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Impact of climate change on fine particulate 

matter (PM2.5)  air quality 

Abstract 

This dissertation investigates the impact of 2000-2050 climate change on fine 

particulate matter (PM2.5) air quality. We first applied a multiple linear regression 

model to study the correlations of total PM2.5 and its components with meteorological 

variables using the past decadal PM2.5 observations over the contiguous US. We find 

that daily variation in meteorology can explain up to 50% of PM2.5 variability. 

Temperature is positively correlated with sulfate and organic carbon (OC) almost 

everywhere. The correlation of nitrate with temperature is negative in the Southeast but 

positive in California and the Great Plains. Relative humidity (RH) is positively 

correlated with sulfate and nitrate, but negatively with OC. Precipitation is strongly 

negatively correlated with all PM2.5 components. 

We then compared the observed correlations of PM2.5 with meteorological 

variables with results from the GEOS-Chem chemical transport model. The results 

indicate that most of the correlations of PM2.5 with temperature and RH do not arise 

from direct dependence but from covariation with synoptic transport. We applied 

principal component analysis and regression to identify the dominant meteorological 

modes controlling PM2.5 variability, and showed that 20-40% of the observed PM2.5 
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daily variability can be explained by a single dominant meteorological mode: cold 

frontal passages in the eastern US and maritime inflow in the West. 

From 1999-2010 observations we further showed that interannual variability of 

annual mean PM2.5 in most of the US is strongly correlated with the synoptic period ! 

of the dominant meteorological mode as diagnosed from a spectral-autoregressive 

analysis. We then used the observed local PM2.5-to-period sensitivity to project PM2.5 

changes from the 2000-2050 changes in ! simulated by fifteen IPCC AR4 GCMs 

following the SRES A1B scenario. We project a likely increase of ~0.1 "g m
-3

 in annual 

mean PM2.5 in the eastern US arising from less frequent frontal ventilation, and a likely 

decrease of ~0.3 "g m
-3

 in the northwestern US due to more frequent maritime inflows. 

These circulation-driven changes are relatively small, representing only a minor climate 

penalty or benefit for PM2.5 regulatory purpose.  



 

 v 

Table of Contents 

Abstract ........................................................................................................................... iii!

Table of Contents ............................................................................................................. v!

List of Figures ............................................................................................................... viii!

List of Tables ................................................................................................................... xi!

Acknowledgements ........................................................................................................ xii!

Chapter 1. Overview ......................................................................................................... 1!

1.1.! Introduction ___________________________________________________________ 1!

1.2.! Motivation ____________________________________________________________ 3!

1.3.! Research questions and approach _________________________________________ 4!

1.4.! Major results __________________________________________________________ 6!

1.5.! References ____________________________________________________________ 9!

Chapter 2. Correlations between fine particulate matter (PM2.5) and meteorological 

variables in the United States: implications for the sensitivity of PM2.5 to climate 

change ............................................................................................................................ 13!

2.1.! Introduction __________________________________________________________ 14!

2.2.! Data and methods _____________________________________________________ 16!

2.2.1.! Meteorological data .......................................................................................................... 16!

2.2.2.! PM2.5 data ......................................................................................................................... 19!

2.2.3.! Multiple linear regression ................................................................................................ 21!



 

 vi 

2.3.! Correlations of PM2.5 and components with meteorological variables __________ 23!

2.3.1.! Total PM2.5 ....................................................................................................................... 23!

2.3.2.! PM2.5 components vs. temperature ................................................................................... 27!

2.3.3.! PM2.5 components vs. relative humidity .......................................................................... 29!

2.3.4.! PM2.5 components vs. wind direction ............................................................................... 30!

2.4.! Implications for the effects of climate change on air quality __________________ 32!

2.5.! Conclusions __________________________________________________________ 33!

2.6.! Acknowledgements ____________________________________________________ 35!

2.7.! References ___________________________________________________________ 35!

Chapter 3. Meteorological modes of variability for fine particulate matter (PM2.5) air 

quality in the United States: implications for PM2.5 sensitivity to climate change ..... 41!

3.1.! Introduction __________________________________________________________ 42!

3.2.! Data and models ______________________________________________________ 45!

3.2.1.! PM2.5 observations ........................................................................................................... 45!

3.2.2.! GEOS-Chem simulations ................................................................................................. 46!

3.2.3.! Multiple linear regression ................................................................................................ 48!

3.3.! Correlations of PM2.5 with meteorological variables _________________________ 52!

3.3.1.! Correlations with temperature .......................................................................................... 52!

3.3.2.! Correlations with relative humidity ................................................................................. 55!

3.3.3.! Correlations with precipitation and wind speed ............................................................... 56!

3.4.! Major meteorological modes controlling PM2.5 variability ____________________ 57!

3.4.1.! Principal component analysis and regression .................................................................. 58!

3.4.2.! Dominant meteorological modes of PM2.5 variability ..................................................... 60!



 

 vii 

3.5.! Cyclone frequency as a metric for climate change effect on PM2.5 _____________ 64!

3.6.! Conclusions __________________________________________________________ 69!

3.7.! Acknowledgements ____________________________________________________ 71!

3.8.! References ___________________________________________________________ 71!

Chapter 4. Impact of 2000-2050 climate change on fine particulate matter (PM2.5) air 

quality inferred from a multi-model analysis of meteorological modes ...................... 79!

4.1.! Introduction __________________________________________________________ 80!

4.2.! Observed sensitivity of PM2.5 to meteorological modes _______________________ 83!

4.3.! GCM simulations of meteorological modes relevant to PM2.5 _________________ 89!

4.4.! Effect of climate change on PM2.5 ________________________________________ 92!

4.5.! Conclusions __________________________________________________________ 98!

4.6.! Acknowledgements ___________________________________________________ 100!

4.7.! References __________________________________________________________ 100!

 

 

 

 

 



 

 viii 

List of Figures 

Figure 2.1. Daily variability of surface air temperature, relative humidity and 850-hPa 

geopotential height in the US. ................................................................................ 18!

Figure 2.2. Locations of EPA Air Quality System PM2.5-monitoring sites in 2005. ...... 19!

Figure 2.3. Annual mean concentrations of total PM2.5 and its five major components, 

interpolated on a 2.5
°
#2.5

°
 grid. ............................................................................. 21!

Figure 2.4. Correlations of total PM2.5 with meteorological variables.. ......................... 24!

Figure 2.5. Coefficients of determination (R
2
) for multiple linear regression of 

deseasonalized and detrended 1998-2008 total PM2.5 concentrations on 

meteorological variables. ........................................................................................ 25!

Figure 2.6. (a) Average differences in deseasonalized total PM2.5 concentrations on 

stagnant vs. non-stagnant days, based on deseasonalized and detrended 1998-2008 

observations. ........................................................................................................... 26!

Figure 2.7. Correlations of PM2.5 components with surface air temperature. ................ 28!

Figure 2.8. Correlations of PM2.5 components with with surface air relative humidity. 30!

Figure 2.9. Correlations of PM2.5 components with wind direction. .............................. 31!

Figure 3.1. US regions used to study the correlations of PM2.5 with meteorological 

modes of variability. ............................................................................................... 45!

Figure 3.2. Simulated (2005-2007) and observed (2004-2008) relationships of nitrate 

PM2.5 with surface air temperature. ........................................................................ 51!

Figure 3.3. Relationships of sulfate, nitrate, and organic carbon (OC) PM2.5 

concentrations with surface air temperature. .......................................................... 53!



 

 ix 

Figure 3.4. Relationships of sulfate, nitrate, and organic carbon (OC) PM2.5 

concentrations relative humidity. ........................................................................... 55!

Figure 3.5. Relationships of total PM2.5 concentrations with precipitation and wind 

speed. ...................................................................................................................... 57!

Figure 3.6. Dominant meteorological mode for observed PM2.5 variability in the 

Midwest inferred from the principal component analysis. ..................................... 61!

Figure 3.7. Dominant meteorological mode for observed PM2.5 variability in California 

inferred from the principal component analysis.. ................................................... 62!

Figure 3.8. Frequency spectrum of the daily time series of the dominant meteorological 

mode (cyclone/frontal passages) in the US Midwest for 1999-2010. .................... 65!

Figure 3.9. Anomalies of annual mean PM2.5 concentrations and median cyclone 

periods for the US Midwest. ................................................................................... 66!

Figure 3.10. Probability distribution for the change in median cyclone frequency in the 

US Midwest between 1996-2010 and 2036-2050, and the corresponding change in 

annual mean PM2.5 concentrations. ........................................................................ 68!

Figure 4.1. Observed 1999-2010 time series of annual mean PM2.5 and synoptic period 

" of the dominant meteorological mode (cold frontal passage) for the 4°#5° grid 

square centered over Chicago at N42° W87.5° ...................................................... 84!

Figure 4.2. Interannual correlation of annual mean PM2.5 with the period T of the 

dominant meteorological mode for 1999-2010 observations. ................................ 87!



 

 x 

Figure 4.3. Mean synoptic periods ! of the dominant meteorological modes for 

interannual PM2.5 variability in NCEP/NCAR Reanalysis 1 observations for 1981-

2000. ....................................................................................................................... 89!

Figure 4.4. Scatterplots of modeled vs. observed synoptic periods ! of dominant 

meteorological modes for interannual PM2.5 variability in the US for 1981-2000. 91!

Figure 4.5. Relationship between atmospheric baroclinicity and synoptic period " of the 

dominant meteorological mode for PM2.5 variability in the Chicago grid cell as 

simulated by 15 IPCC AR4 GCMs for 1981-2000. ................................................ 92!

Figure 4.6. Projected 2000-2050 changes in the periods of the dominant meteorological 

modes for PM2.5 variability, and implied changes in annual mean PM2.5. ............. 94!

Figure 4.7. 2000-2050 regional changes in annual mean PM2.5 concentrations due to 

changes in the periods of dominant meteorological modes for nine US regions. .. 95!

Figure 4.8. Summary of projected effects of 2000-2050 climate change on annual PM2.5 

in the US as driven by changes in circulation (including precipitation), temperature 

(biogenic emissions and PM volatility), vegetation dynamics, and wildfires. ....... 97!

 

 



 

 xi 

List of Tables 

Table 2.1. Meteorological parameters considered in the statistical analysis. ................. 17!

Table 3.1. Meteorological variables used for PM2.5 correlation analysis. ...................... 50!

Table 3.2. Dominant meteorological modes for regional PM2.5 variability. .................. 63!

Table 4.1. Variables used to define meteorological modes for PM2.5 variability. .......... 85!

 

 

 



 

 xii 

Acknowledgements 

In my five years of doctoral research at Harvard, I have been very fortunate to 

have the advice, support, and encouragement of my advisor Daniel Jacob, mentor 

Loretta Mickley, and many colleagues. 

Joining Daniel’s group is probably one of the best decisions I have ever made in 

my life. I am extremely grateful for Daniel’s guidance, especially in presenting, writing, 

and more importantly, seeing the big picture, identifying worthwhile questions to 

investigate, and becoming an independent thinker. I also thank Loretta for the countless 

time she has devoted to me, giving me valuable advice and timely encouragement in the 

midst of difficulties in my research. 

I would also like to thank other members of the Atmospheric Chemistry 

Modeling Group at Harvard, who have been wonderful and helpful colleagues in the 

past five years. I thank all of the many friends I have made here in Boston over the past 

nine years, for they have made my time here the best time of my life. Last, but not least, 

I would like to thank my parents and my wife, Karen, who have always been 

supportive, understanding and encouraging, and my Lord Jesus Christ who has held 

everything together. 

 

 

 

 

 



 

 xiii 

 

 

 

 

Dedicated to my parents, 

Laiha Wing and Hung Tai



 

 1 

Chapter 1.  Overview 

 

1.1. Introduction 

Air pollution is highly dependent on weather, and it follows that climate change 

could significantly impact air quality. The pollutants of the most public health concern 

are ozone and fine particulate matter with diameter less than 2.5 µm (PM2.5). A number 

of studies reviewed by Jacob and Winner (2009) have used chemical transport models 

(CTMs) driven by general circulation models (GCMs) to diagnose the effects of 21
st
-

century climate change on ozone and PM2.5 air quality at northern mid-latitudes. They 

generally concur that 2000-2050 climate change will degrade ozone air quality in 

polluted regions by 1-10 ppb driven largely by temperature increase (Weaver et al., 

2009). This finding is buttressed by observed correlations of ozone with temperature 

that are well reproduced by models (Jacob et al., 1993; Sillman and Samson, 1995; 

Rasmussen et al., 2012). By contrast, these GCM-CTM studies find potentially 

significant effect for PM2.5 (±0.1-1 "g m
-3

) but they show no consistency even in the 

sign of the effect (Jacob and Winner, 2009). 

The uncertain sensitivity to climate change in the case of PM2.5 reflects in part 

the complexity of the dependence of different PM2.5 components on meteorological 

variables, and in part the coupling of aerosols to the hydrological cycle which is not 

well represented in GCMs (Racherla and Adams, 2006; Pye et al., 2009). Higher 

temperatures can lead to higher sulfate concentrations due to faster SO2 oxidation, but 
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to lower nitrate and organic components due to volatility (Sheehan and Bowman, 2001; 

Aw and Kleeman, 2003; Dawson et al., 2007; Kleeman, 2008). Biogenic emissions of 

PM2.5 precursors including agricultural ammonia, soil NOx, and volatile organic 

compounds (VOCs) increase with temperature and further complicate the PM2.5-

temperature relationship (Pinder et al., 2004; Bertram et al., 2005; Guenther et al., 

2006). Higher relative humidity (RH) promotes aqueous-phase sulfate production and 

ammonium nitrate formation (Koch et al., 2003; Liao et al., 2006; Dawson et al., 2007), 

but inhibits fires, which are important contributors to organic aerosols in many regions 

(Park et al., 2007; Spracklen et al., 2009). An increase in precipitation causes a decrease 

in all PM2.5 components through scavenging (Liao et al., 2006; Dawson et al., 2007; Pye 

et al., 2009). Changes in precipitation and in planetary boundary layer (PBL) depth have 

a consistent effect on PM2.5 components but their projections in GCMs are highly 

uncertain (Jacob and Winner, 2009). 

Synoptic-scale transport should also be an important factor driving the effect of 

climate change on PM2.5. Previous studies have used principal component analysis 

(PCA) to identify important meteorological modes of variability for PM2.5 air quality 

(Cheng et al., 2007; Thishan Dharshana et al., 2010). Thishan Dharshana et al. (2010) 

found that as much as 30% of PM2.5 daily variability in the US Midwest is associated 

with passages of synoptic weather systems. Cold fronts associated with mid-latitude 

cyclone passages provide the dominant ventilation pathway for the eastern US (Cooper 

et al., 2001; Li et al., 2005). A general reduction in the frequency of these cyclones is 

expected as a result of greenhouse warming (Lambert and Fyfe, 2006; Christensen et 
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al., 2007; Pinto et al., 2007), potentially leading to more frequent and prolonged 

stagnation episodes (Mickley et al., 2004; Murazaki and Hess, 2006). Leibensperger et 

al. (2008) found a strong anticorrelation between summer cyclone frequency and ozone 

pollution in the eastern US for 1980-2006, and further showed evidence of a long-term 

decline in cyclone frequency over that period that significantly hindered attainment of 

ozone air quality standards. However, there is substantial uncertainty in regional 

projections of future cyclone frequency (Ulbrich et al., 2009; Lang and Waugh, 2011). 

