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Importance of the Pre-NH2-Terminal Domain of HSV-1 DNA Polymerase  

for Viral Replication 

 

Abstract 

 

The catalytic subunit of the herpes simplex virus 1 DNA polymerase (HSV-1 Pol) 

has been extensively studied; however, its full complement of functional domains has yet 

to be characterized. The previously uncharacterized pre-NH2-terminal domain (residues 

1-140) within HSV-1 Pol is unique to the herpesvirus Pol family. We sought to 

investigate the importance of this domain for viral replication in cell culture and an 

animal model of infection. 

We evaluated the enzymatic activity of purified pre-NH2-terminal Pol mutant 

proteins in which conserved residues had been deleted or substituted. Subsequently, the 

corresponding pol mutant viruses were engineered for viral genetic analyses. We found 

that the extreme N-terminal 51 residues were not required for wild type 5’-3’ polymerase 

activity in vitro. Interestingly, the extreme N-terminal 42 residues were dispensable for 

viral replication in cell culture while a conserved motif at residues 44-49 was necessary 

for efficient viral DNA synthesis and production of infectious virus.  

Viral replication proteins have proven to be particularly important in the context 

of acute and latent infections in animals. Characterization of pol mutant virus replication 

in a mouse ocular model of infection revealed that the extreme N-terminal 42 residues 
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were not required for viral replication and reactivation from latency. The conserved 

motif, however, was shown to be required for robust acute ganglionic replication and 

efficient latency establishment. 

We hypothesized that the conserved motif at residues 44-49 mediates a protein-

protein interaction that positively impacts viral DNA synthesis during infection. Specific 

protein candidates were evaluated using purified proteins in vitro, and proteins that 

coprecipitated with wild type and mutant polymerases from infected cell lysates were 

analyzed. To date, we have yet to identify a protein whose binding was disrupted as a 

result of the mutation. 

Ultimately, we have established a role for the pre-NH2-terminal domain of HSV-1 

Pol during viral replication that is distinct from 5’-3’ polymerase activity. The conserved 

motif mediates a function that is required for efficient viral DNA synthesis in cell culture 

and is of even greater importance for acute ganglionic replication in mice. The 

mechanism of action more than likely reflects a conserved mechanism for herpesvirus 

replication. 
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Herpesviridae 

The Herpesviridae family is comprised of icosahedral, enveloped, double stranded 

DNA viruses (reviewed in Pellet and Roizman, 2006). Herpesviruses are of ancient origin 

and have coevolved with their natural hosts, which is evidenced by the fine-tuned 

regulation of virus-host interactions that allow for efficient replication of the virus while 

promoting survival of the infected organism. All herpesviruses encode DNA replication 

machinery, replicate and assemble viral particles within the nucleus, and can establish 

latent infections. To date, the herpesviridae family contains more than 200 viruses that 

can infect a variety of vertebrate and invertebrate species. Eight herpesviruses have been 

identified as specific for humans: herpes simplex virus 1 and 2 (HSV-1, -2), varicella-

zoster virus (VZV), human cytomegalovirus (HCMV), human herpesviruses 6 and 7 

(HHV-6, -7), and Kaposi’s sarcoma herpesvirus (KSHV). 

Based on tropism and replication properties in animals and cell culture, 

herpesviruses can be divided into three major categories. Alpha herpesviruses (e.g. HSV-

1,-2, VZV) exhibit the most diverse host cell range, a rapid and efficient replication 

cycle, and mainly establish latency within sensory ganglia.  Beta herpesviruses (e.g. 

HCMV, HHV-6,-7) are characterized by a slow replication cycle, restricted host range, 

and latency establishment in glandular and lymphatic tissues. The lymphotropic gamma 

herpesviruses (e.g. EBV, KSHV) exhibit extended reproductive cycles and have been 

associated with cancer in humans.  

The ability of herpesviruses to successfully manipulate cellular defense 

mechanisms, subvert host immune responses and persist for the lifetime of the host has 

posed a serious challenge to the development of effective treatments. Nucleoside analogs 
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(e.g. acyclovir), which target the viral DNA polymerase catalytic subunit, represent the 

main treatment option for herpesvirus infections (reviewed in Coen and Schaffer, 2003). 

However, the efficacy of these compounds is limited for immunocompromised patients, 

in which drug resistant infections readily develop. Investigations of the molecular 

mechanisms that govern viral replication processes within the host will provide valuable 

insight that may aid in the development of more successful treatments options. HSV-1 is 

a great model in which to study the biological characteristics of lytic and latent infections 

in both cell culture and in animal models of infection. Additionally, it has served as a 

valuable tool in the analysis of cellular processes such as eukaryotic DNA replication and 

translation. This dissertation focuses on the genetic analysis of the HSV-1 DNA 

polymerase catalytic subunit (HSV-1 Pol) and its importance to viral replication in cell 

culture and mice. 

 

HSV-1 

 HSV-1, which is maintained within the human population, has an estimated 

seroprevalence of up to 70% among healthy adults in the United States (Coen and 

Schaffer, 2003). Infectious virus can be transmitted horizontally between individuals 

through close personal contact and vertically from mother to child (reviewed in Roizman 

et al., 2006). Symptoms of HSV-1 infection include oral and facial lesions that manifest 

during recurrent infections in affected individuals. Additionally, HSV-1 has been 

identified as a cause of herpetic genital lesions (Lafferty et al., 2000; Roberts et al., 

2003). Occasionally, HSV-1 infection results in dehabilitating diseases such as 

encephalitis and ocular keratitis (Roizman et al., 2006). HSV-1 maintains a lifelong 
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association with the host without resulting in death in most cases, which contributes to 

the high prevalence of the virus throughout the population. However, newborns and 

immunocompromised individuals are at greater risk of developing disseminated 

infections that can result in fatality. 

 

HSV-1 Replication 

Genome 

 The HSV-1 genome is a linear, double stranded DNA molecule with a 68% G+C 

content (Kieff et al., 1971). The 150-kilobase pair genome can be divided into two 

elements, one unique long (UL) and one unique short (US) region, that are flanked by 

inverted repeats (Wadsworth et al., 1976). Homologous sequences within internal and 

terminal repeat regions allows for the inversion of UL and US during infection to yield 

four isomers at equimolar ratios (Delius and Clements, 1976; Hayward et al., 1975). 

 

Structure 

 The basic structure of the mature viral particle is well conserved among 

herpesviruses (reviewed in Pellet and Roizman, 2006; Roizman et al., 2006). The HSV-1 

virion is an enveloped, icosahedral capsid that is 100nm in diameter. The outer lipid 

bilayer, which is acquired from cellular membranes, contains viral glycoproteins that 

mediate attachment and entry. The core of the icosahedral capsid contains genomic viral 

DNA. The tegument comprises the area between the capsid and lipid bilayer and lacks 

defined structure. At least 20 viral proteins reside within the tegument and are delivered 

with the viral capsid into the cytoplasm of the infected cell. 
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HSV-1 Replication in Cell Culture 

 Glycoproteins on the surface of the virion mediate attachment and fusion of the 

viral envelope and cellular plasma membrane (Campadelli-Fiume et al., 2000; Spear et al, 

2003). Tegument proteins are released into the cytoplasm, some of which act to prime the 

cell for infection by preventing activation of the cellular antiviral response and shutting 

down host mRNA translation (Cassady et al., 1998; Strom and Frenkel, 1987). The viral 

capsid is transported to the nucleus and releases viral DNA through nuclear pores 

(Batterson et al., 1983; Miyamoto and Morgan, 1971; Morgan et al., 1968). This event 

triggers the organized, temporal cascade of viral gene expression that is characteristic of 

HSV-1 infection in cell culture (Honess and Roizman, 1974; reviewed in Roizman et al., 

2006). Prior to de novo protein synthesis, tegument protein VP16 associates with cellular 

transcriptional machinery to activate the expression of immediate early gene products 

that further attenuate host gene expression and antiviral responses (Hardy and Sandri-

Goldin, 1994; LaBoissiere and O’Hare, 2000; York et al., 1994).  Immediate early 

proteins also function as transcriptional activators that promote early viral gene 

expression (Roizman et al., 2006). Early viral proteins, which are typically involved in 

DNA replication and nucleotide metabolism, execute viral DNA synthesis and stimulate 

late gene expression. Late gene products are mainly structural proteins that are packaged 

and assembled into progeny virions. Late viral proteins also function in egress of the 

virus, a less well-defined process in which naked capsids exit the nucleus and translocate 

to the plasma membrane for release from the infected cell. 
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HSV-1 Replication in Mouse Models of Infection 

A hallmark of HSV-1 replication is the ability of the virus to undergo both 

productive and latent infections within the mammalian host (reviewed in Roizman et al., 

2006; Wagner and Bloom 1997). During primary infections of humans, HSV-1 replicates 

at a peripheral site of infection such as the eye or mucosal surfaces. Viral particles are 

transported to innervating sensory ganglia and establish latent infections. Upon 

stimulation such as stress or UV light exposure, the virus will reactivate from its latent 

state and initiate a recurrent infection at the original site of inoculation.  

Although various in vitro latency models have been developed, animal models of 

infection remains the most physiologically relevant system in which to dissect the 

molecular aspects of acute and latent infections. The field has yet to identify an animal 

model of infection that reproduces every facet of HSV-1 infection as observed in humans. 

However, the mouse ocular model has been demonstrated to mimic specific stages of 

HSV-1 pathogenesis (reviewed in Wagner and Bloom, 1997). Virus inoculated on the eye 

via corneal scarification undergoes robust amplification at the periphery. The virus 

travels to the trigeminal ganglia (TG) from the cornea via anterograde transport and 

initiates a second round of productive infection (Lycke et al., 1984; Penfold et al., 1994). 

Latency is established in sensory neurons, wherein lytic gene expression is repressed and 

no infectious virus is produced (Reviewed in Efstathiou and Preston, 2005; Roizman et 

al., 2006). Latency associated transcripts and viral DNA molecules can be detected in 

latently infected TG (Efstathiou et al., 1986; Rock and Fraser 1983; Spivack and Fraser 

1988; Stevens et al., 1987). One drawback for the mouse eye model is that infectious 

virus cannot be recovered from the original site of infection upon reactivation as is 
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observed in humans. The most widely-used assay for reactivation is the in vitro explant 

method where latently infected TG are cultured with susceptible feeder cells that serve as 

a readout for cytophathic effect and production of infectious virus (McLennan and Darby 

1980; Stevens and Cook, 1971). The molecular mechanisms that govern the maintenance 

and reactivation from latency are poorly understood and remain under intense 

investigation. 

 

HSV-1 DNA Replication 

Viral Replication Proteins  

The HSV-1 replisome components greatly resemble those found in E.coli and 

bacteriophage T4 systems (Boehmer and Lehman, 1997). HSV-1 encodes seven proteins 

that are required for viral DNA synthesis: origin binding protein (UL9), single-stranded 

DNA binding protein (ICP8), helicase-primase complex (UL8/5/52), and DNA 

polymerase holoenzyme (HSV-1  Pol (UL30)/UL42) (McGeoch et al., 1988; Wu et al., 

1988). Immunofluorescence studies suggest that UL9, ICP8, and UL8/5/52 are necessary 

for viral replisome assembly at discrete foci within the nucleus called prereplicative sites 

(de Brun and Kops, 1994; Quinlan et al., 1984). The recruitment of the viral DNA 

polymerase holoenzyme and subsequent progression of viral DNA synthesis promotes 

fusion of prereplicative sites, which form replication compartments that eventually 

encompass the nucleus. 

The viral genome contains three origins of replication: one copy of OriL located 

within the UL region, and two copies of OriS that reside in the internal repeat short and 

terminal repeat short regions (Stow, 1982; Weller et al., 1985). Each origin contains an 
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A-T rich region that is flanked by inverted repeats containing DNA recognition sites for 

UL9 (Elias et al., 1990; Koff and Tegtmeyer, 1988). Presumably, UL9 initiates viral 

DNA synthesis through its ability to bind and activate origins of replication (Elias et al., 

1986; Olivo et al., 1988). UL9 homodimers bind cooperatively to the inverted repeats and 

induce localized melting of the A-T rich spacers (Elias and Lehman, 1988; He and 

Lehman, 2001; Makhov et al., 1996). UL9 helicase activity, which is essential for viral 

replication, promotes DNA unwinding at the origin (Boehmer et al., 1993; Fierer and 

Challberg, 1992; Martinez et al., 1992; Malik et al., 1992).   

The single stranded binding protein ICP8 is presumably recruited to the origin of 

replication through an interaction with UL9 (Boehmer and Lehman, 1993). This 

interaction stimulates UL9 helicase activity by enhancing the rate of DNA unwinding 

(Boehmer et al., 1993; Makhov et al., 1996). ICP8 molecules bind cooperatively to 

exposed single stranded DNA and this binding activity is essential for viral replication 

(Lee and Knipe, 1985; Ruyechan et al., 1983). ICP8 has been shown to stimulate HSV-1 

Pol activity, which is a characteristic of single-stranded DNA binding proteins found in 

prokaryotic and eukaryotic systems (reviewed in Chase and Williams, 1986; Hernandez 

and Lehman, 1990; Ruyechan and Weir, 1984); however, studies have yet to determine 

whether this stimulation is a result of a direct interaction between HSV-1 Pol and ICP8. 

Origin unwinding and stabilization through the activities of UL9 and ICP8 

promote the recruitment of the DNA replication machinery to generate an active 

replication fork. The process of viral DNA synthesis will not commence without the 

generation of RNA primers, which is mediated by the heterotrimeric helicase-primase 

complex (Crute et al., 1988; Crute et al., 1989). Subunits UL5 and UL52 possess helicase 
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and primase activities that are essential for viral replication (Dracheva et al., 1995; 

Klinedinst et al, 1994; Zhu and Weller, 1992a,b). Thus, the UL5/UL52 heterodimer 

represents the core enzyme, while the UL8 subunit alone does not exhibit enzymatic or 

DNA binding activities (Calder and Stow, 1990; Dodson and Lehman, 1991; Parry et al., 

1993). However, UL8 is necessary for the nuclear localization of UL5 and UL52 in 

infected cells and stimulates primase activity of the protein complex in vitro (Barnard et 

al., 1997; Marsden et al., 1996; Tanguy Le Gac et al., 1996; Tenney et al., 1994; Tenney 

et al., 1995). The helicase-primase complex can associate with UL9 and ICP8 via an 

interaction with the UL8 subunit, which may be necessary for recruitment to active 

origins of replication and coordination of viral replisome components during DNA 

replication (McLean et al., 1994; Tanguy Le Gac et al., 1996).  

Primase activity is required for the recruitment of the DNA polymerase 

holoenzyme to prereplicative sites (Carrington-Lawrence and Weller, 2003).  The 

catalytic subunit, HSV-1 Pol (UL30), possesses 5’-3’ polymerase activity that is 

absolutely essential for replication of genomic viral DNA and production of infectious 

virus (Aron et al., 1975; Dorsky and Crumpacker, 1988). Reported HSV-1 enzymatic 

activities include 3’-5’ exonuclease, RNase H and DNA lyase activities (Bogani and 

Boehmer, 2008; Crute and Lehman, 1989; Knopf and Weisshart, 1988; O’Donnell et al., 

1987). The processivity subunit UL42 is a functional analog and structural homolog of 

the T4 bacteriophage gp45 protein, E.coli Pol III ! subunit, and eukaryotic proliferating 

cell nuclear antigen (PCNA; Jarvis et al., 1989; Kong et al., 1992; Krishna et al., 1994; 

Zuccola et al., 2000). Unlike these DNA polymerase clamp proteins, UL42 can freely 

associate with DNA due to its intrinsic DNA binding activity (Vaughan et al., 1985; 
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Gallo et al., 1988). This activity serves to tether HSV-1 Pol to the primer-template and 

thereby increase processivity of the enzyme (Gottlieb et al., 1990; Hernandez et al., 1990; 

Randell et al., 2005). 

HSV-1 expresses several nonessential replication proteins that have demonstrated 

roles in viral DNA synthesis processes. The viral thymidine kinase (TK) enzyme, a 

homodimer of the UL23 gene product, phosphorylates nucleosides in order to generate 

deoxynucleotide triphosphates (dNTPs) that serve as substrates for HSV-1 Pol 5’-3’ 

polymerase activity (Chen et al., 1979; Brown et al., 1995). While viral TK activity is 

dispensable for WT levels of replication during infection of dividing cells, it is important 

for efficient viral DNA synthesis in resting cell cultures wherein cellular TK enzyme 

expression is reduced or absent (Field and Wieldy, 1978; Jamieson et al., 1974). 

Furthermore, TK! mutants cannot replicate in ganglia and reactivate from latent 

infections in mice (Coen et al., 1989; Chen et al., 2004; Tenser et al., 1989; Thompson 

and Sawtell, 2000).  

Another viral nucleotide metabolism enzyme is the ribonucleotide reductase (RR), 

which catalyzes the formation of dNTPs from ribonucleotide precursors (Huszar and 

Bacchetti, 1981; Ponce de Leon et al., 1977). The active enzyme is an "2-#2 tetramer 

with two copies of both the large subunit, UL39, and small subunit, UL40 (McGeoch et 

al., 1988; Bacchetti et al., 1986; Ingemarson and Lankinen, 1987). Although a functional 

homolog is present in actively dividing cells, viral RR! mutants exhibit a modest defect 

in viral DNA synthesis in actively dividing cells that is enhanced in resting cell cultures 

(Goldstein and Weller, 1988 a and b; Jacobson et al, 1989; Preston et al., 1988). The viral 
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RR is absolutely required for acute corneal and ganglionic replication in the mouse ocular 

infection model (Jacobson et al., 1989). 

The viral uracil DNA glycosylase (UDG; UL2) participates in base excision 

repair processes by excising misincorporated uracils from viral DNA (Caradonna and 

Cheng, 1981; Mullaney et al., 1989). Most of the work regarding viral UDG function in 

cell culture has been performed in HCMV. Mutant viruses lacking UL114, the HCMV 

UDG, exhibit a delay in viral DNA production during infection that appears to be specific 

for resting cell cultures wherein the cellular UDG is absent (Courcelle et al., 2001; 

Prichard et al., 1996). Authors suggest that the inability of the UL114! viruses to remove 

uracils from newly synthesized viral DNA prevented the rapid accumulation of progeny 

viral DNA molecules (Courcelle et al., 2001). In HSV, UL2 is dispensable for viral 

replication in cell culture, but is important for efficient acute replication and latency 

establishment in the mouse footpad model of infection (Pyles and Thompson, 1994). 

Although it is not absolutely required for reactivation, the UL2! virus exhibited a ~3-fold 

in reactivation efficiencies following induced in vivo reactivation in mice via transient 

hyperthermia. 

 

Cellular DNA Replication and Repair Proteins  

A variety of cellular proteins that are involved in DNA replication, repair, and 

recombination are associated with viral proteins and localize to replication compartments 

during infection (Taylor and Knipe, 2004; Wilcock and Lane, 1991; Wilkinson and 

Weller, 2004). DNA replication proteins Pol", DNA ligase I, PCNA and replication 

protein A (RPA) colocalize with ICP8, and may play a functional role during viral DNA 
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synthesis processes (Wilock and Lane, 1991). For example, DNA ligase I can repair BER 

intermediates generated by HSV-1 Pol and UL2 in vitro (Bogani et al., 2009). Pol! has 

been directly linked to viral DNA replication in that it can physically interact with UL9, 

which results in stimulated 5’-3’ polymerase activity in vitro (Lee et al., 1995). 

Additionally, Pol! can elongate RNA primers generated by the viral helicase-primase 

complex in vitro (Cavanaugh and Kuchta, 2009). The possibility of cellular replication 

proteins actively participating during viral DNA synthesis is an attractive one; however, 

their importance for viral replication in the infected cell has yet to be evaluated. 

HSV-1 infection leads to the perturbation of cellular DNA damage and repair 

pathways. Ataxia-telangiesctasia-mutated (ATM) transduction pathways, which stimulate 

homologous recombination repair (HRR) of double-strand breaks (DSBs), are activated 

during HSV-1 infection (Abraham, 2004; Lilley et al., 2005; Shirata et al., 2005; 

Wilkinson and Weller, 2004). Activated MRN complexes (RAD50/Nbs1/Mre11), a 

downstream target of ATM, localize to viral replication compartments (Shirata et al., 

2005; Wilkinson and Weller, 2004). Additionally, MRN components RAD50 and meiotic 

recombination 11 (Mre11) associate with ICP8 in infected cell lysates (Taylor and Knipe, 

2004). HSV-1 replication is impaired in cell lines that are deficient for functional ATM 

and Mre11 proteins as compared to their corresponding complementing cell lines (Lilley 

et al., 2005). The loss of ATM signaling results in a defect in viral DNA synthesis, which 

implicates a role for the DNA damage response in HSV-1 DNA replication during 

infection. However, this conclusion was contradicted by Shirata et al. in that knockdown 

of ATM did not affect HSV-1 replication (Shirata et al., 2005). Further investigation is 
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necessary to clarify the functional role, if any, of ATM pathway proteins during HSV-1 

infection. 

 Nonhomologous end-joining (NHEJ) repair proteins, which also respond to 

DSBs, are mobilized during HSV-1 infection (Abraham, 2004; Taylor and Knipe, 2004). 

Components of the NHEJ complex localize to replication compartments and associate 

with ICP8 in infected cell lysates (Taylor and Knipe, 2004). NEHJ repair protein Ku86 

localizes to replication compartments but does not specifically associate with 

prereplicative sites, which suggests that NHEJ repair processes do not contribute to the 

early stages of viral DNA synthesis (Wilkinson and Weller, 2004). In contrast to HRR 

pathway proteins, HSV-1 replication was enhanced in the absence of NHEJ components 

Ku70 and DNA dependent protein kinase catalytic subunit (DNA PKc; Parkinson et al., 

1999; Taylor and Knipe, 2004). Thus, it would appear that the NHEJ repair pathway is 

detrimental to HSV-1 replication although the exact mechanism of inhibition is unknown.  

 Proteins that participate in the ATM and Rad3 related (ATR) pathway, which is 

primarily triggered by stalled replication forks, are also recruited to viral replication 

compartments (Cimprich and Cortez, 2008; Mohni et al., 2010; Mohni et al., 2012). 

