

Denotational Translation Validation

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Govereau, Paul. 2012. Denotational Translation Validation.
Doctoral dissertation, Harvard University.

Accessed April 17, 2018 3:52:21 PM EDT

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:10121982

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH

https://core.ac.uk/display/28941501?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/10121982&title=Denotational+Translation+Validation&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=null&department=Engineering+and+Applied+Sciences
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

c©2012 - Paul Govereau

All rights reserved.

Thesis advisor Author

Greg Morrisett Paul Govereau

Denotational Translation Validation

Abstract

In this dissertation we present a simple and scalable system for validating the

correctness of low-level program transformations. Proving that program transfor-

mations are correct is crucial to the development of security critical software tools.

We achieve a simple and scalable design by compiling sequential low-level programs

to synchronous data-flow programs. Theses data-flow programs are a denotation of

the original programs, representing all of the relevant aspects of the program se-

mantics. We then check that the two denotations are equivalent, which implies that

the program transformation is semantics preserving. Our denotations are computed

by means of symbolic analysis. In order to achieve our design, we have extended

symbolic analysis to arbitrary control-flow graphs. To this end, we have designed

an intermediate language called Synchronous Value Graphs (SVG), which is capable

of representing our denotations for arbitrary control-flow graphs, we have built an

algorithm for computing SVG from normal assembly language, and we have given a

formal model of SVG which allows us to simplify and compare denotations. Finally,

we report on our experiments with LLVM M.D., a prototype denotational translation

validator for the LLVM optimization framework.

iii

Contents

Title Page . i
Abstract . iii
Table of Contents . iv
List of Figures . vii
List of Tables . ix

1 Introduction 1
1.1 Design . 6
1.2 A brief history of translation validation 10
1.3 Outline of this dissertation . 13

2 Overview 16
2.1 Introduction . 17
2.2 Normalizing translation validation . 18
2.3 Validation by Example . 21

2.3.1 Basic Blocks . 21
2.3.2 Extended Basic Blocks . 29
2.3.3 Loops . 32

2.4 Normalization . 36
2.4.1 Efficiency . 41
2.4.2 Extended Example . 43

3 Assembly Language 48
3.1 Assembly Language Syntax . 49

3.1.1 Working with Assembly Language 54
3.2 Target Language . 56

3.2.1 Target Language Syntax . 57
3.2.2 Translation . 60

3.3 Side Effects . 62
3.3.1 Modeling Memory . 65

3.4 Completing the Semantics . 66
3.4.1 Translation Validation . 68

iv

Contents v

3.4.2 λ-Graphs . 71

4 Synchronous Value Graphs 77
4.0.3 SVG Syntax . 80

4.1 Categorical Semantics . 91
4.1.1 Motivation . 91

4.2 Generalizing Monads . 100
4.3 Arrows . 104

4.3.1 Relationship to Monads . 109
4.3.2 Choice . 112
4.3.3 Loops . 114
4.3.4 Denotational Model . 116

5 Mechanized Semantics and Rewrite Rules 122
5.1 SVG Category . 123

5.1.1 Co-inductive Proof Techniques 127
5.1.2 Category Lemmas . 131

5.2 SVG Arrow . 132
5.2.1 Choice . 135
5.2.2 Loops . 137

6 Implementation 139
6.1 Introduction . 140

6.1.1 Gated SSA Form . 140
6.1.2 Computing Gated SSA . 145

6.2 Background . 146
6.2.1 Relation Between The Dominator Tree and

The Dominance Frontier . 149
6.2.2 Gating Paths . 151

6.3 Gating as a single-source path-expression
problem . 154
6.3.1 From Path Expressions to Gating Functions 159

6.4 Path Expressions via Gaussian Elimination 165
6.4.1 Path Sequences . 167
6.4.2 Front- and Back-solving . 170
6.4.3 Decomposition . 172
6.4.4 Examples . 174
6.4.5 Simple Optimizations . 179

6.5 Decomposition using dominators . 180
6.5.1 Gating Monad . 182
6.5.2 Path Compression . 185
6.5.3 Block Processing Order . 187

Contents vi

6.5.4 Main Algorithm . 189
6.6 Irreducible graphs . 193

6.6.1 The Derived Graph . 195
6.6.2 Modifications to Main Algorithm 197

7 Experimental Evaluation 202
7.1 Experimental Setup . 205

7.1.1 Pipeline information . 207
7.2 Compiler User Experiments . 208

7.2.1 Pipeline Results . 208
7.2.2 Validated Optimization . 210
7.2.3 Validation Time . 215

7.3 Compiler Developer Experiments . 217
7.3.1 Testing Individual Optimizations 218
7.3.2 Rewrite Rules . 221
7.3.3 Improving Results with Additional Rewrite Rules 226

8 Conclusion 235
8.0.4 Discussion . 236

8.1 Future work . 238

A Data-flow Semantics 248
A.1 Operational Semantics . 248
A.2 Static Semantics . 248

List of Figures

2.1 LLVM M.D. from a bird’s eye view 20
2.2 Extraction of loop iterations . 32
2.3 Representation of while loops . 35
2.4 Normalization of Large Example. 46
2.5 Normalization of Large Example (continued). 47

3.1 Syntax of Assembly Language Functions 49
3.2 Assembly Language Type System . 50
3.3 Assembly Lanugauge Values . 51
3.4 Assembly Language Instructions . 51
3.5 Assembly Language Operations . 52
3.6 Loop Example . 53
3.7 Syntax of the Extended Assembly Language 58
3.8 Graph representation of isEven function 72

4.1 Syntax of Synchronous Value Graphs 80

5.1 Rewrite lemmas corresponding to composition. 130
5.2 Lemmas for first properties. 134
5.3 Lemmas for left properties. 136
5.4 Lemmas for left properties. 138

6.1 Gated Assembly Language Instructions 141
6.2 Loop Example . 143
6.3 SSA and GSA for Loop Example . 144
6.4 A Control-flow Graph . 147
6.5 Dominator Tree for Control-flow Graph in Figure 6.4 148
6.6 Example: a conditional statement. 174
6.7 Control-flow graph for a simple loop 177
6.8 Main Algorithm . 190
6.9 Irreducible graph and its dominator tree. 193
6.10 Graph derived from Control-flow Graph in Figure 6.9 196

vii

List of Figures viii

7.1 Validation results for optimization pipeline 209
7.2 A validated optimizer using LLVM M.D. and an off-the-shelf optimizer. 211
7.3 Comparison of validated and unvalidate AES benchmark. 214
7.4 Validation time normalized to compilation time. 216
7.5 Validator results for individual optimizations 219
7.6 Validator results for individual optimizations (continued) 220
7.7 Results for GVN optimization . 221
7.8 LICM . 224
7.9 SCCP . 225
7.10 Subgraph for graph node 267 . 233
7.11 Subgraph for graph node 228 . 234

A.1 Operational Semantics for terms. 250
A.2 Typing rules for terms. 251

List of Tables

3.1 Subset of λ-graph rewriting rules . 73

4.1 Difference between monoid and monad categories. 95

6.1 Sequences used for graph in Figure 6.9 194

7.1 Test suite information . 206
7.2 Timing Results . 212
7.3 Per optimization results for mandlebrot 227
7.4 Per optimization results for SHA1 . 229

ix

Chapter 1

Introduction

The central thesis of this dissertation is that we can provide a simple and scalable

system for validating the correctness of low-level program transformations. Proving

that program transformations are correct is crucial to the development of security

critical software tools: in particular program optimizers. Checking translations is

also an important compiler development tool. Having an effective way of checking

translations can help compiler developers identify bugs in new program transforma-

tions. Finally, constructing a provably correct compiler is an important benchmark

for certified programming.

As evidence to support our thesis, we have designed and built a software tool that

validates transformations by compiling sequential low-level programs to synchronous

dataflow programs. Theses dataflow programs are a denotation of the original pro-

grams. The denotations represent all of the relevant aspects of the program semantics.

We then check that the two denotations are equivalent, which implies that the pro-

gram transformation is semantics preserving. We will describe our design in detail

1

Chapter 1: Introduction 2

below. First, to motivate our design, we will consider other approaches to validating

transformations.

One path to building a provably correct transformation is to prove, directly, the

correctness of the transformation algorithms. That is, for a given transformation, O,

prove a theorem of the form:

∀p. ` JpK ≡ JO(p)K .

In the above, p is a program and O(p) is the program after the transformation O

has been applied. The bracket notation, JpK, represents the semantics of the program

p. The notation ` · ≡ · represents a proof of equivalence. Thus, we can read this

theorem as “for all programs p, the semantics of p and its transformed counter-part are

equivalent.” Note that this theorem is valid for all programs. While this is a powerful

theorem, it is also difficult to prove in practice. Experience has shown that in a real-

world setting, many complex optimizations resist direct formal correctness proofs of

this form (Tristan and Leroy, 2010). However, this approach is not practical for low-

level optimizations for another reason. Namely, real-world compilation frameworks

are continually changing, and keeping a complex proof of correctness up to date with

changes in the compiler seems impractical.

An alternative approach is to relax the constraints on the theorem we prove.

Rather than proving a translation is correct for all programs, we can try to prove

the translation is correct for each program we encounter. A system with this general

design is called a translation validation system. More specifically, translation valida-

tion is a static analysis that, given two programs, tries to verify that the programs

have the same semantics (Pnueli et al., 1998). Hence, we validate the correctness of

Chapter 1: Introduction 3

translations by inspecting the original and transformed programs on a case-by-case

basis.

Several translation validator designs have been proposed. In fact, translation

validation has proved to be particularly useful for validating the transformations

done by optimizing compilers. Successes range from generic translation validators

for moderately-optimizing industrial-strength compilers (Barrett et al., 2005; Necula,

2000; Rival, 2004), to special-purpose translation validators for advanced optimiza-

tions (Huang et al., 2006; Pnueli and Zaks, 2008; Tristan and Leroy, 2010). Transla-

tion validation is on the verge of becoming a critical tool, both for formal verification

of certifying (Necula and Lee, 2004) and certified compilers (Leroy, 2009). In ad-

dition, translation validation is useful for compiler engineering where it can greatly

simplify debugging and improve testing (Rinard and Marinov, 1999). However, even

with all of these positive results, translation validators that can be applied real-world

compilers have not been available.

The primary reason that translation validators have not as successful as they

could be is they are too tightly coupled with the transformations. In general, previous

translation validation systems work by discovering and verifying a simulation relation.

That is, previous systems attempt to prove theorems of the form:

O |= α⇒ α ` JpK ≡ JO(p)K .

Where α is a relation between the values of the original and transformed program.

For instance, in the validator of Necula (2000), α is a mapping between variables

names mapping the original program variables to optimized program variables. The

relation α is computed with knowledge of the transformation O. Given the relation α,

Chapter 1: Introduction 4

we have an equivalence between the original and transformed program. Note that this

theorem (if proved) is only valid for a specific optimization, O, and specific program,

p.

Typically, the relation α is computed by means of a data-flow analysis on the two

programs, taking into account specifics of the transformation. Our design strives to

eliminate this dependence of the transformation O. Hence, we will prove theorems of

the form:

∀O. ` JpK ≡ JO(p)K .

Indeed, since we are independent of the transformation, we may apply our system to

any number of optimizations:

∀O,O′. ` JpK ≡ JO′(O(p))K .

This flexibility allows us to use our validator to validate a single or a whole pipeline

of optimizations at once.

In order to achieve our design, we must overcome a difficulty related to the de-

notations of programs. In the above systems, the denotation of a program, JpK, is

computed by means of symbolic analysis. That is, JpK is a symbolic form of the

program p. These symbolic values are denotations in that they admit an equational

theory such that equal symbolic values represent equivalent programs. Ideally, the

theory of equality is syntactic allowing for a simple implementation. However, tra-

ditional symbolic analysis and related theories of equality do not extend to looping

code. Therefore, a crucial aspect of our system is an extension of symbolic analy-

sis to arbitrary control-flow graphs. Specifically, we have designed an intermediate

language called Synchronous Value Graphs (SVG), which is similar to many data-

Chapter 1: Introduction 5

flow languages. The SVG language is capable of representing our denotations for

arbitrary control-flow graphs. We have built an algorithm for computing SVG from

normal assembly language. This algorithm corresponds to the denotation function

J·K above. Finally, we have given a formal model of SVG which allows us to simplify

and compare denotations.

Using these tools, we present a translation validator design that can effectively

validate the optimizations of a production compiler. For a production compiler, we

chose the LLVM Framework. To be effective, we believe our validator must satisfy

the following criteria. First, we must treat the compiler as a “black box”; we do

not want to instrument the optimizer in any way. LLVM has a large collection of

program transformations that are updated and improved at a frantic pace. Second,

we do not want to modify the source code of the input programs. This means that

we handle the output of the optimizer “as is.” Third, we want to run only one pass

of validation for the whole optimization pipeline. This is important for efficiency,

and also because the boundaries between different optimizations are not always firm.

Finally, it is crucial that the validator can scale to large functions. For instance, the

experiments of Kanade et al. (2006) are very impressive and show an exceptionally

low rate of false alarms. However, their validator requires heavy instrumentation of

the compiler, and the authors admit that their approach does not scale beyond a few

hundred instructions. Thus, this design does not fit our criteria. On the other hand,

our design requires no instrumentation of the compiler and, in our experiments, we

routinely deal with functions having several thousand instructions.

Perhaps, the most important criteria is the one of instrumentation. To our knowl-

Chapter 1: Introduction 6

edge, only one prior work has proposed a solution that does not require instrumen-

tation of the compiler. Necula (2000) evaluated the effectiveness of a translation

validator for GCC 2.7 with common-subexpression elimination, register allocation,

scheduling, and loop inversion. The validator is simulation-based: it verifies that a

simulation-relation holds between the two programs. Since the compiler is not instru-

mented, this simulation relation is inferred by collecting constraints which often take

advantage of special knowledge about how the optimizations are implemented. The

experimental validation shows that this approach scales, as the validator handles the

compilation of programs such as GCC or Linux. However, adding other optimizations

such as loop-unswitch or loop-deletion is likely to break the collection of constraints.

On the other hand, our design does not make use of subtle details about the internals

of the compiler; knowledge about how the optimizer behaves is expressed as simple

rewrite laws which can be added to the system as needed.

1.1 Design

While in general not decidable, translation validation can be done efficiently if

one program is a compiled or optimized version of other. Previous works (Kundu

et al., 2009; Necula, 2000; Rival, 2004; Zuck et al., 2003) demonstrate translation

validators can scale to real-world compilers. From a bird’s-eye view, these validators

must compute and enforce a simulation relation that, in turn, may require dataflow

analyses. If the dataflow analyses used by the validator are carefully crafted, then the

validator can be very efficient. Some validators (Necula, 2000; Rival, 2004) also use a

pinch of symbolic evaluation, which, as noted by Necula is equivalent to computing

Chapter 1: Introduction 7

predicate transformers. Symbolic evaluation is very effective in this setting because

it masks syntactic details such as the order of independent instructions, renaming

of local registers, and reuse of independent but identical computations. Symbolic

evaluation is also very simple to use in the design of a validator, yet it is limited to

extended blocks. If we could extend symbolic evaluation to whole functions, including

loops, that would allow us to avoid using simulation relations and dataflow analyses,

and do all of the validation symbolically. This kind of validator would compute a

symbolic denotation of the input programs, and then compare the denotations.

Design In theory, such a denotational translation validator could work as follows.

• First, we translate two programs to purely functional representations where all

of the side effects are made explicit.

• Then, we compute a predicate transformer for each of the functional represen-

tations.

• Finally, we check that the two predicate transformers (denotations) are provably

equivalent.

While there is no evidence that this validation strategy can be made efficient, we ob-

serve the following facts. First, while many optimization algorithms involve complex

analysis, in the end the transformation are relatively simple syntactic transformation

of the code. Second, we have a good idea of what kinds of transformations the op-

timizer would like to make; namely, only those that improve the code. Using this,

we can design a validator which is able to effectively reason about syntactic changes

geared toward specific kinds of optimizing transformations.

Chapter 1: Introduction 8

In this dissertation, we describe a specific implementation of this general design

for a denotational translation validator. Our system is relatively simple, and our

experimental results show that this approach is both effective and scalable. To our

knowledge, it is the first translation validator that does not build or verify a simulation

relation, but rather computes a denotation that is sufficient to validate optimizations.

In our prototype system, the theoretical steps that we presented above are realized

as follows:

• First, we translate two LLVM functions to our representation language with

explicit effects. This step involves a sophisticated compilation step derived

from the general problem of computing path expressions on graphs.

• Second, we use a generalization of symbolic evaluation to compute a symbolic

value for the program representations.

• Finally, we check that the symbolic values are equivalent using directed normal-

ization and syntactic equality.

The difficulty lies in the generalization of symbolic evaluation to looping code. To

be useful for translation validation, the symbolic values produced must be resilient to

syntactic changes in the source programs. Also, we must be able to compare symbolic

values efficiently. In this work, we develop a method for symbolically representing

loops. Our method relies both on our compilation process and our internal repre-

sentation and its semantics. For our method to work efficiently, we have designed a

two-level intermediate language. One level is responsible for describing the meaning

of instructions and straight-line code, and the other level captures the control-flow.

Chapter 1: Introduction 9

We have given our language a semantics which allows us to reason about transforma-

tions, and built a compilation algorithm for producing our intermediate form from

normal assembly code.

Intuitively, for a fixed number of iterations, the symbolic value of a loop could

simply be the symbolic value of its unfolding. However, if we were to pursue this idea

naively, we would have an unbounded number of symbolic values. Our observation

is that, for a given loop, all of these symbolic values can be built out of a finite set

of smaller symbolic values. Furthermore, each of these smaller values are resilient to

syntactic changes, and easy to compare. Our method is very similar to the classic

computation of a predicate transformer for a loop (Dijkstra, 1975).

To validate our design, we have implemented a tool, LLVM M.D. (Low Level

Virtual Machine Mis-optimization Detector), that we use with the LLVM compila-

tion framework (LLVM, 2010). We have experimented with our tool using the Spec

CPU and the programming language shoot-out benchmark programs (Shootout, 2010;

SpecCPU, 2006). This optimizer together with these benchmark programs are very

challenging to validate. In our experiments, LLVM M.D. is able to achieve 80-100%

validation coverage on an end-to-end optimization pass; a very promising result.

We believe that the capabilities of this design are significant: within a single ex-

ecution, we can validate scheduling optimizations (such as trace scheduling) as well

as redundancy elimination (such as lazy code motion and sub-expression elimination

based on global value numbering). In addition, our algorithm can validate combina-

tions of optimizations, such as sparse conditional constant propagation, and can take

into account basic non-aliasing rules. Our tool can also validate loop optimizations

Chapter 1: Introduction 10

such as loop invariant code motion, and loop deletion, fusion and fission.

1.2 A brief history of translation validation

Researchers have long used symbolic evaluation in several contexts, such as in-

stance testing, bug finding, and generation of verification conditions. As mentioned by

Necula (2000) symbolic evaluation has appeared historically under several disguises,

such as predicate transformers (Dijkstra, 1975) or value-dependence graphs (Weise

et al., 1994). Our own representation is close to a hash-consed symbolic analysis of a

Gated SSA form (Havlak, 1993; Tu and Padua, 1995a).

Starting with Necula (2000) symbolic evaluation has also been used to build trans-

lation validators. In Necula’s work, symbolic evaluation is limited to extended blocks,

and the validator has to resort to dataflow analysis to handle global optimizations.

The validator of Necula validates part of GCC 2.7 and the experiments show the

results of compiling, and validating, GCC 2.91. Four optimizations were considered:

Common sub-expression elimination (CSE), with a rate of false alarms of roughly 5%

and roughly 7 minutes running time; loop unrolling with a rate of false alarms of 6.3%

and roughly 17 minutes running time; register allocation with a rate of false alarms

of 0.1% and around 10 minutes running time; and finally, instruction scheduling with

a rate of false alarms of 0.01% and around 9 minutes running time. Unfortunately,

the only optimization that we can compare to is CSE as we do not handle loop un-

rolling, and register allocation is part of the LLVM back-end. In theory, we could

handle scheduling (with as good results) but LLVM does not have this optimization.

For CSE, our results are comparable, however, we are dealing with a more complex

Chapter 1: Introduction 11

optimization: global value numbering with partial redundancy elimination and alias

information, libc knowledge, and some constant folding.

Rival (2004) also uses a variant of symbolic evaluation, which they call a “trans-

fer function”, to design a translation validator. Their system can validate a whole

compilation pipeline and is formalized by abstract interpretation. Again, symbolic

evaluation in this work is limited to extended blocks, and the validator must resort

to dataflow analysis and a simulation relation to validate global transformations. As

with Necula’s validator, because of the complex data-flow analysis, the validator of

Rival is closely tied to a specific version of an optimizer.

Tristan and Leroy (2008) have used symbolic evaluation to implement formally

verified translation validators for list and trace scheduling, optimizations limited to

extended blocks. The same two authors (Tristan and Leroy, 2010) also showed how

symbolic evaluation can be used to design a translation validation algorithm for soft-

ware pipelining, a specific loop optimization. While their work validates loop trans-

formations, the validators are tailored to software pipelining, and do not validate

global optimizations. The work presented in this thesis is the first where symbolic

evaluation is generalized to handle control-flow graphs with loops in such a way that

global optimizations can be validated without resorting to dataflow analysis.

Another line of research on translation validation has followed the approach sketched

by Pnueli et al. (1998) and developed in the TVOC validator (Barrett et al., 2005;

Zuck et al., 2003). The most advanced validator following this line of work is the

one designed by Kundu et al. (2009) and Tatlock and Lerner (2010). We believe that

this kind of translation validator and those based on symbolic evaluation may have

Chapter 1: Introduction 12

roughly the same validation capabilities as ours, however they differ in the amount

of necessary configuration to produce a complete and efficient validator. We believe

that setting up rewrite laws may be easier than setting up a simulation relation and

dataflow analyses tailored to specific optimizations.

There is also the lesser known work on translation validation of Kanade et al.

(2006) where the authors make use of the observation that advanced optimizations

often boil down to simple rewritings of the control-flow graph. They have instru-

mented the GCC compiler to output a trace of all the transformations applied to

a function’s control-flow graph, and they check, using the PVS model checker, that

each of the rewrites are valid. The complexity of such an algorithm is high. Kanade

et al. (2006) validate GCC 4.1.0 and report no false alarms for CSE, LICM, and copy

propagation. To our knowledge, this experiment has the best results. However, it

is unclear whether their approach can scale. The authors say that their approach is

limited to functions with several hundred RTL instructions and a few hundred trans-

formations. In our setting, functions with more than ten thousand instructions are

common.

Finally, Tate et al. (2009) recently proposed a system for translation validation.

They compute a value-graph for an input function and its optimized counterpart.

They then augment the terms of the graphs by adding equivalent terms through a

process known as equality saturation, resulting in a data structure similar to the E-

graphs of congruence closure. If, after saturation, the two graphs are the same, they

can safely conclude that the two programs they represent are equivalent. However,

equality saturation was originally designed for other purposes, namely the search for

Chapter 1: Introduction 13

better optimizations. For translation validation, it is unnecessary to saturate the

value-graph, and generally more efficient and scalable to simply normalize the graph

by picking an orientation to the equations that agrees with what a typical compiler

will do (e.g. 1 + 1 is replaced by 2, but not the other way around). Their preliminary

experimental evaluation for the Soot optimizer on the JVM shows that the approach is

effective and can lead to an acceptable rate of false alarms. On SpecJVM they report

an impressive rate of alarms of only 2%. However, the version of the Soot optimizer

they validate uses more basic optimizations than LLVM, and does not include, for

instance, GVN. Given that our results are mostly directed by GVN with alias analysis,

it makes comparisons difficult. It is unclear how well this approach would work for the

more challenging optimizations available in LLVM, such as global-value-numbering

with alias analysis or sparse-conditional constant propagation. In this work, we show

that a normalizing value-graph translation has both the simplicity of the saturation

validator proposed by Tate et al. (2009), and the scalability of Necula’s constraint-

based approach.

1.3 Outline of this dissertation

The remainder of this dissertation is organized into three parts. After an overview

of our design in Chapter 2, we give the syntax and semantics of our intermediate

language in Chapters 3-5. Then, we switch gears and describe our compilation algo-

rithms in Chapter 6. Finally, we present our experimental results and conclusions in

Chapters 7 and 8. The individual chapters are summarized below.

Chapter 1: Introduction 14

Chapter 2. In this chapter we describe the our validation system informally.

We provide several examples of input programs and their corresponding inter-

mediate forms. We will motivate the main features of our intermediate form

through a discussion of side-effects and control-flow. We will also describe the

normalization process and rewrite rules on our examples. A large example is

described in detail at the end of the chapter. This example shows all of the im-

portant features of our system and provides good intuition for the remainder of

this dissertation. A formal treatment of the input and intermediate languages

and their semantics is given in Chapters 3 and 4.

Chapter 3. In this chapter we describe the input language and its semantics.

We take as input, a typical assembly language with an unbounded number of

registers. The assembly language is equipped with function definition and call

mechanisms which hide the details of calling conventions. We give a seman-

tics to our language by translation to a simply-typed lamba calculus. In the

next chapter we will extend our translated assembly language to the final inter-

mediate representation which is able to efficiently represent loops and support

symbolic analysis.

Chapter 4. In this chapter we present our intermediate language and its

semantics. We formally present Synchronous Value Graphs (SVG), our final

intermediate form. This language builds on the monadic assembly language

described in the previous chapter. Assuming we are starting with monadic

assembly language, then compiling to Synchronous Value Graphs will give us

referentially-transparent terms which are amenable to translation validation.

Chapter 1: Introduction 15

The compilation process will be described in Chapter 6. The algebraic rules

are justified by a categorical semantics which we describe in Section 4.1, and

mechanically formalize in Chapter ??.

Chapter 5. In this chapter we present a mechanized version of the semantics

described in Chapter ??. We have formalized our semantics in the theorem

prover Coq. The formal definition of the model and the category properties

justify the rewrite rules based on those laws. Also, this gives us a framework

for formally proving additional rewrite laws.

Chapter 6. In this chapter we will describe the main compilation algorithms

we use to compute SVG from the input assembly language. The intermediate

representation is computed in two steps: first programs are converted to Gated

SSA form. Then, the Gated SSA form is evaluated using our denotational

model to produce SVG as described in Chapter 3. The core of the compilation

process is the Gated SSA transformation, and much of this chapter is devoted to

developing an efficient algorithm for computing Gated SSA for arbitrary input

programs.

Chapter 7. In this chapter we present an experimental evaluation of our

validation prototype. We test our implementation on the Spec CPU and Pro-

gramming Language Shootout benchmarks. Our analysis looks at the number

of functions our tool is able to validate using different configurations of rules,

and at the overall effect on run-time when used as a validated optimizer.

Chapter 8. Conclusions and future directions.

Chapter 2

Overview

In this chapter we describe the our validation system informally. We provide

several examples of input programs and their corresponding intermediate forms. We

will motivate the main features of our intermediate form through a discussion of side-

effects and control-flow. We will also describe the normalization process and rewrite

rules on our examples. A large example is described in detail at the end of the chapter.

This example shows all of the important features of our system and provides good

intuition for the remainder of this dissertation. A formal treatment of the input and

intermediate languages and their semantics is given in Chapters 3 and 4.

16

Chapter 2: Overview 17

2.1 Introduction

The key intuition behind our validation strategy is that while many optimization

algorithms are extremely complex, the result is almost always a simple syntactic

transformation of the input program. As pointed out by Necula (2000), symbolic

evaluation is a very effective way to deal with syntactic differences between programs,

and this is the heart of what a translation validation system must do.

Denotational translation validation, at a high level is a strategy for performing

symbolic evaluation on unstructured and looping low-level code. From this view-

point, the process of computing a denotation for a program can be seen as a form of

predicate-transformer semantics. Following Dijkstra (1975), we construct a predicate-

transformer semantics using an intermediate language of guarded commands. Our

intermediate language is designed to resemble SSA-form assembly language. The

symbolic evaluation of this language computes a weakest precondition, which is a

finite symbolic value that we can use to compare two programs. Like Dijkstra, we

handle loops by constructing a set of indexed rewrite rules for the registers appear-

ing in the loop body—the weakest precondition of a loop is then the limit of these

formulas. We have extended this strategy to nested loops so that we may handle a

large amount of real-world code. We note (as does Dijkstra), that unlike an axiomatic

semantics, our symbolic values are computable.

In the remainder of this chapter we will informally describe the translation process

and denotational form. The translation process has two steps: first we prepare the

input code for symbolic evaluation, and then we evaluate the code into a denotational

form that is suitable for comparison. In the Chapters 3 and 4 we will formally describe

Chapter 2: Overview 18

the syntax of each language, and in Chapter 4 we will give a formal semantics for our

denotations.

2.2 Normalizing translation validation

Our validation tool is called LLVM-MD, which stands for: Low Level Virtual

Machine Mis-optimization Detector. LLVM-MD is an optimizer: it takes as input

an LLVM assembly file and outputs an LLVM assembly file. The difference between

our tool and the usual LLVM optimizer is that our tool certifies that the semantics

of the program is preserved. LLVM-MD has two components, the usual off-the-shelf

LLVM optimizer, and a translation validator. The validator takes two inputs: the

assembly code of a function before and after it has been transformed by the optimizer.

The validator outputs a boolean: true if it can prove the assembly codes have the

same semantics, and false otherwise. Assuming the correctness of our validator,

a semantics-preserving LLVM optimizer can be constructed as follows (opt is the

command-line LLVM optimizer, validate is our translation validator):

function llvm-md(var input) {

output = opt -options input

for each function f in input {

extract f from input as fi and output as fo

if (!validate fi fo) {

replace fo by fi in output

}

}

return output

}

For now, our validator works on each function independently, hence we are limited to

intra-procedural optimizations. We believe that standard techniques can be used to

Chapter 2: Overview 19

validate programs in the presence of function inlining. However, for now we concen-

trate on the workhorse intra-procedural optimizations of LLVM.

At a high level, our tool works as follows. First, it “compiles” each of the two

functions into a value-graph that represents the data dependencies of the functions.

Such a value-graph can be thought of as a dataflow program, or as a generalization of

the result of symbolic evaluation. Then, each graph is normalized by rewriting using

rules that mirror the rewritings that may be applied by the off-the-shelf optimizer.

For instance, it will rewrite the 3-node sub-graph representing the expression 2 + 3

into a single node representing the value 5, as this corresponds to constant folding.

Finally, we compare the resulting value-graphs. If they are syntactically equivalent,

the validator returns true. To make comparison efficient, the value-graphs are hash-

consed (from now on, we will say “reduced”). In addition, we construct a single graph

for both functions to allow sharing between the two (conceptually distinct) graphs.

Therefore, in the best case—when semantics has been preserved—the comparison

of the two functions has complexity O(1). The best-case complexity is important

because we expect most optimizations to be semantics-preserving.

The LLVM-MD validation process is depicted in Figure 2.1. First, each function

is converted to Monadic Gated SSA form (Havlak, 1993; Moggi, 1989; Tu and Padua,

1995a). Monadic Gated SSA form is discussed in detail in Chapter 3. For now,

simply note that the goal of this representation is to make the assembly instructions

referentially transparent : all of the information required to compute the value of an

instruction is contained within the instruction itself. More importantly, referential

transparency allows us to substitute sub-graphs with equivalent sub-graphs without

Chapter 2: Overview 20

Original
LLVM

file

Optimized
LLVM

file

Monadic
Gated
SSA

Monadic
Gated
SSA

+Merging
Shared
Value
Graph

Final
Value
Graph

Gating

Gating

Reduction Normalization

Are return
value nodes

equal?

query

Figure 2.1: LLVM M.D. from a bird’s eye view

worrying about computational effects. Computing Monadic Gated SSA form is done

in two steps:

1. First, we make side-effects explicit in the syntax by interpreting assembly in-

structions as monadic commands. For example, a load instruction will have a

extra parameter representing the memory state.

2. Second, we make the control-flow explicit, by introducing φ-nodes with condi-

tions at join points, µ-nodes at loop headers, and η- and σ-nodes with conditions

at loop exits. We will see detailed examples of this process in the next section.

Once we have the Monadic Gated SSA form, we compute a shared value-graph by

replacing each variable with its definition, being careful to maximize sharing within

the graph. Finally, we apply normalization rules and maximize sharing until the

value of the two functions merge into a single node, or we cannot perform any more

normalization.

It is important to note that the precision of the semantics-preservation property

depends on the precision of the monadic form. If the monadic representation does not

Chapter 2: Overview 21

model arithmetic overflow or exceptions, then a successful validation does not guar-

antee anything about those effects. At present, we model memory state, including the

local stack frame and the heap. We do not model runtime errors or non-termination,

although our approach can be extended to include them. Hence, a successful run of

our validator implies that if the input function terminates and does not produce a

runtime error, then the output function has the same semantics. Our tool does not

yet offer formal guarantees for non-terminating or semantically undefined programs.

2.3 Validation by Example

We will now look at several examples of the validation process including computing

Monadic Gated SSA form, conversion to value graphs, normalization and comparison.

2.3.1 Basic Blocks

We begin by explaining how the validation process works for basic blocks. Con-

sidering basic blocks is interesting because it allows us to focus on the monadic repre-

sentation and the construction of the value-graph, leaving for later the tricky problem

of capturing the control-flow.

As input, we will use a three-address assembly language with an infinite number

of registers. For our examples, we will also require the registers be in static single

assignment form (SSA), which implies that each register has only one definition. We

will relax this requirement in Chapter 6 when we describe our compilation process.

We will delay a description of the precise syntax of the input language until Chapter 3,

and the syntax of our value graphs until Chapter 4. We hope the programs presented

Chapter 2: Overview 22

in this chapter are similar enough to the usual assembly languages that they will be

understandable without a formal syntax and semantics.

As part of our validation process, we will create a denotation for each register.

The denotation for a register will be a symbolic value that represents the computation

that produces the value held by that register. Producing the denotation amounts to

a symbolic evaluation of the relevant assembly instructions. For basic blocks this

process is very simple. Consider the following basic block, B, where we assume

registers a and b are previously defined.

B: x1 = a× 3

x2 = b× 3

x3 = x1 + x2

Because the basic block is in SSA form, we can construct a symbolic value by replacing

each occurrence of a register by its unique definition. This will lead to a set of symbolic

values for the registers defined in the block in terms of the previously defined registers.

In this case, the symbolic value of the register x3 can be obtained by replacing x1 and

x2 by their definitions. The resulting value for x3 is: a×3+b×3. This symbolic value

is a representation of the computation that will take place at runtime to produce the

value stored in x3.

As we can see from this example, for basic blocks we can compute a symbolic

value from the concrete assembly values by transcription. More precisely, at the

level of basic blocks, the symbolic and concrete languages are identical. The concrete

assembly language contains registers like x1, and the symbolic language contains

variables such as x1. However, the concrete registers and the symbolic variables

Chapter 2: Overview 23

have a different interpretations: the registers are machine state, and the variables

are simply names for values. The symbolic language also contains analogues ×, +,

load, store, etc. which are symbolic representations of the corresponding assembly

instructions. Therefore, as long as the assembly language represents the entirety of

the computation we can convert to symbolic values by reading off the instructions.

Using this intuition, we compute symbolic values for straight-line code as fol-

lows: First, we construct a set of rewrite rules using the assembly instructions. The

assembly instruction:

x1 = a× 3

becomes the rewrite rule:

x1 7→ a× 3 .

We have designed our intermediate language to resemble assembly language so that

the translation from assembly code is as straight-forward as possible1. Then, using

these rewrite rules, we can compute the symbolic value of any register. For instance,

to compute the symbolic value of register x3, we start with the symbolic value named

by x3, and then rewrite step-by-step using the rewrite rules. When we cannot apply

any more rewrite rules we have the final symbolic value for x3. We represent this

process with symbeval, which takes two arguments: a symbolic value to rewrite, and

a set of rewrite rules. The rewriting just described is written as:

symbeval(x3, {x1 7→ a× 3, x2 7→ b× 3, x3 7→ x1 + x2})⇒ a× 3 + b× 3 .

The result of the symbolic evaluation is a denotation of the register x3. Functional

1The process of generating the rewrite rules is slightly more complex for conditionals and loops,
as we will describe in the next sections.

Chapter 2: Overview 24

programmers will surely notice a similarity between this last formula and the parallel

let statement. Indeed, our intermediate language is a simple functional language.

However, as we have noted, the syntax is closer to SSA-form assembly language than

to traditional functional code.

Previous works show that this simple transformation is a very effective way to build

translation validators (Necula, 2000; Rival, 2004; Tristan and Leroy, 2008, 2010). To

see how this can be done, consider the basic block below, which is an optimized

version of block B.

B’: y1 = b+ a

y2 = y1 × 3

If we want to check that the original register x3 will hold the same value as y2, we

first compute the set of rewrite rules for both blocks. Then, we symbolically evaluate

x3 with the rewrite rules from block B, and y2 with the rules from block B’. We then

check that the two symbolic values are equivalent. In this case, we must check:

a× 3 + b× 3 ≡ (b+ a)× 3

which is well within the capabilities of many automated theorem provers. Note,

however, that in our experiments we use a very simple equivalence checking algorithm:

syntactic equality with a few simple normalization rules, and we are able to achieve

very good results. This is because we have chosen our few rewrite rules to correspond

to the kinds of rewritings that LLVM will do. While this is strictly not necessary2,

we believe this sort of “configuration” is practical and much easier than we have seen

in other translation validation systems.

