serine residue at position 387 that binds a BRCT 

phospho-peptide binding domain on TopBP1 (St Onge et al., 2003).  Work in Xenopus laevis, indicates 

that TopBP1 may also be recruited through a RAD9-binding independent mechanism (Lee and Dunphy, 

2010), which could be mediated by the recently discovered 9-1-1- and TopBP1-interacting protein, 

RHINO (Cotta-Ramusino et al., 2011).   

Once activated, ATM, ATR and DNA-PKcs phosphorylate hundreds of proteins, including key 

repair effectors, primarily at S/T-Q amino acid consensus sites (Matsuoka et al., 2007).  Importantly, 

ATM and ATR also activate the Chk2 and Chk1 transducer kinases through stimulatory phosphorylation 

on the following S/T residues: T68 (Chk2), S317 (Chk1), and S345 (Chk1) (Figure 3b,e) (Ahn et al., 

2000; Guo et al., 2000; Matsuoka et al., 1998).  Chk2 and Chk1 are serine-threonine kinases, so-called 

checkpoint kinases, that amplify DNA damage signaling initiated by ATR / ATM by phosphorylating an 

overlapping set of effector substrates (Smith et al., 2010; Zhou and Elledge, 2000).  The transcriptional 

regulator and apoptotic mediator p53, for example, is a direct target of Chk2 (Chehab et al., 2000).  As 

their names suggest, Chk2 and Chk1 also have well-established roles in initiating damage-specific G1, S, 

and G2 cell cycle arrest checkpoints (Boye et al., 2009; Jones and Petermann, 2012).  After lesion 

recognition, temporary cell cycle arrests can be initiated as part of the DDR to allow time for DNA repair 

and prevent mutation fixation.  After completion of repair, arrested cells can re-enter the cell cycle and 

continue proliferation with unaltered genetic information.  To accomplish this, Chk1 and Chk2 inactivate 

members of the CDC25 dual-specificity phosphatase family (CDC25A/B/C) which normally promote cell 

cycle progression (Donzelli and Draetta, 2003).  Specifically, Chk-mediated phosphorylation of CDC25A 

(serine-213) initiates phosphatase ubiquitylation and SCFß-TRCP-dependent degradation (Jin et al., 2003; 

Sorensen et al., 2003), and phosphorylation of CDC25C (serine-216) by Chk1 / Chk2 causes 14-3-3-

mediated inhibition possibly through protein relocalization (Matsuoka et al., 1998; Peng et al., 1997; 

Sanchez et al., 1997).   
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Figure 3.  Schematic of double-strand break repair by homologous recombination 
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During a normal cell cycle, CDC25A facilitates the transition from G1 to S phase, as well as 

progression through S phase, by activating the cell cycle kinase CDK2, which controls replication origin 

firing by promoting CDC45 loading into pre-replication complexes (Donzelli and Draetta, 2003; Jones 

and Petermann, 2012).  CDC45 is a critical component of the helicase complex (also containing MCM2–

7) that unwinds DNA during replication.  After checkpoint activation, reduced CDC25A levels cause 

CDK2 inactivation and diminished replication origin initiation, thereby restricting progression from G1 

into S phase (the G1 / S checkpoint).  Similarly, inactivation of CDK2 during S phase slows DNA 

replication by restricting late origin firing (the intra-S checkpoint).  A second, distinct pathway for 

promoting the intra-S checkpoint has also been described; this pathway is dependent on ATM-mediated 

phosphorylation of NBS1 and SMC1 (Yazdi et al., 2002).  The G2 / M checkpoint, on the other hand, 

stalls cell cycle progression after completion of DNA replication in G2.   Normally, CDC25A/B/C 

activate the late cell cycle kinase CDK1 at the G2 / M boundary, but in a similar fashion, Chk-mediated 

inactivation of CDC25C restrains CDK1 and prevents the transition from G2 to M (Donzelli and Draetta, 

2003). 

 

2-2.  Visualization of the DNA damage response by immunofluorescence techniques  

Protein accumulation at genomic regions of DNA damage, as described above for MRN, ATM, 

ATR-ATRIP, TopBP1, 9-1-1 and Rad17-RFC2/4 (Chapter 1, 2-1), is a common mechanism for engaging 

the activities of DDR proteins specifically within the chromatin at and surrounding DNA lesions.  The 

finding that many proteins recruited to sites of DNA damage can be visualized as discrete nuclear foci 

through immunofluorescence techniques (Chen et al., 1996; Scully et al., 1997a; Scully et al., 1996) has 

greatly enhanced our ability to investigate DDR pathways.  In some cases, these foci are evident in 

undamaged cells, especially in S phase when repair proteins accumulate at regions of replication stress; 

importantly however, focus formation is induced upon exposure to various genotoxic agents, including 
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ionizing radiation (IR), ultraviolet light (UV) and chemical crosslinking agents such as mitomycin C 

(MMC). 

 Immediately following DNA damage, ATM phosphorylates the histone variant H2AX on a C-

terminal serine residue (S139) in chromatin specifically adjacent to DNA lesions (Rogakou et al., 1999).  

This occurs to the extent that nucleosomes with phosphorylated H2AX (γH2AX) can be found at lengths 

of millions of basepairs away, allowing γH2AX foci to be easily observed by immunofluorescence 

(Rogakou et al., 1999).  A single damage focus marked by γH2AX colocalizes with many other repair 

proteins and yet is thought to represent the site of only one DNA lesion.  Consistent with this, studies 

have demonstrated that DNA damage exposure directly correlates with the induction of foci (Asaithamby 

and Chen, 2009; Sedelnikova et al., 2002).  Titrated exposure to IR (between 5 mGy and 1 Gy), for 

example, generates a linear correlation between dosage and the number of 53BP1 foci observed, with 

exposure to 1 Gy estimated to cause 20 IR-induced foci (so called, IRIF) marking 20 double-stand breaks 

(Asaithamby and Chen, 2009).  Additionally, the induction of a single double-strand break by 

endonucleolytic cleavage has proved sufficient to recruit major DDR proteins to an observable focus 

(Soutoglou et al., 2007).  Interestingly, the recruitment of specific DDR proteins (including NBS1, 

MRE11 and ATM) to chromatin in the absence of DNA damage has been observed to be sufficient for 

DDR activation, indicating the importance of localization as a DDR regulatory mechanism (Soutoglou 

and Misteli, 2008).   

 The adaptation of UV-A lasers to generate large tracks of DNA lesions within defined nuclear 

regions has advanced the immunofluorescence technique of observing of protein recruitment to DNA 

damage (Lukas et al., 2005) and, in doing so, has both simplified the identification of novel proteins 

recruited sites of DNA damage and made possible studies of the spatiotemporal regulation of protein 

recruitment (Bekker-Jensen et al., 2006; Lukas et al., 2004).  In general, exposure to UV-A light (λ = 337-

390) causes both single- and double-stand DNA breaks (Peak and Peak, 1990), and pretreatment of cells 

with halogenated thymidine analogues (bromodeoxyuridine, BrdU or iododeoxyuridine, IdU) and 
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Hoechst 33258 will further hypersensitizes cells to this source of DNA damage (Limoli and Ward, 1993). 

 

III.  Mechanisms of DNA repair 

3-1.  Single-strand break repair (SSBR) and the role of PARP  

Poly(ADP-ribosyl)ation or PARylation is a posttranslational modification achieved through 

construction of branched poly(ADP-ribose) (PAR) structures on target proteins which is catalyzed by the 

successive transfer of ADP moieties from hydrolyzed NAD+ coenzymes to glutamic acid residues.  In 

humans, and largely conserved throughout vertebrates, there are at least 17 poly(ADP-ribose) polymerase 

(PARP) family member proteins defined by a paralogous catalytic region predominately located at their 

C-termini (Ame et al., 2004; Schreiber et al., 2006).  The PARP1 and PARP2 members of this group are 

damage sensor proteins that bind single-strand breaks and initiate specialized DDR signaling through 

auto-PARylation and localized trans-PARylation of nuclear protein substrates (Schreiber et al., 2006).  

Both PARP1 and PARP2 also contain defined DNA-binding domains (Schreiber et al., 2006).  The DNA-

binding domain of PARP1 is composed of two zinc fingers that selectively bind DNA breaks; this well-

characterized (so called “nick-sensing”) motif is located on the protein’s N-terminus (Gradwohl et al., 

1990).  Within seconds after DNA damage, PARP1 and PARP2 are recruited to DNA lesions (Aguilar-

Quesada et al., 2007; Mortusewicz et al., 2007) and PARP catalytic activity increases 10-500 fold (Ame 

et al., 1999; D'Amours et al., 1999).  Interestingly, PAR formation at sites of DNA damage is transient, 

and disassembly of PAR structures is mediated by the mammalian-conserved poly(ADP-ribose) 

glycohydrolase (PARG), which hydrolyzes branched and linear PAR chains into free ADP-ribose 

molecules (Miwa and Sugimura, 1971).  An emerging role for PARP3 in the repair of double-strand 

breaks is discussed below (Chapter 1, 3-2-1). 

While highly efficient PARP automodification comprises a majority of damage-induced 

PARylation activity (Ame et al., 1999; Ogata et al., 1981), other substrates are known.  In particular, 

PARylation of histone H1 and H2B is thought to relax chromatin structure in response to DNA damage 
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and increase DNA lesion accessibility to proteins that mediate repair (Poirier et al., 1982).  Functionally, 

PAR modification after DNA damage also facilitates PAR-docked protein-protein interactions that recruit 

proteins to sites of DNA damage to contribute to repair.  Three PAR-binding domains have been defined.  

These are the macrodomain (Karras et al., 2005), the zinc-finger PBZ domain (Ahel et al., 2008), and the 

basic amino acid rich consensus sequence (Gagne et al., 2008; Pleschke et al., 2000).  PAR-binding 

domains are found in many DDR-associated proteins, including ATM, DNA-PK, MRE11, MSH6, Ku70 

and LIG3, of which all contain the amino acid motif (Gagne et al., 2008).   

Downstream effectors of SSBR are recruited to single-strand DNA breaks in a PARP-dependent 

manner.  Specifically, the SSBR scaffold protein XRCC1 associates with PAR structures near SSBs 

through a central PAR-binding amino acid motif (Masson et al., 1998; Okano et al., 2003) and through 

coordinated interactions recruits PNKP, APTX, Pol β, LIG3, and TDP1 (Caldecott, 2008; Hirano et al., 

2007; Lan et al., 2004; Loizou et al., 2004; Mortusewicz et al., 2006).  Once at breaks, PNKP, APTX, Pol 

β and TDP1 process single-strand DNA ends in preparation for gap filling by DNA synthesis, which is 

mediated by Pol β (and possibly other polymerases).  Single-strand DNA nicks left after DNA synthesis 

are then ligated by LIG3 to complete repair.  PNKP is a polynucleotide kinase 3'-phosphatase that both 

phosphorylates 5’ DNA ends and dephosphorylates 3’ ends, as is necessary for DNA synthesis and 

ligation; APTX is a diadenosine polyphosphate hydrolase that removes AMP moieties formed by abortive 

ligase activity at 5’ ends, and TDP1 is tyrosyl-DNA phosphodiesterase 1 that processes 3’ ends covalently 

linked to the enzyme topoisomerase I (Caldecott, 2008).  Interestingly, Pol β is both a DNA polymerase 

and 5’ deoxyribose phosphate (dRP) lyase that removes dRP groups from 5’ DNA ends (Sobol et al., 

2000).  dRPs are structurally incomplete nucleotides lacking base attachment formed at SSB ends when 

abasic intermediates of base excision repair (BER) are cleaved.  Two mechanisms of SSBR, “short-patch” 

and “long-patch,” have been defined.  Short-patch SSBR requires gap filling of only one missing 

nucleotide, while “long-patch” repair involves a longer tract of DNA synthesis that causes displacement 
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of nucleotides 5’ to the break site; these are subsequently removed by the endonuclease FEN1.  Long-

patch repair may also require distinct polymerase activity and LIG1 (Caldecott, 2008) 

 

3-2.  Double-strand break repair: Non-homologous end-joining (NHEJ) 

Non-homologous end-joining is a method of double-strand break repair that proceeds by the 

conceptually straightforward process of dsDNA end re-ligation.  This pathway is often thought of as the 

main alternative to homologous recombination, which is discussed in greater detail below (Chapter 1, 3-

3).  Unlike homologous recombination, however, NHEJ is a template-free mechanism of DSB repair and, 

as such, remains active throughout the cell cycle.  There are two known pathways of NHEJ, canonical and 

alternative. 

 

3-2-1.  Canonical non-homologous end-joining (c-NHEJ) 

Like single-strand break repair, and in fact similar to all mechanisms of DNA repair, NHEJ can 

be logically organized into four functional steps associated with distinct enzymatic activities: (1) break 

recognition and signaling, (2) nucleolytic end processing, (3) DNA polymerase activity, and (4) 

nucleotide ligation.  In canonical NHEJ (c-NHEJ), break recognition is mediated by the Ku70-Ku80 

sensor complex, which binds DSB ends with high affinity in a sequence-independent manner (dsDNA 

binding constant = 2.4 x 109 M-1) (Blier et al., 1993; Mimori and Hardin, 1986).  Once at DSBs, Ku 

activates the independently recruited DNA-PKcs through a stimulatory interaction (Yan et al., 2007b); 

after which, DNA-PKcs goes on to phosphorylate several c-NHEJ-associated substrates, including Ku70, 

Ku80, XRCC4, XLF, ATREMIS and LIG4 (Hartlerode and Scully, 2009).  ARTEMIS is a single-strand 

5’ to 3’ exonuclease that acquires endonuclease activity with a preference for cleaving DNA overhang 

structures after DNA-PKcs-mediated phosphorylation (Ma et al., 2002).  This nucleolytic activity, as part 

of an ARTEMIS-DNA-PKcs complex, mediates a limited amount of DSB end processing to regenerate 

DSB ends that frequently carry structural abnormalities in preparation for repair by re-ligation.  This 

processing is regulated by both ARTEMIS phosphorylation and extensive DNA-PKcs 
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autophosphorylation (Meek et al., 2008).  

Although DSB end cleavage is an expected part of NHEJ, it is perhaps surprising that during c-

NHEJ DSB ends are iteratively processed by both nuclease and polymerase activities (Lieber, 2010).  In 

particular, members of the Pol X family of DNA polymerases, including Pol µ and λ , are recruited to 

DSBs by N-terminal BRCT domains that bind Ku-DNA complexes to participate in gap-filling activities 

(Ma et al., 2004).  Pol µ has been shown to add nucleotides to DNA ends in a template-independent and 

template-discontinuous manner, suggesting that nucleotides are added as well as removed from DSB ends 

prior to ligation (Gu et al., 2007).  An XLF-XRCC4-LIG4 complex efficiently ligates both blunt and 

overhanging dsDNA ends with or without end homology as the last step in c-NHEJ (Grawunder et al., 

1997; Gu et al., 2007).  This flexibility for ligation substrates, in addition to the combinatorial nuclease 

and template-independent polymerase activities at DSBs, makes NHEJ particularly prone to mutation at 

the ligation site, a fact that demands the necessity of additional and more error-free methods of DSB 

repair. 

 Recently, the poly(ADP-ribose) polymerase PARP3 has also been implicated in promoting 

double-strand break repair by canonical non-homologous end-joining mechanisms.  In particular, a model 

has been suggested wherein PARP3 supports c-NHEJ through facilitating the recruitment of APLF and 

XRCC4-LIG4 to double-strand breaks (Rulten et al., 2011).  The PARP3 catalytic domain is similar to 

domains in both PARP1 and PARP2, with 39% amino acid identity and 61% similarity to PARP1 

(Augustin et al., 2003); however PARP3 has been reported to function primarily as a mono-ADP-

ribosylase, with a limited capacity for PARylation (Rulten et al., 2011).  Indicative of a role in DNA 

repair, PARP3 co-immunoprecipitates with several SSBR and NHEJ factors, including DNA-PKcs, 

PARP1, LIG3, LIG4, Ku70, and Ku80, as well as and polycomb group proteins (Rouleau et al., 2007), 

which have also been implicated in DNA repair (Chou et al., 2010).  Additionally, PARP3 accumulates at 

regions of DNA damaged by microirradiation, and PARP3 depletion has been shown to cause defective 

and delayed repair of DSBs (Boehler et al., 2011; Rulten et al., 2011).  
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3-2-2.  Alternative non-homologous end-joining (a-NHEJ) and microhomology-mediated end-

joining (MMEJ) 

In the absence of proteins that facilitate canonical NHEJ in mammalian cells (including DNA-

PKcs, LIG4, XRCC4 and Ku80) DNA end-joining still occurs, albeit predominantly with slower kinetics 

(DiBiase et al., 2000; Wang et al., 2006).  This indicates the existence of one or more alternative NHEJ 

pathways (a-NHEJ) that serve as back-up mechanisms to canonical NHEJ.  Interestingly, three studies 

that evaluated alternative NHEJ observed that in XRCC4-deficient murine B cells and LIG4-deficient 

humans DSB repair during class switch recombination proceeds in a manner that increases both the 

frequency and length of homology evident at repair junctions when compared to controls (Pan-

Hammarstrom et al., 2005; Soulas-Sprauel et al., 2007; Yan et al., 2007a).  These observations are 

consistent with a pathway of a-NHEJ that relies on small regions of homology (so called 

“microhomologies”) for repair.  This pathway, referred to as microhomology-mediated end-joining 

(MMEJ), is to date poorly defined but is generally characterized by evidence of break point deletions and 

~5-25-nt regions of break point homology (McVey and Lee, 2008).  Because homology at DSB ends is 

not required for NHEJ in mammalian cells and end-joining events that carry no homology have been 

observed even in cells deficient for c-NHEJ factors (Soulas-Sprauel et al., 2007), the contribution of 

MMEJ to end-joining under wild-type conditions is not well understood; however, evidence suggests that 

this pathway may be of particular relevance to V(D)J recombination and class switch recombination 

(Corneo et al., 2007; McVey and Lee, 2008). 

There is still much left to learn regarding the pathways of alternative NHEJ, and a particular 

challenge will be to define the proteins that regulate them.  Interestingly, however, early evidence 

suggests that a-NHEJ is mediated (at least in part) by the activities of the SSBR effectors PARP and 

XRCC1-LIG3 (Audebert et al., 2004; Wang et al., 2006), perhaps most convincingly because DSB end-

joining in Lig4-/- and Ku80-/- mammalian cells is decreased by PARP inhibition (Wang et al., 2006). 
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3-3.  Double-strand break repair: homologous recombination (HR) 

In contrast to NHEJ, homologous recombination is an “error-free” method of DSB repair initiated 

during the S and G2 phases of the cell cycle that engages the newly replicated sister chromatid as a 

template for repair by DNA synthesis (Heyer et al., 2010; San Filippo et al., 2008; Symington and 

Gautier, 2011).  HR mechanisms are known to repair DBSs caused by ionizing radiation, various 

chemical agents (including many chemotherapeutics), collapsed replication forks and damaged replication 

intermediates, abortive topoisomerase activity, and endogenous or exogenous endonuclease activity.  

 

3-3-1.  A Historical Perspective  

Genetic recombination has arguably been studied for over 100 years.  It was first observed at the 

turn of the 20th century by William Bateson and Reginald C. Punnett as an exception to Gregor Mendel’s 

rule of independent assortment, which defines the nature of genetic inheritance in its most simplistic 

form; it states that specific genes (known to Mendel only as amorphous particles) responsible for the 

manifestation of associated phenotypes are transferred from parent to offspring as independent units.  

Mendel derived this law from phenotypic analysis of his pioneering genetic crosses performed with the 

garden pea plant Pisum sativum; his results were published in the 1866 paper Versuche über 

Pflanzenhybriden / Experiments on Plant Hybridization.  Almost 40 years later Bateson and Punnett 

conducted similar mating experiments using the pea species Lathyrus odoratus.  They observed, however, 

that some inherited traits demonstrated “coupling or repulsion” in the offspring of particular crosses 

because they separated more or less frequently than the law of independent assortment would predict 

(Bateson et al., 1905).  This phenomenon was soon described in terms of genetic linkage by Thomas Hunt 

Morgan, and the synthesis of this observation with the concept that genes exist on chromosomes led to the 

inference of meiotic recombination.  Meiosis is a specialized cell cycle that produces haploid gamete cells 

(or spores) necessary for the sexual reproduction of diploid organisms, and genetic recombination in 

meiosis can result in bidirectional exchanges (crossovers) of genetic information between parental 
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homologous chromosomes.  This was described by Morgan and colleagues as such, “If two factors lie in 

the same member of a chromosome pair we should expect them always to be found together in successive 

generations of a cross unless an interchange can take place between such a chromosome and the 

homologous chromosome derived from the other parent” (Morgan, 1911a, b; Morgan et al., 1915).  The 

physical existence of these “interchanges” was proven in 1931 by Harriet B. Creighton and Barbara 

McClintock through a perceptive combination of inferred genetic and direct cytological evidence 

(Creighton and McClintock, 1931; McClintock, 1931).  

 In meiosis, one round of DNA replication is followed by two rounds of cell division that 

sequentially segregate homologous chromosomes (meiosis I) and then sister chromatids (meiosis II) into 

four haploid gamete or spore cells.  This differs from mitosis.  In mitosis, DNA replication is followed by 

a single segregation event that separates sisters into a pair of diploid daughter cells.  In meiosis I, 

homologous chromosomes pair and align along the equatorial plane of the cell (the metaphase plate) 

before they are pulled into separate daughter cells by microtubules.  Meiotic crossovers, which occur 

during the pachytene stage of meiosis I, establish stable connections between homologous chromosomes 

(chiasmata) that are necessary for proper alignment and subsequent segregation of the chromosomes 

(Marston and Amon, 2004).  In this way meiotic crossovers serve as physical linkages relevant to the 

specialized mechanics of meiosis.  However, meiotic crossovers have also been hypothesized to serve a 

role in evolution because they increase genetic diversity within diploid species over what can be achieved 

through the selection (in meiosis) and mixing (during fertilization) of parental chromosomes. 

 It is now understood that meiotic crossover events occur specifically at sequences flanking 

programmed double strand breaks initiated by the conserved type II topoisomerase SPO11 (Bergerat et 

al., 1997; Keeney et al., 1997) and that crossover formation is completed through a particular mechanism 

of homology-directed DSB repair, known as the double strand break repair (DSBR) pathway (Figure 4e) 

(Szostak et al., 1983).  The key to this mechanism is that broken chromosomes –carrying SPO11-induced 

DSBs– engage their homolog pairs as templates for repair by DNA synthesis.  In the process, complex 

DNA junctions and intermediate structures form between chromosomes.  It is the resolution of these 
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structures necessary to once again separate chromosomes that causes the exchange of genetic information 

and formation of crossover products (Figure 4).  Of note a second but unidirectional form of sequence 

exchange, gene conversion (GC), can also occur in which newly replicated DNA sequences are 

incorporated into broken chromosomes while the flanking sequences are left unchanged (non-crossover 

products) (Szostak et al., 1983).  

 Interestingly, somatic cells have co-opted a similar mechanism of recombination to deal with 

unscheduled DSBs.  In these cells, however, recombination occurs primarily between homologous 

regions of sister chromatids and, as such, is restricted to the S and G2 phases of the mitotic cell cycle 

during which newly replicated sister chromatids are available for use as repair templates.  Sisters, unlike 

homologs, have identical DNA sequences, and template-use restriction allows DSB repair to proceed 

through homologous recombination without generating major sequence alterations to broken chromatids, 

which can be detrimental to somatic cells.  The idea that DNA repair in mitosis can occur through 

recombination was first proposed by Robin Holliday (Holliday, 1964) and was supported by genetic work 

in E. coli and the smut fungus Ustilago maydis that indicated an association between radiation sensitivity 

and defective genetic recombination (Clark and Margulies, 1965; Holliday, 1962; Holliday, 1967).  

Similar studies in E. coli and the budding yeast Saccharomyces cerevisiae (S. cerevisiae), subsequently 

identified the first genetic regulators of homologous recombination, including genes encoding the central 

HR recombinases RecA and RAD51 (Clark and Margulies, 1965; Game and Mortimer, 1974).  Many of 

these regulators have since been found to be well conserved among all eukaryotes, with a degree of 

conservation in prokaryotes as well. 
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Figure 4.  Schematic of DNA intermediate structures that arise during homologous recombination.
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3-3-2.  Models of homologous recombination 

 There are three models of DSB repair by homologous recombination: the aforementioned double 

strand break repair model (DSBR), the synthesis-dependent strand annealing model (SDSA) and break-

induced replication (BIR) (Figure 4).  The classic DSBR model, first proposed by Szostak and colleagues 

(Szostak et al., 1983), is thought to be most active in meiosis and predominately result in the formation of 

crossover products, while the SDSA model is considered the primary repair pathway for gene conversion 

events without crossover formation in both mitosis and meiosis (McMahill et al., 2007).  The BIR model 

is induced for repair when only one end of a double stand break has template homology, such as in the 

case of broken replication forks or eroded telomeres.  Repair by BIR can result in non-reciprocal 

translocation products or “half-crossovers” and therefore is not expected to be substantially active in 

somatic cells.  This pathway has been well characterized in yeast, but its contribution to repair in 

mammals is not yet fully understood (Bosco and Haber, 1998; McEachern and Haber, 2006).  These three 

HR pathways, although distinct, can all be divided into two prominent stages: before and after annealing 

of the broken DNA to a region of homology, or pre and postsynapsis, and all three models of HR share a 

common mechanism of presynapsis. 

