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LOCAL-GLOBAL COMPATIBILITY AND THE ACTION OF
MONODROMY ON NEARBY CYCLES

ABSTRACT

In this thesis, we study the compatibility between local and global Langlands
correspondences for GL,,. This generalizes the compatibility between local and
global class field theory and is related to deep conjectures in algebraic geometry
and harmonic analysis, such as the Ramanujan-Petersson conjecture and the
weight monodromy conjecture. Let L be a CM field. We consider the case when
IT is a cuspidal automorphic representation of GL,(A%), which is conjugate
self-dual and regular algebraic. Under these assumptions, there is an [-adic
Galois representation R;(IT) associated to II, which is known to be compatible
with the local Langlands correspondence in most cases (for example, when n is
odd) and up to semisimplification in general. In this thesis, we complete the
proof of the compatibility when [ # p by identifying the monodromy operator
N on both the local and the global sides. On the local side, the identification
amounts to proving the Ramanujan-Petersson conjecture for II as above. On
the global side it amounts to proving the weight-monodromy conjecture for part

of the cohomology of a certain Shimura variety.
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Chapter 1

Introduction

1.1 Langlands correspondences and local-global
compatibility

This thesis strengthens the compatibility of local and global Langlands corre-
spondences for GL,,. The Langlands program provides a framework for gener-
alizing class field theory, one of the major achievements of 20th century number
theory, to the non-abelian setting. It is an intricate network of conjectures,
meant to unify different areas of mathematics, such as representation theory,
number theory and algebraic geometry. In the case of GL,,, the Langlands pro-
gram predicts a global correspondence between automorphic representations of

G L,, and n-dimensional Galois representations, which we state below.

Conjecture 1.1.1. (Langlands, Fontaine-Mazur) Let L be a number field and

I a rational prime. There is a bijection between the following sets consisting of



CHAPTER 1. INTRODUCTION 2

isomorphism classes:

cuspidal automorphic irred, cont. i-adic reps
reps of GL,(ArL) Gal(L/L)—>GLn(Qi)
alaebraic unram. except at finitely many places
g de Rham at 1

The “cuspidal” condition on the automorphic side is expected to correspond
to the “irreducible” condition on the Galois side. The “algebraic” condition is
a condition on the infinitesimal character of the automorphic representation at
oco. This character can be thought of as a multiset of complex numbers via
the Harish-Chandra isomorphism and the requirement is that these complex
numbers be in fact integers. Its counterpart on the Galois side is the technical
requirement that the Galois representation be “de Rham at {”, which comes from
p-adic Hodge theory. This conjecture is known in many special cases, but it is
quite open in general. For n = 1, the conjecture is a consequence of global class
field theory.

At the same time, there is a local version of the Langlands correspondence,
which in the case of GL,, was constructed by Harris and Taylor in 2001 [HT].
This correspondence generalizes local class field theory. If we let p be a rational
prime and K/Q, be a finite extension, then local class field theory gives a
canonical isomorphism

Artg s KX — WP,

which takes uniformizers to geometric Frobenius elements.

We now let Irr(G L, (K)) denote the set of isomorphism classes of irreducible,
smooth representations of GL,,(K) over C. Local Langlands is a correspondence
between Irr(G L, (K)) and certain objects very closely related to local Galois rep-
resentations, called Weil-Deligne representations. A Weil-Deligne representation

of the Weil group Wy of K over C is a triple (V,r, N), where

e V is a finite-dimensional C-vector space
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e 1 is a representation of Wx on V with open kernel

e and N is a nilpotent endomorphism of V', which satisfies a certain com-

patibility with r, namely that for any o € Wk

r(o)Nr(o)™! = \Art]_(l(a)|KN.

Weil-Deligne representations of Wy are roughly equivalent to continuous rep-
resentations of Gal(K/K). A Weil-Deligne representation is called Frobenius
semisimple if r is semisimple. Let WDRep,, denote the set of isomorphism
classes of n-dimensional Frobenius semisimple Weil-Deligne representations of

Wg over C.
Theorem 1.1.2. (Harris-Taylor, Henniart) For any finite extension K/Q,,
there exists a collection of bijections

recgk : Irr(GL,(K)) — WDRep,,(Wk)

for every n > 1 satisfying the following properties:
e for n =1 the bijection is via composition with Artl_(l.

e the bijection is compatible with twists by characters, with central characters

and with duals.

o for [m] € Irt(GLy, (K)) and [m2] € Irr(GLy,(K)) then the L-factors and

e-factors of m x wo and rec(m1) @ rec(ma) are compatible.

The local and global correspondences are expected to be compatible, in the
same way that local and global class field theory are compatible. For exam-
ple, in the case of classsical modular forms, the compatibility ensures that the

eigenvalues of Frobenius on the Galois side match up with the Hecke eigenvalues
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coming from the automorphic side. In general, the compatibility characterizes

the global correspondence uniquely and its precise statement is as follows.

Conjecture 1.1.3. (Local-global compatibility) Keep the notations as in Con-
jecture 1.1.1 and Theorem 1.1.2. Fixz an isomorphism v : Q; ~ C. Let II be
a cuspidal automorphic representation of GL,(AL) which is algebraic and let
Ry (II) be the l-adic Galois representation associated to it.

Then for each place y of L above a rational prime p we have an isomorphism

of Weil-Deligne representations

WD(Ri(I)|Gair, yr,)" " = 1 "recy, (IL) @ |det| 2" ).

1.2 History of the problem

The question of proving local-global compatibility has historically been in-
terwtined with the question of constructing Galois representations. This is the

traditional name for realizing the arrow

cuspidal automorphic irred, cont. i-adic reps
reps I of GL,(AL) Ry (I):Gal(L/L)—GLn (Q)
aloebraic unram. except at finitely many places
& de Rham at 1

A general strategy is to find the Galois representation in the [-adic cohomology
of certain algebraic varieties, called Shimura varieties. Other than global class
field theory, the first major result in this direction goes back to Eichler-Shimura,
Deligne and Deligne-Serre who constructed Galois representations associated to
classical modular forms using modular curves.

For general n, a major breakthrough in the construction of Galois represen-
tations was obtained by Clozel [Cl1], who essentially constructed R;(II) under

the following conditions:
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e L is a CM field,
o II satisfies IIV ~ IT o ¢, where ¢ is complex conjugation,
e Il is regular algebraic,
e II is square-integrable at a finite place.

Roughly, the first two conditions ensure that II comes an automorphic repre-
sentation of a unitary group via quadratic base change. The third condition
ensures that this automorphic reprsentation for a unitary group can be “seen”
in the cohomology of a unitary PEL-type Shimura variety. The fourth condition
ensures that one can work with a unitary group with trivial endoscopy, which
simplifies the trace formula used to compute the cohomology of the Shimura
variety.

Under the same conditions on II, Harris and Taylor [HT] proved local-global
compatibility at all places of residual characteristic p # [ and up to semisimplifi-
cation. This means that they obtained an isomorphism of Wi -representations,
but did not pin down the monodromy operator N coming from the global rep-
resentation R;(IT). We comment briefly on the key geometric input of the ar-
gument. Harris and Taylor use a very special kind of Shimura variety, which,
in addition to having trivial endoscopy, is associated to a unitary group with
signature (1,n—1) x (0,n) x---x (0,n) at infinity. It is a PEL-type Shimura va-
riety, which means that it is a moduli space for abelian varieties, equipped with
polarizations, endomorphisms and level structure. These abelian varieties have
to satisfy an important compatibility, called the Kottwitz determinant condition
[Kol]. If one wants to compute Galois representations arising from cohomology
of the Shimura variety, locally at a place y of L, one can use an integral model
defined over the ring of integers Oy, of L,. This integral model is proper, but in

general not smooth. The moduli interpretation extends to the integral model,
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however, and the Kottwitz determinant condition determines the structure of
the p-divisible group of each abelian variety (p here is the residue character-
istic of y). For signature (1,n — 1) x (0,n) x ...(0,n), the p-divisible group
is essentially a one-dimensional Barsotti-Tate Or - module. This leads to the
discovery that, in some sense, the singularities of the integral model are the
same as the singularities of the Lubin-Tate tower, whose cohomology realizes
the local Langlands correspondence.

Taylor and Yoshida [TY] extended the compatibility under the four con-
ditions above to Frobenius semisimplification. The idea for proving Conjec-
ture 1.3.1 in this case is to show that both I/VD(Rl(H)|Gal(Lfy/Ly)lLsS and
;L r,(Il,) have a remarkably elegant form, called “pure” in the terminol-
ogy of [TY]. A nice feature of purity is that it completely identifies the mon-
odromy operator. Moreover, purity reflects certain deep intuitions coming from
algebraic geometry and harmonic analysis.

To explain where the notion of purity originates, let K be a p-adic field for

p#L

Definition 1.2.1. A Weil-Deligne representation (V,r, N) of Wy is called
“strictly pure of weight k7 if the monodromy operator N = 0 and if every
eigenvalue of Frobenius is a Weil ¢¥-number, where ¢ is the cardinality of the

residue field of K.

From the Weil conjectures [Del, De2| it follows that the etale cohomology
of a proper, smooth variety over a finite field always gives rise to a strictly
pure Weil-Deligne representation. However, the etale cohomology of a proper,
smooth variety over K doesn’t have to be strictly pure, so a more general notion

is needed in this case.

Definition 1.2.2. A Weil-Deligne representation (V,r, N) is called “pure of

weight £” if V' has an increasing filtration Filyv , with ¢ € k+7Z whose ith graded
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piece is strictly pure of weight 4 and such that N? induces an isomorphism

gr}x_iV ~ gr,‘c"iiV.

The weight-monodromy conjecture ([De2, 12, RZ]) states that the etale
cohomology of a proper, smooth variety over K always gives rise to a pure
Weil-Deligne representation. Therefore, identifying the monodromy operator in
WD(Rl(H)\Gal(Lfy/Ly)F*SS amounts to proving the weight-monodromy conjec-
ture for part of the cohomology of a Shimura variety with signature (1,n — 1) x
(0,m) x -+ x (0,n).

On the other hand, the purity of ¢; ' £,,, L, (IT,) follows from the Ramanujan-
Petersson conjecture for IT as above. This conjecture predicts the fact that
the local components at finite places of cuspidal automorphic representations of
GL,(Ar) (with unitary central characters) are tempered [Sar|. It is a general-
ization of the corresponding statement for Ramanujan’s A-function [Ral], which
followed from Deligne’s proof of the Weil conjectures [Del|. This conjecture, in
the case where II is square-integrable at a finite place, had already been proved
by Harris and Taylor [HT] as a consequence of the Weil conjectures, since they
constructed R;(II) in the cohomology of a proper, smooth variety over L.

The key insight of [TY] is that it is possible to prove the weight-monodromy
conjecture for the Shimura variety with Iwahori level structure at y, in which
case the cohomology of the generic fiber can be computed via the Rapoport-Zink
weight spectral sequence. The inputs of the first page of the spectral sequence
are the cohomologies of closed Newton polygon strata in the special fiber of the
Shimura variety. These are proper, smooth schemes, whose cohomology realizes
parts of the representation L;lﬁn’ L, (IT,)**. Using the machinery of [HT], Taylor
and Yoshida compute the cohomology of each closed Newton polygon stratum
explicitly and prove that the II°°-part of each cohomology is concentrated in the

middle dimension cohomology. Therefore, after restricting to the II°°-part, the
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first page of the Rapoport-Zink weight spectral sequence is concentrated on a di-
agonal and so the spectral sequence degenerates at the first page. This provides
exactly the filtration needed to prove the purity of WD(RZ(H)|GQZ(L*y/Ly)F*SS.
Harris-Taylor and Taylor-Yoshida therefore proved Conjecture 1.3.1 under
the assumption that II is square-integrable at a finite place. Shin [Sh3| later
removed the condition that IT be square-integrable at a finite place, by working
with a unitary group with the same signature (1,n—1) x (0,n) x---x (0,n), but
allowing endoscopy. He constructed R;(IT) when n is odd and established full
local-global compatibility for [ # p. The difficulty when n is even comes from the
fact that there is a cohomological obstruction to the existence of a unitary group
with the desired signature at infinity and which is quasi-split. Shin found R;(IT)
in the endoscopic part of the cohomology of a Shimura variety for n+ 1, but this
is only “visible” when Il satisfies an additional regularity condition. Under
this condition, Shin again proved local-global compatibility in full for [ # p.
Chenevier and Harris [CH] then constructed the Galois representation in the
missing cases through a p-adic deformation argument. However, their argument
could only prove local-global compatibility for [ # p up to semisimplification.
In order to complete the proof of Conjecture 1.3.1 for L a CM field and II
a conjugate self-dual, regular algebraic, cuspidal automorphic representation of
GL,(Ar), one needs to treat the missing case of the compatibility: namely to
identify the monodromy operator in the case when n is even without any extra
assumptions on II,,. We remark that in this thesis we are concerned with local-
global compatibility at primes p # [. Simultaneously with writing this thesis,
there has been a huge amount of progress in proving local-global compatibility
when p = I: the papers of Barnet-Lamb, Gee Geraghty and Taylor [BLGGT1,
BLGGT?2| prove the compatibility for I = p under the same assumptions as

[Sh3, CH|. We have, since then, also found a way to identify the monodromy
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operator when [ = p and n is even [Car]|, using different methods than those of

this thesis.

1.3 The results and methods of this thesis

In this thesis we complete the proof of the following theorem.

Theorem 1.3.1. Letn € Z>3 be an integer and L be any CM field with complex
conjugation c. Let | be a prime of Q and v; be an isomorphism v, : Q — C. Let

IT be a cuspidal automorphic representation of GLy,(AL) satisfying
e I[[V~Tloc

o II is reqular algebraic (this is the same as asking I to be cohomological for

some irreducible algebraic representation = of GLy, (L ®qg C)).

Let
Ry(IT) : Gal(L/L) — GL,(Q;)

be the Galois representation associated to II by [Sh3, CHJ. Let p # 1 and let y be
a place of L above p. Then we have the following isomorphism of Weil-Deligne

respresentations
WD(Ri(I)lgair,/,)" " = 4 Loz, (I1,).

Here L, 1, (I,) = rec(Ily) ® |det| =" is the image of II, under the local
Langlands correspondence, where the geometric normalization is used.
In the process of proving Theorem 1.3.1, we also prove the Ramanujan-

Petersson conjecture for II as above.

Theorem 1.3.2. Let n € Z>2 be an integer and L be any CM field. Let II be

a cuspidal automorphic representation of GLy,(AL) satisfying
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e [IV~TIloec

e Il is cohomological for some irreducible algebraic representation = of

GL,, (L 0V0) (C)
Then 11 is tempered at any finite place of L.

As mentioned in Section 1.2, the above theorems are already known when
n is odd or when n is even and II is slightly regular, by work of Shin [Sh3].
They are also known if II is square integrable at a finite place, by the work
of Harris-Taylor [HT| and Taylor-Yoshida [TY]. If n is even then Chenevier
and Harris construct in [CH| a global Gal(L/L)-representation R;(II) which is
compatible with the local Langlands correspondence up to semisimplification.
Theorem 1.3.2 was proven by Clozel [C12]| at the places where II is unramified.
We extend the local-global compatibility up to Frobenius semisimplification, by
proving that both Weil-Deligne representations are pure.

The fact that ¢; ' L, ¢, (I1) is pure of some weight follows once we know The-
orem 1.3.2 for all 11, where o € Aut(C). For the representation WD(R;(1)|ga(z, /1,))s
our strategy is as follows: we find the Galois representation R;(IT1)®? in the co-
homology of a system of Shimura varieties Xy associated to a unitary group

which looks like
Ul,n—1)xU(l,n—1)xU(0,n)*2

at infinity. Following the same structure of argument as Taylor-Yoshida in [TY],

we prove that the Weil-Deligne representation associated to

Ri(I*?| oz, /1)

is pure by explicitly computing the action of the monodromy operator N on
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the cohomology of the system of Shimura varieties. We use Theorem 1.3.2 at a
crucial point in the computation. We conclude that WD(R;(H)|GGZ@y/Ly))F*SS
must also be pure of some weight.

To summarize, there are two main parts to the argument: a geometric input
and a representation-theoretic input. The geometric input computes the action
of the monodromy operator on the complex of nearby cycles on a certain kind
of proper, but not smooth, scheme. This does not depend so much on the fact
that the scheme we work with is a Shimura variety. The representation-theoretic
input proves the Ramanujan-Petersson conjecture via a stable trace formula for
computing the cohomology of Shimura varieties or other closely related varieties.

We start by explaining the geometric input, i.e. we briefly outline our com-
putation of the action of N on the Weil-Deligne representation associated to
Rl(H)®2|Gal(iy/Ly)' First, we base change II to a CM field F” such that there is
a place p of F’ above the place y of L where BCp/,(IT), has an Iwahori fixed
vector. It suffices to study the Weil-Deligne representation corresponding to
II° = BCp» s, (IT) and prove that it is pure. We then take a quadratic extension
F of F’ which is also a CM field and in which the place p splits p = p1p2. We
let ¢ € Gal(F/F') be the automorphism which sends p; to pa. We choose F'
and F” such that they contain an imaginary quadratic field E in which p splits.

We take a Q-group G which satisfies the following:
e (5 is quasi-split at all finite places.

e G(R) has signature (1,n — 1) at two embeddings which differ by ¢ and

(0,n) everywhere else.

We let IT' = BCp;p/ (11°). Then the Galois representation R;(II°) can be seen

in the IT-'>°-part of the (base change of the) cohomology of a system of Shimura
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varieties associated to G. We let Xy be the inverse system of Shimura varieties
associated to the group G. We let the level U vary outside p1ps and be equal
to the Iwahori subgroup at p; and ps. We construct an integral model of Xy
which parametrizes abelian varieties with Iwahori level structure at p; and po.
By abuse of notation, we will denote this integral model by Xy as well. The
special fiber Yi; of Xy has a stratification by Yy s where the S,T C {1,...n}
are related to the Newton polygons of the p-divisible groups above p; and ps.
We compute the completed strict local rings at closed geometric points of Xy
and use this computation to show that Xy is locally etale over a product of
strictly semistable schemes, which on the special fiber are closely related to the
strata Yy s 7. If we let Ay be the universal abelian variety over Xy, then Ay
has the same stratification and the same geometry as Xy .

Let ¢ be an irreducible algebraic representation of G over Q;, which deter-
mines non-negative integers t¢, mg and an endomorphism ag € End( A,/ Xy)®z

Q. We are interested in understanding the IT'**®-part of

HY(Xy, Le) = ac HI T (AT, Qulte)).

Thus, we study the cohomology of the generic fiber H7 (.Aglé,@l) and we do
so via the cohomology of the complex of nearby cycles Ry)@Q; over the special
fiber of A?}’E. The key ingredients in studying the complex of nearby cycles
together with the action of monodromy are logarithmic schemes, the weight
spectral sequence as constructed by Saito [Sa2] (which on the level of complexes
of sheaves describes the action of monodromy on the complex of nearby cycles

for strictly semistable schemes), and the formula

(RYQ) x, xx, =~ (RYQy) x, @ (RyY Q) x,
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when X; and X, are semistable schemes. Using these ingredients, we deduce
the existence a spectral sequence relating terms of the form HY (AZL,ES,T’@I)
(up to twisting and shifting) to the object we're interested in, H7 (A?}i@l).
This spectral sequence is, in some sense, a generalization of the Rapoport-Zink
spectral sequence [RZ] for a strictly semistable scheme to the case of a scheme
which looks locally like a product of strictly semistable schemes.

At this stage, the representation-theoretic input comes into play. The coho-
mology of each stratum H/ (A;}L’&S’T, Q) is closely related to the cohomology of
Igusa varieties. The next step is to compute the II'>°-part of the cohomology of
certain Igusa varieties, for which we adapt the strategy of Theorem 6.1 of [Sh3]
and the stable trace formula deduced in [Sh2]. Using the result on Igusa vari-
eties, we prove Theorem 1.3.2 and then we also make use of the classification of
tempered representations. We prove that the TI'>-part of each H’ (A’ 7, Q1)
vanishes outside the middle dimension and thus that our spectral sequence de-
generates at F1. The E; page of the spectral sequence provides us with the

exact filtration of the IT»*-part of

lim H272(Xr, Le)
Ur

which exhibits its purity.

1.4 Organization of the thesis

We now describe the organization of this thesis. In Chapter 2 we define the
PEL datum, unitary group and Shimura varieties we shall work with, we define
integral models for these Shimura varieties as well as stratifications of their
special fibers. We study the geometry of the integral model with Iwahori level

structure, both globally, in terms of the stratification, and locally, in which case
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it essentially looks like a product of strictly semistable schemes.

In Chapter 3 we define a log structure over the Shimura variety with Iwahori
level structure and show that this log structure gives rise to a log smooth scheme.
We review and use Nakayama’s results on nearby cycles for log smooth schemes
[Na], computing the sheaves of nearby cycles on our Shimura variety explicitly.
We also review Illusie’s computation of the complex of nearby cycles in the case
of a product of strictly semistable schemes [I2].

In Chapter 4 we review Saito’s construction of the weight spectral sequence
for a strictly semistable schemes [Sa2|, but motivate it using log schemes and
log structures. We then use the computations in Chapter 3 to identify the
monodromy filtration on the complex of nearby cycles, first in the case of a
product of strictly semistable schemes, then in the case matching our Iwahori-
level Shimura variety. This makes use of the framework of perverse sheaves. We
obtain our spectral sequence relating the cohomologies of the closed Newton
polygon strata to the cohomology of the Iwahori-level Shimura variety.

In Chapter 5 we relate the closed Newton polygon strata to Igusa varieties,
we prove Theorem 1.3.2 (the Ramanujan-Petersson conjecture) and we show
that the II*°-part of the cohomology of the closed Newton polygon strata van-
ishes outside the middle dimension. The results of Chapter 5 depend on a
cohomological computation for Igusa varieties, which we defer until the next
chapter.

In Chapter 6 we use Shin’s stable trace formula for Igusa varieties [Sh2] to
compute the cohomology of the Igusa varieties we’re working with. This section
follows [Sh3| very closely and makes use of the trace formula, endoscopy (which
we show plays a trivial part in our case) and local base change.

In Chapter 7 we put the results of the previous chapters together and prove

the main theorem, Theorem 1.3.1.



Chapter 2

An integral model

2.1 Shimura varieties

Let E be an imaginary quadratic field in which p splits, let ¢ be the non-trivial
element in Gal(E/Q) and choose a prime u of E above p. From now on, we
assume that n is an even positive integer.

Let Fi be a totally real field of finite degree over Q and w a prime of F} above
p. Let F5 be a quadratic totally real extension of I in which w splits w = wjws.
Let d = [F3 : Q] and we assume that d > 3. Let F' = Fy.E. Let p; be the prime
of F' above w; and u for i = 1,2. We denote by p; for 2 < i < r the rest of the
primes which lie above the prime v of E. We choose embeddings 7; : F — C
with ¢ = 1,2 such that 72 = 7 o o, where o is the element of Gal(F/Q) which
takes py to p2. In particular, this means that 7z := 71 |g = 72|g is well-defined.
By abuse of notation we will also denote by ¢ the Galois automorphism of Fj
taking wy to ws.

We will work with a Shimura variety corresponding to the PEL datum

(F,x,V,(-,-),h), where F is the CM field defined above and * = ¢ is the in-

15
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volution given by complex conjugation. We take V' to be the F-vector space F'™

for some integer n. The pairing

(,):VxV-Q

is a non-degenerate Hermitian pairing such that (fvy,vs) = (v1, f*ve) for all
f € F and v1,v9 € V. The last element we need is an R-algebra homomorphism

h:C — Endp(V) ®g R such that the bilinear pairing

(v1,v2) = (v1, h(i)va)

is symmetric and positive definite.

We define an algebraic group G over Q by

G(R) ={(9,A) € Endraor(V ®g R) x R™ | (gu1, gv2) = Av1, v2)}

for any Q-algebra R. For ¢ € Homg ., (F,C) we let (ps,¢,) be the signature
at o of the pairing (-,-) on V ®g R. We claim that we can find a PEL datum
as above, such that (p,,q;) = (1,n —1) for 7 = 7 or 72 and (pr,q;) = (0,n)

otherwise and such that Gg, is quasi-split at every finite place v.

Lemma 2.1.1. Let F be a CM field as above. For any embeddings 1,1 : F —
C there exists a PEL datum (F,*,V,(-,-),h) as above such that the associated
group G is quasi-split at every finite place and has signature (1,n—1) at 71 and

T2 and (0,n) everywhere else.

Proof. This lemma is standard and follows from computations in Galois coho-
mology found in section 2 of [Cl1], but see also Lemma 1.7 of [HT]. The problem
is that of constructing a global unitary similitude group with prescribed local

conditions. It is enough to consider the case of a unitary group G° over Q,
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by taking it to be the algebraic group defined by ker(G(R) — R*) sending
(g, A) — A

A group G defined as above has a quasi-split inner form over QQ denoted G,
defined as in section 3 of [Sh3]. This inner form G,, is the group of similitudes
which preserve the non-degenerate Hermitian pairing (v, vs) = v1(®'w§ with

® € GL,(Q) having entries
D = (=) ins1

and ¢ € F* an element of trace 0. Let G’ be the adjoint group of GO. It suffices
to show that the tuple of prescribed local conditions, classified by elements in

®yH'(Fy,,G'), is in the image of the map
H'(F,G) = @,H' (Fs,,,G),

where the sum is taken over all places v of Fy. For n odd, Lemma 2.1 of [Cl1]
ensures that the above map is surjective, so there is no cohomological obstruction
for finding the global unitary group. In the case we are interested in, n is even

and the image of the above map is equal to the kernel of
@ HY(F,,,G") — 7)2Z.

We can use Lemma 2.2 of [Cl1] to compute all the local invariants (i.e. the
images of H'(Fy,,G") — Z/27Z for all places v). At the finite places, the sum of
the invariants is 0 (mod 2) (this is guaranteed by the existence of the quasi-split
inner form G,, of G, which has the same local invariants at finite places). At
the infinite places 71 and 75 the invariants are § + 1 (mod 2) and at all other

infinite places they are 2 (mod 2). The global invariant is % + 2 (mod 2),
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where d is the degree of F5 over Q. Since d is even, the image in Z/27Z is equal
to 0 (mod 2), so the prescribed local unitary groups arise from a global unitary

group. O

We will choose the R-homomorphism & :C — Endp (V) ®gR such that under

the natural R-algebra isomorphism Endp(V)r ~ [] M, (C) it equals

TIE=TE

Z

T

where 7 runs over elements of Homg ., (F,C).

Now that we’ve defined the PEL datum we can set up our moduli problem.
Note that the reflex field of the PEL datum is F' = Fy - E. Let S/F’ be
a scheme and A/S an abelian scheme of dimension dn. Suppose we have an
embedding i : F' — End(A) ®z Q. LieA is a locally free Og-module of rank
dn with an action of F. We can decompose LieA = Lie" A @ Lie” A where
LieT A = LieA ®p,0r Os and the map E — ' — Og is the natural map
followed by the structure map. Lie™ A is defined in the same way using the
complex conjugate of the natural map E < F’. We ask that Lie™ A be a free
Og-module of rank 2 and that Liet A ~ Og ®r, Fy as an Og-module with an

action of F5.