2Choosing specific rewrite rules makes the system more efficient.

Chapter 2: Overview 25

One problem with the simple validation approach described above, is that it does

not scale. When programs become large the symbolic values produced by simple

substitution can grow exponentially. Also, when we consider loops, a substitution

strategy simply does not work. Therefore, in order to make our approach practical,

our symbolic values are represented as graphs, which we call value graphs. Using

a value-graph representation avoids exponential blow-up, and also gives us constant

time comparison for symbolic values. We will now describe the value-graph represen-

tation as it is used for validation.

Comparing values using value graphs

Recall, our validator uses an SSA-form assembly language with an infinite number

of registers. Because we start with SSA-form, producing the value-graph consists of

replacing variables by their definitions while maximizing sharing among graph nodes.

For example, consider the following basic block, B1:

B1: x1 = 3 + 3

x2 = a ∗ x1

x3 = x2 + x2

and its optimized counterpart, B2:

B2: y1 = a ∗ 6

y2 = y1 � 1

Replacing variables x1, x2, and y1 by their definition, we obtain the value-graph

presented below. The dashed arrows are not part of the value graph, they are only

Chapter 2: Overview 26

meant to point out which parts of the graph correspond to which program variables.

Note that both blocks have been represented within one value graph, and the node

for the variable a has been shared.

a

* *

+

x3

�

y2

+

1

6

3

Suppose that we want to show that the variables x3 and y2 will hold the same

value. Once we have the shared value graph in hand, we simply need to check if x3

and y2 are represented by subgraphs rooted at the same graph node. In the value

graph above, x3 and y2 are not represented by the same subgraph, so we cannot

conclude they are equivalent. However, we can now apply normalization rules to the

graph. First, we can apply a constant folding rule to reduce the subgraph 3 + 3 to a

single node 6. The resulting graph is shown below where we have maximized sharing

in the graph.

a

*

+

x3

�

y2

1

6

We have managed to make the value graph smaller, but we still cannot conclude that

the two variables are equivalent. So, we continue to normalize the graph. A second

rewrite rule allows us to replace x+x with x� 1 for any x. In our setting, this rule is

only appropriate if the optimizer would prefer the shift instruction to addition. After

Chapter 2: Overview 27

replacing addition with left shift, and maximizing sharing, x3 and y2 point to the

same node and we can conclude that the two blocks are equivalent. This process of

producing value-graphs, normalization and comparison is the essence of our validator.

The main contribution of this work is showing how to extend this simple model to

real-world code with side-effect and loops.

Side Effects

The translation we have described up to this point would not be correct in the

presence of side effects. Consider the following basic block.

p1 = alloc 1

p2 = alloc 1

store x, p1

store y, p2

z = load p1

If we naively apply our translation, then the graph corresponding to z would be:

z 7→ load (alloc 1), which does not capture the complete computation for register z.

In order to make sure that we do not lose track of side effects, we use abstract state

variables to capture the dependencies between instructions. A simple translation

Chapter 2: Overview 28

gives the following sequence of instructions for this block:

p1,m1 = alloc 1,m0

p2,m2 = alloc 1,m1

m3 = store x, p1,m2

m4 = store y, p2,m3

z,m5 = load p1,m4

Here, the current memory state is represented by the m-registers. Each instruction

requires and produces a memory register in addition to its usual parameters. This

extra register enforces a dependency between, for instance, the load instruction and

the preceding store instructions. This translation is the same as we would get if we

interpreted the assembly instructions as a sequence of monadic commands in a simple

state monad (Moggi, 1989). Using these “monadic” instructions, we can apply our

transformation and produce a value graph that captures all of the relevant information

for each register.

The rewrite rules in our system are able to take into account aliasing information

to relax the strict ordering of instructions imposed by the monadic transformation.

In our experimental setting (LLVM), we know that pointers returned by alloc never

alias with each other. Using this information, we are able to replace m4 with m3 in

the load instruction for z. Then, because we have a load from a memory consisting

of a store to the same pointer, we can simplify the load to x.

Using the state variables, we can validate that a function not only computes

the same value as another function, but also affects the heap in the same way. In

Chapter 2: Overview 29

Chapter ?? we show how the same technique can be applied to different kinds of

side effects, such as arithmetic overflow, division by zero, and non-termination. For

our experiments, we have only modeled memory side-effects in our implementation.

Hence, experimentally we only prove semantics preservation for terminating programs

that do not raise runtime errors. However, our structure allows us to easily extend

our implementation to a more accurate model, though doing so may make it harder

to validate optimizations.

In Chapter 4 we will present a semantic model for our language. There we will

see the entire semantics is parametrized over the monad used in the translation.

Therefore, all of the infrastructure and formal development applies equally for any

set of (monadic) effects we wish to model. However, our monadic translation is

not able to encode control-flow within the semantic values. This is done through a

compilation step which we describe in the next sections.

2.3.2 Extended Basic Blocks

We extend our technique to conditionals by introducing a guarded φ-node to our

intermediate language. Consider the following program, which uses a normal φ-node

Chapter 2: Overview 30

as you would find in an SSA-form assembly program.

entry : c = a < b

cbr c, true, false

true : x1 = x0 + x0 (True branch)

br join

false : x2 = x0 ∗ x0 (False branch)

br join

join : x3 = φ(x1, x2) (Join point)

Notice, in the block labeled join, the value of x3 is represented by a φ-node. This

φ-node means that x3 can have either the value x1 or x2 depending on the control

flow. If we naively apply our technique, we have as a symbolic value for x3:

symbeval(x3, {. . .}) = φ(x0 + x0, x0 ∗ x0) .

This term represents two possible values for x3. However, this is not enough to

compare programs because information about how we arrived at each branch is lost.

For instance, if we reverse the condition so that it is b ≤ a, we will have the exact

same symbolic value for x3 even though the semantics of the program has changed.

We therefore extend φ-nodes with a guard derived from the condition(s) that split

the control-flow.

Adding a condition (or gate) to the φ-node makes the φ-node referentially trans-

parent with respect to the control flow. Using the gated φ-node we can distinguish the

two programs. In our example, the last instruction would become x3 = φ(c, x1, x2),

which means x3 is x1 if c is true, and x2 otherwise.

Chapter 2: Overview 31

In order to handle real C programs, the actual syntax of φ-nodes has to be a bit

more complex. In general, a φ-node is composed of a set of possible branches, one for

each control-flow edge that enters the φ-node. Each branch has a set of conditions,

all of which must be true for the branch to be taken.3

φ

c11 . . . c1n → v1

· · ·

ck1 . . . ckm → vk

Given this more general syntax, the notation φ(c, x, y) is simply shorthand for φ(c→

x, !c→ y).

Gated φ-nodes come along with a set of normalization rules that we present in the

next section. When generating gated φ-nodes, it is important that the conditions for

each branch are mutually exclusive with the other branches. This way, we are free

to apply normalization rules to φ-nodes (such as reordering conditions and branches)

without worrying about changing the semantics.

It is also worth noting that if the values coming from various paths are equivalent,

then they will be shared in the value graph. This makes it possible to validate

optimizations based on a global-value numbering that is aware of equivalences between

definitions from distinct paths. We will see an example of this in Section 2.4.

3φ-nodes with several branches and many conditions are very common in C programs. For ex-
ample, an if-statement with a condition that uses short-cut boolean operators, can produce complex
φ-nodes.

Chapter 2: Overview 32

2.3.3 Loops

In order to generalize our technique to loops, we must come up with a way to

place gates within looping control flow (including breaks, continues, and returns from

within a loop). Also, we need a way to represent values constructed within loops in

a referentially transparent way. We achieve this by introducing three new constructs

into our language which we will now describe informally.

x0 = c

b0 = x0 < n

loop :

xp = φ(x0, xk)

bp = φ(b0, bk)

cbr bp, loop1, exit

loop1 :

xk = xp + 1

bk = xk < n

br loop

exit :

x = xp

(a) Initial while loop

x0 = c

b0 = x0 < n

cbr b0, iter1, exit1

iter1 :

x1 = x0 + 1

b1 = x1 < n

loop :

xp = φ(x1, xk)

bp = φ(b1, bk)

cbr bp, loop1, exit

loop1 :

xk = xp + 1

bk = xk < n

br loop

exit :

x′ = xp

exit1 :

x = φ(x′, x0)

(b) One extraction

x0 = c

b0 = x0 < n

cbr b0, iter1, exit1

iter1 :

x1 = x0 + 1

b1 = x1 < n

cbr b1, iter2, exit2

iter2 :

x2 = x1 + 1

b2 = x2 < n

loop :

xp = φ(x2, xk)

bp = φ(b2, bk)

cbr bp, loop1, exit

loop1 :

xk = xp + 1

bk = xk < n

br loop

exit :

x′′ = xp

exit2 :

x′ = φ(x′′, x1)

exit1 :

x = φ(x′, x0)

(c) Two extractions

Figure 2.2: Extraction of loop iterations

Consider the register x whose value depends on the execution of the while loop

presented in figure 2.3a. We cannot compute x’s symbolic value simply by rewriting

because the computation would diverge due to xp. Also, it is not clear what the

guards of the φ-nodes in the loop header should be.

Chapter 2: Overview 33

However, if we extract one iteration of the loop (unroll the loop 1 time), as pre-

sented in figure 2.3b, then the symbolic value of x becomes φ(b0, xp, x0). We still

cannot compute a symbolic value for xp, but we do have a symbolic value that faith-

fully represents the value of x if the loop executes zero times.

We can extract another iteration of the loop, as presented in figure 2.3c, to refine

the approximation of x. With two iterations extracted, the symbolic value of x is

φ(b0, φ(b1, xp, x1), x0). This symbolic value faithfully represents the value of x if the

loop executes zero or one times. If we continue this unrolling process, the symbolic

term for x will have the shape:

φ(b0, φ(..., φ(bn−1, φ(bn, xp, xn), xn−1), ...), x0) .

More generally, as the loop continues, the values defined at iteration i, must be

defined in terms of values with index i or i− 1 (or no index at all if they do not vary

within the loop). We can think of the values of register x as a mathematical sequence

defined by the recurrence relation,

xn =

c if n = 0,

xn−1 + 1 otherwise.

and the register b as a sequence defined by,

bn =

x0 < n if n = 0,

xn < n otherwise.

Using these formulas, we can “fill in” the symbolic value for x:

φ(c < n, φ(c+ 1 < n, ..., c+ 1), c) .

Chapter 2: Overview 34

We could use this (possibly infinite) sequence of φ-nodes as the symbolic value of x.

However, in order to keep the denotation finite and computable, we introduce a new

symbolic value to represent values with this shape. In this example, we write:

x = η(µ(bo, bn), µ(xo, xn)) .

This term indicates that x is a variable modified within a loop with condition b. The

condition b varies within the loop according to the recurrence relation defined by

b0, bn, and x varies within the loop according to the recurrence relation defined by

x0, xn.

The η- and µ-nodes (as well as the gated φ-nodes) are part of Gated SSA form.

We use Gated SSA to represent loops and conditional control flow in a referentially

transparent way. For loops, µ, is used to define variables that are modified within a

loop. Each µ is placed at a loop header and holds the initial value of the variable on

entry to the loop and a value for successive iterations. The µ-node is equivalent to a

non-gated φ node from classical SSA. The η-node is used to refer to loop-defined vari-

ables from outside their defining loops. The η-node carries the variable being referred

to along with the condition required to reach the η from the variable definition.

To see these new constructs in action, consider Figure 2.3a which shows a simple

while loop in SSA form. The Gated SSA form of the same loop is shown in figure

2.3b. The φ-nodes in the loop header have been replaced with µ-nodes, and the access

to the xp register from outside to loop is transformed into an η-node that carries the

condition required to exit the loop and arrive at this definition.

With Gated SSA form, recursively defined variables must contain a µ-node. The

recursion can be thought of as a cycle in the value graph, and all cycles are dominated

Chapter 2: Overview 35

x0 = c

loop :

xp = φ(x0, xk)

b = xp < n

cbr b, loop1, exit

loop1 :

xk = xp + 1

br loop

exit :

x = xp

(a) SSA while loop

x0 = c

loop :

xp = µ(x0, xk)

b = xp < n

cbr b, loop1, exit

loop1 :

xk = xp + 1

br loop

exit :

x = η(b, xp)

(b) GSSA while loop

η

<

µ

c

n

+1

i

(c) Value graph

Figure 2.3: Representation of while loops

by a µ-node. The value graph corresponding to our previous example is presented in

figure 2.3c. Intuitively, the cycle in the value-graph can be thought of as generating

a stream of values. The µ-nodes start by selecting the initial value from the arrow

marked with an “i”. Successive values are generated from the cyclic graph structure

attached to the other arrow. This µ-node “produces” the values c, c + 1, c + 2,...

The η receives a stream of values and a stream of conditions. When the stream of

conditions goes from true to false, the η selects the corresponding value in the value

stream.

Chapter 2: Overview 36

Generally, we can think of µ and η behaving according to the following formulas:

µ(a, n) = a : µ(n[a/x], n)

η(0 : b, x : v) = η(b, v)

η(1 : b, x : v) = x

Of course, for our purposes, we do not need to evaluate these formulas, we simply

need an adequate, symbolic representation for the registers x, xp and bp. Our formal

semantics, which is presented in Chapter ??, borrows ideas from data-flow program-

ming languages to provide an interpretation for these constructs which is amenable

to comparison.

2.4 Normalization

Once a graph is constructed for two functions, if the functions’ denotations are

not already equivalent, we begin to normalize the graph. We normalize value graphs

using a set of rewrite rules. We apply the rules to each graph node individually. When

no more rules can be applied, we maximize sharing within the graph and then reapply

our rules. When no more sharing or rules can be applied, the process terminates.

Our rewrite rules come in two basic types: general simplification rules and optimization-

specific rules. The general simplification rules reduce the number of graph nodes by

removing unnecessary structure. We say general because these rules only depend

on the graph representation, replacing graph structures with smaller, simpler graph

structures. The optimization-specific rules rewrite graphs in a way that mirrors the

effects of specific optimizations. These rules do not always make the graph smaller

Chapter 2: Overview 37

or simpler, and one often needs to have specific optimizations in mind when adding

them to the system.

General Simplification Rules. The notation a ↓ b means that we match graphs

with structure a and replace them with b. The first four general rules simplify boolean

expressions:

a = a ↓ true(2.1)

a 6= a ↓ false(2.2)

a = true ↓ a(2.3)

a 6= false ↓ a(2.4)

These last two rules only apply if the comparison is performed at the boolean type.

In fact, all LLVM operations, and hence our graph nodes, are typed. However, we

rarely need to consult the types other than to determine syntactic equality. We will

omit typing information unless it is instructive.

There are two general rules for removing unnecessary φ-nodes.

φ {. . . , truei → t, . . .} ↓ t(2.5)

φ
{
ci → t

}
↓ t(2.6)

The first rule replaces a φ-node with one of its branches if all of its conditions are

satisfied for that branch. We write xi for a set of terms indexed by i. In the first rule,

we have a set of true values. Note that the conditions for each branch are mutually

exclusive with the other branches, so only one branch can have conditions which are

all true. The second rule removes the φ-node if all of the branches contain the same

Chapter 2: Overview 38

value. A special case of this rule is a φ-node with only one branch indicating that

there is only one possible path to the φ-node, as happens with branch elimination.

The φ rules are required to validate sparse conditional constant propagation

(SCCP) and global value numbering (GVN). The following example can be optimized

by both:

if (c) {a = 1; b = 1; d = a;}

else {a = 2; b = 2; d = 1;}

if (a == b) {x = d;} else {x = 0;}

return x;

Applying global-value numbering followed by sparse conditional constant propagation

transforms this program to return 1. Indeed, in each of the branches of the first if-

statement, a is equal to b. Since a == b is always true, the condition of the second

if-statement is constant, and sparse conditional constant propagation can propagate

the left definition of x. Hence, the above program and return 1 have the same

normalized value graph, computed as follows:

x 7→φ(φ(c, 1, 2) == φ(c, 1, 2), φ(c, 1, 1), 0)

↓φ(true, φ(c, 1, 1), 0) by (2.1)

↓φ(c, 1, 1) by (2.5)

↓1 by (2.6)

We also have general rules for simplifying η- and µ-nodes. The first rule allows us to

remove loops that never execute.

η(false, µ(x, y)) ↓ x(2.7)

Chapter 2: Overview 39

This rule rewrites to the initial value of the µ-node before the loop is entered, namely

x. This rule is needed to validate loop-deletion, a form of dead code elimination.

In addition, there are two rules for loop invariants. The first says that if we have a

constant µ-node, then the corresponding η-node can be removed:

η(c, µ(x, x)) ↓ x(2.8)

η(c, y 7→ µ(x, y)) ↓ x(2.9)

In rule (2.8), the µ-node has an initial value of x, which must be defined outside of

the loop, and therefore cannot vary within the loop. Since, x does not vary within the

loop the µ-node does not vary, and the loop structure can be removed. Rule (2.9),

expresses the same condition, but the second term in the µ-node is again the same

µ-node (we use the notation y 7→ µ(x, y) to represent this self-reference).

These rules are necessary to validate loop invariant code motion. As an example,

consider the following program:

x = a + 3; c = 3;

for (i = 0; i < n; i++) {x = a + c;}

return x;

In this program, variable x is defined within a loop, but it is invariant. Moreover,

variable c is a constant. Applying global constant propagation, followed by loop-

invariant code motion and loop deletion transforms the program to return (a + 3).

Chapter 2: Overview 40

The value graph for x is computed as follows:

in 7→ µ(0, in + 1)

x 7→ η(in < n, µ(a+ 3, a+ 3))

↓ a+ c (by 2.8)

Note that the global copy propagation is taken care of “automatically” by our repre-

sentation, and we can apply our rule (2.8) immediately. The other nodes of the graph

(in) are eliminated since they are no longer needed.

Optimization-specific Rules. In addition to the general rules, we also have a

number of rewrite rules that are derived from the semantics of LLVM, our specific

optimization framework. For example, we have a family of laws for simplifying con-

stant expressions, such as:

add 3 2 ↓ 5

mul 3 2 ↓ 6

sub 3 2 ↓ 1

Currently we have rules for simplifying constant expressions over integers, but not

floating point or vector types. There are also rules for rewriting instructions such as:

add a a ↓ shl a 1

mul a 4 ↓ shl a 2

These last two rules are included in our validator because we know that LLVM’s

optimizer prefers the shift left instruction. While preferring shift left may be obvious,

Chapter 2: Overview 41

there are some less obvious rules such as:

add x (−k) ↓ sub x k

gt 10 a ↓ lt a 10

lt a b ↓ le a (sub b 1)

While these transformations may not be optimizations, in the strictest sense, LLVM

performs these transformations to give the instructions a more regular structure.

Finally, we also have rules that make use of aliasing information to simplify mem-

ory accesses. For example, we have the following two rules for simplifying loads from

memory:

load(p, store(x, q,m)) ↓ load(p,m)(2.10)

load(p, store(x, p,m)) ↓ x(2.11)

when p and q do not alias. Our validator can use the result of a may-alias analysis.

For our experiments, we only use simple non-aliasing rules, such as: two pointers that

originate from two distinct stack allocations may not alias; two pointers forged using

getelemptr with different parameters may not alias, etc.

2.4.1 Efficiency

At this point it is natural to wonder why we did not simply define a normal form

for expressions and rewrite our graphs to this normal form. This is a good option,

and we have experimented with this strategy using external SMT provers to find

equivalences between expressions. However, one of our goals is to build a practical

tool which optimizes the best case performance of the validator (we expect most

Chapter 2: Overview 42

optimizations to be correct). Using our strategy of performing rewrites motivated

by the optimizer, we are often able to validate functions with tens of thousands of

instructions (resulting in value graphs with hundreds of thousands of nodes) with only

a few dozen rewritings. That is, we strive to make the amount of work done by the

validator proportional to the number of transformations performed by the optimizer.

To this end, the rewrite rules derived from LLVM semantics are designed to mirror

the kinds of rewritings that are done by the LLVM optimization pipeline. In practice,

it is much more efficient to transform the value graphs in the same way the optimizer

transforms the assembly code: if we know that LLVM will prefer shl a 1 to a + a,

then we will rewrite a+ a but not the other way around.

As another, more extreme, example, consider the following C code, and two pos-

sible optimizations: SCCP and GVN.

a = x < y;

b = x < y;

if (a) {

if (a == b) {c = 1;} else {c = 2;}

} else {c = 1;}

return c;

If the optimization pipeline is setup to apply SCCP first, then a may be replaced

by true. In this case, GVN cannot recognize that a and b are equal, and the inner

condition will not be simplified. However, if GVN is applied first, then the inner

condition can be simplified, and SCCP will propagate the value of c, leading to the

program that simply returns 1. The problem of how to order optimizations is well-

known, and an optimization pipeline may be reordered to achieve better results. If

the optimization pipeline is configured to use GVN before SCCP, then, for efficiency,

Chapter 2: Overview 43

our simplification should be setup to simplify at join points before we substitute the

value of a.

2.4.2 Extended Example

We now present a larger example where all these laws interplay to produce the

normalized value-graph. Consider the C code below:

int f(int n, int m) {

int * t = NULL;

int * t1 = alloca(sizeof(int));

int * t2 = alloca(sizeof(int));

int x, y, z = 0;

*t1 = 1; *t2 = m;

t = t1;

for (int i = 0; i < n; ++i) {

if (i % 3) {

x = 1; z = x << y; y = x;

} else {

x = 2; y = 2;

}

if (x == y) t = t1;

else t = t2;

}

*t = 42;

return *t2 + *t2;

}

First, note that this function returns m + m. Indeed, x is always equal to y after

the execution of the first conditional statement in the for-loop. Therefore, the second

conditional statement always executes the left branch and assigns t1 to t. This is

actually a loop invariant, and, since t1 is assigned to t before the loop, t1 is always

equal to t. t1 and t2 are pointers to two distinct regions of memory and cannot alias.

Writing through t1 does not affect what is pointed to by t2, namely m. The function

Chapter 2: Overview 44

therefore returns m + m. Since the loop terminates, an optimizer may replace the

body of this function with m� 1, using a blend of global-value numbering with alias

analysis, sparse-conditional constant propagation and loop deletion.

Our value-graph construction and normalization produces the value-graph corre-

sponding to m � 1 for this example. The initial value-graph is presented in Fig-

ure 2.4a. Some details of the graph have been elided for clarity. We represent load,

store, and alloca nodes with ld, st, and al respectively. To make the graph easier

to read, we also used dashed lines for edges that go to pointer values.

A potential normalization scenario in shown in Figure 2.4 and continued in Fig-

ure 2.5. The reduction shown in these figures corresponds to the following rewrite

rules being applied in order.

1. The arguments of the == node are shared; it is rewritten to true.

x = x ↓ true

2. The gate of the φ node is true; its predecessor, µ, is modified to point to the

target of the true branch of the φ node rather than to φ itself.

φ(true, a, b) ↓ a

3. The arguments of this µ node are shared; its predecessor, η, is modified to point

to the target of µ instead of µ itself.

µ(x, x) ↓ x

4. The condition of the η node is terminating, and its value acyclic; Its predecessor,

Chapter 2: Overview 45

st 42, is modified to point to the target of η instead of η itself.

η(a, b) ↓ b b constant

5. It is now obvious that the load and its following store use distinct memory

regions; the load can “jump over the store.”

load(p, store(x, q,m)) ↓ load(p,m)

6. The load and its new store use the same memory region; the load is therefore

replaced by the stored value, m.

load(p, store(x, p,m)) ↓ x

7. The arguments of the + node are shared; The + node is rewritten into a left

shift.

add a a ↓ shl a 1

Chapter 2: Overview 46

+

ld

st 42

st m

st 1

al

al

η

µ

φ

==

φ

1
2...

<

n
µ

0

+

1

(a) Initial shared value-graph

+

ld

st 42

st m

st 1

al

al

η

µ

φ

true

<

n
µ

0

+

1

(b) The arguments of the == node are

shared; it is rewritten to true.

+

ld

st 42

st m

st 1

al

al

η

µ
<

n
µ

0

+

1

(c) The gate of the φ node is true; its

predecessor, µ, is modified to point to

the target of the true branch of the φ

node rather than to φ itself.

+

ld

st 42

st m

st 1

al

al

η

<

n
µ

0

+

1

(d) The arguments of this µ node are

shared; its predecessor, η, is modified

to point to the target of µ instead of µ

itself.

Figure 2.4: Normalization of Large Example.

Chapter 2: Overview 47

+

ld

st 42

st m

st 1

al

al

(a) The condition of the η node is termi-

nating, and its value acyclic; Its predeces-

sor, st 42, is modified to point to the tar-

get of η instead of η itself.

+

ld

st m

st 1

al

al

(b) It is now obvious that the load and

its following store use distinct memory re-

gions; the load can “jump over the store.”

+

m

(c) The load and its new store use

the same memory region; the load

is therefore replaced by the stored

value, m.

�

1m

(d) The arguments of the + node are shared;

The + node is rewritten into a left shift.

Figure 2.5: Normalization of Large Example (continued).

Chapter 3

Assembly Language

As described in the overview, our validator compares unoptimized and optimized

programs. This is done by converting the programs into value graphs, performing

rewritings and comparing the results. In this chapter we describe the input language

and its semantics. We take as input, a typical assembly language with an unbounded

number of registers. The assembly language is equipped with function definition and

call mechanisms which hide the details of calling conventions. We give a semantics to

our language by translation to a simply-typed lamba calculus. In the next chapter we

will extend our translated assembly language to the final intermediate representation

which is able to efficiently represent loops and support symbolic analysis.

48

Chapter 3: Assembly Language 49

3.1 Assembly Language Syntax

As a starting point, we assume a typical assembly language composed of functions

containing blocks of instructions terminated by control-flow operations. Our assembly

language is designed to be similar to LLVM in that we use the same basic assembly

instructions. However, we do not require the input code be in SSA form. The syntax

of assembly language functions is show in Figure 3.1. Each function has a return type,

function ::= t name(t x) {block} Function

block ::= ` : x = statement; control Block

statement ::= t v Value

| i Instruction

control ::= return [v] Return from function

| br ` Branch to label

| cbr v ` ` Conditional Branch

Figure 3.1: Syntax of Assembly Language Functions

a name, a number of formal parameters with their types (written as t x), and a list

of blocks. The first block in the list is the entry block, and is where execution starts.

Each block is composed of a label `, a list of assignments to variables, and a final

control-transfer instruction. Each block only has one control-transfer instruction, and

it is always the last instruction in the block. The control-transfer instructions include

return which optionally takes a value v to return, branch (br) and conditional branch

(cbr). The branch instruction, br `, transfers control to the block with label `. The

conditional-branch instruction, cbr c `1 `2, transfers control to `1 if condition c is

true, and `2 otherwise.

Chapter 3: Assembly Language 50

Within a block, each variable is assigned a value computed by a statement. State-

ments can be values or assembly instructions applied to values (the syntax of values

and instructions is described below). We require all variables referenced by instruc-

tions within a block to be defined on all control-flow paths leading to that block. In

addition, each variable must be assigned a single type. The syntax of types is show in

Figure 3.2. The base types include integers of different widths, void and label types.

t ::= intn | void | label Base Types

| ∗t Pointer Type

| t[n] Array Type

| t→ t Instruction Type

Figure 3.2: Assembly Language Type System

On a 32-bit architecture, machine words are represented with type int32. Boolean

values are given type int1 with the value 1 representing true and 0 representing

false. The void type is used for functions that do not return values, and label is

the type of static addresses. Types also include pointers ∗t, arrays t[n], and instruc-

tion types. The instruction type a b → c represents an instruction that takes two

parameters of type a and b and returns a result of type c. Instructions can only be

called with all of their arguments (we do not allow partial application of instructions

in the assembly language).

Our assembly language contains a set of primitive values which consist of fixed-

width integers and variables. For convenience we also define a few derived constants.

The constant true is equivalent to 1, and false and null are both equivalent to 0.

The constant false has type int1 and null can have any pointer or array type. We

Chapter 3: Assembly Language 51

v ::= 1,2,. . . Fixed Width Integers

| true | false | null Derived Constants

| x, y, z, x1 ... Variables

Figure 3.3: Assembly Lanugauge Values

could also allow values to include expressions over values (as does LLVM), but this

does not add any additional expressiveness, and it is not necessary for our purposes.

Finally, Figure 3.4 gives the instructions of our assembly language which are used

to construct statements. Each instruction takes a number of arguments, all of which

must be values. Instructions include pointer arithmetic with getelemptr: if x has

i ::= getelemptr t v v Pointer Arithmetic

| alloc t v Stack Allocation

| load t v Load from Memory

| store t v v Store to Memory

| binop t v v Binary Operator

| conv t v t Type Conversion

| select t v v v Select on Condition

| call name(v) Function Call

Figure 3.4: Assembly Language Instructions

type ∗int32[10], then the instruction (getelemptr int32 x 0 1) points to the second

element of the first array pointed to by x. We also have the memory operations:

alloc, load, and store. The alloc instruction allocates some number of elements

of type t on the stack. The load instruction reads a value from a location in memory,

and the store instruction stores a value to a location in memory. An example of

Chapter 3: Assembly Language 52

these instructions is shown below.

int32 memory() {

p = alloc int32 1 ; allocate 1 word on stack

store int32 p 7 ; store the value 7 a location p

seven = load int32 p ; seven = 7

return seven

}

The function memory allocates a single 32-bit word, stores a value in memory, and

then reads the value from memory and returns the result. In this case, the function

returns the value 7.

Instructions also include binary operators, type conversions, and an instruction-

level conditional called select. The exact set of binary operators and type conver-

sions does not need to be fixed ahead of time; new operations can be easily added

without affecting the system. For our purposes we will consider a typical comple-

ment of integer operations; these operations are shown in Figure 3.5. We have inte-

conv ::= trunc | zext | sext Width Conversions

| ptr2int | int2ptr | bitcast Type Conversions

binop ::= add | sub | mul Arithmetic

| udiv | sdiv | urem | srem (Un)signed division

| shl | shrl | shra Logical/Arithemic shift

| and | or | xor Bitwise operators

| eq | ne Equality

| sgt | sge | slt | sle Signed Comparison

| ugt | uge | ult | ule Unsigned Comparison

Figure 3.5: Assembly Language Operations

ger widening and truncation, pointer-integer conversion, and bitcast for converting

Chapter 3: Assembly Language 53

between pointer types. The binary operators include basic arithmetic and logical

operations for signed and unsigned integers. We have not included floating point

operations in the formal syntax, however they are included in our implementation.

Our implementation also handles structure types and a richer language of pointer

arithmetic which we do not detail here.

An example of the assembly language is shown in Figure 3.6. The left-hand side

of the figure shows a function written in C that defines a simple loop. The right-

hand side shows the corresponding assembly language. The assembly language code

int loop() {

int t = 1;

int i;

for (i = 0; i < 10; i++) {

t += i;

}

return t;

}

int32 loop() {

entry:

t = int32 1

i = int32 0

br header

header:

c = slt int32 i, 10

cbr c, body, end

body:

t = add int32 t, i

i = add int32 i, 1

br header

end:

ret int32 t

}

C code with simple loop Corresponding Assembly Code

Figure 3.6: Loop Example

contains four blocks. The header and body blocks form a loop. The function begins

execution at the entry block, which branches to the loop header. When we first enter

the header block the value of i is 0, so c is true and we branch to body. The body

Chapter 3: Assembly Language 54

block updates the t and i variables and continues back to the entry block. After

several iterations, c becomes false and we branch to end which returns the value t.

3.1.1 Working with Assembly Language

In this section we describe a number of concepts for working with assembly lan-

guage blocks, labels, and variables. Each assembly language function is made up of

a number of labeled basic blocks. Each basic block within a function must have a

unique label—no two blocks within a function can have the same label. We use the

notation labels(f) to refer to the set of labels used within a function. Because the

labels used in a function are unique, we can define a total function from labels(f) to

the basic blocks of f . We call this finite mapping a block map and it is defined as:

Definition 1 (Block Map). Given the assembly function

tf(ti xi){bi} ,

then for each ` ∈ labels(f), the block map for f is defined as:

BMf (`) = b | b ∈ {bi} ∧ b = ` : xi = si; c

for some xi, si and c.

Note that the domain of BM is equal to labels(f), and the codomain is equal to {bi}.

The control-transfer instructions from the basic blocks form a graph of blocks

called the control-flow graph where each block’s successors are the possible destina-

tions of its control-flow instruction. We can capture this graph precisly by defining

the free labels occuring in a block.

Chapter 3: Assembly Language 55

Definition 2 (Free Labels). The free labels of a block, are the set of labels that

appear in a block’s control transfer instruction. The free labels are defined by:

FL(` : xi = si; c) = fl(c)

fl(return) = ∅

fl(return v) = ∅

fl(br `) = {`}

fl(cbr v `1 `2) = {`1, `2}

The FL function takes a block as an argument, however we will also write:FL(`) to

mean FL(BM(`)), where ` is a label. With the definition of free labels in hand, we

can define the control-flow graph.

Definition 3 (Control-Flow Graph). The control-flow graph for a function

tf(ti xi){bi} ,

is a set of blocks B and a set edges E defined as:

B = {bi}

E = {(`1, `2) | `1 ∈ labels(f) ∧ `2 ∈ FL(`1)}

We also define the sets of free variables of a block. These sets include all of the

variables that are referred to by the statements within the block. More formally,

Definition 4 (Free Variables). For a block, b = ` : xi = si; c, the free variables of

b are defined as:

FV (b) =
⋃
s∈si

FV (s) ∪ FV (c) .

Chapter 3: Assembly Language 56

Where FV (s) and FV (c) are the free variables of statements and control-transfer

instructions respectively. The free variables of statements and control-transfer in-

structions are the set of variables which appear syntactically in the statement or

control-transfer instruction. We elide the definition of free variables for statements

and control-transfer instructions as they are both obvious and verbose. As with free

labels, we will also write, FV (`), where ` is a label, with the following meaning:

FV (`) = FV (BM(`)) .

Finally, we sometimes need to refer to the set of variables referred to by a block

and any of its successor blocks. We write this as FV ∗, and it is defined below.

Definition 5 (Transitive Free Variables). For a function f , and a label ` ∈ labels(f),

the transitive free variables of a block labeled by ` is the least fixed point of the

equation:

FV ∗(`) =FV (`) ∪
⋃

`′∈FL(`)

FV ∗(`′) .

The assembly language we have described up to this point forms the inputs to our

validation process. In the next section we will describe the simply-typed language we

use to give a semantics to the assembly language.

3.2 Target Language

The first step in our validation process is a compilation step. The compilation

step converts the input assembly language into our intermediate representation. The

compilation step happens in two phases. The first phase converts each basic block

into a simply-typed lambda term. This term will be a function which will take as

Chapter 3: Assembly Language 57

arguments the free variables of the basic block, and an abstract machine state, and

it will return a new machine state and a value. The functions derived from the basic

blocks are specified using the simply-typed lambda calculus described in this section.

These functions have two purposes: first, they give a meaning to the basic blocks;

second, they form the inputs to the second phase of the compilation process. The

remainder of this chapter is concerned with the first phase of the translation including

the simply-typed lambda calculus, and the translation of the basic blocks to lambda

terms. In the next chapter will deal with the full intermediate language and the

second phase of the translation.

3.2.1 Target Language Syntax

Basic blocks are translated into a variant of the simply-typed lambda calculus

with sums and products (Barendregt, 1984). The syntax is shown in Figure 3.7. The

types extend the assembly language types by adding a function type, a product type,

and a sum type. Expressions e, include assembly values and fully applied assembly

instructions. We also have a unit value and conditional expressions. Abstractions are

explicitly typed. However, note that since we have a simply typed lambda calculus,

these types can be reconstructed from the type annotations on values and instructions

(Giannini et al., 1993). We also have the usual pair constructor and projections fst

and snd. Finally, sums are constructed with inl and inr, and case analysis on sums

is performed with case.

Dynamic Semantics. The dynamic semantics of our lambda calculus is standard

call-by-value. The set of values is the subset of well-typed expressions that cannot be

Chapter 3: Assembly Language 58

τ ::= t Assembly Types

| unit Unit type

| τ → τ Functions

| τ ∗ τ Products

| τ + τ Sums

e ::= v Assembly Value

| i e Applied Assembly Instruction

| unit Unit Value

| if e then e else e Conditionals

| λx:τ.e Abstraction

| e e Application

| (e, e) Product Constructor (pairs)

| fst(e) | snd(e) Projections

| inl(e) | inr(e) Sum Constructors

| case e of {inl(x).e | inr(x).e} Case Analysis

Figure 3.7: Syntax of the Extended Assembly Language

reduced according to the dynamic semantics. For our language, the values are:

val ::= v | i val | unit | λx:τ.e | (val, val) | inl(val) | inr(val)

Chapter 3: Assembly Language 59

The primary reduction rules for our language are:

(λx:t.e) val→ e[x 7→ val]

fst(val1, val2)→ val1

snd(val1, val2)→ val2

case inl(val) of {inl(x).e1 | inr(x).e2} → e1[x 7→ val]

case inr(val) of {inl(x).e1 | inr(x).e2} → e2[x 7→ val]

where e[x 7→ val] indicates capture-avoiding substitution of the value val for the

variable x within the expression e. All other reductions are structural rules following

standard call-by-value evaluation order (Barendregt, 1984).

