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Local-global compatibility and the action of
monodromy on nearby cycles

Abstract

In this thesis, we study the compatibility between local and global Langlands

correspondences for GLn. This generalizes the compatibility between local and

global class field theory and is related to deep conjectures in algebraic geometry

and harmonic analysis, such as the Ramanujan-Petersson conjecture and the

weight monodromy conjecture. Let L be a CM field. We consider the case when

Π is a cuspidal automorphic representation of GLn(A∞L ), which is conjugate

self-dual and regular algebraic. Under these assumptions, there is an l-adic

Galois representation Rl(Π) associated to Π, which is known to be compatible

with the local Langlands correspondence in most cases (for example, when n is

odd) and up to semisimplification in general. In this thesis, we complete the

proof of the compatibility when l "= p by identifying the monodromy operator

N on both the local and the global sides. On the local side, the identification

amounts to proving the Ramanujan-Petersson conjecture for Π as above. On

the global side it amounts to proving the weight-monodromy conjecture for part

of the cohomology of a certain Shimura variety.
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Chapter 1

Introduction

1.1 Langlands correspondences and local-global

compatibility

This thesis strengthens the compatibility of local and global Langlands corre-

spondences for GLn. The Langlands program provides a framework for gener-

alizing class field theory, one of the major achievements of 20th century number

theory, to the non-abelian setting. It is an intricate network of conjectures,

meant to unify different areas of mathematics, such as representation theory,

number theory and algebraic geometry. In the case of GLn, the Langlands pro-

gram predicts a global correspondence between automorphic representations of

GLn and n-dimensional Galois representations, which we state below.

Conjecture 1.1.1. (Langlands, Fontaine-Mazur) Let L be a number field and

l a rational prime. There is a bijection between the following sets consisting of

1
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isomorphism classes:

{
cuspidal automorphic

reps of GLn(AL)

algebraic

}
↔






irred, cont. l-adic reps
Gal(L̄/L)→GLn(Q̄l)

unram. except at finitely many places
de Rham at l




 .

The “cuspidal” condition on the automorphic side is expected to correspond

to the “irreducible” condition on the Galois side. The “algebraic” condition is

a condition on the infinitesimal character of the automorphic representation at

∞. This character can be thought of as a multiset of complex numbers via

the Harish-Chandra isomorphism and the requirement is that these complex

numbers be in fact integers. Its counterpart on the Galois side is the technical

requirement that the Galois representation be “de Rham at l”, which comes from

p-adic Hodge theory. This conjecture is known in many special cases, but it is

quite open in general. For n = 1, the conjecture is a consequence of global class

field theory.

At the same time, there is a local version of the Langlands correspondence,

which in the case of GLn was constructed by Harris and Taylor in 2001 [HT].

This correspondence generalizes local class field theory. If we let p be a rational

prime and K/Qp be a finite extension, then local class field theory gives a

canonical isomorphism

ArtK : K× → W ab
K ,

which takes uniformizers to geometric Frobenius elements.

We now let Irr(GLn(K)) denote the set of isomorphism classes of irreducible,

smooth representations of GLn(K) over C. Local Langlands is a correspondence

between Irr(GLn(K)) and certain objects very closely related to local Galois rep-

resentations, called Weil-Deligne representations. A Weil-Deligne representation

of the Weil group WK of K over C is a triple (V, r, N), where

• V is a finite-dimensional C-vector space
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• r is a representation of WK on V with open kernel

• and N is a nilpotent endomorphism of V , which satisfies a certain com-

patibility with r, namely that for any σ ∈ WK

r(σ)Nr(σ)−1 = |Art−1
K (σ)|KN.

Weil-Deligne representations of WK are roughly equivalent to continuous rep-

resentations of Gal(K̄/K). A Weil-Deligne representation is called Frobenius

semisimple if r is semisimple. Let WDRepn denote the set of isomorphism

classes of n-dimensional Frobenius semisimple Weil-Deligne representations of

WK over C.

Theorem 1.1.2. (Harris-Taylor, Henniart) For any finite extension K/Qp,

there exists a collection of bijections

recK : Irr(GLn(K)) → WDRepn(WK)

for every n ≥ 1 satisfying the following properties:

• for n = 1 the bijection is via composition with Art−1
K .

• the bijection is compatible with twists by characters, with central characters

and with duals.

• for [π1] ∈ Irr(GLn1(K)) and [π2] ∈ Irr(GLn2(K)) then the L-factors and

ε-factors of π1 × π2 and rec(π1)⊗ rec(π2) are compatible.

The local and global correspondences are expected to be compatible, in the

same way that local and global class field theory are compatible. For exam-

ple, in the case of classsical modular forms, the compatibility ensures that the

eigenvalues of Frobenius on the Galois side match up with the Hecke eigenvalues
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coming from the automorphic side. In general, the compatibility characterizes

the global correspondence uniquely and its precise statement is as follows.

Conjecture 1.1.3. (Local-global compatibility) Keep the notations as in Con-

jecture 1.1.1 and Theorem 1.1.2. Fix an isomorphism ιl : Q̄l * C. Let Π be

a cuspidal automorphic representation of GLn(AL) which is algebraic and let

Rl(Π) be the l-adic Galois representation associated to it.

Then for each place y of L above a rational prime p we have an isomorphism

of Weil-Deligne representations

WD(Rl(Π)|Gal(L̄y/Ly))
F−ss * ι−1

l recLy (Π∨y ⊗ |det|
1−n

2 ).

1.2 History of the problem

The question of proving local-global compatibility has historically been in-

terwtined with the question of constructing Galois representations. This is the

traditional name for realizing the arrow

{
cuspidal automorphic

reps Π of GLn(AL)

algebraic

}
→






irred, cont. l-adic reps
Rl(Π):Gal(L̄/L)→GLn(Q̄l)

unram. except at finitely many places
de Rham at l




 .

A general strategy is to find the Galois representation in the l-adic cohomology

of certain algebraic varieties, called Shimura varieties. Other than global class

field theory, the first major result in this direction goes back to Eichler-Shimura,

Deligne and Deligne-Serre who constructed Galois representations associated to

classical modular forms using modular curves.

For general n, a major breakthrough in the construction of Galois represen-

tations was obtained by Clozel [Cl1], who essentially constructed Rl(Π) under

the following conditions:
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• L is a CM field,

• Π satisfies Π∨ * Π ◦ c, where c is complex conjugation,

• Π∞ is regular algebraic,

• Π is square-integrable at a finite place.

Roughly, the first two conditions ensure that Π comes an automorphic repre-

sentation of a unitary group via quadratic base change. The third condition

ensures that this automorphic reprsentation for a unitary group can be “seen”

in the cohomology of a unitary PEL-type Shimura variety. The fourth condition

ensures that one can work with a unitary group with trivial endoscopy, which

simplifies the trace formula used to compute the cohomology of the Shimura

variety.

Under the same conditions on Π, Harris and Taylor [HT] proved local-global

compatibility at all places of residual characteristic p "= l and up to semisimplifi-

cation. This means that they obtained an isomorphism of WK-representations,

but did not pin down the monodromy operator N coming from the global rep-

resentation Rl(Π). We comment briefly on the key geometric input of the ar-

gument. Harris and Taylor use a very special kind of Shimura variety, which,

in addition to having trivial endoscopy, is associated to a unitary group with

signature (1, n−1)×(0, n)×· · ·×(0, n) at infinity. It is a PEL-type Shimura va-

riety, which means that it is a moduli space for abelian varieties, equipped with

polarizations, endomorphisms and level structure. These abelian varieties have

to satisfy an important compatibility, called the Kottwitz determinant condition

[Ko1]. If one wants to compute Galois representations arising from cohomology

of the Shimura variety, locally at a place y of L, one can use an integral model

defined over the ring of integers OLy of Ly. This integral model is proper, but in

general not smooth. The moduli interpretation extends to the integral model,
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however, and the Kottwitz determinant condition determines the structure of

the p-divisible group of each abelian variety (p here is the residue character-

istic of y). For signature (1, n − 1) × (0, n) × . . . (0, n), the p-divisible group

is essentially a one-dimensional Barsotti-Tate OLy - module. This leads to the

discovery that, in some sense, the singularities of the integral model are the

same as the singularities of the Lubin-Tate tower, whose cohomology realizes

the local Langlands correspondence.

Taylor and Yoshida [TY] extended the compatibility under the four con-

ditions above to Frobenius semisimplification. The idea for proving Conjec-

ture 1.3.1 in this case is to show that both WD(Rl(Π)|Gal(L̄y/Ly
)F−ss and

ι−1
l Ln,Ly (Πy) have a remarkably elegant form, called “pure” in the terminol-

ogy of [TY]. A nice feature of purity is that it completely identifies the mon-

odromy operator. Moreover, purity reflects certain deep intuitions coming from

algebraic geometry and harmonic analysis.

To explain where the notion of purity originates, let K be a p-adic field for

p "= l.

Definition 1.2.1. A Weil-Deligne representation (V, r, N) of WK is called

“strictly pure of weight k” if the monodromy operator N = 0 and if every

eigenvalue of Frobenius is a Weil qk-number, where q is the cardinality of the

residue field of K.

From the Weil conjectures [De1, De2] it follows that the etale cohomology

of a proper, smooth variety over a finite field always gives rise to a strictly

pure Weil-Deligne representation. However, the etale cohomology of a proper,

smooth variety over K doesn’t have to be strictly pure, so a more general notion

is needed in this case.

Definition 1.2.2. A Weil-Deligne representation (V, r, N) is called “pure of

weight k” if V has an increasing filtration FilWi , with i ∈ k+Z whose ith graded
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piece is strictly pure of weight i and such that N i induces an isomorphism

grW
k+iV * grW

k−iV .

The weight-monodromy conjecture ([De2, I2, RZ]) states that the etale

cohomology of a proper, smooth variety over K always gives rise to a pure

Weil-Deligne representation. Therefore, identifying the monodromy operator in

WD(Rl(Π)|Gal(L̄y/Ly
)F−ss amounts to proving the weight-monodromy conjec-

ture for part of the cohomology of a Shimura variety with signature (1, n− 1)×

(0, n)× · · · × (0, n).

On the other hand, the purity of ι−1
l Ln,Ly (Πy) follows from the Ramanujan-

Petersson conjecture for Π as above. This conjecture predicts the fact that

the local components at finite places of cuspidal automorphic representations of

GLn(AL) (with unitary central characters) are tempered [Sar]. It is a general-

ization of the corresponding statement for Ramanujan’s ∆-function [Ra], which

followed from Deligne’s proof of the Weil conjectures [De1]. This conjecture, in

the case where Π is square-integrable at a finite place, had already been proved

by Harris and Taylor [HT] as a consequence of the Weil conjectures, since they

constructed Rl(Π) in the cohomology of a proper, smooth variety over L.

The key insight of [TY] is that it is possible to prove the weight-monodromy

conjecture for the Shimura variety with Iwahori level structure at y, in which

case the cohomology of the generic fiber can be computed via the Rapoport-Zink

weight spectral sequence. The inputs of the first page of the spectral sequence

are the cohomologies of closed Newton polygon strata in the special fiber of the

Shimura variety. These are proper, smooth schemes, whose cohomology realizes

parts of the representation ι−1
l Ln,Ly (Πy)ss. Using the machinery of [HT], Taylor

and Yoshida compute the cohomology of each closed Newton polygon stratum

explicitly and prove that the Π∞-part of each cohomology is concentrated in the

middle dimension cohomology. Therefore, after restricting to the Π∞-part, the
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first page of the Rapoport-Zink weight spectral sequence is concentrated on a di-

agonal and so the spectral sequence degenerates at the first page. This provides

exactly the filtration needed to prove the purity of WD(Rl(Π)|Gal(L̄y/Ly
)F−ss.

Harris-Taylor and Taylor-Yoshida therefore proved Conjecture 1.3.1 under

the assumption that Π is square-integrable at a finite place. Shin [Sh3] later

removed the condition that Π be square-integrable at a finite place, by working

with a unitary group with the same signature (1, n−1)×(0, n)×· · ·×(0, n), but

allowing endoscopy. He constructed Rl(Π) when n is odd and established full

local-global compatibility for l "= p. The difficulty when n is even comes from the

fact that there is a cohomological obstruction to the existence of a unitary group

with the desired signature at infinity and which is quasi-split. Shin found Rl(Π)

in the endoscopic part of the cohomology of a Shimura variety for n+1, but this

is only “visible” when Π∞ satisfies an additional regularity condition. Under

this condition, Shin again proved local-global compatibility in full for l "= p.

Chenevier and Harris [CH] then constructed the Galois representation in the

missing cases through a p-adic deformation argument. However, their argument

could only prove local-global compatibility for l "= p up to semisimplification.

In order to complete the proof of Conjecture 1.3.1 for L a CM field and Π

a conjugate self-dual, regular algebraic, cuspidal automorphic representation of

GLn(AL), one needs to treat the missing case of the compatibility: namely to

identify the monodromy operator in the case when n is even without any extra

assumptions on Π∞. We remark that in this thesis we are concerned with local-

global compatibility at primes p "= l. Simultaneously with writing this thesis,

there has been a huge amount of progress in proving local-global compatibility

when p = l: the papers of Barnet-Lamb, Gee Geraghty and Taylor [BLGGT1,

BLGGT2] prove the compatibility for l = p under the same assumptions as

[Sh3, CH]. We have, since then, also found a way to identify the monodromy
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operator when l = p and n is even [Car], using different methods than those of

this thesis.

1.3 The results and methods of this thesis

In this thesis we complete the proof of the following theorem.

Theorem 1.3.1. Let n ∈ Z≥2 be an integer and L be any CM field with complex

conjugation c. Let l be a prime of Q and ιl be an isomorphism ιl : Q̄l → C. Let

Π be a cuspidal automorphic representation of GLn(AL) satisfying

• Π∨ * Π ◦ c

• Π is regular algebraic (this is the same as asking Π to be cohomological for

some irreducible algebraic representation Ξ of GLn(L⊗Q C)).

Let

Rl(Π) : Gal(L̄/L) → GLn(Q̄l)

be the Galois representation associated to Π by [Sh3, CH]. Let p "= l and let y be

a place of L above p. Then we have the following isomorphism of Weil-Deligne

respresentations

WD(Rl(Π)|Gal(L̄y/Ly))
F−ss * ι−1

l Ln,Ly (Πy).

Here Ln,Ly (Πy) = rec(Π∨y ) ⊗ |det| 1−n
2 is the image of Πy under the local

Langlands correspondence, where the geometric normalization is used.

In the process of proving Theorem 1.3.1, we also prove the Ramanujan-

Petersson conjecture for Π as above.

Theorem 1.3.2. Let n ∈ Z≥2 be an integer and L be any CM field. Let Π be

a cuspidal automorphic representation of GLn(AL) satisfying
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• Π∨ * Π ◦ c

• Π∞ is cohomological for some irreducible algebraic representation Ξ of

GLn(L⊗Q C).

Then Π is tempered at any finite place of L.

As mentioned in Section 1.2, the above theorems are already known when

n is odd or when n is even and Π is slightly regular, by work of Shin [Sh3].

They are also known if Π is square integrable at a finite place, by the work

of Harris-Taylor [HT] and Taylor-Yoshida [TY]. If n is even then Chenevier

and Harris construct in [CH] a global Gal(L̄/L)-representation Rl(Π) which is

compatible with the local Langlands correspondence up to semisimplification.

Theorem 1.3.2 was proven by Clozel [Cl2] at the places where Π is unramified.

We extend the local-global compatibility up to Frobenius semisimplification, by

proving that both Weil-Deligne representations are pure.

The fact that ι−1
l Ln,Ly (Πy) is pure of some weight follows once we know The-

orem 1.3.2 for all σΠ, where σ ∈ Aut(C). For the representation WD(Rl(Π)|Gal(L̄y/Ly)),

our strategy is as follows: we find the Galois representation Rl(Π)⊗2 in the co-

homology of a system of Shimura varieties XU associated to a unitary group

which looks like

U(1, n− 1)× U(1, n− 1)× U(0, n)d−2

at infinity. Following the same structure of argument as Taylor-Yoshida in [TY],

we prove that the Weil-Deligne representation associated to

Rl(Π)⊗2|Gal(L̄y/L)

is pure by explicitly computing the action of the monodromy operator N on
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the cohomology of the system of Shimura varieties. We use Theorem 1.3.2 at a

crucial point in the computation. We conclude that WD(Rl(Π)|Gal(L̄y/Ly))F−ss

must also be pure of some weight.

To summarize, there are two main parts to the argument: a geometric input

and a representation-theoretic input. The geometric input computes the action

of the monodromy operator on the complex of nearby cycles on a certain kind

of proper, but not smooth, scheme. This does not depend so much on the fact

that the scheme we work with is a Shimura variety. The representation-theoretic

input proves the Ramanujan-Petersson conjecture via a stable trace formula for

computing the cohomology of Shimura varieties or other closely related varieties.

We start by explaining the geometric input, i.e. we briefly outline our com-

putation of the action of N on the Weil-Deligne representation associated to

Rl(Π)⊗2|Gal(L̄y/Ly). First, we base change Π to a CM field F ′ such that there is

a place p of F ′ above the place y of L where BCF ′/L(Π)p has an Iwahori fixed

vector. It suffices to study the Weil-Deligne representation corresponding to

Π0 = BCF ′/L(Π) and prove that it is pure. We then take a quadratic extension

F of F ′ which is also a CM field and in which the place p splits p = p1p2. We

let σ ∈ Gal(F/F ′) be the automorphism which sends p1 to p2. We choose F

and F ′ such that they contain an imaginary quadratic field E in which p splits.

We take a Q-group G which satisfies the following:

• G is quasi-split at all finite places.

• G(R) has signature (1, n − 1) at two embeddings which differ by σ and

(0, n) everywhere else.

• G(AE) * GL1(AE)×GLn(AF ).

We let Π1 = BCF/F ′(Π0). Then the Galois representation Rl(Π0) can be seen

in the Π1,∞-part of the (base change of the) cohomology of a system of Shimura
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varieties associated to G. We let XU be the inverse system of Shimura varieties

associated to the group G. We let the level U vary outside p1p2 and be equal

to the Iwahori subgroup at p1 and p2. We construct an integral model of XU

which parametrizes abelian varieties with Iwahori level structure at p1 and p2.

By abuse of notation, we will denote this integral model by XU as well. The

special fiber YU of XU has a stratification by YU,S,T where the S, T ⊆ {1, . . . n}

are related to the Newton polygons of the p-divisible groups above p1 and p2.

We compute the completed strict local rings at closed geometric points of XU

and use this computation to show that XU is locally etale over a product of

strictly semistable schemes, which on the special fiber are closely related to the

strata YU,S,T . If we let AU be the universal abelian variety over XU , then AU

has the same stratification and the same geometry as XU .

Let ξ be an irreducible algebraic representation of G over Q̄l, which deter-

mines non-negative integers tξ, mξ and an endomorphism aξ ∈ End(Amξ

U /XU )⊗Z

Q. We are interested in understanding the Π1,∞-part of

Hj(XU ,Lξ) = aξH
j+mξ(Amξ

U , Q̄l(tξ)).

Thus, we study the cohomology of the generic fiber Hj(Amξ

U , Q̄l) and we do

so via the cohomology of the complex of nearby cycles RψQ̄l over the special

fiber of Amξ

U . The key ingredients in studying the complex of nearby cycles

together with the action of monodromy are logarithmic schemes, the weight

spectral sequence as constructed by Saito [Sa2] (which on the level of complexes

of sheaves describes the action of monodromy on the complex of nearby cycles

for strictly semistable schemes), and the formula

(RψQ̄l)X1×X2 * (RψQ̄l)X1 ⊗L (RψQ̄l)X2 ,
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when X1 and X2 are semistable schemes. Using these ingredients, we deduce

the existence a spectral sequence relating terms of the form Hj(Amξ

U,S,T , Q̄l)

(up to twisting and shifting) to the object we’re interested in, Hj(Amξ

U , Q̄l).

This spectral sequence is, in some sense, a generalization of the Rapoport-Zink

spectral sequence [RZ] for a strictly semistable scheme to the case of a scheme

which looks locally like a product of strictly semistable schemes.

At this stage, the representation-theoretic input comes into play. The coho-

mology of each stratum Hj(Amξ

U,S,T , Q̄l) is closely related to the cohomology of

Igusa varieties. The next step is to compute the Π1,∞-part of the cohomology of

certain Igusa varieties, for which we adapt the strategy of Theorem 6.1 of [Sh3]

and the stable trace formula deduced in [Sh2]. Using the result on Igusa vari-

eties, we prove Theorem 1.3.2 and then we also make use of the classification of

tempered representations. We prove that the Π1,∞-part of each Hj(Amξ

U,S,T , Q̄l)

vanishes outside the middle dimension and thus that our spectral sequence de-

generates at E1. The E1 page of the spectral sequence provides us with the

exact filtration of the Π1,∞-part of

lim
−→
Up

H2n−2(XU ,Lξ)

which exhibits its purity.

1.4 Organization of the thesis

We now describe the organization of this thesis. In Chapter 2 we define the

PEL datum, unitary group and Shimura varieties we shall work with, we define

integral models for these Shimura varieties as well as stratifications of their

special fibers. We study the geometry of the integral model with Iwahori level

structure, both globally, in terms of the stratification, and locally, in which case
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it essentially looks like a product of strictly semistable schemes.

In Chapter 3 we define a log structure over the Shimura variety with Iwahori

level structure and show that this log structure gives rise to a log smooth scheme.

We review and use Nakayama’s results on nearby cycles for log smooth schemes

[Na], computing the sheaves of nearby cycles on our Shimura variety explicitly.

We also review Illusie’s computation of the complex of nearby cycles in the case

of a product of strictly semistable schemes [I2].

In Chapter 4 we review Saito’s construction of the weight spectral sequence

for a strictly semistable schemes [Sa2], but motivate it using log schemes and

log structures. We then use the computations in Chapter 3 to identify the

monodromy filtration on the complex of nearby cycles, first in the case of a

product of strictly semistable schemes, then in the case matching our Iwahori-

level Shimura variety. This makes use of the framework of perverse sheaves. We

obtain our spectral sequence relating the cohomologies of the closed Newton

polygon strata to the cohomology of the Iwahori-level Shimura variety.

In Chapter 5 we relate the closed Newton polygon strata to Igusa varieties,

we prove Theorem 1.3.2 (the Ramanujan-Petersson conjecture) and we show

that the Π∞-part of the cohomology of the closed Newton polygon strata van-

ishes outside the middle dimension. The results of Chapter 5 depend on a

cohomological computation for Igusa varieties, which we defer until the next

chapter.

In Chapter 6 we use Shin’s stable trace formula for Igusa varieties [Sh2] to

compute the cohomology of the Igusa varieties we’re working with. This section

follows [Sh3] very closely and makes use of the trace formula, endoscopy (which

we show plays a trivial part in our case) and local base change.

In Chapter 7 we put the results of the previous chapters together and prove

the main theorem, Theorem 1.3.1.



Chapter 2

An integral model

2.1 Shimura varieties

Let E be an imaginary quadratic field in which p splits, let c be the non-trivial

element in Gal(E/Q) and choose a prime u of E above p. From now on, we

assume that n is an even positive integer.

Let F1 be a totally real field of finite degree over Q and w a prime of F1 above

p. Let F2 be a quadratic totally real extension of F1 in which w splits w = w1w2.

Let d = [F2 : Q] and we assume that d ≥ 3. Let F = F2.E. Let pi be the prime

of F above wi and u for i = 1, 2. We denote by pi for 2 < i ≤ r the rest of the

primes which lie above the prime u of E. We choose embeddings τi : F ↪→ C

with i = 1, 2 such that τ2 = τ1 ◦ σ, where σ is the element of Gal(F/Q) which

takes p1 to p2. In particular, this means that τE := τ1|E = τ2|E is well-defined.

By abuse of notation we will also denote by σ the Galois automorphism of F2

taking w1 to w2.

We will work with a Shimura variety corresponding to the PEL datum

(F, ∗, V, 〈·, ·〉, h), where F is the CM field defined above and ∗ = c is the in-

15
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volution given by complex conjugation. We take V to be the F -vector space Fn

for some integer n. The pairing

〈·, ·〉 : V × V → Q

is a non-degenerate Hermitian pairing such that 〈fv1, v2〉 = 〈v1, f∗v2〉 for all

f ∈ F and v1, v2 ∈ V . The last element we need is an R-algebra homomorphism

h : C → EndF (V )⊗Q R such that the bilinear pairing

(v1, v2) → 〈v1, h(i)v2〉

is symmetric and positive definite.

We define an algebraic group G over Q by

G(R) = {(g, λ) ∈ EndF⊗QR(V ⊗Q R)×R× | 〈gv1, gv2〉 = λ〈v1, v2〉}

for any Q-algebra R. For σ ∈ HomE,τE (F, C) we let (pσ, qσ) be the signature

at σ of the pairing 〈·, ·〉 on V ⊗Q R. We claim that we can find a PEL datum

as above, such that (pτ , qτ ) = (1, n − 1) for τ = τ1 or τ2 and (pτ , qτ ) = (0, n)

otherwise and such that GQv is quasi-split at every finite place v.

Lemma 2.1.1. Let F be a CM field as above. For any embeddings τ1, τ2 : F ↪→

C there exists a PEL datum (F, ∗, V, 〈·, ·〉, h) as above such that the associated

group G is quasi-split at every finite place and has signature (1, n−1) at τ1 and

τ2 and (0, n) everywhere else.

Proof. This lemma is standard and follows from computations in Galois coho-

mology found in section 2 of [Cl1], but see also Lemma 1.7 of [HT]. The problem

is that of constructing a global unitary similitude group with prescribed local

conditions. It is enough to consider the case of a unitary group G0 over Q,
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by taking it to be the algebraic group defined by ker(G(R) → R×) sending

(g, λ) 2→ λ.

A group G defined as above has a quasi-split inner form over Q denoted Gn,

defined as in section 3 of [Sh3]. This inner form Gn is the group of similitudes

which preserve the non-degenerate Hermitian pairing 〈v1, v2〉 = v1ζΦtvc
2 with

Φ ∈ GLn(Q) having entries

Φij = (−1)i+1δi,n+1−j

and ζ ∈ F ∗ an element of trace 0. Let G′ be the adjoint group of G0
n. It suffices

to show that the tuple of prescribed local conditions, classified by elements in

⊕vH1(F2,v, G′), is in the image of the map

H1(F2, G
′) → ⊕vH1(F2,v, G′),

where the sum is taken over all places v of F2. For n odd, Lemma 2.1 of [Cl1]

ensures that the above map is surjective, so there is no cohomological obstruction

for finding the global unitary group. In the case we are interested in, n is even

and the image of the above map is equal to the kernel of

⊕

v

H1(F2,v, G′) → Z/2Z.

We can use Lemma 2.2 of [Cl1] to compute all the local invariants (i.e. the

images of H1(F2,v, G′) → Z/2Z for all places v). At the finite places, the sum of

the invariants is 0 (mod 2) (this is guaranteed by the existence of the quasi-split

inner form Gn of G, which has the same local invariants at finite places). At

the infinite places τ1 and τ2 the invariants are n
2 + 1 (mod 2) and at all other

infinite places they are n
2 (mod 2). The global invariant is nd

2 + 2 (mod 2),
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where d is the degree of F2 over Q. Since d is even, the image in Z/2Z is equal

to 0 (mod 2), so the prescribed local unitary groups arise from a global unitary

group.

We will choose the R-homomorphism h :C → EndF (V )⊗Q R such that under

the natural R-algebra isomorphism EndF (V )R *
∏

τ |E=τE
Mn(C) it equals

z 2→








zIpτ 0

0 z̄Iqτ





τ



 ,

where τ runs over elements of HomE,τE (F, C).

Now that we’ve defined the PEL datum we can set up our moduli problem.

Note that the reflex field of the PEL datum is F ′ = F1 · E. Let S/F ′ be

a scheme and A/S an abelian scheme of dimension dn. Suppose we have an

embedding i : F ↪→ End(A) ⊗Z Q. LieA is a locally free OS-module of rank

dn with an action of F . We can decompose LieA = Lie+A ⊕ Lie−A where

Lie+A = LieA ⊗OS⊗E OS and the map E ↪→ F ′ → OS is the natural map

followed by the structure map. Lie−A is defined in the same way using the

complex conjugate of the natural map E ↪→ F ′. We ask that Lie+A be a free

OS-module of rank 2 and that Lie+A * OS ⊗F1 F2 as an OS-module with an

action of F2.

Definition 2.1.2. If the the conditions above are satisfied, we will call the pair

(A, i) compatible.

Remark. This is an adaptation to our situation of the notion of compatibility de-

fined in section III.1 of [HT], which fulfills the same purpose as the determinant

condition defined on page 390 of [Ko1].

For an open compact subgroup U ⊂ G(A∞) we consider the contravariant
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functor XU mapping





Connected, locally noetherian

F ′-schemes with geometric point

(S, s)




→ (Sets)

(S, s) 2→ {(A, λ, i, η̄)}/ ∼

where

• A is an abelian scheme over S;

• λ : A → A∨ is a polarization;

• i : F ↪→ End0(A) = EndA ⊗Z Q is such that (A, i) is compatible and

λ ◦ i(f) = i(f∗)∨ ◦ λ, for all f ∈ F ;

• η̄ is a π1(S, s)-invariant U -orbit of isomorphisms of Hermitian F ⊗Q A∞-

modules

η : V ⊗Q A∞ → V As

which take the fixed pairing 〈·, ·〉 on V to on (A∞)×-multiple of the λ-Weil

pairing on V As. Here,

V As =
(
lim
←

A[N ](k(s))
)
⊗Z Q

is the adelic Tate module.

We consider two quadruples as above equivalent if there is an isogeny between

the abelian varieties which is compatible with the additional structures. If s′

is a different geometric point of S then there is a canonical bijection between

XU (S, s) and XU (S, s′). We can forget about the geometric points and extend

the definition from connected to arbitrary locally noetherian F ′-schemes. When
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U is sufficiently small, this functor is representable by a smooth and quasi-

projective variety XU/F ′ of dimension 2n− 2 (this is explained on page 391 of

[Ko1]). The variety XU is a disjoint union of | ker1(G, Q)| copies of the canonical

model of the Shimura variety. As U varies, the inverse system of the XU has a

natural right action of G(A∞).

Let AU be the universal abelian variety over XU . The action of G(A∞) on

the inverse system of the XU extends to an action by quasi-isogenies on the

inverse system of the AU . The following construction goes through as in section

III.2 of [HT]. Let l be a rational prime (we impose no conditions on l yet, but we

will restrict to l different from p when we work with an integral model over the

ring of integers in a p-adic field) and let ξ an irreducible algebraic representation

of G over Qac
l . This defines a lisse Qac

l -sheaf Lξ,l over each XU and the action

of G(A∞) extends to the inverse system of sheaves. The direct limit

Hi(X,Lξ,l) = lim
→

Hi(XU ×F ′ F̄
′,Lξ,l)

is a (semisimple) admissible representation of G(A∞) with a continuous action

of Gal(F̄ ′/F ′). We can decompose it as

Hi(X,Lξ,l) =
⊕

π

π ⊗Ri
ξ,l(π)

where the sum runs over irreducible admissible representations π of G(A∞)

over Qac
l . The Ri

ξ,l(π) are finite dimensional continuous representations of

Gal(F̄ ′/F ′) over Qac
l . We shall suppress the l from Lξ.l and Ri

ξ,l(π) where

it is understood from context. To the irreducible representation ξ of G we can

associate as in section III.2 of [HT] non-negative integers mξ and tξ and an

idempotent εξ ∈ Q[Smξ ] (where Smξ is the symmetric group on mξ letters). As
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on page 476 of [TY], define for each integer N ≥ 2,

ε(mξ, N) =
mξ∏

x=1

∏

y +=1

[N ]x −N

N −Ny
∈ Q[(NZ≥0)mξ ],

where [N ]x denotes the endomorphism generated by multiplication by N on the

x-th factor and y ranges from 0 to 2[F2 : Q]n2 but excluding 1. Set

aξ = aξ,N = εξP (ε(mξ, N)),

which can be thought of as an element of End(Amξ

U /XU )⊗ZQ. Here P (ε(mξ, N))

is the polynomial

P (X) = ((X − 1)4n−3 + 1)4n−3.

