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Statistical Methods for Causal Mediation Analysis

Abstract

Mediation analysis is a popular approach in the social an biomedical sciences to examine

the extent to which the effect of an exposure on an outcome is through an intermediate

variable (mediator) and the extent to which the effect is direct. We first develop statistical

methods and software for the estimation of direct and indirect causal effects in general-

ized linear models when exposure-mediator interaction may be present. We then study

the bias of direct and indirect effects estimators that arise in this context when a contin-

uous mediator is measured with error or a binary mediator is misclassified. We develop

methods of correction for measurement error and misclassification coupled with sensi-

tivity analyses for which no auxiliary information on the mediator measured with error

is needed. The proposed methods are applied to a lung cancer study to evaluate the ef-

fect of genetic variants mediated through smoking on lung cancer risk and to a perinatal

epidemiological study on the determinants of preterm birth.
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Abstract

Mediation analysis is a useful and widely employed approach to studies in the field of

psychology and in the social and biomedical sciences. The contributions of this paper are

several-fold. First we seek to bring the developments in mediation analysis for non linear

models within the counterfactual framework to the psychology audience in an accessi-

ble format and compare the sorts of inferences about mediation that are possible in the

presence of exposure-mediator interaction when using a counterfactual versus a purely

statistical approach. Second, the work by VanderWeele and Vansteelandt (2009, 2010)

is extended here to allow for dichotomous mediators and count outcomes. Third, we

provide SAS and SPSS macros to implement all of these mediation analysis techniques

automatically and we compare the types of inferences about mediation that are allowed

by a variety of software macros.

Keywords: Causal Inference, Direct and Indirect Effects, Mediation Analysis, Interaction, Soft-

ware Macro.
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1.1 Introduction

Mediation analysis investigates the mechanisms that underlie an observed relationship

between an exposure variable and an outcome variable and examines how they relate

to a third intermediate variable, the mediator. Rather than hypothesizing only a direct

causal relationship between the independent variable and the dependent variable, a me-

diational model hypothesizes that the exposure variable causes the mediator variable,

which in turn causes the outcome variable. The mediator variable then serves to clarify

the nature of the relationship between the exposure and outcome variable (MacKinnon,

2008). For example, it might be of interest to understand whether a rehabilitation program

for drug-addicted individuals, with methadone as treatment, leads to increased work ac-

tivity and whether drug use may mediate some of this effect. In this example, drug use

may be a potential mediator of the relationship between the methadone treatment and

the work activity outcome since the level of methadone may affect drug use, which may

in turn affect work activity.

The use of mediation analysis in psychology and in the social sciences is widespread and

has been strongly influenced by the seminal paper of Baron and Kenny (1986). More re-

cently, new advances in mediation analysis have been made by using the counterfactual

framework (Robins and Greenland, 1992; Pearl, 2001; VanderWeele and Vansteelandt,

2009, 2010; Imai et al., 2010ab). Using the counterfactual framework has allowed for defi-

nitions of direct and indirect effects and for decomposition of a total effect into direct and

indirect effects even in models with interactions and non-linearities. In many contexts

investigators are interested in assessing whether most of the effect is mediated through a

particular intermediate or the extent to which it is through other pathways. Decomposi-

tion of a total effect into direct and indirect effects accomplishes this goal.

It is then possible to use this counterfactual framework to extend formulae from Baron

and Kenny (1986) to allow for mediation analysis even in the presence of exposure medi-

ator interactions. Special cases for mediated effects in the presence of interaction have ap-

peared previously in the literature (e.g. Preacher et al., 2007) but do not give definitions of

3



direct effects such that the total effect decomposes into a direct and indirect effect. In par-

ticular, VanderWeele and Vansteelandt (2009, 2010) derived results for direct and indirect

effects for linear and logistic regressions when exposure-mediator interaction is present.

In many studies it is unrealistic to assume that the exposure and mediator do not interact

in their effects on the outcome. Carrying out mediation analysis incorrectly assuming no

interaction may result in invalid inferences. The present paper makes a number of impor-

tant contributions to mediation analysis from both methodological and implementation

perspectives. First, we extend work on causal mediation analysis for parametric models

with interactions (VanderWeele and Vansteelandt, 2009, 2010) to allow for dichotomous

mediators, and not simply continuous mediators as were previously considered. This is

done using Pearl’s mediation formula (Pearl, 2001), also described outside the context of

counterfactuals elsewhere (Huang et al., 2004). Second, we moreover extend the results

to count data. Third, we provide SAS and SPSS macros, which give estimates and con-

fidence intervals for direct and indirect effects when interactions between the mediator

of interest and the exposure are present and we compare the types of inference about

mediation that are available in a variety of software packages. Finally, we will compare

and contrast the inferences that are possible about direct and indirect effects in the pres-

ence of exposure-mediator interaction, when using the counterfactual framework versus

a purely statistical approach. We consider both continuous and dichotomous variables as

outcomes and mediators and allow for general treatment variables. The approach here

enriches the contributions of Baron and Kenny and expands the previous software devel-

oped by Preacher and Hayes (2004) and Preacher et al. (2007) to allow for effect decompo-

sition of a total effect into direct and indirect effects in the presence of exposure-mediator

interaction and other non-linearities.

The paper is organized as follows. The first section discusses the approach to mediation

analysis sometimes referred to as the ”product method” and made popular by Baron and

Kenny. The second section introduces the reader to the counterfactual approach which

gives rise to broader definitions of direct and indirect effects and allows one to carry out

mediation analysis when interaction between exposure and mediator is present. In the

following section, conditions are given for the identifiability of direct and indirect effects

4



in mediation analysis; these are the conditions needed for the results of statistical proce-

dures to have a causal interpretation. The next section clarifies the relationship between

the results on mediation analysis that arise within the counterfactual framework with

other popular approaches to mediation analysis. The paper continues with instructions

for using the software developed (SAS and SPSS) and a description of the output is pro-

vided. We conclude by providing an example of mediation analysis performed using the

mediation macros.

1.2 Classic Regression Approach to Mediation Analysis

The practice of mediation analysis in the field of psychology has been highly influenced

by the work of Baron and Kenny (1986). The causal diagram in Figure 1.1 captures how

they conceptualized the role of a mediator variable. In this graph, which represents a

simple mediation model, A denotes an exposure (or treatment) variable, M denotes the

mediator and Y denotes the outcome variable. According to Baron and Kenny the follow-

!!!!!!!!! ! ! !!"!
!
!
!
!
!
#! ! ! ! ! ! !!$!

Figure 1.1: Mediation model in Baron and Kenny 1986 paper.

ing criteria need to be satisfied for a variable to be defined as mediator: (i) a change in

levels of the exposure variable significantly affects the changes in the mediator (i.e., Path

from A to M ), (ii) there is a significant relationship between the mediator and the outcome

5



(i.e., Path from M to Y ), (iii) a change in levels of the exposure variable significantly af-

fects the changes in the outcome (i.e., total effect of A on Y is significant), and (iv) when

the previously defined paths are controlled, a previously significant relation between the

exposure and outcome is no longer significant, with the strongest demonstration of me-

diation occurring when the path from the independent variable to the outcome variable

is zero.

While requirements (i) and (ii) have been accepted as correct criteria to identify a poten-

tial mediator, requirement (iii) has been critiqued by many scholars (MacKinnon, 2008).

Consensus has now been reached that the relationship between A and Y need not be sta-

tistically significant for M to be a mediator. The reason is that the effect of A on Y may not

be significant when direct and mediated effects have opposite sign. This phenomenon is

commonly known as inconsistent mediation. Requirement (iv) is also not necessary be-

cause mediation can be partial or complete. When mediation is complete, after controlling

for M , the direct path from A to Y would be zero. When mediation is partial, the path

from A to Y can still be significant, but the effect should be reduced if mediation is indeed

present. In the present work we allow for both partial and complete mediation.

In 1986, Baron and Kenny also proposed a parametric approach to estimate and test for

mediation. The approach is often simply referred to as the ”Baron and Kenny approach”,

however others had proposed it previously (Hyman, 1955; Alwin and Hausen, 1975;

Judd and Kenny, 1981; Sobel 1982) and is also more generally referred to as the ”prod-

uct method”. Let A be the treatment, Y the outcome, M the mediator and C additional

covariates. For the case of continuous mediator and outcome, consider the following re-

gression models:

E(M |A = a, C = c) = β0 + β1a+ β
�

2c (1.1)

E(Y |A = a,M = m,C = c) = θ0 + θ1a+ θ2m+ θ
�

4c (1.2)

The original Baron and Kenny approach did not have covariates, but the same general

approach applies with covariates (i.e. β �
2c and θ

�
4c were not included in the original mod-

els by the authors; here c is considered a vector and may contain multiple confounders).

Establishing mediation entails estimating the parameters of these regression models. In

6



particular, Baron and Kenny proposed that the direct effect be assessed by estimating θ1

and that the indirect effect be assessed by estimating θ2β1. The direct effect can be con-

ceived of as the treatment effect on the outcome at a fixed level of the mediator variable,

which is different from the total effect, which represents simply the overall effect of expo-

sure or treatment on the outcome. The indirect effect can be conceived of as the effect on

the outcome of changes of the exposure which operate through mediator levels.

1.3 Counterfactual Approach to Mediation Analysis

While the concept of mediation, as defined within psychology and the social sciences, is

theoretically appealing, the methods traditionally used to study mediation empirically

have important limitations concerning their applicability in models with interactions or

non-linearities (Robins and Greenland, 1992; Pearl, 2001).

Recent contributions in mediation analysis have emphasized the importance of articu-

lating identifiability conditions for a causal interpretation and have extended definitions

and results for direct and indirect effect to settings in which non-linearities and interac-

tions are present (Robins and Greenland, 1992; Pearl, 2001). This is relevant especially

when mediation analysis is implemented in social science contexts where, for example,

the exposure of interest might interact in its effect on the outcome with the mediator.

The approach advocated by Baron and Kenny is widely applied for mediation analysis

and software is available to implement it (Preacher and Hayes, 2004, 2008). However,

this method does not fully accommodate settings in which the exposure and the media-

tor interact in their effects on the outcome. Although special cases for mediated effects

in the presence of interaction are available (e.g. Preacher et al., 2007), these do not give

definitions of direct effects such that the total effect decomposes into a direct and indirect

effect. VanderWeele and Vansteelandt (2009, 2010) show how the notions of direct and

indirect causal effects from causal inference in the counterfactual framework (Greenland

and Robins, 1992; Pearl, 2001) can extend the Baron and Kenny formulae for direct and

indirect effects to settings in which there is an interaction term between exposure and
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mediator in the outcome regression.

Suppose we have a continuous outcome and mediator and the mediator regression re-

mains as in model (1.1) while the outcome regression is reformulated as

E(Y |A = a,M = m,C = c) = θ0 + θ1a+ θ2m+ θ3am+ θ
�

4c (1.3)

The use of the causal inference approach to mediation analysis gives rise to counterfac-

tual definitions of direct and indirect effects, which were formulated by Pearl (2001) and

Greenland and Robins (1992). These effects can be estimated from the regression pa-

rameters in models (1.1) and (1.3), provided certain identifiability assumptions (no con-

founding), described below, hold and models are correctly specified (VanderWeele and

Vansteelandt, 2009, 2010). In particular, from models (1.1) and (1.3) what can be defined

as the controlled direct effect (CDE), natural direct effect (NDE) and natural indirect effect

(NIE) for change in exposure from level a∗ to level a, are given by

CDE = (θ1 + θ3m)(a− a∗)

NDE = (θ1 + θ3β0 + θ3β1a
∗ + θ3β

�

2c)(a− a∗)

NIE = (θ2β1 + θ3β1a)(a− a∗)

These expressions generalize those of Baron and Kenny to allow for interactions between

the exposure and the mediator. We describe these effects below. Note that if interaction

is not present, so that θ3 = 0, the controlled direct effect and the natural direct effect are

equal to the direct effect obtained using Baron and Kenny approach θ1 times (a− a∗) and

the natural indirect effect is equal to the indirect effect of the Baron and Kenny approach

θ2β1 times (a− a∗).

The controlled direct effect (CDE) expresses how much the outcome would change on

average if the mediator were controlled at level m uniformly in the population but the

treatment were changed from level a∗ = 0 to level a = 1. The natural direct effect (NDE)

expresses how much the outcome would change if the exposure were set at level a = 1

versus level a∗ = 0 but for each individual the mediator were kept at the level it would

have taken in the absence of the exposure. The natural indirect effect (NIE) expresses
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how much the outcome would change on average if the exposure were controlled at level

a = 1, but the mediator were changed from the level it would take if a∗ = 0 to the level it

would take if a = 1. The total effect (TE) can be defined as how much the outcome would

change overall for a change in the exposure from level a∗ = 0 to level a = 1. More formal

definitions of these effects explicitly in terms of counterfactuals are given in the appendix.

An important property of the natural indirect effect and the natural direct effect is that the

total effect decomposes into the sum of these two effects; this holds even in models with

interactions or non-linearities (Pearl, 2001). The expressions given above involving the

coefficients of models (1.1) and (1.3) will be equal to the effects we have just discussed

under certain identifiability assumptions given in the next section. These identifiability

assumptions allow for a causal interpretation of the direct and indirect effects. These ef-

fects are conditional on the level of the covariates C. For continuous outcomes, if C were

set at its average level we would obtain marginal effects on the entire population.

While controlled direct effects are often of greater interest in policy evaluation (Pearl,

2001; Robins, 2003), natural direct and indirect effects may be of greater interest in evalu-

ating the action of various mechanisms (Robins, 2003; Joffe et al., 2007).

1.4 Identification

The conditions for a causal interpretation of the direct and indirect effects defined in the

previous section can be usefully characterized via causal diagrams. Consider the relation

between the variables in Figure 1.2, which might encompass a wide range of scenarios

in mediation analysis. A careful study of this graph will be useful in clearly formu-

lating the identifiability assumptions for the direct and indirect causal effects of inter-

est: The variables in the graph are: exposure (A), mediator (M ), outcome (Y ), covariates

(C = (C1, C2)), which include exposure-outcome confounders (C1) and mediator-outcome

confounders (C2). All the comments below will still hold if C1 affects C2 or if C2 affects

C1.

Consider the example of working activity of a drug addicted individual as the outcome of

9



outcomes for each subject, namely the one corresponding to
the observed exposure level (i.e., Y = Y (A)). We return to
this assumption below. We need one further assumption for
the identification of total causal effects; we also need some
additional notation. For random variables A,B and C, let
A ⊥⊥ B|C denote that A is conditionally independent of B,
given C. For the identification of total causal effects, we
will assume that subjects with different observed exposure
levels A, but the same pre-exposure characteristics C, are
comparable in the sense that

Y (a) ⊥⊥ A|C

for all exposure levels a. This assumption states that a sub-
ject’s choice of exposure level A, while possibly related to
pre-exposure characteristics C, has no residual dependence
on how that subject would fare under an arbitrary, fixed
exposure level. It is usually referred to as the no unmea-
sured confounders assumption as it effectively states that
the variables in C are the only confounders of the associ-
ation between exposure and outcome. Both these assump-
tions cannot be tested on the basis of the observed data, but,
in combination, are sufficient for identifying the conditional
causal effect as

E[Y (a)− Y (0)|C]

= E[Y (a)|C]− E[Y (0)|C]

= E[Y (a)|A = a, C]− E[Y (0)|A = 0, C]

= E[Y |A = a, C]− E[Y |A = 0, C].

We could take averages over the distribution of C to obtain
average causal effects, E[Y (1)− Y (0)].

By extending the previous concepts to a joint exposure
(A,M) where M is the potential mediator, definitions of
direct and indirect effects can be constructed. For each sub-
ject, let us define Y (a,m) to be the outcome that we would
— possibly contrary to fact — have observed for that subject
had the exposure A been set to the value a and, likewise,
M to the value m, through some intervention or manipu-
lation. Similarly, we can consider counterfactual variables
M(a) which denote the value of the mediator if — possi-
bly contrary to fact — the exposure A were set to a. For
a dichotomous exposure, the controlled direct effect of the
exposure on the outcome, controlling for M , can then be de-
fined as the expected contrast E[Y (1,m)−Y (0,m)] (Robins
and Greenland, 1992; Pearl, 2001). It expresses the exposure
effect that would be realized if the mediator were controlled
at level m uniformly in the population. For instance, in ac-
cordance with Figure 1, let A be the father’s occupation, let
Y be the respondent’s income, let M be the respondent’s
occupation, let C1 be the father’s education, and let C2 be
the respondent’s education. Then E[Y (a,m)− Y (0,m)] ex-
presses the average change in income that would be realized
in a subgroup of respondents if their father changed occu-
pation (from 0 to a), but their own occupation were kept

Figure 1. Example of the effect of A on Y mediated by M
with both exposure-outcome confounders and

mediator-outcome confounders.

uniformly at level m. More generally, we will define the
conditional controlled direct effect of exposure level a versus
0 on the outcome (controlling for M), given covariates C,
as the expected contrast E[Y (a,m)− Y (0,m)|C].

The consistency assumption for joint exposure (A,M) is
then that amongst the subgroup with observed exposure
A = a and observed mediatorM = m, the observed outcome
Y is equal to Y (a,m). The consistency assumption for the
effect of the exposure on the mediator is that amongst the
subgroup with observed exposure A = a the observed media-
tor M is equal to M(a). The assumption of no-unmeasured-
confounders for the exposure-outcome relationship can then
be expressed as

(1) Y (a,m) ⊥⊥ A|C

for all levels of a and m. However, controlled direct effects in
general require stronger conditions for identification than do
total causal effects. This is because the definition of a con-
trolled direct effect requires evaluating the impact of holding
the mediator M fixed. For this purpose, one must know all
confounders of the association between mediator and out-
come, which we formally express as

(2) Y (a,m) ⊥⊥ M |A,C

for all levels of a and m. To identify controlled direct effects,
the set C must contain all of the confounders of both the
exposure-outcome relationship and the mediator-outcome
relationship i.e. in Figure 1 control must be made for both
C1 and C2 to identify controlled direct effects. If control is
not made for the variables that confound the relationship
between the mediator and the outcome (the variables C2 in
Figure 1) then estimates of direct effects will generally be
biased (Cole and Hernán, 2002). In the early mediation liter-
ature, this point about controlling for the mediator-outcome
confounders was made by Judd and Kenny (1981) but was
not pointed out by Baron and Kenny (1986) and was also
subsequently ignored by much of the social science litera-
ture on mediation. The importance of controlling for the
confounders of the mediator-outcome relationship has been

458 T. J. VanderWeele and S. Vansteelandt

Figure 1.2: Mediation DAG

interest (Y ). Let the treatment be methadone (A), and the potential mediator be the level

of drug use (M ). Under this scenario, the investigator may be interested in studying how

the effect of the treatment A on the outcome Y is mediated by the level of drug use of an

individual (M ). In addressing this question of interest, the investigator must think care-

fully about and try to control for variables that may be exposure-outcome confounders

(C1) or mediator-outcome confounders (C2). For example, there might be social and bi-

ological factors, such as income and hypertension status (C1), that affect the decision of

the level of treatment (A) and the working activity outcome (Y ), or other factors, such

as neighborhood of residence or alcohol consumption (C2), which affect both the level of

drug use (M ) and the working activity outcome (Y ).

In order for the effects to have a causal interpretation, control must be made for the con-

founding variables. In order to ensure identifiability of controlled direct effect, two as-

sumptions are needed: namely those of (i) no unmeasured confounding of the treatment-

outcome relationship and (ii) no unmeasured confounding of mediator-outcome rela-

tionship. The first of these assumptions would be automatically satisfied if treatment

were randomized, but even with randomized treatment the second assumption might

not be satisfied. If we refer to the example above, to control for (i) confounding of the

treatment-outcome relationship the investigator must adjust for common causes of the

treatment and the outcome e.g. information on income and hypertension status and any
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other treatment-outcome confounding variable (C1) in the analysis. To control for (ii)

mediator-outcome confounding the investigator must adjust for common causes of the

mediator and the outcome e.g. alcohol consumption and neighborhood of residence or

any other mediator-outcome confounding variable (C2). In practice, both sets of covari-

ates would simply be included in the overall set C for which adjustment is made; the in-

vestigator does not need to distinguish in this regression approach the treatment-outcome

and the mediator-outcome confounding variables but the collection of covariates must in-

clude both sets for estimates to have a causal interpretation.

The assumptions we have described are for controlled direct effects; the identification of

natural direct and indirect effects uses these two assumptions above along with two addi-

tional assumptions. In particular, for natural direct and indirect effect there must also be

(iii) no unmeasured confounding of the treatment-mediator relationship. Control must

be made for variables that cause both the level of treatment and the level of the mediator.

In the context of our example, hypertension may be a factor which influences the use of

treatment as well as the level of drug addiction, and it would need to be controlled for in

the analysis. This third assumption, like the first, would also be satisfied automatically if

the treatment were randomized. Finally, for the natural direct effect and indirect effects

to be identified it also needs to be the case that (iv) there is no mediator-outcome con-

founder that is affected by the treatment (i.e. no arrow from A to C2 in Figure 1.2).

It should be noted that assumptions (i), (ii), and (iii) also require an assumption of tem-

poral ordering. This assumption of temporal ordering is implicitly or explicitly present in

various approaches to mediation analysis (Cole and Maxwell, 2003). In particular, the as-

sumption of no unmeasured confounding of the treatment-outcome relationship implic-

itly assumes that the treatment temporally precedes the outcome. The assumption of no

unmeasured confounding of the mediator-outcome relationship implicitly assumes that

the mediator precedes temporally the outcome. Finally, the assumption of no unmea-

sured treatment-mediator confounding implicitly assumes that the exposure must pre-

cede the mediator. Formally the no unmeasured confounding assumptions require that

associations reflect causal effects; if the temporal ordering assumptions were not satis-

fied then neither would the no unmeasured confounding assumptions since associations
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would not represent causal effects.

In summary, controlled direct effects require (i) no unmeasured treatment-outcome con-

founding and (ii) no unmeasured mediator-outcome confounding. Natural direct and in-

direct effects require these assumptions and also (iii) no unmeasured treatment-mediator

confounding and (iv) no mediator-outcome confounder affected by treatment. It is im-

portant to note that randomizing the treatment is not enough to rule out confounding

issues in mediation analysis. This is because randomization of the treatment rules out the

problem of treatment-outcome and treatment-mediator confounding but does not guar-

antee that the assumption of no confounding of mediator-outcome relationship holds.

This is because even if the treatment is randomized, the mediator generally will not be.

This was pointed out by Judd and Kenny (1981), James et al. (1984), MacKinnon (2008),

but unfortunately not mentioned in the popular paper by Baron and Kenny (1986). If

there are confounders of the mediator-outcome relationship for which control has not

been made, then direct and indirect effect estimates will not have a causal interpretation;

they will be biased. This is true for the controlled direct effect and natural direct and

indirect effects described above and also for the effects described by Baron and Kenny.

Investigators should think more carefully about and collect data on and control for such

mediator-outcome confounding variables when mediation analysis is of interest. If the

investigator is aware that unmeasured confounding may be an issue in his or her study,

sensitivity analyses (VanderWeele, 2010; Imai et al. 2010a) should be implemented.

1.5 Binary Outcome

We have thus far considered only the case in which both outcome and mediator are con-

tinuous. The results can be extended to cases in which one or both of the mediator and

outcome variables are binary. For example, when the outcome is binary and mediator

is continuous the model for the mediator is represented by (1.1) and the outcome can be

modeled via a logistic regression
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logit[P (Y = 1|A = a,M = m,C = c)] = θ0 + θ1a+ θ2m+ θ3am+ θ
�

4c (1.4)

For this case, provided the outcome is relatively rare and assumptions (i) − (iv) hold,

we can derive controlled direct effects, and natural direct and indirect effects on the odds

ratio scale (VanderWeele and Vansteelandt, 2010a) as:

log{ORCDE} = (θ1 + θ3m)(a− a∗)

log{ORNDE} ≈ (θ1 + θ3β0 + θ3β1a∗ + θ3β
�
2C + θ3θ2σ2)(a− a∗) + 0.5θ23σ

2(a2 − a∗2)

log{ORNIE} ≈ (θ2β1 + θ3β1a)(a− a∗)

where σ2 is the variance of the error term in the regression for the mediator, M, and where

the approximations hold to the extent that the outcome Y is rare.

With these odds ratios, the total effect is equal to the product of the natural direct and

indirect effects (rather than the sum).

When the outcome is not rare, the odds ratio does not approximate the risk ratio any-

more. Therefore, the causal effects previously defined will be biased if logistic regression

is used to model the outcome. In this case the investigator can estimate the causal effect

by running a generalized linear model regression with a binomial distribution and a log

link and the causal effects will have a risk ratio interpretation and the formulas hold ex-

actly.

When the outcome is rare then the direct and indirect effects can be estimated even in

case-control designs. The formulas for the effects remain the same, however the mediator

regression is run only for controls, to take into account the case-control design (Vander-

Weele and Vansteelandt, 2010). This approach works because with a rare outcome Y, the

distribution of M among the controls will approximate the distribution in the population.

We also extend the previous results to the cases in which the mediator is a dichotomous

variable. The identifiability assumptions do not change but now we would use a logistic
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model for the mediator:

logit[P (M = 1|A = a, C = c)] = β0 + β1a+ β
�

2c (1.5)

Formulas for controlled direct effects and natural direct and indirect effects when the me-

diator is dichotomous are given in the appendix. Finally, in the online appendix we show

that these formulas for causal effects for binary outcome, along with their standard errors,

extend to count variables when modeled with a log link.

The total effect is computed as the sum of the natural direct effect and the natural indi-

rect effect when the outcome is continuous and as the product of the natural direct and

indirect effect odds ratios when the outcome is binary. Another measure that has been

popular in mediation analysis is the proportion mediated. The proportion mediated can

be defined as the ratio of the natural indirect effect to the total effect when the outcome

is continuous; the proportion mediated on risk difference scale can also be calculated

when the outcome is binary using a transformation of the odds ratios (VanderWeele and

Vansteelandt, 2010a). Several authors have, however, issued cautions on its use. Kenny

(1998) warns about the instability of such measure, especially when the association be-

tween the exposure and the outcome is weak. Consequently, we have not implemented

this measure in the macro.

Estimates described later in the paper of the direct and indirect effects of interest are ob-

tained by plugging in the estimated coefficient values while the standard errors can be

obtained using the delta method or by bootstrapping techniques. The reader can refer to

the online supplement for derivations of the direct and indirect effects and delta method

standard errors. The macro we provide will calculate these automatically.

1.6 Mediation analysis for models with non-linearities - a
comparison of approaches

The counterfactual approach to mediation analysis displays all its power and flexibility

when the causal relationships under study are complex and the investigator needs to
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depart from simple linear models and allow for non-linearities and interactions. In this

section we describe some of the advantages of employing the counterfactual framework

to causal mediation that we presented in the previous sections by comparing it to other

popular methods to address mediation questions. In this comparison we will focus on the

so-called product method, the difference method, and the MacArthur approach, and ad-

dress also some developments with regard to ”moderated mediation”. We first describe

traditional statistical approaches and we then discuss what the counterfactual approach

contributes over and above them and comment on the relation between the two.

1.6.1 Traditional approaches to mediation analysis

Modern approaches to mediation have been inspired by the pioneering work of the ge-

neticist Sewall Wright (1920) who developed the path analysis method. Path analysis is

now viewed as a special case of structural equation modeling (SEM). Structural equations

methods allow for the estimation of direct and indirect effects by modeling covariance

and correlation matrices. Most mediation analyses in psychological studies have been

conducted using the structural equation modeling (SEM) approach (Baron and Kenny,

1986; Judd and Kenny, 1981; MacKinnon, 2008). Methods to improve estimation and in-

ferential procedures for SEM-based mediation analyses have continued to develop (e.g.

MacKinnon, 2008; Sobel, 1982). Structural equation models are often criticized for not

adequately addressing issues of confounding/endogeneity in inferring causal relation-

ships. However, if such issues of confounding are adequately addressed by including all

relevant confounders (as described in detail above) in the structural equation model then

the SEM approach can be a useful tool. The counterfactual approach has placed strong

emphasis on identifiability assumptions and conceptual definitions of causal effects, and

recently, a number of authors have been using the counterfactual framework to translate

the SEM approach within the counterfactual framework 1 (e.g. Jo, 2008; Sobel, 2008; Van-
1Note that a different way to think about inference with regard to an intermediate within the coun-

terfactual approach framework is to use the concept of ”principal strata” (Frangakis and Rubin, 2002; Jo,
2008; Rubin, 2004; VanderWeele, 2008; Chiba, 2010). For a discussion on the use of principal stratification
in mediation analysis the interested reader can refer to the commentaries in the International Journal of
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derWeele and Vansteelandt, 2009; Imai et al., 2010a; Pearl, 2011). Among traditional SEM

methods, we describe the product method and the difference method. Assume a simple

mediation model with no exposure-mediator interaction. The rationale behind the prod-

uct method is that mediation depends on the extent to which the exposure A changes the

mediator M , β1 from equation (1.1), and the extent to which the mediator affects the out-

come Y , θ2 from equation (1.2). The product method estimator of the indirect effect is then

simply θ2β1 . Sobel (1982) proposed a test for a mediated effect from the product method

estimator. The difference method approach is implemented by fitting an outcome model

with the mediator as in equation (1.2) and also an outcome model with no mediator:

E(Y |A = a, C = c) = θ
†

0 + θ†1a+ θ
†

4c (1.6)

The value of the mediated or indirect effect is then estimated by taking the difference in

the coefficients from equations (1.6) and (1.2), θ†1 − θ1 this corresponds to the reduction in

the independent variable effect on the dependent variable when adjustment is made for

the mediator. The algebraic equivalence of the indirect effect using the product method,

θ2β1 , and the difference method, θ†1 − θ1 was shown by MacKinnon et al. (1995) for

ordinary least squares in linear models with continuous outcomes and discussed also in

Alwin and Hauser (1975). The product method and difference method diverge however

when using a binary outcome and logistic regression (MacKinnon and Dwyer, 1993), a

point to which we return below. When mediation models include an exposure-mediator

interaction term in the outcome regression, this is a particular case or a variant of what

is sometimes referred to as ”moderated mediation” (James and Brett, 1984; Preacher et

al., 2007). Moderated mediation considers the case in which a covariate moderates the

mediated effect (cf. MacKinnon, 2007) i.e. when the mediated effect varies by the level

of a covariate. Such moderated mediation by a covariate was also analyzed by Yzerbyt,

Muller, and Judd (2004) and Muller, Yzerbyt and Judd (2008). When the treatment itself

is the moderator for the mediator (as considered in Preacher et al. 2007), the effect of the

mediator is allowed to vary by treatment status; or, conceived of another way, the effect

of treatment is allowed to vary with (i.e. it interacts with) the mediator. In this setting,

Biostatistics (2011).
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Preacher et al. (2007) derived an indirect effect estimator in the context of moderated

mediation using the product method.

The MacArthur approach (Kraemer et al., 2008) gives criteria somewhat different than

that of Baron and Kenny in assessing mediation and allows also for assessing exposure-

mediator interactions. This approach to mediation analysis is based on the assumption

that temporal antecedence and association are necessary (but not sufficient) for a causal

relationship. The approach allows for non-linear relations among variables to qualify as

mediation as long as there is a relationship between the exposure A, and the mediator M .

In particular, it is proposed, first, that if there is no association between A and M , and

if M precedes A, and if the A × M interaction is significant, then the variable M is to be

considered as a moderator rather than a mediator. Second, for M to be a mediator for the

effect of A on outcome Y , A should precede M and M should precede Y , the variables A

and M should be correlated, and either the main effect of M on the outcome or the A×M

interaction should be significant.

1.6.2 Comparison of traditional approaches with the counterfactual ap-
proach when there are interactions and non-linearities

One of the chief advantages of the counterfactual approach to mediation analysis is that

it allows for the decomposition of a total effect into a direct effect and an indirect effect

even when there are interactions and non-linearities. As noted above, some of the sta-

tistical approaches, such as that of Preacher et al. (2007) or Kraemer et al. (2008) allow

one to assess mediation even when there is exposure-mediator interaction. In fact, the

indirect effect of Preacher et al. (2007) for continuous outcome when there is an exposure-

mediator interaction is equivalent to the one given here. However, neither Preacher et

al. (2007) nor Kraemer et al. (2008) give a definition of a direct effect in the presence of

exposure-mediator interaction such that the sum of the direct and indirect effects equals

a total effect. The counterfactual approach provides a general approach to do effect de-
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composition irrespective of the statistical model and irrespective of possible interactions.

The counterfactual approach coincides with the criteria for mediation of the MacArthur

approach (Kraemer et al., 2008) but provides actual direct and indirect effect estimates

that combine to a total effect and makes clear the no-unmeasured-confounding assump-

tions needed for a causal interpretation. The counterfactual approach also helps in under-

standing mediation with binary outcomes and binary mediators. As noted above, with a

binary outcome and logistic regression, the product method and difference method give

different results (MacKinnon and Dwyer, 1993). In fact, neither in general will be equal to

an estimate of an indirect effect with a causal interpretation (VanderWeele and Vanstee-

landt, 2010). VanderWeele and Vansteelandt (2010) did, however, show that when there

is no exposure-mediator interaction, the product method and difference method will be

approximately equivalent when the outcome is rare; and both will then be approximately

equal to the natural indirect effect when all the no confounding assumptions hold. The

problem with dichotomous outcomes arises when the outcome is common and has to

do with the fact that logistic regression uses the odds ratio, which is a measure that is

”non-collapsible”. Viewed intuitively, the problem occurs because when the outcome is

common, the odds ratio does not approximate the risk ratio, and the extent of this lack

of approximation can vary with the other covariates in the models. With a common out-

come, the odds ratios with the mediator in the model versus without the mediator in the

model are thus not directly comparable, and so the difference method essentially breaks

down. The risk ratio does not suffer this problem and it is for this reason that we propose

using a log-linear model in this paper when the outcome is common. Moreover, this ap-

proach also allows us to define and estimate direct and indirect effects when the outcome

is binary and an exposure-mediator interaction is present. We have moreover, using the

counterfactual approach in this paper, derived analytic expressions for cases when the

mediator itself is binary. The counterfactual approach provides a versatile framework to

derive direct and indirect effects and to do effect decomposition even with binary vari-

ables and non-linear models.

As is perhaps now clear from this discussion, the traditional statistical approach and the

counterfactual approach to mediation will in some settings coincide. For linear models
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and log-linear models, they will coincide when there is no exposure-mediator interaction;

for logistic models, they will coincide when there is no exposure-mediator interaction

and when the outcome is rare (VanderWeele and Vansteelandt, 2009, 2010). Thus, be-

fore an investigator proceeds with one of the traditional approaches (the product method

or difference method) he or she should: (i) consider whether control has been made for

exposure-outcome confounders, mediator-outcome confounders, and exposure-mediator

confounders, (ii) check whether there is exposure-mediator interaction, and (iii) if the

outcome is binary and logistic regression is used, check whether the outcome is rare. If

the no-unmeasured-confounding conditions are satisfied, there is no interaction, and the

outcome is rare if logistic regression is used, then proceeding with the traditional statis-

tical approaches is fine. If there are exposure-mediator interactions then the approach

described in this paper, or another counterfactual-based approach, should be used. If

the outcome is common, a log-linear model can be used. If there are confounders of the

exposure-outcome, mediator-outcome, or exposure-mediator relationship then, to the ex-

tent possible, these should be controlled for in the models; otherwise sensitivity analysis

techniques (VanderWeele, 2010; Imai et al., 2010a) can be used.

As a final point of discussion, we note that even in the presence of interaction and non-

linearities, the product method may be useful to test for mediation even if the estimates

are not themselves interpretable as estimates of an indirect effect. In other words, to test

for mediation we can test for whether the product of the coefficients is non-zero even

if this product is not equal to a causal indirect effect measure. For example, with lo-

gistic model with common outcome, the product method estimates will not in general

have a causal interpretation as a natural indirect effect. It is nonetheless the case that

although the product-method estimator is not itself a measure of an indirect effect, the

product method still gives a valid test for the presence of a mediated effect, provided

that the identification assumptions hold and that the models are correctly specified (a

formal proof of this is given in the e-Appendix of VanderWeele, 2011). The intuition is

that even if the product of the coefficients is not equal to a causal indirect effect, if the

product is non-zero then there must be an effect of the exposure on the mediator and

an effect of the mediator on the outcome, and under the identification assumptions, this
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would also imply the presence of a natural indirect effect. Thus, the product-method ap-

proach can still be useful in testing for mediation even when there are interactions and

non-linearities. For estimation and for decomposing a total effect into a direct and indi-

rect effect (arguably the chief advantages of the counterfactual approach), rather than just

testing, methods such as those described in this paper can be employed.

1.7 Description of the SAS macro

The present macro is designed to enable the investigator to easily implement mediation

analysis in the presence of exposure-mediator interaction accounting for different types

of outcomes (normal, dichotomous-logistic or dichotomous log-linear, poisson, negative

binomial) and mediators of interest (normal or dichotomous with logit link). The logit

link for dichotomous outcomes should only be used if the outcome is rare. If the outcome

is not rare the log link can be used (though the outcome model may not always con-

verge). In the case of using the log link the direct and indirect effects are on the risk ratio

scale. In particular, these macros for SAS and SPSS provide estimates, and confidence

intervals for the direct and indirect effects previously defined. The estimates assume the

model assumptions are correct and the identifiability assumptions discussed in the pre-

vious section hold.

1.7.1 Basic SAS Macro

The macro has been developed using the 9.2 version of SAS software. In order to

implement mediation analysis via the mediation macro in SAS the investigator first opens

a new SAS session and inputs the data, which has to include the outcome, treatment

and mediator variables as well as the covariates to be adjusted for in the model. Macro

activation requires then the investigator to save the macro script and input information

in the statement
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% mediation(data=,yvar=,avar=,mvar=,cvar=,a0=,a1=,m=,nc=,yreg=,mreg=,

interaction=)

run;

First one inputs the name of the dataset (data =), then the name of the outcome variable

(yvar =), the treatment variable (avar =), the mediator variable (mvar =), the other co-

variates, (cvar =). Categorical variables need to be coded as a series of dummy variables

before being entered as covariates. The macro dumvar from MCHP SAS Macros, for ex-

ample, can be used for this purpose. Then the investigator needs to specify the baseline

level of the exposure a∗ (a0 =), the new exposure level a (a1 =), the level of mediator

m (m =) at which the controlled direct effect is to be estimated and the number of co-

variates to be used (nc =). When no covariates are entered, then the user still needs to

write the commands cvar = and nc = even though both are left blank. The user must also

specify which types of regression have to be implemented. In particular, linear, logistic,

loglinear, poisson or negbin can be specified (yreg =). For the mediator either linear or

logistic regressions are allowed (mreg =). Finally, the analyst needs to specify whether an

exposure-mediator interaction is present (interaction = true or false).

The macro provides the following output: first the regression output for outcome and me-

diator models is provided. The output in the SAS macro is derived from the procedures

of proc reg when the variable is continuous, proc logistic when the variable is binary.

When the outcome is specified as poisson, negative binomial or log-linear the procedure

proc genmod is employed. If the dataset contains missing data the macro implements a

complete case only analysis. A table with direct and indirect effects together with total

effects follows. The effects are reported for the mean level of the covariates C. The table

contains standard errors, and confidence intervals for each effect.

1.7.2 Other options in the SAS Macro

The reduced output is the default option. The table will just display controlled direct

effect, natural direct effect, natural indirect effect and total effect described above.