 

1.2. Motivation 

The GCM-CTM projections for PM2.5 are uncertain partly because the ability of 

these models to reproduce present-day relationships between PM2.5 and meteorological 

variables has not been tested by observations.  Only a few observational studies so far 

have examined such correlations of PM2.5 with meteorological variables and then only 

for small regional domains and a limited suite of species and meteorological variables 

(Vukovich and Sherwell, 2002; Aw and Kleeman, 2003; Koch et al., 2003; Chu, 2004; 

Wise and Comrie, 2005). We need a better observational foundation for PM2.5-weather 

relationships. CTMs that can reasonably reproduce the present-day correlations can then 

be used to interpret and understand the sensitivity of PM2.5 to various weather 

conditions and climate change. 

Another difficulty in projecting the climate change effect on air quality is the 

underlying GCM uncertainty in simulating regional climate. This uncertainty arises 

both from model noise (climate chaos) and from model error (physics, parameters, 
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numerics). All GCM-CTM studies to date examining climate change effect on PM2.5 

have used a single climate change realization from a single GCM (Jacob and Winner, 

2009), so it is no surprise that they would yield inconsistent results. The standard 

approach adopted by the Intergovernmental Panel on Climate Change (IPCC) to reduce 

uncertainties in GCM regional climate projections is to use multiple realizations from 

an ensemble of GCMs (Christensen et al., 2007). Such an ensemble analysis is not 

practical for GCM-CTM studies of air quality because of the computational expense 

associated with chemistry and aerosol microphysics. Therefore, an alternative is to 

focus on ensemble analysis of GCM projections of the major meteorological modes that 

determine air quality. 

 

1.3. Research questions and approach 

The objective of this dissertation was to determine the impact of 2000-2050 

climate change on PM2.5 air quality. We addressed the following major questions: 

• What are the observed relationships of PM2.5 and its major components with 

meteorological variables? How do we physically interpret these relationships? 

• Can chemical transport models reproduce the observed correlations, and be used 

to understand the complex relationships between PM2.5 and weather? 

• Given the complex meteorological dependence of PM2.5, can we still find a 

single, reliable metric that can capture most of the daily PM2.5 variability and be 

used to predict PM2.5 air quality? 
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• What climatic factors control the interannual variability of PM2.5? Can we use 

such information to more robustly project future PM2.5 air quality based on 

climate model projections? 

To address these questions, we first applied a multiple linear regression (MLR) 

model to determine the correlations of PM2.5 and its major components with 

meteorological variables using 1998-2008 daily observations (EPA-AQS and 

NCEP/NCAR Reanalysis 1) over the contiguous US. The data were deseasonalized and 

detrended to focus on synoptic-scale correlations. Our aim here was to uncover 

important correlations that can be used to gain insight into the sensitivity of PM2.5 to 

climate change as well as to test the GCM-CTM representations of aerosol processes. 

We then applied the GEOS-Chem global CTM to interpret the observed 

correlations between PM2.5 components and meteorological variables in the contiguous 

US. A similar MLR model was used to correlate both observed and simulated daily 

mean concentrations of PM2.5 for 2004-2008. As we will see, interpretation of these 

correlations is complicated by the covariation of meteorological variables with synoptic 

transport. To address this issue, we used PCA and regression (with validation from 

examination of weather charts) to determine the dominant meteorological modes of 

daily PM2.5 variability in different US regions. 

We further applied a spectral-autoregressive analysis to the dominant 

meteorological modes to determine their synoptic-scale frequencies. The corresponding 

synoptic periods in different US regions were correlated with detrended annual mean 

PM2.5. A reduced-major-axis regression was used to determine the local PM2.5-to-period 
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sensitivity (dPM2.5/d!), which would be used as a metric to infer the effect of climate 

change on PM2.5. 

To examine intra-model variability of future projections of synoptic periods due 

to climate chaos, we conducted an ensemble of five realizations of 2000-2050 climate 

change using the Goddard Institute for Space Studies (GISS) GCM III with A1B 

greenhouse and aerosol forcings. We diagnosed the 2000-2050 change in the period of 

cyclones in the US Midwest and from there inferred the impact on annual mean PM2.5. 

Finally, we examined the Coupled Model Intercomparison Project phase 3 

(CMIP3) multi-model dataset of climate change simulations produced by the ensemble 

of GCMs contributing to the IPCC 4
th

 Assessment Report (AR4). We used the CMIP3 

archive of 15 GCMs under the A1B scenario to project the 2000-2050 trends of 

synoptic periods of the dominant meteorological modes, and from there deduced the 

corresponding regional trends in PM2.5 across the continental US. These climate-driven 

PM2.5 projections, independent of trends in anthropogenic emissions, would represent 

the “climate penalty” or “benefit” for PM2.5, which will aid air quality managers to plan 

emission goals accordingly. 

 

1.4. Major results 

We found that daily variation in meteorology as described by the MLR 

including eight predictor variables (temperature, relative humidity, precipitation, 850-

hPa geopotential height or sea level pressure, sea-level pressure tendency, wind speed, 

E-W and N-S wind direction) can explain up to 50% of the observed daily PM2.5 
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variability in the US. Stagnation is a strong predictor; PM2.5 concentrations in the US 

are on average 2.6 µg m
-3

 higher on a stagnant day vs. non-stagnant day. 

We observed strong positive correlations of all PM2.5 components with 

temperature in most of the US, except for nitrate in the Southeast where the correlation 

is negative. A temperature perturbation simulation with GEOS-Chem revealed that most 

of the correlations of PM2.5 with temperature do not arise from direct dependence on 

temperature but from covariation with synoptic transport. Exceptions are nitrate and OC 

in the Southeast, where the direct dependence of ammonium nitrate thermodynamics 

and biogenic VOC emissions on temperature contributes significantly to the 

correlations. RH is generally positively correlated with sulfate and nitrate but negatively 

correlated with OC; the correlations also appear to be mainly driven by covariation of 

RH with synoptic transport. Total PM2.5 is strongly negatively correlated everywhere 

with precipitation and wind speed. Correlation with vector winds shows that the 

industrial Midwest is a source of sulfate for much of the country, and that nitrate is 

generally highest under inflow from agricultural regions (reflecting NH3 emissions). 

There is also some association of elevated OC with flow from regions of elevated 

biogenic and fire emissions in the Southeast and the West. 

We found from the PCA and regression that 20-40% of the observed PM2.5 day-

to-day variability in different US regions can be explained by a single dominant 

synoptic meteorological mode: cold frontal passages in the eastern US and maritime 

inflow in the West. These and other transport modes are found to contribute to most of 
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the overall correlations of different PM2.5 components with temperature and RH except 

in the Southeast. 

We showed that the interannual variability of annual mean PM2.5 in the Midwest 

for 1999-2010 is strongly correlated with cyclone frequency as diagnosed from the 

spectral-autoregressive analysis, with dPM2.5/d! = ~1 µg m
-3

 d
-1

. Of the five realizations 

of 2000-2050 climate change using the GISS GCM III, three found a significant 

decrease in cyclone frequency over the US Midwest, one found no significant change 

and one found a significant increase. From this ensemble we derive a likely increase in 

annual mean PM2.5 of ~0.1 µg m
-3

 in the Midwest in the 2050s climate. This is 

consistent with previous GCM-CTM studies using the same GCM and suggests that 

cyclone frequency may be a major driver of the effect of climate change on PM2.5 air 

quality. However, the variability of cyclone trends (including in sign) across multiple 

realizations of the same GCM with identical forcings demonstrates the importance of 

multiple climate change realizations in GCM-CTM studies because of climate chaos. 

We further showed that, on a 4°#5° latitude-by-longitude grid scale, the 

observed 1999-2010 interannual variability of PM2.5 in most of the US is strongly 

correlated with the periods (!) of the dominant synoptic-scale meteorological modes, 

particularly in the eastern US where these modes correspond to frontal passages. We 

found that all GCMs have significant skill in reproducing T and its spatial distribution 

over the US, reflecting their ability to capture the baroclinicity of the atmosphere. 

Finally, we examined the 2000-2050 trends in synoptic periods T across the US 

as simulated by the 15 GCMs from CMIP3. We found a general slowing down of 
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synoptic circulation in the eastern US, as measured by an increase in T. We inferred that 

changes in circulation driven by climate change will likely increase annual mean PM2.5 

in the eastern US by ~0.1 "g m
-3

,
 
reflecting a more stagnant mid-latitude troposphere 

and less frequent ventilation by frontal passages. We also projected a likely decrease by 

~0.3 "g m
-3

 in the Northwest due to more frequent ventilation by maritime inflows. 

Potentially larger regional effects of climate change on PM2.5 air quality may arise from 

changes in temperature, biogenic emissions, wildfires, and vegetation. Overall, 

however, it is unlikely that 2000-2050 climate change will modify annual mean PM2.5 

by more than 0.5 "g m
-3

. These climate change effects represent a relatively minor 

penalty or benefit for PM2.5 regulatory purpose. 
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Chapter 2.  Correlations between fine particulate matter (PM2.5) 

and meteorological variables in the United States: implications for 

the sensitivity of PM2.5 to climate change 

{ Tai, A.P.K., L.J. Mickley, and D.J. Jacob. 2010. Correlations between fine particulate 

matter (PM2.5) and meteorological variables in the United States: implications for the 

sensitivity of PM2.5 to climate change. Atmos. Environ. 44, 3976-3984. } 

 

Abstract 

We applied a multiple linear regression (MLR) model to study the correlations 

of total PM2.5 and its components with meteorological variables using an 11-year (1998-

2008) observational record over the contiguous US. The data were deseasonalized and 

detrended to focus on synoptic-scale correlations. We find that daily variation in 

meteorology as described by the MLR can explain up to 50% of PM2.5 variability with 

temperature, relative humidity (RH), precipitation, and circulation all being important 

predictors. Temperature is positively correlated with sulfate, organic carbon (OC) and 

elemental carbon (EC) almost everywhere. The correlation of nitrate with temperature is 

negative in the Southeast but positive in California and the Great Plains. RH is 

positively correlated with sulfate and nitrate, but negatively with OC and EC. 

Precipitation is strongly negatively correlated with all PM2.5 components. We find that 

PM2.5 concentrations are on average 2.6 µg m
-3

 higher on stagnant vs. non-stagnant 

days. Our observed correlations provide a test for chemical transport models used to 
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simulate the sensitivity of PM2.5 to climate change. They point to the importance of 

adequately representing the temperature dependence of agricultural, biogenic and 

wildfire emissions in these models. 

2.1. Introduction 

Particulate matter with diameter of 2.5 µm or less (PM2.5) is a major air quality 

concern because of its effects on human health. PM2.5 concentrations depend on 

meteorological conditions, suggesting that climate change could have significant effects 

on PM2.5 air quality. Several studies using chemical transport models (CTMs) driven by 

general circulation models (GCMs) have investigated the effects of 21
st
-century climate 

change on PM2.5 (Liao et al., 2006; Racherla and Adams, 2006; Tagaris et al., 2007; 

Heald et al., 2008; Avise et al., 2009; Pye et al., 2009). They find significant effects (±1 

"g m
-3

) but there is no consistency across studies, including in the sign of effects, so 

that little can be concluded at present regarding the sensitivity of PM2.5 to climate 

change (Jacob and Winner, 2009). 

The uncertain sensitivity to climate change in the case of PM2.5 reflects in part 

the complexity of the dependence of different PM2.5 components on meteorological 

variables, and in part the coupling of aerosols to the hydrological cycle which is not 

well represented in GCMs (Racherla and Adams, 2006; Pye et al., 2009). For example, 

sulfate concentrations are expected to increase with increasing temperature due to faster 

SO2 oxidation, but semi-volatile components such as nitrate and organics are expected 

to decrease as they shift from the particle phase to the gas phase at higher temperature 

(Sheehan and Bowman, 2001; Aw and Kleeman, 2003; Dawson et al., 2007; Tsigaridis 
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and Kanakidou, 2007; Kleeman, 2008). Increasing cloud can increase sulfate due to in-

cloud production, and higher relative humidity (RH) promotes the formation of 

ammonium nitrate, but an increase in precipitation causes a decrease in all PM2.5 

components through scavenging (Koch et al., 2003; Liao et al., 2006; Dawson et al., 

2007; Pye et al., 2009). Increased stagnation in the future climate may also worsen 

PM2.5 air quality (Liao et al., 2006; Leibensperger et al., 2008). 

GCM-CTM studies of the effects of climate change on air quality can only be as 

good as the model descriptions of processes. Confidence is usually assessed by cross-

model comparisons (Weaver et al., 2009) and comparisons with observed 

concentrations. However, biases common to all models may render consensus 

misleading, and comparisons with observed concentrations can only test the simulation 

of the present atmosphere, not the sensitivity to climate change. It would be far more 

relevant to test the ability of models to reproduce observed correlations of air quality 

with meteorological variables, as has been done for ozone through the observed 

correlation with temperature (Jacob and Winner, 2009). We need a better observational 

foundation to do the same with PM2.5. Only a few observational studies so far have 

examined the correlations of PM with meteorological variables and then only for small 

regional domains and a limited suite of species and meteorological variables (Vukovich 

and Sherwell, 2002; Aw and Kleeman, 2003; Koch et al., 2003; Chu, 2004; Wise and 

Comrie, 2005). 

To address this need, we present here a systematic statistical analysis to quantify 

the correlations of total PM2.5 and its different components with meteorological 
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variables on the scale of the contiguous US and for an 11-year record of observations 

(1998-2008). Our aim is to uncover important correlations that can be used to gain 

insight into the sensitivity of PM2.5 to climate change as well as to test the GCM-CTM 

representations of aerosol processes. 

 

2.2. Data and methods 

2.2.1. Meteorological data 

Daily mean meteorological data from 1998 to 2008 were obtained from the 

National Center for Environmental Prediction / National Center for Atmospheric 

Research (NCEP/NCAR) Reanalysis 1 

(http://www.cdc.noaa.gov/cdc/data.ncep.reanalysis.html) (Kalnay et al., 1996; Kistler et 

al., 2001). Gridded U.S. daily precipitation observations were obtained from the 

National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center 

(http://www.cpc.ncep.noaa.gov/products/precip/realtime/GIS/retro.shtml). The 

meteorological parameters are listed in Table 2.1. They include surface temperature 

(x1), three hydrometeorological parameters (x2, x3, x4), two anticyclone parameters (x5, 

x6), wind speed (x7), and wind direction (x8, x9). All except x6, x8 and x9 were 

deseasonalized and detrended by subtracting the 30-day moving averages from the 

original data, allowing us to focus on the synoptic-scale variability. 
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Table 2.1. Meteorological parameters considered in the statistical analysis 
a
.  