Definition 2.1.2. If the the conditions above are satisfied, we will call the pair

(A,4) compatible.

Remark. This is an adaptation to our situation of the notion of compatibility de-
fined in section III.1 of [HT], which fulfills the same purpose as the determinant

condition defined on page 390 of [Kol].

For an open compact subgroup U C G(A*) we consider the contravariant
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functor Xy mapping

Connected, locally noetherian
F’-schemes with geometric point | — (Sets)

(5, 5)

(5,8) = {(A, A i,m)}/ ~
where
e A is an abelian scheme over S;
e )\: A — AV is a polarization;

e i: F < End’(A) = EndA ®; Q is such that (A,i) is compatible and
Aoi(f) =i(f*)V o forall feF;

o 7jis a m1 (S, s)-invariant U-orbit of isomorphisms of Hermitian F ®g A>-
modules

n:V®yA® — VA

which take the fixed pairing (-,-) on V to on (A*)*-multiple of the \-Weil

pairing on V' A,. Here,
VA, = (lim AIN](k(s))) @z @

is the adelic Tate module.

We consider two quadruples as above equivalent if there is an isogeny between
the abelian varieties which is compatible with the additional structures. If s’
is a different geometric point of S then there is a canonical bijection between
Xy (S, s) and Xy(S,s"). We can forget about the geometric points and extend

the definition from connected to arbitrary locally noetherian F’-schemes. When
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U is sufficiently small, this functor is representable by a smooth and quasi-
projective variety Xy /F’ of dimension 2n — 2 (this is explained on page 391 of
[Kol]). The variety Xy is a disjoint union of | ker' (G, Q)| copies of the canonical
model of the Shimura variety. As U varies, the inverse system of the Xy has a
natural right action of G(A>).

Let Ay be the universal abelian variety over Xy. The action of G(A*) on
the inverse system of the Xy extends to an action by quasi-isogenies on the
inverse system of the Ay. The following construction goes through as in section
ITI1.2 of [HT]. Let [ be a rational prime (we impose no conditions on ! yet, but we
will restrict to ! different from p when we work with an integral model over the
ring of integers in a p-adic field) and let £ an irreducible algebraic representation
of G over Qf°. This defines a lisse Qj“-sheaf L¢; over each Xy and the action

of G(A) extends to the inverse system of sheaves. The direct limit
HY(X,L¢)) =lmH (Xy xm F', Le )

is a (semisimple) admissible representation of G(A>) with a continuous action

of Gal(F'/F’). We can decompose it as

HY(X,Le)) = P 7@ R y(m)

where the sum runs over irreducible admissible representations 7w of G(A)
over Qf¢. The Réyl(ﬂ') are finite dimensional continuous representations of
Gal(F'/F") over Q¢¢. We shall suppress the [ from L¢; and Ré’l(ﬂ') where
it is understood from context. To the irreducible representation £ of G we can
associate as in section ITI.2 of [HT] non-negative integers mg and t¢ and an

idempotent e € Q[S,,,] (Where S, is the symmetric group on mg letters). As
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on page 476 of [TY], define for each integer N > 2,

ctme. ) =TT TT 0 & Qv
z=1y#1

where [N], denotes the endomorphism generated by multiplication by N on the

z-th factor and y ranges from 0 to 2[F; : Q]n? but excluding 1. Set
ag = ag N = € P(e(mg, N)),

which can be thought of as an element of End(A;¢ / Xy)®7Q. Here P(e(mg, N))
is the polynomial

P(X) = (X —1)3 4 1)n3,

If we let proj : AZL& — Xy be the natural projection, then e(mg, N) is an

idempotent on each of the sheaves R’/proj,Q;(t¢), hence also on
H (Xy xp F', RIproj, Qu(te)) = H™ (A xp F', Qu(te)).-

We get an endomorphism €(mg, N) of H™(A¢ xpr F',Qu(t¢)) which is an
idempotent on each graded piece of a filtration of length at most 4n — 3. In this
case, P(e(mg, N)) must be an idempotent on all of H'™(A7¢ xm F', Qi(te)).

We have an isomorphism
Hi(XU X pr F’, Eg) = a&HierE (.AgE X pr Fv, Ql(tg)),

which commutes with the action of G(A>).
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2.2 An integral model for Iwahori level structure

Let K = F,, ~ F,,, where the isomorphism is via o, denote by O the ring of
integers of K and by 7 a uniformizer of Of.

Let S/Ok be a scheme and A/S an abelian scheme of dimension dn. Suppose
we have an embedding i : Or < End(A) ®z Z,. LieA is a locally free Ogs-
module of rank dn with an action of F. We can decompose LieA = Lie™ A @
Lie™ A where Lie™ A = LieA ®2z,205 OF.u- There are two natural actions of Op
on Lie™ A, via Op — (’)ij = Ok composed with the structure map for j = 1, 2.
These two actions differ by the automorphism o € Gal(F/Q). There is also a
third action via the embedding i of OF into the ring of endomorphisms of A.
We ask that Lie™ A be locally free of rank 2, that the part of Liet A where the
first action of O on Lie™ A coincides with ¢ be locally free of rank 1 and that

the part where the second action coincides with ¢ also be locally free of rank 1.

Definition 2.2.1. If the above conditions are satisfied, then we call (A, %) com-
patible. One can check that for S/K this notion of compatibility coincides with

the one in Definition 2.1.2.
If p is locally nilpotent on S then (A, ) is compatible if and only if

o A[ps°] is a compatible, one-dimensional Barsotti-Tate Ox-module for i =

1,2 and
o A[p°] is ind-etale for i > 2.

By a compatible Barsotti-Tate Ox-module we mean that the two actions on it
by Ok, via endomorphisms or via the structure map coincide.
We will now define a few integral models for our Shimura varieties Xy. We

can decompose G(A>) as

G(A®) = G(A™?) x Q) x [[ GLn(Fp,).

=1
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For each i, let A; be an (’)Fpi—lattice in Fy, which is stable under GLn(Oppi)
and self-dual with respect to (-,-). For each i = (mq,...,m,) and compact

open UP? C G(A*?) we define the compact open subgroup UP(m) of G(A>) as
UP(m) = U x 25 x [ [ ker(GLoy, (M) = GLoy, (Ai/mi Ay)).
i=1

The corresponding moduli problem of sufficiently small level UP(m) over Ok is

given by the functor

Connected, locally noetherian
Ok-schemes with geometric point | — (Sets)

(S, 5)
(,8) = {(A A 0,77 {aitiza)}/ ~
where
e A is an abelian scheme over S;
e )\: A — AV is a prime-to-p polarization;

e i: Op — End(A) ®z Z(,) such that (A,i) is compatible and A o i(f) =
i(f*)" oA Vf € OF;

o 7P is a my(S, s)-invariant UP-orbit of isomorphisms of Hermitian F ®q
A>P-modules

n:V ®yA™P — VPA

which take the fixed pairing (-,-) on V to an (A°P)*-multiple of the A-

Weil pairing on VA,. Here VP A, is the adelic Tate module away from
b;

o fori=1,2, a;:p; " A;/A; — A[p;"] is a Drinfeld p;"*-structure, i.e. the
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set of a;(x),z € (p; ™ A;/A;) forms a full set of sections of Afp;*'] in the

(3

sense of section 1.8 of [KM];

e fori>2, a;: (p;™ Ai/A) = Alpl™] is an isomorphism of S-schemes with

OF

pi—actlons;

e Two tuples (A, A, i, 7P, {a;}7_1) and (A", N, ¢, (77”),, {a}}7_, are equivalent
!

if there is a prime-to-p isogeny A — A’ taking X, 1, 77P, a; to v\, 4/, (77”)/, o

. X
for some v € Z(p).

This moduli problem is representable by a projective scheme over O, which will
be denoted Xy» ;5. The projectivity follows from Theorem 5.3.3.1 and Remark
5.3.3.2 of [Lan]. If my = mg = 0 this scheme is smooth as in Lemma II1.4.1.2 of
[HT], since we can check smoothness on the completed strict local rings at closed
geometric points and these are isomorphic to deformation rings for p-divisible
groups (with level structure only at p; for ¢ > 2, when the p-divisible group is
etale). Moreover, if m; = mg = 0 the dimension of Xy» 7 is 2n — 1.

When m; = my = 0, we will denote Xy» 3 by Xy,. If Ay, is the universal
abelian scheme over Xy, we write G; = Ay, [ps°] for i = 1,2 and G = Gy x Ga.
Over a base where p is nilpotent, each of the G; is a one-dimensional compatible
Barsotti-Tate Og-module.

Let F be the residue field of Ok. Let Xy, = Xy, Spec F be the

XSpec 0k
special fiber of Xy;,,. We define a stratification on XUU in terms of 0 < hy, hy <
n — 1. The scheme Xl[?g 1121 will be the reduced closed subscheme of Xy, whose

closed geometric points s are those for which the maximal etale quotient of G;

has Og-height at most h;. Let ngl’hZ) = Xg;“hﬂ — (Xg;l_l’hﬂ U ngl’}bz_l]).

Lemma 2.2.2. The scheme Xg:l’hZ) is non-empty and smooth of pure dimen-

sion hi + ha.

Proof. In order to see that this is true, note that the formal completion of Xy,
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at any closed point is isomorphic to F[[T%, ..., Ty, S, . .., S,]] since it is the uni-
versal formal deformation ring of a product of two one-dimensional compatible
Barsotti-Tate groups of height n each. (In fact it is the product of the universal
deformation rings for each of the two Barsotti-Tate groups.) Thus, Xy, has
dimension 2n — 2 and as in Lemma II.1.1 of [HT] each closed stratum X'gf;’hﬂ
has dimension at least h; + ha. The lower bound on dimension also holds for

h2)

each open stratum X [(]}31 . In order to get the upper bound on the dimension

it suffices to show that the lowest stratum X ((]00,0) is non-empty. Indeed, once

h2)

we have a closed point s in any stratum X [(]};1 , we can compute the formal

completion (X[(]T’hz))g\ as in Lemma I1.1.3 of [HT] and find that the dimen-
sion is exactly hy + he. We start with a closed point of the lowest stratum
X ((](i 0 _ x ([?O’O] and prove that this stratum has dimension 0. The higher closed

strata XI[J}:)hhz] = Uji<ha,ja<ha X [(JJUI 72) are non-empty and it follows by induction

on (hy, hy) that the open strata )_([(J’;l’hz) are also non-empty.

It remains to see that )_([(J% 0) g non-empty. This can be done using Honda-
Tate theory as in the proof of Corollary V.4.5. of [HT], whose ingredients
for Shimura varieties associated to more general unitary groups are supplied
in sections 8 through 12 of [Shl]. In our case, Honda-Tate theory exhibits a
bijection between p-adic types over F' (see section 8 of [Shl] for the general
definition) and pairs (4,4) where A/F is an abelian variety of dimension dn and
i: F — End(A) ®z Q. The abelian variety A must also satisfy the following:
A[ps©] is ind-etale for ¢ > 2 and A[p$°] is one-dimensional of etale height h;
for ¢ = 1,2. Note that the slopes of the p-divisible groups A[ps®] are fixed for
all . All our p-adic types will be simple and given by pairs (M,n) where M
is a CM field extension of F' and n € Q[B] where P is the set of places of M

above p. The coefficients in 7 of places x of M above p; are related to the slope

of the corresponding p-divisible group at p; as in Corollary 8.5 of [Sh3]. More
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precisely, A[z*°] has pure slope 7, /e, /,. It follows that the coefficients of 7 at

places x and x¢ above p satisfy the compatibility

Nz + Nye = ez/p

so to know 7 it is enough to specify 7, -  as x runs through places of M above
u.

In order to exhibit a pair (A4,7) with the right slope of A[p$°] it suffices to
exhibit its corresponding p-adic type. For this, we can simply take M = F and
Np, = % -p; for ¢ = 1,2 and n,, = 0 otherwise. The only facts remaining
to be checked are that the associated pair (A,%) has a polarization A\ which
induces ¢ on F and that the triple (A4,4,A) can be given additional structure
to make it into a point on )—([(](2),0). First we endow (A4,7) with a polarization
Ao for which the Rosati involution induces ¢ on F' using Lemma 9.2 of [Kol]

and we use Lemma 5.2.1, an analogue of Lemma V.4.1 of [HT], to construct an

F-module Wy together with a non-degenerate Hermitian pairing such that
W()@Aoo’p ~ VPA and W0®QREV®QR

as Hermitian F' ®g A*P-modules (F ®g R-modules respectively). Then we use
the difference (in the Galois cohomology sense) between Wy and V' as Hermitian
F-modules over Q to find a polarization X such that VP A with its \-Weil pairing
is equivalent to V ® A°®P with its standard pairing, as in Lemma V.4.3 of
[HT]. Note that the argument is not circular, since the proof of Lemma 5.2.1 is

independent of this section. O

The next Lemma is an analogue of Lemma 3.1 of [TY].

Lemma 2.2.3. If 0 < hy,he < n — 1 then the Zariski closure of )_([(le’hz)

. =(0,0
contains X[(] ) .
0
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Proof. The proof follows exactly like the proof of Lemma 3.1 of [TY]. Let z be

)

a closed geometric point of X ,(J?) ) The main point is to note that the formal

completion of X, x Spec F at  is isomorphic to the equicharacteristic universal

deformation ring of Gy ; x G2 5, so it is isomorphic to
Spf ]FHT27 s aTTm 525 EBERE) STL]]

We can choose the T;, the S; and formal parameters X on the universal defor-

mation of G; ; and Y on the universal deformation of G, , such that

[m(X) =7X + ZTiX#FFI + x#E (mod X#F"H) and
i=2

F(V) =7y + > Sx#T 4 5# (mod §#FH),
i=2
We get a morphism

Spec FHTQ, e 7Tn7 527 ey Sn]] — XUO

lying over « : Spec F — Xy, such that if k& denotes the algebraic closure of the

field of fractions of
Spec F[[Tg, e ,Tn, SQ, e SnH/(TQ, e ,Tn_h1752, ey Sn—hQ)

then the induced map Spec k — Xy, factors through X [(]}Zl’hz). O

For i = 1,2, let Iw,,, be the subgroup of matrices in GL,(Ok) which
reduce modulo p; to By, (F) (here B, (F) C GL,(F) is the Borel subgroup). We

will define an integral model for Xy, where U C G(A*) is equal to

UP x UPVP2(m) X Twp p, X Iwp p, X Z) .



CHAPTER 2. AN INTEGRAL MODEL 28

We define the following functor Xy from connected locally noetherian Og-

schemes with a geometric point to sets sending

(Sv S) = (Av >‘7ia ﬁp7617627 ai)v

where (A4, A\, 4,77, ;) is as in the definition of Xy, and for i = 1,2, C; is a chain

of isogenies

Ci:Gia=Gio—Gi1— = Gin=20:4/Gi alpi]

of compatible Barsotti-Tate Ox-modules each of degree #IF and with composite

the canonical map G; 4 — G; 4/G; alpil.

Lemma 2.2.4. If UP s sufficiently small, the functor Xy is represented by
a scheme Xy which is finite over Xy,. The scheme Xy has some irreducible

components of dimension 2n — 1.

Proof. The chains of isogenies C; can be viewed as flags

0=KioCKi1- CKin=0Glpi,

where KC; ; = ker(G;o — G ;). All the K;; are closed finite flat subgroup
schemes with O-action and IC; ;//C; j_1 of order #F. The representability can
be proved in the same way as in Lemma 3.2 of [TY] except in two steps: first
we note that the functor sending S to points of Xy, (S) together with flags C; of
Gi[p1] is representable by a scheme X7, over Xy,. (If we let H; denote the sheaf
of Hopf algebras over Xy, defining G [p1], then X/, will be a closed subscheme
of the Grassmanian of chains of locally free direct summands of H;.) Then we
see in the same way that the functor sending S to points of X[, (S) together

with flags Co of Ga[p2] is representable by a scheme Xy over X{;. We also have
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that Xy is projective and finite over Xy,. (Indeed, for each closed geometric
point x of Xy, there are finitely many choices of flags of O x-submodules of each
Giz.) On the generic fiber, the morphism Xy — Xy, is finite etale and Xy,

has dimension 2n — 1, so Xy has some components of dimension 2n — 1. O

We say that an isogeny G — G’ of one-dimensional compatible Barsotti-Tate
Ogk-modules of degree #F has connected kernel if it induces the zero map on
LieG. Ifwelet f = [F:F,) and F : G — G® be the Frobenius map, then
Ff:G — G# is an isogeny of one-dimensional compatible Barsotti-Tate O -
modules and has connected kernel. The following lemma appears as Lemma, 3.3

in [TY].

Lemma 2.2.5. Let W denote the ring of integers of the completion of the
mazimal unramified extension of K. Suppose that R is an Artinian local W -

algebra with residue field F. Suppose that
C:Go— Gi— - — Gy =Go/Go[pi]

1s a chain of isogenies of degree #F of one-dimensional compatible formal Barsotti-
Tate Ok -modules over R of Ok -height g with composite equal to multiplication
by 7. If every isogeny has connected kernel then R is a F-algebra and C is the
pullback of a chain of isogenies of Barsotti-Tate Ok -modules over F, with all

isogenies isomorphic to F7.

Now let Xy = Xy XSpec K Spec F denote the special fiber of Xy. For
t=1,2and 1 < j < n,let Y;; denote the closed subscheme of Xy over which
Gij—1 — Gi ; has connected kernel. Note that, since each LieG; ; is locally free
of rank 1 over Ox,,, we can pick a local basis for all of them. Then we can find
locally X;; € I'(Xv,Ox,) to represent the linear maps LieG; ;1 — LieG, ;.

Thus, each Y; ; is cut out locally in Xy by the equation X; ; = 0.
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Proposition 2.2.6. Let s be a closed geometric point of Xy such that G; s has
etale height h; fori=1,2. Let W be the ring of integers of the completion of the
mazximal unramified extension of K. Let O)A(U7S be the completion of the strict
henselization of Xy at s, i.e. the completed local ring of X X Spec O Spec W

at s. Then

n n
O%ys *WITy, o Ty Sy, Sull/C T Ty [T Si— ).
i=hy1+1 i=hs+1
Assume that Y1 5, for k = 1,...,n —h1 and jp € {1,...,n} distinct are
subschemes of Xy which contain s as a geometric point. We can choose the

generators T; such that the completed local ring Oﬂ/>1.j 15 cut out in Oﬁ\(ws

koS
by the equation Tyyp, = 0. The analogous statement is true for Ya; with

kil,...,ﬂ*hg andSk+h2:O.

Proof. First we prove that Xy has pure dimension 2n — 1 by using Deligne’s
homogeneity principle. We will follow closely the proof of Proposition 3.4.1
of [TY]. The dimension of O% as s runs over geometric points of Xy above
X,(J(;’O) is constant, say it is equal to m. Then we claim that O)A(U7S has dimension
m for every closed geometric point of Xy. Indeed, assume the subset of X
where Oé}w s has dimension different from m is non-empty. Then this subset
is closed, so its projection to Xy, is also closed and so it must contain some
Xg;l’hQ) (since the dimension of O%,  _ only depends on the stratum of X,
that s is above). By Lemma 2.2.3; the closure of X((]};l’h?) contains Xl(]?)’o),
which is a contradiction. Thus, X has pure dimension m and by Lemma 2.2.4,
m =2n— 1.

The completed local ring O)A(U is the universal deformation ring for tu-

ples (A, \,4,7",C1,Co, ;) deforming (As, As,4s,78,C15,Cos,;5). Deforming
the abelian variety A, is the same as deforming its p-divisible group A4[p>°] by

Serre-Tate and A4[p™] = Ag[u™] x As[(u)*°]. The polarization A together with
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A[u®] determine A[(u¢)*°], so it suffices to deform A4[u>°] as an Op-module to-
gether with the level structure. At primes other than p; and ps, the p-divisible
group is etale, so the deformation is uniquely determined. Moreover, A[(p1p2)>°]

decomposes as A[p7°] x A[p5°] (because O ®o,, Or;,,. ~ Opp, ¥ OFyp,), 80

P2

it suffices to consider deformations of the chains
Cis:Gis=0Gi0o—Gi1— = Gin=0is/Gispi

for i = 1, 2 separately.
Let G ~ % x (K/Ok)" be a p-divisible Ox-module over F of dimension one

and total height n. Let
C:G=Go—G1— - —G,=G/G[r]

be a chain of isogenies of degree #F. Since we are working over I, the chain C
splits into a formal part and an etale part. Let C° be the chain obtained from

C by restricting it to the formal part:
PO —>—>in=i/i[ﬂ']

Let J C {1,...,n} be the subset of indices j for which G;_; — G; has connected
kernel. (The cardinality of J is n — h.) Also assume that the chain C* consists
of

Gi* = (K/m '0g) & (K/Ox)"™

for all j € J with the obvious isogenies between them.

We claim that the universal deformation ring of C is isomorphic to

WITy, ..., T/ ([ 75 = ).

JjeJ
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We will follow the proof of Proposition 4.5 of [D]. To see the claim, we first
consider deformations of G without level structure. By proposition 4.5 of [D],

the universal deformation ring of ¥ is
R = W[ Xpny1s- s Xnll/ (X1 - -+ X —m).

Let ¥ be the universal deformation of . By considering the connected-etale
exact sequence, we see that the deformations of G are classified by extensions
of the form

0-%—G— (K/Og)" = 0.

Thus, the universal deformations of G are classified by elements of Hom(7T'G, f]),
where TG is the Tate module of G. The latter ring is non-canonically isomorphic

to

R W(Xy,.... Xl /(][ X5 — ).
JjeJ

Let S be the universal deformation ring for deformations of the chain C and

S° be the universal deformation ring for the chain C°. Let
éSQ:C;oH@H“'HQn:Q/Q[ﬂ']

be the universal deformation of C which corresponds when restricted to the

formal part to the universal chain
Y- —>—>§~]n:§~]/2~3[7r]
Each deformation Gj of G; is defined by a connected-etale exact sequence

0— 3% =G — (K/Og)" -0,
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so by an element f; € Hom(T'G;, i]) We will explore the compatibilities be-
tween the Hom(ng,ij) as j ranges from 0 to n. If j € J then Gj,l — g}
has connected kernel, so TG;_1 ~ T'G;. The isogeny f]j,l — f)j determines a
map Hom(TG;_1,%;_1) — Hom(TG;,%;), which determines the extension G;.
Thus, in order to know the extension classes of Qj it suffices to focus on the case
J&J.

Let (e;)jes be a basis of O%, which we identify with TG; for each j. We
claim that it suffices to know f;(e;) € f]j for each j ¢ J. Indeed, if j &€ J then

we know that ij_l ~ f]j and we also have a map 7'G;_1 — T'G; sending
ejr — ej for j' # j and e; — we;.

Thus, for ¢ # j we can identify f;_1(e;) € ij,l with f;(e;) € ij. Hence if we
know f;(e;) then we also know f;/(e;) for all j* > j. Thus we know f,(e;), but

recall that f, corresponds to the extension
0— X/%[n] — G/G[r] — (K/n t0r)" — 0,
which is isomorphic to the extension
0% —G— (K/Og)" = 0.

Therefore we also know fj(e;) and by extension all fj(e;) for j* < j. This proves
the claim that the only parameters needed to construct all the extensions g}
are the elements f;(e;) € flj forall j & J.

We have a map S° ®po R — S induced by restricting the Iwahori level
structure to the formal part. From the discussion above, we see that this map

is finite and that S is obtained from S° ®zo R by adjoining for each j € J a
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root T} of

in ¥, where f: ¥ — 3 is the composite of the isogenies ij — ij_H N
If we quotient S by all the T} for j & J, we are left only with deformations of
the chain C°, since all of the connected-etale exact sequences will split. Thus
S/(Tj)jgr = S°.

Now, the formal part C° can be written as a chain
Y=g ==X e — /8]
of length n — h. Choose bases e; for Lie G; over S0 as j runs over J, such that
e, = e; for the largest j € J

maps to

eo = e; for the smallest j € J

under the isomorphism G,, = Go/Go[r] = Go induced by 7. Let T, € SO repre-
sent the linear map Lie ij/ — Lie f]j, where j’ is the largest element of J for

which j° < j. Then

HTj:ﬂ'.

Moreover, S°/(T})jes = F by Lemma 2.2.5. (See also the proof of Proposition

3.4 of [TY].) Hence we have a surjection

W[[Tla"'aTn]]/( H TJ _7T) _»Sv
j=hi1+1

which by dimension reasons must be an isomorphism.

Applying the preceding argument to the chains C; s and Cs 5, we conclude
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that

O%ys 2 WITy, ., Ty Sty Sall/C I Ti=m [ Si—m).
i1=h1+1 i=hso+1

Moreover, the closed subvariety Y; ;, of Xy is exactly the locus where G;, _1 —
G;,. has connected kernel, so, if s is a geometric point of Y7 j,, then OiA’l,jws
is cut out in O)A(ws by the equation Tgyp, = 0. (Indeed, by our choice of the
parameters Tjyp, with 1 <k < n — hy, the condition that G, ;,—1 — Gi1 ;. has

connected kernel is equivalent to Tyyp, = 0.) O

For S,T C {1,...,n} non-empty let

Yusor = (ﬂ Yl,i) n | () Yas
ies JET
Then Yy g1 is smooth over Spec F of pure dimension 2n — #S — #T (we can
check smoothness on completed local rings) and it is also proper over Spec F,
since Yy s, — Xy is a closed immersion and X is proper over Spec F. We

also define

0
Yosr=Yuso\ || U Yosr|u| U Yosr
5’28 T'2T

Note that the inverse image of X,(Jhl’hQ) with respect to the finite flat map
XU — XUO is

0
U Ysr

#S:’I’thl
#T=n—hs

Note that, when we consider the Shimura variety X, with U; having Iwahori
level structure at only one of the primes p; for i = 1,2, this will be flat over

Xu,, since it can be checked that it is a finite map between regular schemes
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of the same dimension (the same reason as in setting of [TY]). The morphism
Xvu — Xy, is the fiber product of the morphisms Xy, — Xy, for i = 1,2, so it

is flat as well.

Lemma 2.2.7. The Shimura variety Xy is locally etale over

T S

X0 = Spec Ox[Xy,..., Xp, V1, Y /([ X == ] Vi — )
j—1

i=1
with 1 <r,s <n.

Proof. Let x be a closed point of Xy;. The completion of the strict henselization

of Xy at x O%, , is isomorphic to

Ors = W[X1,.... X, V1. Yl /([ X - = Y5 — )
i=1 j=1

for certain 1 < r, s < n. We will show that there is an open affine neighbourhood
U of z in X such that U is etale over X, ;. Note that there are local equations
T; =0 with 1 < ¢ <rand§; =0 with 1 < j < s which define the closed
subschemes Y ; with 1 < ¢ < r and Y3 ; with 1 < j < s passing through x.

