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Abstract 

Wrinkling of thin stiff films on thick compliant elastomeric substrates subject to plane 

strain compression is considered for cases in which the substrate is pre-stretched prior to 

film attachment.  Advanced wrinkling modes are investigated that evolve as the systems 

are compressed beyond the onset of the primary sinusoidal wrinkling mode.  If the 

substrate pre-stretch is greater than about 40%, an advanced mode in the form of a series 

of well-spaced ridges separated by relatively flat film is observed in the simulations.  Our 

experiments reveal a localization mode in the form of alternating packets of large and 

small amplitude wrinkles, but not ridges, while ridge formation has been observed in 

other recent experiments.  Measurements of undulation amplitudes have been made for 

wrinkle fields of stiff films formed by oxidation of the surface of pre-stretched PDMS 

substrates.  Simulations have been performed with a finite element model and an 

analytical film/substrate model.  The formation of the ridge mode is a consequence of the 

altered nonlinearity of the substrate produced by the pre-stretch.  The role of the 

tangential substrate stiffness in suppressing localization at the ridges is also highlighted.  

If there is no substrate pre-stretch, or if the substrate is pre-compressed, the primary 

sinusoidal mode gives way to an entirely different sequence of advanced modes usually 

entailing period doubling followed by folding.  The nature of substrate nonlinearity that 

leads to ridges or folds is discussed. 
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1. Introduction 

Surface wrinkling of composite systems consisting of a hard skin on a soft 

underlayer has received considerable attention for several decades.  Early studies on this 

issue date back to Allen (1969) with focus on the prevention of instability of layered 

engineering structures such as sandwich panels. Studies in recent years have 

demonstrated that surface wrinkling phenomenon of film/substrate systems has wide 

application ranging from fabricating surfaces with controlled patterns with unique 

wetting, optical and acoustic properties,  and for measuring the mechanical properties of 

materials to the design of flexible electronics (Bowden et al., 1998; Stafford et al., 2004; 

Lacour et al.; Khang et al., 2006). Although theoretical studies during past years have led 

to procedures to determine the critical condition of instability and the corresponding 

wrinkling patterns (Allen, 1969; Volynskii et al., 2000; Groenewold, 2001; Huang and 

Suo, 2002; Huang et al., 2005; Huang 2005), the post-buckling evolution of surface 

wrinkles is only recently being pursued (Brau et al., 2010; Kim et al., 2011; Sun et al., 

2012; Cao & Hutchinson, 2012a). 

This study is concerned with an unusual advanced wrinkling mode as shown in Fig. 

1.  Termed the mountain ridge mode, or, more briefly, the ridge mode, it was discovered 

through numerical simulation of wrinkling of thin stiff films on deep compliant neo-

Hookean substrates (Cao & Hutchinson, 2012a).  The ridge mode formed when the 

substrate was pre-stretched in plane strain to a stretch greater than about 1 1.4S   prior to 

film attachment (Fig. 1a).  When this film/substrate system is then subject to incremental 

plane strain compression, the onset of wrinkling occurs as the classical sinusoidal mode 

at very small incremental compressive strain, typically on the order of 0.01 or less.  The 

amplitude of the sinusoidal mode grows stably as the compression is further increased 

until the sinusoidal mode gives way to ridge formation at an incremental compression 

that is still relatively small.  The ridges revert back to the periodic sinusoidal-like mode 

with even further compression, as will be discussed later. 

This paper explores the ridge mode in greater depth.  Experiments have been 

performed and reported in Section 2 in which localization, but not ridge formation, is 

observed and measured for stiff silica-like films grown on pre-stretched PDMS 

substrates.  Other recent experiments where ridges have been observed will also be 
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discussed.  Numerical simulations are presented in Section 3 revealing details of ridge 

mode formation, including the localization aspect of the phenomenon wherein the 

wrinkles between the ridges decay at the expense of ridge growth.  The connection 

between substrate nonlinearity, pre-stretch and mode-type (e.g. period-doubling and 

folding versus ridging) is established.  A film/substrate model is proposed and analyzed 

in Section 4 that accounts for both the nonlinear normal traction-displacement behavior 

of the substrate and its tangential stiffness.  The model reveals that the tangential 

substrate stiffness plays an essential role in formation of the advanced modes through its 

constraining effect on the lateral motion of the film. 

 

2. Experimental observations of the ridge mode 

Polydimethylsiloxane (PDMS) used for the substrate was prepared by mixing a 

degassed elastomer base and a crosslinker in a ratio of 10:1 w/w (Sylgard 184, Dow 

Corning). The pre-polymerized mixture was cast on a flat surface (a petri dish bottom or 

cover), and cured at 60 oC  for 6 hours.  Uniaxial tensile stress-strain data for the PDMS 

is presented in Fig. 2.  The material is modeled as being incompressible, and its ground 

state shear modulus is 0.32MPa .   Included in Fig. 2 are the tensile stress-strain curves 

for a neo-Hookean material with the same initial shear modulus and that for an Arruda-

Boyce material (Arruda and Boyce, 1993), with the same ground state shear modulus and 

its locking parameter set at 1.17m  .  These two material models will be used in the 

numerical simulations. 

In preparation for the wrinkling tests, the cured PDMS was cut into pieces (ca. 