 

3-3-3.  Presynapsis: Resection 

 The initiating event that commits DSBs to repair by HR is 5’ to 3’ DNA end resection (Figure 

3c,d, 4a).  This process creates 3’ ssDNA overhangs at break ends that are responsible for pairing with 

homologous DNA templates (synapsis) in order to generate heteroduplex DNA structures (D-loops) 

primed for DNA synthesis and subsequent repair (Figure 3g, 4b).  In eukaryotes, resection is mediated by 

a set of conserved and redundant nucleases, MRE11, CtIP (Sae2 in the budding yeast S. cerevisiae; Ctp1 

in the fision yeast Schizosaccharomyces pombe), EXO1 and DNA2, as well as the RecQ DNA helicase 

BLM (Sgs1 in S. cerevisiae; Rqh1 in S. pombe) (Symington and Gautier, 2011).  The coordinated 

mechanism by which these redundant proteins promote resection has been largely defined by work in 
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yeast; however, evidence suggests that the prevailing “2-step” model is conserved in mammals.  Briefly, 

MRE11 (as part of the MRN complex) and CtIP facilitate initial processing of DSB DNA ends (Figure 

3c) especially in the context of complex or “dirty” ends that carry modified / damaged nucleotides or 

covalent DNA-protein crosslinks.  This initial processing is then followed by extensive or “long-range” 

DNA resection meditated by two redundant pathways, one facilitated by EXO1 and the other by DNA2 in 

coordination with the BLM-TOP3-RMI1-RMI2 helicase complex (Sgs1-Top3-Rmi1 in S. cerevisiae) and 

the SMARCAD1 nucleosome remodeler (Figure 3d) (Costelloe et al., 2012).  Extensive resection is 

thought to ensure that sufficient ssDNA is generated for proper homologous pairing as well as checkpoint 

activation through ATR (Figure 3e) (Symington and Gautier, 2011).  ATR activation is discussed in 

Chapter 1, 2-1.  

 The redundant and interdependent nature of the resection machinery complicated early genetic 

and biochemical studies aimed at parsing the pathway, and the “2-step” model was not reached until the 

contributions of Exo1, Dna2, and Sgs1 were discovered in S. cerevisiae (Gravel et al., 2008; Mimitou and 

Symington, 2008; Zhu et al., 2008).  Before this, studies focused primarily on the nuclease activities of 

the yeast MRN ortholog MRX (Mre11-Rad50-Xrs2).  The conserved MRE11 subunit of MRX contains 

an N-terminal Mn2+/Mg2+-dependent phosphoesterase domain, and both yeast and human MRE11 

proteins demonstrate 3’ to 5’ dsDNA exonuclease activity as well as ssDNA endonuclease activity in 

vitro (Moreau et al., 1999; Paull and Gellert, 1998; Trujillo et al., 1998).  Yeast mre11Δ, rad50Δ and 

xrs1Δ mutants demonstrate strong sensitivity to IR and delayed but not deficient in vivo resection of 

DSBs induced by the site-specific endonuclease HO (Ivanov et al., 1994; Moreau et al., 1999).  While 

these mutant phenotypes indicate a role for Mre11 and MRX in DNA end resection, the observed 3’ to 5’ 

exonuclease function is opposite the predicted activity, and mre11 nuclease defective point mutants have 

markedly less sensitivity to IR and no defect in HO-induced DSB resection (Bressan et al., 1999; Llorente 

and Symington, 2004; Moreau et al., 1999).  

 The observation that Mre11 nuclease activity is required for resection of Spo11-induced DSBs, 

however, lead to the hypothesis that the nuclease activity of Mre11 is only required for resection when it 
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necessitates the processing of complex DSB ends, such as those formed by Spo11, while other functions 

of the Mre11 protein are required for resection in general (Krogh and Symington, 2004; Moreau et al., 

1999).  Unlike HO, which generates a “clean” DSB with free 3’ hydroxyl groups and 5’ phosphates, 

Spo11 remains covalently linked to DSB ends with a 5’ orientation.  In yeast, processing of these 

complex ends requires both Mre11 and Mre11 nuclease activity, as well as a second ssDNA endonuclease 

Sae2, which is stimulated in vitro by MRX (Lengsfeld et al., 2007).  sae2Δ cells, similar to mre11 

nuclease mutants, demonstrate moderate sensitivity to IR and defective resection of Spo11-induced 

DSBs; however, they show only slightly delayed resection of HO-induced DSBs indicating that the role 

of Sae2 in resection is also primarily required at complex ends (Clerici et al., 2005; Symington and 

Gautier, 2011).   

 Recently, a model of bidirectional resection at Spo11-linked DSBs has been put forward (Garcia 

et al., 2011).  This model proposes precise functions for the endonuclease and 3’ to 5’ exonuclease 

activities of Mre11; specifically, it suggests that Spo11-linked DNA strands are nicked by the 

endonuclease activity of Mre11 approximately 300 nucleotides from DSB ends and that these strands are 

then simultaneously resected by the respective 3’ to 5’ and 5’ to 3’ exonuclease activities of Mre11 and 

Exo1.  This mechanism would eventually release a Spo11-linked oligonucleotide, which is experimentally 

observed (Garcia et al., 2011).  To support this model, Garcia et al. generated and evaluated a useful 

endonuclease proficient but partially exonuclease deficient mre11-H59S mutant.  

 The discovery that Exo1 and Dna2-Sgs1 mediate redundant pathways of long-range resection in 

S. cerevisiae clarified the much-debated roles of Mre11 nuclease and Sae2 function in “clean” DSB end 

processing and inspired the “2-step” model of DNA resection (Gravel et al., 2008; Mimitou and 

Symington, 2008; Zhu et al., 2008).  In this model, MRX and Sae2 coordinate the initial processing of all 

DSBs breaks (“clean” or “dirty”) but leave bulk resection to the activities of Exo1 and Dna2-Sgs1 

(Mimitou and Symington, 2008; Zhu et al., 2008).  Together the work of Mimitou, Symington, Zhu and 

colleagues, showed that sgs1Δ, dna2Δ and exo1Δ mutants all have reduced rates of DNA resection 

approximately 3-28 kb away from HO-induced DSBs but have unaltered levels of resection immediately 
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adjacent to the break sites (as compared to controls); rad50Δ and mre11Δ cells, on the other hand, were 

shown to have defective resection initiation but normal long-range rates, which is indicative of the “2-

step” model (Mimitou and Symington, 2008; Zhu et al., 2008).  Importantly, the combined deletion of 

SGS1 and EXO1 was observed to synergistically reduce resection, and sgs1Δ exo1Δ double mutants were 

shown to process only a few hundred nucleotides at DSB ends in an Sae2- and Rad50-dependent manner 

(Gravel et al., 2008; Mimitou and Symington, 2008; Zhu et al., 2008).  These genetic observations placed 

Sgs1 and Exo1 resection activities into separate pathways downstream of MRX; however, because SGS1 

and DNA2 demonstrate no genetic interaction a single Dna2-Sgs1 pathway is thought to exist.  This “2-

step” model retrospectively explains the intermediate phenotypes observed in mre11 nuclease deficient 

and sae2Δ mutants by supposing that Exo1 and Dna2-Sgs1 require MRX- and Sae2-mediated end 

processing to facilitate loading onto complex but not “clean” DSB ends (Symington and Gautier, 2011).  

Following these genetic studies, biochemical work showed that DNA resection can be reconstituted in 

vitro with purified Sgs1 and Dna2 in a manner dependent on RPA and stimulated by both MRX and 

Top3-Rmi1 (Cejka et al., 2010; Niu et al., 2010).  Recently, the nucleosome remodeler Fun30 

(SMARCAD1 in humans) has also been shown to contribute to long-range resection in collaboration with 

both Exo1 and Dna2-Sgs1 (Chen et al., 2012; Costelloe et al., 2012; Eapen et al., 2012). 

 In mammals, the MRN proteins NBS1 and RAD50, the Sae2 ortholog CtIP, and the nuclease 

activities of MRE11 are all required for embryonic viability and cell proliferation (Buis et al., 2008; Chen 

et al., 2005; Luo et al., 1999; Zhu et al., 2001) which has presented challenges to studying DNA end 

resection in mammalian cells.  The use of conditional alleles and RNA interference (RNAi) has, 

nevertheless, allowed analysis of these orthologs.  MRE11-dependent activation of ATM in mammalian 

cells (as described in Chapter 1, 2-1) does not require MRE11 nuclease activities; however unlike in 

yeast, murine cells that express mutant MRE11 but lack the associated nuclease activities phenocopy 

strong DSB repair defects observed in MRE11 null cells, including increased sensitivity to IR, deficiency 

in DNA end resection (as determined by IR-induced RPA foci), and reduced gene conversion at DSBs 

induced by the rare cutting I-SceI endonuclease (Buis et al., 2008).  Unlike its yeast ortholog, CtIP also 
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appears to be required for DSB end resection and efficient HR in mammalian cells, although surprisingly 

no CtIP nuclease activity has yet been demonstrated (Sartori et al., 2007).  Taken together, these data may 

indicate that CtIP and MRE11 both have larger roles in facilitating DSB end resection than their yeast 

orthologs or may suggest that DSB ends in mammalian cells require more complex processing than in 

yeast.  However, because I-SceI (like Spo11) remains bound to DNA after cleavage and IR creates 

chemically modified DNA ends, it remains undetermined if CtIP and MRE11 are required for the 

resection of “clean” DSB ends.   

 Nevertheless, evidence suggests that the “2-step” model is conserved.  In mammalian cells, as in 

yeast, EXO1 and BLM (the ortholog of Sgs1) facilitate in vivo DNA end processing as components of 

parallel resection machineries downstream of MRE11 and CtIP (Bolderson et al., 2009; Eid et al., 2010; 

Gravel et al., 2008).  These pathways have been reconstituted in vitro using purified human proteins 

(Nimonkar et al., 2011; Nimonkar et al., 2008).  From this work, we have learned that although DNA2 is 

a bidirectional exonuclease (Masuda-Sasa et al., 2006), DNA2 coupled with BLM in vitro and in the 

presence of RPA resects DNA specifically 5’ to 3’ in a manner dependent on the nuclease activity of 

DNA2, the helicase activity of BLM and stimulated by MRN.  EXO1, on the other hand, is specifically a 

5’ to 3’ exonuclease that is alone sufficient to degrade DNA in vitro (Lee and Wilson, 1999); however 

like DNA2, EXO1-mediated resection is stimulated both by MRN and BLM (Nimonkar et al., 2011; 

Nimonkar et al., 2008).  The stimulation of EXO1 by BLM stands in contrast to the in vivo data from both 

yeast and human cells indicating that EXO1 and BLM operate in distinct resection pathways (Gravel et 

al., 2008; Mimitou and Symington, 2008; Zhu et al., 2008); however, this stimulation has been observed 

to be independent of BLM helicase activity and unable to increase the processivity of EXO1 (Nimonkar et 

al., 2011).  EXO1 stimulation by BLM, therefore, does not represent enzymatic synergy and may simply 

result from a favorable physical interaction between proteins (Nimonkar et al., 2008).  The stimulatory 

effects of MRN in these in vitro experiments was largely attributed to the ability of MRN to increase 

EXO1- and BLM-binding to DNA, which is consistent with in vivo data demonstrating that MRE11 and 

CtIP are required for EXO1 recruitment to DNA breaks (Eid et al., 2010).  Importantly, this suggests that 



CHAPTER ONE 

  28 

EXO1 functions downstream of MRN and CtIP in agreement with yeast data and “2-step” model of 

nuclease activity. 

 In yeast Sgs1 is the only RecQ family helicase, but in humans there are five; these are BLM, 

WRN, RECQ4, RECQ1 and RECQ5 (Bernstein et al., 2010).  While other human RecQ proteins have 

known roles in DNA repair, BLM is considered to be the most orthologous to Sgs1 because it maintains 

conserved associations with TOP3, RMI1 and RMI2 (orthologs of the yeast Sgs1-interaction proteins 

Top3 and Rmi1) (Bernstein et al., 2010).  Consistent with this assumption, BLM-mediated stimulation of 

in vitro resection by EXO1 and DNA2 was found to be specific, and the WRN, RECQ5 and RECQ4 

paralogs showed no similar effect (Nimonkar et al., 2011; Nimonkar et al., 2008).  TOP3 is a type I 

topoisomerase that directly binds BLM (Johnson et al., 2000; Wu et al., 2000).  RMI1/2 are OB-fold 

containing proteins essential for the stability of the BLM-TOP3-RMI1-RMI2 complex (Singh et al., 2008; 

Xu et al., 2008; Yin et al., 2005).  RMI1 and RMI2 are also required for BLM localization to DNA breaks 

(Singh et al., 2008; Xu et al., 2008; Yin et al., 2005).  OB-folds similar to those in RMI1/2 mediate 

ssDNA binding in both the RPA complex and BRCA2 protein (Chapter 1, 3-3-5); however, the OB-folds 

in RMI2 lack key amino acid residues critical for DNA binding, and neither RMI1 nor RMI2 have been 

shown to bind ssDNA.  The BLM-TOP3-RMI1-RMI2 complex has multifaceted roles in mammalian 

homologous recombination, making it difficult to determine the specific functions (if any) of the TOP3 

and RMI1/2 proteins in mammalian resection.  In yeast however, top3Δ and rmiΔ mutants have resection 

defects similar to those in sgs1Δ cells (Zhu et al., 2008), and in vitro Top3 and Rmi1 stimulate resection 

by Dna2-Sgs1-RPA (Cejka et al., 2010; Niu et al., 2010).  The function of Top3 in resection is not 

dependent on its topoisomerase activity (Niu et al., 2010), making it likely that these Sgs1/BLM 

accessory factors function in resection only to stabilize BLM at DSBs.  A description of the role that the 

BLM-TOP3-RMI1-RMI2 complex has in postsynaptic homologous recombination can be found in 

Chapter 1, 3-3-7. 
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3-3-4.  Presynapsis: Formation of the RAD51 nucleoprotein filament 

The next step in homologous recombination is the assembly of RAD51 recombinase molecules 

onto newly resected ssDNA at DSB ends to form right-handed helical nucleoprotein filaments (Figure 3f).  

These presynaptic RAD51 filaments catalyze homology sampling and DSB end pairing with homologous 

regions of dsDNA (synapsis).  They are essential for repair by HR.  Initially, resected DSB ends are 

coated with RPA complexes, heterotrimers of RPA1, RPA2 and RPA3 that bind indiscriminately to 

ssDNA formed during repair or at replication forks (Figure 3e).  RPA-binding stabilizes ssDNA and 

minimizes the formation of ssDNA secondary structures.  In the context of HR, RAD51 molecules rapidly 

displace RPA. 

RAD51 is a 37 kDa ATPase conserved from bacteria to humans.  The first member of the 

conserved RAD51 family to be discovered was identified 50 years ago in a genetic screen for mutant 

alleles that cause recombination defects in E. coli almost (Clark and Margulies, 1965).  This was RecA.  

Functionally, RecA was characterized as a recombinase because of its unusual in vitro activity to facilitate 

the invasion of ssDNA into dsDNA duplexes and promote heteroduplex pairing between homologous 

regions (Radding, 1989).  RAD51 proteins were subsequently identified in eukaryotes and characterized 

with similar activities (Baumann et al., 1996; Benson et al., 1994; Sung, 1994).  In general, RAD51 

proteins are divergent on the N- and C-termini but have a conserved center region containing two 

domains that mediate ATP binding and hydrolysis (Walker A and B).  Human RAD51 shares 56% amino 

acid homology (30% identity) with the bacterial RecA (Shinohara et al., 1993; Yoshimura et al., 1993).   

RAD51 filament formation proceeds in two steps: nucleation followed by elongation.  Our 

understanding of these processes has been greatly enhanced by studies of nucleoprotein formation using 

individual single- and double-strand DNA molecules (Holthausen et al., 2010).  For example, it has been 

observed that both RAD51 and RecA nucleate stochastically along DNA, and that the cooperative binding 

of 4-5 RAD51 monomers constitutes a successful nucleation event (Galletto et al., 2006; Holthausen et 

al., 2010; Modesti et al., 2007).  Subsequent elongation of RAD51 and RecA filaments is estimated to 
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proceed by 1-7 monomers at a time (Holthausen et al., 2010), and for RecA, elongation occurs 

bidirectionally with distinct end kinetics that cause cumulative growth in the 3’ direction (Joo et al., 

2006).  Importantly, RAD51 and RecA demonstrate divergent rates of nucleation and elongation.  RecA 

nucleation occurs rarely and with rate-limiting kinetics, but once nucleated, efficient RecA elongation 

generates long continuous filaments.  RAD51, on the other hand, demonstrates more efficient nucleation 

followed by elongation rates that are limited by the density of adjacent nucleation clusters (Holthausen et 

al., 2010; Modesti et al., 2007; van der Heijden et al., 2007).  In this manner, filament formation is more 

cooperative for RecA than RAD51, but once formed, RAD51 filaments are thought to have greater 

flexibility (Holthausen et al., 2010). 

Active RecA and RAD51 nucleoprotein filaments can be generated in vitro with a binding 

stoichiometry of ~3 DNA nucleotides per recombinase monomer (Arata et al., 2009; Baumann and West, 

1997; Zlotnick et al., 1993).  RecA filaments generated under these conditions can then bind naked 

ssDNA molecules thereby increasing stoichiometry to ~7 nucleotides per monomer.  This second strand 

capture forms joint filaments thought to mimic the structure of in vivo RecA / RAD51 bound to 

heteroduplex DNA at the sites of recombination (Zlotnick et al., 1993).  DNA incorporated into 

recombinase filaments is both extended and underwound, an effect that likely facilitates heteroduplex 

pairing (Benson et al., 1994; Chen et al., 2008b).   

As mentioned, RAD51 family proteins have conserved ATP-binding and DNA-dependent 

ATPase activity (Benson et al., 1994; Radding, 1989).  ATP-binding occurs at the interface of RecA / 

RAD51 monomers to promote both filament formation and stabilization (Chen et al., 2008b); however, 

neither nucleation nor elongation requires ATP hydrolysis (Holthausen et al., 2010; Kowalczykowski and 

Eggleston, 1994).  Perhaps surprisingly, ATPase activity is also dispensable for recombinase-mediated 

homology sampling and heteroduplex paring but is active in the process of recombinase disassociation 

from DNA.  Data from a single molecule study of human RAD51 filaments suggest that RAD51 chains 

composed of both ATP- and ADP-bound RAD51 are stabilized by end monomers bound exclusively to 

ATP and support a model wherein ATP hydrolysis by end monomers triggers segmented bursts of 
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processive ADP-bound RAD51 dissociation, which occurs monomer-by-monomer until the next ATP-

bound RAD51 is reached (van Mameren et al., 2009).  In this light, RecA and RAD51 nucleoprotein 

formation, stabilization, and dissociation must be considered dynamic processes regulated by intermittent 

ATP hydrolysis events. 

 

3-3-5.  Presynapsis: Mediators of the RAD51 nucleoprotein filament 

RAD51, unlike RecA, assembles onto both single- and double-strand DNA with equal efficiency 

(Benson et al., 1994); however, RAD51 binding to dsDNA is inhibitory for strand exchange (Sigurdsson 

et al., 2001) and therefore must be regulated in eukaryotic cells.  The role of preferentially loading 

RAD51 onto ssDNA is attributed to mediator proteins, and in mammals, the most prominent of these is 

BRCA2 (Figure 3f).  In vivo colocalization of BRCA2 and RAD51 in discrete subnuclear foci and a direct 

physical interaction between the proteins first suggested that BRCA2 might function as a RAD51 

regulator (Scully et al., 1997b).  Subsequently, murine and human cells deficient for BRCA2 were found 

to have increased sensitivity to DNA damaging agents and defects in DSB repair that were specific to 

gene conversion pathways (Moynahan et al., 2001; Sharan et al., 1997).  Importantly, when present in the 

human germline, heterozygous loss-of-function mutations in BRCA2 are known to convey an increased 

risk of breast and ovarian cancer, with a predicated probability of 40-80% for breast cancer (Fackenthal 

and Olopade, 2007).   

BRCA2 is a 3418 amino acid protein, with no obvious ortholog in yeast or bacteria.  Efforts to 

determine the mediator function of BRCA2 by in vivo exogenous expression or in vitro biochemical 

assays were initially limited by the large size of the protein, difficulties with expression, and poor 

solubility.  Many BRCA2-mediated functions in homologous recombination were, however, correctly 

inferred from studies that investigated the behavior of BRCA2 fragments and domain fusions (Carreira et 

al., 2009; Pellegrini et al., 2002; Wong et al., 1997; Yang et al., 2002) as well as smaller orthologs of the 

protein, including Brh2 from U. maydis (Yang et al., 2005).  Between residues 990 and 2100 human 

BRCA2 has 8 repeat regions (~30 amino acids each) called BRC domains that facilitate binding to 
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RAD51 (Wong et al., 1997), and at the C-terminal end of BRCA2 there is a DNA-binding domain (DBD) 

containing a tower domain and 3 ssDNA-binding OB-folds similar to those in RPA and RMI1/2 (Yang et 

al., 2002).  The structure of the tower domain is indicative of dsDNA-binding (Yang et al., 2002).  In 

vitro, BRCA2 BRC repeats stimulate RAD51 filament formation on ssDNA while limiting filament 

formation on dsDNA (Carreira et al., 2009), and studies of purified Brh2, which carries a conserved DBD 

and one BRC repeat, showed that this BRCA2 ortholog preferentially nucleates RAD51 onto ssDNA at 

dsDNA / ssDNA junctions (Yang et al., 2005).  Contrary to these results, in vivo expression of BRC4 has 

been shown to disrupt RAD51 filament formation, as evident by loss of RAD51 nuclear foci after DNA 

damage (Chen et al., 1999); however, this result most likely represents inhibitory sequestration of RAD51 

away from DNA by an isolated BRC repeat and illustrates the critical nature of coordinated BRCA2-

RAD51 and BRCA2-DNA interactions (Pellegrini et al., 2002).  A crystal structure of BRC4 bound to 

RAD51 revealed that BRC repeats structurally resemble the oligomerization domain of RAD51 

(Pellegrini et al., 2002).  This insight led to a functional model wherein BRCA2 accumulates at DSBs 

through direct DNA binding to provide a platform for initial RAD51 nucleation, overall reducing 

nucleation energy constraints.  Evidence also suggests that BRCA2 stabilizes RAD51-ssDNA filaments.  

Consistent with this, RAD51 Walker domains in BRC-bound RAD51 adopt a more closed confirmation 

that may inhibit ATP hydrolysis (Carreira et al., 2009; Pellegrini et al., 2002). 

In 2010, three groups successfully purified human BRCA2 as a full-length protein (Jensen et al., 

2010; Liu et al., 2010; Thorslund et al., 2010) and in vitro evaluations proved that the functionalities 

ascribed to BRCA2 by previous models were largely accurate.  These studies confirmed that BRCA2 

stimulates homology-mediated strand exchange by facilitating RAD51 nucleation onto ssDNA and 

supported the “platform” hypothesis by demonstrating that loading occurs in vitro at substoichiometric 

levels.  Approximately 5-6 RAD51 monomers were estimated to bind one BRCA2 molecule (Jensen et 

al., 2010; Liu et al., 2010), and stimulation of RAD51 loading onto RPA-coated ssDNA was estimated to 

occur at a stoichiometry of one BRCA2 molecule to 33-100 RAD51 monomers (Jensen et al., 2010; Liu 

et al., 2010).  These works also demonstrated that full-length BRCA2 preferentially binds ssDNA over 
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dsDNA favoring RAD51 filament formation on ssDNA substrates (both naked and RPA-coated) (Jensen 

et al., 2010; Thorslund et al., 2010) and confirmed that BRCA2 inhibits RAD51-mediated ATP 

hydrolysis (favoring filament stabilization) (Jensen et al., 2010).  Surprisingly however, full-length 

BRCA2, unlike Brh2, did not show a strong preference for binding ssDNA / dsDNA junctions over 

ssDNA (Jensen et al., 2010; Liu et al., 2010), although in in vitro strand exchange experiments a slight 

preference was observed for substrates containing 3’ or 5’ DNA overhangs over ssDNA (Jensen et al., 

2010).  In combination with the finding (described in Chapter 1, 3-3-4) that human RAD51 demonstrates 

a higher nucleation rate than RecA and forms many disrupted RAD51 chains rather than longer 

continuous filaments (van der Heijden et al., 2007), the observation that BRCA2 does not preferentially 

act at DNA junctions becomes less surprising and, in fact, suggests that human BRCA2 functions by 

nucleating RAD51 filaments along the length of resected DNA. 

DSS1 and PALB2 are two BRCA2-assocaiated proteins also considered mediators of presynaptic 

filament formation in mammalian cells (Figure 3f).  DSS1 is a small (70 amino acid) acidic protein that 

was first identified as the product of one of three genes occupying a deletion region of chromosome 7 

known to convey the autosomal dominant developmental disorder split hand / split foot disease 

(Crackower et al., 1996).  At the cellular level, depletion of DSS1 causes increased chromosomal 

abnormalities and defective RAD51 focus formation after exposure to DNA damage (Gudmundsdottir et 

al., 2004).  DSS1 binds the C-terminal DNA-binding region of BRCA2 (Marston et al., 1999).  A 

functional role for this DSS1-BRCA2 interaction in the formation of RAD51-ssDNA filaments remains 

somewhat elusive; however, it may well be attributed to in vivo stabilization of the large BRCA2 protein 

and its insoluble DBD.  In two separate studies DSS1 was copurified with Brh2 or BRCA2 (specifically a 

fragment containing the DBD) in order to increase solubility of the target peptide (Yang et al., 2002; 

Yang et al., 2005), and while depletion of DSS1 from mammalian cells was shown to cause reduction of 

wild-type BRCA2, it did not affect the stability of a BRCA2 fragment lacking the DBD (Li et al., 2006).  

Interestingly, in one biochemical study, DSS1 was also shown to have an in vitro stimulatory effect on 
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BRCA2-facilitated RAD51 nucleation suggesting a possible mechanistic role for DSS1 in presynaptic 

filament formation (Liu et al., 2010).   