Moreover, the parameters T; and S; satisfy

T S
HTi = urm and H S; =u'm
i=1 j=1

with v and v’ units in the local ring Ox,, ,. We will explain why this is the case
for the T;. In the completion of the strict henselization (’))A(U@ both T; and X;

cut out the completion of the strict henselization (9{}1 which means that T;

and X; differ by a unit. Taking the product of the T} we find that [[,_, T; = un

for u € O% . a unit in the completion of the strict henselization of the local

,T
ring. At the same time, in an open neighborhood of x, the special fiber of X is

a union of the divisors corresponding to T; = 0 for 1 < i < r, so that [[\_; T;
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belongs to the ideal of Ox,, , generated by 7. We conclude that u is actually
a unit in the local ring Ox,, 4, not only in O% . In a neighborhood of z, we

can change one of the T; by u~! and one of the S; by (u/)~! to ensure that

ﬁTi =7 and ﬁSi =T.
i=1 j=1

We will now adapt the argument used in the proof of Proposition 4.8 of [Y]
to our situation. We first construct an unramified morphism f from a neigh-
borhood of z in Xy to Spec Ok [X1,...,X,,Y1,...Y,]. We can do this simply
by sending the X; to the T; for ¢ = 1,...r and the Y} to the S; for j =1,...s.
The rest of the X; and Y} can be sent to parameters in a neighborhood of x
which approximate the remaining parameters in OQ(UJ modulo the square of the
maximal ideal. Then f will be formally unramified at the point z. By [EGA4]
18.4.7 we see that when restricted to an open affine neighbourhood Spec A of
z in X, f|speca can be decomposed as a closed immersion Spec A — Spec B
followed by an etale morphism Spec B — Spec Ok [X1,...Xp,Y1,...,Y,]. The
closed immersion translates into the fact that A ~ B/I for some ideal I of B.
The inverse image of I in W[X7,..., X,,,Y1,...Y,] is an ideal J which contains
[T;_, X; — 7 and szl Y; — m. The morphism f factors through the morphism
g : Spec A — Spec Ok[Xy,...,X,,Y1,...,Y,]/J which is etale. Moreover,
J is actually generated by [[;_, X; — 7 and H;:1 Y; — m, since g induces an

isomorphism on completed strict local rings

~

W(X1,.... X0, Y1,.... Y]]/ T 5 O,

This completes the proof of the lemma. O
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Let Ay be the universal abelian variety over the integral model Xy . Let
¢ be an irreducible representation of G over Q;, for a prime number I # p.
The sheaf L¢ extends to a lisse sheaf on the integral models Xy, and Xy Also,
ag € End(A;/* /Xu)®zQ extends as an etale morphism on A;/* over the integral

model. We have
Hj(XU X g7 Fé,ﬁg) >~ aEHj+m§(.AZL5 X g1 Fé,@l(tg))

and we can compute the latter via the nearby cycles RyQ; on Agls over the
integral model of Xy;. Note that Ay, * is smooth over X, so A} is locally etale

over
Xram = Spec O [X1,..., X, Y1, ... Yo, Ze, o Z) /(][ X3, =7, [] V5, — )
j=1

Jj=1

for some non-negative integer m.



Chapter 3

Sheaves of nearby cycles

In this chapter we will start to understand the complex of nearby cycles on a
scheme X/Ok which has the same geometric properties as our Iwahori level
Shimura variety Xy. We work with K/Q, be finite with ring of integers Og
which has uniformiser 7 and residue field F. Let I = Gal(K/KY) C G =
Gal(K/K) be the inertia subgroup of K. Let A be either one of Z/I"Z, Z;, Q,

or Q for [ # p prime. Let X/Og be a scheme such that X is locally etale over
Xram = Spec O [X1,..., X, Y1, ... Yo, Ze, oo Z /(][ X5 = 7 [[ Y5 — ).
j=1 j=1

Let Y be the special fiber of X. Assume that Y is a union of closed subschemes
Y1; with j € {1,...,n} which are cut out locally by one equation and that
this equation over X, ; ,, corresponds to X; = 0. Similarly, assume that Y is
a union of closed subschemes Y5 ; with j € {1,...,n} which are cut out over
Xy s,m by Y; =0.

Let j : X — X be the inclusion of the generic fiber and i : ¥ — X be
the inclusion of the special fiber. Let S = Spec O, with generic point n and

closed point 5. Let K be an algebraic closure of K, with ring of integers Q.

39
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Let S = Spec O, with generic point 77 and closed point 5. Let X = X xg S
be the base change of X to S, with generic fiber j : X; — X and special fiber
i: X5 — X. The sheaves of nearby cycles associated to the constant sheaf A

on X are sheaves RFyA on X5 defined for k > 0 as
REYA = i*REj A

and they have continuous actions of I .
Proposition 3.0.8. The action of Ix on RFyA is trivial for any k > 0.

The proof of this proposition is based on endowing X with a logarithmic
structure, showing that the resulting log scheme is log smooth over Spec Ok
(with the canonical log structure determined by the special fiber) and then using
the explicit computation of the action of Ix on the sheaves of nearby cycles that

was done by Nakayama [Na].

3.1 Log structures

Definition 3.1.1. A log structure on a scheme Z is a sheaf of monoids M
together with a morphism « : M — Oz such that « induces an isomorphism
a™1(0%) ~ 03. A scheme endowed with a log structure is a log scheme. A
morphism of log schemes (71, M;) — (Z2, Ms) consists of a pair (f,h) where
f:Zy — Z5 is a morphism of schemes and h : f*M; — M; is a morphism of

sheaves of monoids.

From now on, we will regard O} as a subsheaf of M via a~! and define
M := M/O3.
Given a scheme Z and a closed subscheme V' with complement U there is

a canonical way to associate to V a log structure. If j : U — X is an open
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immersion, we can simply define M = j,.((Ox|U)*)NOx — Ox. This amounts
to formally “adjoining” the sections of Ox which are invertible outside V' to the
units O%. The sheaf M will be supported on V.

If P is a monoid, then the scheme Spec Z[P] has a canonical log structure
associated to the natural map P — Z[P]. A chart for a log structure on Z is
given by a monoid P and a map Z — Spec Z[P] such that the log structure
on Z is pulled back from the canonical log structure on Spec Z[P]. A chart
for a morphism of log schemes Z; — Z, is a triple of maps Z; — Spec Z[Q],
Zy — Spec Z[P] and P — @ such that the first two maps are charts for the log
structures on Z; and Z, and such that the obvious diagram is commutative.

For more background on log schemes, the reader should consult [I1, K].

For a scheme over Ok, we let j denote the open immersion of its generic
fiber and i the closed immersion of its special fiber into the scheme. We endow
S = Spec Ok with the log structure given by N = j.(K*) N Ok — Og. The
sheaf N is trivial outside the closed point and is isomorphic to a copy of N over
the closed point. Another way to describe the log structure on S is by pullback

of the canonical log structure via the map

S — Spec Z|N]

where 1 — 7 € Ok.

We endow X with the log structure given by M = j.(O%,) N Ox — Ox.
It is easy to check that the only sections of Ox which are invertible outside the
special fiber, but not invertible globally are those given locally by the images of
the X; for 1 <4 <7 and the Y} for 1 < j < s . On etale neighborhoods U of X

which are etale over X, g, this log structure is given by the chart

U — X, sm — Spec Z[P, 4]
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where

Py = (N @ N°)/((1,...1,0,...0) = (0,...0,1,...1)).

The map X, 5, — Spec Z[P, ] can be described as follows: the element with
1 only in the kth place, (0,...,0,1,0,...0) € P, , maps to X, if k¥ < r and to
Yy, if K > r+ 1. Note that the log structure on X is trivial outside the special
fiber, so X is a vertical log scheme.

The map X — S induces a map of the corresponding log schemes. Etale
locally, this map has a chart subordinate to the map of monoids N — P, ; such
that

1—(1,...,1,0,...,0) = (0,...0,1,...1)
to reflect the relations X ... X, =Y;...Y, =7.
Lemma 3.1.2. The map of log schemes (X, M) — (S, N) is log smooth.

Proof. The map of monoids N — P, 5 induces a map on groups Z — PZ%, which
is injective and has torsion-free cokernel Z"+*~2 . Since the map of log schemes
(X, M) — (S,N) is given etale locally by charts subordinate to such maps of

monoids, by Theorem 3.5 of [K| the map (X, M) — (S, N) is log smooth. [

3.2 Nearby cycles and log schemes

There is a generalization of the functor of nearby cycles to the category of log
schemes.

Recall that O is the integral closure of O in K and S = Spec O, with
generic point 77 and closed point 5. The canonical log structure associated to the
special fiber (given by the inclusion j,(K*) N O < Of) defines a log scheme
S with generic point 77 and closed point §. Note that § is a log geometric point

of S, so it has the same underlying scheme as 5. The Galois group Gk acts on
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5 through its tame quotient. Let X = X xg S in the category of log schemes,
with special fiber X3 and generic fiber X;. Note that, in general, the underlying
scheme of Xz is not the same as that of X5. This is because Xz is the fiber
product of X5 and § in the category of integral and saturated log schemes and
saturation corresponds to normalization, so it changes the underlying scheme.

The sheaves of log nearby cycles are sheaves on X; defined by
RkwlogA _ E*Rkj*A,

where 7, ] are the obvious maps and the direct and inverse images are taken
with respect to the Kummer etale topology. Theorem 3.2 of [Na] states that
when X/S is a log smooth scheme we have R%)'°2A = A and RPy'°8A =0 for
p > 0. Let

XX ,

which restricts to € : X — Xj, be the morphism that simply forgets the log

structure. Note that we have j,e, = &J,, by commutativity of the square

X, L~
X; L~

We also have i* Ré, F ~ Ré,i*F for every Kummer etale sheaf F, by strict base

S

-

1

change (see Proposition 6.3 of [I1]). We deduce that

% ~ Tx
U Jx€x = €41 Ju

so the corresponding derived functors must satisfy a similar relation. When we

write this out, using Ri'°6A = A by Nakayama’s result and Re,A =2 A because
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the log structure is vertical and so € is an isomorphism, we get
RFyIA = RFe,(A|X5).

Therefore, it suffices to figure out what the sheaves R¥é, A look like and how I
acts on them, where € : X; — X5z. This has been done in general by Nakayama,
Theorem 3.5 of [Na], thus deriving an SGA 7 1.3.3-type formula for log smooth
schemes. We will describe his argument below and specialize to our particular

case.
Lemma 3.2.1. I acts on RPe,(A|X3) through its tame quotient.

Proof. Let S* = Spec O+ endowed with the canonical log structure (here K* C
K is the maximal extension of K which is tamely ramified). The closed point
st with its induced log structure is a universal Kummer etale cover of s and
I acts on it through its tame quotient I*. Moreover, the projection § — s’
is a limit of universal Kummer homeomorphisms and it remains so after base

change with X. (See Theorem 2.8 of [I1]). Thus, every automorphism of X;

comes from a unique automorphism of X, on which I acts through It. [

Now we have the commutative diagram

log @ log
X7 — X",

xd _A xd

where the objects in the top row are log schemes and the objects in the bottom
row are their underlying schemes. The morphisms labeled € are forgetting the
log structure and we have ¢ = eoa = Joe. We can use either of these

decompositions to compute Rk¢,A. For example, we have Ré,A = RO, Re. A,
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which translates into having a spectral sequence

R"*B3,RFe,A = R"¢,A.

We know that R*e, A = AVM?) ® A(—k), where

MY = coker (N9 — M9P)/torsion.

Recall that N is the log structure on Ok associated to its special fiber. The
map of log schemes (X, M) — (Ok, N) induces a map from the (pullback of)
N to M. We form Mf; using this map. The formula for R*e,A follows from
theorem 2.4 of [KN], as explained in section 3.6 of [Na|. Theorem 2.4 of [KN]
is a statement about log schemes over C, but the same proof also applies to the
case of log schemes over a field of characteristic p, as explained in [I1].

On the other hand, at a geometric point Z of X<, we have (3.F)z = F|E;]
for a sheaf F of A-modules on X&', where Ej; is the cokernel of the map of log
inertia groups

I, — I.

Indeed, 371(Z) consists of #coker (I, — I,) points, which follows from the
fact that X< is the normalization of (X5 x5 §)°. The higher derived functors
R"*3,F are all trivial, since (3, is exact. Therefore, the spectral sequence
becomes

NFNIEE

rel,z

® A[Ez) @ A(—k) = (R*é,A)z.

The tame inertia acts on the stalks of these sheaves through I'* 2 I, — A[I,] —

A[E;).
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In our particular case, it is easy to compute R*é,A globally. Let

Z(1)= lm gy,
(m,p)=1
We have

I = Hom(MZ,Z (1))

and

I, = Hom(N9",Z (1)).

The map of inertia groups is induced by the map N? — MJP, which is de-
termined by 1+ (1,...,1,0...,0) , where the first n terms are nonzero. Any
homomorphism of N9 = 7 — Z/(l) can be obtained from some homomor-
phism MJP — Zl(l). Thus Ej; is trivial for all log geometric points z and I
acts trivially on the stalks of the sheaves of nearby cycles.

Moreover, in our situation we can check that 8 is an isomorphism, which
follows from the fact that Xj is reduced, which can be checked etale locally.
Indeed, if X is reduced, then the underlying scheme of X};Og is the same as X3,
since X ;Og is defined as the inverse limit over n € N prime to p of fiber products
of fs log schemes

(X§7M) X(]T“,N),’yn (]Fa N)7

where 7, is the identity on the underlying schemes and is multiplication by
n on the non-trivial part of the log structures. The underlying scheme of a
fiber product of fs log schemes is not usually the same as the fiber product
of underlying schemes. The reason for this is that the log structure on the
fiber product doesn’t need to apriori be saturated, so we may need to introduce

additional units. However, it can be checked that if X is reduced then the
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product log structure is already saturated. Thus we have the global isomorphism

RFEN ~ ANFMPP @ A(—K).

rel

The above discussion also allows us to determine the sheaves of nearby cycles.
Indeed, we have RFi)A ~ AP M9E @ A(—k) and M2 can be computed explicitly
on neighborhoods. If U is a neighborhood of X with U etale over X, ; then
the log structure on U is induced from the log structure on X, ;. Let J;,Jo C
{1,...,n} be sets of indices with cardinalities r and s respectively, corresponding

to sets of divisors Y7 ; and Y5 ; which intersect U.

Proposition 3.2.2. Fori=1,2andj=1,...,n, let aé 1Y 5 = Y denote the

closed immersion. Then we have the following isomorphism of sheaves on U :
REPAR) o = A [(®je0,05.8)/A) & (jenat.0) /A)]|u,
where for i = 1,2 we are quotienting by the canonical diagonal map
A— @jeJiaé'*A

Proof. This follows from the fact that on U a chart for the log structure M|y

can be given by the map
U — X, sm — Spec Z[P, 4],

as explained in 3.1, so that M|y can be identified with ((®;c,,0},Z)/Z) ®

(®jeralZ)/T)]u. O
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We can now define a global map of sheaves
N (@F=1a5,A) © (D105, A)] — N"MPL @z A =~ RMA(K).

It is enough to describe a global map of sheaves a!,Z — MZ. Locally, on
neighborhoods U, we map section 1 € a%,Z(U) to the image in M2 (U) of a
generator for the local equation defining Y; ; (this is independent of the choice of
generator). These local maps over neighborhoods U glue to give a global map,
since the two images of 1 in M (U x x U’) differ by units, so they are identified
once we pass to M2 (U x x U’). We see from the local description in proposition

3.2.2 that the above map of sheaves is surjective and that the kernel is generated

by images of the two diagonal maps A — @?zla;*A fori=1,2.

Corollary 3.2.3. There is a global isomorphism

N(@jenaz /) ® (Dje,a5.8)/A)] = REYA(K).

Let £, = (®}_,a},A)/A and Ly = (®)_ a3, A)/A. From the above corol-
lary, we see that R¥A(k) can be decomposed as Zf:o ALy @ ALy Tf X
was actually a product of strictly semistable schemes, X = X; xg X5, then
the sheaves A'L; and A*~!L, would have an interpretation as pullbacks of the
nearby cycles sheaves R'9A and R* !4 A associated to X; and X, respectively.
Corollary 3.2.3 would then look like a Kiinneth-type formula computing the
sheaves of nearby cycles for a product of strictly semistable schemes. In fact,
in such a situation, the computation of the sheaves of nearby cycles reflects the

stronger relation between the actual complexes of nearby cycles

RpAx,xsx, ~ RipAx, @F RyAx,



CHAPTER 3. SHEAVES OF NEARBY CYCLES 49

which takes place in the derived category of constructible sheaves of A-modules
on (X; Xg X2)s. This result was proven in [I2] for a product of schemes of
finite type. The isomorphism is stated in the case when A is torsion, however
the analogue morphism for A a finite extension of Z; or Q; can be defined by
passage to the limit (see the formalism in [E]) and it will still be an isomorphism.
We would like to give here a different proof of this result in the case of the
product of two strictly semistable schemes. We will use log schemes, specifically
Nakayama’s computation of log vanishing cycles for log smooth schemes.
Recall that the scheme S has generic point 1 and closed point s. We will
freely use the notations S, S and 3, 5, and also the corresponding notations for
a scheme X fixed in the begining of this subsection. We first need a preliminary

result.

Lemma 3.2.4. Let X7 be a strictly semistable scheme over S. Then the sheaves

RFyA are flat over A.

Proof. By Proposition 1.1.2.1 of [Sa2|, we have an exact sequence of sheaves on
X135
0 — R*A — i*RFFLjA(1) — RF A1) — 0.

We will prove by induction on k that R*~*yA is flat over A. Indeed, R™)A =0
so the induction hypothesis is true for £ = 0. For the induction step, note that
we can compute i* R*“*+1j A using log etale cohomology. Since X is strictly
semistable, it can be endowed with the canonical log structure M; associated

to the special fiber. If a} : Y1, — Y are the closed embeddings, then we have

M = (M1 /0%, )® ~ &, a;,2. (3.1)

By Theorem 0.2 (purity for log smooth morphisms) and Proposition 2.0.2 of

[Na], we can compute i* R~ **1j A in the same way we have computed RFyA
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above, getting:
P*RYETLA o~ AR MEPY @ A(—n + k — 1),
which is flat over A by 3.1. In the short exact sequence
0 — R"F A — i*RFF15 A1) — R"F*1yA(1) — 0
the middle term is flat, the right term is flat by the induction hypothesis, so the

left term must be flat as well. O

Proposition 3.2.5. Let X7 and X5 be strictly semistable schemes over S. Then
we have the following equality in the derived category of constructible A[I]-

modules on (X1 Xg Xa)s:

R’(ﬂ(/\xlm) ®£ R'(/)(szn) = Rw(A()h Xst)n)v

where the external tensor product of a complexes is obtained by taking pri ® prs

and where the superscript L refers to left derived tensor product.

Proof. We've seen from the above discussion that in the case of a log smooth
scheme with vertical log structure the complex of vanishing cycles depends only
on the special fiber endowed with the canonical log structure. In other words,
for i = 1,2, we have Ri)Ax,, ~ Ré; «Ax,, as complexes on X; s, where € :
f(l s — X, 5 is the identity morphism on the underlying schemes and forgets the

log structure. Analogously, we also have RiA(x, xsx,), = RéxA, where

e: (X, X g X2)s — (X1 x5 X2)s

is the morphism which forgets the log structure. (Here we’ve used the fact that
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the fiber product of log smooth schemes with vertical log structure is log smooth
with vertical log structure and that the underlying scheme of the fiber product
of log schemes Xl X3 XQ is just X3 Xg Xs; the latter holds since the induced
log structure on X; xg X» is saturated.) Therefore, it suffices to prove that we

have an isomorphism
c - -~ R¢ - L pe -
RE*A(X1x§Xz)g ~ ReL*Ale ®3 Regy*AXM

in the derived category of constructible sheaves of A[I]-modules on (X x g X2)s.

It is enough to show that the Kiinneth map
C=Ré Mg,  ©F Réa.Ag,  — REA (%, %), = D

which is defined as in [SGA4] XVII 5.4.1.4, induces an isomorphism on the
cohomology of the two complexes above, for then the map itself will be a quasi-
isomorphism. The cohomology of the product complex can be computed using
a Kiinneth formula as H"(C) = @) _, R*é1,.A ®5 R"*é ,A. In general, the

Kiinneth formula involves a spectral sequence with terms
n—l1
By =3 TorM ) (R¥e, (A, R0, A) = H'(C),
k=0

see [EGA3] XVII 6.5.4.2 for a statement using homology. In our case the co-
homology sheaves R*¢; ,A are flat A-modules with trivial I5-action by Lemmas
3.0.8 and 3.2.4, so for [ > 0 all the Eé’n_l terms vanish. (Alternatively, one can
prove the formula for H"(C) by taking flat resolutions for both of the factor
complexes and using the fact that the cohomology sheaves of the flat complexes
are flat as well.)

In order to prove that the induced map H"(C) — H™(D) is an isomorphism,
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it suffices to check that it induces an isomorphism on stalks at geometric points.
Let z be a geometric point of X; xg X5 above the geometric point § of S. The
point z will project to geometric points x1 and x2 of X; and Xs. From [I1] it

follows that there is an isomorphism on stalks
RME; WA, ~ H*(J;, A)
for 0 < k <n and ¢ = 1,2, where J; is the relative log inertia group
ker (7l (X;, x;) — w°9(S, 8)).
A similar statement holds for the stalks at z
R"&. A, ~ H"(J,A),

where J is the relative log inertia group ker(m\?(X,z) — m°9(S, s)). Directly
from the definition of the log fundamental group we can compute J = J; X Js.

We have the following commutative diagram

H"(C), H"(D),

| ;

Do H(J1,A) @a H"F(J2, A) —— H™(Jy x Jg, A)

~—

IR

where the bottom arrow is the Kiinneth map in group cohomology and is also

an isomorphism. (Again, the Kiinneth spectral sequence
n—1
Byt =" Torf (H(J1,A), H" ¥ (J5, N))

k=0

degenerates at Fs and all terms outside the vertical line ! = 0 vanish be-
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cause these cohomology groups are flat A-modules.) Therefore the top arrow
H"™(C)y — H™(D); has to be an isomorphism for all geometric points = of X

which means it comes from a global isomorphism of sheaves on X. O



Chapter 4

The monodromy filtration

4.1 Overview of the strictly semistable case

In this section, we will explain a way of writing down explicitly the mon-
odromy filtration on the complex of nearby cycles RiA, in the case of a strictly
semistable scheme. Our exposition will follow that of [Sa2|, which constructs
the monodromy filtration using perverse sheaves. We let A = Z/I"Z,7;,Q, or
Q. In fact, the proofs use A = Z/I"Z, then the results extend to A = Z;, Q;, Q;.

Let X1/Ok be a strictly semistable scheme of relative dimension n — 1 with
generic fiber X, and special fiber Y7 = X ;. Let RyA = i* Rj, A be the com-
plex of nearby cycles over Y; . Let D1,..., Dy, be the irreducible components
of Y7 and for each index set I C {1,...,m} let Y; = N;erD; and ay : Y7 — Y7 be
the immersion. The scheme Y7 is smooth of dimension n — 1 — k if #I =k + 1.

Forall 0 <k <m —1 we set

v® = |_| Y;
IC{1,...om},#I=k+1

54
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and let ay : Yl(k) — Y] be the projection. We identify ap. A = A¥tlag, A.
We will work in the derived category of bounded complexes of constructible
sheaves of A-modules on Y} 5. We will denote this category by D%(Y; g, A).
Let 9[r] be the boundary of m with respect to the Kummer sequence obtained

by applying i* Rj. to the exact sequence of etale sheaves on X,
0—A(1) = 0%, — 0%, —0

for A =7Z/I"Z. Taking an inverse limit over r and tensoring we get an element
o[r] € i*RYj,A(1) for A = Q; or Q. Let 6 : Ay, — i*R'j,A(1) be the map
sending 1 to J[x]. Let 6 : Ay, — ag«A be the canonical map. The following

result appears as Corollary 1.3 of [Sa2].

Proposition 4.1.1. 1. There is an isomorphism of eract sequences

& ON ON
Ayl aO*A s a,n_1*A —() R

N -

Ay, — 2= *RYj, A1) 2= T 2 R A (n) — 0

where the first vertical arrow is the identity and all the other vertical arrows are
isomorphisms.

2. For k > 0 we have an exact sequence

0 — R*A — i*RF1j A1) — - = i*R"j,A(n — k) — 0,

where all the horizontal maps are induced from 6U.

Note. 1. The vertical isomorphisms in the first part of Proposition 4.1.1 come
from the Kummer sequence corresponding to each of the D; for i = 1,...,m.
The maps 6; : Ap, — i*R1j,A(1) are defined by sending 1 to d[m;], where m; is

the generator of the ideal defining D; and 9 is the connecting differential in the
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Kummer sequence. The isomorphism ag.A = i*R'j,A(1) is the direct sum of
the §; fori=1,...,m.
2. Putting together the two isomorphisms, we get a quasi-isomorphism of

complexes

RFYA(K)[—k] 5 [ageA — -+ — an_1.A — 0], (4.1)
where RFyA(k) is put in degree k and a,,_1.A is put in degree n — 1.

Lemma 4.1.2. The complex aj.A[—I] is a —(n — 1)-shifted perverse sheaf for
all0 <1< n—1 and so is the complex REpA(k)[—k] for all0 <k <n—1.

Proof. Since Yl(l) is smooth of dimension n — 1 — I, we know that A[—[] is a
—(n — 1)-shifted perverse sheaf on Yl(l). The map a; : Y — Y is finite and
since the direct image for a finite map is exact for the perverse t-structure, we
deduce that a;.A[—!] is a —(n — 1)-shifted perverse sheaf on Y. This is true for
each 0 < < n—1. The complex RFA(k)[—k] is a successive extension of terms
of the form a;.A[—I] (as objects in the triangulated category D%(Yg, A). Because
the category of —(n — 1)-shifted perverse sheaves is stable under extensions, we

conclude that R¥yA(k)[—k] is also a —(n — 1)-shited perverse sheaf. O

Assume A = Z/I"Z. Let £ € D}(Y, 5, A) be represented by the complex
A A A

Definition 4.1.3. We define 7<;L to be the standard truncation of £, repre-

sented by the complex
s LF S ker(LF — £FY 0.

Then 1<, is a functor on DZC’(YLI-F, A). We also define 7< K to be represented by
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the complex

s LY S R im (2 = 2R — 0.

For every k we have a quasi-isomorphism 7<;L = 7<yL, which is given

degree by degree by the inclusion map.

Corollary 4.1.4. The complex RYA is a —(n—1)-shifted perverse sheaf and the
truncations < RYA make up a decreasing filtration of RYA by —(n—1)-shifted

perverse sheaves.

Proof. Since the cohomology of RipA vanishes in degrees greater than n — 1, we
have RYA ~ 7<,_1 RYA so it suffices to prove by induction that each 7<;RyYA
is a —(n — 1)-shifted perverse sheaf. For k = 0, we have 7<oRYA ~ ROYA,
which is a —(n — 1)-shifted perverse sheaf by Lemma 4.1.2. For k > 1 we have

a distinguished triangle

(T<k—1 RYA, T<x RYA, RFYA[—k])

and assuming that 7<j_; RYA is a —(n — 1)-shifted perverse sheaf, we conclude
that 7<;RYA is as well. The distinguished triangles become short exact se-
quences in the abelian category of perverse sheaves, from which we deduce that
the 7<; RYA make up a decreasing filtration of R A and that the graded pieces
of this filtration are the RFypA[—k]. O

Note 4.1.5. For A = Z;,Q; or Q;, we still have standard truncation functors T<k

which give us a distinguished triangle

(T<k—1 RYA, T<x RYA, REYA[—E]),

but the 7<j are defined differently. With the new definition, the proof and

results of Corollary 4.1.4 still go through for A = Q; or Q.
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The complex R A has an action of I, which acts trivially on the cohomology
sheaves R*yA. From this, it follows that the action of I, factors through the
action of its tame pro-l-quotient. Let T" be a generator of pro-I-part of the tame
inertia (i.e. such that ¢;(7T") is a generator of Z;(1), where t; : I, — Z;(1) is
the tame inertial character). We are interested in understanding the action of
T on RyYA. For A = Q; or Q;, we're interested in understanding the action of
N = logT, by recovering its monodromy filtration (convolution of the kernel
and image filtrations). However, the monodromy filtration of N is the same as
the monodromy filtration of v := T — 1 so we will explain how to compute the
latter.