Interestingly, ATR pathway proteins are important for viral replication while the 

activation of ATR signaling negatively impacts HSV-1 recombination frequencies during 

infection (Mohni et al., 2010; Mohni et al., 2012). Activation of tumor suppressor protein 

p53 by ATR results in the downregulation of HRR repair of DSBs, possibly via p53-

mediated sequestration of HRR proteins (Sirbu et al., 2011; Romanova et al., 2004; 

Sturzbecher et al., 1996; Linke et al., 2003). Interestingly, several cellular proteins 
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including p53 are redistributed upon HSV-1 infection and colocalize with ICP8 in 

replication compartments (Wilcock and Lane, 1991; Taylor and Knipe, 2004).  

 As with other replication processes, the virus must manipulate cellular machinery 

in order create an environment that is favorable for replication. Expression of viral 

replication proteins, and potentially viral DNA synthesis, can trigger ATM- and ATR- 

mediated repair pathways (Lilley et al., 2005; Shirata et al., 2005). It remains unclear as 

to whether the induction of cellular DNA damage pathways represents an active 

recruitment of HRR proteins to viral replication loci or if it is an inevitable response to 

viral infection. Further investigation is necessary in order to define the functional roles of 

specific cellular proteins during viral DNA synthesis. 

 

Model of HSV-1 DNA Replication 

HSV-1 genomic termini become fused upon infection, which has been proposed 

to represent circularization of the viral genome (Garber et al., 1993; Poffenberger and 

Roizman, 1985; Strang and Stow, 2005). Newly synthesized viral DNA within the 

infected cell is arranged as head-to-tail concatamers of unit-length viral genomes (Jacob 

et al., 1979). Originally, viral DNA synthesis was hypothesized to proceed by two 

distinct modes of replication (Figure 1.1.; Boehmer and Lehman, 1997). Initially, the 

ordered assembly of the viral replisome components at the origin results in theta 

replication with bidirectional fork movement and coordination of leading and lagging 

strand synthesis.  Theta replication is then converted to a rolling circle mode by an 

unknown mechanism in order to generate the observed head-to-tail concatamers.  
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Figure 1.1. Model of HSV-1 DNA replication. Linear viral DNA is circularized during 
infection. UL9 binds origins of replication and induces localized melting of duplex DNA. 
ICP8 binds single-stranded DNA and promotes UL9-mediated DNA unwinding. 
Helicase-primase (UL8/5/52) activity recruits the DNA polymerase holoenzyme 
(UL30/42) and initiates DNA synthesis via theta replication mode. In an unknown 
mechanism, theta replication is converted to rolling circle mode in which head-to-tail 
concatamers of unit-length viral genomes are produced. Figure adapted from Roizman et 
al., 2006.  
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However, the rolling circle mode of replication does not account for the branched 

structure of viral DNA that is observed during HSV-1 infection (Severini et al., 1996).  

Many lines of evidence suggest that DNA recombination events are an integral 

part of viral DNA synthesis processes, which could at least partially account for the 

production of concatameric and branched DNA. Once in the nucleus, genomic viral DNA 

appears to associate with promyelocytic leukemia nuclear bodies (PML; ND10) that 

contain cellular recombination and repair proteins (Maul et al., 1996; Carbone et al., 

2002; Negorev and Maul, 2001). This arrangement may aid in the recruitment of specific 

DNA repair proteins and components of the HRR pathway that may be important for 

efficient HSV-1 replication (Lilley et al., 2005; Wilkinson and Weller, 2004). Cellular 

proteins RPA and the MRN complex promote strand invasion following DSBs, and these 

proteins are localized to viral replication compartments during infection (Alani et al., 

1992; Sung, 1994; Wilcock and Lane, 1991; Wilkinson and Weller, 2004; Shirata et al., 

2005). The exact mechanisms by which cellular repair proteins enhance viral replication 

have yet to be elucidated. As seen with other viral replication processes, it would be 

advantageous for the virus to hijack and redirect host proteins towards the production of 

infectious progeny virus. 

Viral proteins can also directly participate or promote cellular proteins to engage 

in DNA recombination events during viral DNA synthesis. Replication of the episomal 

simian virus 40 (SV40) genomic DNA using HSV-1 replisome components in infected 

cells results in the production of complex branched structures that are similar to those 

observed during HSV-1 infection (Blumel et al., 2000). Viral proteins ICP8 and the 

alkaline nuclease UL12 catalyze strand exchange between a linear double-stranded DNA 



 17 

molecule and circular, single-stranded DNA in vitro, which could contribute to the 

formation of concatameric DNA as seen with the bacteriophage lambda recombination 

system (Reuven et al., 2003). The exonuclease activity of UL12 is essential for promoting 

recombination via a strand annealing mechanism during infection, and this activity is 

enhanced in the presence of ICP8 or the cellular single strand annealing protein RAD52 

(Schumacher et al., 2012). Additionally, UL12 binds directly to the MRN complex, 

which provides an additional link between viral and cellular recombination machinery 

(Balasubramanian et al, 2010). UL12! mutants exhibit a dramatic decrease in the 

production of mature viral capsids without any meaningful alterations in viral DNA 

synthesis levels (Martinez et al., 1996; Shao et al., 1993). Based on these observations, 

authors suggest that UL12 aids in the processing of branched DNA structures that arise 

during viral DNA synthesis. 

It has become increasingly evident that the process of viral DNA synthesis in the 

infected cell is more complex than originally perceived. These data suggest that viral 

proteins in conjunction with cellular proteins mediate recombination events that are 

important for the efficient production of viral DNA. These studies underscore the 

dynamic interplay between the virus and host cell during infection, which poses a serious 

challenge in our ability to recapitulate the process of viral DNA synthesis in vitro. 

However, the examination of HSV-1 replication provides a useful tool in dissecting the 

molecular mechanisms of eukaryotic DNA replication. 
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HSV-1 Pol 

Structure 

HSV-1 Pol is a member of the DNA polymerase family Pol B, which includes 

eukaryotic polymerases !, ", and #, in addition to viral and bacteriophage polymerases 

that are responsible for genomic DNA replication (Hubscher et al., 2002; Lehman and 

Kaguni, 1989; Rothwell and Waksman, 2005). HSV-1 Pol consists of 1235 amino acids 

and exhibits six regions of homology that are characteristic of the replicative DNA 

polymerase Pol! (Knopf and Weisshart, 1988; Liu et al., 2006; Wang et al., 1989). 

Additionally, HSV-1 Pol shares significant structural homology with Pol! family 

members, specifically bacteriophage RB69 (Hubscher et al., 2002; Liu et al., 2006). 

HSV-1 Pol is a single polypeptide that is comprised of six subdomains: palm, thumb, 

fingers, 3’-5’ exonuclease, NH2-terminal, and pre-NH2-terminal domains (Figure 1.2; Liu 

et al., 2006; Weisshart and Knopf, 1988). The overall architecture of the enzyme is a 

ring-like structure in which double stranded DNA binds at the C-terminus with single 

stranded DNA threading through the central hole towards the N-terminus (Liu et al., 

2006). 

The palm, fingers, thumb, and 3’-5’ exonuclease domains of HSV-1 Pol bear 

significant sequence and structural homology to corresponding domains in other Pol B 

enzymes, and are the best functionally characterized regions of the protein (Knopf and 

Weisshart, 1988; Liu et al., 2006; Rothwell and Waksman, 2005; Wang et al., 1989). The 

thumb, palm, fingers domains represent the prototypic catalytic center of polymerase 

activity (Hubscher et al., 2002, Wang et al., 1997). The thumb interacts with double 

stranded DNA while the palm and fingers domains coordinate primer-template binding  
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Figure 1.2. HSV-1 Pol crystal structure. HSV-1 Pol consists of 1235 residues that form a 
ring-like structure that is structurally homologous to other Family B polymerases. The 
enzyme is comprised of six subdomains: pre-NH2-terminal domain (pink), NH2-terminal 
domain (teal), 3’-5’ exonuclease (yellow), fingers (red), palm (green), and thumb (blue). 
The crystal structure was solved by Liu et al., 2006.  
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and dNTP incorporation (Franklin, Wang, Steitz 2001; Steitz et al., 1994; Wang et al., 

1997). Divalent metal ions can bind to residues located within the 3’-5’ exonuclease 

domain, which serves as the active site for 3’-5’ exonuclease activity. These four 

domains form a catalytic core that is well conserved among prokaryotic, eukaryotic, and 

viral DNA polymerases (Hubscher et al., 2002). 

A crystal structure of HSV-1 Pol revealed a two domain architecture of the N-

terminal portion of the enzyme (Liu et al., 2006). The architecture of the HSV-1 Pol NH2-

terminal domain resembles that of NH2-terminal domains found in certain family B 

polymerases (Liu et al., 2006; Rodriguez et al., 2000; Swan et al., 2009; Wang et al., 

1997; Wang et al., 1996).The second domain, at the extreme N- terminus of HSV-1 Pol, 

which was structurally distinct from the NH2-terminal domain, was dubbed the pre-NH2-

terminal domain by Liu et al (Liu et al., 2006).  

The NH2-terminal domain of HSV-1 Pol consists of three motifs that are adjacent 

to the 3’-5’ exonuclease domain (Liu et al., 2006). Based on the RB69 Pol structure, 

these two domains together form a putative ssDNA binding groove opposite from the 

dsDNA binding groove. Positioned at the putative ssDNA binding interface within the 

NH2-terminal domain is a putative RNA binding motif (RNP motif) that is structurally 

similar to those found in pre-mRNA splicing factors (Birney et al., 1993; Liu et al., 

2006); Burd and Dreyfuss, 1994). RNP motifs are conserved in 5'-3' exonucleases that 

exhibit RNase H activity and could potentially serve as the active site for such activity in 

HSV-1 Pol (Ceska and Sayers, 1998). Alternatively, the RNP motif could bind pol 

mRNA as suggested for Pol! homologue T4, which has been shown to autoregulate its 

own expression (Pavlov and Karam, 1994; Rodriguez et al. 2000; Wang et al., 1996). The 
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proposed enzymatic activities of NH2-terminal of HSV-1 Pol have yet to be 

characterized. 

The pre-NH2-terminal domain is comprised of the first 140 residues of HSV-1 Pol 

and is located at the surface of the enzyme (Liu et al., 2006). The first 58 residues of 

HSV-1 Pol are absent from the crystal structure and are presumably disordered. The 

extreme N-terminal 42 residues are conserved in HSV -1 and -2, while a motif at HSV-1 

Pol residues 44-49 is highly conserved among all human herpesviruses ( Di Tommaso et 

al., 2011; Liu et al., 2006; Notredame et al., 2000). HSV-1 Pol residues downstream of 

residue 59 engage in VanderWaals contacts with the adjacent 3’-5’ exonuclease domain. 

The pre-NH2-terminal domain is unique to herpesviruses polymerases and a homologous 

domain is absent from the related bacteriophage RB69 Pol and other Family B 

polymerase structures (Liu et al., 2006; Rodriguez et al., 2000; Swan et al., 2009; Wang 

et al., 1997; Wang et al., 1996). We have yet to identify a structural equivalent of the pre-

NH2-terminal domain in published protein structures and the function of this domain is 

unknown. Due to the conservation of the pre-NH2-terminal domain among the 

herpesvirus Pol family, we hypothesized that it may be required for viral replication. The 

location of the pre-NH2-terminal domain in the HSV-1 Pol structure, and absence of a 

structural equivalent in other DNA polymerases, suggested that the domain plays a 

specific role during herpesvirus replication that is distinct from 5’-3’ polymerase activity. 

 

Enzymatic Activities 

HSV-1 Pol exhibits 5’-3’ polymerase activity that is responsible for dNTP 

incorporation into nascent viral DNA strands (Marcy et al., 1990; Knopf ,1979). HSV-1 
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Pol 5’-3’ polymerase activity is enhanced by an interaction with the viral processivity 

factor UL42 (Gottlieb et al., 1990; Hernandez et al., 1990).  HSV-1 Pol is stimulated by 

high salt concentrations that inhibitory for cellular DNA polymerase activity (Powell and 

Purifoy, 1977; Weissbach et al., 1973). HSV-1 Pol requires a free 3’-OH in order to 

initiate dNTP incorporation and can utilize activated double-stranded DNA and primer-

templates with a strong preference for DNA containing a high G-C content (Weissbach et 

al., 1973). Polymerase activity is absolutely essential for viral DNA synthesis and the 

production of infectious progeny virus in cell culture (Aron et al., 1975; Dorsky and 

Crumpacker, 1988).  

 The 3’-5’ exonuclease activity of HSV-1 Pol serves as a proofreading function by 

removing misincorporated nucleotides during DNA polymerization (Hwang et al., 1999; 

Knopf and Weisshart, 1988; O’Donnell et al., 1987). HSV-1 Pol can degrade both single- 

and double- stranded DNA and exhibits enhanced activity on substrates with unpaired 3’ 

termini (Knopf and Weisshart, 1988; Derse and Chen, 1981; O’Donnell et al., 1987). 3’-

5’ exonuclease activity is optimal under conditions that favor 5’-3’ polymerase activity, 

but exonuclease activity is severely diminished in the presence of dNTPs (O’Donnell et 

al., 1987). Point mutations that abolish 3’-5’ exonuclease activity have little effect on the 

intrinsic 5’-3’ polymerase catalytic activity of the HSV-1 Pol enzyme (Hwang et al., 

1997; Hall et al., 1995; Kuhn & Knopf, 1996). While 3’-5’ exonuclease activity is not 

required for viral DNA synthesis or production of infectious virus in cell culture, it is 

important for replication fidelity as evidenced by increased mutagenesis frequencies for 

3’-5’ exonuclease deficient mutants (Tian et al., 2009; Hwang et al., 1997; Hwang and 

Hwang, 2003). 
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Several reports have demonstrated that HSV-1 Pol exhibits RNase H activity that 

degrades the RNA strand within an RNA-DNA hybrid (Marcy et al., 1990; Crute and 

Lehman, 1989; Weisshart et al., 1994). This activity could potentially be responsible for 

the removal of primers synthesized during lagging strand synthesis as observed with the 

Pol! family of DNA polymerases (Ceska and Sayers, 1998; Hubscher et al., 2002). A 70-

80kDa N-terminal fragment generated from proteolytic cleavage of HSV-1 Pol has been 

reported to exhibit both RNase H and 3’-5’ exonuclease activities (Weisshart et al., 

1994). However, some groups have attributed the observed RNase H activity to the 3’-5’ 

exonuclease, but the results of such studies are inconclusive (Hall et al., 1996; Knopf and 

Weisshart, 1990). The possibility of whether or not HSV-1 Pol possesses an intrinsic 

RNase H activity that is separable from 3’-5’ exonuclease activity remains under debate. 

Most recently, HSV-1 Pol was found to possess lyase activities that correspond to 

those exhibited by the repair polymerase Pol" (Bogani and Boehmer, 2008). HSV-1 Pol 

exhibits 5’-deoxyribose phosphate and apurinic/apyrimidinic lyase activities that can 

execute steps in the base excision repair (BER) pathway. Furthermore, these cleavage 

events were demonstrated to proceed by a lyase mechanism that does not require metal 

cations. Although the active site has yet to be mapped, DNA lyase activity has been 

localized to a 63kDa C-terminal fragment of HSV-1 Pol. Authors speculate that HSV-1-

mediated BER activities would be important for repair of the viral genome upon 

reactivation from latent infections in neurons. The contribution of HSV-1 Pol lyase 

activity to viral replication in cell culture and animal models of infection has yet to be 

determined. 
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Protein Interactions 

The DNA polymerase holoenzyme is comprised of a stable 1:1 association 

between HSV-1 Pol and UL42 that readily copurifies and coimmunoprecipitates from 

infected cell lysates (Crute and Lehman, 1989; Vaughan et al., 1985; Gottlieb et al., 

1990). The extreme C-terminal 18 residues of HSV-1 Pol are required and sufficient for 

UL42 binding (Digard et al., 1993a). The DNA binding activity of UL42 serves to tether 

HSV-1 Pol to the primer-template and thereby increases the processivity of dNTP 

incorporation and allows for long-chain DNA synthesis (Gottlieb 1990; Hernandez 1990; 

Randell et al., 2005). The association between the DNA polymerase holoenzyme subunits 

has been established as absolutely critical for viral DNA synthesis and production of 

infectious virus (Digard et al., 1993a, b). Thus, disruption of the HSV-1 Pol-UL42 

complex has served as a basis for rational drug discovery (Pilger et al., 2004). 

HSV-1 Pol copurifies with the viral helicase-primase complex from infected cell 

lysates (Strick et al., 1997). At least one report has demonstrated through several methods 

that the HSV-1 Pol binds directly to the UL8 subunit (Marsden et al., 1997). UL8 is 

required for efficient primer elongation by HSV-1 Pol in vitro; however, this effect did 

not appear to be species specific because the E.coli Pol I enzyme could substitute for 

HSV-1 Pol (Sherman et al., 1992; Tenney et al., 1994). Therefore, Marsden et al 

suggested that the observed interaction between UL8 and HSV-1 Pol served to recruit the 

viral polymerase to origins of replication for initiation of viral DNA synthesis. Consistent 

with this hypothesis is the fact that HSV-1 Pol is unable to localize to prereplicative sites 

in the absence of UL8 (Liptak et al., 1996). However, this reported observation was 

contradicted in a study that analyzed HSV-1 Pol localization with a virus that encoded a 



 25 

truncated UL8 mutant  (Marsden et al., 1996).  To date, we have yet to directly evaluate 

the significance of the UL8-HSV-1 Pol interaction during viral replication. 

The viral uracil DNA glycosylase UL2 was recently identified as an HSV-1 Pol 

binding partner and the two proteins colocalize to pre-replicative sites in transfected cells 

(Bogani et al., 2010). HSV-1 Pol can bind UL2 and UL42 simultaneously, which 

demonstrates that the UL2 interaction surface is outside of the UL42-binding site at the 

extreme C-terminus of HSV-1 Pol (Bogani et al., 2010). UL2 binding does not affect 

processive dNTP incorporation and is not required for the DNA lyase activities of HSV-1 

Pol (Bogani and Boehmer, 2008; Bogani et al., 2010). UL2 and HSV-1 Pol can 

coordinate with cellular factors in vitro to excise and repair DNA substrates containing a 

misincorporated uracil (Bogani et al., 2009). HSV-1 Pol will stall upstream of a uracil in 

a primer extension assay only in the presence of UL2 (Bogani et al., 2000). This was 

presumably due to the excision of the uracil by UL2 and the resulting AP site cannot be 

processed by HSV-1 Pol. The HSV-1 Pol-UL2 interaction provides a link between DNA 

repair machinery and the viral replisome during viral DNA synthesis.  

Host cell factor 1 (HCF-1) binds HSV-1 Pol in addition to viral replication 

proteins UL9 and UL52 (Peng et al., 2009). HCF-1 couples transcription factors with 

chromatin remodeling complexes in order to effectively regulate cellular gene expression 

(Kristie et al., 2010). Outside of its role as a transcriptional coactivator that promotes 

HSV-1 IE gene expression, HCF-1 has recently been shown to participate in viral DNA 

synthesis by recruiting the histone chaperone Asf1b to the viral replisome (Peng et al., 

2009). Asf1 mediates chromatin reassembly during DNA replication, which is necessary 

for progression at the replication fork (Schulz and Tyler, 2006; Tyler et al., 1999; 
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Munakata et al., 2000). Interestingly, depletion of Asf1b prior to HSV-1 infection 

negatively impacted production of viral DNA and infectious virus (Peng et al., 2009). 

Asf1 interacts with the SWI/SNF chromatin remodeling complex, which was one of 

several chromatin remodeling proteins found to associate with ICP8 in infected cell 

lysates (Moshkin et al., 2002; Taylor and Knipe, 2004). These data implicate a role for 

host dependent chromatin remodeling during viral DNA synthesis. 

 

Role of HSV-1 Pol in Disease Pathogenesis 

Mutations that knock out HSV-1 Pol activity render the virus as replication 

incompetent in both cell culture and in mice, which is presumably due to the lack of 5’-3’ 

polymerase activity that is responsible for production of progeny viral DNA molecules 

(Aron et al., 1975, Dorsky and Crumpacker, 1988; Katz et al., 1990). Hence, the viral 

polymerase has served as a prime target for antiviral therapies (reviewed in Coen and 

Schaffer). Compounds such as nucleoside analogs (e.g. acyclovir) that inhibit viral DNA 

synthesis prove to be an effective treatment for most individuals, but the efficacy of such 

drugs is significantly reduced in immunocompromised patients in which drug-resistant 

infections readily develop. Some drug-resistant mutant viruses contain lesions at the pol 

locus that alter the affinity of the enzyme for the antiviral compound and 

deoxynucleotides, and its ability to incorporate drug triphosphates or deoxynucleotides or 

both (Derse et al., 1982; Gibbs et al., 1988). Previous studies that have utilized drug 

resistant viruses in mouse models of infection have reported reduced neurovirulence in 

the peripheral nervous system and varying degrees of attenuation during acute and latent 

infections (Darby et al., 1984; Field and Coen, 1986; Larder and Darby, 1984; Pelosi et 
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al, 1998). These variations among drug resistant mutant phenotypes may be due to the 

fact that a number of independent mutations can confer resistance to one antiviral 

compound as demonstrated with PFA resistant HSV-1 Pol enzymes (Derse et al., 1982). 

Also, the question remains as to whether the observed phenotypes are a result of the 

mutation at the pol locus or a potentially unidentified mutation (Darby et al., 1984; Field 

and Coen, 1986; Larder and Darby, 1984; Pelosi et al, 1998).  

Studies utilizing intertypic variants concluded that the N-terminal region of HSV-

1 Pol was responsible for enhanced replication of recombinant HSV-2 viruses in mice 

and human peripheral blood mononuclear cells (Day et al., 1988, Lausch et al., 1990). 