Independent variable Meteorological parameter
 

x1 Surface air temperature (K) 
b
 

x2 Surface air relative humidity (%) 
b
 

x3 Daily total precipitation (cm d
-1

) 
c
 

x4 Total column cloud cover (%) 
d
 

x5 Geopotential height at 850 hPa (km) 

x6 Local rate of change of sea level pressure dSLP/dt (hPa d
-1
) 

x7 Surface wind speed (m s
-1

) 
b, e

 

x8 East-west wind direction indicator cos! (dimensionless) 
f
 

x9 North-south wind direction indicator sin! (dimensionless) 
f 

 

a. All meteorological parameters are 24-hour averages. Except for daily total 

precipitation and cloud cover, all data are from NCEP/NCAR Reanalysis 1 with spatial 

resolution of 2.5°#2.5°. 

b. “Surface” data are from the 0.995 sigma level. 

c. Obtained from the NOAA Climate Prediction Center, regridded from original spatial 

resolution of 0.25°#0.25° to 2.5°#2.5°. 

d. Obtained from NCEP/NCAR Reanalysis 1, regridded from original spatial resolution 

in T62 Gaussian grid with 192#94 points to 2.5°#2.5°. 

e. Calculated from the horizontal wind vectors (u, v). 

f. ! is the angle of the horizontal surface wind vector counterclockwise from the east. 
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Figure 2.1. Daily variability of surface air temperature, relative humidity and 850-hPa 

geopotential height in the US. Figure shows standard deviations for deseasonalized and 

detrended observations from 1998-2008. 

 

Figure 2.1 shows the standard deviation of a few deseasonalized and detrended 

meteorological variables. Temperature has greater variability in the North than in the 

South, inland than on the coasts. RH variability is largest in the Southwest and South-

central. The 850-hPa geopotential height is more variable in the North, particularly in 

the Northeast and Midwest, reflecting frontal passages that drive ventilation of these 

regions. 
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2.2.2. PM2.5 data 

Daily mean surface concentrations of total PM2.5 from 1998 to 2008 measured 

with the Federal Reference Method (FRM) were obtained from the EPA Air Quality 

System (EPA-AQS) (http://www.epa.gov/ttn/airs/airsaqs/), which covers a network of 

~1000 sites in the contiguous US. Speciation data from 2000 to 2008 including sulfate, 

nitrate, ammonium, organic carbon (OC), and elemental carbon (EC) were obtained 

from EPA-AQS for State and Local Air Monitoring Stations (SLAMS) and the 

Speciation Trends Network (STN), a total of ~200 sites. All PM data were collected 

either every day, every 3
rd

 day (most common for total PM2.5) or every 6
th

 day (most 

common for speciation data). Figure 2.2 shows the site locations in 2005 and the 

regional division used in this work. 

 

 

Figure 2.2. Locations of EPA Air Quality System PM2.5-monitoring sites in 2005. Black 

dots denote total PM2.5 monitors where data are collected with Federal Reference 

Method (FRM); yellow diamonds denote monitors in chemical speciation network 

(SLAMS + STN). US regional divisions used in our analysis are also shown. 
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Interpolated 2.5°#2.5° 24-h average PM2.5 fields were constructed from site 

measurements to produce an 11-year time series of PM2.5 concentrations for each grid 

square. We used inverse distance weighting, in which all n sampled values (zi) within a 

specified search distance (dmax) are inversely weighted by their distances (dij) from the 

grid centroid to produce an average (zj) for each grid square j: 

! 

z j =

1 dij( )
k

zi
i=1

n

"

1 dij( )
k

i=1

n

"
        (2.1) 

where k is the power parameter. We chose k = 2 and dmax = 500 km. Results are not 

overly sensitive to the choice of interpolation method; an alternate method with simple 

spatial averaging of data in individual grid squares produced similar correlation results. 

Kriging has been used in the past for spatial interpolation of air quality data (Lefohn et 

al., 1988; Jerrett et al., 2005), but we did not use it here because the PM2.5 data are too 

unevenly distributed (Wong et al., 2004). 

Figure 2.3 shows the annual mean concentrations of total PM2.5 and the five 

major PM2.5 components, interpolated on the 2.5°#2.5° grid and averaged over the 11-

year (total PM2.5) and 9-year (speciation) periods. We do not consider dust and sea salt 

as they are generally small contributors to PM2.5. Spatial interpolation is more robust in 

the East, where site density is higher and urban-rural contrast is lower than in the West 

(Malm et al., 2004; Tang et al., 2004). PM2.5 concentrations have generally decreased 

over the 1998-2008 period and this long-term trend is removed from our analysis as 

described below. 
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Figure 2.3. Annual mean concentrations of total PM2.5 and its five major components, 

interpolated on a 2.5
°
#2.5

°
 grid as described in text. Concentrations are in units of µg m

-

3
 and averaged over 1998-2008 for total PM2.5 and 2000-2008 for individual species. 

OC concentrations were adjusted to account for background filter contamination by 

subtracting the 2005 mean field blank measurements. Note differences in scales 

between panels. 

 

2.2.3. Multiple linear regression 

We used a multiple linear regression (MLR) model to correlate PM2.5 and its 

components to the meteorological variables in Table 2.1. All PM2.5 data were 

deseasonalized and detrended in the same way as with the meteorological variables. 

This focuses the correlations on synoptic time scales, avoiding aliasing from common 

seasonal variations or long-term trends. The model is of the form 
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! 

y = "
0

+ "k xk
k=1

9

# + interaction terms       (2.2) 

where y is the deseasonalized and detrended concentration of total PM2.5 or its 

components for each grid square, (x1, …, x9) is the ensemble of meteorological 

variables in Table 2.1, and "k are the regression coefficients. The interaction terms are 

up to third-order (xk xl xm). For each grid square, the regression was done stepwise to 

add and delete terms based on Akaike Information Criterion (AIC) statistics to obtain 

the best model fit (Venables and Ripley, 2003). The number of explanatory terms xk in 

the MLR is on average 21. The Cook’s distances (Cook, 1979) show that the regression 

results reflect the broad population rather than a small number of influential outliers. 

The variance inflation factor (Velleman and Welsch, 1981) ranges between 1.0 and 2.7, 

indicating that the problem of multicollinearity among meteorological variables is 

generally unimportant. The coefficient of determination (R
2
) quantifies the fraction of 

variance of PM2.5 that can be accounted for with the MLR model (Kutner, 2004). 

In addition to full-year regressions, we also conducted regressions for seasonal 

subsets of data (DJF, MAM, JJA, SON). These generally showed results similar to the 

full-year correlations but we will highlight some prominent differences. 
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2.3. Correlations of PM2.5 and components with meteorological 

variables 

2.3.1. Total PM2.5 

Figure 2.4 shows the relationships of total PM2.5 with meteorological variables, 

as measured by the MLR coefficients "k in Eq. (2.2) associated with each 

meteorological variable. Interaction terms are relatively small and not shown. Individual 

PM2.5 components show similar correlations as total PM2.5 for all meteorological 

variables except temperature, RH, and wind direction. Component-specific correlations 

for these variables are discussed in the following subsections. 

Temperature is positively correlated with PM2.5 concentrations throughout the 

US. This contrasts with the CTM sensitivity study of Dawson et al. (2007), which found 

an average negative temperature effect in the East of -0.016 and -0.17 µg m
-3

 K
-1

 in 

summer and in winter, respectively, primarily due to volatilization of ammonium nitrate 

at higher temperature. Dawson et al. (2007) perturbed temperature in their CTM while 

holding all other variables constant. The positive temperature relationship that we find 

here reflects meteorological cofactors as discussed in Section 2.3.2. 

Precipitation is negatively correlated with PM2.5 concentrations throughout the 

US, as would be expected from the scavenging sink. The correlation of PM2.5 with RH 

is positive in the Northeast and Midwest but negative in the Southeast and the West. 

The correlation with column cloud cover is generally weak. We find surface RH a better 

indicator than column cloud cover for liquid water content within the surface boundary 

layer. 
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Figure 2.4. Correlations of total PM2.5 with meteorological variables. Figure shows 

multiple linear regression coefficients, "k, in units of µg m
-3

 D
-1

, where D is dimension 

of each meteorological variable listed in Table 1. Wind direction panel shows vector 

sums of regression coefficients "8 and "9. Values are for deseasonalized and detrended 

variables and are only shown when significant with 95% confidence (p-value < 0.05). 

 

Figure 2.4 also shows that high PM2.5 concentrations are correlated with high 

850-hPa geopotential height (anticyclonic conditions), decreasing sea-level pressure 

(dSLP/dt < 0), low wind speed, and (in the East) southerly flow. The positive 

association with anticyclonic conditions can be simply explained by dry weather and 
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subsidence inversions. The negative association with dSLP/dt reflects PM accumulation 

on the tail end (west side) of anticyclones and PM removal by cold fronts. 

Figure 2.5 shows the coefficients of determination (R
2
) for the MLR model fit to 

observations, with values adjusted to account for different number of explanatory terms 

in the MLR at each location (Kutner, 2004). They range from 0.1 to 0.5 depending on 

grid square. Wise and Comrie (2005) similarly found R
2
 values of 0.1-0.5 for 

correlations of PM to meteorological variables at sites in the Southwest. We find the 

largest R
2
 in the Northeast, Midwest and Pacific Northwest, where meteorological 

variables can explain up to 50% of daily PM2.5 variability. Values are lowest in the 

west-central US but this could reflect the paucity of sites to define mean concentrations 

in 2.5°#2.5° grid squares (Fig. 2.2). 

 

 

Figure 2.5. Coefficients of determination (R
2
) for multiple linear regression of 

deseasonalized and detrended 1998-2008 total PM2.5 concentrations on meteorological 

variables of Table 2.1. Values are adjusted to account for different number of 

explanatory terms at each location. 
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Figure 2.6. (a) Average differences in deseasonalized total PM2.5 concentrations on 

stagnant vs. non-stagnant days, based on deseasonalized and detrended 1998-2008 

observations. Stagnation is defined following Wang and Angell (1999). Only 

differences with 95% confidence (p-value < 0.05) are shown. (b) Number of stagnant 

days per year averaged over 1998-2008. 

 

Stagnation is characterized by anticyclonic condition, weak wind, no 

precipitation, and usually high temperature. Taken together, the results above illustrate 

strong association of high PM2.5 levels with stagnation. A simple linear regression of 

deseasonalized and detrended total PM2.5 concentrations on a categorical variable for 

stagnation (one for a stagnant day, zero otherwise) was conducted to estimate the 

average differences in total PM2.5 between a stagnant vs. non-stagnant day. A stagnant 
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day is defined in our study as having daily mean SLP geostrophic wind < 8 m s
-1

, daily 

mean 500 hPa wind < 13 m s
-1

, and daily total precipitation < 0.01 cm d
-1

 (Wang and 

Angell, 1999). The result is shown in Fig. 2.6. Total PM2.5 is on average 2.6 "g m
-3

 

higher on a stagnant day. Fig. 2.6 also shows the average number of stagnant days per 

year, highlighting the severity of stagnation in the Southwest. 

2.3.2. PM2.5 components vs. temperature 

Figure 2.7 shows the deseasonalized relationships of the major PM2.5 

components with surface air temperature, as measured by the MLR coefficient "1 in Eq. 

(2.2). We do not show ammonium as it is mainly the counter-ion for sulfate and nitrate. 

The relationships in Fig. 2.7 are positive almost everywhere for all components except 

nitrate. The relationship for nitrate is negative in the South but positive in the North and 

California. We elaborate on each component below. 

The MLR coefficients for sulfate in the East are on average 530 and 25 ng m
-3

 

K
-1

 in summer and winter, respectively. CTM sensitivity simulations also find an 

increase of sulfate with temperature due to higher SO2 oxidation rates (Aw and 

Kleeman, 2003; Dawson et al., 2007; Kleeman, 2008) but the dependence is much 

weaker. Dawson et al. (2007) found for the same region an average sulfate response of 

34 and 1.6 ng m
-3

 K
-1

 in summer and in winter, respectively, an order of magnitude 

smaller than our coefficients. This suggests that the observed correlation of sulfate with 

temperature is mainly determined by joint association with southerly flow, stagnation, 

and ventilation of pollution by cold fronts. 
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Figure 2.7. Correlations of PM2.5 components with surface air temperature. Figure 

shows multiple linear regression coefficients "1, normalized to annual mean 

concentrations of Fig. 2.3. Values are for deseasonalized and detrended variables and 

are only shown when significant with 95% confidence (p-value < 0.05). 

 

The strong positive correlation that we find for nitrate in the North and 

California contrasts with CTM sensitivity studies indicating a strong negative 

dependence of nitrate on temperature due to increased volatilization of ammonium 

nitrate (Aw and Kleeman, 2003; Dawson et al., 2007; Kleeman, 2008). Part of the 

explanation could be the joint association with stagnation and cold fronts. Also, these 

CTM sensitivity studies did not account for the increase in agricultural NH3 and NOx 

emissions with increasing temperature (Bouwman et al., 2002; Pinder et al., 2004; 

Aneja et al., 2008). Nitrate formation in most of the US is limited by the supply of NH3 

(Park et al., 2004). In the Great Plains where nitrate formation is limited by the supply 
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of nitric acid (Park et al., 2004), the positive correlation may reflect the temperature 

dependence of soil NOx emissions (Bertram et al., 2005). 

OC and EC increase with temperature nearly everywhere, although generally 

more weakly than sulfate. The weaker correlation of inert EC vs. sulfate might suggest a 

chemical influence on the sulfate correlation, but the EC measurements are also subject 

to larger errors (Chow et al., 2004; Flanagan et al., 2006). The OC correlation is mostly 

driven by the summer months (170 ng m
-3

 K
-1

), which may reflect biogenic volatile 

organic compound (VOC) emissions and wildfires. The Dawson et al. (2007) CTM 

sensitivity study found an average OC response of -14 ng m
-3

/K in summer and -13 ng 

m
-3

/K in winter driven by volatility, but they did not account for variability of biogenic 

VOC emissions or wildfires. 

2.3.3. PM2.5 components vs. relative humidity 

Figure 2.8 shows the deseasonalized relationships of the major PM2.5 

components with RH, as measured by the MLR coefficient "2 in Eq. (2.2). The 

coefficients for sulfate and nitrate are generally positive. For sulfate this likely reflects 

the dominant source from in-cloud SO2 oxidation and the association with moist 

southerly flow shown by the wind patterns in Fig. 2.4. The stronger positive association 

of nitrate with RH likely reflects the RH dependence of the ammonium nitrate 

formation equilibrium (Stelson and Seinfeld, 1982). In the agricultural Midwest and 

Great Plains where ammonia is in excess, production of nitrate can be largely 

determined by RH (Kleeman, 2008), possibly explaining the particularly strong nitrate-

RH correlation there. 
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Figure 2.8. Same as Fig. 2.7 but for correlations of PM2.5 components with surface air 

relative humidity. 