Static Semantics. As mentioned before, our lambda calculus is simply-typed.

Each valid expression can be assigned a single type. The type of an expression is

not changed by reduction. A full account of the simply-typed lambda calculus and

its static semantics can be found in Barendregt et al. (1992).

Syntactic Sugar. For convenience, we define a few abbreviations, or “syntactic

sugar”, to improve the readability of sample code. First, although we only have

simple pairs (a, b), we will sometimes use longer tuples such (a, b, c). This syntax is

understood to mean (a, (b, c)). We will use the projection operators πn on tuples,

which is understood to be a combination of fst and snd. For example, π2(a, b, c) is

understood to mean fst(snd(a, (b, c))). Pairs can also be used to encode finite lists,

with unit representing the empty list. We will use the following syntactic sugar for

Chapter 3: Assembly Language 60

lists:

[a, b, c, .., z] = (a, (b, (c, ...(z, unit)...)

head l = fst(l)

tail l = snd(l)

We will also use a shortened function syntax, where λx:τ1 y:τ2.e is understood to

mean λx:τ1.λy:τ2.e. Also, when it is clear from context, we will sometimes omit the

type annotation on the lambda term. Finally, we will use a let-syntax as a shorthand

for lambda-binding variables: the expression (let a:τ = b in c) is understood to mean:

(λa:τ.c) b. All of these short-hand notations are consistent with the dynamic and

static semantics (Barendregt, 1984; Barendregt et al., 1992).

3.2.2 Translation

We will describe translation from assembly language to our target language in

two steps. First, we use a purely syntactic transformation which puts the assembly

code into a “monadic” form (Moggi, 1989). This translation makes the sequencing

between instructions explicit by introducing a sequencing operator called “bind”. We

write the sequencing operator using the infix syntax �=. The bind operator is not

part of the language (as we would need polymorphism to represent it), it is simply a

place-holder where we will later insert code which implements the binding operation.

We will also use the syntax lift v as a place-holder for code which implements the

meaning of values1. We will write the transformation using oxford brackets (JK). The

1The syntax return v is often used in place of lift v. However, to avoid confusion with our
assembly language return, we choose to use the less common “lift”.

Chapter 3: Assembly Language 61

translation for basic blocks, sequences of statements, values, and control instructions

is shown below.

J` : xi = si; cK ≡ ` = λ FV ∗(`).Jxi = si; cK

Jx = s;xi = si; cK ≡ JsK�= λx.Jxi = si; cK

Jt vK ≡ lift v

JreturnK ≡ lift unit

Jreturn vK ≡ lift v

Jbr `K ≡ J`K

Jcbr v `1 `2K ≡ if v then J`1K else J`2K

J`K ≡ ` FV ∗(`)

The translation converts a block into a function that takes as arguments the transitive

free variables of the block: any of the block’s free variables, or variables required by

its successor blocks. In the case that the set of transitive free variables is empty,

we will use unit as a sole argument. Sequences of instructions are translated and

sequenced together using �=. Values and the return instructions are translated to

lift-expressions, the unfolding of which will be defined in a later section. The branch

instruction is translated into a function call where the function has the name of the

target label, and the arguments are the transitive free variables of the target block

(or unit). The conditional branch is translated to an if-expression which selects one

of two blocks to evaluate.

Consider the code shown earlier in Figure 3.6. This code defines a simple loop,

and has four basic blocks. If we apply our translation as defined so far (translation

Chapter 3: Assembly Language 62

for instructions is not yet defined) we get the following lambda terms for each block.

entry =λunit.lift 1�=

λt.lift 2�=

λi.header t i

header =λt i.Jslt int32 i, 10K�=

λc.if c then body t i else end t

body =λt i.Jadd int32 t, iK�=

λt.Jadd int32 t, iK�=

λi.header t i

end =λt.lift t

3.3 Side Effects

To complete our lambda encoding, we must define the translation for assembly

instructions. However, many of the assembly instructions have side-effects that we

must track in order to properly model the semantics of programs. For example, the

division operation may raise a division by zero error, and we need to model this pos-

sible effect. Using our translation so far, we can model side-effects by defining a state

monad and giving implementations for each of the instructions within this monad.

State monads are a specific instance of a monadic semantics (Jones, 1995). State

monads have been used to model side-effects in many contexts, including program-

ming languages like Haskell (Launchbury and Peyton Jones, 1994), formal semantics

(Moggi, 1989), and even dependent type theories (Nanevski et al., 2006, 2009). A

Chapter 3: Assembly Language 63

more detailed analysis of monads is given in Chapter 4.

For our purposes, a state monad is a function from states to states and a value.

For convenience we will give this type a name, ST , defined as:

ST a = state→ (state, a)

where state is a fixed but arbitrary type. To complete the definition of our state

monad we need to define the transformations lift and �= which we used in our

translation. Values of type ST a are called computations. The lift transformation

allows us to build a computation of type ST a from a value of type a. The definition

is given below.

lift x = λs:state.(s, x)

Recall, that lift and �= are not part of our lambda calculus. Rather, they are

short-hand notations which we will replace with their definitions. Therefore, we do

not define lift as a function from its argument x. Indeed lift with no argument is

not defined. Note also that each term lift x will have a simple type which depends

on x.

The second transformation, �=, sequences an ST -computation with a function.

The definition is shown below.

(�=) :: ST a→ (a→ ST b)→ ST b

m�= f = λs:state.let (s′, x) = m s in f x s′

The state monad works by threading an abstract state variable (of type state) through

the instructions. A state variable may represent many different kinds of side-effects.

For example, to model division by zero we can use as our state variable a single

Chapter 3: Assembly Language 64

boolean which is true when an overflow has occured. We then give the following

definition for division:

Judiv x yK ≡ λs.if s ∨ y = 0 then (true, 0) else (false, udiv x y)

Each division instruction becomes a function which takes the current overflow state,

s. If there has not yet been an overflow, and the second parameter y is not zero,

we perform the division. If the division is performed, we know there will not be

an overflow (since we checked y 6= 0), so the overflow state is false. Otherwise,

the returned overflow state is true and the result of the operation is invalid. For

simplicity, we return 0 for the invalid value.

For the other (non-division) instructions, we must check the overflow flag before

continuing with normal operation. For example, addition would be defined as:

Jadd x yK ≡ λs.if s then (true, 0) else (false, add x y)

The new version of add is identical to the old version if the overflow state is false.

Otherwise, the new version does nothing. This pattern can be generalized to any

(non-division) instruction:

Jit xK =⇒ λs.if s then (true, 0t) else (false, i x)

For any instruction i, with return type t, we simply check the overflow state and call

the instruction as normal if it is false. Otherwise we pass on the overflow state and

an arbitrary value of type t (written 0t).

Although we have been discussion overflow, this technique is independent of the

set of state variables and the transformation we perform on individual instructions.

Chapter 3: Assembly Language 65

We can easily extend our state to be a tuple of values representing different kinds of

side-effects. For example, an alloc instruction returns a pointer, modifies the heap,

and may fail. We can add new state variables to track possible failure and changes

to the heap. Our use of state variables is inspired by state monads (Moggi, 1989).

This design allows us some flexibility in how closely we model the state. By changing

how we interpret the instructions, and the parts of the state, we can be more or less

precise with our model of the side-effects.

3.3.1 Modeling Memory

For our experiments, we have modeled the effects of instructions on memory. Our

model of memory uses a state variable which captures what is known about the heap at

any given point in the computation. The state variable is a list of memory operations

that have occurred. The operations are either allocate or store. We represent the

state variable using tuples constructed with the following functions:

Salloc = λn s.(0, n, s)

Sstore = λp v s.(1, p, v, s)

These two functions add information to the current state. The first function, Salloc

adds to s a tag, 0, indicating an allocation has occurred, along with the number of

bytes allocated. The second function, Sstore adds to s a tag 1, indicating a store

has occurred, along with the pointer and value stored. With these functions, we can

Chapter 3: Assembly Language 66

define the state monad versions of alloc and store which track the state of the heap:

Jalloc nK ≡ λs.(Salloc n s, alloc n)

Jstore p vK ≡ λs.(Sstore p v s, store p v)

To see how these definitions work, consider the sequence:

p = alloc 1; store p 1; x = load p

After translation this becomes:

λs0.let(s1, p) = (Salloc n s0, alloc n) in

let(s2,) = (Sstore p 1 s1, store p 1) in

let(s3, x) = (s2, load p) in

(s3, p, x)

If we simplify just the load term, we have:

((1,p,v,(0,1,s0)), load p)

This expression contains all of the relevant information about the computation at this

point in the code. We know that one word has been allocated, and that it contains

the value v2. Therefore we can simplify the load expression to v. We will describe

this and other simplification laws in a later chapter.

3.4 Completing the Semantics

The translation we have described so far only applies to basic blocks. We can

extend our translation to functions by including a fixed-point operator in our target

2Although it is not evident in the syntax, there is a link between the memory state for the
allocation and the variable p. Our intermediate representation uses graphs and variables are replaced
with edges in the graph. In this representation we can link the store state with the initial allocation.

Chapter 3: Assembly Language 67

language. For instance, if we add recursive let binding to our target language, then

we can define the meaning of functions as:

Jtf(ti xi){bi}K ≡ λxi : ti.
〈
JentryK, bi = JbiK

〉
where the notation < a, b > forms a fixed point over the equations b and evaluates to

a3. If we wish to run a function, we can supply this result with an initial state value.

The result of evaluating the application will be a final state and a return value.

Using this translation for top-level functions we can give a complete semantics

to a while program. This approach was taken by Necula (2000) to engineer a trans-

lation validation system for GCC. This approach does indeed work well for some

optimizations, however, for many cases, it requires additional analysis to discover

the relationship between the initial and optimized programs. The additional analysis

can make the validator sensitive to the specific optimizations, and even the specific

implementations of the optimizations being considered. In addition, it is not at all

clear how this approach can be extended to structure-changing optimizations such as

loop-fusion, loop-fission, or loop-invariant code motion.

These observations have been made by a number of authors (Huang et al., 2006;

Necula, 2000; Pnueli and Zaks, 2008; Rival, 2004; Tristan and Leroy, 2010), but to

the best of our knowledge the reasons why this style of semantics is problematic

have not been clearly explained. In the remainder of this chapter we will show how

this approach causes difficulties for translation validation. We will then provide a

more precise semantics based on λ-graphs which will allow us to motivate our final

intermediate form.

3In Standard ML this would be written as: let rec b in a.

Chapter 3: Assembly Language 68

3.4.1 Translation Validation

Translation validation requires us to compare the terms of our intermediate form

for equality. The most basic equality checking is simply syntactic equality: two terms

are equal if they are syntactically identical. If we can loosen our definition of equality,

we will be able to validate more programs. For instance, if our intermediate form is

the lambda calculus we have described in this chapter we can add α-equivalence which

changes the rule for comparing lambda terms to:

a[x 7→ z] ≡ b[y 7→ z] z /∈ FV (a) ∪ FV (b)

λx.a ≡ λy.b

We can also add a rule which allows us to equate terms with their reductions. For

our simple lambda calculus this amounts to adding the β-equivalence rule.

(λx.a)b ≡ a[x 7→ b]

These two rules satisfy an important property: together, when interpreted as a direc-

tional rewrite system they are confluent. This means that no matter how we apply

these rules the equivalence relation gives the same result. A system which is not

confluent captures fewer equalities and is less useful for translation validation.

If we extend our language to include a fix-point operator as described in this sec-

tion, we need to look for additional equality rules we can use to capture equivalences

between terms. An obvious choice is to use the λµ calculus which contains a fix-

point operator and is known to be confluent with the following equality rule which

corresponds to the new reduction rule:

µx.e ≡ e[x 7→ µx.e] .

Chapter 3: Assembly Language 69

Unfortunately, the standard λµ calculus is ineffective in our setting, and cannot be

used for translation validation.

To see why λµ is ineffective, consider the example of a function for testing the

evenness of a natural number defined in terms of two mutually recursive functions.

isEven x =

〈
even x

∣∣∣∣∣∣∣
even = λx.if x == 0 then true else odd(x− 1)

odd = λx.if x == 0 then false else even(x− 1)

〉

Using our bracket syntax, we write isEven with the function body even x on the left

of the bracket, and the set of mutually recursive bindings on the right of the bracket.

We can encode this (or any) bracket definition using λµ. To do so we form a tuple

containing the bodies of the mutually recursive bindings. Then we will apply the

fix-point operator to the tuple and project out the component we are interested in.

JisEvenK = π1µp.

λx.if x == 0 then true else π2p(x− 1),

λx.if x == 0 then false else π1p(x− 1)

Now, suppose we apply some optimizations to our original isEven function. For

example, we can inline odd into the body of even, then apply constant folding fol-

lowed by dead-code elimination. The result is that the helper function odd has been

removed.

Chapter 3: Assembly Language 70

isEven′ x =

〈
even x

∣∣∣∣∣∣∣
even =λx.if x == 0 then true

else if x == 1 then false else even(x− 2)

〉

If we translate isEven′ to λµ we get the following definition.

JisEven′K =µ even.

λx.if x == 0 then true

else if x == 1 then false else even(x− 2)

The problem of translation validation is to show that isEven is semantically equiv-

alent to isEven′. Using λµ as our intermediate language, this means we must prove

these two functions are equivalent using our equality rules. However, these two terms

are not equivalent with the rules of λµ.

6` JisEvenK ≡µ JisEven′K

It appears that our theory of equality is too weak to reason about these optimizations.

We could try to enhance our system of equality to handle specific cases, however such

attempts invariable lead to loss of confluence (Ariola and Klop, 1994).

The difficulty with λµ is not that we do not have enough equality rules, but rather

that the equality rules we have are too coarse. In order to reason about transfor-

mations “under a µ,” we need to break the reduction and equality up into smaller

operations. We can do this by formulating a calculus that exposes the underlying

graph structure of the lambda terms. Then we can develop a calculus of graph trans-

formations; this type of calculus is normally called a “theory of cycles.” In developing

Chapter 3: Assembly Language 71

such a theory, we must be careful not to break confluence lest we make no progress.

Ariola and Blom (1997) summarizes the situation this way:

We conclude that a theory of cycles is necessary if one wants to reason
about compilation optimization and execution of programs.

What makes a theory of cycles difficult to develop is that, once lambda-
abstraction and cycles are admitted, confluence is lost [...] To regain
confluence, current formulations of cycles either impose restrictions, such
as disallowing reduction under a lambda-abstraction or on a cycle, or
adopt a framework based on interaction nets.

Ariola and Blom (1997)

As we will see in Chapter 4, our approach falls somewhere in between: we have

restrictions on cycles, and we also use a very simple form of interaction net (Girard,

1989). First, we will look at a semantics based on λ-graphs powerful enough to handle

translation validation under optimizations. Then, we will show how we can restrict

this to arrive at the basic design of our intermediate form.

3.4.2 λ-Graphs

A lambda term can be represented as a graph. Each variable is replaced by a

graph edge which points back to the variable binding site. For example, the graph

representations of the isEven and isEven′ functions are shown in Figure 3.8. We

can reason about recursive definitions and optimizations by developing an algebra

which corresponds to primitive operations on these graphs. one such algebra is a

the representational calculus developed by Ariola and Blom (1997); Ariola and Klop

(1994).

Chapter 3: Assembly Language 72

λeven

if

True @

λodd −

1if

False @

−

1

(a) Original Funtion

λeven

if

True

−

1if

False @

−

1

(b) Optimized function

Figure 3.8: Graph representation of isEven function

Chapter 3: Assembly Language 73

β Reduction: (λx.M) N = 〈M | x = N〉

External Substitution: 〈C[x] | x = M, ...〉 = 〈C[M] | x = M, ...〉

Tree Shaking:
〈
M | x = N,D

〉
=
〈
M | D

〉
x /∈ FV (D)

Associativity: 〈M | x = 〈N | D〉 , Y 〉 = 〈M | x = N,D, Y 〉

Internal Substitution: 〈M | x = C[y], y = N〉 = 〈M | x = C[N]〉

x 6= y ∧ y not shared

Table 3.1: Subset of λ-graph rewriting rules

Recall, that we would like to represent an assembly function as the fixed point of

the denotation of its basic blocks:

Jtf(ti xi){bi}K ≡ λxi : ti.
〈
JentryK, bi = JbiK

〉
To use this for translation validation, we need to be able to reason about transfor-

mations which occur within the set of recursive definitions. That is, we need a set of

equality rules which allow us to equate the graphs in Figure 3.8. The representational

calculus allows us to do this.

Some of the equality rules of representational calculus are shown in Table 3.1. The

first three rules give us the equivalent of the usual β-reduction. The first rule says

that we can rewrite a lambda application as a recursive definition in which the bound

variable is assigned the value of the function argument. The second rule, “External

Substitution”, allows us to perform an explicit substitution on the externally visible

parts of the expression. Finally, the third rule, “Tree Shaking”, allows us to remove

unused definitions. These three rules give us the equivalent of β-reduction, but broken

up into smaller operations. If we use these rules as a left-to-right rewrite system,

Chapter 3: Assembly Language 74

applying a function is done in three steps.

(λx.e) a→ 〈e | x = e〉 → 〈e[x 7→ e] | x = e〉 → 〈e[x 7→ e]〉

To equate isEven and its optimized version, isEven′ we also need the “Internal

Substitution” rule. Using this rule we can perform the critical step of inlining the

definition of odd. This followed by application of the other rules allows us to conclude

that isEven and isEven′ are equivalent.

Completeness. The fragment of the representational calculus we have presented

is incomplete. The incompleteness is fundamentally linked to cycles in the graph

representations of our lambda terms. To see why this is so, consider the following

term involving two mutually recursive lambda functions.

〈y | y = λz.w, w = λx.y〉

λ

λ

This mutually recursive term forms a small cycle as we can see from the λ-graph

representation. We can unfold this term one time to obtain an equivalent, yet larger

version.

〈y | y = λz.w′, w′ = λx.y′, y′ = λx.w′〉

Chapter 3: Assembly Language 75

λ

λ

λ

The two λ-graphs shown above are equivalent, however we cannot yet prove this is

the case. Intuitively, we can see they are equal by providing a mapping between the

variables in the original and unfolded terms. If we use the mapping:

{w′ 7→ w, y′ 7→ y}

then we can substitute in the unfolded term to arrive back at the original term.

To create a complete system, we can generalize the process of creating a mapping

to equate terms. Following Ariola and Blom (1997), we introduce the “copy rule”

shown below.

M = N ∃σ : V ar → V ar.σ(N) = M

This rule says that if we can come up with a mapping of variables that when applied

to one term makes it equivalent to the other term, then we can conclude the two terms

are equivalent. The copy rule makes our system complete, but makes the decision

procedure undecidable because we may need to find substitution functions at any

point in the process.

The σ functions appear in many translation validation under various names. The

σ functions are similar to Necula’s bisimulation relation which are computed heuris-

tically based on intimate knowledge of the compiler (Necula, 2000). The σ functions

are similar to Tristan’s st eq function which is provided by the compiler to aid valida-

tion (Tristan and Leroy, 2008, 2010). Finally, the σ functions are similar to Pneulli’s

Chapter 3: Assembly Language 76

α function which is also provided by the compiler to aide validation (Pnueli et al.,

1998).

LLVM M.D. In order to design a system which is scalable, we have chosen not to

include σ functions in our design. This design allows our tool to operate independently

of the compiler. In the most general terms, this implies that our system is incomplete.

The degree to which this incompleteness is important in practice is a question we

address in Chapter ??. However, we know that our situation is improved by the fact

that our input programs are in a special form.

Our input programs consist of functions with a top-level recursive binding of

simply-typed definitions. That is, if we have a top-level function of the form

〈
M |xi = Ni

〉
we know that each Ni is a simply typed lambda term with no nested recursions. We

can take advantage of this structure by pre-processing each function, aggressively

applying the β-reduction and associativity rules. If we aggressively apply these two

rules we end up with a set of first-order recursive equations. Therefore, we can

consider each function to be a set of first-order, possibly recursive, equations. In the

next chapter we will introduce a graph-based language for combining basic blocks

into complete programs which treats each function as a set of first-order recursive

equations.

Chapter 4

Synchronous Value Graphs

In this chapter we present our intermediate language and its semantics. We for-

mally present Synchronous Value Graphs (SVG), our final intermediate form. This

language builds on the monadic assembly language described in the previous chap-

ter. Assuming we are starting with monadic assembly language, then compiling to

Synchronous Value Graphs will give us referentially-transparent terms which are

amenable to translation validation. The compilation process will be described in

Chapter 6. The algebraic rules are justified by a categorical semantics which we

describe in Section 4.1, and mechanically formalized in Chapter ??.

77

Chapter 4: Synchronous Value Graphs 78

Our intermediate language is called Synchronous Value Graphs (SVG). This lan-

guage is a derivative of Gated Single Assignment form (Havlak, 1993; Tu and Padua,

1995a). The language is formalized as a directed graph where each node represents a

part of the overall computation. The nodes are constructed from the terms described

in Section 4.0.3, and these may include the simply-typed lambda terms described in

the previous chapter.

Assuming we are starting with the monadic assembly language previously de-

scribed, then compiling to SVG form will give us a referentially-transparent interme-

diate representation that captures all of the relevant aspects of the original assembly

code. Our final terms are referentially transparent both with respect to the side-effects

modeled by our monad, and with respect to the control-flow. With our graph repre-

sentation in hand, we can discard the control-flow graph and symbolically manipulate

our representation using algebraic rules.

Why Synchronous? The name Synchronous Value Graphs refers to the semantic

model of our intermediate language. Each function is represented as a graph of

computational nodes with the edges representing dependencies between the nodes.

Semantically, the graph is interpreted as a circuit where each node consumes inputs

from its in-edges and produces outputs on its out-edges. The synchronous moniker

refers to our semantic model in which each edge represents exactly one value at any

given point in the computation. Contrast this with a non-synchronous model in which

each edge represents a (possibly infinite) buffer of values.

While it is possible to use a non-synchronous model for our value graphs, we have

chosen a synchronous model. Our choice to use a synchronous model is motivated by

Chapter 4: Synchronous Value Graphs 79

several concerns. First, our synchronous model allows us to more easily use certain

algebraic rewrite laws. Note, that our semantics is similar to a data-flow semantics

(Caspi and Pouzet, 1996; Kahn, 1974). In such a semantics, synchrony allows for

simplifications which correspond to the process of deforestation (Wadler, 1990) in

functional languages. Because the edges of the graph do not have any storage re-

quirements, deforestation is very easy to justify (Wadler, 1984). It is possible to use

deforestation-like rewritings in non-synchronous settings (Gill et al., 1993), however

they are more difficult to justify (Meijer et al., 1991), and may not apply in our

setting.

Second, our synchronous semantics ensures that we have a well-defined reduction

semantics. Because of this, it is easy to implement as an abstract machine interpreter.

Our original semantics was not synchronous, and we found that implementing an in-

terpreter for value graphs can be very difficult, especially in the presence of nested

loops or diverging programs. The synchronous requirement, and the associated re-

duction semantics, ensures that a simple interpreter will not consume unbounded

memory. Currently, we do not need to interpret our graphs to perform validation.

However, future work may involve interpreting value graphs or compiling graphs back

to assembly code.

Finally, in our estimation, the synchronous semantics is more elegant. The syn-

chronous requirement refines the space of graphs we are considering, and requires

us to be very precise in our translation to SVG. Other graph rewriting systems are

by-and-large synchronous: both implementation projects such as data-flow languages

(Berry and Gonthier, 1992; Halbwachs et al., 1991; Wadge and Ashcroft, 1985), and

Chapter 4: Synchronous Value Graphs 80

theory projects such as the geometric representation of linear logic (Girard, 1989).

These similar systems give us confidence that our choice of a synchronous semantics

is a good one.

The remainder of this chapter is organized as follows: First, we will present the

formal syntax of Synchronous Value Graphs’s with an informal description of its

semantics and accompanying examples. We will then give some background on the

categorical constructs we will use in our semantics. Finally, we will present the formal

categorical semantics for our value graphs. A mechanized version of our semantics

can be found in Chapter ??.

4.0.3 SVG Syntax

P ::= (x,DS) Program

DS ::= { −−−−−−−→x 7→ term } Definition Set

term ::= x, y, z, . . . Variables

| const expr Constants

| map expr term Function Application

| zip(term, term) Pair Construction

| φ(term,term,term) Choice

| µ(term,term) Sequence

| η(term,term) Selection

| σ(term,term) Buffer

Figure 4.1: Syntax of Synchronous Value Graphs

The syntax for Synchronous Value Graphs is show in Figure 4.1. The SVG inter-

mediate form represents a program as a set of assignments of variables to terms: we

Chapter 4: Synchronous Value Graphs 81

call this a definition set, DS. A complete program, P, is represented as a definition

set together with a variable representing the final result of the program. This variable

gives us a term from which we can extract the final value using the definition set.

Note that Synchronous Value Graphs do not include a control-flow graph, nor any

blocks, labels nor control constructs. The SVG form is referentially transparent, and

all control-flow dependency is made explicit in the terms. Once we have SVG form,

there is no additional information encoded in the control-flow graph. Therefore, we

dispense with the control-flow graph at this point, and rely only on the definition set.

The term language includes the language of the expressions (expr or e) we used

to define the monadic forms of instructions in the previous chapter. The const and

map terms are used to lift expressions up into the term language, and zip is used to

create streams of pairs from two streams. The φ-term is similar to the SSA φ-node

described in Chapter 3, however the new φ-term also carries a condition which tells

us which of the two remaining terms will be the final value. The last three terms are

used to encode loops.

Streams. Our goal is to interpret programs built from our term language as a

“circuit” of terms. Each term is connected to its inputs and outputs forming a

precise, symbolic represetation of the program. This way of modeling our langauge

is inspired by synchronous data-flow programs. In this setting every term represents

an infinite stream of values. We will use a Haskell-like notation to describe streams

informally. The notation:

x : s

Chapter 4: Synchronous Value Graphs 82

represents the stream with first element x, followed by the stream s. We will also use

Haskell-like equations to describe streams. For example, the equation:

ones = 1 : ones

represents the infinite stream where each element is the number 1. This last equation

can be understood as replacing the name ones with its definition as needed to produce

a sequence.

In order to give our term language an operational semantics, we will also need to

allow streams to have “empty values”, written as ε. An empty value can be thought

of as a missing element in a stream. The empty value allows a stream producer to fail

to produce an element without changing the frequency of items being produced. As

an example, below is a stream of prime numbers with empty values for the composite

numbers:

[ε, 2, ε, ε, 5, ε, 7, . . .] .

Such a stream might be produced by filtering a stream of natural numbers; the stream

continues to produce elements at the same rate with ε standing in for the non-prime

numbers. Including the empty values will allow us to align this stream with, say, the

original stream of natural numbers. We will return to the issue of element frequency

and empty values when we discuss loops.

Lifting. The language of expressions we defined in the previous chapter contains,

integers, booleans and pairs, but not streams. In order to use our expressions on

streams we need to “lift” them up into the term language. The term language provides

three mechanisms for doing this. The simplest of these is the const term. The term

Chapter 4: Synchronous Value Graphs 83

const e creates a stream in which each element is the expression e. Informally, we

can define const as:

const v = v : const v .

The second lifting term is map. The term map f s applies the function f to each

element in the stream s. If s contains an empty value, the an empty value is returned

instead of applying the function. Informally, map can be defined as:

map f (ε : xs) = ε : map f xs

map f (x : xs) = f x : map f xs

Handling ε in this way allows us to make map a total function even though ε is not

in the range of f . Using const, and map we can define the stream of the number 2

as:

twos = map (λx.x+ 1) (const 1)

Finally, zip allows us to combine two streams into a stream of pairs of values.

Informally, zip is defined as:

zip(ε : xs, ε : ys) = ε : zip(xs, ys)

zip(x : xs, y : ys) = (x, y) : zip(xs, ys)

Note, that zip is only defined if either both streams are empty values or both streams

are non-empty values. Unlike map, zip is not a total function. To ensure that uses of

zip are well defined we will impose a synchronous semantics on our terms. Using zip

we can ensure that the arguments to a function are all available at the same time.

For example, we can define addition on streams as:

sadd = map (λ(x, y).add x y) zip(x, y)

Chapter 4: Synchronous Value Graphs 84

where add is the function defined in Chapter 3 for adding integers. Note, that sadd

will only be defined for streams x and y that produce values at the same frequency.

Put another way, if x can produce an empty value when y does not, then the function

sadd is undefined for those two streams.

Using the terms we have so far, we can give a complete example of a program in

SVG. Consider the function f defined below.

int f() {

return 1 + 2;

}

The SVG representation of this function is1:

f =

z,

xys 7→ zip(const 1, const 2)

z 7→ map (λ(x, y).add x y) xys

The function is represented as the final variable z, and a set of definitions; in this case

a definition for z and a definition for xys. The result, z, is computed by mapping the

addition function over a stream of pairs of the form (1, 2). The result is a constant

stream of the value 3. By using zip we have ensured that the input streams are “in

sync”, and a finite symbolic value can be computed.

Gating. In order to make the control-flow explicit in our terms, we equip the usual

φ-nodes with a condition that tells us which of the two expressions will be used.

Recall, in SSA form, when the control flow is split by a conditional, the join point

must contain a φ-node which recombines the definitions from the two branches. For

example, if we have:

1Here we are ignoring the memory state, but we could recover this by using the monadic version
of add from the previous chapter.

Chapter 4: Synchronous Value Graphs 85

if (c) { x = 1; } else { x = 2; }

Then, the corresponding SSA assembly language is:

entry:

cbr c l1 l2

l1:

x1 = 1

br join

l2:

x2 = 2

br join

join:

x = phi(l1,x1; l2,x2)

In SVG, we include the condition c in the φ-node. We can then remove the control

flow, which gives us:

x1 7→ 1

x2 7→ 2

x 7→ φ(c, x1, x2)

The φ-term is used to represent conditional execution. The term φ(c, x, y) is equiva-

lent to x if c is equivalent to true, and y if c is equivalent to false. The value of x

is captured by the SVG equations even though we have removed the labels, blocks,

and control-flow instructions. Informally, we can define φ using the following rules:

φ(ε : cs, ε : xs, ε : ys) = ε : φ(cs, xs, ys)

φ(true : cs, x : xs, y : ys) = x : φ(cs, xs, ys)

φ(false : cs, x : xs, y : ys) = y : φ(cs, xs, ys)

Note, like zip, all of the input streams must produce either empty or non-empty

values for φ to be defined.

Chapter 4: Synchronous Value Graphs 86

Loops. SVG uses two constructs to represent simple loops. The first, µ, is used to

define variables that are modified within a loop. Each µ is placed at a loop header and

holds the initial value of the variable on entry to the loop and a value for successive

iterations. The µ-term is equivalent to a non-gated φ node from classical SSA. The

second, η, is used to refer to loop-defined variables from outside their defining loops.

The η-term carries the variable being referred to along with the condition required to

reach the η from the variable definition. For example, consider the following simple

loop:

int i = 0;

while (i < 3) i++;

The SVG for of this loop is shown below:

i0 7→ 0

in 7→ µ(i0, in+1)

in+1 7→ in + 1

cn 7→ in < 3

i 7→ η(cn, in)

The variable i is modified within the loop. Therefore, within the loop it is defined

using µ. The initial value of i in the loop is i0, and each successive value is defined

by in+1. The final value of i is defined using η. The η-term will evaluate to in only

with the condition cn is false—the loop has finished. Informally, we can define µ and

Chapter 4: Synchronous Value Graphs 87

η as:

µ(ε : xs, y : ys) = ε : µ(xs, ys)

µ(x : xs, y : ys) = x : ys

η(ε : cs, ε : xs) = ε : η(cs, xs)

η(true : cs, x : xs) = ε : η(cs, xs)

η(false : cs, x : xs) = const x

Using these definition for µ and η we can track the evolution of the streams defined

in the SVG representation of our loop. The table below shows the value of each of

the streams as time progresses.

t1 t2 t3 t4

i0 0 0 0 0

in 0 1 2 3

in+1 1 2 3 4

cn t t t f

i ε ε ε 3

As we enter the loop at time-step t1, the value of in is equal to i0; in+1 is equal to

i0 + 1; our condition cn is true, and the final value i is undefined.

On the second iteration of the loop, in becomes in+1 which had a value of 1 on

the previous iteration. The µ term tells us that this is where we should break the

recursions and use the previous value of in+1. Finally, on the fourth iteration, the

condition cn becomes false, and the final value i becomes in which is 3.

The above description is not entirely accurate. Notice, even though the variable

i0 is defined outside of the loop, we have consumed four zeros from the stream i0

Chapter 4: Synchronous Value Graphs 88

while processing the loop variables. This is not a problem in this case because i0 is

a constant stream. However, the stream i0 and i should produce values at the same

rate (since they are both defined outside the loop). If we tried to zip up i0 and i this

would fail.

If we were to zip i0 and i, then in data-flow terminology we would have a non-

synchronous program, meaning that the different streams are not properly synchro-

nized. Non-synchronous programs cannot be efficiently compiled, and may require

an infinite amount of storage to evaluate. In our case, such programs may produce

infinitely large symbolic values and must be avoided. More urgently, if the variable

i0 was not constant we would have the wrong semantics! This can happen in the case

of nested loops, which we consider next.

Nested Loops. Consider the slightly more complex example involving nested loops

show below:

int x,i = 0;

while (c) {

while(d) x=i;

i++;

}

Let us assume that the conditions c and d each allow for two iterations: The outer

loop will iterate twice, and the inner loop will iterate twice on each outer iteration for

a total of four iterations. More concretely, assume that both c and d are the stream

(t : t : const f). Within the outer loop, there are two variables that are changing

i and x. As before, i is a µ node with initial value 0 and is incremented on each

iteration. The variable x is defined within the inner loop, but it also has a value in

Chapter 4: Synchronous Value Graphs 89

the outer loop. In the outer loop, x starts with value 0 and on each iteration of the

outer loop is an η node with condition d and the value of x within the inner loop: in

this case in. These definitions are shown below.

in 7→ µ(0, in + 1)

xn 7→ µ(0, η(d, in))

If we follow the values for i and x, we can immediately see these definitions are

incorrect. The table below shows the error.

t1 t2 t3 t4 t5 t6

d t t f t t f

in 0 1 2 3 4 5

xn 0 ε 2 ε ε 5

As we step through the iterations of the inner loop, the stream in is consumed and

the final value for x is 5, when it should be 2. The problem is that the stream in

is being consumed by the inner loop but it is not properly synchronized: in is being

consumed “too fast”.

To fix this problem, we introduce our final term σ. The σ-term allows us to “speed

up” a stream by duplicating values within the stream according to some condition.

Informally, we can define σ as:

σ(v, ε : cs, ε : xs) = ε : σ(v, cs, xs)

σ(v, true : cs, x : xs) = v : σ(v, cs, xs)

σ(v, false : cs, x : xs) = x : σ(x, cs, xs)

Chapter 4: Synchronous Value Graphs 90

The σ term takes a buffered value, a stream of conditions, and a stream of values.

When the condition is true, the buffered value is copied to the output. When the

condition if false, the current value from the value stream is copied to the output.

Using σ we can fix our example as follows:

in 7→ µ(0, σ(0, d, in + 1))

xn 7→ µ(0, η(d, in))

With this new definition we now have the expected result:

t1 t2 t3 t4 t5 t6

d t t f t t f

in 0 0 1 1 1 2

xn 0 ε 1 ε ε 2

As we step through the iterations of the inner loop, the values of in are duplicated.

Each time the inner loop terminates we buffer a new value from in.

Intuitively a σ-term must be placed on any non-constant term that is being used

with a loop where it is not defined. In other presentations of Gated SSA form, this

issue is dealt with by indexing all of the µ and η nodes. While this is equivalent, we

prefer our formulation as σ is a natural dual to η: η allows us to refer to variables

defined within a loop from outside by “slowing down” the stream, and σ allows us to

refer to variables defined outside of a loop from inside by “speeding up” the stream.

Also, our formulation more closely matches existing data-flow languages and provides

a cleaner semantic framework. We now turn our attention to the formal semantics of

SVG.

Chapter 4: Synchronous Value Graphs 91

4.1 Categorical Semantics

In this section we present a semantics for Synchronous Value Graphs. Our se-

mantics is denotational and makes use of basic category theory. We prefer this de-

notational model because it provides us with a number of algebraic laws that we

can use to transform our language during the normalization process. While an op-

erational semantics may provide more intuition, proving that our normalizations are

sound is more difficult in an operational setting. However, our specific representation

is inspired by the operational semantics of data-flow languages. Because of this, we

believe that our denotational model is relatively intuitive in addition to being easier

to work with formally.