We've seen that T acts trivially on the RFiA, which means that v sends

<k RYA — F<p 1 RYA 5 7<p_1RYA. We get an induced map

7 : RFMpA[—k] — RF YA~k + 1].

We record part 4 of Lemma 2.5 of [Sa2].

Lemma 4.1.6. The map U and the isomorphisms of Note 4.2 make a commu-

tative diagram

REFYA[— (k4 1)] — = [0 e A (b 1))~ P A (k1))
llf l l@tl(T) l

SN ON

RFpA[—k] —— [ag A (—k) —L> ap 1. A(—k)

where the sheaves an_1xA(—(k + 1)) and an—1.A(—k) are put in degree n — 1.

Note 4.1.7. When A = Q; or Q; the monodromy operator N = logT is defined
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and it induces a map
N : REpA[—k] — RF1A[—k +1].

This map coincides with 7, since log7 =T — 1 (mod (T — 1)?) and (T — 1)2
sends < RYA — T<p_2RYA.

From the above commutative diagram, it is easy to see that the map v is
injective, since we can just compute the cone of the map of complexes on the
right. In general, to compute the kernel and cokernel of a map of perverse
sheaves, we have to compute the cone C of that map, then the perverse trunca-
tion 72,C will be the cokernel and 72 _,C[~1] will be the kernel (see the proof
of Theorem 1.3.6 of [BBD]). It is straightforward to check that the cone of ¥ is
quasi-isomorphic to ay.A(—k)[—k], which is a —(n — 1)-shifted perverse sheaf.
We deduce that 7 has kernel 0 and cokernel ag.A(—k)[—k].

The fact that © is injective means that the canonical filtration 7<;RypA
coincides with the kernel filtration of v on RiA and that the R*ypA[—Fk] for
0 < k < n—1 are the graded pieces of the kernel filtration. Moreover, the graded
pieces of the induced image filtration of v on the R¥wA are ajyp« A(—h)[—(k+h)]
for 0 < h < n—1—k. This information suffices to reconstruct the graded pieces

of the monodromy filtration on RyA.

Proposition 4.1.8. There is an isomorphism

D asnp A=)~k +h)] — Gr} RyA.

h—k=r

This isomorphism, together with the spectral sequence associated to the
monodromy filtration induces the weight spectral sequence (see Corollary 2.2.4

of [Sa2]).
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4.2 The product of strictly semistable schemes

Let X7 and X5 be strictly semistable schemes of relative dimension n — 1 over
O, and let A = Z/1" 7, Z;,Q; or Q; (we will be more specific about A where it is
important). Let RipAx, be the complex of nearby cycles on X 5 for ¢ = 1,2 and
let R Ax, «x, be the complex of nearby cycles on (X; xg X5)s. By Proposition
3.2.5, we have

RYAx, xx, ~ RpAx, @x RpAx,

and notice that this isomorphism is compatible with the action of the inertia I in
Gk . From Proposition 3.0.8, the action of I is trivial on the cohomology sheaves
of RYAx, «xx,, so only the pro-l part of I acts nontrivially on RYAx, «x,. Let
T be a generator of the pro-l part of I and set v =T — 1. Let v, vy, vy denote
the action of v on RYAx,«xx,, R¥YAx, and RiypAx, respectively. Since the
above isomorphism is compatible with the action of T', we deduce that T" acts
on RYAx, @, RYAx, via T @ T. From this, we conclude that v acts on
RyAx, ®A[1] RYAx, as 1 @ 1 +1® 1vp + 11 ® 1s.

As in the proof of Proposition 3.2.2, we have a decomposition

k
RFyA ~ P RYAx, ® RFpAx,.
=0

We shall see that v induces a map
v: Rkl/)Axl X X [7]6] — Rk71¢AX1XX2[7k + 1]

which acts on R'9Ayx, @4 RF"MpAx,[—k] by 71 ® 1 + 1 ® 15. First we prove a
few preliminary results.

For i =1,2 and 0 <[ < n define the following schemes:

e Let Y;/F be the special fiber of X;
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o Let D;1,...,D;m, be the irreducible components of X;

e For J C {1,...,m;} let Y; ; be NjesD;; and let a’ : Y; ; — Y; be the
immersion. Note that if the cardinality of J is h+1, then the scheme Y; ;

is smooth of dimension n — h — 1.

. ForallOShSmi—lsetYi(h)=|_|#J:h+1Yi,J andletaf:Yi(h)HYibe

the projection.
Then for each i = 1,2 we have a resolution of R"Ax,[—h] in terms of the

sheaves aj, A:

R'pAx,[=h] = [af, A(=h) — -+ — ap_y, A(=D)],

i
n—1x

Now let Y/FF be the special fiber of X; x X5. Let

where a A(—h) is put in degree n — 1.

Yin= (] (D xgDj).
J1€J1,j2€J2

Set Yha) — | |,y g Yoy, and let ap, p, 0 YP2) — Y be the

hi,ha2)

projection. The scheme Y ( is smooth of dimension 2n — 2 — h; — ho. Note

that Y(hh2) — Yl(hl) X Yz(h2) and that ap, n,»A ~ aj A ® aj_, A, where the

tensor product of sheaves is an external tensor product.

Lemma 4.2.1. We have the following resolution of R"pAx, ® RF"MpAx,[—k]

as the complex
an o—hsN(—k) = ap p—ht15A(—k) ® apg1 k—neA(—k) = -+ = @p_1n—1:A(—F),

where the sheaf an—1 n—1+A(—k) is put in degree 2n — 2. The general term of
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the complex which appears in degree hi + ho s

@ ah17h2*A(7k)

hi>h
ho>k—h

For each hy, ho the complexes an, py«A(—k)[—h1 — ha] are —(2n —2)-shifted per-
verse sheaves, so the complex R*pAx, « x,[—k] is also —(2n—2)-shifted perverse

sheaf.

Proof. Each of the complexes R")Ax, and RF~")A x, have resolutions in terms
of aj, ,A(—h) and ai ,A(—k + h) respectively, where h < h; < n —1 and
k—h < hy <n—1. We form the double complex associated to the product
of these resolutions and the single complex associated to it is a resolution of

RMpAx, @ RE=MpAx,[—k] of the following form:
ap A(=h)@aj_p A(—k+h) = a1 A(=h)@a;_, A(—k+h)Baj, A(=h)®ai_;, 1. A(—k+h)

— ... —=qQ

LA(=R) ®@a? A=K+ h).

In the above complex, the sheaf al_;,A(—h)®a2_;,A(—k+ h) is put in degree

n

2n — 2. Now we use the formula
a’hhhz*A(_k) = ailzl*A<_h’) ® a}lLQ*A(_k + h)

to conclude the first part of the lemma. The complex ap, p,+«A(—k)[—h1 — ho] is
the direct image via ap, p,« of the complex A(—k)[—h;y — ho] on Y (1:P2) Since
Y (h1:h2) is smooth of dimension 2n—2—hy —hy, we know that A(—k)[—h; —hs] is
a —(2n—2)-shifted perverse sheaf, so its direct image under the finite map ap, py«
is also a —(2n — 2)-shifted perverse sheaf. We've just seen that each R"Ayx, ®

RE=hy)Ay, can be obtained from successive extensions of factors of the form
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Ahy hoxA(—K)[—h1 — h2] and since the category of —(2n — 2)-shifted perverse
sheaves is stable under extensions we deduce that RPpAx, ® RF"MpAx,[—k] is
a —(2n — 2)-shifted perverse sheaf. Now RFyAx, «x,[—k] = @220 RMpAx, ®
RF="pAx,[—k], so it is also a —(2n — 2)-shifted perverse sheaf. O

Corollary 4.2.2. RipAx, xx, is a —(2n — 2)-shifted perverse sheaf. The stan-
dard truncation T<pRYAx, «xx, is a filtration by —(2n — 2)-shifted perverse

sheaves and the graded pieces of this filtration are the Ry Ax, x x,[—k]-

Proof. The proof is exactly the same as that of Corollary 4.1.4. It suffices to
show that each 7<xRYA is a —(2n — 2)-shifted perverse sheaf and we can do

this by induction, using the distinguished triangle
(T<ko1 RYAx, < x5, T<k RUA X, % x5, RFUA X, 53, [—K]).-

Once everything is proven to be in an abelian category, the distinguished triangle
becomes a short exact sequence and we get a filtration on RYAx, «x, with its

desired graded pieces. O

Now we can deduce that there is a map
7: REpAx, «x,[—k] — RF 1WA x, xx,[—(k — 1)].

Indeed, since T acts trivially on the cohomology sheaves of RYAx, xx,, we
deduce that v sends 7<;RYAx, xx, to 7<x—1RYAx, xx,, which induces v. It
remains to check that this induced map 7 restricted to R"Ax, ® RF Ay,

is the same map as 71 ® 1 + 1 ® U5, sending
RMpAx, @RM YA x,[k] — (R" "pAx, @RF "y Ax, @ R"pA x, @ R* " 1pAx, ) [ (k—1)].

First notice that for each 0 < h < k < n — 1 the complex 7<,RYAx, ®
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T<p—nRYAx, is a —(2n — 2)-shifted perverse sheaf, because it is the external
tensor product of —(n — 1)-shifted perverse sheaves on X; and on Xs. (See

proposition 4.2.8 of [BBD]). Let

T<h—1RYAx, @ T<p_n RYAx, + T<n RYAx, ® T<p_p_1RYAx,

be the image of

T<h—1RYA X, @T<p_n RYAx, ®T< RYAx, @<t 1 RYAx, — T<p—1RYAx xx,-

We have a commutative diagram of —(2n — 2)-shifted perverse sheaves

T<hRYAx, ® T<p_nRYAx, T<kRYAx, «x,

v1@1+1Qr2+v1 Q@ra l’/

T<h-1RYAx, @ T<p_nRYAx, + T<p RYAx, @ T<p—p_1RYAx, — T<p_1RYA X, x x5,
where the horizontal maps are the natural maps of complexes.

Lemma 4.2.3. Assume A = Z/I"Z. The image of Rpx—n = T7<pRYAx, ®
T<h—nRYAx, in Rkwl\[—k] is RthX1 ® Rk_hl/JAXQ[—k].

Proof. The map of perverse sheaves Ry x_n — T<pRYAx,xx, — RFYA[—K]
factors through

RMpAx, @ RF"MpAx, [—k] — RFpA[—EK].

This can be checked on the level of complexes. We only need to know that the
natural map

R > RhpAx, @ RFMpAx, [~k
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is a surjection. This follows once we know that the triangle
f _
Ryt j—1+ Rug-n-1 > Rpj—n > R"WAx, @ RF"pAx, [~k

is distinguished, since then it has to be a short exact sequence of —(2n — 2)-
shifted perverse sheaves, so g would be a surjection. To check that the triangle
is distinguished, it suffices to compute the fiber of g and check that it is quasi-

isomorphic to
M =7T<p 1 RYAx, @ T<p_nRYAx, + T<p RYAx, @ T<k—nh_1RYAx,.

Let ' be a representative for RiypAx, and £ be representative for RyYAx,.

The degree j < k term of M and of the fiber of g are both equal to
h—1
( @ Ici®£j—i)@lcj—k+h®ker(£k—h _ Ek_h+1)69ker(/Ch _ ’Ch+1)®£j—h

i=j—k+1+1

and the differentials are identical. The last non-zero term MF¥ in M appears in

degree k and is equal to
ker(KC" — KM )@im (L¥"71 — LM pim (KM — KM )@ker(£87" — £F70H1),

The main problem is checking that the following map of complexes is a quasi-

isomorphism

1 |

ker(KCP — KM @ ker(£F~" — L0+ — = M (K) @ HF"(L),

where the left vertical arrow A is the natural inclusion. It is equivalent to prove
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that the object in the lower right corner is the cokernel of A. This follows from
the Kiinneth spectral sequence, when computing the cohomology of the product

of the two complexes

K :=[im (K" ! - K") — ker(K" — K£"*1)] and

L := [im (L’k_h_l — /.Zk_h) — ker(ﬁk_h — l:k_hH)]

Indeed, since H'(K) = R"pAx, and H' (L) = R*"pAx, are both flat over A
the Kiinneth spectral sequence degenerates. We get H2(K®L) = H' (K)QH' (L)

and this is exactly the statement that H"(K)® H*~"(L) is the cokernel of \. [

Note 4.2.4. The result of this lemma extends to A = Q; and A = Q.

Putting together the above discussion and keeping in mind that the image

of vy ®vy in RF1A x, « x,[—(k —1)] is trivial, we conclude the following result.

Proposition 4.2.5. The action of N on RipAx,«xx, induces a map
Iz Rkwalxxz[_k] - Rk_lwA)ﬁXXz[_(k - 1)]

which coincides with 7y @ 1+1® 0y when restricted to RMpAx, @ RFhpA x, [—k]
for each 0 < h < k.

We now use the decomposition of RF)Ay, «x,[—k] in terms of RMpAx, ®
RE=MpAx,[—k] for 0 < h < k and the resolution of R"pAx, @ RF"pAx,[—k]
in terms of an, py« A(—k)[—(h1 + ha)] to get a resolution of R*pAx, « x,[—k], of

the form

k k
@ ahl,hg*A(_k)@Chlhz N @ ahth*A(_k)@chl,@ — ..,
h1+ha=k hi+ha=k+j
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where the first term is put in degree k and the coefficients C’Zl,hz count how

many copies of ap, p,«A(—k) show up in the direct sum.

Lemma 4.2.6. Let C;Ch,hz be the coefficient of ap, n,«A(—k)[—(h1 + h2)] in the

resolution of Rk¢AX1xX2 [—k]. Then
Gy hy = min(min(hy, ho) + 1,71+ ho =k + 1k +1).

Proof. The coefficient c’,fbth counts for how many values of 0 < h < k the
resolution of RMpA x, ® RE~"pAx, contains the term ap, py« A(—k)[—(h1 +h2)].
This count is clearly bounded by k + 1, because there are k + 1 possible values
of h. When hy + hy — k+ 1 <k + 1, the count is

min(min(hi, ho) + 1, A1 + ho — k + 1),

because ap, n,«A(—k)[—(h1+hsa)] will show up in the resolution of R"1 =19 A x, ®
RE=hitiy Ay, for all 0 < j < hy + hy — k + 1 which satisfy 0 < h; —j < k.
When both hy and hs are less than k, all the j € 0,...,h; + ho — k + 1 satisfy
the requirement. When hy > k, there are exactly hy + 1 values of j which satisfy
the requirement and we can treat the case h; > k analogously to get ho + 1
values of j. This covers the case hy + ho < 2k. In the case hy + hy > 2k, we

need to count all 0 < j < k which satisfy 0 < hy — j < k. The result is
min(min(hy, he) + 1,k + 1).

This completes the determination of cﬁ ho - O
1,2

Note that for all hy+hy < 2k—2, we have ¢, < cj—} . For hy+hy = 2k—1
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we always have min(hq, he) +1 < k < k+ 1, so that
CZth = Cil_}bz = min(hl, hz) —+ 1.

However, ¢, =k+1 >k =c*7! and for hy 4+ ho > 2k we have ¢F , > cF=1 |
k,k k. k hi,ha hi,ha

We now have an explicit description of
Iz RkwAXl X X2 [_k] - Rk_lwal X X2 [_k]

as a map of complexes with terms of the form By, | ,,—x; ahlth*A(—k)@cl’ilM ,
which are put in degree k+j. Writing 7 = 71 ® 1 +1® 75 as a map of complexes,
we will be able to compute both the kernel and cokernel of .

We will now restrict to A = Q; or Q;. In this case, N = log T is defined, it

acts trivially on the cohomology sheaves RFyAx, « x,, 5o it induces a map
N : REpAx, wx, [—k) — RF YA x, wox, [ K]

Since N = T — 1 (mod (T — 1)?) and (T — 1)? sends 7<x RYA — T<p_2RYA
(here 7<) denote the truncation functors for Q; or Q;-sheaves) the two maps N
and 7 coincide and we will work with N from now on, to which the results of
Proposition 4.2.5 apply.

First we need a preliminary result, which will allow us to compute the kernels
and cokernels of certain morphisms of —(2n — 2)-shifted perverse sheaves. Note
that, while D%(Y,A) is not known to be a derived category of some category
of A-sheaves, being constructed as a “projective limit” of derived categories, it
is nevertheless endowed with a standard ¢-structure whose core is the category
of A-sheaves. Therefore, by Proposition 3.1.10 of [BBD]|, we have a realization

functor from the bounded derived category of A-sheaves to D(Y, A). Using this
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functor, we think of a bounded complex of A-sheaves as an element in D2(Y, A)

and of a morphism of complexes as a morphism in D%(Y, A).

Lemma 4.2.7. Assume that f : C — D is a morphism in D%(Y,A) which
satisfies the following: C and D are (the image of) complexes (C*)rez and
(D*)rez of l-adic sheaves and f is a map of compleves defined degree by de-
gree as f* : CF — DF. Assume that each f* is injective as a map of sheaves.
Let DX = coker (f*) and let D be (the image in DE(Y,A) of) the complex with
terms D* and differential d induced by the differential d of D. Assume that the

short exact sequence of sheaves
f* A
0—-ctL D DF S0

is splittable. Assume also that C*[—k] and D*[—k] are —(2n—2)-shifted perverse
sheaves.

Then DF[—k] is a —(2n — 2)-shifted perverse sheaf and thus so is D (since
it is an extension of D¥[—k| for finitely many k). Moreover, the following is an

exact sequence of —(2n — 2)-shifted perverse sheaves
0—-C—-D—D—=0

Proof. D¥[—k] is a —(2n — 2)-shifted perverse sheaf because it is a direct factor
of D¥[—k] and so D is also a —(2n — 2)-shifted perverse sheaf. If A was tor-
sion, then we could identify the category D%(Y, A) with a full subcategory of the
derived category of the category of sheaves of A-modules (whose objects have
bounded constructible cohomology) and the corollary would follow from a stan-
dard diagram chase in the derived category of an abelian category. However,
the cases we are interested in are A = Q; or Q;. It is possible that by checking

the definition of the category D%(Y, A) carefully, we could ensure that a version
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of the diagram chase applies to our case. However, an alternative approach uses
Beilinson’s result which identifies D2(Y, A) with the derived category of perverse
sheaves on Y, see [Be].

We see that the map f : C — D is injective, since we can think of it as a map
of filtered objects, which is injective on the kth graded pieces for each k. Indeed
C is a successive extension of the —(2n — 2)-shifted perverse sheaves C¥[—k] and
D is a successive extension of D*[—k| and the fact that f is a map of complexes
implies that f respects these extensions. Let k£ be the largest integer for which
either of C*¥ and D¥ is non-zero. We have the commutative diagram of exact

sequences

0 ——CF[-k] —=(C¢ ——=CF1l[-k+1]—0,

J/fk[k] l lf’“_l[kﬂ]

0——=DF[-k] —=D ——=DF -k +1]——=0

where the arrows on the left and on the right are injective. The fact that the
middle map is also injective follows from a standard diagram chase. (Note that
we are working in the category of —(2n — 2)-shifted perverse sheaves, which is
abelian, so we can perform diagram chases by [Re].) The injectivity of f follows
by induction.

By a repeated application of the snake lemma in the abelian category of
—(2n — 2)-shifted perverse sheaves, we see that the cokernel of f is a succesive
extension of terms of the form D*[—k]. In order to identify this cokernel with D,
it suffices to check that the differential of D coincides in Ext* (D*[—k], D* [ k+

1]) with the extension class which defines the cokernel. To check this, it is enough
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to see that the following square is commutative

DF1—k+ 1] —=D*[-k+1]
J/fkl[—k+1] if’“[—kﬂ]
DF—k 4+ 1] —= DF[—k + 1]

where the top (resp. bottom) horizontal map is the boundary map obtained
from considering the distinguished triangle (D*[—k], D', D*~1[~k + 1]) (resp.
(DF[—k], D', D*~[~k + 1])) in D2(Y,A). The top boundary map is the differ-
ential of D and if the square is commutative, then the bottom map must be the
differential of D. The commutativity can be checked by hand, by making the
boundary maps explicit using the construction of the cone. (There is a natural
map

DF[—k] ——— D’

| |

0 ——> D1k + 1]

which is a quasi-isomorphism in D%(Y,A). The boundary map of the distin-
guished triangle is obtained by composing the inverse of this quasi-isomorphism
with the natural map

DF[—k] —= 1D’ .

|

DF[—k] ——0
The same construction works for D and it is straightforward to check the com-

mutativity now.) O

Lemma 4.2.8. Let k > 1. Consider the map

N : Rk/‘/)AXI X Xo [_k] - Rkil’wAXl X X2 [_(k - 1)]
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Define the complex
Pie = [ak e A(=R) 2 aris 1o A(=R) @ gk A(=R) = -+ 2 a1 1 A(=R)

where ay g+ A(—k) is put in degree 2k. The factor an, n,«A(—k) appears in the
resolution of P in degree hy + ha whenever hy,hy € {k,k+1,...,n—1}. Also

define the complex
R = [@]Z0ajk-1-5uh(=(k = 1)) = -+ = ap-1p-1A (= (k = 1))] ,

where the first term is put in degree k — 1 and the term ap, poo A(—(k — 1))
appears in degree hy + ho whenever hy, ho € {0,1,...,k —1}.

Then Py, ~ ker(N) and Ry ~ coker(N).

Proof. Note that both P, and Ry are —(2n — 2)-shifted perverse sheaves, by
the same argument we’ve used before. The proof will go as follows: we will
first define a map Py — RF¥¥Ax, «xx,[—k] and check that N kills the image of
Pr. We use Lemma 4.2.7 to check that the map Pp — RFYAx, xx,[—k] is an
injection and to compute its cokernel Q. Then we check using Lemma 4.2.7
again that the induced map Q; — RF~'4A[—(k — 1)] is an injection and we
identify its cokernel with Ry.

For the first step, note that it suffices to define the maps
fh1,h2 : ahl,hz*A(_k) - ahl,hz*A(_k)®(k+1)

for all hy,hy > k and we do so by x — (z,—x,...,(—=1)*z). These maps are
clearly compatible with the differentials AJ, so they induce a map f : P —

RFpAx, « x,[—k] (this is a map of complexes between P and the standard rep-
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resentative of RF1)Ax, « x,[—k]). Moreover, we can check that the restriction
N = apy e A(—K)BEHD gy A(—K)®F

sends (v, —z,...,(=1)*z) — (0,...,0).

Indeed, the jth factor ap, n,«A(—k) appears in the resolution of RIyAx, ®
RF=I9pA x,[—k]. The latter object is sent by N;®1 to RI~1A x, @ RF I A x, [~ (k—
)] for 1 < j < kand by 1 ® Ny to RIypAx, ® RF1IpAx,[—(k — 1)] for
0 <j<k—1 We also know that N; ® 1 kills ROYAx, ® R¥pAx,[—k] and
similarly 1 ® Ny kills RFypAx, @ R%)Ax,[—k]. By Lemma 4.1.6, we find that

for1<j<k-1
0,...,0,2,0...,0) — (0,..., 2 4(T),z®t(T),0...,0),

where the term z is put in position j and the terms z®t;(T") are put in positions

7 —1 and j. We also have

(2,0,...,0) — (x ® t;(T),0,...,0) and (0,...,0,2) — (0,...,0,z @ t;(T)).
Thus, we find that N sends
(x,—2,...,(-D)*z) = (z0t(T)—2@t)(T),..., (1) taet (T)+(-1)*zet,(T)),

and the term on the right is (0,...,0). Since we have exhibited N o f as a
chain map and we’ve checked that it vanishes degree by degree, we conclude
that N o f = 0. Thus, f(Px) C ker N.

Note that for all hy, ho > k we can identify the quotient of ahth*A(fk)ea(kH)
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by PRz (g, pyw A(—k)) with apn, p,«A(—k)®F. The resulting exact sequence

Jrahe ®(k+1) ®k
0 — any hox A(=k) " = an, ny« A=) — apy hysA(—K)P" — 0

is splittable, because the third term is free over A. By Lemma 4.2.7, the map
f:Pr — RFypAx, «x,[—kK] is injective and we can identify degree by degree the
complex Qj representing the cokernel of f. In degrees less than 2k — 1, the
terms of Qy, are the same as those of RFYAx, xx,[—k] and in degrees at least
2k — 1, they are the terms of RF 1A x, xx,[—k + 1].

To prove that the induced map Qi — RF~MpAx, «x,[—(k — 1)] is injective
it suffices to check degree by degree and the proof is analogous to the one for
f Py — RFYAx, «x,[—k]. The cokernel is identified with R}, degree by degree,

via the exact sequence
nhish
0 = @y he M(—F)EFD VT g A (—(k— 1) = ap, A (—(k—1)) = 0

fOI‘OShl,hQS]{I*l. O

Note. 1. The complex Py, has as its factors exactly the terms ap, p,«A(—k)[—(h1+
ha)] for which ¢f; .- —Cﬁ;}m = 1, while Ry, has as its factors the terms ap, p,+«A(—(k—
1))[=(h1 + h2)] for which CZ;}LZ —cpon, =1

2. Another way to express the kernel of N is as the image of R2*v9A x, » x, [—2k]

in R¥Ax, « x,[—k] under the map
NF@1-NF'@Ny+---+ (-1)F1® Ny,

This follows from Lemmas 4.1.6 and 4.2.8.

Corollary 4.2.9. The filtration of RpAx, xx, by T<xRYAx, xx, induces a fil-

tration onker N. The first graded piece of this filtration Grl ker N is RO Ax, x x, -
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The graded piece Gr¥t1ker N of this filtration is Py.

Proof. We've already seen that N maps all of RO%Ax, xx, to 0, since T acts
trivially on the cohomology of RYAx, x x,. This identifies the first graded piece
to be ROYAx, xx,-

In order to identify the (k+1)st graded piece, we will once more pretend that
our shifted perverse sheaves have elements. We can do this since the (2 — 2n)-
shifted perverse sheaves form an abelian category and we only need to do this
in order to simplify the exposition. First notice that gr¥ker N C Py, since
anything in the kernel of N reduces to something in the kernel of N.

So it suffices to show that any x € Py lifts to some £ € ker N. Pick any
Z € T<i RYAx, x x, lifting . Since N sends z to 0, we conclude that N maps
T to T<p—2RYAx,xx,. The image of N& in RF~2pAx, «x,[—k + 2] depends
on our choice of the lift . However, the image of NZ in Rj;_1 only depends
on z. If we can show that that image is 0, we conclude that we can pick a lift
Z such that NT € 7<;_3Ry¥A. We can continue applying the same argument
while modifying our choice of lift Z, such that N& € 7<_; RYAx, x x, for larger
and larger j. In the end we see that Nz = 0.