PALB2 is a second BRCA2-interacting protein required for BRCA2 protein stability.  PALB2, 

however, specifically stabilizes the nuclear faction of BRCA2 in mammalian cells (Xia et al., 2006).  

PALB2 and BRCA2 colocalize at nuclear foci marking sites of DNA damage, and depletion of PALB2 

causes defective BRCA2 focus formation as well as reduced gene conversion efficiency (Xia et al., 2006).  

While PALB2, like DSS1, is predominantly considered to be a “caretaker” of BRCA2 stability and 

nuclear function, PALB2 has recently also been shown to have binding affinities for RAD51 and DNA as 

well as in vitro activity for stimulating RAD51-mediated D-loop formation and synaptic capture in the 

absence of BRCA2 (Dray et al., 2010).  Indicative of a critical role overall, heterozygous mutation of 

germline PALB2 has been associated with breast cancer development in humans (Erkko et al., 2007; 

Rahman et al., 2007).   

Additional proteins involved in the formation of the presynaptic filament are encoded by genes 

within the RAD52 epistasis group.  In S. cerevisiae, this group contains RAD50, RAD51, RAD52, RAD54, 

RAD55, RAD57, RAD59, MRE11, and XRS2.  Genetic grouping of these genes was initially defined by 

phenotypes common to mutant alleles and indicative of similar functions in DNA repair (Game and 

Mortimer, 1974).  We now know that several of these genes also have conserved human orthologs, 

RAD52, RAD54, RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3, that are likewise involved in 

presynaptic filament formation.   

Although unrelated by sequence, the S. cerevisiae Rad52 protein is functionally similar to human 

BRCA2.  It binds Rad51 (Shinohara et al., 1992), catalyzes an exchange of RPA for RAD51 on ssDNA, 

and promotes homology-directed strand pairing (New et al., 1998; Shinohara and Ogawa, 1998).  In a 

similar manner, human RAD52 binds RAD51 and has been shown to stimulate RAD51-mediated pairing 

between homologous single- and double-strand DNA in vitro (in the presence and absence of RPA) 

(Benson et al., 1998; Shen et al., 1996).  It is widely accepted, however, that human RAD52 does not 

predominantly function in vivo as a mediator of the presynaptic filament as it does in yeast.  The most 
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striking evidences to this effect are disparate phenotypes associated with RAD52 loss in yeast and 

vertebrate cells.  In yeast, rad52 mutants demonstrate strongly defective HR, while vertebrate cells 

without RAD52 have much milder defects (Rijkers et al., 1998; Yamaguchi-Iwai et al., 1998).  Indicative 

of an in vivo requirement for Rad51 assembly, rad52 yeast mutants do not form Rad51 foci during 

meiosis (Gasior et al., 1998).  RAD52-/- DT40 chicken cells, on the other hand, demonstrate no defect in 

RAD51 foci formation after ionizing radiation compared to controls (Yamaguchi-Iwai et al., 1998).  

Taken together these data indicate that during vertebrate evolution the mediator functions of Rad52 found 

in S. cerevisiae were largely reassigned to BRCA2.  Interestingly however, a genetic interaction between 

RAD52 and BRCA2 in the mammalian recombination pathway has recently suggested that mammalian 

RAD52 has retained a “backup” role in presynaptic filament formation.  Specifically, in vivo depletion of 

RAD52 in BRCA2 deficient cells was shown to exacerbate RAD51 foci and homologous recombination 

defects (Feng et al., 2011).  Although the specific contribution of RAD52 to this early step of homologous 

recombination in vertebrate cells remains unclear, it is worth noting here that RAD52 has well defined 

roles in other processes relevant to homology-directed repair.  In particular, RAD52 mediates ssDNA 

annealing that is critical to postsynaptic HR mechanisms (Chapter 1, 3-3-7) and RAD51-independent 

single strand annealing (SSA), the details of which are discussed below (Chapter 1, 3-4). 

 

3-3-6.  Synapsis 

Once formed, a single RAD51-coated presynaptic filament can invade dsDNA and initiate a 

poorly understood mechanism of homology sampling with the strand of opposite polarity (Figure 3g, 4b).  

When a region of sufficient homology is identified heteroduplex pairing (synaptic capture) occurs to 

prime the broken DNA end for repair by DNA synthesis.  In meiosis, synapsis occurs between 

homologous chromosomes, representing an intermediate step in the generation of meiotic crossovers, but 

in mitosis this process occurs preferentially between sister chromatids in order to maintain fidelity of the 

somatic genome (Bzymek et al., 2010).  The intermediate structure formed by disruption of dsDNA and 

displacement of the non-complementary strand is called a D-loop, and D-loop formation is the point after 
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which the three models of homologous recombination, double-strand break repair (DSBR), synthesis-

dependent strand annealing (SDSA) and break-induced replication (BIR), diverge (Figure 4c-e).   

 

Figure 5.  The Holliday junction. 
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3-3-7.  Postsynapsis: Formation, resolution and dissolution of DNA intermediate structures 

In the classic double-strand break repair (DSBR) model, DNA strands displaced by D-loop 

formation pair with the second resected ends of broken dsDNA molecules (Figure 4e).  This process, 

called second end capture, allows for simultaneous repair of both DSB ends through parallel DNA 

synthesis and subsequent ligation.  Biochemical analyses have shown that second end capture can be 

mediated in vitro by the ssDNA annealing activity of RAD52, which is discussed in greater detail below 

(Chapter 1, 3-4) (McIlwraith and West, 2008; Nimonkar et al., 2009; Reddy et al., 1997).  A key 

intermediate structure in DSBR is the double Holliday junction (dHJ) (Szostak et al., 1983) (Figure 4), a 

complex physical linkage between dsDNA molecules that is composed of two adjacent DNA 

intersections, or single Holliday junctions (HJs) (Figure 5).  By definition, a single Holliday junction is 

the point of strand exchange between two DNA helices that occurs when the single strands of one helix 

pair with complementary sequences in the other; or more simply, a single Holliday junction can be 

thought of as a four-stranded DNA cross structure (Figure 5).  Single Holliday junctions were first 

proposed by Robin Holliday in the 1960’s to conceptually model the DNA transactions that occur during 

gene conversion in fungi (Holliday, 1964), and since then both single and double Holliday junctions have 

been widely accepted as key HR intermediates (Szostak et al., 1983; West, 2009).  Importantly, evidence 

of in vivo dHJ formation has been obtained from cells actively cycling in meiosis, and to a lesser extent in 

mitosis, suggesting the in vivo presence of a regulated DSBR-like repair pathway (Bzymek et al., 2010).   

Logically, separation of two DNA helices interlinked by a single Holliday junction can happen in 

only two ways: by disrupting DNA base pairing along the lengths of two arms or by nicking two DNA 

strands with the same sequence polarity (5’ to 3’ or 3’ to 5’) near the junction site.  This latter nick-based 

scenario is a process called Holliday junction resolution.  Because of HJ symmetry, resolution of a single 

HJ can occur in two possible orientations determined by the non-complementary pair of strands on which 

the separating nicks occur.  In the context of a single Holliday junction, the choice of nick orientation 

dictates only whether the newly freed heteroduplex arms must pass, or “cross over,” each other during 
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duplex separation (Figure 5); however in the context of a double Holliday junction, dual orientation 

choice controls the extent of sequence exchange between the DNA helices and determines whether or not 

crossover products are formed (Figure 4).  Resolving HJ nicks, made in either orientation, can also occur 

symmetrically or asymmetrically with regard to position along the chosen strand (Figure 5).  If cut 

symmetrically, the HJ structure will be resolved into products ready for direct ligation; however, if made 

asymmetrically, the separated duplexes will carry a gap or DNA flap and require additional processing 

prior to ligation.  Importantly, the nick orientation and position constraints of single Holliday junction 

resolution are similar to those of dHJ resolution with the added consideration of an adjacent junction.   

Enzymatic dHJ disassembly is a critical and much considered step in the DSBR model of HR.  To 

this end, two distinct pathways of dHJ disassembly, resolution and dissolution, have been found.  These 

are controlled by distinct enzymatic activities, the first of which was discovered in 1982 and belonged to 

the endonuclease VII protein from T4 bacteriophage, an HJ resolvase (Mizuuchi et al., 1982).  Almost a 

decade later, the first cellular HJ resolvase RuvC was discovered in E. coli (Connolly et al., 1991).  

Because these first-identified resolvases were shown to cleave HJ structures with symmetrically 

positioned nicks, they became known as “classic” HJ resolvases.  Within the last 20-30 years, however, 

asymmetric resolvases with important roles in HR have also been identified.  The first indication of 

classic resolvase activity in mammalian cells was found in protein purifications from homogenized calf 

thymus in 1990 (Elborough and West, 1990).  However, due to major redundancies in eukaryotic 

resolution activity, and among postsynapsis HR mechanisms in general, the particular enzyme responsible 

for this classic activity, the so-called ResA, was not identified until almost two decades later when GEN1 

(an XPG-type endonuclease) was finally characterized (Ip et al., 2008).  In vitro, GEN1 and the S. 

cerevisiae ortholog Yen1 cleave static HJs symmetrically with nicks positioned 1 nucleotide away from 

the junction point in the 3’ direction (Figure 5) (Ip et al., 2008).   

Before GEN1 and Yen1 were identified, MUS81 was the best-studied mediator of HJ resolution 

in eukaryotes.  MUS81 is a well-conserved ERCC4-type endonuclease that acts as part of a heterodimeric 

complex with the non-catalytic EME1.  In 2001, the Mus81 ortholog in fission yeast was shown to have 
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structure-specific resolvase activity (Boddy et al., 2001) and human MUS81 was put forward as a 

promising candidate for mammalian ResA (Chen et al., 2001).  Soon afterward however, MUS81-

mediated HJ resolution was shown to be asymmetric (Constantinou et al., 2002), and purification of the 

MUS81-EME1 heterodimer revealed that, unlike ResA, this complex does not efficiently cleave static HJ 

structures in vitro but preferentially cleaves 3’-flap and replication fork structures (Ciccia et al., 2003).  

Interestingly, these preferred MUS81 substrates both contain a DNA branch point adjacent to a free 5’ 

phosphate and resemble HJ structures with a single strand nick near the junction (nicked HJ or nHJ) 

(Figure 5).  Current evidence suggests that MUS81 contributes to the resolution of nicked Holliday 

junctions by asymmetric cleavage of the DNA strand opposite the nick (~3-6-nt 5’ of the branch point) 

(Hollingsworth and Brill, 2004). 

Recent work has implicated the UvrC-type endonuclease SLX1 in the in vivo generation of nHJ 

substrates for asymmetric cleavage by MUS81-EME1 (Figure 5) (Svendsen and Harper, 2010).  SLX1 

was first identified in yeast as a gene that incurs synthetic lethality with SGS1 and TOP3 (SLX, synthetic 

lethal of unknown function) (Mullen et al., 2001).  A related gene, also found in this work, was shown to 

be synthetic-lethal with SLX1, as well as SGS1 and TOP3.  This gene was SLX4.  These genetic 

interactions, in combination with evidence that Slx1 and Slx4 physically interact in vivo, led the authors 

of this early study to predict that Slx1 and Slx4 act together in a heterodimeric complex to process HR 

intermediate DNA structures (Mullen et al., 2001).  Later, this same group demonstrated that an Slx1-

Slx4 heterodimer can function in vitro as a structure-specific endonuclease (SSE) with a preference for 

cleaving 5’-flap and replication fork structures (Fricke and Brill, 2003).  Notably, these structures are 

inverted MUS81-EME1 substrates.  When the Slx4 ortholog BTBD12 (renamed SLX4) was isolated from 

human cells, it was shown that, in addition to SLX1, human SLX4 binds the heterodimeric endonucleases 

MUS81-EME1 and ERCC4-ERCC1 (Fekairi et al., 2009; Munoz et al., 2009a; Svendsen et al., 2009).  

Interestingly, SLX4 complexes were shown to cleave static HJs symmetrically (2-nt 3’ to the branch 

point) and nHJ asymmetrically (3-5-nt 5’ to the branch point).  Through a set of clever experiments that 

physically separated SLX4 interactions into SSE subcomplexes, the former symmetric activity was 
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ascribed to SLX1-SLX4 and the later to MUS81-EME1-SLX4 (Svendsen et al., 2009).  From this, a 

model of ordered HJ cleavage was proposed in which HJs are first cleaved by SLX1-SLX4 to generate 

nHJs and then resolved by asymmetric MUS81-EME1-SLX4 cleavage (Figure 5) (Svendsen et al., 2009).  

Interestingly, no HJ resolvase activity was ascribed to the ERCC4-ERCC1-SLX4 subcomplex.  

As mentioned previously, resolution of dHJs can result in the formation of distinct crossover and 

non-crossover products depending on the orientation of DNA strand cutting (Figure 4).  Non-crossover 

products retain a majority of their original presynaptic sequence, while crossover products, generated 

through the swapping of entire sequence arms with their synaptic partners, can have substantially altered 

sequence information.  Because crossover formation is inherently mutagenic, it may be evolutionarily 

advantageous in meiosis; however, for the same reason it must be tightly repressed in mitosis.  For this 

reason, any dHJs that arise during mitosis must be carefully deconstructed into non-crossover products.  

An appealing model for crossover control is one of SSE regulation that dictates the orientation of dHJ 

resolution within the different cell cycle programs.  However, a second method of dHJ disassembly, 

which is exclusive to non-crossover product formation, may simply out compete resolution for dHJ 

substrates in times when crossover formation is inappropriate.  This method is dHJ dissolution. 

In contrast to dHJ resolution, in which adjacent DNA junctions are individually cleaved and 

religated, dHJ dissolution proceeds by the active migration of dHJ junctions into a single catenated point 

that is then decatenated to separate DNA helices (Figure 4).  dHJ branch migration and subsequent 

decatenation are coordinated by the helicase and the topoisomerase activities of BLM-TOP3-RMI1-RMI2 

complex, also called the dissolvasome (Figure 3) (Karow et al., 2000; Wu and Hickson, 2003).  This 

multifaceted complex is described above in its alternative capacity for generating long-range resection in 

eukaryotic cells (Chapter 1, 3-3-3).  Interestingly, human cells deficient in BLM demonstrate 

hyperrecombination between sister chromatids (Ellis et al., 1999; German et al., 1977), a phenotype 

observed by the increased occurrence of sister chromatid crossover structures (SCEs).  This phenotype is 

contrary to what would be expected for a singular BLM requirement in the resection step of HR, but can 

be explained by the expectation that crossover-prone resolution is expected to predominate in the absence 
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of dissolution.  In fact, increased SCEs are strongly indicative of dissolution defects.  TOP3-dependent 

and BLM-, RMI1/2-stimulated dHJ dissolution has been elegantly demonstrated in vitro using a small 

dHJ substrate (Raynard et al., 2006; Singh et al., 2008; Wu and Hickson, 2003; Xu et al., 2008). 

The simplest model for repression of crossover formation during postsynaptic repair is 

suppression of dHJ formation altogether.  To this end, the synthesis-dependent strand annealing (SDSA) 

repair model has been proposed (Figure 4d), wherein D-loop formation at repair sites is not succeeded by 

second end capture, and repair by DNA synthesis occurs with serial rather than parallel coordination to 

prevent dHJ intermediates.  As in DSBR, synapsis occurs when an invading RAD51-coated DNA strand 

anneals to a region of dsDNA homology.  In SDSA, however, this invading strand is displaced from the 

D-loop structure after extension by DNA synthesis so that it may reanneal to the complementary strand of 

the broken DNA molecule and serve as a template for the completion of repair.   

In yeast, the Srs2 helicase promotes SDSA.  In higher eukaryotes, SDSA is regulated by a 

functional analog of Srs2, the conserved RAD3-like helicase RTEL1, presumably though its capacity to 

disrupt D-loop structures (Figure 3).  Similar to the discovery of SLX1, RTEL1 was found in a screen for 

genes that incur synthetic lethality with a conserved BLM / SGS1 ortholog, in this case the nematode 

Caenorhabditis elegans him-6 (Barber et al., 2008).  In vitro, RTEL1 disrupts D-loop structures without 

disrupting RAD51 nucleoprotein filaments and with a preference for 3’ invasion structures notably 

reminiscent of in vivo repair intermediates (Barber et al., 2008; Youds et al., 2010).  Interestingly, C. 

elegans rtel-1 mutants were shown to produce an increased number of double- and triple-crossover events 

per chromatid in meiosis when compared to controls (Youds et al., 2010) indicating that SDSA also 

functions in meiosis, as was proposed in 2001 by Neil Hunter and Nancy Kleckner to explain their 

observation that strand invasion of single DSB ends occurs in yeast meiosis (Hunter and Kleckner, 2001).  

This suggests that SDSA may drive repression of crossover formation in either cell cycle program by 

direct competition with DSBR.  How the choice between SDSA and DSBR is regulated will be an 

interesting question for future work.   
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3-3-8.  The role of BRCA1 

BRCA1 is a critical HR mediator and tumor suppressor in mammals (Huen et al., 2010).  In 

humans, BRCA1 is similar to BRCA2 in that heterozygous germline mutations in either gene convey 

strong predispositions to cancer (Venkitaraman, 2002), a fact that is incorporated in both gene names, 

Breast Cancer 1/2, early onset.  However unlike BRCA2, the mechanism of BRCA1 function in HR is not 

straightforward, and because of this, BRCA1 has been the subject of intense study over the last decade.   

BRCA1 is an 1863 amino acid protein that binds several important DDR proteins through 

multiple identifiable domains and, in this way, can be thought of as a structural scaffold for coordinating a 

diverse set of DDR processes.  BRCA1 binds the ubiquitin E3 ligase BARD1 through an N-terminal 

RING domain (Wu et al., 1996), and in vivo these proteins form an obligate heterodimer (Yu and Baer, 

2000).  Suggestive of highly cooperative in vivo functions, mouse models have shown that the tumor 

suppressor effects of BRCA1 and BARD1 are relatively indistinguishable (Shakya et al., 2008).  BRCA1-

BARD1 also has been identified as the core subunit of at least three distinct BRCA1 supercomplexes, 

BRCA1-A, BRCA1-B and BRCA1-C.  These multiprotein complexes are formed by the mutually 

exclusive binding of phosphorylated Abraxas, BACH1 and CtIP proteins (Greenberg et al., 2006; Huen et 

al., 2010) to a phospho-peptide-binding module of tandem BRCT repeats present on the BRCA1 C-

terminus (Manke et al., 2003; Yu et al., 2003).  The functions of these BRCA1 supercomplexes in DNA 

repair, as well as the interrelationships between them, are only beginning to be understood; however, their 

mechanisms of action in the DDR are likely ones of local regulation because, like many mediators of the 

DDR, BRCA1 and its associated proteins, accumulate at sites of DNA damage (Scully et al., 1997b).   

The BRCA1-A complex, consisting of BRCA1-BARD1, Abraxas, RAP80, BRCC36, BRE and 

NBA1, is perhaps the best characterized of the BRCA1 supercomplexes, and it is responsible for a 

majority of BRCA1 accumulation at DNA breaks (Dong et al., 2003; Feng et al., 2009; Kim et al., 2007; 

Shao et al., 2009; Sobhian et al., 2007; Wang et al., 2009; Wang et al., 2007).  The detailed mechanism by 

which BRCA1-A recruitment occurs is as follows:  ATM, activated by the MRN complex, 

phosphorylates serine-139 of histone H2AX in chromatin immediately adjacent to DNA lesions (Rogakou 
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et al., 1999).  This phospho-mark then recruits the MDC1 protein through direct binding to an MDC1 

BRCT domain, and MDC1, in turn, binds ATM and is phosphorylated (Lou et al., 2006; Stewart et al., 

2003; Stucki et al., 2005).  Next, the phosphorylated region of MDC1 recruits RNF8 through FHA-

mediated binding, and once there, RNF8 together with UBC13 initiate polymerization of K63-linked 

poly-ubiquitin in the local chromatin (Huen et al., 2007; Kolas et al., 2007; Mailand et al., 2007; Wang 

and Elledge, 2007).  These ubiquitin chains then recruit RNF168 through binding of RNF168 ubiquitin 

interaction motifs (MIUs); after which, RNF168 and UBC13 amplify the initial ubiquitylation signal 

(Doil et al., 2009; Pinato et al., 2009; Stewart et al., 2009) by ubiquitylating the K13-15 residues of 

histones H2A and H2AX in the chromatin surrounding DNA lesions (Mattiroli et al., 2012).  This 

facilitates BRCA1-A complex recruitment in a manner dependent on the ubiquitin interaction motifs 

(UIMs) of its RAP80 subunit (Figure 6) (Kim et al., 2007; Sobhian et al., 2007; Wang et al., 2007).  Of 

note, the critical interaction between RNF8 and UBC13 is mediated by phosphorylation-induced binding 

of HERC2 to an RNF8 FHA domain (Bekker-Jensen et al., 2010). 

Due in part to the functional nature of their protein subunits, the BRCA1-B (BRCA1-BARD1, 

BACH1 and TOPBP1) and BRCA1-C (BRCA1-BARD1, CtIP, and MRN) complexes have been 

described as regulators of the S phase replication checkpoint and DNA end resection, respectively (Huen 

et al., 2010).  Consistent with this, depletion of BRCA1 from mammalian cells compromises the 

formation of ssDNA and loading of RAD51 at DSBs (Schlegel et al., 2006), and evidence suggests that 

the interaction between BRCA1 and CtIP is necessary for both processes (Chen et al., 2008a; Yun and 

Hiom, 2009).  An additional interaction between BRCA1 and PALB2, facilitated by a coiled-coiled 

region in BRCA1, physically links BRCA1 to BRCA2 (Figure 3f).  To date, it is unclear whether the 

BRCA1-PALB2-BRCA2 (BPB) complex is distinct from BRCA1-A, -B and -C; however, the interaction 

between BRCA1 and PALB2 has convincingly been shown to contribute RAD51 presynaptic filament 

assembly and HR efficiency (Sy et al., 2009; Zhang et al., 2009), and BRCA1 mutations that disrupt 

BRCA1-PALB2 binding have been identified in cancer patients (Sy et al., 2009).  Different groups have 

reported conflicting evidence relevant to whether BRCA1 controls PALB2 and BRCA2 localization to 
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sites of DNA damage (Sy et al., 2009; Zhang et al., 2009), and the mechanism by which BRCA1-PALB2 

binding controls HR warrants additional investigation. 

Figure 6.  Schematic of BRCA1-A complex and 53BP1 recruitment to DNA damage. 

 

 

Although the BRCA1-C and BPB complexes seem to have clear roles in promoting HR, BRCA1 

recruitment to sites of DNA damage has been shown to depend predominantly on the BRCA1-A 

complex, and interestingly, (as highlighted by work presented herein) key components of BRCA1-A are 

not required for HR.  This suggests one of two possibilities: (1) efficient HR requires relatively minimal 

BRCA1-C and / or BPB at DNA breaks, the recruitment of which occurs independently of BRCA1-A or 

(2) these complexes contribute to HR without local action.  A recent study suggests that the former 

possibility is most likely (Hu et al., 2011).  The authors of this study found that disruption of BRCA1 

localization to IR-induced foci through depletion of the RAP80 BRCA1-A subunit actually increases 
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colocalization of BRCA1 with CtIP and BACH1 at remaining foci.  They also observed that while CtIP 

(BRCA1-C) and BACH1 (BRCA1-B) depletion decreases HR efficiency, depletion of RAP80, Abraxas 

or BRCC36 (BRCA1-A) have the opposite effect and increase HR.  These data suggest that BRCA1 is 

recruited to sites of DNA damage in a BRCA1-A independent manner as part of BRCA1-C, -B or 

possible other complexes and present the possibility that the various BRCA1 complexes fine-tune DSB 

pathway choice at DSBs, with BRCA1-C and BRCA1-B promoting and BRCA1-A suppressing HR (Hu 

et al., 2011). 

The BRCA1 and BARD1 proteins both contain RING domains, which are zinc finger structural 

regions associated with ubiquitin E3 ligase activity; as mentioned above, the BRCA1 RING binds 

BARD1.  Both proteins are also capable of promoting ubiquitylation individually, and BRCA1-BARD1 

heterodimerization increases E3 ligase activity over what either protein is capable of alone (Hashizume et 

al., 2001).  Because both proteins appear to have essential roles in HR, it is tempting to speculate that 

BRCA1-BARD1 mediated ubiquitylation, perhaps of DDR target substrates, contributes to DSB repair; 

however, the role of this activity remains unclear, and recent evidence suggests that BRCA1 ligase 

activity is not required for HR.  Specifically, mutation of the BRCA1 RING domain in a manner that 

abrogates BRCA1 E3 ligase activity but does not affect BARD1 binding (BRCA1-I26A) confers no 

substantial change to MMC sensitivity, RAD51 foci formation, or gene conversion efficiency (Reid et al., 

2008).  Additionally, this mutation does not appear to promote cancer formation in mice as would be 

expected for a genetic HR defect (Shakya et al., 2011).  A second BRCA1 RING mutation (C61G) that 

abrogates both BRCA1 E3 ligase activity and BARD1 binding, however, is pathogenic in both mice and 

humans (Drost et al., 2011).  Taken together these data suggest that although the BRCA1-BARD1 

interaction may contribute to HR, BRCA1 ligase activity does not (Elia and Elledge, 2012).  
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3-4.  Double-strand break repair: Single-strand annealing (SSA) 

Single-strand annealing (SSA) is an alterative method of homology-mediated DSB repair that is 

conceptually much less complicated than HR.  Briefly, when resection of DSB ends generates ssDNA 

overhangs containing complementary regions of DNA, direct annealing between these regions can 

promote RAD51-independent repair.  This repair pathway is facilitated primarily by RAD52, which has 

been shown in vitro to catalyze RPA-stimulated ssDNA annealing (Baumann and West, 1999; Benson et 

al., 1998).  RAD52, from both yeast and human cells, oligomerizes into ring-like structures that have been 

shown through electron microscopy and crystal structure analysis to contain ~7-11 unit monomers 

(Singleton et al., 2002; Stasiak et al., 2000).  These oligomers can then combine into higher order 

structures through further RAD52 self-association (Van Dyck et al., 2001).  Visualization of RAD52 in 

the presence of DNA has revealed that RAD52 oligomerization occurs selectively on DNA ends in a 

protective manner that facilitates DNA end-to-end fusions (Van Dyck et al., 1999, 2001).  In vivo, the 

SSA pathway has been observed primarily from evaluating repair products formed when DSBs are 

induced between direct repeats (Fishman-Lobell et al., 1992). 