In the remainder of this chapter we will present our denotational model. First,

we will motivate our model and provide some mathematical intuition. Then, we

will review some basic categorical constructions and give a precise definition of the

category of objects in our model. We will then give a specific representation of our

language and show that it forms such a category.

4.1.1 Motivation

Perhaps the most used mathematical object in programming language semantics

is the monoid. A monoid is a set together with an identity element and an associative

composition operation. Using a Haskell-like notation, we can write the definition of

a monoid as:

class Monoid a where

zero :: a

Chapter 4: Synchronous Value Graphs 92

(⊕) :: a → a → a

Here, we are defining the notion of a monoid in which a is a class of objects, zero is

the identity element, and ⊕ is our composition operation. In addition, each instance

of our Monoid class must satisfy the following laws:

∀x, y, z ∈ a,

x⊕ y ∈ a Closure

zero⊕ x = x⊕ zero = x Identity

(x⊕ y)⊕ z = x⊕ (y ⊕ z) Associativity

We can specify that a class of objects forms a monoid by giving specific definitions

for zero and ⊕. For instance, the singleton set is a monoid, which can be specified

with the following definitions:

data Singleton = X

instance Monoid Singleton where

zero = X

X ⊕ X = X

It is easy to verify the monoid laws are satisfied for this case.

A more compelling example of monoids is sequencing program actions. Consider

a set of program actions P , a sequencing operation “;”, and the “identity action”

skip. This forms a monoid (P, skip, ;), which we can specify as:

data Action = Action P | Skip | Seq Action Action

instance Monoid Action where

zero = Skip

(⊕) = Seq

Chapter 4: Synchronous Value Graphs 93

We can use this definition and the monoid laws to reason about sequences of program

actions. For instance, using the monoid laws, we can conclude that:

∀x, y, z ∈ P, (x; skip); (y; z) = (x; y); z = x; (y; z) .

While this is useful, the monoid does not give us a way to reason about side-effects, or

non-total actions (e.g. actions that do not terminate). In order to model side-effects

and non-totality, we need a more general structure. The essential motivation behind

our use of category theory in this work is to extend the monoid structure to non-total

computations with side-effects.

Categories. In order to motivate our more general structure, we will first reformu-

late our monoid in the language of categories. A category is a collection of “objects”

and “arrows” between the objects. Informally, we can think of a category as a kind

of graph where the elements and edges of the graph can be given different meanings

in different contexts. Category theory studies the properties of these “graphs” where

the specific meanings of the elements and edges are left abstract. This is convenient

for computer science since we often deal with graph-like structures and we would like

to be able to reason about the general properties of these structures.

More formally, a category is a class of objects, a class of morphisms between

objects (the “arrows”), and an associative composition operation on the morphisms.

A category is “small” if we have sets of objects and morphisms rather than proper

classes. In our Haskell-like notation we can specify small categories by considering

our objects to be types:

class Category (cat :: ∗ → ∗ → ∗) where

Chapter 4: Synchronous Value Graphs 94

idC :: cat a a

(◦) :: cat b c → cat a b → cat a c

Here, our objects are the elements of the kind ∗, a.k.a. the types. Morphisms for

a particular category are objects of type (cat a b) where a and b are types. We

require that identity morphisms exists idC, and that we have a composition operator

◦. In addition, each instance must satisfy the following laws:

∀τ ∈ ∗, idτ ∈ cat τ τ Identity

(x ◦ y) ◦ z = x ◦ (y ◦ z) Associativity

The first law says that for every object in the category we must have a morphism

from the object to itself. Our definition satisfies the first law by (brutally) requiring

that we have a term of type ∀a.cat a a. The second law requires that our composition

operator is associative.

We can recast our monoid as a category by noting that every monoid is equiva-

lent to a category with only one element. That is, given a monoid (M,⊕), we can

construct a category with a single object, and with a morphism for each element in

M . Composition in the category is given by the monoid operation ⊕. For our cate-

gory of program actions, we might think of the single object as the type of machine

configurations. Then, each program action is a function between configurations, and

composition is function composition.

Returning to the problem of side-effects and non-termination: how can we model

actions which, for instance, produce an error? One solution, originally proposed by

Moggi (1989), is to enrich the monoid category with more objects. To model errors,

we can introduce a new object ⊥ which represents that an error has occurred. We

Chapter 4: Synchronous Value Graphs 95

Actions Actions with Errors

Objects P P,⊥

Morphisms P → P P → (P +⊥)

Composition Function Composition comp

Table 4.1: Difference between monoid and monad categories.

want our program actions to be functions from the “normal” machine configurations

to machine configurations or ⊥. The morphisms of the category now include the usual

program actions from our original object to itself, and morphisms from the original

object to ⊥. These new morphisms are program actions that produce an error. Our

composition operator is the same as function composition, but we must check for

errors. We give a definition for the new composition as the function comp below.

bind x f = if x ==⊥ then ⊥ else f x

comp f g = λx. bind (f x) g

For convenience we have defined comp in terms of bind, which will be useful later.

The transformation of our monoid category to handle errors is summarized in

the Table 4.1. This new category with two elements has all of the nice properties

of our monoid, but has been extended to programs which can fail2. Note that we

are able to do this without knowing anything particular about the set of program

actions P . We could repeat this process for side-effects, non-termination, and other

kinds of non-totality. If we were to do this a pattern would arise. For each kind

of side-effect we want to model, we would first augment our category with new ob-

jects capable of representing the effect. Then, we provide a transformation from the

2Technically, we need to add one more morphism ⊥ → ⊥ to complete the definition.

Chapter 4: Synchronous Value Graphs 96

original objects and morphisms to the augmented ones. Finally, we have to define a

composition operation which preserves the properties of the original structure. Doing

this systematically results in a class of monads, which are monoids over such trans-

formations. In fact, by systematically adding in support for effects and non-totality,

we have uncovered a class of higher-order monoids.

Monads. In the previous example we modeled errors by transforming the category

enriched with one extra object. We can generalize this technique by considering all

possible transformations on an initial category. A transformation on a category (and

its morphisms) is called a functor. Formally, a functor is a transformation on the

objects, and a transformation on the morphisms. For our small category of types we

can represent this as:

class Functor (t :: ∗ → ∗) where

map :: (a → b) → (t a → t b)

The type constructor t transforms objects, and the function map transforms mor-

phisms. In addition, a functor must satisfy the following algebraic laws which pre-

serve the structure of the category3. For a functor (t,map) between categories C and

D, and for all x, y, f, g ∈ C:

t x ∈ D, map f ∈ D

map (idτ) = id(t τ)

map(f ◦ g) = map f ◦map g

3Technically, a functor is required to be a homomorphism between categories.

Chapter 4: Synchronous Value Graphs 97

If the categories C and D are the same (as in our case), then the functor is called

an endofunctor. We would like to impose our convenient monoid structure on these

functors. Doing so gives us monads: a monad is a monoid over the category of

endofunctors.

More formally, a monad is a functor together with two transformations for each

object in the category that gives rise to the properties we desire. These transforma-

tions on the objects will give us a way to construct the composition operation for

our new category transformed by the functor. The two transformations are typically

called unit, and join, with the following types:

unit :: a → t a

join :: t (t a) → t a

where t is our functor, and a is the specific object in question. The unit and join

transformations must obey the associativity and identity laws below:

join ◦map join = join ◦ join Associativity

join ◦ unit = join ◦map unit Identity .

While this gives us a higher-order analog of a monoid, it is not easy to see from

the join and unit transformations. The monoid-like structure is easier to see if we

introduce a derived transformation bind with the following type and definition:

bind :: t a → (a → t b) → t b

bind x f = join (map f x)

Chapter 4: Synchronous Value Graphs 98

In Haskell, bind is written as the infix operator >>=. Using the infix vesion of bind

we can rewrite the monad laws in a more intuitive way:

unit x�= f = f x Left Unit

m�= unit = m Right Unit

a�= (λx.b x�= c) = (a�= λx.b)�= c Associtivity

From these laws we can see that monads indeed give us a higher-order analog to our

simple monoid: the monad generalizes the monoid to arbitrary functors. We can

represent monads in our small category of types as:

class Functor m ⇒ Monad m where

return :: a → m a

(>>=) :: m a → (a → m b) → m b

This definition says that if m is a functor, then m is a monad given the two operations

return and (>>=). The return function is a polymorphic version of unit, and (>>=)

is a polymorphic version of bind. This implies that we require each unit-bind pair be

structurally equivalent to every other unit-bind pair.

Strength. It is common to also require that monads used to represent programming

languages are strong. A strong monad is a monad over a category with an associative

tensor product ⊗, and a transformation

st : a⊗m b→ m(a⊗ b) .

The st transformation must satisfy a number of laws that preserve the associativity

of the tensor product.

Chapter 4: Synchronous Value Graphs 99

Strength allows us to model computations with an environment. We can transform

any computation from x to y into a computation from x⊗ e to y ⊗ e using strength.

Strength can also be thought of as making our monad compatible with ⊗ by allowing

us to form f ⊗ x for morphisms that produce values in the monad. For our small

category of types, strength is implicitly provided by the base category. That is, we

can define the transformation st by making use of the operations on pairs from the

base category:

st (e,m) = m >>= λx → return (x,e)

Because we are using pairs from the base category, our definition of strength auto-

matically satisfies the relevant associativity laws.

Note, that our tensor product is associative, but not commutative. This is a

good thing since otherwise we could not distinguish between potentially different

computations. For instance, suppose we model state by s, and we have two stateful

computations:

A : x⊗ s→ x′ ⊗ s

B : y ⊗ s→ y′ ⊗ s

The composition of these two computations can be represented as a function with

type:

AB : x⊗ y ⊗ s→ x′ ⊗ y′ ⊗ s

However, there are two possible computations: one in which x occurs first and one in

which y occurs first. This shows a subtle difference between the tensor product in the

base category and strength of the monad. We will return to this in the next section.

Chapter 4: Synchronous Value Graphs 100

Kleisli Category. Just because we can give a definition of monads doesn’t mean

there are any meaningful solutions. Happily, there are two solutions to the monad

equations. These solutions correspond to the algebras over the functor. That is, the

solutions correspond to the induction principle derived from the functor. The more

commonly used solution considers only the free algebras, which correspond to our

usual notion of algebraic data types in functional languages.

The free algebras also have the nice property that they can be represented as the

category of morphisms of type: a → m a where m is a monad. These morphisms,

referred to as the Kleisli arrows, are exactly the functions we used to represent errors

previously.

For any category C and monad m we can construct the Kleisli category of m.

For example, assume C is a small category of types and pure functions as we would

have with the simply-typed lambda calculus. In the Kleisli category each identity

morphism is given by return applied the identity morphisms of C, and each morphism

in the Kleisli category corresponds to a Kleisli arrow in C. Therefore, the Kleisli

category gives us a model for computations with side-effects, non-terminations, etc.

Unfortunately, these categories are not flexible enough to represent the semantics of

SVG.

4.2 Generalizing Monads

Monads (and the associated Kleisli categories) have been used successfully to

model different types of side-effects and non-total functions (Claessen, 1999; Jones,

2002; Nanevski et al., 2006). However, not all types of partial functions can be rep-

Chapter 4: Synchronous Value Graphs 101

resented as monads. Perhaps the first example of the inability to structure programs

using monads was noted by Swierstra and Duponcheel (1996) when constructing a

parsing library. Other examples include reactive programming (Hudak et al., 2003;

Nilsson et al., 2002), user interfaces (Courtney and Elliott, 2001), dynamic opti-

mization involving generalized algebraic data types (Nilsson, 2005), and data-flow or

stream processing languages (T. Uustalu, 2005).

Data-flow languages are particular relevant for our purposes since Synchronous

Value Graphs can be understood as stream processing constructs that are “wired”

together to produce a complete program. Data-flow programming has a long history

dating back to the seventies. It was at this time that Kahn discovered the relationship

between reactive networks and stream processing languages (Kahn, 1974). At the

same time, the programming language Lucid was being developed, and the design

included a number of stream processing primitives (Wadge and Ashcroft, 1985).

In the previous section we have seen that a monad helps us represent the internal

state of a term. A simple stream processing function also has state. However, this

state is not internal to the stream function, but is in the context in which the stream

function is placed. The value of a stream function at any time depends on the values

of its inputs. Contrast this to a reference cell which depends on the internal state

of the reference cell at a given time. The reference cell can be represented with a

monad, the stream function requires a co-monad (Uustalu and Vene, 2005).

A co-monad is the dual of a monad, and can be defined by the duals of return

and bind:

class CoMonad m where

Chapter 4: Synchronous Value Graphs 102

coreturn :: m a → a

cobind :: m a → (m a → b) → m b

The coreturn and cobind functions must satisfy certain laws. If the laws are satisfied,

we can use a co-monad to reason about stream functions. For our purposes here, we

can dispense with this development and rather use the co-monad concept to gain a

little bit of mathematical intuition.

In previous sections we have seen that a monad gives rise to a category of mor-

phisms of the form: a → m a, where m is a monad. Similarly, a co-monad gives

rise to a category of morphisms of the form: m a → a, where m is a co-monad. For

monads, we can think of m a as containing some internal information, such as the

state of the current value of a reference cell. For co-monads, we can think of m as

containing contextual information, such as the current values of a stream function’s

inputs. Co-monads can be used as a model for simple stream processing languages

or Kahn networks.

One immediate difficulty with Kahn networks (and the Lucid stream processing

functions) is that they are difficult to implement efficiently. However, it was realized

that certain kinds of networks, networks with a synchronous clock, could be imple-

mented efficiently. The implementation technique involved eliminating intermediate

data structures used to store values moving from one process to another. This imple-

mentation technique is essentially a form a “list-less” programming (Wadler, 1984), or

the more general technique of deforestation (Wadler, 1990) found in many functional

language compilers. A number of languages have been developed on the synchronous

Kahn network model, including Lustre (Halbwachs et al., 1991) and Esterel (Berry

and Gonthier, 1992).

Chapter 4: Synchronous Value Graphs 103

In Synchronous Value Graphs, we also have a synchronous requirement which is

informally described by the ε values appearing in our definitions: each term must ei-

ther consume ε values or non-ε values, but not a mixture of the two. This synchronous

requirement can be modeled by considering that each term is influenced by both its

context and some internal state (Power and Robinson, 1997). When looked at in this

way, a synchronous data-flow language is a combination of monads and co-monads.

This combination can be realized by morphisms of the form: m a→ m a, where m is

a co-monad, and m is a monad (Uustalu and Vene, 2005).

Giving a semantic model for these morphisms is slightly complex. Remember,

monads are derived by establishing a monoidal structure over functors on a category.

If our category is C, then our monads are a monoidal structure on the functors from

the category C. For co-monads, we can consider functors from the dual category Cop

(Blute et al., 1997). To combine these two, we can consider functors over the product

of C and Cop; these are functors of the form:

Cop × C → Set .

In fact, these functors are more general than monad/co-monad combinations4. In the

next section we will develop a semantic structure analogous to Kleisli categories for

functors of this form. This will form the basis of our semantic model for Synchronous

Value Graphs.

Another difficulty facing synchronous data-flow languages is the inability to define

abstraction, application and recursion within the language. In the data-flow languages

discussed so far, each stream processor is a block box. The processors cannot be

4For example, they allow for non-deterministic data-flow languages.

Chapter 4: Synchronous Value Graphs 104

abstracted or applied, and it is not possible to use a general fix point operator in their

definition. However, more recently, it has been shown that abstraction, application

and recursion can be defined in a synchronous language (Caspi and Pouzet, 1996).

These developments have been incorporated into modern data-flow languages such as

recent versions of Lustre and Lucid Synchrone (Caspi and Pouzet, 2002).

The development of general recursion in data-flow languages, in many ways, paral-

lels the development of general recursion for monads (Erkök, 2002; Erkök and Launch-

bury, 2002). In the next section we will present our semantic model and show how

recursion operators can be defined.

4.3 Arrows

In order to define our semantics, we will start with a base category that models

our expression language. Our expression language is a variant of the simply-typed

lambda calculus, and can be modeled as a Cartesian closed category (Jung et al.,

1988). In such a category, we have closure over products and exponentials. That is,

for any two objects x and y in the category, x× y and x→ y are also in the category.

Furthermore, there is a bijection between x× y → z and x→ y → z which allows us

to define currying and uncurrying.

Given our base category C, the model for Synchronous Value Graphs is a category

of functors of the form

Cop × C → Set .

We can think of Cop as representing the context, and C as representing side-effects.

Technically, Set is stronger than we need (Power and Thielecke, 1999), but it is fine

Chapter 4: Synchronous Value Graphs 105

for our purposes. Following Paterson (2003) we will call the objects of our category

“arrows”.

The objects of our category, arrows, are functors. If a is an arrow, then (a x y)

is a set if x and y are objects of the base category and a is contravariant in x and

covariant in y. The elements of the set (a x y) are the computations from x to y. We

will provide a transformation for morphisms called arr. If (f : x→ y) is a morphism

in the base category from x to y, then (arr f) is the set of computations (a x y).

We also provide a way to compose arrows together. The wiring operator, (≫) is

similar to composition, but the arguments are reversed to give a left-to-right style

(arguments come from the left and results go to the right):

(≫) : a x y → a y z → a x z .

Finally, we need to be able to lift products from the base category. For monads,

this is done via strength which does not conflate computations which are in different

orders. Since our arrows are a generalization of moands, we must allow for the same

structure. We do this by providing a half product called first (Power and Robinson,

1997). The half product has type (in our category):

firstX : (a→ b)→ a⊗X → b⊗X .

This allows us to build a product from a set of computations by inserting them into

the first element of a product. The dual operation second can be defined in terms of

first, and the two together give us a way to build products in our category. Note,

we are forced to be explicit about which of the two halves of the product is first in a

composition.

Chapter 4: Synchronous Value Graphs 106

We can express our definition of arrows using Haskell-like notation. These defini-

tions follow the structure found in the Haskell Standard Libraries (Paterson, 2003).

class Category a ⇒ Arrow (a :: ∗ → ∗ → ∗) where

arr :: (b → c) → a b c

(≫) :: a b c → a c d → a b d

(≫) = λf g. g ◦ f

first :: a b c → a (b,d) (c,d)

Starting from our small category of types and pure functions, an arrow, a, is a con-

structor of two arguments corresponding to our functor. The arr function builds

an arrow from a function in the base category. The infix operator, ≫, composes

two arrows to form a third. We can give a default implementation of ≫ in terms

of categorical composition by reversing the arguments. Finally, the function first

provides our compatibility with products from the base category.

We require that our arrows form a category. We will derive our identity morphisms

using arr applied to the identity morphisms from the base category. That is, we define

our identity morphisms by:

ida τ τ = arr(idτ→τ) .

Then, we must require our composition operator is associative, and that it preserves

the structure of the base category:

arr id≫ f = f ≫ arr id = f(4.1)

(f ≫ g) ≫ h = f ≫ (g ≫ h)(4.2)

arr(f ◦ g) = arr g ≫ arr f(4.3)

Equations (4.1) and (4.2) ensure that our arrows form a category. Equation (4.3)

preserves the structure of the base category with respect to composition.

Chapter 4: Synchronous Value Graphs 107

Although we have defined arrows by fiat, we could just as easily derive equations

(4.1)-(4.3) by forming a monoid on our category of functors. To form a monoid, we

define the monoidal product of two functors A,B : Cop×C → Set, to be the smallest

set containing all functors such that

a x y × a y z ≫−→ a x z

is parametric in y. This monoid requirement is equivalent to equations (4.1)-(4.3).

The proof of this fact is beyond the scope of this work. However, a complete account

can be found in Borceux (2004).

Our half-product and composition must also be compatible. Recall, in the case

of monads this is achieved through a property called “strength.” Our arrows have

an analogous property called internal strength which is established by the following

equations (Paterson, 2003; Power and Thielecke, 1999):

first(f ≫ g) = first f ≫ first g(4.4)

first(arr f) = arr(f × id)(4.5)

first f ≫ arr(id× g) = arr(id× g) ≫ first f(4.6)

first f ≫ arr π1 = arr π1 ≫ f(4.7)

first(first f) ≫ arr α = arr α ≫ first f(4.8)

with α = λ((a, b), c)→ (a, (b, c))

Examples. The arrow definition can best be understood through examples. Through-

out this section we will use two basic examples: pure functions, and stream functions,

both of which are instances of arrows. Pure functions, with constructor (→), form

an arrow. Below is the definition of the arrow instance for pure functions.

Chapter 4: Synchronous Value Graphs 108

instance Arrow (→) where

arr f = f

f ≫ g = g ◦ f

first f = λ(a, b) → (f a, b)

It is easy to verify equations (4.1)-(4.8). For example, for equation (4.3) we have:

arr(f ≫ g) = g ◦ f = arr g ≫ arr f .

More importantly, our second example of stream functions are also form an arrow.

The type of a stream functions is [a]→ [b], where [a] is the type of an infinite stream

of values of type a. We will write this type as (SF a b). The type SF of stream

functions forms an arrow according to the definition below.

newtype SF a b = SF ([a] → [b])

instance Arrow SF where

arr f = SF (map f)

SF f ≫ SF g = SF (g ◦ f)

first (SF f) = SF (λl → let (bs,ds) = unzip l in zip (f bs) ds)

Where unzip and zip have types:

zip :: [a] → [b] → [(a,b)]

unzip :: [(a,b)] → ([a],[b])

Derived Functions. Having a definition of the arrow class, we can now define a

couple of essential combinators in terms of the arrow functions. The function second

is the dual to first, and can be defined as:

second :: Arrow a ⇒ a b c → a (d,b) (d,c)

second f = arr swap ≫ first f ≫ arr swap

where swap (x,y) = (y,x)

Chapter 4: Synchronous Value Graphs 109

Using first and second we can define the split combinator. The split combina-

tor, written infix as (***), splits an input pair between two arrows and returns the

combined result.

(∗∗∗) :: Arrow a ⇒ a b c → a b’ c’ → a (b,b’) (c,c’)

f ∗∗∗ g = first f ≫ second g

Finally, the fan-out function, written infix as (&&&), duplicates its input giving a copy

to each of the two argument arrows. The result of the two arrows is combined and

returned.

(&&&) :: Arrow a ⇒ a b c → a b c’ → a b (c,c’)

f &&& g = arr (λb → (b,b)) ≫ (f ∗∗∗ g)

4.3.1 Relationship to Monads

As we have noted, arrows are a generalization of monads. Now that we have a

concrete definition of arrows, we can make the relationship between the two explicit.

In this section we will explore the relationship between monads and arrows and clarify

our earlier claim that stream functions do not form a monad.

The relationship between monads and arrows is captured by a single property:

the ability to define application. All arrows for which application can be defined

form a monad and vice versa. Recall that arrows represent computations and not

values. Therefore, in general, the arrow combinators are point-free with respect to

values: intermediate values are never named, only computations are named. However,

suppose that we did have a named value, then in order to make any use of it, we would

have to apply an arrow to it. That is, if we have a value of type α, and an arrow

Chapter 4: Synchronous Value Graphs 110

from α to β, then, to create a monad, we must be able to apply the value to the

arrow. This can be seen as a kind of uncurrying, and is captured by the definition

ArrowApply below.

class Arrow a ⇒ ArrowApply a where

app :: a (a b c, b) c

The normal function type supports apply trivially.

instance ArrowApply (→) where

app (f,x) = f x

The ability to apply a computation to a value is the key property of a monad.

If an arrow supports apply, then each arrow can be put into correspondence with a

monadic function (a pure function with a monadic result). These functions are the

Kleisli arrows of the monad. Therefore, for any arrow that supports application, we

can make the following identification:

A α β ≡ α→ A () β ≡ α→M β

where M is a monad. This also corresponds to the notion that a monad is a special

case of our class of functors in which the contra-variant argument is not required.

Using this identification, we can now define a monad for any arrow that supports

application.

newtype ArrowApply a ⇒ ArrowMonad a b = ArrowMonad (a () b)

instance ArrowApply a ⇒ Monad (ArrowMonad a) where

return x = ArrowMonad (arr (λz → x))

ArrowMonad m >>= f = ArrowMonad (m ≫ arr f’ ≫ app)

where f’ x = let ArrowMonad h = f x in (h, ())

Chapter 4: Synchronous Value Graphs 111

Although the above definition of monad is sufficient, is it illuminating to see

a more direct definition of the arrow instance associated with a monad. We can

provide a more direct definition that is directly related to the computation functions

(or Kleisli arrows) of the monad. For any monad, we can define the set of Kleisli

arrows associated with that monad; these are all of the functions with co-domain in

the monad. The set of Kleisli arrows for a given monad form an arrow according to

the definition below.

newtype Kleisli m a b = Kleisli (a → m b)

instance Monad m ⇒ Arrow (Kleisli m) where

arr f = Kleisli (return ◦ f)

Kleisli f ≫ Kleisli g = Kleisli (λb → f b >>= g)

first (Kleisli f) = Kleisli (λ(b,d) → do c ← f b

return (c,d))

Of course, all arrows formed from monads also support application.

instance Monad m ⇒ ArrowApply (Kleisli m) where

app = Kleisli (λ(Kleisli f, x) → f x)

The ability to define application is a necessary and sufficient condition for an arrow

to form a monad. This ability is closely related to the fact that the contra-variant

argument of the functor plays no part: the context of the computation is not relevant.

Note, that there is no reasonable way of defining app for stream functions.

Like stream functions, Synchronous Value Graphs do not support application.

Therefore, we will use arrows without application to structure our language. Even

though we lack application, there are other properties Synchronous Value Graphs do

have. We will look at these properties now.

Chapter 4: Synchronous Value Graphs 112

4.3.2 Choice

Even though many arrows do not support application (and thus are not monads),

more arrows do support choice. Choice is analogous to the first and second func-

tions defined in the Arrow class. Just as the first and second functions allow us to

define arrows over a product type, the choice functions, left and right, allow us to

define arrows over a sum type. Similar to products, a complete definition of choice

only requires the function left.

class Arrow a ⇒ ArrowChoice a where

left :: a b c → a (Either b d) (Either c d)

The function left must satisfy the following laws:

left(arr f) = arr(f ⊕ id)(4.9)

left(f ≫ g) = left f ≫ left g(4.10)

left f ≫ arr(id⊕ g) = arr(id⊕ g) ≫ left f(4.11)

arr(Left) ≫ left f = f ≫ arr Left(4.12)

left(left f) ≫ arraccossum = arr assocsum≫ left f(4.13)

where

assocsum :: Either (Either a b) c → Either a (Either b c)

assocsum (Left (Left a)) = Left a

assocsum (Left (Right a)) = Right (Left a)

assocsum (Right a) = Right (Right a)

Our definition of left and the associated laws make use of a sum type, Either, from

the base category. The function right can be defined in terms of left, also relying

on the base category.

Chapter 4: Synchronous Value Graphs 113

right :: ArrowChoice a ⇒ a b c → a (Either d b) (Either d c)

right f = arr mirror ≫ left f ≫ arr mirror

where mirror (Left x) = Right x

mirror (Right y) = Left y

We can construct two operators for building arrows over sum types. The merge

function, (+++), combines two arrows to produce a new arrow over their combined

argument and result types.

(+++) :: ArrowChoice a ⇒ a b c → a b’ c’ → a (Either b b’) (Either c c’)

f +++ g = left f ≫ right g

The (|||) operator combines two arrows with the same result type into a new arrow

with a argument sum type.

(|||) :: ArrowChoice a ⇒ a b d → a c d → a (Either b c) d

f ||| g = f +++ g ≫ arr untag

where untag (Left x) = x

untag (Right y) = y

These combinators can be used to “wire-up” networks of arrows.

Choice Examples. Both normal functions and Kleisli arrows support choice with

the following implementations.

instance ArrowChoice (→) where

left f = either (Left ◦ f) (Right ◦ id)

instance Monad m ⇒ ArrowChoice (Kleisli m) where

left m = let Kleisli f = m ≫ arr Left

Kleisli g = arr Right

in Kleisli (either f g)

More importantly, stream functions also support choice.

Chapter 4: Synchronous Value Graphs 114

instance ArrowChoice SF where

left (SF f) = SF ((arr getLeft ≫ f) &&& arr id ≫ arr replace)

where getLeft (Left x : xs) = x : getLeft xs

getLeft (Right _: xs) = getLeft xs

replace (x:xs, Left _:ys) = Left x : replace (xs,ys)

replace (xs, Right y:ys) = Right y: replace (xs,ys)

This last definition of choice for stream function shows the use of the combinators

defined in the section. Hopefully, these definitions also give some intuition as to how

complex programs can be constructed.

4.3.3 Loops

The last extension to arrows that we will look at is the ability to define a form of

recursion on arrows. Our recursion operator is called loop, and can be thought of as

a form of value recursion. Arrows that support loop are members of the ArrowLoop

class:

class Arrow a ⇒ ArrowLoop a where

loop :: a (b,d) (c,d) → a b c

The second component of the arrow result (d) is fed back into the second component

of the argument forming a loop. The loop function must satisfy a number of algebraic

Chapter 4: Synchronous Value Graphs 115

laws which are shown below.

loop(arr f) = arr(trace f)(4.14)

loop(first h≫ f) = h≫ loop f(4.15)

loop(f ≫ first h) = loop f ≫ h(4.16)

loop(f ≫ arr(id× k)) = loop(arr(id× k) ≫ f)(4.17)

loop(loop f) = loop(arr unassoc≫ f ≫ arr assoc)(4.18)

second(loop f) = loop(arr assoc≫ second f ≫ arr unassoc)(4.19)

where

trace :: ((b,d) → (g,d)) → b → g

trace f b = let (c,d) = f (b,d) in c

We will look closely at these laws in Chapter 5 when we present a mechanized seman-

tics for Synchronous Value Graphs.

Loop Examples. For normal functions, the definition of loop relies on value re-

cursion at the term level. In a language like Haskell with lazy evaluation, we can

define loop for function as:

instance ArrowLoop (→) where

loop f b = let (c,d) = f (b,d) in c

Notice, the second element of the result of f, the variable d, is also an argument to

the function f.

The loop function for arrows is similar to the mfix function that can be defined

for some monads (Erkök, 2002; Erkök and Launchbury, 2002). In fact, any monad

that supports mfix has an associated arrow that supports loop.

Chapter 4: Synchronous Value Graphs 116

instance MonadFix m ⇒ ArrowLoop (Kleisli m) where

loop (Kleisli f) = Kleisli (liftM fst ◦ mfix ◦ f’)

where f’ x y = f (x, snd y)

In this case, the mfix operation is providing the equivalent of value-recursion within

the monad.

Stream functions also support loop; again, the definition relies on value recursion

at the term level.

instance ArrowLoop SF where

loop (SF f) = SF (λbs → let ds = snd (unzip cd)

cd = f (zip bs ds)

in fst (unzip cd))

4.3.4 Denotational Model

In the previous sections we presented a general semantic framework that is capable

of modeling our intermediate representation. We have presented the framework with

an algebraic specification. This specification has been shown to correspond to traced

premonoidal categories (Power and Thielecke, 1999), which gives us a rich language

for describing our terms. However, we must now give a specific instance of this

framework and show it satisfies the algebraic specification.

In the remainder of this chapter we will give our denotational model. First, we will

provide some intuition by looking at an operational interpretation for synchronous

data-flow languages. From this operational interpretation we can construct a math-

ematical model which mirrors our intuitive understanding. We will then show this

mathematical model forms one of the categories described in the previous sections.

Chapter 4: Synchronous Value Graphs 117

Data-flow Semantics

To motivate our categorical semantics, we will first look at how synchronous data-

flow languages are modeled operationally. Recall from section 4.0.3 that our informal

definition of Synchronous Value Graphs was specified as stream processing primitives.

The informal definition of map is repeated below.

map f (ε : xs) = ε : map f xs

map f (x : xs) = f x : map f xs

This style of semantics has been formalized by Caspi and Pouzet (1996) and others.

To formalize this semantics, we give a judgement of the form: t
v−→ t′. This is read as

t steps to t′ and produces the value v on its output stream. The operational rules for

map are:
(map0)

x
ε−→ x′

map f x
ε−→ map f x′

(mapn)

x
v−→ x′ f v →∗ w

map f x
w−→ map f x′

The mapn rule says that map f x steps to map f x′ and produces the value w if x

steps to x′ and produces the value v, and f v evaluates to w in some number of steps.

This last antecedent uses the operational semantics of our simply-typed expression

language. This demonstrates several essential features of this style of semantics. First,

the semantics is defined in terms of the semantics for expressions. Second, the terms

evolve as they consume inputs. This last feature is more apparent in the case of η.

Recall the informal specification of η has as one of its rules

η(false : cs, x : xs) = const x

Chapter 4: Synchronous Value Graphs 118

with the corresponding operational rule:

(ηf)

x
false−−−→ x′ c

w−→ c′

η(x, c)
w−→ const w

.

We can see that an η term transforms into a const term when the input becomes

false. Finally, the terms only evolve and produce output when inputs are available,

and only one input is processed at a time. A complete operational semantics for

Synchronous Value Graphs can be found in Appendix A.

Model

Our model is designed after the key features of dataflow semantics. Whenever

inputs are ready, the term can evolve into another term according to the semantics of

the expression language. The terms can only evolve after an input is read, otherwise

the term is stalled waiting for an input. Finally, each term can only read an input after

it has evolved to a new term. Specifically, we model a Synchronous Value Graphs as

being in one of two states: waiting for input, or producing output. These two states

are represented by the data type shown below.

data Term a b

= In (a → Term a b)

| Out b (Term a b)

When a term is waiting for input, it is represented as In f where f is a function in

our expressions language that when applied to the eventual input will produce a new

term. When a term is producing output, it is represented by Out x t where x is

the output, and t is a new term that will replace the current one when the output is

Chapter 4: Synchronous Value Graphs 119

consumed.

The type parameters a and b, the functions on input terms, and the x in the output

term are all objects in our base category: i.e. expressions and types of expressions.

We enrich the category via the two-place functor Term. We will now show that the

Term functor is an arrow by defining all of the necessary transformations. Formal

proofs of the algebraic laws are given in Chapter 5.

Terms form a category. The first definition shows how our SVG terms form

a category. We must provide an identity element for each object in the category,

and a composition operator. The identity elements are all constructed from a single

polymorphic term called id. An identity element takes an input, x and transforms

to an output term which produces x. After output, the identity term becomes the

identity term again.

instance Category Term where

id = In (λx → Out x id)

f ◦ g = case f of

Out x f’ → Out x (f’ ◦ g)

In f’ → case g of

Out y g’ → f’ y ◦ g’

In g’ → In (λx → f ◦ g’ x)

Composition is a bit more involved. To compose SVG terms, we look at the first

term to see if it is an input or an output term. If it is an output term, then we can

use the base category composition operator to construct a composed output term.

Otherwise, if we have an input term, then we have to also look at the form of the

second term. An input composed with an output is the composition of the applied

input function to the output value with the output term. An input composed with

Chapter 4: Synchronous Value Graphs 120

another input is an input term with the two input functions composed with the base

category composition operator.

Terms are arrows. Our SVG terms also form an arrow. The arrow built from

definitions of arr and first. The arr function is similar to the category identity

function, but we apply a base category function to each value in the output sequence.

instance Arrow Term where

arr f = In (λx → Out (f x) (arr f))

first f = bypass epsilon f

epsilon = Nothing

bypass Nothing (In f) = In (λ(b,d) → bypass (Just d) (f b))

bypass (Just d) (Out c sp) = Out (c,d) (bypass epsilon sp)

bypass Nothing sp = In (λ(b,d) → bypass (Just d) sp)

To implement first, we transform the argument term using the function bypass

with an initial first argument of epsilon. The function of epsilon is to wrap the

argument term in a term which inputs/outputs pairs of values. The first value of the

pair is fed into the argument term and the second value of the pair is passed through

the term.

Terms support choice. To support choice, we must give an implementation of

left which operates similar to first.

instance ArrowChoice Term where

left (Out x f) = Out (Left x) (left f)

left (In f) = In (λx → case x of

Left a → left (f a)

Right a → Out (Right a) (left (In f)))

Chapter 4: Synchronous Value Graphs 121

For an output term, left simply wraps the output values in the base category term

Left. If we have an input term, then we have to check the value. If the value is a

Left, then we apply our function. Otherwise, we skip the Right value letting it pass

through the term.

Terms support recursion. Finally, we need our Synchronous Value Graphs to

support recursion. The loop function defines the meaning of recursion in our graphs.

instance ArrowLoop Term where

loop = loop’ epsilon

loop’ :: Maybe c → Term (a,c) (b,c) → Term a b

loop’ x (Out (a,b) f) = Out a (loop’ (Just b) f)

loop’ (Just x) (In f) = In (λb → loop’ Nothing (f (b,x)))

The operation of loop can be thought of as connecting wires between the input and

output terms. The looping term has an “internal” wire which is connected back to

itself. This extra wire is carried as one component of a pair which is not part of

the term’s visible type. For an output term, we copy the internal wires value to our

sub-terms. For an input term, we apply the base category function to the normal

input and our internal value. Having used the internal value, we do not pass it along

to the sub-terms.

At this point we have a semantics framework, and a concrete instance of the

framework we can use to model our language. In the next chapter we will formalize

the model further by providing mechanized proofs of the categorical properties. In

Chapter 7 we will look at how these algebraic rules are used in practice.