25 25 1mm  ) and gently peeled off the casting surface.  The slab of PDMS was fixed 

on a specially designed stretcher of in-plane dimensions, 1 3D D , where 1D  in the 

stretching direction is much less than 3D  in the perpendicular direction.  The constraint 

in the perpendicular direction gives rise to desired plane strain deformations in the plane 

consisting of the stretch direction and the through-thickness direction of the slab.  A 

series of slabs of PDMS fixed to the stretcher were subject to one of five pre-stretches 

( 1
S = 1.2, 1.3, 1.35, 1.4 & 1.5).  Then, the pre-stretched PDMS surface was treated using 

RF oxygen plasma (Emitech K-1050X) at 100W  for 60 s .  A silica-like stiff film forms 
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on PDMS surface during plasma treatment with a thickness of 10 20nm  (Befahy et al, 

2010) and a Young’s modulus that is approximately 1.5GPa .   

The film/substrate system is then subject to increments of plane strain 

compression by decreasing the stretch imposed by the stretcher (cf. the depiction in Fig. 

1a).  After wrinkles form, the wrinkled surface was recorded by atomic force microscope 

(AFM) at suitable field scales (from 5 to 20 m) at several subsequent compressive 

strains for each pre-stretch. A section profile across the wrinkle field was conducted for 

each AFM image to give the amplitude variation.   

The results of these measurements are assembled in Fig. 3.  Throughout this 

paper, the overall incremental compressive strain is defined as a nominal strain, 

0 1( 1)     , where 1  is the stretch measured from the pre-deformed state in which 

the film is grown.  For each compressive strain, the figures display both a direct image of 

the wrinkled surface and an atomic force microscope (AFM) trace across the wrinkle 

field giving the amplitude variation.  In all cases shown, the wavelength of the 

undulations is between 0.3 and 0.5 m .  The amplitude of the undulations depends on the 

applied compression and the form of the mode, but in all the cases shown it falls between 

10 and 50 nanometers.  The slopes of the undulations are therefore relatively shallow, not 

exceeding about 1/10.  While there are irregularities such as ‘undulation dislocations’ in 

the wrinkle patterns for pre-stretches at or below 1 1.30S  , there are no signs of 

undulation localization.  Some evidence of localized behavior can be seen at 1 1.35S  , 

but systematic localization of the undulations is only clearly evident for the two largest 

pre-stretches, 1 1.4&1.5S  .  For these cases, a series of two or three large amplitude 

undulations is separated by multiple undulations having significantly reduced amplitudes.  

This reflects localization but not ridge formation.  The applied compressive strain at 

which localization occurs is relatively small (0.043 in Fig. 3d and 0.02 in Fig. 3e).  As the 

compressive strain is further increased the difference in amplitudes of undulations within 

the localized region and the undulations separating them diminishes until the mode 

appears to revert back to the periodic to the sinusoidal mode.   This behavior is seen in 

Fig. 3d as the compressive strain increases from 0.043 to 0.086 and even more clearly in 

Fig. 3e, for the compressive strain increasing from 0.02 to 0.06. 
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 Based on the behavior seen in Figs. 3, it would appear that well defined 

localizations only form for films attached to substrates pre-stretched above 

(approximately) 1 1.40S  .  The localized mode occurs as the system is compressed to 

strains several times greater than the strain associated with the onset of the primary 

sinusoidal wrinkle mode.  The fully developed localization mode has multiple large 

undulations separated by minor undulations with amplitudes that are much smaller.  

Moreover, the amplitudes of minor undulations are smaller than the amplitude of the 

sinusoidal wrinkles at compressive strains below the onset of localization.  It is evident 

that the large undulations gain their height at the expense of the undulations separating 

them—it is this feature that marks this behavior as a localization phenomenon.  Lastly, it 

would appear that the localization mode only persists for a relatively small range of 

compressive strain, transitioning back to a sinusoidal-like mode as the compression 

increases. 

 The experiments in this paper reveal localization but not ridge formation.  To our 

knowledge the only experimental evidence for localized ridge formation is the recent 

work of Ebata, Croll & Crosby (2012).  These authors attached films of polystyrene (with 

thicknesses varying from 5 to 180nm) to pre-stretched PDMS substrates.  The sequence 

of wrinkle phenomena as the film/substrate system underwent incremental compression 

was measured and localized ridge formation (termed a fold with an outward morphology) 

was observed at compressive strains on the order of 5%.  The substrate pre-stretch in 

these experiments was considerably less than 40%, in conflict with the simulations 

discussed next for which clear cut ridges do not form for pre-stretches less than 40%.  

 

3. Finite element simulations of the ridge mode and other advanced modes 

 Plane strain finite element simulations of film-substrate systems with substrate 

pre-stretch have been carried out with the aim of revealing the ridge formation 

phenomenon and providing insights into when it should be expected to occur.  

Simulations have been performed using both the neo-Hookean and the Arruda-Boyce 

constitutive models for elastomers.  The simulations are made with the commercial 

software, ABAQUS [2008], and employing the hybrid element, CPE8MH, designed for 

simulations of incompressible materials.  A detailed description of important aspects of 
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the simulations was given by Cao and Hutchinson (2012a); these include the inclusion of 

very small initial geometric surface imperfections to trigger bifurcation modes, and the 

method for introduction of the pre-stretch, 1
S . To track the post-buckling evolution, a 

pseudo dynamic method (a stabilized nonlinear solution method in ABAQUS, 2008) has 

been adopted, which shares the similar idea with the Tikhonov regularization method 

(Tikhonov & Arsenin 1977) dealing with ill-posed inverse problems, as discussed in our 

recent study (Cao and Hutchinson, 2012b). 