However, the minimal HSV-1 sequence that conferred neuroinvasiveness also included 

the 3’ end of OriL in addition to the pol 5’ leader sequence (>200 nucleotides) that is 

upstream of the initiating methionine. Therefore, the exact contribution of the N-terminal 

half of HSV-1 Pol to viral replication in these previous studies is unclear. While HSV-1 

Pol encodes multiple enzymatic functions that are distinct from 5’-3’ polymerase activity, 

the importance of such activities for replication in animal models of infection has yet to 

be evaluated. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 2: 
 
 

Characterization of Pre-NH2-Terminal pol Mutant Viruses in vitro  
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Abstract 

The catalytic subunit of herpes simplex virus 1 DNA polymerase (HSV-1 Pol) has 

been extensively studied; however, its full complement of functional domains has yet to 

be characterized. A crystal structure has revealed a previously uncharacterized pre-NH2-

terminal domain (residues 1-140) within HSV-1 Pol. Due to the conservation of the pre-

NH2-terminal domain within the herpesvirus Pol family and its location in the crystal 

structure, we hypothesized that this domain provides an important function during viral 

replication in the infected cell distinct from 5’-3’ polymerase activity. We identified three 

pre-NH2-terminal Pol mutants that exhibited 5’-3’ polymerase activity indistinguishable 

from that of wild type Pol in vitro: deletion mutants Pol!N43 and Pol!N52 that lack the 

extreme N-terminal 42 and 51 residues, respectively, and mutant PolA6, in which a 

conserved motif at residues 44-49 was substituted with alanines. We constructed the 

corresponding pol mutant viruses and found that pol!N43 displayed replication kinetics 

similar to those of wild type virus, while pol!N52 and polA6 infection resulted in an 8-

fold defect in viral yield when compared to wild type and their respective rescued 

derivative viruses. Additionally, both pol!N52 and polA6 viruses exhibited defects in 

viral DNA synthesis that correlated with the observed reduction in viral yield. These 

results strongly indicate that the conserved motif within the pre-NH2-terminal domain is 

important for viral DNA synthesis and production of infectious virus, and indicate a 

functional role for this domain.  
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Introduction 

The efficiency of viral replication and spread of infectious progeny virus is 

dependent upon the expeditious and faithful replication of the parental genome. Herpes 

simplex virus-1 (HSV-1) encodes seven proteins that are essential for viral DNA 

synthesis: an origin binding protein (UL9), DNA polymerase holoenzyme (catalytic 

subunit UL30 (Pol) and processivity factor UL42), single stranded DNA binding protein 

(SSB; ICP8), and the helicase-primase complex (UL52, UL5, and UL8) (Boehmer and 

Lehman, 1997; Roizman and Knipe, 2001). The exact mechanisms by which these 

proteins act in concert to initiate and efficiently replicate the HSV-1 genome in the 

infected cell are poorly understood. HSV-1 Pol is the central enzyme for synthesis of 

viral DNA and is a target for antiviral drugs, however the efficacy of these treatments is 

limited, especially for immunocompromised patients with drug-resistant infections (Coen 

and Schaffer, 2003). Despite vigorous investigation into HSV-1 Pol function, all of the 

activities mediated by this enzyme have yet to be exhaustively characterized. Elucidation 

of conserved viral replication processes may identify factors that could serve as a target 

for new antiviral therapies. 

HSV-1 Pol is a member of DNA polymerase family Pol B, which includes 

eukaryotic polymerases !, ", and #, in addition to viral and bacteriophage polymerases 

that are responsible for genomic DNA replication (Hubscher et al., 2002; Lehman and 

Kaguni, 1989; Rothwell and Waksman, 2005). The palm, fingers, thumb, and 3’-5’ 

exonuclease domains of HSV-1 Pol bear significant sequence and structural homology to 

corresponding domains in other Pol B enzymes, and are the best characterized regions of 

the protein (Knopf and Weisshart, 1988; Liu et al., 2006; Rothwell and Waksman, 2005; 
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Wang et al., 1989). Accordingly, HSV-1 Pol exhibits 5’-3’ polymerase and 3’-5’ 

exonuclease activities that are characteristic functions of the replicative Pol B family 

(Knopf, 1979; Marcy et al., 1990; Rothwell and Waksman, 2005). Polymerase activity is 

essential for the production of infectious progeny virus (Aron et al., 1975; Dorsky and 

Crumpacker, 1988), while the 3’-5’ exonuclease activity is not required for viral 

replication but is important for replication fidelity during viral DNA synthesis (Hwang 

and Hwang, 2003; Hwang et al., 1997). The extreme C-terminus of HSV-1 Pol is crucial 

for an interaction with processivity factor UL42 that is necessary for long-chain DNA 

synthesis and indispensable for viral replication (Digard et al., 1993). Most recently, 

HSV-1 Pol was found to possess apurinic/apyrimidinic and 5’-deoxyribose phosphate 

lyase activities consistent with base excision repair processes, which are typically 

functions of the repair polymerase family X (Bogani and Boehmer, 2008; Rothwell and 

Waksman, 2005). Although the active site has yet to be mapped, DNA lyase activity has 

been localized to a 63kDa C-terminal fragment of HSV-1 Pol (Bogani and Boehmer, 

2008). Unlike the C-terminal half of HSV-1 Pol, the N-terminal half has yet to be 

functionally characterized (Liu et al., 2006). Thus, further investigation of this region 

may elucidate novel activities and better characterize functions of HSV-1 Pol. 

A crystal structure of HSV-1 Pol revealed a two domain architecture of the N-

terminal portion of the enzyme (Liu et al., 2006). One of the domains (NH2-terminal 

domain) contains three structural motifs that closely resemble NH2-terminal domain 

structures found in family B polymerases (Liu et al., 2006; Rodriguez et al., 2000; Swan 

et al., 2009; Wang et al., 1997; Wang et al., 1996). The second domain, at the extreme N-

terminus of HSV-1 Pol, which was structurally distinct from the NH2-terminal domain, 
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was dubbed the pre-NH2-terminal domain by Liu et al (Liu et al., 2006). The pre-NH2-

terminal domain is comprised of the first 140 residues of HSV-1 Pol, of which only 

residues 59-140 are visible in the published structure (Liu et al., 2006). Although the pre-

NH2-terminal domain is well conserved among the herpesvirus Pol family, a structural 

equivalent has yet to be identified in other published polymerase structures (Di Tommaso 

et al., 2011; Liu et al., 2006; Notredame et al., 2000). The extreme N-terminal 42 

residues, which are not present in the published crystal structure, are conserved in HSV -

1 and -2 (Liu et al., 2006). Interestingly, a motif at HSV-1 Pol residues 44-49 is highly 

conserved among all human herpesviruses (Figure 2.1A; Di Tommaso et al., 2011; Liu et 

al., 2006; Notredame et al., 2000). The pre-NH2-terminal domain is located at the 

periphery of the enzyme and outside of the catalytic center for 5’-3’ polymerase activity 

(Dorsky and Crumpacker, 1988; Knopf and Weisshart, 1988; Liu et al., 2006), suggesting 

that it is unlikely to directly participate in polymerase activity. Due to its conservation 

among herpesviruses, we hypothesized that the pre-NH2-terminal domain provides an 

important function for viral DNA synthesis and production of infectious virus distinct 

from 5’-3’ polymerase activity. Accordingly, we generated pre-NH2-terminal mutants for 

analysis of in vitro 5’-3’ polymerase activity, viral DNA synthesis and production of 

infectious virus.  
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Figure 2.1. Sequence alignment and pol mutant constructs. (A) Sequence alignment of 
the eight human herpesvirus Pol sequences (DiTommaso et al., 2011; Notredame et al., 
2000). A motif consisting of multiple hydrophobic and aromatic residues (FYNPYL) at 
44-49 of HSV-1 Pol is conserved in the human herpesvirus Pol family (box). Polymerase 
sequences: HSV-1 (Gibbs et al., 1985), HSV-2 (Chibo et al., 2002), Varicella-Zoster 
virus (VZV; Davison and Scott, 1986), Epstein-Barr virus (EBV; de Jesus et al., 2003), 
Cytomegalovirus (CMV; Chou et al., 1999), human herpesvirus 6 (HHV-6; Isegawa et 
al., 2009), HHV-7 (Megaw et al., 1998), Kaposi’s sarcoma –associated herpesvirus 
(KSHV; Neipel et al., 1997). (B) Schematic diagram of selected pol constructs analyzed 
in RRL assays. Amino-terminal deletions are numbered according to the first residue 
(downstream of initiating AUG codon) of the WT protein present in the mutant and 
carboxyl-terminal deletions are numbered according to the last amino acid present 
(upstream of terminating UGA codon). The conserved motif is depicted by the gray box 
(not drawn to scale), which was substituted with alanines (Ala) in mutant PolA6. 
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Materials and Methods 

Cells, viruses and antibodies. Vero (American Type Culture Collection) and 

polB3 cells, which inducibly express wild type (WT) HSV-1 Pol upon infection and were 

kindly provided by Charles Hwang (Hwang et al., 1997), were grown and maintained in 

Dulbecco’s modified Eagle medium (DMEM) supplemented with 5% newborn calf 

serum, 1% penicillin and streptomycin, and 1% amphotericin B. DNA harvested from 

WT HSV-1 strain KOS was included in restriction fragment length polymorphism 

(RFLP) analysis. Construction of mutant viruses from a bacterial artificial chromosome 

(BAC) clone of KOS is detailed below. Spodoptera frugiperda Sf9 cells (Invitrogen) 

were cultured under serum-free conditions with Sf-900II serum free medium (Invitrogen) 

supplemented with 10µg/mL gentamycin. The monoclonal anti-Pol antibody 1051c 

(Strick et al., 1997) was kindly provided by Robert Klemm (University of Heidelberg). 

Secondary antibody AlexaFluor 488-conjugated chicken anti-mouse was obtained from 

Invitrogen-Molecular Probes. 

Plasmids and BACS. All of the indicated pol constructs used for in vitro 

transcription/translation studies were cloned into the SpeI/HindIII (New England 

Biolabs) sites of pBluescript II KS+ (pBS; Stratagene). The HSV-1 WT pol gene was 

shuttled from plasmid HTC-Pol (kindly provided by Gloria Komazin-Meredith) to the 

pBS vector to generate pBS-Pol. Truncation mutants were amplified from pBS-Pol by 

employing KOD Hot Start DNA polymerase (EMD Biosciences) and sequence specific 

primers that introduced a start codon (AUG) downstream of an SpeI site at the 5’ 

terminus and a stop codon (UGA) upstream of a HindIII site at the 3’ terminus. Plasmid 

pBS-PolA6 was generated via two sequential rounds of site direction mutagenesis using 
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the QuikChange method (Stratagene) that introduced alanine substitutions F44A, Y45A, 

N46A, P47A, Y48A, L49A into pBS-Pol. 

E. coli strain GS1783 (Tischer et al., 2010; kindly provided by Greg Smith, 

Northwestern University) harboring a BAC clone of HSV-1 strain KOS (I. Jurak et al., 

manuscript in preparation) was used to generate ‘scarless’ pol mutants via the two-step 

Red recombination techniques outlined by Tischer et al (Tischer et al., 2006). Plasmids 

pEP-KanaS (Tischer et al., 2006) and pBAD-I-SceI (Tischer et al., 2006) were kindly 

provided by Nikolaus Osterrieder and B. Karsten Tischer (Cornell University). 

Manipulations to generate deletions, substitutions, and insertions within the pol locus in 

the BAC were performed as previously described (Tischer et al., 2006). The presence of 

each mutation, and lack of unintended mutations, was verified by sequencing the pol 

gene in each mutant BAC clone. BAC-derived viruses were reconstituted via transfection 

of 2µg of purified BAC DNA into 3!105 polB3 cells using Lipofectamine reagent 

(Invitrogen). Five days post-transfection, the viral supernatant was harvested and titrated 

on polB3 cells. A single plaque was isolated and subjected to an additional two rounds of 

plaque purification prior to amplification of pure viral stocks. Viral DNA was harvested 

from infected polB3 cells and the pol locus was subjected to sequencing (data not 

shown). Purified DNA from BAC-derived virus and WT HSV-1 strain KOS was digested 

with BamHI (NEB) and electrophoresed on a 0.8% agarose gel overnight for RFLP 

analysis. Rescued derivative viruses were generated by restoring the WT pol sequence in 

BAC clones pol"N52 and polA6 via two-step Red recombination prior to reconstitution 

in polB3 cells. 



 36 

In vitro transcription translation and DNA polymerase assays. HSV-1 Pol 

proteins were expressed via rabbit reticulocyte lysate (RRL) using the TNT Quick 

Coupled Transcription/Translation Systems kit (Promega). Six hundred nanograms of 

each plasmid DNA construct (or no DNA as a negative control) and other kit components 

were added to 30µl of RRL that had been supplemented with either [35S]-methionine 

(Perkin Elmer) or cold methionine in parallel and incubated at 30°C for 90 min per the 

manufacturer’s instructions. To assess the level of protein expression for each 

experiment, an aliquot from each radiolabeled reaction was analyzed via sodium dodecyl 

sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and autoradiography. The 

unlabeled reactions were subjected to DNA polymerase assays similar to those that were 

previously described (Dorsky and Crumpacker, 1988) with some modifications: 

Individual RRL reactions were supplemented with a polymerase reaction mixture that 

brought the final concentration (in 100µl) to 50mM TrisHCl, pH 7.5, 100mM (NH4)2SO4, 

50µg/mL BSA, 0.5mM DTT, 7.5 MgCl2, 10µg/mL activated calf thymus DNA, 5µM 

each of dCTP, dGTP, dATP, and 2.5µCi [!-32P]-dTTP (Perkin Elmer). To assess 

stimulation of polymerase activity by UL42, reactions were supplemented with 2pmol 

MBP-UL42"C340 (Komazin-Meredith et al., 2008; kindly provided by Gloria Komazin-

Meredith) and incubated at 37°C for 30 min prior to addition of the reaction mixture. 

Aliquots were removed at the indicated time points, mixed with EDTA, and incubated on 

ice to halt further enzymatic activity. Samples were spotted onto DE81 anion exchange 

filters (Whatman) and washed twice with 5% (w/v) Na2HPO4 buffer (dibasic), rinsed 

once with water, and once with 100% ethanol. Filters were dried and subjected to liquid 

scintillation counting.  
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Recombinant baculovirus, protein expression, purification, and polymerase 

activity. Bacmid donor plasmids were generated by shuttling pol!N52 and polA6 

constructs from pBS-KS+ vectors to the pFastBac vector (Invitrogen) using SpeI and 

HindIII restriction sites. Sf9 cells were transfected with recombinant bacmid DNA to 

generate recombinant baculoviruses expressing N-terminal His6-tagged Pol!N52 and 

PolA6 proteins by using the Bac-to-Bac Baculovirus Expression System Kit (Invitrogen). 

His6-WT Pol was expressed and purified from the corresponding recombinant 

baculovirus that was engineered in a similar fashion (kindly provided by Gloria 

Komazin-Meredith). Viral titers were determined using the BacPAK Baculovirus Rapid 

Titer Kit (Clontech). Mid-log phase Sf9 cells were infected at a multiplicity of infection 

(MOI) of 2 and cells were harvested at 65hpi. Cell pellets were washed with Dulbecco’s 

phosphate-buffered saline (DPBS) and resuspended in buffer A (20mM HEPES, pH 7, 

1mM DTT, 20% glycerol, 100mM guanidine HCl, 200mM NaCl, 20mM imidazole, and 

1 Roche complete protease inhibitor tablet/100mL). His-tagged proteins were captured 

via batch purification with Ni2+-NTA resin (Qiagen) for 30 min with gentle agitation at 

4°C. The absorbed resin was loaded onto a column and washed extensively with buffer 

A. Pol was eluted from the column with buffer A containing 500mM imidazole. Fractions 

that contained His-tagged Pol were pooled and passed through a 1mL HiTrap Heparin HP 

column (GE Healthcare) that had been preequilibrated with buffer B (20mM HEPES, pH 

7, 2mM DTT, 20% glycerol, 100mM guanidine HCl, 200mM NaCl).  The column was 

washed with buffer B and protein was eluted with a linear NaCl gradient of up to 1M 

NaCl. Fractions containing Pol were pooled, concentrated with an Amicon Ultra-15 

centrifugal unit (Millipore) and stored at -80°C. 
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Unless otherwise stated, polymerase assays using purified enzyme were 

conducted using 400fmol Pol in the presence and absence of 1pmol MBP-UL42!C340 

and samples were processed as described above. For concentration dependent assays, 

basal polymerase activity was measured in individual reactions containing the indicated 

amount of purified enzyme following a 20 min incubation at 37°C. The amount of dTTP 

incorporation was calculated using a standard curve of known [32P]-dTTP amounts. 

Viral replication assays. Vero cells (2.5"105) were infected in triplicate at an 

MOI of 10 or 20 PFU/cell as indicated. After a 1 h adsorption period at 37°C, wells were 

washed with DPBS and replenished with 2mL of DMEM containing 2% NCS. At each 

time point, whole cell lysates were collected, frozen and subsequently thawed and 

sonicated. Cellular debris was pelleted by centrifugation and supernatants were titrated on 

polB3 cells in duplicate. 

Indirect immunofluorescence. Vero cells (1!105) were seeded on glass 

coverslips and infected with the indicated virus at an MOI of 20. A 6 hpi, cells were fixed 

with 3.8% formaldehyde for 15 min and permeabilized with 1% Triton X for 10 min. 

Samples were incubated with blocking buffer (10% normal goat serum in PBS) at 4°C 

overnight. Cells were stained with 1051c (0.1mg/mL) for 1 hr at room temperature. 

Samples were washed with PBS and reacted with secondary antibody (1:1000) for 1 hr at 

room temperature. Coverslips were washed with PBS and mounted onto glass slides 

using ProLong Gold AntiFade Reagent (Invitrogen). Fluorescence microscopy was 

performed with a Yokogawa spinning disk confocal on a Nikon Ti inverted microscope 

using a 60! Plan Apo NA 1.4 objective lens. Sequential optical sections of 0.5 micron 
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step size were collected with a Hamamatsu ORCA ER cooled CCD camera. Images are 

presented as the median of the acquired z-series sections using MetaMorph 7 software. 

Real-time PCR assay of viral DNA synthesis. Vero cells (2.5!105) were 

infected with virus at an MOI of 20 in triplicate and cell lysates were harvested at 12 and 

16 hpi. DNA from mock- and HSV- infected Vero cells was isolated and processed as 

described previously for murine trigeminal ganglia (Pesola et al., 2005).  Viral DNA 

standards were generated by spiking ten-fold serial dilutions of purified HSV-1 DNA into 

mock-infected Vero cell lysate. Cellular DNA standards were prepared by making serial 

three-fold dilutions of mock-infected lysate. Viral and cellular DNA standards were 

processed along with experimental samples as a control for the efficiency of DNA 

recovery from infected cell lysate. Real time PCR assays for viral (Pesola et al., 2005) 

and cellular (J M Pesola, unpublished results) DNA were conducted in 20µl reactions 

with 2µl of the experimental samples or standards (~1/20 of entire sample), using 0.1µM 

primers and SYBR green PCR master mix (Applied Biosystems). Each primer set 

selectively amplified the viral thymidine kinase gene or the cellular !-

galactosyltransferase gene resulting in "96% PCR amplification efficiency in each assay. 

Real-time reactions were performed on the Applied Biosystems StepOnePlus Real-Time 

PCR System per the manufacturer’s instructions. Absolute and relative amounts of viral 

or cellular DNA, respectively, in each experimental sample were interpolated from the 

generated standard curve (linear regression performed on a plot of the threshold cycle 

versus log quantity DNA; all R2 values " 0.98). Viral DNA was normalized to the 

measured cellular DNA content and values are reported as viral DNA copies per reaction 
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for each experimental sample. Statistical analyses were performed using GraphPad Prism 

(GraphPad Software, San Diego, Calif.). 
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Results 

Analysis of HSV-1 Pol mutant protein activity in RRL. We hypothesized that 

the pre-NH2-terminal domain is not directly involved in 5’-3’ polymerase activity due to 

its location outside of the previously characterized active site (Dorsky and Crumpacker, 

1988; Knopf and Weisshart, 1988; Liu et al., 2006). However, further examination of the 

crystal structure revealed an extensive hydrophobic network between the 3’-5’ 

exonuclease domain and anti-parallel beta sheets within the pre-NH2-terminal domain 

located downstream of HSV-1 Pol residue 70 (Liu et al., 2006). Therefore, we anticipated 

that extensive deletions within these regions could lead to misfolding or destabilization of 

the Pol enzyme. A previous study had generated HSV-1 Pol mutant proteins via RRL for 

analysis of 5’-3’ polymerase activity (Dorsky and Crumpacker, 1988). In order to avoid 

engineering viruses with mutations that could indirectly abrogate enzymatic activity and 

thereby result in viral lethality (Aron et al., 1975; Dorsky and Crumpacker, 1988), we 

utilized this expression system to test 5’-3’ polymerase activity of Pol mutants in the 

presence and absence of viral processivity factor UL42. 

Selected pol constructs utilized in this study are depicted in Figure 2.1B. 

Truncation mutant Pol!N43 was constructed to investigate the importance of the extreme 

N-terminal 42 residues. In an effort to explore the potential role of the conserved motif 

FYNPYL, we generated deletion mutant Pol!N52 that lacks the extreme N-terminal 51 

residues, and substitution mutant PolA6, in which residues 44-49 were substituted with 

alanines. Additional mutants were tested in order to identify the most extensive 

truncation mutant that encoded an enzymatically active polymerase. One set of 

programmed reticulocyte lysates was supplemented with [35S]-methionine in order to 
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visualize the relative amounts of synthesized protein in each reaction via SDS-PAGE and 

autoradiography.  Unlabeled lysates in which cold methionine was substituted for [35S]-

methionine were used to analyze enzymatic activity of HSV-1 Pol mutants. Basal 

polymerase assays were conducted by measuring the incorporation of [32P]-dTTP into 

activated calf thymus DNA as previously described (Dorsky and Crumpacker, 1988). In 

vitro reactions supplemented with purified MBP-UL42!C340, which is capable of 

stimulating HSV-1 Pol (Digard et al., 1993; Komazin-Meredith et al., 2008), were used to 

assess processive polymerase activity. Two controls were included in each assay: a 

reaction that lacked a pol construct in order to assess background activity of endogenous 

RRL protein and another that expressed Pol truncation mutant Pol!C1216, which cannot 

interact with UL42 and thereby is not stimulated by it (Digard et al., 1993).  