If we let proj : Amξ

U → XU be the natural projection, then ε(mξ, N) is an

idempotent on each of the sheaves Rjproj∗Q̄l(tξ), hence also on

Hi(XU ×F ′ F̄
′, Rjproj∗Q̄l(tξ)) ⇒ Hi+j(Amξ

U ×F ′ F̄
′, Q̄l(tξ)).

We get an endomorphism ε(mξ, N) of Hi+j(Amξ

U ×F ′ F̄ ′, Q̄l(tξ)) which is an

idempotent on each graded piece of a filtration of length at most 4n− 3. In this

case, P (ε(mξ, N)) must be an idempotent on all of Hi+j(Amξ

U ×F ′ F̄ ′, Q̄l(tξ)).

We have an isomorphism

Hi(XU ×F ′ F̄
′,Lξ) ∼= aξH

i+mξ(Amξ

U ×F ′ F̄ ′, Q̄l(tξ)),

which commutes with the action of G(A∞).
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2.2 An integral model for Iwahori level structure

Let K = Fp1 * Fp2 , where the isomorphism is via σ, denote by OK the ring of

integers of K and by π a uniformizer of OK .

Let S/OK be a scheme and A/S an abelian scheme of dimension dn. Suppose

we have an embedding i : OF ↪→ End(A) ⊗Z Z(p). LieA is a locally free OS-

module of rank dn with an action of F . We can decompose LieA = Lie+A ⊕

Lie−A where Lie+A = LieA⊗Zp⊗OE OE,u. There are two natural actions of OF

on Lie+A, via OF → OFpj

∼→ OK composed with the structure map for j = 1, 2.

These two actions differ by the automorphism σ ∈ Gal(F/Q). There is also a

third action via the embedding i of OF into the ring of endomorphisms of A.

We ask that Lie+A be locally free of rank 2, that the part of Lie+A where the

first action of OF on Lie+A coincides with i be locally free of rank 1 and that

the part where the second action coincides with i also be locally free of rank 1.

Definition 2.2.1. If the above conditions are satisfied, then we call (A, i) com-

patible. One can check that for S/K this notion of compatibility coincides with

the one in Definition 2.1.2.

If p is locally nilpotent on S then (A, i) is compatible if and only if

• A[p∞i ] is a compatible, one-dimensional Barsotti-Tate OK-module for i =

1, 2 and

• A[p∞i ] is ind-etale for i > 2.

By a compatible Barsotti-Tate OK-module we mean that the two actions on it

by OK , via endomorphisms or via the structure map coincide.

We will now define a few integral models for our Shimura varieties XU . We

can decompose G(A∞) as

G(A∞) = G(A∞,p)×Q×p ×
r∏

i=1

GLn(Fpi).
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For each i, let Λi be an OFpi
-lattice in Fn

pi
which is stable under GLn(OFpi

)

and self-dual with respect to 〈·, ·〉. For each -m = (m1, . . . ,mr) and compact

open Up ⊂ G(A∞,p) we define the compact open subgroup Up(-m) of G(A∞) as

Up(-m) = Up × Z×p ×
r∏

i=1

ker(GLOFpi
(Λi) → GLOFpi

(Λi/mmi
Fpi

Λi)).

The corresponding moduli problem of sufficiently small level Up(-m) over OK is

given by the functor





Connected, locally noetherian

OK-schemes with geometric point

(S, s)




→ (Sets)

(S, s) 2→ {(A, λ, i, η̄p, {αi}r
i=1)}/ ∼

where

• A is an abelian scheme over S;

• λ : A → A∨ is a prime-to-p polarization;

• i : OF ↪→ End(A) ⊗Z Z(p) such that (A, i) is compatible and λ ◦ i(f) =

i(f∗)∨ ◦ λ,∀f ∈ OF ;

• η̄p is a π1(S, s)-invariant Up-orbit of isomorphisms of Hermitian F ⊗Q

A∞,p-modules

η : V ⊗Q A∞,p → V pAs

which take the fixed pairing 〈·, ·〉 on V to an (A∞,p)×-multiple of the λ-

Weil pairing on V As. Here V pAs is the adelic Tate module away from

p;

• for i = 1, 2, αi : p−mi
i Λi/Λi → A[pmi

i ] is a Drinfeld pmi
i -structure, i.e. the
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set of αi(x), x ∈ (p−mi
i Λi/Λi) forms a full set of sections of A[pmi

i ] in the

sense of section 1.8 of [KM];

• for i > 2, αi : (p−mi
i Λi/Λ) ∼→ A[pmi

i ] is an isomorphism of S-schemes with

OFpi
-actions;

• Two tuples (A, λ, i, η̄p, {αi}r
i=1) and (A′, λ′, i′, (η̄p)

′
, {α′i}r

i=1 are equivalent

if there is a prime-to-p isogeny A → A′ taking λ, i, η̄p, αi to γλ′, i′, (η̄p)
′
, α′i

for some γ ∈ Z×(p).

This moduli problem is representable by a projective scheme overOK , which will

be denoted XUp,%m. The projectivity follows from Theorem 5.3.3.1 and Remark

5.3.3.2 of [Lan]. If m1 = m2 = 0 this scheme is smooth as in Lemma III.4.1.2 of

[HT], since we can check smoothness on the completed strict local rings at closed

geometric points and these are isomorphic to deformation rings for p-divisible

groups (with level structure only at pi for i > 2, when the p-divisible group is

etale). Moreover, if m1 = m2 = 0 the dimension of XUp,%m is 2n− 1.

When m1 = m2 = 0, we will denote XUp,%m by XU0 . If AU0 is the universal

abelian scheme over XU0 we write Gi = AU0 [p∞i ] for i = 1, 2 and G = G1 × G2.

Over a base where p is nilpotent, each of the Gi is a one-dimensional compatible

Barsotti-Tate OK-module.

Let F be the residue field of OK . Let X̄U0 = XU0 ×Spec OK
Spec F be the

special fiber of XU0 . We define a stratification on X̄U0 in terms of 0 ≤ h1, h2 <

n− 1. The scheme X̄ [h1,h2]
U0

will be the reduced closed subscheme of X̄U0 whose

closed geometric points s are those for which the maximal etale quotient of Gi

has OK-height at most hi. Let X̄(h1,h2)
U0

= X̄ [h1,h2]
U0

− (X̄ [h1−1,h2]
U0

∪ X̄ [h1,h2−1]
U0

).

Lemma 2.2.2. The scheme X̄(h1,h2)
U0

is non-empty and smooth of pure dimen-

sion h1 + h2.

Proof. In order to see that this is true, note that the formal completion of X̄U0
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at any closed point is isomorphic to F̄[[T2, . . . , Tn, S2, . . . , Sn]] since it is the uni-

versal formal deformation ring of a product of two one-dimensional compatible

Barsotti-Tate groups of height n each. (In fact it is the product of the universal

deformation rings for each of the two Barsotti-Tate groups.) Thus, X̄U0 has

dimension 2n − 2 and as in Lemma II.1.1 of [HT] each closed stratum X̄ [h1,h2]
U0

has dimension at least h1 + h2. The lower bound on dimension also holds for

each open stratum X̄(h1,h2)
U0

. In order to get the upper bound on the dimension

it suffices to show that the lowest stratum X̄(0,0)
U0

is non-empty. Indeed, once

we have a closed point s in any stratum X̄(h1,h2)
U0

, we can compute the formal

completion (X̄(h1,h2)
U0

)∧s as in Lemma II.1.3 of [HT] and find that the dimen-

sion is exactly h1 + h2. We start with a closed point of the lowest stratum

X̄(0,0)
U0

= X̄ [0,0]
U0

and prove that this stratum has dimension 0. The higher closed

strata X̄ [h1,h2]
U0

= ∪j1≤h1,j2≤h2X̄
(j1,j2)
U0

are non-empty and it follows by induction

on (h1, h2) that the open strata X̄(h1,h2)
U0

are also non-empty.

It remains to see that X̄(0,0)
U0

is non-empty. This can be done using Honda-

Tate theory as in the proof of Corollary V.4.5. of [HT], whose ingredients

for Shimura varieties associated to more general unitary groups are supplied

in sections 8 through 12 of [Sh1]. In our case, Honda-Tate theory exhibits a

bijection between p-adic types over F (see section 8 of [Sh1] for the general

definition) and pairs (A, i) where A/F̄ is an abelian variety of dimension dn and

i : F ↪→ End(A) ⊗Z Q. The abelian variety A must also satisfy the following:

A[p∞i ] is ind-etale for i > 2 and A[p∞i ] is one-dimensional of etale height hi

for i = 1, 2. Note that the slopes of the p-divisible groups A[p∞i ] are fixed for

all i. All our p-adic types will be simple and given by pairs (M,η) where M

is a CM field extension of F and η ∈ Q[P] where P is the set of places of M

above p. The coefficients in η of places x of M above pi are related to the slope

of the corresponding p-divisible group at pi as in Corollary 8.5 of [Sh3]. More
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precisely, A[x∞] has pure slope ηx/ex/p. It follows that the coefficients of η at

places x and xc above p satisfy the compatibility

ηx + ηxc = ex/p

so to know η it is enough to specify ηx · x as x runs through places of M above

u.

In order to exhibit a pair (A, i) with the right slope of A[p∞i ] it suffices to

exhibit its corresponding p-adic type. For this, we can simply take M = F and

ηpi = epi/p

n[Fpi :Qp] · pi for i = 1, 2 and ηpi = 0 otherwise. The only facts remaining

to be checked are that the associated pair (A, i) has a polarization λ which

induces c on F and that the triple (A, i, λ) can be given additional structure

to make it into a point on X̄(0,0)
U0

. First we endow (A, i) with a polarization

λ0 for which the Rosati involution induces c on F using Lemma 9.2 of [Ko1]

and we use Lemma 5.2.1, an analogue of Lemma V.4.1 of [HT], to construct an

F -module W0 together with a non-degenerate Hermitian pairing such that

W0 ⊗ A∞,p * V pA and W0 ⊗Q R * V ⊗Q R

as Hermitian F ⊗Q A∞,p-modules (F ⊗Q R-modules respectively). Then we use

the difference (in the Galois cohomology sense) between W0 and V as Hermitian

F -modules over Q to find a polarization λ such that V pA with its λ-Weil pairing

is equivalent to V ⊗ A∞,p with its standard pairing, as in Lemma V.4.3 of

[HT]. Note that the argument is not circular, since the proof of Lemma 5.2.1 is

independent of this section.

The next Lemma is an analogue of Lemma 3.1 of [TY].

Lemma 2.2.3. If 0 ≤ h1, h2 ≤ n − 1 then the Zariski closure of X̄(h1,h2)
U0

contains X̄(0,0)
U0

.
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Proof. The proof follows exactly like the proof of Lemma 3.1 of [TY]. Let x be

a closed geometric point of X̄(0,0)
U0

. The main point is to note that the formal

completion of X̄U0×Spec F̄ at x is isomorphic to the equicharacteristic universal

deformation ring of G1,x × G2,x, so it is isomorphic to

Spf F̄[[T2, . . . , Tn, S2, . . . , Sn]].

We can choose the Ti, the Si and formal parameters X on the universal defor-

mation of G1,x and Y on the universal deformation of G2,x such that

[π](X) ≡ πX +
n∑

i=2

TiX
#Fi−1

+ X#Fn

(mod X#Fn+1) and

[π](Y ) ≡ πY +
n∑

i=2

SiX
#Fi−1

+ S#Fn

(mod S#Fn+1).

We get a morphism

Spec F̄[[T2, . . . , Tn, S2, . . . , Sn]] → X̄U0

lying over x : Spec F̄ → X̄U0 such that if k denotes the algebraic closure of the

field of fractions of

Spec F̄[[T2, . . . , Tn, S2, . . . Sn]]/(T2, . . . , Tn−h1 , S2, . . . , Sn−h2)

then the induced map Spec k → X̄U0 factors through X̄(h1,h2)
U0

.

For i = 1, 2, let Iwn,pi be the subgroup of matrices in GLn(OK) which

reduce modulo pi to Bn(F) (here Bn(F) ⊂ GLn(F) is the Borel subgroup). We

will define an integral model for XU , where U ⊆ G(A∞) is equal to

Up × Up1,p2
p (-m)× Iwn,p1 × Iwn,p2 × Z×p .
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We define the following functor XU from connected locally noetherian OK-

schemes with a geometric point to sets sending

(S, s) 2→ (A, λ, i, η̄p, C1, C2, αi),

where (A, λ, i, η̄p, αi) is as in the definition of XU0 and for i = 1, 2, Ci is a chain

of isogenies

Ci : Gi,A = Gi,0 → Gi,1 → · · · → Gi,n = Gi,A/Gi,A[pi]

of compatible Barsotti-Tate OK-modules each of degree #F and with composite

the canonical map Gi,A → Gi,A/Gi.A[pi].

Lemma 2.2.4. If Up is sufficiently small, the functor XU is represented by

a scheme XU which is finite over XU0 . The scheme XU has some irreducible

components of dimension 2n− 1.

Proof. The chains of isogenies Ci can be viewed as flags

0 = Ki,0 ⊂ Ki,1 · · · ⊂ Ki,n = Gi[pi],

where Ki,j = ker(Gi,0 → Gi,j). All the Ki,j are closed finite flat subgroup

schemes with OK-action and Ki,j/Ki,j−1 of order #F. The representability can

be proved in the same way as in Lemma 3.2 of [TY] except in two steps: first

we note that the functor sending S to points of XU0(S) together with flags C1 of

G1[p1] is representable by a scheme X ′
U over XU0 . (If we let H1 denote the sheaf

of Hopf algebras over XU0 defining G1[p1], then X ′
U will be a closed subscheme

of the Grassmanian of chains of locally free direct summands of H1.) Then we

see in the same way that the functor sending S to points of X ′
U (S) together

with flags C2 of G2[p2] is representable by a scheme XU over X ′
U . We also have
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that XU is projective and finite over XU0 . (Indeed, for each closed geometric

point x of XU0 there are finitely many choices of flags of OK-submodules of each

Gi,x.) On the generic fiber, the morphism XU → XU0 is finite etale and XU0

has dimension 2n− 1, so XU has some components of dimension 2n− 1.

We say that an isogeny G → G′ of one-dimensional compatible Barsotti-Tate

OK-modules of degree #F has connected kernel if it induces the zero map on

Lie G. If we let f = [F : Fp] and F : G → G(p) be the Frobenius map, then

F f : G → G(#F) is an isogeny of one-dimensional compatible Barsotti-Tate OK-

modules and has connected kernel. The following lemma appears as Lemma 3.3

in [TY].

Lemma 2.2.5. Let W denote the ring of integers of the completion of the

maximal unramified extension of K. Suppose that R is an Artinian local W -

algebra with residue field F̄. Suppose that

C : G0 → G1 → · · · → Gg = G0/G0[pi]

is a chain of isogenies of degree #F of one-dimensional compatible formal Barsotti-

Tate OK-modules over R of OK-height g with composite equal to multiplication

by π. If every isogeny has connected kernel then R is a F̄-algebra and C is the

pullback of a chain of isogenies of Barsotti-Tate OK-modules over F̄, with all

isogenies isomorphic to F f .

Now let X̄U = XU ×Spec K Spec F denote the special fiber of XU . For

i = 1, 2 and 1 ≤ j ≤ n, let Yi,j denote the closed subscheme of X̄U over which

Gi,j−1 → Gi,j has connected kernel. Note that, since each LieGi,j is locally free

of rank 1 over OXU , we can pick a local basis for all of them. Then we can find

locally Xi,j ∈ Γ(XU , OXU ) to represent the linear maps LieGi,j−1 → LieGi,j .

Thus, each Yi,j is cut out locally in XU by the equation Xi,j = 0.
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Proposition 2.2.6. Let s be a closed geometric point of XU such that Gi,s has

etale height hi for i = 1, 2. Let W be the ring of integers of the completion of the

maximal unramified extension of K. Let O∧XU ,s be the completion of the strict

henselization of XU at s, i.e. the completed local ring of X ×Spec OK
Spec W

at s. Then

O∧XU ,s * W [[T1, . . . , Tn, S1, . . . , Sn]]/(
n∏

i=h1+1

Ti − π,
n∏

i=h2+1

Si − π).

Assume that Y1,jk for k = 1, . . . , n − h1 and jk ∈ {1, . . . , n} distinct are

subschemes of XU which contain s as a geometric point. We can choose the

generators Ti such that the completed local ring O∧Y1,jk
,s is cut out in O∧XU ,s

by the equation Tk+h1 = 0. The analogous statement is true for Y2,jk with

k = 1, . . . , n− h2 and Sk+h2 = 0.

Proof. First we prove that XU has pure dimension 2n − 1 by using Deligne’s

homogeneity principle. We will follow closely the proof of Proposition 3.4.1

of [TY]. The dimension of O∧XU ,s as s runs over geometric points of XU above

X̄(0,0)
U0

is constant, say it is equal to m. Then we claim that O∧XU ,s has dimension

m for every closed geometric point of XU . Indeed, assume the subset of XU

where O∧XU ,s has dimension different from m is non-empty. Then this subset

is closed, so its projection to XU0 is also closed and so it must contain some

X̄(h1,h2)
U0

(since the dimension of O∧XU ,s only depends on the stratum of XU0

that s is above). By Lemma 2.2.3, the closure of X̄(h1,h2)
U0

contains X̄(0,0)
U0

,

which is a contradiction. Thus, XU has pure dimension m and by Lemma 2.2.4,

m = 2n− 1.

The completed local ring O∧XU ,s is the universal deformation ring for tu-

ples (A, λ, i, η̄p, C1, C2, αi) deforming (As, λs, is, η̄p
s , C1,s, C2,s, αi,s). Deforming

the abelian variety As is the same as deforming its p-divisible group As[p∞] by

Serre-Tate and As[p∞] = As[u∞]×As[(uc)∞]. The polarization λ together with
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A[u∞] determine A[(uc)∞], so it suffices to deform As[u∞] as an OF -module to-

gether with the level structure. At primes other than p1 and p2, the p-divisible

group is etale, so the deformation is uniquely determined. Moreover, A[(p1p2)∞]

decomposes as A[p∞1 ] × A[p∞2 ] (because OF ⊗OF ′ OF ′p1p2
* OF,p1 × OF,p2), so

it suffices to consider deformations of the chains

Ci,s : Gi,s = Gi,0 → Gi,1 → · · · → Gi,n = Gi,s/Gi,s[pi]

for i = 1, 2 separately.

Let G * Σ× (K/OK)h be a p-divisible OK-module over F̄ of dimension one

and total height n. Let

C : G = G0 → G1 → · · · → Gn = G/G[π]

be a chain of isogenies of degree #F. Since we are working over F̄, the chain C

splits into a formal part and an etale part. Let C0 be the chain obtained from

C by restricting it to the formal part:

Σ̃ → Σ̃1 → · · · → Σ̃n = Σ̃/Σ̃[π].

Let J ⊆ {1, . . . , n} be the subset of indices j for which Gj−1 → Gj has connected

kernel. (The cardinality of J is n− h.) Also assume that the chain Cet consists

of

Get
j = (K/π−1OK)j ⊕ (K/OK)h−j

for all j ∈ J with the obvious isogenies between them.

We claim that the universal deformation ring of C is isomorphic to

W [[T1, . . . , Tn]]/(
∏

j∈J

Tj − π).
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We will follow the proof of Proposition 4.5 of [D]. To see the claim, we first

consider deformations of G without level structure. By proposition 4.5 of [D],

the universal deformation ring of Σ is

R0 * W [[Xh+1, . . . , Xh]]/(Xh+1 · · · · ·Xn − π).

Let Σ̃ be the universal deformation of Σ. By considering the connected-etale

exact sequence, we see that the deformations of G are classified by extensions

of the form

0 → Σ̃ → G̃ → (K/OK)h → 0.

Thus, the universal deformations of G are classified by elements of Hom(TG, Σ̃),

where TG is the Tate module of G. The latter ring is non-canonically isomorphic

to

R * W [[X1, . . . , Xn]]/(
∏

j∈J

Xj − π).

Let S be the universal deformation ring for deformations of the chain C and

S0 be the universal deformation ring for the chain C0. Let

C̃ : G̃ = G̃0 → G̃1 → · · · → G̃n = G̃/G̃[π]

be the universal deformation of C which corresponds when restricted to the

formal part to the universal chain

Σ̃ → Σ̃1 → · · · → Σ̃n = Σ̃/Σ̃[π].

Each deformation G̃j of Gj is defined by a connected-etale exact sequence

0 → Σ̃j → G̃j → (K/OK)h → 0,
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so by an element fj ∈ Hom(TGj , Σ̃j). We will explore the compatibilities be-

tween the Hom(TGj , Σ̃j) as j ranges from 0 to n. If j ∈ J then G̃j−1 → G̃j

has connected kernel, so TGj−1 * TGj . The isogeny Σ̃j−1 → Σ̃j determines a

map Hom(TGj−1, Σ̃j−1) → Hom(TGj , Σ̃j), which determines the extension G̃j .

Thus, in order to know the extension classes of G̃j it suffices to focus on the case

j "∈ J .

Let (ej)j∈J be a basis of Oh
K , which we identify with TGj for each j. We

claim that it suffices to know fj(ej) ∈ Σ̃j for each j "∈ J . Indeed, if j "∈ J then

we know that Σ̃j−1 * Σ̃j and we also have a map TGj−1 → TGj sending

ej′ 2→ ej′ for j′ "= j and ej 2→ πej .

Thus, for i "= j we can identify fj−1(ei) ∈ Σ̃j−1 with fj(ei) ∈ Σ̃j . Hence if we

know fj(ej) then we also know fj′(ej) for all j′ > j. Thus we know fn(ej), but

recall that fn corresponds to the extension

0 → Σ̃/Σ̃[π] → G̃/G̃[π] → (K/π−1OK)h → 0,

which is isomorphic to the extension

0 → Σ̃ → G̃ → (K/OK)h → 0.

Therefore we also know f0(ej) and by extension all fj′(ej) for j′ < j. This proves

the claim that the only parameters needed to construct all the extensions G̃j

are the elements fj(ej) ∈ Σ̃j for all j "∈ J .

We have a map S0 ⊗R0 R → S induced by restricting the Iwahori level

structure to the formal part. From the discussion above, we see that this map

is finite and that S is obtained from S0 ⊗R0 R by adjoining for each j ∈ J a
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root Tj of

f(Tj) = Xj

in Σ̃, where f : Σ̃ → Σ̃ is the composite of the isogenies Σ̃j → Σ̃j+1 → · · · → Σ̃n.

If we quotient S by all the Tj for j "∈ J , we are left only with deformations of

the chain C0, since all of the connected-etale exact sequences will split. Thus

S/(Tj)j +∈J * S0.

Now, the formal part C̃0 can be written as a chain

Σ̃ = Σ̃0 → · · · → Σ̃j → · · · → Σ̃/Σ̃[π]

of length n− h. Choose bases ej for Lie Gj over S0 as j runs over J , such that

en = ej for the largest j ∈ J

maps to

e0 = ej for the smallest j ∈ J

under the isomorphism Gn = G0/G0[π] ∼→ G0 induced by π. Let Tj ∈ S0 repre-

sent the linear map Lie Σ̃j′ → Lie Σ̃j , where j′ is the largest element of J for

which j′ < j. Then
∏

j∈J

Tj = π.

Moreover, S0/(Tj)j∈J = F̄ by Lemma 2.2.5. (See also the proof of Proposition

3.4 of [TY].) Hence we have a surjection

W [[T1, . . . , Tn]]/(
n∏

j=h1+1

Tj − π) ! S,

which by dimension reasons must be an isomorphism.

Applying the preceding argument to the chains C1,s and C2,s, we conclude
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that

O∧XU ,s * W [[T1, . . . , Tn, S1, . . . , Sn]]/(
n∏

i=h1+1

Ti − π,
n∏

i=h2+1

Si − π).

Moreover, the closed subvariety Y1,jk of XU is exactly the locus where Gjk−1 →

Gjk has connected kernel, so, if s is a geometric point of Y1,jk , then O∧Y1,jk
,s

is cut out in O∧XU ,s by the equation Tk+h1 = 0. (Indeed, by our choice of the

parameters Tk+h1 with 1 ≤ k ≤ n− h1, the condition that G1,jk−1 → G1,jk has

connected kernel is equivalent to Tk+h1 = 0.)

For S, T ⊆ {1, . . . , n} non-empty let

YU,S,T =

(
⋂

i∈S

Y1,i

)
∩




⋂

j∈T

Y2,j



 .

Then YU,S,T is smooth over Spec F of pure dimension 2n −#S −#T (we can

check smoothness on completed local rings) and it is also proper over Spec F,

since YU,S,T ↪→ X̄U is a closed immersion and X̄U is proper over Spec F. We

also define

Y 0
U,S,T = YU,S,T \








⋃

S′!S

YU,S′,T



 ∪




⋃

T ′!T

YU,S,T ′







 .

Note that the inverse image of X̄(h1,h2)
U with respect to the finite flat map

X̄U → X̄U0 is
⋃

#S=n−h1
#T=n−h2

Y 0
U,S,T .

Note that, when we consider the Shimura variety XUi , with Ui having Iwahori

level structure at only one of the primes pi for i = 1, 2, this will be flat over

XU0 , since it can be checked that it is a finite map between regular schemes
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of the same dimension (the same reason as in setting of [TY]). The morphism

XU → XU0 is the fiber product of the morphisms XUi → XU0 for i = 1, 2, so it

is flat as well.

Lemma 2.2.7. The Shimura variety XU is locally etale over

Xr,s = Spec OK [X1, . . . , Xn, Y1, . . . Yn]/(
r∏

i=1

Xi − π,
s∏

j−1

Yj − π)

with 1 ≤ r, s ≤ n.

Proof. Let x be a closed point of XU . The completion of the strict henselization

of XU at x O∧XU ,x is isomorphic to

Or,s = W [[X1, . . . , Xn, Y1 . . . , Yn]]/(
r∏

i=1

Xi − π,
s∏

j=1

Yj − π)

for certain 1 ≤ r, s ≤ n. We will show that there is an open affine neighbourhood

U of x in X such that U is etale over Xr,s. Note that there are local equations

Ti = 0 with 1 ≤ i ≤ r and Sj = 0 with 1 ≤ j ≤ s which define the closed

subschemes Y1,i with 1 ≤ i ≤ r and Y2,j with 1 ≤ j ≤ s passing through x.

Moreover, the parameters Ti and Sj satisfy

r∏

i=1

Ti = uπ and
s∏

j=1

Si = u′π

with u and u′ units in the local ring OXU ,x. We will explain why this is the case

for the Ti. In the completion of the strict henselization O∧XU ,x both Ti and Xi

cut out the completion of the strict henselization O∧Y1,i,x
, which means that Ti

and Xi differ by a unit. Taking the product of the Ti we find that
∏r

i=1 Ti = uπ

for u ∈ O∧XU ,x a unit in the completion of the strict henselization of the local

ring. At the same time, in an open neighborhood of x, the special fiber of X is

a union of the divisors corresponding to Ti = 0 for 1 ≤ i ≤ r, so that
∏r

i=1 Ti
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belongs to the ideal of OXU ,x generated by π. We conclude that u is actually

a unit in the local ring OXU ,x, not only in O∧XU ,x. In a neighborhood of x, we

can change one of the Ti by u−1 and one of the Si by (u′)−1 to ensure that

r∏

i=1

Ti = π and
s∏

j=1

Si = π.

We will now adapt the argument used in the proof of Proposition 4.8 of [Y]

to our situation. We first construct an unramified morphism f from a neigh-

borhood of x in XU to Spec OK [X1, . . . , Xn, Y1, . . . Yn]. We can do this simply

by sending the Xi to the Ti for i = 1, . . . r and the Yj to the Sj for j = 1, . . . s.

The rest of the Xi and Yj can be sent to parameters in a neighborhood of x

which approximate the remaining parameters in O∧XU ,x modulo the square of the

maximal ideal. Then f will be formally unramified at the point x. By [EGA4]

18.4.7 we see that when restricted to an open affine neighbourhood Spec A of

x in X, f |SpecA can be decomposed as a closed immersion Spec A → Spec B

followed by an etale morphism Spec B → Spec OK [X1, . . . Xn, Y1, . . . , Yn]. The

closed immersion translates into the fact that A * B/I for some ideal I of B.

The inverse image of I in W [X1, . . . , Xn, Y1, . . . Yn] is an ideal J which contains
∏r

i=1 Xi − π and
∏s

j=1 Yj − π. The morphism f factors through the morphism

g : Spec A → Spec OK [X1, . . . , Xn, Y1, . . . , Yn]/J which is etale. Moreover,

J is actually generated by
∏r

i=1 Xi − π and
∏s

j=1 Yj − π, since g induces an

isomorphism on completed strict local rings

W [[X1, . . . , Xn, Y1, . . . , Yn]]/J
∼→ Or,s.

This completes the proof of the lemma.
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Let AU be the universal abelian variety over the integral model XU . Let

ξ be an irreducible representation of G over Q̄l, for a prime number l "= p.

The sheaf Lξ extends to a lisse sheaf on the integral models XU0 and XU . Also,

aξ ∈ End(Amξ

U /XU )⊗ZQ extends as an etale morphism on Amξ

U over the integral

model. We have

Hj(XU ×F ′ F̄
′
p,Lξ) * aξH

j+mξ(Amξ

U ×F ′ F̄
′
p, Q̄l(tξ))

and we can compute the latter via the nearby cycles RψQ̄l on Amξ

U over the

integral model of XU . Note that Amξ

U is smooth over XU , so Amξ

U is locally etale

over

Xr,s,m := Spec OK [X1, . . . , Xn, Y1, . . . Yn, Z1, . . . , Zm]/(
r∏

j=1

Xij − π,
s∏

j=1

Yij − π)

for some non-negative integer m.



Chapter 3

Sheaves of nearby cycles

In this chapter we will start to understand the complex of nearby cycles on a

scheme X/OK which has the same geometric properties as our Iwahori level

Shimura variety XU . We work with K/Qp be finite with ring of integers OK

which has uniformiser π and residue field F. Let IK = Gal(K̄/Kur) ⊂ GK =

Gal(K̄/K) be the inertia subgroup of K. Let Λ be either one of Z/lrZ, Zl, Ql

or Q̄l for l "= p prime. Let X/OK be a scheme such that X is locally etale over

Xr,s,m = Spec OK [X1, . . . , Xn, Y1, . . . Yn, Z1, . . . , Zm]/(
r∏

j=1

Xj − π,
s∏

j=1

Yj − π).

Let Y be the special fiber of X. Assume that Y is a union of closed subschemes

Y1,j with j ∈ {1, . . . , n} which are cut out locally by one equation and that

this equation over Xr,s,m corresponds to Xj = 0. Similarly, assume that Y is

a union of closed subschemes Y2,j with j ∈ {1, . . . , n} which are cut out over

Xr,s,m by Yj = 0.

Let j : XK ↪→ X be the inclusion of the generic fiber and i : Y ↪→ X be

the inclusion of the special fiber. Let S = Spec OK , with generic point η and

closed point s. Let K̄ be an algebraic closure of K, with ring of integers OK̄ .

39
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Let S̄ = Spec OK̄ , with generic point η̄ and closed point s̄. Let X̄ = X ×S S̄

be the base change of X to S̄, with generic fiber j̄ : Xη̄ ↪→ X̄ and special fiber

ī : Xs̄ ↪→ X̄. The sheaves of nearby cycles associated to the constant sheaf Λ

on XK are sheaves RkψΛ on Xs̄ defined for k ≥ 0 as

RkψΛ = ī∗Rk j̄∗Λ

and they have continuous actions of IK .

