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ABSTRACT: Ruthenium (Ru) thin films were deposited by pulsed chemical vapor deposition with precursors bis(N,N-di-
tert-butylacetamidinato)ruthenium(II)dicarbonyl, ammonia and hydrogen. Low-resistance polycrystalline Ru films with
bulk density were obtained. Good adhesion to SiO, substrates was achieved by introducing a thin layer of WN in between
the Ru and the SiO,. Ru films only ~ 2 nm thick fully covered the WN layer without any pinholes. Deposition of Ru inside
narrow holes showed that good conformality was obtained by lowering the deposition temperature. The film surface was

smooth, and the rms roughness value did not increase too much after rapid thermal annealing at 700 °C.




Introduction

Ruthenium (Ru) metal has many unique properties. It has a relatively high work function, its oxide, RuO,, is
conductive, and it is compatible with many high-k dielectric oxides, such as SrTiO;' and TiO,* Hence, Ru is being
considered for electrodes in dynamic random access memories (DRAM)* and gate metal in metal-oxide-semiconductor-
field-effect (MOSFET) transistors.> Ru can also be used as a seed layer for electrodeposition of copper interconnects.*
Many chemical processes use ruthenium as a catalyst.’ Preparing thin Ru films with good properties, such as high density,
low resistivity, and pinhole-free smooth surfaces, has raised much interest in industry recently. Vapor deposition is a
promising approach to obtain thin Ru films with high quality and uniform thickness even inside narrow features. Several
Ru compounds have been studied as precursors for atomic layer deposition (ALD) and chemical vapor deposition (CVD).
But many of them, such as Ru(Cp),,° Ru(EtCp),,* Ru(thd),,” ® bis(2,4-dimethylpentadienyl)ruthenium,® and bis(2,6,6-
trimethyl-cyclohexadienyl)ruthenium,” need to react with O, in order to deposit Ru films. This may cause some
unwanted oxidation of conductive substrates, such as titanium nitride in DRAM electrodes or tantalum nitride diffusion
barriers in microelectronic interconnects. Recently, several Ru cyclooctatetraene precursors were reported to deposit Ru
films with H, in a reducing ambient,” however, the reported resistivity of deposited Ru films is quite high," which may be
due to a high-level carbon impurity from the precursors or to a low film density. Gordon and coworkers have synthesized
an amidinate Ru precursor, bis(N,N-di-tert-butylacetamidinato)ruthenium(II) dicarbonyl, which can react with NH, to
produce Ru films by ALD™"® and also in a non-oxidizing ambient.” However, the best film properties were obtained by

including small amounts of oxygen in the ALD process.”

ALD is a very slow process, so we investigated the use of this precursor in chemical vapor deposition (CVD) conditions.
In this paper, we used this amidinate precursor to deposit thin Ru films with a pulsed CVD method. We were able to
obtain dense, low resistive, pure and conformal Ru films with smooth and pinhole-free surfaces. We further examined the

conformality of Ru films deposited inside narrow holes, in which the films showed good step coverage.

Experimental

Pulsed chemical vapor deposition of ruthenium was carried out in a home-built tube reactor, with bis(N,N-di-tert-
butylacetamidinato)ruthenium(II)dicarbonyl as the Ru precursor and ammonia and hydrogen gases as co-reactants. The
ruthenium precursor was placed in a glass bubbler in an oven at 140 °C or 150 °C, and it was delivered by nitrogen carrier
gas during each Ru pulse. Ammonia gas flowed continuously at 2 Torr partial pressure while the doses of Ru precursor
were delivered. During each Ru dose cycle, the valve that controls the Ru delivery was first opened for 1 second for

delivering the precursor vapor, and then closed for 5 seconds to allow the re-vaporization of the Ru precursor to go to
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equilibrium. Approximately 170 mL volume of Ru precursor vapor diluted in nitrogen gas is delivered in each pulse. After
a fixed number of Ru precursor pulses, 3 Torr of hydrogen gas was supplied for one minute. We added these H, steps

because we found that they produced denser and more conductive Ru films.