 

We find that OC and EC have a negative association with RH, most strongly in 

the Southeast and the West. This explains the negative association of total PM2.5 with 

RH in these regions (Fig. 2.4). It may reflect the association of low RH with fires, 

which are major contributors to carbonaceous aerosols in both regions (Park et al., 

2007), and also the association of high RH with clean marine air. These factors 

apparently dominate over any enhanced formation of OC aerosol in aqueous-phase 

particles at high RH (Volkamer et al., 2007; Fu et al., 2009). 

2.3.4. PM2.5 components vs. wind direction 

Figure 2.9 shows the normalized vector sums of MLR coefficients "8 and "9 in 

Eq. (2.2), which indicate the wind direction most strongly associated with high 
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concentrations of PM components. This dramatically illustrates the role of SO2 

emissions in the Ohio Valley as a source of sulfate for much of the country. By contrast, 

nitrate shows a major influence from the agricultural areas in the Midwest and Great 

Plains with large NH3 emissions. OC has more distributed sources with some exported 

influence from the Southeast and the West, likely reflecting biogenic and fire sources 

(Liao et al., 2007; Park et al., 2007). EC shows little correlation with wind direction 

except in the Northeast where southwesterly flow carries polluted air. 

 

 

Figure 2.9. Correlations of PM2.5 components with wind direction. Figure shows vector 

sums of multiple linear regression coefficients "8 and "9, normalized to annual mean 

concentrations of Fig. 2.3. Length of arrows (in units of % per unit sine or cosine) 

indicates magnitude of correlation. Values are for deseasonalized and detrended 

variables and are only shown when significant with 95% confidence (p-value < 0.05). 
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2.4. Implications for the effects of climate change on air quality 

The observed relationships between PM2.5 and meteorological variables 

presented here offer a test of the reliability of GCM-CTM simulations in describing the 

response of PM2.5 to climate change. Our results point to some potential effects of 

climate change and also to some processes that need to be better represented in CTMs. 

The most robust projection for 21
st
-century climate change is a warming of the 

surface (Christensen et al., 2007). We find a strong positive correlation of observed 

PM2.5 with temperature driven mainly by sulfate and OC, in contrast to previous CTM 

sensitivity studies that perturbed temperature only and found a negative response (Aw 

and Kleeman, 2003; Dawson et al., 2007; Kleeman, 2008). These studies did not 

account for the correlation of temperature with stagnation or other meteorological 

conditions, which could play an important role in the observed correlations. But our 

results also suggest that the temperature dependence of fires and biogenic (including 

agricultural) emissions of NH3, NOx, and VOCs may play an important role in driving 

the correlation of PM2.5 with temperature and need to be resolved in GCM-CTM 

studies. Changes in precipitation patterns can obviously affect PM2.5 concentrations, as 

reflected in the negative observed correlation. GCM simulations for the 21
st
-century 

climate find a consistent increase in annual mean precipitation in the Northeast and a 

decrease in the Southwest, but predictions for the rest of the US are less consistent 

(Christensen et al., 2007). Pye et al. (2009) pointed out that the association of deeper 

boundary layer mixing with reduced precipitation might represent a compensating effect 

on PM2.5. Models in general find a great sensitivity of PM2.5 to mixing depth due to 
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dilution (Dawson et al., 2007; Kleeman, 2008). Projections of changes in mixing depth 

for the 21
st
-century climate are inconsistent across different GCMs (Jacob and Winner, 

2009). Mixing depth could either increase or decrease, depending in particular on the 

changes in soil moisture (Wu et al., 2008). 

Increased stagnation in the future climate would cause a corresponding increase 

in PM2.5 levels, as shown in Fig. 2.6. GCMs consistently find more frequent and 

prolonged stagnation episodes at northern mid-latitudes in the future climate (Mickley 

et al., 2004; Murazaki and Hess, 2006; Wu et al., 2008). Leibensperger et al. (2008) 

found for the East in summer a strong anticorrelation between the number of stagnant 

days and the frequency of mid-latitudes cyclones. They pointed out that mid-latitude 

cyclone frequency has been decreasing over the 1980-2006 period and attributed this 

trend to greenhouse warming. Extrapolating their 1980-2006 trend in summer cyclone 

frequency (-0.15 a
-1

) to 2050, and using their observed anticorrelation between cyclone 

frequency and stagnant days, would imply 4.5 more stagnant days per summer in the 

East by 2050. From our results in Fig. 2.6, this translates to an average increase of 0.24 

µg m
-3

 in summer mean PM2.5 concentrations with a maximum increase of 0.93 µg m
-3

 

in the Midwest. 

 

2.5. Conclusions 

We applied a multiple linear regression (MLR) model to determine the 

correlations of total fine particulate matter (PM2.5) and its major components with 

meteorological variables using 1998-2008 daily observations over the contiguous US. 
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The data were deseasonalized and detrended to focus on synoptic-scale correlations. 

Our goals were to improve the understanding of the sensitivity of PM2.5 to meteorology, 

and to develop an observational resource that can test the ability of chemical transport 

models (CTMs) to project the sensitivity of PM2.5 to future climate change as simulated 

by general circulation models (GCMs). 

We found that daily variation in meteorology as described by the MLR 

including nine predictor variables (temperature, relative humidity, precipitation, cloud 

cover, 850-hPa geopotential height, sea-level pressure tendency, wind speed, E-W and 

N-S wind direction) can explain up to 50% of daily PM2.5 variability in the US. 

Stagnation is a strong predictor; PM2.5 concentrations in the US are on average 2.6 µg 

m
-3

 higher on a stagnant day vs. non-stagnant day. 

Correlations with temperature, RH, and wind direction differ for individual 

PM2.5 components, leading to regional differences in the correlations for total PM2.5 

depending on the relative abundance of each component. In the case of temperature, 

correlations of sulfate, organic carbon (OC), and elemental carbon (EC) are 

predominantly positive, reflecting the joint association with stagnation and cold front 

ventilation, and with biogenic and fire emissions. Nitrate is negatively correlated with 

temperature in the South, as expected from the volatility of ammonium nitrate, but 

positively correlated in California and the Great Plains, which may reflect the 

temperature dependence of agricultural NH3 and NOx emissions. 

Relative humidity (RH) is positively correlated with sulfate and nitrate, which 

may reflect in-cloud sulfate formation and the RH dependence of ammonium nitrate 
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formation. In contrast, RH is negatively correlated with OC and elemental carbon (EC), 

possibly reflecting sources from fires. 

Correlation with vector winds shows that the industrial Midwest is a source of 

sulfate for much of the country, and that nitrate is generally highest under inflow from 

agricultural regions (reflecting NH3 emissions). There is also some association of 

elevated OC with flow from regions of elevated biogenic and fire emissions in the 

Southeast and the West. Perturbations to wind patterns from climate change would thus 

have a major effect on the distribution and composition of PM2.5. 

Our results point to some potential effects of climate change (including changes 

in temperature, precipitation patterns and stagnation) on future PM air quality, and 

stress the importance of adequately representing the temperature dependence of 

agricultural, biogenic and wildfire emissions in GCM-CTM studies. 
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Chapter 3.  Meteorological modes of variability for fine 

particulate matter (PM2.5) air quality in the United States: 

implications for PM2.5 sensitivity to climate change   

{ Tai, A.P.K., L.J. Mickley, D.J. Jacob, E.M. Leibensperger, L. Zhang, J.A. Fisher, and 

H.O.T. Pye. 2012. Meteorological modes of variability for fine particulate matter 

(PM2.5) air quality in the United States: implications for PM2.5 sensitivity to climate 

change. Atmos. Chem. Phys., 12, 3131-3145. } 

 

Abstract 

We applied a multiple linear regression model to understand the relationships of 

PM2.5 with meteorological variables in the contiguous US and from there to infer the 

sensitivity of PM2.5 to climate change. We used 2004-2008 PM2.5 observations from 

~1000 sites (~200 sites for PM2.5 components) and compared to results from the GEOS-

Chem chemical transport model (CTM). All data were deseasonalized to focus on 

synoptic-scale correlations. We find strong positive correlations of PM2.5 components 

with temperature in most of the US, except for nitrate in the Southeast where the 

correlation is negative. Relative humidity (RH) is generally positively correlated with 

sulfate and nitrate but negatively correlated with organic carbon. GEOS-Chem results 

indicate that most of the correlations of PM2.5 with temperature and RH do not arise 

from direct dependence but from covariation with synoptic transport. We applied 

principal component analysis and regression to identify the dominant meteorological 
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modes controlling PM2.5 variability, and show that 20-40% of the observed PM2.5 day-

to-day variability can be explained by a single dominant meteorological mode: cold 

frontal passages in the eastern US and maritime inflow in the West. These and other 

synoptic transport modes drive most of the overall correlations of PM2.5 with 

temperature and RH except in the Southeast. We show that interannual variability of 

PM2.5 in the US Midwest is strongly correlated with cyclone frequency as diagnosed 

from a spectral-autoregressive analysis of the dominant meteorological mode. An 

ensemble of five realizations of 1996-2050 climate change with the GISS general 

circulation model (GCM) using the same climate forcings shows inconsistent trends in 

cyclone frequency over the Midwest (including in sign), with a likely decrease in 

cyclone frequency implying an increase in PM2.5. Our results demonstrate the need for 

multiple GCM realizations (because of climate chaos) when diagnosing the effect of 

climate change on PM2.5, and suggest that analysis of meteorological modes of 

variability provides a computationally more affordable approach for this purpose than 

coupled GCM-CTM studies. 

 

3.1. Introduction 

Air pollution is highly dependent on weather, and it follows that climate change 

could significantly impact air quality. The pollutants of most public health concern are 

ozone and fine particulate matter with diameter less than 2.5 µm (PM2.5). Studies using 

chemical transport models (CTMs) driven by general circulation models (GCMs) 

consistently project a worsening of ozone air quality in a warming climate (Weaver et 
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al., 2009). This finding is buttressed by observed correlations of ozone with temperature 

that are well reproduced by models (Jacob et al., 1993; Sillman and Samson, 1995; 

Rasmussen et al., 2012).  By contrast, GCM-CTM studies of the effect of climate 

change on PM2.5 show no consistency even in the sign of effect (Jacob and Winner, 

2009). In previous work (Tai et al., 2010), we examined the observed correlations of 

PM2.5 and its components in the US with meteorological variables as a means to 

understand PM2.5 response to climate change. Here we develop this approach further to 

define meteorological modes of variability for PM2.5 and interpret the observed 

correlations and modes using the GEOS-Chem CTM. We apply the Goddard Institute 

for Space Studies (GISS) GCM to illustrate how the modes enable effective diagnosis 

of the effect of climate change on PM2.5. 

The uncertainty in assessing climatic effects on PM2.5 reflects the complex 

dependence of different PM2.5 components on meteorological variables. Higher 

temperatures can lead to higher sulfate concentrations due to faster SO2 oxidation, but 

to lower nitrate and organic components due to volatility (Sheehan and Bowman, 2001; 

Aw and Kleeman, 2003; Dawson et al., 2007; Kleeman, 2008). Biogenic emissions of 

PM2.5 precursors including agricultural ammonia, soil NOx, and volatile organic 

compounds (VOCs) increase with temperature and further complicate the PM2.5-

temperature relationship (Pinder et al., 2004; Bertram et al., 2005; Guenther et al., 

2006). Higher relative humidity (RH) promotes aqueous-phase sulfate production and 

ammonium nitrate formation (Koch et al., 2003; Liao et al., 2006; Dawson et al., 2007), 

but inhibits fires, which are important contributors to organic aerosols in many regions 
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(Park et al., 2007; Spracklen et al., 2009). Changes in precipitation and in planetary 

boundary layer (PBL) depth have a consistent effect on PM2.5 components but their 

projections in GCMs are highly uncertain (Jacob and Winner, 2009). 

Synoptic-scale transport should be an important factor driving the effect of 

climate change on PM2.5. Previous studies have used principal component analysis 

(PCA) to identify important meteorological modes of variability for PM2.5 air quality 

(Cheng et al., 2007; Thishan Dharshana et al., 2010). Thishan Dharshana et al. (2010) 

found that as much as 30% of PM2.5 daily variability in the US Midwest is associated 

with passages of synoptic weather systems. Cold fronts associated with mid-latitude 

cyclone passages provide the dominant ventilation pathway for the eastern US (Cooper 

et al., 2001; Li et al., 2005). A general reduction in the frequency of these cyclones is 

expected as a result of greenhouse warming (Lambert and Fyfe, 2006; Christensen et 

al., 2007; Pinto et al., 2007), potentially leading to more frequent and prolonged 

stagnation episodes (Mickley et al., 2004; Murazaki and Hess, 2006). Leibensperger et 

al. (2008) found a strong anticorrelation between summer cyclone frequency and ozone 

pollution in the eastern US for 1980-2006, and further showed evidence of a long-term 

decline in cyclone frequency over that period that significantly hindered attainment of 

ozone air quality standards. Tai et al. (2010) projected a PM2.5 enhancement of up to 1 

µg m
-3

 in the Midwest from 2000-2050 climate change due to more frequent stagnation. 

In this study, we first apply the GEOS-Chem global CTM to interpret the 

observed correlations between PM2.5 components and meteorological variables in the 

contiguous US. As we will see, interpretation is complicated by the covariation of 
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meteorological variables with synoptic transport. To address this issue, we use PCA and 

regression to determine the dominant meteorological modes of observed daily PM2.5 

variability in different US regions, and show how spectral analysis of these modes 

enables a robust estimate of the effect of climate change on PM2.5 air quality. 

 

 

Figure 3.1. US regions used to study the correlations of PM2.5 with meteorological 

modes of variability. Also shown are the EPA Air Quality System (AQS) PM2.5 

monitoring sites in 2006, including total PM2.5 monitors using the Federal Reference 

Method (FRM) and chemical speciation monitors from the SLAMS + STN networks. 

 

3.2. Data and models 

3.2.1. PM2.5 observations 

Daily mean surface concentrations of total PM2.5 and speciated components 

including sulfate, nitrate, and organic carbon (OC) for 2004-2008 were obtained from 

the ensemble of sites of the EPA Air Quality System (EPA-AQS) 

(http://www.epa.gov/ttn/airs/airsaqs/), shown in Fig. 3.1. Total PM2.5 data are from the 
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Federal Reference Method (FRM) network of about 1000 sites in the contiguous US. 

