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Abstract

We study an investment model in which agents have the wrong beliefs about the dy-
namic properties of fundamentals. Specifically, we assume that agents under-estimate
the rate of mean reversion. The model exhibits the following six properties. (1) Beliefs
are excessively optimistic in good times and excessively pessimistic in bad times. (2)
Asset prices are too volatile. (3) Excess returns are negatively autocorrelated. (4) High
levels of corporate profits predict negative future excess returns. (5) Real economic
activity is excessively volatile; the economy experiences amplified investment cycles.
(6) Corporate profits are positively autocorrelated in the short-run and negatively au-
tocorrelated in the medium run. The paper provides an illustrative model of animal
spirits, amplified business cycles and excess volatility.
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and Michael Puempel for excellent research assistance. David Laibson acknowledges support from the NIA
(P01AG005842). The views expressed in this paper are those of the authors and are not necessarily reflective
of views at the Federal Reserve Bank of New York or the Federal Reserve System.
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1 Introduction

We study an economy in which agents have the wrong beliefs about the dynamic properties

of fundamentals (cf. Friedman, 1979). The premise of our approach is that economic agents

tend to make forecasts based on statistical models or mental representations that tend to

underestimate the degree of long-run mean reversion in fundamentals (cf. Fuster, Laibson,

and Mendel, 2010; Fuster, Hebert, and Laibson, 2011).

In particular, we analyze a standard investment q-model in which agents underestimate

the degree of mean reversion.1 An economy that features such a bias will exhibit the follow-

ing six properties: (1) procyclical excess optimism, (2) excessively volatile asset prices, (3)

negatively autocorrelated excess returns, (4) a negative relationship between current corpo-

rate profits and future excess returns, (5) amplified investment cycles, and (6) negatively

autocorrelated corporate profits in the medium run. In summary, this paper presents an il-

lustrative model of animal spirits, amplified business cycles and excess volatility. The model

provides a formal description of investment boom-bust cycles associated with “this time is

different” (Reinhart and Rogoff, 2009) or “new era” (Shiller, 2005) forecasting errors.

Studying macroeconomic models in which agents underestimate the degree of mean re-

version is relevant for three inter-related reasons.

First, there are several psychological biases that lead agents to underestimate mean rever-

sion; e.g., representativeness, anchoring, and availability bias (Kahneman and Tversky, 1973;

Tversky and Kahneman, 1973, 1974). Representativeness refers to the bias of mistakenly

believing that properties experienced by small samples are equally present in larger samples.

Thus, a small sample of recent observations are viewed as representative of the future. An-

choring and availability bias refer to the overweighting of easily accesible information, such

as the most recent observation, which leads agents to overestimate the persistence of current

conditions.

1This complements the analysis presented in Fuster et al. (2011), where we study the consequences of
biased expectations for asset prices and consumption dynamics in an economy with an exogenous stock of
domestic capital. In the current paper we allow the domestic capital stock to be endogenous.
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Second, statistical arguments favor parsimonious models, and in practice, agents do tend

to estimate and employ simple forecasting models that incorporate a small number of vari-

ables. In earlier work, we have discussed how simple univariate forecasting models underesti-

mate the amount of mean reversion when true fundamentals follow hump-shaped dynamics.

For example, in Fuster et al. (2011), we study total capital income in the U.S. NIPA accounts.

We find that the estimated level of long-run persistence of shocks is very sensitive to the

order of the model being estimated: models with a small number of (high-frequency) lags

generate estimates of persistence around one, while models with a large number of lags gener-

ate much lower estimates of persistence. For example, Figure 1 plots the associated impulse

response functions for ARIMA(p,1,0) models with p = 1, 10, 20, 30, 40. For ARIMA(p,1,0)

models with p = 1 and 10, the estimated magnitude of persistence is greater than or equal to

one. For ARIMA(p,1,0) models with p = 30 and 40, the estimated level of persistence is less

than or equal to 0.6. More generally, Fuster, Laibson, and Mendel (2010) show that several

macroeconomic time series have persistence estimates that fall sharply with the order of the

model being estimated. We refer to forecasts that are based on simple forecasting models –

e.g., low order ARIMA models – as “natural expectations.”