The results from the in vitro analysis of each pre-NH2-terminal mutant are 

summarized in Table 2.1. The two most conservative truncation mutants, Pol!N43 and 

Pol!N52, and substitution mutant PolA6 reproducibly exhibited time dependent 5’-3’ 

polymerase activity similar to WT Pol in the presence and absence of UL42 (Figure 2.2A 

and B and data not shown). The enhanced level of activity detected in reactions 

containing Pol!N43 is most likely due to increased protein expression in this experiment 

(Figure 2.2C). Pol!N141, in which the entire pre-NH2-terminal domain was deleted, did 

not exhibit detectable enzymatic activity (Figure 2.2A and B). Although a previous study 

had reported that a mutant lacking the extreme N-terminal 66 residues exhibited 

polymerase activity (Dorsky and Crumpacker, 1988), we found that truncation mutant 

Pol!N67 reproducibly lacked polymerase activity above the negative controls in both the 

basal and processive polymerase assays (Table 2.1). Thus, removal of up to 51 residues at  
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Table 2.1. Summary of in vitro polymerase activity of 
selected Pol mutants 

 
Polymerase Basal DNA Stimulated polymerase 

mutant construct polymerase activitya activity via UL42b 
Pol!N43 + + 
Pol!N52 + + 
Pol!N67 " " 
Pol!N141 " " 

PolA6 + + 
Pol!C1216 + " 

a + , wild type levels of activity; " , activity at or below that of background 
b + , wild type levels of activity; " , activity at or below that of UL42-binding mutant 
    Pol!C1216 
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Figure 2.2. 5’-3’ polymerase activity and Pol mutant protein expression in RRL. HSV-1 
Pol constructs were engineered and expressed in RRL for evaluation of 5’-3’ polymerase 
activity. DNA was omitted from one in vitro reaction (-) in order to assess background 
levels of nucleotide incorporation. (A) Basal polymerase activity. Individual RRL 
reactions containing the DNA constructs indicated in the key were supplemented with 
polymerase reaction mixture and analyzed for enzymatic activity. The level of [!-32P]-
dTTP incorporation at each time point is reported as counts per min (CPM) and graphed 
as the mean of duplicate samples. (B) Processive polymerase activity. Parallel RRL 
reactions were supplemented with HSV-1 viral processivity factor UL42 prior to the 
addition of polymerase reaction mixture in order to assess stimulated polymerase activity. 
Mutant Pol"C1216 cannot bind UL42 and thereby served as a negative control in this 
assay. (C) In vitro expression of Pol mutant proteins. Aliquots of RRL reactions 
supplemented with [35S]-methionine were electrophoresed on a 5% SDS-PAGE gel, 
dried, and exposed to a phosphorimager screen overnight. The position of a molecular 
weight marker is included on the left side of panel.  
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the extreme N-terminus of HSV-1 Pol yielded an enzymatically active protein while more 

extensive deletions negatively impacted 5’-3’ polymerase activity. 

5’-3’ polymerase activity of purified HSV-1 Pol enzyme. A previous study had 

reported that a purified HSV-1 Pol truncation mutant lacking the extreme N-terminal 42 

residues retained 5’-3’ polymerase activity (Liu et al., 2006). In order to more 

quantitatively evaluate the activity of the remaining Pol mutants that maintained 

detectable activity in the RRL studies, recombinant baculoviruses were constructed for 

the generation of His-tagged fusion proteins Pol!N52 and PolA6. WT Pol, Pol!N52 or 

PolA6 proteins were purified to homogeneity from insect cell lysates infected with the 

appropriate recombinant baculovirus. We assayed the ability of each enzyme to 

incorporate [32P]-dTTP into activated calf thymus DNA in the presence or absence of 

purified MBP-UL42!C340. 

In accordance with the results generated from the polymerase assays conducted in 

RRL (Table 2.1), we found that both purified mutant proteins displayed basal polymerase 

activity similar to that of WT Pol (Figure 2.3A). The enhancement of polymerase activity 

in the presence of UL42 demonstrated a functional interaction with the viral processivity 

factor (Digard et al., 1993; Figure 2.3B). Lastly, we evaluated basal polymerase activity 

as a function of protein concentration for each enzyme (Figure 2.3C). The average rates 

of dTTP incorporation for WT, Pol!N52 and PolA6 were very similar: 620, 570 and 680 

fmol/min/nmol, respectively. Therefore, the engineered mutations in HSV-1 Pol had little 

or no impact on 5’-3’ polymerase activity or association with UL42. 
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Figure 2.3. In vitro 5’-3’ polymerase activity of purified Pol protein. WT Pol and mutant 
Pol proteins were expressed and purified from insect cells infected with recombinant 
baculovirus. Purified protein was subjected to basal (A) and processive (B) polymerase 
assays as described in the legend of Figure 2.2. Additionally, basal activity was measured 
and plotted as a function of enzyme concentration (C). The amount of dTTP 
incorporation (fmol) was calculated at each time point or enzyme concentration and 
graphed as the mean of duplicate samples. 
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Replication of BAC-derived HSV-1 pol mutant viruses. In order to assess the 

biological significance of pol mutations within the context of infection, pol mutant 

viruses were engineered via manipulation of an infectious bacterial artificial chromosome 

(BAC) clone of HSV-1 strain KOS (I Jurak et al., in preparation). Using BAC 

recombineering techniques (Tischer et al., 2006), pol coding sequences were deleted in 

order to produce viruses that expressed pre-NH2-terminal Pol mutants corresponding to 

the proteins included in our RRL analyses (Table 2.1). Mutant viruses pol!N43 and 

pol!N52 were analyzed to determine whether the extreme N-terminal 42 or 51 residues 

of HSV-1 Pol were essential for viral replication. Mutant virus pol!N141, in which the 

entire pre-NH2-terminal domain was deleted, was included to verify that a mutant lacking 

detectable polymerase activity in the in vitro RRL studies would result in a non-viable 

virus. Due to the potential for replication defects as a result of the introduced mutations, 

each BAC, including WT, was introduced into and propagated in polB3 cells that 

inducibly express WT HSV-1 Pol upon infection (Hwang et al., 1997). Each BAC clone 

and corresponding virus was sequenced at the pol locus in order to confirm the presence 

of the engineered mutation and verify the lack of adventitious mutations. To confirm the 

overall integrity of the viral genome, we performed RFLP analysis on purified viral DNA 

from WT and mutant BAC-derived viruses in comparison with WT HSV-1 strain KOS. 

Digestion with BamHI revealed that the restriction pattern of WT BAC-derived viral 

DNA was similar to that of KOS (Figure 2.4). A 3.3kb band, which corresponds to the 5’ 

end of the pol gene, underwent a mobility shift that was respective to the deletions 

present in mutants pol!N43, pol!N52, and pol!N141 (Figure 2.4). 
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Figure 2.4. Restriction enzyme analysis of genomic viral DNA. Purified viral DNA from 
KOS and the indicated reconstituted BAC-derived virus was digested with BamHI and 
electrophoresed on a 0.8% agarose gel. The arrow indicates a 3.3kb band in the KOS and 
WT lanes that undergoes a mobility shift respective to the deletion present at the 5’ end 
of the HSV-1 pol gene in each mutant virus. The left-hand panel indicates the sizes (kb) 
of bands from a DNA ladder.    
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 To assess the viability of reconstituted virus harvested from complementing 

polB3 cells, supernatant from cells transfected with BAC DNA was titrated on polB3 

cells and non-complementing Vero cells and scored for the ability to form plaques on 

Vero cells relative to polB3 cells (plating efficiency) compared to WT virus (Table 2.2). 

As expected, WT-BAC derived virus exhibited a plating efficiency of 100%, while 

pol!N141 was unable to form plaques on Vero cells. Mutant virus pol!N43 exhibited a 

plating efficiency similar to that of WT (93%). Interestingly, mutant pol!N52 exhibited a 

lower plating efficiency (73%) and a small plaque phenotype compared to WT and 

pol!N43 (data not shown). This result suggested that pol!N52 could not replicate as well 

as WT in Vero cells. Analysis of single cycle replication kinetics validated these initial 

observations: pol!N141 failed to replicate; pol!N52 exhibited a 5-fold and 7-fold 

decrease in viral yield at 12 and 16 hours post infection (hpi), respectively; while 

pol!N43 replication kinetics were indistinguishable from those of WT (Figure 2.5). Thus, 

the extreme N-terminal 42 residues of HSV-1 Pol were dispensable for viral replication 

in cell culture, while a mutant in which the extreme N-terminal 51 residues were removed 

exhibited notably decreased viral replication. 

Conserved motif FYNPYL is important for efficient viral DNA synthesis and 

production of infectious virus. We hypothesized that the absence of the conserved motif 

accounted for the pol!N52 replication defect. To test this possibility, we constructed 

mutant virus polA6 in which the six residue motif was substituted with six alanines. 

Additionally, we wanted to test whether the observed replication defects were due to the 

engineered mutations. Accordingly, the pol!N52 and polA6 BACs were used as 

templates to restore the WT pol sequence and generate rescued derivative viruses 
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Table 2.2. Plating efficiencies of BAC-derived viruses 
 

 Titer (PFU/mL) on: Plating 
Virusa Vero polB3 Efficiency (%)b 
WT 2.7!107 2.7!107 100 

pol"N43 4.2!107 4.5!107 93 
pol"N52 4.9!106 6.7!106 73 
pol"N52R 3.4!107 3.3!107 100 
polA6 5.2!106 6.5!106 80 
polA6R 1.6!107 1.6!107 100 

pol"N141 0 7.5!106 0 
  a The resulting viral supernatant that was generated from transfection of polB3           
   cells with BAC DNA was harvested and subsequently titrated on the indicated      
   cell line 
 b Calculated as the ratio of viral titers on Vero cells and polB3 cells 
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Figure 2.5. Single cycle replication kinetics of pol mutant viruses. Vero cells were 
infected with the indicated BAC-derived viruses at MOI=10 and whole cell lysate was 
harvested at the indicated time points. Lysates were freeze-thawed and sonicated prior to 
titration on polB3 cells. Viral yield is reported as PFU/mL with each data point 
respresenting the mean ± SD of triplicate samples.  
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pol!N52R and polA6R. WT, mutant, and rescued derivative viruses were tested for their 

ability to replicate in Vero cells. Interestingly, polA6 mimicked pol!N52 in forming small 

plaques (data not shown), and exhibiting a diminished plating efficiency (Table 2.2) and 

production of infectious virus (Figure 2.6). We also found that WT-like plating 

efficiencies (Table 2.2) and replication kinetics in Vero cells (Figure 2.6) were restored in 

both rescued derivatives pol!N52R and polA6R. Each mutant virus exhibited a 6-fold 

and 8-fold defect at 12 and 16 hpi, respectively, when compared to their respective 

rescued derivative virus (Figure 2.6). WT and rescued derivative viruses reached peak 

viral production at 24 hpi and remained up to 6-fold higher than that of the mutant 

viruses. 

We sought to determine whether there were any affects of the engineered 

mutations on HSV-1 Pol localization during infection. During viral DNA synthesis in 

WT virus-infected cells, HSV-1 Pol localizes to replication compartments – large 

globular structures within the nucleus, which can be seen as early as 5.5 hpi (Bush et al., 

1991; Liptak et al., 1996). Using indirect immunofluorescence, we observed that HSV-1 

Pol staining was, as expected, predominantly found in large replication compartments 

that encompassed most of the nucleus in cells infected with WT, pol!N52R, and polA6R 

viruses (Figure 2.7A to C). Pol staining was also mainly found in the nuclei of cells 

infected with the pol!N52 and polA6 mutants but was concentrated in smaller structures 

than in cells infected with the other viruses (Figure 2.7E and F). No staining was 

observed in mock-infected cells (Figure 2.7D). Localization of Pol!N52 and PolA6 to 

replication compartments rather than punctate prereplicative sites indicated that viral  
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Figure 2.6. Replication kinetics of defective pre-NH2-terminal pol mutant viruses. Vero 
cells were infected with BAC-derived virus at an MOI of 20. Whole cell lysate was 
harvested at the indicated time points and titrated on polB3 cells. Viral yield is reported 
as PFU/mL with each data point representing the mean ± SD of triplicate samples. 
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Figure 2.7. Localization of HSV-1 Pol in infected cells. Vero cells were either mock 
infected (D) or infected with BAC-derived virus at an MOI of 20 (A to C, E, F). Samples 
were fixed at 6 hpi and processed for indirect immunofluorescence with anti-Pol 
antibody. (A) WT virus; (B) pol!N52R virus; (C) polA6R virus; (D) mock; (E) pol!N52 
mutant; (F) polA6 mutant.  
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DNA synthesis had not been drastically inhibited (Liptak et al., 1996). Thus, the 

conserved motif is not required for nuclear localization of HSV-1 Pol. The presence of 

smaller replication compartments during pol!N52 and polA6 mutant infection suggested 

that the motif is required for WT-like levels of DNA synthesis. 

We then analyzed levels of viral DNA synthesis during the course of infection for 

each virus. DNA was isolated from mock- and HSV- infected cell lysates at 12 and 16 

hpi.  Viral and cellular DNA standards as well as experimental samples were subjected to 

real time PCR with primers that targeted viral and cellular genes thymidine kinase (tk) 

and 1,3-alpha-galactosyltransferase, respectively. Standard curves were generated in 

order to quantify the number of viral DNA copies per reaction, which was normalized to 

cellular DNA content. Both pol!N52 and polA6 exhibited a decrease in viral DNA 

production that corresponded to the observed defects in viral yield with a 6-fold and ~10-

fold defect at 12 and 16 hpi, respectively, when compared to the appropriate rescued 

derivative (Figure 2.8). These differences were statistically significant, while the 

differences in viral DNA content between pol!N52 and polA6 were not, indicating that 

substitution of the conserved motif recapitulated the deletion mutant phenotype. There 

was no apparent instability of HSV-1 Pol mutant polypeptides Pol!N52 and PolA6 as 

indicated by Western blot analysis of infected cell lysate (S.L. Terrell and D.M. Coen, 

unpublished results). These data indicate that the loss of conserved motif FYNPYL is 

responsible for the observed defects in viral yield that correlate with decreased viral DNA 

production.  
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Figure 2.8. Viral DNA synthesis during pol mutant virus infection. Vero cells (2.5!105) 
were infected at an MOI of 20 and DNA was harvested from infected cell lysates at 12 
(A) and 16 (B) hpi. The viral thymidine kinase was quantified via real-time PCR and 
normalized to cellular 1,3-alpha-galactosyltransferase as described in the Materials and 
Methods and values are reported as log viral DNA copy number. Means ± SD of 
triplicate samples are plotted. ***, p<0.0001 (by one way ANOVA analysis with 
Bonferroni’s multiple comparison post tests).  
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Discussion 

We have shown in this report that three pre-NH2-terminal HSV-1 Pol mutants 

retained polymerase activity similar to that of WT Pol in vitro, while two of the 

corresponding mutant viruses exhibited decreased virus production. Our efforts identified 

a conserved motif at HSV-1 Pol residues 44-49 as necessary for the efficient production 

of viral DNA during infection. This decrease in viral DNA synthesis correlated with the 

reduced production of infectious viral progeny. Taken together, our data strongly suggest 

that the pre-NH2-terminal domain includes a function that is not important for 5’-3’ 

polymerase activity, yet is crucial for efficient viral DNA synthesis during infection. 

Enzymatic activity of pre-NH2-terminal Pol mutants in vitro. Analysis of 5’-

3’ polymerase activity in RRL, as pioneered by Dorsky and Crumpacker (Dorsky and 

Crumpacker, 1988), provided a rapid method for identification of catalytically active Pol 

mutants that warranted further analysis. The dynamic nature of the HSV-1 Pol protein 

made it difficult to predict how each mutation would affect protein function. In our 

studies, only mutants that contained deletions or substitutions within the extreme N-

terminal 51 residues retained 5’-3’ polymerase activity similar to WT. Truncation mutant 

Pol!N67, in which the extreme N-terminal 66 residues were removed, was found to be 

catalytically inactive in our assays, which is in contrast with a previous report (Dorsky 

and Crumpacker, 1988). This discrepancy may be due to the previously reported 

construct containing eight codons of non-native sequence upstream of residue 67 (Dorsky 

and Crumpacker, 1988). The pre-NH2-terminal domain engages in an extensive 

hydrophobic network with the adjacent 3’-5’ exonuclease domain (Liu et al., 2006), 

disruption of which may indirectly lead to a catalytically inactive protein. However, we 
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cannot conclusively determine whether each inactive Pol mutant was misfolded or 

destabilized as a result of the mutation. Although our in vitro studies cannot exclude the 

possibility that any of the engineered mutations affected HSV-1 Pol activities such as 3’-

5’ exonuclease or lyase activity, we suggest that these possibilities are unlikely. The 3’-5’ 

exonuclease and lyase active sites have been mapped within the interior of the 3’-5’ 

exonuclease domain (Hwang et al., 1997; Kuhn and Knopf, 1996) and a 63-kDa C-

terminal fragment (Bogani and Boehmer, 2008), respectively, and are separate from our 

engineered mutations within the extreme N-terminal 51 residues at the surface of the 

enzyme. Additionally, a previous study had reported that a mutant lacking detectable 3’-

5’ exonuclease activity exhibited a 50-fold decrease in viral yield with only a 3-fold 

decrease in viral DNA production (Tian et al., 2009). The defect in viral yield observed in 

the previous study largely reflected an alteration in replication fidelity rather than a defect 

in viral DNA synthesis as seen with our Pol mutants (Tian et al., 2009). Regardless, 

purification and assay of Pol!N52 and PolA6 protein relative to WT Pol confirmed that 

the mutations did not induce any global effects on protein folding as the mutant proteins 

exhibited robust 5’-3’ polymerase activity.  

Importance of the pre-NH2-terminal domain during viral DNA synthesis. 

Viral genetic analyses allowed us to evaluate the effect of each mutation within the 

context of infection. Despite 76% protein sequence identity in the extreme N-terminal 42 

residues of Pol in HSV-1 and -2, our studies have shown that these were dispensable for 

viral replication in cell culture. There is a possibility that the extreme N-terminal 42 

residues may be necessary for replication or pathogenesis in animal models of viral 

infection. We have demonstrated that the conserved motif FYNPYL contributes to the 
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efficient synthesis of viral DNA and production of progeny virus. It seems reasonable 

based on our results that the defect in production of infectious virus is due to a defect in 

viral DNA synthesis.  

Although the pre-NH2-terminal domain is conserved in the herpesvirus Pol 

family, a homologous domain is absent from the related bacteriophage RB69 Pol and 

other published Family B polymerase structures (Liu et al., 2006; Rodriguez et al., 2000; 

Swan et al., 2009; Wang et al., 1997; Wang et al., 1996). The conserved motif that we 

have identified as being important for viral DNA is a cluster of mostly aromatic and 

hydrophobic residues that are absent from the HSV-1 Pol crystal structure (Liu et al., 

2006), suggesting that this motif is located within a disordered region of the protein. One 

could envision a scenario where this flexible segment near the extreme N-terminus of 

HSV-1 Pol interacts with a factor that actively recruits the polymerase to the replication 

fork or otherwise positively impacts viral DNA production. UL8, a component of the 

viral helicase-primase complex, has been shown to interact with HSV-1 Pol in vitro 

(Marsden et al., 1997). This interaction has been proposed to serve as a molecular tether 

for HSV-1 Pol at the leading strand of the replication fork (Liu et al., 2006). Another 

potential candidate is the viral SSB protein ICP8, which has been reported to stimulate 

HSV-1 Pol 5’-3’ polymerase activity (Ruyechan and Weir, 1984). Protein complexes 

containing the HSV DNA polymerase holoenzyme, ICP8, and viral alkaline nuclease 

UL12 have been captured from infected cell lysate via immunoaffinity chromatography 

(Vaughan et al., 1984). Although a direct interaction has yet to be demonstrated, evidence 

supporting such an interaction includes a study that found specific ICP8 mutants 

conferred altered sensitivity to viral DNA synthesis inhibitors (Chiou et al., 1985). 
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Additionally, HSV-1 Pol was unable to localize to prereplicative sites within the nucleus 

in the absence of a functional ICP8 protein (Bush et al., 1991). As yet, binding sites for 

ICP8 and UL8 have not been mapped on HSV-1 Pol, so the implications of disrupting 

such interactions during viral infection are unknown.  Presumably, any other viral or 

cellular protein that participates in viral genome synthesis and maintenance is a potential 

candidate. For example, a recent study reported that cellular transcriptional regulator 

HCF-1 can interact simultaneously with HSV-1 Pol and histone chaperone Asf1b (Peng 

et al., 2010). Depletion of Asf1b prior to infection with HSV-1 resulted in a 5- and 10-

fold decrease in viral DNA and virus production, respectively, at 18 hpi, which suggested 

that HCF-1 and Asf1b are necessary for efficient viral DNA synthesis (Peng et al., 2010). 

These possibilities are currently under investigation. As of yet, we have been unable to 

identify a binding partner whose association with Pol is disrupted as a result of the 

deletion or substitution mutation (unpublished results). More than likely, the presumed 

protein-protein interaction would represent a conserved replication mechanism exhibited 

by human herpesviruses.  

The exact mechanism in which HSV-1 DNA replication is carried out within the 

infected cell has yet to be fully elucidated. Following DNA melting at the origin of 

replication, HSV-1 DNA synthesis is hypothesized to begin on a circular template via 

theta replication and is converted by an unknown mechanism to an exponential rolling 

circle replication mechanism, which is responsible for the bulk of viral DNA synthesis 

(Boehmer and Lehman, 1997; Roizman and Knipe, 2001; Strang and Stow, 2005). 