Speciation data are from the State and Local Air Monitoring Stations (SLAMS) and 

Speciation Trends Network (STN) of about 200 sites. These sites measure every one, 

three or six days. Tai et al. (2010) show maps of the annual mean data for total PM2.5 

(1998-2008) and individual components (2000-2008). We do not discuss ammonium 

and elemental carbon (EC) here because ammonium is mainly the counter-ion for 

sulfate and nitrate, and the correlation patterns of EC with meteorological variables 

generally follow those of OC (Tai et al., 2010). 

3.2.2. GEOS-Chem simulations 

We used the GEOS-Chem global CTM to conduct full-year simulations of 

coupled gas-phase and aerosol chemistry. GEOS-Chem (http://geos-chem.org) uses 

assimilated meteorological data from the NASA Global Earth Observing System 

(GEOS-5) with 6-h temporal resolution (3-h for surface variables and PBL depth), 0.5° 

latitude by 0.667° longitude (0.5°#0.667°) horizontal resolution, and 47 hybrid 

pressure-sigma vertical levels. We conducted GEOS-Chem simulations at three 

different horizontal resolutions: native 0.5°#0.667°, 2°#2.5°, and 4°#5°. The coarser 

resolutions have been used previously with meteorological fields from the GISS GCM 

to investigate effects of climate change on air quality (Wu et al., 2008; Pye et al., 2009; 

Leibensperger et al., 2011a). For the native resolution simulation we used a nested 

continental version of GEOS-Chem over North America (140-40°W, 10-70°N) with 

2°#2.5° resolution for the rest of the world (Chen et al., 2009; Zhang et al., 2011). The 
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native simulation was conducted for one year (2006) and the 2°#2.5° and 4°#5° 

simulations for three years (2005-2007) using GEOS-Chem version 8-3-2. We included 

a non-local PBL mixing scheme formulated by Holtslag and Boville (1993) and 

implemented in GEOS-Chem by Lin and McElroy (2010). 

GEOS-Chem includes a fully coupled treatment of tropospheric ozone-NOx-

VOC-aerosol chemistry (Park et al., 2004; Liao et al., 2007). Gas-aerosol phase 

partitioning of the sulfate-nitrate-ammonium-water system is calculated using the 

ISORROPIA II thermodynamic equilibrium model (Fountoukis and Nenes, 2007). In-

cloud SO2 oxidation uses liquid water content information from the GEOS-5 archive 

(Fisher et al., 2011). Secondary organic aerosol (SOA) formation is computed with a 

standard mechanism based on reversible gas-aerosol partitioning of semi-volatile VOC 

oxidation products (Chung and Seinfeld, 2002). SOA precursors include isoprene, 

terpenes, and aromatic hydrocarbons (Henze et al., 2008). 

Anthropogenic emissions of sulfur, ammonia and NOx emissions in the US are 

from the EPA 2005 National Emissions Inventory 

(http://www.epa.gov/ttn/chief/net/2005inventory.html), and primary anthropogenic OC 

and EC emissions are from Cooke et al. (1999). Non-US anthropogenic emissions are 

described by Park et al. (2006). Biomass burning emissions of OC and EC are from the 

Global Fire Emissions Database (GFED v2) (Giglio et al., 2006). These emissions are 

included in the model as monthly averages and do not contribute to day-to-day 

variability of PM2.5. In contrast, soil NOx emissions (Yienger and Levy, 1995) and 

biogenic emissions of isoprene, terpenes, and methylbutenol (Guenther et al., 2006) are 
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updated locally every three hours as a function of temperature, solar radiation, and 

precipitation. Scavenging of PM2.5 by precipitation follows the scheme of Liu et al. 

(2001). Dry deposition follows a standard resistance-in-series scheme (Wesely, 1989) as 

implemented by Wang et al. (1998). 

Total PM2.5 in GEOS-Chem is taken to be the sum of sulfate, nitrate, 

ammonium, OC and EC. Detailed evaluations of the GEOS-Chem simulation of PM2.5 

and its components over the US have been presented in a number of publications using 

observations from surface sites, aircraft, and satellites (Heald et al., 2006; Park et al., 

2006; van Donkelaar et al., 2006; Heald et al., 2008; van Donkelaar et al., 2008; Fu et 

al., 2009; Drury et al., 2010; Leibensperger et al., 2011a; Zhang et al., 2012). These 

evaluations mainly focused on seasonal concentrations and showed no prominent 

biases. Here we will focus on the ability of the model to reproduce observed 

correlations of PM2.5 with meteorological variables. 

3.2.3. Multiple linear regression 

We examined the correlations of PM2.5 and its components with meteorological 

variables for 2004-2008 (EPA-AQS) and 2005-2007 (GEOS-Chem) by applying a 

standardized multiple linear regression (MLR) model: 

y(t)! y

sy
= !k

xk (t)! xk
skk=1

8

"        (3.1) 

where y represents the deseasonalized daily PM2.5 concentration (total PM2.5 or 

individual component), xk represents the eight deseasonalized meteorological variables 

from GEOS-5 listed in Table 3.1, x
k
 and y  are the temporal means of xk and y, sk and 
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sy are their standard deviations, "k is the dimensionless, normalized regression 

coefficient, and t is time. To compare observed with simulated correlations, we 

interpolate the EPA-AQS data onto the GEOS-Chem grid (Tai et al., 2010) and use the 

interpolated PM2.5 fields for regression. 

The MLR model is applied to each individual grid cell for both the observed and 

simulated PM2.5 fields. All data (xk and y) are deseasonalized and detrended by 

subtracting the 30-day moving averages from the original data so that x
k
 = y  = 0. This 

allows us to focus on synoptic-scale variability and avoid aliasing from common 

seasonal or interannual variations. The standardized regression coefficients "k allow 

direct comparisons between the correlations of different PM2.5 components with 

different meteorological variables (Kutner et al., 2004). The original regression 

coefficients "k* in units of µg m
-3

 D
-1

, where D is the dimension of meteorological 

variable xk in Table 3.1, can be recovered by 

!k
!
=
sy

sk
!k          (3.2) 

The observed coefficients of determination (R
2
) for the MLR model have values 

ranging from 0.1 (in the west-central US where data are sparse) to 0.5 (in the Midwest 

and Northeast), agreeing with previous studies (Wise and Comrie, 2005; Tai et al., 

2010). In addition to the standardized MLR analysis, we also conducted a stepwise 

MLR analysis with interaction terms as described by Tai et al. (2010). The interaction 

terms were generally found to be insignificant. 
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Table 3.1. Meteorological variables used for PM2.5 correlation analysis. 
a
 

Variable Meteorological parameter 
 

x1 Surface air temperature (K) 
b
 

x2 Surface air relative humidity (%) 
b
 

x3 Surface precipitation (mm d
-1
) 

x4 Geopotential height at 850 hPa (km) 

x5 Sea level pressure tendency dSLP/dt (hPa d
-1
) 

x6 Surface wind speed (m s
-1

) 
b, c

 

x7 East-west wind direction indicator cos! (dimensionless) 
d
 

x8 North-south wind direction indicator sin! (dimensionless) 
d 

 

a. Assimilated meteorological data with 0.5°#0.667° horizontal resolution from the 

NASA Goddard Earth Observing System (GEOS-5). All data used are 24-h averages, 

and are deseasonalized and detrended as described in the text. 

b. At 6 m above the surface (0.994 sigma level). 

c. Calculated from the horizontal wind vectors (u, v). 

d. ! is the angle of the horizontal wind vector counterclockwise from the east. Positive 

values of x7 and x8 indicate westerly and southerly winds, respectively. 

 

We conducted the MLR analysis for the model at all three resolutions 

(0.5°#0.667°, 2°#2.5°, 4°#5°) and found the patterns of correlations to be similar. 

Figure 3.2 shows as an example (to be discussed later) the simulated and observed 

relationships of nitrate with temperature as measured by the recovered regression 

coefficient "1* in Eq. (3.2). In general, 2°#2.5° and 4°#5° regression results agree well 

with each other for all meteorological variables and all components. The native-
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resolution regression does not show as extensive and significant correlations. A likely 

explanation is that averaging over larger grid cells smoothes out local effects, yielding 

more robust correlation statistics. We will use 2°#2.5° resolution for model-observation 

comparisons in what follows. 

 

 

 

Figure 3.2. Simulated (2005-2007) and observed (2004-2008) relationships of nitrate 

PM2.5 with surface air temperature, as measured by the multiple linear regression 

coefficient "1* in Eq. (3.2) with units of µg m
-3

 K
-1

. Simulated relationships are shown 

for three different GEOS-Chem model resolutions: 0.5°#0.667°, 2°#2.5° and 4°#5°. 

Observations are averaged over the 2°#2.5° grid. Values are for deseasonalized and 

detrended variables and are only shown when significant with 95% confidence (p-value 

< 0.05). 
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3.3. Correlations of PM2.5 with meteorological variables 

3.3.1. Correlations with temperature 

Figure 3.3 (left and middle panels) shows the observed and simulated 

relationships of sulfate, nitrate, and OC with temperature as measured by the 

standardized regression coefficient "1 in Eq. (3.1). The relationships may reflect both a 

direct dependence of PM2.5 on temperature and a covariation of temperature with other 

meteorological variables affecting PM2.5. To separate the two effects, we conducted a 

direct sensitivity analysis with GEOS-Chem by increasing temperatures by 1 K 

throughout the troposphere while keeping all other meteorological variables constant. 

The resulting sensitivities are shown in the right panels of Fig. 3.3, normalized to the 

standard deviations of deseasonalized concentrations and temperature to make them 

directly comparable to the standardized regression coefficients "1 in the left and middle 

panels. 

Sulfate in the observations shows a positive relationship with temperature over 

most of the US. The model is generally consistent with the observations but does not 

capture the Southwest maximum. Results from the direct sensitivity analysis, however, 

show a generally negative dependence of sulfate on temperature particularly in the 

West. This contrasts with a previous CTM sensitivity analysis by Dawson et al. (2007) 

that found a positive dependence of sulfate on temperature, though much weaker than 

the observed relationship (Tai et al., 2010). Dawson et al. (2007) attributed their result 

to faster SO2 oxidation kinetics at higher temperature, but we find in GEOS-Chem that 

this is more than offset by the increased volatility of H2O2 and SO2, slowing down the 
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in-cloud aqueous-phase production of sulfate. In any case, it is clear from the model that 

the observed positive relationship of sulfate with temperature must reflect covariation of 

temperature with meteorological variables rather than a direct dependence. We 

elaborate on this in Section 3.4. 

 

 

Figure 3.3. Relationships of sulfate, nitrate, and organic carbon (OC) PM2.5 

concentrations with surface air temperature. The left and middle panels show the 

observed (2004-2008) and simulated (2005-2007) standardized regression coefficients 

"1 in Eq. (3.1). Values are for deseasonalized and detrended variables and are only 

shown when significant with 95% confidence (p-value < 0.05). The right panels show 

the direct effects of temperature on sulfate, nitrate and OC as determined by applying a 

global +1 K temperature perturbation in the GEOS-Chem simulation, and normalizing 

the results to the standard deviations of deseasonalized concentrations and temperatures 

to allow direct comparison to "1. 
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Nitrate in the observations shows a negative relationship with temperature in the 

Southeast but a positive relationship in the North and the Southwest. The model 

reproduces these results except for the positive relationship in the Southwest. The 

negative relationship in the model is too strong in the South but the higher-resolution 

0.5°#0.667° simulation does not show such a bias (Fig. 3.2). The direct sensitivity of 

nitrate to temperature in the model is negative everywhere, with magnitude comparable 

to that found by Dawson et al. (2007), and reflecting the volatility of ammonium nitrate 

(Stelson and Seinfeld, 1982). We see from Fig. 3.3 that this direct dependence could 

account for most of the observed negative relationship of nitrate with temperature in the 

Southeast, but it is more than offset in the North by the positive association of 

temperature with southerly flow importing polluted air. The observed positive 

relationship of nitrate with temperature in the Southwest may reflect the temperature 

dependence of ammonia and fire emissions; in the model these emissions are specified 

as monthly means. 

OC in the observations shows a positive relationship with temperature 

throughout the US, and the same is found in the model although the relationship is 

steeper. The direct sensitivity study in the model also shows a positive dependence of 

OC on temperature. Dawson et al. (2007) previously found a negative dependence due 

to OC volatility but did not consider the temperature dependence of biogenic VOC 

emissions, which is included in our analysis and more than offsets the volatility effect. 

Day and Pandis (2011) similarly found an increase in OC at higher temperatures mainly 

due to increased VOC emissions. We see from Fig. 3.3 that the direct temperature 
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dependence may be a significant contributor the positive relationship between OC and 

temperature in the Southeast, where biogenic emissions are particularly high, but it has 

little effect elsewhere. 

 

 

Figure 3.4. Same as Fig. 3.3 but for relative humidity (RH). The right panels show the 

direct effects of RH as determined by applying a global -1 % RH perturbation in the 

GEOS-Chem simulation. 

 

3.3.2. Correlations with relative humidity 

Figure 3.4 shows the observed and simulated correlations of sulfate, nitrate, and 

OC with RH, expressed as the standardized regression coefficient "2 in Eq. (3.1). The 

relationships are generally positive for sulfate and nitrate both in the observations and 
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the model. The OC-RH relationship is generally negative with some model biases in the 

Great Plains and Midwest. Results from a model perturbation simulation similar to that 

for temperature are also shown in Fig. 3.4, indicating negligible direct dependence of 

sulfate and OC on RH, but a significant positive relationship for nitrate due to more 

favorable ammonium nitrate formation at higher RH (Stelson and Seinfeld, 1982). The 

direct positive sensitivity of nitrate in the southeastern coast is offset by the negative 

influence from the association of high RH with clean marine air, leading to the weak 

overall correlation there. 

3.3.3. Correlations with precipitation and wind speed 

Figure 3.5 shows the observed and simulated relationships of total PM2.5 with 

precipitation and wind speed as measured by "3 and "6 in Eq. (3.1). Similar effects are 

found for all individual PM2.5 components (Tai et al., 2010). The observations show 

strong negative relationships reflecting aerosol scavenging and ventilation. These are 

generally well captured by the model. The precipitation effect appears to be primarily 

driven by large-scale rather than convective precipitation in the US. Fang et al. (2011) 

similarly illustrated the dominance of large-scale precipitation in wet scavenging of 

soluble pollutants. 
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Figure 3.5. Relationships of total PM2.5 concentrations with precipitation and wind 

speed, expressed as the standardized regression coefficients "3 and "6, respectively. The 

left panels show observations (2004-2008) and the right panels model values (2005-

2007). Values are for deseasonalized and detrended variables and are only shown when 

significant with 95% confidence (p-value < 0.05). 

 

3.4. Major meteorological modes controlling PM2.5 variability 

Results from the previous section show that much of the correlation of PM2.5 

with individual meteorological variables is driven by covariance between 

meteorological variables, with an apparent major contribution from synoptic transport. 