Third, a large body of evidence is consistent with agents overweighting recent observations

and underestimating mean reversion. Some of the best-known evidence comes from the asset

allocation decisions and expectations of investors (e.g. Chevalier and Ellison, 1997; Benartzi,

2001; Vissing-Jorgensen, 2003) and analysts (e.g. De Bondt and Thaler, 1990; Bulkley and

Harris, 1997). It is also well-established that many features of the cross-section of stock

returns can be explained with investors overweighting recent observations (e.g. De Bondt

and Thaler, 1985, 1989; Lakonishok, Shleifer, and Vishny, 1994). Additional support comes

from lab experiments where subjects are asked to predict financial or other time series, or

to trade assets (e.g. De Bondt, 1993; Hey, 1994; Haruvy, Lahav, and Noussair, 2007).

A modeling approach related to ours assumes that agents are rational but do not initially

know the relevant parameters and have to learn them over time (e.g. Friedman, 1979; Sargent,
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1993; Evans and Honkapohja, 2001, 2011). Such learning, in particular if the model agents are

updating is misspecified or if they discard old data, can also generate volatility and additional

persistence of shocks to asset prices and the economy (e.g. Friedman and Laibson, 1989;

Branch and Evans, 2007, 2010). A paper that is closely related to ours is Lansing (2009),

which studies an endogenous growth model in which agents overestimate the persistence of

exogenous technology shocks and explores the welfare consequences of this misperception.

The argument of the paper is organized in the following way. Section 2 presents the

model and its solution. Section 3 discusses the key properties of the model and illustrates

these properties by studying the impulse response functions for an illustrative calibration.

Section 4 concludes and identifies directions for future research.

2 Investment Model

We study a tractable version of the continuous-time q-model (e.g. Hayashi, 1982). This is a

partial equilibrium model in which agents/firms are assumed to be risk neutral and the risk

free rate is fixed.

We first present the model assuming that agents have correct beliefs about the data gen-

erating process (DGP) for fundamentals. We then analyze the model’s properties assuming

that agents believe that they have the correct beliefs about the DGP but actually don’t. We

study the model in a deterministic setting, but this assumption is without loss of generality.

Adding Brownian motion to the DGP won’t change the impulse response functions that we

report below.
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2.1 Notation and definition of the problem for a rational agent

Let i index a fixed set of firms on the unit interval, i ∈ [0, 1]. Let k(i, t) represent the level

of firm i’s capital stock at time t. It therefore follows that aggregate capital is given by

K(t) =

∫ 1

0

k(i, t)di.

Henceforth, we assume that all firms are identical and suppress the i index. Therefore, we

can write

K(t) = k(t).

Let π(K,X) represent the instantaneous flow of revenue per unit of capital, where X is an

exogenous productivity measure. We make the standard assumption that greater (industry-

wide) competition reduces the flow of revenue per unit of capital (holding all else equal). In

other words,

∂π(K,X)

∂K
< 0.

By definition, k(t) π(K,X) is the instantaneous revenue flow realized by a firm with k(t)

units of capital. This multiplicative structure implies that individual firms have a constant

returns to scale technology.

To make the model tractable, we assume

π(K,X) = 1−K(t) +X(t).

We assume that the exogenous productivity parameter X mean reverts to its long-run

value of zero at rate φ. Specifically,

dX(t) = −φX(t)
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where φ is a constant.2

Firms only have one decision to make: the flow of investment. Let k̇ = I, so I is firm-level

investment. Since firms are identical and indexed on [0,1] it also follows that

K̇ =

∫ 1

0

I(i, t)di = I(t).

We assume that firms pay quadratic adjustment costs

C(I) =
α

2
I2.

We assume that firms also pay a (normalized) price of one for each unit of uninstalled capital.

So the total instantaneous flow cost of a flow of I units of capital is I + C(I).

Finally, ρ is the discount rate, which is also the (fixed) real interest rate, r. Hence, the

objective function of a firm at date t can be written:

∫ ∞
s=t

exp(−ρ(s− t)) [k(s)π(K(s), X(s))− I(s)− C(I(s))] ds

subject to the dynamic accumulation equation

dk(t)

dt
= I(t).

The optimizing firms take K(t) as exogenous. In other words, their own choice of I(t) does

not affect the path of K(t).

2Adding Brownian motion to these dynamics, e.g.,

dX = −φX + σdz

does not affect the impulse response functions that we discuss below. Hence, we omit Brownian motion to
simplify the analysis.
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In equilibrium it must also be true that

dK(t)

dt
= I(t).

2.2 Value Function, FOC, and q

The state variables for this optimization problem are k, K, and X. We include both k and

K since these variables can deviate in principle, though they won’t deviate in equilibrium.