Proposition 3.0.8. The action of IK on RkψΛ is trivial for any k ≥ 0.

The proof of this proposition is based on endowing X with a logarithmic

structure, showing that the resulting log scheme is log smooth over Spec OK

(with the canonical log structure determined by the special fiber) and then using

the explicit computation of the action of IK on the sheaves of nearby cycles that

was done by Nakayama [Na].

3.1 Log structures

Definition 3.1.1. A log structure on a scheme Z is a sheaf of monoids M

together with a morphism α : M → OZ such that α induces an isomorphism

α−1(O∗Z) * O∗Z . A scheme endowed with a log structure is a log scheme. A

morphism of log schemes (Z1, M1) → (Z2, M2) consists of a pair (f, h) where

f : Z1 → Z2 is a morphism of schemes and h : f∗M2 → M1 is a morphism of

sheaves of monoids.

From now on, we will regard O∗Z as a subsheaf of M via α−1 and define

M̄ := M/O∗Z .

Given a scheme Z and a closed subscheme V with complement U there is

a canonical way to associate to V a log structure. If j : U ↪→ X is an open
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immersion, we can simply define M = j∗((OX |U)∗)∩OX → OX . This amounts

to formally “adjoining” the sections of OX which are invertible outside V to the

units O∗X . The sheaf M̄ will be supported on V .

If P is a monoid, then the scheme Spec Z[P ] has a canonical log structure

associated to the natural map P → Z[P ]. A chart for a log structure on Z is

given by a monoid P and a map Z → Spec Z[P ] such that the log structure

on Z is pulled back from the canonical log structure on Spec Z[P ]. A chart

for a morphism of log schemes Z1 → Z2 is a triple of maps Z1 → Spec Z[Q],

Z2 → Spec Z[P ] and P → Q such that the first two maps are charts for the log

structures on Z1 and Z2 and such that the obvious diagram is commutative.

For more background on log schemes, the reader should consult [I1, K].

For a scheme over OK , we let j denote the open immersion of its generic

fiber and i the closed immersion of its special fiber into the scheme. We endow

S = Spec OK with the log structure given by N = j∗(K∗) ∩ OK ↪→ OK . The

sheaf N̄ is trivial outside the closed point and is isomorphic to a copy of N over

the closed point. Another way to describe the log structure on S is by pullback

of the canonical log structure via the map

S → Spec Z[N]

where 1 2→ π ∈ OK .

We endow X with the log structure given by M = j∗(O∗XK
) ∩ OX ↪→ OX .

It is easy to check that the only sections of OX which are invertible outside the

special fiber, but not invertible globally are those given locally by the images of

the Xi for 1 ≤ i ≤ r and the Yj for 1 ≤ j ≤ s . On etale neighborhoods U of X

which are etale over Xr,s,m this log structure is given by the chart

U → Xr,s,m → Spec Z[Pr,s]
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where

Pr,s := (Nr ⊕ Ns)/((1, . . . 1, 0, . . . 0) = (0, . . . 0, 1, . . . 1)).

The map Xr,s,m → Spec Z[Pr,s] can be described as follows: the element with

1 only in the kth place, (0, . . . , 0, 1, 0, . . . 0) ∈ Pr,s maps to Xk if k ≤ r and to

Yk−r if k ≥ r +1. Note that the log structure on X is trivial outside the special

fiber, so X is a vertical log scheme.

The map X → S induces a map of the corresponding log schemes. Etale

locally, this map has a chart subordinate to the map of monoids N → Pr,s such

that

1 2→ (1, . . . , 1, 0, . . . , 0) = (0, . . . 0, 1, . . . 1)

to reflect the relations X1 . . . Xr = Y1 . . . Ys = π.

Lemma 3.1.2. The map of log schemes (X, M) → (S, N) is log smooth.

Proof. The map of monoids N → Pr,s induces a map on groups Z → P gp
r,s, which

is injective and has torsion-free cokernel Zr+s−2 . Since the map of log schemes

(X, M) → (S, N) is given etale locally by charts subordinate to such maps of

monoids, by Theorem 3.5 of [K] the map (X, M) → (S, N) is log smooth.

3.2 Nearby cycles and log schemes

There is a generalization of the functor of nearby cycles to the category of log

schemes.

Recall that OK̄ is the integral closure of OK in K̄ and S̄ = Spec OK̄ , with

generic point η̄ and closed point s̄. The canonical log structure associated to the

special fiber (given by the inclusion j̄∗(K̄∗) ∩ OK̄ ↪→ OK̄) defines a log scheme

S̃ with generic point η̄ and closed point s̃. Note that s̃ is a log geometric point

of S̃, so it has the same underlying scheme as s̄. The Galois group GK acts on
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s̃ through its tame quotient. Let X̃ = X ×S S̃ in the category of log schemes,

with special fiber Xs̃ and generic fiber Xη̄. Note that, in general, the underlying

scheme of Xs̃ is not the same as that of Xs̄. This is because Xs̃ is the fiber

product of Xs̄ and s̃ in the category of integral and saturated log schemes and

saturation corresponds to normalization, so it changes the underlying scheme.

The sheaves of log nearby cycles are sheaves on Xs̃ defined by

RkψlogΛ = ĩ∗Rk j̃∗Λ,

where ĩ, j̃ are the obvious maps and the direct and inverse images are taken

with respect to the Kummer etale topology. Theorem 3.2 of [Na] states that

when X/S is a log smooth scheme we have R0ψlogΛ ∼= Λ and RpψlogΛ =0 for

p > 0. Let

ε̃ : X̃ → X̄,

which restricts to ε : Xη̄ → Xη̄, be the morphism that simply forgets the log

structure. Note that we have j̄∗ε∗ = ε̃∗j̃∗, by commutativity of the square

Xη̄
j̃ !!

ε

""

X̃

ε̃

""
Xη̄

j̄ !! X̄

We also have ī∗Rε̃∗F * Rε̃∗ĩ∗F for every Kummer etale sheaf F , by strict base

change (see Proposition 6.3 of [I1]). We deduce that

ī∗j̄∗ε∗ = ε̃∗ĩ
∗j̃∗

so the corresponding derived functors must satisfy a similar relation. When we

write this out, using RψlogΛ ∼= Λ by Nakayama’s result and Rε∗Λ ∼= Λ because



CHAPTER 3. SHEAVES OF NEARBY CYCLES 44

the log structure is vertical and so ε is an isomorphism, we get

RkψclΛ = Rk ε̃∗(Λ|Xs̃).

Therefore, it suffices to figure out what the sheaves Rk ε̃∗Λ look like and how IK

acts on them, where ε̃ : Xs̃ → Xs̄. This has been done in general by Nakayama,

Theorem 3.5 of [Na], thus deriving an SGA 7 I.3.3-type formula for log smooth

schemes. We will describe his argument below and specialize to our particular

case.

Lemma 3.2.1. IK acts on Rpε∗(Λ|Xs̃) through its tame quotient.

Proof. Let St = Spec OKt endowed with the canonical log structure (here Kt ⊂

K̄ is the maximal extension of K which is tamely ramified). The closed point

st with its induced log structure is a universal Kummer etale cover of s and

IK acts on it through its tame quotient It. Moreover, the projection s̃ → st

is a limit of universal Kummer homeomorphisms and it remains so after base

change with X. (See Theorem 2.8 of [I1]). Thus, every automorphism of Xs̃

comes from a unique automorphism of Xst , on which IK acts through It.

Now we have the commutative diagram

X log
s̃

ε

""

α !! X log
s̄

ε

""
Xcl

s̃

β !! Xcl
s̄

,

where the objects in the top row are log schemes and the objects in the bottom

row are their underlying schemes. The morphisms labeled ε are forgetting the

log structure and we have ε̃ = ε ◦ α = β ◦ ε. We can use either of these

decompositions to compute Rk ε̃∗Λ. For example, we have Rε̃∗Λ = Rβ∗Rε∗Λ,
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which translates into having a spectral sequence

Rn−kβ∗R
kε∗Λ ⇒ Rnε̃∗Λ.

We know that Rkε∗Λ = ∧kM̄gp
rel ⊗ Λ(−k), where

M̄gp
rel = coker (N̄gp → M̄gp)/torsion.

Recall that N is the log structure on OK associated to its special fiber. The

map of log schemes (X,M) → (OK , N) induces a map from the (pullback of)

N to M . We form M̄gp
rel using this map. The formula for Rkε∗Λ follows from

theorem 2.4 of [KN], as explained in section 3.6 of [Na]. Theorem 2.4 of [KN]

is a statement about log schemes over C, but the same proof also applies to the

case of log schemes over a field of characteristic p, as explained in [I1].

On the other hand, at a geometric point x̄ of Xcl
s̄ , we have (β∗F)x̄

∼= F [Ex̄]

for a sheaf F of Λ-modules on Xcl
s̃ , where Ex̄ is the cokernel of the map of log

inertia groups

Ix → Is.

Indeed, β−1(x̄) consists of #coker (Ix → Is) points, which follows from the

fact that Xcl
s̃ is the normalization of (Xs̄ ×s̄ s̃)cl. The higher derived functors

Rn−kβ∗F are all trivial, since β∗ is exact. Therefore, the spectral sequence

becomes

∧kM̄gp
rel,x̄ ⊗ Λ[Ex̄]⊗ Λ(−k) = (Rk ε̃∗Λ)x̄.

The tame inertia acts on the stalks of these sheaves through It ∼= Is 2→ Λ[Is] →

Λ[Ex̄].
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In our particular case, it is easy to compute Rk ε̃∗Λ globally. Let

Ẑ
′
(1) = lim←−

(m,p)=1

µm.

We have

Ix = Hom(M̄gp
x , Ẑ

′
(1))

and

Is = Hom(N̄gp
s , Ẑ

′
(1)).

The map of inertia groups is induced by the map N̄gp
s → M̄gp

x , which is de-

termined by 1 2→ (1, . . . , 1, 0 . . . , 0) , where the first n terms are nonzero. Any

homomorphism of N̄gp
s
∼= Z → Ẑ′(1) can be obtained from some homomor-

phism M̄gp
x → Ẑ′(1). Thus Ex̄ is trivial for all log geometric points x̄ and It

acts trivially on the stalks of the sheaves of nearby cycles.

Moreover, in our situation we can check that β is an isomorphism, which

follows from the fact that Xs̄ is reduced, which can be checked etale locally.

Indeed, if X is reduced, then the underlying scheme of X log
s̃ is the same as Xs̄,

since X log
s̃ is defined as the inverse limit over n ∈ N prime to p of fiber products

of fs log schemes

(Xs̄, M)×(F̄,N),γn
(F̄, N),

where γn is the identity on the underlying schemes and is multiplication by

n on the non-trivial part of the log structures. The underlying scheme of a

fiber product of fs log schemes is not usually the same as the fiber product

of underlying schemes. The reason for this is that the log structure on the

fiber product doesn’t need to apriori be saturated, so we may need to introduce

additional units. However, it can be checked that if X is reduced then the
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product log structure is already saturated. Thus we have the global isomorphism

Rk ε̃∗Λ * ∧kM̄gp
rel ⊗ Λ(−k).

The above discussion also allows us to determine the sheaves of nearby cycles.

Indeed, we have RkψΛ * ∧kM̄gp
rel⊗Λ(−k) and M̄gp

rel can be computed explicitly

on neighborhoods. If U is a neighborhood of X with U etale over Xr,s then

the log structure on U is induced from the log structure on Xr,s. Let J1,J2 ⊆

{1, . . . , n} be sets of indices with cardinalities r and s respectively, corresponding

to sets of divisors Y1,i and Y2,j which intersect U .

Proposition 3.2.2. For i = 1, 2 and j = 1, . . . , n, let ai
j : Yi,j ↪→ Y denote the

closed immersion. Then we have the following isomorphism of sheaves on U :

RkψΛ(k)|U * ∧k[((⊕j∈J1a
1
j∗Λ)/Λ)⊕ ((⊕j∈J2a

2
j∗Λ)/Λ)]|U ,

where for i = 1, 2 we are quotienting by the canonical diagonal map

Λ → ⊕j∈Jia
i
j∗Λ.

Proof. This follows from the fact that on U a chart for the log structure M |U

can be given by the map

U → Xr,s,m → Spec Z[Pr,s],

as explained in 3.1, so that M̄gp
rel|U can be identified with ((⊕j∈J1a

1
j∗Z)/Z) ⊕

((⊕j∈J2a
2
j∗Z)/Z)|U .
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We can now define a global map of sheaves

∧k[(⊕n
j=1a

1
j∗Λ)⊕ (⊕n

j=1a
2
j∗Λ)] → ∧kM̄gp

rel ⊗Z Λ * RkψΛ(k).

It is enough to describe a global map of sheaves ai
j∗Z → M̄gp

rel. Locally, on

neighborhoods U , we map section 1 ∈ ai
j∗Z(U) to the image in M̄gp

rel(U) of a

generator for the local equation defining Yi,j (this is independent of the choice of

generator). These local maps over neighborhoods U glue to give a global map,

since the two images of 1 in M(U ×X U ′) differ by units, so they are identified

once we pass to M̄gp
rel(U×X U ′). We see from the local description in proposition

3.2.2 that the above map of sheaves is surjective and that the kernel is generated

by images of the two diagonal maps Λ → ⊕n
j=1a

i
j∗Λ for i = 1, 2.

Corollary 3.2.3. There is a global isomorphism

∧k[((⊕j∈J1a
1
j∗Λ)/Λ)⊕ ((⊕j∈J2a

2
j∗Λ)/Λ)] * RkψΛ(k).

Let L1 = (⊕n
j=1a

1
j∗Λ)/Λ and L2 = (⊕n

j=1a
2
j∗Λ)/Λ. From the above corol-

lary, we see that RkψΛ(k) can be decomposed as
∑k

l=0 ∧lL1 ⊗ ∧k−lL2. If X

was actually a product of strictly semistable schemes, X = X1 ×S X2, then

the sheaves ∧lL1 and ∧k−lL2 would have an interpretation as pullbacks of the

nearby cycles sheaves RlψΛ and Rk−lψΛ associated to X1 and X2 respectively.

Corollary 3.2.3 would then look like a Künneth-type formula computing the

sheaves of nearby cycles for a product of strictly semistable schemes. In fact,

in such a situation, the computation of the sheaves of nearby cycles reflects the

stronger relation between the actual complexes of nearby cycles

RψΛX1×SX2 * RψΛX1 ⊗L
s̄ RψΛX2
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which takes place in the derived category of constructible sheaves of Λ-modules

on (X1 ×S X2)s̄. This result was proven in [I2] for a product of schemes of

finite type. The isomorphism is stated in the case when Λ is torsion, however

the analogue morphism for Λ a finite extension of Zl or Ql can be defined by

passage to the limit (see the formalism in [E]) and it will still be an isomorphism.

We would like to give here a different proof of this result in the case of the

product of two strictly semistable schemes. We will use log schemes, specifically

Nakayama’s computation of log vanishing cycles for log smooth schemes.

Recall that the scheme S has generic point η and closed point s. We will

freely use the notations S̄, S̃ and s̄, s̃, and also the corresponding notations for

a scheme X fixed in the begining of this subsection. We first need a preliminary

result.

Lemma 3.2.4. Let X1 be a strictly semistable scheme over S. Then the sheaves

RkψΛ are flat over Λ.

Proof. By Proposition 1.1.2.1 of [Sa2], we have an exact sequence of sheaves on

X1,s̄

0 → RkψΛ → i∗Rk+1j∗Λ(1) → Rk+1ψΛ(1) → 0.

We will prove by induction on k that Rn−kψΛ is flat over Λ. Indeed, RnψΛ =0

so the induction hypothesis is true for k = 0. For the induction step, note that

we can compute i∗Rn−k+1j∗Λ using log etale cohomology. Since X1 is strictly

semistable, it can be endowed with the canonical log structure M1 associated

to the special fiber. If a1
i : Y1,i ↪→ Y are the closed embeddings, then we have

M̄gp
1 = (M1/O∗X1

)gp * ⊕n
i=1a

1
i∗Z. (3.1)

By Theorem 0.2 (purity for log smooth morphisms) and Proposition 2.0.2 of

[Na], we can compute i∗Rn−k+1j∗Λ in the same way we have computed RkψΛ
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above, getting:

i∗Rn−k+1j∗Λ * ∧n−k+1(M̄gp
1 )⊗Z Λ(−n + k − 1),

which is flat over Λ by 3.1. In the short exact sequence

0 → Rn−kψΛ → i∗Rn−k+1j∗Λ(1) → Rn−k+1ψΛ(1) → 0

the middle term is flat, the right term is flat by the induction hypothesis, so the

left term must be flat as well.

Proposition 3.2.5. Let X1 and X2 be strictly semistable schemes over S. Then

we have the following equality in the derived category of constructible Λ[Is]-

modules on (X1 ×S X2)s:

Rψ(ΛX1,η )⊗L
s Rψ(ΛX2,η ) * Rψ(Λ(X1×SX2)η

),

where the external tensor product of a complexes is obtained by taking pr∗1 ⊗ pr∗2

and where the superscript L refers to left derived tensor product.

Proof. We’ve seen from the above discussion that in the case of a log smooth

scheme with vertical log structure the complex of vanishing cycles depends only

on the special fiber endowed with the canonical log structure. In other words,

for i = 1, 2, we have RψΛXi,η * Rε̃i,∗ΛXi,s as complexes on Xi,s, where ε̃i :

X̃i,s̃ → X̄i,s̄ is the identity morphism on the underlying schemes and forgets the

log structure. Analogously, we also have RψΛ(X1×SX2)η
= Rε̃∗Λ, where

ε̃ : (X̃1 ×S̃ X̃2)s̃ → (X̄1 ×S̄ X̄2)s̄

is the morphism which forgets the log structure. (Here we’ve used the fact that
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the fiber product of log smooth schemes with vertical log structure is log smooth

with vertical log structure and that the underlying scheme of the fiber product

of log schemes X̃1 ×S̃ X̃2 is just X̄1 ×S̄ X̄2; the latter holds since the induced

log structure on X̄1 ×S̄ X̄2 is saturated.) Therefore, it suffices to prove that we

have an isomorphism

Rε̃∗Λ(X̃1×S̃X̃2)s̃
* Rε̃1,∗ΛX̃1,s̃

⊗L
s̄ Rε̃2,∗ΛX̃2,s̃

in the derived category of constructible sheaves of Λ[Is]-modules on (X̄1×S̄ X̄2)s̄.

It is enough to show that the Künneth map

C = Rε̃1,∗ΛX̃1,s ⊗
L
s̄ Rε̃2,∗ΛX̃2,s̃

→ Rε̃∗Λ(X̃1×S̃X̃2)s̃
= D,

which is defined as in [SGA4] XVII 5.4.1.4, induces an isomorphism on the

cohomology of the two complexes above, for then the map itself will be a quasi-

isomorphism. The cohomology of the product complex can be computed using

a Künneth formula as Hn(C) =
⊕n

k=0 Rk ε̃1,∗Λ ⊗s̄ Rn−k ε̃2,∗Λ. In general, the

Künneth formula involves a spectral sequence with terms

El,n−l
2 =

n−l∑

k=0

TorΛ[Is]
l (Rk ε̃1,∗Λ, Rn−l−k ε̃2,∗Λ) ⇒ Hn(C),

see [EGA3] XVII 6.5.4.2 for a statement using homology. In our case the co-

homology sheaves Rk ε̃i,∗Λ are flat Λ-modules with trivial Is-action by Lemmas

3.0.8 and 3.2.4, so for l > 0 all the El,n−l
2 terms vanish. (Alternatively, one can

prove the formula for Hn(C) by taking flat resolutions for both of the factor

complexes and using the fact that the cohomology sheaves of the flat complexes

are flat as well.)

In order to prove that the induced map Hn(C) → Hn(D) is an isomorphism,
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it suffices to check that it induces an isomorphism on stalks at geometric points.

Let x be a geometric point of X1 ×S X2 above the geometric point s̄ of S. The

point x will project to geometric points x1 and x2 of X1 and X2. From [I1] it

follows that there is an isomorphism on stalks

Rk ε̃i,∗Λxi * Hk(Ji,Λ)

for 0 ≤ k ≤ n and i = 1, 2, where Ji is the relative log inertia group

ker(πlog
1 (Xi, xi) → πlog

1 (S, s)).

A similar statement holds for the stalks at x

Rnε̃∗Λx * Hn(J,Λ),

where J is the relative log inertia group ker(πlog
1 (X, x) → πlog

1 (S, s)). Directly

from the definition of the log fundamental group we can compute J = J1 × J2.

We have the following commutative diagram

Hn(C)x
!!

∼=
""

Hn(D)x

∼=
""⊕n

k=0 Hk(J1,Λ)⊗Λ Hn−k(J2,Λ) !! Hn(J1 × J2,Λ)

where the bottom arrow is the Künneth map in group cohomology and is also

an isomorphism. (Again, the Künneth spectral sequence

El,n−l
2 =

n−l∑

k=0

TorΛ
l (Hk(J1,Λ), Hn−k(J2,Λ))

degenerates at E2 and all terms outside the vertical line l = 0 vanish be-
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cause these cohomology groups are flat Λ-modules.) Therefore the top arrow

Hn(C)x → Hn(D)x has to be an isomorphism for all geometric points x of X

which means it comes from a global isomorphism of sheaves on X.



Chapter 4

The monodromy filtration

4.1 Overview of the strictly semistable case

In this section, we will explain a way of writing down explicitly the mon-

odromy filtration on the complex of nearby cycles RψΛ, in the case of a strictly

semistable scheme. Our exposition will follow that of [Sa2], which constructs

the monodromy filtration using perverse sheaves. We let Λ = Z/lrZ, Zl, Ql or

Q̄l. In fact, the proofs use Λ = Z/lrZ, then the results extend to Λ = Zl, Ql, Q̄l.

Let X1/OK be a strictly semistable scheme of relative dimension n− 1 with

generic fiber X1,η and special fiber Y1 = X1,s. Let RψΛ = ī∗Rj̄∗Λ be the com-

plex of nearby cycles over Y1,F̄. Let D1, . . . , Dm be the irreducible components

of Y1 and for each index set I ⊆ {1, . . . ,m} let YI = ∩i∈IDi and aI : YI → Y1 be

the immersion. The scheme YI is smooth of dimension n− 1− k if #I = k + 1.

For all 0 ≤ k ≤ m− 1 we set

Y (k)
1 =

⊔

I⊆{1,...,m},#I=k+1

YI

54
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and let ak : Y (k)
1 → Y1 be the projection. We identify ak∗Λ = ∧k+1a0∗Λ.

We will work in the derived category of bounded complexes of constructible

sheaves of Λ-modules on Y1,F̄. We will denote this category by Db
c(Y1,F̄,Λ).

Let ∂[π] be the boundary of π with respect to the Kummer sequence obtained

by applying i∗Rj∗ to the exact sequence of etale sheaves on X1,η

0 → Λ(1) → O∗X1,η
→ O∗X1,η

→ 0

for Λ = Z/lrZ. Taking an inverse limit over r and tensoring we get an element

∂[π] ∈ i∗R1j∗Λ(1) for Λ = Ql or Q̄l. Let θ : ΛY1 → i∗R1j∗Λ(1) be the map

sending 1 to ∂[π]. Let δ : ΛY1 → a0∗Λ be the canonical map. The following

result appears as Corollary 1.3 of [Sa2].

Proposition 4.1.1. 1. There is an isomorphism of exact sequences

ΛY1
δ !!

""

a0∗Λ
δ∧ !!

""

. . . δ∧ !!

""

an−1∗Λ !!

""

0

ΛY1
θ !! i∗R1j∗Λ(1) θ∪ !! . . . θ∪ !! i∗Rnj∗Λ(n) !! 0

,

where the first vertical arrow is the identity and all the other vertical arrows are

isomorphisms.

2. For k ≥ 0 we have an exact sequence

0 → RkψΛ → i∗Rk+1j∗Λ(1) → · · · → i∗Rnj∗Λ(n− k) → 0,

where all the horizontal maps are induced from θ∪.

Note. 1. The vertical isomorphisms in the first part of Proposition 4.1.1 come

from the Kummer sequence corresponding to each of the Di for i = 1, . . . ,m.

The maps θi : ΛDi → i∗R1j∗Λ(1) are defined by sending 1 to ∂[πi], where πi is

the generator of the ideal defining Di and ∂ is the connecting differential in the
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Kummer sequence. The isomorphism a0∗Λ
∼→ i∗R1j∗Λ(1) is the direct sum of

the θi for i = 1, . . . ,m.

2. Putting together the two isomorphisms, we get a quasi-isomorphism of

complexes

RkψΛ(k)[−k] ∼→ [ak∗Λ → · · · → an−1∗Λ → 0], (4.1)

where RkψΛ(k) is put in degree k and an−1∗Λ is put in degree n− 1.

Lemma 4.1.2. The complex al∗Λ[−l] is a −(n − 1)-shifted perverse sheaf for

all 0 ≤ l ≤ n− 1 and so is the complex RkψΛ(k)[−k] for all 0 ≤ k ≤ n− 1.

Proof. Since Y (l)
1 is smooth of dimension n − 1 − l, we know that Λ[−l] is a

−(n − 1)-shifted perverse sheaf on Y (l)
1 . The map al : Y (l) → Y is finite and

since the direct image for a finite map is exact for the perverse t-structure, we

deduce that al∗Λ[−l] is a −(n− 1)-shifted perverse sheaf on Y . This is true for

each 0 ≤ l ≤ n−1. The complex RkψΛ(k)[−k] is a successive extension of terms

of the form al∗Λ[−l] (as objects in the triangulated category Db
c(YF̄,Λ). Because

the category of −(n− 1)-shifted perverse sheaves is stable under extensions, we

conclude that RkψΛ(k)[−k] is also a −(n− 1)-shited perverse sheaf.

Assume Λ = Z/lrZ. Let L ∈ Db
c(Y1,F̄,Λ) be represented by the complex

· · · → Lk−1 → Lk → Lk+1 → . . . .

Definition 4.1.3. We define τ≤kL to be the standard truncation of L, repre-

sented by the complex

· · · → Lk−1 → ker(Lk → Lk+1) → 0.

Then τ≤k is a functor on Db
c(Y1,F̄,Λ). We also define τ̃≤kK to be represented by
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the complex

· · · → Lk−1 → Lk → im (Lk → Lk+1) → 0.

For every k we have a quasi-isomorphism τ≤kL
∼→ τ̃≤kL, which is given

degree by degree by the inclusion map.

Corollary 4.1.4. The complex RψΛ is a −(n−1)-shifted perverse sheaf and the

truncations τ≤kRψΛ make up a decreasing filtration of RψΛ by −(n−1)-shifted

perverse sheaves.

Proof. Since the cohomology of RψΛ vanishes in degrees greater than n− 1, we

have RψΛ * τ≤n−1RψΛ so it suffices to prove by induction that each τ≤kRψΛ

is a −(n − 1)-shifted perverse sheaf. For k = 0, we have τ≤0RψΛ * R0ψΛ,

which is a −(n− 1)-shifted perverse sheaf by Lemma 4.1.2. For k ≥ 1 we have

a distinguished triangle

(τ≤k−1RψΛ, τ≤kRψΛ, RkψΛ[−k])

and assuming that τ≤k−1RψΛ is a −(n− 1)-shifted perverse sheaf, we conclude

that τ≤kRψΛ is as well. The distinguished triangles become short exact se-

quences in the abelian category of perverse sheaves, from which we deduce that

the τ≤kRψΛ make up a decreasing filtration of RψΛ and that the graded pieces

of this filtration are the RkψΛ[−k].

Note 4.1.5. For Λ = Zl, Ql or Q̄l, we still have standard truncation functors τ≤k

which give us a distinguished triangle

(τ≤k−1RψΛ, τ≤kRψΛ, RkψΛ[−k]),

but the τ≤k are defined differently. With the new definition, the proof and

results of Corollary 4.1.4 still go through for Λ = Ql or Q̄l.
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The complex RψΛ has an action of Is, which acts trivially on the cohomology

sheaves RkψΛ. From this, it follows that the action of Is factors through the

action of its tame pro-l-quotient. Let T be a generator of pro-l-part of the tame

inertia (i.e. such that tl(T ) is a generator of Zl(1), where tl : Il → Zl(1) is

the tame inertial character). We are interested in understanding the action of

T on RψΛ. For Λ = Ql or Q̄l, we’re interested in understanding the action of

N = log T , by recovering its monodromy filtration (convolution of the kernel

and image filtrations). However, the monodromy filtration of N is the same as

the monodromy filtration of ν := T − 1 so we will explain how to compute the

latter.

We’ve seen that T acts trivially on the RkψΛ, which means that ν sends

τ≤kRψΛ → τ̃≤k−1RψΛ ∼→ τ≤k−1RψΛ. We get an induced map

ν̄ : RkψΛ[−k] → Rk−1ψΛ[−k + 1].

We record part 4 of Lemma 2.5 of [Sa2].

Lemma 4.1.6. The map ν̄ and the isomorphisms of Note 4.2 make a commu-

tative diagram

Rk+1ψΛ[−(k + 1)] ∼ !!

ν̄

""

[0 !!

""

ak+1∗Λ(−(k + 1)) δ∧ !!

⊗tl(T )

""

. . . δ∧ !! an−1∗Λ(−(k + 1))]

""
RkψΛ[−k] ∼ !! [ak∗Λ(−k) δ∧ !! ak+1∗Λ(−k) δ∧ !! . . . δ∧ !! an−1∗Λ(−k)]

,

where the sheaves an−1∗Λ(−(k + 1)) and an−1∗Λ(−k) are put in degree n− 1.

Note 4.1.7. When Λ = Ql or Q̄l the monodromy operator N = log T is defined
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and it induces a map

N̄ : RkψΛ[−k] → Rk−1ψΛ[−k + 1].

This map coincides with ν̄, since log T ≡ T − 1 (mod (T − 1)2) and (T − 1)2

sends τ≤kRψΛ → τ≤k−2RψΛ.

From the above commutative diagram, it is easy to see that the map ν̄ is

injective, since we can just compute the cone of the map of complexes on the

right. In general, to compute the kernel and cokernel of a map of perverse

sheaves, we have to compute the cone C of that map, then the perverse trunca-

tion τp
≥0C will be the cokernel and τp

≤−1C[−1] will be the kernel (see the proof

of Theorem 1.3.6 of [BBD]). It is straightforward to check that the cone of ν̄ is

quasi-isomorphic to ak∗Λ(−k)[−k], which is a −(n − 1)-shifted perverse sheaf.

We deduce that ν̄ has kernel 0 and cokernel ak∗Λ(−k)[−k].

The fact that ν̄ is injective means that the canonical filtration τ≤kRψΛ

coincides with the kernel filtration of ν on RψΛ and that the RkψΛ[−k] for

0 ≤ k ≤ n−1 are the graded pieces of the kernel filtration. Moreover, the graded

pieces of the induced image filtration of ν on the RkψΛ are ak+h∗Λ(−h)[−(k+h)]

for 0 ≤ h ≤ n−1−k. This information suffices to reconstruct the graded pieces

of the monodromy filtration on RψΛ.

Proposition 4.1.8. There is an isomorphism

⊕

h−k=r

a(k+h)∗Λ(−h)[−(k + h)] → GrM
r RψΛ.