To resolve this covariance we turn to principal component analysis (PCA) of the 

meteorological variables to identify the meteorological modes controlling PM2.5 

variability. 
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3.4.1. Principal component analysis and regression 

We conducted a PCA for the 2004-2008 GEOS-5 data by averaging spatially 

over each region of Fig. 3.1 the eight deseasonalized meteorological variables of Table 

3.1. The resulting time series for each region were decomposed to produce time series 

of eight orthogonal principal components (PCs) (U1, …, U8): 

Uj (t) = !kj

Xk (t)! Xk

skk=1

8

"        (3.3) 

where X k represents the regionally averaged GEOS-5 variable, X
k
 and sk the temporal 

mean and standard deviation of X k,, and #kj the elements of the orthogonal 

transformation matrix. Each PC represents a distinct meteorological regime or mode. 

We identified the nature of meteorological mode by examining the values of #kj in Eq. 

(3.3). PCs with high |#kj| values (e.g., greater than 0.3 and topping the other |#kj| values) 

for geopotential height, pressure tendency, and wind direction are presumably 

associated with synoptic-scale weather systems, and can be referred to as synoptic 

transport modes. We then followed Uj(t) day by day and visually examined the 

corresponding weather maps for multiple months during 2004-2008. From this we 

assigned a generalized meteorological feature for a given PC when the same feature 

could be associated with the majority of peaks and troughs of Uj(t). The PCs are ranked 

by their variances, usually with the leading three or four PCs capturing most of the 

meteorological variability. For instance, in the eastern US, a single mode representing 
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cyclone and cold frontal passages (discussed further in Section 3.4.2) typically accounts 

for ~20% of total meteorological variability. 

We then applied a principal component regression (PCR) model to correlate 

observed and simulated PM2.5 concentrations with the eight PCs for each region 

Y (t)!Y

s
Y

= !
j
U

j
(t)

j=1

8

"         (3.4) 

where Y  represents the regionally averaged PM2.5 concentration, $j the PC regression 

coefficients, and Y  and sY the temporal mean and standard deviation of Y . The ratio of 

regression to total sum of squares (SSRj/SST) for each PC is calculated by 

SSR
j

SST
=

!
j
U

j
(t)!" #$

2

t

%

Y (t)&Y!" #$ sY{ }
2

t

%
        (3.5) 

where the summation is over the entire time series Y (t) and Uj(t). This ratio quantifies 

the fraction of variance of PM2.5 that can be explained by a single PC. From Eq. (3.3) 

and (3.4), the fraction (fk) of the overall correlation of PM2.5 with a given 

meteorological variable X k (e.g., in Fig. 3.4 through 3.6) that is associated with a 

particular PC can be estimated by 

fk =
!kj" j

!km"m
m

!
         (3.6) 

where the summation is over the m PCs that have a significant effect on PM2.5 (p-value 

< 0.01). Here the denominator represents the total effect of X k on PM2.5 that is 

equivalent to a regionally averaged version of "k in Eq. (3.1). The PCR model was 

applied to both the full-year data and to seasonal subsets. 



 

 60 

3.4.2. Dominant meteorological modes of PM2.5 variability 

Figure 3.6 shows as an example the dominant meteorological mode contributing 

to total PM2.5 variability in the Midwest as determined by the highest SSRj/SST ratio in 

Eq. (3.5). Based on the PCR model this mode alone explains 29% of the observed PM2.5 

variability with a regression coefficient $j = -0.41. The top panel of Fig. 6 shows the 

time series of this mode for January 2006 together with the deseasonalized observed 

total PM2.5 concentrations, illustrating strong anticorrelation (r = -0.54). The bottom left 

panel shows the meteorological composition of this dominant mode as measured by PC 

coefficients #kj in Eq. (3.3), consisting of low temperature, high precipitation, low and 

rising pressure, and strong northwesterly winds. From weather maps we can verify that 

high positive values of this PC represent the center of an eastward-propagating mid-

latitude cyclone with a precipitating cold front at the southwest tail end. High negative 

values indicate the “opposite” regime – warm and dry stagnant condition at the tail end 

of an anticyclone. Figure 3.6 (top and bottom right) shows, for instance, that as Uj(t) 

rose from a minimum to maximum between 28
 
and 30

 
January 2006 in the Midwest, a 

mid-latitude cyclone was approaching and the associated cold front swept over the 

region bringing down total PM2.5 by 9 µg m
-3

. 

Figure 3.7 shows as another example the dominant meteorological mode of 

PM2.5 variability in California, demonstrating again a strong anticorrelation between the 

time series of this mode and PM2.5 concentrations (r = -0.80). This mode has similar 

meteorological composition to that in Fig. 3.6 except for wind direction. Positive phases 

of this mode represent ventilation by cold maritime inflows associated with synoptic 
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disturbances, whereas negative phases represent warm, stagnant conditions associated 

with high-pressure systems. The bottom panel shows, for instance, that between 6
 
and 8

 

January 2005, a precipitating maritime inflow reduced PM2.5 by 16 µg m
-3

. 

 

 

Figure 3.6. Dominant meteorological mode for observed PM2.5 variability in the 

Midwest inferred from the principal component analysis. Top panel: time series of 

deseasonalized observed total PM2.5 concentrations and the dominant meteorological 

mode or principal component (PC) in January 2006. Bottom left: composition of this 

dominant mode as measured by the coefficients #ki in Eq. (3.3). Meteorological 

variables (xk) are listed in Table 3.1. Bottom right: synoptic weather maps from NCEP 

(http://www.hpc.ncep.noaa.gov/dailywxmap/) for 28 and 30 January, corresponding to 

maximum negative and positive influences from the principal component. The Midwest 

is delineated in orange. 
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Figure 3.7. Same as Fig. 3.6 but for California. 

 

The analysis above was conducted for all regions of Fig. 3.1. Table 3.2 

summarizes the characteristics of the dominant PC controlling PM2.5 variability for five 

selected regions. In the eastern US (Northeast, Midwest and Southeast), the observed 

dominant modes resemble that for the Midwest described above (Fig. 3.6). In the 

Northeast, another mode representing southwesterlies associated with high pressure 

over the western North Atlantic is equally important. In the Pacific Northwest, the 

dominant mode resembles that for California (Fig. 3.7). In general, the PCR results 

illustrate the importance of synoptic-scale transport in controlling the observed daily 

variability of PM2.5. As shown in Table 3.2, this control appears to be well represented 
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in GEOS-Chem, supporting the ability of the model to describe the variability in PM2.5 

associated with this transport. 

 

Table 3.2. Dominant meteorological modes for regional PM2.5 variability. 

US 

Region 

PM2.5 variability 

explained 
a
 

PC regression 

coefficient $j 
b 

Description 
c
 

EPA-AQS GEOS-Chem EPA-AQS GEOS-Chem 

Northeast 17% 21% -0.31 -0.33 Cold front 

associated with 

mid-latitude 

cyclone 

Midwest 29% 25% -0.41 -0.38 

Southeast 31% 15% -0.42 -0.29 

Pacific 

Northwest 

36% 45% -0.35 -0.39 Synoptic-scale 

maritime 

inflow California  26% 13% -0.28 -0.21 

 

a. From Eq. (3.5). 

b. From Eq. (3.4). 

c. For positive phases of the dominant PC. 

 

Using Eq. (3.6), we find overall that the synoptic transport modes account for 

more than 70% of the observed correlations of PM2.5 components with temperature in 

the Northeast and Midwest. This reflects the association of elevated temperature with 

southerly flow and stagnation. In the Southeast, however, we find that more than 60% 

of the observed correlations of nitrate and OC with temperature and RH arise from a 

single non-transport mode consisting of low temperature and high RH. Nitrate has a 

positive dependence on that mode because of ammonium nitrate thermodynamics, while 
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OC has a negative dependence reflecting biogenic VOC emissions and the occurrence 

of fires. The weaker importance of transport in driving the nitrate-temperature 

relationship in the Southeast likely reflects the lower frequency of cold fronts. In 

California, the transport and non-transport modes are comparably important in shaping 

the observed correlations of PM2.5 components with temperature and RH. 

 

3.5. Cyclone frequency as a metric for climate change effect on PM2.5 

Mid-latitude cyclones and their associated cold fronts are known to provide the 

dominant year-round mechanism for ventilating the US Midwest and Northeast (Cooper 

et al., 2001; Li et al., 2005), and they emerge in our analysis of Section 3.4 as the 

dominant meteorological mode of PM2.5 variability. Previous studies diagnosing 

cyclone frequency have relied on identifying local pressure minima (Mickley et al., 

2004; Lambert and Fyfe, 2006; Lang and Waugh, 2011) or used storm tracking 

algorithms (Geng and Sugi, 2001; Bauer and Del Genio, 2006; Bengtsson et al., 2006). 

Here we diagnose cyclone frequency by applying a fast Fourier transform (FFT) to the 

time series of the dominant Midwest PC representing cyclone and frontal passages as 

shown in Fig. 3.6. We use 1999-2010 meteorological data from the NCEP/NCAR 

Reanalysis 1 (Kalnay et al., 1996; Kistler et al., 2001), which provides a longer record 

than GEOS-5. PCA of the NCEP/NCAR data yields essentially the same meteorological 

modes as GEOS-5. Figure 3.8 (gray thin line) shows the FFT spectrum for the dominant 

cyclone mode in the Midwest for 1999-2010. The low-frequency structure (with periods 

> 20 d) is an artifact of the 30-day moving average applied to the meteorological data to 
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remove seasonality. We smooth the time series with a second-order autoregressive 

(AR2) filter (Wilks, 2006), indicating a median spectral frequency of 52 a
-1

 (cyclone 

period of about 7 days). 

 

 

Figure 3.8. Frequency spectrum of the daily time series of the dominant meteorological 

mode (cyclone/frontal passages) in the US Midwest (Fig. 3.1) for 1999-2010 using 

NCEP/NCAR Reanalysis 1 data. The thin line shows the fast Fourier transform (FFT) 

spectrum and the thick line shows the smoothed spectrum from a second-order 

autoregressive (AR2) model. The vertical dashed line indicates the median AR2 spectral 

frequency used as a metric of cyclone frequency. 
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We applied the spectral-autoregressive method above to find the median cyclone 

frequencies and periods for individual years of the 1999-2010 record. Figure 3.9 shows 

the time series of annual mean anomalies in total PM2.5 concentrations and cyclone 

periods for the Midwest, where the correlation is strongest (r = 0.76) corresponding to a 

PM2.5-to-cyclone period sensitivity of 0.94±0.43 µg m
-3

 d
-1

 (95% confidence interval). 

Leibensperger et al. (2008) previously found a strong interannual correlation of summer 

ozone with cyclone frequency in the Northeast using the 1980-2006 record of 

NCEP/NCAR data. Our analysis does not show the same for PM2.5 in this region, 

possibly because of the short record (12 years) available for PM2.5. Cyclone frequencies 

found by Leibensperger et al. (2008) are generally lower, possibly because their storm-

tracking algorithm may neglect weaker cyclones and fronts. 

 

 

Figure 3.9. Anomalies of annual mean PM2.5 concentrations and median cyclone 

periods for the US Midwest (Fig. 3.1). 
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The strong interannual correlation of PM2.5 with cyclone frequency, at least in 

the Midwest, encourages the use of cyclone frequency as a metric to diagnose the effect 

of climate change on PM2.5. We used for this purpose an ensemble of five realizations 

of 1950-2050 climate change generated by (Leibensperger et al., 2011b) with the GISS 

GCM III (Rind et al., 2007) applied to the IPCC A1B scenario (Nakicenovic and Swart, 

2000) and including time-dependent aerosol radiative forcings. For each realization we 

examined the change in median cyclone frequency between the present-day (1996-

2010) and the future (2036-2050), by applying the spectral-autoregressive method to the 

dominant cyclone PC for each 15-year time series, and using a Monte Carlo method to 

diagnose the probability distribution and significance of the change based on variability 

of the AR2 parameters. Three out of the five realizations indicated statistically 

significant decreases in cyclone frequencies between 1996-2010 and 2036-2050 of -3.2, 

-3.4 and -1.5 a
-1

 (p-value < 0.05). One realization showed a significant increase of 2.7 a
-

1
 and another showed no significant change. Figure 3.10 shows the combined 

probability distribution of cyclone frequency change in the Midwest from all five 

realizations and the corresponding responses of annual mean PM2.5 based on the PM2.5-

to-cyclone period sensitivity reported above, indicating a roughly 70% probability of 

reduced cyclone frequency and elevated PM2.5 in the Midwest by 2050. This 

corresponds to a mean decrease in cyclone frequency of -1.1±4.8 a
-1

 and a resulting 

increase in annual mean PM2.5 of 0.13±0.60 µg m
-3

. 
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Figure 3.10. Probability distribution for the change in median cyclone frequency in the 

US Midwest between 1996-2010 and 2036-2050, and the corresponding change in 

annual mean PM2.5 concentrations. Results are from five realizations of the NASA 

Goddard Institute for Space Studies (GISS) GCM III applied to the IPCC A1B scenario 

of greenhouse gas and aerosol forcings. 

 

Previous GISS-GEOS-Chem GCM-CTM studies of the effects of 2000-2050 

climate change on PM2.5 air quality projected a mean increase of 0.1-0.5 µg m
-3

 in the 

Midwest in the 2050 climate based on one GCM realization (Pye et al., 2009; Lam et 

al., 2011). Their estimates are within the range of our projection from the cyclone 

frequency trend alone. However, the large variability of the cyclone trends (including in 

sign) across five realizations of the same GCM underscores the imperative need for 

multiple realizations in diagnosing the effect of climate change on PM2.5 air quality. All 

GCM-CTM studies in the literature reviewed by Jacob and Winner (2009) have used 

single climate realizations and this may partly explain the inconsistency in their results. 

Other climatic factors than cyclone and frontal frequency may also affect future 

PM2.5 air quality in the US. Mean temperature increases may be particularly important 
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for the Southeast as discussed previously. Changes in precipitation and PBL depth are 

obviously important. As scavenging within a precipitating column is highly efficient 

(Balkanski et al., 1993), precipitation frequency, often modulated by synoptic weather, 

may be more relevant as a predictor than climatological mean precipitation. 

 

3.6. Conclusions 

Projecting the effects of climate change on PM2.5 air quality requires an 

understanding of the dependence of PM2.5 on meteorological variables. We used here a 

multiple linear regression model to correlate both observed (EPA-AQS) and simulated 

(GEOS-Chem) daily mean concentrations of total PM2.5 and its major components with 

a suite of meteorological variables in the contiguous US for 2004-2008. All data were 

deseasonalized to focus on synoptic correlations. We applied principal component 

analysis (PCA) and regression to identify the dominant meteorological modes 

controlling PM2.5 variability, and showed how trend analysis for these modes can be 

used to estimate the effects of climate change on PM2.5. 