When the option output = full is used, both conditional effects and effects evaluated
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at the mean covariate levels are shown. When the output = full option is chosen, the

investigator must enter fixed values for the covariates C at which compute conditional

effects. The macro statement is as follows:

%mediation(data=,yvar=,avar=,mvar=,cvar=,a0=,a1=,m=,nc=,yreg=,mreg=,

interaction=,output=,c=)

run;

When output = full is added, then, in addition to the controlled direct effect, and the

natural direct and indirect effect described above, two other effects are displayed. The

natural direct and indirect effects we have been considering are sometimes called the

”pure” natural direct effect and the ”total” natural indirect effect (Robins and Greenland,

1992). We can also consider the ”total” natural direct effect and the ”pure” natural indirect

effect. For binary exposure the total natural direct effect expresses how much the outcome

would change on average if the exposure changed from level a∗ = 0 to level a = 1,

but the mediator for each individual was fixed at the natural level which would have

taken at exposure level a = 1. The pure natural indirect effect expresses how much the

outcome would change on average if the exposure were controlled at level a∗ = 0 but

the mediator were changed from the natural level it would take if a∗ = 0 to the level

that would have taken at exposure level a = 1. These effects are also reported if the user

selects output = full. If there is no exposure-mediator interaction, the ”pure” and ”total”

natural direct effects will coincide and the ”pure” and ”total” natural indirect effects will

coincide.

The investigator also has the option of implementing mediation analysis when data arise

from a case-control design, provided the outcome in the population is rare. To do so the

option casecontrol = true can be used. In this case the macro statement changes to:

%mediation(data=,yvar=,avar=,mvar=,cvar=,a0=,a1=,m=,nc=,yreg=,mreg=,

interaction=,casecontrol=)

run;
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Finally, the investigator can choose whether to obtain standard errors and confidence

intervals via the delta method or a bootstrapping technique. The default is the delta

method. To use bootstrapping the option boot = true can be given. In this case the macro

will compute 1,000 bootstrap samples from which causal effects are obtained along

with their standard errors (s.e.) and percentile confidence intervals (p95CIlower
, p95CIupper ).

If the investigator wishes to use a higher number of bootstrap samples, instead of

”true” he or she inputs the number of bootstrap samples desired (e.g. boot=5000 would

estimate standard errors and confidence intervals using 5000 bootstrap samples). The

use of bootstrap for standard errors is generally to be preferred if the sample size of

the original sample is small as it will lead to more accurate inferences than the delta

method (MacKinnon, 2008). However, these issues are less important if the original

sample is large and if this is the case the use of delta method standard errors may be

preferred because of computational efficiency. (For example, Ananth and VanderWeele

(2011) conducted a mediation analysis using a sample of 26,000,000 individuals and

bootstrapping would have been completely infeasible). When using the bootstrap the

macro statement changes to:

%mediation(data=,yvar=,avar=,mvar=,cvar=,a0=,a1=,m=,nc=,yreg=,mreg=,

interaction=,boot=)

run;

As noted above, if the investigator wants to add a categorical variable as covariate, this

must be recoded as a series of indicator variables. For example, if a covariate, named cat-

var, takes four levels (1,2,3,4) we could construct three ”dummy” or ”indicator” variables,

named, for example, ivar2, ivar3, and ivar4, leaving the first value as the reference. The

variable ivar2 would take the value 1 for all observations which had catvar=2, and 0 for

all other observations. The variable ivar3 would take the value 1 for all observations that

had catvar=3 and 0 for all other observations, etc. The macro dumvar mentioned previ-

ously requires the user to list the dataset (data=), the categorical variable (e.g. catvar) that

needs to be transformed in the input (dvar=). The user needs also to input the prefix of
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the name of the dummy variables (e.g. ivar) that will be generated (prefix=) and the ref-

erence category (drop=). Categorical variables can be both character and numerical using

dumvar. For example we can run the following:

dumvar data=dat dvar="catvar" prefix="ivar" drop="ivar1"

Running this command will generate three indicator variables: ”ivar2”, ”ivar3”, ”ivar4”.

For more examples: http://mchpappserv.cpe.umanitoba.ca/viewConcept.php?

conceptID=1048.

1.7.3 Comparison with other macros

Before concluding the section we would like the reader to be aware that a rich set of alter-

native programs is also available to implement mediation analyses in certain settings. We

believe that our macro provides unique features that may be useful to investigators. At

the end of this section table 1.1 compares our macro to some of the existing and popular

software tools. Preacher, Hayes et al. developed several macros for mediation mainly im-

plementable in SAS, SPSS and Mplus (indirect, mediate, modmed, medcurve); Imai et al.

also developed a macro in R (mediate). We also compare the macros to recent procedures

that have been developed in Mplus (Muthn, 2012) in part based on the work we present

in this paper. We compare the macros on the basis of certain features. We check whether

they provide both direct and indirect effects and if they allow for non-linearities such as

interactions, and binary or count variables. We also consider whether they accommo-

date case-control designs and in which software packages they can be implemented. Our

macro, in contrast with Preacher and Hayes’, (i) allows for effect decomposition into di-

rect and indirect effects even in the presence of exposure-mediator interaction, (ii) allows

for dichotomous mediators and count outcomes, (iii) allows for case-control designs, and

(iv) gives estimates with a clear interpretation within the counterfactual framework. In

contrast with that of Imai et al. (2010), our macro (i) provides direct and indirect effects

on a ratio scale for dichotomous outcomes, (ii) allows for case-control sampling designs,
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(iii) is implemented in SAS and SPSS which are more commonly employed in the social

sciences. Our macro provides similar features to Mplus which is in part because recent

developments in Mplus (Muthn, 2012) were implemented following the results of our pa-

per. Our macro, in contrast to Mplus, allows for case-control designs; Mplus, in contrast

to our macro, allows for the flexibility to handle ordinal outcomes.
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1.8 Description of the SPSS macro

The SPSS macro that we provide, which was developed under the version 19.0, performs

exactly the same tasks described in the previous section for the SAS macro. However,

we point out some small differences that the investigator has to take into account when

running mediation analysis using SPSS software.

Before invoking the mediation macro the user has to open a new SPSS session and needs

to specify the path in which he or she wants to save relevant estimates from the mediator

and outcome regressions. This is simply done by running this command:

DEFINE !path()"C:\ "!ENDDEFINE.

In between the quotation marks the path is defined, here for example the path ”C:\” has

been entered. For SPSS users, macro activation requires that the macro script is then saved

as a syntax file (the syntax file should be called from the session that has just been opened)

and information is input in the following statement:

mediation data= / yvar= /avar= /mvar= /cvar= /NC= /a0= /a1=

/m= /yreg= /mreg= /interaction=

[/casecontrol= /Output= /c=]

First one inputs the name of the dataset (including the path, e.g. data =�� C : .sav��), then

the name of the outcome variable (yvar =), the treatment variable (avar=), the media-

tor variable (mvar =), and the other covariates (cvar =). Categorical variables need to

be coded as a series of dummy variables before being entered as covariates. The macro

dummit can be used for this purpose. Then the investigator needs to specify the baseline

level of the exposure a∗ (a0 =), the new exposure level a (a1 =), the level of mediator m

at which the controlled direct effect is to be estimated and the number of covariates to be

used (nc =). When no covariates are entered, then the user still needs to write the com-

mand cvar = and needs to specify that nc = 0. The user must also specify which types of
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regression have to be implemented. In particular, LINEAR, LOGISTIC, LOGLINEAR,

POISSON or NEGBIN can be specified in the option yreg. Logistic links for yreg can be

used for rare dichotomous outcomes; otherwise for dichotomous outcomes that are not

rare, log links should be used for the outcome regression and the effects are then given on

the risk ratio scale. For the option mreg either LINEAR or LOGISTIC regressions are

allowed. If the dataset contains missing data the macro implements a complete case only

analysis.

Finally, the analyst needs to specify whether an exposure-mediator interaction is present

(TRUE or FALSE). As optional inputs, the investigator can use the option casecontrol =

TRUE, when the data arise from a case-control study and the outcome is rare. More

complete output (described in the previous section) can be obtained using the option

Output = FULL and entering the values for the covariates at which to compute causal

effects conditional on those covariate values (c =). In order to enter the covariate values

the investigator needs to create a separate dataset that contains those values. For exam-

ple, if two covariates C are present in the model and the value at which the investigator

wants to fix the first is 4 and the value at which the investigator wants to fix the second is

10, at the beginning of the script the following commands need to be run:

Matrix.

compute c=make(1,2,0).

compute c(1,1)=4.

compute c(1,2)=10.

SAVE {c(1,:)} /OUTFILE="C:\c.sav".

end matrix.

After having created dataset for the covariate values, the user can specify the option

Output = FULL/c = ”C : .̧sav” to obtain the more complete output. If the investiga-

tor wishes to obtain bootstrap standard errors, he or she can use the option boot = true

followed by the number of observations in the dataset (nobs =) to compute causal ef-

fects and standard errors with 1,000 bootstrap replications (or ”boot = n”, where n is the
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desired number of bootstrap samples). Otherwise delta method standard errors is the

default option. As we mentioned in the previous section, if the investigator needs to add

a categorical variable as covariate, a series of indicator variables needs to be generated.

The SPSS macro dummit works very similarly to the SAS macro. In particular the inves-

tigator needs to call the macro followed by three parentheses. In the first parenthesis the

number of levels is entered, in the second parenthesis the name of the variable needs to

be specified. Finally, in the third parenthesis, the prefix for the new variables is entered.

For example if the variable we need to recode is ”smoking” which takes levels ”never”,

”past”, ”current”. Then we can run the following macro:

dummit (3) (smoking) (smoke)

This macro would generate the following variables: ”smokedum2”, ”smokedum3”. The

category ”never” is automatically taken as a reference. More examples can be found fol-

lowing the link: http://www.glennlthompson.com/?p=92.

1.9 Example

We present in this section an example of using the mediation macro. We implement the

analyses on a modified version of the fictitious dataset used by Preacher and Hayes (2004)

to explain their Sobel macro. The interest lies in the effects of a new cognitive therapy on

life satisfaction after retirement. Residents of a retirement home diagnosed as clinically

depressed are randomly assigned to receive 10 sessions of a new cognitive therapy (A = 1)

or 10 sessions of an alternative therapeutic method (A = 0). After Session 8, the positiv-

ity of the evaluation the residents make for a recent failure experience is assessed (M ).

Finally, at the end of Session 10, the residents are given a questionnaire to measure life

satisfaction (Y ). The question is whether the cognitive therapy’s effect on life satisfaction

is mediated by the positivity of their attributions of negative experiences.

The new dataset that we employ differs with respect to Preacher and Hayes’ one only
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in the way in which the outcome is simulated. In particular, the exposure and media-

tor variables are the same but now the outcome is simulated as a normally distributed

variable with mean equal to the linear regression estimated with the original data (the

coefficients given in the outcome regression in Preacher and Hayes, 2004) plus a new

term, the exposure-mediator interaction term, with coefficient equal to θ3 = 0.5 indi-

cating a weak positive interaction, and standard deviation equal to the standard error

of the residuals obtained from the outcome regression using Preacher and Hayes data

(http://www.afhayes.com/spss-sas-and-mplus-macros-and-code.html).

We first consider the case in which the interaction between the therapy and the attri-

butions of negative experiences is omitted by the investigator. After having saved the

dataset and inserted macro script we run the following command:

%mediation(data=dat,yvar=satis,avar=therapy,mvar=attrib,cvar=,a0=0,

a1=1,m=0,nc=,yreg=linear,mreg=linear,interaction=false)

run;

The first output provided is the results of the outcome and mediator regressions:

Dependent Variable: satis

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -0.71479 0.20449 -3.50 0.0017

therapy 1 0.66788 0.30147 2.22 0.0354

attrib 1 0.67186 0.16923 3.97 0.0005

Dependent Variable: attrib

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -0.35357 0.21837 -1.62 0.1166

therapy 1 0.81857 0.29902 2.74 0.0106

Then the direct effects and indirect effects follow. We give the reduced output, which

provides estimates for the controlled direct effect, the natural indirect effect, and the total

effect:

Obs Effect Estimate s_e_ p_value lower upper

1 cde=nde 0.66788 0.30147 0.026733 0.07700 1.25877

2 nie 0.54997 0.24403 0.024215 0.07167 1.02827

3 total effect 1.21785 0.33475 0.000275 0.56174 1.87396
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We then run the mediation macro with the correctly specified outcome regression model

that includes the exposure-mediator interaction term. We type the following command:

%mediation(data=dat,yvar=satis,avar=therapy,mvar=attrib,cvar=,a0=0,

a1=1,m=0,nc= ,yreg=linear,mreg=linear,interaction=true)

run;

The output from the outcome regression is the following (the mediator regression will be
the same):

Dependent Variable: satis

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -0.84424 0.19646 -4.30 0.0002

therapy 1 0.62132 0.27901 2.23 0.0348

attrib 1 0.30575 0.21913 1.40 0.1747

int 1 0.74464 0.31251 2.38 0.0248

We obtain the following estimates for the effects:

_95__CI_ _95__CI_

Obs Effect Estimate s_e_ p_value lower upper

1 cde 0.62132 0.27901 0.02596 0.07446 1.16818

2 nde 0.35804 0.34759 0.30298 -0.32323 1.03931

3 nie 0.85981 0.28782 0.00281 0.29568 1.42395

4 marginal total effect 1.21785 0.33407 0.00027 0.56307 1.87263

We can see how the estimate of the indirect effect is downward biased and is less signif-

icant if the interaction term is omitted. Moreover, when the interaction term is correctly

added in the model, controlled direct effects and natural direct effects differ.

1.10 Discussion

With the present work we have provided several contributions that will likely be

important for research in psychology and in the social and biomedical sciences. First, by

using a counterfactual approach for the definition of the causal effects of interest, along

with their identifiability conditions, we give the reader some intuitive rules allowing

for causal interpretation in mediation analysis. Issues of identification and causal
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interpretation have often been neglected when using the Baron and Kenny approach

and other traditional approaches; the overview here will hopefully guide researchers in

thinking about these questions. Second, we have described how progress in mediation

analysis can be made in the case in which exposure-mediator interaction is present and

we have derived new formulas in the appendix for settings with a binary mediator

allowing for exposure-mediator interactions. We have also extended this approach

to count outcomes. Third, the investigator who wishes to pursue mediation analysis

using regression models will find useful resources in the SAS and SPSS macro that we

developed. These macros target the implementation of mediation analysis allowing for

the presence of exposure-mediator interaction. The macro was created by applying and

extending the work on identification and estimation of direct and indirect causal effects

of VanderWeele and Vansteelandt (2009, 2010). We provided a table that summarizes

the features of the most popular existing macros for mediation. The current macro also

allows for binary and count data as outcomes and provides valid estimation under

case-control designs provided the outcome is rare.

Mediation analysis from a counterfactual perspective with exposure-mediator interaction

can also be performed in R and STATA using the macro provided by Imai et al. (2010a,

2010b). Their approach to mediation analysis relies on Monte Carlo methods. However,

the connections to product method and other popular methods in mediation analysis are

clearer with the regression-based approach we have presented in that we have provided

analytic formulae for the direct and indirect effects and these formulae coincide with the

product method when there are no interactions.

The reader should note that if interactions between exposure or mediator and additional

covariates (C) are present, these might need to be included in order to have a correctly

specified model. However, the identifiability conditions that we described above under

the counterfactual framework are applicable also to these more complex models. An

investigator can still pursue mediation analysis with these different models, but new

formulas for the direct and indirect effects defined above would have to be derived. The
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derivations in the online appendix provide a template that could be used to derive these

new formulas for the direct and indirect effects and their standard errors in other types

of models that may include interactions between covariates and treatment or mediator

or quadratic terms.

Finally we emphasize that the investigator needs to take particular care in controlling for

mediator-outcome confounding. The estimates from the product method or difference

method or our approach will be biased if control is not made for these variables.

Mediator-outcome confounding can be present even if the exposure is randomized (since

the mediator is not randomized). Unfortunately, this point was not made in the popular

Baron and Kenny (1986) paper, though it was made by Judd and Kenny (1981) five years

earlier and it has now been emphasized and clarified in the causal inference literature

and is being emphasized again in psychology. Psychologists, social scientists, and

biomedical researchers need to take this assumption seriously if they hope to obtain valid

conclusions about direct and indirect effects. If the investigator thinks that unmeasured

confounding may be present, sensitivity analysis should be used (VanderWeele, 2010b;

Imai et al. 2010a). We hope to automate sensitivity analysis in the macro in future work.

1.A Definition of causal effects and Identifiability condi-
tions

We let Ya and Ma denote respectively the values of the outcome and mediator that would

have been observed had the exposure A been set to level a. We let Yam denote the value

of the outcome that would have been observed had the exposure, A, and mediator, M ,

been set to levels a and m, respectively.

The average controlled direct effect comparing exposure level a to a∗ and fixing the me-

diator to level m is defined by CDEa,a∗(m) = E[Yam − Ya∗m]. The average natural direct

effect is then defined by NDEa,a∗(a∗) = E[YaMa∗ − Ya∗Ma∗ ]. The average natural indi-

rect effect can be defined as NIEa,a∗(a) = E[YaMa − YaMa∗ ], which compares the effect of
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the mediator at levels Ma and Ma∗ on the outcome when exposure A is set to a. Con-

trolled direct effects and natural direct and indirect effects within strata of C = c are then

defined by: CDEa,a∗|c(m) = E[Yam − Ya∗m|c], NDEa,a∗|c(a∗) = E[YaMa∗ − Ya∗Ma∗ |c] and

NIEa,a∗|c(a) = E[YaMa − YaMa∗ |c] respectively.

For a dichotomous outcome the total effect on the odds ratio scale conditional on

C = c is given by ORTE
a,a∗|c = P (Ya=1|c)/{1−P (Ya=1|c)}

P (Ya∗=1|c)/{1−P (Ya∗=1|c)} . The controlled direct effect on

the odds ratio scale is given by ORCDE
a,a∗|c(m) = P (Yam=1|c)/{1−P (Yam=1|c)}

P (Ya∗m=1|c)/{1−P (Ya∗m=1|c)} . The natural

direct effect on the odds ratio scale conditional on C = c is given by ORNDE
a,a∗|c(a

∗) =
P (YaMa∗=1|c)/{1−P (YaMa∗=1|c)}

P (Ya∗Ma∗
=1|c)/{1−P (Ya∗Ma∗

=1|c)} . The natural indirect effect on the odds ratio scale conditional

on C = c is given by ORNIE
a,a∗|c(a) =

P (YaMa=1|c)/{1−P (YaMa=1|c)}
P (YaMa∗=1|c)/{1−P (YaMa∗=1|c)} .

As discussed in the text, identification assumptions (i)-(iv) will suffice to identify these

direct and indirect effects. If we let X ⊥ Y |Z denote that X is independent of Y condi-

tional on Z then these four identification assumptions can be expressed formally in terms

of counterfactual independence as (i) Yam ⊥ A|C, (ii) Yam ⊥ M |{A,C}, (iii) Ma ⊥ A|C,

and (iv) Yam ⊥ Ma∗ |C. Assumptions (i) and (ii) suffice to identify controlled direct effects;

assumptions (i)-(iv) suffice to identify natural direct and indirect effects (Pearl, 2001;

VanderWeele and Vansteelandt, 2009). The intuitive interpretation of these assuptions as

described in the text follows from the theory of causal diagrams (Pearl, 2001). Alternative

identification assumptions have also been proposed (Imai 2010a; Hafeman and Vander-

Weele, 2011). However, it has been shown that the intuitive graphical interpretation of

these alternative assumptions are in fact equivalent (Shpitser and VanderWeele, 2011).

Technical examples can be constructed where one set of identifiation assumptions holds

and another does not, but on a causal diagram corresponding to a set of non-parametric

structural equations, whenever one set of the assumptions among those in VanderWeele

and Vansteelandt (2009), Imai (2010a), and Hafeman and VanderWeele (2011) holds, the

others will also.
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1.B Continuous Mediator and Outcome

Effects using regression

Suppose that both the mediator and the outcome are continuous and that the following

models fit the observed data:

E(M |A = a, C = c) = β0 + β1a+ β
�

2c (1.7)

E(Y |A = a,M = m,C = c) = θ0 + θ1a+ θ2m+ θ3a ∗m+ θ
�

4c (1.8)

If the covariates C satisfied the no-unmeasured confounding assumptions (i)-(iv) above,

then the average controlled direct effect and the average natural direct and indirect effects

were derived by VanderWeele and Vansteelandt, 2009.

In particular, if the regression models (1.7) and (1.8) are correctly specified and as-

sumptions of no unmeasured confounding of exposure-outcome relationship (i) and no

unmeasured confounding of the mediator-outcome relationship (ii) hold, then we could

compute the controlled direct effect as follows:

CDE = E[Yam − Ya∗m|C = c]

= E[Y |C = c, A = a,M = m]− E[Y |C = c, A = a∗,M = m]

= (θ0 + θ1a+ θ2m+ θ3am+ θ
�
4c)− (θ0 + θ1a∗ + θ2m+ θ3a∗m+ θ

�
4c)

= (θ1a+ θ3am− θ1a∗ − θ3a∗m)

= θ1(a− a∗) + θ3m(a− a∗).

If the regression models (1.7) and (1.8) are correctly specified and assumptions (i) and

(ii) together with two additional assumptions of (iii) no unmeasured confounding of the

exposure-mediator relationship and (iv) that there is no mediator-outcome confounder

that is affected by the exposure hold, then we could compute the natural direct effects by:
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NDE = E[YaMa∗ − Ya∗Ma∗ |C = c]

=
�

m{E[Y |C = c, A = a,M = m]− E[Y |C = c, A = a∗,M = m]} × P (M = m|C = c, A =

a∗)

=
�

m{(θ0 + θ1a+ θ2m+ θ3am+ θ
�
4c)− (θ0 + θ1a∗ + θ2m+ θ3a∗m+ θ

�
4c)} × P (M = m|C =

c, A = a∗)

=
�

m{(θ1a+ θ2m+ θ3am)− (θ1a∗ + θ2m+ θ3a∗m)} × P (M = m|C = c, A = a∗)

= {(θ1a + θ2E[M |A = a∗, C = c] + θ3aE[M |A = a∗, C = c]) − (θ1a∗ + θ2E[M |A = a∗, C =

c] + θ3a∗E[M |A = a∗, C = c])}

= {(θ1a+ θ2(β0+β1a∗+β
�
2c)+ θ3a(β0+β1a∗+β

�
2c)− (θ1a∗+ θ2(β0+β1a∗+β

�
2c)+ θ3a∗(β0+

β1a∗ + β
�
2c))}

= {θ1a+ θ3a(β0 + β1a∗ + β
�
2c)− (θ1a∗ + θ3a∗(β0 + β1a∗ + β

�
2c))}

= (θ1 + θ3β0 + θ3β1a∗ + θ3β
�
2c)(a− a∗).

Moreover under the same assumptions we can compute the natural indirect effects by:

NIE = E[YaMa − YaMa∗ |C = c]

=
�

m E[Y |C = c, A = a,M = m] × P (M = m|C = c, A = a) −
�

m E[Y |C = c, A =

a,M = m]× P (M = m|C = c, A = a∗)

=
�

m(θ0 + θ1a + θ2m + θ3am + θ
�
4c) × P (M = m|C = c, A = a) −

�
m(θ0 + θ1a + θ2m +

θ3am+ θ
�
4c)× P (M = m|C = c, A = a∗)

= (θ0 + θ1a+ θ2E[M |A = a, C = c] + θ3aE[M |A = a, C = c] + θ
�
4c)− (θ0 + θ1a+ θ2E[M |A =

a∗, C = c] + θ3a∗E[M |A = a∗, C = c] + θ
�
4c)

= (θ1a+ θ2(β0 + β1a+ β
�
2c) + θ3a(β0 + β1a+ β

�
2c))− (θ1a∗ + θ2(β0 + β1a∗ + β

�
2c) + θ3a∗(β0 +

β1a∗ + β
�
2c))

= (θ2β1 + θ3β1a)(a− a∗).

If the regression models (1.7) and (1.8) are correctly specified and assumptions (i) and (ii)

hold, then we could compute the total effect by:
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TE = E[Ya − Ya∗ |C = c]

= E[Ya,M(a∗) − Ya∗,M(a∗)|C = c] + E[Ya,M(a) − Ya∗,M(a∗)|C = c]

= (θ1 + θ3β0 + θ3β1a∗ + θ3β
�
2c+ θ2β1 + θ3β1a)(a− a∗).

Finally if the regression models (1.7) and (1.8) are correctly specified and assumptions

(i)-(iv) hold then we could compute the proportion mediated by:

PM =
E[YaMa−Ya∗Ma∗

|C=c]

E[Ya−Ya∗ |C=c]

= θ2β1+θ3β1a

θ1+θ3β0+θ3β1a∗+θ3β
�
2c+θ2β1+θ3β1a

.

Standard errors

Suppose that model (1.7) and (1.8) have been fit using standard linear regression software

and that the resulting estimates β̂ of β = (β0, β1, β
�
2)

� and θ̂ of θ = (θ0, θ1, θ2, θ3, θ
�
4)

� have

covariance matrices Σβ and Σθ. Then the covariance matrix of (β̂ �
, θ̂

�
) is

Σ =

�
Σβ 0
0 Σθ

�

Standard errors of the controlled and natural direct and indirect effects can be obtained

(using the delta method) as
√
ΓΣΓ� |a− a∗|

with Γ = (0, 0, 0
�
, 0, 1, 0,m, 0

�
) for the controlled direct effect, Γ = (θ3, θ3a∗, θ3c

�
, 0, 1, β0 +

β1a∗+β
�
2c, 0

�
) for the pure natural direct effect (same expression holds for the total natural

direct effect upon substituting a and a∗), Γ = (0, θ2 + θ3a, 0
�
, 0, 0, β1, β1a, 0

�
) for the total

natural indirect effect (the same expression holds for the pure natural indirect effect upon

substituting a and a∗), Γ = (θ3, θ3(a+ a∗) + θ2, θ3c
�
, 0, 1, β1, β0 + β1(a+ a∗) + β

�
2c, 0

�
) for the

total effect and for the proportion mediated Γ = (d1, d2, d3, d4, d5, d6, d7, d8) where
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d1 = −θ3
θ2β1 + θ3β1a

(θ1 + θ3β0 + θ3β1a∗ + θ3β
�
2c+ θ2β1 + θ3β1a)2

d2 =
(θ2 + θ3a)(−(θ2β1 + θ3β1a) + (θ1 + θ3β0 + θ3β1a∗ + θ3β

�
2c+ θ2β1 + θ3β1a))− θ3a∗

(θ1 + θ3β0 + θ3β1a∗ + θ3β
�
2c+ θ2β1 + θ3β1a)2

d3 = − θ3c
�
(θ2β1 + θ3β1a)

(θ1 + θ3β0 + θ3β1a∗ + θ3β
�
2c+ θ2β1 + θ3β1a)2

d4 = 0

d5 = − θ2β1 + θ3β1a

(θ1 + θ3β0 + θ3β1a∗ + θ3β
�
2c+ θ2β1 + θ3β1a)2

d6 =
β1(−(θ2β1 + θ3β1a) + (θ1 + θ3β0 + θ3β1a∗ + θ3β

�
2c+ θ2β1 + θ3β1a))

(θ1 + θ3β0 + θ3β1a∗ + θ3β
�
2c+ θ2β1 + θ3β1a)2

d7 =
β1a(θ1 + θ3β0 + θ3β1a∗ + θ3β

�
2c+ θ2β1 + θ3β1a)− (β0 + β1(a+ a∗) + β

�
2c)(θ2β1 + θ3β1a)

(θ1 + θ3β0 + θ3β1a∗ + θ3β
�
2c+ θ2β1 + θ3β1a)2

d8 = 0
�
.

1.C Continuous Mediator and Binary Outcome

Effects using regression

Suppose that the mediator is continuous and the outcome is binary and is rare. Suppose

that the following models fit the observed data:

E(M |A = a, C = c) = β0 + β1a+ β
�

2c (1.9)
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logit{P (Y = 1|A = a,M = m,C = c)} = θ0 + θ1a+ θ2m+ θ3a ∗m+ θ
�

4c (1.10)

and that the error term in the regression model for M is normally distributed with mean

0 and variance σ2. If the regression models (1.9) and (1.10) are correctly specified and

assumptions (i) and (ii) hold then the conditional controlled direct effect on the odds

ratio scale would be given by (VanderWeele and Vansteelandt, 2010):

ORCDE = P (Yam=1|c)/(1−P (Yam=1|c))
P (Ya∗m=1|c)/(1−P (Ya∗m=1|c))

= P (Y=1|a,m,c)/(1−P (Y=1|a,m,c))
P (Y=1|a∗,m,c)/(1−P (Y=1|a∗m,c))

= exp[θ0+θ1a+θ2m+θ3am+θ
�
4c]

exp[θ0+θ1a∗+θ2m+θ3a∗m+θ
�
4c]

= exp[(θ1 + θ3m)(a− a∗)].

If the regression models (1.9) and (1.10) are correctly specified and assumptions (i)-(iv)

hold, the outcome Y is rare, and the error term for linear regression model ((2.12)) is

normally distributed and has constant variance σ2, then we could compute the natural

direct effects by:

ORNDE = exp[log{ P (YaMa∗=1|c)/(1−P (YaMa∗=1|c))
P (Ya∗Ma∗

=1|c)/(1−P (Ya∗Ma∗
=1|c))}]

= exp[logit{P (YaMa∗ = 1|c)} − logit{P (Ya∗Ma∗ = 1|c)}]

∼ exp[θ0 + θ1a+ θ
�
4c+ (θ2 + θ3a)(β0 + β1a∗ + β

�
2c) +

1
2(θ2 + θ3a)2σ2 −{θ0 + θ1a∗ + θ

�
4c+ (θ2 +

θ3a)(β0 + β1a∗ + β
�
2c) +

1
2(θ2 + θ3a∗)2σ2}]

= exp[{θ1 + θ3(β0 + β1a∗ + β
�
2c+ θ2σ2)}(a− a∗) + 0.5θ23σ

2(a2 − a∗2)].

If the regression models (1.9) and (1.10) are correctly specified and assumptions (i)-(iv)

hold, the outcome Y is rare, and the error term for linear regression model (1.9) is

normally distributed and has constant variance σ2, then we could compute the natural

indirect effects by:
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ORNIE = exp[log{ P (YaMa=1|c)/(1−P (YaMa=1|c))
P (YaMa∗=1|c)/(1−P (YaMa∗=1|c))}]

= exp[logit{P (YaMa = 1|c)} − logit{P (YaMa∗ = 1|c)}]

∼ exp[θ0 + θ1a+ θ
�
4c+ (θ2 + θ3a)(β0 + β1a+ β

�
2c) +

1
2(θ2 + θ3a)2σ2 − {θ0 + θ1a+ θ

�
4c+ (θ2 +

θ3a)(β0 + β1a∗ + β
�
2c) +

1
2(θ2 + θ3a)2σ2}]

= exp[(θ2β1 + θ3β1a)(a− a∗)].

If the regression models (1.9) and (1.10) are correctly specified and assumptions (i)-(iv)

hold, the outcome Y is rare, and the error term for linear regression model (1.9) is

normally distributed and has constant variance σ2, then we could compute the total

effects by:

ORTE = exp[log{ P (YaMa∗=1|c)/(1−P (YaMa∗=1|c))
P (Ya∗Ma∗

=1|c)/(1−P (Ya∗Ma∗
=1|c))}]× exp[log{ P (YaMa=1|c)/(1−P (YaMa=1|c))

P (YaMa∗=1|c)/(1−P (YaMa∗=1|c))}]

= E[Ya,Ma∗ − Ya∗,Ma∗ |C = c]× E[Ya,Ma − Ya∗,Ma∗ |C = c]

= exp[(θ1 + θ3β0 + θ3β1a∗ + θ3β
�
2c+ θ2β1 + θ3β1a+ θ3θ2σ2)(a− a∗) + 0.5θ23σ

2(a2 − a∗2)].

If the regression models (1.9) and (1.10) are correctly specified and assumptions (i)-(iv)

hold then we can compute the proportion mediated by:

PM =
log{

P (YaMa=1|c)/(1−P (YaMa=1|c))
P (YaMa∗

=1|c)/(1−P (YaMa∗
=1|c))}

log{
P (YaMa∗

=1|c)/(1−P (YaMa∗
=1|c))

P (Ya∗Ma∗
=1|c)/(1−P (Ya∗Ma∗

=1|c))}+log{
P (YaMa=1|c)/(1−P (YaMa=1|c))

P (YaMa∗
=1|c)/(1−P (YaMa∗

=1|c))}

= (θ2β1+θ3β1a)(a−a∗)

(θ1+θ3β0+θ3β1a∗+θ3β
�
2c+θ2β1+θ3β1a+θ3θ2σ2)(a−a∗)+0.5θ23σ

2(a2−a∗2)
.

These expressions apply also if the outcome is not rare and log-linear rather than logistic

models are fit to the outcome model; the direct and indirect effect will have now an inter-

pretation on the risk ratio scale rather than on the odds ratio scale.
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These expressions apply also if the outcome is a count variable. In particular if Y ∼ Poi(λ)

for λ = exp{θ0 + θ1a+ θ2m+ θ3a ∗m+ θ
�
4c}) the outcome regression can be defined as:

log{E(Y |A = a,M = m,C = c)} = θ0 + θ1a+ θ2m+ θ3a ∗m+ θ
�

4c

The natural direct effect for binary outcome on the risk ratio scale coincides with the

natural direct effect for poisson count outcome since:

RRNDE = exp[log{ E(YaMa∗ |c)
E(Ya∗Ma∗ |c)

}]

The same argument holds for the natural indirect effect. Finally, the argument can be

extended to the case in which the count outcome is modeled with a negative binomial

distribution. This is the case since the negative binomial distribution can be represented

as an over-dispersed poisson and the mean of the two models coincide.

Standard errors

We now consider standard errors for the controlled direct effect and natural direct and

indirect effect odds ratios. Suppose that model (1.10) has been fit using standard logistic

regression software and that model (1.9) has been fit using standard linear regression

software. Suppose furthermore that the resulting estimates β̂ of β = (β0, β1, β
�
2)

� , θ̂ of

θ = (θ0, θ1, θ2, θ3, θ
�
4)

� and σ̂2 of σ have covariance matrices Σβ and Σθ. Then the covariance

matrix of (β̂ �
, θ̂

�
, σ̂2) is

Σ =




Σβ 0 0
0 Σθ 0
0 0 Σσ2





Standard errors of the controlled and natural direct and indirect effects can be obtained
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(using the delta method) as
√
ΓΣΓ� |a− a∗|

with Γ = (0, 0, 0
�
, 0, 1, 0,m, 0

�
, 0) for the log of controlled direct effect odds ratio, Γ =

(θ3, θ3a∗, θ3c
�
, 0, 1, θ3σ2, β0 + β1a∗ + β

�
2c+ θ2σ2 + θ3σ2(a+ a∗), 0

�
, θ2θ3 +0.5θ23(a+ a∗)) for the

log pure natural direct effect odds ratio (same expression holds for the total natural direct

effect upon substituting a and a∗), Γ = (0, θ2 + θ3a, 0
�
, 0, 0, β1, β1a, 0

�
, 0) for the log of total

natural indirect effect (the same expression holds for the pure natural indirect effect upon

substituting a and a∗), Γ = (θ3, θ3(a + a∗) + θ2, θ3c
�
, 0, 1, θ3σ2 + β1, β0 + β1(a + a∗) + β

�
2c +

θ2σ2+θ3σ2(a2−a∗2), 0
�
, 0.5θ23(a

2−a∗2)) for the logarithm of the total effect. Standard errors

for the proportion mediated can be obtained (using the delta method) as

√
ΓΣΓ�

where Γ = (d1, d2, d3, d4, d5, d6, d7, d8, d9) .

Let

A = (θ2β1 + θ3β1a)(a− a∗)

B = [{θ1 + θ3(β0 + β1(a+ a∗) + β
�

2c+ θ2σ
2) + β1θ2}(a− a∗) + 0.5θ23σ

2(a2 − a∗2)]

d1 = −θ3(a− a∗)A

B2

d2 =
(θ2 + θ3a)(a− a∗)B − (θ3(a+ a∗) + θ2)(a− a∗)A

B2

d3 = −θ
�
3c(a− a∗)A

B2

d4 = 0

d5 = −A(a− a∗)

B2
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d6 =
β1(a− a∗)B − (θ2σ2 + β1)(a− a∗)A

B2

d7 =
β1a(a− a∗)B + (β0 + β1(a+ a∗) + β

�
2c+ θ2σ2)(a− a∗)− (θ2σ2)(a− a∗)A

B2

d8 = 0
�

d9 = − [θ3θ2(a− a∗) + 0.5θ23(a
2 − a∗2)]A

B2

1.D Binary Mediator and Continuous Outcome

Effects using regression

Suppose that the outcome is continuous, the mediator is binary and that the following

models fit the observed data:

logit{P (M = 1|A = a, C = c)} = β0 + β1a+ β
�

2c (1.11)

E(Y |A = a,M = m,C = c) = θ0 + θ1a+ θ2m+ θ3a ∗m+ θ
�

4c (1.12)

In particular, if the regression models (1.11) and (1.12) are correctly specified and

assumptions (i) and (ii) hold then we could compute the average controlled direct effect

as in section 1

If the regression models (1.11) and (1.12) are correctly specified and assumptions (i)-(iv)

hold then we could compute the average natural direct effects by:

NDE = E[YaMa∗ − Ya∗Ma∗ |C = c]

=
�

m{E[Y |C = c, A = a,M = m]− E[Y |C = c, A = a∗,M = m]} × P (M = m|C = c, A =
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a∗)

=
�

m{(θ0 + θ1a+ θ2m+ θ3am+ θ
�
4c)− (θ0 + θ1a∗ + θ2m+ θ3a∗m+ θ

�
4c)} × P (M = m|C =

c, A = a∗)

=
�

m{(θ1a+ θ2m+ θ3am)− (θ1a∗ + θ2m+ θ3a∗m)} × P (M = m|C = c, A = a∗)

= {θ1(a− a∗)}+ {θ3(a− a∗)} exp[β0+β1a∗+β
�
2c]

1+exp[β0+β1a∗+β
�
2c]

.

If the regression models (1.11) and (1.12) are correctly specified and assumptions (i)-(iv)

hold then we could compute the average natural indirect effects by:

NIE = E[YaMa − YaMa∗ |C = c]

=
�

m E[Y |C = c, A = a,M = m] × P (M = m|C = c, A = a) −
�

m E[Y |C = c, A =

a,M = m]× P (M = m|C = c, A = a∗)

=
�

m(θ0 + θ1a + θ2m + θ3am + θ
�
4c) × P (M = m|C = c, A = a) −

�
m(θ0 + θ1a + θ2m +

θ3am+ θ
�
4c)× P (M = m|C = c, A = a∗)

= (θ2 + θ3a){E[M |A = a, C = c]− E[M |A = a∗, C = c]}

=(θ2 + θ3a){ exp[β0+β1a+β
�
2c]

1+exp[β0+β1a+β
�
2c]

− exp[β0+β1a∗+β
�
2c]

1+exp[β0+β1a∗+β
�
2c]
}.

If the regression models (1.11) and (1.12) are correctly specified and assumptions (i)-(iv)

hold then we could compute the total effect by:

TE = E[Ya − Ya∗ |C = c]

= E[YaMa∗ − Ya∗Ma∗ |C = c] + E[YaMa − Ya∗Ma∗ |C = c]

= {θ1(a−a∗)}+{θ3(a−a∗)} exp[β0+β1a∗+β
�
2c]

1+exp[β0+β1a∗+β
�
2c]

+(θ2+θ3a){ exp[β0+β1a+β
�
2c]

1+exp[β0+β1a+β
�
2c]

− exp[β0+β1a∗+β
�
2c]

1+exp[β0+β1a∗+β
�
2c]
}.