This isomorphism, together with the spectral sequence associated to the

monodromy filtration induces the weight spectral sequence (see Corollary 2.2.4

of [Sa2]).
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4.2 The product of strictly semistable schemes

Let X1 and X2 be strictly semistable schemes of relative dimension n− 1 over

OK , and let Λ = Z/lrZ, Zl, Ql or Q̄l (we will be more specific about Λ where it is

important). Let RψΛXi be the complex of nearby cycles on Xi,s̄ for i = 1, 2 and

let RψΛX1×X2 be the complex of nearby cycles on (X1×S X2)s̄. By Proposition

3.2.5, we have

RψΛX1×X2 * RψΛX1 ⊗Λ RψΛX2

and notice that this isomorphism is compatible with the action of the inertia I in

GK . From Proposition 3.0.8, the action of I is trivial on the cohomology sheaves

of RψΛX1×X2 , so only the pro-l part of I acts nontrivially on RψΛX1×X2 . Let

T be a generator of the pro-l part of I and set ν = T − 1. Let ν, ν1, ν2 denote

the action of ν on RψΛX1×X2 , RψΛX1 and RψΛX2 respectively. Since the

above isomorphism is compatible with the action of T , we deduce that T acts

on RψΛX1 ⊗Λ[I] RψΛX2 via T ⊗ T . From this, we conclude that ν acts on

RψΛX1 ⊗Λ[I] RψΛX2 as ν1 ⊗ 1 + 1⊗ ν2 + ν1 ⊗ ν2.

As in the proof of Proposition 3.2.2, we have a decomposition

RkψΛ *
k⊕

l=0

RlψΛX1 ⊗Rk−lψΛX2 .

We shall see that ν induces a map

ν̄ : RkψΛX1×X2 [−k] → Rk−1ψΛX1×X2 [−k + 1]

which acts on RlψΛX1 ⊗Λ Rk−lψΛX2 [−k] by ν̄1 ⊗ 1 + 1⊗ ν̄2. First we prove a

few preliminary results.

For i = 1, 2 and 0 ≤ l ≤ n define the following schemes:

• Let Yi/F be the special fiber of Xi
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• Let Di,1, . . . , Di,mi be the irreducible components of Xi

• For J ⊆ {1, . . . ,mi} let Yi,J be ∩j∈JDi,j and let ai
J : Yi,J → Yi be the

immersion. Note that if the cardinality of J is h+1, then the scheme Yi,J

is smooth of dimension n− h− 1.

• For all 0 ≤ h ≤ mi − 1 set Y (h)
i =

⊔
#J=h+1 Yi,J and let ai

l : Y (h)
i → Yi be

the projection.

Then for each i = 1, 2 we have a resolution of RhψΛXi [−h] in terms of the

sheaves ai
j∗Λ:

RhψΛXi [−h] ∼→ [ai
l∗Λ(−h) → · · · → ai

n−1∗Λ(−h)],

where ai
n−1∗Λ(−h) is put in degree n− 1.

Now let Y/F be the special fiber of X1 ×X2. Let

YJ1,J2 =
⋂

j1∈J1,j2∈J2

(Dj1 ×F Dj2).

Set Y (h1,h2) =
⊔

#J1=h1+1,#J2=h2+1 YJ1,J2 and let ah1,h2 : Y (h1,h2) → Y be the

projection. The scheme Y (h1,h2) is smooth of dimension 2n− 2− h1− h2. Note

that Y (h1,h2) = Y (h1)
1 × Y (h2)

2 and that ah1,h2∗Λ * a1
h1∗Λ ⊗ a2

h2∗Λ, where the

tensor product of sheaves is an external tensor product.

Lemma 4.2.1. We have the following resolution of RhψΛX1 ⊗Rk−hψΛX2 [−k]

as the complex

ah,k−h∗Λ(−k) → ah,k−h+1∗Λ(−k)⊕ ah+1,k−h∗Λ(−k) → · · · → an−1,n−1∗Λ(−k),

where the sheaf an−1,n−1∗Λ(−k) is put in degree 2n − 2. The general term of



CHAPTER 4. THE MONODROMY FILTRATION 62

the complex which appears in degree h1 + h2 is

⊕

h1≥h
h2≥k−h

ah1,h2∗Λ(−k)

For each h1, h2 the complexes ah1,h2∗Λ(−k)[−h1−h2] are −(2n−2)-shifted per-

verse sheaves, so the complex RkψΛX1×X2 [−k] is also −(2n−2)-shifted perverse

sheaf.

Proof. Each of the complexes RhψΛX1 and Rk−hψΛX2 have resolutions in terms

of a1
h1∗Λ(−h) and a2

h2∗Λ(−k + h) respectively, where h ≤ h1 ≤ n − 1 and

k − h ≤ h2 ≤ n − 1. We form the double complex associated to the product

of these resolutions and the single complex associated to it is a resolution of

RhψΛX1 ⊗Rk−hψΛX2 [−k] of the following form:

a1
h∗Λ(−h)⊗a2

k−h∗Λ(−k+h) → a1
h+1∗Λ(−h)⊗a2

k−h∗Λ(−k+h)⊕a1
h∗Λ(−h)⊗a2

k−h+1∗Λ(−k+h)

→ · · · → a1
n−1∗Λ(−h)⊗ a2

n−1∗Λ(−k + h).

In the above complex, the sheaf a1
n−1∗Λ(−h)⊗ a2

n−1∗Λ(−k +h) is put in degree

2n− 2. Now we use the formula

ah1,h2∗Λ(−k) = a1
h1∗Λ(−h)⊗ a1

h2∗Λ(−k + h)

to conclude the first part of the lemma. The complex ah1,h2∗Λ(−k)[−h1−h2] is

the direct image via ah1,h2∗ of the complex Λ(−k)[−h1 − h2] on Y (h1,h2). Since

Y (h1,h2) is smooth of dimension 2n−2−h1−h2, we know that Λ(−k)[−h1−h2] is

a−(2n−2)-shifted perverse sheaf, so its direct image under the finite map ah1,h2∗

is also a −(2n− 2)-shifted perverse sheaf. We’ve just seen that each RhψΛX1 ⊗

Rk−hψΛX2 can be obtained from successive extensions of factors of the form
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ah1,h2∗Λ(−k)[−h1 − h2] and since the category of −(2n − 2)-shifted perverse

sheaves is stable under extensions we deduce that RhψΛX1 ⊗Rk−hψΛX2 [−k] is

a −(2n − 2)-shifted perverse sheaf. Now RkψΛX1×X2 [−k] =
⊕k

h=0 RhψΛX1 ⊗

Rk−hψΛX2 [−k], so it is also a −(2n− 2)-shifted perverse sheaf.

Corollary 4.2.2. RψΛX1×X2 is a −(2n− 2)-shifted perverse sheaf. The stan-

dard truncation τ≤kRψΛX1×X2 is a filtration by −(2n − 2)-shifted perverse

sheaves and the graded pieces of this filtration are the RkψΛX1×X2 [−k].

Proof. The proof is exactly the same as that of Corollary 4.1.4. It suffices to

show that each τ≤kRψΛ is a −(2n − 2)-shifted perverse sheaf and we can do

this by induction, using the distinguished triangle

(τ≤k−1RψΛX1×X2 , τ≤kRψΛX1×X2 , R
kψΛX1×X2 [−k]).

Once everything is proven to be in an abelian category, the distinguished triangle

becomes a short exact sequence and we get a filtration on RψΛX1×X2 with its

desired graded pieces.

Now we can deduce that there is a map

ν̄ : RkψΛX1×X2 [−k] → Rk−1ψΛX1×X2 [−(k − 1)].

Indeed, since T acts trivially on the cohomology sheaves of RψΛX1×X2 , we

deduce that ν sends τ≤kRψΛX1×X2 to τ≤k−1RψΛX1×X2 , which induces ν̄. It

remains to check that this induced map ν̄ restricted to RhψΛX1 ⊗ Rk−hψΛX2

is the same map as ν̄1 ⊗ 1 + 1⊗ ν̄2, sending

RhψΛX1⊗Rk−hψΛX2 [−k] → (Rh−1ψΛX1⊗Rk−hψΛX1⊕RhψΛX1⊗Rk−h−1ψΛX2)[−(k−1)].

First notice that for each 0 ≤ h ≤ k ≤ n − 1 the complex τ≤hRψΛX1 ⊗
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τ≤k−hRψΛX2 is a −(2n − 2)-shifted perverse sheaf, because it is the external

tensor product of −(n − 1)-shifted perverse sheaves on X1 and on X2. (See

proposition 4.2.8 of [BBD]). Let

τ≤h−1RψΛX1 ⊗ τ≤k−hRψΛX2 + τ≤hRψΛX1 ⊗ τ≤k−h−1RψΛX2

be the image of

τ≤h−1RψΛX1⊗τ≤k−hRψΛX2⊕τ≤hRψΛX1⊗τ≤k−h−1RψΛX2 → τ≤k−1RψΛX1×X2 .

We have a commutative diagram of −(2n− 2)-shifted perverse sheaves

τ≤hRψΛX1 ⊗ τ≤k−hRψΛX2
!!

ν1⊗1+1⊗ν2+ν1⊗ν2

""

τ≤kRψΛX1×X2

ν

""
τ≤h−1RψΛX1 ⊗ τ≤k−hRψΛX2 + τ≤hRψΛX1 ⊗ τ≤k−h−1RψΛX2

!! τ≤k−1RψΛX1×X2 ,

where the horizontal maps are the natural maps of complexes.

Lemma 4.2.3. Assume Λ = Z/lrZ. The image of Rh,k−h = τ≤hRψΛX1 ⊗

τ≤k−hRψΛX2 in RkψΛ[−k] is RhψΛX1 ⊗Rk−hψΛX2 [−k].

Proof. The map of perverse sheaves Rh,k−h → τ≤kRψΛX1×X2 → RkψΛ[−k]

factors through

RhψΛX1 ⊗Rk−hψΛX2 [−k] ↪→ RkψΛ[−k].

This can be checked on the level of complexes. We only need to know that the

natural map

Rh,k−h
g→ RhψΛX1 ⊗Rk−hψΛX2 [−k]
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is a surjection. This follows once we know that the triangle

Rh−1,k−l + Rh,k−h−1
f→ Rh,k−h

g→ RhψΛX1 ⊗Rk−hψΛX2 [−k]

is distinguished, since then it has to be a short exact sequence of −(2n − 2)-

shifted perverse sheaves, so g would be a surjection. To check that the triangle

is distinguished, it suffices to compute the fiber of g and check that it is quasi-

isomorphic to

M = τ̃≤h−1RψΛX1 ⊗ τ≤k−hRψΛX2 + τ≤hRψΛX1 ⊗ τ̃≤k−h−1RψΛX2 .

Let K· be a representative for RψΛX1 and L· be representative for RψΛX2 .

The degree j < k term of M and of the fiber of g are both equal to

(
h−1⊕

i=j−k+l+1

Ki⊗Lj−i)⊕Kj−k+h⊗ker(Lk−h → Lk−h+1)⊕ker(Kh → Kh+1)⊗Lj−h

and the differentials are identical. The last non-zero term Mk in M appears in

degree k and is equal to

ker(Kh → Kh+1)⊗im (Lk−h−1 → Lk−h)+im (Kh−1 → Kh)⊗ker(Lk−h → Lk−h+1).

The main problem is checking that the following map of complexes is a quasi-

isomorphism

Mk !!

λ
""

0

""
ker(Kh → Kh+1)⊗ ker(Lk−h → Lk−h+1) !! Hh(K)⊗Hk−h(L),

where the left vertical arrow λ is the natural inclusion. It is equivalent to prove
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that the object in the lower right corner is the cokernel of λ. This follows from

the Künneth spectral sequence, when computing the cohomology of the product

of the two complexes

K̃ := [im (Kh−1 → Kh) → ker(Kh → Kh+1)] and

L̃ := [im (Lk−h−1 → Lk−h) → ker(Lk−h → Lk−h+1)]

Indeed, since H1(K̃) = RhψΛX1 and H1(L̃) = Rk−hψΛX2 are both flat over Λ

the Künneth spectral sequence degenerates. We get H2(K̃⊗L̃) = H1(K̃)⊗H1(L̃)

and this is exactly the statement that Hh(K)⊗Hk−h(L) is the cokernel of λ.

Note 4.2.4. The result of this lemma extends to Λ = Ql and Λ = Q̄l.

Putting together the above discussion and keeping in mind that the image

of ν1⊗ν2 in Rk−1ψΛX1×X2 [−(k−1)] is trivial, we conclude the following result.

Proposition 4.2.5. The action of N on RψΛX1×X2 induces a map

ν̄ : RkψΛX1×X2 [−k] → Rk−1ψΛX1×X2 [−(k − 1)]

which coincides with ν̄1⊗1+1⊗ ν̄2 when restricted to RhψΛX1⊗Rk−hψΛX2 [−k]

for each 0 ≤ h ≤ k.

We now use the decomposition of RkψΛX1×X2 [−k] in terms of RhψΛX1 ⊗

Rk−hψΛX2 [−k] for 0 ≤ h ≤ k and the resolution of RhψΛX1 ⊗ Rk−hψΛX2 [−k]

in terms of ah1,h2∗Λ(−k)[−(h1 + h2)] to get a resolution of RkψΛX1×X2 [−k], of

the form

⊕

h1+h2=k

ah1,h2∗Λ(−k)⊕ck
h1h2 → · · · →

⊕

h1+h2=k+j

ah1,h2∗Λ(−k)⊕ck
h1,h2 → . . . ,

(4.2)
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where the first term is put in degree k and the coefficients ck
h1,h2

count how

many copies of ah1,h2∗Λ(−k) show up in the direct sum.

Lemma 4.2.6. Let ck
h1,h2

be the coefficient of ah1,h2∗Λ(−k)[−(h1 + h2)] in the

resolution of RkψΛX1×X2 [−k]. Then

ck
h1,h2

= min(min(h1, h2) + 1, h1 + h2 − k + 1, k + 1).

Proof. The coefficient ck
h1,h2

counts for how many values of 0 ≤ h ≤ k the

resolution of RhψΛX1⊗Rk−hψΛX2 contains the term ah1,h2∗Λ(−k)[−(h1 +h2)].

This count is clearly bounded by k + 1, because there are k + 1 possible values

of h. When h1 + h2 − k + 1 ≤ k + 1, the count is

min(min(h1, h2) + 1, h1 + h2 − k + 1),

because ah1,h2∗Λ(−k)[−(h1+h2)] will show up in the resolution of Rh1−jψΛX1⊗

Rk−h1+jψΛX2 for all 0 ≤ j ≤ h1 + h2 − k + 1 which satisfy 0 ≤ h1 − j ≤ k.

When both h1 and h2 are less than k, all the j ∈ 0, . . . , h1 + h2 − k + 1 satisfy

the requirement. When h2 ≥ k, there are exactly h1+1 values of j which satisfy

the requirement and we can treat the case h1 ≥ k analogously to get h2 + 1

values of j. This covers the case h1 + h2 ≤ 2k. In the case h1 + h2 ≥ 2k, we

need to count all 0 ≤ j ≤ k which satisfy 0 ≤ h1 − j ≤ k. The result is

min(min(h1, h2) + 1, k + 1).

This completes the determination of ck
h1,h2

.

Note that for all h1+h2 ≤ 2k−2, we have ck
h1,h2

≤ ck−1
h1,h2

. For h1+h2 = 2k−1
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we always have min(h1, h2) + 1 ≤ k < k + 1, so that

ck
h1,h2

= ck−1
h1,h2

= min(h1, h2) + 1.

However, ck
k,k = k + 1 > k = ck−1

k,k and for h1 + h2 ≥ 2k we have ck
h1,h2

≥ ck−1
h1,h2

.

We now have an explicit description of

ν̄ : RkψΛX1×X2 [−k] → Rk−1ψΛX1×X2 [−k]

as a map of complexes with terms of the form
⊕

h1+h2=k+j ah1,h2∗Λ(−k)⊕ck
h1,h2 ,

which are put in degree k+j. Writing ν̄ = ν̄1⊗1+1⊗ ν̄2 as a map of complexes,

we will be able to compute both the kernel and cokernel of ν̄.

We will now restrict to Λ = Ql or Q̄l. In this case, N = log T is defined, it

acts trivially on the cohomology sheaves RkψΛX1×X2 , so it induces a map

N̄ : RkψΛX1×X2 [−k] → Rk−1ψΛX1×X2 [−k].

Since N ≡ T − 1 (mod (T − 1)2) and (T − 1)2 sends τ≤kRψΛ → τ≤k−2RψΛ

(here τ≤k denote the truncation functors for Ql or Q̄l-sheaves) the two maps N̄

and ν̄ coincide and we will work with N̄ from now on, to which the results of

Proposition 4.2.5 apply.

First we need a preliminary result, which will allow us to compute the kernels

and cokernels of certain morphisms of −(2n− 2)-shifted perverse sheaves. Note

that, while Db
c(Y,Λ) is not known to be a derived category of some category

of Λ-sheaves, being constructed as a “projective limit” of derived categories, it

is nevertheless endowed with a standard t-structure whose core is the category

of Λ-sheaves. Therefore, by Proposition 3.1.10 of [BBD], we have a realization

functor from the bounded derived category of Λ-sheaves to Db
c(Y,Λ). Using this
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functor, we think of a bounded complex of Λ-sheaves as an element in Db
c(Y,Λ)

and of a morphism of complexes as a morphism in Db
c(Y,Λ).

Lemma 4.2.7. Assume that f : C → D is a morphism in Db
c(Y, Λ) which

satisfies the following: C and D are (the image of) complexes (Ck)k∈Z and

(Dk)k∈Z of l-adic sheaves and f is a map of complexes defined degree by de-

gree as fk : Ck → Dk. Assume that each fk is injective as a map of sheaves.

Let D̄k = coker (fk) and let D̄ be (the image in Db
c(Y, Λ) of) the complex with

terms D̄k and differential d̄ induced by the differential d of D. Assume that the

short exact sequence of sheaves

0 → Ck fk

→ Dk → D̄k → 0

is splittable. Assume also that Ck[−k] and Dk[−k] are −(2n−2)-shifted perverse

sheaves.

Then D̄k[−k] is a −(2n − 2)-shifted perverse sheaf and thus so is D̄ (since

it is an extension of D̄k[−k] for finitely many k). Moreover, the following is an

exact sequence of −(2n− 2)-shifted perverse sheaves

0 → C → D → D̄ → 0

Proof. D̄k[−k] is a −(2n− 2)-shifted perverse sheaf because it is a direct factor

of Dk[−k] and so D̄ is also a −(2n − 2)-shifted perverse sheaf. If Λ was tor-

sion, then we could identify the category Db
c(Y, Λ) with a full subcategory of the

derived category of the category of sheaves of Λ-modules (whose objects have

bounded constructible cohomology) and the corollary would follow from a stan-

dard diagram chase in the derived category of an abelian category. However,

the cases we are interested in are Λ = Ql or Q̄l. It is possible that by checking

the definition of the category Db
c(Y,Λ) carefully, we could ensure that a version
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of the diagram chase applies to our case. However, an alternative approach uses

Beilinson’s result which identifies Db
c(Y, Λ) with the derived category of perverse

sheaves on Y , see [Be].

We see that the map f : C → D is injective, since we can think of it as a map

of filtered objects, which is injective on the kth graded pieces for each k. Indeed

C is a successive extension of the −(2n− 2)-shifted perverse sheaves Ck[−k] and

D is a successive extension of Dk[−k] and the fact that f is a map of complexes

implies that f respects these extensions. Let k be the largest integer for which

either of Ck and Dk is non-zero. We have the commutative diagram of exact

sequences

0 !! Ck[−k]

fk[−k]

""

!! C′

""

!! Ck−1[−k + 1]

fk−1[−k+1]

""

!! 0

0 !! Dk[−k] !! D′ !! Dk−1[−k + 1] !! 0

,

where the arrows on the left and on the right are injective. The fact that the

middle map is also injective follows from a standard diagram chase. (Note that

we are working in the category of −(2n − 2)-shifted perverse sheaves, which is

abelian, so we can perform diagram chases by [Re].) The injectivity of f follows

by induction.

By a repeated application of the snake lemma in the abelian category of

−(2n− 2)-shifted perverse sheaves, we see that the cokernel of f is a succesive

extension of terms of the form D̄k[−k]. In order to identify this cokernel with D̄,

it suffices to check that the differential of D̄ coincides in Ext1(D̄k[−k], D̄k−1[−k+

1]) with the extension class which defines the cokernel. To check this, it is enough
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to see that the following square is commutative

Dk−1[−k + 1]

fk−1[−k+1]

""

!! Dk[−k + 1]

fk[−k+1]

""
D̄k−1[−k + 1] !! D̄k[−k + 1]

,

where the top (resp. bottom) horizontal map is the boundary map obtained

from considering the distinguished triangle (Dk[−k],D′,Dk−1[−k + 1]) (resp.

(D̄k[−k], D̄′, D̄k−1[−k + 1])) in Db
c(Y,Λ). The top boundary map is the differ-

ential of D and if the square is commutative, then the bottom map must be the

differential of D̄. The commutativity can be checked by hand, by making the

boundary maps explicit using the construction of the cone. (There is a natural

map

Dk[−k]

""

!! D′

""
0 !! Dk−1[−k + 1]

,

which is a quasi-isomorphism in Db
c(Y,Λ). The boundary map of the distin-

guished triangle is obtained by composing the inverse of this quasi-isomorphism

with the natural map

Dk[−k]

""

!! D′

""
Dk[−k] !! 0

.

The same construction works for D̄ and it is straightforward to check the com-

mutativity now.)

Lemma 4.2.8. Let k ≥ 1. Consider the map

N̄ : RkψΛX1×X2 [−k] → Rk−1ψΛX1×X2 [−(k − 1)].
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Define the complex

Pk =
[
ak,k∗Λ(−k) ∧δ→ ak,k+1∗Λ(−k)⊕ ak+1,k∗Λ(−k) → · · · ∧δ→ an−1,n−1∗Λ(−k)

]
,

where ak,k∗Λ(−k) is put in degree 2k. The factor ah1,h2∗Λ(−k) appears in the

resolution of P in degree h1 + h2 whenever h1, h2 ∈ {k, k + 1, . . . , n− 1}. Also

define the complex

Rk =
[
⊕k−1

j=0aj,k−1−j∗Λ(−(k − 1)) → · · · → ak−1,k−1∗Λ((−(k − 1))
]
,

where the first term is put in degree k − 1 and the term ah1,h2∗Λ(−(k − 1))

appears in degree h1 + h2 whenever h1, h2 ∈ {0, 1, . . . , k − 1}.

Then Pk * ker(N̄) and Rk * coker(N̄).

Proof. Note that both Pk and Rk are −(2n − 2)-shifted perverse sheaves, by

the same argument we’ve used before. The proof will go as follows: we will

first define a map Pk → RkψΛX1×X2 [−k] and check that N̄ kills the image of

Pk. We use Lemma 4.2.7 to check that the map Pk → RkψΛX1×X2 [−k] is an

injection and to compute its cokernel Qk. Then we check using Lemma 4.2.7

again that the induced map Qk → Rk−1ψΛ[−(k − 1)] is an injection and we

identify its cokernel with Rk.

For the first step, note that it suffices to define the maps

fh1,h2 : ah1,h2∗Λ(−k) → ah1,h2∗Λ(−k)⊕(k+1)

for all h1, h2 ≥ k and we do so by x 2→ (x,−x, . . . , (−1)kx). These maps are

clearly compatible with the differentials ∧δ, so they induce a map f : Pk →

RkψΛX1×X2 [−k] (this is a map of complexes between P and the standard rep-
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resentative of RkψΛX1×X2 [−k]). Moreover, we can check that the restriction

N̄ : ah1,h2∗Λ(−k)⊕(k+1) → ah1,h2∗Λ(−k)⊕k

sends (x,−x, . . . , (−1)kx) 2→ (0, . . . , 0).

Indeed, the jth factor ah1,h2∗Λ(−k) appears in the resolution of RjψΛX1 ⊗

Rk−jψΛX2 [−k]. The latter object is sent by N̄1⊗1 to Rj−1ψΛX1⊗Rk−jψΛX2 [−(k−

1)] for 1 ≤ j ≤ k and by 1 ⊗ N̄2 to RjψΛX1 ⊗ Rk−1−jψΛX2 [−(k − 1)] for

0 ≤ j ≤ k − 1. We also know that N̄1 ⊗ 1 kills R0ψΛX1 ⊗ RkψΛX2 [−k] and

similarly 1 ⊗ N̄2 kills RkψΛX1 ⊗ R0ψΛX2 [−k]. By Lemma 4.1.6, we find that

for 1 ≤ j ≤ k − 1

(0, . . . , 0, x, 0 . . . , 0) 2→ (0, . . . , x⊗ tl(T ), x⊗ tl(T ), 0 . . . , 0),

where the term x is put in position j and the terms x⊗tl(T ) are put in positions

j − 1 and j. We also have

(x, 0, . . . , 0) 2→ (x⊗ tl(T ), 0, . . . , 0) and (0, . . . , 0, x) 2→ (0, . . . , 0, x⊗ tl(T )).

Thus, we find that N̄ sends

(x,−x, . . . , (−1)kx) 2→ (x⊗tl(T )−x⊗tl(T ), . . . , (−1)k−1x⊗tl(T )+(−1)kx⊗tl(T )),

and the term on the right is (0, . . . , 0). Since we have exhibited N̄ ◦ f as a

chain map and we’ve checked that it vanishes degree by degree, we conclude

that N̄ ◦ f = 0. Thus, f(Pk) ⊆ ker N̄ .

Note that for all h1, h2 ≥ k we can identify the quotient of ah1,h2∗Λ(−k)⊕(k+1)
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by fh1,h2(ah1,h2∗Λ(−k)) with ah1,h2∗Λ(−k)⊕k. The resulting exact sequence

0 → ah1,h2∗Λ(−k) fh1,h2
→ ah1,h2∗Λ(−k)⊕(k+1) → ah1,h2∗Λ(−k)⊕k → 0

is splittable, because the third term is free over Λ. By Lemma 4.2.7, the map

f : Pk → RkψΛX1×X2 [−k] is injective and we can identify degree by degree the

complex Qk representing the cokernel of f . In degrees less than 2k − 1, the

terms of Qk are the same as those of RkψΛX1×X2 [−k] and in degrees at least

2k − 1, they are the terms of Rk−1ψΛX1×X2 [−k + 1].

To prove that the induced map Qk → Rk−1ψΛX1×X2 [−(k − 1)] is injective

it suffices to check degree by degree and the proof is analogous to the one for

f : Pk → RkψΛX1×X2 [−k]. The cokernel is identified with Rk degree by degree,

via the exact sequence

0 → ah1,h2∗Λ(−k)⊕(k−1) N̄h1,h2
→ ah1,h2∗Λ(−(k−1))⊕k → ah1,h2∗Λ(−(k−1)) → 0

for 0 ≤ h1, h2 ≤ k − 1.

Note. 1. The complex Pk has as its factors exactly the terms ah1,h2∗Λ(−k)[−(h1+

h2)] for which ck
h1,h2

−ck−1
h1,h2

= 1, whileRk has as its factors the terms ah1,h2∗Λ(−(k−

1))[−(h1 + h2)] for which ck−1
h1,h2

− ck
h1,h2

= 1.

2. Another way to express the kernel of N̄ is as the image of R2kψΛX1×X2 [−2k]

in RkψΛX1×X2 [−k] under the map

N̄k
1 ⊗ 1− N̄k−1

1 ⊗ N̄2 + · · ·+ (−1)k1⊗ N̄k
2 .

This follows from Lemmas 4.1.6 and 4.2.8.

Corollary 4.2.9. The filtration of RψΛX1×X2 by τ≤kRψΛX1×X2 induces a fil-

tration on kerN . The first graded piece of this filtration Gr1 kerN is R0ψΛX1×X2 .
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The graded piece Grk+1 kerN of this filtration is Pk.

Proof. We’ve already seen that N maps all of R0ψΛX1×X2 to 0, since T acts

trivially on the cohomology of RψΛX1×X2 . This identifies the first graded piece

to be R0ψΛX1×X2 .

In order to identify the (k+1)st graded piece, we will once more pretend that

our shifted perverse sheaves have elements. We can do this since the (2− 2n)-

shifted perverse sheaves form an abelian category and we only need to do this

in order to simplify the exposition. First notice that grk kerN ⊆ Pk, since

anything in the kernel of N reduces to something in the kernel of N̄ .

So it suffices to show that any x ∈ Pk lifts to some x̃ ∈ kerN . Pick any

x̃ ∈ τ≤kRψΛX1×X2 lifting x. Since N̄ sends x to 0, we conclude that N maps

x̃ to τ≤k−2RψΛX1×X2 . The image of Nx̃ in Rk−2ψΛX1×X2 [−k + 2] depends

on our choice of the lift x̃. However, the image of Nx̃ in Rk−1 only depends

on x. If we can show that that image is 0, we conclude that we can pick a lift

x̃ such that Nx̃ ∈ τ≤k−3RψΛ. We can continue applying the same argument

while modifying our choice of lift x̃, such that Nx̃ ∈ τ≤k−jRψΛX1×X2 for larger

and larger j. In the end we see that Nx̃ = 0.

It remains to check that the map Pk → Rk−1 sending x ∈ Pk to the image

of Nx̃ in Rk−1 is 0. We can see this by checking that any map Pk → Rk−1 is 0.

Indeed, we have the following decompositions of Pk and Rk−1 as (2−2n)-shifted

perverse sheaves:

Pk =
[
ak,k∗Λ(−k) ∧δ→ ak,k+1∗Λ(−k)⊕ ak+1,k∗Λ(−k) → · · · ∧δ→ an−1,n−1∗Λ(−k)

]

and Rk−1 =
[
⊕k−1

j=0aj,k−2−j∗Λ(−(k − 2)) → · · · → ak−2,k−2∗Λ((−(k − 2))
]
.

Each of the factors ah1,h2∗Λ is a direct sum of factors of the form aJ1,J2∗Λ,

where cardJi = hi for i = 1, 2 and aJ1,J2 : YJ1,J2 ↪→ Y is a closed immersion.
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Each factor aJ1,J2∗Λ is a simple (2 − 2n)-shifted perverse sheaf, so we have

decompositions into simple factors for both Pk and Rk−1. It is straightforward

to see that Pk and Rk−1 have no simple factors in common. Thus, any map

Pk → Rk−1 must vanish. The same holds true for any map Pk → Rk−j for any

2 ≤ j ≤ k.

The filtration with graded pieces Pk on kerN induces a filtration on kerN/imN∩

kerN whose graded pieces are Pk/imN̄ . Indeed, it suffices to check that the

image of imN in Pk coincides with imN̄ . The simplest way to see this is again

by using a diagram chase. First, it is obvious that for

N̄ : RkψΛX1×X2 [−k] → Rk−1ψΛX1×X2 [−k + 1]

we have imN̄ ⊆ GrkimN . Now let x ∈ GrkimN . This means that there exists

a lift x̃ ∈ τ≤k−1RψΛX1×X2 of x and an element ỹ ∈ τ≤k+jRψΛX1×X2 with

0 ≤ j ≤ 2n−k such that x̃ = Nỹ. In order to conclude that x ∈ imN̄ , it suffices

to show that we can take j = 0. In the case j ≥ 1, let y ∈ Rk+jψΛX1×X2 be the

image of ỹ. We have N̄y = 0 and in this case we’ve seen in the proof of Corollary

4.2.9 that we can find ỹ(1) ∈ τ≤k+j−1RψΛX1×X2 such that N(ỹ − ỹ(1)) = 0. In

other words, x̃ = Nỹ(1) and we can replace j by j−1. After finitely many steps,

we can find ỹ(j) ∈ τ≤kRψΛX1×X2 such that x̃ = Nỹ(j) . Thus, x ∈ imN̄ .

Lemma 4.2.10. The filtration of RψΛX1×X2 by τ≤kRψΛ induces a filtration

on kerN/im N ∩ kerN with the (k + 1)-st graded piece ak,k∗Λ(−k)[−2k] for

0 ≤ k ≤ n− 1.

Proof. First, we need to compute the quotient R0ψΛX1×X2/imN , which is the

same as R0ψΛX1×X2/Q1 = R1 and R1 * a0,0∗Λ by Lemma 4.2.8.

Now we must compute for each k ≥ 0 the quotient of (2−2n)-shifted perverse

sheaves Pk/imN̄ . This is the same as Pk/Qk+1, which is also the image of Pk
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in Rk+1 via

Pk ↪→ RkψΛ[−k] ! Rk+1.