We observe strong positive correlations of all PM2.5 components with 

temperature in most of the US, except for nitrate in the Southeast where the correlation 

is negative. A temperature perturbation simulation with GEOS-Chem reveals that most 

of the correlations of PM2.5 with temperature do not arise from direct dependence on 

temperature but from covariation with synoptic transport. Exceptions are nitrate and OC 

in the Southeast, where the direct dependence of ammonium nitrate thermodynamics 

and biogenic VOC emissions on temperature contributes significantly to the 
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correlations. RH is generally positively correlated with sulfate and nitrate but negatively 

correlated with OC; the correlations also appear to be mainly driven by covariation of 

RH with synoptic transport. Total PM2.5 is strongly negatively correlated everywhere 

with precipitation and wind speed. 

We find from the PCA and regression that 20-40% of the observed PM2.5 day-

to-day variability in different US regions can be explained by a single dominant 

synoptic meteorological mode: cold frontal passages in the eastern US and maritime 

inflow in the West. These and other transport modes are found to contribute to most of 

the overall correlations of different PM2.5 components with temperature and RH except 

in the Southeast. 

We show that the interannual variability of annual mean PM2.5 in the Midwest 

for 1999-2010 is strongly correlated with cyclone frequency as diagnosed from a 

spectral-autoregressive analysis of the dominant meteorological mode of variability, 

with a PM2.5-to-cyclone period sensitivity of 0.9±0.4 µg m
-3

 d
-1

. We conducted an 

ensemble of five realizations of 1996-2050 climate change using the GISS GCM III 

with A1B greenhouse and aerosol forcings. Three of these found a significant decrease 

in cyclone frequency over the US Midwest, one found no significant change and one 

found a significant increase. From this ensemble we derive a likely increase in annual 

mean PM2.5 of 0.13±0.60 µg m
-3

 in the Midwest in the 2050s climate. This is consistent 

with previous GCM-CTM studies using the same GCM and suggests that cyclone 

frequency may be a major driver of the effect of climate change on PM2.5 air quality. 

However, the variability of cyclone trends (including in sign) across multiple 
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realizations of the same GCM with identical forcings demonstrates the importance of 

multiple climate change realizations in GCM-CTM studies because of climate chaos. 

All GCM-CTM studies to date have used single realizations because of computational 

expense, and this may partly explain the wide inconsistencies in their projections of 

PM2.5 response to climate change. The climate trend analysis in this study, using the 

Midwest as an illustration, is preliminary. A comprehensive analysis using outputs from 

various GCMs will be the topic of a future paper. 
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Chapter 4.  Impact of 2000-2050 climate change on fine 

particulate matter (PM2.5) air quality inferred from a multi-model 

analysis of meteorological modes 

{ Tai, A.P.K., L.J. Mickley, and D.J. Jacob. 2012. Impact of 2000-2050 climate change 

on fine particulate matter (PM2.5) air quality inferred from a multi-model analysis of 

meteorological modes. Atmos. Chem. Phys. Discuss., 12, 18107-18131. } 

 

Abstract 

Studies of the effect of climate change on fine particulate matter (PM2.5) air 

quality using general circulation models (GCMs) have yielded inconsistent results 

including in the sign of the effect. This reflects uncertainty in the GCM simulations of 

the regional meteorological variables affecting PM2.5. Here we use the CMIP3 archive 

of data from fifteen different IPCC AR4 GCMs to obtain improved statistics of 21
st
-

century trends in the meteorological modes driving PM2.5 variability over the 

contiguous US. We analyze 1999-2010 observations to identify the dominant 

meteorological modes driving interannual PM2.5 variability and their synoptic periods !. 

We find robust correlations (r > 0.5) of annual mean PM2.5 with !, especially in the 

eastern US where the dominant modes represent frontal passages. The GCMs all have 

significant skill in reproducing present-day statistics for " and we show that this reflects 

their ability to simulate atmospheric baroclinicity. We then use the local PM2.5-to-period 

sensitivity (dPM2.5/d!) from the 1999-2010 observations to project PM2.5 changes from 

the 2000-2050 changes in ! simulated by the 15 GCMs following the SRES A1B 
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greenhouse warming scenario. By weighted-average statistics of GCM results we 

project a likely 2000-2050 increase of ~0.1 "g m
-3

 in annual mean PM2.5 in the eastern 

US arising from less frequent frontal ventilation, and a likely decrease of ~0.3 "g m
-3

 in 

the northwestern US due to more frequent maritime inflows. These circulation-driven 

changes are relatively small. Potentially larger regional effects of 2000-2050 climate 

change on PM2.5 may arise from changes in temperature, biogenic emissions, wildfires, 

and vegetation, but are still unlikely to affect annual PM2.5 by more than 0.5 "g m
-3

. 

 

4.1. Introduction 

Air pollution is strongly sensitive to weather conditions and is therefore affected 

by climate change. A number of studies reviewed by Jacob and Winner (2009) have 

used chemical transport models (CTMs) driven by general circulation models (GCMs) 

to diagnose the effects of 21
st
-century climate change on air quality at northern mid-

latitudes. These GCM-CTM studies generally concur that 2000-2050 climate change 

will degrade ozone air quality in polluted regions by 1-10 ppb, but they do not agree on 

even the sign of the effect for fine particulate matter (PM2.5). Change in ozone is largely 

driven by change in temperature, but for PM2.5 the dependence on meteorological 

variables is far more complex, including different sensitivities for different PM2.5 

components (Liao et al., 2006; Dawson et al., 2007; Heald et al., 2008; Kleeman, 2008; 

Pye et al., 2009; Tai et al., 2010). 

Tai et al. (2012) proposed an alternate approach for diagnosing the effect of 

climate change on PM2.5 through identification of the principal meteorological modes 
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driving observed PM2.5 variability. For example, it is well known that cold fronts 

associated with mid-latitude cyclones drive pollutant ventilation in the eastern US 

(Cooper et al., 2001; Li et al., 2005). Tai et al. (2012) found that the frequency of cold 

fronts was a major predictor of the observed interannual variability of PM2.5 in the 

Midwest. GCMs project a general 21
st
-century decrease in mid-latitude cyclone 

frequency as a result of greenhouse warming (Bengtsson et al., 2006; Lambert and Fyfe, 

2006; Christensen et al., 2007; Pinto et al., 2007; Ulbrich et al., 2008), from which one 

could deduce a general degradation of air quality. This cause-to-effect relationship has 

been found in a few GCM-CTM studies (Mickley et al., 2004; Murazaki and Hess, 

2006). 

However, there is substantial uncertainty in regional projections of future 

cyclone frequency (Ulbrich et al., 2009; Lang and Waugh, 2011). Indeed, a general 

difficulty in projecting the effect of climate change on air quality is the underlying 

GCM uncertainty in simulating regional climate change. This uncertainty arises both 

from model noise (climate chaos) and from model error (physics, parameters, 

numerics). Model noise can be important. Tai et al. (2012) conducted five realizations 

of 2000-2050 climate change in the GISS GCM 3 (Rind et al., 2007) under the same 

radiative forcing scenario and found that the frequency of cyclones ventilating the US 

Midwest decreased in three of the realizations, increased in one, and had no trend in 

one. All GCM-CTM studies to date examining the effect of climate change on PM2.5 

have used a single climate change realization from a single GCM (Jacob and Winner, 

2009), so it is no surprise that they would yield inconsistent results. This is less of an 
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issue for GCM-CTM projections of ozone air quality because ozone responds most 

strongly to changes in temperature (Jacob and Winner, 2009), and all GCMs show 

consistent warming for the 21
st
-century climate even on regional scales (Christensen et 

al., 2007). 

The standard approach adopted by the Intergovernmental Panel on Climate 

Change (IPCC) to reduce uncertainties in GCM projections of regional climate change 

is to use multiple realizations from an ensemble of GCMs, assuming that model 

diversity provides some measure of model error (Christensen et al., 2007). Such an 

ensemble analysis is not practical for GCM-CTM studies of air quality because of the 

computational expense associated with chemistry and aerosol microphysics. An 

alternative is to focus on GCM projections of the meteorological modes determining air 

quality. A resource for this purpose is the World Climate Research Programme's 

(WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model 

dataset of 2000-2100 climate change simulations produced by the ensemble of GCMs 

contributing to the IPCC 4
th

 Assessment Report (AR4). 

Here we use this multi-model ensemble to project the responses of PM2.5 air 

quality in different US regions to 2000-2050 climate change. We focus on annual mean 

PM2.5, which is of primary policy interest (EPA, 2012). We first examine the observed 

sensitivity of annual mean PM2.5 to the frequencies of the dominant meteorological 

modes in different US regions. We then use the CMIP3 archive of 15 GCMs to project 

the trends of these frequencies in the future climate, and from there we deduce the 

corresponding regional trends in PM2.5. These climate-driven PM2.5 projections, 
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independent of trends in anthropogenic emissions, will represent the “climate penalty” 

or “benefit” for PM2.5, which will aid air quality managers to plan emission goals 

accordingly. 

 

4.2. Observed sensitivity of PM2.5 to meteorological modes 

Previous studies have demonstrated the importance of synoptic weather in 

controlling PM2.5 variability (Thishan Dharshana et al., 2010; Tai et al., 2012). Tai et al. 

(2012) identified cyclone passage with associated cold front as the meteorological mode 

whose period ! (length of one cycle, i.e., inverse of frequency) is most strongly 

correlated with interannual variability of PM2.5 in the US Midwest. They proposed that 

the corresponding PM2.5-to-period sensitivity (dPM2.5/d!) could be used to project the 

response of PM2.5 to future climate change; a change $! in cyclone period would cause 

a change $PM2.5 = (dPM2.5/d!)$!. The physical meaning of this dPM2.5/d! metric is 

clear when the meteorological mode acts as a pulse, either ventilating a source region 

(as in the case of a cold front) or polluting a remote region (as in the case of a warm 

front). We will attempt here to generalize it to the ensemble of conditions over the 

continental US. 

Daily mean PM2.5 data for 1999-2010 were obtained from the EPA Air Quality 

System (AQS) (http://www.epa.gov/ttn/airs/airsaqs/) Federal Reference Method (FRM) 

network of about 1000 sites in the contiguous US. The daily site measurements were 

interpolated following Tai et al. (2010) onto a 4°#5° latitude-by-longitude grid, and 

annual means for each of the 12 years were calculated for each grid cell. Figure 4.1 
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shows as an example the 1999-2010 time series of annual mean PM2.5 for the 4°#5°
 
grid 

cell centered over Chicago (asterisk in Fig. 4.2). Linear regression indicates a 

downward trend of -0.34 "g m
-3

 a
-1

, reflecting the improvement of air quality due to 

emission controls (EPA, 2012). Superimposed on this long-term tend is interannual 

variability that we assume to be meteorologically driven. The standard deviation of the 

detrended annual mean PM2.5 is 0.79 "g m
-3

, or 5.3% of the 12-year mean. For the 

ensemble of 4°#5°
 
grid cells in the US we find that the interannual standard deviation of 

the detrended data ranges from 3 to 19%. Relative interannual variability is largest in 

the western US but there it could be driven in part by forest fires (Park et al., 2007). 

 

 

 

Figure 4.1. Observed 1999-2010 time series of annual mean PM2.5 and synoptic period 

" of the dominant meteorological mode (cold frontal passage) for the 4°#5° grid square 

centered over Chicago at N42° W87.5° (asterisk in Fig. 4.2).  Linear regression lines are 

shown as dashed. The detrended variables have a correlation of r = 0.62. 
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Table 4.1. Variables used to define meteorological modes for PM2.5 variability. 
a
 

Variable Description 
 

x1 Surface air temperature (K) 
b
 

x2 Surface air relative humidity (%) 
b
 

x3 Precipitation rate (mm d
-1
) 

x4 Sea level pressure (hPa) 

x5 Sea level pressure tendency dSLP/dt (hPa d
-1
) 

x6 Surface wind speed (m s
-1

) 
b, c

 

x7 East-west wind direction indicator cos! (dimensionless) 
d
 

x8 North-south wind direction indicator sin! (dimensionless) 
d 

 

a. From the National Center for Environmental Prediction/National Center for 

Atmospheric Research (NCEP/NCAR) Reanalysis 1 for 1981-2010. All data are 24-h 

averages and are deseasonalized as described in the text. 

b. “Surface” data are from 0.995 sigma level. 

c. Calculated from the horizontal wind vectors (u, v). 

d. ! is the angle of the horizontal wind vector counterclockwise from the east. Positive 

values of x7 and x8 indicate westerly and southerly winds, respectively. 

 

We follow the approach of Tai et al. (2012) to determine the dominant 

meteorological modes for interannual PM2.5 variability on the 4°#5°
 
grid. Daily 

meteorological variables for 1981-2010 (Table 4.1) were obtained from the National 

Center for Environmental Prediction/National Center for Atmospheric Research 

(NCEP/NCAR) Reanalysis 1 
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(http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html) (Kalnay et al., 

1996; Kistler et al., 2001). We regridded the original 2.5°#2.5° data onto the 4°#5° grid 

and deseasonalized them by subtracting the 30-day moving averages. 

Following Tai et al. (2012), we decomposed the daily time series of the 

meteorological variables (Table 4.1) for each 4°#5° grid cell to produce time series of 

eight principal components (U1, …, U8): 

Uj (t) = !kj

xk (t)! xk
skk=1

8

"        (4.1) 

where xk is the deseasonalized meteorological variable, x
k
 and sk are the temporal mean 

and standard deviation of xk, #kj describes the elements of the orthogonal transformation 

matrix defining the meteorological modes (Tai et al., 2012), and t is time. Each Uj(t) 

represents the principal component time series for a distinct meteorological mode. We 

then applied Fourier transform to Uj(t) with a second-order autoregressive (AR2) filter 

to obtain a smoothed frequency spectrum for each year (Wilks, 2011), and extracted the 

median AR2 spectral frequency (f) to calculate the corresponding period of the 

meteorological mode (! = 1/f). See Tai et al. (2012) for further description and example 

application. 

From there we applied reduced major axis regression to the 1999-2010 annual 

time series of detrended PM2.5 and ! in each 4°#5° grid cell to determine dPM2.5/d!. 

The dominant meteorological mode for each grid cell was identified as that whose 

period is most strongly correlated with annual mean PM2.5 and explains more than 25% 

of interannual PM2.5 variability (p-value < 0.095). Figure 4.1 shows as an example the 
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time series of the period of the dominant meteorological mode in the Chicago grid cell 

(frontal passage). The detrended variables correlate with r = 0.62 and dPM2.5/d! = 

2.9±1.4 "g m
-3

 d
-1

 (95% confidence interval), reflecting the importance of the frequency 

of frontal ventilation in controlling interannual PM2.5 variability in the Midwest. 