Thermal SiO, substrates were used for Ru deposition. They had 300 nm of thermal oxide on Si (100), and were treated
with UV/ozone for 5 minutes to remove surface organic contaminants before deposition. Considering that Ru metal
normally does not bond well to thermal oxide substrate due to the relatively inert chemical property of thermal SiO,, an
adhesion layer is necessary for those practical applications that need some strength of adhesion. In our experiments, a
thin layer of WN (typically 1 ~ 10 nm) was introduced before Ru deposition in order to increase the adhesion. The
deposition of WN layers was carried out by ALD with bis(tert-butylimido)bis(dimethylamido)tungsten(VI) vapor and
ammonia gas. Details of the WN deposition can be found in our previous work.” The as-deposited WN is amorphous, and
its surface can be oxidized by exposure to air. In order to avoid oxidation of the WN, in situ Ru deposition followed right

after the WN deposition in the same reactor without any air break.

The crystalline phase of deposited Ru films was evaluated by electron diffraction (ED) inside a transmission electron
microscope (TEM) (JEOL, Model JEL 2100). Film composition and number of atoms per unit area were determined by
Rutherford backscattering spectroscopy (RBS) and X-ray fluorescence (XRF). Film thickness was measured by X-ray
reflectometry (XRR) for relatively thick films (> 8nm), and film density was calculated from the thickness and the number
of atoms per unit area. For very thin films, thickness cannot be directly measured by XRR. We assumed these films had
the same density as thick films that were deposited under the same conditions. Film chemical composition was also
evaluated by X-ray photoelectron spectroscopy (XPS) (ESCA, Model SSX-100). Film electrical sheet resistance was
measured by a four-point probe station (Veeco Instruments, Model FPP-100). Film surface roughness was examined by
atomic force microscopy (AFM) (Asylum, Model MFP-3D). The adhesion energy of Ru/WN to SiO, substrate was
measured by the four-point bend method. '**® Before the measurement, samples were deposited with 0.13 pm of sputtered
aluminum, and then attached by high strength epoxy (EPO-TEK 353ND from Expoxy Technology) to a piece of dummy
silicon water. The bonded wafers were cut into 50 x 5 mm beams. Then, a notch was scribed at the center of each beam to

initiate a crack.

Results and Discussion

A 7 nm Ru film was deposited at 317 °C on a SiN, membrane TEM grid with a 2 nm WN coating for crystalline analysis.
The TEM electron diffraction (ED) pattern (Figure 1) showed that all of the observed rings belonged to the hexagonal Ru

phase, which is also the stable phase of bulk Ru metal at standard conditions. Another Ru film deposited on a planar
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substrate with the same deposition conditions was examined by XPS for chemical composition analysis. The XPS
spectrum (Figure 2) showed that the Ru film was quite pure. Only Ru peaks were obviously observed in the spectrum,
which ruled out having nitrogen or oxygen incorporated in the film. (We could not draw conclusions on carbon, since the

C 1s peak overlaps with Ru 3d peaks.)

The film density was also evaluated using the atom areal density data measured by RBS or XRF, and the thickness data
measured by XRR. If only Ru/NH, pulses were used, the film density was ~6 g/cm?, only ~50 % of the bulk value. Adding
doses of hydrogen (H,) increased the film density up to the bulk value. Films with bulk density were achieved if a
hydrogen pulse was added after not more than about 0.1 nm of Ru growth. For example, in the case of depositing Ru at 317
°C, the growth rate was ~ 0.05 nm/pulse so a H, pulse was added after every 2 Ru/NH, pulses. This optimal condition was
intuitively reasonable, since 0.1 nm is about half the thickness of a monolayer, and the optimal condition suggested that
the rearrangement of surface Ru atoms was necessary before a monolayer of deposition is completed. We tested Ru
samples with different thicknesses (greater than 8 nm, so that reliable thicknesses could be determined by XRR), and the
density values were consistently around 12.13 g/cm?, provided sufficiently frequent H, doses were applied. These density
values are very close to the bulk Ru density value 12.18 g/cm?, which shows that dense Ru films were obtained with our
approach. The exact mechanism by which H, produces dense Ru films is still unclear. But, Ru is known as a good catalyst
for ammonia synthesis from N, and H,,” and the mobility of catalyst surface atoms may be enhanced during the catalyzed
reaction, resulting in changing the catalyst microstructures. A similar process may happen in this case: H, enhances the
mobility of surface Ru atoms, and allows them to pack into denser structures with lower surface energy than a porous

low-density film.