Recall that we have decompositions for both Pk and Rk+1 in terms of simple

objects in the category of (2− 2n)-shifted perverse sheaves,

Pk =
[
ak,k∗Λ(−k) ∧δ→ ak,k+1∗Λ(−k)⊕ ak+1,k∗Λ(−k) → · · · ∧δ→ an−1,n−1∗Λ(−k)

]

and Rk+1 =
[
⊕k+1

j=0aj,k−j∗Λ(−k) → · · · → ak,k∗Λ(−k)
]
.

The only simple factors that show up in both decompositions are those that

show up in ak,k∗Λ(−k)[−2k], so these are the only factors that may have non-

zero image in Rk+1. Thus, Pk/imN̄ is a quotient of ak,k∗Λ(−k)[−2k] and it

remains to see that it is the whole thing. As seen in Lemma 4.2.8, the map

Pk → Rk+1 can be described as a composition of chain maps. The composition

in degree 2k is the map

ak,k∗Λ(−k) ↪→ ak,k∗Λ(−k)⊕k+1 ! ak,k∗Λ(−k)

where the inclusion sends x 2→ (x,−x, . . . , (−1)k+1x) and the surjection is a quo-

tient by (x, x, 0, . . . , 0), (0, x, x, 0 . . . , 0), . . . ,(0, . . . , 0, x, x) for x ∈ ak,k∗Λ(−k).

It is elementary to check that the composition of these two maps is an isomor-

phism, so we are done.

Analogously, we can compute the kernel and cokernel of

N̄ j : RkψΛX1×X2 [−k] → Rk−jψΛX1 [−k + j]

for 2 ≤ j ≤ k ≤ 2n− 2 and use this to recover the graded pieces of a filtration

on kerN j/ kerN j−1 and on (kerN j/ kerN j−1)/(imN ∩ kerN j).
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Lemma 4.2.11. Let 2 ≤ j ≤ 2n− 2. The filtration of RψΛX1×X2 by τ≤kRψΛ

induces a filtration on

(kerN j/ kerN j−1)/(imN ∩ kerN j).

The first graded piece of this filtration is isomorphic to

j−1⊕

i=0

ai,j−1−i∗Λ(−j + 1)[−j + 1].

For k ≥ 1, the (k + 1)-st graded piece is isomorphic to

(ker N̄ j/ ker N̄ j−1)/(imN̄ ∩ ker N̄ j)

where

N̄ j : Rk+j−1ψΛ[−(k + j − 1)] → Rk−1ψΛ[−k + 1].

More explicitly, the (k + 1)-st graded piece is isomorphic to

j⊕

i=1

ak+i−1,k+j−i∗Λ(−(k + j − 1))[−2k − j + 1].

Proof. We will prove the lemma by induction on j. The base case j = 1 is

proven in Corollary 4.2.9 and Lemma 4.2.10. Assume it is true for j − 1.

To prove the first claim, note that the first graded piece of

(kerN j/imN ∩ kerN j)/(kerN j−1/imN ∩ kerN j−1)

has to be a quotient of

Rj−1ψΛX1×X2 [−j + 1]/Qj * Rj .
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This is true because τ≤j−1RψΛX1×X2 ⊆ kerN j and τ≤j−2RψΛX1×X2 ⊆ kerN j−1

and

Rj−1ψΛX1×X2 [−j + 1] = τ≤j−1RψΛX1×X2/τ≤j−2RψΛX1×X2 .

More precisely, the first graded piece has to be a quotient of

Rj/(kerN j−2/imN ∩ kerN j−2)

by the second graded piece of

(kerN j−1/ kerN j−2)/(imN ∩ kerN j−1).

(Here, we abusively write

kerN j−2/imN ∩ kerN j−2

where we mean the image of this object in Rj .) By the induction hypothesis,

this second graded piece is

j−1⊕

i=1

ai,j−i∗Λ(−j + 1)[−j].

Continuing this argument, we see that in order to get the first graded piece of

(kerN j/ kerN j−1)/(imN ∩ kerN j) we must quotient Rj successively by

j−k⊕

i=1

ak+i−1,j−i∗Λ(−j + 1)[−k − j + 1],

with k going from j − 1 down to 1. (This corresponds to quotienting out suc-

cessively by the jth graded piece of kerN/(imN ∩ kerN), the (j − 1)st graded

piece of (kerN2/ kerN)/(imN ∩ kerN2) down to the second graded piece of
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(kerN j−1/ kerN j−2)/(imN ∩ kerN j−1).) We know that

Rj =
[
⊕j−1

i=0ai,j−1−i∗Λ(−(j − 1)) → · · · → aj−1,j−1∗Λ((−(j − 1))
]
,

with general term in degree k + j − 1 equal to

⊕j−k
i=1 ak+i−1,j−i∗Λ(−(j − 1).

After quotienting out successively, we are left with only the degree j − 1 term,

which is

⊕j−1
i=0ai,j+1−i∗Λ(−(j − 1))[−(j − 1)],

as desired.

In order to identify the (k + 1)-st graded piece of

(kerN j/ kerN j−1)/(imN ∩ kerN j)

for k ≥ 1, we first identify the kernel of N̄ j : Rk+j−1ψΛX1×X2 → Rk−1ψΛX1×X2

as a map of perverse sheaves, as in Lemma 4.2.8. Then we can identify it with

the (k +1)-st graded piece of kerN j as in Lemma 4.2.10 and quotient by Qk+j .

Finally, we can use induction as above to compute the (k + 1)-st graded piece

of (kerN j/ kerN j−1)/(imN ∩ kerN j).

Corollary 4.2.12. The above filtration is a direct sum.

Proof. This follows from the decomposition theorem for pure perverse sheaves,

Theorem 5.3.8 of [BBD], once we notice that the (k + 1)st graded piece of the

filtration is a pure −(2n − 2)-shifted perverse sheaf of weight (−2k − j + 1) +

2(k + j − 1) = j − 1, which is independent of k.
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Let

GrqGrpRψΛ = (kerNp ∩ imNq)/(kerNp−1 ∩ imNq) + (kerNp ∩ imNq+1).

The monodromy filtration MrRψΛ has graded pieces GrM
r RψΛ isomorphic to

GrM
r RψΛ *

⊕

p−q=r

GrqGrpRψΛ

by Lemma 2.1 of [Sa2], so to understand the graded pieces of the monodromy

filtration it suffices to understand the GrqGrpRψΛ. Lemma 4.2.11 exhibits a

decomposition of Gr0GrpRψΛ as a direct sum with the (k+1)-st term isomorphic

to

⊕p
i=1ak+i−1,k+p−i∗Λ(−(k + p− 1))[−2k − p + 1].

The action of Nq induces an isomorphism of Gr0Grp+qRψΛ with GrqGrpRψΛ(q),

so there is a direct sum decomposition of the latter with the (k + 1)-st term

isomorphic to

⊕p+q
i=1 ak+i−1,k+p+q−i∗Λ(−(k + p− 1))[−2k − p− q + 1].

We can use the spectral sequence associated to a filtration (as in Lemma 5.2.18

of [Sa1]) to compute the terms in the monodromy spectral sequence

Er,m−r
1 = Hm(YF̄, GrM

−rRψΛ) =
⊕

p−q=−r

Hm(YF̄,GrqGrpRψΛ)

⇒ Hm(YF̄, RψΛ) = Hm(XK̄ ,Λ).
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Corollary 4.2.13. There is a direct sum decomposition

Hm(YF̄,GrqGrpRψΛ) *
⊕

k≥0

p+q⊕

i=1

Hm(YF̄, ak+i−1,k+p+q−i∗Λ(−(k+p−1))[−2k−p−q+1])

compatible with the action of GF. This can be rewritten as

Hm(YF̄,GrqGrpRψΛ) *
⊕

k≥0

p+q⊕

i=1

Hm−2k−p−q+1(Y (k+i−1,k+p+q−i)
F̄ ,Λ(−(k+p−1))).

4.3 More general schemes

In this section, we will explain how the results of the previous section concern-

ing products of strictly semistable schemes apply to more general schemes, in

particular to the Shimura varieties XU/OK . In this section, we will use Λ = Ql

or Q̄l.

Let X ′/OK be a scheme such that the completions of the strict henselizations

O∧X′,s at closed geometric points s are isomorphic to

W [[X1, . . . , Xn, Y1, . . . Yn]]/(X1 · · · · ·Xr − π, Y1 · · · · · Ys − π)

for some indices i1, . . . , ir, j1, . . . , js ∈ {1, . . . n} and some 1 ≤ r, s ≤ n. Also

assume that the special fiber Y ′ is a union of closed subschemes Y ′1,j with j ∈

{1, . . . n}, which are cut out by one local equation, such that if s is a closed

geometric point of Y ′1,j , then j ∈ {i1, . . . , ir} and Y ′1,j is cut out in O∧X′,s by the

equation Xj = 0. Similarly, assume that Y ′ is a union of closed subschemes Y ′2,j

with j ∈ {1, . . . , n}, which are cut out by one local equation such that if s is a

closed geometric point of Y ′2,j then j ∈ {j1, . . . , jr} and Y ′2,j is cut out in O∧X′,s

by the equation Yj = 0.

Let X/X ′ be smooth of dimension m and let Y be the special fiber of X and
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Yi,j = Y ′i,j ×X′ X for i = 1, 2 and j = 1, . . . , n. As in Lemma 2.2.7, X ′ is locally

etale over

Xr,s = Spec OK [X1, . . . , Xn, Y1, . . . Yn]/(
r∏

i=1

Xi − π,
s∏

j−1

Yj − π),

so X is locally etale over

Xr,s,m = Spec OK [X1, . . . , Xn, Y1, . . . Yn, Z1, . . . , Zm]/(
r∏

i=1

Xi − π,
s∏

j−1

Yj − π),

which is a product of strictly semistable schemes. The results of Section 3 apply

to X ′ and it is easy to check that they also apply to X. In particular, we know

that the inertia IK acts trivially on the sheaves of nearby cycles RkψΛ of X

and we have a description of the RkψΛ in terms of the log structure we put on

X/Spec OK . Let ai
j : Yi,j → Y denote the closed immersion for i = 1, 2 and

j ∈ {1, . . . n}. Then by Corollary 3.2.3, we have an isomorphism

RkψΛ(k) * ∧k((⊕n
j=1a

1
j∗Λ)/Λ⊕ (⊕n

j=1a
2
j∗Λ)/Λ)

For i = 1, 2 and Ji ⊆ {1, . . . , n}, let

YJ1,J2 = (
⋂

j1∈J1

Y1,j1) ∩ (
⋂

j2∈J2

Y2,j2)

and let aJ1,J2 : YJ1,J2 → Y be the closed immersion. Set

Y (h1,h2) =
⊔

#J1=h1+1,#J2=h2+1

YJ1,J2

and let ah1,h2 : Y (h1,h2) → Y be the projection. The scheme Y (h1,h2) is smooth

of dimension dimY − h1 − h2 (we can see this from the strict local rings).
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We can write

RkψΛ *
k⊕

h=0

∧h((⊕n
j=1a

1
j∗Λ)/Λ)⊗ ∧k−h((⊕n

j=1a
2
j∗Λ)/Λ)(−k)

and then define the map of sheaves on Y

θk : RkψΛ →
k∑

h=0

ah,k−h∗Λ(−k)

as a sum of maps for h going from 0 to k. First, define for i = 1, 2

δhi :
hi∧

((⊕n
j=1a

i
j∗Λ)/Λ) →

hi+1∧
(⊕n

j=1a
i
j∗Λ)

by sending

ai
j1∗Λ ∧ · · · ∧ ai

jhi
∗Λ → ⊕j +=j1,...,jhi

ai
j1∗Λ ∧ · · · ∧ ai

jhi
∗Λ ∧ ai

j∗Λ

via cup product with the canonical map

ΛY → ⊕n
j=1a

i
j∗Λ.

More explicitly, on an open U of Y the map sends

α ∈ Λ(U ×Y Y i
j1 × · · · ×Y Y i

jli
)

to

(α|Y i
j
, . . . , α|Y i

j
) ∈ ⊕j +=j1,...,jhi

Λ(U ×Y Y i
j × Y i

j1 · · · ×Y Y i
jhi

)

and it is easy to check that this is well-defined. Then notice that

∧h+1(⊕n
j=1a

1
j∗Λ)⊗ ∧k+1−h(⊕a2

j∗Λ) * ah,k−h∗Λ.
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Indeed, for J1, J2 ⊆ {1, . . . , n} with #J1 = h + 1,#J2 = k + 1− h we have

(
∧

j1∈J1

a1
j1∗Λ)⊗ (

∧

j2∈J2

a2
j2∗Λ) * aJ1,J2∗Λ

because YJ1,J2 = (∩j1∈J1Y1,j1) ×Y (∩j2∈J2Y2,j2) and we can sum the above

identity over all J1, J2 of the prescribed cardinality.

Lemma 4.3.1. The following sequence is exact

RkψΛ θk→ ⊕k
h=0ah,k−h∗Λ(−k)⊕ck

h,k−h → ⊕k+1
h=0ah,k+1−h∗Λ(−k)⊕ck

h,k+1−h → . . .

→ ⊕2n−2
h=0 ah,2n−2−h∗Λ(−k)⊕ck

h,2n−2−h → 0

where the first map is the one defined above and the coefficients ck
h1,h2

are defined

in Lemma 4.2.6. The remaining maps in the sequence are global maps of sheaves

corresponding to ∧δ1 ± ∧δ2, where δi ∈ ⊕n
j=1a

i
j∗Λ is equal to (1, . . . , 1) for

i = 1, 2. These maps are defined on each of the ck
h1,h2

factors in the unique way

which makes them compatible with the maps in the resolution (4.2).

We can think of θk as a quasi-isomorphism of RkψΛ[−k] with the complex

⊕k
h=0ah,k−h∗Λ(−k)⊕ck

h,k−h → · · · → ⊕2n−2
h=0 ah,2n−2−h∗Λ(−k)⊕ck

h,2n−2−h ,

where the leftmost term is put in degree k.

Proof. It suffices to check exactness locally and we know that X is locally etale

over products X1 ×OK X2 of strictly semistable schemes. Lemma 4.2.1 proves

the above statement in the case of X1 ×OK X2 and the corresponding sheaves

on Y are obtained by restriction (etale pullback) from the special fiber Y1×F Y2

of X1 ×OK X2.

Corollary 4.3.2. The complex RψΛ is a −dimY -shifted perverse sheaf and
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the canonical filtration τ≤kRψΛ with graded pieces RkψΛ[−k] is a filtration by

−dimY -shifted perverse sheaves. The monodromy operator N sends τ≤kRψΛ

to τ≤k−1RψΛ and this induces a map

N̄ : RkψΛ[−k] → Rk−1ψΛ[−k + 1].

The next step is to understand the action of monodromy N̄ and obtain an

explicit description of N̄ in terms of the resolution of RkψΛ given by Lemma

4.3.1. This can be done etale locally, since on the nearby cycles for X1 ×OK X2

we know that N̄ acts as N̄1 ⊗ 1 + 1⊗ N̄2 from Proposition 4.2.5 and we have a

good description of N̄1 and N̄2 from Lemma 4.1.6. However, we present here a

different method for computing N̄ , which works in greater generality.

Proposition 4.3.3. The following diagram is commutative:

Rk+1ψΛ[−k − 1]

N̄
""

∼ !! [0 !!

""

Rk+1ψΛ]

⊗tl(T )

""
RkψΛ[−k] ∼ !! [i∗Rk+1j∗Λ(1) !! Rk+1ψΛ(1)]

where in the right column the sheaves Rk+1ψΛ are put in degree k + 1.

The proof of this proposition is identical to the proof of part 4 of Lemma

2.5 of [Sa2], which is meant for the strictly semistable case but does not use

semistability. The fact that the above formula could hold was suggested to us

by reading Ogus’ paper [O], which proves an analogous formula for log smooth

schemes in the complex analytic world. The same result should hold for any log

smooth scheme X/OK with vertical log structure and where the action of IK

on RkψΛ is trivial for all k.
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For 0 ≤ k ≤ 2n− 2 define the complex

Lk := [⊕k
h=0(ah,k−h∗Λ(−k))⊕ck

h,k−h → · · · → ⊕2n−2
h=0 (ah,2n−2−h∗Λ(−k))⊕ck

h,2n−2−h ],

where the sheaves ah,k−h∗Λ(−k) are put in degree k. We will define a map of

complexes f : Lk+1 → Lk degree by degree, as a sum over h1 + h2 = k′ of maps

fh1,h2 ⊗ tl(T ) : ah1,h2∗Λ
⊕ck

h1,h2 → ah1,h2∗Λ(1)⊕ck
h1,h2 .

Note that each coefficient ck
h1,h2

reflects for how many 0 ≤ h′ ≤ k the term

ah1,h2∗Λ(−k) appears in the resolution of

h′∧
((⊕n

j=1a
1
j∗Λ)/Λ)⊗

k−h′∧
((⊕n

j=1a
2
j∗Λ)/Λ)(−k).

The set of such h′ has cardinallity ck
h1,h2

and is always a subset of consecutive

integers in {1, . . . , k}. Denote the set of h′ by Ck
h1,h2

. Thus, we can order the

terms ah1,h2∗Λ by h′ and get a basis for (ah1,h2∗Λ)⊕ck
h1,h2 over ah1,h2∗Λ. It is

easy to explain what fh1,h2 does to each element of Ck+1
h1,h2

: it sends

h′ ∈ Ck+1
h1,h2

2→ {h′ − 1, h′} ∩ Ck
h1,h2

.

When both h′ − 1, h′ ∈ Ck
h1,h2

, the element of the basis of (ah1,h2∗Λ)⊕ck+1
h1,h2

given by (0, . . . 0, 1, 0, . . . , 0) where the 1 appears in the position correspond-

ing to h′ is sent to the element of the basis of (ah1,h2∗Λ)⊕ck
h1,h2 given by

(0, . . . , 0, 1, 1, 0, . . . , 0) where the two 1’s are in positions corresponding to h′−1

and h′. If h′ − 1 "∈ Ck
h1,h2

but h′ ∈ Ck
h1,h2

then h′ = 0 and (1, 0, . . . , 0) 2→

(1, 0 . . . , 0). If h′−1 ∈ Ck
h1,h2

but h′ "∈ Ck
h1,h2

then h′ = k+1 and (0, . . . , 0, 1) 2→

(0, . . . , 0, 1). This completes the definition of fh1,h2 .
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Corollary 4.3.4. The following diagram is commutative

Rk+1ψΛ[−k − 1]

N̄
""

∼ !! Lk+1

f

""
RkψΛ[−k] ∼ !! Lk

,

The map f is a map of complexes, which acts degree by degree as

∑

h1+h2=k′

fh1,h2 [−k − 1]⊗ tl(T ),

where fh1,h2 : ah1,h2∗Λ
⊕ck

h1,h2 → ah1,h2∗Λ
⊕ck

h1,h2 was defined above.

Proof. This can be checked etale locally, using Proposition 4.2.5, which states

that N̄ = N̄1 ⊗ 1 + 1 ⊗ N̄2 over a product X1 ×OK X2 of strictly semistable

schemes and using the fact that each of the N̄i can be described as

0 !!

""

ai
k+1∗Λ(−(k + 1)) δ∧ !!

⊗tl(T )

""

. . . δ∧ !! ai
n−1∗Λ(−(k + 1))

""
ai

k∗Λ(−k) δ∧ !! ai
k+1∗Λ(−k) δ∧ !! . . . δ∧ !! ai

n−1∗Λ(−k)

,

for i = 1, 2.

This can also be checked globally, by using Proposition 4.3.3 to replace the

leftmost column of our diagram by

0

""

!! Rk+1ψΛ

⊗tl(T )

""
i∗Rk+1j∗Λ(1) !! Rk+1ψΛ(1)

,

where the left column is put in degree k. In fact, it suffices to understand the
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map of complexes

0

""

!! Rk+1ψΛ

id

""
i∗Rk+1j∗Λ !! Rk+1ψΛ

,

and check that it is compatible with the map

0 !!

fk⊗tl(T )−1

""

. . . !! ⊕2n−2
h=0 (ah,2n−2−h∗Λ(−k − 1))⊕ck+1

h,2n−2−h

f2n−2⊗tl(T )−1

""⊕k
h=0(ah,k−h∗Λ(−k − 1))⊕ck

h,k−h !! . . . !! ⊕2n−2
h=0 (ah,2n−2−h∗Λ(−k − 1))⊕ck

h,2n−2−h

.

Let K = Cone(f ⊗ tl(T )−1 : Lk+1 → Lk(−1)). The triangle

RkψΛ[−k − 1] !! i∗Rk+1j∗Λ[−k − 1] !! Rk+1ψΛ[−k − 1]
N̄⊗tl(T )−1

!! RkψΛ[−k]

is distinguished. It suffices to see that we can define a map g : i∗Rk+1j∗Λ[−k] →

K which makes the first two squares of the following diagram commute:

RkψΛ[−k − 1] !!

θk[−1]

""

i∗Rk+1j∗Λ[−k − 1] !!

g[−1]

""

Rk+1ψΛ[−k − 1]
N̄⊗tl(T )−1

!!

θk+1

""

RkψΛ[−k]

θk

""
Lk(−1)[−1] !! K[−1] !! Lk+1

f⊗tl(T )−1
!! Lk(−1)

If the middle square is commutative, then there must exist θ′ : RkψΛ[−k−1] →

Lk(−1)[−1] making the diagram a morphism of distinguished triangles. Then

θ′ would make the first square commutative, so θ′ and θk[−1] coincide once they

are pushed forward to K[−1]. However,

Hom(RkψΛ[−k − 1],Lk+1[−1]) * Hom(RkψΛ[−k], Rk+1ψΛ[−k − 1]) = 0,
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so the Hom exact sequence associated to the bottom distinguished triangle im-

plies that θ′ = θk[−1]. The diagram above is a morphism of distinguished

triangles with θk[−1] as the leftmost morphism. This tells us that the third

triangle in the diagram is also commutative, which is what we wanted to prove.

We can compute i∗Rk+1j∗Λ using the log structure on X:

i∗Rk+1j∗Λ(k+1) * ∧k+1((
n⊕

j=1

a1
j∗Λ⊕

n⊕

j=1

a2
j∗Λ)/(1, . . . 1, 0, . . . 0)−(0, . . . , 0, 1, . . . , 1)).

Here we have used, again, the formula i∗Rkj∗Λ(k) * ∧k(M̄gp)⊗Λ, which follows

from Proposition 2.0.2 of [Na]. We can also compute K explicitly, since we have

an explicit description of each fk′,h1,h2 . The first non-zero term of K appears

in degree k and it is isomorphic to

k∑

h=0

ah,k−h∗Λ.

There is a natural map of complexes i∗Rk+1j∗Λ[−k] → K, which sends

aJ1,J2∗Λ →
⊕

J′1⊃J1,#J′1=#J1+1

aJ′1,J2∗Λ⊕
⊕

J′2⊃J2,#J′2=#J2+1

aJ1,J ′2∗Λ,

when J1, J2 are both non-empty. The map sends

aJ1,∅∗Λ →
⊕

#J′2=1

aJ1,J ′2∗Λ and a∅,J2∗Λ →
⊕

#J′1=1

aJ′1,J2∗Λ.

It is easy to see that the above map is well-defined on i∗Rk+1j∗Λ[−k] and that it

is indeed a map of complexes. It remains to see that the above map of complexes

i∗Rk+1j∗Λ[−k] → K makes the first two squares of the diagram commute. This

is tedious, but straightforward to verify.

Remark 4.3.5. Another way of proving the above corollary is to notice that
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Proposition 4.3.3 shows that the map

N̄ : Rk+1ψΛ[−k − 1] → RkψΛ[−k]

is given by the cup product with the map γ ⊗ tl(T ) : M̄gp
rel(−k− 1) → Λ(−k)[1]

where γ : M̄gp
rel → Λ[1] is the map corresponding to the class of the extension

0 → Λ → M̄gp → M̄gp
rel → 0

of sheaves of Λ-modules on Y . Locally, X is etale over a product of strictly

semistable schemes X1×OK X2 and the extension M̄gp is a Baire sum of exten-

sions

0 → Λ → M̄gp
1 → M̄gp

1,rel → 0 and

0 → Λ → M̄gp
2 → M̄gp

2,rel → 0,

which correspond to the log structures of X1 and X2 and which by Proposition

4.3.3 determine the maps N̄1 and N̄2. The Baire sum of extensions translates

into N̄ = N̄1 ⊗ 1 + 1⊗ N̄2 locally on Y . However, it is straightforward to check

locally on Y that the map f : Lk → Lk+1 is the same as N̄1⊗1+1⊗N̄2. Thus, f

and N̄ are maps of perverse sheaves on Y which agree locally on Y , which means

that f and N̄ agree globally. This proves the corollary without appealing to

Proposition 4.3.3. (In fact, it suggests an alternate proof of Proposition 4.3.3.)

The following results, Lemma 4.3.6 to Corollary 4.3.10, are just generaliza-

tions of Lemma 4.2.8 to Corollary 4.2.13. We merely sketch their proofs here.

Lemma 4.3.6. The map N̄ : RkψΛ[−k] → Rk−1ψΛ[−k + 1] has kernel

Pk *
[
ak,k∗Λ(−k) ∧δ→ ak,k+1∗Λ(−k)⊕ ak+1,k∗Λ(−k) → · · · ∧δ→ an−1,n−1∗Λ(−k)

]
,
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where the first term is put in degree 2k and cokernel

Rk *
[
⊕k−1

j=0aj,k−1−j∗Λ(−(k − 1)) → · · · → ak−1,k−1∗Λ((−(k − 1))
]
,

where the first term is put in degree k − 1.

Proof. The proof is identical to the proof of Lemma 4.2.8, since by Proposition

4.3.3 we have a description of N̄ as a degree by degree map

f : Lk → Lk−1.

Corollary 4.3.7. The filtration of RψΛ by τ≤kRψΛ induces a filtration on

kerN . The first graded piece of this filtration Gr1 kerN is R0ψΛ. The graded

piece Grk+1 kerN of this filtration is Pk.

Proof. This can be proved the same way as Corollary 4.2.9. The only tricky part

is seeing that we can identify a graded piece of ker N̄ with a graded piece of

kerN . In other words, we want to show that for N̄ : RkψΛ[−k] → Rk−1ψΛ[−k+

1] and x ∈ ker N̄ we can find a lift x̃ ∈ τ≤kRψΛ of x such that x̃ ∈ kerN . As

in the proof of Corollary 4.2.9, we can define a map Pk → Rk−1 sending x to

the image of Nx̃ in Rk−1, which turns out to be independent of the lift x̃. We

want to see that this map vanishes but in fact any map Pk → Rk−1 vanishes.

Note that

ah1,h2∗Λ[−h1 − h2] * ⊕#S=h1+1,#T=h2+1aS,T∗Λ[−h1 − h2].

The scheme YS,T is smooth of pure dimension dimY − h1 − h2 and so it is a

disjoint union of its irreducible (connected) components which are smooth of

pure dimension dimY − h1 − h2. Thus, each aS,T∗Λ[−h1 − h2] is the direct
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sum of the pushforwards of the −dimY -shifted perverse sheaves Λ[−h1 − h2]

on the irreducible components of YS,T . Thus, we have a decomposition of

ah1,h2∗Λ[−h1−h2] in terms of simple objects in the category of −dimY -shifted

perverse sheaves. It is easy to check that Pk and Rk−j for k ≥ j ≥ 1 have no

simple factors in common, so any map Pk → Rk−j must vanish.

Remark 4.3.8. The same techniques used in Section 4.2 apply in order to com-

pletely determine the graded pieces of (kerN j/ kerN j−1)/(im N ∩ kerN j) in-

duced by the filtration of RψΛ by τ≤kRψΛ. The only tricky part is seeing that

we can also identify the kth graded piece of imN with

im(N̄ : Rk+1ψΛ[−k − 1] → RkψΛ[−k]),

but this can be proved in the same way as the corresponding statement about

the kernels of N and N̄ . We get a complete description of the graded pieces of

(kerN j/ kerN j−1)/im N .

Lemma 4.3.9. For 1 ≤ j ≤ 2n− 2, the filtration of RψΛ by τ≤kRψΛ induces

a filtration on (kerN j/ kerN j−1)/imN . For 0 ≤ k ≤ n− 1− j−1
2 , the (k +1)-st

graded piece of this filtration is isomorphic to

⊕j
i=1ak+i−1,k+j−i∗Λ(−(k + j − 1))[−2k − j + 1].

As in Corollary 4.2.12, since each graded piece of the filtration is pure of weight

j − 1, the filtration is in fact a direct sum.

Let

GrqGrpRψΛ = (kerNp ∩ imNq)/(kerNp−1 ∩ imNq) + (kerNp ∩ imNq+1).
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The monodromy filtration MrRψΛ has graded pieces GrM
r RψΛ isomorphic to

GrM
r RψΛ *

⊕

p−q=r

GrqGrpRψΛ,

and if we understand the cohomology of YF̄ with coefficients in each GrqGrpRψΛ

we can compute the cohomology of YF̄ with respect to RψΛ. The next result

tells us how to compute Hm(YF̄,GrqGrpRψΛ).

Corollary 4.3.10. There is a direct sum decomposition

Hm(YF̄,GrqGrpRψΛ) *
⊕

k≥0

p+q⊕

i=1

Hm(YF̄, ak+i−1,k+p+q−i∗Λ(−(k+p−1))[−2k−p−q+1])

compatible with the action of GF̄. This can be rewritten as

Hm(YF̄,GrqGrpRψΛ) *
⊕

k≥0

p+q⊕

i=1

Hm−2k−p−q+1(Y (k+i−1,k+p+q−i)
F̄ ,Λ(−(k+p−1))).

Remark 4.3.11. The isomorphism above is functorial with respect to etale mor-

phisms which preserve the stratification by YS,T with S, T ⊂ {1, . . . , n}. The

reason for this is that etale morphisms preserve both the kernel and the image

filtration of N as well as the canonical filtration τ≤kRψΛ.



Chapter 5

The cohomology of closed

strata

In tthis chapter we go back to working with the Iwahori level Shimura variety

XU/OK as well as with the Shimura variety XU0/OK with no level structure at

p1 and p2, both corresponding to the unitary group G. Recall that K = Fp1 *

Fp2 , with ring of integers OK , uniformizer π and residue field F.

5.1 Igusa varieties

Let q = p[F:Fp]. Fix 0 ≤ h1, h2 ≤ n − 1 and consider the stratum X̄(h1,h2)
U0

of

the Shimura variety XU0 . Choose a compatible one-dimensional formal OF,p1 =

OK-module Σ1, of height n− h1 and also a compatible one-dimensional formal

OF,p2 * OK-module Σ2 of height n − h2. Giving Σ1 and Σ2 is equivalent to

giving a triple (Σ, λΣ, iΣ) where:

• Σ is a Barsotti-Tate group over F̄.

• λΣ : Σ → Σ∨ is a polarization.

95
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• iΣ : OF → End(Σ)⊗Z Z(p) such that (Σ, iΣ) is compatible.

Note that (Σ[p∞i ])0 * Σi for i = 1, 2 while (Σ[p∞i ])et * (K/OK)n−hi .

Assume that the level U0 corresponds to the vector -m = (0, 0, m3, . . . ,mr).

Let

-m′ = ((m0
i , m

et
i )i=1,2, m3, . . . ,mr),

with the same entries m3, . . . ,mr as -m. The Igusa variety Ig(h1,h2)

Up, %m′ over X̄(h1,h2)
U0

×F

F̄ is defined to be the moduli space of the set of the following isomorphisms of

finite flat group schemes for i = 1, 2:

• α0
i : Σi[p

m0
i

i ] ∼→ G0
i [pm0

i
i ], which extends etale locally to any (m0

i )′ ≥ m0
i

and

• αet
i : (p−met

i
i OF,pi/OF,pi)hi

∼→ Get
i [pmet

i
i ].