 

3-5.  Double-strand break repair: Regulation of pathway choice 

Although much is known about the pathways that facilitate DSB repair (NHEJ, HR, and SSA), 

somewhat less is understood of the mechanisms that regulate repair pathway choice.  With regard to HR, 

the predominant method of regulation seems to be tight coupling to the S and G2 phases of the cell cycle, 

and consistent with this, it has been observed in yeast that G2-arrested cells are gene conversion 

proficient, while G1-arrested cells are GC deficient (Aylon et al., 2004).  Additionally, it has been found 

that cyclin-dependent kinase (CDK) activity, which is high in G2 and low in G1, is required for resection 

in both yeast and mammalian cells, indicating that conserved mechanisms of HR regulation focused on 

the resection machinery have evolved (Ira et al., 2004; Jazayeri et al., 2006).  CDK-dependent 

phosphorylation of CtIP on serine-327 during S and G2 regulates formation of the resection-promoting 
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BRCA1-C complex (Figure 3c) (Chen et al., 2008a; Yu and Chen, 2004; Yun and Hiom, 2009), and cell 

cycle regulated CDK1 phosphorylation of threonine-847 on CtIP (S267 in Sae2) promotes resection 

through an unknown mechanism that operates at the level of CtIP recruitment to DNA damage (Huertas et 

al., 2008; Huertas and Jackson, 2009).  Regulation of HR through resection in particular, suggests that the 

formation of ssDNA at DSBs represents a physical commitment to homology-directed repair (either HR 

or SSA over NHEJ).  This idea is supported by the observation that cells depleted of HR effectors 

upstream of resection can bypass the G2 / M checkpoint in an NHEJ-dependent manner, but those 

deficient for HR downstream of resection cannot (Cotta-Ramusino et al., 2011). 

CDK1 activity has also been shown to promote HR through suppression of a Ku70-Ku80-

mediated inhibitory effect that acts on MRX-controlled resection (Clerici et al., 2005; Tomita et al., 

2003).  Genetic evidence in yeast suggests that MRX and Ku70-Ku80 compete to regulate resection in the 

positive and negative directions, respectively (Tomita et al., 2003), and this antagonistic relationship 

likely represents a direct physical competition for DSB end binding.  Consistent with this, Ku binds 

ssDNA much less efficiently than dsDNA (Mimori and Hardin, 1986), and Ku deletion in mammalian 

cells increases HR mediated gene conversion (Pierce et al., 2001).  

Recent evidence has uncovered a second competitive mechanism of HR regulation in mammalian 

cells involving BRCA1 and 53BP1 (Figure 3c).  53BP1 is a key transducer of the DDR required for 

induction of the damage-specific G2 / M checkpoint (Wang et al., 2002), and as discussed above in 

Chapter 1, 3-3-8 the BRCA1 protein is required for proper end resection due to roles enacted as part of 

the BRCA1-C and / or BPB complexes.  Interestingly, deletion of 53BP1 in BRCA1 deficient cells has 

been found to rescue homologous recombination defects, as indicated by the reestablishment of both 

RAD51 foci formation and resection-indicative RPA phosphorylation (Bouwman et al., 2010; Bunting et 

al., 2010), suggesting that 53BP1 negatively modulates the HR.  Because 53BP1 is recruited to sites of 

DNA damage by the same ubiquitylation cascade that promotes BRCA1-A complex recruitment (Figure 

6) (Huen et al., 2007; Kolas et al., 2007; Mailand et al., 2007; Wang and Elledge, 2007), this observation 

is consistent with the hypothesis that BRCA1-A recruitment to DNA lesions (as opposed to BRCA1-C) 
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also causes repression of HR (discussed above in Chapter 1, 3-3-8).  Interestingly, a recent study that used 

super-resolution microscopy to observe IR-induced foci determined that S phase damage foci have 

distinct central compartments that stain for BRCA1 but not 53BP1, indicating that a direct physical 

competition between the BRCA1-C / BPB complexes and 53BP1 may exist at DNA breaks (Chapman et 

al., 2012). 

Control through cell cycle-regulated CDK phosphorylation and antagonistic relationships 

between repair pathway effectors have emerged as the primary models for regulation of homologous 

recombination and DSB repair pathway choice.  With regard to the cell cycle regulated control of HR 

however, an intriguing question remains unanswered, which is how the cell distinguishes between a 

replicated portion of DNA during S phase (which would presumably be eligible for repair by HR due to 

the presence of an intact sister chromatid) and an as yet unreplicated section of DNA that cannot engage a 

sister chromatid for repair (and would therefore presumably be restricted from engaging the HR 

machinery).  Additionally, although we now have some understanding of how HR is controlled through 

resection; little is know about the regulation of post-resection choices, such as those between HR and 

SSA and between DSBR, SDSA, and BIR.  No doubt post-translational events that modulate these 

choices will also exist.  Additional work to address these issues will be of considerable interest. 
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I.  Introduction 

1-1.  Screen Rationale 

 As discussed previously (Chapter 1, 3-3-1), the study of homologous recombination is historically 

linked with the advent of genetics as a scientific discipline, and as such, its conserved mechanisms have, 

in one way or another, long been a central focus of biological inquiry.  Highly efficient homologous 

recombination in yeast has for decades provided an almost ideal and genetically tractable model system 

for the direct investigation of HR pathways.  The practical advantages of studying HR in yeast are 

numerous.  Easy interchange between diploid and haploid states as well as efficient gene targeting allow 

for both forward and reverse genetic approaches; straightforward and inexpensive techniques for 

laboratory growth and selection provide a realistic platform for scalable and systematic inquiry; and 

biological conservation within the meiotic and mitotic homologous recombination pathways gives weight 

to relevant findings.  Moreover, regulated gene conversion events of natural origin, which occur within 

the mating (MAT) locus of haploid yeast cells, provide an almost ideal experimental readout for the 

evaluation of HR effector function. 

 Although HR is highly conserved mechanistically and with regard to the sequences, structures, 

and functions of key effectors, evolutionary pressures have diverged HR in mammals from lower 

eukaryotes to some extent.  So while genetic work in yeast, primarily S. cerevisiae, has generated many 

fundamental insights into the mechanistic underpinnings of HR and DNA repair, such work has 

limitations with regard to its applicability to human health, and experimentally delineating mammalian-

specific regulators of HR has, therefore, been of substantial interest.  Particular motivation in this regard 

has been driven by knowledge that several human HR effectors are also critical tumorsuppressors, the 

most famous examples of which are BRCA2 and BRCA1 (Chapter 1, 3-3-5 and 3-3-8).  These proteins 

lack obvious orthologs in yeast but are required for proper HR in vertebrates, and in humans, loss-of-
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function heterozygous germline mutations in either gene carries significantly increased risk of cancer 

development (Venkitaraman, 2002). 

 In general, the most useful tool for identifying novel pathway effectors in model organisms is 

genome-scale genetic screening, and because human cell culture recapitulates many aspects of in vivo cell 

growth, it is a ready platform for functional human genetics.  The adaptation of genetic methods to cell 

culture, however, has presented some unique challenges.  In particular, barriers to bi-allelic mutation of 

minimally diploid mammalian cells has limited forward genetic approaches; and although the isolation of 

haploid cancer cell lines now presents an opportunity for mutagenic screening (Carette et al., 2009; 

Reiling et al., 2011), this application has, to date, not been proven for the use of identifying non-selectable 

phenotypes, such as sensitivities to DNA damaging agents caused by loss-of-function HR mutations.  The 

low efficiency of gene targeting in mammalian cell culture combined with the unfeasibility of 

manipulating successfully targeted genes to homozygosity has also limited traditional reverse genetic 

approaches; and while the generation of mammalian cells carrying diploid deletion mutations is possible 

on a gene-by-gene scale through whole-organism mouse genetics, the scale of production that would be 

necessary to conduct reverse genetic screening with genome-wide coverage using this approach is 

prohibitive.  The discovery of gene silencing by RNA interference (RNAi) in the late 1990s / early 2000s 

and the recent availability of genome-wide RNAi libraries, however, has provided the first opportunity to 

systematically evaluate mammalian genetics in cell culture and, as yet, is the only practical method for 

genome-wide interrogation of mammalian pathways using reverse genetics.  Here we present a genome-

wide small interfering RNA (siRNA)-based screen for regulators of homologous recombination in human 

cells that has identified a highly validated list of mammalian HR genes and generated novel insights into 

RNAi screening technology. 
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1-2.  RNAi-mediated gene silencing and genome-wide RNAi screening technologies 

 RNAi is an endogenous method of posttranscriptional gene silencing caused by short double-

strand RNA molecules (dsRNA).  It was first observed in plants (Napoli et al., 1990; van der Krol et al., 

1990), later characterized in C. elegans (Fire et al., 1998), and has since been identified in many 

eukaryotes, including plants, fungi, animals, and of particular interest, humans.  Perhaps the most 

important aspect of RNAi has been its aforementioned application to experimental biology, wherein the 

engineered reutilization of its conserved, endogenous pathways has allowed genetic inquiry in otherwise 

genetically intractable biological systems.   

 In simple terms, RNAi can be described as the complementary pairing of short RNA molecules 

(usually between 19-23-nt) to targeted protein-coding messenger RNAs (mRNAs) that elicits gene 

silencing through message degradation or translational repression; mechanisms of RNAi are discussed in 

Chapter 3, Section I.  In the experimental setting, introduction of exogenous dsRNA engineered to repress 

particular mRNAs through sequence targeting achieves directed gene silencing, commonly referred to as 

gene “knockdown” or protein depletion.  This technique has been widely used for posttranscriptional 

genetic studies in model organisms, including Drosophila and C. elegans, as well as in mammalian cell 

culture, and the generation of genome-wide RNAi libraries has prompted large-scale genetic screening in 

these systems.  Such RNAi-based screening has substantially impacted biological discovery within the 

last decade and has contributed to our collective understanding of many cellular processes, including cell 

viability and proliferation, cancer biology, the cell cycle, stress responses, cell death, signal transduction, 

and RNAi biology itself (Mohr et al., 2010). 

  Two varieties of exogenous RNAi reagents and two corresponding methods of cell delivery 

predominate in cell culture based RNAi screens: viral transduction of small hairpin RNAs (shRNAs) 

(Silva et al., 2008) and lipid transfection of small interfering RNAs (siRNAs).  While both shRNAs and 

siRNAs elicit gene knockdown through the same endogenous pathway, shRNAs and siRNAs have 

distinct entry points into the RNAi machinery.  shRNAs are designed as hairpin structures within the 
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context of an endogenous microRNA gene (microRNAs are discussed in Chapter 3, 1-2).  Predominantly, 

these are transduced into the genome of a host cell by viral infection where they are stably encoded as 

DNA.  This shRNA-encoding DNA can then be transcribed into RNA by host polymerases and processed 

into short dsRNA molecules by the host RNAi machinery.  siRNAs, on the other hand, are short dsRNA 

molecules synthesized in vitro for direct introduction into mammalian cells by lipid transfection.  In both 

cases, one strand of the resulting short dsRNA is incorporated into a protein complex called RISC (RNA-

induced silencing complex) to coordinating gene silencing.  The technical differences between siRNA and 

shRNA technologies provide two distinct but complementary strategies for genetic screening in 

mammalian cells: arrayed and pooled (Mohr et al., 2010).  Batch infection with targeted shRNA libraries 

has proven successful for pooled selection- or dropout-based screens, while arrayed transfection of siRNA 

libraries using microtiter plates has been most applicable to high-throughput screening of phenotypes that 

are not resolvable by changes in cell proliferation.  In order to probe the mammalian HR pathway with 

specificity, we chose an siRNA array-based strategy using the Dharmacon human siGENOME siRNA 

library. 

  

II.  Results 

2-1.  A genome-wide siRNA screen to identify regulators of homologous recombination  

For our screen we used a well-characterized GFP-based reporter (DR-GFP) (Figure 7a) (Pierce et 

al., 1999; Xia et al., 2006).  DR-GFP carries two mutant versions of GFP; one with two premature stop 

codons and an internal I-SceI endonuclease restriction site (SceGFP), the other with 3’ and 5’ end 

truncations (iGFP) (Pierce et al., 1999).  Neither SceGFP nor iGFP express a functional protein; 

however, a gene conversion event between the mutants –generated by recombinational repair of an I-

SceI-induced DSB– can reconstitute wild-type GFP.  In this manner nuclear GFP expression is an 

accurate and relatively simple readout for HR.  For our purposes, we employed the osteosarcoma cell line 

DR-U2OS that has a single, stably integrated copy of DR-GFP (Xia et al., 2006), and we drove 

expression of I-SceI with an adenovirus (AdNGUS24i).   
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Figure 7.  A genome-wide siRNA screen for mammalian homologous recombination (HR) genes
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We screened the Dharmacon human siGENOME siRNA library in triplicate, which is arrayed as 

21,121 single-target pools of 4 distinct siRNAs.  Briefly, DR-U2OS cells were plated in 384 well plates, 

reverse transfected with siRNAs, and infected with AdNGUS24i at a multiplicity of infection (MOI) of 

~10 (Figure 7b), an MOI that at least by visual inspection was not observed to substantially affect cell 

survival.  At this high titer changes in cell number caused by siRNA transfection should have little effect 

on assay results (Figure 7c).  Cells were fixed, stained with Hoechst, and the percentage of GFP+ cells per 

well was determined by fluorescence microscopy on an automated platform (Figure 7d).  The average 

percentage of GFP+ cells from each experimental triplicate was normalized to that from on-plate, non-

targeting control wells transfected with an siRNA against firefly luciferase (siFF) to obtain a relative HR 

ratio for each library pool (Figure 7e, Table S1).   

 

2-2.  Identification and validation of candidate HR regulators 

Hits from the screen were defined as siRNA pools that decreased or increased relative HR >2 

standard deviations (s.d.) from the screen-wide mean (cutoff values ~ 40% or 188% relative HR).  From 

these, 510 candidate HR mediators and 484 candidate HR suppressors were identified (Table S1).  

Indicative of a successful screen, we recovered 19 genes known to be involved in HR and the DDR, 

including RAD51, BRCA1 and BRCA2 (Figure 7e,f).  We extended the list of candidate mediators by 131 

genes corresponding to siRNA pools that trended in the screen (primarily with 40-50% relative HR) 

(Tables S1-2).  These additional genes had been identified in previous DDR screens.  Next we 

deconvolved the 641 siRNA pools against candidate mediators and the strongest 250 pools against 

candidate suppressors (including 1 duplicate pool) and rescreened each siRNA individually (Tables S2-3).  

As expected, siRNAs from both candidate sets enriched for the appropriate phenotype (Figure 8a). 
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Figure 8.  Rescreen and validation of candidate HR genes 
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We evaluated the rescreened siRNAs using both strong and weak phenotype cutoffs (Figure 8b).  

Strong siRNAs were those that rescored below (for mediator siRNAs) or above (for suppressor siRNAs) 

the 2 s.d.-based thresholds from the primary screen (40% and 188% relative HR, respectively).  Weak 

cutoffs were based on 1.5 s.d. from the primary screen mean (<59% or >169% relative HR for mediators 

and suppressors, respectively).  We considered candidate siRNA pools validated if ≥3 individual siRNAs 

(out of 4) rescored with at least a weak HR value (14% of pools for HR mediators and 20% of pools for 

HR suppressors) (Figure 8b).  The higher validation rate for siRNA pools targeting HR suppressors is 

likely a result of rescreening only the strongest 250 pools.  Additionally, the 510 candidate mediators 

chosen according to the screen cutoff yielded a higher validation rate than the 131 select candidates added 

to the mediator list, with validation rates of 15% and 8% respectively.  

To further evaluate the candidate mediator list and better understand the 68% of pools that 

rescored with 1-2 siRNAs, we conducted a second round of rescreening using siRNAs from the Ambion 

Silencer Select library targeting 467 candidate mediators (3 siRNAs / gene) (Table S4).  These siRNAs 

also enriched for reduced HR but at a level substantially less than observed among Dharmacon siRNAs 

targeting the same 467 genes (Figure 8c).  We reason that the independently selected Ambion siRNAs 

had a reduced incidence of off-target effects (discussed in Chapter 3) and were, therefore, more likely to 

score true positives.  Importantly, candidates that validated with 3-4 (of 4) Dharmacon siRNAs had 

greater likelihood of scoring with 2-3 (of 3) Ambion siRNAs (over candidates that scored with fewer 

Dharmacon siRNAs), even when known HR and DDR mediators were not considered (Figure 8d,e).  

After eliminating reagents predicted to be false-positives through analysis discussed in Chapter 3, we 

refined our list of validated candidate HR mediators to 121 that scored with at least 3 of 7 combined 

Ambion and Dharmacon siRNAs (Table 1).  

 

 



CHAPTER TWO 

  58 

 

Table 1:  Candidate HR mediators validated with at least 3 of 7 siRNAs 

Table 1:  Candidate HR mediators validated with at least 3 of 7 siRNAs 
 

Entrez Gene 
Symbol 

Entrez Gene 
ID 

Entrez Gene 
Symbol 

Entrez Gene 
ID 

Entrez Gene 
Symbol 

Entrez Gene 
ID 

BRCA1 672 PPARBP 5469 FZD9 8326 
BRCA2 675 RAD51 5888 GNG5 2787 
PALB2 79728 RFC1 5981 GPR35 2859 
PHF5A 84844 RFC3 5983 GSTM5 2949 
RBBP8 5932 RPA2 6118 HLA-DQA2 3118 
RFC2 5982 RUVBL2 10856 HTATIP 10524 
SF3A2 8175 SF3A1 10291 IKZF4 64375 
SF3B1 23451 SF3B14 51639 KIAA0947 23379 
ATR 545 SF3B2 10992 KRT81 3887 

BARD1 580 SF3B3 23450 LSM2 57819 
CDC73 79577 SNRPC 6631 MAB21L2 10586 
HNRPC 3183 SNRPD2 6633 MDS032 55850 
MFAP1 4236 SUPT6H 6830 MED19 219541 
POLR2E 5434 USPL1 10208 MED31 51003 
POLR2G 5436 ZNF207 7756 MED9 55090 
PRPF6 24148 CDC40 51362 MFGE8 4240 
RBMX 27316 CSNK1A1 1452 NUDT11 55190 
RFC4 5984 DHX8 1659 PABPN1 8106 
SF3A3 10946 FANCA 2175 PCDHGA1 56114 
SF3B4 10262 FUBP1 8880 PFAS 5198 
SHFM1 7979 GPR112 139378 PITPNM3 83394 

SNRPA1 6627 LSM4 25804 PLCL2 23228 
SNRPB 6628 LSM6 11157 POLR2H 5437 

SON 6651 MAEA 10296 POLR2I 5438 
UBL5 59286 PGD 5226 PSMA5 5686 

ASCC3L1 23020 PIK3R2 5296 PSMB4 5692 
CRNKL1 51340 POLR2F 5435 PSMD14 10213 
CRSP2 9282 PRPF31 26121 RANBP5 3843 
CRSP6 9440 PRPF8 10594 RAP1B 5908 
CRSP8 9442 PSMB7 5695 RHOA 387 
CUL1 8454 RBM25 58517 RPTN 126638 
INTS2 57508 SURB7 9412 RUVBL1 8607 

KIAA1604 57703 WBP11 51729 SALL1 6299 
MED10 84246 XAB2 56949 SART1 9092 
MED4 29079 C12orf32 83695 SCPEP1 59342 
MED6 10001 C4orf21 55345 SIRPB1 10326 
MED8 112950 CCL3 6348 SMR3B 10879 

PABPC1 26986 CD274 29126 SNW1 22938 
PAF1 54623 CELSR3 1951 SOS1 6654 

POLR2B 5431 FLJ32549 144577 SRRM2 23524 
    ST6GALNAC2 10610 
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Figure 9.  Cell growth effects of siRNAs during HTP screening 

 

 

 

We also evaluated siRNA toxicity throughout and observed no correlation between cell growth 

and relative HR levels (Figure 9a-c, Tables S1-4).  However, depletion of many HR proteins is toxic to 

cells, and we observed that siRNAs against candidate mediators from our screen were enriched for those 

that adversely affected cell growth.  Of 519 siRNA pools that scored for decreased HR in the primary 

screen, 14% resulted in final cell numbers that were less than 25% of control cells, compared to 2% of 

pools from the rest of the screen, which is a 7-fold enrichment for decreased cell growth (Fisher’s Exact 

Test p-value = 1.30x10-41).  Toxicity was, likewise, prevalent in both rescreening analyses of candidate 

HR mediators (Figure 9a-c).  Importantly though, we observed no correlation between relative cell growth 

and relative HR even among siRNAs targeting known HR proteins.  

 
TP  
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2-3.  Network analysis 

 Next we evaluated candidate genes for enrichment of functional categories and interaction 

networks using Ingenuity Pathway Analysis (IPA, Ingenuity Systems, www.ingenuity.com) and Gene 

Ontology terms (GO terms) assigned by DAVID Bioinformatics Resources 6.7 (david.abcc.ncifcrf.gov) 

(see Chapter 2, 4-3 for a description of the gene lists submitted to these analyses and references).  Both 

mediators and suppressors were enriched for genes functionally categorized as DNA replication, 

recombination, and repair by IPA which we expected for mediators of HR, but not necessarily for 

suppressors as little is known about what activities limit recombination (Figure 10a,b).  Among candidate 

mediators, two gene networks with known HR genes were identified (Figure 10c,d).  Interestingly, these 

suggest a role for factors associated with DDB1 and the CUL4A ubiquitin ligase in HR and highlight 

roles for the RFC DNA clamp loader and the TIP60 acetylase complex.  Overall, nine components of the 

TIP60 complex scored or trended in the primary screen: TIP60, RUVBL1, RUVBL2, DMAP1, Brd8, 

p400, ING3, MRGBP and MRG15 (Table S1), which is perhaps not surprising as the acetyltransferase 

activity of TIP60 is known to play a role in both ATM activation (Sun et al., 2005) and histone 

remodeling at DSBs through γH2AX acetylation (van Attikum and Gasser, 2009). 

 As mentioned, candidate mediators were also evaluated using an analysis of GO terms.  

Specifically, we evaluated candidates for enrichment of genes annotated with GO terms indicative of 

functional roles in homologous recombination (HR), double-strand break repair (DSBR), checkpoint 

regulation, and the DNA-damage response (DDR).   HR, DSBR and DDR genes, but not checkpoint 

genes, were significantly enriched among 433 candidate mediators selected by the primary screen (and 

returned by DAVID with unique identifiers) (Fisher’s Exact Test p-values = 0.001, 0.006, 5.67x10-5, and 

0.058 respectively).  As indicated by IPA analysis, several components of RFC (RFC1-3) scored in the 

primary screen; however, we note here that many other proteins involved in checkpoint activation, 

including the 9-1-1 complex, RAD17 and TopBP1 did not.  Although concrete conclusions cannot be 

made regarding what does not score in RNAi screens because siRNA reagents have inherently incomplete 

sensitivities (discussed in Chapter 3, 1-1), we note that defective HR in the absence of RFC proteins may 
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represent dysfunctional DNA replication and not an effect on HR.  Nevertheless, the recently 

characterized 9-1-1- and TopBP1-interacting checkpoint protein RHINO (C12ORF32) was identified by 

our screen (Table 1) (Cotta-Ramusino et al., 2011), perhaps suggesting that some checkpoint regulators 

have more substantial roles in HR than others. 

 Of 96 library genes annotated as functionally relevant to HR processes by DAVID (using 

GO:0000724~double-strand break repair via homologous recombination, GO:0000725~recombinational 

repair, and GO:0006310~DNA recombination), 9.4% scored among candidate mediators identified in the 

primary screen (a 15-fold enrichment).  A discussion of known HR genes that did and did not score in the 

primary screen can be found in Chapter 2, Section III. 

By IPA the most significantly enriched category among candidate mediators was RNA post-

transcriptional modification, which also produced a strong interaction network (Figure 10a,e).  Although 

the involvement of RNA-processing proteins in the DDR is poorly understood, several large-scale genetic 

and proteomic analyses of the DDR have shown similar enrichments (Hurov et al., 2010; Matsuoka et al., 

2007; Paulsen et al., 2009).  A role in promoting HR could explain the enrichment observed in all three 

screens.  Among HR suppressors a small network containing phosphatases emerged, and it is possible that 

these act to limit the activity of HR-promoting kinases (Figure 10f). 

  IPA also identified categories of candidate genes that may relate to the design of the screen but 

not HR.  The DR-GFP based HR assay depends on infection of an adenovirus, expression of I-SceI and 

GFP, and normal cell cycle progression; and it is, therefore less likely that candidates functionally 

categorized under infection mechanism, gene expression, or cell cycle regulation represent biological true 

positives (Figure 10a,b).  Additionally, a strong network of transcriptional proteins was identified among 

candidate HR mediators (Figure 10g). 
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Figure 10.  Functional categories and interaction networks among HR candidates identified by the primary screen and 
generated using Ingenuity Pathway Analysis (IPA)
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III.  Discussion   

 Here we describe an unbiased genetic screen to identify regulators of the mammalian HR 

machinery that produced two candidate sets (510 positive and 484 negative regulators), and we present 

these lists as a well-curated resource.  Importantly, of 510 candidate mediators, we validated 121 with ≥3 

individual siRNAs, compiling a highly validated list of known and as yet uncharacterized HR proteins.  