As a potential candidate for electrodes in microelectronics, the electrical properties of the thin Ru films are also
important for most practical applications. We measured the sheet resistances of films with different thicknesses, and
calculated their resistivity values by multiplying sheet resistance and thickness values. The resistivity and thickness values
were plotted in Figure 3. As the film thickness increased, the resistivity decreased and approached to its bulk value 7.1 pQ
cm; while as the film thickness decreased, the resistivity increased rapidly. This is mainly due to the increased probability
of electron surface scattering as the film thickness decreases. A scattering-induced-resistivity model is used to
quantitatively analyze the data.*® In this model, the resistivity follows a linear relation with the reciprocal of film

thickness, and can be expressed as

t
P=FPo (1"'?0)



where p is the thin film resistivity, p, is the bulk resistivity taking into account any effect from impurities, ¢ is the film
thickness, and t, is a characteristic length, which is related to the electron mean free path and scattering effects from
grain boundaries, interfaces, and surfaces. As we plotted the resistivity versus reciprocal of thickness relation, and fitted
with a linear model in the inset of Figure 3, we extrapolated the film resistivity to a value p, = 6.9 + 1.9 p2 cm, which is
consistent with the bulk value of pure Ru, 7.1 pQ cm. The agreement between these resistivity values shows that no
impurities are present at high enough concentrations to increase the resistance. In particular, the carbon concentration
must be low, although we could not measure it directly by XPS because of the overlap of the C peak with a Ru peak. The
nearly bulk density of the films is also consistent with this result. Indeed, low-density Ru films grown without the

hydrogen steps showed considerably higher resistivities. The fitted length t, was 21 + 6 nm.

The morphology of the film surface was also investigated. The AFM image (Figure 4) of a 9 nm Ru film showed that the
film surface was fairly smooth with an rms roughness value of 0.28 nm, or only 3 % of the film thickness. Since small rms
value does not guarantee that the film is pinhole-free, and pinholes could cause problems in practice, we also examined
pinholes by an etching method. We used an etching solution that contained a mixture of H,O,, ammonia, and water with
a volumetric ratio of (30 % H,0,):(concentrated NH,):H,O = 1:1:5. The etchant does not etch Ru films, but when there are
pinholes through a Ru film, the etchant can go through the pinholes and attack the WN layer underneath. The place
where the underlying WN is attacked by the etchant has a different brightness under SEM. In order to have enough
contrast under SEM, each of the samples here had a relatively thick WN layer (~10 nm). Figure 5(a) shows a thin Ru film
that did not fully cover the WN layer, while Figure 5(b) shows that no pinholes were observed after a 10-minute etching of
a thicker Ru film. With this method, we were able to find the minimum thickness required for Ru to fully cover the WN
surface. Our results showed that many pinholes existed in a 1.3 nm Ru film (Figure 5(a)), but no pinholes were observed in
a 2.3 nm Ru film (Figure 5(b)), which shows that only about 2 nm (~ 10 monolayers) of Ru is enough to fully cover the WN

substrate.

Further, the adhesion improvement by introducing WN adhesion layer was confirmed by the four-point bend
measurement. For a typical ~ 10 nm Ru film with thermal oxide as the substrate, 6.0 J/m* of adhesion energy was observed
with a 10 nm WN adhesion layer, compared to only 0.8 J/m* without the WN layer. Also, delamination was found at the
WN/SiO, interface, which shows that the adhesion between Ru and WN is even stronger than 6.0 J/m®. If stronger

adhesion is needed, one should focus on improving the strength of the WN/SiO, interface.

Step coverage is another very important criterion for some applications of Ru films. One of the most important
potential applications is as an electrode material in DRAM structures, where Ru will be deposited inside hole structures.'

In order to obtain high conformality of deposition, lower deposition temperature and higher precursor vapor pressure are
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usually needed.” Therefore, we examined the temperature dependence of the deposition rate as shown in Figure 6. The
data (black filled squares) suggested a typical CVD behavior. In the low temperature region (below 270 °C), the deposition
rate was limited by the surface reaction rate, and the logarithm of deposition rate followed a linear relation with the
reciprocal of temperature; at higher temperatures, the deposition rate drops below the linear curve because diffusion
starts to limit the growth rate. We also increased the precursor bubbler temperature from 140 °C to 150 °C in order to get
higher vapor pressure. A similar temperature dependence behavior was obtained for deposition rate (green open squares
in Figure 6), but with a higher deposition rate above 270 °C. Below 270 °C, a higher bubbler temperature did not increase
the deposition rate, suggesting that the surface reaction rate had already reached saturation with vapor from the bubbler
at 140 °C.