The continuous-time Bellman Equation is

ρV (k,K,X) = sup
I

{
(k π(K,X)− I − C(I)) + E

[
dV

dt

]}
.

Expanding dV
dt

,

E

[
dV

dt

]
=
∂V

∂k
I +

∂V

∂K
I − ∂V

∂X
φX.

The first order condition is the standard one:

1 + C ′(I) =
∂V

∂k
.

This equation implies that the marginal cost of acquiring and installing capital equals the

marginal value of installed capital.

Alternatively, we can define the value function as the expected present value of the flow

payoffs.

V (k(t), K(t), X(t)) = sup
I(s)

Et

∫ ∞
s=t

exp(−ρ(s− t)) [k(s)π(K(s), X(s))− I(s)− C(I(s))] ds

For now, assume the firm has correct expectations about the future. Following the

standard treatment of this model, define q(t) as the marginal present value of a unit of
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installed capital:

q(t) = Et

∫ ∞
t

exp(−ρ(s− t))π(K(s), X(s)) ds

It follows that,

∂V (k(t), K(t), X(t))

∂k(t)
= q(t)

To show this, note that

k(s) = k(t) +

∫ s

t

I(u)du

Substituting into the value function integral,

V (k,K,X) = sup
i(s)

E

[∫ ∞
t

exp(−ρ(s− t))
[(
k(t) +

∫ s

t

I(u)du

)
π(K(s), X(s))− I(s)− C(I(s))

]
ds

]

Differentiating by k(t), and applying the envelope theorem,

∂V (k(s), K(s), X(s))

∂k(s)
= E

[∫ ∞
s=t

exp(−ρ(s− t))π(K(s), X(s))ds

]
= q(s)

We can think of q as a value function, with a flow payoff of π(K(t), X(t)). Apply Leibniz’s

rule to show that

ρq = π(K(t), X(t)) + Et

[
dq

dt

]
.

This equation has a standard asset-return interpretation. The required return on the marginal

unit of capital, ρq, can be decomposed into a flow return, π(K(t), X(t)), and an anticipated

instantaneous capital gain, Et
[
dq
dt

]
.

2.3 Solving the System

From our assumption about C(i),

C ′(I) = αI

C ′−1(y) =
y

α
.
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The firm’s policy is

I = C ′−1(q − 1) =
1

α
(q − 1)

Aggregate capital evolves as

dK

dt
= I =

1

α
(q − 1)

We can now define a system of first-order differential equations. Define the state vector, z,

for the differential equation system:

z ≡


q

K

X


It is convenient to express the evolution of the system in terms of a vector D and a matrix

B:

dz(t)

dt
= D +Bz(t) =


−1

− 1
α

0

+


ρ 1 −1

1
α

0 0

0 0 −φ

 z(t),

Define the vector z∞:

z∞ ≡


1

1− ρ

0

 .
This will turn out to be the steady state value of z. Note that,

Bz∞ = −D.

Assuming B is invertible (which is a convergence assumption), the expectation of z(t) can

be expressed in terms of z∞, and deviation term, exp(Bτ)H(t), that vanishes as τ goes to

infinity:

Et[z(t+ τ)] = z∞ + exp(Bτ)H(t).
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All that remains is to solve for the date-t forecasting “constant”H(t).

We know the initial conditions for K and X. Combining these with a transversality

condition – finite q as τ goes to infinity – allows us to eliminate one of the eigenvalues of B.

The characteristic equation for B is

−(φ+ λ)(λ2 − ρλ− frac1α).

The positive eigenvalue from the right term is greater than ρ, implying infinite expected

present value. Let V be the eigenvectors of B. Define a 2× 3 matrix, L, as

L =

0 1 0

0 0 1


We define V to have the eigenvectors in the usual order, so that the first vector in V is the

one associated with the largest eigenvalue (the one that should have zero weight). Define

H(t) as

H(t) = V L′A(t)

for some length-2 vector A(t). The initial conditions for z(t) satisfy

Lz(t) = Lz∞ + LV L′A(t)

Solving,

A(t) = (LV L′)−1L (z(t)− z∞)

The H(t) vector can therefore be written as the product of a matrix, M, and z(t)− z∞,

H(t) = M(z(t)− z∞) = V L′(LV L′)−1L(z(t)− z∞).
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Hence the evolution of the system can be written,

z(t+ τ) = z∞ + exp(Bτ)M(z(t)− z∞). (1)

It is also useful to note that

MBkM = BkM ∀k,

which we use in the next subsection. This is true because M is constructed from the eigen-

vectors of B. We can also use M to determine how the vector H(t), and therefore q(t),

evolve. Substituting for τ = 0 into (1),

z(t) = z∞ +M(z(t)− z∞)

Taking the total derivative,

dz(t) = M (D +Bz(t))

We can therefore also represent z(t+ τ) as

z(t+ τ) = z∞ + exp(MBτ)M(z(t)− z∞).