Chapter 5

Mechanized Semantics and

Rewrite Rules

In this chapter we present a mechanized version of the semantics described in

Chapter 4. We have formalized our semantics in the theorem prover Coq. The formal

definition of the model and the categorical properties justify the rewrite rules based

on those laws. Also, this gives us a framework for formally proving additional rewrite

laws.

122

Chapter 5: Mechanized Semantics and Rewrite Rules 123

5.1 SVG Category

The first step in mechanizing our definition of Synchronous Value Graphs, is

defining our basic model and showing it forms a category. Recall, our model is based

on the operational semantics of data-flow languages, and consists of terms either

waiting for input or producing output. An informal definition of these term is given

in Section 4.3.4.

In our model, each term represents an infinite stream of values. The output of

one term can be “wired” up to the input of another forming larger terms. In order to

formalize these definitions, we have to be able to define infinite streams. Our proof

development system, Coq, provides a mechanism for defining infinite object through

co-inductive definitions (Coq development team, 1989–2008). The co-inductive defi-

nition of our terms is shown below.

CoInductive Term (a b : Set) :=

| In : (a -> Term a b) -> Term a b

| Out : b -> Term a b -> Term a b

| Wrap : Term a b -> Term a b.

Implicit Arguments In [a b].

Implicit Arguments Out [a b].

Implicit Arguments Wrap [a b].

There are several things to note about this definition. First, each term is parametrized

by two values of type Set. These values represent the core-language types for the

input and output of the term. We see the familiar In and Out terms. In takes a

core-language function from the input type to a new term, and Out takes an output

value and a term.

Chapter 5: Mechanized Semantics and Rewrite Rules 124

Notice that as our “core language” we are using the built-in function space of Coq

itself. This core language is strictly more expressive than our core language of simply

types lambda terms. However, using Coq’s built-in function makes proofs easier to

develop and does not create any difficulties. In fact, we are free to change our model

to use Coq’s language as our core language if we like, however equality would be more

complex.

Finally, we have a third term constructor Wrap that we did not present in the

informal semantics. This term is used to build co-inductive definitions, but has no

effect on the semantics. Because Coq relies on the Curry-Howard correspondence

(Curry, 1934), we must show that our co-inductive definitions make progress. The

easiest way to do this is to make sure all recursive calls are under a constructor.

The Wrap constructor is used in cases where our recursive calls would not otherwise

be under an In or Out constructor. We will see an example of this when we define

composition below.

Forming a category. To show that our terms form a category, we must define

the identity morphisms, and an associative composition operator. Both of these

definitions follow exactly those given in Section 4.3.4. The identity morphisms are

defined as the set of terms which can be instantiated from the definition ident below.

CoFixpoint ident {a : Set} : Term a a :=

In (fun x => Out x ident).

Note that, like our terms, ident is a co-inductive definition: it forms an infinite term

due to the recursion under the Out constructor. Generally, all of the definitions which

Chapter 5: Mechanized Semantics and Rewrite Rules 125

manipulate terms will be co-inductive. The definition of composition is shown below.

CoFixpoint comp {a b c:Set} (f:Term b c) (g:Term a b) : Term a c :=

match f with

| Out x f’ => Out x (comp f’ g)

| In f’ =>

match g with

| In g’ => In (fun x => comp f (g’ x))

| Out y g’ => Wrap (comp (f’ y) g’)

| Wrap g’ => Wrap (comp f g’)

end

| Wrap p => Wrap (comp p g)

end.

We have already seen composition defined in the informal semantics. This definition

has an additional case for the Wrap constructor, and we see the need for Wrap in

the case of composing an input with an output. When composing an input with an

output, we call comp recursively with (f’ y) and g’. However, in order to establish

that our co-inductive definition is making progress we enclose this call in Wrap.

Equivalence The primary purpose of mechanizing our semantics is to prove that

our rewrite laws are sound. This involves proving that terms are equivalent. We

say two terms are equivalent if they produce the same infinite stream of values when

given the same infinite stream of inputs. Often this notion of equivalence is called

bisimilarity.

We define equivalence using a set of proof rules. Hence, two terms are equivalent

if and only if we can prove so using our rules. The rules for deciding equivalence are

Chapter 5: Mechanized Semantics and Rewrite Rules 126

shown below.

In

∀x, f x ∼ g x

In f ∼ In g

Out

x ≡ y t ∼ u

Out x t ∼ Out y u

WrapL

t ∼ u

Wrap t ∼ u

WrapR

t ∼ u

t ∼ Wrap u

There are four rules: one for input term, one for output terms, and two rules for

our Wrap constructor. The first rule says that two input terms are equivalent if

their functions always produce equivalent terms when applied to the same input.

The second rule says that two output terms are equivalent if they output the same

value, and continue to equivalent terms. Note that we are using the core-language

equivalence for values (≡). The third and fourth rules say that if we encounter a Wrap

term we can discard it. It is in exactly this sense that we mean the Wrap terms do

not have any semantic meaning.

Our equivalence proof rules can be easily encoded using a co-inductive relation on

terms. We use the name bisim for the relation, which is shown below.

CoInductive bisim {a b : Set} : Term a b -> Term a b -> Prop :=

| biIn : forall f g,

(forall x, bisim (f x) (g x)) ->

bisim (In f) (In g)

| biOut : forall x y t u,

x = y -> bisim t u ->

bisim (Out x t) (Out y u)

| biWrapL : forall t u,

bisim t u ->

bisim (Wrap t) u

| biWrapR : forall t u,

bisim t u ->

bisim t (Wrap u).

Notation "a ~ b" := (bisim a b) (at level 80).

Chapter 5: Mechanized Semantics and Rewrite Rules 127

Each of the four proof rules is represented by a constructor in our definition. Reading

from top to bottom we can see the antecedents and consequent of each rule. For con-

venience, we have defined a notation which allows us to write a ∼ b for (bisim a b)

in the remainder of the development.

5.1.1 Co-inductive Proof Techniques

One of the difficulties of working with co-inductive definitions, is that we lose the

basic proof technique of decomposition. Normally, with finite terms, we can reason

about properties by looking at the shape of a term. We can replace a term by its

definition and reason case by case on the different possibilities. With infinite terms,

this is not viable in general because the process of unrolling the definition may go on

forever.

Nevertheless, we can still achieve a limited form of decomposition by proving

special cases. We will do this using a helper function. The helper function is the

identity function specialized to our Term type.

Definition Term_decompose {a b:Set} (t:Term a b) : Term a b :=

match t with

| In f => In f

| Out x f => Out x f

| Wrap p => Wrap p

end.

At first this function does not seem very interesting. However, note that Term decompose

is not co-inductive; in fact, it is not even recursive. Using Term decompose we can

prove a small lemma which says that every term t is equal to the application of

Term decompose to itself.

Chapter 5: Mechanized Semantics and Rewrite Rules 128

Lemma Term_decompose_lemma :

forall a b (t : Term a b),

t = Term_decompose t.

Proof.

intros a b t; case t; auto.

Qed.

Implicit Arguments Term_decompose_lemma [a b].

The proof of this lemma is a straight-forward case analysis on the term. Because

Term decompose is not recursive, after we perform case analysis on t we can inline

Term decompose t and easily show the (intensional) equality.

The lemma just proved gives us a limited form of decomposition. For convenience,

we will define a small proof tactic which tries to apply this lemma called dc.

Ltac dc := intros; apply Term_decompose_lemma.

To use this lemma, we simply apply it in any context in which we need to prove

that two identical terms are equal. The lemma allows the proof system to unroll the

definitions one time to search for equalities. For example, suppose we want to prove

that ident is equal to its definition. We can do this simply by applying our lemma.

Lemma unfold_ident :

forall a,

@ident a = (In (fun x => Out x ident)).

Proof.

dc.

Defined.

The same procedure we carried out for ident can be carried out for any function

on Terms. In order to prove our category properties hold, we will need to prove

Chapter 5: Mechanized Semantics and Rewrite Rules 129

similar decomposition lemmas for comp. These lemmas are shown in Figure 5.1. We

have one lemma for each of the possible result shapes the function can produce. The

lemmas are organized into a sections which define the common input parameters for

the lemmas. The cOut section contains the lemma needed to handle cases which

result from the first input parameter being an output term. Similar constructions are

defined in sections cWrap and cIn.

The hints given in Figure 5.1 allow us to use these lemmas to automatically rewrite

terms when needed. The hints are put into two groups. The first group TermF allows

us to unroll comp using its definition one time. The second group TermB allows us to

replace a term with an equivalent call to comp.

To see how we can use the rewrite rules, consider the tactics below

Ltac biSearch :=

(apply biIn ||

apply biOut ||

(apply biWrapL; try apply biWrapR) ||

apply biWrapR);

intros; auto.

Ltac rewrite_bisim :=

repeat (autorewrite with TermF; biSearch);

autorewrite with TermB; auto.

Ltac rewrite_ident :=

rewrite unfold_ident;

repeat (autorewrite with TermF; biSearch);

rewrite <- unfold_ident; auto.

The first tactic biSearch tries to apply one of our equivalence proof rules, and

if successful calls the auto tactic to reduce the proof further. The second tactic,

Chapter 5: Mechanized Semantics and Rewrite Rules 130

Section rewriteLemmas.

Variables a b c : Set.

Section cOut.

Variable x : c.

Variable f : Term b c.

Variable g : Term a b.

Lemma cOut :

comp (Out x f) g = Out x (comp f g). dc. Defined.

End cOut.

Section cWrap.

Variable f : Term b c.

Variable g : Term a b.

Lemma cWrap :

comp (Wrap f) g = Wrap (comp f g). dc. Defined.

End cWrap.

Section cIn.

Variable f : b -> Term b c.

Lemma cInIn : forall (g : a -> Term a b),

comp (In f) (In g) = In (fun x => comp (In f) (g x)). dc. Defined.

Lemma cInOut : forall (y:b) (g : Term a b),

comp (In f) (Out y g) = Wrap (comp (f y) g). dc. Defined.

Lemma cInWrap : forall (g : Term a b),

comp (In f) (Wrap g) = Wrap (comp (In f) g). dc. Defined.

End cIn.

End rewriteLemmas.

Hint Rewrite cOut cWrap : TermF.

Hint Rewrite <- cOut cWrap : TermB.

Hint Rewrite cInIn cInOut cInWrap : TermF.

Hint Rewrite <- cInIn cInOut cInWrap : TermB.

Figure 5.1: Rewrite lemmas corresponding to composition.

Chapter 5: Mechanized Semantics and Rewrite Rules 131

rewrite bisim, uses our decomposition lemmas. First, the tactic applies the un-

rolling lemmas as many times as possible. Then, it tries to apply one of our equality

proof rules. If successful, then it will try to undo any left-over unrolling and reduce the

proof with auto. The third tactic is similar to the second except it uses unfold ident.

As we will see in the next section, this simple proof strategy is powerful enough to

handle many of our proofs.

5.1.2 Category Lemmas

The first two lemmas we have to prove show that our identity element is both a

left and right unit for composition. Specifically, for the left unit we have:

Lemma left_unit :

forall a b (f : Term a b),

bisim (comp ident f) f.

Proof.

cofix; intros.

case f; intros;

rewrite_ident.

Qed.

The proof of left unit is a case analysis on the term, f, followed by our decomposition

and search tactic rewrite ident. The statement and proof for the right unit is

similar: we omit the proof.

Lemma right_unit :

forall a b (f : Term a b),

bisim (comp f ident) f.

Chapter 5: Mechanized Semantics and Rewrite Rules 132

The last lemma shows that our composition function is associative. The statement

and proof are shown below.

Lemma assoc :

forall (a b c d:Set) (f: Term a b) (g:Term c a) (h : Term d c),

bisim (comp f (comp g h)) (comp (comp f g) h).

Proof.

cofix; intros;

case f; case g; case h; intros;

rewrite_bisim.

Qed.

The proof of assoc performs case analysis on each of the input functions. Then, our

decomposition tactic is able to complete all 27 sub-goals automatically.

5.2 SVG Arrow

To go from category to arrow, we must define the lifting function arr, the wiring

combinator (>>>), and the first function for creating streams of pairs. The first

two definitions are shown below.

CoFixpoint arr {a b:Set} (f : a -> b) : Term a b :=

In (fun x => Out (f x) (arr f)).

Notation "a >>> b" := (comp b a) (at level 60).

The arr function is the same as we saw in Section 4.3.4. The wiring combinator is

defined as a notation for the composition function with the arguments reversed.

Chapter 5: Mechanized Semantics and Rewrite Rules 133

Following the informal semantics, we define first using a helper function bypass.

The bypass function takes a buffered term which is used to provide the output value

when needed. The initial value of the buffered term (Nothing) is supplied by first.

CoFixpoint bypass (a b c:Set)

(v:Maybe c) (t:Term a b) : Term (a*c) (b*c) :=

match v with

| Nothing =>

match t with

| In f => In (fun x:a*c => let (xa,xc) := x in

bypass a b c (Just c xc) (f xa))

| sp => In (fun x:a*c => let (xa,xc) := x in

bypass a b c (Just c xc) sp)

end

| Just d =>

match t with

| Out xc sp => Out (xc,d) (bypass a b c (Nothing c) sp)

| sp => In (fun x:a*c => let (xa,xc) := x in

bypass a b c (Just c xc) sp)

end

end.

Definition first {a b c:Set} (f: Term a b) : Term (a*c) (b*c) :=

bypass a b c (Nothing c) f.

The arrow function must satisfy the properties given in Equations 4.4-4.8. These

properties are formalized in Figure 5.2. The formalization of Equations 4.4-4.8 use

three helper function. The functions cross id and id cross encode the operations

f × id and id× f respectively. The alpha function represents α from Equation 4.8.

The proof techniques used for the arrow lemmas are similar to those used to prove

the category properties. First, we must define and prove a number of decomposition

lemmas related to first. Then we add these decomposition lemmas to our rewrite

Chapter 5: Mechanized Semantics and Rewrite Rules 134

Definition cross_id {a b:Set} (c:Set) (f:a->b) : (a*c) -> (b*c):=

fun p => let (x,y) := p in (f x, y).

Definition id_cross {a b:Set} (c:Set) (f:a->b) : (c*a) -> (c*b):=

fun p => let (x,y) := p in (x, f y).

Definition alpha {a b c:Set} : ((a*b)*c) -> (a*(b*c)) :=

fun p => let (xy,z) := p in

let (x,y) := xy in

(x,(y,z)).

Section FirstLemmas.

Variable a b c : Set.

Variable f : Term a b.

Variable g : Term b c.

Lemma first1 :

@first a c b (f >>> g) ~ (first f >>> first g).

Lemma first2 : forall (f:a->b),

first (arr f) ~ arr (cross_id c f).

Lemma first3 : forall (g:b->c),

first f >>> arr (id_cross _ g) = arr (id_cross _ g) >>> first f.

Lemma first4:

first f >>> arr (@fst b c) ~ arr (@fst a c) >>> f.

Lemma first5:

first (first f) >>> arr (@alpha b a c) ~

arr (@alpha a a c) >>> first f.

End FirstLemmas.

Figure 5.2: Lemmas for first properties.

Chapter 5: Mechanized Semantics and Rewrite Rules 135

database and prove the lemmas using the same basic pattern as used for the category

lemmas.

5.2.1 Choice

Choice is implemented similarly to the first (and second) function(s). Just as

first allows us to define arrows over a product type, the choice function, left allows

us to define arrows over a sum type. The definition of left is shown below.

CoFixpoint left {a b c : Set} (t : Term a b) : Term (a+c) (b+c) :=

match t with

| Wrap u => Wrap (left u)

| Out x u => Out (inl _ x) (left u)

| In f => In (fun x => match x with

| inl y => left (f y)

| inr y => Out (inr _ y) (left (In f))

end)

end.

Our implementation of left must satisfy Equations 4.9-4.13. These properties are

formalized in Figure 5.3. The formalization of Equations 4.9-4.13 use three helper

function. The functions plus id and id plus encode the operations f ⊕ id and

id ⊕ f respectively. The assocsum function represents the same function appearing

in Equation 4.13.

Again, the proof techniques used for the above lemmas are similar to those used

to prove the category properties. First, we must define and prove a number of de-

composition lemmas related to left. Then we add these decomposition lemmas to

our rewrite database and prove the lemmas using the same basic pattern as used for

the category lemmas.

Chapter 5: Mechanized Semantics and Rewrite Rules 136

Definition plus_id {a b:Set} (c:Set) (f:a->b) : a+c -> b+c :=

fun e => match e with

| inl x => inl c (f x)

| inr y => inr b y

end.

Definition id_plus {a b c:Set} (f:a->b) : c+a -> c+b :=

fun e => match e with

| inl x => inl b x

| inr y => inr c (f y)

end.

Definition assocsum {a b c:Set} (x : (a + b) + c) : a + (b + c) :=

match x with

| inl s => match s with

| inl x => inl (b+c) x

| inr x => inr a (inl c x)

end

| inr x => inr a (inr b x)

end.

Section LeftLemmas.

Variable a b c : Set.

Variable f : Term a b.

Variable g : Term b c.

Lemma left1 : forall (f : a -> b),

left (arr f) ~ arr (plus_id c f).

Lemma left2 :

@left a c b (f >>> g) ~ left f >>> left g.

Lemma left3 : forall (g : a -> b),

left f >>> arr (id_plus g) ~ arr (id_plus g) >>> left f.

Lemma left4 :

arr (inl c) >>> left f ~ f >>> arr (inl c).

Lemma left5 :

left (left f) >>> arr (@assocsum b c a) ~ arr assocsum >>> left f.

End LeftLemmas.

Figure 5.3: Lemmas for left properties.

Chapter 5: Mechanized Semantics and Rewrite Rules 137

5.2.2 Loops

The last aspect of the arrow category we will formalize is loops. Cyclic graphs are

constructed with the loop function which is shown below. Just as in our informal

semantics, loop is defined using helper function loop’.

CoFixpoint loop’

(a b c:Set) (mc:Maybe c) (t:Term (a*c) (b*c)) : Term a b :=

match mc with

| Just x =>

match t with

| In f => In (fun av => loop’ a b c (Nothing c) (f (av,x)))

| Out v f => Out (fst v) (loop’ a b c mc f)

| Wrap t => Wrap (loop’ a b c mc t)

end

| Nothing =>

match t with

| In f => In (fun av => loop’ a b c (Nothing c) (In f))

| Out v f => let (x,y) := v in

Out x (loop’ a b c (Just c y) f)

| Wrap t => Wrap (loop’ a b c mc t)

end

end.

Definition loop {a b c: Set} := loop’ a b c (Nothing c).

The loop properties are were given in Equations 4.14-4.19. The formalization of these

properties is shown in Figure 5.4.

Chapter 5: Mechanized Semantics and Rewrite Rules 138

Variable trace : forall (a b c: Set) (f: a*c -> b*c), a -> b.

Implicit Arguments trace[a b c].

Definition assocL {a b c:Set} : ((a*b)*c) -> (a*(b*c)) :=

fun p1 => let (xy,z) := p1 in

let (x,y) := xy in

(x,(y,z)).

Definition assocR {a b c:Set} : (a*(b*c)) -> ((a*b)*c) :=

fun p1 => let (x,yz) := p1 in

let (y,z) := yz in

((x,y),z).

Definition swap {a b:Set} (p:a*b) : b*a := let (x,y) := p in (y,x).

Variable trace : forall (a b c: Set) (f: a*c -> b*c), a -> b.

Implicit Arguments trace[a b c].

Definition assocL {a b c:Set} : ((a*b)*c) -> (a*(b*c)) :=

fun p1 => let (xy,z) := p1 in

let (x,y) := xy in

(x,(y,z)).

Definition assocR {a b c:Set} : (a*(b*c)) -> ((a*b)*c) :=

fun p1 => let (x,yz) := p1 in

let (y,z) := yz in

((x,y),z).

Definition swap {a b:Set} (p:a*b) : b*a := let (x,y) := p in (y,x).

Figure 5.4: Lemmas for left properties.

Chapter 6

Implementation

In previous chapters we have described our intermediate representation of Syn-

chronous Value Graphs (SVG) and shown how it can be used to validate transfor-

mations. In this chapter we will describe the main compilation algorithms we use to

compute SVG from the input assembly language. The intermediate representation

is computed in two steps: first programs are converted to Gated SSA form. Then,

the Gated SSA form is evaluated using our denotational model to produce SVG as

described in Chapter 3. The core of the compilation process is the Gated SSA trans-

formation, and much of this chapter is devoted to developing an efficient algorithm

for computing Gated SSA for arbitrary input programs.

139

Chapter 6: Implementation 140

6.1 Introduction

In Chapter 3 we described the semantics of our input assembly language, and

showed how we can elaborate this language using monadic macros into a simple func-

tional language. In Chapter 4 we presented our intermediate language, Synchronous

Value Graphs (SVG), which contains this simple functional language as a subset. In

those chapters we hinted at how a full transformation into SVG is done, but we did

not fully describe how to transform the control-flow of the functional language into

the constructs of SVG. In this chapter we will describe this missing and crucial piece

of the compilation process.

The compilation process starts by computing Gated Single Static Assignment

Form (GSA) (Ottenstein et al., 1990a), from the input assembly language. The GSA

form is then elaborated as described in Chapter 3 into SVG. After elaboration, we

have SVG terms where the additional GSA constructs (φ, η, and σ) are uninterpreted

constants. From this point it is trivial to convert the elaborated GSA constructs into

SVG constructs to arrive at our final intermediate form. Hence, it is the transforma-

tion to GSA form which is ultimately responsible for transforming the control-flow of

the functional language into the constructs of SVG. It is this transformation to GSA

that we describe now.

6.1.1 Gated SSA Form

Gated Single Static Assignment Form is a subset of Synchronous Value Graphs

and is an extension of Single Static Assignment Form (SSA) (Cytron et al., 1991).

Recall, in SSA form each variable has exactly one definition. Therefore, in SSA

Chapter 6: Implementation 141

form, use-def chains are explicit and each chain contains exactly one element. This

simplifies many compiler optimizations, and is the original motivation for SSA form.

For our purposes, SSA form is closer to a denotational language because, like in

mathematics, each variable has exactly one definition. GSA form extends SSA form

by adding gating functions which capture information about the control-flow of the

program. The gating functions are placed within the GSA terms φ, η, and σ, which

correspond to the φ, η, and σ nodes from SVG. Because the control-flow is also

accounted for in the terms, GSA is even better suited as a denotational language

since definitions are referentially transparent with respect to the control flow.

The syntax of GSA programs is an extension of our assembly language syntax

from Chapter 3. GSA extends the language of assembly instructions with terms for

carrying gating functions. The new instruction syntax is shown in Figure 6.1. The

i ::= getelemptr t v v Pointer Arithmetic

| alloc t v Stack Allocation

| load t v Load from Memory

| store t v v Store to Memory

| binop t v v Binary Operator

| conv t v t Type Conversion

| select t v v v Select on Condition

| call name(v) Function Call

| φ(GF ⇒ v) Phi Node

| η(GF, i) Eta Node

| σ(GF, i) Sigma Node

Figure 6.1: Gated Assembly Language Instructions

Chapter 6: Implementation 142

new instructions are: φ, η and σ. The φ-node is used at join points to describe

the conditions under which different values will be defined. The η- and σ-nodes are

used to describe the conditions under which a loop defined variable is complete. The

semantics of these instructions were described in Chapter 4 as part of SVG.

The gating functions are essentially boolean expressions over values. We will give

a precise definition for the gating functions in later sections when we have developed

a little more background. However, it is safe to think of the gating functions as

simple boolean expressions built using values, logical AND, and logical OR. Note that

multiple gating functions can appear within a φ-node. Each gating function indicates

when the associated value will be defined. As such, the set of gating functions within

a φ-node must be mutually exclusive, and every assignment of values must satisfy

exactly one of the gating functions in the set. The gating function for the entire

φ-node is a disjunction of the individual gating functions, and must be satisfiable.

A simple example will help to clarify the new GSA instructions. Recall Figure 3.6

from Chapter 3, which is reproduced here in Figure 6.2. The left-hand side of the

figure shows a function written in C that defines a simple loop. The right-hand side

shows the corresponding assembly language. The assembly language code contains

four blocks. The header and body blocks form a loop. The function begins execution

at the entry block, which branches to the loop header. When we first enter the

header block the value of i is 0, so c is true and we branch to body. The body block

updates the t and i variables and continues back to the entry block. After several

iterations, c becomes false and we branch to end which returns the value t (which

is 45).

Chapter 6: Implementation 143

int loop() {

int t = 1;

int i;

for (i = 0; i < 10; i++) {

t += i;

}

return t;

}

int32 loop() {

entry:

t = int32 1

i = int32 0

br header

header:

c = slt int32 i, 10

cbr c, body, end

body:

t = add int32 t, i

i = add int32 i, 1

br header

end:

ret int32 t

}

C code with simple loop Corresponding Assembly Code

Figure 6.2: Loop Example

Figure 6.3 shows the SSA and GSA form for the assembly program in Figure 6.2.

The left-hand side of the figure shows the SSA form assembly. First, note that in the

SSA form, variables have been renamed so that each variable has only one definition.

At the join point in block header we have inserted two φ-nodes for the two variables

t and i which each have several definitions at this point. The φ-node for t says that

if the control-flow is coming from block entry, then the value of t2 is t1; otherwise,

if the control-flow is coming from block body, then the value of t2 is t3. The return

value is t2 since this is the final definition of the original variable t before the end

block is reached.

The right-hand side of Figure 6.3 shows the GSA form for the assembly program in

Figure 6.2. Like the SSA form, variables have been renamed so that each variable has

Chapter 6: Implementation 144

int32 loop() {

entry:

t1 = int32 1

i1 = int32 0

br header

header:

t2 = phi(entry -> t1, body -> t3)

i2 = phi(entry -> i1, body -> i3)

c = slt int32 i2, 10

cbr c, body, end

body:

t3 = add int32 t2, i2

i3 = add int32 i2, 1

br header

end:

ret int32 t2

}

int32 loop() {

entry:

t1 = int32 1

i1 = int32 0

br header

header:

t2 = mu(t1, t3)

i2 = mu(i1, i3)

c = slt int32 i2, 10

cbr c, body, end

body:

t3 = add int32 t2, i2

i3 = add int32 i2, 1

br header

end:

t4 = eta(c, t2)

ret int32 t4

}

SSA for simple loop GSA for simple loop

Figure 6.3: SSA and GSA for Loop Example

only one definition. At the join point in block header we have inserted two µ-nodes

for the two variables t and i which each have several definitions at this point. We

use a µ-node because these are loop-defined variables, and the gating function will be

defined outside of the loop. The µ-node for t says that the initial value of t2 is t1,

and subsequent values are computed from t3. When we exit the loop at block end,

the gating function for the loop-defined variable t2 is c, and this is used to build an

η-node representing the final value of the original t variable, which is returned.

Chapter 6: Implementation 145

6.1.2 Computing Gated SSA

Computing Gated SSA form requires that we solve two problems: first, we must

locate the basic blocks that require φ-, µ-, η- or σ-nodes; then, we must compute the

gating functions for each of these nodes. Previous algorithms by Ottenstein et al.

(1990b) and Havlak (1994) start with SSA form. With these approaches, the location

of the nodes has already been determined by the SSA form. Some SSA φ-nodes will

need to be converted to η, σ, or µ, but it is easy to determine this using the connected

components of the control-flow graph. This only leaves the problem of computing the

gating functions. Both Ottenstein et al. (1990b) and Havlak (1994) achieve this by

traversing the paths in the control-flow graph and collecting the conditions under

which each path is taken. Achieving a reasonable running time for these approaches

is complex. Ultimately, the best algorithms of this type are quadratic in the size of

the graph, not counting the cost of computing SSA form (and other pieces of required

data) in advance.

Our algorithm starts with normal assembly language as input and computes both

the location of the nodes and the gating functions in a single pass. As such, our

algorithm does not require the code to be put into SSA form beforehand. The running

time of our algorithm is near linear and can handle arbitrary input programs. We

believe our algorithm, in addition to being the best choice for computing GSA, can

be used as a replacement for the usual SSA algorithms in compilers that require SSA.

In such a case, a compiler writer can use our algorithm minus the computation of the

gating functions to produce normal SSA form; gating functions can be added without

changing the algorithm.

Chapter 6: Implementation 146

Our algorithm for computing Gated SSA is a variation of Tarjan’s Path Compres-

sion algorithm for computing path expressions on irreducible graphs (Tarjan, 1981).

A similar algorithm was proposed by Tu and Padua (1995b,c), upon which we make

several improvements. First, we extend the algorithm to programs with irreducible

control-flow. Second, we simplify the path compression algorithm by introducing a

more uniform algebra for gating expressions. This allows us to use a simple compres-

sion technique on our path expressions as described in Tarjan (1975, 1979).

In the remainder of this chapter we will present our algorithm for computing Gated

SSA form. First, we will review some basic definitions and lemmas, and present the

core theorem which enables our approach. Then, we will present a simple algorithm

based on Gaussian elimination with bad complexity. We will then improve this algo-

rithm using a technique called “decomposition by dominators”. Finally, we extend

our algorithm to arbitrary graphs.

6.2 Background

Our algorithm works over the control-flow graph of the input program and the

graph’s associated dominator tree. The control-flow graph is constructed from the

basic blocks of the input functions. A formal definition is given below.

Definition 6. A Control Flow Graph (N,E) is a directed graph whose nodes (N)

are the basic blocks in a function, and whose edges (E) represent the possible flows of

control between basic blocks.

An example of a control-flow graph is shown in Figure 6.4. By convention, we number

the basic blocks of each function starting with 0 ensuring that there are no gaps in

Chapter 6: Implementation 147

the numbering. Thus, the entry block of each function is always numbered 0, and the

highest numbered block is one less than the total number of blocks in the function.

We will use lower-case letters to stand for block numbers (e.g. u, v, x), and upper-case

0

1

2 3

4

5

6

Figure 6.4: A Control-flow Graph

letters to stand for sets of blocks (e.g. X). We will indicate edges in the control-flow

graph using the notation: u → v for a single edge, u →+ v for one or more edges

connecting u and v, and u→∗ v zero or more edges connecting u and v. We will refer

to u→∗ v as a path between u and v. For example, in Figure 6.4, we have two paths

between blocks 1 and 4 which are: 1→ 2→ 4, and 1→ 3→ 4. We can also partially

describe a path between blocks 0 and 5 by: 0→∗ 4→ 5, or 0→∗ 3→+ 5. If there is

an edge u → v in a given control-flow graph, we will refer to u as a successor of v,

and to v as a predecessor of u.

We will also make use of the dominence relation between blocks which we specify

using the three definitions below.

Definition 7. A block u dominates a block v, written: u� v, if every control flow

path to v must pass through u.

Definition 8. A block u strictly dominates v, written: u� v if u� v and u 6= v.

Chapter 6: Implementation 148

0

1

2 3 4

5

6

Figure 6.5: Dominator Tree for Control-flow Graph in Figure 6.4

Definition 9. A block u is the immediate dominator of v, written: idom(v), if

u� v, and forall x, such that x� v, x� u.

This last definition defines a unique immediate dominator for each block in the

control-flow graph except for the entry block 0. Therefore, we can form a tree,

called the dominator tree, in which each block’s parent is its immediate dominator.

For example, the dominator tree for the control-flow graph shown in Figure 6.4 is

shown in Figure 6.5. The tree is always rooted at 0 since this is the only block with

no immediate dominator. If u = idom(v), we will refer to u as the parent of v, and

we will refer to v as a child of u.

Finally, the following definitions will be needed to connect our algorithm with

traditional SSA algorithms.

Definition 10. The dominance frontier of a block u, written DF(u), is defined as

the set of blocks:

DF(u) = {v | ∃x.x→ v ∧ u� x ∧ u 6� v} .

Chapter 6: Implementation 149

Definition 11. The iterated dominance frontier of a block u, written DF+(u), is

the transitive closure of the dominance frontier.

The locations where gating functions are needed is related to the iterated dominance

frontier by the following theorem:

Theorem 1 ((Cytron et al., 1991)). If X is the set of blocks in which a variable x

is defined, then DF+(X) is the minimum set of blocks that require φ-nodes for the

variable x.

Traditional SSA algorithms apply this theorem directly by computing the iterated

dominance frontier for the set of blocks in which a variable is defined, and then

inserting φ-nodes within those blocks for the given variable. Our problem is more

complex in that we must also compute the gating functions. Our algorithm will

instead use the dominator tree to compute where the φ-nodes (and η- and σ-nodes)

need to be placed. Along the way, we will compute the information needed to generate

the gating functions. To motivate our algorithm, we will first show a relationship

between the dominator tree and the iterated dominance frontier.

6.2.1 Relation Between The Dominator Tree and

The Dominance Frontier

The next three lemmas establish the following fact: for any control-flow graph,

only blocks in sibling sub-trees of the graph’s dominator tree can appear together in

the dominance frontier relation. Put another way, if u ∈ DF+(v), then there must be

a block x which dominates both u and v; and in fact, idom(u) is this block. This fact

is what allows us to use Tarjan path compression algorithms to compute the location

Chapter 6: Implementation 150

of φ-nodes and their gating functions. Using this fact, we can structure our algorithm

as a traversal of the dominator tree, and at each step only consider descendants of

the current block. We will return to the algorithm shortly; first we will establish this

important fact. We begin with a small helper lemma.

Lemma 1. For any path d→+ v in a CFG, if d� v and d occurs only once in the

path, then d dominates every block in the path.

Proof. Suppose the opposite, then there is a block u such that d 6� u, and d →+

u →∗ v. However, this implies that the path 0 →∗ u →∗ v does not contain d which

contradicts d� v.

We demonstrate the relationship between the immediate dominator and the dom-

inance frontier with the following core lemma. The core lemma shows that the im-

mediate dominator of a block must also dominate all of the blocks in its dominance

frontier.

Lemma 2 (Core Lemma). For a control-flow graph G = (N,E) and v, x ∈ N , if

v ∈ DF(x), then idom(v)� x.

Proof. From the definition of DF(x), x 6= idom(v). Suppose the opposite: idom(x) 6�

v, then there is a path, p : 0→∗ x, from the entry node to x which does not contain

idom(v).

However, because v ∈ DF(x), there exists w such that w → v ∈ E and x � w

and x 6� v. Let x →∗ w → v be a path from x to v such that x only appears once

(if x appears more than once, cycles x →∗ x can be removed). The node idom(v)

must not appear in the path x →∗ w. If it did, then by Lemma 1 we would have

x� idom(v)� v.

Chapter 6: Implementation 151

Taking these two observations, we can form the path p →∗ x →∗ w → v. Thus,

we have a path from the entry node to v that does not contain idom(v), which is a

contradiction.

We can easily extend the core lemma to the iterated dominance frontiers.

Lemma 3 (Sibling Frontiers). If u ∈ DF+(x), then idom(u)� x.

Proof. By induction on n given DFn(x).

Base Case. If n = 1, then since u ∈ DF(x), idom(v)� x by Lemma 2.

Inductive Case. Let u ∈ DFn−1(x) and v ∈ DF(u), then by the induction hypothesis,

idom(u)� x, and by Lemma 1 idom(v)� u. Therefore:

idom(v)� u⇒ idom(v)� idom(u)� x⇒ idom(v)� x .

By Lemma 3, we know that the blocks in the iterated dominance frontier for a

node x are contained in the children of the immediate dominator of x. Using this we

can compute the locations for φ-nodes related to x by only considering the children

of idom(x) in the dominator tree. However, not all of the children of idom(x) are in

the dominance frontier of x. To narrow in on the exact blocks that need φ-nodes, we

need to look at some of the paths in the control-flow graph. We will now define these

paths, which we refer to as gating paths.

6.2.2 Gating Paths

A gating path is a path in the control-flow graph which is relevant for computing

a gating function. We will now make this definition more precise through a series

Chapter 6: Implementation 152

of lemmas which follows the development found in Tu and Padua (1995b). We start

with a definition for gating paths and then connect this to the iterated dominance

frontier and the gating functions.

Definition 12. A gating path for a node v is a path in the Control Flow Graph

from idom(v) to v that only contains nodes dominated by idom(v).

This definition makes a connection between the dominator tree and the control-flow

graph. One way to think of this definition is to imagine restricting a control-flow

graph to only the blocks which appear in a sub-tree of the dominator tree. Our first

result shows that every node in a control-flow graph has a gating path.

Lemma 4 (Existence of Gating Paths). Given a CFG (N,E), for every basic block

n ∈ N , there is a gating path from idom(n) to n.

Proof. Since idom(n) � n, there exist a path idom(n) →∗ n. If this path contains

cycles of the form idom(n) →∗ idom(n), they can be removed giving us a new path

idom(n) →∗ n in which idom(n) occurs only once. Suppose there is no gating path

from idom(n) to n, then there is a node, u on the path such that idom(n) 6� u.

Therefore, there is a path S →∗ u →∗ n that does not contain idom(n), which

contradicts idom(n)� n.

The next two lemmas connect the iterated dominance frontier to gating paths.

Specifically, nodes in the iterated dominance frontier for a node x, must have gating

paths which include x.

Lemma 5. If v ∈ DF(x), then there is a gating path from idom(v) to v which passes

through x.