Interestingly, we observed that WT virus exhibited exponential viral growth between 6 

and 12 hpi while mutant viruses pol!N52 and polA6 lacked this burst and maintained a 
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diminished level of virus production throughout the course of infection.  If viral yield 

were a direct function of viral DNA synthesis in this case, it could potentially represent a 

compromise in late phase DNA replication. However, our studies do not clearly indicate 

whether the defect in viral DNA synthesis is due to a decrease in the rate of DNA 

production or a perturbation in the recruitment and retention of HSV-1 Pol to active 

replication forks. Identification of the mechanism responsible for the observed defect 

would lead to enhanced characterization of the functional HSV-1 replisome and provide 

valuable insight into processes that are essential for efficient HSV-1 replication in cell 

culture. 
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Abstract 

The catalytic subunit of the herpes simplex virus 1 (HSV-1) DNA polymerase 

(HSV-1 Pol) is essential for viral DNA synthesis and production of infectious virus in 

cell culture. While it has been established that 5’-3’ polymerase activity is absolutely 

essential for viral replication in all contexts, non-lethal mutations that abrogate other 

functions of HSV-1 Pol have yet to be evaluated in animal models of infection. In a 

previous report, we utilized bacterial artificial chromosome technology to generate 

defined pol mutations and investigate the role of the previously uncharacterized pre-NH2-

terminal domain of HSV-1 Pol. We found that the extreme N-terminal 42 residues 

(deletion mutant pol!N43) were dispensable for replication in cell culture, while residues 

44-49 (alanine-substitution mutant polA6) were required for efficient viral DNA synthesis 

and production of infectious virus. In this study, we sought to address the importance of 

these conserved elements in viral replication in a mouse ocular infection model. Mutant 

virus pol!N43 exhibited a wild type-like phenotype with no significant impact in acute or 

latent infection. While mutant polA6 exhibited a modest defect at the peripheral site of 

infection, we found that ganglionic replication was severely impaired during acute 

infection as compared to wild type and its rescued derivative virus polA6R. Additionally, 

both viral DNA copy number in latently infected ganglia and reactivation rates were 

diminished during polA6 infection. These results implicate a role for the conserved motif 

at residues 44-49 in acute ganglionic infection and latency establishment in mice. 
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Introduction 

Herpes simplex virus 1 (HSV-1) replication in the mouse eye model of infection 

mirrors the pattern of disease progression observed in humans (reviewed in Efstathiou 

and Preston, 2005; Wagner and Bloom, 1997). Following HSV-1 replication on the 

cornea, viral particles enter nerve axon terminals and travel to neuronal cell bodies within 

the trigeminal ganglia (TG) via retrograde transport, wherein a second round of 

productive infection is initiated. Latent infections are characterized by restricted lytic 

gene expression and maintenance of episomal viral DNA molecules within the 

innervating sensory neurons. Infectious virus can be reactivated from this latent state and 

spur recurrent acute infections at the original site of infection.  

Previous studies have established that specific viral DNA synthesis proteins that 

are not required for viral replication in cell culture are in fact necessary for acute 

infection and reactivation in an animal host. Thymidine kinase negative (TK!) mutants 

replicate like wild type (WT) virus in dividing cells although they exhibit growth defects 

in resting cell cultures due to repression of cellular TK expression (Field and Wildy, 

1978; Jamieson et al., 1974). However, viral TK activity is absolutely essential for acute 

ganglionic replication and reactivation from latency of well-studied HSV-1 strains (Chen 

et al., 2004; Coen et al., 1989; Tenser et al., 1989; Thompson and Sawtell, 2000). Viral 

ribonucleotide reductase negative (RR!) mutants exhibit a modest defect in viral DNA 

synthesis in actively dividing cells, which is further enhanced during infection of resting 

cells (Goldstein and Weller 1988a, b; Jacobson et al., 1989; Preston et al., 1988). Unlike 

the TK enzyme, RR is required for viral replication in mouse eyes during acute infection 

and cultured mouse cells at 38°C (Jacobson et al., 1989). Utilization of alternative 
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nucleotide metabolism pathways can compensate for the loss of either viral or cellular 

RR activity during infection of actively dividing cells (Goldstein and Weller 1988a; 

Nutter et al., 1985). In contrast, the catalytic subunit of the viral DNA polymerase (HSV-

1 Pol) is absolutely essential for viral DNA synthesis and production of infectious virus 

(Aron et al., 1975; Dorsky and Crumpacker, 1988). Mutations that knock out HSV-1 Pol 

activity are replication incompetent in both cell culture and in mice, which is presumably 

due to the lack of 5’-3’ polymerase activity that is responsible for production of progeny 

viral DNA molecules (Aron et al., 1975; Dorsky and Crumpacker, 1988; Katz et al., 

1990). Drug resistant viruses containing point mutations at the pol locus that alter 5’-3’ 

polymerase activity exhibit varying degrees of attenuation during acute and latent 

infections in mice (Darby et al., 1984; Field and Coen,1986; Larder and Darby, 1984; 

Pelosi et al., 1998). Outside of 5’-3’ polymerase activity, the importance of other specific 

HSV-1 Pol functions has yet to be evaluated in an animal model of infection. 

Using bacterial artificial chromosome (BAC) technology, we generated 

recombinant viruses with specific alterations at the 5’ end of the pol gene in order to 

assess the role of the previously uncharacterized pre-NH2-terminal domain of HSV-1 Pol 

(Chapter 2 ! Terrell and Coen, 2012). The extreme N-terminal 42 residues, which exhibit 

76% protein sequence identity between HSV -1 and -2, were deleted to generate mutant 

virus pol"N43 (DiTommaso et al., 2011; Notredame et al., 2000; Chapter 2 ! Terrell and 

Coen, 2012). HSV-1 Pol residues 44-49 (FYNPYL), which are strongly conserved within 

the human herpesvirus pol family, were substituted with six alanines in mutant virus 

polA6 (Chapter 2 ! Terrell and Coen, 2012). Characterization of pol mutant virus 

phenotypes in cell culture revealed that polA6 infection resulted in an 8-fold defect in 
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viral yield with a concurrent 10-fold decrease in viral DNA copies while pol!N43 

exhibited WT-like growth kinetics. Additionally, we demonstrated that the deletion and 

substitution mutations did not impact 5’-3’ polymerase activity of the corresponding pre-

NH2-terminal HSV-1 Pol mutant enzymes in vitro. Thus, our previous work established a 

role for the conserved motif FYNPYL in viral DNA synthesis processes during cellular 

infection that was distinct from 5’-3’ polymerase activity. In this present study, we 

sought to investigate the biological significance of these conserved HSV-1 Pol residues in 

acute viral replication, latency establishment and reactivation in a mouse model of 

infection. 
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Materials and Methods 

Cells and viruses. Vero cells (American Catalog of Cell Culture) and polB3 cells 

(Hwang et al., 1997; kindly provided by Charles Hwang) were maintained as previously 

described (Chapter 2 ! Terrell and Coen, 2012). Human foreskin fibroblasts (American 

Catalog of Cell Culture) were maintained in Dubelcco’s modified Eagle’s media 

(DMEM) supplemented with 10% fetal bovine serum (FBS), 1% penicillin/streptomycin, 

and 1% amphotericin B. Viruses that were generated from an infectious bacterial 

artificial chromosome (BAC) clone of KOS (Jurak et al., unpublished) included the virus 

derived from the wild type BAC (WT), pol"N43, polA6, and polA6R (Chapter 2 ! Terrell 

and Coen, 2012). All BAC-derived viruses were propagated in and titrated on polB3 

cells, which inducibly express WT HSV-1 Pol. Virus dlsptk, which contains a 360-base 

pair deletion in the HSV-1 thymidine kinase locus (outside of the UL24 coding sequence) 

that abolishes enzymatic activity (Coen et al., 1989), was amplified in Vero cells. 

Assays of acute and latent infections in mice. Seven-week old CD-1 mice were 

anesthetized with ketamine-xylazine and 2#106 plaque forming units (PFU) were 

administered to each eye following corneal scarification as previously described (Pesola 

et al., 2005). Infectious virus was harvested from each mouse eye with pre-moistened 

cotton swabs that were resuspended in 1mL of culture media (DMEM supplemented with 

5% newborn calf serum, 1% penicillin/streptomycin, and 1% amphotericin B) and stored 

at -80°C until titration. Acutely infected ganglia were harvested and stored at -80°C in 

1mL of culture media. TG were thawed, dounce-homogenized, frozen, thawed, and 

sonicated prior to titration. For any samples that were suspected to contain very low 

amounts of infectious virus, the entire lysate was plated onto confluent polB3 cells in 6-



 69 

well plates. Reactivation assays were performed by dissociating latently infected TG as 

previously described (Leib et al., 1991) and the single cell suspension was added into 

individual wells on a 6-well plate containing polB3 cell monolayers. Analysis of 

reactivation kinetics was performed similarly to that previously described (Balliet et al., 

2007). Aliquots (150µl) of the viral supernatant were harvested from each well and stored 

at -80°C before plating on confluent 24-well plates containing polB3 cells for detection 

of infectious virus. For samples in which virus had not reactivated by ten days post-

dissociation, whole cell lysates were harvested, frozen, thawed and, plated onto confluent 

polB3 wells (6-well plate), and monitored for an additional four days prior to fixing and 

staining. 

Latent viral DNA detection via quantitative real-time PCR. Latently infected 

TG were harvested from mock and HSV-1 infected mice at 30 days post infection (dpi) 

and processed for DNA isolation as previously described (Pesola et al., 2005). Real time 

PCR assays were performed as previously described (Chapter 2 ! Terrell and Coen, 

2012) with primers that targeted the viral thymidine kinase gene (Chapter 2 ! Terrell and 

Coen, 2012) or the murine adipsin gene (Kramer et al., 2011) and resulted in "92% mean 

PCR amplification efficiency in each assay. Viral and mouse DNA standards used for 

quantitation of recovered DNA in latently infected TG were prepared as previously 

described (Pesola et al., 2005). R2 values for both viral and mouse DNA standard curves 

were "0.99. Statistical analyses were performed using GraphPad Prism (GraphPad 

Software, San Diego, California) with one-way ANOVA analysis and Bonferroni’s 

multiple comparison post tests unless otherwise indicated.  
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Replication kinetics in resting cells. Analysis of viral replication in actively 

dividing and resting cell cultures was performed as previously described with 

modifications (Field and Wildy, 1978; Jamieson et al., 1974). HFFs (1!106) were seeded 

into 6-well plates and maintained in DMEM/10% FBS for 24 hr or less prior to infection. 

Resting cells were produced by maintaining cell cultures in DMEM/0.5% FBS for four 

days prior to infection. Resting and dividing HFFs were infected at an MOI of 0.01 and 

whole cell lysates were harvested at 48 hpi and titrated on polB3 cells.  
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Results 

Acute replication of pol mutant viruses on the eye. We sought to evaluate the 

role of conserved residues within the pre-NH2-terminal domain of HSV-1 Pol in a mouse 

ocular model of infection and latency. The generation and characterization of pre-NH2-

terminal domain pol mutant viruses has been described previously (Chapter 2 ! Terrell 

and Coen, 2012). Deletion mutant pol"N43, which lacks the extreme N-terminal 42 

residues that are conserved in HSV-1 and -2, exhibited WT replication kinetics in cell 

culture. The conserved motif at HSV-1 Pol residues 44-49 was substituted with six 

alanines in mutant polA6, which resulted in decreased viral DNA production during 

infection. Rescued derivative virus polA6R, in which the WT pol ORF was restored in the 

background of the mutant, recapitulated the WT phenotype and demonstrated that the 

replication defect was specifically attributable to the engineered mutation.  

Mutations that abolish either viral thymidine kinase (TK) or ribonucleotide 

reductase (RR) activity and resulted in only modest defects in cell culture have 

deleterious effects on acute phase viral replication in mice (Chen et al., 2004; Coen et al., 

1989; Jacobson et al., 1989; Thompson and Sawtell, 2009). Therefore, we wished to 

determine whether conserved elements within the pre-NH2-terminal domain of HSV-1 

Pol were important for viral replication in vivo. Our analyses included the virus derived 

from the parental WT BAC (WT), pol"N43, polA6, and its rescued derivative polA6R. 

Using the mouse ocular infection model, CD-1 mice were infected with 2#106 PFU of 

virus via corneal scarification. Virus was swabbed from the mouse eye and titrated on the 

complementing cell line polB3, which inducibly expresses WT Pol (Hwang et al., 1997). 

At the peak of acute replication in the eye at 1 dpi, the rescued derivative polA6R as well 
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Figure 3.1. Acute viral replication in mouse eye. Mice were infected with 2!106 PFU per 
eye via corneal scarification. Infectious virus was swabbed from the eyes of infected mice 
at 1, 3, 5, and 7 dpi. The log PFU detected from each mouse (both eyes) and error bars 
representing the mean ± SEM for each data set are plotted. All viruses were analyzed by 
one-way ANOVA, followed by Bonferonni post-tests comparing WT, polA6 and polA6R 
to one another, accounting for multiple comparisons. ****, p<0.0001  
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as mutant pol!N43 generated infectious virus roughly as efficiently as WT (Figure 3.1). 

However, mutant virus polA6 reproducibly exhibited a 5-fold defect in viral replication at 

1 dpi, which was statistically significant (p<0.0001; Figure 3.1). The magnitude of this 

defect was similar to that observed in cell culture (Chapter 2 " Terrell and Coen, 2012). 

At 3 dpi, polA6 viral yield was comparable to those of WT and polA6R despite the 

decreased level of replication at 1 dpi. Ganglionic replication of polA6 virus at 5 dpi was 

significantly attenuated while the other viruses continued to exhibit robust replication 

(p<0.0001; Figure 3.1). Although the initial replication defect exhibited by polA6 was 

restored to WT levels by 3 dpi, this mutant was unable to replicate as efficiently as WT 

and polA6R on the mouse eye through 5 dpi.  

Replication of pol mutant viruses in TG during acute infection. We wished to 

evaluate pol mutant virus replication during acute infection of the TG. At 3 dpi, polA6 

replication was significantly reduced with a ~3-log defect in infectious virus production 

as compared to its rescued derivative virus polA6R (Figure 3.2A). Although entire 

homogenates of ganglia from mice infected with polA6 were plated onto polB3 cells, a 

number of samples failed to yield detectable virus. This result was in stark contrast to 

pol!N43 infection that produced viral titers comparable to WT virus (Figure 3.2A). 

Interestingly, mutant polA6 also did not display robust levels of replication at 5 dpi with 

titers remaining three orders of magnitude below polA6R (Figure 3.2B). Mutant pol!N43 

exhibited a 20-fold decrease in viral yield at 5 dpi, but this difference was not found to be 

statistically significant (Figure 3.2B). Infectious virus became nearly undetectable in the 

TG by 7 dpi for all viruses, including WT (Figure 3.2C). Therefore, polA6 exhibited  

  



 74 

                                    
Figure 3.2. Replication kinetics of pol mutant viruses in acutely infected TG. Following 
virus inoculation, mouse TG was harvested at 3 (A), 5 (B), and 7 (C) dpi. TG were 
processed and assayed for detection of infectious virus as described in Materials and 
Methods. One PFU was added to each value and log PFU per TG ± the SD of mean 
values are plotted. All viruses were analyzed by one-way ANOVA, followed by 
Bonferonni post-tests comparing WT, polA6 and polA6R to one another, accounting for 
multiple comparisons. ****, p<0.0001  
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severely impaired ganglionic replication throughout the acute phase of infection, while 

pol!N43 and polA6R displayed WT-like replication levels in TG.  

Latency establishment and reactivation. We hypothesized that the acute 

replication defect exhibited by polA6 would compromise the efficiency of latency 

establishment. To investigate this possibility, we quantified the number of viral DNA 

copies in latently infected TG via real-time PCR. Mutant virus polA6 reproducibly 

exhibited a 6-fold decrease in latent viral DNA as compared to its rescued derivative 

polA6R (p<0.0001; Figure 3.3). As expected, latency establishment during pol!N43 

infection was indistinguishable from that of WT and no significant differences were 

found between WT and polA6R viral DNA copy number (Figure 3.3). 

Previous reports have demonstrated that specific viral DNA synthesis proteins 

that are dispensable for replication in cell culture are absolutely essential for reactivation 

(Chen et al., 2004; Coen et al., 1989; Jacobson et al, 1989; Thompson and Sawtell, 2000). 

Therefore, we sought to determine whether the conserved HSV-1 Pol residues absent in 

mutants pol!N43 and polA6 were required for reactivation from latent infection. 

Reactivation assays were performed using the dissociation method in which latently 

infected TG are digested into single cell suspensions and plated individually onto polB3 

cells in a 6-well plate. Wells that did not yield infectious virus by ten days post explant 

were harvested, frozen, thawed and plated onto a fresh polB3 monolayer as a final test of 

reactivation. As expected, 100% of WT- and polA6R- latently infected TG had 

reactivated by three days post explant (Figure 3.4). Mutant virus pol!N43 displayed a 

comparable level of reactivation (96%), which demonstrated that the extreme N-terminal 

42 residues were not required for reactivation. The reactivation efficiency of polA6 was  
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Figure 3.3. Latency establishment of pol mutant viruses. Latently infected TG were 
harvested from mice at 30 dpi and processed for DNA isolation. Viral DNA (vDNA) was 
quantified via real-time PCR and was normalized to mouse DNA. Log vDNA copies ± 
SD of mean values are plotted. All viruses were analyzed by one-way ANOVA, followed 
by Bonferonni post-tests comparing WT, polA6 and polA6R to one another, accounting 
for multiple comparisons. ****, p<0.0001  
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Fig 3.4. Kinetics of pol mutant virus reactivation from explanted TG in vitro. Latently 
infected TG harvested at 30 dpi were enzymatically dissociated and plated onto polB3 
cells in a 6-well plate. Aliquots of viral supernatant from individual wells were analyzed 
directly for detection of infectious virus. 
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only 43% and this reduction was found to be statistically significant when compared to 

polA6R (p=0.0019, Fisher’s exact test). In addition to diminished reactivation 

efficiencies, polA6 displayed slower reactivation kinetics as compared to WT, pol!N43, 

and polA6R (Figure 3.4). These results suggest that the conserved motif FYNPYL is 

necessary for WT latency establishment and reactivation efficiencies. 

Replication kinetics of polA6 in resting cells. A number of mutant viruses that 

exhibit decreased viral replication during the acute phase of infection also display 

replication defects in resting cell cultures (Bolovan et al., 1994; Brown et al., 1994; Field 

and Wildy, 1978; Goldstein and Weller, 1988a; Jacobson et al., 1989; Jamieson et al., 

1974). In order to determine whether the metabolic state of the cell enhanced the in vitro 

growth defect observed with polA6, we analyzed multi-cycle replication kinetics in 

resting HFFs. We included tk null virus dlsptk as a positive control in this experiment, as 

it has been well established that such viruses specifically exhibit impaired replication in 

resting cells in which cellular TK expression is repressed (Field and Wildy, 1978; 

Jamieson et al., 1974). We found that dlsptk replication was similar to that of WT in 

actively dividing cells at 48 hpi and was reduced by threefold in resting cell cultures 

(Table 3.1). As expected, polA6 exhibited reduced viral yield in dividing cells with a 7-

fold drop in infectious virus as compared to polA6R (Table 3.1). Interestingly, the polA6 

replication defect was enhanced in stationary cell cultures to a 57-fold defect in viral 

yield at 48 hpi when compared to polA6R (Table 3.1). These results suggest that polA6 

replication is further restricted in resting cells and this effect may contribute to the 

severity of the acute ganglionic replication defect observed in mice. 
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Table 3.1. Replication of polA6 in resting cell cultures 
 

 Titer (PFU/mL) 

Virus Dividing cells Resting cells 

WT 2.1!108 9.1!107 

dlsptk 2.5!108 3.1!107 

polA6 6.4!107 2.0!106 

polA6R 4.3!108 1.1!108 
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Discussion 

In this study, we sought to specifically address the biological significance of 

conserved residues within the pre-NH2-terminal domain of HSV-1 Pol in a mouse model 

of infection. In accordance with the previously reported in vitro phenotypes (Chapter 2 ! 

Terrell and Coen, 2012), we found that pol"N43 exhibited an in vivo replication profile 

similar to WT. Despite 76% protein sequence identity between HSV -1 and -2 

(DiTommaso et al., 2011; Notredame et al., 2000), the extreme N-terminal 42 residues 

appeared to be dispensable for replication and reactivation from latent infection in mice. 

Only viruses within simplexvirus genera of the alphaherpesvirus family retain these 

extreme N-terminal 42 residues, yet their conservation among these related viruses is low 

with just 14% protein sequence identity (DiTommaso et al., 2011; Notredame et al., 

2000). However, we cannot rule out the possibility that these conserved residues confer 

an advantage that is specific for simplexvirus replication. In contrast, mutant polA6 

displayed significant defects in both acute and latent infections that were restored to WT-

like levels with rescued derivative polA6R, with a particularly severe defect in acute 

ganglionic replication. These studies have demonstrated an especially important role for 

the conserved motif FYNPYL in viral replication in mice. The implications of these 

observations are discussed below. 

Mutant polA6 exhibits acute replication defects in the mouse eye and TG. 

Previous characterization of the polA6 growth phenotype in cell culture revealed a defect 

in viral yield that corresponded with a comparable decrease in viral DNA synthesis 

(Chapter 2 ! Terrell and Coen, 2012).  We have demonstrated that mutant polA6 also 

exhibited a similar defect in viral replication in the mouse eye while replication at the 
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secondary site of infection was notably attenuated. Overall, polA6 infection failed to 

produce a robust level of viral replication in the TG during the acute phase with the 

highest yield in any ganglia being only 400 PFU versus ~1!105 PFU from WT and 

polA6R infections at 5 dpi. While we cannot completely rule out the possibility that the 

ganglionic replication defect is an amplification of the 5-fold defect observed at 1 dpi, 

there does not appear to be a direct correlation between acute replication defects in the 

eye and TG in the literature. For example, virus in1814 that encodes a mutant VP16 

exhibits defects of up to 30-fold in the eye at 2 dpi with only a 17-fold decrease in the 

ganglia at 4 dpi (Thompson and Sawtell, 2009). Additionally, drug resistant mutant 

PFAr5 exhibits a 13-fold decrease in the mouse eye at 1 dpi that remains a 13-fold 

decrease in the TG at 3 dpi as compared to its WT (Pelosi et al., 1998). Our data would 

suggest that the observed ganglionic replication defect reflects a specific block during 

polA6 infection, which is supported by the observation of restricted polA6 replication in 

resting cell cultures. Therefore, the function mediated by the conserved motif FYNPYL is 

of greater importance in non-dividing cells and especially in neurons. Further 

investigation is needed in order to elucidate the exact mechanism by which polA6 exhibits 

this replication defective phenotype. 