If the regression models (1.11) and (1.12) are correctly specified and assumptions (i)-(iv)

hold then we could compute the proportion mediated by:
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PM =
E[YaMa−Ya∗Ma∗

|C=c]

E[Ya−Ya∗ |C=c]

=
(θ2+θ3a){

exp[β0+β1a+β
�
2c]

1+exp[β0+β1a+β
�
2c]

− exp[β0+β1a
∗+β

�
2c]

1+exp[β0+β1a
∗+β

�
2c]

}

(θ2+θ3a){
exp[β0+β1a+β

�
2c]

1+exp[β0+β1a+β
�
2c]

− exp[β0+β1a
∗+β

�
2c]

1+exp[β0+β1a
∗+β

�
2c]

}+{θ1(a−a∗)}+{θ3(a−a∗)} exp[β0+β1a
∗+β

�
2c]

1+exp[β0+β1a
∗+β

�
2c]

.

Standard errors

Suppose that model (1.12) have been fit using standard linear regression software and

that model (1.11) have been fit using standard logistic regression. The resulting estimates

are β̂ of β = (β0, β1, β
�
2)

�and θ̂ of θ = (θ0, θ1, θ2, θ3, θ
�
4)

� have covariance matrices Σβ and Σθ.

Then the covariance matrix of (β̂ �
, θ̂

�
) is

Σ =

�
Σβ 0
0 Σθ

�

Standard errors of the controlled and natural direct can be obtained (using the delta

method) as
√
ΓΣΓ� |a− a∗|

with Γ = (0, 0, 0
�
, 0, 1, 0,m, 0

�
) for the controlled direct effect, Γ =

(d1, d2, d3, d4, d5, d6, d7, d8) for the pure natural direct effect (same expression holds

for the total natural direct effect upon substituting a and a∗), where

d1 =
θ3exp[[β0 + β1a∗ + β

�
2c](1 + exp[β0 + β1a∗ + β

�
2c])− θ3{exp[β0 + β1a∗ + β

�
2c]}2

(1 + exp[β0 + β1a∗ + β
�
2c])

2

d2 =
θ3a∗exp[[β0 + β1a∗ + β

�
2c](1 + exp[β0 + β1a∗ + β

�
2c])− {exp[β0 + β1a∗ + β

�
2c]}2

(1 + exp[β0 + β1a∗ + β
�
2c])

2

d3 =
θ3c

�
exp[[β0 + β1a∗ + β

�
2c](1 + exp[β0 + β1a∗ + β

�
2c])− {exp[β0 + β1a∗ + β

�
2c]}2

(1 + exp[β0 + β1a∗ + β
�
2c])

2

d4 = 0

d5 = 1

d6 = 0
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d7 =
exp[β0 + β1a∗ + β

�
2c]

1 + exp[β0 + β1a∗ + β
�
2c]

d8 = 0
�

Standard errors of the natural indirect can be obtained (using the delta method) as

√
ΓΣΓ�

For the natural indirect effect (the same expression holds for the pure natural indirect

effect upon substituting a and a∗) let

A =
exp[β0 + β1a+ β

�
2c]{1 + exp[β0 + β1a+ β

�
2c]} − {exp[β0 + β1a+ β

�
2c]}2

{1 + exp[β0 + β1a+ β
�
2c]}2

B =
exp[β0 + β1a∗ + β

�
2c]{1 + exp[β0 + β1a∗ + β

�
2c]} − {exp[β0 + β1a∗ + β

�
2c]}2

{1 + exp[β0 + β1a∗ + β
�
2c]}2

K =
exp[β0 + β1a+ β

�
2c]

{1 + exp[β0 + β1a+ β
�
2c]}

D =
exp[β0 + β1a∗ + β

�
2c]

{1 + exp[β0 + β1a∗ + β
�
2c]}

and

Γ = (d1, d2, d3, d4, d5, d6, d7, d8), where

d1 = {θ2 + θ3a}[A− B]

d2 = {θ2 + θ3a}[aA− a∗B]

d3 = {θ2 + θ3a}c
�
[A− B]

d4 = 0

d5 = 0

d6 = K −D
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d7 = a[K −D]

d8 = 0
�

Standard errors of the controlled and total effect and percentage mediated can be obtained

(using the delta method) as
√
ΓΣΓ�

let

A =
exp[β0 + β1a+ β

�
2c]{1 + exp[β0 + β1a+ β

�
2c]} − {exp[β0 + β1a+ β

�
2c]}2

{1 + exp[β0 + β1a+ β
�
2c]}2

B =
exp[β0 + β1a∗ + β

�
2c]{1 + exp[β0 + β1a∗ + β

�
2c]} − {exp[β0 + β1a∗ + β

�
2c]}2

{1 + exp[β0 + β1a∗ + β
�
2c]}2

K =
exp[β0 + β1a+ β

�
2c]

{1 + exp[β0 + β1a+ β
�
2c]}

D =
exp[β0 + β1a∗ + β

�
2c]

{1 + exp[β0 + β1a∗ + β
�
2c]}

for the total effect Γ = (d1, d2, d3, d4, d5, d6, d7, d8), where

d1 = θ3(a− a∗)B + (θ2 + θ3a)(A− B)

d2 = a∗θ3(a− a∗)B + (θ2 + θ3a)(aA− a∗B)

d3 = c
�
θ3(a− a∗)B + (θ2 + θ3a)(A− B)

d4 = 0

d5 = a− a∗

d6 = K −D
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d7 = (a− a∗)D + a[K −D]

d8 = 0
�

and for the proportion mediated Γ = (d1, d2, d3, d4, d5, d6, d7, d8) where

d1 =
[(θ2+θ3a)(A−B)]{(θ2+θ3a)(K−D)+(a−a∗)[θ1+θ3D]}−{[(θ2+θ3a)(A−B)]+(a−a∗)θ3B}(θ2+θ3a)[K−D]

{(θ2+θ3a)(K−D)+(a−a∗)[θ1+θ3D]}2

d2 =
[(θ2+θ3a)(aA−a∗B)]{(θ2+θ3a)(K−D)+(a−a∗)[θ1+θ3D]}−{[(θ2+θ3a)(aA−a∗B)]+a∗(a−a∗)θ3B}(θ2+θ3a)[K−D]

{(θ2+θ3a)(K−D)+(a−a∗)[θ1+θ3D]}2

d3 =
[(θ2+θ3a)c

�
(A−B)]{(θ2+θ3a)(K−D)+(a−a∗)[θ1+θ3D]}−c

�{[(θ2+θ3a)(A−B)]+(a−a∗)θ3B}(θ2+θ3a)[K−D]
{(θ2+θ3a)(K−D)+(a−a∗)[θ1+θ3D]}2

d4 = 0

d5 =
(a− a∗)(θ2 + θ3a)[K −D]

{(θ2 + θ3a)(K −D) + (a− a∗)[θ1 + θ3D]}2

d6 =
a[K−D]{(θ2+θ3a)(K−D)+(a−a∗)[θ1+θ3D]}−[K−D]{(θ2+θ3a)(K−D)+(a−a∗)[θ1+θ3D]}

{(θ2+θ3a)(K−D)+(a−a∗)[θ1+θ3D]}2

d7 =
[K−D]{(θ2+θ3a)(K−D)+(a−a∗)[θ1+θ3D]}−{a[K−D]+(a−a∗D)}{(θ2+θ3a)(K−D)+(a−a∗)[θ1+θ3D]}

{(θ2+θ3a)(K−D)+(a−a∗)[θ1+θ3D]}2

d8 = 0
�
.

1.E Binary Mediator and Binary Outcome

Effects using regression

Suppose that both the outcome and the mediator are binary and that the following models

fit the observed data:

logit{P (M = 1|A = a, C = c)} = β0 + β1a+ β
�

2c (1.13)

logit{P (Y = 1|A = a,M = m,C = c)} = θ0 + θ1a+ θ2m+ θ3a ∗m+ θ
�

4c (1.14)

If the regression models (1.13) and (1.14) are correctly specified and assumptions (i) and

(ii) hold then we can compute the controlled direct effect odds ratio as the case in which

48



the mediator is continuous and the outcome is binary.

If the regression models (1.13) and (1.14) are correctly specified and assumptions (i)-(iv)

hold and the outcome Y is rare, then we could compute the average natural direct effects

by:

ORNDE = exp[log{ P (YaMa∗=1|c)/(1−P (YaMa∗=1|c))
P (Ya∗Ma∗

=1|c)/(1−P (Ya∗Ma∗
=1|c))}]

= exp[logit{P (YaMa∗ = 1|c)} − logit{P (Ya∗Ma∗ = 1|c)}]

∼ exp[log{ exp(θ0+θ1a+θ
�
4c)+exp(θ0+θ1a+θ

�
4c+θ2+θ3a+β0+β1a∗+β

�
2c)

1+exp[β0+β1a∗+β
�
2C]

}−log{ exp(θ0+θ1a∗+θ
�
4c)+exp(θ0+θ1a∗+θ

�
4c+θ2+θ3a∗+β0+β1a∗+β

�
2c)

1+exp[β0+β1a∗+β
�
2c]

}]

= { exp[θ0+θ1a+θ
�
4c]+exp[θ0+θ1a+θ

�
4c+θ2+θ3a+β0+β1a∗+β

�
2c]

exp[θ0+θ1a∗+θ
�
4c]+exp(θ0+θ1a∗+θ

�
4c+θ2+θ3a∗+β0+β1a∗+β

�
2c)

}

= { exp[θ1a](1+exp[θ2+θ3a+β0+β1a∗+β
�
2c])

exp[θ1a∗](1+exp[θ2+θ3a∗+β0+β1a∗+β
�
2c])

}.

If the regression models (1.13) and (1.14) are correctly specified and assumptions (i)-(iv)

hold and the outcome Y is rare, then we could compute the average natural indirect

effects by:

ORNIE = exp[log{ P (YaMa=1|c)/(1−P (YaMa=1|c))
P (YaMa∗=1|c)/(1−P (YaMa∗=1|c))}]

= exp[logit{P (YaMa = 1|c)} − logit{P (YaMa∗ = 1|c)}]

∼ exp[log{ exp(θ0+θ1a+θ
�
4c)+exp(θ0+θ1a+θ

�
4c+θ2+θ3a+β0+β1a+β

�
2c)

1+exp[β0+β1a+β
�
2c]

} − log{ exp(θ0+θ1a+θ
�
4c)+exp(θ0+θ1a+θ

�
4c+θ2+θ3a+β0+β1a∗+β

�
2c)

1+exp[β0+β1a∗+β
�
2c]

}]

= [1+exp(β0+β1a∗+β
�
2c)][1+exp(θ2+θ3a+β0+β1a+β

�
2c)]

[1+exp(β0+β1a+β
�
2c)][1+exp(θ2+θ3a+β0+β1a∗+β

�
2c)]

.

If the regression models (1.13) and (1.14) are correctly specified and assumptions (i)-(iv)

hold, the outcome Y is rare, then we could compute the total effects by:

ORTE = exp[log{ P (YaMa∗=1|c)/(1−P (YaMa∗=1|c))
P (Ya∗Ma∗

=1|c)/(1−P (Ya∗Ma∗
=1|c))}]× exp[log{ P (YaMa=1|c)/(1−P (YaMa=1|c))

P (YaMa∗=1|c)/(1−P (YaMa∗=1|c))}]
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= { exp[θ1a](1+exp[θ2+θ3a+β0+β1a∗+β
�
2c])

exp[θ1a∗](1+exp[θ2+θ3a∗+β0+β1a∗+β
�
2c])

} × { [1+exp(β0+β1a∗+β
�
2c)][1+exp(θ2+θ3a+β0+β1a+β

�
2c)]

[1+exp(β0+β1a+β
�
2c)][1+exp(θ2+θ3a+β0+β1a∗+β

�
2c)]

}.

If the regression models (1.13) and (1.14) are correctly specified and assumptions (i)-(iv)

hold then we can compute the proportion mediated by:

PM =
log{

P (YaMa=1|c)/(1−P (YaMa=1|c))
P (YaMa∗

=1|c)/(1−P (YaMa∗
=1|c))}

log{
P (YaMa∗

=1|c)/(1−P (YaMa∗
=1|c))

P (Ya∗Ma∗
=1|c)/(1−P (Ya∗Ma∗

=1|c))}+log{
P (YaMa=1|c)/(1−P (YaMa=1|c))

P (YaMa∗
=1|c)/(1−P (YaMa∗

=1|c))}

=
log[

[1+exp(β0+β1a
∗+β

�
2c)][1+exp(θ2+θ3a+β0+β1a+β

�
2c)]

[1+exp(β0+β1a+β
�
2c)][1+exp(θ2+θ3a+β0+β1a

∗+β
�
2c)]

]

log[{ exp[θ1a](1+exp[θ2+θ3a+β0+β1a
∗+β

�
2c])

exp[θ1a
∗](1+exp[θ2+θ3a

∗+β0+β1a
∗+β

�
2c])

}×{ [1+exp(β0+β1a
∗+β

�
2c)][1+exp(θ2+θ3a+β0+β1a+β

�
2c)]

[1+exp(β0+β1a+β
�
2c)][1+exp(θ2+θ3a+β0+β1a

∗+β
�
2c)]

}]
.

These expressions apply also if the outcome is not rare and log-linear rather than logistic

models are fit to the outcome model; the direct and indirect effect will have now an inter-

pretation on the risk ratio scale rather than on the odds ratio scale.

These expressions apply also if the outcome is a count variable. In particular if Y ∼ Poi(λ)

for λ = exp{θ0 + θ1a+ θ2m+ θ3a ∗m+ θ
�
4c}) the outcome regression can be defined as:

log{E(Y |A = a,M = m,C = c)} = θ0 + θ1a+ θ2m+ θ3a ∗m+ θ
�

4c

The natural direct effect for binary outcome on the risk ratio scale coincides with the

natural direct effect for poisson count outcome since:

RRNDE = exp[log{ E(YaMa∗ |c)
E(Ya∗Ma∗ |c)

}]

The same argument holds for the natural indirect effect. Finally, the argument can be

extended to the case in which the count outcome is modeled with a negative binomial

distribution. This is the case since the negative binomial distribution can be represented

as an over-dispersed poisson and the mean of the two models coincide.
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Standard Errors:

Suppose that model (1.13) and (1.14) have been fit using standard logistic regression soft-

ware and that the resulting estimates β̂ of β = (β0, β1, β
�
2)

� and θ̂ of θ = (θ0, θ1, θ2, θ3, θ
�
4)

�

have covariance matrices Σβ and Σθ. Then the covariance matrix of (β̂ �
, θ̂

�
) is

Σ =

�
Σβ 0
0 Σθ

�

Standard errors of the controlled and natural direct and indirect effects can be obtained

(using the delta method) as
√
ΓΣΓ�

with Γ = (0, 0, 0
�
, 0, (a − a∗), 0,m(a − a∗), 0

�
) for the controlled direct effect, Γ =

(d1, d2, d3, d4, d5, d6, d7, d8) for the logarithm of the pure natural direct effect (same expres-

sion holds for the logarithm of the total natural direct effect upon substituting a and a∗),

where let

A =
exp[θ2 + θ3a+ β0 + β1a∗ + β

�
2c]

{1 + exp[θ2 + θ3a+ β0 + β1a∗ + β
�
2c]}

B =
exp[θ2 + θ3a∗ + β0 + β1a∗ + β

�
2c]

{1 + exp[θ2 + θ3a∗ + β0 + β1a∗ + β
�
2c]}

and

d1 = A− B

d2 = a∗(A− B)

d3 = c
�
(A− B)

d4 = 0

d5 = (a− a∗)

d6 = A− B

d7 = aA− a∗B
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d8 = 0
�

for the logarithm of the natural indirect effect (the same expression holds for the pure

natural indirect effect upon substituting a and a∗) let

A =
exp[θ2 + θ3a+ β0 + β1a+ β

�
2c]

{1 + exp[θ2 + θ3a+ β0 + β1a+ β
�
2c]}

B =
exp[θ2 + θ3a+ β0 + β1a∗ + β

�
2c]

{1 + exp[θ2 + θ3a+ β0 + β1a∗ + β
�
2c]}

K =
exp[β0 + β1a+ β

�
2c]

{1 + exp[β0 + β1a+ β
�
2c]}

D =
exp[β0 + β1a∗ + β

�
2c]

{1 + exp[β0 + β1a∗ + β
�
2c]}

and

Γ = (d1, d2, d3, d4, d5, d6, d7, d8) where

d1 = (D + A)− (K +B)

d2 = a∗[D − B] + a[A−K]

d3 = c
�
[(D + A)− (K +B)]

d4 = 0

d5 = 0

d6 = A− B

d7 = a[A− B]

d8 = 0
�

Standard errors of the logarithm of the total effect and percentage mediated can be ob-

tained (using the delta method) as
√
ΓΣΓ�

Let di(log(pnde)) and di(log(tnie)) for i = 1, ..., 8, the gamma elements derived for the

logarithm of the pure natural direct effect and the total natural indirect effect respectively.
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For the total effect Γ = (d1, d2, d3, d4, d5, d6, d7, d8) ,where

d1 = d1(log(pnde)) + d1(log(tnie))

d2 = d2(log(pnde)) + d2(log(tnie))

d3 = d3(log(pnde)) + d3(log(tnie))

d4 = d4(log(pnde)) + d4(log(tnie))

d5 = d5(log(pnde)) + d5(log(tnie))

d6 = d6(log(pnde)) + d6(log(tnie))

d7 = d7(log(pnde)) + d7(log(tnie))

d8 = d8(log(pnde)) + d8(log(tnie))

and for the proportion mediated Γ = (d1, d2, d3, d4, d5, d6, d7, d8) . Let

d1 =
d1(log(tnie)) ∗ log(te)− d1(log(te)) ∗ log(tnie)

[log(te)]2

d2 =
d2(log(tnie)) ∗ log(te)− d2(log(te)) ∗ log(tnie)

[log(te)]2

d3 =
d3(log(tnie)) ∗ log(te)− d3(log(te)) ∗ log(tnie)

[log(te)]2

d4 =
d4(log(tnie)) ∗ log(te)− d4(log(te)) ∗ log(tnie)

[log(te)]2

d5 =
d5(log(tnie)) ∗ log(te)− d5(log(te)) ∗ log(tnie)

[log(te)]2

d6 =
d6(log(tnie)) ∗ log(te)− d6(log(te)) ∗ log(tnie)

[log(te)]2

d7 =
d7(log(tnie)) ∗ log(te)− d7(log(te)) ∗ log(tnie)

[log(te)]2

d8 =
d8(log(tnie)) ∗ log(te)− d8(log(te)) ∗ log(tnie)

[log(te)]2
.
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Abstract

Mediation analysis is a popular approach to examine the extent to which the effect of an

exposure on an outcome is through an intermediate variable (mediator) and the extent to

which the effect is direct. When the mediator is mis-measured the validity of mediation

analysis can be severely undermined. In this paper we first study the bias of classical,

non-differential measurement error on a continuous mediator in the estimation of direct

and indirect causal effects in generalized linear models when the outcome is either con-

tinuous or discrete and exposure-mediator interaction may be present. We then develop

methods to correct for measurement error. Three correction approaches using method

of moments, regression calibration and SIMEX are compared. We apply the proposed

method to the Massachusetts General Hospital lung cancer study to evaluate the effect of

genetic variants mediated through smoking on lung cancer risk.

Keywords: Asymptotic bias; Measurement error; Mediation analysis; Method of moments; Re-

gression calibration; SIMEX.
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2.1 Introduction

Mediation analysis investigates the role of intermediate variables (mediators) in govern-

ing an observed relationship between an exposure variable and an outcome variable.

Rather than hypothesizing only a direct causal relationship between the independent

variable and the dependent variable, a mediational model hypothesizes that the expo-

sure variable causes the mediator variable, which in turn causes the outcome variable

(MacKinnon, 2008). The use of mediation analysis in biomedical and social sciences is

widespread and has been strongly influenced by the seminal paper of Baron and Kenny

(1986). More recently, new advances in mediation analysis have been made by applying

the counterfactual framework in this field (Robins and Greenland, 1992; Pearl, 2001; Van-

derWeele and Vansteelandt, 2009, 2010; Imai et al., 2010).

A recent epidemiological study by VanderWeele et al. (2012a) on the etiology of lung

cancer motivates the present work. VanderWeele et al. (2012a) investigated the extent to

which the effect of genetic variants rs8034191 and rs1051730 on chromosome 15q25.1 on

the risk of lung cancer is direct and to what extent that association is mediated by path-

ways related to smoking behavior. The question was addressed using a case-control study

at Massachusetts General Hospital. A potential concern about the validity of their find-

ings arises from the fact that the mediator, measured as self-reported average cigarettes

smoked per day, was likely subject to measurement error. It is of interest to understand

how sensitive the results of their study are with respect to measurement error in the in-

termediate variable (smoking), while allowing for gene-environment interaction.

The literature on measurement error in generalized linear models is rich and rapidly

evolving. In this study, we extensively use results that have been derived about the conse-

quences of measurement error on parameter estimators in parametric regression models

when a covariate is mis-measured (Cochran, 1968; McCallum, 1972; Carroll et al., 2006;

Fuller, 2006).

The present work makes two main contributions. First, we study the implications of

classical non-differential measurement error in the mediator variable on the validity of
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mediation analysis. We derive the asymptotic bias of direct and indirect causal effects es-

timators in closed form when interaction between exposure and mediator may be present

in the outcome model, which follows a generalized linear model (GLM). We demonstrate

that even if the error is assumed to be non-differential, regression coefficient estimators

obtained in mediation analysis ignoring measurement error can sometimes be severely

biased and therefore induce bias in estimation of causal direct and indirect effects.

The second contribution is to propose strategies for measurement error correction that

yield consistent or approximately consistent estimators of the direct and indirect causal

effects under classical non-differential measurement error model. We propose three dif-

ferent correction approaches coupled with sensitivity analyses when no gold standard or

validation samples for the mis-measured mediator are available. In particular, we com-

pare the performance of measurement-error-corrected estimators for direct and indirect

causal effects using method of moments (Fuller, 2006; Murad and Freedman, 2007), re-

gression calibration (Spiegelman et al., 1997) and SIMEX (Carroll and Stefansky, 1995;

Wang et al., 1997) estimators.

The paper is organized as follows. Section 2.2 discusses some results from mediation

analysis and reviews the direct and indirect causal effects. Section 2.3 introduces medi-

ation measurement error models, and studies the asymptotic bias in direct and indirect

causal effects when the mediator is measured with error. In Section 2.4 we propose three

approaches for measurement error correction and compare their performance in estimat-

ing direct and indirect causal effects via a simulation study. In Section 2.5 we apply the

proposed methods to the Massachusetts General Hospital (MGH) lung cancer genetic

epidemiological study, followed by discussion in Section 2.6.

2.2 Mediation analysis within the counterfactual frame-
work in the absence of measurement error

Let A be an exposure or treatment, Y an outcome, M a mediator and C, a k-dimensional

vector of covariates. Baron and Kenny (1986) defined, for the case of a continuous medi-
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ator and outcome, the following regression models:

E(Y |A = a,M = m,C = c) = θ0 + θ1a+ θ2m+ θ
�
4c (2.1)

E(M |A = a,C = c) = β0 + β1a+ β
�
2c. (2.2)

They proposed that the causal direct effect of the exposure can be assessed by estimating

θ1 and that the indirect causal effect of the exposure can be assessed by estimating β1θ2.

Using counterfactual definitions of direct and indirect causal effects of the exposure, the

approach of Baron and Kenny can be extended to non-linear models and to allow for the

presence of exposure-mediator interaction. Let A and C be continuous or categorical and

assume M continuous. Assume that the conditional mean, µ, of the outcome Y given

the exposure A, the mediator M , and the covariates C follows a generalized linear model

(GLM) (McCullagh and Nelder, 1989)

g(µ) = θ0 + θ1a+ θ2m+ θ3am+ θ
�
4c,

where g(·) is a monotone link function.

When we have a continuous outcome and mediator, and both are modeled using the

linear link, the mediator regression remains as in model (2.2), but the outcome regression,

allowing for exposure-mediator interaction, is as follows:

E(Y |A = a,M = m,C = c) = θ0 + θ1a+ θ2m+ θ3am+ θ
�
4c. (2.3)

The use of the causal inference approach to mediation analysis gives rise to the counter-

factual definition of direct and indirect effects of the exposure which was formulated by

Pearl (2001) and Greenland and Robins (1992). These effects can be estimated from the

regression parameters in models (2.2) and (2.3), provided certain identifiability assump-

tions (no confounding) hold (VanderWeele and Vansteelandt, 2009, 2010). In particular,

from models (2.2) and (2.3) what can be defined as the controlled direct effect (CDE), nat-

ural direct effect (NDE) and natural indirect effect (NIE) for a change in exposure from
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level ã to level a are given by (VanderWeele and Vansteelandt, 2009):

CDE = (θ1 + θ3m)(a− ã)

NDE = (θ1 + θ3β0 + θ3β1ã+ θ3β
�
2c)(a− ã)

NIE = (θ2β1 + θ3β1a)(a− ã).

These expressions generalize those of Baron and Kenny (1986) to allow for interaction be-

tween the exposure and the mediator. While controlled direct effects are often of greater

interest in policy evaluation (Pearl, 2001; Robins, 2003), natural direct and indirect effects

may be of greater interest in evaluating the action of various mechanisms (Robins, 2003;

Joffe et al., 2007).

Let Ya and Ma denote respectively the values of the outcome and mediator that would

have been observed had the exposure A been set to level a. Let Yam denote the value

of the outcome that would have been observed had the exposure, A, and mediator, M ,

been set to levels a and m, respectively. The controlled direct effect (CDE), defined by

E[Yam−Yãm|C], measures how much the mean of the outcome would change if the media-

tor were controlled at level m uniformly in the population but the treatment were changed

from level ã to level a. The natural direct effect (NDE), defined by E[YaMã−YãMã |C], mea-

sures how much the mean of the outcome would change if the exposure were set at level

a versus level ã but the mediator were kept at the level it would have taken under ã. The

natural indirect effect (NIE), defined by E[YaMa −YaMã |C], measures how much the mean

of the outcome would change if the exposures were controlled at level a, but the mediator

were changed from the level it would take under ã to the level it would take under a.

The expressions above in terms of regression coefficients will be equal to the counter-

factual direct and indirect effects provided that conditional on covariates C there is no

unmeasured confounding of (i) the exposure-outcome relationship, (ii) the mediator out-

come relationship, (iii) the exposure-mediator relationship, and (iv) that there is no vari-

able affected by the exposure that confounds the mediator outcome relationship. In the

counterfactual notation this is: (i) Yam�A|C, (ii) Yam�M |C, (iii) Ma�A|C, (iv) Yam�Mã|C

(See Pearl (2001) and Robins and Richardson (2010) for further discussion of these as-

sumptions).
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When the outcome is binary modeled with a logit link, equation (3) can be replaced by

logit{P (Y = 1|A = a,M = m,C = c)} = θ0 + θ1a+ θ2m+ θ3am+ θ
�
4c. (2.4)

If the outcome is case and rare, then from models (2.2) and (2.4) the average controlled di-

rect effect (CDE), natural direct effect (NDE) and natural indirect effect (NIE) for a change

in exposure from level ã to level a are given in terms of odds ratios by (VanderWeele and

Vansteelandt, 2010):

ORCDE = exp[(θ1 + θ3m)(a− ã)]

ORNDE ≈ exp[{θ1 + θ3(β0 + β1ã+ β
�
2c+ θ2σ

2)}(a− ã) + 0.5θ23σ
2(a2 − ã2)]

ORNIE ≈ exp[(θ2β1 + θ3β1a)(a− ã)].

The same formulas apply exactly if the logit link in (2.4) is replaced by a logarithmic link

for log-linear, binary or count outcome. In this case the average controlled direct effect

(CDE), natural direct effect (NDE) and natural indirect effect (NIE) have a risk ratio or

rate ratio interpretation (Valeri and VanderWeele, 2012). If we replace (β0, β1, β
�
2) and

(θ0, θ1, θ2, θ3, θ�
4) with their maximum likelihood estimators, we will, by the continuous

mapping theorem, have consistent estimates for the direct and indirect effects.

Note that in presence of multiple exposure variables the vector of exposures A can be

defined. Replacing θ1 and θ3 with the vectors of parameters θ
�
1 and θ

�
3 in the outcome

regression, and replacing β1 with the vector of parameters β�
1 in the mediator regression,

direct and indirect effects for a joint intervention on the vector of exposures A take the

same form as described above. In what follows we consider the exposure as a scalar, but

all the results directly extend to the case in which multiple exposures are of interest.
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2.3 Asymptotic bias of direct and indirect effects when the
mediator is measured with error

2.3.1 GLM with mis-measured mediator

Using the notation in section 2.2, assume that both A and C, as well as the outcome Y ,

are correctly measured. Let M be the continuous mediator at its true level and M∗ the

version of M measured with error. Let the error, u, be additive with mean zero and

constant variance σ2
u,

M∗ = M + u.

When the mediator is mis-measured, an investigator operates with an observed version of

the generalized linear model for the outcome where the true intermediate M is replaced

by the observed intermediate M∗

g∗(µ) = θ∗0 + θ∗1a+ θ∗2m
∗ + θ∗3am

∗ + θ∗�
4 c,

where θ∗ is the asymptotic limit of the estimators of the outcome regression parameters,

θ̂∗, when M is replaced by M∗.

In the following we assume that the measurement error is characterized by the property

of Cov(M,u) = 0 and Cov(M∗, u) �= 0, usually referred as classical measurement error.

Moreover, we assume that the measurement error mechanism is independent of the out-

come, the exposure, and the covariates (i.e. non-differential).

When the mediator is continuous and measurement error follows the classical measure-

ment error model, it has been shown (McCallum, 1972) that ordinary least squares (OLS)

estimators of the coefficients of the mediator regression (2.2) are asymptotically unbiased.

However, the assumption that Cov(M∗, u) �= 0 typically causes parameter estimates of the

outcome regression to be asymptotically biased. We proceed by deriving the asymptotic

limit for the coefficients’ estimators of the outcome equation assuming that mediator-

exposure interaction may be present. We will present the results for the outcome regres-

sion parameters that are involved in the estimation of direct and indirect effects, that is,

θ1, θ2, θ3.
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2.3.2 Asymptotic Limit of parameters of the outcome regression in the
presence of exposure-mediator interaction

Suppose that M is subject to classical measurement error and measured as M∗ and that

we fit the outcome regression model with either a linear (2.3), a logit (2.4), a probit or a

logarithmic link using M∗ rather than M . Let (θ̂∗1, θ̂∗2, θ̂∗3) be the naive maximum likelihood

estimators of the outcome regressors if M is replaced by M∗. Let (θ1, θ2, θ3) be the true

parameters of the regressors. We study the asymptotic limit of the naive estimators of

the exposure, mediator and the exposure-mediator interaction coefficients and we denote

them by θ∗1, θ∗2 and θ∗3 respectively.

Let σ2
m and σ2

u denote the variance of the true mediator given the exposure and the

additional covariates C in the outcome model, and of the measurement error respec-

tively. Set λ = σ2
m/(σ

2
m + σ2

u), which takes values from 0 to 1 and encodes of the re-

liability of the measure for the observed mediator. Recall that β0, β1, and β�
2 are the

coefficients of the mediator regression from equation (2.2). Let X = (1, A,M,AM,C)

and X∗ = (1, A,M∗, AM∗,C) denote the matrix of the true and observed covariates re-

spectively. Let Cov(X∗, AC) and Cov(X∗, A2) denote the vectors of covariances between

the variables in X∗ with AC and A2 respectively. Note that by the assumption of in-

dependence between the error, u, and the covariates A and C, the covariances just de-

fined do not depend on the moments of u and therefore Cov(X∗, AC) = Cov(X,AC)

and Cov(X∗, A2) = Cov(X,A2). Define δA, δM∗ , δAM∗ to be the row vectors of the matrix

E(X∗TX∗)−1. For a continuous outcome modeled using the linear link,

θ∗1 = θ1 + (1− λ)[θ2β1 + θ3{β0 + δACov(X∗, AC)β2 + β1δACov(X∗, A2)}]

θ∗2 = θ2λ+ (1− λ)θ3{δM∗Cov(X∗, AC)β2 + β1δM∗Cov(X∗, A2)}

θ∗3 = θ3[λ+ (1− λ){δAM∗Cov(X∗, AC)β2 + β1δAM∗Cov(X∗, A2)}].

The same result holds when Y is either continuous, binary or count and modeled using

the log link. For binary outcome modeled either with logit or probit link we can obtain

62



only an approximation of the asymptotic limit

θ∗1 ≈ {θ1 + (1− λ)[θ2β1 + θ3{β0 + δACov(X∗, AC)β2 + β1δACov(X∗, A2)}]} ∗HA(0)

θ∗2 ≈ [θ2λ+ (1− λ)θ3{δM∗Cov(X∗, AC)β2 + β1δM∗Cov(X∗, A2)}] ∗HM∗(0)

θ∗3 ≈ [θ3[λ+ (1− λ){δAM∗Cov(X∗, AC)β2 + β1δAM∗Cov(X∗, A2)}]] ∗HAM∗(0),

where HZ(0) is a function of the joint conditional distribution of AC − E(AC), A2 −

E(A2)|Z with Z equal to either A, M∗, or AM∗. In general this functional is not recov-

erable in closed form (Neuhaus and Jewell, 1993). However, a numerical bias analysis

can still be carried out (Wang et al., 1998). Finally, if we assume a binary exposure for

which A = A2, then the two terms can be incorporated and if additionally the true model

included the exposure-covariates interaction terms then the asymptotic limit of the esti-

mators of the regression coefficients could be easily derived in closed form as

θ∗1 = [θ1 + θ2(1− λ)β1 + θ3(1− λ)(β0 + β1)]/τ

θ∗2 = θ2λ/τ

θ∗3 = θ3λ/τ,

where τ = (1+ θ22λσ
2
u/S

2)
1
2 with S = 15π

16
√
3
∼ 1.7 when logit link is used and S=1 for probit

link (note that allowing for exposure-covariates interaction would change the form of the

direct and indirect causal effects estimators).

We note that when an exposure-mediator interaction is present, the asymptotic bias has a

complex structure. The bias induced by measurement error is coupled with an omitted-

variable type of bias induced by the interaction between a variable measured with error,

the mediator, and another covariate in the model, the exposure. The above calculations

show that when the true model has interaction terms and the outcome is binary, in gen-

eral no closed form solutions of the asymptotic bias are available. The magnitude of the
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distortion is related to the magnitude of the measurement error expressed by the reliabil-

ity factor, λ, and to the magnitude of the parameters θ2 and β1. We also observe that the

magnitude of the distortion is related to the magnitude of the interaction term, θ3, and the

covariance between the variables in the outcome model has impact on how bad the bias

could be.

Finally, note that under the non-differential and classical measurement error model and

in the absence of exposure-mediator interaction, measurement error typically induces a

dilution of the effect of the mediator on the outcome and an over-estimation or an under-

estimation of the effect of the exposure on the outcome depending on the sign of the effect

of the mediator on the outcome and the sign of the effect of the exposure on the mediator

(Carroll et al., 2006; Wang et al., 1998).

2.3.3 Asymptotic bias of direct and indirect causal effects

Given the asymptotic convergence of the outcome regression parameters, the asymp-

totic bias of the estimators of direct and indirect effects when the mediator is mea-

sured with error can be straightforwardly obtained. Let γ1 = δACov(X∗, AC), γ2 =

δM∗Cov(X∗, AC), γ3 = δAM∗Cov(X∗, AC), γ4 = δACov(X∗, A2), γ5 = δM∗Cov(X∗, A2),

and γ6 = δAM∗Cov(X∗, A2). The asymptotic bias for controlled direct effects, natural di-

rect effects and natural indirect effects when the continuous outcome is modeled using a

linear link and exposure-mediator interaction is present is derived is the appendix as:

ABIAS(�CDE) = (1− λ)[θ2β1 + θ3{β0 + γ1β2 + β1γ4 +m(γ3β2 + β1γ6 − 1)}](a− ã)

ABIAS(�NDE) = (1− λ)[θ2β1 + θ3{β0 + γ1β2 + β1γ4 + (β0 + β1ã+ β
�
2c)(γ3β2 + β1γ6 − 1)}]×

(a− ã)

ABIAS(�NIE) = (1− λ)[θ3{γ2β2 + β1γ5 + a(γ3β2 + β1γ6 − 1)} − θ2]β1(a− ã).

When exposure-mediator interaction is absent the formulas can be simplified and we

note that measurement error typically induces an under-estimation of the indirect effect

and an over-estimation of the direct effect
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ABIAS(�NDE) = ABIAS(�CDE) = [θ2(1− λ)β1](a− ã)

ABIAS(�NIE) = [θ2(λ− 1)]β1(a− ã).

In the absence of exposure-mediator interaction, if a count, log-linear, or binary outcome

is modeled using the log link, the asymptotic bias of the estimators of direct and indirect

effects on the log-risk ratio scale takes the same form as that given above. If the binary

outcome is modeled using logit or probit link, the asymptotic bias for the indirect effect

on the log-odds ratio scale is similar to the one derived above (with λ replaced by λ
τ ) while

the asymptotic bias of the natural direct effect on the log-odds ratio scale is given by

ABIAS(log( �ORNDE)) = ABIAS(log( �ORCDE)) =

�
θ1(

1

τ
− 1) +

θ2(1− λ)β1

τ

�
(a− ã),

which depends additionally on the magnitude of the effect of the exposure on the out-

come, θ1, and the term τ . Therefore, the choice of link function shapes the impact that

measurement error can have on the estimation of direct and indirect causal effect.

Results on asymptotic bias of direct and indirect effects for outcome modeled using ei-

ther logit, probit, or log link are more complex and less intuitive in presence of exposure-

mediator interaction and are provided in the supplementary materials.

For continuous and binary outcome, we carried out a simulation study for large sample

size to investigate the change of asymptotic relative bias for the naive direct and indirect

causal effect estimators as a function of the magnitude of σ2
u. We generate samples of di-

mension n = 10, 000 with r = 100 runs. We define a binary exposure Ai ∼ Ber(pa) with

pa = 0.4 and a continuous covariate C ∼ N(0, 1). The true mediator conditional on A and

C is defined as M |A,C ∼ N(µM , σ2
M), where µM = β0 + β1A + β2C and σ2

M = 1, with

β0 = 0, β1 = 1, β2 = 1. The observed mediator is defined as M∗ = M +u and u ∼ N(0, σ2
u),

with σ2
u taking values in the range (0, 1) which correspond to λ = (0.5, 1). The outcome

is either normal or binary and in particular we generate Y |A,M,C ∼ N(µY , σ2
Y ), where

µY = θ0 + θ1A + θ2M + θ3AM + θ4C and σ2
Y = 1, with θ0 = 0, θ1 = 1, θ2 = 1, θ3 = 1,

θ4 = 1 or Y |A,M,C ∼ Ber(pY ) with pY = F (µy) where F (u) = exp(u)/(1 + exp(u)) and
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µy = θ0 + θ1A + θ2M + θ3AM + θ4C with θ0 = −2, θ1 = 0.25, θ2 = 1, θ3 = 0.25, θ4 = 0.25.

The naive outcome and mediator regression models are run simply substituting M with

the observed mediator M∗.

Figure 2.1 summarizes the findings for naive direct and indirect effect estimators under

the particular setting just described. A figure describing the asymptotic relative bias study

for naive estimators θ̂∗1, θ̂∗2, θ̂∗3 is presented in the online appendix. As expected, the naive

estimator for the exposure regression parameter ignoring measurement error, θ̂∗1, is biased

upward and the bias increases with the presence of exposure-mediator interaction and for

binary outcome modeled using logistic regression. The naive estimator of the mediator,

θ̂∗2, is instead biased downward with a less dramatic change in bias when the outcome is

binary and/or in the presence of exposure-mediator interaction. The asymptotic relative

bias of the naive estimator of the interaction parameter, θ̂∗3, is positive in this setting and

increases when the outcome is binary relative to continuous. Simulation results are found

to be consistent with the theoretical results.