Chapter 6: Implementation 153

Proof. By definition, ∃w,w → v ∧ x� w. Using this and Lemma 4 we can construct

a gating path from x to w. Because the path x →∗ w is a gating path, it contains

only nodes dominated by x and therefore dominated by idom(v).

By Lemma 2, idom(v) � x, hence, by Lemma 1 there is a gating path from

idom(v) to x. Therefore, the path idom(v)→∗ x→∗ w → v is a gating path.

Lemma 6. If v ∈ DF+(x), then there is a gating path from idom(v) to v which passes

through x.

Proof. By induction on n given DFn(x) and Lemmas 3 and 5.

We will now show the reverse relation: nodes which appear on a gating path are

in the dominance frontier relation with the end of the path.

Lemma 7. If there is a gating path idom(v)→+ x→∗ v, then v ∈ DF+(x).

Proof. Since idom(v) 6= x, v must be a join node in the control-flow graph. Otherwise,

w would be the immediate dominator of v. If there are no other join nodes, then in the

path x→∗ w → v, every node can have only one predecessor, and therefore, x� w.

Because idom(v) 6= x and idom(v)� x but x 6� v, we have v ∈ DF(x) ⊂ DF+(x).

The remainder of the proof proceeds by induction on the number of join nodes on

the sub-path x→∗ w → v. For additional details see Tu and Padua (1995b).

Putting Lemmas 5 and 7 together we arrive at the following Theorem due to Tu

and Padua (1995b).

Theorem 2 ((Tu and Padua, 1995b)). Given a control-flow graph (N,E), and X ⊂ N ,

then for any v ∈ N , v ∈
⋃
x∈X DF+(x) if and only if there is a gating path from idom(v)

to v containing a node that belongs to X.

Proof. Follows from Lemmas 6 and 7.

Chapter 6: Implementation 154

Having established a correspondence between gating paths and the iterated dom-

inance frontier, we can now compute traditional SSA form using gating paths. First,

we compute the gating paths for each node v in a control-flow graph. Then, by The-

orem 2, we know that for each variable defined in the blocks which appear on these

paths we may need a φ-node. One advantage of this approach is that we can structure

the algorithm around the dominator tree which will give us better complexity. More

importantly, by computing the gating paths we will not only identify locations for

φ-nodes, but we will also compute the paths leading to each φ-node (or η- or σ-node)

which are relevant for the gating functions. Using these paths we can build the gating

functions required for Gated SSA. In the next section we will describe how the gating

functions are computed from the gating paths.

6.3 Gating as a single-source path-expression

problem

Once we have identified the location for a φ-, η-, or σ-node using Theorem 2, we

can construct a gating function by considering all gating paths leading to the CFG

node in question. For example, in Figure 6.4, we need an η-node at CFG node 6. We

can compute a gating function by considering all gating paths that lead to 6. Some

Chapter 6: Implementation 155

of these paths are shown below:

p1 =0→ 6

p2 =0→ 1→ 2→ 4→ 5→ p1

p3 =0→ 1→ 3→ 4→ 5→ p1

p4 =0→ 1→ 2→ 4→ 5→ p2

p5 = . . .

There are two things to note about these paths. First, we can use the more concise

language of regular expressions to represent sets of paths. For example, the paths

above could be represented as:

p1 =0→ 6

p2,3,4 = {0→ 1 · {1→ 2→ 4, 1→ 3→ 4} · 4→ 5→ 1}∗ → p1

Where the notation x · y is used to represent concatenation of sets of paths, and

the notation ∗ is used to represent transitive closure with respect to concatenation.

Second, not all paths need to be considered; for instance, the path p4 does not add

any information which is not contained in paths p2 and p3. In this case, using regular

expressions is not only convenient, it allows us to easily characterize which paths

are relevant. Namely, we need only consider simple, non-redundant regular expres-

sions over paths. To make this precise we will introduce some notation for regular

expressions over paths, which we refer to as path expressions.

Chapter 6: Implementation 156

Path Expressions. Formally, path expressions are defined over an alphabet of

edges. For our purposes the alphabet will be the set of edges in a given control-flow

graph. For reasons which will become clear, we will use the notation γ(x,y) to denote

the atomic path expression for the edge x→ y.

Definition 13 (Path Expressions). A path expression over a set of edges E is one

of:

1. ∅ the empty set.

2. Λ the empty path.

3. γ(x,y) an atomic path from node x to node y where x→ y ∈ E.

4. P1 ∪ P2 union of two path expressions.

5. P1 · P2 concatenation of path expressions.

6. P ∗ reflexive transitive closure under concatenation.

We can interpret path expressions as sets of paths within a CFG. Later we will

give an alternate interpretation of path expressions, however, for the time being, we

will interpret path expressions as the following sets:

J∅K = ∅

JΛK = {Λ}

Jγ(x,y)K = {x→ y}

JP1 ∪ P2K = {p | p ∈ JP1K ∨ p ∈ JP2K}

JP1 · P2K = {p1 → p2 | p1 ∈ JP1K ∧ p2 ∈ JP2K}

JP ∗K =
∞⋃
n=0

JP Kn where P 0 = {Λ} and P n = P n−1 · P

Chapter 6: Implementation 157

From this definition, we see that ∅ is a unit for ∪ and a zero for concatenation. In

addition, we will arrange for Λ to be a unit for concatenation:

∅ ∪ P = P ∪ ∅ = P

∅ · P = P · ∅ = ∅

Λ · P = P · Λ = P

These laws are consistent with the following identities for closure, which are also

satisfied by our interpretation of path expressions as sets of paths.

∅∗ = {Λ}

Λ∗ = {Λ}

We will require that any interpretation of path expressions satisfy these laws. We

say that two path expressions P1 and P2 are equivalent if JP1K = JP2K. In addition, a

path expression, P , is simple if either P = ∅ or ∅ is not a sub-expression of P . Any

path expression can be made simple by repeated application of the equalities above.

Finally, we would like our path expressions to uniquely represent the paths they

describe. We accomplish this by defining non-redundant path expressions.

Definition 14 (Non-Redundant Path Expression). A path expression is non-redundant

if:

1. P is atomic (P = ∅, Λ, or γ(x,y))

2. if P1 and P2 are non-redundant, then

(a) P1 ∪ P2 is non-redundant if JP1K ∩ JP2K = ∅

Chapter 6: Implementation 158

(b) P1 · P2 is non-redundant if ∀w ∈ JP1 · P2K,∃!w1, w2 | w = w1w2 ∧ w1 ∈

JP1K ∧ w2 ∈ JP2K

3. P ∗ is non-redundant if ∀w ∈ JP ∗K,∃!w1, . . . , wk | w = w1 . . . w2 ∧ wi ∈ JP K

Computing Gating Functions With these definitions for path expressions, we

can now recast the problem of computing gating functions as a single-source path-

expression problem. A singe-source path-expression problem is the problem of com-

puting for a given source vertex s and for each vertex v a non-redundant path ex-

pression P (s, v) such that JP (s, v)K contains all of the paths from s to v.

Given an algorithm for single-source path-expression, we can compute a gat-

ing function in the following way. First, for each node, we enumerate the paths

in JP (idom(n), n)K. These paths are exactly the gating paths described earlier. Note

that we can identify the φ-nodes needed at block n by inspecting the elements of

these paths thus giving us a way to compute normal SSA form. For each gating path,

we can compute the conditions for control to flow along the edges of that path by

looking at the basic blocks along the paths. The set of conditions we compute for

JP (idom(n), n)K makes up the gating function for block n.

The algorithm described above requires us to compute the gating paths for each

node in the control-flow graph, and then compute conditions along each of these

paths. The complexity of this process is proportional to the number of basic blocks

times the number of edges in the graph. We can improve on this by reinterpreting

the path expressions as gating functions directly. This is the first step towards our

final algorithm, which we describe this in the next section. Of course, we must also

describe how to compute JP (idom(n), n)K, a problem we will address in Section 6.4.

Chapter 6: Implementation 159

6.3.1 From Path Expressions to Gating Functions

In this section we will present the algorithm for computing gating functions from

path expressions. Throughout the remainder of this chapter we will present source

code for algorithms and data structures using Haskell (Jones, 1998) as our implemen-

tation language. We will begin by writing down data structures for path expressions.

Path expressions are represented using the following data type definition.

data PathExpr a

= Lambda

| Empty

| Gamma { from :: Int, to :: Int, value :: a }

| PathExpr a :+ PathExpr a

| PathExpr a :. PathExpr a

| Star (PathExpr a)

deriving Eq

The type PathExpr is parametrized over an arbitrary type a, which will be used

to carry additional information within our path expressions. The Lambda and Empty

constructors represent Λ and ∅ respectively. The Gamma constructor represents γ(x, y),

and is declared as a record with three fields named from, to, and value. The value

field is given the type a indicating that we can store any type of additional data

within the atomic paths. We use the infix constructor (:+) to represent union and

the infix constructor (:.) to represent concatenation. Finally, the Star constructor

is used to represent closure under concatenation.

As mentioned in the previous section, Empty is a unit for union and a zero for

concatenation, Lambda is a unit for concatenation, and the closure of Empty or Lambda

is the empty path, Lambda. We can capture these algebraic properties using the

“smart” constructor functions below.

Chapter 6: Implementation 160

−− union smart constructor

gcup :: PathExpr a → PathExpr a → PathExpr a

gcup Empty g = g

gcup g Empty = g

gcup x y = x :+ y

−− concatenation smart constructor

gdot :: PathExpr a → PathExpr a → PathExpr a

gdot Empty _ = Empty

gdot _ Empty = Empty

gdot Lambda g = g

gdot g Lambda = g

gdot x y = x :. y

−− closure smart constructor

gstar :: PathExpr a → PathExpr a

gstar Empty = Lambda

gstar Lambda = Lambda

gstar g = Star g

It is safe to use gcup, gdot, and gstar in place of the constructors (:+), (:.), and

Star respectively. Doing so will eliminate unnecessary path expression structure as

soon as possible. However, we will sometimes not use them, and produce longer

path expressions for presentation purposes. In such cases we can apply our algebraic

simplification rules using the function simplify below.

simplify :: PathExpr a → PathExpr a

simplify (Star x) = gstar (simplify x)

simplify (x :+ y) = gcup (simplify x) (simplify y)

simplify (x :. y) = gdot (simplify x) (simplify y)

simplify g = g

Gating Functions. Our gating functions are a form of path expression. Gating

functions are path expressions where each atomic path carries a condition that must

Chapter 6: Implementation 161

be true for the control-flow to follow that path. We represent this using the Gate

type defined below.

type Gate = PathExpr [Term]

Term is an abstract type representing terms in our intermediate representation: es-

sentially LLVM assembly statements. Each gate carries a list of terms which are

interpreted as a conjunction of boolean values. An empty list is interpreted as equiv-

alent to true.

To use the Gate type we need to be able to construct atomic path expressions.

These are the paths built using the Gamma constructor. For a given control-flow graph

with edges E, an atomic path expression has the form Gamma f t c, where f and t

are labels corresponding to an edge f → t ∈ E, and c is a condition which must be

true when this edge is traversed. In order to compute the atomic path expressions, we

examine the control flow instruction of the from block. This is done by the function

evalEdge, which is shown below.

evalEdge :: Label → Label → Gate

evalEdge m n = pathExpr (blockOf m) (blockOf n)

The function evalEdge takes two labels and returns an atomic gating function for

the edge between the two basic blocks with those labels. It does this by first looking

up the basic block for each label and calling the helper function pathExpr. In order

to look up the basic blocks for a label, we use the function blockOf which has type:

Label → GBlock1. The GBlock type is a record containing information about a basic

1The acute reader will notice that blockOf, and therefore evalEdge must be monadic in order
to track the mapping of label to blocks needed to implement blockOf. This is indeed true, however
only complicates the presentation and has thus been omitted.

Chapter 6: Implementation 162

block such as its instructions, predecessors and successors, depth-ordering, etc. We

will introduce accessor functions for GBlock when necessary.

The pathExpr helper function is shown below. This function is responsible for

constructing atomic path expressions of type Gate.

pathExpr :: GBlock → GBlock → Gate

pathExpr bx by =
case control bx of

Seq z | y == z → Gamma x y []

MBr c ty dl arms

| dl == y → Gamma x y $ map (ne c ◦ fst) arms

| otherwise → Gamma x y [eq c (yval arms)]

where

x = label bx

y = label by

yval :: [(Term,Label)] → Term

eq,ne :: Term → Term → Term

To build an atomic path expression for the edge x → y, we look at the control

transfer instruction for the block bx, which has label x. We fetch the control transfer

instruction from the block with the accessor function control. The control transfer

instruction can be one of two things: either an unconditional branch (represented by

Seq), or a multi-way branch (represented by MBr). The unconditional branch carries

the label of the target block, z. The pathExpr function checks that this label is equal

to y, the label for block by, and returns an atomic path expression with an empty

list of conditions (which is equivalent to true) indicating that the edge is always

traversed.

The multi-way branch constructor has four arguments. The type of this construc-

tor is show below.

Chapter 6: Implementation 163

MBr :: Term → Type → Label → [(Term,Label)] → Control

The first and second parameters are the type and term that is tested by the conditional

branch. The third argument is a default label which is used if no other edge is taken

by the branch. The fourth argument is a list of term and target labels. If the condition

term is equal to a term in the list then the corresponding label is the target of the

branch. For example, a simple if statement testing a boolean condition, c, would be

represented as:

MBr c (I 1) falseLabel [(true, trueLabel)]

Returning to pathExpr, in the case of a multi-way branch, we first check if the target

label, y, is equal to the default label. If so, then the condition for taking this edge

is that the tested term, c, is not equal to any of the terms in the multi-way branch

arms. We construct this condition by producing a list of terms of the form x 6= c for

all terms x in the list of branch arms. We use the function ne to build the expression

for testing inequality. Otherwise, if the target label, y, is not equal to the default

label, then we use the function yval to find and return the term associated with the

label y (a simple list search). The condition for taking this edge is that c is equal to

this value.

Using evalEdge, we can construct a set of atomic edges for a control-flow graph.

Then, if we compute JP (idom(n), n)K using these edges, we can use the result to

build the gating function for block n. We accomplish this by reinterpreting the path

expressions not as sets, but as boolean expressions. The alternate interpretation for

Chapter 6: Implementation 164

path expressions is shown below.

J∅Kb = False

JΛKb = True

Jγ(x,y,ts)Kb =
∧
t=ts

t

JP1 ∪ P2Kb = JP1Kb ∨ JP2Kb

JP1 · P2Kb = JP1Kb ∧ JP2Kb

JP ∗Kb = JP Kb

In this case we are dealing with Gate’s which have Term’s embedded in them. We

have represented the embedded Term’s with the notation ts which we use as a set.

This interpretation is implemented by the gateToCondition function shown below.

gateToCondition :: Gate → Term

gateToCondition g =
case simplify g of

Lambda → true

Empty → false

Gamma _ _ c → conj c

p :+ q → disj [gateToCondition p, gateToCondition q]

p :. q → conj [gateToCondition p, gateToCondition q]

Star p → gateToCondition g

where

true, false :: Term

conj :: [Term] → Term

disj :: [Term] → Term

The gateToCondition function is designed to be applied to a path expression

after-the-fact to build a gating function. However, we can dispense with path ex-

pressions altogether by introducing a set of “smart” constructors which perform the

function of gateToCondition as the path expressions are built. Although our imple-

Chapter 6: Implementation 165

mentation makes this optimization, we will not pursue it further here. Instead, we

will continue to work with path expressions for expository purposes.

We have now described the basic machinery of our algorithm. Our basic approach

is centered around computing path expressions for a control-flow graph. The path

expressions allow us to compute, as a special case, the gating paths for every basic

block in the graph. These gating paths tell us where φ-, η−, and σ-nodes are needed,

and also give us a way to easily compute the gating functions for those same blocks.

We will now turn to the main problem of computing path expressions for a control-

flow graph.

6.4 Path Expressions via Gaussian Elimination

In this section we describe a simple algorithm for computing the set of gating paths

JP (idom(n), n)K. We will improve this algorithm in later sections. The algorithm

presented in the section has poor complexity, but is easy to understand and will give

some intuition for later versions of the algorithm.

Generally speaking, our algorithm is an instance of Gaussian elimination. Recall,

Gaussian elimination is an algorithm for solving systems of linear equations. Specif-

ically, in the case of matrices, we are solving equations of the form: Ax = b where

A is an n × n matrix, and x and b are vectors of length n. To solve this equation,

we first perform Gaussian elimination (also called LU-decomposition in this specific

case) to put our equation in the form:

Ax = LUx = b

Chapter 6: Implementation 166

where L is a lower-triangular matrix, and U is an upper-triangular matrix. Then, we

solve:

Ly = b

for the variable y; since L is lower-triangular, this can be done easily with forward

and backward substitution. Then we are left with solving:

Ux = y

which can also be done with forward and backward substitution. One advantage of

this algorithm is that, if A is held constant, we can reuse the decomposition to solve

for many different values of b. Since there are more efficient algorithms for solving

triangular systems than general systems, this can result is a significant speedup when

solving for multiple values of b.

For our problem, the role of A is played by a matrix of size n × n where n is

the number of nodes in the control-flow graph. The matrix element (u, v) is a path

expression representing the paths in the control-flow graph between the blocks u and

v. Our matrix is sparse because most pairs of blocks will not have a path between

them. Therefore, we represent this matrix with a finite map from pairs of block labels

to path expressions. The type declarations for our finite map and its related functions

is shown below.

type PathName = (Label,Label)

data PathMap −− abstract type

emptyPathMap :: PathMap

fetch :: PathMap → PathName → Gate

store :: PathMap → PathName → Gate → PathMap

adjust :: (PathName → Gate → Gate) → PathMap → PathName → PathMap

Chapter 6: Implementation 167

The type PathName represents elements of our sparse matrix, and PathMap is the

finite map representing the matrix itself. We require the finite map to have functions

fetch, and store which read elements from and replace elements of the map. We

also have a convenience function adjust for applying a function to a specific element

of the matrix and replacing it with the result.

6.4.1 Path Sequences

With our analog of the matrix A, we are free to chose the order of the row and

column elements. That is, the columns can be constructed from any ordering of the

block labels, and the rows can be constructed from a possibly different ordering of

the block labels. Conceptually, our analog to decomposition must order the rows

and columns so that the paths in the two triangular matrices do not have any gaps

that would require elements from the other matrix. In fact, we will do much better

by defining a total ordering on pairs of block labels such that path prefixes can be

constructed from prefixes of the ordering. This ordering is called a path sequence.

Definition 15. A path sequence for a control-flow graph G = (N,E) is a sequence

(Pi, ui, vi) where ui, vi ∈ N , and each Pi is a path expression for paths between blocks

ui and vi such that:

1. if ui = vi, then Pi = Λ, and

2. for any non-empty path p ∈ G, there is a unique set of indices ij and a unique

partition pj of p into non-empty paths such that:

∀a, b.a < b⇒ ia < ib ∧ ∀j.pj ∈ JPijK .

Chapter 6: Implementation 168

In code, we represent a path sequence as a PathMap together with an ordered list

of block-label pairs.

type PathSequence = ([PathName], PathMap)

Generating the path sequence is done with our analog of Gaussian elimination. We

must produce an ordering of block-label pairs, and a path map such that path elements

satisfy the ordering in the sense of being a path sequence. What we mean by this is

captured in the definition below.

Definition 16. a decomposed path map is a path map such that, for a given

ordering of blocks, and for each (u, v) either:

1. if u appears before v in the ordering, then P (u, v) is a non-redundant path

expression with no intermediate blocks which appear after v in the ordering, or

2. if u appears after v in the ordering, then P (u, v) is a non-redundant path ex-

pression with no intermediate blocks which appear before u in the ordering.

For the moment, let us assume we have a function eliminate which produces a

decomposed path map: a PathMap with the properties described above. Then, using

eliminate, we can create a path sequence using the generateSequence function,

shown here.

generateSequence :: [GBlock] → PathSequence

generateSequence blocks =
let pm = eliminate blocks in

let lowerLeft = [(u,w) | u ← labels, w ← sectionFrom u labels

, let uw = fetch pm (u,w)

, notEmpty uw

, notLambda uw] in

let upperRight = [(u,w) | u ← labels, w ← sectionTo u labels

Chapter 6: Implementation 169

, let uw = fetch pm (u,w)

, notEmpty uw] in

(lowerLeft ++ reverse upperRight, pm)

where

labels = topOrder blocks

This function first calls eliminate to produce a decomposed path map. Then, we

produce a list of elements which correspond to the lower-left and upper-right matrices

from before. Notice, that our function orders the rows and columns in topological

order, and the list of ordered labels are accessed using the functions sectionFrom

and sectionTo. These functions abstract a simple list so that we can easily replace

the implementation with an array.

Our abstraction of simple lists are called “sections”. We define sections with an

abstract type Sequence and the functions shown below.

data Section −− abstract type

dfOrder :: [GBlock] → Section

topOrder :: [GBlock] → Section

sectionTo :: Label → Section → Section

sectionFrom :: Label → Section → Section

sectionAfter :: Label → Section → Section

The two functions dfOrder and topOrder produce sequences from a set of basic blocks

which are either in depth-first or topological order. The function sectionTo returns

the prefix of a section up to and including the given label. The function sectionFrom

returns the suffix of a section including and following the given label. The function

sectionAfter returns the suffix of a section following the given label.

The correctness of generateSequence was proved by Tarjan (1981). Formally,

Tarjan proved the following theorem:

Chapter 6: Implementation 170

Theorem 3 (Correctness of generateSequence). Let eliminate be a function which

produces a decomposed path map for a given control-flow graph G, then generateSequence G

produces a path sequence for G.

6.4.2 Front- and Back-solving

The path sequences presented in the previous section may, at first, seem like

arbitrary constructions. To better understand path sequences, we will now look at

how they are used to solve the single-source path-expression problem. The algorithm

in this section is analogous to the front- and back-solving methods used to solve

matrix equations. The main function, solve, takes a path sequence and a source

label and produces a path map which, for any basic block in the graph, gives a path

sequence representing all paths between the source and that block.

The entry point for the simple solving algorithm is shown below. We will use a

state monad to track the current path map as it is being built.

solve :: PathSequence → Label → PathMap

solve pathSeq source = runST $

do ref ← newSTRef initialize

solveLoop pathSeq source ref

readSTRef ref

where

initialize = store emptyPathMap (source,source) Lambda

Most of the solve function deals with setting up the ST-monad, allocating a reference

cell to hold the current path map, and returning the final result. The only interesing

part of solve is the initialization of the path map. Recall, that our path maps are

sparse, and any entry not found in the map is understood to be Empty. Therefore,

the only entry we need to initialize is the entry for the path from the source to itself,

Chapter 6: Implementation 171

which starts out as Lambda, the empty path.

The main work of the solving algorithm is done in solveLoop. Within solve loop

we will use monadic versions of fetch and store to modify the current path map.

Following convention, we call these function get and set.

get :: PathName → ST a Gate

get e = readSTRef spm >>= λm → return (fetch m e)

set :: PathName → Gate → ST a ()

set e g = readSTRef spm >>= λm → writeSTRef spm (store m e g)

Finally, we have solveLoop itself. This function processes the pairs of block labels

in the order dictated by the path sequence, and for each one updates the current path

map.

solveLoop :: PathSequence → Label → STRef a PathMap → ST a ()

solveLoop (labels,pm) s spm =
forM_ labels $ λ(v,w) →

do sv ← get (s,v)

sw ← get (s,w)

let vw = fetch pm (v,w)

if v == w

then set (s,v) (sv :. vw)

else set (s,w) (sw :+ (sv :. vw))

For each (v, w), we will look at the path expression v →∗ w. If v = w, then we have

a cycle, and we update the path s →∗ v to include this cycle. Otherwise, we can

construct a new path v →∗ s →∗ w and add this to the known paths from s to w.

At each step, because of the properties of the path seqeunce, we know that we have

processed all prefixes of the paths we are considering.

The correctness of solve was proved by Tarjan (1981) with respect to path se-

quences. Formally, Tarjan proved the following theorem:

Chapter 6: Implementation 172

Theorem 4 (Correctness of solve). If S is a path sequence for a control-flow graph

G = (V,E), then for any s, v ∈ N , fetch (solve S s) (s,v) is a non-redundant

path-expression representing all paths from s to v.

6.4.3 Decomposition

Finally, we come to the problem of decomposition, and the implementation of the

function eliminate. Recall, that the job of eliminate is to produce a path map with

the properties listed in Definition 16. Like solve, we will introduce a state monad

and a reference cell to hold the current path map. We will process the basic blocks

in topological order after initializing the path map using elimInit.

eliminate :: [GBlock] → PathMap

eliminate blocks =
runST $ do psr ← newSTRef (elimInit blocks)

elimLoop (topOrder blocks) psr

readSTRef psr

The job of elimInit is to start out the algorithm with all of the atomic path

expressions for the edges in the control-flow graph. The elimInit function is shown

below.

elimInit :: [GBlock] → PathMap

elimInit blocks =
foldl (adjust initEdge) emptyPathMap (edges blocks)

where

initEdge (x,y) exp = exp :+ evalEdge x y

edges :: [GBlock] → [(Label,Label)]

edges blocks = nub $ concatMap outEdges blocks

outEdges b = [(label b, x) | x ← cfgsuc b]

Chapter 6: Implementation 173

Initialization proceeds by calling adjust initEdge for each of the edges that appear

in the control-flow graph. For each edge, we construct the atomic path expression by

calling evalEdge. The atomic path expression is added to the current path expression

using the union constructor (:+). In this case, the union is not necessary since we

start with an empty path map and only process each edge once (because of nub).

However, the union allows us to relax these conditions if necessary.

Most of the work of decomposition is done by the elimLoop function below. Like

solveLoop, this function is monadic, and uses monadic versions of fetch and store,

which are called get and set.

elimLoop :: Section → STRef a PathMap → ST a ()

elimLoop ns psr =
forM_ ns $ λv →
do vv ← get (v,v)

set (v,v) (Star vv)

forM_ (sectionAfter v ns) $ λu →
do uv ← get (u,v)

vv ← get (v,v)

when (notEmpty uv) $

do set (u,v) (uv :. vv)

forM_ (sectionAfter v ns) $ λw →
do uw ← get (u,w)

uv ← get (u,v)

vw ← get (v,w)

when (notEmpty vw) $

set (u,w) (uw :+ (uv :. vw))

For each block label, v, in the depth-first ordering, elimLoop first adds the path

(v →∗ v)∗ to the set of paths. Then, for each block u which comes after v in the

ordering, we add to path expression for (u, v) the path u→∗ v →∗ v which captures

cycles starting at v. Finally, for each block, w which comes after v in the ordering, we

add to path expression for (u,w) the path u→∗ v →∗ w, which captures paths which

Chapter 6: Implementation 174

0

1

2 3

4

Figure 6.6: Example: a conditional statement.

contain the intemediate block v. The guards of the form when (notEmpty ...) are

an optimization.

Again, the correctness of this algorithm has been proved by Tarjan (1981). Specif-

ically, Tarjan proved the following theorem:

Theorem 5 (Correctness of eliminate). For a given control-flow graph, G, the

function eliminate produces a decomposed path map of the blocks of G with respect

to a topological ordering of G.

6.4.4 Examples

We will now examine the operation of solve through a couple of simple examples.

The first example is a conditional statement. The control-flow graph for the first

example is shown in Figure 6.6. In this example, execution starts at the entry block

0, and proceeds unconditionally to block 1. From block 1, control can flow either to

block 2 or block 3 based on a condition (not shown here). Finally, the control flows

to block 4. For our example, we will use block 0 as the source block. There are five

paths with source block 0 going to each of the blocks in the graph. We will look at

how these paths are constructed through the execution of solve.

Chapter 6: Implementation 175

The first step of the algorithm is to generate a path sequence using generateSequence.

This function begins by performing decomposition with eliminate. Within eliminate

the path map is initialize with the atomic paths using elimInit. After elimInit,

the path map is initialized and contains the entries below:

(0, 1) 7→ ∅ ∪ γ(0,1)

(1, 2) 7→ ∅ ∪ γ(1,2)

(1, 3) 7→ ∅ ∪ γ(1,3)

(2, 4) 7→ ∅ ∪ γ(2,4)

(3, 4) 7→ ∅ ∪ γ(3,4)

Notice we have not simplified these paths at this point to make it easier to follow the

algorithm.

Next, we adjust all of the paths inside of elimLoop. In this simple case, this

has the net effect of adding empty paths (Λ) for each block to itself. The path map

returned from eliminate is show below. In this case, we also show the simplified

Chapter 6: Implementation 176

paths for each entry.

(0, 0) 7→ ∅∗ 7→ Λ

(0, 1) 7→
(
∅ ∪ γ(0,1)

)
· (∅∗) 7→ γ(0,1)

(1, 1) 7→ ∅∗ 7→ Λ

(1, 2) 7→
(
∅ ∪ γ(1,2)

)
· (∅∗) 7→ γ(1,2)

(1, 3) 7→
(
∅ ∪ γ(1,3)

)
· (∅∗) 7→ γ(1,3)

(2, 2) 7→ ∅∗ 7→ Λ

(2, 4) 7→
(
∅ ∪ γ(2,4)

)
· (∅∗) 7→ γ(2,4)

(3, 3) 7→ ∅∗ 7→ Λ

(3, 4) 7→
(
∅ ∪ γ(3,4)

)
· (∅∗) 7→ γ(3,4)

(4, 4) 7→ ∅∗ 7→ Λ

Finally, with the above path map as input, we run the main solve algorithm with

source block 0. The final result is shown below:

(0, 0) 7→ Λ

(0, 1) 7→ γ(0,1)

(0, 2) 7→ γ(0,1) · γ(1,2)

(0, 3) 7→ γ(0,1) · γ(1,3)

(0, 4) 7→
((
γ(0,1) · γ(1,3)

)
· γ(3,4)

)
∪
((
γ(0,1) · γ(1,2)

)
· γ(2,4)

)
Looking at the final result, we see that for block 4, there are two paths from the

source 0 joined with union. The first is the path 0 → 1 → 3 → 4, and the second

is 0 → 1 → 2 → 4. Suppose we want to compute the gating function for block

Chapter 6: Implementation 177

0

1

23

Figure 6.7: Control-flow graph for a simple loop

4. We can do this by interpreting the path expression using our alternate boolean

interpretation2. If we suppose that the condition splitting the control flow is c, then

this interpretation is:

J
((
γ(0,1) · γ(1,3)

)
· γ(3,4)

)
∪
((
γ(0,1) · γ(1,2)

)
· γ(2,4)

)
Kb

=((true ∧ ¬c) ∧ true) ∨ ((true ∧ c) ∧ true)

=¬c ∨ c

Example 2. For our second example we will look at a simple loop. Consider the

control-flow graph shown in Figure 6.7. As with the first example, elimInit simply

constructs the atomic paths for each edge in the control-flow graph. However, because

of the loop in this example, eliminate does some interesting work. The configuration

2Actually, we would use 1 as a source vertex, not 0, but the result is the same in this case.

Chapter 6: Implementation 178

of the path map after eliminate is show below.

(0, 0) 7→ ∅∗ 7→ Λ

(0, 1) 7→ ∅ ∪ γ(0,1) 7→ γ(0,1)

(1, 1) 7→ ∅∗ 7→ Λ

(1, 2) 7→ ∅ ∪ γ(1,2) 7→ γ(1,2)

(1, 3) 7→ ∅ ∪ γ(1,3) 7→ γ(1,3)

(2, 1) 7→
(
∅ ∪ γ(2,1)

)
· ∅∗ 7→ γ(2,1)

(2, 2) 7→
(
∅ ∪

(((
∅ ∪ γ(2,1)

)
· ∅∗
)
·
(
∅ ∪ γ(1,2)

)))∗ 7→
(
γ(2,1) · γ(1,2)

)∗
(2, 3) 7→

(
∅ ∪

(((
∅ ∪ γ(2,1)

)
· ∅∗
)
·
(
∅ ∪ γ(1,3)

)))
· ∅∗ 7→ γ(2,1) · γ(1,3)

(3, 3) 7→ ∅∗ 7→ Λ

As before, we have show the initial path expression and the simplified versions of the

path expressions for each edge in the control-flow graph, and for the paths n →∗ n

for each block n. Notice, that the initial path expression for (1, 1) is Λ just as in the

previous example. The path expression for (2, 2), however, is (2→ 1→ 2)∗ indicating

that a loop is possible. The cycle appears for (2, 2) and not (1, 1) because we are using

a topological ordering to do the decomposition.

Using the path map above, we can evaluate solve using an initial block of 1. The

Chapter 6: Implementation 179

resulting path map is shown below.

(1, 0) 7→ ∅

(1, 1) 7→ Λ ∪
((
γ(1,2) ·

(
γ(2,1) · γ(1,2)

)∗) · γ(2,1))
(1, 2) 7→ γ(1,2) ·

(
γ(2,1) · γ(1,2)

)∗
(1, 3) 7→ γ(1,3) ∪

((
γ(1,2) ·

(
γ(2,1) · γ(1,2)

)∗) · (γ(2,1) · γ(1,3)))
First, notice that the path expression for (1, 1), representing all of the paths from

block 1 to itself, is either the empty path, or the path which begins with an edge from

1 to 2, followed by zero or more cycles between 2 and 1, and ends with an edge from

2 to 1. The empty path Λ is important because it allows us to properly compute the

path expression for (1, 3), which includes the simple path 1→ 3.

6.4.5 Simple Optimizations

Our simple decomposition technique, eliminate, has a complexity which depends

on the sparsity of the matrix of edges for the control-flow graph. For a given control-

flow graph (N,E), the worst case time complexity isO(|N |3+|E|). We can improve on

this by combining eliminate with a partitioning of the graph into strong components.

We can apply eliminate to each sub-graph to compute a set of path sequences for

each component, and combine the path sequences using the topological ordering of

the components. This technique is more or less effective depending on the type of

graphs we are considering.

For example, suppose our graph is acyclic. In this case, we can obtain a path

sequence by topological ordering alone. Put another way, in an acyclic graph, each

block is a strong component. Applying eliminate to a single block just returns a

Chapter 6: Implementation 180

path sequence containing this block. So, we may use the topological ordering of blocks

as our path sequence.

A more realistic example is to take advantage of the directed nature of control-flow

graphs. Because our graphs are directed, we can compute the strongly-connected com-

ponents of the graph and treat each strong component independently. Unfortunately,

because many control-flow graph have few strongly connected components (compared

to the number of blocks), this technique produces only modest improvements. In the

next section we will look at a much more powerful decomposition technique based on

dominators.

6.5 Decomposition using dominators

In this section we will present the final form of our algorithm for computing gating

functions. This version of the algorithm decomposes the graph using the dominator

tree. The algorithm performs a depth-first traversal of the dominator tree, and at

each step processes the sub-graph containing the children of the tree node. In this

way, we only process very small sections of the graph at a time and then combine

the results, resulting in much better time complexity. Initially, we will assume our

control-flow graphs are reducible. In the next section we will show how to modify the

algorithm to handle arbitrary graphs.

For this version of the algorithm, we will change the intermediate representation

of gating functions. Each gating function is a path expression which can be thought

of as a tree built using as tree nodes the constructors of the PathExpr type. Initially,

we only have atomic path expressions which are trees of height one. As the algorithm

Chapter 6: Implementation 181

progresses, we will compose path expressions creating larger trees. Therefore, we will

represent the intermediate state of our gating functions as a forest of trees. Each tree

in the forest is a path expression representing paths from the root of the tree to the

leaves.

Conceptually, the forest is a pair of finite maps. One map captures the structure

of the tree by associating with each block label the label of its parent in the forest.

The second map tracks the gating function from the root of the tree to a block by

associating with each block label a gating function. In code, we use the abstract type

Forest with the following associated functions:

data Forest −− abstract type

emptyForest :: Forest

fetchNode :: Label → Forest → (Label,Gate)

setParent :: Label → Label → Forest → Forest

setGate :: Gate → Label → Forest → Forest

The function fetchNode returns both the parent label and gating function associated

with a given block label. The two functions setParent and setGate update a forest

by changing the parent of gating function associated, respectively, with a block label.

As the forest is modified to include larger trees, we will simplify the gating functions

when possible. Our forest is therefore an instance of path compression (Tarjan, 1975).

We will present the path compression functions in detail in Section 6.5.2.

Because we will be working on incomplete graphs, we will need a variation of the

solve algorithm for sub-graphs. Like solve, the new algorithm (called solveChildren)

takes in a path sequence and source and sink labels and computes a decomposed path

map. As before, we will build the path map by updating a state variable containing

the current path map. However, we must be careful to reset the path map for each

Chapter 6: Implementation 182

sub-graph. For this, and for tracking the current forest of gating functions, we use a

state monad to structure the algorithm.

6.5.1 Gating Monad

The gating algorithm runs within a monad. This monad tracks the current forest

of gating functions, the state for the solve algorithm, and provides easy (and fast)

access to the basic blocks. The monad is defined using the parametrized type M shown

below.

type Blocks = A.Array Label GBlock

data M a = M {

runM :: Blocks → PathMap → Forest → (PathMap,Forest,a)

}

The type Blocks is an array of basic blocks indexed by block labels, which are small

integers. This array gives us a quick way to find a basic block from its label. The

monad M is defined as the set of functions from the block array Blocks, the state of

the solve algorithm PathMap, and the state of the forest of gating functions Forest to

a tuple. The result tuple contains a possibly modified solve state, a possibly modified

forest of gating functions, and a computation specific result.