In other words, if S/F̄ is a scheme, then an S-point of the Igusa variety Ig(h1,h2)
Up,%m

corresponds to a tuple

(A, λ, i, ηp, (α0
i )i=1,2, (αet

i )i=1,2, (αi)i≥3),

where

• A is an abelian scheme over S with GA,i = A[p∞i ];

• λ : A → A∨ is a prime-to-p polarization;

• i : OF ↪→ End(A) ⊗Z Z(p) such that (A, i) is compatible and λ ◦ i(f) =

i(f∗)∨ ◦ λ,∀f ∈ OF ;

• η̄p : V ⊗Q A∞,p → V pA is a π1(S, s)-invariant Up-orbit of isomorphisms

of F ⊗Q A∞,p-modules, sending the standard pairing on V ⊗Q A∞,p to an

(A∞,p)×-multiple of the λ-Weil pairing;
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• α0
i : Σ0[pm0

i
i ] ∼→ G0

A,i[p
m0

i
i ] is an OK-equivariant isomorphism of finite flat

group schemes which extends to any higher level (m′)0i ≥ m0
i , for i = 1, 2

and some integer (m′)0i ;

• αet
i : Σet[pmet

i
i ] ∼→ Get

A,i[p
met

i
i ] is an OK-equivariant isomorphism of etale

group schemes, for i = 1, 2;

• αi : Σ[pmi
i ] ∼→ GA,i[pmi

i ] is an OF,pi-equivariant isomorphism of etale group

schemes, for 3 ≤ i ≤ r.

Two such tuples are considered equivalent if there exists a prime-to-p isogeny

f : A → A′ taking (A, λ, i, η̄p, α0
i , α

et
i , αi) to (A′, γλ′, i′, η̄p′ , α0′

i , αet′
i , α′i) for

γ ∈ Z×(p).

The Igusa varieties Ig(h1,h2)
Up,%m form an inverse system which has an action of

G(A∞,p) inherited from the action on X̄(h1,h2)
U0

. Let

J (h1,h2)(Qp) = Q×p ×D×
K,n−h1

×GLh1(K)×D×
K,n−h2

×GLh2(K)×
r∏

i=3

GLn(Fpi),

which is the group of quasi-self-isogenies of (Σ, λΣ, iΣ) (to compute J (h1,h2)(Qp)

we use the duality induced from the polarization). The automorphisms of

(Σ, λΣ, iΣ) have an action on the right on Ig(h1,h2)
Up,%m . This can be extended to an

action of a certain submonoid of J (h1,h2)(Qp) on the inverse system of Ig(h1,h2)
Up,%m

and furthermore to an action of the entire group J (h1,h2)(Qp) on the directed

system Hj
c (Ig(h1,h2)

Up,%m ,Lξ). For a definition of this action, see section 5 of [Sh1]

and section 4 of [Man].

We also define an Iwahori-Igusa variety of the first kind I(h1,h2)
U /X̄U0 as the

moduli space of chains of isogenies for i = 1, 2

Get
i = Gi,0 → Gi,1 → · · · → Gi,hi = Get

i /Get
i [pi]
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of etale Barsotti-Tate OK-modules, each isogeny having degree #F and with

composite equal to the natural map Get
i → Get

i /Get
i [pi]. Then I(h1,h2)

U is finite

etale over X̄
(h1,h2)
U0

and naturally inherits the action of G(A∞,p). Moreover, for

m0
1 = m0

2 = 0 and met
1 = met

2 = 1 we know that Ig(h1,h2)
Up,%m′ /I(h1,h2)

U ×F F̄ is finite

etale and Galois with Galois group Bh1(F)×Bh2(F). (Here Bhi(F) ⊆ GLhi(F)

is the Borel subgroup.)

Lemma 5.1.1. For S, T ⊂ {1, . . . , n} with #S = n − h1,#T = n − h2 there

exists a finite map of X̄(h1,h2)
U0

-schemes

ϕ : Y 0
U,S,T → I(h1,h2)

U

which is bijective on the sets of geometric points.

Proof. The proof is a straightforward generalization of the proof of Lemma 4.1

of [TY].

Recall that for a given -m with m1 = m2 = 0 we take

U = Up × Up1,p2
p (-m)× Iwn,p1 × Iwn,p2 × Z×p ,

restricting ourselves to Iwahori level structure at p1 and p2. Now we let the

level away from p vary. Define

Hj
c (Y 0

Iw(%m),S,T ,Lξ) = lim−→
Up

Hj
c (Y 0

U,S,T ,Lξ),

Hj(YIw(%m),S,T ,Lξ) = lim−→
Up

Hj(YU,S,T ,Lξ),

Hj
c (I(h1,h2)

Iw(%m) ,Lξ) = lim−→
Up

Hj
c (I(h1,h2)

U ×F F̄,Lξ).
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Without restriction on -m′ we can define

Hj
c (Ig(h1,h2),Lξ) = lim−→

Up,%m′
Hj

c (Ig(h1,h2)

Up, %m′ ,Lξ)

For m0
1 = m0

2 = 0, the Igusa variety Ig(h1,h2)
Up,%m′ is defined over F. If in addition,

met
1 = met

2 = 1 then Ig(h1,h2)
Up,%m′ (over F) is a Galois cover of I(h1,h2)

U with Galois

group Bh1(F)×Bh2(F).

Corollary 5.1.2. Let -m′ = (0, 0, 1, 1, m3, . . . ,mr). For every S, T ⊆ {1, . . . n−

1} with #S = n− h1,#T = n− h2 and j ∈ Z≥0 we have the following isomor-

phism

Hj
c (Y 0

U,S,T ×F F̄,Lξ) * Hj
c (I(h1,h2)

Up,%m′ ×F F̄,Lξ)Bh1 (F)×Bh2 (F).

By taking a direct limit over Up and over -m = (0, 0, m3, . . . ,mr) and con-

sidering the definitions of the Igusa varieties, we get an isomorphism

Hj
c (Y 0

Iw(%m),S,T
,Lξ) * Hj

c (Ig(h1,h2),Lξ)
Up1p2

p (%m)×Iwh1,p1×O
×
DK,n−h1

×Iwh2,p2×O
×
DK,n−h2 .

Taking a limit over general -m′ satisfying m0
1 = m0

2 = 0 we define

Hj
c (Ig(h1,h2)

0 ,Lξ) := lim−→
Up,%m′

m0
1=m0

2=0

Hj
c (Ig(h1,h2)

Up,%m′ ×F F̄,Lξ).

Then the above isomorphism becomes

Hj
c (Y 0

Iw(%m),S,T
,Lξ) * Hj

c (Ig(h1,h2)
0 ,Lξ)Up1p2

p ×Iwh1,p1×Iwh2,p2 .

Proposition 5.1.3. The action of FrobF on Hj
c (Ig(h1,h2)

0 ,Lξ) coincides with

the action of (1, (p−[F:Fp],−1, 1,−1, 1, 1)) ∈ G(A∞,p)× J (h1,h2)(Qp).

Proof. Let Fr : x 2→ xp be the absolute Frobenius on Fp and let f = [F : Fp].
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To compute the action of the geometric Frobenius FrobF on Hj
c (Ig(h1,h2)

0 ,Lξ)

we notice that the absolute Frobenius acts on each Hj
c (Ig(h1,h2)

Up,%m ×F F̄,Lξ) as

(Fr∗)f × (Frob∗F)−1. However, the absolute Frobenius acts trivially on etale

cohomology, so the action of FrobF coincides with the action induced from

(Fr∗)f : Ig(h1,h2)
Up,%m′ → Ig(h1,h2)

Up,%m′

We claim that (Fr∗)f acts the same as the element (1, p−[F:Fp],−1, 1,−1, 1, 1) of

G(A∞,p)×Q×p /Z×p × Z×GLh1(K)× Z×GLh2(K)×
r∏

i=3

GLn(Fpi),

where the two copies of Z are identified with D×
K,n−hi

/O×DK,n−hi
for i = 1, 2 via

the valuation of the determinant. To verify this claim, we will use the explicit

description of the action of a submonoid J (h1,h2)(Qp) on the inverse system of

Igusa varieties Ig(h1,h2)
Up,%m′ found in [Man] which generalizes that on page 122 of

[HT]. First, it is easy to see that

(Fr∗)f : (A, λ, i, η̄p, α0
i , α

et
i , αi) 2→ (A(q), λ(q), i(q), (η̄p)(q), (α0

i )
(q), (αet

i )(q), α(q)
i )

where F f : A → A(q) is the natural map and the structures of A(q) are inherited

from the structures of A via F f .

On the other hand, the element j = (1, p−[F:Fp],−1, 1,−1, 1, 1) acts via a

quasi-isogeny of Σ. One can check that the inverse of the quasi-isogeny defined

by j is j−1 : Σ → Σ(q), which is a genuine isogeny. If we were working with

points of Ig(h1,h2) (which are compatible systems of points of Ig(h1,h2)
Up,%m′ for all

Up and -m′) then j should act by precomposing all the isomorphism α0
i , α

et
i for

i = 1, 2 and αi for 3 ≤ i ≤ r. Since j|
A[p∞i ]et = 1 for i = 1, 2 and j|A[p∞i ] = 1 for

3 ≤ i ≤ r the isomorphisms αet
i and αi stay the same. However, α0

i ◦j is now only
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a quasi-isogeny of Barsotti-Tate OK-modules and we need to change the abelian

variety A by an isogeny in order to get back the isomorphisms. Let ji = j|Σ[p∞i ]0

for i = 1, 2. Then (ji)−1 : Σ[p∞i ]0 → Σ[p∞i ]0 is a genuine isogeny induced by the

action of πi ∈ D×
K,n−hi

. Let Ki ⊂ A[p[F:Fp]
i ] be the finite flat subgroup scheme

α0
i (ker(ji)−1). Let K = K1 ⊕ K2 ⊂ A[u[F:Fp]]. Let K⊥ ⊂ A[(uc)[F:Fp]] be the

annihilator of K under the λ-Weil pairing. Let Ã = A/K ⊕ K⊥ and f : A → Ã

be the natural projection map. Then

β0
i = f ◦ α0

i ◦ ji : (Σ[p∞i ])0 → Ã[p∞i ]0

is an isomorphism. The quotient abelian variety Ã inherits the structures of A

through the natural projection and it is easy to see that Ã = A(q). Thus, the

action of j coincides with the action of (Fr∗)f . This concludes the proof.

Corollary 5.1.4. We have an isomorphism of admissible G(A∞,p)× (FrobF)Z-

modules

Hj
c (Y 0

Iw(%m),S,T ,Lξ) * Hj
c (Ig(h1,h2)

0 ,Lξ)Up1p2
p (%m)×Iwh1,p1×Iwh2,p2 ,

where FrobF acts as (p−f ,−1, 1,−1, 1, 1) ∈ J (h1,h2)(Qp).

5.2 Counting points on Igusa varieties

We wish to apply the trace formula in order to compute the cohomology of

Igusa varieties. A key input of this is counting the F̄−points of Igusa varieties.

Most of this is worked out in [Sh1]. The only missing ingredient is supplied by

the main lemma in this section, which is an analogue of Lemma V.4.1 in [HT]

and of “the vanishing of the Kottwitz invariant”. The F̄-points of Igusa varieties

are counted by counting p-adic types and other data (e.g polarizations and level
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structure). We can keep track of p-adic types via Honda-Tate theory; we need

to check that these p-adic types actually correspond to a point on one of our

Igusa varieties.

A simple p-adic type over F is a triple (M,η, κ) where

• M is a CM field, with P being the set of places of M over p,

• η =
∑

x∈P ηxx is an element of Q[P], the Q-vector space with basis P,

• κ : F → M is a Q-algebra homomorphism

such that ηx ≥ 0 for all x ∈ P and η + c∗η =
∑

x∈P x(p) · x in Q[P], where

p =
∏

x∈P xx(p). Here c is the complex conjugation on M and

c∗ : Q[P] → Q[P]

is the Q-linear map satisfying x 2→ xc. See page 24 of [Sh1] for the general

definition of a p-adic type. As in [Sh1], we will drop κ from the notation, since

it is well understood as the F -algebra structure map of M .

We can recover a simple p-adic type from the following data:

• a CM field M/F ;

• for i = 1, 2 places p̃i of M above pi such that [Mp̃i
: Fpi ]n = [M : F ](n−hi)

and such that there is no intermediate field F ⊂ N ⊂ M with p̃i|N both

inert in M .

Using this data, we can define a simple p-adic type (M, η), where the coefficients

of η at places above u are non-zero only for p̃1 and p̃2. The abelian variety A/F̄

corresponding to (M,η) will have an action of M via i : M ↪→ End0(A). By

Honda-Tate theory, the pair (A, i) will also satisfy

• M is the center of End0
F (A),
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• A[p∞i ]0 = A[p̃∞i ] has dimension 1 and A[p∞i ]e has height hi for i = 1, 2,

• and A[p∞i ] is ind-etale for i > 2.

Lemma 5.2.1. Let M/F be a CM field as above. Let A/F̄ be the corresponding

abelian variety equipped with i : M ↪→ End0(A). Then we can find

• a polarization λ0 : A → A∨ for which the Rosati involution induces c on

i(M), and

• a finitely-generated M -module W0 together with a non-degenerate Hermi-

tian pairing

〈·, ·〉0 : W0 ×W0 → Q

such that the following are satisfied:

• there is an isomorphism of M ⊗ A∞,p-modules

W0 ⊗ A∞,p ∼→ V pA

which takes 〈·, ·〉0 to an (A∞,p)×-multiple of the λ0 -Weil pairing on V pA,

and

• there is an isomorphism of F ⊗Q R-modules

W0 ⊗Q R ∼→ V ⊗Q R

which takes 〈·, ·〉0 to an R×-multiple of our standard pairing 〈·, ·〉 on V ⊗Q

R.

Proof. By Lemma 9.2 of [Ko1] there is a polarization λ0 : A → A∨ such that

the λ0-Rosati involution preserves M and acts on it as c. The next step is to

show that, up to isogeny, we can lift (A, i, λ0) from F̄ to OKac . Using the results
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of [Tat] we can find some lift of A to an abelian scheme Ã/OKac in such a way

that i lifts to an action ĩ of M on Ã. As in the proof of Lemma V.4.1 of [HT]

we find a polarization λ̃ of Ã which reduces to λ. However, we want to be more

specific about choosing our lift Ã. Indeed, for any lift, LieÃ ⊗Oac
K

Kac is an

F ⊗Kac * (Kac)Hom(F,Kac)-module, so we have a decomposition

LieÃ⊗OKac Kac *
⊕

τ∈Hom(F,Kac)

(LieÃ)τ .

Let Hom(F,Kac)+ be the the set of places τ ∈ Hom(F,Kac) which induce the

place u of E. We want to make sure that the set of places τ ∈ Hom(F,Kac)+

for which (LieÃ)τ is non-trivial has exactly two elements τ ′1 and τ ′2 which differ

by our distinguished element σ ∈ Gal(F/Q), i.e.

τ ′2 = τ ′1 ◦ σ.

In order to ensure this, we need to go through Tate’s original argument for

constructing lifts Ã of A.

First, let Φ =
∑

τ̃∈Hom(M,Kac) Φτ̃ · τ̃ with the Φτ̃ non-negative integers sat-

isfying Φτ̃ + Φτ̃c = n. For any such Φ, we can construct an abelian variety ÃΦ

over OKac such that

LieÃΦ ⊗OKac Kac *
⊕

τ∈Hom(F,Kac)

(LieÃΦ)τ

satisfies dim(LieÃΦ)τ = Φτ . This is done as in Lemma 4 of [Tat], which proves

the case n = 1. We pick any τ ′i ∈ Hom(F,Kac) inducing the places pi of F for i =

1, 2 such that τ ′2 = τ ′1 ◦σ. We lift the τ ′i to elements τ̃i ∈ Hom(M,Kac) inducing

p̃i. We let Φτ̃i = 1 and Φτ̃ = 0 for any other τ̃ ∈ Hom(M,Kac)+. For τ̃ "∈

Hom(M, Kac)+ we define Φτ̃ = n−Φτ̃c . This determines Φ ∈ Q[Hom(M, Kac)]
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entirely. This Φ is not quite a p-adic type for M , however it is easy to associate

a p-adic type to it: we define η =
∑

x|p ηx · x by

ηx =
ex/p · [M : F ]
n · [Mx : Qp]

·
∑

Φτ̃ ,

where the sum is over embeddings τ̃ ∈ Hom(M,Kac) which induce the place

x of M . By Honda-Tate theory, the reduction of the abelian scheme ÃΦ/OKac

associated to Φ has p-adic type η. Indeed, the height of the p-divisible group

at x of the reduction of ÃΦ is n·[Mx:Qp]
[M :F ] (see Proposition 8.4 of [Sh1] together

with an expression of dimA in terms of M). The dimension of the p-divisible

group at x of the reduction is
∑

Φτ̃ , where we’re summing over all embeddings

τ̃ which induce x.

Now we set Ã = ÃΦ. It remains to check that Ã/OKac has special fiber

isogenous to A/F̄ and this follows from the fact that the reductions of Ã and A

are both associated to the same p-adic type η. Indeed, it suffices to verify this

for places x above u. We have

ηx = 0 = ex/p ·
dimA[x∞]

heightA[x∞]

for all places x "= p̃i for i = 1, 2. When x = p̃i we have

ηx = ex/p·
[M : F ]

[Mx : Fpi ] · n · [Fpi : Qp]
= ex/p·

1
(n− hi) · [Fpi : Qp]

= ex/p·
dimA[x∞]

heightA[x∞]
.

Therefore, the p-adic type associated to A is also η.

There are exactly two distinct embeddings τ ′1, τ
′
2 ∈ Hom(F,Kac)+ such that

(LieÃ)τ "= (0) only when τ = τ ′1 or τ ′2. Moreover, these embeddings are related

by τ ′2 = τ ′1 ◦ σ. Therefore, we can find an embedding κ : Kac ↪→ C such that
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κ ◦ τ ′i = τi for i = 1, 2. We set

W0 = H1((Ã×Spec OKac ,κ Spec C)(C), Q).

From here on, the proof proceeds as the proof of Lemma V.4.1 of [HT].

5.3 Vanishing of cohomology

Let Π1 be an automorphic representation of GL1(AE)×GLn(AF ) and assume

that Π1 is cuspidal. Let 6 : A×E/E× → C be any Hecke character such that

6|A×/Q× is the composite of ArtQ and the natural surjective character WQ !

Gal(E/Q) ∼→ {±1}.

Also assume that Π1 and F satisfy

• Π1 * Π1 ◦ θ.

• Π1
∞ is generic and Ξ1-cohomological, for some irreducible algebraic repre-

sentation Ξ1 of Gn(C), which is the image of ιlξ under the base change

from GC to Gn,C.

• RamF/Q ∪ RamQ(6) ∪ RamQ(Π) ⊂ SplF/F2,Q.

Let S = Sfin ∪ {∞} be a finite set of places of F , which contains the places

of F above places of Q which are ramified in F and the places where Π is

ramified. For l "= p, let ι : Q̄l
∼→ C and let πp ∈ Irrl(G(Qp)) be such that

BC(ιlπp) * Πp. If we write Π1 = ψ⊗Π0 and πp = πp,0⊗πp1 ⊗πp2 ⊗ (⊗r
i=3πpi)

then ιlπp,0 * ψu and ιlπpi * Π0
pi

for all 1 ≤ i ≤ r. Under the identification

Fp1 * Fp2 , assume that Π0
p1
* Π0

p2
(this condition will be satisfied in all our

applications, since we will choose Π0 to be the base change of some cuspidal

automorphic representation Π of GLn(AF1E)).
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Define the following elements of Groth(G(A∞,p)×J (h1,h2)(Qp)) (the Grothendieck

group of admissible representations):

[Hc(Ig(h1,h2),Lξ)] =
∑

i

(−1)h1+h2−iHi
c(Ig

(h1,h2),Lξ)

If R ∈ Groth(G(AS) × G′), we can write R =
∑

πS⊗ρ n(πS ⊗ ρ)[πS][ρ],

where πS and ρ run over Irrl(G(AS)) and Irrl(G′) respectively. We define

R{πS} :=
∑

ρ

n(πS ⊗ ρ)[ρ], R[πS] :=
∑

ρ

n(πS ⊗ ρ)[πS][ρ].

Also define

R{Π1,S} :=
∑

πS

{πS}, R[Π1,S] :=
∑

πS

R[πS],

where each sum runs over πS ∈ Irrur
l (G(AS)) such that BC(ιlπS) * ΠS.

Let Red(h1,h2)
n (πp) be the morphism from Groth(G(Qp)) to Groth(J (h1,h2)(Qp))

defined by

(−1)h1+h2πp,0 ⊗ Redn−h1,h1(πp1)⊗ Redn−h2,h2(πp2)⊗ (⊗i>2πpi),

where

Redn−h,h : Groth(GLn(K)) → Groth(D×
K, 1

n−h
×GLh(K))

is obtained by composing the normalized Jacquet functor

J : Groth(GLn(K)) → Groth(GLn−h(K)×GLh(K))
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with the Jacquet-Langlands map

LJ : Groth(GLn−h(K)) → Groth(D×
K, 1

n−h
)

defined by Badulescu in [Bad]. Assume the following result, which will be proved

in section 6:

Theorem 5.3.1. We have the following equality in Groth(G(ASfin\{p})×J (h1,h2)(Qp):

BCSfin\{p}(Hc(Ig(h1,h2),Lξ){Π1,S})

= e0(−1)h1+h2CG[ι−1
l Π1

Sfin\{p}][Red(h1,h2)
n (πp)],

where CG is a positive integer and e0 = ±1.

Let S, T ⊆ {1, . . . , n− 1} with #S = n− h1,#T = n− h2. From Theorem

5.3.1 and Corollary 5.1.4 we obtain the equality

BCp(Hc(Y 0
Iw(m),S,T ,Lξ)[Π1,S])

= e0CG[ι−1
l Π∞,p][Red(h1,h2)(πp,0 ⊗ πp1 ⊗ πp2)] · dim[(⊗r

i=3πpi)
Up1p2

p ]

in Groth(G(A∞,p)× (FrobF)Z). The group morphism

Red(h1,h2) : Groth(Q×p ×GLn(K)×GLn(K)) → Groth(FrobZ
F)

is the composite of normalized Jacquet functors

Ji : Groth(GLn(K)) → Groth(GLn−hi(K)×GLhi(K))
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for i = 1, 2 with the map

Groth(Q×p ×GLn−h1(K)×GLh1(K)×GLn−h2(K)×GLh2(K)) → Groth(FrobZ
F)

which sends [α1 ⊗ β1 ⊗ α2 ⊗ β2 ⊗ γ] to

∑

φ1,φ2

vol(D×
K,n−h1

/K×)−1·vol(D×
K,n−h2

/K×)·trα1(ϕSpn−h1
(φ1)

)·trα2(ϕSpn−h2
(φ2)

)·

·(dimβ1)Iwh1,p1 · (dimβ2)Iwh1,p2 · [rec(φ−1
1 φ−1

2 | |1−n(γZ×p ◦NK/Eu
)−1)],

where the sum is over characters φ1, φ2 of K×/O×K .

Lemma 5.3.2. We have the following equality in Groth(G(A∞,p)× (FrobF)Z):

BCp(H(YIw(%m),S,T ,Lξ)[Π1,S]) = e0CG[ι−1
l Π1,∞,p] dim[(⊗r

i=3πpi)
Up1p2

p ]×




n−#S∑

h1=0

n−#T∑

h2=0

(−1)2n−#S−#T−h1−h2




n−#S

h1








n−#T

h2



 ·

Red(h1,h2)(πp,0 ⊗ πp1 ⊗ πp2)

)
.

Proof. The proof is a straightforward generalization of the proof of Lemma 4.3

of [TY].

Theorem 5.3.3. Assume that Π0
p1
* Π0

p2
has an Iwahori fixed vector. Then

Π0
p1
* Π0

p2
is tempered.

Proof. By Corollary VII.2.18 of [HT], ιlπpi is tempered if and only if, for all

σ ∈ WK every eigenvalue α of Ln,K(Π0
pi

)(σ) (where Ln,K(Π0
pi

) is the image of
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Π0
pi

under the local Langlands correspondence, normalized as in [Sh3]) satisfies

|ιlα|2 ∈ qZ.

We shall first use a standard argument to show that we can always ensure that

|ιlα|2 ∈ q
1
2 Z

and then we will use a classification of irreducible, generic, ι-preunitary repre-

sentations of GLn(K) together with the cohomology of Igusa varieties to show

the full result.

The space Hk(X,Lξ) decomposes as a G(A∞)-module as

Hk(X,Lξ) =
⊕

π∞

π∞ ⊗Rk
ξ,l(π

∞),

where π∞ runs over Irrl(G(A∞)) and Rk
ξ.l(π

∞) is a finite-dimensional Gal(F̄ /F )-

representation. Define the Gal(F̄ /F )-representation

R̃k
l (Π1) =

∑

π∞

Rk
ξ,l(π

∞),

where the sum is over the π∞ ∈ Irrl(G(A∞)) which are cohomological, unram-

ified outside Sfin and such that BC(ιlπ∞) = Π1,∞. Also define the element

R̃l(Π1) ∈ Groth(Gal(F̄ /F )) by

R̃l(Π1) =
∑

k

(−1)kR̃k
l (Π1).

We claim that we have the following identity in Groth(WK) :

R̃l(Π1) = e0CG · [(πp,0 ◦Art−1
Qp

)|WK ⊗ ι−1
l Ln,K(Π0

p1
)⊗ ι−1

l Ln,K(Π0
p2

)].
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This can be deduced from results of Kottwitz [Ko2] or by combining Theorem

5.3.1 with Mantovan’s formula [Man].

From the above identity, using the fact that Π0
p1
* Π0

p2
, we see that |ιl(αβ)|2 ∈

qZ for any eigenvalues α, β of any σ ∈ WK , since R̃l(Π1) is found in the coho-

mology of some proper, smooth variety XU over K. In particular, we know that

|ιlα|2 ∈ q
1
2 Z. Moreover, if one eigenvalue α of σ satisfies |ιlα|2 ∈ qZ then all

other eigenvalues of σ would be forced to satisfy it as well. A result of Tadic

([Tad], see also Lemma I.3.8 of [HT]) says that if πpi is a generic, ιl-preunitary

representation of GLn(K) with central character |ψπpi
| ≡ 1 then πpi is isomor-

phic to

n-IndGLn(K)
P (K) (π1×· · ·×πs×π′1|det |a1×π′1|det |−a1×· · ·×π′t|det |at×π′t|det |−at),

for some parabolic subgroup P of GLn. The π1, . . . , πs, π′1, . . . π
′
t are square

integrable representations of smaller linear groups with |ψπj | ≡ |ψπ′
j′
| ≡ 1 for

all j, j′. Moreover, we must have 0 < aj < 1
2 for j = 1, . . . , t. If s "= 0 then for

any σ ∈ WK there is an eigenvalue α of LK,n(πpi)(σ) with |ιlα|2 ∈ qZ, but then

this must happen for all eigenvalues of LK,n(πpi)(σ). So then t = 0 and πpi is

tempered. If s = 0 then every eigenvalue α of a lift of Frobenius σ ∈ WK must

satisfy

|ιlα|2 ∈ qZ±2aj

for some j ∈ 1, . . . , t. Note that each j corresponds to at least one such eigen-

value α, so we must have aj = 1
4 for all j = 1, . . . , t. To summarize, πpi is either

tempered or it is of the form

n-IndGLn(K)
P (K) (π′1|det | 14 × π′1|det |− 1

4 × · · · × π′t|det | 14 × π′t|det |− 1
4 ).

We shall now focus on the second case, in order to get a contradiction. Since
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πpi has an Iwahori fixed vector, each π′j must be equal to Spsj
(χj), where χj is

an unramified character of K×. We can compute Red(h1,h2)(πp,0 ⊗ πp1 ⊗ πp2)

explicitly and compare it to the cohomology of a closed stratum YIw,S,T via

Lemma 5.3.2.

We can compute Red(h1,h2)(πp,0 ⊗ πp1 ⊗ πp2) using an analogue of Lemma

I.3.9 of [HT], which follows as well from Lemma 2.12 of [BZ]. Indeed,

Ji

(
n-IndGLn(K)

P (K) (Sps1
(χ1) · |det | 14 × Sps1

(χ1) · |det |− 1
4 × · · · × Spst

(χt) · |det |− 1
4 )

)

is equal to

∑
[n-IndGLhi(k)

P ′i (K) ((Spl1(χ1 ⊗ |det |s1−l1+ 1
4 )× · · · × Spkt

(χt ⊗ |det |st−kt− 1
4 ))]

[n-IndGLhi(k)

P ′′i (K) ((Sps1−l1(χ1 ⊗ |det | 14 )× · · · × Spst−kt
(χt ⊗ |det |− 1

4 ))],

where the sum is over all non-negative integers lj , kj ≤ sj with hi =
∑t

j=1(lj +

kj). Here P ′i and P ′′i are parabolic sungroups with Levi components GLl1 ×

· · · ×GLkt and GLs1−l1 × · · · ×GLst−kt respectively.

Let V k
j1j2 = rec

(
χ−1

j1
χ−1

j2
| |1−n+εk(ψu ◦NK/Eu

)−1
)
, where

εk =






− 1
2 if k = 1

0 if k = 2

1
2 if k = 3

After we apply the functor

Groth(GLn−h1(K)×GLh1(K)×GLn−h2(K)×GLh2(K)×Q×p ) → Groth(FrobZ
F),
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we get

Red(h1,h2)(πp,0 ⊗ πp1 ⊗ πp2) =
∑

j1,j2,k

γ(h1,h2)
j1j2

([V 1
j1j2 ]⊕ 2[V 2

j1j2 ]⊕ [V 3
j1j2 ]),

where

γ(h1,h2)
j1,j2

=
2∏

i=1

dim
(
n-IndGLhi

(K)

P ′i (K)

(
Spsji+hi−n(χji | |n−hi± 1

4 )⊗ Spsj
(χji | |∓

1
4 )

⊗
⊗

j +=ji

Spsj
(χj | |

1
4 )⊗

⊗

j +=ji

Spsj
(χj | |−

1
4 )








Iwhi,pi

=
2∏

i=1

hi!
(sji + hi − n)!sji !

∏
j +=ji

(sj !)2

and where the sum is over the j1, j2 for which sji ≥ n− hi for i = 1, 2. Here P
′

i

for i = 1, 2 are parabolic subgroups of GLhi(K).

Let D(Π1) = e0CG[Π1,∞,p] dim[(⊗r
i=3πpi)

Up1p2
p ]. Then

BCp(H(YIw(%m),S,T ,Lξ)[Π1,S]) = D(Π1)·




n−#S∑

h1=0

n−#T∑

h2=0

(−1)2n−#S−#T−h1−h2




n−#S

h1








n−#T

h2



 ·

∑

j1,j2,k

γ(h1,h2)
j1j2

([V 1
j1j2 ]⊕ 2[V 2

j1j2 ]⊕ [V 3
j1j2 ])



 .

We can compute the coefficient of [V k
j1j2 ] in BCp(H(YIw,S,T ,Lξ))[Π1,S] by sum-

ming first over j1, j2 and then over h1, h2 going from n− sj1 , n− sj2 to n−#S

and n−#T respectively. Note that the coefficient of [V 2
j1j2 ] is exactly twice that
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of [V 1
j1j2 ] and of [V 3

j1j2 ]. The sum we get for [V 1
j1j2 ] is

D(Π1)
(n−#S)!(n−#T )!