 Displacement-controlled loading is employed with the horizontal displacement, 

1u  (taken to be independent of the vertical coordinate 2x ), and zero shear traction 

specified on the vertical sides of the model.  The overall compressive strain applied to the 

system after the film is attached to the substrate is denoted by, 0 .  It is defined as the 

nominal compressive strain introduced earlier as the difference, 1u , between 1u  on the 

two sides of the model, 0 1 /u W   , where W  is the distance between the sides in the 

pre-deformed state.  On the bottom surface of the substrate, the vertical displacement, 2u , 

and the shear traction are taken to be zero.   The width of the model is taken to be or the 

order of 10 wavelengths of the sinusoidal wrinkling mode.  The depth of the substrate is 

taken to be more than 10 times the sinusoidal wavelength and, thus, sufficiently deep to 

ensure that there is no interaction with the modes and the bottom of the substrate.  The 

substrate is effectively infinitely deep. 

 

3.1 Examples of the ridge mode 

 Fig. 1, reproduced from Cao and Hutchinson (2012a), illustrates the evolution of 

the ridge mode as the system undergoes increasing compression beyond the onset of the 

classical sinusoidal wrinkling mode for a substrate that has been pre-stretched to 1 2S  .  

The simulations in Fig. 1 take both the film and substrate to be neo-Hookean with ground 

state shear modulus of the film, f , and that of the substrate, S , with ratio 

/ 836f S   .  The primary sinusoidal mode remains stable until compressive strains 

more than 3 times the bifurcation strain associated with the sinusoidal mode have been 

imposed, at which point ridges begin to form.   
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  Ridges can only form at the expense of neighboring undulations in the sense that 

the extra length of film needed to grow the ridge feeds towards the ridge from the film on 

either side of the peak.  This requires the film to displace tangentially towards the peak, 

as will be illustrated more clearly in the next section.  The localization process is also 

evident in Fig. 4 where the height of a ridge as it emerges is compared with the height of 

the nearest undulation.  Before the ridge begins to form, the amplitudes of the two 

neighboring undulations increase together.  Once ridge formation begins, the ridge height 

increases sharply while the neighboring undulation flattens.  This transition occurs over a 

small range of compressive strain.  

 Ridge formation depends on the nonlinearity of the traction-deflection behavior of 

the substrate, and, in particular, how this nonlinearity is affected by pre-stretch.  This 

assertion will be developed in the sub-section which follows.  However, ridge formation 

does not appear to be strongly dependent on the choice of elastomeric constitutive model.  

The sequence of wrinkle patterns in Fig. 5 has been generated using the Arruda-Boyce 

(1993) constitutive model with parameters chosen to fit the tensile stress-strain data for 

PDMS (see Fig. 2).  The emergence of the ridge mode for this constitutive model is 

similar to that that seen for the neo-Hookean system in Fig. 1. In the simulation shown in 

Fig. 5 the compression is increased to a strain well beyond the onset of the ridge 

formation.  At compressive strains above 0.2   the amplitudes of ridges have decreased 

and the localizations revert to the uniform sinusoidal-like undulations.   In each of the 

simulations in Fig.1 and in Fig. 5, the same material model was used to represent the film 

as the substrate but with a very large stiffness relative to the substrate.  Because the film 

is stiff, the strains in the film remain small, well within range such that the response of 

the material model is linear.  In other words, effectively, the film is represented as being 

an incompressible linear elastic material.   

The minimum pre-stretch required to produce the ridge mode was found to be 

approximately 1 1.4S   for the Arruda-Boyce material with the locking parameter set at 

1.17m  .  This is in reasonable accord with the experimental observations reported in 

Section 2 which gave an indication of weak localization at 1 1.35S   and well developed 

localization at 1 1.40S   and above.  For larger values of the locking parameter, the 
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mimimum required pre-stretch is somewhat higher, 1 1.5S  , and similar to that for the 

neo-Hookean material.  The minimum pre-stretch required to produce the ridge mode is 

not strongly dependent on /f S  .  In addition, for a neo-Hookean substrate pre-

stretched to 1 2S  , all film/substrate combinations with / 10f S    were found to 

undergo ridge localization (Cao & Hutchinson, 2012a). 

 The effect of a pre-compression of the substrate, 0 0.7S  , on advanced mode 

formation is illustrated in Fig. 6 for the case of a substrate described by the Arruda-Boyce 

constitutive law fit to the PDMS and a film/substrate modulus ratio, / 100f S   .  

Under pre-compression, or with no pre-deformation at all, ridges do not form.  Instead, 

period-doubling occurs as the system is compressed beyond the onset of the sinusoidal 

mode.  As more compression is applied, folds emerge in the form of sharp inward 

deflections.  The folds grow at the expense of the intermediate undulations which become 

almost flat.  Period-doubling and folding has been documented thoroughly through 

experiments by Brau et al. (2010) and through experiments and simulations by Sun, et al. 

(2012).  Further simulations over wide range of the film/substrate modulus ratio have 

been presented by Cao and Hutchinson (2012a).  Given the previous studies of period-

doubling and folding in the literature and the emphasis here on the ridge mode, no further 

examples involving pre-compression will be presented here.  Nevertheless, it should be 

mentioned that a quantitative connection between the onset of period-doubling and pre-

compression has not been established.   