It remains to check that the map Pr — Ri_1 sending & € P to the image
of NZ in Ri_1 is 0. We can see this by checking that any map Py — Ry_1 is 0.
Indeed, we have the following decompositions of Py and Ry_1 as (2—2n)-shifted

perverse sheaves:

Pic = [ak s A=R) 23 ap 1 A—R) © g ko A(—K) = -+ 22 a1 1 A ()]

and Re—1 = (@ jaje—ajulh(—(k = 2)) = - = ar_2 -2 A((—(k — 2))] .

Each of the factors ap, p,«A is a direct sum of factors of the form ay,, s,.A,

where cardJ; = h; for i = 1,2 and ay, 5, : Yy, 5, — Y is a closed immersion.
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Each factor ayj, j,«A is a simple (2 — 2n)-shifted perverse sheaf, so we have
decompositions into simple factors for both Py and Ry_1. It is straightforward
to see that Py and Ri_; have no simple factors in common. Thus, any map
Pr — Ri—1 must vanish. The same holds true for any map P, — Ry—; for any

2<j<k. O

The filtration with graded pieces Py, on ker N induces a filtration on ker N/imNN
ker N whose graded pieces are Py /imN. Indeed, it suffices to check that the
image of imN in P}, coincides with imN. The simplest way to see this is again

by using a diagram chase. First, it is obvious that for

N: Rk¢AX1 X X2 [_k] - Rk_l’(/}A)ﬁ X X2 [_k + 1]

we have imN C Gr¥imN. Now let 2 € Gr¥imN. This means that there exists
a lift T € 7<p_1RYAx, xx, of x and an element § € 7<jy; RYAx, xx, With
0 < j < 2n—k such that £ = Nyg. In order to conclude that x € imAN, it suffices
to show that we can take j = 0. In the case j > 1, let y € RFT79Ay, «x, be the
image of . We have Ny = 0 and in this case we’ve seen in the proof of Corollary
4.2.9 that we can find V) € 1<} ;1 RYAx, xx, such that N(j — §)) = 0. In
other words, # = N§» and we can replace j by j— 1. After finitely many steps,

we can find §U) € 7o RY)Ax, «x, such that & = NgU) . Thus, z € imN.

Lemma 4.2.10. The filtration of RYAx, xx, by T<pxRYA induces a filtration
on ker N/im N Nker N with the (k + 1)-st graded piece ay g A(—k)[—2k] for

0<k<n-—1.

Proof. First, we need to compute the quotient R)Ax, x x,/imNN, which is the
same as ROYAx, xx,/Q1 = R1 and Ry ~ ap,0«A by Lemma 4.2.8.
Now we must compute for each & > 0 the quotient of (2—2n)-shifted perverse

sheaves P /imN. This is the same as Pj/Qy.+1, which is also the image of Py,
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in Rg41 via

Pi, — RMPA[—k] - Ry

Recall that we have decompositions for both Py and Rjy1 in terms of simple

objects in the category of (2 — 2n)-shifted perverse sheaves,

NS

Pr = |k ks A(—k) = ap k14 A (=) ® app1 g A(—F) — -+ A anfl,nfl*A(_k)}

and Rk+1 = [@?iéajyk,j*/\(—k) — s —> ak,k*A(_k)] .

The only simple factors that show up in both decompositions are those that
show up in ay g+ A(—k)[—2k], so these are the only factors that may have non-
zero image in Ryy1. Thus, Pr/imN is a quotient of ay g« A(—k)[—2k] and it
remains to see that it is the whole thing. As seen in Lemma 4.2.8, the map
Pr. — Ri41 can be described as a composition of chain maps. The composition

in degree 2k is the map
e M=) = o A(—5)PF = ay o A(—F)

where the inclusion sends 2 + (x, —x, ..., (—1)**1z) and the surjection is a quo-
tient by (z,2,0,...,0), (0,z,2,0...,0),...,(0,...,0,z,2) for x € ap g A(—k).
It is elementary to check that the composition of these two maps is an isomor-

phism, so we are done. U

Analogously, we can compute the kernel and cokernel of
N? : R*pAx, sx,[—k] — RF A x, [k + J]

for 2 < j < k < 2n — 2 and use this to recover the graded pieces of a filtration

on ker N7 /ker N~1 and on (ker N7/ ker N7=1)/(imN Nker N7).
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Lemma 4.2.11. Let 2 < j < 2n —2. The filtration of RYAx, xx, by T<xRYA

induces a filtration on
(ker N7 /ker N7~ 1) /(imN N ker N7).
The first graded piece of this filtration is isomorphic to
j—1
Daijor-A=j + D=+ 1)
i=0
For k > 1, the (k + 1)-st graded piece is isomorphic to
(ker N7 /ker N7~1) /(imN N ker N7)

where

N7 . Rk+j711/)A[*(k+j —1)] — Rk71¢A[*k+ 1].
More explicitly, the (k + 1)-st graded piece is isomorphic to
J
P it hrsin A=k +j = 1) [-2k — j +1].
i=1

Proof. We will prove the lemma by induction on j. The base case j = 1 is
proven in Corollary 4.2.9 and Lemma 4.2.10. Assume it is true for j — 1.

To prove the first claim, note that the first graded piece of
(ker N7 /imN Nker N7)/(ker N7 ! /imN N ker N7~ 1)
has to be a quotient of

Rj_lquXlXXz[_j + 1]/Q] = Rj’
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This is true because 7<;_1 RYAx, x x, C ker N7 and T<j_oRYAx «x, C ker Ni—1
and

RITYWAx, xx, [—F + 1] = 7<j 1 RYA X, x x, [ T<j—2 RYA X, x x5 -

More precisely, the first graded piece has to be a quotient of
R;/(ker N7=2 /imN N ker N7~2)
by the second graded piece of
(ker N7~!/ker N7~2)/(imN Nker N7~ 1).
(Here, we abusively write
ker N772 /imN N ker N7 2

where we mean the image of this object in R;.) By the induction hypothesis,

this second graded piece is

j—1
P aij—inh(—i + D[]
=1

Continuing this argument, we see that in order to get the first graded piece of

(ker N7 /ker N7~1) /(imN Nker N7) we must quotient R; successively by

j—k
@ak+i—l,j—i*A(_.j +1)[—k —j+1],
i=1

with k going from j — 1 down to 1. (This corresponds to quotienting out suc-
cessively by the jth graded piece of ker N/(imN Nker N), the (5 — 1)st graded
piece of (ker N?/ker N)/(imN N ker N?) down to the second graded piece of
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(ker N7=1/ker N9=2)/(imN N ker N7~1).) We know that
R; = (#2000 A(=( = 1) = - = o150 A= - )]
with general term in degree k + j — 1 equal to
@g;{cak+i71,j7i*A(_(j - 1).

After quotienting out successively, we are left with only the degree j — 1 term,
which is

@i - A= — 1)~ — 1),

as desired.

In order to identify the (k + 1)-st graded piece of
(ker N7/ ker N?~1) /(imN N ker N7)

for k > 1, we first identify the kernel of N7 : Rk“*l@bAXl %Xy — R7‘3’17,ZJAX1 % Xo
as a map of perverse sheaves, as in Lemma 4.2.8. Then we can identify it with
the (k+ 1)-st graded piece of ker N7 as in Lemma 4.2.10 and quotient by Qktj-
Finally, we can use induction as above to compute the (k + 1)-st graded piece

of (ker N7 /ker N9=1) /(imN N ker N7). O
Corollary 4.2.12. The above filtration is a direct sum.

Proof. This follows from the decomposition theorem for pure perverse sheaves,
Theorem 5.3.8 of [BBD], once we notice that the (k + 1)st graded piece of the
filtration is a pure —(2n — 2)-shifted perverse sheaf of weight (—2k — j + 1) +
2(k+j—1) =j — 1, which is independent of k. O
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Let
GriGr,RypA = (ker N* NimN?)/(ker NP~' NimN?) + (ker N? N imN7T1).
The monodromy filtration M, Ry A has graded pieces Gry R A isomorphic to
GrYRyA ~ P GriGr,RyA

p—gq=r

by Lemma 2.1 of [Sa2], so to understand the graded pieces of the monodromy
filtration it suffices to understand the Gr?Gr,RiypA. Lemma 4.2.11 exhibits a
decomposition of Gr’Gr, RyA as a direct sum with the (k4-1)-st term isomorphic
to

@IijzlakJrifl’kerfi*A(—(k + p— 1))[—2]€ — P =+ 1]

The action of N7 induces an isomorphism of Gr° GrptqRYA with Gr?Gr,RyYA(q),
so there is a direct sum decomposition of the latter with the (k + 1)-st term

isomorphic to
S anpio1 kprg-isA(—(k+p—1))[-2k —p—q+1].

We can use the spectral sequence associated to a filtration (as in Lemma 5.2.18

of [Sal]) to compute the terms in the monodromy spectral sequence

EP™TT = H™ (Y, G RyA) = @ H™(Ys, Gr?Gry RypA)

p—gq=—r

= Hm(YF,RLZ)A) = Hm(Xk,A>.
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Corollary 4.2.13. There is a direct sum decomposition

p+q
H™(Yz, Gr'Grp RYA) ~ @ €D H™ (Ya, hi—1.k1ptg—is M—(k+p—1))[~2k—p—q+1])
k>0 i=1

compatible with the action of Gy. This can be rewritten as

ptq
H™(Yz, GqurpR¢A) ~ @@Hm72k:fp7q+1(YE‘(k+Z—1,k+p+q—1)’ A(—(k+p—1))).
k>0 i=1

4.3 More general schemes

In this section, we will explain how the results of the previous section concern-
ing products of strictly semistable schemes apply to more general schemes, in
particular to the Shimura varieties Xy /Ok. In this section, we will use A = Q,
or Q.

Let X'/Og be a scheme such that the completions of the strict henselizations

Oé\“s at closed geometric points s are isomorphic to
WXy, Xn, Y1,... Y]]/ ( Xy -+ X, —m Yy oo Y, —7)

for some indices i1,...,%r,J1,...,7s € {1,...n} and some 1 < r,;s < n. Also
assume that the special fiber Y’ is a union of closed subschemes Y1'7 ; with j €
{1,...n}, which are cut out by one local equation, such that if s is a closed
geometric point of Y ;, then j € {i1,...,4,} and Y] ; is cut out in O%, , by the
equation X; = 0. Similarly, assume that Y is a union of closed subschemes Y2’ j
with j € {1,...,n}, which are cut out by one local equation such that if s is a
closed geometric point of Y ; then j € {ji,...,j,} and Y5 ; is cut out in O%, ,
by the equation Y; = 0.

Let X/X’ be smooth of dimension m and let Y be the special fiber of X and
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Yij =Y/, xx Xfori=1,2and j=1,...,n. Asin Lemma 2.2.7, X" is locally

etale over
X, = Spec Ok[X1,. .. ,Xn,Yl,...Yn}/(HX,; —, HYj — ),
=1 j—1

so X is locally etale over

Xy om = Spec Og[X1, ..., Xn, Ve, Yo, Z0, o Zo (][ X =, [] V5 — ),
i=1 j—1

which is a product of strictly semistable schemes. The results of Section 3 apply
to X’ and it is easy to check that they also apply to X. In particular, we know
that the inertia I acts trivially on the sheaves of nearby cycles RFyA of X
and we have a description of the RFtA in terms of the log structure we put on
X/Spec Ok. Let aé» :Y;; — Y denote the closed immersion for i = 1,2 and
j €{1,...n}. Then by Corollary 3.2.3, we have an isomorphism

RFA(K) = N (@721 a5.0) /A @ (@103, A) /M)

e

Fori=1,2 and J; C {1,...,n}, let

Yo =) Yig) N () Yas)

Ji€J1 J2€J2

and let ay, 5, : Y7, 5, — Y be the closed immersion. Set

hihs)
y (hiha) — |_| Y5
#J1=h1+1,#Jo=ho+1

and let ap, p, : Y""2) — Y be the projection. The scheme Y ("1:72) is smooth

of dimension dimY — hy — hy (we can see this from the strict local rings).
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We can write

k
RkwAg@/\h( Jj= 1a]*A)/A) /\kih(( ] 1aj*A)/A)( )

h=0

and then define the map of sheaves on Y’

k
(‘)k : RkQ/JA — Zah’k,h*A(—k)

h=0

as a sum of maps for h going from 0 to k. First, define for : = 1,2

Sne = N(@f=1af0)/8) = N\ (&

by sending

J1*

ag AN NG N B aG AN

via cup product with the canonical map

Ay—>€B] 1CL A.

More explicitly, on an open U of Y the map sends

OéEA(UXyY}-il XXy}/;I)

to

(04|Y;7-~-,C“|in) € ®jjr,in, MU xy Yf X YjZ

oy

Jh*

A/\a A

Xy V)

and it is easy to check that this is well-defined. Then notice that

/\h+1( ] 10’]*A) /\k+1_h(@a?*A) = ah,kfh*A~
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Indeed, for Jy,Jo C {1,...,n} with #J; = h+ 1,#J> = k+ 1 — h we have

( /\ a’}le) ®( /\ a?Q*A) = a’Jl,Jz*A

J1€1 Jj2€J2

because Yy, 5, = (Njen Y1) Xy (Njes,Y2,5,) and we can sum the above

identity over all Jq, Jy of the prescribed cardinality.

Lemma 4.3.1. The following sequence is exact
RN DS &F_oan k- neA(—k)hsn — & than 1 neA(—k)hrnion —

— k
— Do an 2n—2—haA(—k)Fh2n—2-n — 0

where the first map is the one defined above and the coefficients Cil,hz are defined
in Lemma 4.2.6. The remaining maps in the sequence are global maps of sheaves
corresponding to Aoy + Ada, where §; € @?Zlaé*A is equal to (1,...,1) for
1 =1,2. These maps are defined on each of the cﬁlyhrz factors in the unique way
which makes them compatible with the maps in the resolution (4.2).

We can think of 0y as a quasi-isomorphism of R¥A[—k] with the complex
ke _ k
@Z:Oah,kfh*[\(_k)®L’L'k7}L —_— e — @?741020/}1,271727}7,*[\“(_k)@(/h’znizih7

where the leftmost term is put in degree k.

Proof. Tt suffices to check exactness locally and we know that X is locally etale
over products X; xp, X of strictly semistable schemes. Lemma 4.2.1 proves
the above statement in the case of X; xp, X5 and the corresponding sheaves
on Y are obtained by restriction (etale pullback) from the special fiber Y7 xp Y

OfX1 XOk Xg. ]

Corollary 4.3.2. The complex RYA is a —dim Y -shifted perverse sheaf and
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the canonical filtration 7<) RYA with graded pieces RFpA[—k] is a filtration by
—dim Y -shifted perverse sheaves. The monodromy operator N sends T<pRYA

to T<p—1RYA and this induces a map
N : REpA[—k] — RF1A[—k +1].

The next step is to understand the action of monodromy N and obtain an
explicit description of N in terms of the resolution of R¥iA given by Lemma
4.3.1. This can be done etale locally, since on the nearby cycles for X; x¢, Xo
we know that N acts as Ny @ 1 + 1 ® N from Proposition 4.2.5 and we have a
good description of N; and N, from Lemma 4.1.6. However, we present here a

different method for computing N, which works in greater generality.

Proposition 4.3.3. The following diagram is commutative:

~

REFIYA[—k — 1] [0 RE+14hA]

|s | Joun

RFpA[—k] ——=[I*R* 1 A(1) ——= R yA(1)]

where in the right column the sheaves RFT1)A are put in degree k + 1.

The proof of this proposition is identical to the proof of part 4 of Lemma
2.5 of [Sa2|, which is meant for the strictly semistable case but does not use
semistability. The fact that the above formula could hold was suggested to us
by reading Ogus’ paper [O], which proves an analogous formula for log smooth
schemes in the complex analytic world. The same result should hold for any log
smooth scheme X /O with vertical log structure and where the action of Ik

on RFyA is trivial for all k.
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For 0 < k < 2n — 2 define the complex
Ly = [@Z:O(ah,k—h*A(*k))EBCﬁ’k_h — e 69%1_02(ah,Qn—Q—h*A(*k))eacﬁv%‘?—h],

where the sheaves aj, ;—n«A(—k) are put in degree k. We will define a map of

complexes f : L1 — Ly degree by degree, as a sum over hy + ho = k" of maps
fhl’h2 ® tl(T) : ahhhﬂ/\@c’blvhg — ahl,hz*A(l)e)Chl'hz-

Note that each coefficient leil, ha reflects for how many 0 < h/ < k the term
an, hy«A(—Fk) appears in the resolution of

h’ k—h'

/\(( Jj= la]*A)/A) /\ (( Jj= la]*A)/A)( )

The set of such i’ has cardinallity cZ’ h, and is always a subset of consecutive
integers in {1,...,k}. Denote the set of &’ by Cf , . Thus, we can order the

®h1

terms ap, p,+A by B’ and get a basis for (ap, py«A)¥ 102 over ap, p,«A. It is

easy to explain what f"2 does to each element of C’,ijflmz it sends
eCyh, =N = L}NCE 4,

When both &' — 1,h" € Cl]fl,hzv the element of the basis of (ahl’hQ*A)@chT}hz
given by (0,...0,1,0,...,0) where the 1 appears in the position correspond-
ing to h' is sent to the element of the basis of (ahl,hQ*A)eaCZlM given by
(0,...,0,1,1,0,...,0) where the two 1’s are in positions corresponding to h' —

and B’ If W' =1 ¢ Cf . but b’ € Cf , then B’ = 0 and (1,0,...,0) —
(1,0...,0). IftW' =1 € Cf ,, but B’ € CF , then h' = k+1and (0,...,0,1) —

(0,...,0,1). This completes the definition of fh:2,
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Corollary 4.3.4. The following diagram is commutative

RFFYWA[—k — 1] ——= Li11 ,

b

RFYA[—k] ——> L},

The map f is a map of complexes, which acts degree by degree as

Z fh17h2 [_k — 1] ® tl (T)7

hy+ho=k’
hi,h Sk ock
where [ sap, p AP0 — ) g AT was defined above.

Proof. This can be checked etale locally, using Proposition 4.2.5, which states
that N = N3 ® 1 + 1 ® Ny over a product X3 X o, X2 of strictly semistable

schemes and using the fact that each of the N; can be described as

00— al, Ak +1) 2> i A(—(k+1)),

\L@tl(T) i

ai A—k) —2L >l A(—k) —L s Nl A(—E)

fori=1,2.
This can also be checked globally, by using Proposition 4.3.3 to replace the

leftmost column of our diagram by

0 Rk+11/JA ,

l l@tL(T)

i*Rk'Hj*A(l) s Rk'H”g/JA(l)

where the left column is put in degree k. In fact, it suffices to understand the



CHAPTER 4. THE MONODROMY FILTRATION 89

map of complexes

0 ——— RFFIYA

Lk

i*Rk+1j*A o Rk+1¢A

and check that it is compatible with the map

0 D5 (an 203 e (—k — 1))Hn—2n .
lf’“@t:(T)l if””@tz(T)‘

k k _ k
@hzo(ah,k—h*A(—k _ 1))@%.;@% e EB%LZQQ(ah,2n—2—h*A(—k _ 1))@%.2%2%

Let K = Cone(f @ t;(T)~ ! : Lx11 — Li(—1)). The triangle

Nt (T)~!

RFYA[—Kk — 1] —— i* RFj A[—k — 1] —— RFFIA[—k — 1] RFyA[—F]

is distinguished. It suffices to see that we can define a map g : i* RF1j, A[—k] —

KC which makes the first two squares of the following diagram commute:

REGA[—k — 1] — i* R Ak — 1] —> R A~k — 1] —2 D gy [~k

lf)k[l] J{g[l] lewl in
Fet(T)~*

Li(-1)[-1] K[-1] Lyt Ly(-1)

If the middle square is commutative, then there must exist ' : RFypA[—k —1] —
L (—1)[-1] making the diagram a morphism of distinguished triangles. Then
6" would make the first square commutative, so 6" and 0;[—1] coincide once they

are pushed forward to K[—1]. However,

Hom(R*yA[—k — 1], Ly 1[—1]) ~ Hom(R*pA[—k], R*T 1 pA[—k — 1]) = 0,
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so the Hom exact sequence associated to the bottom distinguished triangle im-
plies that ¢ = 6x[—1]. The diagram above is a morphism of distinguished
triangles with 6;[—1] as the leftmost morphism. This tells us that the third
triangle in the diagram is also commutative, which is what we wanted to prove.

We can compute i* RF*1j, A using the log structure on X:

R A (1) = A (@D g A0 a2, A) /(1. 1,0,...0)=(0,..., 0,1,

j=1 j=1

Here we have used, again, the formula i* R¥j, A (k) ~ AF(M9P)® A, which follows
from Proposition 2.0.2 of [Na]. We can also compute K explicitly, since we have
an explicit description of each fk/’hl’}”. The first non-zero term of K appears

in degree k£ and it is isomorphic to

k
E ap k—hsl\.
h=0

There is a natural map of complexes i* RF*1j, A[~k] — K, which sends

aj, s\ — @ ay g« @ @ a, g\,
JIDJ1# I =#J1+1 JyDJ2 #Jy=#J2+1

when Ji, Jo are both non-empty. The map sends

apph— B as, A and ag g A — @ ag A
#Jy=1 #J,=1

It is easy to see that the above map is well-defined on i* R*+1j, A[—k] and that it
is indeed a map of complexes. It remains to see that the above map of complexes
i* RF15,A[—k] — K makes the first two squares of the diagram commute. This

is tedious, but straightforward to verify. O

Remark 4.3.5. Another way of proving the above corollary is to notice that
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Proposition 4.3.3 shows that the map
N : RFHYA[—k — 1] — RFA[—E]

is given by the cup product with the map v ®t,(T) : M (—k — 1) — A(—k)[1]

rel

where v : M7 — A[1] is the map corresponding to the class of the extension
O—>A—>Mgp—>]\_47'?£—>0

of sheaves of A-modules on Y. Locally, X is etale over a product of strictly
semistable schemes X; X, X2 and the extension M9P is a Baire sum of exten-
sions

0—>A—>Mlgp—>]\7[ffnel—>03nd

OHAHMSPHMSI';&Z_)O

)

which correspond to the log structures of X; and X5 and which by Proposition
4.3.3 determine the maps N; and N,. The Baire sum of extensions translates
into N = N; ® 14+ 1® Ny locally on Y. However, it is straightforward to check
locally on Y that the map f : £ — L1 is the same as Ny ®1+1® Ny. Thus, f
and N are maps of perverse sheaves on Y which agree locally on Y, which means
that f and N agree globally. This proves the corollary without appealing to
Proposition 4.3.3. (In fact, it suggests an alternate proof of Proposition 4.3.3.)

The following results, Lemma 4.3.6 to Corollary 4.3.10, are just generaliza-

tions of Lemma 4.2.8 to Corollary 4.2.13. We merely sketch their proofs here.

Lemma 4.3.6. The map N : REYA[—k] — RF1A[—k + 1] has kernel

Pp ~ [ak,k*A(_k) i ap k15 MN(—F) @ apq1, e A(—F) — -+ ~ anfl,nfl*A(_k)} ;
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where the first term is put in degree 2k and cokernel

Rie = [@5Z0aj-1-5xA(=(k = 1)) = - = ax_1 -1 A((=(k = 1))] ,

j=

where the first term is put in degree k — 1.

Proof. The proof is identical to the proof of Lemma 4.2.8, since by Proposition

4.3.3 we have a description of N as a degree by degree map
fiLly— Ly_1.

O

Corollary 4.3.7. The filtration of RYA by 1< RYA induces a filtration on
ker N. The first graded piece of this filtration Gr' ker N is ROYA. The graded

piece Gr* Y ker N of this filtration is Py.

Proof. This can be proved the same way as Corollary 4.2.9. The only tricky part
is seeing that we can identify a graded piece of ker N with a graded piece of
ker N. In other words, we want to show that for N : RFpA[—k] — RFIpA[—k+
1] and x € ker N we can find a lift & € 7<xRiA of x such that & € ker N. As
in the proof of Corollary 4.2.9, we can define a map P, — Ri_1 sending x to
the image of NZ in Ry_1, which turns out to be independent of the lift Z. We
want to see that this map vanishes but in fact any map P, — Ryi_1 vanishes.

Note that

@hy by A[—h1 — ho] > @ps=p, +1,#T7=h,+105,7+A[—h1 — ha].

The scheme Yg 1 is smooth of pure dimension dimY — h; — hy and so it is a
disjoint union of its irreducible (connected) components which are smooth of

pure dimension dimY — hy — hy. Thus, each agr.A[—h1 — ho] is the direct
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sum of the pushforwards of the — dim Y-shifted perverse sheaves A[—h; — ho]
on the irreducible components of Ysp. Thus, we have a decomposition of
@hy hexA[—h1 — h2] in terms of simple objects in the category of — dim Y-shifted
perverse sheaves. It is easy to check that P, and Ry_; for K > j > 1 have no

simple factors in common, so any map P, — Ry—; must vanish. O

Remark 4.3.8. The same techniques used in Section 4.2 apply in order to com-
pletely determine the graded pieces of (ker N7/ker N7=1)/(im N Nker N7) in-
duced by the filtration of Ry A by 7<;RiypA. The only tricky part is seeing that

we can also identify the kth graded piece of im/N with
im(N : RFIWA[—k — 1] — RFypA[—E]),

but this can be proved in the same way as the corresponding statement about
the kernels of N and N. We get a complete description of the graded pieces of
(ker N7 /ker N7=1) /im N.

Lemma 4.3.9. For 1 < j < 2n —2, the filtration of RYA by < RYA induces
a filtration on (ker N7 /ker N7=1) /imN. For0 <k <n-—1-— j%l, the (k+1)-st

graded piece of this filtration is isomorphic to
Bl ik A(—(k +j = 1)) [~2k — j + 1],

As in Corollary 4.2.12, since each graded piece of the filtration is pure of weight

j — 1, the filtration is in fact a direct sum.

Let

GriGr, RipA = (ker N? NimNY)/(ker NP~ NimNY) + (ker N” NimN9T!).
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The monodromy filtration M,.Ry¥A has graded pieces Griw Ry A isomorphic to

Gr) RyA ~ €D GriGr,RyA,
p—q=r
and if we understand the cohomology of Yz with coefficients in each Gr?Gr, Ri)A
we can compute the cohomology of Yf with respect to Ri¢YA. The next result

tells us how to compute H™(Yz, Gr?Gr,RyA).

Corollary 4.3.10. There is a direct sum decomposition

p+q
H™(Yz, Gr?GrpRYA) ~ @ €D H™ (Ya, i1kt prg—is M—(k+p—1))[~2k—p—q-+1])
k>0 i=1

compatible with the action of Gg. This can be rewritten as

p+q
H™ (Ye, GrGry RyA) = D @D H™ 270 (o M7, A= (hp-1))).
k>0 i=1
Remark 4.3.11. The isomorphism above is functorial with respect to etale mor-
phisms which preserve the stratification by Ysr with S, 7 C {1,...,n}. The

reason for this is that etale morphisms preserve both the kernel and the image

filtration of N as well as the canonical filtration 7<;RyA.