 Among the candidate mediators here identified are several known HR genes, including CtIP, 

BRCA2, PALB2, DSS1, BRCA1, BARD1, ATR, RPA2, RAD51 and TIP60, as well as additional 

components of the TIP60 complex.  Interestingly, these are all known to promote HR upstream of or 

coincident with formation of the RAD51 presynaptic filament, suggesting a bias for presynaptic 

regulators over downstream effectors among candidates identified by our screen.  Perhaps surprisingly, 

then, we also observe that none of the resection enzymes (MRE11, BLM, DNA2, EXO1) known to 
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promote presynaptic resection in mammals came through the screen.  Although (as mentioned above) no 

substantial conclusions can be made with regard to what does not score in RNAi-based screens, we note 

that both resection and postsynaptic HR pathways are highly redundant (discussed in Chapter 1).  From 

this we conclude that the DR-GFP assay may lack the sensitivity required to identify novel effectors of 

redundant HR mechanisms using strategies based on single-target, genome-wide RNAi knockdown.  In 

support of this, we observed that several resection, resolution, and dissolution effectors, including DNA2, 

NBS1, TOP3, EME1, GEN1 and SLX4, trended in the primary screen with minimal HR defects (relative 

HR 50-70%) but do not score.    

 Because several bona fide mediators of HR have previously been characterized with very weak 

HR defects using the DR-GFP assay (Smogorzewska et al., 2007; Svendsen et al., 2009), we also 

conclude that siRNA pools yielding intermediary phenotypes in our primary screen may represent mild 

but biologically significant effects.  We have not as yet undertaken the task of systematically evaluating 

these candidates because the phenotypic range between 50-70% encompasses 1,678 siRNA pools, making 

their individual prioritization both costly and work-intensive.  Nevertheless, novel HR components may 

be identified within this large candidate set in the future, and improvements to our ability to perform gene 

interaction studies in mammalian cells may, in particular, present a useful approach for such work.  A 

format applicable to shRNA-based HR screening that could be used towards screening this set with higher 

efficiency is presented in Chapter 5, Section III. 

During the course of our work, a similar genetic screen (also using the DR-GFP system in 

mammalian cells to evaluated HR) was published (Slabicki et al., 2010).  Different from our approach, the 

authors of this study used an arrayed library of esiRNA reagents.  These are single-target siRNA pools 

generated from the nucleolytic cleavage of long dsRNA molecules.  This library contained 16,707 

esiRNAs, all targeting genes annotated by unique Ensembl identifiers.  To compare the results of this 

study with our work, genes targeted by the Dharamcon siRNA library (and annotated by unique Entrez 

gene IDs) were re-annotated with Ensembl identifiers (Flicek et al., 2013) using the Bioconductor 

AnnotationDbi package (Gentleman et al., 2004; Herve Pages, 2012) in R (R Core Team, 2012).  After 
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manually correcting for duplicate Ensembl gene IDs, 17,754 genes remained; however, of these only 

14,452 were among those also evaluated by Buchholz and colleagues.  This gene set includes 41 of the 44 

validated candidates reported by Slabicki et al. to decrease HR and 106 of those on our validated mediator 

list.  A comparison of these yields seven common genes, a small but significant overlap (Fisher’s Exact 

Test p-value = 1.71x10-8).  These are 4 well-characterized HR proteins (BRCA1, RAD51, CtIP, DSS1), 2 

mRNA-processing related proteins (CWC22, SNRNP200) and the proteasomal subunit PSMD14, which 

has previously been implicated in HR (Jacquemont and Taniguchi, 2007).  The presence of CWC22 and 

SNRNP200 on this list supports our finding that RNA-processing proteins have some functional role in 

promoting HR, which we address more thoroughly in Chapter 4.     

Several factors could explain the limited candidate overlap observed between these published 

screens.  First, annotation of the human genome is by no means complete and different candidate sets are 

expected from RNAi libraries that do not target identical gene sets, as is the case for those discussed here.  

Moreover, computational comparison of human gene identifiers from different annotation sources 

remains a challenge and may affect our ability to faithfully compare candidate sets, as illustrated by the 

18 genes identified as HR mediators that could not be cross examined.  Methodological differences 

between screens could also have influenced results.  The most obvious of these are the use of different 

cell lines (HeLa / U2OS) and the method / timing of I-SceI delivery during the DR-GFP assay.  In our 

work, cells were transfected with siRNAs 72 hours before I-SceI transduction; however, Slabicki et al., 

transfected I-SceI into cells coincident with esiRNAs and fixed cells for analysis 72 hours later.  This 

difference may have affected the degree of protein depletion achieved before DSB formation in the DR-

GFP assay and, in this manner, may also have affected the lists of candidates identified.   

Lastly, it is important to consider that false positives and false negatives caused by the limitations 

of RNAi technologies may have impacted the reproducibility of candidates between these screens.  In 

particular, a distinct set of false positives caused by different sets of off-target effects in each library may 

have influenced results.  RNAi off-target effects will be discussed further in Chapters 3 and 5.  Use of 

high reagent redundancy in our work likely limited the inclusion false positives on our validated 
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candidate list; however, the library used by Slabicki et al. for primary screening contained only one 

esiRNA reagent per target gene and validation of their candidate set was likewise conducted with only a 

single, independent (and non-overlapping) reagent per gene.  Because only two reagents were evaluated 

per target gene in the this study, both off-target effects and reagent failure may have strongly influenced 

its results.  Of note, the limited overlap discussed here is not unique and other similar but independent 

RNAi-based screens have also yielded few common candidates (Mohr et al., 2010; Sigoillot and King, 

2011). 

Interestingly, of the 34 validated candidates from the esiRNA screen that were absent from our 

validated set (which could be evaluate by our data), 8 (24%) scored in our primary screen using a weak 

cutoff value (59% relative HR).  Overall, this cutoff scores approximately 7.3% of evaluated targets with 

unique identifiers from our screen.  Of the 99 validated candidates from our screen that were absent from 

the candidate list presented by Slabicki et al. (and that could be evaluated by their work), 23 (23%) were 

among the 7.3% of targets with the lowest HR score in their primary screen.  The trending of these 

validate candidates suggests that many may represent true positives. 

 Overall, we expect that the candidate HR mediators and suppressors presented herein will aid 

future characterization of HR.  Among the uncharacterized genes on our mediators list is C4OFR21, 

which has been shown to influence crosslink repair in a genome-wide screen for sensitivity to mitomycin 

C; intriguingly, the encoded protein carries a predicted DNA-binding domain and helicase-like region 

(Smogorzewska et al., 2010).  Additionally, as it is known that NHEJ proteins suppress HR (Pierce et al., 

2001), we also expect that our suppressor list will yield positive regulators of NHEJ.  OTUB1, a 

deubiquitinating enzyme that inhibits HR (Nakada et al., 2010), and RAP80, whose HR suppressive 

effects are discussed in Chapter 1, 3-3-8, are tellingly present on this list.  Lastly, we note that the 

discovery of novel HR suppressor genes will be of particular interest for genetic engineering studies that 

aim to improve gene targeting technology in mammalian cells. 
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IV.  Materials and Methods 

4-1.  Cell culture  

DR-U2OS cells (Xia et al., 2006) provided by Maria Jasin (Memorial Sloan-Kettering Cancer Center) 

were grown in McCoy’s 5A media supplemented with 10% fetal bovine serum (FBS) for HTP screening. 

 

4-2.  High-throughput (HTP) screening  

The primary screen was performed using 21,121 siRNA pools from the Dharmacon human 

siGENOME siRNA library (G-005000-05) at 50 nM.  Dharmacon and Ambion rescreens were conducted 

at 20 nM.  DR-U2OS cells were plated on 384 well plates at 700 cells / well and reverse transfected with 

siRNAs using OligofectamineTM Transfection Reagent.  Positive (siATR, siBRCA2) and negative (siFF) 

controls were added to each plate.  After 72 hours, cells were infected with the I-SceI carrying adenovirus 

AdNGUS24i (provided by Frank Graham, McMaster University) at an estimated MOI of 10; 48 hours 

after infection, cells were fixed in 3.7% formaldehyde and stained with Hoechst 33342 at a dilution of 

1:5000 (Invitrogen).  Changes were made to this protocol for screening Ambion siRNAs: (1) 500 DR-

U2OS cells / well were plated (to adjust for reduced toxicity of Ambion siRNAs observed in controls), (2) 

the LipofectamineTM RNAiMAX Transfection Reagent was used, and (3) AdNGUS24i was used at an 

MOI of ~15 (to adjust for differences between viral preparations).   

For data collection automated imaging of screen plates (2-4 images per well in 2 channels) was 

conducted on an Image Express Micro microscope (Molecular Devices) at 4X magnification (488 nm and 

350 nm wavelengths were used to detect GFP expression and Hoechst 33342 stained DNA, respectively).  

Automated counting of GFP+ and Hoechst stained nuclei was performed for each image with Metamorph 

Cell Scoring software (Molecular Devices Inc.) and a ratio of GFP+ to Hoechst stained (total) nuclei was 

calculated for each well using all corresponding images.  Primary screen pools, Ambion siRNAs and 

deconvolved Dharmacon siRNAs against candidate suppressors were evaluated in triplicate, while 

individual Dharmacon siRNAs against candidate mediators were evaluated in duplicate.  To normalize 

day-to-day variability, each triplicate (or duplicate) average of % GFP+ was normalized to the average % 
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GFP+ from on-plate negative control wells (siFF); standard deviation was calculated and propagated for 

each.  These normalized values are presented as relative HR ratios.  Images from the primary screen and 

candidate mediator Dharmacon rescreen that produced relative HR ratios with high standard deviations 

were selectively visually inspected, and data from images that were found to contain an irregularity (for 

example, were out of focus) were deleted from analysis.   

A cell number / well value was also calculated for each HTP well as the sum of Hoechst 33342 

stained nuclei from all corresponding images, and a relative cell growth ratio for each siRNA pool was 

calculated by normalizing the average cell number / well of corresponding experimental wells to that of 

on-plate negative control wells (siFF).  The number of images taken of experimental and corresponding 

control wells was kept the same. 

 

4-3.  Candidate selection  

Primary screen data was collected and processed as described above (Chapter 2, 4-2).  All relative 

HR ratios from the primary screen were compiled, and from this, 519 pools that decreased relative HR >2 

s.d. from the screen-wide mean and 486 pools that increased relative HR >2 s.d. (including 2 duplicate 

pools against SMAD1 and TIAM2) were identified (screen mean = 1.14, s.d. = 0.37) (Table S1).  siRNA 

pools that were unavailable for validation, corresponded to discontinued gene entries in the NCBI gene 

database (www.ncbi.nlm.nih.gov), or (as discussed above: Chapter 2, 4-2) were determined by visual 

analysis to be based on poor quality imaging were eliminated.  The 510 and a subset of the strongest 486 

siRNA pools remaining (against 510 and 484 HR mediator and suppressor candidates, respectively) were 

deconvolved into individual duplexes and rescreened (Tables S2-3).  For this 131 pools (against 131 

genes) were added to the 510 candidate pools against HR mediators (for 641 candidates, 2564 siRNAs 

total).  Selection of the 131 additional candidates is described in Chapter 2, 2-2).  Only the 250 pools 

(including 1 duplicate pool against SMAD1) that most strongly increased HR were rescreened.  siRNAs 

from the Ambion Silencer Select library targeting 467 (of 641) candidate HR mediators were also 

screened (3 siRNAs / gene, 1401 siRNAs total).  Selection of these 467 candidates was based on data 
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from our primary screen and Dharmacon rescreen analysis, as well as data from related DNA damage 

screens, GESS analysis and published information about each gene. 

 Ingenuity Pathway Analysis (IPA) and Gene Ontology term (Ashburner et al., 2000) analysis was 

conducted on the candidate HR mediator and / or suppressor sets generated by applying a 2 s.d. cutoff to 

the primary screen data and prior to the expansion / editing of the candidate lists outlined above (519 

mediators and 484 suppressors) (Table S1).  Both candidate sets were uploaded into IPA software and 

scanned for functional enrichment and interaction networks based on information in the Ingenuity® 

Knowledge Base.  Select functional enrichment categories from IPA are displayed in Figure 10a,b.  

Enrichment p-values were determined using the Fisher’s Exact Test.  Select protein networks from IPA 

are displayed in Figure 10c-g.  Network nodes are colored according to the number of siRNAs that scored 

using a weak cutoff value based on 1.5 s.d. from the primary screen mean.  These networks and functional 

analyses were generated through the use of IPA (Ingenuity Systems, www.ingenuity.com). 

 Gene Ontology terms descriptive of biological processes (GOTERM_BP) were obtained for 

genes targeted by the Dharamcon library by uploading all Entrez Gene IDs listed in Table S1 into the 

DAVID Bioinformatics Resources 6.7 Analysis Wizard (Huang da et al., 2009a, b).  The 15,747 genes 

subsequently analyzed were those returned with unique identifiers.  Functional gene sublists were 

generated from these 15,747 genes using GO terms indicative of roles in homologous recombination 

(HR), double-strand break repair (DSBR), checkpoint regulation, and the DNA-damage response (DDR): 

HR (GO:0000724~double-strand break repair via homologous recombination, 

GO:0000725~recombinational repair, GO:0006310~DNA recombination), DSBR (GO:0006302~double-

strand break repair, GO:0000729~DNA double-strand break processing), checkpoint regulation 

(GO:0000077~DNA damage checkpoint, GO:0031570~DNA integrity checkpoint, GO:0031572~G2/M 

transition DNA damage checkpoint, GO:0031576~G2/M transition checkpoint, GO:0031573~intra-S 

DNA damage checkpoint), DDR (GO:0006281~DNA repair, GO:0006282~regulation of DNA repair, 

GO:0006974~response to DNA damage stimulus, GO:0030330~DNA damage response signal 

transduction by p53 class mediator, GO:0042770~DNA damage response signal transduction, 
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GO:0042772~DNA damage response signal transduction resulting in transcription, GO:0045739~positive 

regulation of DNA repair, GO:0008630~DNA damage response).  These sublists were then compare to 

GO term annotation of candidate mediators identified by the primary screen (described above) and 

present among the genes returned by DAVID with unique identifiers.
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I.  Introduction 

 In general, co-opting the endogenous RNAi machinery to modulate gene expression and evaluate 

genetic phenotypes presents unique challenges, and in the context of RNAi-based screening, the presence 

of reagent-specific caveats particular to 20,000-80,000 reagents (or more) may substantially hinder the 

enrichment of biological true positives among screen candidates (Sigoillot and King, 2011).  Following a 

brief discussion of the potential pitfalls relevant to large-scale RNAi technology and the manner in which 

these relate to endogenous mechanisms, I will discuss how RAD51 depletion was identified as a 

prominent off-target effect in our screen and used towards the systematic elimination of false positives. 

 

1-1.  Common caveats to genetic studies using RNAi 

 Perhaps the most important caveats to posttranscriptional genetics using RNAi is that protein 

depletion using this technology, as opposed to genetic deletion, generates hypomorphic phenotypes, and 

variable sensitivities among RNAi reagents with the same intended target often cause inherently distinct 

phenotypic results.  Although this can be beneficial for identifying functionalities within the context of 

toxic or otherwise lethal depletion events or for evaluating phenotypic ranges associated with titrated 

protein expression (akin to allelic series), it is entirely problematic with regard to evaluating large RNAi 

data sets because without direct measurement no a priori predications can be made as to which (or how 

many) RNAi reagents effectively deplete their intended target.  Moreover, methods currently available for 

determining the depletion efficacies of specific reagent-target pairs are not scalable for high-throughput 

applications.  So the common inclusion of ineffectual RNAi reagents in genome-wide screens ensures 

high false-negative rates.  As with most caveats to RNAi (discussed herein), a standard solution to this 

problem is the use of high reagent redundancy, which was applied to our screen during candidate 

validation through the use of two rounds of rescreening (Chapter 2, 2-2).  At a minimum, this approach 



CHAPTER THREE 

  73 

biases large-scale RNAi experiments towards the inclusion of multiple functional reagents per individual 

gene. 

 An additional concern pertaining to RNAi-based experiments is the possibility of unintentionally 

perturbing endogenous cellular mechanisms through in vivo exposure to exogenous RNAs (Sigoillot and 

King, 2011).  In particular, short dsRNAs may, in select cases, non-specifically activate an interferon 

response present in mammalian cells that, as part of an ancient antiviral mechanism, responds to long 

dsRNA molecules of foreign origin.  Alternatively, RNAi reagents may simply flood the endogenous 

RNAi machinery causing dysregulation of endogenous miRNAs (discussed below) and unrelated changes 

to gene expression.  The inclusion of appropriate non-targeting and mock controls in RNAi-based 

experiments, however, should effectively manage these sequence-independent effects in most cases.     

 Lastly, the suboptimal specificity of shRNA and siRNA reagents must be considered.  Although 

RNAi reagents are generally designed with perfect sequence complementarities to their intended mRNA 

targets, RNAi mechanisms in general allow for promiscuous and degenerate sequence-based targeting, 

and clear evidence of broad off-target gene silencing has been shown.  Using mircoarray analysis, 

individual siRNAs at both high (100 nM) and low (4 nM) reagent concentrations have been observed to 

affect hundreds of unintended transcripts (Jackson et al., 2003), and wide-spread off-targeting among 

RNAi libraries has been estimated to substantially increase the false-positives rates of many RNAi-based 

screens (Sigoillot and King, 2011).  To fully evaluate these off-target effects, however, we must first 

examine the targeting mechanisms used by the endogenous miRNA machinery. 

 

1-2.  Endogenous mircoRNAs 

 Common genome-encoded effectors of endogenous RNAi are ~21-23-nt microRNAs (miRNAs).  

These are differentially expressed within various cell and tissue types to mediate broad posttranscriptional 

gene regulation through the modulation of mRNA stability and translation (Carthew and Sontheimer, 

2009).  Mature miRNAs are processed from longer pri- and pre-miRNA molecules.  In mammals, this 

occurs as follows: First, miRNA-encoding genes are transcribed into pri-miRNAs by RNA polymerase II 
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(RNAPII).  pri-miRNAs contain secondary structures with one or more RNA hairpins that can then be cut 

into stem-loop structures (pre-miRNAs) by the endoribonuclease activity of DROSHA within the nucleus.  

pre-miRNAs are exported into the cytoplasm by exportin 5 where they are processed into open-ended 

dsRNA molecules (mature miRNAs) by the endoribonuclease DICER.   One strand of a given miRNA, 

referred to as the “guide” strand, can then be incorporated into RISC; after which, the RISC subunit 

AGO2 mediates pairing to a complementary target mRNA and facilitates subsequent gene silencing 

through direct translational repression or AGO2-induced mRNA cleavage followed by exonucleolytic 

degradation.  Determination of the guide strand is controlled by the thermodynamic properties of a given 

miRNA duplex and follows the general, but not absolute rule, that the guide strand has lower affinity for 

its complementary RNA strand at the 5’ end.  Rules that promote translational repression over mRNA 

cleavage, or vice versa, remain unclear; although, they appear to be guided in part by the degree of 

miRNA to mRNA pairing, with near perfect complementarity promoting cleavage. 

 

1-3.  Sequence-based targeting of the endogenous RNAi machinery 

 In animals, the target sites of endogenous miRNAs are predominantly found within the 3’ 

untranslated regions (UTRs) of mRNAs, and to date, six modes of sequence-directed miRNA-mRNA 

pairing –all with target predictive capacities– have been identified (Bartel, 2009).  These are defined as 

cleavage (or near perfect) pairing, centered pairing (Shin et al., 2010), and four modes of seed pairing: 

seed (Lim et al., 2005), seed with G-bulges (Chi et al., 2012), seed with 3’-supplementary, and seed with 

3’compensatory pairing (Bartel, 2009).  The miRNA seed region spans nucleotides 2-8 on the 5’ end of 

the miRNA guide strand and facilitates the smallest and most predominant of known pairing modes.  This 

minimal 7-nt requirement for gene silencing is thought to allow broad modulation of gene expression 

through the repression of hundreds of mRNA targets by single miRNAs (Lim et al., 2005), a concept that 

has recently been supported by the finding that miRNA-induced silencing can also occur at target sites 

with mRNA G-bulges at seed positions 5 and 6 (Chi et al., 2012).  Pairing of the 3’ miRNA end (centered 

on nucleotides 13-17) in combination with mismatch-containing seeds (compensatory pairing) further 
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expands the degenerate target repertoire (Bartel, 2009).  On the other hand, perfect 6-8-nt seed matches 

with uninterrupted 3-4-nt supplemental pairing at miRNA 3’ ends (nt 13-16) show increased efficacy of 

miRNA targeting in rare cases (Bartel, 2009), and atypical centered pairing of 11 contiguous nucleotides 

(4-14, 5-15) has been shown to target miRNAs without minimal 6-mer seeds (Shin et al., 2010).  The 

increased informational complexity of centered pairing is thought necessary to overcome a 

conformational preference for 5’ end pairing dictated by RISC (Shin et al., 2010); however, this no doubt 

also limits the number of messages targeted by this pairing mode.   

 

1-4.  Predictable sequence-based off-targeting 

 Unlike miRNA-target pairing, only two sequence-based modes of off-target pairing by exogenous 

RNAi reagents have been identified with predictive value: one through near perfect pairing to unintended 

transcripts and the other by 6-7-nt seed sequence matches to unintended 3’UTRs, so-called “miRNA-like” 

off-targeting (Birmingham et al., 2006).  Initially, seed-based off-targeting was identified only for 

individual siRNAs (Birmingham et al., 2006; Jackson et al., 2003); however, these effects have 

increasingly been identified within genome-wide data sets (Adamson et al., 2012; Schultz et al., 2011; 

Sigoillot et al., 2011; Sudbery et al., 2010).  Here we present the identification of a single prominently 

off-targeted transcript (RAD51) from our genome-wide screen using a recently developed computational 

algorithm (Sigoillot et al., 2011), and by eliminating screen reagents predicted to deplete RAD51 through 

“mRNA-like” off-target effects, we enrich our candidate list for true positives.  This work helps to set a 

new standard for data analysis from RNAi-based screens.  

 

II.  Results 

2-1.  Three candidate HR regulators localize to sites of DNA damage: HIRIP3, RBMX, DDX17 

 To begin characterizing candidates identified by our screen, we made GFP fusions of 22 

candidate proteins and evaluated each for relocalization after DNA damage.  Two candidate mediators, 

HIRIP3 and RBMX, and one suppressor, DDX17, accumulated at regions of DNA damaged by 
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microirradiation (Figure 11a).  RBMX is an RNA-binding protein that associates with the spliceosome 

and plays a role in alternative splicing (Heinrich et al., 2009), and DDX17 is a DEAD-box RNA helicase 

that is phosphorylated in response to IR (Janknecht, 2010; Matsuoka et al., 2007).  HIRIP3 is a poorly 

characterized histone chaperone that binds histones H2B and H3 and interacts with the histone chaperone 

HIRA (Lorain et al., 1998).  Interestingly, HIRA and two additional HIRA-associated proteins (UBN1 

and CAIN) also localized to DNA damage after microirradiation (Figure 11b).   

 

 

Figure 11.  Screen candidates localize to sites of DNA damage 

The HIRIP3-targeting siRNA pool in our primary screen gave a strong HR defect, but while 

seven siRNAs and three shRNAs were individually shown to deplete HIRIP3, only five of these caused 

substantial HR defects (Figure 12a-d), and none of three screened HIRIP3 Ambion siRNAs scored (Table 

S4).  Indicative of an off-target effect, expression of siRNA-resistant HIRIP3 did not rescue the HR 

defect caused by siHIRIP3-2 (data not shown).  The HIRA siRNA pool from our primary screen trended 

for decreased HR, but also indicative of a false positive, these siRNAs caused a range of HR defects that 

did not correlate with mRNA depletion once deconvolved (Figure 12g,h).  Similarly, several UBN1- and 
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CAIN-targeting siRNAs caused HR defects likely to be associated with off-targeting (Figure 12f,g,i,j).  

Because of these data we suspected that HR might be particularly sensitive to off-target effects.  

Figure 12.  The DR-GFP HR assay is sensitive to off-target effects 
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2-2.  Off-target RAD51 depletion contributes to screen false positives  

To search for off-target effects in our screen data, we used Genome-wide Enrichment of Seed 

Sequences (GESS) analysis, an algorithm that identifies 3’UTRs with enriched sequence complementary 

to the seed regions of siRNAs that score in genome-wide screens (over non-scoring siRNAs) (Sigoillot et 

al., 2011).  As previously discussed (Chapter 3, 1-3), siRNA seed regions are nucleotides 2-8 of single 

siRNA strands incorporated into RISC, which according to siRNA design should be the antisense (guide) 

strands in most cases but could be either the sense or antisense (Sigoillot and King, 2011).  GESS analysis 

capitalizes on the fact that siRNA seed complementarity to particular 3’UTRs can elicit repression of the 

associated transcripts through a pathway endogenously engaged by microRNA-containing RISC 

complexes (Bartel, 2009; Sigoillot et al., 2011).   

GESS analysis of our Dharmacon rescreen data revealed that siRNAs against candidate mediators 

with strong HR defects (40% relative HR cutoff) were 3-fold enriched for 7-nt antisense seed sequences 

matches to the 3’UTR of RAD51, compared to those that did not rescore with a strong phenotype (an 

increase from 8% to 25%, Fisher’s Exact Test p-value = 4.65x10-23) (Figure 13a).  The sense strands of 

strongly scoring Dharmacon siRNAs, however, gave no enrichment for seed matches to the RAD51 

3’UTR (Fisher’s Exact Test p-value = 0.5986), and no enrichment for seed region complementarities 

(from both strands) to the RAD51 coding region (CDS) was observed (Fisher’s Exact Test p-value = 

0.8886) (Figure 13b).  From this analysis, we predict a 17% false positive rate due to off-target RAD51 

depletion among our candidate Dharmacon siRNAs.  Importantly, strong scoring Ambion siRNAs 

targeting candidate mediators were not enriched for antisense (or sense) seed complimentarily to the 

RAD51 3’UTR (Fisher’s Exact Test p-value = 0.3526 antisense and 0.7485 sense), suggesting that this 

off-target effect did not confound the data from those reagents (Figure 13c).  Of note, GESS analysis of 

Dharmacon siRNAs that scored for increased HR identified small but significant enrichments of seed 

matches to three transcript 3’UTRs: ITGB1BP3, FAM153C and EDC3 (Figure 13d).  These have not 

previously been implicated in HR. 