 

3.2 Effect of pre-deformation on nonlinearity of substrate traction-displacement behavior 

 Two subsidiary calculations have been carried out to give further insight into the 

role of substrate pre-stretch or pre-compression underlying the formation of the two 

distinct advanced modes, ridges and folds.  These calculations help to expose the nature 

of the nonlinearity of a semi-infinite neo-Hookean substrate as dependent on a uniform 

pre-compression or pre-stretch, 1
S .   

The first imposes incremental nominal tractions, 22 21( , )s s , on the surface of a 

substrate subject to uniform plane strain pre-deformation, 1
S .  The specified tractions are 
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 22 0 21cos(2 / ), 0s p X L s         (3.1) 

where X  is the horizontal coordinate in the surface in the pre-deformed state, 22s  (per 

area in the pre-deformed state) at 0X   is 22 0s p , and, here, L  is an arbitrary scaling 

length.  The vertical displacement has the form 2 0/ ( / , / )Su L f p X L  where f  is 

dimensionless with period / 1X L  .    The dependence of 2 /u L   on 22 / Ss   at 

0X   is displayed in Fig. 7.  Note that at 0X  , 0   corresponds to a crest and 0   

to a valley, and the nonlinearity affects the development of a crest relative to a valley.  

The findings related to crest-valley deformations at 0X   are summarized as follows: 

    (a) No pre-stretch 1( 1)S  ;  approx. linear: .15   

    (b) Pre-stretch 1( 2)S  ; softening: 0< .1  , hardening: -.1< 0   

    (c) Pre-compression 1( 0.7)S  ; hardening: 0< .15  , approx. linear: -.15< 0   

Pre-stretch produces softening for outward displacements and hardening for 

inward displacements which favors ridge formation.  Conversely, pre-compression leads 

to significant hardening for outward displacements and a near-linear response for 

-.15< 0  , and this certainly discourages ridge formation.  The role of pre-compression 

in favoring folds is further revealed by the second calculation presented below.  The case 

of no pre-stretch would appear to be neutral.  In fact, period-doubling and folding do not 

occur in systems with no pre-stretch until the system has been compressed to a strain 

which is typically 0 0.2   (Cao and Hutchinson, 2012a).   

 The second subsidiary calculation imposes a localized ridge-like or fold-like 

deformation on the surface of the uniformly deformed substrate and evaluates the energy 

required to create it.  The displacements imposed on the surface are  

1 0u   and   2/
2 4 X Lu L e         (3.2) 

with 0   corresponding to a ridge and 0   to a fold.  Denote the work done to impose 

the displacements (3.2) by  .  Equivalently, this is the change in elastic energy in the 

substrate.  When the half-space has been subject to a pre-stretch, 0 2S  , the ratio of the 

energy to create a fold-like deformation to that to create a ridge-like deformation (both 

with amplitude 0.4  ) is 
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When the substrate is subject to a pre-compression, 0 0.6S  , the same ratio is 
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These results, like those for the sinusoidal surface loading apply for any length L .  Both 

sets of results suggest the following: a pre-stretch favors the occurrence of outward 

deflections of the surface (e.g., ridges) while pre-compression favors inward deflections 

(e.g., folds). 

 

4. An ordinary differential equation model for the nonlinear wrinkling behavior of a 
stiff film on a compliant substrate 
 
 The following one-dimensional model represents the stiff film bonded to a 

substrate by a one-dimensional nonlinear von Karman plate subject to normal and 

tangential tractions that are intended to approximate the substrate constraint in its current 

state of pre-stretch.  The vertical and horizontal displacements of the plate middle surface 

are denoted by W  and  U ; these are functions of the horizontal coordinate X .  The 

strains in a von Karman plate are considered small but rotations can be moderately large, 

i.e., 2( / ) 1dW dX  . A uniform horizontal compression, 0 , with associated horizontal 

displacement, 0 0( )U X X  , is imposed on the system and this state is taken as the 

reference.  The film middle surface in this uniform state is chosen to coincide with 

0W  , and the change of horizontal displacement from this state is denoted by 

0U U U   . The normal component of traction exerted on the plate by the substrate 

(acting downward) is taken to be nonlinear in the vertical displacement of the plate 

middle surface, ( )W X : 

 2 3
2 2 22 23T K W K W K W          (4.1) 

The tangential traction exerted on the plate by the substrate (acting leftward) is taken to 

be linear in the horizontal displacement of the middle surface from the reference state: 

 1 1T K U           (4.2) 
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The film’s moment/length, M , and resultant stress, N , are given in terms of the 

bending strain, 2 2/K d W dX , and the stretching strain,  21

2
/ /dU dX dW dX   , by 

2

12

Eh
M K   and  N Eh        (4.3) 

with E  and   as the film Young’s modulus and Poisson’s ratio, 2/ (1 )E E    and h  

as the film thickness.  The principle of virtual work for von Karman plate theory gives 

the equilibrium equations: 

 
2

22

d M d dW
N T

d X dX dX
    
 

   and   1

dN
T

dX
      (4.4)1 

 Bifurcation from the uniform state is governed by the linearized equation: 

 
3 4 2

0 24 2
0

12

Eh d W d W
Eh K W

d X d X
         (4.5) 

The critical eigenvalue, eigenmode and wavelength for an unbounded film are 

 2
0 3
C K h

E
  ,   

2
cos

X
W

L

   
 

 with  
1/4

2

2
12

L E

h K h

 

  
 

   (4.6) 

The eigenmodal tangential displacement, U , is zero. 