Chapter 5

The cohomology of closed

strata

In tthis chapter we go back to working with the Iwahori level Shimura variety
Xu/Ok as well as with the Shimura variety Xy, /Ok with no level structure at
p1 and p2, both corresponding to the unitary group G. Recall that K = F},, ~

F,,, with ring of integers Ok, uniformizer = and residue field F.

5.1 Igusa varieties

Let ¢ = p[®® ! Fix 0 < hy,hs < n — 1 and consider the stratum )_(((J’;l’hQ) of
the Shimura variety Xy,. Choose a compatible one-dimensional formal Op,, =
Og-module X1, of height n — h; and also a compatible one-dimensional formal
OFp, ~ Og-module Xy of height n — hy. Giving ¥; and X, is equivalent to

giving a triple (X, Ay, ix;) where:
e Y is a Barsotti-Tate group over F.

e Ay : ¥ — YV is a polarization.

95
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o ix : Op — End(X) ®z Z(,) such that (3,ix) is compatible.

Note that (X[p°])? ~ %; for i = 1,2 while (X[p$°])t ~ (K/Og )" .

Assume that the level Uy corresponds to the vector m = (0,0, ms, ..., m,).
Let
m’ = ((m?7 mit)i=1,27 ms, ... 7m7")a
. . - : (h1,h2) i (h1,h2)
with the same entries mg, . .., m, as m. The Igusa variety IgUp 7 over X, X[

[F is defined to be the moduli space of the set of the following isomorphisms of

finite flat group schemes for ¢ = 1, 2:

o)y, [p;"?] =g [p;n?], which extends etale locally to any (m?)" > m{

i = i

and

o a8t (p; " Opp, /Oy ) = G I .

K2

In other words, if S/F is a scheme, then an S-point of the Igusa variety Iggjhp1 ’:;f)

corresponds to a tuple
(AN 0,77, ()i=1,2, (05 )i=1,2, (@i)iz3),

where
e A is an abelian scheme over S with G4 ; = A[ps°];
e \: A— AV is a prime-to-p polarization;

e i: Op — End(A) ®z Z,) such that (A,4) is compatible and X o i(f) =
i(f)Y o A Vf € Op;

o P 1V ®g A®P — VPA is a m1(S, s)-invariant UP-orbit of isomorphisms
of F'®g A°P-modules, sending the standard pairing on V ®g AP to an

(A°>P)*_multiple of the A\-Weil pairing;
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0.~ 0., . . . . .
o of : X0p"] = G ,[p;"] is an Ok-equivariant isomorphism of finite flat
group schemes which extends to any higher level (m’){ > m?, fori=1,2
and some integer (m’)?;

77

et e
DX p ] S G4lpy ] is an Ok-equivariant isomorphism of etale

group schemes, for ¢ = 1, 2;

o ;: X[p"] = Gapt] is an Op p,-equivariant isomorphism of etale group

schemes, for 3 <i <r.

Two such tuples are considered equivalent if there exists a prime—to—p isogeny

f A — A taking (A, \i,77,a, a5 a;) to (A, 4N, i ad ast al) for

X

v E Z( )
The Igusa varieties Ig( 1’m2) form an inverse system which has an action of

G(A®P) inherited from the action on X[(J}(L)l”u). Let

JMm(Qy) = QF x Dy, X GLp, (K)x Dy, X GLp, (K) x [ [ GLn(Fy,),
=3

which is the group of quasi-self-isogenies of (3, As;,ix) (to compute J#1:72)(Q,)

we use the duality induced from the polarization). The automorphisms of

(h1,h2)

Us - This can be extended to an

(h1,h2)
Ur.m

(2, As, ix) have an action on the right on Ig
action of a certain submonoid of J(1:72)(Q,) on the inverse system of Ig

and furthermore to an action of the entire group J(":"2)(Q,) on the directed

system H. g(IgUh,} :f ,L¢). For a definition of this action, see section 5 of [Shl|
and section 4 of [Man].
We also define an Iwahori-Igusa variety of the first kind I, [(Jhl"hQ) /Xy, as the

moduli space of chains of isogenies for i = 1,2

G' =Gio— Gix— - = Gin, = G /G5 [pi]
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of etale Barsotti-Tate Ox-modules, each isogeny having degree #F and with
composite equal to the natural map G* — G¢*/G*[p;]. Then I,(Jhl’hQ) is finite
etale over X g;l’hz) and naturally inherits the action of G(A*?). Moreover, for
m? = mY = 0 and m$* = mS* = 1 we know that Igglj,’rgf)/féhl’hﬁ xp [ is finite

etale and Galois with Galois group By, (F) x By, (F). (Here By, (F) C GLy, (FF)

is the Borel subgroup.)

Lemma 5.1.1. For S,T C {1,...,n} with #S = n — hy,#T = n — hy there

. . o (h1,h
exists a finite map of X[(ng’ 2)_schemes

P YUO,S,T - I((Jhl’hZ)

which is bijective on the sets of geometric points.

Proof. The proof is a straightforward generalization of the proof of Lemma 4.1

of [TY]. O

Recall that for a given m with m; = my = 0 we take
U =UP x UJrP2(1) x Iwyp, X I, p, X 2,

restricting ourselves to Iwahori level structure at p; and p;. Now we let the

level away from p vary. Define

HI(Yiu(my,s.m Le) = im HL (Y5 .7, Le),

Ubr

H? (Yiw(my,s.1> L&) = im H? (Yy, 5.1, Le),
Up

HL(I0A), Le) = lim H(I)™") e F, Le).

UP
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Without restriction on M’ we can define

HI(1g" "), L) = lim H (g "), Le)

U?,m’

For m{ = m9 = 0, the Igusa variety Igng1 ’7%3) is defined over F. If in addition,

mSt = mSt = 1 then Ig(Uh,,1 ’7%2,) (over F) is a Galois cover of I,(Jhl’hz) with Galois

group Bh1 (F) X Bh2 (IF)

Corollary 5.1.2. Let m' = (0,0,1,1,mg3,...,m,). For every S,T C{1,...n—

1} with #S =n — hy, #T =n — hy and j € Z>¢ we have the following isomor-

phism
HI (Y g7 x5 B, Le) = HI(IG ) xu B, L) P ()<Bra(®).
By taking a direct limit over UP and over m = (0,0, ms, ..., m,) and con-

sidering the definitions of the Igusa varieties, we get an isomorphism

Uz‘;uﬂz(7?1)><Ivvhl,pl><(9]>§,K 1><IW;L2,}32><(QX

HY (Vg ay .70 £6) = H](1g""2), L) noh Picn—hs,

Taking a limit over general 7/ satisfying m{ = mJ = 0 we define

HI(Igl" ") L) = lim  HI(Ig k) xp F, Lo).
UP m/

0o_,.0__
my=mgy=0

Then the above isomorphism becomes

HY (Vyy 5.7 £6) = HI(Tg)"™", L)V X W <15,

c

Proposition 5.1.3. The action of Frobp on Hg(Igghl’h2)7£§) coincides with

the action of (1, (p~FFrl —1,1,-1,1,1)) € G(A>P) x Jhh2)(Q,,).

Proof. Let Fr :  + aP be the absolute Frobenius on F), and let f = [F : F,)].
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To compute the action of the geometric Frobenius Frobg on H (Igghl’hz),ﬁg)
we notice that the absolute Frobenius acts on each Hg(Ig(;,}”:;) xp F, L¢) as
(Fr*) x (Frobg)~!. However, the absolute Frobenius acts trivially on etale
cohomology, so the action of Froby coincides with the action induced from

(Fr*)f . Ig(hhhz) N Ig(hl,hQ)

UP i/ Ur m/

We claim that (Fr*)7 acts the same as the element (1,p~FFrl —1,1,—1,1,1) of

G(A™P) x Q) )L x T x GLy,(K) x Z x GLp, (K) x [ [ GLn(F,),
=3

where the two copies of Z are identified with Dy, /O

fori=1,2via
the valuation of the determinant. To verify this claim, we will use the explicit
description of the action of a submonoid J("1:#2)(Q,) on the inverse system of
Igusa varieties Ig(Uhp1 ’gj) found in [Man| which generalizes that on page 122 of
[HT]. First, it is easy to see that

(Fr) (AN 77, 0, ) = (A 0@ i@, (77)@ (ad)@, (o) (@), af?)
where F/ : A — A is the natural map and the structures of A(@ are inherited
from the structures of A via F7.

On the other hand, the element j = (1,p~[FFel —1,1,—1,1,1) acts via a

quasi-isogeny of . One can check that the inverse of the quasi-isogeny defined

by jis j=' : ¥ — (@, which is a genuine isogeny. If we were working with
points of Ig(h:"2) (which are compatible systems of points of Iggl,}’%,) for all

UP and m) then j should act by precomposing all the isomorphism a?, a?t for

t1=1,2and o; for 3 <i <. Sincej|A[ ot :1fori:172andj|A[p?c] =1 for

Pl

3 < i < r the isomorphisms a?t and «; stay the same. However, a?oj is now only
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a quasi-isogeny of Barsotti-Tate Og-modules and we need to change the abelian
variety A by an isogeny in order to get back the isomorphisms. Let j; = j|2[p;>0]0
for i = 1,2. Then (j;)71 : 2[ps°]° — L[pe°]® is a genuine isogeny induced by the

action of m; € Dlx(,n—h,;' Let K; C A[pEF:F"]}

be the finite flat subgroup scheme
?(ker(j;)™1). Let K = K1 @ Ko € A[ulF™l]. Let K+ c A[(u®)FF2l] be the
annihilator of K under the A-Weil pairing. Let A = A/K@K+and f: A — A

be the natural projection map. Then
Bl = foaioji: (Zlpie])’ — Alpe]®

is an isomorphism. The quotient abelian variety A inherits the structures of A
through the natural projection and it is easy to see that A = A@. Thus, the

action of j coincides with the action of (Fr*)f. This concludes the proof. O

Corollary 5.1.4. We have an isomorphism of admissible G(A>P) x (Froby)Z-

modules
H (Yigmy,s,r Le) = HI (1), £)Urt " (T)XI0h iy X105 0z

where Froby acts as (p~7,—1,1,-1,1,1) € J(hl’hZ)(Qp).

5.2 Counting points on Igusa varieties

We wish to apply the trace formula in order to compute the cohomology of
Igusa varieties. A key input of this is counting the F—points of Igusa varieties.
Most of this is worked out in [Sh1]. The only missing ingredient is supplied by
the main lemma in this section, which is an analogue of Lemma V.4.1 in [HT]
and of “the vanishing of the Kottwitz invariant”. The F-points of Igusa varieties

are counted by counting p-adic types and other data (e.g polarizations and level
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structure). We can keep track of p-adic types via Honda-Tate theory; we need
to check that these p-adic types actually correspond to a point on one of our
Igusa varieties.

A simple p-adic type over F' is a triple (M, n, k) where

e M is a CM field, with 3 being the set of places of M over p,
en=>_ ep M@ s an element of Q[PB], the Q-vector space with basis 3,
o k: F— M is a Q-algebra homomorphism

such that 7, > 0 for all z € P and n+ e = 3 2(p) - = in Q[P], where

p= Hwé‘l? z*®) Here ¢ is the complex conjugation on M and

vt Q[P — QP

is the Q-linear map satisfying = — x°. See page 24 of [Shl] for the general
definition of a p-adic type. As in [Shl], we will drop « from the notation, since
it is well understood as the F-algebra structure map of M.

We can recover a simple p-adic type from the following data:
e a CM field M/F;

o fori = 1,2 places p; of M above p; such that [Mj, : Fy Jn = [M : F](n—h;)
and such that there is no intermediate field F C N C M with p;|x both

inert in M.

Using this data, we can define a simple p-adic type (M, n), where the coefficients
of 1 at places above u are non-zero only for p; and pp. The abelian variety A/F
corresponding to (M,n) will have an action of M via i : M — End"(A). By

Honda-Tate theory, the pair (A,7) will also satisfy

e M is the center of End%(A),
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o A[p°]? = A[ps°] has dimension 1 and A[p$°]¢ has height h; for i = 1,2,
e and A[p$°] is ind-etale for ¢ > 2.

Lemma 5.2.1. Let M/F be a CM field as above. Let A/F be the corresponding

abelian variety equipped with i : M — EndO(A) Then we can find

e a polarization \g : A — AV for which the Rosati involution induces ¢ on

i(M), and

o a finitely-generated M-module Wy together with a non-degenerate Hermi-
tian pairing
(0 Wox W —Q
such that the following are satisfied:

e there is an isomorphism of M ® A°P-modules
Wo @ AP 5 VPA
which takes (-, -)o to an (A°P)*-multiple of the Ny - Weil pairing on VPA,
and

o there is an isomorphism of F' ®g R-modules
Wo ®g R B v ®g R
which takes (-,-)o to an R*-multiple of our standard pairing (-,-) on V ®qg

R.

Proof. By Lemma 9.2 of [Kol| there is a polarization Ao : A — AY such that
the A\g-Rosati involution preserves M and acts on it as c¢. The next step is to

show that, up to isogeny, we can lift (4,4, \o) from F to Ofac. Using the results
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of [Tat| we can find some lift of A to an abelian scheme A/Ofac in such a way
that 4 lifts to an action i of M on A. As in the proof of Lemma V.4.1 of [HT]
we find a polarization X of A which reduces to . However, we want to be more
specific about choosing our lift A. Indeed, for any lift, LieA ®oge K is an

F @ K% ~ (K*)Hom(F.E™)_module, so we have a decomposition

LieA ®0,.0c K9 ~ @ (LieA),.
T€Hom (F,K¢)
Let Hom(F, K%)* be the the set of places 7 € Hom(F, K°°) which induce the
place u of E. We want to make sure that the set of places T € Hom(F, K*)*
for which (LieA), is non-trivial has exactly two elements 7| and 74 which differ

by our distinguished element o € Gal(F/Q), i.e.
Ty =T 00.

In order to ensure this, we need to go through Tate’s original argument for
constructing lifts A of A.

First, let ® = Z%eHom(M,Kac) ®- - 7 with the ®; non-negative integers sat-
isfying ®; + ®zc = n. For any such ®, we can construct an abelian variety Ag

over Ogae such that

LieAg R0 ae K~ @ (LieAq;.)T
r€Hom(F, K ac)
satisfies dim(LieAg), = ®,. This is done as in Lemma 4 of [Tat|, which proves
the case n = 1. We pick any 7/ € Hom(F, K*°) inducing the places p; of F' for i =
1,2 such that 75 = 71 co. We lift the 7/ to elements 7; € Hom(M, K ) inducing
pi. We let @z, = 1 and ®; = 0 for any other 7 € Hom(M, K*)*. For 7 ¢

Hom (M, K)* we define ®; = n— ®;c. This determines ® € Q[Hom(M, K°)]
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entirely. This ® is not quite a p-adic type for M, however it is easy to associate
a p-adic type to it: we define n = Z.’r|p Ny - by

ey [M 1 F] )
L g 2t

where the sum is over embeddings 7 € Hom(M, K*) which induce the place
z of M. By Honda-Tate theory, the reduction of the abelian scheme Ag /O fcac

associated to ® has p-adic type n. Indeed, the height of the p-divisible group

n-[Mz:Qp]

LT (see Proposition 8.4 of [Shl1] together

at = of the reduction of Ag is
with an expression of dim A in terms of M). The dimension of the p-divisible
group at x of the reduction is > ®;, where we're summing over all embeddings
7 which induce z.

Now we set A = Ag. It remains to check that A/Ogac has special fiber
isogenous to A/F and this follows from the fact that the reductions of A and A
are both associated to the same p-adic type 7. Indeed, it suffices to verify this
for places = above u. We have

C0—e dim A[z°]
e =V = Calp height A[z>°]
for all places z # p; for i = 1,2. When x = p; we have

[M : F} 1 dim A[a:‘x’}
= €x/p = ey/p =€,y
T L Ry ne By, Q] P =) - [Fp @/ height Afe]

Therefore, the p-adic type associated to A is also 7.
There are exactly two distinct embeddings 71, 75 € Hom(F, K*¢)* such that
(LieA), # (0) only when 7 = 7{ or 7. Moreover, these embeddings are related

by 7, = 71 o 0. Therefore, we can find an embedding k : K* — C such that
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koTt! = for i =1,2. We set
Wo = H,((A XSpec ogac.s SPEC C)(C), Q).

From here on, the proof proceeds as the proof of Lemma V.4.1 of [HT]. O

5.3 Vanishing of cohomology

Let II* be an automorphic representation of GL1(Ag) x GL, (Ar) and assume
that IT! is cuspidal. Let w : A% /E* — C be any Hecke character such that
w@|px jgx is the composite of Artg and the natural surjective character Wo —
Gal(E/Q) = {&1}.

Also assume that IT' and F satisfy
o I ~ Il 04.

e II is generic and =!'-cohomological, for some irreducible algebraic repre-
sentation =! of G,,(C), which is the image of ;¢ under the base change

from G¢ to Gy c.
e Ramp/q U Ramg(w) U Ramg(1l) C Splg,p, o

Let & = Gy, U {0} be a finite set of places of F, which contains the places
of F' above places of Q which are ramified in F' and the places where II is
ramified. For [ # p, let ¢ : @ = C and let m, € Irr;(G(Q,)) be such that
BC(ym,) ~1I,,. If we write II' = ¢ @ I1Y and 7, = 7,0 @ Tp, ® Tp, ® (R]_57p;)
then w0 ~ ¥, and ym,, ~ Hgi for all 1 < 7 < r. Under the identification
F,, ~ F,,, assume that Hgl o~ ng (this condition will be satisfied in all our
applications, since we will choose II° to be the base change of some cuspidal

automorphic representation I of GL,,(Ap, g)).
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Define the following elements of Groth(G (A%?)x J(h1:72)(Q,)) (the Grothendieck

group of admissible representations):

[Ho(Ig"h2) L)) =3 (—1)m et m(1ghhe) )

%

If R € Groth(G(A®) x G’), we can write R = Zﬂ6®pn(7r6 ® p)[7][p],

where 7€ and p run over Irr;(G(A®)) and Irr;(G’) respectively. We define

R{r®}:=> n(x® @ p)p| =Y n(r® @ p)[r®][p].

p

Also define
R{II"®} .= Z{WG} R[IT*®] ZR

where each sum runs over 7€ € Irrj'' (G(A®)) such that BC(y7®) ~ II°.
Let Red{""2) () be the morphism from Groth(G(Q,)) to Groth(J"1:2)(Q,))
defined by

(—1)M*hem, o @ Red" ™" (my, ) @ Red" """ (my,) @ (Qisamy,),
where
Red" ™" : Groth(GLy(K)) — Groth(D% , x GLu(K))
is obtained by composing the normalized Jacquet functor

J : Groth(GLn(K)) — Groth(GL,_n(K) x GLy(K))
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with the Jacquet-Langlands map

LJ : Groth(GL,_(K)) — Groth(D,. , )

‘n—h

defined by Badulescu in [Bad]. Assume the following result, which will be proved

in section 6:

Theorem 5.3.1. We have the following equality in Groth(G (A, \{p}) X Jh:h2)(Q,):
BCe .\ py (He(Ig" "), L) {T1E1)

= 60(*1)}”%2CG[Lz_lr[%sfm\{p}][Red%hl’}”)(ﬁp)],
where Cg is a positive integer and eg = £1.

Let S, T C{1,...,n— 1} with #S =n — hy,#T = n — ha. From Theorem

5.3.1 and Corollary 5.1.4 we obtain the equality
BCP(HC(YI?N(m),S,Tv Eﬁ)[HLG])

= eoCliy TP [Red ™ ") (m, 0 @ my, © my,)] - dim[(@7_gmy, )]

in Groth(G(A>?) x (Frobp)Z). The group morphism
Red""2) : Groth(Q) x GLn(K) x GL,(K)) — Groth(Frob%)
is the composite of normalized Jacquet functors

J; : Groth(GL,,(K)) — Groth(GL,,_p,(K) x GLp,(K))
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for i = 1,2 with the map
Groth(Q, X GLyp—p, (K) X GLp, (K) X GLyp,(K) X GLp, (K)) — Groth(Frob%)
which sends [a; ® 81 ® a2 ® B2 ® 4] to

S ol /K7 D /K (s )05y )
1,92

(dimgy) Ve - (dimfa) Wree - frec(¢7 65| [ (7% 0 Ny, )™ H),

where the sum is over characters ¢1, ¢ of K*/O%.

Lemma 5.3.2. We have the following equality in Groth(G(A%P) x (Frobp)%):

BCP(H (Yiwmy, 5,15 L)) = eoCo 1 ' TTH>P] dim[(@]_ymy, ) 7] x

n—#S n—#T
S5 agssprnn [ 0 #8 ) [ #T
hi=0 ha=0 hy Iy

Red(hl’hQ)(Wp_ro ® T, ® 7Tp2)) .

Proof. The proof is a straightforward generalization of the proof of Lemma 4.3

of [TY]. O

Theorem 5.3.3. Assume that Hgl ~ ng has an Iwahori fized vector. Then

Iy, ~ 11, is tempered.

Proof. By Corollary VII.2.18 of [HT|, ¢y, is tempered if and only if, for all

o € Wk every eigenvalue a of L, k(I )(c) (where L, g (II) ) is the image of
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Hgi under the local Langlands correspondence, normalized as in [Sh3|) satisfies

‘LlOz|2 € qZ.

We shall first use a standard argument to show that we can always ensure that

|Ll04|2 IS q%Z

and then we will use a classification of irreducible, generic, (-preunitary repre-
sentations of GL,,(K) together with the cohomology of Igusa varieties to show
the full result.

The space H*(X, L¢) decomposes as a G(A%)-module as
H*(X,L¢) = @7 @ R (7),

where 77°° runs over Irr; (G(A>°)) and R’g_l (7°°) is a finite-dimensional Gal(F'/F)-

representation. Define the Gal(F'/F)-representation
RI(II'Y) =Y RE (n™),

where the sum is over the 7°° € Irr;(G(A>)) which are cohomological, unram-
ified outside Gg, and such that BC(yw>°) = II1*°. Also define the element

Ry(IT") € Groth(Gal(F/F)) by

Ri(I') = Y (~1)*RF ().

k

We claim that we have the following identity in Groth(Wk) :

Ry(IT") = e9Cg - [(mp,0 0 Artg ) )|wye @ 17 Lo i (I,) @ 177 L 1 (TT, ).
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This can be deduced from results of Kottwitz [Ko2| or by combining Theorem
5.3.1 with Mantovan’s formula [Man].

From the above identity, using the fact that Hgl ~ 10

9,, we see that |, (a3)|* €

q” for any eigenvalues a, 3 of any o € W, since Rl(Hl) is found in the coho-
mology of some proper, smooth variety Xy over K. In particular, we know that
lual? € q2%. Moreover, if one eigenvalue « of o satisfies |2 € ¢% then all
other eigenvalues of o would be forced to satisfy it as well. A result of Tadic
([Tad], see also Lemma 1.3.8 of [HT]) says that if m,, is a generic, ¢;-preunitary

representation of G'L,,(K) with central character ¢, | =1 then my, is isomor-

phic to

n—IndIGDfI’(‘)(K)(m X x e x| det |* xy| det | x - - - xry| det |** x| det | T%),

for some parabolic subgroup P of GL,. The m,...,7s,m,... T, are square

integrable representations of smaller linear groups with [{r,| = [¢5 | = 1 for
J

all j, j'. Moreover, we must have 0 < a; < % for j =1,...,t. If s # 0 then for

any o € Wi there is an eigenvalue o of Lg ,,(my,)(0) with |¢;af? € ¢%, but then
this must happen for all eigenvalues of Lx ,(mp,)(c). So then t = 0 and 7, is

tempered. If s = 0 then every eigenvalue « of a lift of Frobenius o0 € W must

satisfy

|LlOé|2 c quQaj
for some j € 1,...,t. Note that each j corresponds to at least one such eigen-
value o, so we must have a; = i forall j =1,...,t. To summarize, 7, is either

tempered or it is of the form

n-Ind {8 (| det [ # x ]| det [7F x - x | det [ x | det| %),

We shall now focus on the second case, in order to get a contradiction. Since
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Tp, has an Iwahori fixed vector, each 7r§» must be equal to Spsj (x;), where x; is
an unramified character of K*. We can compute Red(hl””)(ﬂpp ® Ty, ® Tp,)
explicitly and compare it to the cohomology of a closed stratum YIW, ST via
Lemma 5.3.2.

We can compute Red(hl’hz)(wp70 ® Ty, ® mp,) using an analogue of Lemma
1.3.9 of [HT], which follows as well from Lemma 2.12 of [BZ]. Indeed,

Ji (n-Tnd Bl (Sp,, () - [ det | x Spy, (1) - [det |4 x - x Sp,, (x0) - [ det | H))

is equal to
GLy, (i 51—l 1 si—ky—L
> In-Indp 557 ((Spy, (xa ® [ det [ 7178) - x Spy,, (e © | det [ 77 4))]

GLy,, 1 _1
[n-Ind /(i ((Spy, 1, (X1 @ [ det [1) x - x Spy, _y, (x¢ @ | det |71))),

where the sum is over all non-negative integers [;, k; < s; with h; = Z;Zl(lj +

kj). Here P/ and P’ are parabolic sungroups with Levi components GL;, X

-+ X GLy, and GLg, _j, X --- X GLg,_}, respectively.

Let Vj]f]é = rec (X;llxj;l\ |t=nter (ahy, o NK/Eu)_l), where

After we apply the functor

Groth(GLy—p, (K) X GLp, (K) X GLy—p, (K)x GLp, (K)x Q) — Groth(Frobg),
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we get

hi,h
Red ™) (0 & oy @ 730) = 3 2" (V) @ 2V € V),

Ji,J2,k

where

75)

—h.+1
mMED) @ Sp, (X,

2
1, 2 : GLp
7(h ha) Hdlm (n—IndP/(’K) (Sps] th-n (X

J1,d2
i=1

Iwh’ivpi

2 &) Sps, (1 1) @ @) Sp,, (x| 177)

J#Ji J#Ji

1] 2
- (s + I *n)'sjllnj#i(sj!y

and where the sum is over the ji, jo for which s;, > n —h; for ¢ = 1,2. Here Pi/
for ¢ = 1,2 are parabolic subgroups of GLy, (K).
Let D(IT') = eqCo[I1V°°7] dim[(®]_s7y,) Y7 **]. Then

BO(H (Vg .7+ LIT]) = DAT):

n—#Sn—#T -
Z Z (_1)2n—#5—#T—h1—h2 n—#S n — #T
h1=0 ho=0 hy ho

(h1, h2) 2 3
Z 7]1]2 J1J2] ® 2[V31]2] [leh])

Ji.j2.k

We can compute the coefficient of [V]]f]z] in BCP(H(Yy 515 L¢))[IT1S] by sum-

ming first over ji, j» and then over hq, hy going from n —s;,,n , ton —#S

and n — #7T respectively. Note that the coefficient of [Vfl ;] 1s exactly twice that
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of [V1. ] and of [V3.]. The sum we get for [V! . ] is

J1jz2 J1jz2 J1J2

(82 — #9) (s, — #D)sju s, Lz, (8512 T, (8513
nz#s nZ#T 2n ST, sj, — #S sj, — #T
hi=n—s;, ha=n—sj, hy + Sj; — N ha + Sja—n

The sum in parentheses can be decomposed as

n—#S L
S (a0
hi=n—s;, hi + S5, — N
n—#T .
S (capormon [T
ha=n—s;, ha + s, = n

which is equal to 0 unless both s;, = #S5 and s;, = #71. So

BCP(H (Yiy () 7 Lo)IVC)) = DAT)- Y- n = #5)1n — #1055 55!,
s, ot I1;(s;)*
([V711]2] [VJQljz} [VJ?JQD :

Since each Yy g7 is proper and smooth, it follows from the Weil conjec-
tures that Hj(YIw(m),s,Tvﬁf) is strictly pure of weight m¢ — 2¢¢ + j. This
property means that for some (hence every) lift o of Froby, every eigenvalue
of o on H’(Yiy () sr:Le) is a Weil g™ <*/number (see the definitions
above Lemma 1.4 of [TY]). However, the [V]’f j,) are strictly pure of weight
me —2te +2n—2— €, — (#S — 1) — (#T — 1) = me — 2t +2n — #S — #T — 2¢;,.
So

Bcp(Hj oﬁW(ﬁz),S,T’ [’f)[HLG]) =0
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unless j = 2n — #S5 — #T + 1 or j = 2n — #S5 — #T. However, if the Igusa
cohomology is non-zero for some j = 2n — #S — #71T + 1, then there exist ji, jo
with s;, = #5 and s;, = #71. Hence, the cohomology must also be non-zero
for j = 2n — #S — #T. The coefficients of [V;’ijz] all have the same sign, so

they are either strictly positive or strictly negative only depending on D(IT').