The study of asymptotic relative bias for naive direct and indirect effects estimators re-

veals that measurement error might exert a stronger impact when the outcome is binary

rather than normal, and when the interaction is present rather than absent in the esti-

mation of direct effects. For the particular setting just described, the estimated direct

effect is biased upward both in the presence and in the absence of exposure mediator

interaction and the estimated indirect effect is biased downward in the absence of in-

teraction and when the outcome is binary. However, when the outcome is linear and

exposure-mediator interaction is present, the indirect effect is found to be over-estimated.

We note that measurement error could induce either downward or upward biases of both

direct and indirect effect estimators in the presence of interaction, depending on the sign

and the magnitude of the vector of parameters θ and β. This contrasts with the result

obtained in the context of simple mediation models with no interaction for which it is

known that measurement error will bias the direct effect upward and the indirect effect

downward. The counterintuitive result occurs because covariate measurement error in

non-linear models induces additionally an omitted variable problem. We showed that

the asymptotic relative bias of the outcome regression parameters estimators in the pres-
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Figure 2.1: Numerical analysis of relative bias of direct (NDE) and indirect (NIE) effect naive
estimators. Simulations run for continuous outcome modeled using linear regression and binary
outcome modeled using logistic regression; exposure-mediator interaction both present or absent.
Sample size n = 10, 000. Measurement error variance, σ2

U ∈ (0, 1), corresponding to a reliability
ratio, λ ∈ (0, 1).
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ence of exposure mediator interaction contains covariances involving the terms A2 and

AC, which are not included the naive outcome regression (5), which consequently is mis-

specified. VanderWeele et al. (2012b) show that although measurement error in the me-

diator induces biased direct and indirect effects, the combination of these biased effects is

in fact unbiased for the total effect. However, this statement is true only if the mediator

and outcome models with M∗ replacing M are correctly specified.

Finally, we note that the change in relative bias for the indirect effect naive estimator is

different from the one that we observe for the direct effect under the simulation scenarios

considered. The naive estimator of the indirect effect for normal outcome in the presence

of exposure-mediator interaction is found to be less biased than in the absence of the in-

teraction, the opposite is found for direct effect estimation. This result is consistent with

the theoretical results.

2.4 Correction strategy for direct and indirect effects esti-
mators

In what follows we consider three different approaches to measurement error correction

of the outcome regression models, namely method of moments, regression calibration,

and SIMEX (Fuller, 2006; Carroll et al., 2006; Spiegelman, Rosner and McDermott, 1997;

Cook and Stefanski, 1995). These methods are among the most popular and widely used

in statistics and epidemiology but they have not been applied to mediation problems and

their performance in this context has not been compared when models have interactions

and non-linearities, as in our case. All three methods are appealing for several reasons.

First, they require assumptions on the moments of the error, rather than assumptions

on its complete distribution, which is typically assumed in structural measurement error

models. Second, they can be implemented even when auxiliary data on the mediator

are not available but the investigator is willing to implement sensitivity analyses on the

measurement error magnitude. Finally, their rationale is very intuitive. We will first

describe the proposed methods and we will then illustrate their salient properties via a
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simulation study. We will compare their performance considering continuous and binary

outcomes, and allowing for exposure-mediator interaction.

2.4.1 Method of moments estimators

The most intuitive way to recover consistent estimators for the outcome regression pa-

rameters is by solving the system of equations that arises from the study of the limit of

the naive estimators with respect to the true parameters. The limit of the naive estimators

depends not only on the true parameters but also on population moments and the mea-

surement error variance. Method of moments estimators arise when the system is solved

with respect to the true parameters and the population moments are replaced by sample

moments.

If the assumptions on the measurement error mechanism and the modeling assumptions

hold, and if we assume that the variance of the measurement error, σ2
u, is known or can

be specified in a sensitivity analysis, and we assume that there is no exposure-mediator

interaction, then estimators that consistently estimate θ1 and θ2 are easily derived from

the results given in the previous sections. When the outcome is continuous the method

of moments estimators are given by:

θ̂1
MoM

= θ̂∗1 − θ̂∗2(1− λ)β̂1/λ

θ̂MoM
2 = θ̂∗2/λ,

where θ̂∗1 and θ̂∗2 are the naive estimators of θ1 and θ2.

For a binary outcome, the system that arises from the approximate limit of the naive

estimators can again be solved and the method of moments estimators are given by:
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θ̂MoM
1 = θ̂∗1(1 + θ̂MoM2

2 σ2
uλ)− θ̂MoM

2 (1− λ)β̂1

θ̂MoM
2 = θ̂∗2/(λ

2 − θ̂∗2λσ
2
u/S

2)
1
2 ,

where S = 15π
16

√
3
∼ 1.7 when logit link is used and S = 1 when probit link is used.

When exposure-mediator interaction is present in the true model, if again the assump-

tions on the measurement error mechanism and the modeling assumptions hold, if we

assume that the variance of the measurement error, σ2
u, is known, then estimators that

consistently estimate θ1, θ2, and θ3 are derived from the results given in the previous sec-

tions. For continuous, binary and count outcomes modeled using linear and log-linear

links the method of moment estimators for θ1, θ2 and θ3 are given by:

θ̂MoM
1 = θ̂∗1 − (1− λ){θ̂MoM

2 β̂1 − θ̂MoM
3 (β̂0 + γ1 �β2 + β̂1γ4)}

θ̂MoM
2 = [θ̂∗2 − (1− λ)θ̂MoM

3 {γ2 �β2 + β̂1γ5}]/λ

θ̂MoM
3 = θ̂∗3/[(1− λ)(γ3 �β2 + β̂1γ6) + λ]

When the binary outcome follows a logistic or a probit model the estimators described

above are an approximation of the method of moments estimators, given in the online

supplement. Finally, consistent estimators for direct and indirect causal effects are easily

obtained by substituting the naive estimators θ̂∗1, θ̂∗2, and in the presence of exposure-

mediator interaction, θ̂∗3 with the method of moments estimators. For example, we can

define method of moments estimators of direct and indirect effects when Y is continuous

as follows:

�CDEMoM = (θ̂MoM
1 + θ̂MoM

3 m)(a− ã)

�NDEMoM = (θ̂MoM
1 + θ̂MoM

3 β̂0 + θ̂MoM
3 β̂1ã+ θ̂MoM

3
�β�
2c)(a− ã)

�NIEMoM = (θ̂MoM
2 β̂1 + θ̂MoM

3 β̂1a)(a− ã).

70



The implementation of method of moments estimators is straightforward in the absence

of exposure-mediator interaction in the true outcome regression model.

In the appendix we discuss the method of moments estimator for binary-logistic and

binary-probit outcome in the presence of interaction. In general, for this case the method

of moments estimator is not of practical use since it involves the previously described

functions HZ(0) with Z equal to either A, M∗, AM∗, or C which depends on the con-

ditional distribution of (AC − E(AC), A2
i − E(A2)) given the covariates in the outcome

regression model, an object that is usually hard to derive.

When the function HZ(0) cannot be recovered, an approximate method of moments es-

timator or other approximately consistent estimators such as regression calibration and

SIMEX estimators should be considered.

2.4.2 Regression calibration estimators

The use of regression calibration to obtain consistent estimators for linear regression coef-

ficients and approximately consistent estimators in the case of logistic regression is based

on the assumption of non-differential measurement error (Armstrong, 1985; Spiegelman,

Rosner and McDermott, 1997; Carroll et al. 2006).

Regression calibration estimators θ̂rc1 , θ̂rc2 , θ̂rc3 can be recovered in a rather simple way.

First, a calibration model for the regression of the unknown covariate M on the observed

mediator M∗, exposure A and the covariates C is developed and fitted. This can be ac-

complished using replication, validation, or instrumental data. When auxiliary data are

not available and the variance of the measurement error is unknown, the value of the

measurement error variance σ2
u is set as a sensitivity analysis parameter. The unobserved

M is then replaced by its predicted values M̂ from the calibration model in a standard

analysis. Finally, the standard errors are adjusted to account for the estimation of the un-

known covariates.

Regression calibration estimators θ̂rc1 , θ̂rc2 , θ̂rc3 can be recovered in a similar way in the case

of logistic regression. Armstrong (1985) showed that for binary outcome regression cali-

bration estimators will yield approximately consistent estimators, provided measurement
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error is small and the effect of the mediator on the outcome is not too large in absolute

value.

Note that regression calibration estimators and method of moments estimators for pa-

rameters of linear regression, under the assumption that σ2
u is known, coincide if there

is no exposure-mediator interaction (Carroll et al., 2006). However, method of moments

estimators and regression calibration estimators won’t coincide when the outcome model

is non-linear or in the presence of exposure-mediator interaction. In particular, for bi-

nary outcome in the absence of exposure-mediator interaction, the method of moments

estimator might be preferred to the regression calibration estimator since it provides a

better approximation to the consistent estimators and is expected to perform better when

measurement error is large. In the presence of exposure-mediator interaction instead re-

gression calibration might be preferred since the method of moments estimator is hard to

recover.

2.4.3 SIMEX

SIMEX is a simulation-based approach for measurement error correction, a full descrip-

tion is given by Carroll et al. (2006) and Cook and Stefanski (1995). The SIMEX-method

exploits the following relationship between the measurement error variance, σ2
u, and the

limit of the naive estimators, θ∗

σ2
u → θ∗(σ2

u) = G(σ2
u).

A consistent estimator of θ when there is no measurement error is such that G(0) = θ.

SIMEX approximates the function G(σ2
u) by a parametric approach G(σ2

u,Γ), for example

with a quadratic approximation Gquadratic(σ2
u,Γ) = γ0 + γ1σ2

u + γ2(σ2
u)

2.

Given σ2
u either known or specified in a sensitivity analysis, the SIMEX approach con-

sists of two steps. To estimate Γ a simulation step is carried out that adds measurement

error with variance λσ2
u to the contaminated variable. The resulting measurement error

variance is then (1 + λ)σ2
u. The naive estimator for this increased measurement error is

calculated and repeated B times. The average over B converges to G((1 + λ)σ2
u). Re-
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peating this simulations for a fixed grid of λ, leads to an estimator Γ̂ of the parameters

Gquadratic(σ2
u,Γ), for example by least squares. In a second step, the extrapolation step, the

approximated function Gquadratic(σ2
u, Γ̂) is extrapolated back to the case of no measurement

error and so the SIMEX estimator is defined by

θSIMEX(σ
2
u) = G(0, Γ̂)

which corresponds to λ = −1.

Some drawbacks of this method should be mentioned. The SIMEX method is almost al-

ways only approximately consistent due to the fact that we generally don’t know the true

extrapolation function. When the magnitude of the measurement error is substantial the

method might not perform well if the extrapolation function is far from the truth. More-

over, SIMEX is computationally less efficient than the regression calibration estimator.

Even if this method is only approximately consistent, we consider implementing it for

several reasons. First of all, we have seen in the previous sections that, in general, intu-

itive analytical formulae for asymptotic bias for binary outcome regression parameters in

the presence of exposure-mediator interaction, cannot be recovered. Therefore, the first

step of the SIMEX approach can be useful in visualizing the effect of measurement error

on the parameter estimates for a given or estimated value of σ2
u. Second, this method is

particularly robust against modeling the structure of the unobservable mediator since it

does not require any assumptions on the latent mediator nor on the moments of the mea-

surement error. Finally, this approach has been widely used in the context of generalized

linear models.

When the outcome is linear and there is no exposure-mediator interaction SIMEX ap-

proach and regression calibration will yield very similar estimators but in general they

will differ.

2.4.4 Simulations

We now evaluate the performance in estimating the outcome regression parameters and

the direct and indirect effects of interest of the three methods proposed for measurement
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(σ2
u = 0.1) Relative Bias Variance MSE

Effect (θ3 = 0) Naive MoM RC SIMEX Naive MoM RC SIMEX Naive MoM RC SIMEX
NDE 0.093 -0.006 0.006 0.006 0.003 0.003 0.003 0.003 0.01 0.003 0.003 0.003
NIE -0.087 0.004 0.004 0.000 0.003 0.004 0.004 0.004 0.01 0.004 0.004 0.004
TE 0.0015 0.0015 0.0015 0.0015 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
(σ2

u = 0.5) Relative Bias Variance MSE
Effect (θ3 = 0) Naive MoM RC SIMEX Naive MoM RC SIMEX Naive MoM RC SIMEX
NDE 0.332 -0.004 -0.004 0.099 0.004 0.005 0.005 0.005 0.11 0.005 0.005 0.014
NIE -0.333 0.008 0.008 0.096 0.002 0.007 0.007 0.005 0.1 0.007 0.007 0.014
TE 0.0015 0.0015 0.0015 0.0015 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
(σ2

u = 0.1) Relative Bias Variance MSE
Effect(θ3 �= 0) Naive MoM RC SIMEX Naive MoM RC SIMEX Naive MoM RC SIMEX
CDE 0.157 -0.012 -0.000 0.005 0.004 0.004 0.005 0.005 0.029 0.004 0.005 0.005
NDE 0.164 0.004 0.006 0.012 0.008 0.009 0.008 0.005 0.035 0.009 0.008 0.005
NIE 0.0145 0.099 0.005 0.005 0.01 0.01 0.01 0.01 0.015 0.056 0.014 0.014
TE 0.064 0.064 0.005 0.006 0.01 0.01 0.01 0.005 0.055 0.055 0.016 0.017
(σ2

u = 0.5) Relative Bias Variance MSE
Effect (θ3 �= 0) Naive MoM RC SIMEX Naive MoM RC SIMEX Naive MoM RC SIMEX
CDE 0.588 -0.24 -0.01 0.156 0.007 0.01 0.01 0.01 0.35 0.072 0.012 0.034
NDE 0.595 -0.23 -0.003 0.16 0.01 0.02 0.01 0.01 0.36 0.079 0.01 0.04
NIE 0.046 0.46 0.005 0.0125 0.02 0.04 0.02 0.02 0.029 0.89 0.020 0.02
TE 0.226 0.226 0.002 0.062 0.02 0.02 0.02 0.02 0.499 0.496 0.019 0.05

Table 2.1: Simulations for naive, method of moments (MoM), regression calibation (RC) and
SIMEX estimators of direct, indirect and total effects with continuous (linear link) outcome.

error correction, namely method of moments, regression calibration and SIMEX (with

quadratic extrapolation function). To compare the methodologies for each estimator we

estimate their relative bias, variance and mean squared error. In particular we are inter-

ested in comparing their behavior in the presence of non-linearities, which in our study

arise when an exposure-mediator interaction is present and if the link is non-linear.

The simulation setting is the same as the one used for the numerical bias analysis in sec-

tion 2.3.3 which implies a scenario under which the indirect effect of A on Y through M

as well as the exposure-mediator interaction are particularly strong. The simulations are

now run using a sample size of n = 1, 500, which mimics a more realistic study sample

size, and r = 100 runs. Tables 2.1 and 2.2 present the simulations results for σ2
u = (0.1, 0.5),

considering cases of small and moderate measurement error.
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(σ2
u = 0.1) Relative Bias Variance MSE

Effect (θ3 = 0) Naive MoM RC SIMEX Naive MoM RC SIMEX Naive MoM RC SIMEX
NDE 0.258 -0.059 -0.107 -0.06 0.022 0.019 0.019 0.019 0.022 0.019 0.019 0.019
NIE -0.09 0.009 0.001 0.010 0.008 0.011 0.010 0.011 0.016 0.011 0.010 0.011
TE -0.02 -0.004 -0.02 -0.004 0.018 0.019 0.018 0.019 0.019 0.019 0.019 0.019
(σ2

u = 0.5) Relative Bias Variance MSE
Effect (θ3 = 0) Naive MoM RC SIMEX Naive MoM RC SIMEX Naive MoM RC SIMEX
NDE 1.141 -0.090 -0.145 0.35 0.016 0.019 0.02 0.018 0.097 0.021 0.021 0.026
NIE -0.36 0.01 -0.038 -0.118 0.004 0.011 0.013 0.010 0.135 0.014 0.013 0.02
TE -0.06 -0.006 -0.06 -0.024 0.017 0.019 0.017 0.018 0.022 0.019 0.022 0.019
(σ2

u = 0.1) Relative Bias Variance MSE
Effect (θ3 �= 0) Naive MoM RC SIMEX Naive MoM RC SIMEX Naive MoM RC SIMEX
CDE 0.41 -0.009 -0.034 -0.039 0.04 0.039 0.04 0.05 0.051 0.039 0.044 0.045
NDE 0.399 0.308 -0.008 0.023 0.07 0.07 0.08 0.08 0.121 0.107 0.08 0.09
NIE -0.001 0.08 -0.006 0.01 0.017 0.02 0.017 0.018 0.017 0.03 0.017 0.018
TE 0.119 0.15 -0.006 0.014 0.12 0.13 0.13 0.148 0.17 0.21 0.13 0.149
(σ2

u = 0.5) Relative Bias Variance MSE
Effect (θ3 �= 0) Naive MoM RC SIMEX Naive MoM RC SIMEX Naive MoM RC SIMEX
CDE 1.598 0.194 0.047 0.527 0.03 0.02 0.04 0.05 0.191 0.031 0.042 0.05
NDE 1.684 1.85 0.16 0.78 0.07 0.11 0.09 0.111 0.900 1.10 0.107 0.29
NIE -0.031 0.24 -0.04 -0.007 0.016 0.027 0.021 0.02 0.018 0.12 0.02 0.02
TE 0.485 0.732 0.014 0.231 0.133 0.194 0.15 0.187 0.887 1.9 0.15 0.35

Table 2.2: Simulations for naive, method of moments (MoM), regression calibation (RC) and
SIMEX estimators of direct, indirect and total effects with binary (logistic link) outcome.
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Comparing the three proposed methods of correction we note that regression calibra-

tion has consistently good performance over all the scenarios considered. We notice that

method of moments estimator and SIMEX do substantially worse than regression calibra-

tion in the presence of exposure-mediator interaction and moderate to severe measure-

ment error. These results are mainly driven by the fact that both method of moments and

SIMEX estimators for the interaction term have a poor performance (results shown in the

online appendix). However, when the outcome is binary and in the absence of exposure-

mediator interaction, as expected, regression calibration, being an approximately consis-

tent estimator, does slightly worse than method of moments in terms of relative bias.

Method of moments in this case gives a better approximation to the consistent estimator.

The simulation results for SIMEX are similar to the ones of regression calibration when

measurement error is small. However, when measurement error is moderate, regression

calibration is found to outperform SIMEX under the cases considered.

2.5 Example

We applied the proposed methods to a recent study on the etiology of lung cancer.

VanderWeele et al. (2012a) investigated the extent to which the effect of genetic variants

rs8034191 and rs1051730 on chromosome 15q25.1 on lung cancer is direct and to what

extent that association is mediated by cigarette smoking. Mediation analysis allowing

for gene-environment interaction, as described in the second section, was applied to a

case-control study of Massachusetts General Hospital (MGH) where 1836 cases and 1452

controls were sampled. Eligible cases included any person over the age of 18 years, with

a diagnosis of primary lung cancer that was further confirmed by an MGH lung pathol-

ogist. The controls (with no previous history of cancer) were recruited from among the

friends or spouses of cancer patients or the friends or spouses of other surgery patients in

the same hospital.
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rs1051730 1 (naive) .75 .50 .25
ORNDE 1.26 (1.19-1.33) 1.278 (1.13 -1.46) 1.271 (1.12 - 1.45) 1.307 (1.16 - 1.49)
ORNIE 1.0 (1-1.01) 1.014 (0.99 - 1.03) 1.021 (0.99 - 1.04) 1.045 (0.99 - 1.10)
PM∗ 0.023 0.063 0.095 0.159
rs8034191 1 (naive) .75 .50 .25
ORNDE 1.26 (1.19-1.33) 1.299 (1.14 -1.47) 1.292 (1.14 -1.47) 1.330 (1.17 -1.49)
ORNIE 1.01 (1-1.01) 1.014 (0.99 - 1.03) 1.021 (0.99 - 1.05) 1.044 (0.99 - 1.11)
PM∗ 0.032 0.059 0.088 0.152

Table 2.3: Sensitivity analysis results for direct (ORNDE), indirect (ORNIE) effects and proportion
mediated (PM = ORNDE × (ORNIE − 1)/(ORNDE × ORNIE − 1)) for variants rs1051730 and
rs8034191 allowing for exposure-mediator interaction and attenuation factor λ up to 0.25.

VanderWeele et al. (2012a) reported statistically significant additive interaction (P=2 ×

10−10 and P=1× 10−9) and multiplicative interaction (P=0.01 and P=0.01) between the ge-

netic variants and smoking behavior, measured in terms of square-root average cigarettes

per-day. The authors implemented the methodology for mediation analysis in the pres-

ence of exposure-mediator interaction adjusting for race, sex, and college education (re-

sults in Table 2.3).

We now present the results of the adjustment for measurement error allowing for the

presence of exposure-mediator interaction by means of a sensitivity analysis using re-

gression calibration, which was the method that performed best in the simulation study.

Setting the attenuation factor λ equal to 0.75, 0.5, and 0.25 (which correspond, given our

data, to a variance of the measurement error variable u, σ2
u, equal to 0.65, 1.3, and 2 re-

spectively), we obtain the corrected direct and indirect effects and percentile confidence

intervals from 1,000 bootstrap replications and proportion mediated presented in Table

2.3. The analysis reveals that measurement error induces an underestimate of the indirect

effect of the genetic variants on lung cancer mediated by smoking behavior. The direct

effect is also found to be slightly underestimated when measurement error is severe. Fig-

ure 2.2 depicts the sensitivity of the estimates of direct and indirect effects to the increase

of measurement error had we assumed exposure-mediator interaction either present or
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absent. We note that ignoring the presence of gene-environment interaction, for moderate
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Figure 2.2: Sensitivity analyses for direct (ORNDE), indirect (ORNIE), total (ORTE) effects and
proportion mediated (PM = ORNDE×(ORNIE−1)/(ORNDE×ORNIE−1)) for variant rs1051730.
Absent to severe measurement error (σ2

U ∈ (0, 2.5)) which corresponds to a reliability ratio, λ ∈
(0, 1).

to large measurement error, the sensitivity analysis would show an upward bias for the

direct effect, which is the opposite from what the analysis taking into account the inter-

action reveals. Although correcting for measurement error we obtain slightly different

results from the naive analysis, we can still conclude that for all the values considered in

the sensitivity analysis (λ = 0.75, 0.5, 0.25) the association of the variants with lung cancer

is primarily through pathways other than cigarettes per day (with proportion of the effect

of the genetic variants on lung cancer mediated through smoking taking up to the values

of 16% in case of lager measurement error).
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2.6 Discussion

We have studied the problem of measurement error in the context of causal mediation

analysis in GLMs, where exposure-mediator interaction can be present. We have demon-

strated that classical and non-differential measurement error on a continuous mediator

can undermine the validity of the estimators of direct and indirect causal effects that

have been employed. The theoretical results and a numerical study illustrate that when

exposure-mediator interaction is present or the outcome is not continuous, the impact of

measurement error might be severe. We showed that the bias of the causal effects esti-

mators that ignore measurement error can take unintuitive directions in the presence of

non-linearities.

VanderWeele et al. (2012b) show that although measurement error in the mediator in-

duces biased direct and indirect effects, the combination of these biased effects is in fact

unbiased for the total effect. However, this statement is true only if the mediator and out-

come models with M∗ replacing M are correctly specified. In both the simulations and the

example above, when exposure-mediator interaction is present or the link function of the

outcome model is non-linear, the total effect of the exposure on the outcome (computed

as either the sum or the product of direct and indirect effects) was also biased. This phe-

nomenon occurs because covariate measurement error in non-linear models additionally

induces model mis-specification, which is what gives rise to the bias in the estimates of

total effects as well.

We propose a solution to the problem of measurement error that does not require distribu-

tional assumptions on the latent mediator observed with error. We considered regression

calibration, SIMEX procedure, and a moment method as possible strategies of correction

for measurement error. We compared the performance of corrected estimators for di-

rect and indirect effects in a simulation study. Regression calibration has been found to

perform well over all the scenarios considered. Method of moments estimators outper-

formed the other two approaches only in the case of binary outcome in the absence of

interaction. The SIMEX approach performed poorly when the magnitude of measure-
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ment error was moderate to severe.

In many instances auxiliary information on the mis-measured intermediate is not avail-

able in mediation studies. We illustrated in a real data example the correction strategy

coupled with sensitivity analysis for the unknown variance of the measurement error, σ2
u,

for which no validation data or replicates for the mis-measured mediator is needed. Al-

though the correction strategy using sensitivity analysis does not require validation data

or replicates for the mis-measured mediator, the corrected estimators could be recovered

making use of this information, if available.

Throughout the paper we took a functional approach rather than a structural approach to

measurement error. The former makes no assumptions about the distribution of the unob-

servables, the latter typically makes distributional assumptions. The appeal of functional

modeling is model robustness. Alternatively, we could have taken a structural approach

as in MacKinnon (2008). In this paper, we assumed classical measurement error for which

Cov(M,u) = 0 and Cov(M∗, u) �= 0. Alternatively we could have assumed Cov(M,u) �= 0

and Cov(M∗, u) = 0, also called Berkson measurement error model. Note that under the

Berkson model, for the case of continuous mediator and outcome, it follows from Carroll

et al. (2006) that the estimators of direct and indirect effect result in unbiased estimates,

even if measurement error was ignored.

Some possible extensions of our study should be mentioned. While leaving the distribu-

tion of the latent mediator unspecified, we make the strong assumptions of independence

between the measurement error mechanism and all the other variables measured with-

out error. In particular, the assumption about the independence between the measure-

ment error variable, u, and the outcome, Y , is critical for the validity of our asymptotic

bias calculations as well as the proposed methods of correction. Care should be given in

evaluating the plausibility of the assumption of non-differential measurement error. The

effect of a misclassified binary mediator on the validity of mediation analysis is also of

interest and will be object of future work.
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2.A Definition of causal effects and identifiability condi-
tions

We let Ya and Ma denote respectively the values of the outcome and mediator that would

have been observed had the exposure A been set to level a. We let Yam denote the value

of the outcome that would have been observed had the exposure, A, and mediator, M ,

been set to levels a and m, respectively.

The average controlled direct effect comparing exposure level a to a∗ and fixing the me-

diator to level m is defined by CDEa,a∗(m) = E[Yam − Ya∗m]. The average natural direct

effect is then defined by NDEa,a∗(a∗) = E[YaMa∗ − Ya∗Ma∗ ]. The average natural indi-

rect effect can be defined as NIEa,a∗(a) = E[YaMa − YaMa∗ ], which compares the effect of

the mediator at levels Ma and Ma∗ on the outcome when exposure A is set to a. Con-

trolled direct effects and natural direct and indirect effects within strata of C = c are then

defined by: CDEa,a∗|c(m) = E[Yam − Ya∗m|c], NDEa,a∗|c(a∗) = E[YaMa∗ − Ya∗Ma∗ |c] and

NIEa,a∗|c(a) = E[YaMa − YaMa∗ |c] respectively.

For a dichotomous outcome the total effect on the odds ratio scale conditional on

C = c is given by ORTE
a,a∗|c = P (Ya=1|c)/{1−P (Ya=1|c)}

P (Ya∗=1|c)/{1−P (Ya∗=1|c)} . The controlled direct effect on

the odds ratio scale is given by ORCDE
a,a∗|c(m) = P (Yam=1|c)/{1−P (Yam=1|c)}

P (Ya∗m=1|c)/{1−P (Ya∗m=1|c)} . The natural

direct effect on the odds ratio scale conditional on C = c is given by ORNDE
a,a∗|c(a

∗) =
P (YaMa∗=1|c)/{1−P (YaMa∗=1|c)}

P (Ya∗Ma∗
=1|c)/{1−P (Ya∗Ma∗

=1|c)} . The natural indirect effect on the odds ratio scale conditional

on C = c is given by ORNIE
a,a∗|c(a) =

P (YaMa=1|c)/{1−P (YaMa=1|c)}
P (YaMa∗=1|c)/{1−P (YaMa∗=1|c)} .

If we let X ⊥ Y |Z denote that X is independent of Y conditional on Z then the

identification assumptions for the causal effects previously defined can be expressed

formally in terms of counterfactual independence as (i) Yam ⊥ A|C, (ii) Yam ⊥ M |{A,C},

(iii) Ma ⊥ A|C, and (iv) Yam ⊥ Ma∗ |C. Assumptions (i) and (ii) suffice to identify

controlled direct effects; assumptions (i)-(iv) suffice to identify natural direct and indirect

effects (Pearl, 2001; VanderWeele and Vansteelandt, 2009). The intuitive interpretation of

these assuptions follows from the theory of causal diagrams (Pearl, 2001). Alternative
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identification assumptions have also been proposed (Imai 2010a; Hafeman and Vander-

Weele, 2011). However, it has been shown that the intuitive graphical interpretation of

these alternative assumptions are in fact equivalent (Shpitser and VanderWeele, 2011).

Technical examples can be constructed where one set of identifiation assumptions holds

and another does not, but on a causal diagram corresponding to a set of non-parametric

structural equations, whenever one set of the assumptions among those in VanderWeele

and Vansteelandt (2009), Imai (2010a), and Hafeman and VanderWeele (2011) holds, the

others will also.

2.B Continuous Mediator and Outcome

Effects using regression when the mediator is perfectly measured

Suppose that both the mediator and the outcome are continuous and that the following

models fit the observed data:

Mi = β0 + β1Ai + β
�

2Ci + �2i (2.5)

Yi = θ0 + θ1Ai + θ2Mi + θ3Ai ∗Mi + θ
�

4Ci + �1i (2.6)

If the covariates C satisfied the no-unmeasured confounding assumptions (i)-(iv) above,

then the average controlled direct effect and the average natural direct and indirect effects

were derived by VanderWeele and Vansteelandt (2009).

In particular, if the regression models (2.5) and (2.6) are correctly specified and as-

sumptions of no unmeasured confounding of exposure-outcome relationship (i) and no

unmeasured confounding of the mediator-outcome relationship (ii) hold, then we could

compute the controlled direct effect as follows:
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CDE = E[Yam − Ya∗m|C = c]

= θ1(a− a∗) + θ3m(a− a∗).

If the regression models (2.5) and (2.6) are correctly specified and assumptions (i) and

(ii) together with two additional assumptions of (iii) no unmeasured confounding of the

exposure-mediator relationship and (iv) that there is no mediator-outcome confounder

that is affected by the exposure hold, then we could compute the natural direct effects by:

NDE = E[YaMa∗ − Ya∗Ma∗ |C = c]

= (θ1 + θ3β0 + θ3β1a∗ + θ3β
�
2c)(a− a∗).

Moreover under the same assumptions we can compute the natural indirect effects by:

NIE = E[YaMa − Ya∗Ma∗ |C = c]

= (θ2β1 + θ3β1a)(a− a∗).

Standard errors for these estimators can ben obtained either via bootstrap procedure or

by the delta method (VanderWeele and Vansteelandt, 2009).

Asymptotic bias of outcome regression parameters when the mediator is measured with error

Suppose now that we do not observe the true mediator M , rather a mis-measured version

of it M∗ = M + u. We assume that the measurement error is non-differential, additive,

mean zero and with constant variance σ2
u. In this case we would fit the following observed

mediator regression and observed outcome regression

M∗
i = β∗

0 + β∗
1Ai + β∗�

2 Ci + �∗2i (2.7)
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Yi = θ∗0 + θ∗1Ai + θ∗2M
∗
i + θ∗3A ∗M∗

i + θ∗
�

4 Ci + �∗1i (2.8)

Estimators of the observed mediator regression parameters have been shown to consis-

tently estimate the coefficients of the true mediator regression (Fuller, 2006).

We proceed by studying the asymptotic limit in probability of the estimators of the out-

come regression coefficients. We exploit the assumptions on the measurement error mech-

anism and on the relationship between the true mediator and the other covariates. In

particular it is useful to re-write the true outcome regression in terms of the observed me-

diator, M∗, in such a way that the observed mis-measured mediator is uncorrelated with a

new error term. We then compare the mis-specified outcome model with the true outcome

model.

We note that Mi = (1− λ)Mi + λMi. Moreover we have previously defined M as a linear

function of A and C plus an error �2 and the same M can be written as the sum of the

observed mediator M∗ plus another error u. Therefore, we can write (1 − λ)Mi + λMi =

(1 − λ)(β0 + β1Ai + β�
2Ci + �2i) + λ(M∗

i − ui), with λ =
σ2
m|a,c

σ2
m|a,c+σ2

u
(Carroll et al., 2006). The

terms in this equivalence can be rearranged separating the error terms from the observed

variables as Mi = (1 − λ)(β0 + β1Ai + β�
2Ci) + λ(M∗

i ) + (1 − λ)�2i − λui where we rec-

ognize that (1 − λ)(β0 + β1Ai + β�
2Ci) + λ(M∗

i ) = E[M |M∗, A, C] and (1 − λ)�2i − λui =

Mi − E[M |M∗, A, C] and these two terms are uncorrelated. That is, the true mediator can

be defined as its best linear prediction given the observed covariates plus an error. In-

troducing E[M |M∗, A, C] + Mi − E[M |M∗, A, C] in lieu of M in equation (2.6) helps us

understanding how measurement error on M can induce bias in the parameter estimates.

Thus, we can write the mis-specified outcome model as

Yi = θ0 + θ1Ai + θ2{E[Mi|M∗
i , Ai, Ci] +Mi − E[Mi|M∗

i , Ai, Ci]}+

θ3A ∗ {E[Mi|M∗
i , Ai, Ci] +Mi − E[Mi|M∗

i , Ai, Ci]}+ θ�4Ci + �1i

Yi = θ0 + θ1Ai + θ2{(1− λ)(β0 + β1Ai + β�
2Ci) + λM∗

i + (1− λ)�2i − λui}+

θ3A ∗ {(1− λ)(β0 + β1Ai + β�
2Ci) + λM∗

i + (1− λ)�2i − λui}+ θ�4Ci + �1i
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And we finally obtain

Yi = (θ0 + θ2(1− λ)β0) + (θ1 + θ2(1− λ)β1 + θ3(1− λ)β0)Ai + θ2λM
∗
i +

θ3λA ∗M∗ + (θ�4 + θ2(1− λ)β�
2)Ci + �1i − λui(θ2 + θ3Ai) + (1− λ)�2i(θ2 + θ3Ai) +

+θ3(1− λ)β�
2AiCi + θ3(1− λ)β1A

2
i

(2.9)

When the outcome is continuous and there is no exposure mediator interaction

the probability limit of the naive estimator is easily derived by direct compar-

ison of equations (2.8) and (2.9). We first consider the case of no interaction

θ3 = 0. Since Cov(M∗,Mi − E[Mi|M∗, Ai, Ci]) = Cov(Ai,Mi − E[Mi|M∗, Ai, Ci]) =

Cov(Ci,Mi − E[Mi|M∗, Ai, Ci]) = 0, it is straightforward to derive the probability limit of

the parameter estimates from the observed regression.

When the outcome is continuous fitting outcome model with the ordinary least squares

estimator (OLS) is equivalent to using the generalized linear model estimator with linear

link. The OLS estimators of the vector of parameters in the observed regression can be

written as

θ̂∗n = (X∗TX∗)−1X∗TY = (X∗TX∗)−1X∗T (X∗θmis + �1 + θ2[(1− λ)�2 − λu])

where X∗ = (1, A,M∗, C) is the matrix of observed covariates, and θmisT =

(θ0 + θ2(1− λ)β0, θ1 + (1− λ)β1θ2, θ2λ, θ2(1− λ)β�
2 + θ�4).

The estimators of the parameters from the observed regression will converge to

plimn→∞θ̂∗0n = θ0 + θ2(1− λ)β0

plimn→∞θ̂∗1n = θ1 + θ2(1− λ)β1

plimn→∞θ̂∗2n = θ2λ

plimn→∞θ̂∗
�

4n = θ
�

4 + θ2(1− λ)β�
2
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Since plimn→∞n−1
�n

i=1(x
∗T
i θ2((1− λ)�2i − λui)) = 0.

Note again that this result is obtained by directly comparing equations (2.8) and (2.9).

When the exposure-mediator interaction term is present the derivation of the asymptotic

limit is more complex. In order to facilitate the bias analysis we reparametrize the mis-

specified outcome model (2.9) so that all the new terms that appear after �1i have mean

zero. By adding and subtracting at the rhs of (2.8) the term (θ3(1 − λ)β�
2E(AC) + θ3(1 −

λ)β1E(A2)) we obtain:

Yi = (θ0 + θ2(1− λ)β0 + θ3(1− λ)β�
2E(AC) + θ3(1− λ)β1E(A2)) + (θ1 + θ2(1− λ)β1 +

+θ3(1− λ)β0)Ai + θ2λM
∗
i + θ3λA ∗M∗ + (θ�4 + θ2(1− λ)β�

2)Ci + �1i +

−λui(θ2 + θ3Ai) + (1− λ)�2i(θ2 + θ3Ai) + θ3(1− λ)β�
2(AiCi − E(AC)) +

+θ3(1− λ)β1(A
2
i − E(A2)) (2.10)

A direct comparison of equations (2.8) and (2.10) does not help in this case to study the

probability limit of the naive estimators. The OLS estimators of the vector of parameters

in the observed regression can be written as

θ̂∗n = (X∗TX∗)−1X∗TY

= (X∗TX∗)−1X∗T (X∗θ∗ + �∗1)

= (X∗TX∗)−1X∗T (X∗θmis + �1 + θ2[(1− λ)�2 − λu] + θ3A[(1− λ)�2 − u] +

+θ3(1− λ)(AC − E(AC))β2 + θ3(1− λ)β1(A
2 − E(A2))

where X∗ = (1, A,M∗, AM∗, C) is the matrix of observed covariates, and

θmisT = (θ0 + θ2(1− λ)β0, θ1 + (1− λ)β1θ2 + (1− λ)β0θ3, θ2λ, θ3λ, θ2(1− λ)β2 + θ�4).

The asymptotic limit of the naive estimators can be derived as:

plimn→∞(θ̂∗n) = θmis + θ3(1− λ)E[(X∗TX∗)]−1E[X∗T (AC − E(AC))]β2

+θ3(1− λ)β1E[(X∗TX∗)]−1E[X∗T (A2 − E(A2))].

Define the matrix E[(X∗TX∗)]−1 in terms of its row vectors, and let E[(X∗TX∗)]−1 =

(δI , δA, δM∗ , δAM∗ , δC)T .
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We then obtain the following probability limits for the naive estimators of the outcome

regression:

plimn→∞θ̂∗0n = θ0 + θ2(1− λ)β0 + θ3(1− λ)β�
2E(AC) + +θ3(1− λ)β1E(A2) +

+θ3(1− λ)δIE[X∗T ∗ (AC − E(AC))]β2 +

+θ3(1− λ)β1δIE[X∗T ∗ (A2 − E(A2))]

plimn→∞θ̂∗1n = θ1 + θ2(1− λ)β1 + θ3(1− λ)β0 + θ3(1− λ)δAE[X∗T ∗ (AC − E(AC))]β2 +

+θ3(1− λ)β1δAE[X∗T ∗ (A2 − E(A2))]

plimn→∞θ̂∗2n = θ2λ+ θ3(1− λ){δM∗E[X∗T ∗ (AC − E(AC))]β2 +

+β1δM∗E[X∗T ∗ (A2 − E(A2))]}

plimn→∞θ̂∗3n = θ3[λ+ (1− λ){δAM∗E[X∗T ∗ (AC − E(AC))]β2 +

+β1δAM∗E[X∗T ∗ (A2 − E(A2))]}]

plimn→∞θ̂∗
�

4n = (θ
�

4 + θ2(1− λ)β�
2 + θ3(1− λ)δCE[X∗T ∗ (AC − E(AC))]β2 +

+θ3(1− λ)β1δCE[X∗T ∗ (A2 − E(A2))])

Since plimn→∞n−1
�n

i=1(x
∗T
i θ2((1− λ)�2i − λui)) =plimn→∞n−1

�n
i=1(x

∗T
i θ3Ai((1− λ)�2i −

λui)) = 0.