Reduced latency establishment and reactivation efficiencies during polA6 

infection. Replication incompetent pol null viruses have been previously shown to 

establish latency in animal models of infection as measured by the amount of viral DNA, 

albeit at a much reduced level compared to WT virus (Katz et al., 1990). Thus, we 

anticipated that the reduced level of ganglionic replication during polA6 infection would 

negatively impact latent viral load. Despite the severity of the phenotype, the number of 
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viral DNA copies in latently infected TG was only decreased by 6-fold as compared to 

polA6R, which was a reproducible and statistically significant difference. The decrease in 

latent viral DNA did not equal the magnitude of the replication defect observed in acutely 

infected ganglia; rather, it was more consistent with the 5-fold corneal replication defect 

at 1 dpi. These observations are similar to those of a previous report that demonstrated 

that amplification of virus at the original site of inoculation was important for efficient 

latency establishment (Thompson and Sawtell, 2000). Decreased latency establishment in 

addition to the previously described viral DNA synthesis defect during polA6 infection 

(Chapter 2 ! Terrell and Coen, 2012) contributed to diminished reactivation efficiency 

and kinetics. It is possible that, in addition to these two deficiencies, reactivation is 

further restricted in this mutant by a specific defect in neuronal replication. 

Given the severity of the acute ganglionic replication defect for polA6, we were 

surprised that its reactivation efficiency was only twofold lower than that of polA6R. 

Interestingly, a VP16 mutant that displayed WT reactivation efficiencies from in vitro 

explant reactivation assays was unable to produce detectable infectious virus and lytic 

viral proteins in TG following hyperthermic stress in vivo (Thompson and Sawtell, 2009). 

Thus, recovery of infectious polA6 virus from latently infected TG reactivated in vivo 

could potentially be even less efficient than what was observed with the in vitro explant 

model. While the conserved motif is not necessary for reactivation from explanted TG, it 

appears to play a role in the efficient establishment of latency.  

The polA6 phentoype is very similar to that of TK! virus replication in a mouse 

ocular model of infection (Chen et al., 2004; Thompson and Sawtell, 2000). A previous 

study reported that the tk null virus 17/tBTK! exhibited a 12-fold decrease in both corneal 
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replication and latent viral genome copy number (Thompson and Sawtell, 2000). Mutant 

17/tBTK! was unable to replicate in TG during acute phase infection, which suggested 

that viral DNA in latently infected TG originated from replication on the eye rather than 

ganglionic replication (Thompson and Sawtell, 2000). Some interesting points regarding 

this previous study include the fact that the 15-fold defect in infectious virus production 

was mirrored in viral DNA copy number in eye homogenates with 17/tBTK! infection as 

compared to its rescued variant 17/tBTK+. Additionally, the defects in viral DNA copies 

present in eye and TG homogenates when comparing 17/tBTK! and 17/tBTK+ infection 

at 4 dpi appear to be comparable (Thompson and Sawtell, 2000). This would suggest that 

viral replication at the periphery directly impacted the number of viral genomes that enter 

the ganglia during acute phase replication.  Both polA6 and tk null viruses specifically 

exhibit defects in viral DNA synthesis during cellular infection in addition to displaying 

similar defects during productive and latent infection in mice (Chen et al., 2004; Field 

and Wildy, 1978; Jamieson et al., 1974; Chapter 2 ! Terrell and Coen, 2012; Thompson 

and Sawtwell, 2000). Despite the differences with viral dosage and selected time points 

used in these studies, the outcome of reduced latency establishment following decreased 

corneal replication remains consistent. However, examples exist in which mutant viruses 

that are defective for corneal replication sustain WT-like reactivation efficiencies and 

latent viral DNA loads (Perng et al., 1996; Thompson et al., 2009). In combination, these 

data would support the possibility that the level of viral DNA synthesis rather than 

infectious virus production at the peripheral site of infection is important for latency 

establishment.  
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Identification of the mechanistic aspect that is responsible for the polA6 

replication defect remains elusive. Based on in vitro growth characteristics, we concluded 

that the polA6 enzyme is unable to produce WT-like levels of viral DNA that correlated 

with a defect in infectious virus production (Chapter 2 ! Terrell and Coen, 2012). 

Interestingly, this inability became more detrimental during infection of resting cells and 

especially in the ganglia. Due to the nature of the mutation, we hypothesize that the 

defect is due to a disrupted protein-protein interaction that is dispensable for viral 

replication in cell culture and is essential for robust ganglionic replication in mice. One 

possible explanation is that a protein encoding a redundant function, which can partially 

compensate for the loss of function during polA6 infection in actively dividing cells, is 

reduced or absent in resting cells and neurons. Alternatively, the mutation may have only 

diminished the binding affinity of HSV-1 Pol rather than completely abolishing the 

protein-protein interaction. In this scenario, the ability of the HSV-1 Pol enzyme to form 

a stable complex would be of greater importance in neurons due to limited expression of 

the protein binding partner. These possibilities are currently under investigation. The 

mechanism by which the conserved motif FYNPYL mediates efficient viral DNA 

synthesis and production of infectious virus may very well reflect a conserved replication 

mechanism in HSV-1 replication as well as for the family of human herpesviruses.  
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Abstract 

Successful viral replication is dependent upon the faithful execution of viral DNA 

synthesis processes. Herpes simplex virus 1 (HSV-1) encodes a DNA polymerase that 

directly mediates the production of progeny viral DNA molecules and is essential for 

production of infectious virus. In a previous study, we sought to engineer mutations 

within the pre-NH2-terminal domain of the catalytic subunit of the viral DNA polymerase 

(HSV-1 Pol) that did not disrupt 5’-3’ polymerase activity. We identified two HSV-1 Pol 

mutant enzymes that retained WT-like 5'-3' polymerase activity in vitro yet exhibited 

decreased levels of viral DNA synthesis during cellular infection: deletion mutant 

Pol!N52 in which the extreme N-terminal 51 residues were deleted, and substitution 

mutant PolA6 in which residues 44-49 were substituted with alanines. We hypothesized 

that these mutations disrupted a protein-protein interaction that was necessary for 

efficient viral DNA production in the infected cell and wished to identify the lost binding 

partner. Using a candidate-based approach, we examined the association of reported 

HSV-1 Pol binding partners with our mutants via coimmunoprecipitation studies with 

recombinant purified proteins in vitro. Alternatively, we took a global approach by 

incorporating a FLAG tag at the extreme N-terminus of the WT and mutant pol locus in 

order to identify interactions with potential viral or cellular binding partners from 

infected cell lysates. Thus far, we have yet to identify a protein interaction that was lost 

as a result of the mutation. 
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Introduction 

Herpesviruses exhibit similar mechanisms by which viral proteins direct the 

process of viral genome amplification and production of infectious virus. Herpes simplex 

virus 1 (HSV-1) encodes seven proteins that are absolutely essential for viral DNA 

synthesis: DNA polymerase holoenzyme (Pol (UL30)/UL42), helicase primase complex 

(UL8/UL5/UL52; H/P complex), single stranded DNA binding protein (SSB; ICP8), and 

origin binding protein (UL9) (Boehmer and Lehman, 1997). While the process of viral 

DNA synthesis has yet to be recapitulated in vitro, protein-protein interactions appear to 

lie at the heart of the process. UL9 binds DNA sequences within the origin of replication 

and subsequently recruits ICP8 via a direct protein-protein interaction (Elias and Lehman, 

1988; Koff and Tegtmeyer, 1988; Olivo et al., 1988). ICP8 binding enhances the inherent 

helicase and ATPase activity of UL9, which is responsible for unwinding double stranded 

DNA and further promotes the assembly of the viral replisome (Boehmer et al., 1993; 

Boehmer and Lehman, 1993). An interaction between UL9 and UL8 is thought to 

facilitate the recruitment of the H/P complex to the origin (McLean et al., 1994). H/P 

complex subunits UL5 and UL52 possess helicase and primase activity, which is 

enhanced upon association with the UL8 subunit (Calder and Stow 1990; Dodson and 

Lehman, 1991; Falkenberg et al., 1997; Tanguy Le Gac et al., 1996; Tenney et al., 1994; 

Tenney et al., 1995). Activity of the H/P complex can also be stimulated by ICP8, which 

was shown to be dependent upon the presence of the UL8 subunit (Crute and Lehman, 

1991; Tanguy Le Gac et al., 1996; Hamatake et al., 1997). UL42 enhances HSV-1 Pol 

activity by tethering the holoenzyme to DNA and thereby increasing the processivity of 

nucleotide incorporation during DNA synthesis (Gallo et al., 1989; Gottlieb et al., 1990). 
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While these activities have been demonstrated with purified proteins in vitro, the exact 

mechanism by which HSV-1 DNA is synthesized within the context of the infected cell 

has yet to be elucidated.  

HSV-1 Pol can associate with a multitude of viral proteins, but the significance of 

these reported interactions have yet to be demonstrated. The C-terminus of UL8 directly 

interacts with HSV-1 Pol and has been proposed to associate with the viral polymerase 

holoenzyme during leading strand synthesis (Liu et al., 2006; Mardsen et al., 1996). A 

previous report demonstrated an interaction between HSV-1 Pol and the viral DNA 

glycosylase UL2, which was suggested to serve as a mechanism by which DNA repair 

machinery is coordinated with the viral replisome (Bogani et al., 2009; Bogani et al., 

2011). Complexes containing the viral single stranded DNA binding protein ICP8 and 

HSV-1 Pol coprecipitate from infected cell lysate (Strick et al., 1997; Vaughan et al., 

1984), but this association may represent an interaction with DNA rather than a specific 

protein-protein interaction. Evidence supporting a functional interaction between ICP8 

and HSV-1 Pol includes a study that found specific ICP8 mutants conferred altered 

sensitivity to viral DNA synthesis inhibitors (Chiou et al., 1985).  Binding sites for the 

aforementioned proteins have yet to be mapped on HSV-1 Pol and the result of disrupting 

such an interaction is unknown. 

The viral processivity factor UL42 binds at the extreme C-terminus of HSV-1 Pol 

and the two polymerase subunits predominantly exist as a heterodimer in infected cell 

lysates (Digard et al., 1993; Gallo et al., 1988; Vaughan et al., 1984). Given the 

ubiquitous presence of UL42 at the extreme C-terminus of HSV-1 Pol, we anticipated 

that additional interactions could be mediated by the extreme N-terminus. Previously, we 
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incorporated two independent mutations within the HSV-1 pol locus that resulted in 

decreased viral DNA synthesis and production of infectious virus during cellular 

infection without negatively impacting 5’-3’ polymerase activity of the purified enzyme 

in vitro: deletion of the extreme N-terminal 51 residues and substitution of residues 44-49 

with alanines. We chose to directly investigate whether or not deletion mutant Pol!N52 

or substitution mutant PolA6 proteins could retain interactions with specific candidate 

proteins in vitro. To undertake an unbiased approach, we engineered FLAG-tagged pol 

viruses in order to identify any potential viral or cellular protein binding partner.  
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Materials and Methods  

Cells and viruses. Vero cells (American Type Culture Collection) and polB3 

cells, a kind gift from Charles Hwang (Hwang et al., 1997), were maintained as 

previously described (Chapter 2 ! Terrell and Coen, 2012).  HeLa (American Type 

Culture Collection) were grown and maintained in Dulbecco’s modified Eagle medium 

(DMEM) supplemented with 10% newborn calf serum, 1% penicillin/streptomycin, and 

1% amphotericin B. 

Protein expression and purification. Purified wild type (WT) Pol, Pol"N52 and 

PolA6 proteins were purified from baculovirus-infected insect cell lysates as previously 

described (Chapter 2 ! Terrell and Coen, 2012). 

Surface plasmon resonance analysis. SPR measurements were performed using 

a Biacore T100 (Biacore). Purified WT Pol, Pol"N52 and PolA6 proteins were 

immobilized on a CM5 sensor chip in separate channels as ligands. The amount of each 

ligand bound corresponded to approximately 2000 Resonance Units (RUs). Purified 

protein analytes (UL8, ICP8, UL12 and UL8/5/52 (H/P complex)) in HBS buffer (10mM 

HEPES [pH 7.4], 3mM EDTA, 0.15M NaCl, 0.05% Surfactant P20) were injected over 

the sensor surface at a flow rate of 30 #l/min for 180 sec. Post injection dissociation was 

monitored in HBS buffer without analyte for 180 sec at the same flow rate. The surface 

was regenerated between injections using 2.5M NaCl at a flow rate of 100#l/min for 20 

sec. For kinetics assays, sensorgrams were fitted to a 1:1 Langmuir binding model using 

Biacore T100 Evaluation software.        

 HSV-1 Pol and UL2 coimmunoprecipitation. Full length UL2 and truncation 

mutant UL2M91-V334 that were expressed as C-terminal V5-His6 fusion proteins were 
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kindly provided by Paul Boehmer (University of Arizona; Bogani et al., 2009). Each 

HSV-1 Pol protein (1.2 pmol) was incubated either alone or in combination with UL2 or 

UL2M91-V334 (19 pmol) in 300µl binding buffer (20mM HEPES [pH 7.5], 10% glycerol, 

175mM NaCl, 0.5% NP-40, 10mg/mL BSA, 1mM DTT, 10ul/mL HALT protease 

inhibitor cocktail (Sigma) for 1 hr at 4°C. Reactions were supplemented with 3µg of anti-

V5 antibody (Invitrogen) and incubated for an additional 2 hr prior to the addition of pre-

equilibrated EZView Red Protein A affinity resin (Sigma), followed by a 1 hr incubation 

at 4°C with rotation. The protein/antibody complexes were spun down at 8200!g and 

washed three times with wash buffer (50mM TrisCl [pH 8], 175mM NaCl, 0.5% NP-40, 

and HALT protease inhibitor cocktail). Proteins were eluted with 30µl of a 1:1 mix of 

wash buffer and 2x Laemmli buffer and boiled at 90°C. Ten microliters of the eluate 

were resolved using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE) and proteins were detected via Western blot analysis. Pol detection: polyclonal 

PP5 antibody (Yager et al., 1990; 1:2500), goat " rabbit (Southern Biotech; 1:2000). UL2 

detection: mouse "-His (Novagen; 1:2000), TrueBlot " mouse IgG (eBioscience; 1:1000).

 Generation of FLAG-tagged pol viruses. E. coli strain GS1783 harboring the 

bacterial artificial chromosome (BAC) clone of HSV-1 strain KOS (Jurak et al., in 

preparation) or mutant PolA6 (Chapter 2 # Terrell and Coen, 2012) were utilized in two-

step Red recombination techniques (Tischer et al., 2006) to generate tagged virus as 

previously described (Chapter 2 # Terrell and Coen, 2012). Briefly, a FLAG epitope 

(DYKDDDDK) was inserted downstream of the initiation codon (AUG) of the pol 

coding sequence in each parental clone using primers FLAG-Pol For (5’- TCC CCC CTC 

TTT AGG GGT TCG GGT GGG AAC AAC CGC GAT GGA CTA CAA GGA TGA 
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CGA CGA TAA GTA GGG ATA ACA GGG TAA TCG ATT T -3’) and FLAG-Pol 

Rev (5’- ACT TTC CTC CGG GGG ACA GCG GGC CGC CGC CAC CGG AAA ACT 

TAT CGT CGT CAT CCT TGT AGT CCA TCG CGG TTG TTC CCA CCC GCC AGT 

GTT ACA AC CAA TTA ACC -3’) to generate BACs FLAGpol and FLAGpolA6. 

Presence of the insertion, and lack of adventitious mutations, was verified by sequencing 

the resulting FLAG-tagged BAC clones. BAC derived viruses were harvested and 

propagated as previously described (Chapter 2 ! Terrell and Coen, 2012).  

 Viral replication assays. Vero cells (4"105) were infected in triplicate a 

multiplicity of infection (MOI) of 1 with parental and FLAG-tagged viruses. After a 1 hr 

adsorption period at 37°C, wells were washed with Dulbecco’s phosphate buffered saline 

(DPBS) and replenished with 2mL of DMEM containing 2% NCS. At each time point, 

whole cell lysates were collected, frozen and subsequently thawed and sonicated. Cellular 

debris was pelleted by centrifugation and supernatants were titrated on polB3 cells in 

duplicate.         

 Western blot analysis. Vero cells (6"105) were either mock infected or infected 

at an MOI of 20 with parent and FLAG-tagged viruses. At 8 hpi, monolayers were 

washed with DPBS and harvested with 330µl Laemmli buffer. Protein lysates were 

boiled at 90°C for 7 min and resolved by SDS PAGE. Membranes were blocked in 5% 

milk/TBST and probed with PP5 #-Pol (1:2500), #-FLAG M2- horseradish peroxidase 

(HRP) (Sigma-Aldrich; 1:1000), and #-$-actin (Abcam; 1:10000). Blots were exposed to 

secondary antibodies goat #-rabbit-HRP and goat #-mouse-HRP (Southern Biotech) and 

detected with chemiluminescence solution (Pierce).     

 FLAG coimmunoprecipitation.  HeLa cells (~2"107) were infected with WT, 
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FLAGpol or FLAGpolA6 at an MOI of 10. At 8 hpi, cells were washed twice with cold 

DPBS and harvested with 3mL lysis buffer (50mM HEPES-KOH [pH 7.4], 1% Triton X-

100, 150mM NaCl, 10% glycerol, 2mM EDTA, and one Complete EDTA-free protease 

inhibitor tablet (Roche) per 50mL). Cells were incubated in lysis buffer for 30 min and 

spun down at 10K RPM for 10 min at 4°C. Clarified lysate was incubated with 3ug of 

Mouse IgG1 Isotype control antibody (Sigma) at 4°C overnight in the presence or 

absence of 400U of benzonase (Novagen). To evaluate the efficiency of benzonase 

treatment, 25µl of treated and untreated samples were diluted 1:1 with 6x gel loading 

buffer and analyzed on a 0.8% agarose gel stained with ethidium bromide. Subsequently, 

lysates were added to 80µl settled of EZ-View Protein G affinity resin (Sigma) for 2 hr at 

4°C with rotation. Clarified lysates were removed and added to 80µl settled EZ-view 

anti-FLAG M2 resin (Sigma) and incubated at 4°C for 2 hr. Beads were washed three 

times with 750µl of lysis buffer for 15 min with rotation. Subsequently, beads were 

washed with tris-buffered saline (TBS; 50mM Tris-Cl [pH 7.5], 150mM NaCl) twice and 

proteins were eluted with 300µl of 3xFLAG peptide (Sigma; 200ng/µl in TBS). 

Following a 1 hr incubation at 4°C, the supernatant was removed and concentrated with a 

Vivaspin 500 ultrafiltration device (GE Healthcare), according to the manufacturer’s 

instructions, to a 30µl volume. The final eluate was diluted 1:1 with 2! Laemmli buffer 

and boiled at 90°C for 7 min. Immunoprecipitated proteins (25µl) were electrophoresed 

on an any KD mini-protean precast polyacrylamide gel (BioRad) and detected with 

SilverQuest staining kit (Invitrogen) according to the manufacturer’s instructions. Bands 

were excised and submitted to the Taplin Mass Spectrometry Facility (Harvard Medical 

School) for liquid chromatography-tandem mass spectrometry analysis (LC/MS/MS). For 
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Western blot analysis, 5µl of input fractions and eluted proteins were resolved by SDS-

PAGE. Viral proteins were detected with PP5 (as described above) and !ICP8 antibody 

3-83 (Knipe et al., 1987; 1:10,000) with goat !-rabbit-HRP and (1:5,000; Southern 

Biotech). 
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Results 

SPR analysis of HSV-1 Pol protein interactions. HSV-1 Pol has been reported 

to associate with several viral DNA synthesis proteins, yet the effect of disrupting such 

interactions remains largely unknown. The best characterized interaction is with the viral 

processivity factor UL42, which binds at the extreme C-terminus of HSV-1 Pol and is 

necessary for processive DNA synthesis and viral replication (Digard et al., 1993a, b). 

Therefore, we anticipated that additional proteins could bind at the extreme N-terminus 

of HSV-1 Pol. Previously, we engineered two HSV-1 Pol mutant enzymes that exhibit 

WT 5’-3’ polymerase activity and retain a functional interaction with UL42 in vitro: 

Pol!N52 in which the extreme N-terminal 51 residues were deleted, and PolA6 in which 

the conserved residues 44-49 (FYNPYL) were substituted with alanines (Chapter 2 " 

Terrell and Coen, 2012). When these mutations were incorporated into the viral genome, 

the resulting mutant viruses exhibit up to a 10-fold defect in viral DNA synthesis during 

infection.  We hypothesized that residues within the extreme N-terminal 51 residues of 

HSV-1 Pol could mediate a protein-protein interaction that may or may not impact viral 

DNA synthesis during infection. We sought to address this hypothesis by employing 

multiple methods to evaluate specific candidates in vitro. 

Previous studies have demonstrated a direct interaction between HSV-1 Pol and 

UL8 via enzyme-linked immunosorbent assays with purified protein in vitro (Marsden et 

al., 1996). An interaction between HSV-1 Pol and the viral single stranded DNA binding 

protein (SSB) ICP8 has been suggested previously, but has yet to be confirmed (Strick et 

al., 1997; Vaughan et al., 1984). We wished to determine whether these viral replication 

proteins could directly associate with HSV-1 Pol and if this interaction would be 
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disrupted as a result of the deletion or substitution mutations within the pre-NH2-terminal 

domain. 

Interactions between HSV-1 Pol and viral protein binding candidates ICP8, UL8, 

and the H/P complex were evaluated using surface plasmon resonance assays performed 

by Ping Bai in Sandy Weller’s lab (University of Connecticut Health Center). Purified 

WT Pol, Pol!N52, or PolA6 were immobilized to a biosensor chip and protein analytes 

were applied as described in Material and Methods. The viral alkaline nuclease UL12 

does not bind WT Pol and served as a negative control in this assay (Figure 4.1A). An 

interaction between WT Pol and the H/P complex was easily detected via SPR analysis, 

while an association with the UL8 subunit alone produced a rather modest signal (Figure 

4.1 A). In contrast, we were unable to detect an interaction between WT Pol and ICP8 

(Figure 4.1A). The SPR sensorgrams for both Pol!N52 and PolA6 were similar to that of 

WT Pol (Figure 4.1B and C). We sought to quantify the binding kinetics of the H/P 

complex in order to identify any potential alteration in the binding affinities for mutants 

Pol!N52 and PolA6. Over a range of 5 to 160nM of the H/P complex, SPR sensorgrams 

for WT and mutant polymerases exhibited dose-dependent binding of the H/P complex 

(data not shown). Ultimately, we found no meaningful differences in the association and 

dissociation rates of the WT and mutant polymerases with the H/P complex (Table 4.1). 