 

 

 

Figure 4.2. Interannual correlation of annual mean PM2.5 with the period T of the 

dominant meteorological mode for 1999-2010 observations: correlation coefficients 

(top) and reduced-major-axis regression slopes dPM2.5/dT (bottom). Only values 

significant with 90% confidence (p-value < 0.1) are shown. The asterisk marks the 

Chicago grid cell for which the time series of PM2.5 and T are shown in Fig. 4.1. 
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Figure 4.2 shows the interannual correlations between PM2.5 and !, and the 

corresponding slopes dPM2.5/d!, for the dominant meteorological modes across the US. 

If two or more modes show similar correlation in a given grid cell, the leading principal 

component is shown. The mean values of ! range from 5 to 9 days (Fig. 4.3), a typical 

synoptic time scale for frontal passages. There are two outlying grid cells in the interior 

Northwest where " exceeds 13 days and the physical meaning is not clear. The slopes 

dPM2.5/d! are usually positive in the eastern US, reflecting the ventilation associated 

with frontal passage. Negative dPM2.5/d! values in two Northeast grid cells may reflect 

transport of pollution in southwesterly flow behind warm fronts. Positive dPM2.5/d! in 

the Northwest can be understood to reflect periodic ventilation by maritime inflow and 

scavenging by the accompanying precipitation (Tai et al., 2012). In other parts of the 

western US the physical interpretation of dPM2.5/d! is less clear, and the PM2.5 data 

may not be representative of the 4°#5° grid cell because of sparsity of observations, 

urban bias, and complex topography (Malm et al., 2004; Tai et al., 2010). Nevertheless, 

we often find significant PM2.5-! correlations. 
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Figure 4.3. Mean synoptic periods ! of the dominant meteorological modes for 

interannual PM2.5 variability in NCEP/NCAR Reanalysis 1 observations for 1981-2000. 

Also shown is the latitudinal profile of maximum Eady growth rate !E as calculated by 

Eq. (4.2) for 0°-180°W and 850-500 hPa. 

 

4.3. GCM simulations of meteorological modes relevant to PM2.5 

We examined the ability of the IPCC AR4 GCMs to reproduce the present-day 

synoptic periods of the dominant meteorological modes for PM2.5 interannual variability 

as prelude to applying these GCMs to diagnose future changes in these periods. We 

used the 15 IPCC AR4 GCMs from the CMIP3 multi-model dataset 

(https://esg.llnl.gov:8443/index.jsp) that had archived all the daily variables from Table 

4.1 needed to project the GCM data onto the meteorological modes defined by the 

NCEP/NCAR observations. The GCM data have original horizontal resolution ranging 

from 1°#1° to 4°#5° and were all regridded here to 4°#5°. We analyzed the 20
th

 century 

simulations (20C3M) for 1981-2000, generated the principal component time series 

Uj(t) for the meteorological modes defined by the NCEP/NCAR observations, and 
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obtained the median periods of these modes on the 4°#5° grid to compare to 

observations. 

Figure 4.4 compares the GCM median periods ! of the dominant meteorological 

modes with the NCEP/NCAR observations of Fig. 4.3. The models show strong skill in 

reproducing the spatial variability of !. We see from Fig. 4.3 that much of this 

variability is driven by a meridional gradient in synoptic periods, with shorter periods at 

higher latitudes. This gradient appears in turn to reflect the baroclinicity of the 

atmosphere. Mid-latitude synoptic weather is mostly driven by baroclinic instability that 

arises from strong meridional temperature gradients (Holton, 2004) and can be 

measured by the maximum Eady growth rate (!E) (Lindzen and Farrell, 1980): 

!
E
= 0.31

g

NT

!T

!y
        (4.2) 

where g is the gravitational acceleration, N is the Brunt-Väisälä frequency, T is the 

zonal mean temperature, and y is the meridional distance. As shown in Fig. 4.3, !E 

calculated from the NCEP/NCAR data at 850-500 hPa increases sharply between the 

tropics and 40°N, consistent with the decreasing trend of !. All models can reproduce 

this observed latitudinal trend in baroclinicity very well, with R
2
 values ranging 

between 0.72-0.95 across the 15 GCMs. We further found that for a given 4°#5° grid 

cell, the inter-model variability across the 15 GCMs in the period T of the dominant 

meteorological mode is correlated with modeled baroclinicity as measured by !E. This 

is illustrated in Fig. 4.5 for the Chicago grid cell. Thus the ability of the GCMs to 

reproduce T and its variability reflects their ability to reproduce atmospheric 

baroclinicity. 
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Figure 4.4. Scatterplots of modeled vs. observed synoptic periods ! of dominant 

meteorological modes for interannual PM2.5 variability in the US for 1981-2000. 

Observed values are from NCEP/NCAR Reanalysis 1, and modeled values from 15 

IPCC AR4 GCMs. GCM names are given in each panel, and the symbol above each 

name is used to identify the model in Fig. 4.5 and 4.7. Each data point represents ! for 

one 4°#5° grid cell, and the ensemble of points represents the continental US separated 

as eastern (east of 95°W), central (110°-95°W), and western (west of 110°W). The solid 

black line is the reduced major-axis regression slope, with coefficient of variation (R
2
) 

also given. The 1:1 line is shown as dashed. 
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Figure 4.5. Relationship between atmospheric baroclinicity and synoptic period " of the 

dominant meteorological mode for PM2.5 variability in the Chicago grid cell as 

simulated by 15 IPCC AR4 GCMs for 1981-2000. The observed value from the 

NCEP/NCAR Reanalysis 1 is also indicated. Baroclinicity is measured as the maximum 

Eady growth rate !E for 44°-48°N and 850-500 hPa. Each symbol represents an 

individual GCM (see Fig. 4.4). Correlation coefficient and reduced-major-axis 

regression slope are also shown. 

 

4.4. Effect of climate change on PM2.5 

The general skill of the IPCC AR4 GCMs to reproduce present-day synoptic 

periods relevant to PM2.5 variability lends some confidence in their ability to project 

future changes in these periods. Following the general IPCC strategy, we can expect the 

ensemble of 15 GCMs to provide a better projection than any single GCM. However, as 
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Fig. 4.4 shows, some models perform better than others, and we should give less weight 

to poorly performing models. We use here the approach by Tebaldi et al. (2004, 2005), 

which combines Bayesian analysis with the reliability ensemble average (REA) method 

(Giorgi and Mearns, 2002) to discount models with large biases (with respect to 

observations) and outliers (with respect to future projections). This produces weighted 

averages and confidence intervals for future projections of synoptic periods. 

We used the CMIP3 archive of GCM data for 2046-2065 following the SRES 

A1B greenhouse warming scenario, which assumes CO2 to reach 522 ppm by 2050 

(Nakicenovic and Swart, 2000). Comparison to the GCM data for 1981-2000 (Sect. 4.3) 

gives a measure of 2000-2050 climate change. The top panel of Fig. 4.6 shows the 

weighted-average changes in periods ($!) of the dominant meteorological modes for 

interannual PM2.5 variability, and the bottom panel shows the corresponding changes in 

annual PM2.5 concentrations ($PM2.5) obtained by $PM2.5 = (dPM2.5/d!)$! where 

dPM2.5/d! is the observed local relationship (Fig. 4.2). If two or more modes are 

similarly dominant in a given grid cell, we calculate an average effect from these 

modes. Figure 4.7 shows the aggregated results for nine regions in the US with the 

distribution across GCMs. 
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Figure 4.6. Projected 2000-2050 changes in the periods of the dominant meteorological 

modes for PM2.5 variability (top), and implied changes in annual mean PM2.5 (bottom). 

The changes in synoptic periods ($!) are weighted averages from the ensemble of 

IPCC AR4 GCMs calculated using the Bayesian-REA approach of Tebaldi et al. (2004, 

2005). The implied changes in PM2.5 ($PM2.5) are calculated as $PM2.5 = 

(dPM2.5/d!)$! where dPM2.5/d! is the local relationship from Fig. 4.2. When two or 

more meteorological modes have similar correlation with annual PM2.5, an average 

effect from these modes is calculated. 
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Figure 4.7. 2000-2050 regional changes in annual mean PM2.5 concentrations due to 

changes in the periods of dominant meteorological modes for nine US regions. Regional 

division follows that of Tai et al. (2012). Symbols represent individual IPCC AR4 

GCMs (see Fig. 4.4). Weighted averages and confidence intervals are calculated using 

the Bayesian-REA approach from Tebaldi et al. (2004, 2005). 

 

We see from Fig. 4.6 and Fig. 4.7 that the future climate features a general 

increase in PM2.5-relevant synoptic periods in the eastern US, reflecting a more stagnant 

mid-latitude troposphere with reduced ventilation by frontal passages. This is a robust 

result which follows from reduced baroclinic instability and poleward shift of storm 

tracks associated with greenhouse warming (Geng and Sugi, 2003; Mickley et al., 2004; 

Yin, 2005; Lambert and Fyfe, 2006; Murazaki and Hess, 2006; Pinto et al., 2007; 

Ulbrich et al., 2008). This in turn leads to a likely (74-91% chance) increase in annual 
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mean PM2.5 with a weighted mean of about 0.1 "g m
-3

 in the eastern US (Northeast, 

Midwest, and Southeast in Fig. 4.7). In the Northwest (Pacific and Interior NW in Fig. 

4.7), we find a likely (71-83% chance) decrease in PM2.5 with a weighted mean of about 

-0.3 "g m
-3

 due to reduced synoptic periods, reflecting more frequent ventilation by 

maritime inflows and scavenging by the associated precipitation. This is consistent with 

the general IPCC finding of increasing westerly flow over the western parts of mid-

latitude continents in the future climate (Christensen et al., 2007; Meehl et al., 2007). 

Projections for other parts of the western US are more uncertain. As pointed out earlier, 

the physical meaning of synoptic periods in the West is less clear than in the East. 

GCM-CTM studies in the literature have reported ±0.1-1 "g m
-3

 changes in 

annual mean PM2.5 resulting from 2000-2050 climate change, with no consistency 

across studies (Jacob and Winner, 2009). As pointed out in the Sect. 4.1, such 

inconsistency is to be expected since individual studies used a single future-climate 

realization from a single GCM. Our multi-model ensemble analysis allows us to 

conclude with greater confidence that changes in synoptic circulation brought about by 

climate change will degrade PM2.5 air quality in the eastern US but that the effect will 

be small (~0.1 "g m
-3

). Effects in the western US are potentially larger but of uncertain 

sign even when the ensemble of IPCC GCMs is considered. 
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Figure 4.8. Summary of projected effects of 2000-2050 climate change on annual PM2.5 

in the US as driven by changes in circulation (including precipitation), temperature 

(biogenic emissions and PM volatility), vegetation dynamics, and wildfires. The 

affected regions and PM2.5 components are identified (OC % organic carbon; BC % black 

carbon). Error bars represent either the approximate range or standard deviation of the 

estimate. Estimates are from several studies: this work (circulation); Heald et al. (2008), 

Pye et al. (2009) and Tai et al. (2012) (temperature); Wu et al. (2012) (vegetation); 

Spracklen et al. (2009) and Yue et al. (2012) (wildfires). All studies used the IPCC 

SRES A1B scenario for 2000-2050 climate forcing. 

 

Figure 4.8 summarizes the projected effects of 2000-2050 climate change on 

annual PM2.5 in the US, drawing from this work for circulation changes and from 

previous studies for other effects. Tai et al. (2012) pointed out that increasing mean 
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temperature, independently from changes in circulation, could have a large effect on 

PM2.5 in the Southeast and some parts of the western US through biogenic emissions, 

wildfires, and nitrate aerosol volatility. Temperature-driven changes in the Southeast 

may reduce ammonium nitrate by ~0.2 "g m
-3

 due to increased volatility (Pye et al., 

2009; Tai et al., 2012), but increase organic PM by ~0.4 "g m
-3

 due to increased 

biogenic emissions (Heald et al., 2008; Tai et al., 2012). Wu et al. (2012) projected a 

0.1-0.2 "g m
-3

 increase in organic PM in the Midwest and western US due to climate-

driven changes in vegetation composition. Spracklen et al. (2009) and Yue et al. (2012) 

projected a ~1 "g m
-3

 increase in summertime carbonaceous aerosols in the Northwest 

due to increased wildfire activities. All in all, none of these effects (or their ensemble) is 

likely to affect annual mean PM2.5 by more than 0.5 "g m
-3

. Therefore, for PM2.5 

regulatory purpose on an annual mean basis, 2000-2050 climate change will unlikely 

represent any significant penalty or benefit for air quality managers toward the 

achievement of PM2.5 air quality goals. 

 

4.5. Conclusions 

PM2.5 air quality depends on a number of regional meteorological variables that 

are difficult to simulate in general circulation models (GCMs). This makes projections 

of the effect of 21
st
-century climate change on PM2.5 problematic. Consideration of a 

large ensemble of future-climate simulations using a number of independent GCMs can 

help to reduce the uncertainty. However, this is not computationally practical in the 

standard GCM-CTM studies where a chemical transport model (CTM) is coupled to the 
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GCM for explicit simulation of air quality. We presented here an alternative method by 

first using climatological observations to identify the dominant meteorological modes 

driving PM2.5 variability, and then using CMIP3 archived data from 15 GCMs to 

diagnose the effect of 2000-2050 climate change on the periods of these modes. 

We focused on projections of annual mean PM2.5 over a 4°#5° grid covering the 

contiguous US. We showed that the observed 1999-2010 interannual variability of 

PM2.5 across the US is strongly correlated with the periods (!) of the dominant 

synoptic-scale meteorological modes, particularly in the eastern US where these modes 

correspond to frontal passages. The observed local relationship dPM2.5/d! then provides 

a means to infer changes in PM2.5 from GCM-simulated changes in T. We find that all 

GCMs have significant skill in reproducing T and its spatial distribution over the US, 

reflecting their ability to capture the baroclinicity of the atmosphere. Inter-model 

differences in synoptic periods can be largely explained by differences in baroclinicity. 

We then examined the 2000-2050 trends in synoptic periods T across the 

continental US as simulated by the ensemble of GCMs for the SRES A1B greenhouse 

warming scenario. We find a general slowing down of synoptic circulation in the 

eastern US, as measured by an increase in T. We infer that changes in circulation driven 

by climate change will likely increase annual mean PM2.5 in the eastern US by ~0.1 "g 

m
-3

,
 
reflecting a more stagnant mid-latitude troposphere and less frequent ventilation by 

frontal passages. We also project a likely decrease by ~0.3 "g m
-3

 in the Northwest due 

to more frequent ventilation by maritime inflows. Potentially larger regional effects of 

climate change on PM2.5 air quality may arise from changes in temperature, biogenic 
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emissions, wildfires, and vegetation. Overall, however, it is unlikely that 2000-2050 

climate change will modify annual mean PM2.5 by more than 0.5 "g m
-3

. These climate 

change effects, independent of changes in anthropogenic emissions, represent a 

relatively minor penalty or benefit for PM2.5 regulatory purpose. Of more concern 

would be the effect of increased fires on daily PM2.5. 
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