Note that in absence of exposure-mediator interaction we obtain plimn→∞(θ̂∗n) = θmis,

which is identical to the probability limit formulae given in the previous section.

Asymptotic bias of causal effects when the mediator is measured with error

Bias formulae for the effects of interest follow directly from the results derived in the

previous section.

Let, γ1 = δAE[X∗T ∗ (AC − E(AC))], γ2 = δM∗E[X∗T ∗ (AC − E(AC))], γ3 = δAM∗E[X∗T ∗

(AC − E(AC))], γ4 = δAE[X∗T ∗ (A2 − E(A2))], γ5 = δM∗E[X∗T ∗ (A2 − E(A2))], and

γ6 = δAM∗E[X∗T ∗ (A2 − E(A2))] and assume exposure-mediator interaction is present.
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The asymptotic bias for controlled direct effects, natural direct effects and natural indirect

effects when the outcome is continuous and exposure-mediator interaction is present can

be derived as:

ABIAS(�CDE) = [θ2(1− λ)β1 + θ3{(1− λ)β0 + (1− λ)γ1β2 + (1− λ)β1γ4 +

+m(λ+ (1− λ)γ3β2 + (1− λ)β1γ6 − 1)}](a− a∗)

ABIAS(�NDE) = [θ2(1− λ)β1 + θ3{(1− λ)β0 + (1− λ)γ1β2 + (1− λ)β1γ4 +

+(β0 + β1a
∗ + β

�

2c)(λ+ (1− λ)γ3β2 + (1− λ)β1γ6 − 1)}](a− a∗)

ABIAS(�NIE) = [θ2(λ− 1) + θ3((1− λ)γ2β2 + (1− λ)β1γ5 + aλ+ a(1− λ)γ3β2 +

+a(1− λ)β1γ6 − a)]β1(a− a∗)

In absence of exposure-mediator interaction all terms involving the parameter θ3 drop

and we obtain

ABIAS(�CDE) = ABIAS( ˆNDE) = θ2(1− λ)β1(a− a∗)

ABIAS(�NIE) = [θ2β1(λ− 1)](a− a∗)

Method of Moments Estimators for regression parameters and causal effects

Method of moments estimators for the parameters involved in mediation analysis can be

obtained by solving the system of equations that arises from the previous results on the

probability limit of naive estimators when the mediator is measured with error.

When exposure-mediator is absent in order to consistently estimate direct and indirect

effects we need to consistently estimate the parameters θ1 and θ2. The method of moments

estimators of the outcome regression parameters are given by

θ̂MoM
0 = θ̂∗0 − θ̂MoM

2 (1− λ)β̂0

θ̂MoM
1 = θ̂∗1 − θ̂MoM

2 (1− λ)β̂1

θ̂MoM
2 = θ̂∗2/λ

θ̂MoM �

4 = θ̂∗
�

4 − θ̂MoM
2 (1− λ)β̂�

2
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When exposure-mediator is present in order to consistently estimate direct and indirect

effects we need to consistently estimate the parameters θ1 and θ2 and θ3. The method of

moments estimators for outcome regression parameters is given by

θ̂MoM
0 = θ̂∗0 − θ̂MoM

2 (1− λ)β̂0 − θ̂MoM
3 (1− λ){β̂�

2E(AC) + β̂1E(A2) +

δIE[X∗T (AC − E(AC))]β̂2 + β̂1δIE[X∗T (A2 − E(A2))]}

θ̂MoM
1 = θ̂∗1 − θ̂MoM

2 (1− λ)β̂1 − θ̂MoM
3 (1− λ)(β̂0 + γ1β̂2 + β̂1γ4)

θ̂MoM
2 =

θ̂∗2
λ

− θ̂MoM
3 (1− λ)

λ
(γ2β̂2 + β̂1γ5)

θ̂MoM
3 =

θ̂∗3
(1− λ)γ3β̂2 + (1− λ)β̂1γ6 + λ

θ̂MoM �

4 = θ̂∗
�

4 − θ̂MoM
2 (1− λ)β̂�

2 − θ̂MoM
3 (1− λ)[δCE[X∗T (AC − E(AC))]β̂2 +

β̂1δCE[X∗T (A2 − E(A2))]].

Regression Calibration Estimators for regression parameters and causal effects

Regression calibration estimators for the parameters involved in mediation analysis can

be obtained by substituting the observed mediator in the naive outcome regression with

the best linear predictor of the latent true mediator given A, C and M∗ .

When exposure-mediator interaction is absent in order to consistently estimate direct and

indirect effects we need to consistently estimate the parameters θ1 and θ2. The regression

calibration estimators for these two regression parameters coincide with the method of

moments estimators given in the previous section (Carroll et al., 2006).

The use of regression calibration to obtain consistent estimators for linear regression co-

efficients is based on the assumption of non differential measurement error.

For simple linear regression we can show that under non differential measurement error

E(Y |M) = Em{E(Y |M,M∗)|M∗}

= Em{E(Y |M)|M∗}

= Em(θ0 + θ1M |M∗)

= θ0 + θ1Em(M |M∗)
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We can show that regression approximation is exact in the exposure-mediator interaction

model.

We claim that

E(Y |A,M∗, C) = Em{E(Y |A,M,C,M∗)|A,M∗, C} = Em{E(Y |A,M,C)|A,M∗, C}

The proof is as follows:

Em{E(Y |A,M,C,M∗)|A,M∗, C} =

�

m

�

y

yf(y|a,m, c,m∗)dyf(a,m, c|a,m∗, c)dm

=

�

y

y

�

m

f(y|a,m, c,m∗)f(a,m, c,m∗)

f(a,m∗, c)
dmdy

=

�

y

y

f(a,m∗, c)

�

m

f(y, a,m, c,m∗)dmdy

=

�

y

yf(y|a,m∗, c)dy = E(Y |A,M∗, C)

and we note that

E(Y |A,M∗, C) = θ0 + θ1A+ θ2Em(M |A,M∗, C) + θ3AEm(M |A,M∗, C) + θ�4C
�

Therefore, estimating the latent mediator as a function of the observed covariates and

running the usual regression of Y on the exposure, the covariates C and the calibration

function of M will yield consistent estimators θrc for θ.

Standard errors of the method of moments estimators for direct and indirect causal effects

We now derive the standard errors of method of moments estimators for controlled

direct, natural direct and natural indirect effects assuming that exposure-mediator

interaction may be present.

90



Define the corrected method of moments estimators of the causal effects of interest as

�CDE = E[Yam − Ya∗m|C = c]

= θ̂MoM
1 (a− a∗) + θ̂MoM

3 m(a− a∗).

�NDE = E[YaMa∗ − Ya∗Ma∗ |C = c]

= (θ̂MoM
1 + θ̂MoM

3 β̂0 + θ̂MoM
3 β̂1a∗ + θ̂MoM

3 β̂
�
2c)(a− a∗).

�NIE = E[YaMa − Ya∗Ma∗ |C = c]

= (θ̂MoM
2 β̂1 + θ̂MoM

3 β̂1a)(a− a∗).

�TE = E[Ya − Ya∗ |C = c]

= �NDE + �NIE.

Suppose that model (2.7) and (2.8) have been fit using standard linear regression software

and that the resulting estimates β̂ of β = (β0, β1, β
�
2)

� and θ̂∗ of θ∗ = (θ∗0, θ
∗
1, θ

∗
2, θ

∗
3, θ

∗
4
�
)
� have

covariance matrices Σβ and Σθ∗ . Then the covariance matrix of (β̂ �
, θ̂

∗�
) is

Σ =

�
Σβ 0
0 Σθ∗

�

Suppose further that method of moments estimators of the outcome regres-

sion parameters are obtained as described in the previous section θ̂MoM =

(θ̂MoM
0 , θ̂MoM

1 , θ̂MoM
2 , θ̂MoM

3 , θ̂MoM
4

�
)
� . Then, the covariance matrix of (β̂ �

, θ̂
MoM�

) is

ΣMoM =

�
Σβ 0
0 ΣθMoM

�

ΣθMoM is found using the multivariate delta method.
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ΣθMoM = DMoMΣDMoMT

where,

DMoM =





∂θMoM
0
∂β0

∂θMoM
0
∂β1

∂θMoM
0
∂β�

2

∂θMoM
0
∂θ∗0

∂θMoM
0
∂θ∗1

∂θMoM
0
∂θ∗2

∂θMoM
0
∂θ∗3

∂θMoM
0

∂θ∗
�

4
∂θMoM

1
∂β0

∂θMoM
1
∂β1

∂θMoM
1
∂β�

2

∂θMoM
1
∂θ∗0

∂θMoM
1
∂θ∗1

∂θMoM
1
∂θ∗2

∂θMoM
1
∂θ∗3

∂θMoM
1

∂θ∗
�

4
∂θMoM

2
∂β0

∂θMoM
2
∂β1

∂θMoM
2
∂β�

2

∂θMoM
2
∂θ∗0

∂θMoM
2
∂θ∗1

∂θMoM
2
∂θ∗2

∂θMoM
2
∂θ∗3

∂θMoM
2

∂θ∗
�

4
∂θMoM

3
∂β0

∂θMoM
3
∂β1

∂θMoM
3
∂β�

2

∂θMoM
3
∂θ∗0

∂θMoM
3
∂θ∗1

∂θMoM
3
∂θ∗2

∂θMoM
3
∂θ∗3

∂θMoM
3

∂θ∗
�

4

∂θMoM�
4
∂β0

∂θMoM�
4
∂β1

∂θMoM�
4
∂β�

2

∂θMoM�
4
∂θ∗0

∂θMoM�
4
∂θ∗1

∂θMoM�
4
∂θ∗2

∂θMoM�
4
∂θ∗3

∂θMoM�
4

∂θ∗
�

4





with the partial derivatives derived as,

∂θMoM
0

∂β0
= −(1− λ)θMoM

2

∂θMoM
0
∂β1

= −(1 − λ)β0
∂θMoM

2
∂β1

− [∂θ
MoM
3
∂β1

(1 − λ)(β�
2(E(AC) + δIE[X∗T (AC − E(AC))]) +

β1(E(A2) + δIE[X∗T (A2 − E(A2))])) + θMoM
3 (1− λ)(E(A2) + δIE[X∗T (A2 − E(A2))])]

∂θMoM
0
∂β�

2
= −(1 − λ)β0

∂θMoM
2
∂β�

2
− [∂θ

MoM
3
∂β�

2
(1 − λ)(β�

2(E(AC) + δIE[X∗T (AC − E(AC))]) +

β1(E(A2) + δIE[X∗T (A2 − E(A2))])) + θMoM
3 (1− λ)(E(AC) + δIE[X∗T (AC − E(AC))])]

∂θMoM
1

∂β0
= −(1− λ)θMoM

3

∂θMoM
1

∂β1
= −(1− λ)θMoM

2

∂θMoM
2

∂β1
− [

∂θMoM
3

∂β1
(1− λ)(β0 + β�

2γ1 + β1γ4) + θMoM
3 (1− λ)γ4]

∂θMoM
1

∂β�
2

= −(1− λ)β1
∂θMoM

2

∂β�
2

− [
∂θMoM

3

∂β�
2

(1− λ)(β0 + β�
2γ1 + β1γ4) + θMoM

3 (1− λ)γ1]

∂θMoM
2

∂β0
=

∂θMoM
3

∂β0
=

∂θMoM �
4

∂β0
= 0

∂θMoM
2

∂β1
=

θ3(1− λ)γ5[λ{(1− λ)(β�
2γ3 + β2γ6) + λ}]− λ(1− λ)γ6[θ∗3(1− λ)(β�

2γ2 + β1γ5)]

[λ{(1− λ)(β�
2γ3 + β1γ6) + λ}]2
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∂θMoM
2

∂β�
2

=
θ3(1− λ)γ2[λ{(1− λ)(β�

2γ3 + β2γ6) + λ}]− λ(1− λ)γ3[θ∗3(1− λ)(β�
2γ2 + β1γ5)]

[λ{(1− λ)(β�
2γ3 + β1γ6) + λ}]2

∂θMoM
3

∂β1
= − (1− λ)γ6

[λ+ (1− λ)(β�
2γ3 + β1γ6)]2

∂θMoM
3

∂β�
2

= − (1− λ)γ3
[λ+ (1− λ)(β�

2γ3 + β1γ6)]2

∂θMoM�
4
∂β1

= −(1− λ)β�
2
∂θMoM

2
∂β1

− [∂θ
MoM
3
∂β1

(1− λ)(β�
2δCE[X∗T (AC − E(AC))] + β1δCE[X∗T (A2 −

E(A2))]) + θMoM
3 (1− λ)δCE[X∗T (A2 − E(A2))]]

∂θMoM�
4
∂β�

2
= −(1−λ)θMoM

2
∂θMoM

2
∂β�

2
− [∂θ

MoM
3
∂β�

2
(1−λ)(β�

2δCE[X∗T (AC−E(AC))]+β1δCE[X∗T (A2−

E(A2))]) + θMoM
3 (1− λ)δCE[X∗T (AC − E(AC))]]

∂θMoM
0

∂θ∗0
=

∂θMoM
1

∂θ∗1
= 1

∂θMoM
0

∂θ∗1
=

∂θMoM
1

∂θ∗0
=

∂θMoM
2

∂θ∗0
=

∂θMoM
2

∂θ∗1
=

∂θMoM
3

∂θ∗0
=

∂θMoM
3

∂θ∗1
=

∂θMoM
3

∂θ∗2
= 0

∂θMoM
0

∂θ∗
�

4

=
∂θ1
∂θ∗

�
4

=
∂θMoM

2

∂θ∗
�

4

=
∂θMoM

3

∂θ∗
�

4

=
∂θMoM �

4

∂θ∗0
=

∂θMoM �
4

∂θ∗1
= 0�

∂θMoM
0

∂θ∗2
= −(1− λ)β0

λ

∂θMoM
0
∂θ∗3

= (1−λ)β0[(1−λ)(β�
2γ2+β1γ5)−λ(1−λ)(β�

2E(AC)+β1E(A2)+β�
2δIE[X∗T (AC−E(AC))]+β1δIE[X∗T (A2−E(A2))])]

λ{(1−λ)[β�
2γ3+β1γ6]+λ}

∂θMoM
1

∂θ∗2
= −(1− λ)β1

λ

∂θMoM
1

∂θ∗3
=

(1− λ)β1[(1− λ)(β�
2γ2 + β1γ5)− λ(1− λ)(β0 + β�

2γ1 + β1γ4)]

λ{(1− λ)[β�
2γ3 + β1γ6] + λ}

∂θMoM
2

∂θ∗2
=

1

λ

∂θMoM
2

∂θ∗3
= − (1− λ)(β�

2γ2 + β1γ5)

λ[(1− λ)(β�
2γ3 + β1γ6) + λ]
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∂θMoM
3

∂θ∗3
=

1

(1− λ)(β�
2γ3 + β1γ6) + λ

∂θ�4
∂θ∗2

= −(1− λβ�
2)

λ

∂θMoM�
4
∂θ∗3

= (1−λ)β�
2[(1−λ)(β�

2γ2+β1γ5)−λ(1−λ)(β�
2δCE[X∗T (AC−E(AC))]+β1δCE[X∗T (A2−E(A2))])]

λ{(1−λ)[β�
2γ3+β1γ6]+λ}

∂θMoM �
4

∂θ∗
�

4

= I.

Standard errors of the method of moments controlled and natural direct and indirect

effects can be obtained (using the delta method) as
�
ΓMoMΣMoMΓMoM� |a− a∗|

with ΓMoM = (0, 0, 0
�
, 0, 1, 0,m, 0

�
) for the controlled direct effect, ΓMoM = (θMoM

3 , θMoM
3 a∗,

θMoM
3 c

�
, 0, 1, β0 + β1a∗ + β

�
2c, 0

�
) for the pure natural direct effect (same expression holds

for the total natural direct effect upon substituting a and a∗), ΓMoM = (0, θMoM
2 +

θMoM
3 a, 0

�
, 0, 0, β1, β1a, 0

�
) for the total natural indirect effect (the same expression holds

for the pure natural indirect effect upon substituting a and a∗), ΓMoM = (θMoM
3 , θMoM

3 (a+

a∗) + θMoM
2 , θMoM

3 c
�
, 0, 1, β1, β0 + β1(a+ a∗) + β

�
2c, 0

�
) for the total effect.

Standard errors of the method of moments estimators of the causal effects of interest can

be obtained in absence of exposure-mediator interaction in a similar way by setting θ3 = 0.

In absence of exposure mediator interaction the standard errors of the controlled and

natural direct and indirect effects can be obtained (using the delta method) as
�
ΓMoMΣMoMΓMoM� |a− a∗|

with ΓMoM = (0, 0, 0
�
, 0, 1, 0, 0

�
) for the controlled direct effect and for the pure natural

direct effect, ΓMoM = (0, θMoM
2 , 0

�
, 0, β1, 0

�
) for the total natural indirect effect, ΓMoM =

(0, θMoM
2 , 0�, 0, 1, β1, 0

�
) for the total effect.

ΣMoM =

�
Σβ 0
0 ΣMoM

θ

�

94



where,

ΣMoM
θ = DMoMΣDMoMT

with,

DMoM =





−θMoM
2 (1− λ) 0 0 1 0 − (1−λ)β0

λ 0

0 −θMoM
2 (1− λ) 0 0 1 − (1−λ)β1

λ 0
0 0 0 0 0 1

λ 0

0 0 −θMoM
2 (1− λ) 0 0 − (1−λ)β�

2
λ I





2.C Continuous Mediator and Binary-Logistic, Binary-
Log-linear, or Count Outcome

Effects using regression when the mediator is prefectly measured

Suppose that the mediator is continuous and the outcome is binary and is rare. Suppose

that the following models fit the observed data:

E(M |A = a, C = c) = β0 + β1a+ β
�

2c (2.11)

logit{P (Y = 1|A = a,M = m,C = c)} = θ0 + θ1a+ θ2m+ θ3a ∗m+ θ
�

4c (2.12)

and that the error term in the regression model for M is normally distributed with mean 0

and variance σ2 = σ2
m|a,c. If the regression models (2.11) and (2.12) are correctly specified

and assumptions (i) and (ii) hold then the conditional controlled direct effect on the odds

ratio scale would be given by (VanderWeele and Vansteelandt, 2010):

ORCDE = P (Yam=1|c)/(1−P (Yam=1|c))
P (Ya∗m=1|c)/(1−P (Ya∗m=1|c))

= exp[(θ1 + θ3m)(a− a∗)].

95



If the regression models (2.11) and (2.12) are correctly specified and assumptions (i)-(iv)

hold, the outcome Y is rare, and the error term for linear regression model (2.11) is

normally distributed and has constant variance σ2, then we could compute the natural

direct effects by:

ORNDE = exp[log{ P (YaMa∗=1|c)/(1−P (YaMa∗=1|c))
P (Ya∗Ma∗

=1|c)/(1−P (Ya∗Ma∗
=1|c))}]

= exp[logit{P (YaMa∗ = 1|c)} − logit{P (Ya∗Ma∗ = 1|c)}]

= exp[{θ1 + θ3(β0 + β1a∗ + β
�
2c+ θ2σ2)}(a− a∗) + 0.5θ23σ

2(a2 − a∗2)].

If the regression models (2.11) and (2.12) are correctly specified and assumptions (i)-(iv)

hold, the outcome Y is rare, and the error term for linear regression model (2.11) is

normally distributed and has constant variance σ2 = σ2
m|a,c, then we could compute the

natural indirect effects by:

ORNIE = exp[log{ P (YaMa=1|c)/(1−P (YaMa=1|c))
P (YaMa∗=1|c)/(1−P (YaMa∗=1|c))}]

= exp[logit{P (YaMa = 1|c)} − logit{P (YaMa∗ = 1|c)}]

= exp[(θ2β1 + θ3β1a)(a− a∗)].

These expressions apply also if the outcome is not rare and log-linear rather than logistic

models are fit to the outcome model; the direct and indirect effect will have now an inter-

pretation on the risk ratio scale rather than on the odds ratio scale.

These expressions apply also if the outcome is a count variable. In particular if Y ∼ Poi(λ)

for λ = exp{θ0 + θ1a+ θ2m+ θ3a ∗m+ θ
�
4c}) the outcome regression can be defined as:

log{E(Y |A = a,M = m,C = c)} = θ0 + θ1a+ θ2m+ θ3a ∗m+ θ
�

4c

The natural direct effect for binary outcome on the risk ratio scale coincides with the

natural direct effect for poisson count outcome since:

96



RRNDE = exp[log{ E(YaMa∗ |c)
E(Ya∗Ma∗ |c)

}]

The same argument holds for the natural indirect effect. Finally, the argument can be

extended to the case in which the count outcome is modeled with a negative binomial

distribution. This is the case since the negative binomial distribution can be represented

as an over-dispersed poisson and the mean of the two models coincide.

Standard errors for these estimators can ben obtained either via bootstrap procedure

or by delta method (VanderWeele and Vansteelandt, 2010; Valeri and VanderWeele, 2012).

Asymptotic bias of outcome regression parameters when the mediator is measured with error

If we did not observe the true mediator, but a mis-measured version of it instead, we

would fit the observed mediator regression (2.7) that, as we have discussed above, will

yield valid estimates of the parameters. When the outcome is binary we assume that Yi

arises from a continuous latent variable Y latent
i that we would model as (2.6), had the true

mediator been observed and as (2.8) had M∗ been observed. Then, Yi = 1 iff Y latent
i > 0,

Yi = 0 otherwise.

For some symmetrical distribution function F�1 , when the true mediator is observed we

have P (Yi = 1) = F−1
�1 (θ0+θ1Ai+θ2Mi+θ3A∗Mi+θ

�
4Ci), when we observe a mis-measured

version of the mediator instead we have P (Yi = 1) = F−1
�∗1

(θ∗0 + θ∗1Ai + θ∗2M
∗
i + θ∗3A ∗M∗

i +

θ∗
�

4 Ci). For logistic and probit regression F�1 and F�∗1
are the cumulative distribution func-

tions of the logistic and the normal distribution respectively.

Both in ordinary linear regression and in the discrete model, identification of the param-

eters requires further assumptions about the disturbances. In both models their mean

must be specified or the intercept is not identified. In the discrete model, the variance of

the disturbances, σ2
�1 and σ2

�∗1
, must be specified too, since Y latent

i > 0 is invariant to scaling

of Y latent
i , and hence to scaling of �1i and �∗1i and of the vector θ and θ∗, so that neither the

variance nor the parameters are identified. This indeterminacy is resolved by imposing a
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set value S on σ2
�1 and σ2

�∗1
. Both sides of the latent variable models (2.6) and (2.8) are mul-

tiplied by S/σ2
�1 and S/σ2

�∗1
respectively, and thus the latent variable models are replaced

by

Y †
i = θ†0 + θ†1Ai + θ†2Mi + θ†3A ∗Mi + θ†

�

4 Ci + �†1i (2.13)

with Y †
i = Yi

S
σ2
�1

, θ† = θ S
σ2
�1

, �†1i = �1i
S
σ2
�1

, when the true mediator is observed, and

Y †
i = θ∗†0 + θ∗†1 Ai + θ∗†2 M∗

i + θ∗†3 A ∗M∗
i + θ∗†

�

4 Ci + �∗†1i (2.14)

when the mis-measured version of the mediator is observed, with Y †
i = Yi

S
σ2
�∗1

, θ∗† = θ∗ S
σ2
�∗1

,

�∗†1i = �∗1i
S
σ2
�∗1

. The observed outcome is now defined as Yi = 1 iff Y †
i > 0 and Yi = 0 other-

wise.

In the probit model �†1i and �†∗1i have a standard normal distribution and S = 1; in the logit

model �†1i and �†∗1i have a logistic distribution and S = 15π
16

√
3
.

Consider now equation (2.10) described in the previous section. For binary outcome equa-

tion (2.10) corresponds to the mis-specified latent outcome model. Let �mis
i = �1i − λui(θ2 +

θ3Ai)+(1−λ)�2i(θ2+θ3Ai)+θ3(1−λ)β�
2(AiCi−E(AC))+θ3(1−λ)β1(A2

i −E(A)2), and de-

note with σ2
�mis the variance of �mis

i , model (2.10) can be rewritten, multiplying both sides

by S/σ2
�mis
1

, as

Y †
i = (θ†0 + θ†2(1− λ)β0 + θ†3(1− λ)β�

2E(AC) + θ†3(1− λ)β1E(A2)) + (θ†1 + θ†2(1− λ)β1 +

+θ†3(1− λ)β0)Ai + θ†2λM
∗
i + θ†3λA ∗M∗ + (θ†

�

4 + θ†2(1− λ)β�
2)Ci + �†1i − λui(θ

†
2 +

+θ†3Ai) + (1− λ)�2i(θ
†
2 + θ†3Ai) + θ†3(1− λ)β�

2(AiCi − E(AC)) +

+θ†3(1− λ)β1(A
2
i − E(A)2) (2.15)

Since the estimation of the θ parameters now involves also the variance of �1i, which is

mis-specified too, the bias formulae are more complex.

When there is no exposure-mediator interaction the probability limit can be derived by

direct comparison of equations (2.13), (2.14), and (2.15) dropping all θ3 terms. Since
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Cov(M∗,Mi − E[Mi|M∗, Ai, Ci]) = Cov(Ai,Mi − E[Mi|M∗, Ai, Ci]) = Cov(Ci,Mi −

E[Mi|M∗, Ai, Ci]) = 0, by comparing (2.14) and (2.15) we note that the estimators of the

observed regression parameters will converge to θ∗†0 = θ†0+θ†2(1−λ)β0, θ∗†1 = θ†1+θ†2(1−λ)β1,

θ∗†2 = θ†2λ, and θ
�∗†
4 = θ†

�

4 + θ†2(1− λ)β�
2.

Rewrite equation (2.15) as

Y †
i = θmis†

0 + θmis†
1 Ai + θmis†

2 M∗
i + θmis†

3 A ∗M∗ + θmis†�
4 Ci + �mis†

1i (2.16)

By comparing equations (2.16) and (2.13) we further note that in absence of exposure-

mediator interaction for i = 0, 1, 2, 4, θmis†
i

θ†i
=

θmis(S/σ2
�mis
1

)

θ(S/σ2
�1
) = 1

(1+θ22λσ
2
u/S

2)
1
2

. Therefore, we

can redefine the probability limit for the outcome regression parameters as

plimn→∞θ̂∗0n =
θ0 + θ2(1− λ)β0

τ

plimn→∞θ̂∗1n =
θ1 + θ2(1− λ)β1

τ

plimn→∞θ̂∗2n =
θ2λ

τ

plimn→∞θ̂∗
�

4n =
θ
�
4 + θ2(1− λ)β�

2

τ
,

where τ = (1+ θ22λσ
2
u/S

2)
1
2 with S = 15π

16
√
3
∼ 1.7 when logit link is used and S=1 for probit

link.

When exposure-mediator interaction is present, again Cov(M∗,Mi − E[Mi|M∗, Ai, Ci]) =

Cov(Ai,Mi − E[Mi|M∗, Ai, Ci]) = Cov(Ci,Mi − E[Mi|M∗, Ai, Ci]) = 0, but the terms

(AiCi − E(AC)) and (A2
i − E(A2)) that appear in equation (2.15), are embedded in the

error term of the observed outcome model and are correlated with the variables specified

in the observed model. This introduces an important difference from the previous sec-

tion. We can see that the mis-specified model and the observed data model won’t induce

the same type of GLM in general. This prevents us to directly compare the observed and

mis-specified outcome models as we did before.

In this case, measurement error causes bias in two ways, one way is through the mis-

specification of the coefficients and the other one is by omitted correlated variables. We
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have noted in fact that two new terms that are correlated with the covariates in the model,

arise, namely AiCi − E(AC) and A2
i − E(A2). Therefore, the bias will depend on the mis-

specification that is directly visible by comparing (2.14) and (2.15), on the particular link

function that is used, and on the conditional distributions of the omitted variables given

each variable in the observed outcome model. The latter feature is the most problematic

and induces a modification of the link function in an almost unpredictable way.

Following the reasoning of Neuhaus and Jewell (1993), we note that the parameter esti-

mates from the observed regression will approximately converge to

plimn→∞θ̂∗0n = {θ0 + θ2(1− λ)β0 + θ3(1− λ)[β�
2E(AC) + β1E(A2) +

+δIE[X∗T ∗ (AC − E(AC))]β2 + β1δIE[X∗T ∗ (A2 − E(A2))]]}HI(0)

plimn→∞θ̂∗1n = {θ1 + θ2(1− λ)β1 + θ3(1− λ)[β0 + δAE[X∗T ∗ (AC − E(AC))]β2 +

+β1δAE[X∗T ∗ (A2 − E(A2))]]} ∗HA(0)

plimn→∞θ̂∗2n = {θ2λ+ θ3(1− λ)δM∗ [E[X∗T ∗ (AC − E(AC))]β2 + β1E[X∗T ∗ (A2 +

−E(A2))]]} ∗HM∗(0)

plimn→∞θ̂∗3n = θ3[λ+ (1− λ)δAM∗{E[X∗T ∗ (AC − E(AC))]β2 + β1E[X∗T ∗ (A2 +

−E(A2))]}] ∗HAM∗(0)

plimn→∞θ̂∗
�

4n = {(θ�

4 + θ2(1− λ)β�
2 + θ3(1− λ)δCE[X∗T ∗ (AC − E(AC))]β2 + θ3(1 +

−λ)β1δCE[X∗T ∗ (A2 − E(A2))])} ∗HC(0)

Where, HX(0) is a function that depends on the variance of �mis
1 , the error term in the

mis-specified outcome model, previously defined, as well as on the type of link function

chosen, and the joint conditional distribution of AiCi − E(AC) and A2
i − E(A2) given X .

Let µ0 = E[Y |X,α] where X is the variable whose coefficient we want to estimate and

α is particular value of the omitted covariates effect. Intuitively, HX(0) expresses the

sensitivity of the mean of Y given X to a change in the effect of the omitted variables

on Y , which depends of course on the type of link function is used. The function HX(0)

is equal to one in the case of linear link, and therefore we get the same result as the one

obtained assuming an OLS model for the continuous outcome. The function HX(0) is

rather complex for logit and probit links. For the logit link HX(0) = (1 − var{µ0}
E{µ0}(1−E{µ0})),
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for the probit link HX(0) = Eφ{Φ−1(µ0)}
φ[Φ−1{E(µ0)}] . In general this functional is not recoverable in

closed form. However, a numerical bias analysis can still be carried out.

In order to implement the numerical bias analysis one needs to write the score equation

under the naive model and take its expectation under the true model and solve for the

naive parameters as a function of the true parameters (Wang et al., 1998). Finally, if we

assume a binary exposure so that Ai = A2
i , then the two terms can be incorporated and if

additionally the true model included the exposure-covariates interaction terms then the

asymptotic limit of the estimators of the regression coefficients could be easily derived

in closed form as was shown in the case of no exposure-mediator interaction because

the observed and mis-specified model would be directly comparable since no omitted

covariates would appear in the error term anymore.

When a logarithmic link is used for binary, log-linear or count outcomes HX(0) = 1,

therefore the probability limit of the parameter estimates θ1, θ2, and, in presence of

interaction, θ3, that are involved in the direct and indirect effect estimation, is equal to

the one derived for the linear-link.

Asymptotic bias of causal effects when the mediator is measured with error

Let, γ1 = δAE[X∗T ∗ (AC − E(AC))], γ2 = δM∗E[X∗T ∗ (AC − E(AC))], γ3 = δAM∗E[X∗T ∗

(AC − E(AC))], γ4 = δAE[X∗T ∗ (A2 − E(A2))], γ5 = δM∗E[X∗T ∗ (A2 − E(A2))], and γ6 =

δAM∗E[X∗T ∗(A2−E(A2))]. Note that because the natural direct effect involves σ2 = σ2
m|a,c,

the conditional variance of the mediator given the exposure and additional covariates,

we need to consider also the bias of the estimate σ̂∗2 = σ2
m∗|a,c from the observed mediator

regression which converges in probability to σ∗2 = σ2+σ2
u. Assuming exposure-mediator

interaction is present, when the outcome is binary and a logit link is used the asymptotic
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bias for controlled direct effect, natural direct effect and natural indirect effect is given by

ABIAS(log(�OR
CDE

)) = [θ1(HA(0)− 1) + θ2(1− λ)β1HA(0) + θ3{HA(0)((1− λ)β0 +

+(1− λ)γ1β2 + (1− λ)β1γ4) +HAM∗(0)(λ+ (1− λ)γ3β2 +

+(1− λ)β1γ6)−m}](a− a∗)

ABIAS(log(�OR
NDE

)) = {HA(0)[θ1 + θ2(1− λ)β1 + θ3((1− λ)β0 + (1− λ)γ1β2 +

+(1− λ)β1γ4)] +HAM∗(0)θ3[β0 + β1a
∗ + β

�

2c+

+(θ2λ+ θ3((1− λ)γ2β2 + (1− λ)β1γ5)σ
∗2)]×

×(λ+ (1− λ)γ3β2 + (1− λ)β1γ6)}(a− a∗) + (a2 + a∗2)×

×[HAM∗(0)θ3σ
∗(λ+ (1− λ)γ3β2 + (1− λ)β1γ6)]

2 −ORNDE

ABIAS(log(�OR
NIE

)) = {θ2[λHM∗(0)− 1] + θ3[HM∗(0)((1− λ)γ2β2 + (1− λ)β1γ5) +

+aHAM∗(0)(λ+ (1− λ)γ3β2 + (1− λ)β1γ6)− 1)]}β1(a− a∗)

In absence of exposure-mediator interaction the formulas simplify substantially and the

asymptotic bias is given by

ABIAS(log(�OR
CDE

)) = ABIAS(log(�OR
NDE

)) = [θ1(
1

τ
− 1) +

θ2(1− λ)β1

τ
](a− a∗)

ABIAS(log(�OR
NIE

)) = [θ2β1(
λ

τ
− 1)](a− a∗)

We turn now to consider the asymptotic bias of the causal effects estimators when a probit

link is used to model the binary outcome. For this purpose we define the causal effect in

the risk difference scale:

RDCDE = Φ{θ0 + θ1a+ θ2m+ θ3am+ θ�4c} − Φ{θ0 + θ1a
∗ + θ2m+ θ3a

∗m+ θ�4c}

RDNDE =

�

m

[Φ{θ0 + θ1a+ θ2m+ θ3am+ θ�4c} − Φ{θ0 + θ1a
∗ + θ2m+ θ3a

∗m+ θ�4c}]×

×fM |AC(m|a∗, c)dm

RRNIE =

�

m

Φ{θ0 + θ1a
∗ + θ2m+ θ3a

∗m+ θ�4c}[fM |AC(m|a, c)− fM |AC(m|a∗, c)]dm

We see that when the probit link is specified, the causal effect estimators are function po-

tentially of all the parameters of the outcome regression. This implies that the estimator
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will be much more affected by the bias due to measurement error. Moreover, the bias

formulae are complex and they don’t have a clear interpretation in terms of specific pa-

rameters or functions. Therefore, we omit the results on asymptotic bias for direct and

indirect causal effects estimators under probit outcome regression.

Finally, the asymptotic biases of direct and indirect effects estimators when the outcome

is modeled using a logarithmic link are given by

ABIAS( �log(RRCDE)) = [θ2(1− λ)β1 + θ3{(1− λ)β0 + (1− λ)γ1β2 + (1− λ)β1γ4 +

+m(λ+ (1− λ)γ3β2 + (1− λ)β1γ6 − 1)}](a− a∗)

ABIAS( �log(RRNDE)) = [(1− λ)β1θ2 + θ3((1− λ)β0 + (1− λ)γ1β2 + (1− λ)β1γ4)]×

×(a− a∗) + [θ3{((λ+ (1− λ)γ3β2 + (1− λ)β1γ6(β0 +

+β1a
∗ + β�

2c+ σ2∗(θ2λ+ θ3((1− λ)γ2β2 + (1− λ)β1γ5)))) +

−(β0 + β1a
∗ + β�

2c+ σ2θ2)}](a− a∗) + [θ23{σ2∗(λ+ (1− λ)γ3β2 +

+(1− λ)β1γ6)− σ2}]0.5(a2 − a∗2)

ABIAS( �log(RRNIE)) = [θ2(λ− 1) + θ3((1− λ)γ2β2 + (1− λ)β1γ5 + aλ+ a(1− λ)γ3β2 +

+a(1− λ)β1γ6 − a)]β1(a− a∗).

Method of Moments Estimators for regression parameters and causal effects

Method of moments estimators for the parameters involved in mediation analysis can be

obtained by solving the system of equations that arises from the previous results on the

probability limit of naive estimators when the mediator is measured with error.

When exposure-mediator is absent in order to consistently estimate direct and indirect

effects we need to consistently estimate the parameters θ1 and θ2. The method of moments

estimators for the outcome regression parameters, when the outcome is modelled using
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a log-link, are given by

θ̂MoM
0 = θ̂∗0 − θ̂MoM

2 (1− λ)β̂0

θ̂MoM
1 = θ̂∗1 − θ̂MoM

2 (1− λ)β̂1

θ̂MoM
2 = θ̂∗2/λ

θ̂MoM �

4 = θ̂∗
�

4 − θ̂MoM
2 (1− λ)β̂�

2

We note that the estimators are the same as the ones we derived for the continuous out-

come.

When the outcome is binary the method of moments estimators can be defined as de-

scribed above, but a better approximation is given by

θ̂MoM
0 = θ̂∗0(1 + θ̂MoM2

2 σ2
uλ/S

2)
1
2 − θ̂MoM

2 (1− λ)β̂0

θ̂MoM
1 = θ̂∗1(1 + θ̂MoM2

2 σ2
uλ/S

2)
1
2 − θ̂MoM

2 (1− λ)β̂1

θ̂MoM
2 =

θ̂∗2
(λ2 − θ̂∗2λσ

2
u/S

2)
1
2

θ̂MoM �

4 = θ̂∗
�

4 (1 + θ̂MoM2
2 σ2

uλ/S
2)

1
2 − θ̂MoM

2 (1− λ)β�
2

When exposure-mediator is present in order to consistently estimate direct and indirect

effects we need to consistently estimate the parameters θ1 and θ2 and θ3. The method of

moments estimators for these three regression parameters when the outcome is binary is

not of operational use since the function HX(0) previously defined cannot be recovered

in general. For binary-log-linear or count outcomes modeled with a glm with log-link the

method of moments estimators again coincide with the ones derived for the continuous

outcome case. The same estimator could be used as approximate method of moments

estimator for binary-logistic and binary-probit outcomes.

Regression Calibration Estimators for regression parameters and causal effects

When exposure-mediator is absent in order to consistently estimate direct and indirect ef-

fects we need to consistently estimate the parameters θ1 and θ2. The regression calibration
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estimators for these two regression parameters, when the outcome is binary or count, are

given by

θRC
1 = θ∗1 − θ∗2

(1− λ)β1

λ

θRC
2 = θ∗2/λ

When exposure-mediator is present in order to consistently estimate direct and indirect

effects we need to consistently estimate the parameters θ1 and θ2 and θ3. For both binary

and log-linear or count outcomes modelled with a glm with log-link the regression

calibration estimators again can be recovered as described in the section on continuous

outcome.

Armstrong (1985) showed that for logistic regression regression calibration estimators

will yield approximately consistent estimators.