Therefore, we would conclude that the H/P complex binding site is outside of the extreme 

N-terminal 51 residues of HSV-1 Pol.  
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Figure 4.1. HSV-1 Pol interactions with viral DNA replication proteins. SPR analyses of 
protein interactions were performed using a Biacore T100. Sensorgrams of viral DNA 
replication proteins binding immobilized WT Pol (A), Pol!N52 (B), or PolA6 (C) protein 
are shown. Signals are reported in resonance units (RUs). 
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Table 4.1. Binding kinetics of HSV-1 Pol and H/P complex 
 

Protein ka (M-1s-1) kd (s-1) KD (nM) 
WT Pol 5.2!104 4.6!10-3 88.3 

Pol"N52 5.0!104 3.3!10-3 65.1 
PolA6 4.2!104 4.1!10-3 96.8 
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HSV-1 Pol and UL2. A previous study demonstrated a direct interaction between 

HSV-1 Pol and the viral uracil DNA glycosylase (UDG) UL2 that was localized to the 

extreme N-terminal 25kDa of UL2 (Bogani et al., 2010; P. Boehmer, personal 

communication). HSV-1 Pol can bind UL2 and UL42 simultaneously, which 

demonstrates that the UL2 interaction surface is outside of the UL42-binding site at the 

extreme C-terminus of HSV-1 Pol (Bogani et al., 2010). Although UL2 is dispensable for 

HSV-1 replication in cell culture (Mullaney et al., 1989; Pyles and Thompson, 1994), the 

HCMV UDG UL114 appears to play a role in viral DNA synthesis and production of 

infectious virus at early times postinfection (Courcelle et al., 2001; Prichard et al., 1996). 

Additionally, UL114 binds an N-terminal 100kDa fragment of the HCMV DNA 

polymerase catalytic subunit UL54 (Strang and Coen, 2010). Therefore, we wished to 

determine whether mutants Pol!N52 and PolA6 could retain an interaction with UL2. 

Coimmunoprecipitation studies were performed with purified HSV-1 Pol proteins and 

V5-tagged recombinant proteins UL2 (full length) and truncation mutant UL2M91-334 that 

is unable to bind WT Pol (P. Boehmer, personal communication). Both mutants Pol!N52 

and PolA6 coprecipitated with full length UL2, but were not recovered when incubated 

alone or in the presence of mutant UL2M91-334 (Figure 4.2A and B). These results 

indicated that the UL2 binding site is outside of the extreme N-terminal 51 residues of 

HSV-1 Pol and that, presumably, the mutant polymerases retain an interaction with UL2 

during infection.  

Characterization of FLAG-tagged pol viruses. Previously, we demonstrated 

that the substitution mutant polA6 recapitulated the replication defect exhibited by  
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Figure 4.2. Coimmunoprecipitation of UL2 and HSV-1 Pol. Purified WT, Pol!N52 (A), 
and PolA6 (B) proteins were incubated in the presence and absence of V5, His6-tagged 
WT UL2 (full length) and Pol binding mutant UL2(M91-V334). Aliquots of input 
fractions and "V5 immunoprecipitated proteins were resolved by SDS-PAGE and probed 
with "Pol and "His antibodies for the detection of HSV-1 Pol and UL2, respectively. The 
positions of molecular weight markers are indicated on the left.  
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deletion mutant pol!N52, while deletion mutant pol!N43 replicated like WT virus 

(Chapter 2 " Terrell and Coen, 2012). We hypothesized that the conserved motif at HSV-

1 Pol residues 44-49 could mediate a protein-protein interaction that is required for 

efficient viral DNA synthesis in the infected cell. Due to the vast number of possible 

interaction partners, we sought to address this hypothesis by employing an unbiased 

approach for analysis of HSV-1 Pol interactions in infected cell lysates. We anticipated 

that the addition of an epitope at the pol locus would allow for the efficient capture of 

HSV-1 Pol and hopefully prevent the disruption of potential interaction partners. Given 

that the UL42 binding site is at the extreme C-terminus of HSV-1 Pol, we chose to insert 

a FLAG epitope (DYKDDDDK) at the extreme N-terminus immediately downstream of 

the initiation codon (AUG) in the parental WT and polA6 BAC clones to generate 

FLAGpol and FLAGpolA6 BACs, respectively. Addition of the FLAG epitope, and the 

absence of adventitious mutations, was confirmed by sequencing. Infectious virus was 

reconstituted via transfection of polB3 cells with BAC DNA as previously described 

(Chapter 2 " Terrell and Coen, 2012). In order to confirm that the BAC-derived FLAG 

viruses expressed a FLAG-tagged Pol protein, infected Vero cell lysates was harvested 

and analyzed for viral protein production via Western blot. Using a polyclonal #-HSV-1 

Pol antibody, we observed comparable protein expression in all viruses at 8 hpi (Figure 

4.3A). FLAG-tagged proteins at the corresponding molecular weight of HSV-1 Pol were 

detected in both FLAGpol and FLAGpolA6 samples, which were not expressed by either 

parental virus (Figure 4.3A). 

Our next task was to determine whether the addition of the FLAG epitope at the 

extreme N-terminus of HSV-1 Pol would reduce viral replication. Accordingly, we 
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Figure 4.3. Characterization of FLAG-tagged pol viruses. (A) Expression of FLAG-
tagged Pol protein in infected cell lysates. Vero cells were either mock infected or 
infected with the indicated virus at an MOI of 20. Infected cell lysates were harvested at 
8 hpi and resolved via SDS-PAGE. Antibodies recognizing HSV-1 Pol, the FLAG 
peptide, and !-actin were used for Western blot analysis. The positions of molecular 
weight markers (kDa) are indicated on the right. (B) Replication kinetics of FLAG-
tagged viruses. Vero cells were infected with parental and FLAG-tagged pol viruses an 
an MOI of 1. Whole cell lysates were harvested at the indicated time points and titrated 
on polB3 cells. Viral yield is reported as PFU/mL with each data point representing the 
mean ± SD of triplicate samples. 
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analyzed the multicycle replication kinetics (MOI of 1) of the FLAG-tagged viruses in 

comparison with its respective parental virus in Vero cells. WT virus reached peak viral 

titer at 48 hpi and its replication kinetics were recapitulated with FLAGpol infection 

(Figure 4.3B). As expected, FLAGpolA6 yielded viral titers that were comparable to 

polA6 and both viruses exhibited up to a 35-fold defect in viral yield at 24 hpi compared 

WT virus (Figure 4.3B). Therefore, we conclude that the addition of the FLAG epitope at 

the extreme N-terminus did not significantly alter viral replication.  

Identification of HSV-1 Pol binding partners via FLAG 

coimmunoprecipitation. In order to identify potential differences between WT and 

PolA6 binding partners, we performed immunoprecipitations using both FLAG-tagged 

viruses. We included the untagged WT virus as a control in an effort to aid in the 

identification of specific associations with HSV-1 Pol. Infected HeLa cells were 

harvested at 8 hpi and proteins were precipitated with !FLAG antibody in the presence 

and absence of the nuclease benzonase in order to determine whether any potential 

interactions were indirectly mediated by nucleic acids. Aliquots of cell lysates were 

electrophoresed on an ethidium bromide-stained agarose gel in order to confirm the 

degradation of nucleic acids in the presence of benzonase (Figure 4.4A). Captured 

proteins were eluted with 3"FLAG peptide, boiled in Laemmli buffer, and analyzed by 

SDS-PAGE and silver stain. For samples that were precipitated in the presence of 

benzonase, we were able to detect protein bands at approximately 130 and 60 kDa in both 

FLAGpol and FLAGpolA6 lanes, but not in the untagged WT lane (Figure 4.4B). SDS-

PAGE protein profiles of eluates from untreated cell lysates were visually 

indistinguishable from that of benzonase-treated samples (data not shown). 
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Figure 4.4. Immunoprecipitation of HSV-1 Pol from infected cell lysates in the presence 
of benzonase. HeLa cells were infected at an MOI of 10 with the indicated viruses and 
harvested at 8 hpi. Clarified cell lysates were incubated overnight in the presence and 
absence of benzonase. Following benzonase treatment, aliquots of each sample were 
diluted with gel loading buffer and analyzed on a 0.8% agarose gel and stained with 
ethidium bromide (A). The left hand arrow indicates the position of the dye front. 
Proteins were immunoprecipitated with !FLAG antibody, resolved by SDS-PAGE and 
detected with silver stain (B). The positions of molecular weight markers are indicated on 
the left. Bands that were excised and submitted for MS analysis are indicated on the right 
(arrows). 
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Proteins that are visible by silver stain tend to approach the lower limit of detection of 

LC/MS/MS analysis, as communicated by the Taplin MS facility at Harvard. As per their 

recommendations, we excised and submitted bands corresponding to 130 and 60 kDa 

(Bands 1 and 2) from the WT, FLAGpol and FLAGpolA6 lanes for analysis (Figure 4.4). 

Table 4.2 includes a list of proteins detected by MS analysis in which at least 3 unique 

peptides were identified in eluates from the FLAG-tagged viruses and not the untagged 

WT virus. We were able to detect multiple HSV-1 Pol peptides that were present in Band 

1 from both FLAGpol and FLAGpolA6 samples and not in WT (Figure 4.4; Table 4.2). 

UL42 served as a positive control in this assay, as it associates with HSV-1 Pol in a 1:1 

fashion and the heterodimer is readily precipitated from infected cell lysates (Gallo et al., 

1988; Vaughan et al., 1985). As expected, UL42 was highly represented in terms of the 

number of peptides detected in both FLAGpol and FLAGpolA6 eluates, irrespective of 

benzonase treatment (Band 2, Figure 4.4; Table 4.2). Peptides from the large subunit of 

the viral ribonucleotide reductase (UL39) were also detected in Band 1 from both 

samples (Figure 4.4; Table 4.2). Ribonucleotide reductase is a viral DNA synthesis 

protein that catalyzes the synthesis of deoxyribonucleotides during viral infection. The 

number of UL39 peptides was not diminished upon benzonase treatment, which 

suggested that the association was not dependent upon nucleic acid binding (Table 4.2). 

Viral transactivator ICP27 also associated with WT Pol and PolA6 in both untreated and 

benzonase-treated samples (Band 2, Figure 4.4; Table 4.2). ICP27 has been shown to 

localize to replication compartments wherein it can interact with transcription machinery 

and direct early and late viral gene expression (de Bruyn Kops & Knipe, 1988). We were 

unable to identify any cellular proteins that coprecipitated with WT Pol or PolA6 in the 
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Table 4.2. Proteins identified from HSV-1 Pol immunoprecipitation by MS analysis 
 

  No. of peptidesb: 
Banda Protein identified FLAGpol FLAGpolA6 

1 HSV-1 Pol (UL30) 210,226 124,199 
 Ribonucleotide Reductase  (UL39) 26,51 12,42 
2 UL42 88,89 73,83 
 ICP27 8,9 4,5 

 
a indicates the bands that were isolated from the silver stained gel (Figure 4.4) 
b total number of peptides identified for each protein (! , + benzonase treatment) 
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Figure 4.5. Western blot analysis of HSV-1 Pol immunoprecipitation from infected cell 
lysates. Aliquots from clarified lysates (input) and proteins isolated from FLAG 
immunoprecipitations in the absence (A) and presence (B) of benzonase were resolved 
via SDS-PAGE and analyzed for the presence of HSV-1 Pol and ICP8. Lane 1, WT 
input; Lane 2, FLAGpol input; Lane 3, FLAGpolA6; Lane 4, WT IP; Lane 5, FLAGpol 
IP; Lane 6, FLAGpolA6 IP.   
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presence and absence of benzonase. Due to the detection limit of MS analysis, we utilized 

Western Blot analysis in order to determine whether ICP8 could associate with HSV-1 

Pol in infected cells. We were able to confirm the presence of HSV-1 Pol in all input 

fractions, which was specifically precipitated with !FLAG antibody from both FLAGpol- 

and FLAGpolA6-  infected cell lysates (Figure 4.5A and B). ICP8 did not appear to 

coprecipitate with WT Pol or PolA6 in the presence and absence of benzonase (Figure 

4.5A and B). Ultimately, we were unable to identify a protein whose association appeared 

to be disrupted as a result of the substitution mutation in PolA6. 
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Discussion 

We have used two complementary approaches in an attempt to identify a protein-

protein interaction mediated by either the conserved motif at residues 44-49 of HSV-1 

Pol that was responsible for efficient viral DNA synthesis during infection. While it 

appears that we have identified potential viral binding partners of HSV-1 Pol, we have 

yet to identify an interaction that has been abolished as a result of the deletion of the 

extreme N-terminal 51 residues or the substitution mutation(s) of the conserved motif. 

This raises interesting possibilities for the location and timing of specific HSV-1 Pol 

interactions. The implications of such findings are discussed below. 

 

Associations between HSV-1 Pol and viral and cellular proteins in vitro.  

UL8/ H/P complex. We have confirmed that the extreme N-terminal 51 residues 

of HSV-1 Pol are not required for interactions with either the UL8 or H/P complex. Our 

SPR analyses revealed a relatively high-affinity interaction between HSV-1 Pol and the 

H/P complex. We were unable to determine the binding kinetics for the HSV-1 Pol-UL8 

complex, as this association did not produce a robust signal in this assay. The UL8 

subunit when complexed with UL5 and UL52 may adopt a conformation that increases 

the affinity of binding for HSV-1 Pol. Interestingly, an interaction between HSV-1 Pol 

the UL5 subunit has recently been identified (S. Weller, personal communication). Thus, 

it is possible that the detected association between HSV-1 Pol and the H/P complex was 

mediated by an interaction with UL8 or the UL5 subunit, or both. Further analysis in 

regards to the stoichiometry of the HSV-1 Pol!H/P complex interaction may provide 

insight into the coordination of the viral replisome components during DNA replication. 
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ICP8. Our SPR analyses with purified proteins did not detect an interaction 

between ICP8 and HSV-1 Pol. Additionally, ICP8 did not coprecipitate with WT Pol 

from infected cell lysates in the presence and absence of benzonase. These results 

contradict previous reports that identified ICP8 in complex with HSV-1 in infected cell 

lysates via Western blot analysis (Strick et al., 1997; Vaughan et al., 1984). We were 

somewhat surprised that we failed to detect ICP8 in samples that were precipitated in the 

presence of nucleic acids, given that that both HSV-1 Pol and ICP8 are DNA binding 

proteins. It is possible that our immunoprecipitation conditions were too stringent to 

allow for the retention of potentially weak or transient interactions. An interaction 

between HSV-1 Pol and ICP8 may be more easily detected by immunoprecipitation 

analyses using purified proteins in vitro. Stimulation of HSV-1 5’-3’ polymerase activity 

in the presence of ICP8, which is characteristic of SSBs and polymerase interactions in 

other systems, would suggest a functional interaction (reviewed in Chase and Williams, 

1986; Hernandez and Lehman, 1990; Ruyechan et al., 1984). However, the E. coli SSB 

protein can also stimulate HSV-1 Pol, which would indicate that this effect is not species 

specific and potentially reflects DNA stabilization by SSB proteins rather than a specific 

interaction (O’Donnell et al., 1987). 

UL2. HSV-1 Pol has been shown to interact directly with UL2 in the presence and 

absence of UL42 (Bogani et al., 2010), which led us to speculate that the binding 

interface lies at the extreme N-terminus of HSV-1 Pol. Additionally, the HCMV-encoded 

uracil DNA glycosylase binds an N-terminal 100kDa fragment of the viral DNA 

polymerase catalytic subunit UL54 (Strang and Coen, 2010). Our experiments with the 

full length and mutant UL2 proteins clearly demonstrated that the extreme N-terminal 51 
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residues of HSV-1 Pol were not required for binding. Therefore, the UL2 binding site 

could be mapped to any region within residues 51-1219 that comprise the majority of the 

HSV-1 Pol enzyme. Further investigation is needed in order to determine the timing, 

location, and significance of the HSV-1 Pol-UL2 interaction.  

HSV-1 Pol interactions during cellular infection. A previous study 

demonstrated via Western blot analysis that viral replication proteins UL42, the H/P 

complex, and ICP8 coprecipitate with HSV-1 Pol from infected cell lysate (Strick et al., 

1997). Unfortunately the general lack of available specific antisera for HSV-1 replication 

proteins limited our ability to determine whether or not our results are in accordance with 

this previous report. Although MS analysis was a useful technique in this global 

approach, it requires an abundant amount of protein for visual detection and isolation that 

greatly reduced the sensitivity and identification of precipitated proteins. Outside of 

UL42, we were unable to detect the presence of the H/P complex and ICP8 via MS 

analysis. However, we were able to identify potential associations between HSV-1 Pol 

and viral proteins UL39 and ICP27 that were not dependent upon the presence of nucleic 

acids. The large subunit of the viral ribonucleotide reductase (UL39) was the only viral 

DNA synthesis protein that was identified in our MS analysis other than UL42. There is 

no precedent for a ribonucleotide reductase!DNA polymerase interaction, and we cannot 

determine based on the presented data whether this observed association occurs naturally 

during viral infection or if it is induced upon cell lysis. The viral ribonucleotide reductase 

is important for viral DNA synthesis in resting cell cultures (Goldstein and Weller, 

1988b; Jacobson et al., 1989). Thus, ribonucleotide reductase would be an interesting 

candidate for further analysis given that the polA6 viral DNA synthesis defect is 
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enhanced in serum starved cells (Chapter 2 – Terrell and Coen, 2012; Chapter 3). 

Quantitative analyses are required in order to determine whether UL39 is a bonafide 

HSV-1 Pol binding partner and if its binding affinity is altered as a result of the 

substitution mutation.  

An interaction between HSV-1 Pol and ICP27 has not been previously reported in 

the literature. ICP27 coprecipitates with ICP8 from infected cell lysates and the two 

proteins were shown to interact directly in vitro (Olesky et al., 2005; Taylor and Knipe, 

2004). Unlike HSV-1 Pol, ICP8 has a demonstrated role in stimulating late viral gene 

expression that is independent of viral DNA synthesis, which is further supported by 

reported interactions with ICP27-RNA polymerase II complexes (Chen and Knipe, 1996; 

Gao and Knipe, 1991; Zhou and Knipe, 2002). Further investigation is necessary in order 

to determine whether ICP27 can interact directly with HSV-1 Pol and if this would 

represent coupling of late viral gene expression and viral DNA synthesis.  

Role of HSV-1 Pol interactions during viral replication. HSV-1 Pol is a multi-

functional enzyme that can associate with a number of different viral and cellular proteins 

(reviewed in Lehman and Boehmer, 1997). Just recently, an interaction was identified 

between HSV-1 Pol and host cell factor 1 (HCF-1), which has been proposed to facilitate 

the recruitment of histone chaperone Asf1b and thereby promote efficient viral DNA 

synthesis during infection (Peng et al., 2009). The deletion and substitution mutations in 

HSV-1 Pol do not appear to disrupt this association (T. Kristie, personal communication). 

The variety of potential binding partners for HSV-1 Pol underscores the importance of 

appropriately timing specific interactions to allow for the efficient and faithful replication 

of the viral genome. The main job of HSV-1 Pol is to synthesize viral DNA, which is 
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supported by the essential interaction between the catalytic and processivity subunits of 

the viral DNA polymerase holoenzyme. HSV-1 Pol also encodes 3’-5’ exonuclease 

activity, RNase H and apurinic/apyrimidinic and 5’- deoxyribose phosphate lyase 

activities that must be executed with specific substrates at the appropriate time (Bogani 

and Boehmer, 2008; Crute and Lehman, 1989; Knopf and Weisshart, 1988; O’Donnell et 

al., 1987). One would anticipate that the accessory HSV-1 Pol interactions would be of a 

lower affinity to allow for dissociation and reassociation of specific binding partners at 

any given stage during viral DNA synthesis. Therefore, our ability to investigate the 

exact mechanisms by which these processes occur is limited given that the replisome 

interactions are dynamic and dependent upon specific protein-protein, protein-DNA 

interactions and various conditions that are difficult to recapitulate in vitro. Single 

molecule studies have allowed for a more detailed analysis of replisome dynamics during 

DNA replication (van Oijen and Loparo, 2010). Although this has proven to be a less 

than straightforward process, identification of a protein interaction that is mediated by the 

conserved motif of HSV-1 Pol would provide further insight into the viral DNA synthesis 

processes and may very well represent a conserved mechanism for herpesvirus 

replication. 
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Summary of Results 

HSV-1 Pol has been extensively studied for therapeutic purposes and has served 

as an effective drug target due to its importance for viral replication. A wealth of 

literature highlights the ability of HSV-1 Pol to perform various activities during the 

process of viral DNA synthesis and justifies further investigation into the significance of 

HSV-1 Pol function during infection. The conserved structural core of the enzyme that 

mediates 5’-3’ polymerase and 3’-5’ exonuclease activities is well defined, while the N-

terminal half of the protein remains largely uncharacterized. This dissertation addresses 

the importance of the pre-NH2-terminal domain of HSV-1 Pol for viral replication in cell 

culture and animal models of infection. 

 Our primary goal for the studies outlined in Chapter 2 was to identify a role for 

the pre-NH2-terminal domain that was distinct from 5’-3’ polymerase activity. Thus, we 

engineered and purified Pol mutant proteins for analysis of enzymatic activity and found 

that the extreme N-terminal 51 residues were not required for WT-like 5’-3’ polymerase 

activity in vitro. Viral genetic analyses of pol mutant viruses revealed that the extreme N-

terminal 42 residues of HSV-1 Pol were dispensable for viral replication despite 

conservation in HSV-1 and -2. Our studies identified a role for the conserved motif at 

residues 44-49 during viral DNA synthesis in the context of the infected cell. 

 In Chapter 3, we evaluated the importance of these conserved pre-NH2-terminal 

elements for viral replication in a mouse ocular model of infection. The extreme N-

terminal 42 residues of HSV-1 Pol were not required for viral replication, latency 

establishment, and reactivation in mice. In contrast, we found that the conserved motif 

FYNPYL was of even greater importance for acute ganglionic replication in mice. 
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Latency establishment and reactivation efficiencies were also perturbed in the absence of 

the conserved motif. Additionally, the viral replication defect exhibited by mutant virus 

polA6 in dividing cells was enhanced during infection of resting cell cultures.  