 The nonlinear system of equations is now put into dimensionless form.  This step 

is important because it permits realistic choices to be made for the coefficients in the 

traction-displacement relations representing the substrate.  Noting (4.6), define a length 

quantity proportional wavelength of the critical mode by  1/4

2/d h E K h , and let 

/x X d .  Further, let /w W h , 2/u Ud h , 2/u Ud h   , 2 3/n Nd Eh , 

2 2/e d h , 4 4
2 2 /t T d Eh  and 3 3

1 1 /t T d Eh .  The resulting system of dimensionless, 

nonlinear equations is 

 2

1
( )

12
w nw t     ,    2 3

2 22 23t w k w k w       (4.7a) 

 1n t  ,      1 1t k u          (4.7b) 

                                                 
1 In this model, the middle surface of the film is taken to lie along the top surface of the substrate.  A more 
accurate description joins the film and substrate along the bottom surface of the film (Cai et al., 2011).  The 
difference in predictions from the two formulations is small and unimportant for present purposes.  
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 2
0

1

2
n e u w              (4.7c) 

with ( ) ( ) /d dx  , 2 2
0 0 /e d h , and with dimensionless traction coefficients 

 1/21/2
1 1 2/k K h EK , 22 22 2/k K h K  and 2

23 23 2/k K h K    (4.7d) 

Loading is prescribed by imposing the dimensionless overall compressive strain, 0e .   

For periodic solutions with wavelength, 0X , the energy in the system (per out-of-

plane length),  , evaluated over one wavelength, is  

    0 1 1 1 1 1 12 2 2 2 2 3 4
2 1 22 2324 2 2 2 3 40

/
x

K h d w n k u w k w k w dx            (4.8) 

with n  given by (4.7c) and 0 0 /x X d .  The Euler-Lagrange equations derived from the 

first variations of (4.8) with respect to w  and u  are (4.7a,b). 

 The dimensionless tangential traction coefficient 1k  plays an important role in the 

advanced post-bifurcation modes and especially in localization.  To obtain a sense of its 

magnitude, consider sinusoidal tractions,  1 2sin(2 / ), cos(2 / )T X L T X L  , applied to 

the surface of a unstretched, semi-infinite neo-Hookean substrate with shear modulus S .  

The linearized surface displacements are  sin(2 / ), cos(2 / )U X L W X L   where 

 1 1

4 ST U K U
L


    ,   2 2

4 ST W K W
L


      (4.9) 

By (4.7d), this estimate gives 

 1 2 S h
k

EL

          (4.10) 

For stiff films on highly compliant substrates, / 1S E   and / 1h L  ; therefore,  

1 1k  .  For example, for typical stiff film/PDMS systems, / 1/10h L   and 

5/ 10S fE   such that 3
1 3 10k   .  Even in the mathematical limit, 1 0k  , the 

tangential displacement u  has an important role, as will be seen. 

 The post-bifurcation modes of interest depend on the nature of the nonlinearity.  

There are no secondary bifurcations if the normal traction-displacement relation is linear.  

The nature of the nonlinearity of the normal traction-displacement relation in (4.1) and 

(4.7a) depends on whether the substrate is pre-stretched or pre-compressed, as has been 
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discussed in Section 3.2.  The example in Fig. 8 with 22 0.5k    and 23 0.1k   represents 

the type of nonlinearity of a substrate with positive pre-stretch (compare with Fig. 7), and 

it will be used in the numerical simulations presented below. 

 At best, the nonlinear foundation model (4.1) can only approximate a continuum 

substrate such as a neo-Hookean half-space.  For example, the traction-displacement 

relation of a continuum half-space depends on the wavelength of the deflection as seen in 

(4.9), while (4.1) has no such dependence.  Nevertheless, (4.1) captures qualitative 

aspects of the nonlinearity and it can be calibrated to a particular wavelength. 

 

4.1 Primary solution 

 In dimensionless variables, the eigenvalue, eigenmode and wavelength in (4.6) 

associated with the primary (lowest) bifurcation are 

 0 1/ 3Ce  ,  cos 2 /Cw x  , 0u  , 1/4/ 2 / (12) 3.376L d     (4.11) 

For loading beyond the critical bifurcation point with 0 0
Ce e , a periodic solution to the 

nonlinear system of equations (4.7) with wavelength   emerges from (4.11)—this finite 

amplitude solution will be referred to as the primary solution.  Numerical methods for 

solving nonlinear ode’s, such as those available in IMSL (2009), are required to generate 

these solutions because it is not possible to solve the system (4.7) analytically.  The 

primary solutions are readily generated; their symmetry with respect to the center of the 

period can be exploited.  The primary solution is illustrated in Fig. 9.  Of particular note 

are: (i) upward deflections favored over downward deflections due to the asymmetry in 

the normal traction-displacement relation (i.e., 22 0k  ); (ii) near-independence of  w  on 

the tangential stiffness coefficient, 1k .  In the limit 1 0k  , (4.7b) implies that n  is 

independent of x .  Nevertheless, the tangential displacement still has a role to play 

because, by (4.7c), periodicity of u  provides the relation of n  to prescribed 0e  as 

 2
0 0

1

2
n e w dx   




        (4.12) 

 

4.2 Secondary bifurcation solutions 
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 The next step in analyzing the model is to inquire whether secondary bifurcations 

from the primary solution occur as the system is loaded beyond primary bifurcation under 

increasing 0e .  Here, the search for the secondary bifurcations has been limited to modes 

with periodicity M   where M  is integer.  With subscript “ P ” denoting the primary 

solution, the linearized equations for the secondary bifurcation variables, ( , , )w u n   , are 

 

2
22 23

1

1
( ) ( ) 2 3 0

12 P P P P

P

w n w nw w k w w k w w

n k u

n u w w

        

  

   

     

 

  

   (4.13) 

subject to boundary conditions consistent with the period M  .  Although linear, these 

equations have x -dependent, coefficients with period  .  Solutions have been generated 

numerically using ode solvers in IMSL.   