P (Yi|Mi) = expit(θ0 + θ1Ai + θ2Mi + θ3AiMi + θ�4Ci)

P (Yi|Mi) ∼ expit(θ0 + θ1Ai + θ2E[Mi|M∗
i , Ai, Ci] + θ3AiE[Mi|M∗

i , Ai, Ci] + θ�4Ci)+

+ ∂
∂Mi

expit(θ0 + θ1Ai + θ2Mi + θ3AiMi + θ�4Ci)|Mi=E[Mi|M∗
i ,Ai,Ci](Mi − E[Mi|M∗

i , Ai, Ci])+

+ ∂2

∂M2
i
expit(θ0 + θ1Ai + θ2Mi + θ3AiMi + θ�4Ci)|Mi=E[Mi|M∗

i ,Ai,Ci](Mi − E[Mi|M∗
i , Ai, Ci])2.

Again, regression calibration estimators for θ̂rc1 , θ̂rc2 , and θ̂rc3 can be derived by run-

ning a logistic regression where M∗ is replaced by E[Mi|M∗
i , Ai, Ci]. From a careful

analysis of the approximation just derived, we can see that when there is no exposure

interaction the regression calibration estimators should perform reasonably well if the

measurement error is small (i.e. σ2
u is small) and if the effect of the mediator on the

outcome is not too large in absolute value. When an exposure-mediator interaction is
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present the validity of the approximation might be undermined. We note that the term

(Mi − E[Mi|M∗
i , Ai, Ci])2 will now depend on the distribution of the exposure variable

as well and in general we might not be able to assume that this term takes on small values.

Standard errors of the method of moments estimators for direct and indirect causal effects

We now derive the standard errors of method of moments estimators for controlled

direct, natural direct and natural indirect effects assuming that exposure-mediator

interaction may be present.

Define the corrected method of moments estimators of the causal effects of interest as

�OR
CDE

= P (Yam=1|c)/(1−P (Yam=1|c))
P (Ya∗m=1|c)/(1−P (Ya∗m=1|c))

= exp[(θ̂MoM
1 + θ̂MoM

3 m)(a− a∗)].

�OR
NDE

= exp[log{ P (YaMa∗=1|c)/(1−P (YaMa∗=1|c))
P (Ya∗Ma∗

=1|c)/(1−P (Ya∗Ma∗
=1|c))}]

= exp[{θ̂MoM
1 + θ̂MoM

3 (β̂0 + β̂1a∗ + β̂
�
2c+ θ̂MoM

2 σMoM2)}(a− a∗) + 0.5θ̂MoM
3

2σMoM2(a2 − a∗2)].

�OR
NIE

= exp[log{ P (YaMa=1|c)/(1−P (YaMa=1|c))
P (YaMa∗=1|c)/(1−P (YaMa∗=1|c))}]

= exp[(θ̂MoM
2 β̂1 + θ̂MoM

3 β̂1a)(a− a∗)].

�OR
TE

= E[Ya − Ya∗ |C = c]

= �OR
NDE

× �OR
NIE

.

Suppose that model (2.7) has been fit using standard linear regression software, the ob-

served outcome regression model has been fit using a logistic regression model and that

the resulting estimates β̂ of β = (β0, β1, β
�
2)

� and θ̂∗ of θ∗ = (θ∗0, θ
∗
1, θ

∗
2, θ

∗
3, θ

∗
4
�
)
� and σ̂∗2 of σ∗2
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have covariance matrices Σβ , Σθ∗ and Σσ∗2 . Then the covariance matrix of (β̂ �
, θ̂

∗�
, σ̂∗2) is

Σ =




Σβ 0 0
0 Σθ∗ 0
0 0 Σσ∗2





Suppose further that method of moments estimators of the outcome regres-

sion parameters are obtained as described in the previous section θ̂MoM =

(θ̂MoM
0 , θ̂MoM

1 , θ̂MoM
2 , θ̂MoM

3 , θ̂MoM
4

�
)
� and a consistent estimator for σ2 is given by

σ̂MoM2 = σ̂∗2λ̂, with λ̂ = σ̂∗2−σ2
u

σ̂∗2 . Recall that in the previous section we noted that

the method of moments estimator in presence of interaction is not of operational use

since it’s typically hard to recover the function HX(0). The method of moments esti-

mators described for the linear outcome case are equivalent to the method of moments

estimators of the regression parameters when the outcome is modeled using a logarith-

mic link and can be considered an approximation to the method of moments estimators

for binary outcome regression parameters.

Then the covariance matrix of (β̂ �
, θ̂

MoM�
, ˆσMoM2) is

ΣMoM =




Σβ 0 0
0 ΣθMoM 0
0 0 ΣσMoM2





Where ΣσMoM2 = (∂σ̂
MoM2

∂σ̂∗2 )2Σσ∗2 = Σσ∗2 and ΣθMoM is found using the multivariate delta

method.

ΣθMoM = DMoM

�
Σβ 0
0 Σθ∗

�
DMoMT

where DMoM is recovered as we described in the continuous outcome section.

Standard errors of the method of moments controlled and natural direct and indirect

effects can be obtained (using the delta method) as

�
ΓMoMΣMoMΓMoM� |a− a∗|
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with ΓMoM = (0, 0, 0
�
, 0, 1, 0,m, 0

�
, 0) for the log of controlled direct effect odds ra-

tio, ΓMoM = (θMoM
3 , θMoM

3 a∗, θMoM
3 c

�
, 0, 1, θMoM

3 σMoM2, β0 + β1a∗ + β
�
2c + θMoM

2 σMoM2 +

θMoM
3 σMoM2(a+a∗), 0

�
, θMoM

2 θMoM
3 +0.5θMoM

3
2(a+a∗)) for the log pure natural direct effect

odds ratio (same expression holds for the total natural direct effect upon substituting a

and a∗), ΓMoM = (0, θMoM
2 + θMoM

3 a, 0
�
, 0, 0, β1, β1a, 0

�
, 0) for the log of total natural indirect

effect (the same expression holds for the pure natural indirect effect upon substituting a

and a∗), ΓMoM = (θMoM
3 , θMoM

3 (a + a∗) + θMoM
2 , θMoM

3 c
�
, 0, 1, θMoM

3 σMoM2 + β1, β0 + β1(a +

a∗) + β
�
2c + θMoM

2 σMoM2 + θMoM
3 σMoM2(a2 − a∗2), 0

�
, 0.5θMoM

3
2(a2 − a∗2)) for the logarithm

of the total effect.

Standard errors of the method of moments and regression calibration estimators of the

causal effects of interest can be obtained in absence of exposure-mediator interaction in a

similar way by setting θ3 = 0.

In absence of exposure mediator interaction if we employ the approximate method of mo-

ments estimator for binary logistic or probit link (and is exact for log link), that coincides

with the regression calibration estimator, the standard errors of the controlled and natural

direct and indirect effects can be obtained (using the delta method) as

�
ΓMoMΣMoMΓMoM� |a− a∗|

with ΓMoM = (0, 0, 0
�
, 0, 1, 0, 0

�
, 0) for the log of controlled direct effect odds ratio and for

the log pure natural direct effect odds ratio, ΓMoM = (0, θMoM
2 , 0

�
, 0, 0, β1, 0

�
, 0) for the log

of total natural indirect effect (the same expression holds for the pure natural indirect

effect upon substituting a and a∗), ΓMoM = (0, θMoM
2 , 0�, 0, 1, β1, 0

�
, 0) for the logarithm of

the total effect.

and

ΣMoM =




Σβ 0 0
0 ΣMoM

θ 0
0 0 Σσ2MoM





where ΣσMoM2 = Σσ∗2 and
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ΣMoM
θ = DMoM

�
Σβ 0
0 Σθ∗

�
DMoMT

with DMoM defined as in the section of continuous outcome.

We have also seen that, when the exposure-mediator interaction is absent, the method of

moments estimator can be improved when the mediator is binary and modeled with ei-

ther logit or probit link. The standard errors for the improved method of moments estima-

tors of the causal effects in absence of exposure-mediator interaction have the same form

of the ones given above with DMoM defined as follows. Recall that θMoM
2 = θ∗2

λ2−θ∗22 λσ2
u/S

2

and let

∂θMoM
0

∂β0
=

∂θMoM
1

∂β1
=

∂θMoM �
4

∂β�
2

= −θMoM
2 (1− λ)

∂θMoM
2

∂θ∗2
=

(λ2 − θ∗22 λσ2
u/S

2) + 2λσ2
uθ

4
2/S

2

(λ2 − θ∗22 λσ2
u/S

2)2

∂θMoM
0

∂θ∗0
=

∂θMoM
1

∂θ∗1
=

∂θMoM �
4

∂θ∗
�

4

= (1 + [θMoM2
2 λσ2

u]/S
2)

1
2

∂θMoM
0

∂θ∗2
=

1

2
θ∗0(1 + [θMoM2

2 λσ2
u]/S

2)
2λσ2

u

S2
θMoM
2

∂θMoM
2

∂θ∗2
− (1− λ)β0

∂θMoM
2

∂θ∗2

∂θMoM
1

∂θ∗2
=

1

2
θ∗1(1 + [θMoM2

2 λσ2
u]/S

2)
2λσ2

u

S2
θMoM
2

∂θMoM
2

∂θ∗2
− (1− λ)β1

∂θMoM
2

∂θ∗2

∂θMoM �
4

∂θ∗2
=

1

2
θ∗4(1 + [θMoM2

2 λσ2
u]/S

2)
2λσ2

u

S2
θMoM
2

∂θMoM
2

∂θ∗2
− (1− λ)β�

2

∂θMoM
2

∂θ∗2

Then,

DMoM =





∂θMoM
0
∂β0

0 0
∂θMoM

0
∂θ∗0

0
∂θMoM

0
∂θ∗2

0

0
∂θMoM

0
∂β1

0 0
∂θMoM

1
∂θ∗1

∂θMoM
1
∂θ∗2

0

0 0 0 0 0
∂θMoM

2
∂θ∗2

0

0 0
∂θMoM

0
∂β�

2
0 0

∂θMoM�
4
∂θ∗2

∂θMoM�
4

∂θ∗
�

4





.

109



Ta
bl

e
2.

4:
Si

m
ul

at
io

ns
re

su
lts

fo
rc

on
tin

uo
us

ou
tc

om
e

(σ
2 u
=

0.
1,
n
=

10
,0
00

)
B

ia
s

V
ar

ia
nc

e
M

SE
Ef

fe
ct

(θ
3
=

0)
N

ai
ve

M
oM

R
C

SI
M

EX
N

ai
ve

M
oM

R
C

SI
M

EX
N

ai
ve

M
oM

R
C

SI
M

EX
N

D
E

0.
09

3
0.

00
2

0.
00

2
0.

00
5

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

9
0.

00
0

0.
00

0
0.

00
0

N
IE

-0
.0

92
-0

.0
02

-0
.0

02
-0

.0
05

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

8
0.

00
0

0.
00

0
0.

00
0

TE
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
(σ

2 u
=

0.
5,
n
=

10
,0
00

)
B

ia
s

V
ar

ia
nc

e
M

SE
Ef

fe
ct

N
ai

ve
M

oM
R

C
SI

M
EX

N
ai

ve
M

oM
R

C
SI

M
EX

N
ai

ve
M

oM
R

C
SI

M
EX

N
D

E
0.

33
5

0.
00

2
0.

00
2

0.
1

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
11

0.
00

0
0.

00
0

0.
01

N
IE

-0
.3

33
0.

00
0

0.
00

0
-0

.0
1

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
1

0.
00

0
0.

00
0

0.
01

TE
0.

00
2

0.
00

2
0.

00
2

0.
00

2
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
(σ

2 u
=

0.
1,
n
=

10
,0
00

)
B

ia
s

V
ar

ia
nc

e
M

SE
Ef

fe
ct

(θ
3
�=

0)
N

ai
ve

M
oM

R
C

SI
M

EX
N

ai
ve

M
oM

R
C

SI
M

EX
N

ai
ve

M
oM

R
C

SI
M

EX
C

D
E

0.
15

3
-0

.0
13

-0
.0

02
0.

00
2

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
02

4
0.

00
0

0.
00

0
0.

00
0

N
D

E
0.

15
6

0.
01

0
0.

00
1

0.
00

5
0.

00
1

0.
00

1
0.

00
1

0.
00

1
0.

02
5

0.
00

1
0.

00
0

0.
00

1
N

IE
0.

01
5

0.
18

4
-0

.0
03

-0
.0

03
0.

00
1

0.
00

2
0.

00
1

0.
00

1
0.

00
2

0.
03

6
0.

00
1

0.
00

1
TE

0.
17

4
0.

17
4

-0
.0

03
0.

00
1

0.
00

2
0.

00
2

0.
00

2
0.

00
2

0.
03

2
0.

03
2

0.
00

2
0.

00
2

(σ
2 u
=

0.
5,
n
=

10
,0
00

)
B

ia
s

V
ar

ia
nc

e
M

SE
Ef

fe
ct

N
ai

ve
M

oM
R

C
SI

M
EX

N
ai

ve
M

oM
R

C
SI

M
EX

N
ai

ve
M

oM
R

C
SI

M
EX

C
D

E
0.

58
8

-0
.2

3
-0

.0
04

0.
16

1
0.

00
1

0.
00

1
0.

00
1

0.
00

1
0.

34
7

0.
05

7
0.

00
1

0.
02

7
N

D
E

0.
58

6
-0

.2
1

-0
.0

02
0.

15
9

0.
00

1
0.

00
2

0.
00

2
0.

00
2

0.
34

0.
05

6
0.

00
2

0.
02

N
IE

0.
08

4
0.

89
-0

.0
01

0.
01

5
0.

00
2

0.
00

5
0.

00
2

0.
00

2
0.

00
8

0.
81

0.
00

2
0.

00
3

TE
0.

67
0.

66
-0

.0
03

0.
17

5
0.

00
2

0.
00

2
0.

00
2

0.
00

2
0.

45
3

0.
44

6
0.

00
2

0.
03

110



Ta
bl

e
2.

5:
Si

m
ul

at
io

n
re

su
lts

fo
rb

in
ar

y
(lo

gi
st

ic
lin

k)
ou

tc
om

e
(σ

2 u
=

0.
1,
n
=

10
,0
00

)
B

ia
s

V
ar

ia
nc

e
M

SE
Ef

fe
ct

(θ
3
=

0)
N

ai
ve

M
oM

R
C

SI
M

EX
N

ai
ve

M
oM

R
C

SI
M

EX
N

ai
ve

M
oM

R
C

SI
M

EX
N

D
E

0.
11

7
-0

.0
02

-0
.0

02
-0

.0
04

0.
00

9
0.

00
6

0.
00

7
0.

00
8

0.
02

0.
00

6
0.

00
6

0.
00

8
N

IE
-0

.2
75

0.
00

6
-0

.0
47

-0
.0

2
0.

01
0.

01
0.

01
0.

01
0.

08
0.

01
0.

01
0.

01
TE

-0
.0

69
-0

.0
03

-0
.0

69
-0

.0
43

0.
06

0.
06

0.
04

0.
06

0.
06

9
0.

04
0.

04
0.

06
5

(σ
2 u
=

0.
5,
n
=

10
,0
00

)
B

ia
s

V
ar

ia
nc

e
M

SE
Ef

fe
ct

N
ai

ve
M

oM
R

C
SI

M
EX

N
ai

ve
M

oM
R

C
SI

M
EX

N
ai

ve
M

oM
R

C
SI

M
EX

N
D

E
0.

46
3

0.
00

1
-0

.0
12

0.
14

2
0.

01
0.

00
7

0.
01

0.
01

0.
23

0.
00

7
0.

01
0.

03
N

IE
-0

.8
27

-0
.0

07
-0

.1
17

-0
.3

16
0.

00
3

0.
01

5
0.

01
0.

01
0.

68
0.

01
5

0.
02

9
0.

11
TE

-0
.1

89
-0

.0
1

-0
.1

89
0.

06
9

0.
05

0.
04

0.
05

0.
06

0.
09

0.
04

0.
09

0.
06

(σ
2 u
=

0.
1,
n
=

10
,0
00

)
B

ia
s

V
ar

ia
nc

e
M

SE
Ef

fe
ct

(θ
3
�=

0)
N

ai
ve

M
oM

R
C

SI
M

EX
N

ai
ve

M
oM

R
C

SI
M

EX
N

ai
ve

M
oM

R
C

SI
M

EX
C

D
E

0.
16

3
0.

00
8

0.
01

6
-0

.0
17

0.
01

4
0.

01
1

0.
01

2
0.

01
4

0.
04

1
0.

01
1

0.
01

3
0.

01
3

N
D

E
-0

.1
22

-0
.0

97
0.

01
2

0.
02

4
0.

00
2

0.
00

2
0.

00
4

0.
00

4
0.

01
7

0.
01

2
0.

00
4

0.
00

5
N

IE
0.

00
4

-0
.0

26
0.

00
6

0.
00

2
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
TE

-0
.0

31
-0

.0
4

0.
00

0
-0

.0
05

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

1
0.

00
1

0.
00

0
0.

00
0

(σ
2 u
=

0.
5,
n
=

10
,0
00

)
B

ia
s

V
ar

ia
nc

e
M

SE
Ef

fe
ct

N
ai

ve
M

oM
R

C
SI

M
EX

N
ai

ve
M

oM
R

C
SI

M
EX

N
ai

ve
M

oM
R

C
SI

M
EX

C
D

E
0.

45
2

0.
16

9
-0

.0
6

0.
15

5
0.

02
0.

00
9

0.
01

0.
02

0.
22

6
0.

03
8

0.
01

5
0.

04
4

N
D

E
-0

.3
23

-0
.3

42
0.

02
3

0.
19

2
0.

00
0

0.
00

0
0.

00
6

0.
00

2
0.

10
5

0.
11

8
0.

00
6

0.
03

9
N

IE
0.

01
3

-0
.0

35
0.

01
8

0.
04

6
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

1
0.

00
0

0.
00

2
TE

-0
.0

8
-0

.1
06

0.
00

3
-0

.0
36

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

8
0.

01
1

0.
00

0
0.

00
1

111



0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0
2

4
6

8
10

NDE=CDE=1

N = 100   Bandwidth = 0.0158

D
en
si
ty

naive
RC
MoM
SIMEX

0.7 0.8 0.9 1.0 1.1 1.2 1.3

0
2

4
6

8
10

NIE=1

N = 100   Bandwidth = 0.02232

D
en
si
ty

naive
RC
MoM
SIMEX

1.7 1.8 1.9 2.0 2.1 2.2 2.3

0
2

4
6

8
10

TE=2

N = 100   Bandwidth = 0.02575

D
en
si
ty

naive
RC
MoM
SIMEX

Figure 2.3: Density of causal effect estimators: small error, linear Y model and θ3 = 0.
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Figure 2.4: Density of causal effect estimators: moderate error, linear Y model and θ3 = 0.
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Figure 2.5: Density of causal effect estimators: small error, linear Y model and θ3 �= 0.
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Figure 2.6: Density of causal effect estimators: moderate error, linear Y model and θ3 �= 0.
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Figure 2.7: Density of causal effect estimators: small error, logistic Y model and θ3 = 0.
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Figure 2.8: Density of causal effect estimators: moderate error, logistic Y model and θ3 = 0.
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Figure 2.9: Density of causal effect estimators: small error, logistic Y model and θ3 �= 0.
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Figure 2.10: Density of causal effect estimators: moderate error, logistic Y model and θ3 �= 0.
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Abstract

Mediation analysis serves to quantify the effect of an exposure on an outcome mediated

by a certain intermediate, and to quantify the extent to which the effect is direct. When the

mediator is misclassified the validity of mediation analysis can be severely undermined.

The contribution of the present work is to study the effects of non-differential misclassifi-

cation of a binary mediator in the estimation of direct and indirect causal effects when the

outcome is either continuous or binary and exposure-mediator interaction can be present,

and to allow for the correction of misclassification. A full maximum likelihood approach

and an hybrid of likelihood-based and predictive value weighting method for misclas-

sification correction coupled with sensitivity analyses are proposed and compared for

which no validation samples or gold standard for the misclassified mediator are needed.

The approaches are applied to a perinatal epidemiological study on the determinants of

pre-term birth.

Keywords: Iteratively re-weighted least squares; Maximum likelihood; Mediation analysis; Mis-

classification; Predictive value weighting; Sensitivity analyses.
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3.1 Introduction

Causal mediation analysis investigates the role of intermediate variables (mediators) in

explaining the mechanisms through which an exposure variable exerts a causal effect

on an outcome variable. A mediational model hypothesizes that the exposure variable

causes the mediator variable, which in turn causes the outcome variable (MacKinnon,

2008). The use of mediation analysis in biomedical and social sciences is widespread and

has been strongly influenced by the seminal paper of Baron and Kenny (1986). More

recently, new advances in mediation analysis have been made by applying the counter-

factual framework in this field (Robins and Greenland, 1992; Pearl, 2001; VanderWeele

and Vansteelandt, 2009, 2010; Imai et al., 2010). The use of the counterfactual framework

has allowed for definitions of direct and indirect effects and for decomposition of a total

effect into direct and indirect effects even in models with interactions and non-linearities.

The property of effect decomposition is particularly appealing because in many contexts

investigators are interested in assessing whether most of the effect is mediated through

a particular intermediate or the extent to which it is through other pathways. Decom-

position of a total effect into direct and indirect effects accomplishes this goal. Vander-

Weele and Vansteelandt (2009, 2010) showed how the notion of direct and indirect causal

effects from causal inference in the counterfactual framework (Greenland and Robins,

1992; Pearl, 2001) can extend the regression approach to mediation analysis of Baron and

Kenny to settings in which there is an interaction term between exposure and mediator

in the outcome regression.

Mediation analysis is often performed as a secondary study, after the causal effect of an

exposure on an outcome has been investigated, to deepen the understanding of the mech-

anisms. A shortcoming of mediation analysis in such studies is that while effort may be

made to measure the exposure and outcome with high precision, less attention may be

given to correctly measuring the mediator variable. Therefore, it is of interest to consider

the consequence of measurement error or misclassification of the mediator in the estima-

tion of the direct and indirect causal effects.
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The problem of measurement error in mediation analysis has been explored for the sim-

ple and linear mediation model by Hoyle and Kenny (1999). VanderWeele et al. (2012)

and Valeri et al. (2012) studied the impact of measurement error on a continuous media-

tor variable when direct and indirect causal effects are estimated using generalized linear

models in the presence of exposure-mediator interaction. Misclassification of a binary

mediator has been considered by Ogburn et al. (2012) in a non-parametric setting. To our

knowledge no rigorous study of the misclassification problem has been proposed when

mediation analysis is carried out using a parametric approach, allowing for the presence

of non-linearities such as exposure-mediator interaction.

In the context of a regression-based approach to mediation analysis, the investigator

needs to estimate the parameters from the outcome and mediator regressions. Then, di-

rect and indirect causal effects are recovered as functions of those regression parameters,

provided the models have been correctly specified and the no confounding assumptions

described below hold (VanderWeele and Vansteelandt, 2009, 2010). The reader can refer

to the next section for an explanation of the results that have been derived for parametric

inference for direct and indirect causal effects under a counterfactual framework. When

a binary mediator is misclassified, in order to understand if the estimators of the causal

effects of interest are still valid, it is crucial to investigate how misclassification affects

the estimation of outcome and mediator regressions’ parameters. In this study, we use

results that have been derived about the consequences of misclassification on parameter

estimators in parametric regression models when an outcome or a covariate is misclassi-

fied (Neuhaus, 1999; Gustafson, 2004; Carroll et al., 2006).

The present work makes two contributions. First, we study the implications of non-

differential misclassification of the mediator variable on the validity of mediation anal-

ysis. Assuming a continuous outcome modeled using linear regression, we derive the

asymptotic bias of direct and indirect causal effects estimators in closed form. The asymp-

totic bias formulae are given assuming that exposure and mediator may interact in their

effect on the outcome. We demonstrate that even if the error is assumed to be non-

differential, regression coefficient estimators obtained in mediation analysis ignoring mis-

classification can sometimes be severely biased and therefore induce bias in the estima-
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tion of causal direct and indirect effects. The second contribution of the present work is to

propose strategies for misclassification correction that yield consistent or approximately

consistent estimators of the direct and indirect causal effects under non-differential mis-

classification model. We propose a correction strategy for misclassification of a binary me-

diator when the outcome is either continuous or binary, allowing for exposure-mediator

interaction. The correction approach is coupled with sensitivity analyses when no gold

standard or validation samples for the mis-measured mediator are available. In partic-

ular, we evaluate and compare the performance of misclassification-corrected estimators

for direct and indirect causal effects using iteratively reweighed least squares (IRLS) ap-

proach for outcome misclassification (Neuhaus, 1999; Carroll et al., 2006) paired with

a predictive value weighting (PVW) approach for covariate misclassification or a fully

likelihood-based (ML) method (Lyles and Lin, 2010; Carroll et al., 2006).

The paper is organized as follows. Section 3.2 defines direct and indirect causal effects

and discusses some results from mediation analysis. Section 3.3 describes the mediator

misclassification model, and studies the asymptotic bias in direct and indirect causal ef-

fects when the binary mediator is misclassified. In Section 3.4 we describe the approaches

for misclassification correction and we evaluate their performance in estimating direct

and indirect causal effects via a simulation study. In Section 3.5 we apply the proposed

methods to a perinatal epidemiological study, followed by discussion in Section 3.6.

3.2 Mediation analysis within the counterfactual frame-
work in the absence of misclassification

Let A be an exposure or treatment, Y an outcome, M a mediator and C a k-dimensional

vector of covariates. The causal diagram in Figure 3.1 captures how the role of a mediator

variable can be conceptualized. In the figure, the exposure can have an effect on the out-

come by either exerting a causal effect on the mediator which in turn is causally related to

the outcome, or by affecting the level of the outcome independently of its impact on the

intermediate variable.
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Let Ya and Ma denote respectively the values of the outcome and mediator that would

!

Figure 3.1: Mediation Directed Acyclic Graph (DAG)

have been observed had the exposure A been set to level a. Let Yam denote the value of

the outcome that would have been observed had the exposure, A, and mediator, M , been

set to levels a and m, respectively. Given these counterfactual variables, the following

causal effects can be non-parametrically defined. The controlled direct effect (CDE), de-

fined by E[Yam − Yãm|C], expresses how much the outcome would change on average if

the mediator were controlled at level m uniformly in the population but the treatment

were changed from level ã to level a e.g. for a binary exposure from ã = 0 to a = 1. The

natural direct effect (NDE), defined by E[YaMã − YãMã |C], measures how much the mean

of the outcome would change if the exposure were set at level a versus level ã but the

mediator were kept at the level it would have taken under ã. The natural indirect effect

(NIE), defined by E[YaMa −YaMã |C], measures how much the mean of the outcome would

change if the exposure were controlled at level a, but the mediator were changed from

the level it would take under ã to the level it would take under a.

While controlled direct effects are often of greater interest in policy evaluation (Pearl,

2001; Robins, 2003), natural direct and indirect effects are particularly of interest in eval-
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uating the action of various mechanisms (Robins, 2003; Joffe et al., 2007). An important

property of the natural indirect effect and the natural direct effect is that the total effect

decomposes into the sum of these two effects, TE = E[Ya − Yã|C] = E[YaMã − YãMã |C] +

E[YaMa − YaMã |C] = NDE + NIE; this holds even in models with interactions or non-

linearities (Pearl, 2001)

Let A and C be either continuous or categorical. In the context of a parametric approach

to mediation analysis, for the case of a binary mediator and continuous outcome, the

following regression models can be defined:

logit{P [M = 1|A = a,C = c]} = β0 + β1a+ β
�
2c (3.1)

E[Y |A = a,M = m,C = c] = θ0 + θ1a+ θ2m+ θ3am+ θ
�
4c. (3.2)

Let β and θ denote the vector of outcome and mediator regression parameters. Under

models (3.1) and (3.2) controlled direct effect (CDE(θ)), natural direct effect (NDE(θ,β))

and natural indirect effect (NIE(θ,β)) for a change in exposure from level ã to level a can

be estimated by (Valeri and VanderWeele, 2012):

CDE(θ) = E[Yam − Yãm|C = c] = {θ1 + θ3m}(a− ã)

NDE(θ,β) = E[YaMã − YãMã |C = c] = {θ1(a− ã)}+ {θ3(a− ã)} exp[β0 + β1ã+ β
�
2c]

1 + exp[β0 + β1ã+ β
�
2c]

NIE(θ,β) = E[YaMa − YaMã |C = c] = (θ2 + θ3a){
exp[β0 + β1a+ β

�
2c]

1 + exp[β0 + β1a+ β
�
2c]

−

exp[β0 + β1ã+ β
�
2c]

1 + exp[β0 + β1ã+ β
�
2c]

}.

When the exposure A and mediator M do not interact in their effect on the outcome θ3 = 0

and direct and indirect causal effects can be estimated as

NDE(θ) = CDE(θ) = θ1(a− ã)

NIE(θ,β) = θ2{
exp[β0 + β1a+ β

�
2c]

1 + exp[β0 + β1a+ β
�
2c]

− exp[β0 + β1ã+ β
�
2c]

1 + exp[β0 + β1ã+ β
�
2c]

}.
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When the outcome is binary modeled with a logit link, equation (2) can be replaced by

logit{P (Y = 1|A = a,M = m,C = c)} = θ0 + θ1a+ θ2m+ θ3am+ θ
�
4c. (3.3)

If the outcome is case and rare, then from models (3.1) and (3.3) natural direct effect and

natural indirect effect for a change in exposure from level ã to level a are given in terms

of odds ratios by (Valeri and VanderWeele, 2012):

ORCDE(θ) = exp[(θ1 + θ3m)(a− ã)]

ORNDE(θ,β) = {exp[θ1a](1 + exp[θ2 + θ3a+ β0 + β1ã+ β
�
2c])

exp[θ1ã](1 + exp[θ2 + θ3ã+ β0 + β1ã+ β
�
2c])

}

ORNIE(θ,β) =
[1 + exp(β0 + β1ã+ β

�
2c)][1 + exp(θ2 + θ3a+ β0 + β1a+ β

�
2c)]

[1 + exp(β0 + β1a+ β
�
2c)][1 + exp(θ2 + θ3a+ β0 + β1ã+ β

�
2c)]

.

The expressions above in terms of regression coefficients will be equal to the counterfac-

tual direct and indirect effects, and therefore have a causal interpretation, provided that

the parametric models are correctly specified and that conditional on covariates C there

is no unmeasured confounding of (i) the exposure-outcome relationship, (ii) the media-

tor outcome relationship, (iii) the exposure-mediator relationship, and (iv) that there is

no variable affected by the exposure that confounds the mediator outcome relationship.

In the counterfactual notation this is: (i) Yam � A|C, (ii) Yam � M |C, (iii) Ma � A|C, (iv)

Yam �Mã|C (See Pearl (2001) and Robins and Richardson (2010) for further discussion of

these assumptions).
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3.3 Results on direct and indirect effects naive estimators
when the mediator is misclassified

3.3.1 Mediator and outcome regressions when mediator is misclassi-
fied

Using the notation in section 3.2, assume that both A and C, as well as the outcome Y ,

are correctly measured. Let M be the binary mediator at its true level and M∗ the mis-

classified version of M . In the following we assume that the misclassification mechanism

is independent of the outcome, the exposure, and the covariates (P (M∗|M,Y,A,C) =

P (M∗|M), i.e. non-differential). Under this assumption the misclassification mechanism

can be completely characterized by sensitivity (SN = P (M∗ = 1|M = 1)) and specificity

(SP = P (M∗ = 0|M = 0)) and the prevalence of the latent mediator, p = P (M = 1).

When the true intermediate M is replaced by the observed intermediate M∗ in models

(3.1) and (3.2) an investigator operates with observed outcome and mediator regressions:

logit{P [M∗ = 1|A = a,C = c]} = β∗
0 + β∗

1a+ c, (3.4)

E[Y |A = a,M∗ = m∗,C = c] = θ∗0 + θ∗1a+ θ∗2m
∗ + θ∗3am

∗ + θ∗�
4 c. (3.5)

Misclassification typically causes parameter estimates of the mediator and outcome re-

gression to be asymptotically biased (Carroll et al., 2006; Gustafson, 2004). We start by

deriving the asymptotic limit for the coefficients’ estimators of the mediator equation

assuming a logistic model and outcome equation assuming a linear regression model al-

lowing for mediator-exposure interaction. We then proceed giving the asymptotic bias of

the naive direct and indirect causal effects estimators. All the derivations can be found in

the online appendix.
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3.3.2 Asymptotic limit of parameters of the mediator regression

Let β̂∗ be the vector of maximum likelihood (MLE) estimators of the parameters from

(3.4) and let β∗ be the asymptotic limit of those MLE estimators. Let β be the asymptotic

limit of MLE estimators of the parameters from (3.1). Let SN and SP denote sensitivity

and specificity parameters. Misclassification of the mediator causes a modification in the

link function (Neuhaus, 1999). Therefore, to study the limit of the observed mediator re-

gression parameters estimators we can borrow results from previous studies on the effect

of model mis-specification on the validity of parameters estimation (Huber, 1967; Akaike,

1973; White, 1982). Extending the reasoning of Neuhaus (1999) of simple logistic regres-

sion to allow for the presence of multiple covariates, we find that β̂∗ will approximately

converge in probability to

β∗
0 ≈ logit{(SN + SP − 1)

exp(β0)

1 + exp(β0)
+ (1− SP )}

β∗
1 ≈ β1

(SN + SP − 1)exp(β0 + β
�
2c)

{SNexp(β0 + β
�
2c) + (1− SP )}{(1− SN)exp(β0 + β

�
2c) + SP}

β∗�
2i ≈ β

�
2i

(SN + SP − 1)exp(β0 + β1a+ β
�
2
(−i)

c)

{SNexp(β0 + β1a+ β
�
2
(−i)

c) + (1− SP )}{(1− SN)exp(β0 + β1a+ β
�
2
(−i)

c) + SP}
,

where the terms β∗�
2i and β

�
2i denote the i-th component of and β

�
2 respectively; and

β
�
2

(−i) refers to the vector β�
2 with the i-th component of β�

2 for which we want to give the

asymptotic limit set to zero.

The approximation of the limit is valid provided that the binary mediator is modeled us-

ing a generalized linear model (GLM) and SN + SP > 1, indicating that the procedure

producing the observed classification M∗ performs better than chance. Moreover, note

that the asymptotic limits defined above depend on the assumption of independence of

the measurement error mechanism with the covariates in the mediator regression.

Neuhaus (1999) shows that for link functions g for which 1/g
� is concave, errors in the

response lead to attenuated estimates of the covariates effects. Such links include logistic,

probit, complementary log-log and any link function based on an inverse cumulative dis-

tribution function. The amount of attenuation induced by misclassification is dependent
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upon the magnitude of sensitivity and specificity parameters, the true prevalence of the

mediator in the population and the magnitude of the true effects of the covariates on the

mediator.

3.3.3 Asymptotic limit of parameters of the outcome regression

Suppose that M is subject to non-differential misclassification and measured as M∗ and

that we fit the observed continuous outcome regression model (3.5) where M is replaced

by M∗. We study the asymptotic limit of the naive estimators of the exposure, mediator

and the exposure-mediator interaction coefficients and we denote them by θ∗1, θ∗2 and θ∗3

respectively.

Let (θ̂∗1, θ̂∗2, θ̂∗3) be the naive maximum likelihood estimators of the outcome regressors if M

is replaced by M∗. Let (θ1, θ2, θ3) be the true parameters of the regressors. Let U denote the

misclassification error taking values (−1, 0, 1) and AU = A× U ; let X = (1, A,M,AM,C)

and X∗ = (1, A,M∗, AM∗,C) denote the matrix of the true and observed covariates re-

spectively. For arbitrary variables W and Z we define δW,Z as the inverse of the covariance

of W and Z. Let γ1 = Cov(M∗, U), γ2 = Cov(AM∗, U), and γ3 = Cov(AM∗, AU), which

are functions of sensitivity and specificity parameters and of the covariance between ex-

posure and the true mediator, as shown in the online appendix.

For a continuous outcome modeled using the linear regression the asymptotic limit of the

outcome regression parameters in the presence of exposure-mediator interaction is given

by,

θ∗1 = θ1 − θ2δA,M∗γ1 − θ3δA,AM∗γ3 − γ2{θ2δA,AM∗ + θ3δA,M∗}

θ∗2 = θ2{1− δM∗,M∗γ1} − θ3δM∗,AM∗γ3 − γ2{θ2δM∗,AM∗ + θ3δM∗,M∗}

θ∗3 = θ2δAM∗,M∗γ1 − θ3{1− δAM∗,AM∗γ3} − γ2{θ3δAM∗,M∗ + θ2δAM∗,AM∗}.

Note that the asymptotic limits of the naive outcome regression parameters estimators

are complex functions of the true outcome regression parameters, the covariance between
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the observed covariates and the misclassification error, and the correlation between the

covariates. In the presence of exposure-mediator interaction, it is not clear the direction

that the asymptotic bias of the naive outcome regression parameters could take.

3.3.4 Asymptotic bias of the direct and indirect causal effects

Given the limit of the naive outcome and mediator regression parameters estimators the

asymptotic bias of the direct and indirect effects naive estimators can be derived.

Let the vector β∗ and θ∗ denote the limit of the vector of the naive mediator and out-

come regression parameters estimators β̂∗ and θ̂∗. Let �CDE
∗
= CDE(θ̂∗), �NDE

∗
=

NDE(θ̂∗, β̂∗) and �NIE
∗
= NIE(θ̂∗, β̂∗) denote the naive estimators for the controlled

direct effect, natural direct effect, and the indirect effect, respectively. Recall δW,Z is the

inverse of the covariance of W and Z. Let γ1 = Cov(M∗, U), γ2 = Cov(AM∗, U), and

γ3 = Cov(AM∗, AU) We then have that:

ABIAS(�CDE
∗
) = −[θ2γ1(δA,M∗ + δAM∗,M∗m) + θ3γ3(δA,AM∗ + δAM∗,AM∗m) +

+γ2{θ2(δA,AM∗ + δAM∗,AM∗m) + θ3(δA,M∗ + δAM∗,M∗m)}]

ABIAS(�NDE
∗
) ≈ [θ3(expit[β

∗
0 + β∗

1 ã+ c]− expit[β0 + β1ã+ β
�
2c])− γ1θ2(δAM∗,AM∗ ×

×expit[β∗
0 + β∗

1 ã+ c] + δA,M∗)− γ3θ3(δAM∗,AM∗expit[β∗
0 + β∗

1 ã+ c] +

δA,AM∗)− γ2{θ3(δAM∗,M∗ × expit[β∗
0 + β∗

1 ã+ c] + δAM∗)

+θ2(δAM∗,AM∗expit[β∗
0 + β∗

1 ã+ c] + δA,AM∗)}](a− ã)

ABIAS(�NIE
∗
) ≈ {expit[β∗

0 + β∗
1a+ c]− expit[β∗

0 + β∗
1 ã+ c]}[θ2 + θ3 − γ1θ2(δM∗,M∗ +

+aδAM∗,M∗)− γ3θ3(δM∗,AM∗ + aδAM∗,AM∗)− γ2{θ2(δM∗,AM∗ +

+aδAM∗,AM∗) + θ3(δM∗,M∗ + aδAM∗,M∗)}]− {expit[β0 + β1a+ β
�
2c] +

−expit[β0 + β1ã+ β
�
2c]}(θ2 + ãθ3).
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In the absence of exposure-mediator interaction the asymptotic bias formulae simplify to:

ABIAS(�NDE
∗
) = ABIAS(�CDE

∗
) = −θ2δA,M∗γ1(a− ã)

ABIAS(�NIE
∗
) ≈ θ2[{1− δM∗,M∗γ1}{

exp[β∗
0 + β∗

1a+ c]

1 + exp[β∗
0 + β∗

1a+ c]
− exp[β∗

0 + β∗
1 ã+ c]

1 + exp[β∗
0 + β∗

1 ã+ c]
}+

−{ exp[β0 + β1a+ β
�
2c]

1 + exp[β0 + β1a+ β
�
2c]

− exp[β0 + β1ã+ β
�
2c]

1 + exp[β0 + β1ã+ β
�
2c]

}],

Misclassification of a binary mediator exerts its impact on the estimation of direct and

indirect effects by inducing bias in both the mediator and the outcome regression param-

eters estimation. This contrasts with the effect of measurement error on a continuous

mediator which typically induces bias on the outcome regression parameters naive es-

timators while leaving unbiased the naive estimators of the mediator linear regression

parameters (Valeri et al., 2012).