Figure 13.  Off-target RAD51 depletion was a major source of false positives among Dharmacon siRNAs 
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Predicted off-target RAD51 depletion was confirmed for 6 screened Dharmacon siRNAs with 7-

nt antisense seed region matches to the 3’UTR of RAD51 (of 7 tested), and both RAD51 mRNA and 

protein depletion by these siRNAs correlated with the relative HR measurements determined for each 

during rescreening analysis (Figure 13e-f).  Perhaps not surprisingly, we found that the HR defects caused 

by four HIRIP3-targeting siRNAs (including three from the primary screen pool), siUBN1-2, siUBN1-3, 

and siCAIN-2 also correlated with off-target RAD51 depletion (Figure 12a,b,e-g,i,j).  To remove this 

strong off-target effect from confounding our screen results, we refined our list of validated candidate HR 

mediators to 121 that scored with at least 3 of 7 combined Ambion and Dharmacon siRNAs after 

eliminating Dharmacon siRNAs predicted to deplete RAD51 by a 7-nt antisense seed region match to the 

RAD51 3’UTR (Table 1). 
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III.  Discussion 

3-1.  Off-target RAD51 depletion  

 Using GESS analysis, we determined that RAD51 is a prominently off-targeted transcript among 

Dharmacon siRNAs selected by our primary screen, and we found that this phenomenon could primarily 

be attributed to sequence complementarities between the antisense seed regions of these siRNA and the 

RAD51 3’UTR.  Consistent with this, we experimentally confirmed off-target depletion of RAD51 mRNA 

and protein for 6 Dharmacon siRNAs with antisense seed complementarily (of 7 tested) (Fig. 3e).  We 

found no enrichment for seed matches among the sense strands of siRNAs from the screen however, 

suggesting that the Dharmacon siGENOME reagents we used successfully controlled siRNA strand 

loading into RISC using thermal asymmetry rules and limited additional off-target effects to some extent.  

However, of the seven HIRIP3-, UBN1-, and CAIN-targeting siRNAs found to cause off-target depletion 

of RAD51 in subsequent analyses, only siHIRIP3-5 had a 7-nt seed match to the RAD51 3’UTR, which 

indicates that RAD51 off-targeting can occur without complete seed complementarity and suggests that 

the incidence of RAD51 off-target effects in our screen is underrepresented by the GESS-derived 

estimation.  Therefore additional mechanisms of RAD51 off-targeting may also confound experimental 

results, perhaps mediated through pairing modes defined by incomplete seeds with G-bulges or aided by 

3’compensatory sites.  

 We note here that GESS analysis could not be applied to data from the esiRNA-based HR screen 

published by Buchholz and colleagues and discussed in the discussion section of Chapter 2 because 

candidates from that work were not validated with RNAi reagents carrying individual target sequences 

(Slabicki et al., 2010); however, we estimate that on average approximately 1 of 16 siRNAs will have a 7-

nt seed match to a 1 kilobase region of DNA (approximately the size of the RAD51 3’UTR), so multiple 

seed matches to RAD51 are expected to be present in each of their esiRNA pools.  In work presented 

elsewhere, our screen and subsequent validation data was used to demonstrate that GESS-derived 

information could aid the removal of off-target RNAi reagents from screen results (Sigoillot et al., 2011).  

Specifically, it was shown that by discarding GESS-predicted off-target effects the percentage of 
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candidates scoring with ≥2 Dharmacon siRNAs that validated with 2-3 Ambion siRNAs increased from 

36% to 51% (using a strong cutoff threshold) (Sigoillot and King, 2011).  Filtering our candidate set in 

this manner, however, did not remove any candidates that strongly validated with 2-3 Ambion siRNAs 

indicating that the initial selection of these candidates was not substantially influenced by off-target 

effects.  This highlights the general importance of validating RNAi-based screens with independent 

reagents, even when predominantly off-targeted transcripts are not (or cannot be) identified.  Overall 

these data suggest a new standard for validating candidates from RNAi-based screens.   

 Hypotheses regarding the cause of RAD51 hypersensitivity to RNAi off-target effects and a 

discussion of other prominently off-targeted transcripts that have been identified, including the spindle 

assembly checkpoint mediator MAD2 mRNA (Sigoillot et al., 2011), are included in Chapter 5. 

 

3-2.  HIRA-associated proteins and DNA repair  

Although we showed that individual depletion of HIRIP3, HIRA and UBN1 does not result in 

defective HR, this investigation lead to the observation that these proteins accumulate at sites of DNA 

damage and therefore indicates that they may have functional roles in DNA repair.  HIRA is a 

multifunctional histone chaperone that deposits the histone variant H3.3 into chromatin during DNA 

synthesis-independent nucleosome assembly (Ray-Gallet et al., 2002; Tagami et al., 2004), and in 

cooperation with UBN1 and ASF1A, HIRA coordinates the formation of senescence-associated 

heterochromatin foci (Banumathy et al., 2009; Zhang et al., 2005) thought to repress proliferation-

promoting genes.  HIRA has two orthologs in S. cerevisiae, Hir1 and Hir2, which are part of the 

transcriptionally repressive HIR complex that also controls histone deposition into chromatin (Eitoku et 

al., 2008; Prochasson et al., 2005).  Similarly, UBN1 and CAIN are orthologs of HIR complex subunits 

(Hpc2 and Hir3) (Balaji et al., 2009; Banumathy et al., 2009), and because these can be biochemically 

copurified with HIRA, a conserved complex is thought to exist in mammalian cells (Tagami et al., 2004).  

HIRIP3 was first identified in humans as a HIRA-interacting protein (Lorain et al., 1998), and like HIRA, 

it is a histone chaperone.  HIRIP3 binds core histones H2B and H3 (Lorain et al., 1998) and is the 
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predicted human ortholog of the S .cerevisiae protein Chz1, which preferentially deposits the histone 

variant H2AZ into chromatin (Luk et al., 2007).  

Because DNA repair is conducted within the context of nuclear chromatin, much thought has 

been given to the manner in which repair effectors gain access to regions of broken DNA and how 

chromatin structure is restored after the completion of repair.  Homologous recombination-associated 

chromatin modulation, which is no doubt required to shift or remove DSB-flanking nucleosomes during 

DNA end resection, is of particular interest (Ransom et al., 2010; Smerdon, 1991).  Several chromatin 

remodelers, including the mammalian TIP60 complex (SWR1 and INO80 in yeast) as well as the recently 

characterized SWI/SNF-related SMARCAD1 protein (Costelloe et al., 2012), and several histone 

chaperones have already been implicated in processes associated with DNA repair.  The FACT complex, 

for example, has been shown to facilitate exchange of γH2AX/H2B dimers for H2A/H2B in chromatin 

surrounding DNA breaks (Heo et al., 2008), and the ASF1 and CAF1 histone H3/H4 chaperones, 

although not required for repair per se, are thought to mediate DNA-synthesis dependent nucleosome 

assembly in regions of newly repaired DNA (Polo et al., 2006; Ransom et al., 2010).   

Exactly what HIRA, a histone chaperone involved in DNA synthesis-independent nucleosome 

assembly, and its associated proteins are doing at DNA lesions associated with active DNA synthesis is 

unclear.  One possibility is that they function as histone acceptors, binding and sequestering histones that 

have been newly freed from repair-associated chromatin; another is that, like ASF1 / CAF1, they mediate 

chromatin reconstruction after the completion of DNA repair.  Neither of these scenarios would a priori 

require protein function for repair, but would instead require only the coordination of chromatin dynamics 

that occur downstream of DNA repair.  Notably, defects in such processes would not necessarily be 

expected to generate phenotypes also indicative of defective repair.  Another possibility is that HIRA and 

its associated proteins function only within specific DNA contexts that may not be amenable to repair by 

HR, at particular DNA lesion types for example or within regions of specific chromatin structure such as 

heterochromatin.  Nevertheless, the possibility remains that these proteins will yet be found to positively 

regulate the repair of DSBs through pathways other than HR, and intriguingly, the HIRIP3 ortholog Chz1, 
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together with Swr1, has been observed to modulate levels of the histone variant H2AZ in chromatin 

surrounding DSBs in yeast (Kalocsay et al., 2009; Ransom et al., 2010; van Attikum and Gasser, 2009). 

 

IV.  Materials and Methods 

4-1.  Cell culture  

Human U2OS and DR-U2OS osteosarcoma cells were grown in Dulbecco’s modified Eagle medium 

(DMEM) supplemented with 10% fetal bovine serum (FBS), 100 units / ml of penicillin, and 0.1 mg / ml 

streptomycin (Invitrogen).  Cell selection after viral transduction was conducted with puromycin at 1 ug / 

ml. 

 

4-2.  Plasmids, shRNAs, and siRNAs 

RBMX and HIRIP3 cDNAs were from hORFeome V5.1.  DDX17 cDNA was obtained in pOTB7 from 

Open Biosystems (Item MSH1011-59342).  DDX17 was isolated by PCR and cloned into the pENTRTM / 

D-TOPO vector using the pENTRTM Directional TOPO®
 Cloning Kit (Invitrogen).  Full-length RBMX, 

HIRIP3 and the 5’ end of DDX17 were verified by sequencing.  All three cDNAs were cloned into 

pMSCV-N-EGFP-GAW-PGK-PURO for expression using the Gateway recombination system.  shRNAs 

were used in the pSMP-MSCV-PURO vector (Open Biosystems).  Throughout all data chapters, siRNAs 

were transfected into cells at 20-50 nM using either OligofectamineTM or LipofectamineTM RNAiMAX 

Transfection Reagents (Invitrogen) according to manufacturer instructions and cells were processed for 

indicated experiments 2-3 days later.  shRNA and siRNA sequences used in this chapter that are not listed 

in Tables S2-4 are listed in Table 2.  Multiple negative (siFF) and positive control siRNAs were used 

throughout all experimental chapters (from Dharmacon, Invitrogen and Ambion) and are also listed in 

Table 2; the particular controls used in each experiment were for the most part matched to the vendor of 

the experimental reagents.   
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Table 2.  RNAi Reagents  Table 2:  RNAi Reagents 

     

Target Reagent 
Type Source Clone ID / 

Catalog Number Sequence 

FF siRNA Dharmacon custom CGUACGCGGAAUACUUCGAUU 
GGAUUUCGAGUCGUCUUAAUGUAUA FF siRNA Invitrogen custom GAGGACCUAUGAUUAUGUCCGGUUA 

FF siRNA Ambion custom CGUACGCGGAAUACUUCGAtt 
D-003530-02 GAAGCUAUGUUCGCCAUUA 
D-003530-05 GCAGUGAUGUCCUGGAUAA 
D-003530-07 CCAACGAUGUGAAGAAAUU RAD51 siRNA 

pool Dharmacon 

D-003530-08 AAGCUAUGUUCGCCAUUAA 
D-003202-05 GAACAACACUGCUGGUUUG 
D-003202-17 GCAACUCGCCUAACAGAUA 
D-003202-31 UCUCAGAAGUCAACCGAUU ATR siRNA 

pool Dharmacon 

D-003202-32 GAAUUGUGUUGCAGAGCUU 
HSS100876 UUUAGAUGAGGUUCUAGUAUUUCCC 
HSS100877 UAAAUUGGCUUCUUUACUCCAGACC ATR siRNA 

pool Invitrogen 
HSS100878 UUAACAUGUUCUUACCCUCAGGUGG 

s535  UAAAUUUUGCAUACUCAUCaa 
s536 UCAGUAUCCAUUUCUACAAgg ATR siRNA 

pool Ambion 
s534 UUGACUUAAAAAUCGGCUCat 

BRCA2 siRNA Ambion s224694 GGCUCAUACCCUCCAAUGAtt 
HIRIP3-1 siRNA Dharmacon D-011481-01 GCAGUGAUGGCGAGAGUAA 
HIRIP3-2 siRNA Dharmacon D-011481-02 UCAGCACGCUUACGCAUUC 
HIRIP3-3 siRNA Dharmacon D-011481-03 ACAAGGAGCGCCUGAGUAU 
HIRIP3-4 siRNA Dharmacon D-011481-04 GUAGCGACCCGGAGAGAAA 
HIRIP3-5 siRNA Invitrogen HSS189204 GGUGGAGGGAAAUAAAGGAACUAAA 
HIRIP3-6 siRNA Invitrogen HSS189205 GAAAGUGACUUGGAGAGGGAGGUAA 
HIRIP3-7 siRNA Invitrogen HSS112359 GCCUCCUUGGAUGUUGCGAACAUCA 
UBN1-1 siRNA Invitrogen HSS120994 GGGUGUAUGCCUAUCUUGCGUCAUU 
UBN1-2 siRNA Invitrogen HSS120995 GGAUGCAGGCCAGAACUCUGUUUAA 
UBN1-3 siRNA Invitrogen HSS120996 GCAGUUAGUGAAGACAGCGGCCAAA 
HIRA-1 siRNA Dharmacon D-013610-01 GAAGGACUCUCGUCUCAUG 
HIRA-2 siRNA Dharmacon D-013610-02 GGAGAUGACAAACUGAUUA 
HIRA-3 siRNA Dharmacon D-013610-04 GAAAUUCUAGCUACUCUGA 
HIRA-4 siRNA Dharmacon D-013610-05 GCGAUUCUGUCAAUAAAGA 
CAIN-1 siRNA Dharmacon D-012454-01 GAACACAGCCCACGAGUAU 
CAIN-2 siRNA Dharmacon D-012454-02 GGAGAGAGCUUGCUGGCCA 
CAIN-3 siRNA Dharmacon D-012454-03 GGAUUGAUUUGUCGGACUA 
CAIN-4 siRNA Dharmacon D-012454-04 GAUGUCAACCUCUGGUAUA 

FF shRNA custom custom CCCGCCTGAAGTCTCTGATTAA 

ATR shRNA Open 
Biosystems 

V2HS_94661; 
RHS1764-
9191741 

ATAATGAATGATCTGGTCTGGT 

HIRIP3-8 shRNA Open 
Biosystems 

V3LHS_334056; 
RHS4430-
101065004 

TATGTGACCAGTCTGGGGGTGC 
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Table 2 (continued).  RNAi Reagents 
3 

     

Target Reagent 
Type Source Clone ID / 

Catalog Number Sequence 

HIRIP3-9 shRNA Open 
Biosystems 

V3LHS_334058; 
RHS4430-
101068486 

TCTGAATTGAAGCGGAACCTTT 

HIRIP3-10 shRNA Open 
Biosystems 

V3LHS_334057; 
RHS4430-
101074418 

TAGCGCTTCCAGTTCTGCCCGG 

HIRIP3-11 shRNA Open 
Biosystems 

V3LHS_334055; 
RHS4430-
101074132 

TCCGACTCTGAATTGAAGCGGA 

 

4-3.  Antibodies 

Primary antibodies used in this chapter are listed in Table 3.  Secondary antibodies used for 

immunofluorescence were Alexa Fluor® 488 and 594 conjugated (Invitrogen) and for western blot 

analysis were HRP conjugated (Jackson Laboratory).   

Table 3.  Primary Antibodies  
Table 3.  Primary Antibodies 

     

Antibody Host Name Source Name / Catalog # Information 

HIRA  mouse Peter D. Adams WC cocktail  

UBN1  rabbit Peter D. Adams #1358 polyclonal raised to N-terminus 

CAIN  rabbit Calbiochem 1881-2173  

HIRIP3 rabbit Santa Cruz sc-98401  

γH2AX rabbit Bethyl A300-081A  

γH2AX mouse Millipore  05-636  

RAD51 rabbit Santa Cruz sc-8349  

Actin mouse Santa Cruz sc-8432  

VINCULIN mouse Sigma V9131   
 

4-4.  UV laser-induced DNA damage and immunofluorescence   

UV laser-induced DNA damage was generated as previously described (Bekker-Jensen et al., 2006).  

Cells were sensitized to UV-A laser (λ = 355 nM) by 24 hour pre-treatment with 10 µM BrdU and 

microirradiated using a PALM MicroBeam with fluorescence illumination (Zeiss) at 40-45% laser power.  
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After damage, cells were allowed to recover for the indicated times at either room temperature (RT) or 

37°C.  Cells were extracted with 0.5% Triton X-100 only where indicated.  Cells were then fixed in 3.7% 

formaldehyde for 10 minutes at RT.  Fixed cells were washed with PBS, permeabilized in 0.5% NP-40, 

washed with PBS, and blocked with PBG (0.2% [w/v] cold fish gelatin, 0.5% [w/v] BSA in PBS) for 30 

minutes prior to immunostaining with the indicated antibodies diluted in PBG.  DNA was stained with 

DAPI by addition of Vectashield Mounting Medium (Vector Laboratories).  GFP was observed directly.  

Images were collected on an Axioplan2 Zeiss microscope with an AxioCam MRM Zeiss digital camera 

and Axiovision 4.5-4.8 software.  Images in this chapter were not intended for direct comparison.  

 

4-5.  HR Assay 

The procedure by which low-throughput HR assays were conducted was similar to the HTP protocol 

(Chapter 2, 4-2), except: (1) DR-U2OS cells were either forward or reverse transfected in 6 well plates, 

(2) AdNGUS24i was used at an exact MOI of 10, (3) GFP+ ratios were determined ~36-48 hour post 

infection by FACS analysis on a BD LSRII Flow Cytometer (BD Biosciences). 

 

4-6.  RT-qPCR 

RNA was isolated from cells using the RNAeasy Plus kit (Qiagen) and reverse transcribed into cDNA 

using SuperScript III Reverse Transcriptase (Invitrogen #18080-044) according to the manufacturer 

instructions.  Quantitative RT-PCR (RT-qPCR) was performed using Platinum Cybergreen Super Mix 

with Rox dye (Invitrogen #11733-046) on an Applied Biosystems 7500 Fast PCR machine.  RT-qPCR 

primers used were: RAD51 left primer 5'-CGTTCAACACAGACCACCAG; RAD51 right primer 5'-

CGGTGGCACTGTCTACAATAAG; HIRA left primer 5’-AAGCCCCCAGAGAGCATT; HIRA right 

primer 5’-GTCACTTCATTCTCCACCTCAA; β-actin left primer 5’-GCTACGAGCTGCCTGACG; β-

actin right primer 5’-GGCTGGAAGAGTGCCTCA. 
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4-7.  Genome-wide Enrichment of Seed Sequences (GESS) analysis   

GESS off-target analysis was conducted as described (Sigoillot et al., 2011).  2,564 Dharmacon siRNAs 

(from 641 pools) and 1401 Ambion siRNAs against candidate HR mediators, as well as 1000 Dharmacon 

siRNAs (from 250 pools, including 1 duplicate pool) against candidate HR suppressors, were each 

submitted to GESS analysis.  Significance p-values were determined as follows:  The Yates’ Chi Square 

statistic and associated one-tailed p-value were calculated for each database sequence evaluated (3’UTR 

or CDS) if all siRNA categories (active siRNAs with or without matching and inactive siRNAs with or 

without matching) had more than 20 seed match events.  Otherwise, a two-sided p-value was calculated 

from the Fisher’s Exact Test.  Transcript sequences were ranked from lowest to highest p-value and the 

statistical significance was determined by comparing the p-value to a p-value threshold (0.05) corrected 

for multiple hypothesis testing using the Benjamini and Hochberg (Simes') method. 
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I.  Introduction 

1-1.  The RNA-processing machinery and the DNA damage response 

 Functional gene analysis of our screen candidates highlighted an increasingly common 

observation: that RNA-processing and RNA-binding (RBP) proteins play some (as yet mostly undefined) 

role in maintaining genomic stability.  Our findings that the RBP RBMX and the RNA helicase DDX17 

accumulate at regions of damaged DNA and regulate HR have indicated that specific components of the 

RNA-processing machinery are both regulated by and required for DDR function.  Similar conclusions 

have been drawn from additional large-scale evaluations of the DDR.  In particular, genome-wide RNAi 

screens have found that mammalian RNA processing proteins are required for cellular resistance to IR, 

maintenance of genomic stability and chromosome end protection (Hurov et al., 2010; Lackner et al., 

2011; Paulsen et al., 2009), and proteomic studies have found that such proteins are targeted by ATM / 

ATR phosphorylation (Beli et al., 2012; Matsuoka et al., 2007).  RNA-binding / editing proteins also 

comprise a major functional category of genes found to be transcriptionally altered in response to IR and 

UV, alongside the more anticipated categories of cell proliferation, DNA repair, stress response and 

signal transduction (Rieger and Chu, 2004).  In yeast, a screen to identify reduction-of-function alleles 

that cause chromosome instability (CIN) and aberrant Rad52 foci formation also identified several 

mRNA-processing genes (Stirling et al., 2011a; Stirling et al., 2011b).  This chapter describes current 

hypotheses for RBP function within the DDR and details our specific characterization of RBMX within 

the context of DNA repair.  

 

1-1-1.  Transcriptional control and splicing regulation as part of the DNA damage response  

 The DNA damage response has traditionally been viewed as a program of rapid posttranslational 

modification initiated to quickly coordinate the function of repair-relevant proteins followed by delayed 

transcriptional regulation –controlled by transcription factors like p53– to promote cell cycle checkpoint 
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activation and ultimately determine cell fate through proliferation control.  Under this view, cellular RNA 

has only an intermediary role in the DDR, and changes to the RNA landscape induced by genotoxic stress 

occur merely as byproducts of transcriptionally regulated gene expression.  Increasingly, however, 

evidence suggests that RNA itself has a greater functional complexity within the DDR, and recent work 

indicates that (1) RNA molecules themselves (specifically miRNAs) enact functional roles in the DDR, 

(2) posttranscriptional regulation of mRNA contributes to gene expression changes after DNA damage, 

and (3) transcriptional regulation in response to DNA damage has a functional significance beyond 

modulating protein expression.   

 Direct regulation of transcription is one way to alter protein expression in response to stimuli; 

however, as mentioned, alternative methods of posttranscriptional regulation are being found to operate 

within the DDR, including miRNA- and RBP-mediated translation repression, regulation of mRNA 

stability, and programs of alternative splicing.  With regard to the first of these, a recent study of miRNA 

biogenesis found that ~25% of miRNAs in murine cells are upregulated in an ATM-dependent manner 

after exposure to DNA damage, and a subset of these were found to be regulated by ATM-mediated 

phosphorylation of the RNA-binding protein and splicing regulator KSRP (Zhang et al., 2011), which is 

also a key subunit in DROSHA- and DICER-containing miRNA-processing complexes (Trabucchi et al., 

2009).  Phosphorylation of KSRP was found to enhance protein association with specific pri-miRNAs in 

a manner thought to improve pri-miRNA maturation and thus promote specific transcript targeting.  

Overall, this suggests that a regulated program of miRNA-mediated gene repression may contribute to the 

DDR.  

 Direct RBP-mediated mRNA regulation has also been proposed as a model for gene expression 

control within the DDR (Reinhardt et al., 2011).  A study by Yaffe and colleagues found that altered 

association of GADD45α mRNA with two RNA-binding proteins (hnRNPA0 and TIAR) as well as 

phosphorylation of the poly-A ribonuclease protein (PARN) after doxorubicin exposure promotes overall 

GADD45α mRNA stabilization (Reinhardt et al., 2010).  The authors of this work suggest that PARN and 

TIAR (a translational inhibitor) suppress GADD45α mRNA stability and translation in undamaged cells, 
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but after DNA damage, decreased association with TIAR, negative regulation of PARN, and an increased 

association with hnRNPA0 stabilize the message.  Importantly, GADD45α (growth arrest and DNA 

damage inducible protein, alpha) is a cell cycle checkpoint regulator induced by DNA damage.  This 

example integrates two possible mechanisms of direct mRNA regulation by RBPs, control through (1) 

stability and (2) translation.  However, RBPs may also regulate other aspects of RNA metabolism as part 

of the DDR, including nuclear export and spliceosome targeting (Reinhardt et al., 2011).   

 Emerging evidence suggests that splicing is controlled by the DDR.  One study found that of 482 

genes related to cancer, cell cycle, cell proliferation and cell death (all predicted to be alternatively 

spliced), 102 (22%) demonstrate some alternative splicing (AS) event after exposure to UV (Munoz et al., 

2009b).  This study also showed that damage-induced AS occurs in trans with regard to DNA lesions, and 

that it is correlated with, and possibly regulated by, changes to the phosphorylation state of the RNA 

polymerase II (RNAPII) C-terminal domain (CTD) and lower transcription elongation rates.  A second 

study, which characterized the Ewing sarcoma protein (EWS) as a cotranscriptional splicing regulator, 

found that after UV exposure, AS of DDR-related genes, including CHK2, correlates with diminished 

EWS-mRNA binding (Paronetto et al., 2011).  Taken together, these results suggest that UV-induced AS 

is a regulated component of the DDR that, in part, may be directed to specific transcripts by RBPs. 

 In one way or another, DNA damage no doubt prompts functionally relevant changes to the 

expression of specific proteins; however, evidence also indicates that bulk transcription is regulated by 

the DDR.  In particular, UV irradiation has been observed to suppress the transcriptional activity of 

nuclear extracts in a manner controlled by the phosphorylation state of the RNAPII CTD (Rockx et al., 

2000).  The RNAPII CTD is composed of multiple tandem amino acid heptapeptide repeats (YSPTSPS).  