(sj1 −#S)!(sj2 −#T )!sj1 !sj2 !
∏

j +=j1
(sj !)2

∏
j +=j2

(sj !)2
·




n−#S∑

h1=n−sj1

n−#T∑

h2=n−sj2

(−1)2n−#S−#T−h1−h2




sj1 −#S

h1 + sj1 − n








sj2 −#T

h2 + sj2−n









The sum in parentheses can be decomposed as




n−#S∑

h1=n−sj1

(−1)n−#S−h1




sj1 −#S

h1 + sj1 − n







 ·




n−#T∑

h2=n−sj2

(−1)n−#T−h2




sj2 −#T

h2 + sj2 − n







 ,

which is equal to 0 unless both sj1 = #S and sj2 = #T . So

BCp(H(YIw(%m),S,T ,Lξ)[Π1,S]) = D(Π1)·
∑

sj1=#S,sj2=#T

(n−#S)!(n−#T )!sj1 !sj2 !∏
j(sj !)4

·

(
[V 1

j1j2 ] + 2[V 2
j1j2 ] + [V 3

j1j2 ]
)
.

Since each YU,S,T is proper and smooth, it follows from the Weil conjec-

tures that Hj(YIw(%m),S,T ,Lξ) is strictly pure of weight mξ − 2tξ + j. This

property means that for some (hence every) lift σ of FrobF, every eigenvalue

of σ on Hj(YIw(%m),S,T ,Lξ) is a Weil qmξ−2tξ+j-number (see the definitions

above Lemma 1.4 of [TY]). However, the [V k
j1j2 ] are strictly pure of weight

mξ−2tξ +2n−2− εk− (#S−1)− (#T −1) = mξ−2tξ +2n−#S−#T −2εk.

So

BCp(Hj(YIw(%m),S,T ,Lξ)[Π1,S]) = 0
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unless j = 2n − #S − #T ± 1 or j = 2n − #S − #T . However, if the Igusa

cohomology is non-zero for some j = 2n−#S −#T ± 1, then there exist j1, j2

with sj1 = #S and sj2 = #T . Hence, the cohomology must also be non-zero

for j = 2n − #S − #T . The coefficients of [V k
j1j2 ] all have the same sign, so

they are either strictly positive or strictly negative only depending on D(Π1).

However, BCp(H(YIw(m),S,T ,Lξ)[Π1,S] is an alternating sum, so the weight

2n−#S −#T ± 1 part of the cohomology should appear with a different sign

from the weight 2n−#S −#T part. This is a contradiction, so it must be the

case that πp1 * πp2 is tempered.

Corollary 5.3.4. Let n ∈ Z≥2 be an integer and L be any CM field. Let Π be

a cuspidal automorphic representation of GLn(AL) satisfying

• Π∨ * Π ◦ c

• Π∞ is cohomological for some irreducible algebraic representation Ξ.

Then Π is tempered at every finite place w of L.

Proof. By Lemma 1.4.3 of [TY], an irreducible smooth representation Π of

GLn(K) is tempered if and only if LK,n(Π) is pure of some weight. By Lemma

1.4.1 of [TY], purity is preserved under a restriction to the Weil-Deligne repre-

sentation of WK′ for a finite extension K ′/K of fields.

Fix a place v of L above p where p "= l. We will find a CM field F ′ such that

• F ′ = EF1, where E is an imaginary quadratic field in which p splits and

F1 = (F ′)c=1 has [F1 : Q] ≥ 2,

• F ′ is soluble and Galois over L,

• Π0
F ′ = BCF ′/L(Π) is a cuspidal automorphic representation of GLn(AF ′),

and

• there is a place p of F above v such that Π0
F ′,p has an Iwahori fixed vector,
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and a CM field F which is a quadratic extension of F ′ such that

• p = p1p2 splits in F ,

• RamF/Q ∪ RamQ(6) ∪ RamQ(Π) ⊂ SplF/F ′,Q, and

• Π0
F = BCF/F ′(Π0

F ′) is a cuspidal automorphic representation of GLn(AF ).

To find F ′ and F we proceed as follows, using the same argument as on the last

page of [Sh3]. For a CM field F , we shall use the sets E(F ) and F(F ), which

are defined in the proof of Theorem 7.5 of [Sh3].

First we find a CM field F0 which is soluble and Galois over L and a place

p0 above v such that the last two conditions for F ′, p are satisfied for F0, p0

instead. To see that the second to last condition for F ′ only eliminates finitely

many choices for the CM field we can use the same argument as Clozel in

Section 1 of [Cl2]. Indeed, if BCF ′/L(Π) is not cuspidal, then we would have

Π⊗ε * Π for ε the Artin character of L associated to F ′. But then the character

ε would occur in the semisimplification of Rl⊗Rl⊗ωn−1, where Rl is the Galois

representation associated to Π by Chenevier and Harris in [CH] and ω is the

cyclotomic character. Thus, there are only finitely many choices for ε and so for

F ′/L which are excluded.

Next, we choose E ∈ E(F0) such that p splits in E. We take F ′ = EF0 and

p any place of F ′ above p0. Let F1 be the maximal totally real subfield of F ′

and let w be the place of F1 below p. Next, we pick F ′′ ∈ F(F ′) different from

F ′ and such that w splits in F ′′. Take F = F ′′F ′.

We can find a character ψ of A×E/E× such that Π1 = ψ ⊗Π0
F together with

F satisfy the assumptions in the beginning of the section. (For the specific

conditions that ψ must satisfy, see Lemma 7.0.11.) We also know that Π0
F,p1

*

Π0
F,p2

has an Iwahori fixed vector, thus we are in the situation of Theorem

5.3.3.
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Proposition 5.3.5. Assume again that the conditions in the beginning of this

section are satisfied and that Π0
p1
* Π0

p2
has a nonzero Iwahori fixed vector.

Then

BCp(Hj(YIw(%m),S,T ,Lξ)[Π1,S]) = 0

unless j = 2n−#S −#T .

Proof. We will go through the same computation as in the proof of Theorem

5.3.3 except we will use the fact that πp1 * πp2 is tempered, so it is of the form

n-IndGLn(K)
P (K) (Sps1

(χ1)× · · · × Spst
(χt)),

where the χj are unramified characters of K×.

We can compute Red(h1,h2)(πp,0 ⊗ πp1 ⊗ πp2) as in the proof of Theorem

5.3.3.

Ji

(
n-IndGLn(K)

P (K) (Sps1
(χ1)× · · · × Spst

(χt) · |det |)
)

is equal to

∑
[n-IndGLhi(k)

P ′i (K) (Spk1
(χ1 ⊗ |det |s1−k1)× · · · × Spkt

(χt ⊗ |det |st−kt))]

[n-IndGLhi(k)

P ′′i (K) (Sps1−k1
(χ1)× · · · × Spst−kt

(χt))],

where the sum is over all non-negative integers kj ≤ sj with hi =
∑t

j=1 kj .

Let Vj1j2 = rec
(
χ−1

j1
χ−1

j2
| |1−n(ψu ◦NK/Eu

)−1
)
. After we apply the functor

Groth(GLn−h1(K)×GLh1(K)×GLn−h2(K)×GLh2(K)×Q×p ) → Groth(FrobZ
F),

we get

Red(h1,h2)(πp,0 ⊗ πp1 ⊗ πp2) =
∑

j1,j2,k

γ(h1,h2)
j1j2

[Vj1j2 ]
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where

γ(h1,h2)
j1,j2

=
2∏

i=1

dim



n-IndGLhi
(K)

P ′i (K)



Spsji
(χji | |n−hi)⊗

⊗

j +=ji

Spsj
(χj)








Iwhi,pi

=
2∏

i=1

hi!
(sji + hi − n)!sji !

∏
j +=ji

(sj !)2

and where the sum is over the j1, j2 for which sji ≥ n− hi for i = 1, 2. Here P
′

i

for i = 1, 2 are parabolic subgroups of GLhi(K).

Let D(Π1) = e0CG[Π1,∞,p] dim[(⊗r
i=3πpi)

Up1p2
p ]. The same computation as

in the proof of Theorem 5.3.3 gives us

BCp(H(YIw(%m),S,T ,Lξ)[Π1,S])

= D(Π1) ·
∑

sj1=#S,sj2=#T

(n−#S)!(n−#T )!sj1 !sj2 !∏
j(sj !)2

[Vj1j2 ].

Since πp1 * πp2 is tempered, we know that [Vj1j2 ] is strictly pure of weight 2n−

#S−#T . The Weil conjectures tell us then that BCp(Hj(YIw(%m),S,T ,Lξ)[Π1,S]) =

0 unless j = 2n−#S −#T .



Chapter 6

The cohomology of Igusa

varieties

The goal of this chapter is to explain how to prove Theorem 5.3.1. The proof

will be a straightforward generalization of the proof of Theorem 6.1 of [Sh3] and

so we will follow closely the argument and the notation of that paper.

We will summarize without proof the results in [Sh3] on transfer and on the

twisted trace formula. We will emphasize the place ∞, since that is the only

place of Q where our group G differs from the group G considered in [Sh3]. All

of the results and notation are as in [Sh3], except in the proof of Lemmas 6.0.8

and 6.0.9, where we also use the notation of [Sh2].

We start by explaining the notation we will be using throughout this section,

which is consistent with the notation of [Sh3]. Recall that we have fixed a unitary

similitude group G over Q, which satisfies certain local conditions as in Lemma

2.1.1. In this section, will work with a quasi-split form of G, denoted by Gn as

well as with groups Gn1,n2 which are endoscopic groups for Gn. We will denote

an element in the set {Gn} ∪ {Gn1,n2 |n1 + n2 = n, n1 ≥ n2 > 0)} as G%n, where

119
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-n is a multiset of positive integers (in our case, -n will have length 1 or 2). In

other words, -n runs through the elements of the set {n} ∪ {(n1, n2)|n1 + n2 =

n, n1 ≥ n2 > 0}.

If r ∈ {1, 2} and -n = (ni)r
i=1 with ni ∈ Z>0 define

GL%n :=
r∏

i=1

GLni .

Let i%n : GL%n ↪→ GLN (N =
∑

i ni) be the natural map. Let

Φ%n = i%n(Φn1 , . . . , ,Φnj ),

where Φn is the matrix in GLn with entries (Φn)ij = (−1)i+1δi,n+1−j .

Let K be some local non-archimedean local field and H a connected reductive

group over K. We will denote by Irr(H(K)) (resp. Irrl(H(K))) the set of

isomorphism classes of irreducible admissible representations of G(K) over C

(resp. over Q̄l). Let C∞c (H(K)) be the space of smooth compactly supported

C-valued functions on H(K). Let P be a K-rational parabolic subgroup of H

with a Levi subgroup M . For πM ∈ Irr(M(K)) and π ∈ Irr(H(K)) we can define

the normalized Jacquet module JH
P (π) and the normalized parabolic induction

n-IndH
P πM . We can define a character δP : M(K) → R×>0 by

δP (m) = |det(ad(m))|Lie(P )/Lie(M)|K .

We can view δP as a character valued in Q̄×l via ι−1
l .

If

J (h)(Qp) * D×
K, 1

n−h
×GLh(K),

where K/Qp is finite, then we define δ̄
1
2
P (J(h))

(g) := δ
1
2
Pn−h,h

(g∗),where g∗ ∈

GLn−h(K)×GLh(K) is any element whose conjugacy class matches that of g.
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If

J (h1,h2) * GL1 ×
2∏

i=1

(D×
Fpi , 1

n−hi

×RFpi/Qp
GLhi)×

∏

i>2

RFpi/Qp
GLn,

we define δ̄
1
2
P (J(h1,h2 )

: J (h1,h2)(Qp) → Q̄×l to be the product of the characters

δ̄
1
2
P (J(hi))

for i = 1, 2.

Let -n = (ni)r
i=1 for some r ∈ {1, 2} and ni ∈ Z>0. Let G%n be the Q-group

defined by

G%n(R) = {(λ, gi) ∈ GL1(R)×GL%n(F ⊗Q R) | gi · Φ%n ·t gc
i = λΦ%n}

for any Q-algebra R. For any -n, the group G%n is quasi-split over Q. In particular,

our unitary group G is an inner form of Gn. Since G is quasi-split at all finite

places, there exists an isomorphism

G×Q A∞ * Gn ×Q A∞;

we fix such an isomorphism.

Also define

G%n = RE/Q(G%n ×Q E).

Let θ denote the action on G%n induced by (id, c) on G%n×Q E. Let ε : Z → {0, 1}

be the unique map such that ε(n) ≡ n (mod 2). Let 6 : A×E/E× → C× be any

Hecke character such that 6|A×/Q× is the composite of ArtQ and the natural

surjective character WQ ! Gal(E/Q) ∼→ {±1}. Using the Artin map ArtE , we

view 6 as a character WE → C× as well.

Assume that RamF/Q ∪ RamQ(6) ⊂ SplF/F2,Q.

Let Eell(Gn) be a set of representatives of isomorphism classes of elliptic

endoscopic triples for Gn over Q. Then Eell(Gn) can be identified with the set
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of triples

{(Gn, sn, ηn} ∪{Gn1,n2 , sn1,n2 , ηn1,n2 | n1 + n2 = 0, n1 ≥ n2 > 0},

where (n1, n2) may be excluded in some cases. As we are only interested in the

stable part of the cohomology of Igusa varieties, we will not be concerned with

these exclusions so we will ignore them in this paper. Here sn = 1 ∈ Ĝn, sn1,n2 =

(1, (In1 ,−In2)) ∈ Ĝn1,n2 , ηn : Ĝn → Ĝn is the identity map whereas

ηn1,n2 : (λ, (g1, g2)) 2→



λ,




g1 0

0 g2







 .

We can extend ηn1,n2 to a morphism of L-groups, which sends z ∈ WE to



6(z)−N(n1,n2),




6(z)ε(n−n1) · In1 0

0 6(z)ε(n−n2) · In2







 ! z.

Similarly we can also define a morphism of L-groups

ζ̃n1,n2 :L Gn1,n2 →L Gn,

which extends the map

ζn1,n2 : Ĝn1,n2 → Ĝn

(λ+, λ−, (gσ,1, gσ,2)) 2→



λ+, λ−




gσ,1 0

0 gσ,2









(See section 3.2 of [Sh3] for the precise definition.) We have the following com-
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mutative diagram of L-morphisms.

LGn1,n2

BCn1,n2

""

η̃n1,n2 !! LGn

BCn

""
LGn1,n2

ζ̃n1,n2

!! LGn

We will proceed to define local transfers for each of the arrows in the above

commutative diagram so that these transfers are compatible.

Choose the normalization of the local transfer factor ∆v( , )Gn
G$n

defined in

Section 3.4 of [Sh3]. It is possible to give a concrete description of the ∆v( , )Gn
G$n

-

transfer at finite places v of Q between functions in C∞c (Gn(Qv)) and functions

in C∞c (Gn1,n2(Qv)) as long as v satisfies at least one of the conditions:

• v ∈ UnrF/Q and v "∈ RamQ(6),

• v ∈ SplE/Q,

• v ∈ SplF/F2,Q and v "∈ SplE/Q.

The transfer φn1,n2
v of φn

v ∈ C∞c (Gn(Qv)) and φn
v will satisfy an identity involv-

ing orbital integrals. Since we are assuming that RamF/Q ⊆ SplF/F2,Q, we can

define the transfer at all places v of Q.

It is also possible to define a transfer of pseudo-coefficients at infinity. Con-

sider (G%n, s%n, η%n) ∈ Eell(Gn), which is also an endoscopic triple for G. Fix real

elliptic maximal tori T ⊂ G and TG$n
⊂ G%n together with an R-isomorphism

j : TG$n

∼→ T. Also fix a Borel subgroup B of G over C containing TC. Shelstad

defined the transfer factor ∆j,B , see [She].

Let ξ be an irreducible algebraic representation of GC. Define χξ : AG,∞ → C

to be the restriction of ξ to AG,∞ (the connected component of the identity in the

R-points of the maximal Q-split torus in the center of G). Choose K∞ ⊂ G(R)
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to be a maximal compact subgroup (admissible in the sense of [Art]) and define

q(G) =
1
2

dim(G(R)/K∞AG,∞) = 2n− 2.

For each π ∈ Πdisc(G(R), ξ∨) there exists φπ ∈ C∞c (G(R), χξ) a pseudo-

coefficient for π. Any discrete L-parameter ϕG$n
such that η̃%nϕG$n

∼ ϕξ corre-

sponds to an L-packet of the form Πdisc(G%n(R), ξ(ϕG$n
)∨). Define

φG$n,ξ(ϕG$n
) :=

1
|Π(ϕ%n)|

∑

πG$n

φπG$n
and

φG$n
π := (−1)q(G)

∑

η̃ϕG$n
∼ϕξ

〈aω∗(ϕG$n,ξ)ωπ
, s〉det(ω∗(ϕG$n,ξ)) · φG$n,ξ(ϕG$n) .

Then φG$n
π is a ∆j,B-transfer of φπ.

We will now review the base change for the groups G%n and G%n. Define the

group

G+
%n := (RE/QGL1 ×RF/QGL%n) ! {1, θ},

where θ(λ, g)θ−1 = (λc, λcg#) and g# = Φ%n
tgcΦ−1

%n . If we denote by G0
%n and

G0
%nθ the cosets of {1} and {θ} in G+

%n then G+
%n = G0

%n

∐
G0

%nθ. There is a natural

Q-isomorphism G%n
∼→ G0

%n which extends to

G%n ! Gal(E/Q) ∼→ G+
%n

so that c ∈ Gal(E/Q) maps to θ.

Let v be a place of Q. A representation Πv ∈ Irr(G%n(Qv)) is called θ-stable if

Πv * Πv ◦θ as representations of G%n(Qv). If that is the case, then we can choose

an operator AΠv on the representation space of Πv which induces Πv
∼→ Πv ◦ θ

and which satisfies A2
Πv

= id. Such an operator is called normalized and it

is pinned down up to sign. We can similarly define the notion of θ-stable for
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ΠS ∈ Irr(G%n(AS)) and a corresponding intertwining operator AΠS for any finite

set S of places of Q. There is a correspondence between θ-stable representations

of G%n(Qv) together with a normalized intertwining operator and representations

of G+
%n (Qv). We also mention that in order for a representation Π ∈ Irr(G%n(A))

to be θ-stable it is necessary and sufficient that Π = ψ ⊗Π1 satisfy

• (Π1)∨ * Π1 ◦ c, and

•
∏r

i=1 ψi = ψc/ψ where ψΠ1 = ψ1⊗ · · ·⊗ψr is the central character of Π1.

Now we shall discuss BC-matching functions. It is possible to construct for each

finite place v of Q and fv ∈ C∞c (G%n(Qv)) a function φv ∈ C∞c (G%n(Qv)), which

is the BC-transfer of fv. The transfer can be described concretely in the cases

v ∈ UnrF/Q and v ∈ SplF/F2,Q, except that in the case v ∈ UnrF/Q we have the

condition that fv must be unramified. Moreover, we also have an explicit map

BC%n : Irr(ur)(G%n(Qv)) → Irr(ur)θ-st(G%n(Qv))

where the representations must be unramified in the case v ∈ UnrF/Q and where

there is no restriction in the case v ∈ SplF/F2,Q. There are normalized operators

A0
Πv

: Πv
∼→ Πv ◦ θ such that if Πv = BC%n(πv) and φv and fv are BC-matching

functions then

tr(Πv(fv)A0
Πv

) = trπv(φv).

Note that left side of the above equality computes the trace of fvθ, the function

on G%nθ obtained from fv via translation by θ.

The next step is to consider the base change at ∞. Let ξ%n be an irreducible

algebraic representation of G%n,C . Consider the natural isomorphism

G%n(C) * G%n(C)×G%n(C).
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We can define a representation Ξ%n of G%n by Ξ%n := ξ%n⊗ξ%n. It is possible to find an

irreducible, θ-stable, generic unitary representation ΠΞ$n
∈ Irr(G%n(R), χ−1

ξ$n
) to-

gether with a normalized operator A0
ΠΞ$n

and a function fG$n,Ξ$n
∈ C∞c (G(R), χξ$n

)

such that

• ΠΞ$n
is the base change of the L-packet Πdisc(G%n(R), ξ∨%n ),

• tr(ΠΞ$n
(fG$n,Ξ$n

) ◦A0
ΠΞ$n

) = 2 and

• fG$n,Ξ$n
and φG$n,ξ$n

are BC-matching functions (where φG$n,ξ$n
is defined as

a pseudocoefficient for the L-packet Πdisc(G%n(R), ξ∨%n ).

The transfer for ζ̃n1,n2 can be defined explicitly since the groups G%n are es-

sentially products of general linear groups. It can be checked that for all finite

places v of Q the transfers are compatible. For v = ∞ we have the compatibility

relation on the representation-theoretic side follows directly from the commu-

tative diagram of L-morphisms.

Now we shall describe the transfer factors ∆v( , )G
G$n

. At v "= ∞ we can

choose

∆v( , )G
G$n

= ∆0
v( , )Gn

G$n
,

via the fixed isomorphism G ×Q A∞ * Gn ×Q A∞. We choose the unique

∆∞( , )G
G$n

such that the product formula

∏

v

∆v(γG$n
, γ)G

G$n
= 1

holds for any γ ∈ G(Q) semisimple and γG$n
∈ G%n(A) a (G, G%n)-regular semisim-

ple element such that γ and γG$n
have matching stable conjugacy classes. Let

e%n(∆∞) ∈ C× denote the constant for which

∆∞(γG$n
, γ)G

G$n
= e%n(∆∞)∆j,B(γG$n

, γ)
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holds. Note that for -n = (n), e%n(∆∞) = 1.

Let φ∞,p ·φ′p ∈ C∞c (G(A∞,p)×J (h1,h2)(Qp)) be a complex-valued acceptable

function. (For a definition of the notion of acceptable function, see Definition 6.2

of [Sh1]). For each G%n ∈ Eell(G) we define the function φ%n
Ig on G%n(A) (assuming

that φ∞,p =
∏

v +=p,∞ φv). For v "= p,∞, we take φ%n
Ig,v ∈ C∞c (G%n(Qv)) to be the

∆v( , )G
G$n

-transfer of φv. We take

φ%n
Ig,∞ := e%n(∆∞) · (−1)q(G)〈µh, s%n〉

∑

ϕ
$n

det(ω∗(ϕG$n
)) · φG$n,ξ(ϕ$n),

where ϕ%n runs over L-parameters such that η̃%nϕ%n ∼ ϕξ and ξ(ϕ%n) is the

algebraic representation of G%n,C such that the L-packet associated to ϕ%n is

Πdisc(G%n(R), ξ(ϕ%n)∨).

We also take

φ%n
Ig,p ∈ C∞c (G%n(Qp))

to be the function constructed from φ′p in section 6.3 of [Sh2]. We shall summa-

rize the construction of φ%n
Ig,p in the case -n = (n). By definition (see the formula

above Lemma 6.5 of [Sh2])

φ%n
Ig,p =

∑

(MGn,sGn,ηGn)

cMGn
· φ̃MGn

p ,

where the sum is taken over G-endoscopic triples for J (h1,h2). The set I(MGn , Gn)

(which can be identified with a set of cosets of Out(MGn , sGn , ηGn)) consists of

only one element in our case, so we suppress the index i ∈ I(MGn , Gn) in

φ̃
MGn ,i
p . Each φ̃

MGn
p ∈ C∞c (Gn(Qp)) is constructed from a function φ

MGn
p ∈

C∞c (MGn(Qp)) which is a ∆p( , )J(h1,h2)

MGn
-transfer of a normalized φ′p.

The following proposition is Theorem 7.2 of [Sh2].

Proposition 6.0.6. If φ∞,p · φ′p ∈ C∞c (G(A∞,p) × J (h1,h2)(Qp)) is acceptable,
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then

tr(φ∞,p ·φ′p|ιlHc(Ig(h1,h2),Lξ)) = (−1)h1+h2 | ker1(Q, G)|
∑

G$n

ι(G, G%n)STG$n
e (φ%n

Ig)

where the sum runs over the set Eell(G) of elliptic endoscopic triples (G%n, s%n, η%n).

Remark 6.0.7. Theorem 7.2 of [Sh2] is proved under the “unramified hypothesis”,

however, the only place where this hypothesis is needed is in the proof of Lemma

11.1 of [Sh1]. Lemma 5.2.1 provides an alternative to the proof of Lemma 11.1

of [Sh1] in our situation, so the results of [Sh1] and [Sh2] carry over. For details,

see the discussion in the beginning of Section 5.2 of [Sh3]. The sign (−1)h1+h2

does not show up in the statement of the theorem in [Sh2], but we need to

include it because our convention for the alternating sum of the cohomology

differs from the usual one by (−1)h1+h2 .

The constants ι(G, G%n) = τ(G)τ(G%n)−1|Out(G%n, s%n, η%n)|−1 can be com-

puted explicitly. We mention that

|Out(G%n, s%n, η%n)| =






2 if -n = (n
2 , n

2 )

1 otherwise.

We also have by Corollary 4.7 of [Sh3] the relation

IG$nθ
geom(fθ) = τ(G%n)−1 · STG$n

e (φ),

when φ and f are BC-matching functions, i.e.

φ = φS · φSfin · φG$n,ξ and f = fS · fSfinfG$n,Ξ,

with φS a BC-transfer of fS and φSfin a BC-transfer of fSfin .Thus, assuming
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that for each -n there exists f%n such that φ%n
Ig and f%n are BC-matching, we can

write

tr(φ∞,p · φ′p|ιlHc(Ig(h1,h2),Lξ)) = | ker1(Q, G)| · τ(G)
∑

G$n

ε%nIG$nθ
geom(f%nθ),

where ε%n = 1
2 if -n = (n

2 , n
2 ) or 1 otherwise.

Furthermore, the twisted trace formula by Arthur, is an equality between

IG$nθ
spec(fθ) = IG$nθ

geom(fθ).

By combining Proposition 4.8 and Corollary 4.14 of [Sh3] we can compute

IG$nθ
spec(fθ) as

∑

M

|WM |
|WG$n

| |det(Φ−1
%n θ − 1)

a
G$nθ

M

|−1
∑

ΠM

tr(n-IndG$n
Q (ΠM )ξ(f) ◦A′n-IndG$n

Q (ΠM )ξ
,

where M runs over Q-Levi subgroups of G%n containing a fixed minimal Levi and

Q is a parabolic containing M as a Levi. The rest of the notation is defined on

pages 31 and 32 of [Sh3]. Note that A′n-IndG$n
Q (ΠM )ξ

is a normalized intertwining

operator for n-IndG$n
Q (ΠM )ξ.

We will be particularly interested in making the above formula explicit when

-n = (n). In that case, IG$nθ
spec(fθ) is a sum of

1
2

∑

Π′

tr(Π′ξ(f)A′Π′ξ),

where Π′ runs over θ-stable subrepresentations of RGn,disc, and

∑

M"Gn

|WM |
|WGn|

|det(Φ−1
n θ − 1)aGnθ

M
|−1

∑

Π′M

tr(n-IndGn
Q (Π′M )ξ(f) ◦A′n-IndGn

Q (Π′M )ξ
),

where Π′M runs over Φ−1
n θ-stable subrepresentations of RM,disc.
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Consider the finite set Eeff
p (J (h1,h2), G,G%n) consisting of certain isomorphism

classes of G-endoscopic triples (MG$n
, s%n, η%n) for J (h1,h2). This set is defined in

section 6.2 of [Sh2]. Let cMG$n
∈ {±1} be the constant assigned to each triple

in [Sh2]. If b is the isocrystal corresponding to (h1, h2), let M (h1,h2)(Qp) be

the centralizer of νG(b). The isocrystal b can be described as (bp,0, bp1 , . . . , bpr )

where bpi has slopes 0 and 1
n−hi

for i = 1, 2 and slope 0 for i > 2. Then M (h1,h2)

is a Qp -rational Levi subgroup of G. We will define a group morphism

n-Red(h1,h2)
%n : Groth(G%n(Qp) → Groth(J (h1,h2)(Qp))

as the composition of the following maps

Groth(G%n(Qp)) →
⊕

(MG$n
,sG$n

,ηG$n)

Groth(MG$n
(Qp))

⊕η̃G$n,∗−→ Groth(M (h1,h2)(Qp))

LJM(h1,h2)

J(h1,h2)−→ Groth(J (h1,h2)(Qp)).

The sum runs over (MG$n
, s%n, η%n) ∈ Eeff

p (J (h1,h2), G,G%n). The first map is the

direct sum of maps Groth(G%n(Qp)) → Groth(MG$n
(Qp)) which are given by

⊕icMG$n
· JG$n

P (iMG$n
)op, where i ∈ I(MG$n

, G%n) is a Qp-embedding MG$n
↪→ G%n

and P (iMG$n
) is a parabolic subgroup of G%n which contains i(MG$n

) as a Levi

subgroup. The map η̃G$n,∗ is functorial transfer with respect to the L-morphism

η̃G$n
. The third map, LJM(h1,h2)

J(h1,h2) is the Jacquet-Langlands map on Grothendieck

groups. We also define

Red(h1,h2)
%n (πG$n,p) := n-Red(h1,h2)

%n (πG$n,p)⊗ δ̄
1
2
P (J(h1,h2))

We can describe all the groups and maps above very explicitly in the case -n =

(n). Indeed, Eeff
p (J (h1,h2), G,Gn) has a unique isomorphism class represented
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by

(MGn , sGn , ηGn) = (M (h1,h2), 1, id).

The set I(MGn , Gn) is also a singleton in this case, so we suppress i everywhere.

This means that we can also take η̃Gn = id and η̃Gn,∗ = id and by Remark 6.4

of [Sh2], we may also take cMGn
= ep(J (h1,h2)), which is the Kottwitz sign of

the Qp-group J (h1,h2). There are isomorphisms

G(Qp) * Q×p ×GLn(Fp1)×GLn(Fp2)×
∏

i>2

GLn(Fpi),

M (h1,h2)(Qp) * Q×p ×(GLn−h1(Fp1)×GLh1(Fp1))×(GLn−h2(Fp2)×GLh2(Fp2))

×
∏

i>2

GLn(Fpi),

J (h1,h2)(Qp) * Q×p ×(D×
Fp1 , 1

n−h1
×GLh1(Fp1))×(D×

Fp2 , 1
n−h2

×GLh2(Fp2))×
∏

i>2

GLn(Fpi).

Thus, ep(J (h1,h2)) = (−1)2n−2−h1−h2 . If we write πp = πp,0 ⊗ (⊗iπpi), then we

have

Red(h1,h2)
n (πp) = (−1)h1+h2πp,0⊗Redn−h1,h1(πp1)⊗Redn−h2,h2(πp2)⊗(⊗i>2πpi).

Lemma 6.0.8. For any πp ∈ Groth(Gn(Qp))

trπp(φn
Ig,p) = tr(Red(h1,h2)

n (πp))(φ′p).

Proof. Set M = MGn . We know that φn
Ig,p = ep(J (h1,h2)) · φ̃M

p . By Lemma 3.9

of [Sh2],

trπp(φ̃M
p ) = tr(JGn

P op
M

(πp))(φM
p ).

Here φM
p is a ∆p( , )J(h1,h2)

M ≡ ep(J (h1,h2))-transfer of φ0
p = φ′p · δ̄

1
2
P (J(h1,h2))

(by
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remark 6.4 of [Sh2], we have an explicit description of the transfer factor). Let

πM,p = JGn

P op
M

(πp).

Note that M is a product of general linear groups and J (h1,h2) is an inner

form of M . Lemma 2.18 and Remark 2.19 of [Sh2] ensure that

trπM,p(φM
p ) = tr(LJJ(h1,h2)

M (πM,p)(φ0
p)) = tr(LJJ(h1,h2)

M (πM,p)⊗δ̄
1
2
P (J(h1,h2))

)(φ′p).

This concludes the proof.

Lemma 6.0.9. Let -n = (n1, n2) with n1 ≥ n2 > 0. For any πp ∈ Groth(Gn1,n2(Qp)),

trπp(φ%n
Ig,p) = tr(Red(h1,h2)

%n (πp))(φ′p).

Proof. The proof is based on making explicit the construction of φ%n
Ig,p from

section 6 of [Sh2] together with the definition of the functor n-Red(h1,h2)
%n , which

is a composition of the following maps:

Groth(G%n(Qp)) →
⊕

(MG$n
,sG$n

,ηG$n)

Groth(MG$n
(Qp))

⊕η̃G$n,∗−→ Groth(M (h1,h2)(Qp))

LJM(h1,h2)

J(h1,h2)−→ Groth(J (h1,h2)(Qp)).