In the absence of exposure-mediator interaction the asymptotic bias of direct and indirect

effects have a particular direction. The direct effect naive estimator will be biased away

from the null under the assumption that the effect of the exposure on the mediator, β1,

and the effect of the mediator on the outcome, θ2, have the same sign. The bias will be

larger as sensitivity (SN ) and specificity (SP ) decrease, as the effect of the mediator on

the outcome increases (θ2) as well as the more the variables in the model are correlated

among each other and with the error (δA,M∗). The indirect effect will be diluted (biased

towards the null) under the same assumption. The attenuation factor again depends on

the magnitude of sensitivity and specificity parameters, on the effect of the mediator on

the outcome, θ2, and the correlation among the variables. Proofs are given in the online

appendix.

In a non-parametric setting, VanderWeele et al. (2012) show that although measurement

error in the mediator induces biased direct and indirect effects, the combination of these

biased effects is in fact unbiased for the total effect. However, this result does not necessar-

ily hold in a regression-approach to mediation analysis. This is because, misclassification

of a binary mediator induces mis-specification in the mediator and outcome regressions

and this creates a source of bias beyond simply measurement error in a parametric set-

ting.
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In the presence of exposure-mediator interaction the formulas for the asymptotic bias are

more complex and with no intuitive interpretation. Note that the direction of the bias

remains the same at least non-parametrically (Ogburn et al. 2012). In section 3.3.6 we

illustrate how departures from this result can occur using parametric models for contin-

uous or binary outcome via a numerical study.

3.3.5 Additional results on the behavior of direct and indirect causal
effects naive estimators in the absence of exposure-mediator in-
teraction

To explore further the behavior of naive causal effect estimators in the presence of mis-

classification (assuming the absence of exposure-mediator interaction) we evaluated the

asymptotic bias formulae as functions of sensitivity and specificity parameters. We find

that the asymptotic biases of both direct and indirect effects are maximized when sen-

sitivity and specificity parameters take value 1/2. The maximization results hold for

each level of the prevalence of the true mediator. Let NDE∗ = NDE(θ∗,β∗) and

NIE∗ = NIE(θ∗,β∗). We can show that

∂(NDE∗ −NDE)

∂SP
= 0

∂(NDE∗ −NDE)

∂SN
= 0,

gives SP = SN = 1
2 .

Also SP = SN = 1
2 gives

∂(NIE∗ −NIE)

∂SP
= 0

∂(NIE∗ −NIE)

∂SN
= 0.
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Via a partial derivative analysis we study the behavior of the asymptotic bias as sensi-

tivity or specificity for the mediator measurement depart from their optimal level. As

sensitivity or specificity for the mediator measurement depart from 1, the magnitude of

the bias for the direct effect depends on the magnitude the effect of the mediator on the

outcome and the prevalence of the mediator for sensitivity and on the magnitude of the

effect of the mediator on the outcome and 1 minus the prevalence of the mediator for

specificity. This is because:

∂(NDE∗ −NDE)

∂SP
|SP=SN=1 = −θ2δA,M∗(1− p)2

∂(NDE∗ −NDE)

∂SN
|SP=SN=1 = −θ2δA,M∗p2.

Likewise for the indirect effect it can be shown that:

∂(NIE∗ −NIE))

∂SP
|SP=SN=1 = θ2{expit{β0 + β1a+ β

�

2c}[
1− expit(β0)

expit(β0)
− a

eβ0+β
�

2c
− c

eβ0+β1a+β
�

2c
] +

−expit{β0 + β1ã+ β
�

2c}[
{1− expit(β0)}2

expit(β0)
− ã

eβ0+β
�

2c
− c

eβ0+β1+ãβ
�

2c
] +

−δA,M∗ [expit{β0 + β1a+ β
�

2c} − expit{β0 + β1ã+ β
�

2c}](1− p)2}
∂(NIE∗ −NIE)

∂SN
|SP=SN=1 = θ2{expit{β0 + β1a+ β

�

2c}[expit(β0)− 1− aeβ0+β
�

2c − ceβ0+β1a+β
�

2c] +

−expit{β0 + β1ã+ β
�

2c}[expit(β0)− 1− ãeβ0+β
�

2c − ceβ0+β1ã+β
�

2c] +

−δA,M∗ [expit{β0 + β1a+ β
�

2c} − expit{β0 + β1ã+ β
�

2c}]p2}.

The partial derivatives are not easily interpretable for indirect effect, however we can ob-

serve a similar finding. As sensitivity or specificity for the mediator measurement depart

from 1, the magnitude of the bias for the indirect effect depends on the magnitude of the

effect of the mediator on the outcome and the prevalence of the mediator for sensitivity

and on the magnitude of the effect of the mediator on the outcome and 1 minus the preva-

lence of the mediator for specificity. Additionally, the change in the asymptotic bias for

a departure of either sensitivity of specificity from optimality depends on the covariance

between the exposure and the mediator.

Note also that if A and C were binary and the mediator regression was saturated, using
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the property of effect decomposition that the direct and indirect effects sum to the total ef-

fect (and knowing that the total effect will be unbiased by measurement error), the partial

derivatives for the NIE would simplify into

∂(NIE∗ −NIE)

∂SP
|SP=SN=1 = θ2δA,M∗(1− p)2

∂(NIE∗ −NIE)

∂SN
|SP=SN=1 = θ2δA,M∗p2.

Importantly, from the formulae above we can evince that the bias of direct and indirect

effects will depend more on specificity for a low prevalence mediator and more on sensi-

tivity for a high prevalence mediator.

3.3.6 Numerical bias analysis

Misclassification of a binary mediator induces bias in the estimators of direct and indirect

effects if misclassification is ignored. In the previous sections we gave the asymptotic bias

in closed form when the outcome is continuous allowing for the presence of exposure-

mediator interaction. The theoretical results are rather complex and hard to interpret.

Therefore, we carry out a numerical bias analysis to confirm our theoretical findings and

to have clearer picture of how the magnitude and direction of the asymptotic bias of the

causal effects can be influenced by the presence of non-linearities, such as interactions.

We consider r = 100 samples of size n = 10, 000 and generate a binary exposure

Ai ∼ Be(pa) with pa = 0.4 and a continuous covariate C ∼ N(1, 1). The true bi-

nary mediator conditional on A and C is defined as M |A,C ∼ Be(pM) with pM =

exp(β0 + β1A + β2C)/{1 + exp(β0 + β1A + β2C)} and β0 = −0.25, β1 = 0.2, β2 = 0.2.

Under this scenario the mediator is common with a marginal probability of 50%. The

observed mediator is defined so that P (M∗ = 1|M = 0) and P (M∗ = 0|M = 1)

take values in the rectangular space (0, 1) × (0, 1). For continuous outcome we gener-

ate Y |A,M,C ∼ N(µY , σ2
Y ), where µY = θ0 + θ1A + θ2M + θ3AM + θ4C and σ2

Y = 1,
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with θ0 = 0, θ1 = 1, θ2 = 1, θ3 = (0, 1), θ4 = 1. We carry out a numerical bias anal-

ysis assuming a binary outcome as well and we generate Y |A,M,C ∼ Ber(pY ), where

pY = exp(θ0 + θ1A+ θ2M + θ3AM + θ4C)/(1 + exp(θ0 + θ1A+ θ2M + θ3AM + θ4C)), with

θ0 = −0.8, θ1 = 1, θ2 = 1.7, θ3 = (0, 0.1), θ4 = 1

The observed outcome regression models are run assuming that the true model is known

by the investigator, who just replaces the true M with the observed mediator M∗. In

particular, if in the true model the exposure-mediator interaction term is present, then

the interaction term is present in the naive model too; likewise, if in the true model the

exposure-mediator interaction term is absent, the naive analysis is run without including

the exposure-mediator interaction term.

Figures 3.2 and 3.3 give a three dimensional view of the relative bias of direct and indirect

effects naive estimators when sensitivity and specificity take values in the interval (0, 1).

We define relative bias as the ratio of the asymptotic bias of the naive estimator of the

causal effects over their true value.

Figure 3.2 displays the relative bias of naive estimators of direct and indirect causal

effects for continuous outcome with exposure-mediator interaction either present (pink

graphs) or absent (blue graphs) in the true model. In the absence of exposure-mediator

interaction (blue graphs), the numerical results confirm the theoretical findings. We can

observe first that with the true NDE equal to 1, the asymptotic relative bias for the naive

estimator of NDE is positive and thus away from the null. We also note that with the

true NIE equal to 0.05, the asymptotic relative bias of the naive indirect effect estimator

is negative and thus towards the null. Therefore, naive estimators when the outcome is

continuous estimate the direct effect away from the null and estimate the indirect effect

towards the null. The asymptotic relative bias is maximized at SN = SP = 1/2. If both

sensitivity and specificity were equal to zero we note that no bias would be found. This

would coincide with the case in which the investigator recoded the mediator. We note

that in the presence of exposure-mediator interaction (pink graphs), direct and indirect

effects are biased in the same direction, but the magnitude of the bias for the direct effect

is larger.

Figure 3.3 displays the relative bias of the naive estimators of direct and indirect causal
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Figure 3.2: Relative bias of direct (NDE) and indirect (NIE) naive causal effects for the grid
(SN,SP)=(0.1, 0.9)× (0.1, 0.9) for continuous outcome modeled using linear regression (BLUE-No
exposure-mediator interaction/PINK-Exposure-mediator interaction)

effects for binary outcome when the interaction is present (yellow graph) or absent (green

graph) in the true model. We observe that the naive direct effect is biased towards the null

as well as the indirect effect. The result is found both in the presence and in the absence

of exposure-mediator interaction in the true model. The magnitude of the bias of direct

effect estimator increases in the presence of interaction (yellow graph).

We observe that in the presence of exposure-mediator interaction and/or binary outcome

the asymptotic relative bias can take unintuitive directions. The magnitude and direction

of the bias is now influenced even more by model mis-specification and by the magnitude

and sign of the interaction term.

Moreover, the reader should be aware that when the direct and indirect effect naive es-

timators are biased in the same direction, the total effect will be asymptotically biased

as well. This contrasts with the non-parametric result of VanderWeele et al. (2012). The
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Figure 3.3: Relative bias of direct (NDE) and indirect (NIE) naive causal effects for the grid
(SN,SP)=(0.1, 0.9) × (0.1, 0.9) for binary outcome modeled using logistic regression (GREEN-No
exposure-mediator interaction/YELLOW-Exposure-mediator interaction)

reason for this result is that misclassification induces mis-specification of both the out-

come and mediator regression and this mis-specification induces an additional source of

bias. In the presence of interaction and when the outcome is binary the issue of mis-

specification might be accentuated in certain settings, as the numerical analysis shows.

We also observe that the numerical bias results for binary outcome are dramatically dif-

ferent from the ones that the asymptotic bias formulae for continuous outcome would

have predicted both in the presence and in the absence of exposure-mediator interaction.

Therefore, the asymptotic bias formulae that we give in the previous section cannot be

used as approximations of the asymptotic bias of naive direct and indirect effects estima-

tors when the outcome is binary.
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3.4 Correction strategy for direct and indirect effects esti-
mators

3.4.1 Iteratively Re-weighted Least Squares estimators for mediator re-
gression

Asymptotically unbiased estimators for the vector of true mediator regression parameters

β can be found by adjusting the link function and programming Iteratively Re-weighted

Least Squares (IRLS) as proposed by Neuhaus (1999). This is a widely popular approach

for misclassified outcome regression correction and is known to perform well in most set-

tings (Lyles and Lin, 2010; Carroll et al., 2006).

Provided that the misclassification probabilities are known or set as sensitivity analysis

parameters, the IRLS method entails constructing the likelihood for the probability that

the true mediator is equal to one in terms of misclassification probabilities and the con-

ditional probability of the mediator given the observed covariates using a logistic model

and maximizing it with respect to the covariates’ parameters.

We can define the misclassification probabilities as:

γ0 = P [M∗ = 1|M = 0]

γ1 = P [M∗ = 0|M = 1]

It can be shown that the likelihood for the true mediator parameters given the observed

misclassified mediator, misclassification probabilities, and the observed covariates A and

C is given by:

L(β) =
n�

i=1

[{γ0
1

1 + exp(β0 + β1Ai + β
�
2Ci)

+ (1− γ1)
exp(β0 + β1Ai + β

�
2Ci)

1 + exp(β0 + β1Ai + β
�
2Ci)

}M∗
i

×{(1− γ0)
1

1 + exp(β0 + β1Ai + β
�
2Ci)

+ γ1
exp(β0 + β1Ai + β

�
2Ci)

1 + exp(β0 + β1Ai + β
�
2Ci)

}(1−M∗
i )]

By setting γ0 = 1−SP and γ1 = 1−SN as sensitivity analysis parameters and maximizing

this likelihood consistent estimators for the true parameters β can be easily recovered.

Standard errors for all parameters in the model can also be readily obtained via close
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numerical approximations to the observed information matrix or using bootstrap method

(Carroll et al., 2006).

3.4.2 Predictive Value Weighting estimators for outcome regression

Predictive value weighting (Lyles and Lin, 2010) is a method of correction for misclassi-

fication that shares similarities with imputation methods for missing data. We consider

this methodology because it is intuitive, easy to program, and not too computationally

intensive.

The approach consists of reconstructing data that might have been observed under no

misclassification by using the observed data and assumptions about sensitivity and speci-

ficity parameters. Sensitivity analysis for different sensitivity and specificity values can

be easily carried out. For each observed value of the binary mediator, the true mediator

can take value zero or one with a certain probability. The probability depends on the es-

timated positive and negative predicted values.

The approach is implemented in two steps. The first step entails estimating positive and

negative predicted values from the observed data and setting assumptions about sensi-

tivity (SN ) and specificity (SP ).

PPV = P (M = 1|M∗ = 1, Y = y,A = a,C = c)

=
SN ∗ P (M = 1|Y = y,A = a,C = c)

SN ∗ P (M = 1|Y = y,A = a,C = c) + (1− SP ) ∗ P (M = 0|Y = y,A = a,C = c)

NPV = P (M = 0|M∗ = 0, Y = y,A = a,C = c)

=
SP ∗ P (M = 0|Y = y,A = a,C = c)

(1− SN) ∗ P (M = 1|Y = y,A = a,C = c) + SP ∗ P (M = 0|Y = y,A = a,C = c)

P (M = m|Y,A,C) can be easily estimated conditioning on M∗, SN, and SP (Lyles and

Lin, 2010). Therefore, estimators �PPV and �NPV can be obtained by setting SN and SP

as sensitivity analysis parameters and estimating �P (M∗ = 1|Y = y, A = a,C = c) from

the data e.g. by running a logistic regression of the observed mediator on the outcome,

the exposure and the additional covariates. The model associating the outcome Y with

the true mediator M , the exposure A and the covariates C can be fitted to an expanded
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dataset, where the observed mediator is replaced by the latent mediator, allowed to take

two values with a certain probability dependent on the positive and negative predictive

values estimated. The second step consists in running a weighted outcome regression,

available in most software packages, from which the corrected estimators �θ
PVW

are finally

obtained.

Formally, a weighted maximum likelihood is maximized

l(θ) =
n�

i=1

1�

m=0

wimlim(θ).

where wim is a weight computed for each individual at the 2 possible levels of the true

binary mediator.

Standard errors for all parameters in the model can be recovered using jackknife or boot-

strap procedures (Lyles and Lin, 2010) or can be analytically derived as shown in the

online appendix.

The approach can be extended to allow for the presence of exposure-mediator interaction

and can be applied both to normal and binary outcomes.

Note that PVW will yield consistent estimators provided the SN and SP are correctly

specified and provided that the predicted probability of the observed mediator given the

outcome Y and the covariates, A and C (P (M∗ = 1|Y = y, A = a,C = c)) is consistently

estimated. These are very crucial assumptions to which will return.

3.4.3 Likelihood-based approach for outcome and covariate misclassi-
fication

As an alternative procedure, we consider a direct maximum likelihood approach (Lyles

and Lin, 2010; Carroll et al., 2006).

When fitting the outcome regression we wish to recover the vector of parameters θ which

characterizes the distribution of Y |A,M,C. If the outcome is continuous, the conditional

distribution of the outcome given the exposure, the mediator and the covariates can be

defined as

fY |A,M,c;θ =
1√
2πσ2

e−
1

2σ2 (Y−µY |A,M,c),
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where σ2 is the conditional variance of Y given A,M,C and µY |A,M,c = θ0 + θ1A+ θ2M +

θ3AM + θ
�
4C. When the outcome is binary we can define

fY |A,M,c;θ = pYy (1− py)
(1−Y ),

where py = pY |A,M,C = exp(θ0 + θ1A + θ2M + θ3AM + θ
�
4C)/(1 + exp(θ0 + θ1A + θ2M +

θ3AM + θ
�
4C)). When the observed mediator M∗ is a misclassified version of M the like-

lihood arising from the parametric models just given cannot be fit.

The maximum likelihood approach consists of specifying the likelihood for a measure-

ment error model in which not only the outcome, but also the observed mediator is con-

sidered random rather than fixed. Assuming non-differential misclassification and sen-

sitivity and specificity parameters known or set as sensitivity analysis parameters, the

observed-data likelihood contribution can be defined in terms of the measurement error

model (Carroll et al., 2006):

fY,M∗|A,c =
1�

m=0

fY,M∗,M |A,c(y,m
∗,m|a, c)

=
1�

m=0

fY |M∗,M,A,c(y|m∗,m, a, c)P (M∗ = m∗|M = m,A = a,C = c)×

×P (M = m|A = a,C = c)

=
1�

m=0

fY |M,A,c(y|m, a, c)P (M∗ = m∗|M = m)P (M = m|A = a,C = c).

Note that P (M∗ = m∗|M = m) for each combination of M and M∗ is assumed to be

known or specified in a sensitivity analysis, and in the mediation setting we are consider-

ing, the model for P (M = m|A = a,C = c) is postulated as P (M = m|A = a,C = c;β) =

expit(β0 + β1a+ β
�
2c).

Numerically maximizing the log-likelihood determined by the contribution given above

with respect to the true vector of parameters θ and β provides the outcome and mediator

regression parameter estimators and their standard errors are estimable by approximat-

ing the observed information matrix.
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3.4.4 Corrected estimators for direct and indirect effects

Corrected estimators for direct and indirect causal effects (�NDE = NDE(θ̂, β̂), �NIE =

NIE(θ̂, β̂)) can be recovered by plugging in the formulas for direct and indirect effects

the corrected mediator and outcome regression parameter estimators. If IRLS method

is used to estimate the mediator regression parameters and the PVW approach is used to

estimate the outcome regression parameters in the presence of misclassification, corrected

direct and indirect causal effects estimators are given by:

�NDE = {θ̂PVW
1 (a− ã)}+ {θ̂PVW

3 (a− ã)} exp[β̂IRLS
0 + β̂IRLS

1 ã+ β̂
�

2

IRLS

c]

1 + exp[β̂IRLS
0 + β̂IRLS

1 ã+ β̂
�

2

IRLS

c]

�NIE = (θ̂PVW
2 + θ̂PVW

3 a){ exp[β̂IRLS
0 + β̂IRLS

1 a+ β̂
�

2

IRLS

c]

1 + exp[β̂IRLS
0 + β̂IRLS

1 a+ β̂
�

2

IRLS

c]
+

− exp[β̂IRLS
0 + β̂IRLS

1 ã+ β̂
�

2

IRLS

c]

1 + exp[β̂IRLS
0 + β̂IRLS

1 ã+ β̂
�

2

IRLS

c]
}.

Standard errors for the corrected estimators can be obtained using jackknife or bootstrap

procedure. Analytical standard errors for the corrected causal effects estimators can be

obtained employing the multivariate delta method.

3.4.5 Simulations

We conducted simulation studies to evaluate and compare the estimates produced by the

iteratively re-weighted least squares/predictive value weighting method (IRLS/PVW)

and the maximum likelihood method (ML). Here we report the results of one such study

for which the simulation setting is the same as the one used for the numerical bias analysis

in section 3.3.6. The simulation implies a scenario under which the indirect effect of A on

Y through M is small relative to the direct effect of A on Y .

The main concern about the applicability and performance of IRLS/PVW estimators is

the validity of the estimation of the predictive probability of the observed mediator given
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the exposure, the outcome, and the covariates (M∗|Y,A,C) via a logistic regression. Lyles

and Lin (2010) propose the following model

logit{P [M∗ = 1|Y = y, A = a,C = c} = ξ0 + ξ1y + ξ2a+ c. (3.6)

Given the data generating process described in section 3.3.6, it can be shown that equa-

tion (3.6) is misspecified for the probability of M∗|Y,A,C. We refer to this approach as

IRLS/PVW. In order to overcome the issue of model mis-specification we considered a

modified predictive value weighting estimator in which we used splines to model more

flexibly the relationship between M∗ and (Y,A,C). We implemented this alternative ap-

proach by modeling each term in equation (3.6) and all possible interactions with splines

as

logit{P [M∗ = 1|Y = y,A = a,C = c} = s(y, k) + s(a, k) + s(c, k) + s(y ∗ a, k) + s(y ∗ c, k) +
s(a ∗ c, k)

where s(·) denotes a smoothing function and k indicates the number of knots (the more

knots, the more flexible is the smoothing function). We chose k = 4. The analyses were

performed using the package gam built in the R software. We refer to this approach as

IRLS/sPVW.

Table 3.1 displays the simulation results. When the outcome is continuous, in the absence

of exposure-mediator interaction (θ3 = 0), we observe that the proposed methods

(IRLS/PVW, IRLS/sPVW and ML) improve over the naive estimators in terms of

asymptotic bias, which reduces to be close to zero.

When the outcome is continuous in the presence of exposure-mediator interaction ML

is found to outperform IRLS/PVW and IRLS/sPVW in terms of asymptotic bias. The

persistence of a bias is due to the fact that, although the sPVW approach improves

the estimation of mediator and exposure parameters in the outcome regression, the

interaction parameter remains biased. Consequently, the corrected estimators of direct

and indirect effects in the presence of exposure-mediator interaction do not appear

consistent.
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naive IRLS/PVW IRLS/ sPVW IRLS/tPVW ML
No Int & Y ∼ N
SP=SN=0.9 NDE 0.02 0.01 0.01 0.00 0.00

NIE -0.02 -0.01 -0.01 -0.00 -0.00
TE 0.00 0.01 0.01 0.00 0.00

SP=SN=0.85 NDE 0.03 0.02 0.02 0.00 0.00
NIE -0.03 -0.01 -0.01 -0.00 -0.00
TE 0.00 0.01 0.01 0.00 0.00

SP=SN=0.8 NDE 0.03 0.03 0.03 0.00 0.00
NIE -0.03 -0.02 -0.02 -0.00 -0.00
TE 0.00 0.01 0.01 0.00 0.00

No Int & Y ∼ Ber
SP=SN=0.9 NDE -0.03 -0.02 -0.01 0.04 0.01

NIE -0.03 -0.01 -0.01 -0.00 -0.00
TE -0.10 -0.04 -0.03 0.04 0.01

SP=SN=0.85 NDE -0.04 -0.04 -0.02 0.07 0.01
NIE -0.04 -0.01 -0.01 -0.00 -0.00
TE -0.14 -0.07 -0.06 0.06 0.01

SP=SN=0.8 NDE -0.06 -0.05 -0.04 0.07 0.01
NIE -0.04 -0.02 -0.02 -0.00 -0.00
TE -0.18 -0.10 -0.09 0.07 0.01

Int & Y ∼ N
SP=SN=0.9 NDE 0.04 0.01 0.00 0.00 0.00

NIE -0.04 -0.01 -0.00 -0.00 -0.00
TE 0.00 0.01 0.00 0.00 0.00

SP=SN=0.85 NDE 0.05 0.02 0.01 0.00 0.00
NIE -0.05 -0.01 -0.00 -0.00 -0.00
TE 0.00 0.01 0.00 0.00 0.00

SP=SN=0.8 NDE 0.07 0.02 0.01 0.00 0.00
NIE -0.07 -0.01 -0.01 -0.00 -0.00
TE -0.00 0.01 0.00 0.00 0.00

Int & Y ∼ Ber
SP=SN=0.9 NDE -0.11 -0.08 0.04 0.08 0.04

NIE -0.03 -0.00 -0.00 -0.00 -0.00
TE -0.19 -0.09 0.04 0.08 0.04

SP=SN=0.8 NDE -0.14 -0.10 0.07 0.14 0.07
NIE -0.04 -0.00 -0.00 -0.00 -0.00
TE -0.26 -0.12 0.07 0.14 0.07

SP=SN=0.8 NDE -0.18 -0.13 0.09 0.16 0.09
NIE -0.05 0.00 -0.00 -0.00 -0.00
TE -0.32 -0.15 0.08 0.16 0.08

Table 3.1: Asymptotic bias of naive, predictive value weighting (IRLS/PVW, IRLS/sPVW,
IRLS/tPVW) and direct maximum likelihood (ML) of controlled direct effect (CDE) natural di-
rect (NDE), natural indirect effect (NIE) and total effect (TE) when sample size is n = 10, 000,
marginal probability of the true mediator is 50%, and the outcome is continuous or binary.

We compared the correction strategy that employes PVW and sPVW for the outcome re-

gression parameters estimation with one in which predictive value weighting approach is

implemented by recovering and estimating the true P (M∗|Y,A,C). For a data generating

process typical in mediation analysis context this conditional probability is given by:
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P (M∗ = 1|Y,A,C) = [SN × P (Y |A,M = 1, C;θ)P (M = 1|A,C;β) + (1− SP )×

×P (Y |A,M = 0, C;θ)P (M = 0|A,C;β)]/[
1�

m=0

P (Y |A,M = m,C;θ)×

×P (M = m|A,C;β)

Given this probability, the likelihood function for the binary observed mediator condi-

tional on the outcome, the exposure and the covariates, M∗|Y,A,C, can be constructed

and upon numerical maximization, the predicted probabilities are easily obtained. The

PVW estimator in which we model the true distribution of M∗|Y,A,C (IRLS/tPVW) per-

forms very similarly to the ML and they both improve over IRLS/PVW in the estimation

of the indirect causal effect .

When the outcome is binary ML is found again to outperform IRLS/PVW, IRLS/sPVW,

and IRLS/tPVW in the absence of exposure-mediator interaction. However, in the pres-

ence of exposure-mediator interaction the ML estimator does not completely eliminate

the bias. This is because ML improves in the estimation of the exposure regression pa-

rameter (θ1) but the exposure-mediator interaction term estimation remains problematic.

3.5 Example

3.5.1 Mother’s age above 35, pre-eclampsia and preterm birth: back-
ground and data description

We apply the proposed correction methodologies for misclassification of a binary medi-

ator to a perinatal epidemiological study on the causal mechanisms leading to preterm

birth using NCHS birth certificate data.

Preterm birth is strongly associated with perinatal mortality and long-term morbidity in

developed countries (McCormick, 1985). Preterm birth is clinically defined as birth at less

than 37 week’s gestational age after either spontaneous labour with intact membranes,

preterm premature rupture of the membranes, or labour induction or cesarean delivery

for maternal or fetal indications (Goldenberg et al. 2008). Pregnancy outcomes among
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women in the age group of 35 years and more are considered to be less favorable than

those of younger women and risk of preterm delivery has been found higher for these

mothers (Jacobsson et al., 2004). Over time, more and more women decide to post-pone

conception and this phenomenon might contribute to a cycle of reproductive disadvan-

tage with far-reaching social and medical consequences. Unveiling the causal mecha-

nisms that explain the effect of maternal age on preterm birth is critical for initiation of

risk-specific treatments and to study more targeted interventions that may decrease the

burden of the disease in women of this age group.

The mechanisms by which maternal age is related to preterm birth are still largely un-

known. A potential intermediate of the age-preterm birth causal relationship is pre-

eclampsia. Several studies confirmed pre-eclampsia as a risk factor for medically induced

preterm birth (Goldenberg et al., 2008; Hnat et al., 2002). Maternal age, in turn, has been

found to be a risk factor for pre-eclampsia (Lamminpaa et al., 2012). Pre-eclampsia is a

multi system hypertensive disorder of pregnancy that affects approximately 3% to 5% of

all pregnancies worldwide (World Health Organization Report, 2005). Due to the non-

specificity of signs and symptoms, diagnosis of pre-eclampsia is typically subject to mis-

classification (Meads et al., 2008; Turner, 2010).

We therefore carry out mediation analysis to quantify the indirect causal effect of mother’s

age on preterm birth mediated by pre-eclampsia status as well as the direct effect of eth-

nicity on preterm birth through other pathways, independent of pre-eclampsia. Files from

the National Center for Health Statistics (NCHS) for 2003 (N = 3, 918, 542) are employed

to investigate this hypothesis. These publicly available de-identified files are derived

from all birth certificates in the 50 states and District of Columbia in the US.

Preterm birth was categorized according to the gestational age variable in the NCHS data

derived from the last menstrual period. The NCHS data have gestational age estimates

both derived from last menstrual period and from clinical/obstetric information. Pre-

eclampsia is diagnosed according to blood pressure and protein in the urine and is poten-

tially subject to misclassification. We combined mother’s age to form two categories: age

above 35 and age below or equal to 35.
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3.5.2 Mother’s age above 35, pre-eclampsia and preterm birth: naive
analyses

Let Y = preterm be the binary outcome, and A = ageabove35 be the binary exposure

variable. Let M = preeclampsia, be the latent mediator, and M∗ = preeclampsia∗ be the

observed pre-eclampsia status, potentially misclassified.

Before conducting mediation analysis as described in section 3.2, we need to verify that

the findings reported from the literature are confirmed in our sample. In particular, we

investigate whether (i) pre-eclampsia status is associated with preterm birth, and (ii) ma-

ternal age is associated with pre-eclampsia. It is also of interest to investigate whether age

and pre-eclampsia interact in their effect on pre-term birth. In order to investigate these

hypotheses in our sample, we adjust for factors that may confound age-preterm birth

relationship, age and pre-eclampsia relationship, and pre-eclampsia and preterm birth

relationship. We also assume the absence of pre-eclampsia and preterm birth relationship

confounders that are affected by age. As potential confounders we consider mother’s eth-

nicity (categorized as White Caucasian, Black non-Hispanic, Hispanic, Asian and Native

American), marital status, as well as smoking status, drinking status, and whether the

mother went to college.

In section 3.2 we illustrated how direct and indirect causal effects can be estimated when

both the outcome and the mediator are binary, modeled using logistic regression, and

exposure-mediator interaction may be present. The naive analyses consist of running

models (3.1) and (3.3) replacing M with M∗ (i.e. replacing the correct, unobserved pre-

eclampsia disorder status, with the observed, possibly misclassified, pre-eclampsia status).

We fit the following logistic models:

logit{P [M∗ = 1|A = a,C = c]} = β0 + β1a+ β
�
2c (3.7)

logit{P (Y = 1|A = a,M∗ = m∗,C = c)} = θ0 + θ1a+ θ2m
∗ + θ3am

∗ + θ
�
4c. (3.8)

The naive mediator regression analysis (3.7) reveals a positive, but rather weak, effect of

age on pre-eclampsia (β1 = 0.083, p− val = 0.01). The naive outcome regression analysis
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(3.8) confirms a strong, positive effect of both the exposure, age status, and the mediator,

pre-eclampsia, on the risk of preterm birth (θ1 = 0.257, p − value < 0.0001; θ2 = 0.978,

p−value < 0.0001) and indicates the presence of a positive exposure-mediator interaction

(θ3 = 0.170, p − val = 0.01). We also run the naive analysis dropping the exposure-

mediator interaction term.

logit{P (Y = 1|A = a,M∗ = m∗,C = c)} = θ0 + θ1a+ θ2m
∗ + θ

�
4c. (3.9)

The naive outcome regression analysis (3.9) when we ignore the presence of exposure-

mediator interaction yields similar results on the effect of age and preeclampsia on the

risk of preterm birth (θ1 = 0.26, p− value < 0.0001; θ2 = 1.007, p− value < 0.0001).

Computing naive direct and indirect causal effects allowing for exposure-mediator inter-

action we find that maternal age above 35 exerts a positive, significant direct effect on

preterm birth through pathways independent of pre-eclampsia had the individual been

a white, married woman, who smokes but does not drink, and has not attended college

(�OR
NDE

= 1.314). We find that the indirect causal effect of age on preterm birth through

pre-eclampsia is close to null (�OR
NIE

= 1.005). A useful measure to quantify the propor-

tion of the total causal effect of an exposure on an outcome that is explained by the hy-

pothesized mechanism is the proportion mediated (PM ). When direct and indirect effects

are expressed in terms of odds ratios PM = ORNDE×(ORNIE−1)/(ORNDE×ORNIE−1).

The naive analysis yields �PM = 2.3%, indicating that the proportion of the effect of ma-

ternal age on preterm birth explained by the pathway through preeclampsia is close to

null. The naive analyses without including the exposure-mediator interaction term lead

to a similar finding (Table 3.3).

3.5.3 Mother’s age above 35, pre-eclampsia and preterm birth: media-
tion analysis corrected for misclassification

Aware that the naive analyses might be biased due to misclassification of the binary

mediator, we carry out sensitivity analyses for misclassification employing the iteratively
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re-weighted least squares/predictive value weighting (IRLS/PVW) method. We imple-

ment this approach modeling the probability P (M∗|Y,A,C) using a saturated logistic

model (i.e. including all the possible interaction terms between Y , A, and C in the logistic

model (3.6) described in section 3.4.5).

Throughout the paper we have assumed non-differential misclassification. We make this

assumption in this analysis as well; however, this assumption could be easily relaxed if

predictive value weighting approach is adopted, as illustrated in Lyles and Lin (2010).

Values of sensitivity and specificity parameters are determined considering the con-

straints for which max(P (M∗ = 1|Y,A,C)) < SN and min(P (M∗ = 1|Y,A,C) > 1− SP .

Since max(P (M∗ = 1|Y,A,C)) = 0.058 and min(P (M∗ = 1|Y,A,C) = 0.0103 in

our sample, the range of plausible sensitivity and specificity values is SN ∈ (0.05, 1)

and SP ∈ (0.99, 1). Therefore sensitivity analyses are run assuming SP = 0.99 and

SN = (0.8, 0.9, 0.95, 0.99). We obtain the misclassification-corrected direct and indirect

effects, and proportion mediated presented in Table 3.2 and Table 3.3.

Estimates (95%CI) �OR
NDE �OR

NIE
PM �β1

�θ1 �θ2 �θ3
Naive 1.31 1.005 2.3% 0.083 0.25 0.97 0.170

(1.26,1.36) (1.00,1.01) - (0.01, 0.14) (0.21,0.29) (0.92,1.03) (0.02,0.3)
IRLS/PVW
SP = SN = 0.99 1.302 1.003 1.6% 0.126 0.25 1.23 0.174

(1.24, 1.35) (0.99,1.01) - (0.04,0.21) (0.21,0.29) (1.19,1.30) ( 0.03,0.3)
SN = 0.95 1.308 1.01 5.8% 0.247 0.25 1.23 0.174

(1.25, 1.36) (0.99,1.02) - (0.16,0.32) (0.21,0.29) (1.19,1.30) ( 0.03,0.3)
SN = 0.90 1.307 1.02 9% 0.386 0.25 1.24 0.174

(1.25, 1.36) (1.00,1.04) - (0.30,0.46) (0.21,0.29) (1.19,1.30) ( 0.03,0.3)
SN = 0.80 1.304 1.03 12% 0.484 0.25 1.25 0.174

(1.25, 1.36) (1.02,1.04) - (0.41,0.55) (0.21,0.29) (1.19,1.30) ( 0.04,0.3)

Table 3.2: Naive and misclassification-corrected mediation analysis allowing for exposure-
mediator interaction (SP = 0.99, SN = (0.8, 0.9, 0.95, 0.99), CI obtained from delta method stan-
dard errors )

In Table 3.2 we display the results of misclassification-corrected mediation analysis, ac-

counting for the presence of exposure-mediator interaction. We observe that the effect of

the exposure, mother’s age, on the intermediate, pre-eclampsia, increases in magnitude

as the sensitivity parameter (SN ) decreases. In the estimation of the outcome regression

parameters we observe that nor the effect of the exposure nor the interaction term appear
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Estimates (95%CI) �OR
NDE �OR

NIE
PM

Naive 1.309 1.0002 0.09%
(1.25,1.35) (0.99,1.00) -

IRLS/PVW

SP = SN = 0.99 1.308 1.0002 0.05%
(1.26,1.35) (0.99,1.00) -

SP = 0.99 & SN = 0.95 1.308 1.0003 0.13%
(1.26,1.35) (0.99,1.00) -

SP = 0.99 & SN = 0.90 1.308 1.0007 0.3%
(1.26,1.35) (0.99,1.00) -

SP = 0.99 & SN = 0.80 1.307 1.003 1.2%
(1.26,1.35) (1.001,1.004) -

Table 3.3: Naive and misclassification-corrected mediation analysis assuming no exposure-
mediator interaction (SP = 0.99, SN = (0.8, 0.9, 0.95, 0.99), CI obtained from delta method stan-
dard errors )

severely biased for any of the sensitivity analysis parameter values. Finally, the effect of

pre-eclampsia on pre term birth is found to be under estimated. The misclassification-

corrected analyses accounting for interaction reveal that the indirect effect of maternal

age on preterm birth mediated by pre-eclampsia status was underestimated in the naive

analyses. The direct effect remains pretty constant.

When exposure-mediator interaction is not included in the analyses (Table 3.3) the sensi-

tivity analyses indicate a slight over estimation of the direct effect and under estimation

of the indirect effect. However, even in the case of severe misclassification, changes the in

causal effects estimates are minimal.

Therefore, we can still conclude that for all the values considered in the sensitivity analy-

sis the association of maternal age on preterm birth is primarily through pathways other

than pre-eclampsia status (with proportion of the effect of age on preterm birth mediated

through pre-eclampsia taking up to the values of 12% if exposure-mediator interaction is

included and with proportion mediated up to 1.2% in the absence of exposure-mediator

interaction).
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3.6 Discussion

We studied the problem of misclassification of a binary mediator in the context of causal

mediation analysis, when the outcome is either binary or continuous, allowing for the

presence of exposure-mediator interaction. We demonstrated that when non-differential

misclassification of a binary mediator is ignored in the analyses, the estimators of direct

and indirect causal effects that have been employed can be severely biased. The the-

oretical results and a numerical study illustrate that the misclassification bias can take

unintuitive directions in the presence of non-linearities.

VanderWeele et al. (2012) show that although measurement error in the mediator induces

biased direct and indirect effects, the combination of these biased effects is in fact unbi-

ased for the total effect. However, this is true only if the mediator and outcome models

with M∗ replacing M are correctly specified. In both the simulations and the data example

above the total effect of the exposure on the outcome (computed as either the sum or the

product of direct and indirect effects) was also biased. This is because misclassification of

a binary mediator induces mis-specification in the mediator and outcome regression.