The lowest normalized eigenvalues, 0 0/ Ce e , associated with secondary 

bifurcations are presented in Figs. 10.  For the system with 22 0.5k    and 23 0.1k  , 

secondary bifurcations with 3M   occur at the lowest 0e , and these exist only for values 

of the dimensionless tangential stiffness coefficient, 1k , less than about 0.01.  For 1k  

larger than about 0.01, no secondary bifurcations have been found for any .M   No 

secondary modes for 1M   were found for any 1k .  For integer values 1M  , secondary 

eigenvalues exist at larger values of 0e  than those plotted in Fig. 10, but these are of less 

interest.  No secondary bifurcations were found when the normal traction-displacement 

relation is linear (i.e., 22 23 0k k  ). 

 An example of a secondary bifurcation eigenmode is displayed in Figs. 11 for 

5M   where the mode has been normalized such that the maximum value of w  is unity.  

The shape of the deflection is relatively insensitive to 1k , even though 1k  plays an strong 

role in determining whether or not secondary bifurcation occurs.  The secondary modes 

have amplified undulation magnitude in some regions and diminished magnitude in 

others indicating the onset of localization. 

 

4.3 Fully nonlinear solutions illustrating ridge formation 
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 Solutions to the fully nonlinear system of ordinary differential equations (4.7) 

have been generated numerically using the ode solver DBVPFD in IMSL.  The search 

has been restricted to periodic solutions with period M  , where M  is integer.  It is not 

straightforward to obtain these solutions— patience and persistence are required.  The 

primary solution with periodicity   always exists for 0 0
Ce e  because it also has period 

M  .  Additional solutions do not necessarily exist, as, for example, when 1 0.01k   or if 

0e  is below all of the eigenvalues associated with secondary bifurcation.  When other 

solutions do exist, one method which successfully produced them (with requisite trial and 

error) entailed the introduction of a small initial undulation imperfection into system (4.7) 

that encompassed a superposition of many possible mode shapes.  A solution was 

generated using the ode solver with the imperfection present.  Then, the parameter 

tracking option in the solver can be used to reduce the imperfection to zero in steps.  If 

successful, the resulting solution is a converged solution to the fully nonlinear system 

(4.7).  Once a solution has been obtained for one set of parameters, the parameter 

tracking option can be used to generate solutions for other sets of parameters. 

 The outcome of this process is shown in Figs. 12 and 13 for 6M  .  Fig. 12 

displays the solution for three values of imposed overall compression, while Fig. 13 

shows the effect of increasing the dimensionless tangential stiffness of the substrate.  The 

period, 6 , of the solution is large enough to reveal aspects of ridge formation.  The 

shape of the normal deflection is qualitatively similar to that seen in the experiments.  

Dominant ridge peaks with neighboring lesser peaks are separated by regions with small 

amplitude undulations.   

Solutions with the general features of the fully nonlinear solutions presented here 

have been produced by Hunt et al. (1989) and Wadee et al. (1997) for the model system 

(4.7) for the special case with 1 0k  , 22 0k   and 23 0k  .  These authors also emphasize 

the localized deflection behavior and discuss various techniques for producing solutions 

to the nonlinear ordinary differential equation (4.7a).  For the system with no tangential 

constraint of the substrate ( 1 0k  ), the single nonlinear equation (4.7a) is decoupled from 

(4.7b).  The dimensionless horizontal force carried by the film, n , in the limit 1 0k  , is 

independent of x  and becomes, in effect, the load parameter.  As noted earlier, within the 
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context of a film/substrate system, the tangential displacement still has a role to play in 

this limit: (4.12) gives n  in terms of the imposed overall compressive strain, 0e . 

 The solutions in Figs. 12 and 13 can be used to obtain a qualitative understanding 

of why such solutions do not exist if the dimensionless tangential stiffness, 1k , is too 

large.  The contributions to the energy in (4.8) from the linear tangential and normal 

restoring tractions are 
/ 2

1 0
( / 2)

Ml d
k u dx  and 

/ 2

0
(1/ 2)

Ml d
w dx , respectively.  For the 

examples in Figs. 12 and 13, the ratio of 
/ 2

0

Ml d
u dx  to 

/ 2

0

Ml d
w dx  is greater than 10 in 

all cases and relatively insensitive to 1k .  Thus, the energy stored in the substrate due to 

the tangential displacement will be comparable to the energy stored due the normal 

displacement unless 110 1k  .  Because the energy associated with the tangential 

displacement is parasitic, it will tend to suppress localization unless 110 1k  .   The 

estimate, 3
1 3 10k   , made earlier for typical stiff films on PDMS substrates, which can 

localize, is consistent with this requirement, as is the fact that no ridge modes were found 

for the system investigated in this section if 1 0.01k  .  