CTD phosphorylation of the second and fifth serine residues within these repeats occurs on the elongating 

form of the polymerase (RNAPIIo), but only hypophosphorylated RNAPII (RNAPIIa) can be recruited to 

transcription initiation complexes.  Following UV, transcription is first inhibited through bulk RNAPIIa 

phosphorylation (initiation suppression) and then through RNAPIIo ubiquitylation and subsequent 

proteasomal degradation (Luo et al., 2001; Munoz et al., 2009b).  Because RNAPIIo can be ubiquitylated 
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by BRCA1 / BARD1 in vitro, this bulk transcriptional suppression after DNA damage is thought to be 

BRCA1-dependent (Kleiman et al., 2005).  Regulation of RNAPII in this manner may affect net 

elongation rates and, as mentioned above, contribute to damage-initiated programs of alternative splicing.  

Overall though, suppression of bulk transcription after DNA damage makes logical sense for two more 

obvious reasons: (1) The continued production of potentially damaged mRNAs could lead to aberrant and 

possibly detrimental protein function. (2) Transcription is an energetically costly process, the maintenance 

of which may not be prioritized under conditions of cell stress.   

 The presence of bulky transcriptional proteins near sites of DNA damage might also hinder repair 

processes, and their removal through local transcriptional repression could also be advantageous.  Perhaps 

not surprisingly then, data from our work (not reported here) and others have shown that cis-acting 

programs of transcriptional silencing are enacted near DNA breaks (Chou et al., 2010; Shanbhag et al., 

2010).  Greenberg and colleagues demonstrated this phenomenon using a clever reporter construct 

(Shanbhag et al., 2010).  They showed that active transcription, observed through the association of 

nascent transcripts with a protein fluorophore, is suppressed in chromatin flanking a single and separately 

marked DSB.  In support of this, both our work and theirs showed that RNAPII CTD serine-2 

phosphorylation is lost near DSBs to a greater extent than in the surrounding chromatin (Chou et al., 

2010; Shanbhag et al., 2010).  In our work, antibodies against marks of active transcription, including 

phospho-RNAPII-S2 and the 7-methylguanosine cap structure of nascent RNA transcripts, revealed that 

transcription is specifically suppressed within regions of DNA damaged by UV microirradiation.  We 

observed that this occurs in a manner correlated with the recruitment of transcriptional repressor proteins, 

including polycomb group proteins, to damaged regions (Chou et al., 2010).   

  

1-1-2.  Transcription-coupled repair 

 Perhaps counterintuitively, transcriptional machineries can also function as sensors of DNA 

damage.  This occurs predominantly in the context of bulky chemical alterations, such as those formed by 

UV and repaired by nucleotide excision repair (NER) (Figure 2) (de Laat et al., 1999; Lagerwerf et al., 
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2011).  NER recognizes bulky lesions in at least two distinct ways: (1) by a global genome (GG) NER 

sensor complex XPC–HR23B, which recognizes distortions of the DNA helical structure, and (2) by the 

elongating form of RNAPII, which stalls on DNA lesions within transcribed regions of the genome (de 

Laat et al., 1999; Lagerwerf et al., 2011).  This second method of bulky lesion recognition is referred to as 

transcription-coupled (TC) NER.  After stalling, RNAPIIo binds the protein CSB and facilitates assembly 

of general NER factors, including TFIIH, RPA, XPA and the endonucleases XPG and XPF / ERCC1.  As 

part of TC-NER, CSB-dependent recruitment of CSA also facilitates the recruitment of TC-NER specific 

factors: HMGN1, XAB2 (splicing factor), and TFIIS.  Once assembled, these proteins excise a short 

region of DNA (~30-nt) containing the lesion site, and coordinate repair by DNA gap filling (Lagerwerf 

et al., 2011).   

 Whether or not RNAPII dissociates from DNA during TC-NER is an open question.  As 

discussed above (Chapter 4, 1-1-1), bulk RNAPIIo is known to be degraded after exposure to UV, and 

site specific transcription repression has been observed at DSBs; however, it has also been reported that 

RNAPII remains bound to chromatin near DNA lesions during NER in a manner that may facilitate 

resumption of transcription post repair (Lagerwerf et al., 2011).  The stability of RNAPIIo near DNA 

lesions may depend on many factors, including the amount and type of DNA damage sustained, the speed 

of repair, or the density of blocked polymerases within a genomic region.  Nevertheless, the role of 

RNAPII as a DNA damage sensor leads to the possibility that cotranscriptional RNA-processing / RNA-

binding proteins may act in a parallel fashion by aiding the recruitment of DNA repair factors to sites of 

polymerase stalling.  

 

1-1-3.  R-loops and genomic instability 

 Much attention has recently been given to the idea that excessive RNA:DNA heteroduplex 

formation at both normally elongating and stalled RNA polymerases increases genomic instability 

(Aguilera and Garcia-Muse, 2012).  RNA:DNA hybrids are not uncommon structures.  They occur during 

normal cellular processes, including DNA replication and transcription (Aguilera and Garcia-Muse, 
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2012).  However, rare RNA:DNA transcriptional byproducts, so-called R-loops, also form when nascent 

RNA strands “fold-back” and pair with complementary and negatively supercoiled regions of their DNA 

templates (Aguilera and Garcia-Muse, 2012).  Structurally, these can be thought of as RNA corollaries to 

D-loops.  R-loops have been described to have biologically positive functions in a few special cases.  In 

mitochondria and E. coli, they serve as priming intermediates for DNA replication, and they are 

functional components of the immunoglobulin class switch machinery in vertebrate B cells (Aguilera and 

Garcia-Muse, 2012).  Aberrant R-loop formation, however, is thought to cause genomic instability 

through displacement of ssDNA or through collisions with the replication machinery.  Because of this R-

loop formation is generally thought to be proactively limited.     

 An obvious method for repressing R-loop formation during transcription is one in which RBPs 

and the splicing machinery bind nascent mRNA transcripts to inhibit RNA:DNA association.  This model 

is supported by genetic evidence in both yeast and mammalian cells.  In yeast, mutation of mRNA 

cleavage and polyadenylation genes has been shown to cause both increased RNA:DNA hybrid formation 

and genomic instability-associated phenotypes, including chromosome instability (CIN) and aberrant 

Rad52 foci (Stirling et al., 2011a; Stirling et al., 2011b).  Importantly, the expression of RNase H in these 

same mutants was shown to suppress CIN.  RNase H is an enzyme with RNA-directed endonucleolytic 

activity that specifically degrades RNA from RNA:DNA hybrid molecules; and its activity in this case 

strongly argues that in the absence of RNA-processing, DNA damage is incurred by the formation of 

RNA:DNA intermediates.  Consistent with this interpretation, depletion of mRNA-processing proteins 

from mammalian cells has been shown to cause aberrant accumulation of γH2AX foci in a manner that 

can be suppressed by RNase H (Paulsen et al., 2009), and RNase H-repressible genomic instability has 

been correlated with increased R-loop formation after depletion of the splicing regulator ASF / SF2 from 

vertebrate cells (Li and Manley, 2005).  This model of RNA induced DNA-damage could explain the 

predominance of RNA-processing proteins among mediators of genomic stability identified in genetic 

screens (Hurov et al., 2010; Lackner et al., 2011; Paulsen et al., 2009; Stirling et al., 2011a; Stirling et al., 

2011b). 
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 A second possible method for R-loop suppression by the RNA-processing machinery is active 

disruption of aberrant DNA:RNA pairing by RNA helicases.  In support of this, DDX1, a nuclear DEAD-

box helicase with ATP-dependent RNA:RNA and DNA:RNA unwinding activity, has been shown to 

localize to sites of DNA damage in an manner that can be disrupted by RNase H treatment (Li et al., 

2008); and recently, depletion of the DEAD-box RNA:DNA helicase SETX has been shown to directly 

increase R-loop formation (Skourti-Stathaki et al., 2011).  Indicative of a role in maintaining genomic 

stability, human cells carrying SETX mutations demonstrate increased sensitivity to DNA-damaging 

agents, including H2O2, camptothecin and mitomycin C (Suraweera et al., 2007).   Overall, these 

observations indicated that R-loop suppression is an important function of the RNA-processing 

machinery. 

 

1-2.  The RNA-binding protein RBMX 

Because our screen identified a network of RNA-processing proteins and one RBP that 

localizes to sites of DNA damage, we next focused our studies on RBMX.  RBMX is a nuclear hnRNP 

protein that regulates alternative splicing in at least two possible ways: one through RNA binding by 

an RNA recognition motif (RRM) and one independent of the RRM (Heinrich et al., 2009; Hofmann 

and Wirth, 2002; Nasim et al., 2003; Wang et al., 2004).  X-linked RBMX and a Y chromosome-

encoded paralog (RBMY) are conserved among mammals, and in humans, there are several intron-less 

retrogenes of RBMX present on various autosomes (Lingenfelter et al., 2001; Mazeyrat et al., 1999).  

Expression of RBMX and at least one of its retrogenes (RBMXL1) is ubiquitous throughout tissue 

types, while expression of RBMY is restricted to male germ cells indicating a role in spermatogenesis 

and possibly meiosis (Elliott, 2004; Lingenfelter et al., 2001; Mazeyrat et al., 1999).  RBMX has also 

been proposed to be a tumor suppressor (Shin et al., 2006; Shin et al., 2007). 

 
 



 CHAPTER FOUR  

  97 

 

 

II.  Results 

2-1.  RBMX accumulates at regions of DNA damage in a PARP-dependent manner 

We observed GFP-RBMX localization to regions of DNA damaged by mircoirradiation in 

~20-40% of U2OS cells (Figure 14a,d).  RBMX microirradiation tracks (or “stripes”) were also 

observed by fluorescent immunostaining of endogenous and Flag/Ha (FHA)-tagged RBMX after 

Triton X pre-extraction (Figure 14b,c).  Background chromatin binding likely obscured detection of 

endogenous and FHA-RBMX stripes in the absence of pre-extraction, which is supported by the 

observation that the percentage of cells with GFP-RBMX tracks increased after endogenous RBMX 

was depleted by siRNA (Figure 14a).  GFP-RBMX localization to DNA damage was transient, 

occurring 0-10 minutes after microirradiation (longer at room temperature); and following this initial 

recruitment GFP-RBMX was removed from damaged DNA causing a localization pattern we refer to 

as the “anti-stripe” (Figure 14d,e).  HA-tagged and endogenous RBMX formed anti-stripes as well 

(Figure 14b,c).  Unlike stripe formation, which is likely easily obscured by fluorescent 

immunostaining of pan-nuclear RBMX molecules, Triton X pre-extraction was not required to 

observed anti-stripes in these cells.  We failed to observe RBMX accumulation at ionizing radiation-

induced foci (data not shown).  However, this could be explained by the transient nature of RBMX 

recruitment or a low signal-to-noise ratio.  We previously showed that RNAPII forms anti-stripes after 

microirradiation in a manner correlated with transcriptional repression at sites of active DNA repair 

(Chou et al., 2010).  Transcriptional repression at sites of DNA damage is discussed in Chapter 4, 1-1-

1.  Consistent with this interpretation, we also observed anti-stripe localization of other hnRNP 

proteins after microirradiation (Figure 15). 
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Figure 14.  RBMX transiently accumulates at tracks of microirradiation-induced DNA damage 

 

 



 CHAPTER FOUR  

  99 

 
RBMX recruitment to DNA damage was independent of ATM signaling and H2AX but 

dependent on poly(ADP-ribose) polymerase 1 (PARP1) (Figure 16a-c).  PARP1 is known to mediate 

the recruitment of several repair proteins to DNA damage via the transient polymerization of branched 

poly(ADP-ribose) (PAR) structures (discussed in Chapter 1, 3-1), and it is likely that RBMX 

localization is similarly facilitated.  GFP-RBMX tracks occurred coincident with PAR formation at 

DNA breaks (Figure 16d), and inhibition of PARP1 –through use of the chemical inhibitor KU-

0058948 or siRNA-mediated depletion– prevented GFP-RBMX track formation and caused early 

formation of anti-stripes (Figure 16a,c,e).  KU-0058948 was used at 1 µM, a concentration that inhibits 

the activity of PARP1 and PARP3 in vitro (Loseva et al., 2010).  Additionally, siRNAs against PARG, 

the PAR disassembly enzyme, increased the percentage of cells with GFP-RBMX tracks after 

microirradiation and prolonged localization at damage (Figure 16c,e).   

 

Figure 15.  Anti-stripe formation with additional RNA-binding proteins 
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Figure 16.  RBMX recruitment to DNA damage requires PARP1 activity but not H2AX or ATM signaling 

 

 

 

2-2.  RBMX promotes homologous recombination  

The RBMX siRNA pool in our primary screen decreased HR to 7% of controls, comparable to 

the effect of depleting BRCA2 and RAD51 (5% and 11%, respectively) (Table S1).  All four siRNAs 

from this pool (siRBMX-1 through -4), as well as two Ambion siRNAs (siRBMX-5 and -6) and three 

independently selected shRNAs (shRBMX-7, -9 and -10), caused defective HR in a manner correlating 

with RBMX depletion (Figure 17a-d, Table S4).  Importantly, we ruled out obvious off-target effects 

for these RNAi reagents by determining that RBMX depletion does not alter cell cycle distribution, 

correlate with RAD51 depletion, or disrupt I-SceI expression (Figure 17e-h).  We also found that 

expression of siRNA-resistant FHA-tagged RBMX rescued the siRBMX-3 associated HR defect 

(Figure 17i).  There were no confounding effects on cell cycle distributions in the rescue assay (Figure 

17j).  

RBMX-targeting siRNAs also sensitized cells to DNA damaging agents that engage the HR 

machinery for repair, including DSB-inducing irradiation (IR), replication stress-inducing 

camptothecin, and several crosslinking agents (mitomycin C, chlorambucil, oxaliplatin, and 

carboplatin) (Figure 18a-c).  The sensitivity to mitomycin C caused by siRBMX-3 was significantly 

attenuated by expression of siRNA-resistant FHA-RBMX (Figure 18b).  Interestingly, RBMX 

depletion also caused sensitivity to ultraviolent light (UV) and tert-butyl hydroperoxide (tBHP), both 

of which cause DNA lesions not primarily repaired by HR (Figure 18a,c).  
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Figure 17.  RBMX promotes homologous recombination  
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Figure 18.  RBMX promotes resistance to various DNA damaging agents 
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2-3.  Structure-function analysis of RBMX   

To determine the region(s) of RBMX responsible for promoting HR and facilitating 

localization to DNA damage, we tested a series of GFP- and FHA-tagged RBMX mutants (Figure 19).  

RBMX is composed of four identifiable regions: an N-terminal RNA recognition motif (RRM), a 

centrally located RBM1CTR region identified as common among RBMY-like hnRNPs, a C-terminus 

rich in serine, arginine, gylcine, and tyrosine residues, and a putative second RNA-binding domain at 

the C-terminal end (C-RBD) (Kanhoush et al., 2009).  The canonical RRM of RBMX preferentially 

binds CC(A/C)-rich single-stranded RNA, and although RBMX can influence alternative splicing in an 

RRM-independent manner, evidence suggests that some splicing is directly facilitated through the 

RRM (Heinrich et al., 2009).   

Deletion and point mutation of the conserved nucleotide-interacting residues in the RRM 

rendered the siRNA-resistant FHA-RBMX unable to rescue HR comparable to wild-type siRNA-

resistant FHA-RBMX at the indicated levels of expression (Figure 19a-d); however, when evaluated at 

higher expression levels the deletion mutant showed better rescue of HR, indicating that this and other 

mutants may not be completely defective (data not shown).  The RRM was dispensable for DNA 

damage localization, and two non-overlapping fragments of the amino and carboxy termini localized 

to tracks of DNA damage (Figure 19a).  These data suggests that two distinct regions outside the RRM 

mediate RBMX recruitment to damage.  
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Figure 19.  Structure-function analysis of RBMX 
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2-4.  RBMX influences HR by facilitating proper expression of BRCA2 

Next we evaluated the effect of RBMX depletion on known HR events, specifically RAD51 

nucleation onto resected ssDNA and the coordinated upstream signaling.  RBMX depletion caused 

defective formation of IR-induced RAD51 foci, which was attenuated by expression of siRNA-

resistant FHA-RBMX (Figure 20a-e).  Although the siRNAs used in these experiments (siRBMX-1 

and -3) caused slight reductions to RAD51 protein levels (but not RAD51 mRNA), the reduction 

caused by siRBMX-3 (unlike HR) was not rescued by siRNA-resistant FHA-RBMX (Figure 17d,h,j), 

indicating that there is a negligible, RBMX-independent effect of these reagents on RAD51 levels.  

RBMX was not required for RPA2 or CHK1 phosphorylation after IR or camptothecin treatment 

(Figure 21a-c), suggesting that in the absence of RBMX resection at breaks proceeds properly.   

Next, we asked if RBMX localization to DNA damage is required for HR; and surprisingly, 

we found that HR efficiency was not decreased under PARP inhibition or depletion conditions that 

prevented RBMX accumulation at DNA damage (Figure 22a,b).  PARP1 depletion also did not 

substantially alter HR in an RBMX-independent manner (Figure 22c). 

As rapid recruitment of RBMX to DNA lesions was not important for HR, we reasoned that 

RBMX might promote HR by influencing protein expression through pre-requisite splicing events.  

While RBMX depletion had no effect on many repair proteins we tested, including PALB2, BRCA1 

and RPA2 (and no apparent effect on BRCA1 foci formation) (Figure 23a-e), we found that levels of 

BRCA2 and to some extent ATR were decreased by RBMX siRNAs in a manner that could be rescued 

by expression of siRNA-resistant FHA-RBMX (Figure 24a-d).  Because of these results, we evaluated 

siRNAs against seven additional pre-mRNA processing genes identified as candidate HR mediators by 

our screen and found that some of these also had an effect on BRCA2 expression (Figure 24e).   
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Figure 20.  RBMX promotes formation of IR-induced RAD51 foci 
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Figure 21.  RBMX is not required for damage-induced RPA2 or CHK1 phosphorylation 

 
 
 
Figure 22.  Neither inhibition nor depletion of PARP1 affects HR 
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Figure 23.  Expression of DDR proteins after depletion of RBMX 
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Figure 24.  RBMX faciliates proper expression of BRCA2 
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III.  Discussion 

The enrichment of RNA-processing factors among our candidate HR mediators and the 

identification of similar proteins in other large-scale studies of the DDR have made it difficult to ignore 

the notion that RNA processing and DNA repair functionally intersect (Beli et al., 2012; Hurov et al., 

2010; Lackner et al., 2011; Matsuoka et al., 2007; Paulsen et al., 2009).  Illustrative of the challenges 

inherent to evaluating the relationships between these two processes, we have found that RBMX 

indirectly regulates HR through an indirect (yet perhaps equally important mechanism), the expression of 

BRCA2.  Our characterization of RBMX accumulation at sites of DNA damage, however, has 

successfully established a direct role for this RNA-binding protein (RBP) and splicing regulator in the 

DDR, adding to a rapidly expanding list of RBPs that have been similarly characterized.  

In addition to RBMX, several RNA-processing and transcription-associated proteins have been 

shown to accumulate at sites of DNA damage within the last year, including two hnRNPU-like proteins 

(UL1 and UL2) (Polo et al., 2012), PPM1G (Beli et al., 2012), and Sp1 (Beishline et al., 2012).  Similar 

to RBMX, UL1 and UL2 show two distinct localization patterns after DNA damage: (1) transient 

recruitment to sites of damage and (2) sustained exclusion from damaged regions (Polo et al., 2012).  

These proteins contain SAP (SAF-A/B, Acinus and PIAS) motifs, SPRY (SPIa / Ryanodine receptor) 

domains, an NK (putative nucleosides / nucleotide kinase) domain or BBS (BRD7-binding) site, and 

RGG (arginine and glycine-rich, RNA and ssDNA-binding) domains.  They have protein sequence 

homology to hnRNPU, a heterogenous nuclear ribonucleoprotein that binds RNA through its RGG 

domain (Kiledjian and Dreyfuss, 1992).  In general, hnRNPs are a loosely defined family of proteins 

categorized by common associations with nascent RNA polymerase II (RNAPII) transcripts and the 

spliceosome (Han et al., 2010; Rappsilber et al., 2002).  Of note, RBMX is also an hnRNP family 

member (hnRNP G). 

hnRNPUL exclusion from DNA damage was also correlated with local transcriptional 

suppression (similar to RBMX anti-stripes) and, interestingly, appeared to be RNA-binding dependent to 
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some extent (Polo et al., 2012).  UL1 and UL2 accumulation at sites of DNA damage was enhanced by 

treatment with a Cdk-9 inhibitor (5,6-dichloro-1-b-D-ribofuranosylbenzimidazole or DRB) that blocks 

RNAPII transcriptional elongation and, like RBMX recruitment, was both RNA-binding and cell cycle 

independent.  The dual recruitment patterns shown by both RBMX and the hnRNPULs therefore likely 

represent transcriptional silencing (anti-stripes) on the one hand and a transcriptionally-independent 

process functionally associated with DNA repair (stripes) on the other.   

Interestingly, DRB acts by blocking RNAPII CTD hyperphosphorylation and has been shown, in 

at least one instance, to block UV-induced alternative splicing without affecting alternative splicing per se 

(Munoz et al., 2009b).  From this an interesting hypothesis was proposed, that UV exposure may induce 

specific patterns of CTD heptapeptide	
  phosphorylation (Phatnani and Greenleaf, 2006) that partially 

direct DNA damage-induced alternative splicing events (Munoz et al., 2009b).  A tempting hypothesis 

relevant to our work then is that a subset of partially phosphorylated RNAPII stalled near UV laser-

induced DNA lesions may coordinate the temporary recruitment or retention of specific cotranscriptional 

RNA-processing factors like RBMX to coordinate the initial steps of DNA repair.  This would occur prior 

to anti-stripe formation and bulk RNAPII hyperphosphorylation and degradation that occurs after UV 

damage.  Interestingly, coprecipitation and colocalization experiments have shown that splicing factors in 

general can associate with transcriptionally inactive and phosphorylated RNAPII through the CTD, even 

in the absence of pre-mRNA (Kim et al., 1997; Misteli and Spector, 1999; Phatnani and Greenleaf, 2006).  

Methods of distinguishing RNAPII CTD phosphorylation patterns may help address this hypothesis.  

Other possible roles for RBMX at sites of DNA damage are discussed in Chapter 5, 1-1.  

Unlike RBMX, UL1 and UL2 recruitment to DNA damage was not reported to be PARP-

dependent.  These proteins were, however, shown to interact with components of the MRN complex and 

recruitment was shown to be largely MRN-dependent (Polo et al., 2012).  Using rescue assays, hnRNPUL 

depletion was convincingly shown to cause phenotypes indicative of defective ATR signaling, HR, and 

resection.  A model for hnRNPUL function in these processes was proposed wherein UL1 and UL2 

promote resection through recruitment of the BLM helicase to DNA damage (Polo et al., 2012).  This 
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conclusion hinged on three pieces of additional data: (1) UL1 coimmunoprecipitates with BLM, (2) 

depletion of UL1 / UL2 causes defects in BLM recruitment to sites of damage but does not reduce BLM 

expression and (3) co-depletion of UL1 and EXO1 but not UL1 and BLM increases cell sensitivity to 

CPT.  Although this is an intriguing and well-supported model, the possibility that UL1 and UL2 mediate 

the essential splicing of a separate factor necessary for BLM recruitment has not yet been ruled out.  This 

is particularly relevant in light of our finding that RBMX plays a role in promoting HR through BRCA2 

expression.  Of note, depletion of the BLM-TOP3-RMI1-RMI2 complex components RMI1 and RMI2 

are known to disrupt BLM recruitment to damage and can be depleted in manner that has little to no 

effect on BLM expression levels (Singh et al., 2008; Xu et al., 2008; Yin et al., 2005).  

Because RBMX appears to influence normal expression of BRCA2 and to some extent ATR, and 

because we found that siRNAs targeting other RNA-processing proteins also affect BRCA2 levels (albeit 

less significantly), we reason that depletion of splicing factors in general might cause phenotypes 

associated with DNA repair through aberrant essential splicing or alternative splicing of important repair 

effectors.  A key future experiment will be to determine whether or not the observed HR defect caused by 

RBMX depletion is due wholly to altered BRCA2 expression and / or splicing.  This could be done by 

evaluating HR after RBMX depletion from cells expressing BRCA2 from a cDNA construct.  

Of note, BRCA2 and ATR, like other large DNA damage response genes, contain many exons.  

According to published sequences, BRCA2 (GenBank accession #U43746) has 27 exons (Tavtigian et al., 

1996) and ATR (NCBI reference sequence: NM_001184.3) has 47; in contrast, human protein-coding 

genes have been reported to contain an average of 8.8 and a median of 7 exons (Lander et al., 2001).  This 

high exon content may render expression of BRCA2 and ATR particularly susceptible to misregulated 

splicing.  Overall, we suggest that the enrichment of RNA processing proteins observed in our candidate 

list, as well as those from similar screens, may represent indirect but biologically significant components 

of DNA repair.  The splicing function of RBMX, with particular attention to the possible effects of 

misregulated BRCA2 and ATR splicing, is discussed in greater detail in Chapter 5, 1-2. 
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IV.  Materials and Methods 

4-1.  Cell culture  

Human U2OS and DR-U2OS osteosarcoma cells and mouse embryonic fibroblasts were grown in 

Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 100 

units / ml of penicillin, and 0.1 mg / ml streptomycin (Invitrogen).  Cell selection after viral transduction 

was conducted with puromycin at 1 ug / ml. 

 

4-2.  Plasmids, shRNAs, and siRNAs 

Additional cDNAs (RBMY, hnRNP-K, hnRNP-C, and histone H3) were from hORFeome V5.1.  

Full-length histone H3 and the 5’ ends of RBMY, hnRNP-K, and hnRNP-C were verified by sequencing.  