We considered a full maximum likelihood approach (ML) and an hybrid of likelihood-

based and predictive value weighting method as possible strategies of correction for mis-

classification. We implemented the latter approach using three different estimators for

P (M∗|Y,A,C), namely logistic regression (IRLS/PVW), logistic regression with splines

(IRLS/sPVW) and using the true model for the conditional distribution that we seek to

estimate (IRLS/tPVW). We compared the performance of corrected estimators for direct

and indirect effects in a simulation study. Although appealing for its ease of implementa-

tion and less computational burden, the hybrid of likelihood-based and predictive value

weighting methods did not always eliminate misclassification bias. The approach is ex-

pected to perform better when all the variables in the analysis are dichotomous. In this

setting, we would recommend to apply the predictive value weighting approach speci-

fying a saturated model for P (M∗|Y,A,C). The ML approach instead was found to be

consistent is all simulation settings except for the case of binary outcome with exposure-
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mediator interaction. Although in this case ML was able to substantially improve over

the naive estimator, the bias was not eliminated. The reason for this is that the estimation

of the exposure-mediator interaction term remains problematic when the outcome is bi-

nary. However, in general, ML is the approach that we recommend to adopt. Code for

implementing ML and IRLS/(PVW,sPVW,tPVW) is available in the supplementary ma-

terial.

In many instances auxiliary information on the mis-measured intermediate is not avail-

able in mediation studies. We illustrated in a real data example the correction strategy

coupled with sensitivity analysis for the unknown sensitivity and specificity for which

no validation data or replicates for the mis-measured mediator is needed. Although the

correction strategy using sensitivity analysis does not require validation data or replicates

for the mis-measured mediator, estimators for correction could make use of this informa-

tion, if available.

Some possible extensions of our study should be mentioned. Derivation of closed form

asymptotic bias formulae of direct and indirect effects when the outcome is binary in the

presence of exposure-mediator interaction and continuous covariates is of interest. We

make the strong assumption of independence between the misclassification mechanism

and all the other variables measured without error. It would be of interest to study the

bias of naive direct and indirect causal effects when misclassification of a binary mediator

is differential and relaxing the assumption that the other variables are measured without

error. Finally, more work is needed to improve the misclassification-corrected estimators

for direct and indirect effects in the presence of interactions.

3.A Description of measurement error mechanism

We can write the measurement error mechanism in an additive form:

M∗ = M + U.
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When the latent variable is binary the measurement error, U , is not normally distributed

and can take values (−1, 0, 1) under certain probabilities and restrictions. Moreover,

Cov(U,M) �= 0 and Cov(U,M∗) �= 0 that is the error must be correlated with both the true

and the observed level of the mediator (Carroll et al. 2006).

The moments of the error can be completely characterized by the knowledge of the

prevalence of the true mediator, the sensitivity and specificity parameters.

Let p∗ = P (M∗ = 1), p = P (M = 1), q∗ = 1 − p∗, q = 1 − p. Moreover define the

reclassification probabilities η = P (M = 1|M∗ = 0) and ν = P (M = 0|M∗ = 1). Then the

moments of the misclassification error are given by (Aigner, 1973)

E(U) = νp∗ − ηq∗, V ar(U) = νp∗ + ηq∗ − (νp∗ − ηq∗)2, and Cov(M∗, U) = (ν + η)p∗q∗.

Note that reclassification probabilities can be re-expressed in terms of misclassification

probabilities. Define the misclassification probabilities as γ0 = P (M∗ = 1|M = 0) and

γ1 = P (M∗ = 0|M = 1). Then,

ν = γ0
p

q∗

η = γ1
q

p∗

Note that misclassification probabilities can be expressed in terms of sensitivity (SN =

P (M∗1|M = 1)) and specificity (SP = P (M∗0|M = 0)). In particular,

γ0 = 1− SP

γ1 = 1− SN.

Finally note that the prevalence of the observed mediator can be expressed in terms of

misclassification probabilities and true prevalence of the mediator.

p∗ = (1− γ1)p+ γ0q.
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These facts will be used throughout.

We further assume that the outcome Y and the exposure A as well as the additional

covariates C are correctly measured. We assume that the error is non differential (i.e.

Cov(U, Y ) = 0) and Cov(U,A) = Cov(U, C) = 0. Moreover, in the context of mediation

analysis covariates A and C, which can be either continuous, count or categorical vari-

ables, can be correlated with the misclassified mediator.

3.B Probability Limit of MLE of Continuous Outcome Re-
gression

Let θ̂∗ be the vector of MLE estimators of the parameters from the outcome regression.

Rewrite the outcome regression (2) in terms of M∗ exploiting the assumption of additive

measurement error

Y = θ0 + θ1a+ θ2(m
∗ − u) + θ3a(m

∗ − u) + θ
�

4c+ �

= θ0 + θ1a+ θ2m
∗ + θ3am

∗ + θ
�

4c+ �− θ2u− θ3ξ

= θ0 + θ1a+ θ2m
∗ + θ3am

∗ + θ
�

4c+ �− θ2u− θ3ξ

= θ∗0 + θ∗1a+ θ∗2m
∗ + θ∗3am

∗ + θ∗4
�
c+ �∗,

with ξ = a× u.

Let X∗ = (1, A,M∗, AM∗, C)T . Then the vector of MLE estimators of the outcome linear

regression parameters is given by,

θ̂∗ = (X∗�X∗)−1X
�∗Y

= (X∗�X∗)−1X∗�(X∗θ + �∗)

= (X∗TX∗)−1X∗T (X∗θ + �− θ2u− θ3ξ).

By rearranging the equation and taking the limit we obtain obtain a formula for the

asymptotic bias of the outcome regression parameters estimators when M is replaced

by M∗
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ABIAS(θ̂∗) = −Σ−1
x∗x∗{θ2Σx∗u + θ3Σx∗ξ}

where,

Σ−1
x∗x∗ = plim(

(X∗TX∗)−1

n−1
)

Σx∗u = plim(
X∗Tu

n
) = (0, 0, σM∗u, σAM∗u, 0, ..., 0)

T

Σx∗ξ = plim(
X∗T ξ

n
) = (0, 0, σM∗ξ, σAM∗ξ, 0, ..., 0)

T

with

σM∗u = Cov(M∗, U) = ((1− SN)
q

p∗
+ (1− SP )

p

q∗
)p∗q∗

σAM∗u = Cov(AM∗, u) = E(AM∗U)− E(AM∗)E(U)

σAM∗ξ = Cov(AM∗, ξ) = E(A2M∗U)− E(AM∗)E(A)E(U)

σM∗ξ = Cov(M∗, ξ) = Cov(AM∗, U).

The parameters σAM∗u, σM∗ξ, and σAM∗ξ depend upon the specification of sensitivity and

specificity parameters, the marginal probability of the latent mediator and the joint prob-

ability of the mediator and the exposure.

We can rewrite the asymptotic bias as

ABIAS(θ̂∗) = −θ2 ×





δ1,M∗Cov(M∗, U) + δ1,AM∗Cov(AM∗, U)
δA,M∗Cov(M∗, U) + δA,AM∗Cov(AM∗, U)

δM∗,M∗Cov(M∗, U) + δM∗,AM∗Cov(AM∗, U)
δAM∗,M∗Cov(M∗, U) + δAM∗,AM∗Cov(AM∗, U)
δC,M∗Cov(M∗, U) + δC,AM∗Cov(AM∗, U)




+

−θ3 ×





δ1,M∗Cov(M∗, AU) + δ1,AM∗Cov(AM∗, AU)
δA,M∗Cov(M∗, AU) + δA,AM∗Cov(AM∗, AU)

δM∗,M∗Cov(M∗, AU) + δM∗,AM∗Cov(AM∗, AU)
δAM∗,M∗Cov(M∗, AU) + δAM∗,AM∗Cov(AM∗, AU)
δC,M∗Cov(M∗, AU) + δC,AM∗Cov(AM∗, AU),





where δ·M∗ and δ·AM∗ are columns of Σ−1
x∗
1,x

∗
1
.

From the asymptotic bias formulae given above the probability limit of θ̂∗1, θ̂∗2, and θ̂∗3 can
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be easily derived as

θ∗1 = θ1 − θ2(δA,M∗Cov(M∗, U) + δA,AM∗Cov(AM∗, U))− θ3(δA,M∗Cov(M∗, AU) +

+δA,AM∗Cov(AM∗, AU))

θ∗2 = θ2 − θ2(δM∗,M∗Cov(M∗, U) + δM∗,AM∗Cov(AM∗, U))− θ3(δM∗,M∗Cov(M∗, AU) +

+δM∗,AM∗Cov(AM∗, AU))

θ∗3 = θ3 − θ2(δAM∗,M∗Cov(M∗, U) + δAM∗,AM∗Cov(AM∗, U))− θ3(δAM∗,M∗Cov(M∗, AU) +

+δAM∗,AM∗Cov(AM∗, AU)).

The probability limit for the outcome regression coefficients in absence of exposure-

mediator interaction is easily obtained setting θ3 = 0 and setting to zero all the covariance

terms that involve the exposure-mediator interaction.

3.C Asymptotic limit of naive outcome and mediator
regression parameters in the absence of exposure-
mediator interaction (θ∗,β∗) in terms of misclassifica-
tion probabilities and true prevalence of the mediator

θ∗1 = θ1 − θ2δA,M∗Cov(M∗, U)

= θ1 − θ2δA,M∗ [γ0q{1− (1− γ1)p− γ0q}+ γ1p{(1− γ1)p− γ0q}]

θ∗2 = θ2(1− δM∗,M∗Cov(M∗, U))

= θ2(1− δ33[γ0q{1 + (1− γ1)p− γ0q}+ γ1p{(1− γ1)p− γ0q}])

β∗
0 ≈ logit{(1− γ0 − γ1)expit(β0) + γ0}

β∗
1 ≈ β1

(1− γ0 − γ1)eβ0+β�
2c

{(1− γ1)eβ0+β�
2c + γ0}{γ1eβ0+β�

2c + (1− γ0)}

β∗
2 ≈ β1

(1− γ0 − γ1)eβ0+β1a+β(−)�
2 c

{(1− γ1)eβ0+β1a+β(−)�
2 c + γ0}{γ1eβ0+β1a+β(−)�

2 c + (1− γ0)}
.
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3.D Asymptotic bias of direct and indirect effects naive es-
timators

ABIAS(�NDE
∗
) = {θ∗1(a− a∗)}+ {θ∗3(a− a∗)} exp[β∗

0 + β1a∗ + β∗
2

�
c]

1 + exp[β∗
0 + β∗

1a
∗ + β∗

2
�c]

− {θ1(a− a∗)}+

−{θ3(a− a∗)} exp[β0 + β1a∗ + β
�

2c]

1 + exp[β0 + β1a∗ + β
�
2c]

= (a− a∗)[θ3{(1− δAM∗,M∗Cov(M∗, AU)− δAM∗,AM∗Cov(AM∗, AU))×

× exp[β∗
0 + β∗

1a
∗ + β∗

2
�
c]

1 + exp[β∗
0 + β∗

1a
∗ + β∗

2
�c]

− exp[β0 + β1a∗ + β
�

2c]

1 + exp[β0 + β1a∗ + β
�
2c]

+

−(δA,M∗Cov(M∗, AU) + δA,AM∗Cov(AM∗, AU))} − θ2{(δA,M∗Cov(M∗, U) +

+δA,AM∗Cov(AM∗, U)) + (δAM∗,M∗Cov(M∗, U) + δAM∗,AM∗Cov(AM∗, U))×

× exp[β∗
0 + β∗

1a
∗ + β∗

2
�
c]

1 + exp[β∗
0 + β∗

1a
∗ + β∗

2
�c]

}]

ABIAS(�NIE
∗
) = (θ∗2 + θ∗3a){

exp[β∗
0 + β∗

1a+ β∗
2

�
c]

1 + exp[β∗
0 + β∗

1a+ β∗
2

�c]
− exp[β∗

0 + β∗
1a

∗ + β∗
2

�
c]

1 + exp[β∗
0 + β∗

1a
∗ + β∗

2
�c]

}+

−(θ2 + θ3a){
exp[β0 + β1a+ β

�

2c]

1 + exp[β0 + β1a+ β
�
2c]

− exp[β0 + β1a∗ + β
�

2c]

1 + exp[β0 + β1a∗ + β
�
2c]

}

= θ2[{(1− δM∗,M∗Cov(M∗, U)− δM∗,AM∗Cov(AM∗, U))− a(δAM∗,M∗Cov(M∗, U) +

+δAM∗,AM∗Cov(AM∗, U))}{ exp[β∗
0 + β∗

1a+ β∗
2

�
c]

1 + exp[β∗
0 + β∗

1 + β∗
2

�c]
− exp[β∗

0 + β∗
1a

∗ + β∗
2

�
c]

1 + exp[β∗
0 + β∗

1a
∗ + β∗

2
�c]

}+

−{ exp[β0 + β1a+ β
�

2c]

1 + exp[β0 + β1a+ β
�
2c]

− exp[β0 + β1a∗ + β
�

2c]

1 + exp[β0 + β1a∗ + β
�
2c]

}] + θ3[{(1 +

−δAM∗,M∗Cov(M∗, AU)− δAM∗,AM∗Cov(AM∗, AU))a− δM∗,M∗Cov(M∗, AU) +

−δM∗,AM∗Cov(AM∗, AU)}{ exp[β∗
0 + β∗

1a+ β∗
2

�
c]

1 + exp[β∗
0 + β∗

1a+ β∗
2

�c]
− exp[β∗

0 + β∗
1a

∗ + β∗
2

�
c]

1 + exp[β∗
0 + β∗

1a
∗ + β∗

2
�c]

}

−a∗{ exp[β0 + β1a+ β
�

2c]

1 + exp[β0 + β1a+ β
�
2c]

− exp[β0 + β1a∗ + β
�

2c]

1 + exp[β0 + β1a∗ + β
�
2c]

}].

3.E Other theoretical results for direct effect naive estima-
tors

∂(NDE(θ∗)−NDE(θ))

∂SP
= 0

−θ2δA,M∗ [q − SNqp− 2(1− SP )q2 − (1− SN)qp] = 0

[q − SNqp− 2(1− SP )q2 − (1− SN)qp] = 0
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q2[1− 2(1− SP )] = 0

1− 2SP = 0

SP = 1/2

∂(NDE(θ∗)−NDE(θ))

∂SN
= 0

−θ2δA,M∗ [(1− SP )qp− p2 − 2(1− SN)p2 − (1− SN)qp] = 0

[(1− SP )qp− p2 − 2(1− SN)p2 − (1− SN)qp] = 0

p2 − 2(1− SN)p2 = 0

SN = 1/2.

Partial derivative results can be obtained by plugging in the values SN = SP = 1 from

the first derivation step.

3.F When the mediator is misclassified will the sum of the
biased direct and indirect effects estimator still give an
unbiased estimate of the total effect?

Non parametrically, YES. See VanderWeele et al. (2012)

Consider now to estimate direct and indirect effects modeling the outcome using linear

regression (2) and the mediator using logistic regression (1).

In order to estimate the total effect we can run the following outcome regression model

E[Y |A = a,M = m,C = c] = θ†0 + θ†1a+ θ†4
�
c.

The total effect can be estimated by θ†1.

If the outcome and mediator regression models are correctly specified, the total effect can
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be computed as the sum of direct and indirect effects.

TE = NDE +NIE = θ†1.

In absence of interaction and measurement error and assuming a binary exposure,

TE = θ1 + θ2[expit{β0 + β1 + β�
2c} − expit{β0 + β�

2c}] = θ†1.

In the presence of measurement error on continuous mediator and in the absence of in-

teraction the sum of the naive estimators of direct and indirect effects yields an unbiased

estimator of the total effect. We investigate whether this property will continue to hold in

the presence of misclassification.

Consider that the true mediator M is not observed, rather a misclassified version of it, M∗

is known by the investigator.

Then, the total effect estimated as the sum of the naive direct and indirect effect estimators

in the presence of misclassification will be asymptotically biased.

TE∗ = θ∗1 + θ∗2[expit{β∗
0 + β∗

1a+ β
�∗
2 c} − expit{β∗

0 + β∗
1a

∗ + β
�∗
2 c}] �= θ†1.

This is because misclassification of the mediator induces a mis-specification of the media-

tor model and we know that the property of effect decomposition relies on the assumption

of correct specification of both the outcome and mediator regression models.

Simulation results show that, although small, a residual bias of the total effect remains

(sample size of 10,000 and 1000 replications).

However, if all the variables were binary and the model for the mediator were completely

saturated the total effect estimated as the sum of naive direct and indirect effect would be

unbiased.

I demonstrate this claim using some results of Gustafson (2004).

Let P (M∗ = 1|M = 1) − P (M∗ = 1|M = 0) = SN + SP − 1. The large sample limiting

coefficients from least-squares regression of Y on (A,M∗) (assuming no covariate C is

present) can be expressed as

θ∗1 = θ1 + θ2ρ
{p(1− p)} 1

2

σA
[1− (SN + SP − 1)(

θ∗2
θ2
)]

θ∗2 = θ2(SN + SP − 1)[
p(1− p)(1− ρ2)

p∗(1− p∗)− p(1− p)ρ∗2(SN + SP − 1)2
]
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where p = P (M = 1), p∗ = P (M∗ = 1), σA = SD(A), and ρ = Cor(M,A).

Then, we can rewrite the naive large sample limiting total effect as

TE∗ = NDE∗ +NIE∗

= θ1 + θ2ρ
{p(1− p)} 1

2

σA
[1− (SN + SP − 1)(

θ∗2
θ2
)] + θ2(SN + SP − 1)×

×[
p(1− p)(1− ρ2)

p∗(1− p∗)− p(1− p)ρ∗2(SN + SP − 1)2
]{ exp[β∗

0 + β∗
1 ]

1 + exp[β∗
0 + β∗

1 ]
− exp[β∗

0 ]

1 + exp[β∗
0 ]
}.

Since both M∗ and A are binary the model for the mediator is completely saturated and

we can re-write the equation as

= θ1 + θ2ρ
{p(1− p)} 1

2

σA
[1− (SN + SP − 1)(

θ∗2
θ2
)] + θ2(SN + SP − 1)×

×[
p(1− p)(1− ρ2)

p∗(1− p∗)− p(1− p)ρ∗2(SN + SP − 1)2
]{P (M∗ = 1|A = 1)− P (M∗ = 1|A = 0)}

= θ1 + θ2ρ
{p(1− p)} 1

2

σA
− θ2{[(SN + SP − 1)ρ

{p(1− p)} 1
2

σA
− (P (M∗ = 1|A = 1) +

−P (M∗ = 1|A = 0)))](SN + SP − 1)[
p(1− p)(1− ρ2)

p∗(1− p∗)− p(1− p)ρ∗2(SN + SP − 1)2
]}.

We note that

(SN + SP − 1)ρ
{p(1− p)} 1

2

σA
= [P (M∗ = 1|M = 1)− P (M∗ = 1|M = 1)]× Cov(M,A)

σA

= [P (M∗ = 1|M = 1)− P (M∗ = 1|M = 0)]×

×[P (M = 1|A = 1)− P (M = 1|A = 0)]

= [P (M∗ = 1|A = 1)− P (M∗ = 1|A = 0)].

Therefore a term in the equation drops and we obtain

TE∗ = θ1 + θ2ρ
{p(1− p)} 1

2

σA
= θ1 + θ2[P (M = 1|A = 1)− P (M = 1|A = 0)] = TE.

Therefore, we conclude that, in the presence of misclassification of a binary mediator and

when outcome and mediator are modeled using parametric models, the sum of naive

direct and indirect effects will yield an unbiased total effect had the mediator regression

been saturated.
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3.G Standard errors of the PVW/IRLS estimators for direct
and indirect causal effects

We now derive the standard errors of PVW/IRLS estimators for natural direct and

indirect effects assuming that exposure-mediator interaction may be present.

Define the corrected PVW/IRLS estimators of the causal effects of interest when the

outcome is continuous modeled using linear regression as

�NDE(θ̂PVW , β̂IRLS) = {θ̂PVW
1 (a− a∗)}+ {θ̂PVW

3 (a− a∗)} exp[β̂IRLS
0 + β̂IRLS

1 a∗ + β̂IRLS
2

�
c]

1 + exp[β̂IRLS
0 + β̂IRLS

1 a∗ + β̂IRLS
2

�c]
.

�NIE(θ̂PVW , β̂IRLS) = (θ̂PVW
2 + θ̂PVW

3 a){ exp[β̂IRLS
0 + β̂IRLS

1 a+ β̂IRLS
2

�
c]

1 + exp[β̂IRLS
0 + β̂IRLS

1 a+ β̂IRLS
2

�c]
+

− exp[β̂IRLS
0 + β̂IRLS

1 a∗ + β̂IRLS
2

�
c]

1 + exp[β̂IRLS
0 + β̂IRLS

1 a∗ + β̂IRLS
2

�c]
}.

Define the corrected PVW/IRLS estimators of the causal effects of interest when the

outcome is binary modeled using logistic regression as

�OR
NDE

(θ̂PVW , β̂IRLS) = { exp[θ̂PV W
1 a](1+exp[θ̂PV W

2 +θ̂PV W
3 a+β̂IRLS

0 +β̂IRLS
1 a∗+β̂IRLS

2
�
c])

exp[θ̂PV W
1 a∗](1+exp[θ̂PV W

2 +θ̂PV W
3 a∗+β̂IRLS

0 +β̂IRLS
1 a∗+β̂IRLS

2
�c])

}.

�OR
NIE

(θ̂PVW , β̂IRLS) = [1+exp(β̂IRLS
0 +β̂IRLS

1 a∗+β̂IRLS
2

�
c)][1+exp(θ̂PV W

2 +θ̂PV W
3 a+β̂IRLS

0 +β̂IRLS
1 a+β̂IRLS

2
�
c)]

[1+exp(β̂IRLS
0 +β̂IRLS

1 a+β̂IRLS
2

�c)][1+exp(θ̂PV W
2 +θ̂PV W

3 a+β̂IRLS
0 +β̂IRLS

1 a∗+β̂IRLS
2

�c)]
.

Suppose that the mediator regression has been fitted using Iteratively Reweighted

Least Squares as described in section 3.4.1 and that the outcome regression has been

fitted using the Predictive Value Weighting approach as described in section 3.4.2

and that the resulting estimates ˆβIRLS of βIRLS = (βIRLS
0 , βIRLS

1 , βIRLS
2

�
)
� and ˆθPVW of

θPVW = (θPVW
0 , θPVW

1 , θPVW
2 , θPVW

3 , θPVW
4

�
)
� have covariance matrices ΣβIRLS and ΣθPV W .

Then the covariance matrix of (β̂IRLS�
, θ̂

PV W �
) is
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ΣPVW/IRLS =

�
ΣβIRLS 0

0 ΣθPV W

�

where ΣβIRLS = E(−∂2L(β)
∂ββT ), obtainable from the hessian of the optimization procedure;

and ΣθPV W = Γ−1
W ΩWΓ−1

W . ΣθPV W can be estimated by �ΣθPV W = �Γ−1
W

�ΩW
�Γ−1
W where

�ΓW =
1

N

N�

i=1

(
∂E(Yi)

∂θ
)T |θ̂PV W

�W

�Wi(
∂E(Yi)

∂θ
)|θ̂PV W

�W

and

�ΩW =
1

N

N�

i=1

(
∂E(Yi)

∂θ
)T |θ̂PV W

�W

�Wi
�V ar(Yi)�Wi(

∂E(Yi)

∂θ
)|θ̂PV W

Ŵ

For continuous outcome modeled with least squares regression

�ΓW =
1

N

N�

i=1

(XT
i
�WiXi)

and

�ΩW =
1

N

N�

i=1

(XT
i
�Wi(Yi −Xiθ̂

PVW
�W )(Yi −Xiθ̂

PVW
�W )T �WiXi)

These standard errors are obtainable if the weighted regression procedure explained in

section 3.4.2 is fitted using the generalized estimating equation framework (for example

using the ”repeated” option PROC GENMOD in SAS outputs ”robust” standard errors).

Standard errors of the PVW/IRLS natural direct and indirect effects can be obtained (us-

ing the delta method) as

�
ΓPVW/IRLSΣPVW/IRLSΓPV W/IRLS�
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When the outcome Y is continuous modeled using linear regression ΓPVW/IRLS =

(d1, d2, d3, d4, d5, d6, d7, d8) for the pure natural direct effect, where

d1 =
θPV W
3 exp[[βIRLS

0 + βIRLS
1 a∗β

IRLS
2

�
c](1 + exp[βIRLS

0 + βIRLS
1 a∗βIRLS

2
�
c])− θPV W

3 {exp[βIRLS
0 + βIRLS

1 a∗βIRLS
2

�
c]}2

(1 + exp[βIRLS
0 + βIRLS

1 a∗βIRLS
2

�c])2

d2 =
θPV W
3 a∗exp[[βIRLS

0 + βIRLS
1 a∗β

IRLS
2

�
c](1 + exp[βIRLS

0 + βIRLS
1 a∗βIRLS

2
�
c])− {exp[βIRLS

0 + βIRLS
1 a∗βIRLS

2
�
c]}2

(1 + exp[βIRLS
0 + βIRLS

1 a∗βIRLS
2

�c])2

d3 =
θPV W
3 c

�
exp[[βIRLS

0 + βIRLS
1 a∗β

IRLS
2

�
c](1 + exp[βIRLS

0 + βIRLS
1 a∗βIRLS

2
�
c])− {exp[βIRLS

0 + βIRLS
1 a∗βIRLS

2
�
c]}2

(1 + exp[βIRLS
0 + βIRLS

1 a∗βIRLS
2

�c])2

d4 = 0

d5 = 1

d6 = 0

d7 =
exp[βIRLS

0 + βIRLS
1 a∗βIRLS

2
�
c]

1 + exp[βIRLS
0 + βIRLS

1 a∗βIRLS
2

�c]

d8 = 0
�

For the natural indirect effect let

A =
exp[βIRLS

0 + βIRLS
1 a+ βIRLS

2
�
c]{1 + exp[βIRLS

0 + βIRLS
1 a+ βIRLS

2
�
c]} − {exp[βIRLS

0 + βIRLS
1 a+ βIRLS

2
�
c]}2

{1 + exp[βIRLS
0 + βIRLS

1 a+ βIRLS
2

�c]}2

B =
exp[βIRLS

0 + βIRLS
1 a∗ + βIRLS

2
�
c]{1 + exp[βIRLS

0 + βIRLS
1 a∗ + βIRLS

2
�
c]} − {exp[βIRLS

0 + βIRLS
1 a∗ + βIRLS

2
�
c]}2

{1 + exp[βIRLS
0 + βIRLS

1 a∗ + βIRLS
2

�c]}2

K =
exp[βIRLS

0 + βIRLS
1 a+ βIRLS

2
�
c]

{1 + exp[βIRLS
0 + βIRLS

1 a+ βIRLS
2

�c]}

D =
exp[βIRLS

0 + βIRLS
1 a∗ + βIRLS

2
�
c]

{1 + exp[βIRLS
0 + βIRLS

1 a∗ + βIRLS
2

�c]}

and

Γ = (d1, d2, d3, d4, d5, d6, d7, d8), where

d1 = {θPVW
2 + θPVW

3 a}[A− B]
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d2 = {θPVW
2 + θPVW

3 a}[aA− a∗B]

d3 = {θPVW
2 + θPVW

3 a}c� [A− B]

d4 = 0

d5 = 0

d6 = K −D

d7 = a[K −D]

d8 = 0
�

When the outcome Y is binary modeled using logistic regression ΓPVW/IRLS =

(d1, d2, d3, d4, d5, d6, d7, d8) for the logarithm of pure natural direct effect, where let

A =
exp[θPVW

2 + θPVW
3 a+ βIRLS

0 + βIRLS
1 a∗ + βIRLS

2
�
c]

{1 + exp[θPVW
2 + θPVW

3 a+ βIRLS
0 + βIRLS

1 a∗ + βIRLS
2

�c]}

B =
exp[θPVW

2 + θPVW
3 a∗ + βIRLS

0 + βIRLS
1 a∗ + βIRLS

2
�
c]

{1 + exp[θPVW
2 + θPVW

3 a∗ + βIRLS
0 + βIRLS

1 a∗ + βIRLS
2

�c]}
and

d1 = A− B

d2 = a∗(A− B)

d3 = c
�
(A− B)

d4 = 0

d5 = (a− a∗)

d6 = A− B

d7 = aA− a∗B

d8 = 0
�
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for the logarithm of the natural indirect effect let

A =
exp[θPVW

2 + θPVW
3 a+ βIRLS

0 + βIRLS
1 a+ βIRLS

2
�
c]

{1 + exp[θPVW
2 + θPVW

3 a+ βIRLS
0 + βIRLS

1 a+ βIRLS
2

�c]}

B =
exp[θPVW

2 + θPVW
3 a+ βIRLS

0 + βIRLS
1 a∗ + βIRLS

2
�
c]

{1 + exp[θPVW
2 + θPVW

3 a+ βIRLS
0 + βIRLS

1 a∗ + βIRLS
2

�c]}

K =
exp[βIRLS

0 + βIRLS
1 a+ βIRLS

2
�
c]

{1 + exp[βIRLS
0 + βIRLS

1 a+ βIRLS
2

�c]}

D =
exp[βIRLS

0 + βIRLS
1 a∗ + βIRLS

2
�
c]

{1 + exp[βIRLS
0 + βIRLS

1 a∗ + βIRLS
2

�c]}

and

Γ = (d1, d2, d3, d4, d5, d6, d7, d8) where

d1 = (D + A)− (K +B)

d2 = a∗[D − B] + a[A−K]

d3 = c
�
[(D + A)− (K +B)]

d4 = 0

d5 = 0

d6 = A− B

d7 = a[A− B]

d8 = 0
�
.

Standard errors of the PVW/IRLS estimators of the causal effects of interest can be

obtained in absence of exposure-mediator interaction in a similar way by setting θ3 = 0.
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3.H Direction of asymptotic bias of naive direct and in-
direct effects estimators in the absence of exposure-
mediator interaction

Proposition 1: For continuous outcome, in the absence of exposure mediator interaction,

the naive direct effect estimator is biased away from the null if positive and towards the

null if negative, under the assumption that the effect of the exposure on the mediator (β1)

and the effect of the mediator on the outcome (θ1) have the same sign.

Proof:

In the absence of exposure-mediator interaction the asymptotic bias of the naive estimator

of the direct effect can be expressed as

ABIAS(NDE(θ̂∗)) = −θ2δA,M∗Cov(M∗, U)(a− a∗).

Assume we are studying the direct effect of the exposure A on the outcome Y for an

increase of the level of the exposure such that (a − a∗) > 0. Assume also that the

procedure producing the observed classification of the binary mediator performs better

than chance (i.e. SN + SP > 1) which implies that 0 < Cov(M∗, U) < 1.

The term δA,M∗ is an element of the inverse of the variance-covariance matrix

of the observed variables (A,M∗, C) which, provided Cov(A,M) × V ar(C) >

Cov(A,C) × Cov(M,C), will be negative if Cov(A,M) > 0 (i.e. β1 > 0) and posi-

tive if Cov(A,M) < 0 (i.e. β1 < 0).

We can show that Cov(A,M)× V ar(C) ≥ Cov(A,C)× Cov(C,M) in the following way:

The LHS of the inequality can be re-written as
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Cov(A,M)× V ar(C) = [E(AM)− E(A)E(M)]× V ar(C)

= [E{E(AM |C)} − E{E(A|C)}E{E(M |C)}]× V ar(C)

= {
�

c

�
a(a− µa|c)

�
m(m− µm|a,c)pm|a,cpa|cpc} × {

�
c(c− µc)2pc}.

The RHS of the inequality can be re-written as

Cov(A,C)× Cov(M,C) = [E(AC)− E(A)E(C)]× [E(MC)− E(M)E(C)]

= [E{E(AC|C)} − E{E(A|C)}E{E(C|C)}]× [E{E(MC|C)} − E{E(M |C)}E{E(C|C)}]

= {
�

c(c− µc)
�

a(a− µa|c)pa|cpc} × {
�

c(c− µc)
�

a

�
m(m− µm|a,c)pm|a,cpa|cpc}.

Note that given that V ar(C) > 0 and assuming Cov(A,M) has the same sign of θ2, if

Cov(A,C) and Cov(M,C) have different signs then the inequality immediately follows.

Assume now that Cov(A,C) and Cov(M,C) have equal signs. We can note that by

Holder’s inequality

Cov(A,M)× V ar(C) ≥ {
�

c(c− µc)2
�

a(a− µa|c)
�

m(m− µm|a,c)pm|a,cpa|cpc}

≥ {
�

c(c− µc)
�

a(a− µa|c)pa|cpc} × {
�

c(c− µc)
�

a

�
m(m− µm|a,c)pm|a,cpa|cpc}

= Cov(A,C)× Cov(M,C),

and the inequality follows.

Thus, if θ2 > 0 and β1 > 0 or if θ2 < 0 and β1 < 0 then ABIAS(NDE(θ̂∗)) > 0.

Therefore, we conclude that the bias of natural direct effect will be biased away from the

null if NDE > 0 and the natural direct effect will be biased towards the null if NDE < 0.
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Proposition 2: For continuous outcome, in the absence of exposure mediator interaction,

the naive indirect effect estimator is biased towards the null if positive and biased

away from the null if negative under the assumption that the effect of the exposure

on the mediator (β1) and the effect of the mediator on the outcome (θ1) have the same sign.

Proof:

In the absence of exposure-mediator interaction the asymptotic bias of the naive estimator

of the indirect effect can be expressed as

ABIAS(NIE(θ̂∗, β̂∗)) = θ2[{
exp[β∗

0 + β∗
1a+ β∗

2
�
c]

1 + exp[β∗
0 + β∗

1a+ β∗
2
�c]

− exp[β∗
0 + β∗

1a
∗ + β∗

2
�
c]

1 + exp[β∗
0 + β∗

1a
∗ + β∗

2
�c]

}+

−{ exp[β0 + β1a+ β
�
2c]

1 + exp[β0 + β1a+ β
�
2c]

− exp[β0 + β1a∗ + β
�
2c]

1 + exp[β0 + β1a∗ + β
�
2c]

}]

−θ2δM∗,M∗Cov(M∗, U){ exp[β∗
0 + β∗

1a+ β∗
2
�
c]

1 + exp[β∗
0 + β∗

1a+ β∗
2
�c]

− exp[β∗
0 + β∗

1a
∗ + β∗

2
�
c]

1 + exp[β∗
0 + β∗

1a
∗ + β∗

2
�c]

}.

Assume again that we are studying the indirect effect of the exposure A on the outcome

Y through the mediator for an increase of the level of the exposure such that a > a∗. As-

sume also that the procedure producing the observed classification of the binary mediator

performs better than chance (i.e. SN + SP > 1), which implies that 0 < Cov(M∗, U) < 1.

The term δM∗,M∗ is element on the diagonal of inverse of the variance-covariance matrix

of the observed variables (A,M∗, C) which will be always positive.

Consider the third line of the formula. This term is going to be negative if β1 > 0 and

θ2 > 0 or if β1 < 0 and θ2 < 0. Now consider the first two lines of the equation. Since the

misclassification induces a dilution of the covariate effects on the mediator, the change in

probability of the mediator for a change in the exposure will be smaller when the naive

estimator substitutes the true one. Therefore, the term in the first two lines of the equation
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is negative if β1 > 0 and θ2 > 0 or β1 < 0 and θ2 < 0. Therefore, if θ2 and β1 have the same

sign the asymptotic bias is going to be negative. We conclude that the asymptotic bias of

the indirect effect is towards the null if the indirect effect is positive, and away from the

null if the indirect effect is negative.

3.I Predictive Value Weighting approach with correctly
specified model for M ∗|Y,A,C

Recover the model for M∗|Y,A,C

M∗|Y,A,C ∼ Ber(pM∗|Y,A,C).

Where,

P (M∗ = 1|Y,A,C) =
�1

m=0 P (M∗ = 1|M = m,Y,A,C)P (M = m|Y,A,C).

Assuming non-differential misclassification

P (M∗ = 1|Y,A,C) = SN × P (M = 1|Y,A,C) + (1− SP )× P (M = 0|Y,A,C)

Bayes Theorem

= SN P (Y,A,C|M=1)P (M=1)
P (Y,A,C) + (1− SP )P (Y,A,C|M=0)P (M=0)

P (Y,A,C)

Law of Total Probability and Bayes Theorem

= [SNP (Y |A,M=1,C)P (M=1|A,C)+(1−SP )P (Y |A,M=0,C)P (M=0|A,C)]�1
m=0 P (Y |A,M=m,C)P (M=m|A,C)

.

We observe that the probability just derived depends on both the mediator and outcome

regression parameters we wish to estimate.

Therefore, maximizing the likelihood arising from the conditional distribution M∗|Y,A,C

with respect to (θ, β) will directly allow us to estimate the parameters of interest.

Given that consistent estimators for the parameters of interest must be recovered in order
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to estimate consistently P (M∗|Y,A,C), there is no need to continue estimating weights

and implementing the weighted regression approach.

For both binary and continuous outcome we can obtain estimators for outcome and me-

diator regression parameters (θ and β) by maximizing the following likelihood

maxθ,βL(θ, β) = maxθ,β

n�

i=1

P (M∗
i = 1|Yi, Ai, Ci)

M∗
i (1− P (M∗

i = 1|Yi, Ai, Ci))
(1−M∗

i ).

3.J Maximum Likelihood (”Direct Method”) approach to
misclassification correction in the outcome regression

When fitting the outcome regression we wish to recover the vector of parameters θ which

characterizes the distribution of Y |A,M,C. When the outcome is continuous we define

fY |A,M,C;θ =
1√
2πσ2

e−
1

2σ2 (Y−µY |A,M,C),

where σ2 is the conditional variance of Y given A,M,C and µY |A,M,C = θ0 + θ1A+ θ2M +

θ3AM + θ4C.

When the outcome is binary we define

fY |A,M,C;θ = pYy (1− py)
(1−Y ),

where py = pY |A,M,C = exp(θ0 + θ1A + θ2M + θ3AM + θ4C)/(1 + exp(θ0 + θ1A + θ2M +

θ3AM + θ4C)).

When the observed mediator M∗ is a misclassified version of M the likelihood arising

from the parametric models just given cannot be fit.

The maximum likelihood approach consists of specifying the likelihood for a measure-

ment error model in which not only the outcome, but also the observed mediator is

consider random, rather than fixed.

Let’s determine the joint distribution of Y,M∗|A,C given that we assume sensitivity and
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specificity known.

fY,M∗|A,C(y,m∗|a, c) =
�1

m=0 fY,M∗,M |A,C(y,m∗,m|a, c)

=
�1

m=0 fY |M∗,M,A,C(y|m∗,m, a, c)P (M∗ = m∗|M = m,A = a, C = c)P (M = m|A = a, C =

c).

Assuming non differential misclassification

=
�1

m=0 fY |M,A,C(y|m, a, c)P (M∗ = m∗|M = m)P (M = m|A = a, C = c).

Note that P (M∗ = m∗|M = m) for each combination of M and M∗ is assumed to be

known and in a mediation setting the model for P (M = m|A = a, C = c) is easy to postu-

late as P (M = m|A = a, C = c; β). Given the knowledge of sensitivity and specificity the

vector of parameters β can be recovered.

The observed data distribution can be defined in terms of the measurement error model

fY |M∗,A,C;θ∗(y|m∗, a, c) =
fY,M∗|A,C;θ,β(y,m∗|a, c)�

y fY,M∗|A,C;θ,β(y,m∗|a, c)dy

and we can maximize the likelihood with respect to the true vector of parameters θ and β

maxθ,βL(θ, beta) = maxθ,β
fY,M∗|A,C;θ,β(y,m∗|a, c)�

y fY,M∗|A,C;θ,β(y,m∗|a, c)dy = maxθ,βfY,M∗|A,C;θ,β(y,m
∗|a, c).
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