Recall that

φ%n
Ig,p =

∑

(MG$n
,sG$n,ηG$n)

∑

i

cMG$n
· φ̃MG$n

,i
p

as functions on G%n(Qp), where the first sum is taken over Eeff
p (J (h1,h2), G,G%n)

and the second sum is taken over I(MG$n
, G%n). By Lemma 3.9 of [Sh2],

trπp(φ̃
MG$n,i
p ) = tr(JG$n

P (iMG$n
)op(πp)(φ

MG$n
p ), (6.1)
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where φ
MG$n
p ∈ C∞c (MG$n

(Qp)) is a ∆p( , )J(h1,h2)

MG$n
-transfer of φ0

p = φ′p·δ̄
1
2
P (J(h1,h2))

.

Equation 6.1 tells us that

trπp(φ%n
Ig,p) =

∑

(MG$n,sG$n,ηG$n
)

tr(fMG$n
(πp))(φ

MG$n
p ), (6.2)

where fMG$n
(πp) = ⊕icMG$n

JG$n

P (iMG$n
)(πp). The first map in the definition of

Red(h1,h2)
%n is the direct sum of fMG$n

over all (MG$n
, s%n, η%n).

The function φ
MG$n
p is a ∆p( , )M(h1,h2)

MG$n
-transfer of the function φ∗p ∈

C∞c (M (h1,h2)(Qp)) which is itself a transfer of φ0
p via ∆p( , )J(h1,h2)

M(h1,h2) ≡ ep(J (h1,h2)).

(All transfer factors are normalized as in [Sh2].) We will focus on making the

∆p( , )M(h1,h2)

MG$n
-transfer explicit first, for which we need to have a complete

description of all endoscopic triples (MG$n
, sG$n

, ηG$n
).

We have the following isomorphisms over Qp.

G * GL1 ×
∏

i≥1

RFpi/Qp
GLn

Gn1,n2 * GL1 ×
∏

i≥1

RFpi/Qp
GLn1,n2

M (h1,h2) * GL1 ×
2∏

i=1

RFpi/Qp
GLn−hi,hi ×

∏

i>2

RFpi/Qp
GLn

J (h1,h2) * GL1 ×
2∏

i=1

(D×
Fpi , 1

n−hi

×GLhi)×
∏

i>2

RFpi/Qp
GLn.

Consider also the following four groups over Qp, which can be thought of as

Levi subgroups of Gn1,n2 via the block diagonal embeddings.

MG$n,1 := GL1 ×
2∏

i=1

RFpi
/Qp

GLn−hi,hi−n2,n2 ×
∏

i>2

RFpi/Qp
GLn1,n2
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MG$n,2 := GL1 ×
2∏

i=1

RFpi
/Qp

GLn−hi,hi−n1,n1 ×
∏

i>2

RFpi/Qp
GLn1,n2

MG$n,3 := GL1 ×
2∏

i=1

RFpi
/Qp

GLn−hi,hi−ni,ni ×
∏

i>2

RFpi/Qp
GLn1,n2

MG$n,4 := GL1 ×
2∏

i=1

RFpi
/Qp

GLn−hi,hi−n3−i,n3−i ×
∏

i>2

RFpi/Qp
GLn1,n2

Note that we only define MG$n,j when it makes sense, for example MG$n,1 is

defined only when hi ≥ n2 for i = 1, 2. We define ηG$n,j : M̂G$n,j → M̂ (h1,h2) to

be the obvious block diagonal embedding. We also let

sMG$n,j = (1, (±1,±1,±1)i=1,2, (1, 1)i>2),

where the signs on the Fpi-component are chosen such that sMG$n,j is positive

on the GLn1-block of the Fpi-component and negative on the GLn2-block of the

Fpi-component.

It is easy to check, as on page 42 of [Sh3], that Eeff
p (J (h1,h2), G,G%n) consists

of those triples (MG$n,j , sG$n,j , ηG$n,j) which make sense. For example, if hi < n2

for i = 1, 2 then Eeff(J (h1,h2), G,G%n) is empty, but if hi ≥ n1 for i = 1, 2 then

Eeff(J (h1,h2), G,G%n) consists of four elements. The key point is to notice that

for a triple (MG$n
, sG$n

, ηG$n
) to lie in Eeff(J (h1,h2), G,G%n) it is necessary for sG$n

to transfer to an element of the dual group M̂ (h1,h2) = ̂J (h1,h2) which is either

+1 or −1 in the GLn−hi(C) block of the Fpi-component.

We can extend ηG$n,j to an L-morphism η̃G$n,j : LMG$n,j → LM (h1,h2) which is

compatible with the L-morphism η%n : LG%n →L G, when we map LMG$n,j
l̃j→ LG%n

and LM (h1,h2) l̃→ LG via (a conjugate of) the obvious block diagonal embedding

(where we always send the GLn1-block to the top left corner and the GLn2-block

to the bottom right corner). The morphism η̃G$n,j is defined as on page 42 of
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[Sh3], by sending z ∈ WQp to one of the matrices




6(z)ε(n−n1)In1 0

0 6(z)ε(n−n2)In2



 or




6(z)ε(n−n2)In2 0

0 6(z)ε(n−n1)In1



 ,

on the Fpi-component of M̂ (h1,h2). (For i = 1, 2, we send z to the first matrix

on the Fpi-component if the endoscopic group MG$n,j at pi is GLn−hi,hi−n2,n2

and to the second matrix if the component of MG$n,j at pi is GLn−hi,hi−n1,n1 .

For i > 2, we send z to the first matrix on the Fpi-component.) This map η̃G$n,j

is the unique L-morphism which makes the diagram

LM (h1,h2)
l̃ !! LG

LMG$n,j
l̃j !!

η̃G$n

##

LG%n

η̃$n

##

commutative. Thus, the function φ
MG$n,j
p is a transfer of φ∗p with respect to the L-

morphism η̃G$n,j , so we can define explicitly both φ
MG$n,j
p and the representation-

theoretic map η̃MG$n,j∗ : Groth(MG$n,j(Qp)) → Groth(M (h1,h2)(Qp)). There

exists a unitary character χ+
u,j : MG$n,j(Qp) → C× (defined similarly to the

character on page 43 of [Sh3]) such that the Langlands-Shelstad transfer factor

with respect to η̃G$n,j differs from the transfer factor associated to the canonical

L-morphism by the cocycle associated to χ+
u,j . (See section 9 of [Bor] for an

explanation of the correspondence between cocycles in H1(WQp , Z(M̂G$n,j)) and

characters MG$n,j(Qp) → C×.)

We can in fact compute χ+
u,j on the different components of MG$n,j(Qp), by

keeping in mind that it is the character MG$n,j(Qp) → C× associated to the

cocycle in H1(WQp , Z(M̂G$n,j)) which takes the conjugacy class of the standard



CHAPTER 6. THE COHOMOLOGY OF IGUSA VARIETIES 136

Levi embedding M̂G$n,j → M̂ (h1,h2) to that of ηG$n,j . Thus, we have

χ+
u,j(λ) = 6u(λ)−N(n1,n2);

χ+
u,j(gpi,1, gpi,2, gpi,3) =






6u

(
NFpi/Eu

(
det((gpi,1gpi,2)ε(n−n1)gε(n−n2)

pi,3 )
))

6u

(
NFpi/Eu

(
det((gpi,1gpi,2)ε(n−n2)gε(n−n1)

pi,3 )
))

when i = 1, 2 and depending on whether MG$n,j has the group GLn−hi,hi−n2,n2

or the group GLn−hi,hi−n1,n1 as its Fpi-component; and

χ+
u,j(gpi,1, gpi,2) = 6u

(
Npi/Eu

(
det(gε(n−n1)

pi,1 gε(n−n2)
pi,2 )

))
when i > 2

where (λ, (gpi,1, gpi,2, gpi,3)i=1,2, (gpi,1, gpi,2)i>2) denotes an element of MG$n,j(Qp).

(The value of χ+
u,j is in fact the product of the three types of factors above.)

We let Qj be a parabolic subrgroup of M (h1,h2) containing MG$n,j as a Levi

and if we let (φ∗p)Qj be the constant term of φ∗p along Qj then we have

φ
MG$n,j
p := (φ∗p)

Qj · χ+
u,j and

η̃G$n,j∗(πMG$n
,j) := n-IndM(h1,h2)

Qj
(πMG$n,j ⊗ χ+

u,j)

for any πMG$n,j ∈ Irrl(MG$n,j(Qp)). By Lemma 3.3 of [Sh3]

tr(fMG$n,j (πp))(φ
MG$n,j
p ) = tr(η̃G$n,j∗(fMG$n,j (πp)))(φ∗p). (6.3)

The group J (h1,h2) is an inner form of M (h1,h2), which is a product of general

linear groups. By Lemma 2.18 and Remark 2.19 of [Sh2],

tr(η̃G$n,∗(fMj (πp)))(φ∗p) = tr(LJ(η̃G$n,∗(fMj (πp))))(φ0
p)
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= tr
(
LJ(η̃G$n,∗(fMj (πp))⊗ δ̄

1
2
P (J(h1,h2))

)
(φ
′

p), (6.4)

where we’ve abbreviated MG$n,j by Mj . Putting together (6.2),(6.3) and (6.4),

we get the desired result.

Let Ξ1 be the algebraic representation of (Gn)C obtained by base change

from ιlξ. Let Π1 * ψ ⊗ Π0 be an automorphic representation of Gn(A) *

GL1(AE)×GLn(AF ). Assume that

• Π1 * Π1 ◦ θ,

• Π1
∞ is generic and Ξ1-cohomological,

• RamQ(Π) ⊂ SplF/F2,Q,

• Π1 is cuspidal.

In particular, Π1
∞ * ΠΞ, which was defined above. Let Sfin be a finite set of

places of Q such that

RamF/Q ∪ RamQ(6) ∪ RamQ(Π) ∪ {p} ⊂ Sfin ⊂ SplF/F2,Q

and let S = Sfin ∪ {∞}.

Theorem 6.0.10. Define CG = | ker1(Q, G)| · τ(G). For each 0 ≤ h1, h2 ≤ n,

the following equality holds in Groth(Gn(ASfin\{p})× J (h1,h2)(Qp).

BCSfin\{p}(Hc(Ig(h1,h2),Lξ)){Π1,S}

= CG · e0 · (−1)h1+h2 · [ι−1
l Π1

Sfin\{p}][Red(h1,h2)
n (πp)],

where e0 = ±1 is independent of (h1, h2).

Proof. The proof goes through identically to the proof of the first part of The-

orem 6.1 of [Sh3]. We nevertheless give the proof in detail.
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First, we explain the choice of test functions to be used in the trace formula.

Let (fn)S ∈ Hur(Gn(AS)) and fn
Sfin\{p} ∈ C∞c (Gn(ASfin\{p})) be any functions.

Let φS and φSfin\{p} be the BC-transfers of (fn)S and (fn)Sfin\{p} from Gn to

Gn. Let φ∞,p = φSφSfin\{p} and choose any φ′p ∈ C∞c (J (h1,h2)(Qp)) such that

φ∞,pφ′p is an acceptable function.

For each G%n ∈ Eell(G) we construct the function φ%n
Ig ∈ C∞c (G%n(A)) associ-

ated to φ∞,pφ′p as above. Recall that (φ%n
Ig)S and (φ%n

Ig)Sfin\{p} are the ∆( , )Gn
G$n

transfers of φS and φSfin\{p}. Recall that we take

φ%n
Ig,∞ := e%n(∆∞) · (−1)q(G)〈µh, s%n〉

∑

ϕ
$n

det(ω∗(ϕG$n
)) · φG$n,ξ(ϕ$n),

where ϕ%n runs over L-parameters such that η̃%nϕ%n ∼ ϕξ and ξ(ϕ%n) is the

algebraic representation of G%n,C such that the L-packet associated to ϕ%n is

Πdisc(G%n(R), ξ(ϕ%n)∨). The construction of φ%n
Ig,p can be found in [Sh2].

We will need to define a function f%n, which plays the part of a BC-matching

function for φ%n
Ig for each -n. We already have defined (fn)S and fn

Sfin\{p}. We

take (fn1,n2)S = ζ̃∗((fn)S) and fn1,n2
Sfin\{p} = ζ̃∗(fn

Sfin\{p}). We also define

f%n
∞ := e%n(∆) · (−1)q(G)〈µh, s%n〉

∑

ϕ$n

det(ω∗(ϕG$n
)) · fG$n,Ξ(ϕn)

where ϕ%n runs over L-parameters such that η̃%nϕ%n ∼ ϕξ and Ξ(ϕ%n) is the alge-

braic representation of G%n arising from ξ(ϕ%n). It is straightforward to verify

from their definitions that f%n
∞ and φ%n

Ig,∞ are BC-matching functions. Finally,

we choose f%n
p so that its BC-transfer is φ%n

Ig,p. (Since p splits in E it can be

checked that the base change map defined in section 4.2 of [Sh3] is surjective at

p.) We set

f%n := (f%n)S · f%n
Sfin\{p} · f%n

p · f%n
∞.
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The BC-transfer of f%n coincides with φ%n
Ig at places outside S (by compatibility

of transfers), at p and at∞. At places in Sfin\{p} we know at least that the BC-

transfer of f%n has the same trace as φ%n
Ig against every admissible representation

of G%n(ASfin\{p}).

By the discussion following Proposition 6.0.6, we can compute

tr(φ∞,pφ′p|ιlHc(Ig(h1,h2),Lξ)) (6.5)

via the spectral part of the twisted formula, to get

CG(−1)h1+h2



1
2

∑

Π′

tr(Π′ξ(f
n)A′Π′ξ) +

∑

Gn1,n2,n1 (=n2

I
Gn1,n2θ
spec (fn1,n2)

+
1
2
I

Gn/2,n/2θ
spec (fn/2,n/2)

+
∑

M"Gn

|WM |
|WGn |

|det(Φ−1θ − 1)aGnθ
M

|−1
∑

Π′M

tr(n-IndGn
Q (Π′M )ξ(fn) ◦A′

n−IndGn
Q (Π′M )ξ

)





(6.6)

where the first sum runs over θ-stable subrepresentations Π′ of RGn,disc, the

sums in the middle run over groups Gn1,n2 coming from elliptic endoscopic

groups Gn1,n2 for G (with n1 ≥ n2 > 0 and some (n1, n2) possibly excluded).

The group M runs over proper Levi subgroups of Gn containing a fixed minimal

Levi and Π′M runs over Φ−1
n θ-stable subrepresentations Π′M of RM,disc.

We claim that the formula above holds for any φ∞,pφ′p, without the assump-

tion that it is an acceptable function. To see this, note that Lemma 6.3 of

[Sh1] guarantees that there exists some element frs ∈ J (h1,h2)(Qp) such that

φ∞,p(φ′p)(N)(g) = φ∞,p(g)φ′p(g(frs)N ) is acceptable for any sufficiently large N .

(The paper [Sh1] treats general Igusa varieties, and it is easy to check that our

case is covered.) So the equality of (6.5) and (6.6) holds when φ′p is replaced by
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(φ′p)(N). Both (6.5) and (6.6) are finite linear combinations of terms of the form

trρ((φ′p)(N)) where ρ ∈ Irr(J (h1,h2)(Qp)). In order to see that this is true for

(6.6), we need to translate it from computing the trace of f%n to computing the

trace of φ%n
Ig to computing the trace of φ′p, using Lemmas 6.0.8 and 6.0.9. Now

the same argument as that for Lemma 6.4 of [Sh1] shows that (6.5) and (6.6)

are equal for φ∞,p(φ′p)(N) for every integer N , in particular for N = 0. Thus,

we can work with arbitrary φ∞,pφ′p.

Choose a decomposition of the normalized intertwining operators

A′Π1 = A′Π1,SA′Π1
Sfin

A′Π1
∞

.

Set
A′Π1

A0
Π1

:=
A′Π1,S

A0
Π1,S

·
A′Π1

Sfin

A0
Π1

Sfin

·
A′Π1

∞

A0
Π1
∞

∈ {±1},

where the denominators on the right side are the normalized interwiners cho-

sen above. In the sum (6.6), the third term evaluates the trace of fn against

representations induced from proper Levi subgroups. The second term has a

similar form: outside the set S we have the identity (fn1,n2)S = ζ̃∗((fn)S) and

formula 4.17 of [Sh3] tells us that

trΠS
M (ζ̃∗n1,n2

(fn)S) = tr(ζ̃n1,n2∗(Π
S
M ))(fn)S,

where ζ̃n1,n2∗ is the transfer from Gn1,n1 to Gn on the representation-theoretic

side and consists of taking the parabolic induction of a twist of ΠS
M . The

multiplicity one result of Jacquet and Shalika (see page 200 of [AC]) implies that

the string of Satake parameters outside a finite set S of a cuspidal automorphic

representation of GLn(AF ) unramified outside S cannot coincide with the string

of Satake parameters outside S of an automorphic representation of GLn(AF )

which is a subquotient of a representation induced from a proper Levi subgroup.
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Thus, if we are interested in the Π1,S-part of tr(φ∞,pφ′p|ιlHc(Ig(h1,h2),Lξ)), then

only the first term of (6.6) can contribute to it.

Thus, we are left to consider

CG(−1)h1+h2

(
1
2

A′Π1

A0
Π1

χΠ1,S((fn)S)tr(Π1
S(fn

S)A0
Π1

S
)

+
∑

(Π′)S +=Π1,S

χ(Π′)S((fn)S)×
(

expression in
terms of fn

S

)




where (Π′)S runs over a set of unramified representations of Gn(AS). On the

other hand, we can also decompose tr(φ∞,pφ′p|ιlHc(Ig(h1,h2),Lξ)) into a Π1,S-

part and (π′)S-parts, where BC((π′)S) "= Π1,S. We conclude as in [Sh3] that

tr(φSfin\{p}φ
′
p|ιlHc(Ig(h1,h2),Lξ){Π1,S}) = (−1)h1+h2

CG

2
A′Π1

A0
Π1

·tr(ΠS(fn
S)AΠ0

S
).

(6.7)

Now Π1
∞ * ΠΞ, so tr(Π1

∞(fn
∞)A0

Π∞
) = 2(−1)q(G) = 2. We also have

tr(Π1
p(f

n
p )A0

Πp
) = trιlπp(φn

Ig,p
) = trιlRed(h1,h2)

n (πp)(φ′p) (6.8)

by Lemma 6.0.8 and

tr(Π1
Sfin\{p}(f

n
Sfin\{p})A

0
Π1

Sfin\{p}
) = trιlπp(φSfin\{p}). (6.9)

Putting together (6.7), (6.8) and (6.9) and applying BCSfin\{p} we get the

desired result with e0 = A′Π1/A0
Π1 which is independent of (h1, h2).
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Proof of the main theorem

Let E/Q be an imaginary quadratic field in which p splits. Let F1/Q be a

totally real field and let w be a prime of F1 above p. Set F ′ = EF1. Let

F2 be a totally real quadratic extension of Q, in which w = w1w2 splits and

set F = EF2. Let n ∈ Z≥2 . Also denote F2 by F+. Let Π be a cuspidal

automorphic representation of GLn(AF ′).

Consider the following assumptions on (E,F ′, F, Π):

• [F1 : Q] ≥ 2;

• RamF/Q ∪ RamQ(6) ∪ RamQ(Π) ⊂ SplF/F+,Q;

• (Π)∨ * Π ◦ c;

• Π∞ is cohomological for an irreducible algebraic representation Ξ of GLn(F ′⊗Q

C).

• BCF/F ′(Π) is cuspidal

Set Π0 = BCF/F ′(Π) and Ξ0 = BCF/F ′(Ξ). The following lemma is the same

as Lemma 7.2 of [Sh3].

142
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Lemma 7.0.11. Let Π0 and Ξ0 as above. We can find a character ψ : A×E/E× →

C× and an algebraic representation ξC of G over C satisfying the following con-

ditions

• ψΠ0 = ψc/ψ;

• Ξ0 is isomorphic to the restriction of Ξ
′
to RF/Q(GLn)×Q C, where Ξ′ is

obtained from ξC by base change from G to Gn;

• ξC|−1
E×∞

= ψx
∞, and

• RamQ(ψ) ⊂ SplF/F+,Q.

Moreover, if l splits in E then

• ψO×Eu
= 1 where u is the place above l induced by ι−1

l τ |E.

Set Π1 = ψ ⊗ Π0. Then Π1 is a cuspidal automorphic representation of

GL1(AE)×GLn(AF ). Let ξ = ιlξC, where ξC is as in Lemma 7.0.11.

Let AU be the universal abelian variety over XU . Since AU is smooth over

XU , Amξ

U satisfies the conditions in Section 4.3. In particular, Amξ

U is locally

etale over a product of strictly semistable schemes. For S, T ⊆ {1, . . . , n}, let

Amξ

U,S,T = Amξ

U ×XU YU,S,T .

Define the following admissible G(A∞,p)-modules with a commuting contin-

uous action of Gal(F̄ ′/F ′):

Hj(XIw(m),Lξ) = lim
−→
Up

Hj(XU ×F ′ F̄
′,Lξ) = Hj(X,Lξ)Iw(m),

Hj(Amξ

Iw(m), Q̄l) = lim
−→
Up

Hj(Amξ

U ×F ′ F̄
′, Q̄l).

Also define the admissible G(A∞,p)× (FrobF)Z-module

Hj(Amξ

Iw(m),S,T , Q̄l) = lim
−→
Up

Hj(Amξ

U,S,T ×F F̄, Q̄l).
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Note that aξ is an idempotent on Hj(Amξ

Iw(m),S,T , Q̄l(tξ)) and

aξH
j+mξ(Amξ

Iw(m),S,T , Q̄l(tξ)) = Hj(YIw(m),S,T ,Lξ).

Proposition 7.0.12. For each rational prime l "= p there is a G(A∞,p) ×

(FrobF)Z-equivariant spectral sequence with a nilpotent operator N

BCp(Ei,m+mξ−i
1 (Iw(m), ξ)[Π1,S]) ⇒

BCp(WD(Hm(XIw(m),Lξ)|Gal(K̄/K)[Π
1,S])F−ss),

where

BCp(Ei,m+mξ−i
1 (Iw(m), ξ)[Π1,S]) =

⊕

k−l=−i

BCp(aξH
m+mξ(Amξ

Iw(m),GrlGrkRψQ̄l(tξ))[Π1,S]).

The action of N sends BCp(aξHm+mξ(Amξ

Iw(m),GrlGrkRψQ̄l(tξ))[Π1,S]) to

BCp(aξH
m+mξ(Amξ

Iw(m),Grl+1Grk−1RψQ̄l(tξ))[Π1,S]).

Furthermore, there is a direct sum decomposition

BCp(aξH
m+mξ(Amξ

Iw(m),GrlGrkRψQ̄l(tξ))[Π1,S]) *
⊕

j≥0

BCp(Mj,m+mξ−j(k, l)),

where

BCp(Mj,m+mξ−j(k, l)) =
k+l⊕

s=1

⊕

#S=j+s,#T=j+k+l−s+1

H
j+mξ,s
S,T (k, l)
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and

H
j+mξ,s
S,T (k, l) = BCp(aξH

m+mξ−2j−k−l+1(Amξ

Iw(m),S,T , Q̄l(tξ− j−k +1))[Π1,S])

= BCp(Hm−2j−k−l+1(YIw(m),S,T , Q̄l(−j − k + 1))[Π1,S]).

Proof. Note that Amξ

U /OK satisfies the hypotheses of Section 4. We have a

spectral sequence of G(A∞,p)× (FrobF)Z-modules with a nilpotent operator N :

Ei,m−i
1 (Iw(m), ξ) ⇒ Hm(Amξ

U ×F ′ F̄
′
p, Q̄l(t)),

where

Ei,m−i
1 (Iw(m), ξ) =

⊕

k−l=−i

Hm(Amξ

U ×F F̄, GrlGrkRψQ̄l(t)).

N will send Hm(Amξ

U ,GrlGrkRψQ̄l(t)) to Hm(Amξ

U ,Grl+1Grk−1RψQ̄l(t)).

By Corollary 4.3.10, we also have a G(A∞,p)× (FrobF)Z-equivariant isomor-

phism

Hm(Amξ

U ×F F̄, GrlGrkRψQ̄l(t)) *
⊕

j≥0

Mj,m−j(k, l)

where

Mj,m−j(k, l) =
k+l⊕

s=1

⊕

#S=j+s
#T=j+k+l−s+1

Hj,s
S,T (k, l)

and

Hj,s
S,T (k, l) = Hm−2j−k−l+1(Amξ

U,S,T ×F F̄, Q̄l(t− j − k + 1)).

We take t = tξ, apply aξ, replace j by j + mξ and take the inverse limit over

Up. We get a spectral sequence of G(A∞,p)× (FrobF)Z-modules, converging to

Hj(XIw(m),Lξ). We identify Hj(XIw(m),Lξ) with its associated Weil-Deligne

representation and we semisimplify the action of Frobenius. After taking Π1,S-
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isotypical components and applying BCp we get the desired spectral sequence.

Corollary 7.0.13. Keep the assumptions made in the beginning of this section.

The Weil-Deligne representation

WD(BCp(H2n−2(XIw(m),Lξ)|Gal(K̄/K)[Π
1,S]))F−ss

is pure of weight mξ − 2tξ + 2n− 2.

Proof. By Proposition 5.3.5,

BCp(Hj(YIw(m),S,T ,Lξ)[Π1,S]) = 0

unless j = 2n−#S −#T . Thus, the terms of the direct sum decomposition

BCp(Mj,m+mξ−j(k, l)),

which are all of the form

BCp(Hm−2j−k−l+1(YIw(m),S,T , Q̄l(−j − k + 1))[Π1,S])

with #S = j + s and #T = j + k + l − s + 1, vanish unless m = 2n − 2. This

means that the terms of the spectral sequence BCp(Ei,m+mξ−i
1 (Iw(m), ξ)[Π1,S])

vanish unless m = 2n− 2. If m = 2n− 2 then each summand of

BCp(Ei,2n−2+mξ−i
1 (Iw(m), ξ)[Π1,S])

has a filtration with graded pieces

BCp(H2n−2−2j−k−l+1(YIw(m),S,T ,Lξ(−j − k + 1))[Π1,S]),
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where k − l = −i. These graded pieces are strictly pure of weight mξ − 2tξ +

2n− 2 + k − l − 1, which only depends on i. Thus, the whole of

BCp(Ei,2n−2+mξ−i
1 (Iw(m), ξ)[Π1,S])

is strictly pure of weight mξ − 2tξ + 2n − 2 − i − 1. The spectral sequence

degenerates at E1, since Ei,m−i
1 = 0 unless m = 2n − 2 and also the abutment

is pure of weight mξ − 2tξ + 2n− 2. Thus,

BCp(WD(Hm(XIw(m),Lξ)|Gal(K̄/K)[Π
1,S])F−ss)

vanishes for m "= 2n−2 and is pure of weight mξ−2tξ+2n−2 for m = 2n−2.

Theorem 7.0.14. Let n ∈ Z≥2 be an integer and L be any CM field. Let l be a

prime and ιl be an isomorphism ιl : Q̄l → C. Let Π be a cuspidal automorphic

representation of GLn(AL) satisfying

• Π∨ * Π ◦ c

• Π is cohomological for some irreducible algebraic representation Ξ.

Let

Rl(Π) : Gal(L̄/L) → GLn(Q̄l)

be the Galois representation associated to Π by [Sh3, CH]. Let p "= l and let y be

a place of L above p. Then we have the following isomorphism of Weil-Deligne

respresentations

WD(Rl(Π)|Gal(L̄y/Ly))
F−ss * ι−1

l Ln,Ly (Πy).

Proof. This theorem has been proven by [Sh3] except in the case when n is even

and Ξ is not slightly regular. In that exceptional case it is still known that
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we have an isomorphism of semisimplified WLy -representations by [CH], so it

remains to check that the two monodromy operators N match up. By Corollary

5.3.4, Πy is tempered. This is equivalent to ι−1
l Ln,Ly (Πy) being pure of weight

2n−2. In order to get an isomorphism of Weil-Deligne representations, it suffices

to prove that WD(Rl(Π)|Gal(L̄y/Ly))F−ss is pure.

We first will find a CM field F ′ such that

• F ′ = EF1, where E is an imaginary quadratic field in which p splits and

F1 = (F ′)c=1 has [F1 : Q] ≥ 2,

• F ′ is soluble and Galois over L,

• Π0
F ′ = BCF ′/L(Π) is a cuspidal automorphic representation of GLn(AF ′),

and

• there is a place p of F above y such that Π0
F ′,p has an Iwahori fixed vector,

and a CM field F which is a quadratic extension of F ′ such that

• p = p1p2 splits in F ,

• RamF/Q ∪ RamQ(6) ∪ RamQ(Π) ⊂ SplF/F ′,Q, and

• Π0
F = BCF/F ′(Π0

F ′) is a cuspidal automorphic representation of GLn(AF ).

To find F and F ′ we proceed as in the proof of Corollary 5.3.4. Set Π1
F = Π0

F⊗ψ,

where ψ is chosen as in Lemma 7.0.11.

We claim that we have isomorphisms

CG · (Rl(Π)|Gal(F̄ ′/F ′))
⊗2 * CG ·Rl(Π0

F ′)
⊗2 * R̃2n−2

l (Π1
F )⊗Rl(ψ)−1,

where R̃k
l (Π1

F ) was defined in Section 4. The first isomorphism is clear. The

second isomorphism can be checked by Chebotarev locally at unramified places,
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using the local global compatibility for Rl(Π0
F ′) and the formula

R̃l(Π1
F ) = e0CG · [(πp,0 ◦Art−1

Qp
)|WF ′p

⊗ ι−1
l LF ′p,n(Π0

F ′,p)
⊗2].

(It can be checked easily, either by computing the weight or by using the spectral

sequences above that R̃k
l (Π1

F ) "= 0 if and only if k = 2n − 2 and thus that

e0 = (−1)2n−2 = 1.)

We also have

BCp(H2n−2(XIw(m),Lξ)[Π1,S
F ]) * (dimπIw(m)

p ) · ι−1
l Π∞,p ⊗ R̃2n−2(Π1

F )

as admissible representations of G(A∞,p) × Gal(F̄ ′/F ′). By Corollary 7.0.13,

WD(R̃2n−2
l (Π1

F )|Gal(F̄ ′p/F ′p)) is pure of weight mξ− 2tξ +2n− 2. By Lemma 1.7

of [TY],

WD(Rl(Π0
F ′)

⊗2|Gal(F̄ ′p/F ′p))

is also pure. It has weight 2n−2. The monodromy operator acts on Rl(Π0
F ′)⊗2|WF ′p

as 1⊗N +N⊗1, where N is the monodromy operator on Rl(Π0
F ′)|WF ′p

. We wish

to show that V := WD(Rl(Π0
F ′)|WF ′p

)F−ss is pure of weight n − 1. Consider

the direct sum decomposition V = ⊕i∈ZVi, where Vi is strictly pure of weight

n − 1 + i. It suffices to prove that N i : Vi → V−i is injective for every i > 0,

since then we can compare dimensions to deduce that N i is an isomorphism.

Let x ∈ Vi and assume that N ix = 0. Since x ∈ Vi, the vector x ⊗ x belongs

to the subspace of WD(Rl(Π0
F ′)⊗2|WF ′p

)F−ss which is strictly pure of weight

2n− 2 + 2i. But then

N2i(x⊗ x) =
2i∑

k=0

Nkx⊗N2i−kx = 0,

which contradicts the purity of WD(Rl(Π0
F ′)⊗2|WF ′p

)(F−ss). Thus, WD(Rl(Π0
F ′)|Gal(F̄ ′p/F ′p))F−ss
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has to be pure. By Lemma 1.4 of [TY], purity is preserved under finite exten-

sions, so WD(Rl(Π)|Gal(L̄y/Ly))F−ss is also pure.
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