The solutions in Fig. 12 and 13 also illustrate an important aspect of localization 

in the ridge mode.  The tangential displacement in the central region where the 

undulations are small is directed towards the nearest ridge.  The film must displace 

tangentially in this region to provide the extra film length required to form the ridge.  As 

noted earlier, a ridge grows at the expense of its neighboring undulations, and the 

tangential displacement of the film is crucial to this localization process.  When the 

tangential stiffness is too large, tangential film displacement is suppressed and 

localization cannot occur.  Localization in the ridge mode is even more evident in the 

distribution of the energy density (i.e., the integrand in (4.8)) plotted in Fig. 14.   

Wrinkling localization under compression seen for the film/substrate system is 

reminiscent of buckling localization that has been observed to occur when railroad tracks 

become over heated by the sun (Tvergaard and Needleman, 1981).  Large lateral buckling 

deflections at one location along the tracks relieve compression in neighboring sections 
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of the tracks rendering them less prone to buckle.  In both systems, the nonlinearity of the 

substrate constraint plays a critical role in determining whether or not localization occurs. 

 

4.4 Fully nonlinear solutions illustrating fold formation 

 A fold is a ridge of opposite sign—a localized undulation of the film that 

penetrates deeply into the substrate surrounded by undulations of smaller amplitude.  The 

substrate nonlinearity considered in the previous sections (with 22 0.5k    and 23 0.1k  ) 

was chosen to give rise to softening behavior for outward normal deflections of the 

substrate surface and hardening behavior for inward deflection, qualitatively consistent 

with the effect of a pre-stretch seen in Fig. 7.  If instead, the sign of 22k  is changed with 

all other parameters unchanged (i.e., 22 0.5k   and 23 0.1k  ) then softening occurs for 

inward deflections and hardening for outward deflections.  These conditions favor the 

formation of folds.   

 For a given value of 22k , it is readily shown that any solution, ( , )w u , to the fully 

nonlinear system (4.7) generates a solution, ( , )w u , to the system when the sign of 22k  is 

changed, with all other parameters unchanged.  Thus, with due regard for the sign change 

of w , all the prior results for ( 22 0.5k   , 23 0.1k  ) apply to ( 22 0.5k  , 23 0.1k  ).  In 

particular, the fully nonlinear solutions in Fig. 12 and 13, with a sign change for w , can 

be interpreted as fold-like deformations.  

 

 

5.  Conclusions 

 The ridge localization mode in a film/substrate system under plane strain 

compression can take place when the substrate nonlinearity gives rise to a softer response 

for a local outward normal deflection than for an opposing inward deflection.  Ridge 

formation also requires the tangential stiffness of the substrate to be sufficiently low such 

that the film can displace laterally allowing the ridge to grow at the expense of 

neighboring undulations.  Pre-stretch of an elastomer substrate has been shown to 

generate nonlinearity favorable to localization and the formation of ridge localizations.  

The compression experiments in this paper on pre-stretched PDMS substrates with silica-
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like films formed by surface oxidation have revealed localized amplification of the 

undulations but not ridge formation.  The occurrence of localization as dependent on the 

level of substrate pre-stretch is in general agreement mode with the simulations, as is the 

fact that the localization reverts back to the periodic sinusoidal-like mode as the 

compression is further increased.  In particular, both our experiments and finite element 

simulations reveal that the PDMS substrate must be pre-stretched by more than about 

40% for localization to be observed.  The formation of localized ridges, or outward folds, 

has been noted in the experiments of Ebata, et al. (2012), but discrepancy between these 

observations and the present simulations exists in that the pre-stretch in the experiments 

was well below 40%.  Thus, a robust experimental confirmation of the ridge mode 

remains to be achieved.   

 Folds can form when the substrate nonlinearity favors inward over outward local 

normal deflections.  For elastomeric substrates described by either neo-Hookean or 

Arruda-Boyce models the present simulations reveal that pre-compression of the 

substrate can create this type of nonlinearity.  However, the form of the nonlinearity 

produced by pre-stretch and pre-compression are not mirror images of one another, as can 

be seen in Fig. 7.  This may be the reason that the wrinkling sequence leading to folds 

differs from that for ridges.  When the substrate has been pre-compressed (c.f. Fig. 6), the 

sinusoidal mode gives way to period-doubling with folds developing gradually with 

further applied compression.  If the substrate has not been pre-deformed, the same 

sequence takes place but the sinusoidal mode is stable to relatively large applied 

compressive strains of about 0.2 before period-doubling and folding set in (Brau et al., 

2010; Sun et al., 2012; Cao and Hutchinson, 2012a).  Presumably, a compressive strain of 

around 0.2 is required to create the substrate nonlinearity required for formation of these 

advanced modes. 

 The differential equation model of the film/substrate system proposed in Section 4 

enhances earlier models used to explore advanced modes by including the tangential 

restraint of the substrate on the film.  The model reveals the important role played by this 

restraint on the advance modes.  In particular, it shows that the localization aspect of the 

advanced modes is suppressed if the tangential stiffness exceeds a critical level.  One-

dimensional models such as this are mainly limited by the difficulty of accurately 
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representing the nonlinearity of a substrate material, which is generally quite complex.  