With the guidance of above observations, we deposited Ru inside narrow holes with an aspect ratio (AR) of 40 (AR is
defined as the ratio of depth to the diameter of each hole). The diameter and the depth of each hole are 0.2 pm and 8 pm,
respectively. ~2 nm of WN was deposited before Ru deposition to improve adhesion, since strong film-to-wall adhesion is
preferred in practice for further fabrication steps, such as chemical mechanical polishing (CMP). We chose to set 150 °C as
the bubbler temperature, and lowered the deposition temperature. We found that depositing at 317 °C did not give any
film growth on the bottom of the holes, but as we decreased deposition temperature, films became more and more
conformal. And eventually the film deposited at 242 °C gave fairly high conformality as shown in its cross-sectional SEM
image in Figure 7. As we have shown that 2 nm is the minimum thickness for Ru to fully cover the WN surface, in order to
achieve a continuous pinhole-free Ru film near the bottom of an AR~40 trench, we should need to deposit only about 3

nm Ru on the top.

There are also some applications of Ru for DRAM capacitors, where Ru films have to experience a high temperature
annealing process.' During the annealing process, agglomeration could roughen the surface of the films. Therefore, we
also measured the surface roughness of a Ru/WN film before and after rapid thermal annealing (RTA). The thicknesses of
Ru and WN layers were 13 nm, and 3 nm, respectively, and the RTA was performed at 700 °C for 2 min. The surface
morphology was examined by AFM (Figure 8), showing that the rms roughness value increased from 0.5 nm to 1.4 nm
after RTA. Considering that the rms value after annealing was still much smaller than the film thickness, a slight increase

in surface roughness may be acceptable for practical applications.

Conclusions

We were able to grow Ru thin films in a non-oxidizing ambient with bulk density, low resistivity, high purity and

smooth surface morphology. Depositing a thin layer of WN before Ru deposition greatly increased the adhesion of the Ru
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film to SiO, substrate. Only ~ 2 nm of Ru film was needed to fully cover the WN layer without any pinholes. Deposition of
Ru inside narrow holes was also investigated. Fairly good conformality was obtained by lowering the deposition
temperature. And film roughness did not increase too much after 700 °C RTA. The properties we obtained would satisfy

many requirements of potential applications of thin films of ruthenium.
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Figure 1. ED pattern of a 7 nm Ru film on a SiN, membrane (50 nm) TEM grid with 2 nm amorphous WN deposited just before
the Ru. The rings belong to the hexagonal Ru phase, and the discrete spots came from Si substrate, which was used for internal

calibration.
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Figure 2. XPS showing the Ru film was free of impurities. Notice that we could not draw conclusions about carbon since the C 1s

peak overlaps with Ru 3d peaks.
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Figure 4. AFM image of Ru/WN (~gnm/10onm) film on thermal SiO, substrate. The rms roughness value is 0.28 nm.
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Figure 5. SEM images of Ru/WN samples after 10-minute etching in H,O,/NH;, which dissolves WN but not Ru. The sample with

(a) .3 nm Ru on 10 nm WN showed many pinholes, while the sample with (b) 2.3 nm Ru on 10 nm WN did not have pinholes.
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Figure 6. The relation of Ru deposition rate and deposition temperature. Black filled squares, and green open squares correspond

to different bubbler temperatures, i.e. 140 °C and 150 °C, respectively.
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Figure 7. Cross-sectional SEM showing the conformality of Ru deposition. The holes are 0.2 um in diameter and 8pum in depth
(aspect ratio is 40:1). 2 nm of highly conformal WN was deposited first, and then followed with Ru deposition at 242°C. Values in

parentheses are the film thicknesses at corresponding depths along the hole.
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Figure 8. AFM images of Ru/WN (13nm/3nm) film on thermal SiO, substrate. The rms roughness values for (a) as-deposited film,

and (b) 2 min 700 °C RTA film were 0.5 nm, and 1.4 nm, respectively.
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