Note that this formulation is consistent with (1).

2.4 When Agents Have the Wrong Beliefs

Until this point, we have characterized a model in which agents have correct beliefs about the

data generating process (DGP) for X. We now study the case in which the representative

agent has incorrect beliefs. Let B̂ be the perceived DGP process, where the true rate of

mean reversion in productivity, φ, is replaced by the perceived rate of mean reversion, φ̂. B̂
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has associated eigenvectors V̂ and related matrix M̂ . The initial condition is

z(t) = z∞ + M̂(z(t)− z∞).

As in the previous section, we can differentiate and plug in the evolution of z(t). Note that

dz(t) = M̂ (D +Bz(t)) ,

where B is the true dynamics (not the perceived dynamics B̂). Again solving for z(t+ τ),

z(t+ τ) = z∞ + exp(M̂Bτ)M̂(z(t)− z∞) (2)

Note that this equation simplifies to the no-mistakes solution if M̂ = M . Equation (2)

characterizes the evolution of the system under the mistaken policy.

2.5 Impulse Response Function

To derive the impulse response function, we study the economy’s dynamics when it is per-

turbed out of an initial steady state at date t. Assume for τ < 0, that

z(t+ τ) = z∞ =


1

1− ρ

0

 .

Note that when z(s) = z∞,

dz(s) = D +Bz∞ = 0.

Assume that

Lz(t) =

1− ρ

X(t)

 ,
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where X(t) is the size of the initial (date t) impulse to X, the mean-reverting productivity

variable. Note that Lz(t) has only two elements– it does not include q. Then for all time

τ ≥ 0,

z(t+ τ) = z∞ + exp
(
M̂Bτ

)
M̂ (L′Lz(t)− z∞) .

3 Properties of the Model

3.1 Illustrative Calibration

We now present an illustrative calibration. The model has four free parameters: ρ (discount

rate), α (convex costs of capital adjustment), φ (rate of true mean reversion), and φ̂ (rate

of perceived mean reversion). The qualitative properties of the model are not affected by

the specific calibration decisions. Hence, the calibration characterizes the general qualitative

properties of the model. We also use the calibration to illustrate the quantitative properties

of the model at the calibrated parameter values.

We set the annual risk-free rate to 5% per year: ρ = 0.05. Because of the way that we’ve

scaled adjustment costs, ρ does not play an important role in driving the model’s properties.

Hence, we could choose any (plausible) value for ρ and our dynamics would effectively be

unchanged.

The parameter that scales capital adjustment costs is set to α = 10/(1 − ρ). With

this calibration, a permanent 10% change in the steady state capital stock has a half-life of

adjustment of slightly more than two years.

We assume that the true differential equation for X is given by Ẋ = −0.25X, so φ = 0.25.

However, agents perceive relatively little mean reversion: Ẋ = −0.05X, so φ̂ = 0.05.

In Fuster et al. (2011), the DGP of fundamentals was hump-shaped and agents were

assumed to get short-run dynamics (approximately) right but to overestimate long-run per-

sistence. In the current paper, short-run dynamics and long-run dynamics are governed by

the same paramter, φ, since we are now studying an environment in which agents believe
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(correctly) that productivity dynamics follow a first-order auto-regressive process. In the cur-

rent model it is therefore impossible for agents to get short-run dynamics right and long-run

dynamics wrong. We study this particular productivity process merely because of its sim-

plicity. In fact, we don’t believe that agents would misforecast such a simple auto-regressive

process. The mistake that agents are assumed to make in this model – underestimating

mean reversion – is meant to be a proxy for underestimating long-run mean reversion in a

more realistic model with more complicated dynamics in fundamentals (i.e., short-run mo-

mentum and long-run mean reversion). In a setting where short-run and long-run dynamics

are different, it is plausible that agents would misforecast the long-run mean reversion, and

that is what we are capturing in this calibration. The misforecast short-run dynamics are

collateral damage in the current framework. Future research should pull the short- and

long-run dynamics apart and isolate the misforecasts of long-run dynamics.