The monad M is a combination environment state monad. The Blocks array is used

as an environment which cannot be modified, but it is available to all computations.

Both PathMap and Forest are state which can be read and written by computations.

The different roles of the environment and state can be seen in the implementation

of the monad.

instance Monad M where

Chapter 6: Implementation 183

return x = M $ λe s f → (s,f,x)

m >>= k = M $ λe s f → let (s’,f’,x) = runM m e s f in

runM (k x) e s’ f’

In the definition of M we see that when two computations are sequenced using the

bind operator (>>=) the first computation is given the current environment and state

variables. The second computation is given the same, unmodified environment and

the possible modified state variables.

In order to use the monad M, we need to provide some primitive operations on

the monad for accessing the internal environment and state. The environment can

be accessed by creating a function of the right type which copies the environment to

the result position.

blocks :: M Blocks

blocks = M (λe s f → (s,f,e))

blockOf :: Label → M GBlock

blockOf l = do bs ← blocks; return (bs ! l)

The function blocks copies the environment (the first argument) to the result position

(the third element of the result tuple) leaving the state unchanged. A simple helper

function, blockOf finds the basic block associated with a label using the environment

and an array access.

The internal state of the monad is access in the same way as the environment. For

instance, the current forest of gating function can be read using the forest function

defined below.

forest :: M Forest

forest = M (λe s f → (s,f,f))

Chapter 6: Implementation 184

setForest :: Forest → M ()

setForest f = M (λe s _ → (s,f,()))

Since the forest is internal state and can be modified, we also provide setForest

which replaces the current forest with a new one. The same treatment is needed for

the solve algorithm state.

solveState :: M PathMap

solveState = M (λe s f → (s,f,s))

setSolveState :: PathMap → M ()

setSolveState s = M (λe _ f → (s,f,()))

The solve algorithm we use here is similar to the solve function from the previous

sections. In order to make this similarity clear, we define the functions get and set

which perform the same job as the so named functions from the previous sections.

However, our implementations differ in that they use the solve state of our new monad.

get :: PathName → M Gate

set :: PathName → Gate → M ()

get n = solveState >>= λm → return (fetch m n)

set n g = solveState >>= λm → setSolveState (store m n g)

reset :: M ()

reset = setSolveState emptyPathMap

As previously mentioned, because our solve algorithm is called many times on sub-

graphs of our control-flow graph, we need to be careful to reset the internal state of

the solver. We provide a primitive reset which does this by replacing the solver state

with an empty path map.

Finally, we need a function to run our monad computations once we have con-

structed them with return, bind, and our monadic primitives. Following convention,

Chapter 6: Implementation 185

this function is called evalM, and is shown below.

evalM :: [GBlock] → M a → a

evalM cfg m =
let (_,_,x) = runM m env emptyPathMap emptyForest

in x

where

bounds = (0, length cfg + 1)

blks = sortBy (λb1 b2 → compare (label b1) (label b2)) cfg

env = A.array bounds [(label b, b) | b ← blks]

The evalM function uses runM to extract the function from the monad M. This function

is then run using an initial environment, an empty path map, and an empty forest.

The initial environment is an array of blocks in label order built using the built-in

Array module.

6.5.2 Path Compression

Now that we have the monad M, we can implement monadic versions of our func-

tions for manipulating the current forest of gating functions. Using these we can then

implement path compression on our trees. To begin, we implement the functions

parent and gate which return the current parent or the gating function for a given

label, respectively.

parent :: Label → M Label

gate :: Label → M Gate

parent l = liftM (fst ◦ fetchNode l) forest

gate l = liftM (snd ◦ fetchNode l) forest

Both of these function use fetchNode (defined earlier) to find the tree node corre-

sponding the a given label. The forest we use is the current forest returned from the

monadic primitive forest.

Chapter 6: Implementation 186

Following (Tarjan, 1979), we implement path compression by defining an interface

for accessing our forest of gating functions. The interface contains four functions listed

below with their types.

initialize :: Label → M ()

update :: Label → Gate → M ()

link :: Label → Label → M ()

eval :: Label → M Gate

The call initialize l sets the parent of l to 0, and sets the gating function of l to

Λ. The call update l g sets the gating function associated with label l to g. The

call link p l sets the parent of l to be p, thus relocating the tree rooted at l to be

a child of p. Finally, eval l returns the gating function which represents all of the

paths from the root of l’s tree to l.

The implementation of the first three of the interface functions is straight-forward.

We implement update and link using the operations on forests and our monadic

primitives.

update l g = do f ← forest; setForest (setGate g l f)

link p l = do f ← forest; setForest (setParent p l f)

The initialize function can then be implemented in terms of these two functions.

initialize v = do link 0 v; update v Lambda

The path compression is done within the implementation of eval. If the block label

is not for the entry node (0), then we perform path compression the label, and then

return the gating function.

eval :: Label → M Gate

eval 0 = return Lambda

Chapter 6: Implementation 187

eval v = do compress v; gate v

Path compression starts at a label, v, and tries to compress the tree towards the root.

The compression is done by building a gating function from v’s grandparent to v and

re-rooting v to its grandparent.

compress :: Label → M ()

compress v = do p ← parent v

pp ← parent p

when (pp 6= 0) $

do compress p

gv ← gate v

gp ← gate p

update v (simplify (gp :. gv))

link v pp

Note that in addition to reducing the height of the tree leading to v, we also simplify

the gating function for v. Therefore, compression helps us to maintain minimal trees

and minimal gating functions.

6.5.3 Block Processing Order

In order for our algorithm to work properly, we must be careful to process blocks in

the correct order. There are several functions we use for building different orderings

and sets of blocks. Our algorithms is structured as a depth-first traversal of the

dominator tree. We do this by creating an ordering of blocks which represents this

ordering and then processing the ordered blocks in a loop. The ordering is created

using the idomOrdering function shown below.

idomOrdering :: M [Label]

idomOrdering = liftM reverse (next [] 0)

where

Chapter 6: Implementation 188

next ls l = childrenOf l >>= foldM next (l:ls)

childrenOf :: Label → M [Label]

childrenOf l = liftM children (blockOf l)

We use and define a small helper function, childrenOf, which is a monadic version

of the functions for accessing a block’s children in the dominator tree.

As we process each block, we must differentiate between control-flow edges which

are also edges in the dominator tree, and edges which are not. The functions tree

and non tree select edges which are and are not in the dominator tree respectively.

tree :: Label → M [(Label,Label)]

non_tree :: Label → M [(Label,Label)]

tree l = do b ← blockOf l; return [(x,l) | x ← cfgpre b

, x == idom b]

non_tree l = do b ← blockOf l; return [(x,l) | x ← cfgpre b

, x 6= idom b]

Note that for each block, all of its control-flow in-edges are contained in the union of

the sets created by tree and non tree.

Finally, in order to use our solve algorithm, we have to create a path sequence

for a sub-graph rooted at a specific block. At each step we will process a block and

its immediate children in the dominator tree. Therefore, we need a path sequence

which includes these blocks. If our graph is reducible, then we can use a topological

ordering of the blocks contained in the sub-graph.

subsequence :: Label → M PathSequence

subsequence l =
do cs ← childrenOf l

bs ← liftM (filter (λb → label b ‘elem‘ l:cs) ◦ A.elems) blocks

let es = [(l,x) | x ← topOrder bs]

Chapter 6: Implementation 189

pm ← foldM f emptyPathMap bs

return $ (es, pm)

where

f m b = liftM (store m (l,label b))

(pathExprOf l (label b))

The function subsequence computes a path sequence for a sub-graph assuming our

control-flow graph is reducible. We use the list of blocks stored in the environment

filtered to contain only the block of interest and its immediate children. From this

list we build a simple path map containing the atomic paths. Together, the ordering

and the path map consittute a path seqeunce which can be used for reducible graphs.

We will return to the issue of irreducible graph in Section 6.6.

6.5.4 Main Algorithm

The main algorithm, decompose, is shown in Figure 6.8. After the execution

of decompose, the forest of path expressions will contain for every block v, a non-

redundant path expression representing all paths from idom(v) to v. This is exactly

the information we need to construct our gating function according to Theorem 2.

The main algorithm begins by building a depth-first sorting of the blocks at line 3.

Then, on line 4, we initialize the forest with initial values for each block. Lines 5

through 18 contain the loop which processes each node in the depth-first ordering.

The loop begins with lines 6-8 which assign local variables to the basic block, children,

and immediate dominator for the current block label u. Then, there are three sections

contained on lines 9-11, lines 12-13, and lines 14-16. The first section initializes all of

the non-tree nodes of the current block’s children by calling evalEdge. For irreducible

graphs, evalEdge is easily implemented in terms of eval.

Chapter 6: Implementation 190

1 decompose :: M ()

2 decompose =
3 do { labels ← idomOrdering

4 ; forM_ labels initialize

5 ; forM_ labels $ λu →
6 do { blk ← blockOf u

7 ; let cs_u = children blk

8 ; let idom_u = idom blk

9 ; forM_ cs_u $ λv →
10 do nt ← non_tree v

11 forM_ nt evalEdge

12 ; subseq ← subsequence u

13 ; pathMap ← solveChildren subseq idom_u u

14 ; forM_ cs_u $ λv →
15 do update v (fetch pathMap (idom_u, u))

16 link u v

17 ; return ()

18 }

19 ; return ()

20 }

Figure 6.8: Main Algorithm

Chapter 6: Implementation 191

evalEdge :: (Label,Label) → M Gate

evalEdge (h,t) = eval t

The second section builds a path sequence for the graph containing the current block

and its children. This path sequence is used to call solveChildren which computes

a path map for these blocks. Finally, the third section updates our forest with the

information contained in the path map computed by solveChildren.

Solving Sub-graphs

The algorithm for solving a sub-graph is similar to our original algorithm solve.

The sub-graph algorithm is given two labels: root and lbl. The second label, lbl is

the block we are working on, and the first label is the root of the tree for this label’s

gating function. The sub-graph version begins by resetting the internal path map to

an empty map.

solveChildren :: PathSequence → Label → Label → M PathMap

solveChildren pathSeq root lbl =
do reset

cs ← childrenOf lbl

solveChildrenInit root cs

solveChildrenLoop pathSeq root lbl

solveState

Then, for each child of lbl in the dominator tree, we initialize the path map entries

corresponding to the paths from root to those labels. Finally, we call solveChildrenLoop

on the path sequence for the sub-graph of interest.

To initialize the path map for the children, we first get the set of control-flow

in-edges to each child which are also in the dominator tree using the tree function.

Chapter 6: Implementation 192

Then, for each of these edges we compute an atomic path expression and union this

to the existing path expression for the child.

solveChildrenInit :: Label → [Label] → M ()

solveChildrenInit s csu =
forM_ csu $ λv →

do set (s,v) Empty

tr ← tree v

forM_ tr $ λ(h,t) →
do sv ← get (s,v)

ht ← pathExprOf h t

set (s,v) (sv :+ ht)

After solveChildrenInit, there is an atomic path expression for each edge between

the children and their immediate dominators. Note, in our case, there can be only

one such edge for each child. However, for general graphs this may not be the case.

The above function could be simplified, in our case, to simply build atomic path

expressions for the dominator tree edges which appear in the control-flow graph.

Finally, the main solving loop, solveChildLoop, is shown below.

solveChildrenLoop :: PathSequence → Label → Label → M ()

solveChildrenLoop (labels,pm) s u =
forM_ labels $ λ(w,x) →

do p ← get (w,x)

sw ← get (s,w)

sx ← get (s,x)

if x == w

then set (s,w) (sw :. p)

else set (s,x) (sx :+ (sw :. p))

This function is almost identical to the corresponding code in solve. For each edge

(w, x) in the path sequence, we check if w = x. If so, then we append w →∗ x to the

path s →∗ w representing a loop. Otherwise, we add the path s →∗ w →∗ x to the

path expression for (s, x).

Chapter 6: Implementation 193

The algorithm presented in this section is only valid for reducible graphs. However,

the algorithm is structured so that it is easy to extend it to irreducible graphs. In

particular, we only need to revisit how we construct the path sequence and initialize

the non-tree edges. In the next section, we will look at why this algorithm does not

work for irreducible graphs and extend it to handle arbitrary graphs.

6.6 Irreducible graphs

Consider the control-flow graph shown in Figure 6.9a. This graph is irreducible

because of the edge from block 2 to block 4. Figure 6.9b shows the associated dom-

0

1

2

3

4

(a) An irreducible graph.

0

1

23

4

(b) Associated Dominator Tree.

Figure 6.9: Irreducible graph and its dominator tree.

inator tree. We have included dashed edges to indicate control-flow edges which do

not appear in the tree (these are the “non-tree” edges).

Because of the irreducibility, the algorithm presented in the previous section would

not compute the correct result for this graph. There are two problems that we en-

counter: a technical problem involving the order in which edges are processed, and

a more basic problem with the decomposition scheme. The basic problem is that

Chapter 6: Implementation 194

Block Partial path sequence Solved edges Non-tree edges Tree edges

3 [] {} {(2,3)} {}

2 [] {} {} {(1,2)}

1 [(1,2)] {(1,2)} {(3,1)} {(0,1)}

4 [] {} {(2,4),(3,4)} {(0,4)}

0 [(0,1),(0,4)] {(0,1),(0,4)} {} {}

Table 6.1: Sequences used for graph in Figure 6.9

the sub-graphs we divide the graph into do not satisfy our criteria for decomposi-

tion. Recall, the idea is to divide the graph into components which can be treated

separately, and then to combine the results by composing the path sequences for the

sub-problems. However, with this graph, our components have multiple entry points.

Therefore, we cannot combine the result of the sub-problems by simple composition.

A solution to this basic problem lead us to our final algorithm, however it is useful

to consider the ordering problem to gain some intuition.

Table 6.1 shows the sets and sequences used to process the irreducible graph in

Figure 6.9. The first column lists the blocks of the graph in the order they are pro-

cessed by the main algorithm. The second column shows the path sequence computed

by sequence for the sub-graph rooted at each block. The third column shows the

edges that are solved for in each iteration of the algorithm. Finally, the fourth and

fifth columns show the sets computed by tree and non tree.

The main algorithm starts by initializing the non-tree edges for the children of

the current block, and then calling solveChildren for the associated path sequence.

Solve initializes the tree edges for the children of the current block, and proceeds to

Chapter 6: Implementation 195

the main solving loop. After solve, the “solved edges” are stored in the result path

map. Therefore, if we read Table 6.1 from top-to-bottom and left-to-right, we see the

order in which the edges of the graph are processed.

We can see from Table 6.1 that our algorithm cannot possibly compute the correct

results just by inspecting the order the edges are processed. For example, the path

expression for edge 1→ 2 is computed before the edge 3→ 1 has even been initialized.

With no information about edge 3→ 1, the path expression for edge 1→ 2 must be

incomplete. Similar problems can be spotted for other edges using the table.

Clearly, our algorithm fails for this irreducible graph. Although it may not be

obvious from what we have presented, the ordering problem is merely a symptom of

the more basic problem; our sub-graphs may have multiple entries or exits. To repair

our algorithm we will transform our graph so that each sub-graph we consider has on

entry and one exit.

6.6.1 The Derived Graph

The flaw in our algorithm lies in the fact that the sub-graphs induced by the

blocks and their children are not simple components with only one entry and one

exit. To fix this problem, we define the notion of dominator strong components. The

dominator strong components for a reducible graph are simply the basic blocks of

the graph. For an irreducible graph, the dominator strong components must allow us

to compute a partial path sequence which can be combined with other partial path

sequence to produce a complete sequence for the graph. Precisely, the dominator

strong components are defined as the strong components of the derived graph, which

Chapter 6: Implementation 196

is defined below.

Definition 17. The derived graph for a graph G = (N,E), is a graph with nodes

N and edges Ẽ such that (u, v) ∈ Ẽ if either:

• (u, v) ∈ E ∧ u = idom(v), or

• u 6= v, and ∃(u′, v) ∈ E such that idom(v)→ u′ →∗ v.

There are two slightly different definitions for the derived graph appearing in

the literature. The first definition appears in Tarjan (1979), which is the definition

we have used. A second definition appears in Georgiadis and Tarjan (2005) which

includes fewer edges, but it is not materially different. The following theorem allows

us to keep our depth-first algorithm structure which using the derived graph when

needed.

Theorem 6 (Georgiadis and Tarjan (2005)). For any graph G and its derived graph

G̃, T is the dominator tree of G if and only if T is also the dominator tree of G̃.

Figure 6.10 shows the derived graph for our example. Indeed, the associated

dominator tree is unchanged, but the set of “non-tree edges” are not the same. We

0

1

23

4

(a) Derived graph.

0

1

23

4

(b) Associated Dominator Tree.

Figure 6.10: Graph derived from Control-flow Graph in Figure 6.9

Chapter 6: Implementation 197

can use the derived graph to run our algorithm. To do this we will use the derived

graph to compute the path sequences we need to solve for edges. In this case, each

sub-graph we consider will be a simple component, and we can concatenate our results

with other components. Also, because the dominator tree is unchanged we can be sure

that we have processed the edges in the correct order. Note however, that after we

compute a path sequence we must be careful to use path expressions from our original

graph for all of the derived edges. We will now look at how this is accomplished with

minor modification to our algorithm.

6.6.2 Modifications to Main Algorithm

To handle arbitrary graphs, we will make modifications to the functions subsequence

and evalEdge. The changes to subsequence are where the changes to the algorithm

take place; the changes to evalEdge allow us to keep track of some additional infor-

mation needed by the new subsequence. Th additional information we need to track

is the path expressions which correspond to the edges in the derived graph.

For each edge in the derived graph which does not appear in the original graph

we need to keep track of the path expression from the original graph that the new

derived edge represents. Put another way, for each edge (h′, t) which is derived from

edge (h, t) we need to associate the path expression for the original path h→∗ t with

the derived edge (h′, t). This additional information is tracked within our monad

using a new state parameter. The new state parameter is a PathMap for the derived

edges with the following accessor functions:

getDerived :: M PathMap

Chapter 6: Implementation 198

storeDerived :: PathName → Gate → M ()

The function getDerived returns the current path map for the derived edges. The

function storeDerived associated a path expression with an edge. The path expres-

sions for the derived edges are stored each time we evaluate an edge with evalEdge.

Our first modification is to change evalEdge to record these path expressions.

evalEdge :: (Label,Label) → M Gate

evalEdge (h,t) =
do p ← eval t

de ← derivedEdge h t

storeDerived de p

return p

Just like the original version, the new evalEdge implementation returns the result of

eval on the second component of the input edge. However, this version also computes

the derived edge, de, and associates the path expression with this edge for later use.

Note, the path expressions associated with the derived edges are stored separately so

they do not effect the other parts of the algorithm.

To compute the derived edges, we refer to Definition 17. The function evalEdge

implements this definition.

derivedEdge :: Label → Label → M (Label,Label)

derivedEdge h t =
do tBlock ← blockOf t

if h == idom tBlock

then return (h,t)

else do ss ← siblings t

h’ ← pathTo siblings [t]

return (h’,t)

The siblings of a block are those blocks with a common immediate dominator.

Chapter 6: Implementation 199

siblings :: Label → M [Label]

siblings l = do cs ← blockOf l >>=

childrenOf ◦ idom

return [b | b ← cs, b 6= l]

To find the block u′ from Definition 17 we begin at the destination block and work

backwards through the control-flow edges looking for a sibling. This is done by the

function pathTo shown below.

pathTo [] _ = fail "no siblings"

pathTo ss [] = fail "no sibling found"

pathTo ss ls =
case find (‘elem‘ ss) ls of

Nothing → do lls’ ← mapM cfgpreOf ls

pathTo ss (concat lls’)

Just l → return l

With this bookkeeping in place we can now give an alternate definition of subsequence.

Our new implementation of subsequence uses generateSequence to produce a path

sequence for the derived sub graph containing the block in question and children.

subsequence :: Label → M PathSequence

subsequence l =
do cs ← childrenOf l

bs ← liftM (filter (λb → label b ‘elem‘ l:cs) ◦ A.elems) blocks

dg ← derivedGraph bs

substDerived (generateSequence dg)

where

derivedGraph :: [GBlock] → M [GBlock]

The function derivedGraph uses derivedEdge to replace the edges in the sub-graph

with their derived counterparts. Once we have this derived graph we can generate a

path sequence for this sub-graph knowing it is a single entry component of the derived

graph. Then, to use this sequence we must substitute the path expressions for the

Chapter 6: Implementation 200

original graph where the derived edges appear in the sequence. This last step is done

by substDerived.

substDerived :: PathSequence → M PathSequence

substDerived (es,pm) =
do dm ← getDerived

let pm’ = mapGates pm (lookupGate dm)

return (es,pm’)

where

getDerived :: M PathMap

mapGates :: PathMap → (PathName → Gate → Gate) → PathMap

lookupGate :: PathMap → PathName → Gate → Gate

As we can see from the implementation, substDerived simply maps the substitutions

in the derived path map over the path expressions contained in the path seqeunce.

We use the helper functions mapGates and lookupGate to perform the substitution.

Correctness. This completes our algorithm for computing gating functions for ar-

bitrary graphs. The algorithm is a variant of the single-source path-expressions prob-

lem for irreducible graphs. As such, its correctness is a corollary to the correctness

of Tarjan’s original algorithm.

Theorem 7 (Correctness of decompose). For a graph G = (N,E), the function

decompose computes a path map, P , such that ∀v ∈ N , P (idom(v), v) is an irreducible

path sequence from idom(v) to v.

Proof. This theorem is a direct corollary of Lemma 8(i) found in Tarjan (1979).

Complexity. The running time of the algorithm presented here depends on two

factors: the complexity of decompose and the complexity of computing path sequences

with generateSequence. For a control-flow graph G = (N,E), the total running time

Chapter 6: Implementation 201

of the algorithm is:

O
(
|E| ln(|N |) + `+ Σ

|N |
v=1 |{(u, v) ∈ E | u > v}| × |{(v, w) ∈ E | w > v}|

)
where ` is the total length of the path sequences for the derived graph. The first

term:

O (|E| ln(|N |))

comes from the main algorithm decompose. It is possible to use a more aggressive

form of path compression (called stratified path compression) to achieve a near-linear

running time of:

O (|E|α(|E| , |N |))

where α is proportional to the inverse Ackermann function.

The second term comes is the time required to compute the path sequences with

generateSequence. This bound can also be improved by sophisticated numerical

analysis techniques (Bunch and Rose, 1974; Rose et al., 1980). However, in practice,

we expect our sub-graphs to be small (only a few graph nodes) so this contribution

should be small. One notable exception is very large switch-statements which have

blocks with many children in the dominator tree. In this case, the computation of

the path sequence for the switch sub-graph can be long.

Chapter 7

Experimental Evaluation

In this chapter we present an experimental evaluation of our translation validation

prototype. Our evaluation investigates two prototypical use cases: a compiler devel-

oper verifying the correctness of new optimizations, and a compiler user who wants

to use validated optimizations. For input programs, we use the Spec CPU bench-

marks and the CompCert regression test library. Our analysis looks at the number

of functions our tool is able to validate using different configurations of rules, and at

the overall effect on run-time when used as a validated optimizer.

202

Chapter 7: Experimental Evaluation 203

The goal of our experimental evaluation is to determine if LLVM M.D. is capable

of being a practical software development tool. Whether of not a tool is practical

depends on how the tool is used and by whom. We will consider two prototypical

users: a compiler developer and a compiler user. For each of these users, “practical”

will take on slightly different meanings. For the compiler user, practical means:

• The validation tool is able to validate most of the correct optimizations, and

does not significantly degrade the run-time performance of programs.

• The validation tool does not take too long to run, and can be integrated into a

normal build process.

For a compiler developer, “practical” also means:

• The validation tool is easy to configure.

• The validation tool does not require extensive configuration.

• The validation tools output is easy to understand, and can be used to correct

compiler bugs or modify the configuration.

In our experimental evaluation, we aim to measure the effectiveness of our proto-

type validator with respect to the above criteria. For the compiler user, we expect

the compiler to be run once with a pipeline of optimizations. Therefore, we will mea-

sure the effectiveness of our tool when the inputs are an unoptimized program and

its counterpart after a series of optimizations have been applied. We will attempt to

answer the following questions:

1. How effective is the tool for an aggressive pipeline of optimizations?

Chapter 7: Experimental Evaluation 204

2. What is the impact on running time if we only use validated optimizations?

3. How long does validation take compared to compile time?

Our measure of effectiveness is simple: the fewer false alarms our tool produces, the

more optimized the code will be. Put another way, assuming the optimizer is always

correct, what is the cost of only using validated code?

For the compiler developer we expect the compiler to be run with a single opti-

mization at a time. After performing a single optimization, we expect the validator

to be run and the output used to detect bugs or new configuration rules that may

be needed to account for the new optimization. We are interested in the following

additional questions:

4. How effective is the tool optimization-by-optimization, and does this correlate

to the performance on a pipeline of optimizations?

5. What is the effect of adding new normalization rules on the system?

6. How hard is it to modify the configuration to account for new false alarms?

7. How easy is it to interpret the output of the validation tool?

We believe these questions directly address the notion of practical we have described,

and can determine if our validation tool can be useful for compiler users and devel-

opers.

Chapter 7: Experimental Evaluation 205

7.1 Experimental Setup

Our testing uses two sets of benchmark programs. The first set contains large

programs to stress our validator. These are the pure C programs of the SPECCPU

2006 (SpecCPU, 2006) benchmark1. In addition, we also included the SQLite em-

bedded database (SQLite3, 2011) in the first set. The second set of programs are

smaller benchmarks which are more compute intensive with less input and output.

The second set of programs are derived from the programming language shootout

benchmarks (Shootout, 2010), and are also used in the CompCert compiler test suite

(Leroy et al., 2003–2008). The two sets of programs are shown in Table 7.1. The

tables list the size of the programs, the total number of lines of code, and the total

number of functions. The size and lines of code are included to give a sense of the

relative sizes of the benchmarks. The number of functions is relevant because we will

validate or fail to validate at the granularity of functions.

Each benchmark program is preprocessed before we begin the validation process.

First, each program is compiled with Clang version 2.8, LLVM’s front-end compiler for

C (LLVM, 2010), and then processed with the “memory to register” (mem2reg) pass

of the LLVM compiler to place φ-nodes, and ensure the assembly code is in proper

SSA form. These assembly files make up the unoptimized inputs to our validation

tool.

For our initial experiments, we configured LLVM M.D. using the SQLite bench-

mark program. The preprocessed SQLite input was given to LLVM configured to run

one of a set of optimizations. Then, by examining the output of the validator, we

1The xalancbmk benchmark is missing because the LLVM bit-code linker fails on this large
program.

Chapter 7: Experimental Evaluation 206

Large Benchmarks

name size LOC functions

SQLite 5.6M 136K 1363

bzip2 904K 23K 104

gcc 63M 1.48M 5745

h264ref 7.3M 190K 610

hmmer 3.3M 90K 644

lbm 161K 5K 19

libquantum 337K 9K 115

mcf 149K 3K 24

milc 1.2M 32K 237

perlbench 15M 399K 1998

sjeng 1.5M 39K 166

sphinx 1.7M 44K 391

Small Benchmarks

name size LOC functions

aes 122K 1453 7

almabench 48K 351 6

binarytrees 11K 164 5

bisect 28K 376 7

chomp 42K 370 22

fannkuch 13K 154 2

fft 29K 191 2

fib 2.1K 19 2

integr 3.8K 32 4

knucleotide 47K 369 18

lists 10K 81 5

mandelbrot 8.1K 92 1

nbody 24K 174 5

nsieve 6.1K 57 3

nsievebits 6.9K 76 4

perlin 17K 75 6

qsort 11K 50 3

sha1 40K 234 10

spectral 11K 81 5

vmach 18K 216 2

Table 7.1: Test suite information

Chapter 7: Experimental Evaluation 207

discovered useful rewrite rules and added them to the configuration. In the end, we

added less than 20 rules. Using this configuration, we then applied our validator to

the other benchmark programs.

7.1.1 Pipeline information

We have configured the LLVM compiler in two different modes for our tests. In

the first mode, we run LLVM with a pipeline of optimizations and validate the results.

In the second mode, we run LLVM with only one optimization at a time. For our

experiments, we used the following optimizations:

• ADCE (advanced dead code elimination), followed by

• GVN (global value numbering),

• SCCP (sparse-condition constant propagation),

• LICM (loop invariant code motion),

• LD (loop deletion),

• LU (loop unswitching),

• DSE (dead store elimination).

These optimizations were chosen since they are the most advanced versions of the

intra-procedural optimizations available in LLVM. For instance, we do not include

constant propagation and constant folding because both of these are subsumed by

sparse-conditional constant propagation (SCCP). Similarly, dead-code and dead-instruction

elimination are subsumed by aggressive dead-code elimination (ADCE). Missing from

Chapter 7: Experimental Evaluation 208

our list are the reassociate and instcombine optimizations. While these last two

optimizations are conceptually simple, they require a more sophisticated theory of

arithmetic than we currently have.

To test the pipeline of optimizations, we run LLVM with all of the optimizations

enabled for each benchmark. Then, we run our validation tool and attempt to validate

the optimizations applied to each function. If we are unable to validate an entire

function, we count the entire function as having failed validation. This is an over-

simplification, however it makes engineering the testing framework straight-forward.

7.2 Compiler User Experiments

The first set of experiments are geared toward answering the questions related to

the practicality of our tool for a compiler user. For these experiments we will use the

LLVM compiler configured with all of our optimizations enabled as a single pipeline.

First we will look at the results of our validator using the configuration derived from

SQLite. Then, we will investigate the compile-time and run-time impact of using the

validator.

7.2.1 Pipeline Results

The results of our experiment for the optimization pipeline are shown in figure 7.1.

We have displayed the two sets of benchmarks in two separate graphs for readability.

Along the X-axis, we have the names of each of the benchmarks. The Y-axis shows

the percentage of functions that our tool validated. For each benchmark there is

a split bar. The lower bar indicates the percentage of functions validated, and the

Chapter 7: Experimental Evaluation 209

 90%

 100%
sq

li
te

3

b
zi

p
2

h
2
6
4
re

f

h
m

m
er

lb
m

li
b
q
u
an

tu
m

m
cf

m
il

c

p
er

lb
en

ch

sj
en

g

sp
h
in

x

g
cc

 P
er

ce
nt

ag
e

of
 to

ta
l #

 o
f f

u
n
ct

io
n
s

Benchmarks

1,362 104 608 644 19 115 24 237 1,947 166 387 5,682

Alarms

Validated

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

m
an

d
el

b
ro

t

n
b
o
d
y

n
si

ev
e

n
si

ev
eb

it
s

p
er

li
n

q
so

rt

sh
a1

sp
ec

tr
al

v
m

ac
h

N
u
m

b
er

 o
f

fu
n
ct

io
n
s

Benchmarks

7 6 5 7 22 2 2 2 4 18 5 1 5 3 4 6 3 10 5 2

Alarms

Validated

 0%

 20%

 40%

 60%

 80%

 100%

ae
s

al
m

ab
en

ch

b
in

ar
y
tr

ee
s

b
is

ec
t

ch
o
m

p

fa
n
n
k
u
ch ff

t

fi
b

in
te

g
r

k
n
u
cl

eo
ti

d
e

li
st

s

Figure 7.1: Validation results for optimization pipeline

Chapter 7: Experimental Evaluation 210

upper bar indicates the unvalidated functions.

For our measurements, we counted the number of functions for which we could

validate all of the optimizations performed on the function: even though we may

validate many optimizations, if even one optimization fails to validate we count the

entire function as failed. We found that this conservative approach, while rejecting

more optimizations, leads to a simpler design for our validated optimizer which rejects

or accepts whole functions at a time.

Overall, with a small number of rewrite rules, we can validate 80% of the per-

function optimizations. We used the SQLite benchmark to engineer our rules, so it

is not surprising that, that benchmark is very close to 90%. The rules chosen by

studying SQLite are also very effective across the other benchmarks. We do not do

quite as well for the perlbench and gcc benchmarks. One reason may be that we do

not handle global constants or floating point expressions. We will investigate causes

for false alarms in more detail in the next section. First, we will look at the run-time

and compile-time impact of LLVM M.D. To investigate the run-time impact, we will

use our validator to build a verified optimizer.

7.2.2 Validated Optimization

As mentioned in the introduction to this dissertation, a validated optimizer can

be constructed by using our tool to check each optimization and only accept those

that can be validated. Such a validator can be constructed by writing a simple

wrapper around the optimizer. For instance, consider the pseudo-code in Figure 7.2.

The function vopt implements a validated optimizer. For a given input file, vopt

Chapter 7: Experimental Evaluation 211

function vopt(var input, var args) {

output = opt args input

for each function f in input {

extract f from input as fi and output as fo

if (!validate fi fo) {

replace fo by fi in output

}

}

return output

}

Figure 7.2: A validated optimizer using LLVM M.D. and an off-the-shelf optimizer.

first calls the off-the-shelf LLVM optimizer on the input program with the selected

optimizations (optimizations flags are passed in the args parameter). Then, for each

function in the input file we extract the original and optimized versions of the function.

Then, we call the LLVM M.D. validator on these two versions of the function. If the

validator cannot prove the functions are equivalent, then it will replace the optimized

function in the output with the original, unoptimized function.

When used in this way, any false alarms produced by our tool will result in code

that is less optimized. The natural question is: how much slower are the validated

programs than the fully optimized versions? We attempt to answer this question using

the compute-intensive shootout benchmark set. For our experiment, we produced

three versions of each program: an unoptimized version, a version optimized with

our pipeline of optimizations, and a validated version which uses the optimization

pipeline but discards optimizations which we do not validate. The run-times for all

versions of the benchmarks in shown in Table 7.2. We can see from this table that,

in all cases, the verified version is approximately the same speed as the unverified

version. However, the difference in run-time between the unoptimized and optimized

Chapter 7: Experimental Evaluation 212

Benchmark Unoptimized Verified Unverified Percent Difference

aes.c 1.050s 1.036s 1.064s 2.6%

almabench.c 0.370s 0.369s 0.380s 2.9%

binarytrees.c 4.134s 4.128s 4.128s < 0.1%

bisect.c 4.522s 4.558s 4.523s < 0.1%

chomp.c 1.449s 1.585s 1.581s < 0.1%

fannkuch.c 0.221s 0.219s 0.220s 0.5%

fft.c 0.059s 0.061s 0.058s < 0.1%

fib.c 0.108s 0.108s 0.106s < 0.1%

integr.c 0.039s 0.011s 0.012s 8.3%

knucleotide.c 0.053s 0.052s 0.051s < 0.1%

lists.c 0.308s 0.306s 0.306s < 0.1%

mandelbrot.c 1.048s 0.965s 1.052s 8.3%

nbody.c 4.094s 4.110s 4.100s < 0.1%

nsieve.c 0.107s 0.107s 0.106s < 0.1%

nsievebits.c 0.061s 0.060s 0.060s < 0.1%

perlin.c 4.991s 5.001s 5.004s < 0.1%

qsort.c 0.246s 0.244s 0.245s 0.4%

sha1.c 0.300s 0.297s 0.299s 0.7%

spectral.c 1.743s 1.760s 1.742s < 0.1%

vmach.c 3.640s 3.637s 3.538s < 0.1%

Table 7.2: Timing Results

Chapter 7: Experimental Evaluation 213

versions is often negligible. Therefore, we do not know if our validator is doing a good

job, or if the optimizer is doing a poor job.

In order to get a better sense of how well our validator is doing, we will focus

on two of the benchmarks: aes because it is very compute intensive, and the integr

benchmark because the optimizer seems to be effective in this case. We modified the

benchmarks to be able to tune the amount of computation being performed. In the

case of aes, we parametrized the program by the amount of data to compress, and

in the case of the integr benchmark we parametrized the program by the number of

integration steps to consider. We compare the unoptimized, verified and unverified

versions of these benchmarks with different amount of computation. In addition, we

compare our versions to an unverified version optimized at “-O2”. The “-O2” level of

optimization includes all of our optimizations and several others including function

inlining.

The results of our detailed experiment are shown in Figure 7.3. The first graph

shows the result of running the aes benchmark on different amounts of data. The Y-

axis shows the total running time for the program, and the X-axis shows the amount

of data processed. As expected, the unoptimized version is always the slowest. The

verified and unverified versions are roughly equivalent with the unverified version

slightly faster on large amount of data. The “O2” version is faster in all cases. The

second graph shows the result of running the integr benchmark with different numbers

of integration steps. The Y-axis shows the total running time for the program, and

the X-axis shows the number of integration steps performed. Again, the unoptimized

version is slowest: in this case significantly slower. The verified and unverified versions

Chapter 7: Experimental Evaluation 214

1
5

2
0

2
5

3
0

3
5

4
0

4
5

T
o
ta

l
ru

n
n
in

g
 t

im
e

Count of 16M blocks

Unopt.

Verified

Unverified

Unverified −O2

 0s

 0.5s

 1s

 1.5s

 2s

 2.5s

 3s

 3.5s

 4s

 4.5s

 5s

1
0

7.3(a): Detailed timing results for aes benchmark.