 We sought to determine whether the conserved motif mediated a protein-protein 

interaction that would enhance viral DNA synthesis during infection, which was 

addressed in Chapter 4. We employed a candidate-based approach with previously 

identified HSV-1 Pol binding partners, and an unbiased approach by analyzing protein 

interactions in infected cell lysates. As of yet, we have been unable to identify a protein 

whose interaction is disrupted as a result of the mutation. 

These studies demonstrate that the pre-NH2-terminal domain of HSV-1 Pol 

includes a function that is not important for 5’-3’ polymerase activity, yet is required for 

efficient viral DNA synthesis in cell culture and is especially important for acute 

ganglionic replication in mice. Further investigation is necessary in order to elucidate the 

exact mechanism by which the conserved motif FYNPYL promotes efficient viral DNA 

synthesis, which may represent a conserved replication mechanism among herpesviruses. 

These studies have generated a plethora of questions that need to be addressed in order to 

better understand the role of the pre-NH2-terminal domain for viral replication. 
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Hypotheses and Future Directions 

What is the role of the extreme N-terminal 42 residues of HSV-1 Pol? We have 

demonstrated that the extreme N-terminal 42 residues of HSV-1 Pol are dispensable for 

viral replication both in cell culture and a mouse model of infection (Chapter 2 – Terrell 

and Coen, 2012, Chapter 3). However, we would not exclude the possibility of a potential 

role for these residues during viral infection. Conservation of the extreme N-terminal 42 

residues is restricted to a subset of simplexviruses within the alphaherpesvirus subfamily 

that infect humans and monkeys (McGeoch et al., 2000). Viral DNA polymerases from 

Cercopithecine herpesvirus 1 (CeHV-1; B virus), CeHV-2 (simian agent 8; SA8), CeHV-

16 (herpesvirus papio 2; HVP2), and Saimiriine herpesvirus 1 (SaHV-1) exhibit 31-50% 

protein sequence identity with the extreme N-terminal 42 residues of HSV-1 Pol 

(DiTommaso et al., 2011; Notredame et al., 2000). Additionally, pathogenesis of HSV 

infection in humans is very similar to that of B virus in its natural host, which is closely 

related to both HVP2 and SA8 (Elmore and Eberle, 2008). Therefore, we would suggest 

that this conserved element may confer an advantage during viral replication that is 

specific to the biology of simplexviruses.   

Our data indicates that the extreme N-terminal 42 residues may play a role in the 

regulation of HSV-1 Pol expression during infection, as we observed that mutant virus 

pol!N43 exhibits a two-fold increase in viral DNA polymerase expression as compared 

to WT virus (Appendix). HSV-1 Pol proteins are less abundant as compared to other viral 

early gene products, which is presumably due to post-transcriptional mechanisms that 

prevent efficient translation (Yager et al., 1990). One possibility is that the 5’ end of the 

pol coding sequence may be required for the formation of an RNA structure that impairs 
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protein translation. Deletion of an identified RNA inhibitory element upstream of the pol 

start site results in a two-fold increase in HSV-1 Pol expression and a six-fold defect in 

multicycle cycle replication kinetics as compared to WT virus (Bryant and Coen, 2008). 

Alternatively, the extreme N-terminal 42 residues may be required for pol mRNA 

binding and autoregulation of HSV-1 Pol expression during infection. While the 

possibility of autogenous regulation has yet to be demonstrated for HSV-1, both RNA 

structure and sequence are important for autoregulation of the Pol! homologue T4 

bacteriophage DNA polymerase (Pavlov and Karam, 2000). Thus, it is possible that 

sequence-dependent mechanisms may be employed in order to prevent the accumulation 

of HSV-1 Pol protein at late times post infection, which may be important for efficient 

viral replication. Further investigation is necessary in order to determine whether the 5’ 

end of the pol coding sequence forms an RNA structure that directly impairs protein 

translation or functions in an autoregulatory fashion.  

 

Does the conserved motif mediate a protein-protein interaction? The conserved 

motif is a cluster of hydrophobic and aromatic residues that resides within a flexible 

segment at the extreme N-terminus of HSV-1 Pol. Given that protein interactions can be 

accommodated at protein termini, we hypothesize that the conserved motif may represent 

a potential binding site. The strong conservation of this motif within the human 

herpesvirus Pol family would suggest that the binding partner is a cellular protein. One 

possibility is that the presumed protein-protein interaction has been abolished as the 

result of the substitution mutation, and that this interaction is more important during viral 

replication in resting cells and mice. Cellular polymerase Pol" was reported to exhibit 
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stimulated activity when bound to the werner helicase interacting protein 1 (WHNIP1) in 

the presence and absence of PCNA (Tsurimoto et al., 2005). Additionally, the 

Pol!"PCNA complex synthesized larger DNA products in the presence of WHNIP1, 

which led authors to suggest that WHNIP1 promoted reinitiation of DNA synthesis. 

Therefore, there is a possibility that HSV-1 Pol could associate with a protein that 

modulates its function during viral DNA synthesis in infected cells. Alternatively, the 

conserved motif may be part of a larger binding interface and loss of the motif would 

diminish the affinity of the interaction rather than abolishing it entirely. In this scenario, 

the formation of a stable complex would be imperative in resting cells and neurons due to 

limited expression of the binding partner. Thus, it would be imperative that we undertake 

a more quantitative approach to our future analyses regarding protein-binding assays. We 

are currently pursuing a collaboration with a lab that utilizes a high performance mass 

spectrometer that would provide more sensitive and quantitative analyses. In doing so, we 

hope to better execute our global approach in the identification of cellular and viral 

proteins that associate with HSV-1 Pol in infected cell lysates. 

 

Can a cellular protein compensate for the polA6 defect? The inability of the PolA6 

protein to efficiently synthesize viral DNA in dividing cells became more detrimental 

during infection of resting cells and especially in the ganglia. These characteristics are 

similar to those viruses in which the activity of nonessential viral DNA synthesis proteins 

was abolished. Specifically, viral TK and RR functions can be executed by cognate 

cellular enzymes in dividing cells, but not in resting cells wherein expression of these 

cellular proteins is repressed (Field and Wildy, 1978; Goldstein and Weller, 1988a; 
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Jameison et al., 1974). Thus, we hypothesize that a cellular protein could partially 

compensate for the PolA6 impairment during infection of dividing cells. Following this 

line of reasoning, we could suggest that the cellular Pol! or Pol" enzyme is the 

compensatory protein, as they are both structural homologs of HSV-1 Pol (Knopf and 

Weisshart, 1988; Liu et al., 2006; Wang et al., 1989). Evidence for a potential role for 

Pol! in HSV-1 infection includes an interaction with the HSV-1 origin binding protein 

UL9 and a demonstrated ability of the enzyme to utilize RNA primers synthesized by the 

viral helicase-primase complex (Cavanaugh and Kuchta 2008; Lee et al., 1995). While 

Pol! is necessary for the initiation of DNA replication, Pol" is responsible for processive 

DNA synthesis (Hubscher et al., 2002). Like HSV-1 Pol, Pol" exhibits 5’-3’ polymerase 

and 3’-5’ exonuclease activities and directly interacts with a processivity factor (e.g. 

PCNA). Additionally, Pol ! and " expression levels and activities are enhanced in 

actively dividing cells as compared to resting cells, which appears to correlate with the 

onset of DNA replication (Hao et al., 1992, Wahl et al., 1988; Wong et al., 1988; Yang et 

al., 1991). Several distinct cellular DNA polymerases have been identified as having a 

role during DNA replication (Hubscher et al., 2002). Whether or not the virus has the 

ability to actively engage cellular polymerases in viral DNA synthesis processes remains 

unclear. Studies utilizing cellular polymerase inhibitors are difficult to interpret given that 

these compounds also negatively impact viral polymerase activity. Perturbation of 

cellular polymerase expression and activity may result in undesired global alterations in 

cellular protein expression that could potentially complicate our investigations. Until we 

can recapitulate viral DNA synthesis in vitro or use single molecule studies to analyze 
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this process within the context of the infected cell, it will be very difficult to properly 

evaluate the importance of cellular polymerases for viral replication. 

 

 Does the conserved motif modulate HSV-1 Pol enzymatic activities? Our work has 

demonstrated that substitution of the conserved motif does not negatively impact intrinsic 

5’-3’ polymerase activity of HSV-1 Pol in vitro; however, the use of a non-physiological 

substrate in these assays may not accurately reflect the process of viral DNA synthesis 

within the infected cell. Therefore, it may be worthwhile to analyze PolA6 activity on a 

circular template in the presence and absence of viral replication factors. Additionally, we 

have yet to test whether the PolA6 enzyme is competent for other functions such as 3’-5’ 

exonuclease, RNase H, and lyase activities. A viral mutant lacking detectable 3’-5’ 

exonuclease activity exhibits a 50-fold decrease in viral yield with only a 3-fold decrease 

in viral DNA production, which largely reflects an alteration in replication fidelity rather 

than viral DNA synthesis (Tian et al., 2009). Based on the tight correlation between the 

observed defects in viral yield and viral DNA synthesis (Chapter 2 – Terrell and Coen, 

2012), we do not anticipate that the substitution mutation would compromise 3’-5’ 

exonuclease activity of HSV-1 Pol. The active sites for RNase H and lyase activities have 

yet to be mapped to HSV-1 Pol and the effect of disrupting these functions is unknown.  

Rigorous characterization of enzymatic activities on well-defined templates that reflect 

DNA replication substrates may provide a better understanding towards the mechanistic 

aspects of the polA6 defect. 
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Is the polA6 replication defect at the periphery responsible for decreased latency 

establishment? Some viruses are able to establish latency as well as WT virus despite 

defective acute corneal and ganglionic replication in mice (Perng et al., 1996; Thompson 

and Sawtell, 2009). Both polA6 and TK! viruses exhibit viral DNA synthesis defects in 

cell culture, acute replication defects in the mouse eye and ganglia in addition to 

decreases in latency establishment (Chapter 2 – Terrell and Coen, 2012; Thompson and 

Sawtell, 2000). Our results support the hypothesis that the level of viral DNA synthesis 

rather than infectious virus production at the peripheral site of infection is important for 

latency establishment. This possibility is supported by a report that demonstrated that 

latency can be established in a subset of neurons within the TG at the onset of acute  

ganglionic replication (Margolis et al., 1992). We would like to know whether the polA6 

corneal replication defect directly impacts the number of viral genomes that gain access 

to the TG during acute replication. Comparison of polA6 with a mutant that exhibits 

corneal replication defects with WT-like latency establishment efficiencies (eg. VP16 

mutant in1814; Thompson and Sawtell, 2009) may provide some insight as to whether 

viral replication or viral DNA synthesis is important latency establishment. 

 

Is the conserved motif required for reactivation in vivo? We found it rather 

interesting that the polA6 virus was able to reactivate from explanted TG fairly efficiently 

despite the severe impairment in acute ganglionic replication. Interestingly, a VP16 

mutant that displayed WT reactivation efficiencies from in vitro explant reactivation 

assays was unable to produce detectable infectious virus and lytic viral proteins in TG 

following hyperthermic stress in vivo (Thompson and Sawtell, 2009). The authors of this 
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study suggested that the excision of TG from mice might induce cellular changes that are 

not representative of what occurs in vivo. Additionally, reactivation of a UL2! virus, as 

measured by recovery of infectious virus, was restricted in vivo in comparison to in vitro 

cocultivation assays (Pyles and Thompson, 1994). Thus, we would anticipate that the 

acute replication defect exhibited by polA6 might be more evident in a similar in vivo 

reactivation assay and that reactivation efficiencies could be further diminished. 

Ultimately, an in vivo reactivation assay would more accurately reflect the importance of 

the conserved motif in the context of reactivation.  

 

Is the conserved motif important for replication of other herpesviruses? In 

addition to the human herpesvirus Pol family, the motif FYNPYL is well conserved 

among mammalian and avian herpesviruses (DiTommaso et al., 2011; Notredame et al., 

2000). Conservation of the motif among the alpha, beta and gamma herpesvirus 

subfamilies would suggest that it mediates a function that is necessary for efficient viral 

replication in a variety of cell types. Our studies raise the possibility that the conserved 

motif may be especially important for replication in neurons and non-dividing cells. We 

are currently investigating whether the observed acute ganglionic replication defect 

represents a cell specific block for polA6 replication in neurons. Additionally, we plan to 

examine the molecular basis by which polA6 replication is further restricted in serum 

starved cultures and if this effect is specific for infection of non-dividing cells. The 

appropriate viral genetic analyses with lymphotropic herpesviruses such as EBV and 

KSHV may provide insight regarding the requirement of the conserved motif for viral 

replication in additional cell types. If the loss of this motif were to confer similar 
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replication defects in cell culture and animal models of infection for other herpesviruses, 

it could represent a conserved mechanism for herpesvirus replication in humans and 

potentially other mammalian and avian hosts. 

Interestingly, the conserved motif is not present in herpesviruses that are specific 

for oysters (malacoherpesviridae), fish and amphibians (alloherpesviridae; DiTommaso et 

al., 2011; Notredame et al., 2000). Alloherpesvirus DNA polymerases contain a catalytic 

domain for 5’-3’ polymerase activity that is conserved among Family B polymerases 

(Marchler-Bauer et al., 2011). Outside of the palm and fingers domains, alloherpesvirus 

DNA polymerase sequences exhibit little similarity with HSV-1 Pol (DiTommaso et al., 

2011; Notredame et al., 2000), which would indicate that specific enzymatic functions 

are not shared among all herpesvirus DNA polymerases. Thus far, only the helicase, 

primase, and DNA polymerase have been identified as conserved viral DNA replication 

proteins within the alloherpesvirus family (Aoki et al., 2007; Hanson et al., 2011). More 

than likely, the evolutionary divergence of these animal species with respect to mammals 

would be reflected in distinct requirements that are necessary for efficient viral 

replication in its natural host. Additional information regarding replisome-mediated viral 

DNA synthesis with respect to alloherpesviruses would allow for comparative analyses 

that may provide further insight into the importance of the conserved motif for viral DNA 

replication. 
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Protein Expression of Pre-NH2-Terminal pol Mutant Viruses 
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Introduction 

 Herpes simplex virus 1 (HSV-1) infection is characterized by a regulated cascade 

of protein expression that correlates with defined stages of viral replication. Immediate 

early gene products prime the cell for infection, early viral proteins execute viral DNA 

synthesis, and late gene products are necessary for the assembly and egress of infectious 

viral particles. Thus, the virus must enable mechanisms that allow for temporal 

expression and the eventual downregulation of viral proteins at the appropriate times 

during infection. The expression and activity of the HSV-1 DNA polymerase catalytic 

subunit (HSV-1 Pol) is required for viral DNA synthesis and production of infectious 

virus (Aron et al., 1975; McGeoch et al., 1988; Wu et al., 1988). HSV-1 Pol expression is 

temporally regulated with peak protein synthesis at 4 hours post infection (hpi), with 

notable downregulation by 5 hpi despite the abundance of pol mRNA (Yager et al., 

1990). Previously, we engineered two HSV-1 Pol mutants that retained WT-like 5'-3' 

polymerase activity in vitro yet exhibited decreased levels of viral DNA synthesis during 

cellular infection: deletion mutant pol!N52, in which the first 51 residues were deleted, 

and substitution mutant polA6 in which residues 44-49 were substituted with alanines 

(Chapter 2 – Terrell and Coen, 2012). The extreme N-terminal 42 residues were 

dispensable for viral replication in cell culture, while removal of the extreme N-terminal 

140 residues resulted in a catalytically inactive HSV-1 Pol enzyme and replication 

incompetent mutant virus. We evaluated viral protein expression and observed 

differential expression of HSV-1 Pol during pol mutant virus infection as compared to 

WT virus. We sought to quantify these changes in HSV-1 Pol expression for specific pol 

mutant viruses in infected cell lysates. 
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Materials and Methods 

 Cells and viruses. Vero cells (American Catalog of Cell Culture) were maintained 

as previously described (Chapter 2 ! Terrell and Coen, 2012). Wild type (WT), pol"N43, 

pol"N52, pol"N52R, polA6, and polA6R viruses were constructed as previously 

described (Chapter 2 ! Terrell and Coen, 2012).  

Western blot analysis. Vero cells (6#105) were either mock infected or infected at 

an MOI of 20 with the indicated viruses. At 8 hours post infection (hpi), monolayers were 

washed with DPBS and harvested with 330µl Laemmli buffer. Protein lysates were 

boiled at 90°C for 7 min and resolved by sodium dodecyl polyacrylamide gel 

electrophoresis (SDS-PAGE). Membranes were blocked in 5% milk/TBST and probed 

with PP5 $-Pol (1:2500), $-thymidine kinase (TK; Bill Summers (Yale University); 

1:1000), $ICP8 antibody (3-83; Knipe et al., 1987; 1:10,000), and $-%-actin (Abcam; 

1:10000). Blots were exposed to secondary antibodies goat $-rabbit-HRP and goat $-

mouse-HRP (Southern Biotech) and detected with chemiluminescence solution (Pierce). 

 Quantitation of protein expression. A dilution series of WT infected cell lysate 

was analyzed alongside mutant virus lysates for HSV-1 Pol and ICP8 expression via 

Western blot as described above. Relative quantitation Pol expression was achieved by 

analyzing the band intensity of scanned films with Quantity One software (Bio-Rad). Pol 

expression for each mutation was interpolated from a linear regression curve of standard 

band intensities generated from a dilution series of infected WT cell lysate and 

normalized to the level of ICP8 expression for each virus.  
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Results and Discussion 

Previously, we generated pol mutant viruses using bacterial artificial chromosome 

technology in order to evaluate the importance of the pre-NH2-terminal domain of HSV-1 

Pol for viral replication. The extreme N-terminal 42, 51, and 140 residues of HSV-1 Pol 

are deleted in truncation mutants pol!N43, pol!N52, and pol!N141, respectively. A 

conserved motif at HSV-1 Pol residues 44-49 was replaced with six alanines in 

substitution mutant polA6. We sought to evaluate HSV-1 Pol protein expression during 

pol mutant virus infection by Western Blot analysis. Vero cells were infected at an MOI 

of 20 and cell lysates were harvested at 8 hpi. We found that deletion mutants pol!N43, 

pol!N52, and pol!N141 produced HSV-1 Pol polypeptides that exhibited a mobility 

shift that corresponded to the respective deletion (Figure A1). Interestingly, HSV-1 Pol 

expression was slightly elevated in mutants pol!N43, pol!N52, and polA6 as compared 

to WT virus (Figure A1). Moreover, HSV-1 Pol expression appeared to be restored to 

WT-like levels in rescued derivative viruses pol!N52R and polA6R (Figure A1). HSV-1 

Pol expression during pol!N141 infection did not appear to be altered (Figure A1). The 

expression levels of ICP8 and TK appeared to be comparable among all viruses, which 

suggested that this observation was specific for mutant HSV-1 Pol expression (Figure 

A1). In order to quantify the changes in HSV-1 Pol expression, we measured HSV-1 Pol 

expression for each mutant with respect to ICP8 expression as described in the Materials 

and Methods (Figure A2). Mutants pol!N43, pol!N52, and polA6 each exhibited a ~2-

fold increase in HSV-1 Pol expression compared to WT. 
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Figure A1. Viral protein expression during pol mutant virus infection. Vero cells were 
infected at an MOI of 20 and lysates were harvested at 8 hpi. Lysates were resolved via 
SDS-PAGE and membranes were probed specific antibodies targeting each of the 
indicated proteins. 
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Figure A2. Quantitation of HSV-1 Pol expression during pol mutant virus infection. 
Dilutions of WT-infected cell lysates along with mutant virus samples were analyzed by 
SDS-PAGE and membranes were probed with HSV-1 Pol and ICP8 antibodies (A). Pol 
expression for each mutant was interpolated from a linear regression curve of standard 
band intensities generated from a dilution series of WT-infected cell lysate and 
normalized to the level of ICP8 expression for each virus (B to C).   
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Although pol mRNA levels are comparable to that of thymidine kinase 

transcripts, HSV-1 Pol protein is less abundant in infected cells due to inefficient 

translation (Yager et al., 1990). Authors speculate that a post-transcriptional mechanism 

may be responsible for preventing the accumulation of HSV-1 Pol proteins at late times 

post infection, as this may be detrimental to viral replication. Deletion of an identified 

RNA inhibitory element upstream of the pol start site resulted in a two-fold increase in 

HSV-1 Pol expression and a two-fold defect in single cycle replication kinetics as 

compared to WT virus (Bryant and Coen, 2008). However, we would not conclude that 

the modest overexpression of HSV-1 Pol in mutants pol!N52 and polA6 was responsible 

for the observed replication defect, given that deletion mutant pol!N43 replicated as 

efficiently as WT virus (Chapter 2 – Terrell and Coen, 2012). Due to the restoration of 

WT levels of HSV-1 Pol expression in rescued derivative viruses, we would suggest that 

the 147 nucleotides at the 5’ end of the pol coding sequence aid in the regulation of HSV-

1 Pol expression during infection. Such regulation may be dependent on protein activity 

and viral DNA synthesis, as we did not observe altered HSV-1 Pol expression for 

pol!N141. One possibility is that the 5’ end of pol mRNA could function as an additional 

inhibitory RNA element that would prevent translation initiation due to the presence of 

secondary structure. Alternatively, these sequences may be important for autogenous 

regulation of DNA polymerase expression, which has been observed in bacteriophage T4 

(Rodriguez et al., 2000; Wang et al., 1996). Although HSV-1 Pol has not been shown to 

autoregulate its own expression, there is evidence to support this possibility. For 

example, the NH2-terminal domain of HSV-1 Pol contains an RNA binding motif that 

could function in this regard by binding pol mRNA. Additionally, autogenous regulation 
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may also contribute to the dramatic decline in HSV-1 Pol synthesis at early times post 

infection despite the relatively high abundance of pol transcripts (Yager et al., 1990). The 

possibility exists that several independent mechanisms may be responsible for the 

observed downregulation in HSV-1 Pol protein synthesis. Further investigation is 

necessary in order to determine how the 5’ end of the pol coding sequence contributes to 

the regulation of HSV-1 Pol expression during infection. 
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