We study a productivity shock of ∆X = 0.10. In the case of rational expectations, this

would correspond to a temporary increase in the capital stock that would peak about 2%

above the steady state capital stock four years after the initial impulse.

3.2 Impulse Response Functions

We first report a series of impulse response functions that characterize the behavior of the

economy. For these figures we report the impulse response function for the first 20 years

following the shock. In all of these figures we adopt the following conventions.

The dashed line represents the equilibrium path that would arise if agents all had rational

expectations (the case φ = φ̂ = 0.25).

The dotted line represents the equilibrium path that would arise if agents’ beliefs about

the future dynamics of X were accurate (φ = φ̂ = 0.05). Motivated by our earlier work

(Fuster et al., 2011), we call this case the “natural expectations forecast.”3 This is the

3This label is a partial misnomer in the current paper. In Fuster et al. (2011), natural expectations are
associated with correct short-run forecasts but incorrect long-run forecasts (the long-run forecasts do not
reflect enough mean reversion). In the current paper, the short-run forecast and the long-run forecast reflect
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impulse response function that our agents (mistakenly) anticipate.

The solid line represents the equilibrium path that actually does arise, given the mismatch

between beliefs (φ̂ = 0.05) and reality (φ = 0.25). We call this case the “natural expectations

path”. This is the impulse response function that an outsider would observe. However, once

noise is added to the economy, it would be difficult to accurately estimate this impulse

response function unless the observor had a long time series database.

Figure 2 reports the impulse response for the productivity parameter X. In our illustrative

calibration, the process decays at an annual rate of 25% (rational expectations). However,

agents perceive that it decays at a rate of 5% (natural expectations forecast). Thus, they

are excessively optimistic after a positive shock and excessively pessimistic after a negative

shock.

Figure 3 reports the impulse response function for q, the price of a unit of installed

capital. Since investment is affine in q, this figure also reports the impulse response function

for investment. Under rational expectations, the price of capital should rise by 17% following

the productivity impulse and then fall back to its steady state level with a small amount of

overshooting on the way down. Under natural expectations, the price of capital rises by 26%

following the productivity impulse and then falls back to its steady state level with more

overshooting on the way down. Hence, the natural expectations case exhibits two kinds

of excess volatility.4 The price rises far more in the first place and then overshoots more

on the way back to the steady state. This overshooting arises because of the overhang of

capital that needs to be decumulated as productivity falls. This capital overhang exists even

when expectations are rational, however, the overhang is stronger in the natural expectations

case, because agents under-estimate the degree of mean reversion in productivity (X) and

therefore accumulate too much capital in the few years immediately following the impulse.

Finally, note that all three plotted cases eventually return to a steady state value of 1 (though

insufficient mean reversion. That is a necessary but undesirable consequence of the simple data generating
process – a first-order auto-regressive process – that we are studying in the current paper.

4The classic papers on excess volatility in stock markets are LeRoy and Porter (1981) and Shiller (1981).
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this is not apparent on the truncated time scale in the figure).

Figure 4 reports the impulse response function for the instantaneous (annualized) excess

returns (omitting the “infinite” positive rate5 of return when the initial impulse arrives).

In the rational expectations case, which is not reported, there are no excess returns (the

analogous rational expectations line is everywhere equal to zero). In the natural expectations

forecast, which is also not reported, there are also no excess returns, since these agents believe

that asset prices are efficient. By contrast, on the realized natural expectations path, there is

a long trail of negative excess returns. The magnitude of these excess returns is empirically

plausible. The negative excess returns begin at an annualized rate of −4% and slowly decline

in absolute magnitude.6 After ten years, the annualized excess return is −50 basis points.

Figure 5 reports the impulse response function for the profitability of the corporate sec-

tor. Following the initial impulse profits jump up and then drift back down as (i) capital

is accumulated, driving down industry profits,7 and (ii) productivity itself, X, reverts back

toward its mean. In the rational expectations case, the convergence to the steady state level

of profits is nearly monotonic, with only a modest degree of overshooting. In Figure 5 the

rational expectations overshooting is nearly imperceptible.8 Hence, in the rational expecta-

tions case, profits are generally positively auto-correlated. In the natural expectations case,