However, BC?(H (Y1, L¢)[I5®] is an alternating sum, so the weight

(m),S,1”

2n — #S — #T + 1 part of the cohomology should appear with a different sign
from the weight 2n — #S — #7T part. This is a contradiction, so it must be the

case that m,, ~ m,, is tempered. 0

Corollary 5.3.4. Let n € Z>o be an integer and L be any CM field. Let II be

a cuspidal automorphic representation of GLy,(AL) satisfying

o IIV~Tloc

e Il is cohomological for some irreducible algebraic representation Z=.
Then II is tempered at every finite place w of L.

Proof. By Lemma 1.4.3 of [TY], an irreducible smooth representation II of
GL, (K) is tempered if and only if Lk ,,(II) is pure of some weight. By Lemma
1.4.1 of [TY], purity is preserved under a restriction to the Weil-Deligne repre-
sentation of Wy for a finite extension K'/K of fields.

Fix a place v of L above p where p # [. We will find a CM field F’ such that

e " = EFy, where E is an imaginary quadratic field in which p splits and
Fy = (F')*=! has [F} : Q] > 2,

e [ is soluble and Galois over L,

o IV, = BCp (1) is a cuspidal automorphic representation of G Ly, (Agr),

and

e there is a place p of F' above v such that H%,,p has an Iwahori fixed vector,
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and a CM field F' which is a quadratic extension of F’ such that

e p =pipo splits in F,

e Ramp/q U Ramg(w) U Ramg(ll) C Splp/p g, and

o 119 = BCrpp (11%.) is a cuspidal automorphic representation of G L,, (Ar).

To find F’ and I we proceed as follows, using the same argument as on the last
page of [Sh3|. For a CM field F', we shall use the sets £(F) and F(F), which
are defined in the proof of Theorem 7.5 of [Sh3].

First we find a CM field F; which is soluble and Galois over L and a place
po above v such that the last two conditions for F’,p are satisfied for Fy,pg
instead. To see that the second to last condition for F’ only eliminates finitely
many choices for the CM field we can use the same argument as Clozel in
Section 1 of [Cl2]. Indeed, if BCp/,(II) is not cuspidal, then we would have
II®e ~ II for € the Artin character of L associated to F’. But then the character
€ would occur in the semisimplification of R} ® R; @ w™ ™!, where R; is the Galois
representation associated to IT by Chenevier and Harris in [CH] and w is the
cyclotomic character. Thus, there are only finitely many choices for € and so for
F'/L which are excluded.

Next, we choose E € £(Fp) such that p splits in E. We take F' = EFy and
p any place of F’ above pg. Let F; be the maximal totally real subfield of F’
and let w be the place of Fy below p. Next, we pick F” € F(F") different from
F’ and such that w splits in F”. Take F = F"'F".

We can find a character ¢ of A% /E* such that II' = ¢ ® I1% together with
F satisfy the assumptions in the beginning of the section. (For the specific
conditions that ¢ must satisfy, see Lemma 7.0.11.) We also know that HOF’pl ~
HOF’pz has an Iwahori fixed vector, thus we are in the situation of Theorem

5.3.3. O
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Proposition 5.3.5. Assume again that the conditions in the beginning of this
section are satisfied and that Hgl ~ H82 has a nonzero Iwahori fixed vector.
Then

BCP(H? (Yiw(my,s.r> L)) = 0

unless j = 2n — #S — #T.

Proof. We will go through the same computation as in the proof of Theorem

5.3.3 except we will use the fact that m,, ~ 7, is tempered, so it is of the form

GLn(K)

n—IndP(K) (Sps, (x1) X -+ x Spg, (xt)),

where the x; are unramified characters of K*.
We can compute Red"")(m, s ® m,, ® 7,,) as in the proof of Theorem
5.3.3.

Ji (n-Tnd B (Sp,, (1) x -+ x Sy, (x0) - | det )

is equal to
I dG’Lhi(k) S d s1—k1 . S d st—kt
Z[n ndp (k) (Spg, (X1 ® | det | ) X -+ X Spy, (x¢t @ | det | )]

GLy,
[n-Ind i) (SPs, gy (1) X - X Sy, g, (xe))],
where the sum is over all non-negative integers k; < s; with h; = Z;zl kj.
Let Vj, j, = rec (Xj_llxj_;\ |'=" (¢ 0 N /g, )~ t). After we apply the functor

Groth(GLy—p, (K) X GLp, (K) X GLy—p, (K)x GLp, (K)x Q) — Groth(Frobg),

we get

ha,h
Red ") (m, 0 @ mp, @ mp,) = ) 7J('u'12 Wiz

J1,32,k
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where

IWhi-,p,-

2
hi,h . GLy, (K) —h,
At = T dim ( n-Ind5r™ ( Sp,, O 1M7) @ &) Spy, (1)

i=1 J#di
2

h;!
B H (SJL +hi — n)lsjilnj;ﬁji (Sj!)2

=1

and where the sum is over the ji, jo for which s;, > n —h; for ¢ = 1,2. Here Pi'
for i = 1,2 are parabolic subgroups of GLy, (K).
Let D(IT') = eqCe[ITH°P] dim[(@}_smp,)Y»""*]. The same computation as

in the proof of Theorem 5.3.3 gives us

BCP(H(YVI\;V(WL),S,Tv ‘Cf)[nl’GD

(n—#9(n — #T)!s;,1s;,!
:D(H1> Z H(S])Q S [%1]2}
5j,=#8,8;,=#T AN
Since 7y, ~ T, is tempered, we know that [V}, ;,] is strictly pure of weight 2n —
#S—#T. The Weil conjectures tell us then that BCP(H7 (YIW(m),S,TV Le)[IHC]) =

0 unless j = 2n — #5 — #T. O



Chapter 6

The cohomology of Igusa

varieties

The goal of this chapter is to explain how to prove Theorem 5.3.1. The proof
will be a straightforward generalization of the proof of Theorem 6.1 of [Sh3| and
so we will follow closely the argument and the notation of that paper.

We will summarize without proof the results in [Sh3] on transfer and on the
twisted trace formula. We will emphasize the place oo, since that is the only
place of Q where our group G differs from the group G considered in [Sh3]. All
of the results and notation are as in [Sh3], except in the proof of Lemmas 6.0.8
and 6.0.9, where we also use the notation of [Sh2].

We start by explaining the notation we will be using throughout this section,
which is consistent with the notation of [Sh3|. Recall that we have fixed a unitary
similitude group G over Q, which satisfies certain local conditions as in Lemma
2.1.1. In this section, will work with a quasi-split form of GG, denoted by G,, as
well as with groups Gy, », which are endoscopic groups for G,,. We will denote

an element in the set {G,} U {Gp, n,|n1 +n2 =n,n1 > ny > 0)} as Gy, where

119



CHAPTER 6. THE COHOMOLOGY OF IGUSA VARIETIES 120

i is a multiset of positive integers (in our case, 7 will have length 1 or 2). In
other words, 7 runs through the elements of the set {n} U {(n1,ng)|ni + ng =
n,ni > ng > 0}.

If r € {1,2} and 7 = (n;)]_, with n; € Z~ define
GLj7 = ﬁ GL,,.
i=1
Let iz : GLi — GLy (N =), n;) be the natural map. Let
Qi =i7(Pnyy -y Puy),

where ®,, is the matrix in GL,, with entries (®,,);; = (=1)""16; ni1-;.

Let K be some local non-archimedean local field and H a connected reductive
group over K. We will denote by Irr(H(K)) (resp. Irrj(H(K))) the set of
isomorphism classes of irreducible admissible representations of G(K) over C
(resp. over Q;). Let C°(H(K)) be the space of smooth compactly supported
C-valued functions on H(K). Let P be a K-rational parabolic subgroup of H
with a Levi subgroup M. For mp; € Irr(M(K)) and 7 € Irr(H (K)) we can define
the normalized Jacquet module JH (7) and the normalized parabolic induction

n-Ind} 7ar. We can define a character dp : M(K) — RX by

5p(m) = | det(ad(m))|Lle(P)/Lle(M) ‘K~

We can view dp as a character valued in QZX via, Ll_l.
If

JM(Qp) = DX, x GLL(K),

‘n—h

where K/Q, is finite, then we define Si(‘](h))(g) = 6}%9”_hh(g*),where g* €

GL,_1(K) x GLp(K) is any element whose conjugacy class matches that of g.
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If

1
Fp, =1

i hy

2
J(h1,h2) ~ GLi x 1_‘[(D>< X RFpi/QpGLhi) X HRFF«;/QPGL”’
=1

: J(hl’hQ)(Qp) — @lx to be the product of the characters

-1
2
we define 6P(J(h1vh2)

51

;(J(hyi)) fori=1,2.

Let @i = (n;)7_, for some r € {1,2} and n; € Z~o. Let G5 be the Q-group
defined by

Gﬁ(R) = {(A,gl) € GLl(R) X GLﬁ(F 0Y0) R) | gi - P N gf = /\(bﬁ}

for any Q-algebra R. For any i, the group G5 is quasi-split over Q. In particular,
our unitary group G is an inner form of GG,,. Since G is quasi-split at all finite

places, there exists an isomorphism
G XQ A® ~ Gn XQ Aoo;

we fix such an isomorphism.
Also define
Gﬁ = RE/Q(Gﬁ XQ E)

Let 6 denote the action on Gy induced by (id,c) on Gz xgE. Let € : Z — {0,1}
be the unique map such that e(n) =n (mod 2). Let w : AY/E* — C* be any
Hecke character such that |y« o= is the composite of Artg and the natural
surjective character Wg — Gal(E/Q) = {£1}. Using the Artin map Artp, we
view w as a character Wg — C* as well.

Assume that Ramp/q U Ramg (@) C Splp/p, o-

Let £(G,,) be a set of representatives of isomorphism classes of elliptic

endoscopic triples for G,, over Q. Then £°(G,,) can be identified with the set
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of triples

{(Gnvsnvnn} U{ Gnl,nwsnunzannth | ny +ng = Ovnl > ng > 0}7

where (n1,n2) may be excluded in some cases. As we are only interested in the
stable part of the cohomology of Igusa varieties, we will not be concerned with
these exclusions so we will ignore them in this paper. Here s,, =1 € G, Snine =

(1, (Iny, —1In,)) € énhm, M G, — G, is the identity map whereas

g O
Ny = (N (91,92)) = | A,

0 g2

We can extend 7, n, to a morphism of L-groups, which sends z € Wg to

e(n—n1) |
ey M [ FET |

0 w(z)nm2) . T,

Similarly we can also define a morphism of L-groups

* L L
C’nl,’ILQ : G’n1,n2 - G’I’L7

which extends the map

Crayns P Gnyng — G

9o,1 0
()\+?)\—7(ga,lago72)) = )\J,_,A_

0 9o,2

(See section 3.2 of [Sh3]| for the precise definition.) We have the following com-
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mutative diagram of L-morphisms.

Mny,n
L 1,72 L
GYM 12 Gn

BChy,ny l lBCn

L 5
Gnl,nz LGn

Cn 1,12

We will proceed to define local transfers for each of the arrows in the above
commutative diagram so that these transfers are compatible.

Choose the normalization of the local transfer factor A,( , )g; defined in
Section 3.4 of [Sh3]. It is possible to give a concrete description of the A, ( )g;—
transfer at finite places v of Q between functions in C°(G,,(Q,)) and functions

in C(Gn,y,n,(Qy)) as long as v satisfies at least one of the conditions:
e v € Unry/g and v ¢ Ramg(w),
e v € Sply g,
® v € Splpp, g and v € Splg /q-

The transfer ¢I""2 of ¢ € C°(G,(Q,)) and ¢ will satisfy an identity involv-
ing orbital integrals. Since we are assuming that Ramg,q C Splp /F,,Q) We can
define the transfer at all places v of Q.

It is also possible to define a transfer of pseudo-coeflicients at infinity. Con-
sider (G, s, 1) € E(G,,), which is also an endoscopic triple for G. Fix real
elliptic maximal tori 7" C G and T, C G together with an R-isomorphism
j:Tg, = T. Also fix a Borel subgroup B of G over C containing T. Shelstad
defined the transfer factor A; g, see [She].

Let € be an irreducible algebraic representation of G¢. Define x¢ : Ag oo — C
to be the restriction of € to Ag 0 (the connected component of the identity in the

R-points of the maximal Q-split torus in the center of G). Choose K, C G(R)



CHAPTER 6. THE COHOMOLOGY OF IGUSA VARIETIES 124

to be a maximal compact subgroup (admissible in the sense of [Art]) and define
1.
q(G) = 5 dim(G(R)/KeAg,c0) = 21 — 2.

For each 7 € Ilgisc(G(R),£Y) there exists ¢ € CX(G(R), xe) a pseudo-
coeflicient for 7. Any discrete L-parameter g, such that fzpq, ~ ¢ corre-

SpODdS to an L—packet of the form HdiSC(Gﬁ(R),f(@Gﬁ)v). Define
AN (0= Z G
¢G N3 ) - (ﬁﬂ- B and
(voz) ‘ (Sﬁn)| "

(bfﬁ = (—1)‘I(G) Z <a’w*(4PGﬁ,E)W7r’S> det(w*(go(;ﬁ)f)) . ¢Gﬁ,f(§0€ﬁ)'
NG, ~Pe

Then ¢S7 is a A p-transfer of ¢.
We will now review the base change for the groups Gz and Gj. Define the

group
G:-g = (RE/QGLl X RF/QGLﬁ) Pl {179},

where §(), )07 = (A%, \°g%) and g¥ = ®;'g°®;" . If we denote by G and
GY%6 the cosets of {1} and {0} in G} then G} = GY [ G%6. There is a natural

Q-isomorphism Gz = G% which extends to
G x Gal(E/Q) = G

so that ¢ € Gal(E/Q) maps to 6.

Let v be a place of Q. A representation II, € Irr(G7(Q,)) is called 6-stable if
I1, ~ I1, 00 as representations of Gz(Q, ). If that is the case, then we can choose
an operator A, on the representation space of II, which induces IT, = II, o §
and which satisfies A} = id. Such an operator is called normalized and it

is pinned down up to sign. We can similarly define the notion of #-stable for
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I1® € Irr(G(A®)) and a corresponding intertwining operator As for any finite
set & of places of Q. There is a correspondence between #-stable representations
of G7(Q,) together with a normalized intertwining operator and representations
of G} (Q,). We also mention that in order for a representation II € Irr(G;(A))

to be f-stable it is necessary and sufficient that IT = ¢ ® II! satisfy
o (Y)Y ~Ttoe¢, and
o [I/_, ¢ = ¢°/¢ where Ym =1y ® - @1, is the central character of IT*.

Now we shall discuss BC-matching functions. It is possible to construct for each
finite place v of Q and f,, € C°(G7(Qy)) a function ¢, € C°(G7(Qy)), which
is the BC-transfer of f,. The transfer can be described concretely in the cases
v € Unrp)g and v € SplF/FmQ, except that in the case v € Unrg,q we have the

condition that f, must be unramified. Moreover, we also have an explicit map
BCy : e (G5(Q,)) — Ir™*SYG4(Q,))

where the representations must be unramified in the case v € Unrp,q and where
there is no restriction in the case v € Sply,p, o There are normalized operators
A}y 11, = 11, 0 0 such that if I, = BC5(m,) and ¢, and f, are BC-matching
functions then

tr(HU(fv)A%v) = trmy (dn).

Note that left side of the above equality computes the trace of f,0, the function
on G760 obtained from f, via translation by 6.
The next step is to consider the base change at co. Let &7 be an irreducible

algebraic representation of G ¢ . Consider the natural isomorphism

Gﬁ(@) ~ Gﬁ(@) X Gﬁ((C)
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We can define a representation =5 of Gz by Z7 := £7®E€5. It is possible to find an
irreducible, #-stable, generic unitary representation Il=_ € Irr(Gz(R), Xgﬁl) to-
gether with a normalized operator A} and a function fg, =, € C°(G(R), x¢,)

such that

e Ilz, is the base change of the L-packet I13;4.(G#(R), &),

I

) =2 and

i

b tr(HEﬁ (fGﬁyEﬁ) © Aol'la?

o fg. = and ¢q, ¢, are BC-matching functions (where ¢, ¢, is defined as

7

a pseudocoefficient for the L-packet IT ;o (G5 (R),£Y).

n

The transfer for fnhm can be defined explicitly since the groups Gj; are es-
sentially products of general linear groups. It can be checked that for all finite
places v of QQ the transfers are compatible. For v = co we have the compatibility
relation on the representation-theoretic side follows directly from the commu-
tative diagram of L-morphisms.

Now we shall describe the transfer factors A, ( , )gﬁ At v # oo we can

choose

Ao, )G, =A%, )En

3t
<

via the fixed isomorphism G xg A® ~ G, xg A*. We choose the unique

A, )8ﬁ such that the product formula

[T2.06.mE, =1

holds for any v € G(Q) semisimple and g, € Gi(A) a (G, Gj)-regular semisim-
ple element such that + and 7, have matching stable conjugacy classes. Let

ei(As) € C* denote the constant for which

Ao (V1) = ea(Doc)DNj B(Yas:7)
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holds. Note that for @ = (n), ez(Ax) = 1.

Let P ¢, € CX(G(A™P) x J(h1:h2)(Q,)) be a complex-valued acceptable
function. (For a definition of the notion of acceptable function, see Definition 6.2
of [Sh1]). For each G € Eeu(G) we define the function d)flg on G(A) (assuming
that ¢>°P =[], o, ¢v). For v # p, 00, we take (;Sflgm € C(G7(Qy)) to be the

Ay, )gﬁ—transfer of ¢,. We take

O oo = €i(Asc) - (1)1, 57) Zdet(w*(@cﬁ)) C DG (on)>
i
where @5 runs over L-parameters such that 7zp5 ~ ¢¢ and &(pr) is the
algebraic representation of G c such that the L-packet associated to @5 is
Maise (G (R), &(r) ")
We also take
Hep € C(Ga(Qy))

to be the function constructed from ¢, in section 6.3 of [Sh2]. We shall summa-
rize the construction of (bfbg’p in the case © = (n). By definition (see the formula

above Lemma 6.5 of [Sh2])

(bﬁ _ . Mg,
Tg,p — CMg, "Pp

(MGn-,SGnann)

where the sum is taken over G-endoscopic triples for J(*1:"2) The set Z(Mg, , G,)

n?

(which can be identified with a set of cosets of Out(Mg,,, sa,, g, )) consists of

only one element in our case, so we suppress the index i € Z(Mg, ,Gy) in
5y'n" . Bach ¢p'" € C(G,(Qp)) is constructed from a function ¢y " €
C* (Mg, (Qp)) which is a A,(, )]J\/;::M)—transfer of a normalized ¢,.

The following proposition is Theorem 7.2 of [Sh2].

Proposition 6.0.6. If 97 - ¢}, € C2°(G(A>P) x J(h:h2)(Q,)) s acceptable,
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then

tr(°°" - ¢ |l He (18", Le)) = (=1)" 2 ker (Q, G)| Y u(G, G7)STE (¢1L)
Gpn

where the sum runs over the set E(G) of elliptic endoscopic triples (G, S5, M7 )-

Remark 6.0.7. Theorem 7.2 of [Sh2] is proved under the “unramified hypothesis”,
however, the only place where this hypothesis is needed is in the proof of Lemma
11.1 of [Sh1]. Lemma 5.2.1 provides an alternative to the proof of Lemma 11.1
of [Shl] in our situation, so the results of [Sh1] and [Sh2] carry over. For details,
see the discussion in the beginning of Section 5.2 of [Sh3]. The sign (—1)"1+hz
does not show up in the statement of the theorem in [Sh2], but we need to
include it because our convention for the alternating sum of the cohomology

differs from the usual one by (—1)"1+h2,

The constants «(G,Gyr) = 7(G)7(Gz) tOut(Gx, s7,m7)] "' can be com-

puted explicitly. We mention that

2 i = (

0|3
NN

)

b

|Out(Gﬁa Sii, Uﬁ)| =
1 otherwise.

We also have by Corollary 4.7 of [Sh3| the relation
Lt (£0) = 7(Gi) ™' - STE™(9),
when ¢ and f are BC-matching functions, i.e.
¢ = 9% - P, - bapc and f = [ fo. fa, =

with ¢© a BC-transfer of f© and ¢g,, a BC-transfer of fs, .Thus, assuming
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that for each 7 there exists f™ such that qbflg and f” are BC-matching, we can

write

(¢ - @) [uH (18", L¢)) = [ker (Q, G)| - 7(G) D enlgif, (f70),
Gy
where e; = 1 if i = (%, %) or 1 otherwise.
Furthermore, the twisted trace formula by Arthur, is an equality between

1520(£6) = IS0, (£6).

spec geom

By combining Proposition 4.8 and Corollary 4.14 of [Sh3]| we can compute
IG79(£0) as

spec

| det(®;10 — 1) o 71 tr(n-Indgy (T e (f) © A’

> i :
Ind (1)’
M W, T n-Ind g (a)e

where M runs over Q-Levi subgroups of G5 containing a fixed minimal Levi and
@ is a parabolic containing M as a Levi. The rest of the notation is defined on
pages 31 and 32 of [Sh3]. Note that A/n IndS (e is a normalized intertwining
Gr
operator for n-Ind 5™ (Ias)e.
We will be particularly interested in making the above formula explicit when

it = (n). In that case, I$7%(f0) is a sum of

1
5 th(né(f) /né%
H/
where II' runs over #-stable subrepresentations of R Jise> and

| | -1 -1 G / ’
——|det(®, 0 —1) ¢, tr(n-Ind 2" (I oA n ,
Agéﬂgﬂ (820 = 1) 5,0 gﬁ@nQ<an e Tndi )
Chn M

where 1T/, runs over @ '6-stable subrepresentations of R/ disc-
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Consider the finite set E;H(J(hl’h2), G, G}) consisting of certain isomorphism
classes of G-endoscopic triples (Mg.., si,nz) for J(h:h2) - Thig set is defined in
section 6.2 of [Sh2|. Let CMg, € {£1} be the constant assigned to each triple
in [Sh2|. If b is the isocrystal corresponding to (hy,ho), let M("1:72)(Q,) be
the centralizer of v (b). The isocrystal b can be described as (bp.0,bp,, .., bp,)

where by, has slopes 0 and L_ for i = 1,2 and slope 0 for i > 2. Then M (h1:52)

n—h;

is a Q, -rational Levi subgroup of G. We will define a group morphism
n-Red ") : Groth(Gs(Q,) — Groth(J"2)(Q,))

as the composition of the following maps

Sz Te

Groth(G#(Qp)) — P Groth(Mg,(Qy)) —=" Groth(M"1:72)(Q,))

(Ma;.sa5;Mc5)

LJA%}(L}Ll;Lh?)
5 Groth(J"1"2)(Q,)).

The sum runs over (Mg, $7,M7) € E;H(J(hl’h”,G, G7). The first map is the

direct sum of maps Groth(G7(Q,)) — Groth(M¢,(Q,)) which are given by

e
Bicme, - J

P(ﬁ_M Jop where i € Z(Mg,,,Gr) is a Qp-embedding Mg, — Gz
iMg,

and P(iMg,) is a parabolic subgroup of G which contains i(M¢,) as a Levi

subgroup. The map 7)g.. « is functorial transfer with respect to the L-morphism

i

M (h1h2)
LJJ(h1~h2)

fla,- The third map, is the Jacquet-Langlands map on Grothendieck

groups. We also define

1

hl,h h1,h 5
Redf’i 2)(7TG717P) = n_Red% 2)(7TG7‘11P) ® 61:27(J(h1,h2))

We can describe all the groups and maps above very explicitly in the case 77 =

(n). Indeed, ESH(J(hl’hg),G,GyL) has a unique isomorphism class represented
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by
(Mg, s, ne,) = (M"h2) 1 id).

The set Z(Mg,,, Gy,) is also a singleton in this case, so we suppress i everywhere.
This means that we can also take 7jg, = id and 7j¢g,, » = id and by Remark 6.4

of [Sh2], we may also take car, = e,(J("1:12)) which is the Kottwitz sign of

the Q,-group J (h1:h2) - There are isomorphisms
G(Qp) = Q) X GL(Fy,) X GLy(Fy,) x [ [ GLa(Fp,),
i>2

M(hth)(Qp) = Q; X (GLn—hl (Fm) X Gth (Fpl)) X (GLn—hz (sz) XGLhz (sz))

X HGLH(FPz)v

i>2

TR Q) > @ x(Dys 1 XGLy, (Fp)X(D s XGLiy (Fp,)) ¥ [ [ GLu(F).

n—hy n—hg .
i>2

Thus, e, (J(M1:72)) = (—1)2n=2=h=h2 If we write 7, = 7,0 @ (2;7p, ), then we

have
Redg"l’h"’)(wp) = (—1)}“"’}127Tp,o(§§>Red"_h1’h1 (7rpl)<§§>Red"_h2’h‘2 (Tpy ) R(Ris2mp, ).
Lemma 6.0.8. For any m, € Groth(G,(Q)))

trmy (9 ) = tr(Red" ") (m,)) (@),

Proof. Set M = Mg, . We know that ¢f, , = ep(Jhisha)y. &éw By Lemma 3.9
of [Sh2],
(3 = (IS5 (r)) (1)

Here 6} is a A,(, )" = e, (J0 ") transfer of 69 = &) - 530, ) (b
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remark 6.4 of [Sh2|, we have an explicit description of the transfer factor). Let

T M = JP()p ( )
Note that M is a product of general linear groups and J("1:72) is an inner

form of M. Lemma 2.18 and Remark 2.19 of [Sh2]| ensure that

ho) _1

trmarp (@) = tr(LI3 " (arp) (69)) = tr(LI3 " (a1 )85 0y ) (B)-

This concludes the proof. O

Lemma 6.0.9. Let il = (n1,n2) withny > ng > 0. For any m, € Groth(Gp, »,(Qyp)),

trmy(¢f. ) = tr(Red("™ ") (m,))(4],).