Nevertheless, the models can provide important qualitative insights to the highly 

nonlinear wrinkling phenomena.  
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a) 

 

b) 

Fig. 1  a) Schematic of loading sequence.  b)  Formation of localized ridges in a 
compressed stiff film/compliant system.  Evolution of the wrinkling mode under plane 
strain compression, 0 ,  for a neo-Hookean film attached to a neo-Hookean substrate 

following a plane strain pre-stretch 1 2S   of the substrate, as simulated by Cao and 

Hutchinson (2012a). The film to substrate ground state shear modulus ratio is 
/ 836f S   .  The sinusoidal wrinkling mode associated with bifurcation at 0 0.01C   is 

stable to a compressive strain 0 0.036  , but at 0 0.0367   a mountain ridge has 

formed at the right end of the model and the amplitudes of the undulations near the ridge 
have been reduced.  By 0 0.054   a second ridge is clearly forming near the left end, 

and by 0 0.099   this ridge is fully developed with a third ridge beginning to emerge 

near the center.  At 0 0.116   three fully developed ridges have formed and have 

relaxed the undulation amplitudes between the ridges. 
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Fig. 2—Tensile stress-strain data of the PDMS used in the present experiments and the 

tensile predictions for the neo-Hookean model and the Arruda-Boyce model.  The two 

constitutive models are taken to be incompressible and have been fit to a ground state 

shear modulus, 0.32 MPa .  The locking parameter of the Arruda-Boyce model has been 

taken as 1.17m  .  
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Fig. 3a  Pre-stretch 1 1.20S   

 

Fig. 3b Pre-stretch 1 1.30S   
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Fig. 3c  Pre-stretch 1 1.35S   

 

Fig. 3d  Pre-stretch 1 1.40S   
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Fig. 3e  Pre-stretch 1 1.50S   

 

Fig. 3  Experimental observations of wrinking of a stiff silica-like film formed by 

oxidation of the surface of a pre-stretched PDMS substrate.  Five levels of plane strain 

pre-stretch, 1
S , are shown.  The nominal compressive strain, 0 , is imposed as a plane 

strain deformation on the pre-stretched system.   Undulation localization is seen for 

1 1.35S   but only becomes well developed for 1 1.40S   and 1 1.50S  .  Note that the 

localization reverts back to a periodic mode as the compression increases to larger values. 
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Fig. 4  The localization process is illustrated by the sharp increase in height of a ridge and 

the corresponding decrease in height experienced by the neighboring undulation.  

Localization occurs over a small increase of compressive strain from about 0 0.055   to 

0 0.060  .  This example is for a neo-Hookean film/substrate system with 1 2S   and 

/ 123f S   . 
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(a). Overall strain 0 0.115   

 
(b) 0 0.16   

 

 
(c). 0 0.20   

 
 

 

Fig. 5  Sequence of wrinkle patterns for an Arruda-Boyce film/substrate system with 

/ 100f S    and a substrate pre-stretch 1 1.5S  .  The simulation reveals that the ridge 

mode reverts back to the periodic sinusoidal mode as the compression is increased.  Both 

the film and substrate are taken to be incompressible with locking parameter 1.17m  . 
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Fig. 6  A sequence of wrinkle patterns showing the emergence of period-doubling 

followed by developing folds.  The film and the substrate are modeled by the Arruda-

Boyce model with the substrate fit to the data in Fig. 2 for PDMS.  The film/substrate 

modulus ratio is 100 / f s .  The substrate is pre-compressed to 1 0.7S   prior to 

attachment of the film and subsequent to imposition of the overall compressive strain 0 . 
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Fig. 7  Nonlinear normal traction-displacement relations for a semi-infinite neo-Hookean 

half-space subject to (i) no pre-stretch, 1 1S  , (ii) pre-stretch, 1 2S  , and (iii) pre-

compression, 1 0.7S  .  Following the uniform pre-deformation, nominal tractions, 

22 21( , )s s , are imposed on the surface with 21 0s   and 22 0 cos(2 / )s p X L  where X  is 

the horizontal coordinate in the pre-deformed state.  The normalized stress (force/pre-

deformed area), 22 / Ss  , at 0X   is plotted against 2 /u L   at 0X  .  For each case, 

the linearized response based on the initial slope is shown as a dashed line. 
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Fig. 8  An illustration of the dimensionless nonlinear normal traction-displacement 
relation with nonlinearity qualitatively representative of a substrate that has experienced 
pre-stretch (compare with Fig. 7).  The curve with 22 0.5k    and 23 0.1k   will be used 

in the simulations based on the one-dimensional model. 
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Fig. 9  The primary solution for 1 0k   and 1 0.25k   with 22 0.5k   , 23 0.1k  .  The 

normal displacement of the film, w , is almost independent of 1k . 



33 

 

 

Fig. 10  The overall compressive strain associated with secondary bifurcation from the 
primary solution for secondary modes with periodic wavelengths, M  .  The lowest strain 
for secondary bifurcation is associated with modes having 3M  .  An example of a 
secondary mode shape is given in Fig. 11.  Secondary bifurcations with periodicities that 
are integer multiples of    do not occur for 1k  greater than about 0.01. 
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Fig. 11.  Secondary bifurcation mode for 5M  , 1 0.005k  , 0 0/ 2.775Ce e  . 
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Fig. 12  Fully nonlinear solutions to the model for 6M   for several imposed overall 
strains, 0e . 
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Fig. 13  Fully nonlinear solutions to the model for 6M   for several values of the 
dimensionless tangential stiffness, 1k . 
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Fig. 14  Distribution of the dimensionless energy density of the film/substrate system (the 

integrand of (4.8)) for one of the fully nonlinear solutions in Fig. 12. This plot reveals the 

highly localized nature of the deformation in the vicinity of the ridges. 