RBMX mutants with point mutations and internal deletions were generated using QuikChange II Site-

Directed Mutagenesis Kit (Agilent Technologies).  Truncation fragments were generated by PCR and 

cloned into the pENTRTM / D-TOPO vector using pENTRTM Directional TOPO®
 Cloning Kit (Invitrogen).  

Mutations and truncations were verified by sequencing.  The siRBMX-3 resistant RBMX cDNA was 

made by mutating the siRBMX-3 complementary site 5’-CAAGTTCTCGTGATACTAG to 5’-

CTTCCAGCAGAGACACCCG.  cDNAs were cloned into pMSCV-N-HA-Flag-GAW-IRES-PURO or 

pMSCV-N-EGFP-GAW-PGK-PURO for expression using the Gateway recombination system.  shRNAs 

were used in the pSMP-MSCV-PURO vector (Open Biosystems).  siRNA transfection was done as 

described in Chapter 3, 4-2.  shRNA and siRNAs sequences used in this chapter that are not listed in 

Table 2 or Tables S2-4 are listed in Table 4.  
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Table 4.  Additional RNAi Reagents  Table 4.  Additional RNAi Reagents 

     

Target Reagent 
Type Source Clone ID / 

Catalog Number Sequence 

D-006656-02 GAAAGUGUGUUCAACUAAU 
D-006656-03 GCAACAAACUGGAACAGAU 
D-006656-04 GAAGUCAUCGAUAUCUUUA PARP1 siRNA 

pool Dharmacon 

D-006656-17 GAUAGAGCGUGAAGGCGAA 
D-010127-13 AAGGAUUGCUCAAGGUAA 
D-010127-14 ACAGCUAGAUCUUCGGGUA 
D-010127-15 GCCAGAGACAGGAGUCGAA PARP2 siRNA 

pool Dharmacon 

D-010127-16  ACAAUUGGGAAGAUCGAGA 
D-011488-21 UGAGCUGUCAGGUGUUAAUA 
 D-011488-22 CUGAGGAGCCGAGCGAAUA 
D-011488-23 GCAGUUGUCAGUUGGUACA PARG  siRNA 

pool Dharmacon 

D-011488-24 AUAAGCUGUUGCUACGAUA 
D-016376-01 GGUCAGAGCUGUAUUAUUCUU 
D-016376-02 GAUAAGUUGUCGUCUAUUAUU 
D-016376-03 GCAGAACUUUGCCUACUUAUU 

FANCD2 siRNA 
pool Dharmacon 

D-016376-04 GAUCAACUCUCCUAAAGAUUU 
RBMX-1 siRNA Dharmacon D-011691-01 UAUGGUAACUCACGUAGUG 
RBMX-2 siRNA Dharmacon D-011691-02 CGAUAGAGAUGGAUAUGGU 
RBMX-3 siRNA Dharmacon D-011691-03 CAAGUUCUCGUGAUACUAG 
RBMX-4 siRNA Dharmacon D-011691-04 GUGGAAGUCGAGACAGUUA 
RBMX-5 siRNA Ambion s26143 UCCCAUUCCACUGCUACUGcg 
RBMX-6 siRNA Ambion s26144 UUGAUGGAUAGUCAUCACGtg 

ATM shRNA Open 
Biosystems 

V2HS_89366; 
RHS1764-
9217463 

TTAAATGACTGTATAGTCACCA 

RBMX-7 shRNA Open 
Biosystems 

V3LHS_339669; 
RHS4430-
101070238 

TTTCTTGTCTGCCAACCCGATC 

RBMX-8 shRNA Open 
Biosystems 

V3LHS_339674; 
RHS4430-
101073396 

TCTCTATCGCTATATCCTCTTG 

RBMX-9 shRNA Open 
Biosystems 

V3LHS_339670; 
RHS4430-
101075016 

TATCCGTCACGTGAGCTGCTGT 

RBMX-10 shRNA Open 
Biosystems 

V3LHS_645229; 
RHS4430-
99890017 

TTTTGTTTCTTTGAACTGGGAT 
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4-3.  Antibodies and Inhibitors   

Additional primary antibodies used in this chapter are listed in Table 5.  Secondary antibodies used were 

previously described in Chapter 3, 4-3.  The PARP inhibitor (KU-0058948, KuDOS Pharmaceuticals 

Ltd.) was used at 1 µM; this reagent was provided by Simon Boulton (Cancer Research UK, London 

Research Institute).  The ATM inhibitor (KU-55933, Sigma) was used at 10 µM. 

Table 5.  Additional Primary Antibodies 

Table 5.  Additional Primary Antibodies.  
    

Antibody Host Name Source Name / Catalog # 

RBMX goat Santa Cruz sc-14581 

RAD51 rabbit Santa Cruz sc-8349 

BRCA2 rabbit Bethyl A300-005A 

BRCA2 mouse Calbiochem OP95 

PALB2 rabbit Bethyl A301-246A 

BARD1 rabbit Bethyl A300-263A 

BRCA1 mouse Calbiochem OP92 

BRCA1 mouse Santa Cruz sc-6954 

CtIP rabbit Bethyl A300-488A 

FANCD2 rabbit Novus NB100-182 

RUVBL2 rabbit Bethyl A302-536A 

NBS1 rabbit Novus NB100-143 

RAD50 rabbit Novus NB100-154 

MRE11 rabbit Novus NB100-142 

ATR goat Santa Cruz sc-1887 

53BP1 rabbit Bethyl A300-272A 

RPA32 / RPA2 rabbit Bethyl A300-244A 

RPA32 / RPA2 mouse Abcam ab16855 

Phospho RPA32-S4/8 rabbit Bethyl A300-245A 

Phospho RPA32-S33 rabbit Bethyl A300-246A 

Phospho CHK1-Ser317 rabbit Cell Signaling 2344 

CHK1 mouse Santa Cruz sc-8408 

PARP rabbit Cell Signaling 9542 
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Table 5 (continued).  Additional Primary Antibodies.  
    

Antibody Host Name Source Name / Catalog # 

PAR mouse Trevigen 4335-AMC-050 

γH2AX rabbit Bethyl A300-081A 

γH2AX mouse Millipore  05-636 

FLAG M2-Peroxidase HRP mouse Sigma A8592 

HA mouse Covance MMS-101R 

GAPDH rabbit Santa Cruz sc-25778 

Lamin B goat Santa Cruz sc-6216 

VINCULIN mouse Sigma V9131 
 
 
4-4.  UV laser- and IR-induced DNA damage and immunofluorescence   

UV laser-induced damage was generated as described in Chapter 3, 4-4.  Ionizing irradiation 

(IR)-induced damage was generated by timed exposure to a Cesium-137 source.  After damage, cells 

were allowed to recover for the indicated times at either room temperature (RT) or 37°C and then fixed, 

permeabilized, and immunostained as described in Chapter 3, 4-4.  DNA was stained with DAPI by 

addition of Vectashield Mounting Medium (Vector Laboratories).  GFP was observed directly.  Images 

were collected on an Axioplan2 Zeiss microscope with an AxioCam MRM Zeiss digital camera and 

Axiovision 4.5-4.8 software.  Images intended for comparison were prepared from the same experiment 

with the same exposure times, and were processed for brightness and contrast in an identical manner.  

Those not intended for comparison and not prepared in this way are indicated. 

 

4-5.  HR Assay 

This assay was performed as described in Chapter 3, 4-5. 

 

4-6.  RT-qPCR 

RT-qPCR was performed as described in Chapter 3, 4-6.  Additional RT-qPCR primers used were: 

RBMX left primer 5’-CAGTTCGCAGTAGCAGTGGA; RBMX right primer 5’-
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TCGAGGTGGACCTCCATAA; RAD51 left primers 5'-GGGAATTAGTGAAGCCAAAGC and 5'-

GCCAAAGCTGATAAAATTCTGAC; RAD51 right primers 5'-TGGTGAAACCCATTGGAACT and 

5'-GGAGGGTGCAGTAGACCAAG. 

 

4-7.  Cell cycle analysis   

Cells were prepared for cell cycle analysis using the BD PharmingenTM APC BrdU Flow Kit according to 

manufacturer instructions.  Cell cycle profiles were obtained by FACS analysis on a BD LSRII Flow 

Cytometer (BD Biosciences).  

 

4-8.  Sensitivity assays   

Multicolor competition assays were performed as previously described (Smogorzewska et al., 2007).  

CellTiter-Glo Luminescent Cell Viability Assay (Promega) was performed as follows: Cells were 

transfected with the indicated siRNAs and treated as indicated after 2-3 days.  After recovery from 

treatment, the media was changed and CellTiter-Glo reagent was added (1:17.5 dilution).  The resulting 

luminescent signal (proportional to the amount of ATP) was read on a VICTOR X5 Multilabel Plate 

Reader (PerkinElmer).  The signal from each treatment condition was normalized to an untreated control 

to adjust for relative growth effects of the siRNAs.  Data from both sensitivity assays are presented 

normalized to that from control transfected cells (siFF).  
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I.  The significance of RBMX 

1-1.  The role of RBMX at sites of DNA damage 

The biochemical consequences of transiently accumulating RBMX at sites of DNA damage 

remain to be determined.  Although this recruitment is phenotypically similar to that observed for the 

hnRNPUL proteins, RBMX does not appear to be required for resection and RBMX recruitment is not 

required for HR, making it unlikely that RBMX participates in mediating BLM recruitment to DSBs, as 

has been shown for the hnRNPULs.  However, because RBMX and the hnRNPULs are functionally 

related through pre-mRNA processing and associations with the spliceosome (Rappsilber et al., 2002), 

and because they have DNA-damage localization patterns in common, it is reasonable to predict that they 

also share some DDR-associated functionality at DNA breaks.  To further investigate this, an analysis of 

the potential functional and physical interactions between RBMX and the hnRNPULs within the context 

of the DDR should be conducted.   

As discussed above (Chapter 4, Section I), several models have emerged to explain the possible 

functions of pre-mRNA-processing proteins in the maintenance of genomic stability, and the role of 

RBMX at DNA breaks may well align with one of these.  One possibility is that RBMX functions as an 

assembly factor to promote the accumulation of general repair proteins at DNA lesions, possibly as part 

of a novel sensor mechanism initiated by RNAPII.  RBMX recruitment to or retention on RNAPII stalled 

at DNA lesions could repress aberrant R-loop formation through non-specific RNA binding of nascent 

transcripts mediated by the RBMX RNA recognition motif (RRM).  In this role, RBMX would 

presumably act as part of a local and regulated R-loop suppression mechanism that is controlled by the 

DDR.  The existence of this (or a similar) mechanism is partially warranted by the observation that the 

presence of nicks within non-template DNA strands during transcription favors RNA:DNA binding over 

DNA:DNA reannealing (Roy et al., 2010), suggesting that DNA damage can promote R-loop formation 

in cis.  
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Because RBMX localization to DNA damage is PARP-dependent, RBMX may also serve as an 

effector of PARP activity at DNA breaks.  In this capacity, RBMX may promote aspects of single-strand 

break repair (SSBR), alternative non-homologous end-joining (a-NHEJ), or even the early recruitment of 

MRN and activation of ATM.  It is also possible that the ability of RBMX to accumulate at sites of DNA 

damage through at least two independent domains could facilitate DSB repair by bundling PAR structures 

together and restricting the movement of DSB ends.  Alternatively, RBMX may promote the localization 

of specific noncoding RNAs to DSBs to facilitate repair in some manner.  Since NHEJ factors like Ku are 

also known to bind RNA, these could be involved in tertiary interactions (Yoo and Dynan, 1998).  Bulk 

comparison of RNAs bound to RBMX in the presence and absence of DNA damage might be an 

informative approach to evaluating the role of RBMX RNA binding in the DDR. 

While additional investigations into the role of RBMX at DNA breaks may prove informative, 

such future works will no doubt require that one particular challenge first be circumnavigated: the 

separation of RBMX depletion phenotypes, such as defective HR, from the consequences of failure to 

localize RBMX at regions of DNA damage.  To this end, we have begun the work of isolating an RBMX 

mutant capable of restoring HR and BRCA2 expression but unable to accumulate at laser-induced DNA 

damage through the initial structure / function studies presented herein (Figure 19).  Although our 

progress has been limited by the ability of RBMX to localize to sites of DNA damage through multiple 

independent domains, our results suggests that one such domain likely resides between amino acids 94 

and 166.  

 

1-2.  The role of RBMX in homologous recombination 

Although RBMX accumulates at DNA lesions in a regulated way, our results indicate that the 

function of RBMX in HR is most likely mediated through the indirect regulation of BRCA2, possibly due 

to one or more pre-requisite splicing events.  RBMX depletion also slightly reduces ATR expression.  As 

discussed above (Chapter 4, Section III), BRCA2 and ATR are large genes that may depend heavily on 

proper essential splicing for normal expression.  With this in mind, we caution future studies that aim to 
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evaluate mRNA-processing proteins using depletion phenotypes within the context of the DDR and 

suggest that such work be tightly coupled to in-depth analyses of gene expression to avoid confounding 

direct DDR-phenotypes with splicing-specific effects. 

 A second possibility is that RBMX coordinates BRCA2 and ATR alternative splicing under certain 

conditions, especially as a role for RBMX in alternative splicing (exon inclusion and exclusion) has been 

well established but a role in essential splicing is less clear (Heinrich et al., 2009; Hofmann and Wirth, 

2002; Nasim et al., 2003; Wang et al., 2004).  Consistent with this, we have observed that RBMX 

depletion does not affect the expression of several other proteins (Figure 23a-d).  Additionally, the effect 

of RBMX on splice-site selection appears to be concentration dependent (Heinrich et al., 2009; Hofmann 

and Wirth, 2002) and RBMX expression has been shown to vary between tissue types in both humans 

(Nasim et al., 2003) and rats (Heinrich et al., 2009).  This suggests that differential RBMX expression 

may control tissue-specific alternative splicing programs, a hypothesis entirely consistent with the fact 

that alternative splicing is known to vary between cell and tissue types in general (Stamm et al., 2005).  

 Alternatively spliced isoforms of BRCA2 have been reported.  A splice variant lacking exon 12 

was identified in normal human tissue (Bieche and Lidereau, 1999), and within the Ensembl project 

database (www.ensembl.org) BRCA2 is annotated with 6 isoforms, 3 of which are described as protein 

coding (ATR is annotated with 12 isoforms) (Flicek et al., 2013).  In general, the alternative splicing of 

protein-coding transcripts can modulate the expression, structure, function, and modification of 

transcribed proteins, and as such, the successful translation of any alternatively spliced BRCA2 and ATR 

transcripts may yield functional consequences.  This becomes particularly relevant in light of the fact that 

germline BRCA2 and ATR loss-of-function mutations are associated with familial breast cancer and 

Seckel syndrome, respectively (Ciccia and Elledge, 2010).  Reports by several groups suggest that among 

these mutant genes are germline BRCA2 variants that cause aberrant splicing (Bieche and Lidereau, 1999; 

Hofmann et al., 2003; Miki et al., 1996; Pensabene et al., 2009; Sanz et al., 2010).    

 Further investigation into the possibility that BRCA2 is alternative spliced (both normally and 

pathologically) and into the splicing factors that may regulate such events is warranted.  Once identified, 
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several approaches may be taken to evaluate and characterize the possible role of RBMX in BRCA2 and / 

or ATR alternative splicing.  These including large-scale evaluation of RBMX bound RNAs or 

comparison of the exon inclusion patterns of BRCA2 and ATR transcripts in the presence and absence of 

RBMX.  According to publically available data sets RBMX is not frequently mutated in cancer (Cerami 

et al., 2012); however, more extensive mining of cancer genome databases for RBMX alterations may be 

of interest. 

  

II.  Perspectives on RNAi screening and off-target effects 

 One unique and unforeseen contribution of our screening work has been the identification of 

RAD51 as a prominently off-targeted transcript.  Over the last several years, it has become increasingly 

apparent that poor reagent specificity is a major concern for RNAi-based screens (Chapter 3, 1-1), and our 

finding that pervasive off-targeting of a single transcript can confound ≥17% of candidate siRNAs serves 

as motivating example in favor of better reagent design.  To this end, we have made available the list of 

siRNA reagents here identified to contain RAD51 off-target effects (Table S2), and we note that 

computational mining of the associated sequences may be a productive means for identifying new 

sequence-based modes of mRNA recognition that contribute to RNAi off-targeting (akin to seed-3’UTR 

pairing).  Thus far, we have eliminated the possibility that seed pairing to transcript coding regions 

(CDSs) contributes to predominant off-target effects, but the possibility remains that additional 

mechanisms of unintended RAD51 pairing, mediated perhaps by incomplete seeds containing G-bulges or 

aided by 3’compensatory sites, may exist within our data set.  Consistent with this idea, we have observed 

that some siRNAs lacking complete antisense seed matches to the RAD51 3’UTR affect RAD51 

expression in an off-target manner (Chapter 3, 2-1). 

 In a separate work by Sigoillot et al., development of the GESS algorithm was published 

alongside an independent set of siRNA reagents that contain a pervasive off-target effect against the 

MAD2 transcript in human cells (Sigoillot et al., 2011).  MAD2 is a key mediator of the spindle assembly 
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checkpoint (SAC) and Sigoillot et al. identified MAD2 off-target effects in two independent siRNA-based 

screens for mediators of SAC (Sigoillot et al., 2011; Tsui et al., 2009).  This work also used GESS to 

identify a set of siRNAs that off-target the TGFβ receptor 2 transcript through seed complementarities 

from yet another siRNA-based screen (Schultz et al., 2011).  Along with our data, results from these 

studies may prove useful in identifying novel sequence modes of off-target transcript pairing.   

 Interestingly, evaluation of RNAi off-target effects and their impact on high-throughput screening 

(in work by Sigoillot et al. and in general) has primarily focused on siRNA- and dsRNA-based work in 

mammalian and Drosophila cells (Perrimon and Mathey-Prevot, 2007; Sigoillot and King, 2011).  (In 

Drosophila long dsRNAs typically ~500-nt in length can be used for RNAi-mediated silencing.  These 

long dsRNAs are processed endogenously to generate shorter 20-22-nt dsRNAs that ultimately mediate 

mRNA knockdown.)  Nevertheless, miRNA-like off-target effects can impact shRNA technologies as 

well (Jackson et al., 2006), and shRNA-based screens should be interpreted with similar caution.  Of note 

however, off-targets may be controlled to some extent by viral transduction of shRNA reagents because 

this delivery technique allows shRNA expression to be achieved at relatively low copy numbers. 

 In general, the identification of several transcripts that are prominently off-targeted by RNAi 

argues that the development of off-target identification algorithms like GESS should be prioritized and 

that, once developed, they should be widely implemented into all RNAi screening procedures, regardless 

reagent-type.  These efforts would be greatly aided by more in-depth and consistent reporting of RNAi 

screen results, including a move towards the full publication of reagent sequences.  Increased availability 

to this type of information would substantially contribute to meta-analyses aimed at evaluating RNAi 

reagent behavior, both on- and off-target, and information gained from these analyses could be 

incorporated into RNAi reagent design to help limit confounding effects (Anderson et al., 2008; Sigoillot 

and King, 2011). 

 Recently, much thought has also been given to the design and implementation of new screening 

approaches that allow more accurate interpretation of RNAi results without directly improving RNAi 

reagent specificity, including strategies that incorporate increased reagent redundancy or improved library 
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sensitivity.  Our work demonstrates that the incorporation of high reagent redundancy into screen design 

can successfully enrich for true positives without eliminating off-target effects per se.  Specifically, we 

found that large-scale candidate validation using independent Ambion reagents (Chapter 3, 3-1) 

successfully eliminated false-positives that had initially been selected because of RAD51 off-target 

effects.  From this, we extrapolate that unidentified off-target effects were also circumvented using this 

approach.  A second strategy for improving candidate selection from RNAi screens is the improvement of 

RNAi library sensitivity.  To this end, the construction of genome-wide RNAi libraries that contain 

reagents with experimentally-indicated on-target depletion using approaches such as the recently 

developed sensor assay (Fellmann et al., 2011) will be incredibly useful.  However, until such libraries 

become widely available the best strategies for successful screening will incorporate both high reagent 

redundancy and sequence-based off-target analyses. 

 The set of siRNAs among which pervasive RAD51 off-targeting was initially identified had been 

selected by the a priori identification of a common phenotype; however through our studies of the HIRA-

associated proteins, we have also observed that the interpretation of small-scale studies evaluating 

phenotypes caused by RNAi reagents chosen without selective pressure may also be confounded by 

RAD51 off-targeting.  In particular, of the 6 HIRIP3- and UBN1-targeting siRNAs chosen and evaluated 

separately from our screening work (not Ambion), 3 demonstrated off-target RAD51 depletion (Figure 

12a-b,e,i,j).  This argues that the individual validation of small-scale RNAi experiments is also paramount 

and highlights the necessity of using high reagent redundancy and rescue assays, or complementary 

approaches such as gene knockout or deletion systems, to rule out off-target effects during individual 

gene characterization.   

 Overall, we suggest that siRNA-based evaluations of the mammalian HR and SAC pathways be 

conducted and interpreted with a new level of rigor, as was done for our characterization of RBMX.  

Additionally, previous studies that may have been confounded by RAD51 or MAD2 off-targeting should 

be revisited.  A spindle-checkpoint defect reported by our lab to be caused by siRNAs targeting the TAO1 
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kinase has in this way been shown to be the misleading result of MAD2 off-targeting (Draviam et al., 

2007; Hubner et al., 2010; Westhorpe et al., 2010).   

 Intriguingly, the identification of prominently off-targeted transcripts also presents the idea that 

some mRNA transcripts, like RAD51, are particularly sensitive to RNAi.  It is tempting to speculate that 

some as yet unidentified structural element within the RAD51 mRNA, perhaps in common with MAD2 

and TGFβR2, hypersensitizes RAD51 to siRNA-mediated depletion, a miRNA enhancer of sorts.  

However, it is also possible that a shallow phenotypic threshold reached with minimal protein depletion 

more simply determines the heightened sensitivity of RAD51 (and possibly MAD2 and TGFβR2) to off-

targeting.  Consistent with this, the cooperativity of RAD51 filament assembly on ssDNA (as discussed in 

Chapter 1, 3-3-4) is expected to cause exquisite sensitivity to protein depletion, and the cell cycle 

regulated expression of RAD51 and MAD2 may render these proteins more susceptible overall to protein 

depletion, as compared to more stable proteins.  Undoubtedly, however, a key aspect of RAD51 and 

MAD2 hypersensitivity to RNAi must be that both transcripts encode protein effectors that are critical to 

their pathways of inquiry.    

 

III.  Future genetic inquiry into the mammalian homologous recombination pathway 

Although conserved mechanisms of HR have been comprehensively studied in model organisms 

for decades, we have successfully identified two lists of novel HR candidate genes (positive and negative) 

in mammalian cells (Table S1), demonstrating that regulators of HR (both direct and indirect) remain 

uncharacterized in this system.  We note that during the course of our work many core facilitators of HR, 

including EXO1, DNA2, RMI2, GEN1, SLX1, SLX4 and RTEL1, have been newly identified and 

characterized using genetic approaches, indicating the breadth of HR-related discovery that remains 

ongoing.  In this work, we have illustrated how redundancies in the HR pathway and a major RAD51 off-

target effect present unique challenges to genetic studies of mammalian HR.  Nevertheless, we present 

our candidate lists as a foundation upon which future studies can build and suggest that the keys to future 
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RNAi-based inquiry into HR mechanisms will be the combined use of high reagent redundancy to limit 

off-targeting and analysis of synthetic interactions to parse redundancies.   

Previously (Chapter 2, Section III) we proposed that the set of genes targeted by siRNA pools 

yielding intermediary phenotypes in our primary screen (1,678 siRNA pools = 50-70% relative HR) may 

also contain bona fide mediators of HR.  However, to confidently identify novel HR effectors among this 

set using large-scale approaches, we estimate that a minimum of 10-20 reagents per gene would be 

necessary.  While the labor and cost of this would prohibit use of the well-by-well screening format 

presented herein, we suggest that the DR-GFP reporter could be adapted for pooled shRNA screening, 

which is better suited to high reagent redundancy (discussed in Chapter 2, 1-2).  Critical to this idea, the 

double-strand break that is induced in DR-GFP can be repaired in one of only four ways: (1) error-free 

NHEJ that reconstitutes the I-SceI recognition site, (2) error-prone NHEJ that introduces insertions or 

deletions at the I-SceI site, (3) HR or (4) SSA, which both replace I-SceI with sequence from wild-type 

GFP (Nakanishi et al., 2001).  After PCR amplification, these repair events can be distinguished by 

sequence information at the break point; and because of this, phenotypic readouts from DR-GFP could 

theoretically be analyzed using a next generation sequencing (NGS)-based approach.  Use of NGS data 

collection and an shRNA expression cassette carrying a tandem DR-GFP reporter could thus allow a 

simple and straightforward shRNA screen.  This screen would proceed as follows: an shRNA library 

incorporated into the proposed DR-GFP cassette would be introduced into cells.  These would be selected 

for stable integration of the cassette, infected with the I-SceI carrying adenovirus for 24-48 hours, and 

then collected.  PCR preparation of the shRNA-DR-GFP cassette from isolated genomic DNA followed 

by massively parallel paired-end sequencing of the shRNA hairpin (on one end) and the I-SceI break 

point (on the other) could then generate measures of relative HR for 6,000-20,000 shRNAs in one 

experiment.  

Our work provides a well-curated candidate list to guide future genetic studies of homologous 

recombination in mammalian cells and represents an important step forward in fully understanding the 

challenges that are specific to these endeavors.  Altogether the biological insights presented herein will be 
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useful for exploring specific questions regarding HR regulation as well as developing new approaches 

towards that goal.  Whatever the future of this work, however, the last century of study makes two things 

abundantly clear: our understanding of homologous recombination is not yet complete and our 

enthusiasm for inquiry into this complex mechanism is not yet exhausted.
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