5The instanteous rate of return is infinite when the shock arrives, since q jumps up in value.
6In a more realistic model characterized by accurate short-run forecasts of X but inaccurate long-run

forecasts, the negative excess returns would arise only in the long-run of the impulse response function. See
e.g. Fama and French (1988a), Poterba and Summers (1988), and Cutler, Poterba, and Summers (1991) for
early evidence on negative long-run autocorrelation of excess returns in the stock market. Other authors,
such Campbell and Shiller (1988a,b) and Fama and French (1988b) study earnings and dividend yields
as predictors of future returns. In Fuster et al. (2011), we report that over the period 1929 to 2010, the
correlation between excess returns of equity over the risk-free rate in year τ and cumulative excess returns
from year τ + 2 to year τ + 5 was −0.22, while the correlation between the ratio of S&P price at the end
of year τ and average earnings over years τ − 9 to τ and excess returns from year τ + 2 to year τ + 5 was
−0.38. That paper also gives an overview of statistical caveats that apply to these findings.

7Recall that the revenue per unit of capital function is assumed to be 1 +X −K. As K rises, revenue per
unit of capital falls.

8Note that the steady state value in our calibrated economy is

K∞ × π(K∞, X∞) = (1− ρ)(1− [1− ρ] + 0)
= ρ(1− ρ)
= 0.0475
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the overshooting is much more pronounced, since the capital overhang is much greater. The

signficant degree of overshooting generates intermediate-horizon negative auto-correlation in

corporate profits.

Figure 6 reports the impulse response function for the level of aggregate capital. For

the rational expectations case, capital follows a hump-shaped pattern that peaks about four

years after the initial impulse. For the natural expectations case, capital also follows a

hump-shaped pattern that peaks about four years after the initial impulse. However, in the

natural expectations case, the amplitude of the capital response is 1.5 times as large as the

rational expectations case. The larger hump arises because of the mistaken belief that the

productivity impulse will only slowly mean-revert.

3.3 Dynamics in K-q Space

It is also useful to summarize the economy’s dynamics with a figure in K-q space. Figure 7

draws out some of the key properties of the economy.

To read the figure, start in the lower left-hand corner. That point is the steady state.

After a shock arrives, the path jumps vertically. Specifically, the price q jumps when the

initial news arrives (the stock K is not a jump variable). The jump in q is much greater for

the natural expectations case than for the rational expectations case. After the jump, the

dynamics take the economy in a loop that begins by moving to the southeast and eventually

returns to the (original) steady state. This loop is anticipated to be quite large (and slow)

in the natural expectations forecast. The dynamics turn out to be quicker than anticipated

because productivity turns out to mean-revert faster than anticipated. Nevertheless, the

path that is actually observed in equilibrium – the natural expectations path – has a far

larger loop than it would have had under rational expectations. Agents who under-estimate

mean reversion accumulate too much capital and later come to regret it when the asset price

(q) falls earlier and more than anticipated.
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4 Conclusion

This paper examines a partial equilibrium investment problem in which agents underestimate

the strength of mean reversion in fundamentals. This deviation from rational expectations

generates the following equilibrium properties: (1) procyclical excess optimism, (2) exces-

sively volatile asset prices, (3) negatively autocorrelated excess returns, (4) a negative rela-

tionship between current corporate profits and future excess returns, (5) excessively volatile

investment cycles, and (6) negatively autocorrelated corporate profits in the medium run.

The analysis that we have described provides a parsimonious and psychologically plausible

explanation for a wide range of puzzling empirical patterns. The model also generates a series

of falsifiable predictions of some regularities that have not yet been empirically investigated.

Future work should test these predictions.

In this paper, we have assumed that the misperception of mean reversion applies to

the beliefs about the “fundamental” driving process (here, productivity). However, one

could argue that in reality, individuals’ and firms’ investment decisions may be influenced

more directly by their perception of future price paths, which are in turn endogenous to

expectations. It would be interesting to extend the model in this direction.

Another natural follow-up question is how non-rational expectations and non-fundamental

asset price movements affect optimal monetary policy. While the illustrative model in this

paper is too simple to allow adequate analysis of the trade-offs involved, work by Dupor

(2005) and Mertens (2010) makes progress on this important question.
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Figure 1: Estimated Impulse Response Functions for Log Capital Income (NIPA) (from
Fuster, Hebert, and Laibson 2011)

22



Figure 2: Impulse Response Function for Productivity
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Figure 3: Impulse Response Functions for q
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Figure 4: Impulse Response Functions for Excess Returns
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Figure 5: Impulse Response Functions for Flow Profits
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Figure 6: Impulse Response Functions for Capital
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Figure 7: K-q Diagram for Impulse Response
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