Proof. The proof is based on making explicit the construction of qﬁflg p from
section 6 of [Sh2] together with the definition of the functor n- Red(hl’h2) which

is a composition of the following maps:

77G

Croth(Gx(Q,)) » @D Croth(Mg,(Q,) 3" Groth(M""2)(Q,))

(Mg .56;mG65)

JM(h1 vh2)

2 Groth(J M) (@Q,)).

Recall that

d)?g,p: Z ZCMGA ¢P v

(Ma.86;.MG,) &

as functions on G(Qp), where the first sum is taken over S;H(J(hl’hQ), G,Gp)

and the second sum is taken over Z(Mg.,G5). By Lemma 3.9 of [Sh2|,

trmy (@p 1) = (T arg on (Tp) (B ), (6.1)
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Mg . 00 . (hq,h2) =1
where ¢, Gn ¢ CX(Ma,(Qp))isaAy(, )}{Ic; >’ _transfer ofqﬁg = ;.5;(J(h1,h2)).

Equation 6.1 tells us that

Mg,

617y (9T ) = > tr(fye, (mp))(dp "), (6.2)

(Mg ,56,:.mG5)

where fu_(mp) = ®icme Jg(”;MGﬁ)(Wp). The first map in the definition of
Red(ﬁhl’h"’) is the direct sum of fMGﬁ over all (Mg.., $7,M7)-

The function (bi,wcﬁ is a Ap( , )%(G}:M) -transfer of the function ¢; €
C* (M (h1:h2)(Q,)) which is itself a transfer of @9 via Ap(, )}Q?flhf;) = e, (J(Mh2)),
(All transfer factors are normalized as in [Sh2].) We will focus on making the
Ap(, )%(G’:'hy -transfer explicit first, for which we need to have a complete

description of all endoscopic triples (Mg, SG., NG )-

We have the following isomorphisms over Q,,.

G ~GL; x HRFM/QPGL"
i>1

Gnymy ~ GL1 x [ [ R, j0,GLny o
i>1

2
M(hl’hQ) =~ GL1 X HRFpi/QpGLn*hi,hi X H RFH/QPGLTL

i=1 i>2

. xGLy,) x [[ Rr,, /0, GLn.

X
Foymzn; -
i>2

2
Jhe) ~ Gy x T](D
i=1

Consider also the following four groups over QQ,, which can be thought of as

Levi subgroups of G, », via the block diagonal embeddings.

2
MGﬁ,l = GLI X HRFpi/QPGLn—hi,hi—nz,nz X HRFPZ,/QPGLnl,nQ

=1 i>2
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2
Mg, 2 =GLy x [[ Rr, /0, GLn-hihi—nimi % || Bry, /0, GLns s

1=1 1>2
2
MGﬁ,B = GLl X H RFpi/QﬂGLnfhi,hifni,ni X HRFpi/QpGLnl,nz
=1 i>2
2
MG,,-“4 =GLy x HRFp-‘/QpGLn*hi,hi*nafi,ne,fi X HRFpi/QpGthﬂz
i=1 i>2

Note that we only define M¢g,. ; when it makes sense, for example Mg, 1 is
defined only when h; > ng for i = 1,2. We define ng,, ; : J\Tc-;ﬁ\j — M (hih2) to

be the obvious block diagonal embedding. We also let
SMG?L,]' = (17 (ila il, j:1)7321,27 (17 1)i>2)7

where the signs on the F},-component are chosen such that s Mg, j is positive
on the GL,,,-block of the F},,-component and negative on the G L,,,-block of the
F},,-component.

It is easy to check, as on page 42 of [Sh3|, that SSH(J(’LDM), G, Gj) consists
of those triples (Mg, j, SG4.5, NGx,;) Which make sense. For example, if h; < ng
for i = 1,2 then £ (J(h1:h2) @ Gy) is empty, but if h; > ny for i = 1,2 then
SEH(J(hl’hZ), G,Gp) consists of four elements. The key point is to notice that
for a triple (Mg, s, ,na,) to lie in £ (T2 G Gy) it is necessary for sq
to transfer to an element of the dual group Mm2) = J(/hlv\h2) which is either
+1 or —1 in the GL,,_p,(C) block of the F},,-component.

We can extend 7, ; to an L-morphism ig,, ; : “Mg,, ; — “M"1:"2) which is
compatible with the L-morphism 7 : “G5 —% G, when we map LMGﬁJ Z—]> LGy
and LM (hi:h2) AL G via (a conjugate of) the obvious block diagonal embedding

(where we always send the G L, -block to the top left corner and the GL,,,-block

to the bottom right corner). The morphism 7, ; is defined as on page 42 of
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[Sh3], by sending z € Wg, to one of the matrices

w(z) =, 0 w(z) )], 0
0 ()= ], 0 w(z)n=m

on the F},-component of Mm2). (For i = 1,2, we send z to the first matrix
on the Fj,-component if the endoscopic group Mg ; at p; is GLp—p; hi—ns.me
and to the second matrix if the component of Mg, ; at p; is GLy—p; h;—nyni -
For i > 2, we send z to the first matrix on the F},-component.) This map 7 ;

is the unique L-morphism which makes the diagram

L pg(ha,h2) 4l~> Ly

wl ol

l:
L J L
Mg, ; —— "Gy

. . Mc. ; . .
commutative. Thus, the function ¢, “7" is a transfer of ¢;, with respect to the L-

Ggz,j .
77 and the representation-

morphism 7, ;, so we can define explicitly both (;52/1
theoretic map 7« @ Groth(Mg, ;(Qp)) — Groth(M(h1:h2)(Q,)). There
exists a unitary character X:,j : Mg, ;(Qp) — C* (defined similarly to the
character on page 43 of [Sh3]) such that the Langlands-Shelstad transfer factor
with respect to 7jg,,,; differs from the transfer factor associated to the canonical
L-morphism by the cocycle associated to X; ;- (See section 9 of [Bor| for an
explanation of the correspondence between cocycles in H* (W, , Z (]@)) and
characters Mg, ;(Q,) — C*.)

We can in fact compute x; ; on the different components of Mg, ; (Qp), by

keeping in mind that it is the character M¢, ;(Q,) — C* associated to the

cocycle in H' (W, , Z (]\76:])) which takes the conjugacy class of the standard
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Levi embedding Mc, ; — M(1:h2) to that of ng, ;. Thus, we have

X s () = @ (AN meme);

wu (N, . (det(gp a9, g50%5 ™))

Xij(gpivl’gpi,%gpiﬁ) =
“u (NF’”/E“ (det((gpivlgpi,z)E(n_nz)gggfl?:nl))))

when 7 = 1,2 and depending on whether M¢ ; has the group GLy—n, h;,—ns,ns

or the group GLy,_p, h;—n,,n, as its Fy,-component; and
qu,j (9pi,15 Gpi,2) = T (Npi/Eu (det(g,iﬁﬁ_”l)g;ﬁ?{"”))) when 7 > 2

where (A, (Gp; .15 Gpi,25 Ipi.3)i=1,25 (Ipi.1, Jp,,2)i>2) denotes an element of M¢, ;(Q,).
(The value of X: ; 1s in fact the product of the three types of factors above.)
We let @Q; be a parabolic subrgroup of M"1:h2) containing Mg, ; as a Levi

and if we let (qb;)QJ’ be the constant term of ¢y along Q; then we have

Mg j .

» Gy J = (¢;’;)Q7 . XI,] and
~ M (h1h2) 4
NG5+ (T, j) = n-Indgy ("M 5 © X g)

for any mar,_; € Trry(Mg,,;(Qp)). By Lemma 3.3 of [Sh3]

(s, (1)) (@p %) = t2(fic 5 g+ (Fare, (1)) (5). (6.3)

The group J*1:72) is an inner form of M("1:72) which is a product of general

linear groups. By Lemma 2.18 and Remark 2.19 of [Sh2],

tr(7iG .+ (fag; (1p)))(0}) = t(LJ (G (o, (7)) (8)
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’

=1tr <LJ(ﬁGﬁ,*(fMj (ﬂ'p)) ® SE(J(hl,hQ))) (¢p), (6,4)

where we’ve abbreviated Mg, ; by M;. Putting together (6.2),(6.3) and (6.4),

we get the desired result. O

Let Z! be the algebraic representation of (G, )c obtained by base change
from ;€. Let II' ~ ¢ ® I1° be an automorphic representation of G, (A) =~
GL1(Ag) X GL,(AF). Assume that

o II' ~TI' 04,

o II!

1 is generic and Z'-cohomological,

e Ramg(II) C Splp,p, o
o II! is cuspidal.

In particular, 11}, ~ Iz, which was defined above. Let &g, be a finite set of

places of Q such that
Ramp/q U Ramg(w) U Ramg(II) U {p} C &an C Splp/p, o

and let 6 = &g, U {00}
Theorem 6.0.10. Define Cq = |ker' (Q, Q)| - 7(G). For each 0 < hy,hy < n,
the following equality holds in Groth(G,(As,\{p}) X J(hh2)(Q,).

BCg o\ ipy (He(Ig" "), L)) {11}

=Cq-eo- (~1)nHh=. [Lflnleﬁn\{p}][Red;hl’b)(ﬂp)L

where eg = %1 is independent of (hy, hs).

Proof. The proof goes through identically to the proof of the first part of The-

orem 6.1 of [Sh3]. We nevertheless give the proof in detail.
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First, we explain the choice of test functions to be used in the trace formula.
Let (f*)® € HY(G,(A®)) and f&unipy € O (Gn(Asy,\ (p})) be any functions.
Let ¢© and &n\(p} De the BC-transfers of (f™)® and (f")ean\{p} from G, to
Gp. Let ¢p>°P = ¢6¢6m,\{p} and choose any ¢;, € CSO(J(hl’M)(Qp)) such that
¢°°’p¢; is an acceptable function.

For each G € £U(G) we construct the function qﬁflg € C*(Gr(A)) associ-
ated to ¢°*P¢;, as above. Recall that ((;S?g)e and (gb?g)gﬁn\{p} are the A( )g;

transfers of ¢ and ®&pa\(p)- Recall that we take

Bl o0 = €i(Doo) - (=1 D, 572) Y det(wi(964)) - DG on)s
Pr

where 7 runs over L-parameters such that 7fzpn ~ @¢ and &(pg) is the
algebraic representation of G ¢ such that the L-packet associated to @5 is
Haise (G (R), &(¢7)Y). The construction of qbfg’p can be found in [Sh2].

We will need to define a function f”, which plays the part of a BC-matching
function for (i)flg for each 7. We already have defined (f")® and fgfm\ (v} We
take (f7172)€ = C*((f")®) and f&7%,) = C(f&,())- We also define

FIL = ea(A) - (=) "D, 57) Y det(wa(9e,) - ferzen)
e
where ¢;; runs over L-parameters such that 7707 ~ e and Z(py) is the alge-
braic representation of Gy arising from £(pz). It is straightforward to verify
from their definitions that ffo and gi)flgm are BC-matching functions. Finally,
we choose fpﬁ so that its BC-transfer is qbflg}p. (Since p splits in E it can be
checked that the base change map defined in section 4.2 of [Sh3] is surjective at

p.) We set
F= M fEaniny  To - %
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The BC-transfer of f7 coincides with (Z)flg at places outside & (by compatibility
of transfers), at p and at co. At places in Gap \{p} we know at least that the BC-
transfer of f7 has the same trace as qﬁf‘g against every admissible representation

Of Gﬁ(AGfin\{p}).

By the discussion following Proposition 6.0.6, we can compute
(677 ¢ [ He(Ig" "), L¢)) (6.5)

via the spectral part of the twisted formula, to get

1 n Gnlmrze ni,n2
Ca(—1)mth 5 E tr(IT: (f™) ﬁé)Jr E Lspee ™ (f™0"2)
H/

Gnyng.nq#ng

1
g )

pec

+ Z %| det(®10 — ].)aGMn9|71 Ztr(n—Indg”( WM)e(f™) o A;*Ind%"(n}w)g)
MGG, " Ty

(6.6)
where the first sum runs over #-stable subrepresentations II' of Rg,, disc, the
sums in the middle run over groups G, ,, coming from elliptic endoscopic
groups G, n, for G (with n; > ng > 0 and some (n1,n2) possibly excluded).
The group M runs over proper Levi subgroups of G,, containing a fixed minimal
Levi and IT}; runs over @, L9-stable subrepresentations 1%, of R dise-

We claim that the formula above holds for any (boo’p(b;, without the assump-
tion that it is an acceptable function. To see this, note that Lemma 6.3 of
[Sh1] guarantees that there exists some element fr® € J(h1:72)(Q,) such that
¢°°’p(¢;)(N) (9) = gboo’p(g)qb;(g(frs)N) is acceptable for any sufficiently large V.
(The paper [Sh1] treats general Igusa varieties, and it is easy to check that our

case is covered.) So the equality of (6.5) and (6.6) holds when ¢;, is replaced by
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(¢;,)(N). Both (6.5) and (6.6) are finite linear combinations of terms of the form
trp(((;ﬁ;,)(N)) where p € Irr(J(h1:72)(Q,)). In order to see that this is true for
(6.6), we need to translate it from computing the trace of 7 to computing the
trace of ¢f’g to computing the trace of (j);, using Lemmas 6.0.8 and 6.0.9. Now
the same argument as that for Lemma 6.4 of [Sh1] shows that (6.5) and (6.6)
are equal for ¢>P (¢;,)(N ) for every integer N, in particular for N = 0. Thus,
we can work with arbitrary ¢°P¢/.

Choose a decomposition of the normalized intertwining operators

oA Al /
gl e Al AL
Set o
/ / 1 Al
Al'Il .—— AHL@‘ . Hsfin . Héc 6 {il}
AV T A0 A0 AL ’
m s I L,

Stin
where the denominators on the right side are the normalized interwiners cho-
sen above. In the sum (6.6), the third term evaluates the trace of f™ against
representations induced from proper Levi subgroups. The second term has a
similar form: outside the set & we have the identity (f712)% = *((f")®) and

formula 4.17 of [Sh3] tells us that

615 (G, (F)F) = 60(Copy e (TIE)) (™) S,

where fnl,m* is the transfer from G,,, », to G, on the representation-theoretic
side and consists of taking the parabolic induction of a twist of II§;. The
multiplicity one result of Jacquet and Shalika (see page 200 of [AC]) implies that
the string of Satake parameters outside a finite set G of a cuspidal automorphic
representation of GL,,(Ar) unramified outside & cannot coincide with the string
of Satake parameters outside & of an automorphic representation of GL, (Ar)

which is a subquotient of a representation induced from a proper Levi subgroup.
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Thus, if we are interested in the IT®-part of tr(¢°°’p¢;|Lch(Ig(h"hz), L)), then
only the first term of (6.6) can contribute to it.

Thus, we are left to consider

Al
(1) e (; T e () er(IT (£2) A%, )
Hl

Y xane () x ()

(T17)S £I11. &
where (IT')® runs over a set of unramified representations of G,,(A®). On the
other hand, we can also decompose tr(¢°°’p¢;|Lch(Ig(h1’h2),Eg)) into a ITH®-

part and (7')®-parts, where BC((7")®) # II**®. We conclude as in [Sh3| that

Co Al .
tr(deg, \ipy SpluHe (18" "), LO{ITNY) = (—1)" 72 =2 Sl eI (&) Ay, )-

5 A0,
(6.7)
Now II%, ~ Iz, so tr(ITL (f2)A} ) =2(—1)%% = 2. We also have
tr(I (FM)AY ) = trymy (o7, ) = tryRed ") () (¢)) (6.8)
p\Jp » P\ Igp n P/\¥p
by Lemma 6.0.8 and
(o o) (FSan o)Ay, ) = T (Penip))- (6.9)

Putting together (6.7), (6.8) and (6.9) and applying BCs, \{p} We get the

desired result with eq = Af;, /A%, which is independent of (hq, hs). O



Chapter 7

Proof of the main theorem

Let E/Q be an imaginary quadratic field in which p splits. Let F;/Q be a
totally real field and let w be a prime of Fy above p. Set F' = EF;. Let
F5 be a totally real quadratic extension of QQ, in which w = wywsy splits and
set F' = EF,. Let n € Z>o . Also denote Fy by F*. Let II be a cuspidal
automorphic representation of GL,, (Ap/).

Consider the following assumptions on (E, F’, F,II):

o [F1:Q] >2

Ramp,/q U Ramg(w) U Ramg(Il) C Splp, p+ o;

o (IN)V ~Tloc;

1 is cohomological for an irreducible algebraic representation = of GL,, (F'®q

C).
e BCp,p/(II) is cuspidal
Set II° = BCp,p/(I1) and E° = BCr,r/(Z). The following lemma is the same

as Lemma 7.2 of [Sh3].

142
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Lemma 7.0.11. Let TI° and Z° as above. We can find a character : AL/E* —
C* and an algebraic representation {c of G over C satisfying the following con-

ditions
® Yo = Y°/Y;
o =0 is isomorphic to the restriction of E to Rp)o(GLy) xqC, where &' is
obtained from &c by base change from G to Gy;
° gd;ixo =y, and
e Ramg(¢) C Splp/p+ g-
Moreover, if | splits in E then
° wOEH = 1 where u s the place above | induced by LflT|E.

Set II' = ¢ ® I1°. Then II! is a cuspidal automorphic representation of
GL1(Ag) x GL,(AF). Let £ = y&c, where & is as in Lemma 7.0.11.

Let Ay be the universal abelian variety over Xy. Since Ay is smooth over
Xu, A?}E satisfies the conditions in Section 4.3. In particular, .AZL& is locally
etale over a product of strictly semistable schemes. For S, T C {1,...,n}, let
Al =AY Xxy Yus.r

Define the following admissible G(A*?)-modules with a commuting contin-

uous action of Gal(F'/F'):

Hj(XIw(m)a‘Cf) = llI_I}H](XU Xpr Flvﬁf) = Hj(X7£§)IW(m)7
Ur

HY (A Q) = lim HY (AS < FY, Q).
Ur

Also define the admissible G(A°?) x (Frobg)%-module

H (A;rvlf(m),S,T’ Q) = lim Hj(AZL,%,T xp IF, Q).
Ur
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Note that a¢ is an idempotent on H7 (A} ), 8, Qi(te)) and

w(
ag HIMe (AL s Qulte)) = HY (Yiw(m), 5,7, Le)-

Proposition 7.0.12. For each rational prime I # p there is a G(A>P) x

(Frobg)”-equivariant spectral sequence with a nilpotent operator N
BCP(BY™ T (Iw(m), €)[IT4°]) =

BCP(WD(H™ (X1w(m), £¢)lgai(i ) K) [ITS])Fss),

where
BCP(By™ " (Tw(m), )[T49)) =
P BCP(acH™ ™ (AL ), Gr! Gri RyQu(te)) [TTHE]).
k—l=—1

The action of N sends BCP(ag H™ ™ (A?Zf(m), Gr!Gry RypQy (te))[TIHS]) to

BC”(agH””J””& (Am£ ) Grl+1GIk,1R¢@l(?§§))[HI’G]).

Tw(m

Furthermore, there is a direct sum decomposition

BCP(acH™ ™ (AT, Gr'Gri Ry (1)) [IT°)) = @) BCP (M e (k. 1),
j=>0

where

k+l1

+me,s
BCP(Mj,anmgfj(kv 1) = @ @ H.js‘,T ) (k,1)
s=1 #S=j+s#T=j+k+1—s+1
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and
H’é}m&s(k,l) BCp(agHm+m£ 2j—k— l+1(A o ST’Ql(t§ ]7k+1))[H1’6D

= Bcp(Hmi%‘ikinl(}/IW(m),S,Ta Ql(_.j —k+ 1))[1—1176])'

Proof. Note that AZ%/ Ok satisfies the hypotheses of Section 4. We have a

spectral sequence of G(A®?) x (Frobg)?-modules with a nilpotent operator N:
EY™ 7 (Iw(m), €) = H™ (A xp Fy, Qu(t)),
where

By (Iw(m), ©) = @ H™AFS xz F,Gr'Gri RuQi(t)).

k—l=—1

N will send H™(AS, Gr'Gr RyQy(t)) to H™ (AL, G Gry_y RypQy(t)).

By Corollary 4.3.10, we also have a G(A*) x (Frobp)%-equivariant isomor-

phism
meg
H™ (A xx F, Gr'GriRyQu(t)) ~ @D Mjm—;(k,1)
7>0
where
k+l1 )
Mim-;k0)=@ O  HypkD
s=1 #S=j+s
#T:j+k+lfs+1
and

Hg;(k,Z) = H™ 2 A xe B Qu(t — j — k+1)).

We take ¢ = t¢, apply ag, replace j by j 4+ m¢ and take the inverse limit over
UP. We get a spectral sequence of G(A>?) x (Frobg)?-modules, converging to
Hj(XIW(m),ﬁg). We identify Hj(XIW(m),Eg) with its associated Weil-Deligne

representation and we semisimplify the action of Frobenius. After taking I1!-®-
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isotypical components and applying BCP we get the desired spectral sequence.

O

Corollary 7.0.13. Keep the assumptions made in the beginning of this section.

The Weil-Deligne representation
WD(BCP(H*" ™ (X1w(m)» L&)l qar(i /10y I E]) 77

is pure of weight mg — 2t¢ + 2n — 2.

Proof. By Proposition 5.3.5,
BCP(H? (Yiw(m),s,1, Le)[ITVE]) = 0
unless j = 2n — #S5 — #7T. Thus, the terms of the direct sum decomposition
BCP(Mj.mme—;j(k, 1)),
which are all of the form
BOP(H™ 27 F = (Vi 5,7 Qu(—7 = k + 1))[ITH9))

with #S =j+ s and #T = j+ k+ 1 — s+ 1, vanish unless m = 2n — 2. This
means that the terms of the spectral sequence BC”’(E?m+7n§_i(Iw(m)7 &)[IIL9))

vanish unless m = 2n — 2. If m = 2n — 2 then each summand of
,2n—24+mg—1
BOP(EP" 2 (Iw(m), ) [11°))
has a filtration with graded pieces

BCP(H2n7272j7k71+1(Ylw(m),S,T, Eg(*j — k4 1))[1—[1,6]),
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where k — [ = —i. These graded pieces are strictly pure of weight m¢ — 2¢¢ +

2n — 2+ k — [ — 1, which only depends on i. Thus, the whole of
BCP(By ™2 (Tw(m), ) [TT9))

is strictly pure of weight m¢ — 2t¢ + 2n — 2 — ¢ — 1. The spectral sequence
degenerates at Fy, since Ei’mﬂ' = 0 unless m = 2n — 2 and also the abutment

is pure of weight m¢ — 2t¢ + 2n — 2. Thus,
BCP(WD(H™ (Xtwm)» Lol Gal (/0 1))

vanishes for m # 2n—2 and is pure of weight mg¢ —2t¢+2n—2 for m = 2n—2. 0O

Theorem 7.0.14. Letn € Z>3 be an integer and L be any CM field. Let ! be a

prime and t; be an isomorphism v; : Q; — C. Let II be a cuspidal automorphic

representation of GL,(AL) satisfying

o [IV~Tloc

o II is cohomological for some irreducible algebraic representation =.
Let

Ry(T0) : Gal(L/L) — GL,(Q)

be the Galois representation associated to I by [Sh3, CHJ. Let p # 1 and let y be
a place of L above p. Then we have the following isomorphism of Weil-Deligne

respresentations

WD(Ri(I)l gz, /,)" " = 4 Loz, (I1,).

Proof. This theorem has been proven by [Sh3] except in the case when n is even

and = is not slightly regular. In that exceptional case it is still known that
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we have an isomorphism of semisimplified W -representations by [CH], so it
remains to check that the two monodromy operators N match up. By Corollary
5.3.4, II, is tempered. This is equivalent to L;lﬁnyLy (IT,) being pure of weight
2n—2. In order to get an isomorphism of Weil-Deligne representations, it suffices
to prove that WD(RZ(H)|Gal(Ey/Ly))F’SS is pure.

We first will find a CM field F’ such that

e [V = EFy, where E is an imaginary quadratic field in which p splits and
F1 = (F’)Czl has [Fl : Q} Z 27

e F' is soluble and Galois over L,

o 119, = BCp: /(1) is a cuspidal automorphic representation of G L, (Arr),

and
e there is a place p of F' above y such that H%/,p has an Iwahori fixed vector,
and a CM field F' which is a quadratic extension of F’ such that
e p =pipo splits in F,
e Ramp/q U Ramg(w) U Ramg(II) C Splp/p o, and
o 119 = BCp,p/(I1},) is a cuspidal automorphic representation of GL, (Ar).

To find F and F” we proceed as in the proof of Corollary 5.3.4. Set [T} = I1%.®1),
where 1 is chosen as in Lemma 7.0.11.

We claim that we have isomorphisms
Ce - (Ry(I)| oy y5y)¥* = C - Ri(T%)¥? ~ R () @ Ry(ep)

where Rf(H};) was defined in Section 4. The first isomorphism is clear. The

second isomorphism can be checked by Chebotarev locally at unramified places,
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using the local global compatibility for R;(I1%,) and the formula
g g p Yy F
RZ(H};) = eoCq + [(mp0 © Art@;ﬂwﬂg ® Ll_lﬁF‘;,n(H(}):‘/7p)®2].

(It can be checked easily, either by computing the weight or by using the spectral
sequences above that RF(ITL) # 0 if and only if k¥ = 2n — 2 and thus that
ep = (—=1)?""2=1.)

We also have

BOP(H?"(X1yy - LITEE)) =~ (dim mh¥ ) - T097 @ R0 (1))

as admissible representations of G(A°?) x Gal(F'/F'). By Corollary 7.0.13,
WD(RIQ””(H},)|GGZ(F;/F‘;)) is pure of weight m¢ — 2t¢ +2n — 2. By Lemma 1.7
of [TY],

WD(R(p)**| Gar(ry s y))

is also pure. It has weight 2n—2. The monodromy operator acts on R;(I1%, )®2|WF£:
as I N+ N®1, where N is the monodromy operator on Rl(H%/)|WFé . We wish
to show that V := WD(R;(1'[%,)|WF|s )E=% is pure of weight n — 1. Consider
the direct sum decomposition V' = @;c;V;, where V; is strictly pure of weight
n — 1+ i. It suffices to prove that N? : V; — V_; is injective for every i > 0,
since then we can compare dimensions to deduce that N? is an isomorphism.
Let z € V; and assume that N’z = 0. Since 2 € V;, the vector z ® = belongs
to the subspace of WD(R;(H%,)®2|WFF,‘ )E' =55 which is strictly pure of weight

2n — 2 + 2¢. But then
2

N (z®z) = ZN’“x@NQFkx =0,
k=0

which contradicts the purity of W D(R; (H%’)@)Q‘szg )(F=35) Thus, WD(R, (H%l)|Gal(pé/Fé))F_ss



CHAPTER 7. PROOF OF THE MAIN THEOREM 150

has to be pure. By Lemma 1.4 of [TY], purity is preserved under finite exten-

sions, so WD(R;(H)|Gal(Ey/Ly))F’SS is also pure. O
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