7
0

8
0

9
0

T
o
ta

l
ru

n
n
in

g
 t

im
e

Millions of integration steps

Unopt.

Verified

Unverified

Unverified −O2

 0s

 0.05s

 0.1s

 0.15s

 0.2s

 0.25s

 0.3s

 0.35s

1
0

2
0

3
0

4
0

5
0

6
0

7.3(b): Detailed timing results for integr benchmark.

Figure 7.3: Comparison of validated and unvalidate AES benchmark.

Chapter 7: Experimental Evaluation 215

are roughly equivalent, and also equivalent to the “O2” version.

These are only two small benchmarks, however the results suggest that LLVM

M.D. is validating the important optimizations. By important, we mean that the

optimizations that LLVM M.D. does validate seem to yield most, if not all, of the run-

time benefit. In the next section we will look at the compile-time cost of validation.

7.2.3 Validation Time

In order for our validator to be a practical tool, it is important that it does not

take too long to validate programs. In order to measure this, we have timed the

running of our validator on the large SPECCPU benchmark set. The benchmarks

contain varying amounts of code, so we have normalized the validation time to the

compile time. The results for LLVM M.D. are shown in Figure 7.4(a). Along the

X-axis are the SPECCPU benchmarks. The Y-axis shows the total validation time as

a multiple of the compilation time. For instance, the total compile time for gcc, the

largest benchmark, is 1 minute and 10 seconds. The validation time for gcc is just

over 7 times the compile time, or about 8 minutes. For bzip2, a smaller benchmark,

the total compile time is 7 seconds. The validation time for bzip2 is a fraction of

the compile time at around 0.9 seconds. The data shows an interesting pattern: for

small benchmarks containing around 30,000 lines of code or less the validation time

is less than the total compile time. For larger benchmarks validation time is slower

than compilation by as much as an order of magnitude. This makes sense because

for large pieces of code the validator may spend a lot of time rewriting large graphs

only to fail to validate a function.

Chapter 7: Experimental Evaluation 216

V
al

id
at

io
n
 t

im
e

as
 m

u
lt

ip
le

 o
f

co
m

p
il

at
io

n
 t

im
e

 1x

 2x

 3x

 4x

 5x

 6x

 7x

 8x

sq
li

te

b
zi

p
2

g
cc

h
2
6
4
re

f

h
m

m
er

lb
m

li
b
q
u
an

tu
m

m
cf

m
il

c

p
er

lb
en

ch

sj
en

g

sp
h
in

x

 0x

7.4(a): Timing Results for LLVM M.D. validator.

V
al

id
at

io
n
 t

im
e

as
 m

u
lt

ip
le

 o
f

co
m

p
il

at
io

n
 t

im
e

 50x

 100x

 150x

 200x

 250x

 300x

 350x

b
zi

p
2

g
cc

h
2
6
4
re

f

h
m

m
er

lb
m

li
b
q
u
an

tu
m

m
cf

m
il

c

p
er

lb
en

ch

sj
en

g

sp
h
in

x

 0x

7.4(b): Timing Results for Peggy validator.

Figure 7.4: Validation time normalized to compilation time.

Chapter 7: Experimental Evaluation 217

For comparison we have included the timing results for the Peggy validator (Stepp

et al., 2011). Stepp et al. reproduced our experiments for the SPECCPU benchmarks

using their validator based on equality saturation. In their report they list the number

of validated functions and the average time for validating successfully and unsuccess-

fully. Therefore we have estimated their total run-time with the formula

[avg. time success] ∗ [validated] + [avg. time failure] ∗ [failed] .

The estimated timing results for Peggy are shown in Figure 7.4(b); note SQLite was

not included in their experiments. We see from the table that the same general

pattern holds true for Peggy. For the smallest benchmark, lbm, Peggy is able to

validate in roughly the same time it takes to compile. However, for larger benchmarks

the validation time can be several hundred times slower.

7.3 Compiler Developer Experiments

The second set of experiments are geared toward answering the questions related

to the practicality of our tool for a compiler developer. For these experiments we

will use the LLVM compiler configured with one optimization at a time. First we

will look at the results of our validator on each optimization using the configuration

derived from SQLite. Then, we will look at the effect individual rewrite rules have

on the number of validated functions for each optimization. Finally, we will try to

get a sense of how difficult it is to configure our validator by improving a specific

benchmark by adding new rewrite rules.

Chapter 7: Experimental Evaluation 218

7.3.1 Testing Individual Optimizations

First we will look at the results of our validator on each optimization. In this

setup, we run a single optimization on a benchmark and validate the results in the

same manner as for the pipeline experiments. The charts in Figures 7.5 and 7.6

summarize the results of validating a few of the benchmark programs for each of

the optimizations. The height of each bar indicates the total number of functions

transformed for a given benchmark and optimization. The bar is split showing the

number of validated (below) and unvalidated (above) functions. The total number

of optimized functions is lower in these charts that in our previous charts because

individual optimizations perform fewer transformations than the whole pipeline.

The results for individual optimizations show a clear pattern: GVN with alias anal-

ysis is the most challenging optimization for our tool. Most of our false alarms come

from failing to validate the GVN translations. It is also the most important as it per-

forms many more transformations than the other optimizations. Other optimizations

like advanced dead-code elimination, and sparse conditional constant propagation can

be completely validated in almost all cases.

Surprisingly, loop deletion (a form of dead code elimination), is not always val-

idated. This reveals the complexities of a real-world optimizer like LLVM: in this

case, other kinds of transformations, like re-association of expressions, are performed

as side-effect of the analysis. One strength of our design is that we have the ability to

validate some of the functions, and attempt to address others with additional rewrite

rules. In the next section we will explore improvements to our tool by studying the

effectiveness of rewrite rules on our system.

Chapter 7: Experimental Evaluation 219

 0

 10

 20

 30

 40

 50

 60

sc
cp

lo
op
−u

ns
w

itc
h

lo
op
−d

el
et

io
n

lic
m

gv
n

ds
e

ad
ce

N
um

be
r o

f o
pt

im
iz

ed
 fu

nc
tio

ns

bzip2

Alarms
Validated

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

sc
cp

lo
op
−u

ns
w

itc
h

lo
op
−d

el
et

io
n

lic
m

gv
n

ds
e

ad
ce

N
um

be
r o

f o
pt

im
iz

ed
 fu

nc
tio

ns

sqlite3

Alarms
Validated

Figure 7.5: Validator results for individual optimizations

Chapter 7: Experimental Evaluation 220

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

sc
cp

lo
op
−u

ns
w

itc
h

lo
op
−d

el
et

io
n

lic
m

gv
n

ds
e

ad
ce

N
um

be
r o

f o
pt

im
iz

ed
 fu

nc
tio

ns

perlbench

Alarms
Validated

 0
 200
 400
 600
 800

 1,000
 1,200
 1,400
 1,600
 1,800
 2,000

sc
cp

lo
op
−u

ns
w

itc
h

lo
op
−d

el
et

io
n

lic
m

gv
n

ds
e

ad
ce

N
um

be
r o

f o
pt

im
iz

ed
 fu

nc
tio

ns

gcc

Alarms
Validated

Figure 7.6: Validator results for individual optimizations (continued)

Chapter 7: Experimental Evaluation 221

 0%

 20%

 40%

 60%

 80%

 100%

sq
lit

e3

sp
hi

nx

sje
ng

pe
rlb

en
ch

m
ilc

lib
qu

an
tu

m

hm
m

er

h2
64

re
f

m
cf

lb
mgc
c

bz
ip

2

Pe
rc

en
ta

gl
e

of
 su

cc
es

s

Benchmark

6
5
4
3
2
1

1. no rules 2. φ simplification 3. constant folding

4. load/store simplification 5. η simplification 6. commuting rules

Figure 7.7: Results for GVN optimization

7.3.2 Rewrite Rules

GVN. Figure 7.7 shows the effect of different rewrite rules for the GVN optimization

with our benchmarks. The total height of each bar shows the percentage of functions

validated for each benchmark using different sets of rewrite rules. The bars are

divided to show how the results improve as we add rewrite rules to the system. We

start with no rewrite rules, then we add rules and measure the improvement. The

bars correspond to adding rules as follows:

1. no rules

Chapter 7: Experimental Evaluation 222

2. φ simplification, e.g.

φ {. . . , truei → t, . . .} ↓ t

φ
{
ci → t

}
↓ t

3. constant folding, e.g.

add 3 2 ↓ 5

mul 3 2 ↓ 6

sub 3 2 ↓ 1

4. load/store simplification, e.g.

load(p, store(x, q,m)) ↓ load(p,m)

load(p, store(x, p,m)) ↓ x

5. η simplification, e.g.

η(c, µ(x, x)) ↓ x

η(c, y 7→ µ(x, y)) ↓ x

6. commuting rules, e.g.

y + 7 + x ↓ 7 + x+ y

We have already described the first four rule sets (2-5 above) in Chapter 2. The last

set of rules, “commuting rules” tries to rearrange arithmetic expressions to enable

the former rules.

Chapter 7: Experimental Evaluation 223

We can see from Figure 7.7 that different benchmarks are effected differently by

the different sets of rewrite rules. For example, SQLite is not improved by adding

rules for constant folding or φ-simplification. However, load/store simplification has

an effect. This is probably because SQLite has been carefully tuned by hand and

does not have many opportunities for constant folding or branch elimination. The

lbm benchmark, on the other hand, benefits quite a lot from φ-simplification.

It is also interesting to note that from the data we have, it seems that our technique

is able to successfully validate approximately 50% of GVN optimizations with no

rewrite rules at all. This makes intuitive sense because our symbolic evaluation hides

many of the syntactic details of the programs, and the transformations performed by

many optimizations are, in the end, minor syntactic changes. By adding rewrite rules

we can dramatically improve our results.

Up to this point, we have avoided adding “special purpose” rules. For instance,

we could improve our results by adding rules that allow us to reason about specific

C library functions. For example, the rule:

x = atoi(p);

y = atoi(q);

=⇒
y = atoi(q);

x = atoi(p);

can be added because atoi does not modify memory. Another example is:

memset(p, x, l1);

y = load(getelemptr(p, l2))

=⇒
l2<l1

y = x

which enables more aggressive constant propagation. Both of these rules seem to be

used by the LLVM optimizer, but we have not added them to our validator at this

time. However, adding these sorts of rules is fairly easy, and in a realistic setting

Chapter 7: Experimental Evaluation 224

 0%

 20%

 40%

 60%

 80%

 100%

sq
lit

e3

sp
hi

nx

sje
ng

pe
rlb

en
ch

m
ilc

lib
qu

an
tu

m

hm
m

er

h2
64

re
f

m
cf

lb
mgc
c

bz
ip

2

Pe
rc

en
ta

gl
e

of
 su

cc
es

s

Benchmark

2
1

Figure 7.8: LICM

many such rules would likely be desired.

LICM. Figure 7.8 shows similar results for loop-invariant code motion (LICM).

The baseline validator, with no rewrite rules, can validate approximately 75-80% of

functions optimized by LICM. If we add in all of our rewrite rules, we only improve

very slightly. In theory, we should be able to completely validate LICM with no

rules. However, again, LLVM uses specific knowledge of certain C library functions.

For example, in the following loop:

for (int i = 0; i < strlen(p); i++) x += p[i];

the call to strlen is known (by LLVM) to be constant. Therefore, LLVM will lift

the call to strlen out of the loop:

int tmp = strlen(p);

for (int i = 0; i < tmp; i++) x += p[i];

Chapter 7: Experimental Evaluation 225

 0%

 20%

 40%

 60%

 80%

 100%

sq
lit

e3

sp
hi

nx

sje
ng

pe
rlb

en
ch

m
ilc

lib
qu

an
tu

m

hm
m

er

h2
64

re
f

m
cf

lb
mgc
c

bz
ip

2

Pe
rc

en
ta

gl
e

of
 su

cc
es

s

Benchmark

4
3
2
1

1. no rules 2. constant folding 3. φ-simplification 4. all rules

Figure 7.9: SCCP

Our tool does not have any rules for specific library functions, and therefore we do not

validate this transformation. The reason why we sometimes get a small improvement

in LICM is because very occasionally a rewriting like the one above corresponds to

one of our general rules.

SCCP. Figure 7.9 shows the effect of our rewrite rules on sparse-conditional con-

stant propagation (SCCP). For this optimization, we used four configurations:

1. no rules

2. constant folding

3. φ-simplification

4. all rules

Chapter 7: Experimental Evaluation 226

As expected, with no rules the results are very poor. However, if we add rules for

constant folding, we see an immediate improvement. If we also add rules for reducing

φ-nodes, bzip2 immediately goes to 100%, even though these rules have no effect on

SQLite. However, additional rules do improve SQLite, but not the other benchmarks.

These observations indicate that the effect of new rewrite rules is difficult to pre-

dict. Our configuration was derived from looking at specific cases of failed validations

and adding general rules to improve the results. In order for our tool to be useful,

this process needs to be relatively easy to do for a new optimization. We will now

investigate the difficulty of adding new rules through examples.

7.3.3 Improving Results with Additional Rewrite Rules

These results show that a small, general configuration derived from a single bench-

mark is effective across larger benchmarks. This is an important part of a practical

tool. However, it is also important to be able to incrementally improve the validation

result by adding new rewrite rules. To evaluate the ability to improve the validation

result by adding rewrite rules, we will now take two benchmarks, mandlebrot and

SHA1, which are not fully verified and add new rewrite rules to improve the valida-

tion results. Ultimately, we will add three new rules which eliminate all false alarms

for the mandlebrot and SHA1 benchmarks. The rule for the mandlebrot benchmark

was very easy to find. However, the rules needed for the SHA1 benchmark required a

careful analysis of the mismatched value graphs. The final alarm for SHA1 required a

deep knowledge of the validation process and several hours of effort studying the mis-

matched value graphs to solve. This highlights a significant weakness in the current

Chapter 7: Experimental Evaluation 227

tools: interpreting false alarms is difficult.

Mandlebrot

The first benchmark we will study is the mandlebrot benchmark. This benchmark

is small consisting of only one function (main) and 92 lines of C code. We can see

from Figure 7.1 that this benchmark is completely unvalidated. This makes sense

because there is only one function, and we failed to completely validate this function.

Therefore, the whole function is counted as a false alarm.

The first step is diagnosing this benchmark is to get a breakdown of how the

validator performs on each optimization. The LLVM M.D. tool can generate a report

detailing this information. The output of this report for the mandlebrot benchmark

is shown in Table 7.3. The table shows for each optimization the number of functions

Unoptimized Validated Alarm Total

gvn 0 1 0 1

sccp 0 0 1 1

licm 0 0 1 1

loop-deletion 0 1 0 1

adce 1 0 0 1

dse 1 0 0 1

loop-unswitch 0 1 0 1

Table 7.3: Per optimization results for mandlebrot

which are unoptimized, optimized and validated, and optimized and not validated

(a.k.a. false alarms). Since we only have one function in this benchmark, the table

shows us the the adce and dse optimizations had no effect; gvn, loop-deletion, and

Chapter 7: Experimental Evaluation 228

loop-unswitch were successfully validated; and sccp and licm were not validated.

At this point, we can get more information by selecting a specific optimization to

study. For instance, we can get a detailed report from the LLVM M.D. tool for the

sccp optimization. Because we only have one function, we will also focus the report

on the function main. After building and reducing the value graph, LLVM M.D. will

attempt to show the differences between the mismatched value graphs. It does this

by starting with the return nodes in the graph and highlighting those graph nodes

which appear in the same positions in the two graphs, but which are structurally

different. For this benchmark and function, the report shows a constant aligned with

a floating point multiplication.

validate mandlebrot sccp main

[...]

173 /= 59

BinOp fmul "" float64 30 30

Const float "4.0"

30 -> Const float "2.0"

[...]

For this example, it is very easy to spot the problem. The report says that the

graph nodes 173 and 59 appear in structurally equivalent locations, but are built

from different node types. In the original program we have node 173 which is a 64-bit

floating point multiplication of two constants which are represented by graph node

30. Below we see that graph node 30 is the 64-bit floating point constant “2.0”. In the

optimized program we have graph node 59 which is the constant “4.0”. The validator

missed this optimization because it does not try to simplify floating point operations.

LLVM M.D. does not attempt to handle floating point operations because there

are complex rules governing floating point arithmetic at different widths, and many

Chapter 7: Experimental Evaluation 229

different representations for floating point constants. However, for this simple case,

we have constants which can be unambiguously parsed, fit easily within the size

constraints of the 64-bit registers, and will not raise any exceptional conditions. Under

these constraints we can add the following rewrite rule:

k1 ∗f64 k2 ↓ k1 ∗ k2 k1, k2 simple constants

where the side-condition (k1, k2 simple constants) enforces our constraints. With this

one rule added, the mandlebrot benchmark is fully validated for all optimizations and

the optimization pipeline.

SHA1

The second benchmark we will study is the SHA1 benchmark. This benchmark

has 10 functions and 234 lines of C code. We can see from Figure 7.1 that this

benchmark is 80% validated. As before, we first generate a per-optimization report

using the LLVM M.D. tool. The report is show in Table 7.4. The table tells us that

Unoptimized Validated Alarm Total

gvn 2 6 2 10

sccp 10 0 0 10

licm 8 2 0 10

loop-deletion 8 2 0 10

adce 7 3 0 10

dse 9 1 0 10

loop-unswitch 8 2 0 10

Table 7.4: Per optimization results for SHA1

Chapter 7: Experimental Evaluation 230

the global value numbering optimization is not validated for 2 of the 10 functions

accounting for all of the alarms.

Unlike our previous benchmark, we now have multiple functions and we do not

know which functions are validated and which are not. So, the first step is to ask

LLVM M.D. to list the results of each function individually. The result is shown

below.

validate sha1 gvn

OK 32 0.676ms SHA1_init

OK 205 14.681ms SHA1_add_data

ALARM 426 27.449ms SHA1_transform

OK 79 1.236ms SHA1_finish

OK 97 1.775ms SHA1_copy_and_swap

ALARM 66 1.468ms main

OK 49 0.544ms do_test

OK 49 0.768ms do_bench

The output prints a single line for each function. The first column indicates if the

function is completely validated or not. The second column is the size of the combined

value graph (in this benchmark all of the graphs are small). The third column shows

the total amount of time spent validating the function, and the last column is the

function name. From this we see that the two functions SHA1 transform and main

are not validated.

First, we will focus on the main function. If we look at the source code, we find

the following code fragment:

/* Determine endianness */

union { int i; unsigned char b[4]; } u;

u.i = 0x12345678;

switch (u.b[0]) {

case 0x12: arch_big_endian = 1; break;

case 0x78: arch_big_endian = 0; break;

default: printf("Cannot determine endianness\n"); return 2;

Chapter 7: Experimental Evaluation 231

}

In the optimized code, the expression u.b[0] has been replaced with 0x12. Not

surprisingly, when we generate a detailed report using LLVM M.D. it reports that

the two subgraphs below are not equivalent.

loadi8 p (storei32 p 0x12345678 m) 6= 0x12

In this case, the LLVM optimizer has some information about the target machine that

our tool does not have: namely that it is a little-endian machine. Although, LLVM

is machine independent, each compilation unit is configured with some details about

the intended target architecture, including the byte ordering. Using this information,

LLVM knows that an 8-bit load of a 32-bit location will read the most-significant

byte of the 32-bit word, and can simplify the load to a constant.

We can fix this alarm by adding a rewrite rule that is only valid for little-endian

machines. The rule is:

loadi8 p (storei32 p v m) ↓ trunci8 v .

This rule will rewrite a 8-bit load of a 32-bit store as a truncation of the original

value. For constants, the truncation will simplify again to a smaller constant. With

this additional rule, the two subgraphs above can be shown equivalent and the main

function is fully validated.

Now, we turn our attention to the SHA1 transform function. Unfortunately, this

alarm is not as easily solved as the previous two. This function takes in a structure

which holds the current state of the hash algorithm. After processing an additional 64

bytes of data, the structure is updated with the new state. Hence, the value graphs for

Chapter 7: Experimental Evaluation 232

this function involve lots of reads and writes to memory and complex values defined

by a cascading series of loops. When we run the validator on this function it reports

that an η-node is aligned with a store node and no further progress can be made.

After much study, the solution turned out to be an omission in the pointer equiva-

lence checking. In LLVM, pointer arithmetic is done with a special instruction called

getelemptr. Roughly speaking, the instruction getelemptr p 0,0 is equivalent to

the C-expression &(p[0])+0. Of course, this is also equivalent to just p, and this is

the equivalence rule that was missing. After adding the following equivalence:

getelemptr p 0, 0 ≡ p

the SHA1 benchmark is fully verified. Unfortunately, this rule could not be added as

a normal rewrite law, but had to be manually added to the pointer aliasing relation.

For a user without deep knowledge of LLVM M.D., fixing this false alarm would not

have been possible. Even if pointer equivalences could be added without modifying

the code, diagnosing the problem was quite difficult. To diagnose the problem, we

used LLVM M.D. to generate two sub-graphs which must be shown equivalent to

validate the optimization. These two sub-graphs are shown in Figures 7.10 and 7.11.

These two sub-graphs represent part of the final memory state of the optimized and

unoptimized functions. The first sub-graph is rooted in an η-node indicating that the

memory state is defined within a loop. The second sub-graph is rooted in a chain

of stores leading to an η-node which is similar to, but not exactly the same as, the

first sub-graph. One area where LLVM M.D. could be improved is to provide more

powerful analysis tools to aide in interpreting these value graphs.

Chapter 7: Experimental Evaluation 233

int 1

$1

Alloc

Val

int 16

int 3

int 0 %ctx

&

&

&

bitcast Mem@SHA1_copy_and_swap

call

Mem

int 8int 14

int 31

int 80

+

mu

sub

sext

&

mu

store

load

sub

sext

&

load

xor

sub

sext

&

load

xor

sub

sext

&

load

xor

<< lshr

or

sext

&

<

!=

eta

Figure 7.10: Subgraph for graph node 267

Chapter 7: Experimental Evaluation 234

int 1

$1

Alloc

Val

int 16

int 3

int 0%ctx

&

&

&

bitcastMem@SHA1_copy_and_swap

call

Mem

int 8int 14

int 31

int 80

int 20

int 40

int 60

&

&

load

eta

&

int 2

&

&

int 30

int 1518500249

int 5 int 27

int 4

&

int 1859775393

int -1894007588

int -899497514

+

eta

store

load

+

eta

store

load

+

eta

store

load

+

eta

store

+

mu

sub

sext

&

mu

store

load

sub

sext

&

load

xor

sub

sext

&

load

xor

sub

sext

&

load

xor

<<lshr

or

sext

&

<

!=

eta

mu

+

mu

<

!=

eta

mu

eta+

mu

<

!=

eta

mu

eta+

mu

<

!=

eta

mu

eta+

mu

<

!=

load

load

load

load

mu

mu

<<lshr

or

mu

mu

xor

and

xor

+

<< lshr

or

+

load

mu

+

sext

&

load

+

eta

eta

mu

mu

eta

<<lshr

or

mu

xor

eta

mu

xor

+

<< lshr

or

+

eta

mu

+

sext

&

load

+

eta

eta

mu

mu

eta

<<lshr

or

mu

and

eta

muor

and

or

+

<< lshr

or

+

eta

mu

+

sext

&

load

+

eta

eta

mu

mu

eta

<<lshr

or

mu

xor

eta

mu

xor

+

<< lshr

or

+

eta

mu

+

sext

&

load

+

Figure 7.11: Subgraph for graph node 228

Chapter 8

Conclusion

In this dissertation, we have presented a new translation validator design that

extends previous uses of symbolic evaluation, leading to what we call a denotational

translation validator. To test our design, we have implemented a tool, LLVM M.D.,

that we use to validate transformations on LLVM code. In the end, our translation

validator is conceptually simple, and easy to implement with only a few thousand

lines of code. Our experimental work has shown that our design will scale to real-

world compilers. Because of this, we believe that normalizing value-graph translation

validation of industrial-strength compilers without instrumentation is feasible. The

design relies on well established algorithms and is simple enough to implement. We

have been able to build a tool that can validate the optimizations of a decent LLVM

pipeline on challenging benchmarks, with a reasonable rate of false alarms. Better

yet, we know that many of the false alarms that we witness now require the addition

of normalization rules but no significant changes in the design. For instance, insider

knowledge of libc functions, floating-points constant folding and folding of global

235

Chapter 8: Conclusion 236

variables are sources of false alarms that can be dealt with by adding normalization

rules. There is also room for improvement of the runtime performance of the tool.

There are still a few difficult challenges ahead of us, the most important of which

is inter-procedural optimizations. With LLVM, even -O1 makes use of such opti-

mizations and, even though it is clear that simulation-based translation validation

can handle inter-procedural optimizations (Pnueli and Zaks, 2008), we do not yet

know how to precisely generalize normalizing translation. We remark that, in the

case of safety-critical code that respects standard code practices (Association, 2004),

as can be produced by tools like Simulink (Simulink, 2010), the absence of recursive

functions allows us to inline every function (which is reasonable with hash-consing).

Preliminary experiments indicate that we are able to validate very effectively inter-

procedural optimizations in such a restricted case. Advanced loop transformations

are also important, and we believe that this problem may not be as hard as it may

seem at first. Previous work (Leroy, 2006; Tristan and Leroy, 2010) has shown that

it can be surprisingly easy to validate advanced loop optimizations such as software

pipelining with modulo variable expansion if we reason at the value-graph level.

8.0.4 Discussion

While implementing our prototype, we were surprised to find that essentially all

of the technical difficulties lie in the complex φ-nodes. In an earlier version of this

work we focused on structured code with binary φ-nodes. The binary φ-nodes did not

present any real difficulties. However, once we removed the structured-code restriction

we encountered more problems. First, although the algorithms are known, computing

Chapter 8: Conclusion 237

the gates for arbitrary control flow is a fairly involved task. Also, since the gates are

dependent on the paths in the CFG, and general C code does not have a simple

structured control flow, optimizations will often change the gating conditions even if

the control flow is not changed.

Another important aspect of the implementation is the technique for maximizing

sharing within the graph. The rewrite rules do a good job of exposing equivalent

leaf nodes in the graphs. However, in order to achieve good results, it is important

to find equivalent cycles in the graphs and merge them. Again, matching complex

φ-nodes seems to be the difficult part. To match cycles, we find pairs of µ-nodes

in the graph, and trace along their paths in parallel trying to build up a unifying

substitution for the graph nodes involved. For φ-nodes we sort the branches and

conditions and perform a syntactic equality check. This technique is very simple, and

efficient because it only needs to query and update a small portion of the graph.

We also experimented with a Hopcroft partitioning algorithm(Hopcroft, 1971).

Rather than a simple syntactic matching, our partitioning algorithm uses a prolog-

style backtracking unification algorithm to find congruences between φ-nodes. Sur-

prisingly, the partitioning algorithm with backtracking does not perform better than

the simple unification algorithm: both algorithms give us roughly the same percentage

of validation. Our implementation uses the simple algorithm by default, and when

this fails it falls back to the slower, partitioning algorithm. Interestingly, this strategy

performs only slightly better than either technique alone. All of these techniques can

be seen as reintroducing the bisimiulation relation discussed in Chapter 3 Section 3.4.

Matching expressions with complex φ-nodes seems well within the reach of any

Chapter 8: Conclusion 238

SMT prover. Our preliminary experiments with Z3 suggest that it can easily handle

the sort of equivalences we need to show. However, this seems like a very heavy-weight

tool. One question in our minds is whether or not there is an effective technique

somewhere in the middle: more sophisticated than syntactic matching, but short of

a full SMT prover.

8.1 Future work

We believe our system could be improved by better equality checking algorithms.

We would like to use an automated theorem prover such as Z3 to discharge equalities

between symbolic values. First, this will help us with optimizations such as reasso-

ciation that make it difficult to efficiently compute a normal form. Also, when we

cannot ascertain that the semantics of two programs are the same, we would like to

use Z3 to try to find an example of inputs that lead to the discrepancy. Following

the ideas implemented in the snugglebug tool (Chandra et al., 2009), we could try to

find a model for the negation of the equivalence statement.

In the long term, we would like to have a formal proof of correctness of our

validator, if only for a subset of LLVM. Also, as already mentioned, if we restrict

our attention to C code that satisfies the guidelines for safety-critical software, we

can build an entirely validated compiler from C to assembly that uses LLVM as an

optimization pipeline.

As a side note, it may be worth noting that with such a tool, one can use program

translations that have a low probability of being incorrect while having a much better

complexity, such as global value numbering based on random interpretation (Gulwani

Chapter 8: Conclusion 239

and Necula, 2004). If validated, an incorrect transformation can be caught, and the

transformation can to be redone. The combination of random interpretation for global

value numbers with our validator would always yield correct optimizations, but its

execution time would be probabilistic, and may be better than the execution time of

the classical global value numbering algorithm.

Bibliography

Z. M. Ariola and S. Blom. Lambda calculi plus letrec. Technical report, Vrije Uni-
versiteit, Amsterdam, 1997.

Zena M. Ariola and Jan Willem Klop. Cyclic lambda graph rewriting. In In Pro-
ceedings, Ninth Annual IEEE Symposium on Logic in Computer Science, pages
416–425. IEEE Computer Society Press, 1994.

The Motor Industry Software Reliability Association. Guidelines for the use of the c
language in critical systems. http://www.misra.org.uk, 2004.

H. P. Barendregt. The Lambda Calculus: Its Synatx and Semantics. North-Holland,
Amsterdam, 1984.

Henk Barendregt, S. Abramsky, D. M. Gabbay, T. S. E. Maibaum, and H. P. Baren-
dregt. Lambda calculi with types. In Handbook of Logic in Computer Science,
pages 117–309. Oxford University Press, 1992.

Clark W. Barrett, Yi Fang, Benjamin Goldberg, Ying Hu, Amir Pnueli, and Lenore
Zuck. TVOC: A translation validator for optimizing compilers. In Computer Aided
Verification, volume 3576 of Lecture Notes in Computer Science, pages 291–295.
Springer, 2005.

Gerard Berry and Georges Gonthier. The esterel synchronous programming language:
Design, semantics, implementation. Science of Computer Programming, 19(2):87–
152, 1992. URL citeseer.ist.psu.edu/berry92esterel.html.

R. F. Blute, J.R.B. Cockett, and R.A.G. Seely. Categories for computation in context
and unified logic: The ”intuitionist” case, 1997.

F. Borceux. Non-pointed strongly protomodular theories. Applied Categorical Struc-
tures, 12(4):319–338, 2004.

James R. Bunch and Donald J. Rose. Partitioning, tearing and modification of sparse
linear systems. Journal of Mathematical Analysis and Applications, 48(2):574 – 593,
1974. ISSN 0022-247X. doi: 10.1016/0022-247X(74)90179-6.

240

Bibliography 241

Paul Caspi and Marc Pouzet. Synchronous kahn networks. In ICFP ’96: Proceedings
of the first ACM SIGPLAN international conference on Functional programming,
pages 226–238, New York, NY, USA, 1996. ACM Press. ISBN 0-89791-770-7. doi:
http://doi.acm.org/10.1145/232627.232651.

Paul Caspi and Marc Pouzet. Lucid Synchrone, a functional extension of Lustre.
Submitted to publication, 2002.

Satish Chandra, Stephen J. Fink, and Manu Sridharan. Snugglebug: A powerful ap-
proach to weakest preconditions. In Proceedings of the 19 Conference on Program-
ming Language Design and Implementation (PLDI 2009), pages 363–374. ACM,
2009.

Koen Claessen. A poor man’s concurrency monad. J. Funct. Program., 9(3):313–323,
1999. ISSN 0956-7968. doi: http://dx.doi.org/10.1017/S0956796899003342.

Coq development team. The Coq proof assistant. Software and documentation avail-
able at http://coq.inria.fr/, 1989–2008.

Antony Courtney and Conal Elliott. Genuinely functional user interfaces. In Haskell
Workshop, pages 41–69, September 2001.

Haskell Curry. Functionality in combinatory logic. Proceedings of the National
Academy of Sciences, 20:584–590, 1934.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. Efficiently computing static single assignment form and the con-
trol dependence graph. ACM Trans. Program. Lang. Syst., 13:451–490, October
1991. ISSN 0164-0925. doi: http://doi.acm.org/10.1145/115372.115320. URL
http://doi.acm.org/10.1145/115372.115320.

Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. Communication of the ACM, 18(8):453–457, 1975.

Levent Erkök. Value recursion in monadic computations. PhD thesis, OGI School of
Science and Engineering, October 2002.

Levent Erkök and John Launchbury. A recursive do for haskell. In Haskell Workshop
2002, October 2002.

Loukas Georgiadis and Robert E. Tarjan. Dominator tree verification and vertex-
disjoint paths. In Proceedings of the sixteenth annual ACM-SIAM symposium on
Discrete algorithms, SODA ’05, pages 433–442, Philadelphia, PA, USA, 2005.
Society for Industrial and Applied Mathematics. ISBN 0-89871-585-7. URL
http://portal.acm.org/citation.cfm?id=1070432.1070492.

Bibliography 242

Paola Giannini, Furio Honsell, and Simona Ronchi Della Rocca. Type inference: some
results, some problems. Fundam. Inf., 19(1-2):87–125, 1993. ISSN 0169-2968.

Andrew Gill, John Launchbury, and Simon L. Peyton Jones. A short cut to defor-
estation. In Proceedings of the conference on Functional programming languages
and computer architecture, FPCA ’93, pages 223–232, New York, NY, USA, 1993.
ACM. ISBN 0-89791-595-X. doi: http://doi.acm.org/10.1145/165180.165214. URL
http://doi.acm.org/10.1145/165180.165214.

Jean-Yves Girard. Geometry of interaction 1: Interpretation of system f.
In S. Valentini R. Ferro, C. Bonotto and A. Zanardo, editors, Logic Col-
loquium ’88, Proceedings of the Colloquium held in Padova, volume 127
of Studies in Logic and the Foundations of Mathematics, pages 221 –
260. Elsevier, 1989. doi: DOI: 10.1016/S0049-237X(08)70271-4. URL
http://www.sciencedirect.com/science/article/pii/S0049237X08702714.

Sumit Gulwani and George Necula. Global value numbering using random interpre-
tation. In 31st symposium Principles of Programming Languages, pages 342–352.
ACM, 2004.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data-flow pro-
gramming language LUSTRE. Proceedings of the IEEE, 79(9):1305–1320, Septem-
ber 1991. URL citeseer.ist.psu.edu/halbwachs91synchronous.html.

Paul Havlak. Construction of thinned gated single-assignment form. In In Proc.
6rd Workshop on Programming Languages and Compilers for Parallel Computing,
pages 477–499. Springer Verlag, 1993.

Paul Havlak. Construction of thinned gated single-assignment form. In Proceedings
of the 6th International Workshop on Languages and Compilers for Parallel Com-
puting, pages 477–499, London, UK, 1994. Springer-Verlag. ISBN 3-540-57659-2.
URL http://portal.acm.org/citation.cfm?id=645671.665393.

John Hopcroft. An n log n algorithm for minimizing states of a finite automaton. In
The Theory of Machines and Computations, 1971.

Yuqiang Huang, Bruce R. Childers, and Mary Lou Soffa. Catching and identifying
bugs in register allocation. In Static Analysis, 13th Int. Symp., SAS 2006, volume
4134 of Lecture Notes in Computer Science, pages 281–300. Springer, 2006.

Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson. Arrows, robots,
and functional reactive programming. In Johan Jeuring and Simon Peyton Jones,
editors, Advanced Functional Programming, 4th International School, volume 2638
of Lecture Notes in Computer Science. Springer-Verlag, 2003.

Bibliography 243

Mark P. Jones. Functional programming with overloading and higher-order poly-
morphism. In Advanced Functional Programming, First International Spring
School on Advanced Functional Programming Techniques-Tutorial Text, pages
97–136, London, UK, 1995. Springer-Verlag. ISBN 3-540-59451-5. URL
http://dl.acm.org/citation.cfm?id=647698.734150.

Simon Peyton Jones. Haskell 98 language and libraries: the Revised Report. Cam-
bridge University Press, 1998.

Simon Peyton Jones. Tackling the awkward squad: monadic input/output, concur-
rency, exceptions, and foreign-language calls in haskell. In 2000 Marktoberdorf
Summer School, July 2002.

Achim Jung, Der Technischen Hochschule Darmstadt, Dipl. math Achim Jung, Ref-
erent Prof, Dr. K. Keimel, Koreferent Prof, and Dr. K. h. Hofmann. Cartesian
closed categories of domains, 1988.

G. Kahn. The semantics of a simple language for parallel programming. In J. L.
Rosenfeld, editor, Information processing, pages 471–475, Stockholm, Sweden, Aug
1974. North Holland, Amsterdam.

Aditya Kanade, Amitabha Sanyal, and Uday Khedker. A PVS based framework
for validating compiler optimizations. In 4th Software Engineering and Formal
Methods, pages 108–117. IEEE Computer Society, 2006.

Sudipta Kundu, Zachary Tatlock, and Sorin Lerner. Proving optimizations correct
using parameterized program equivalence. In PLDI ’09: Proceedings of the ACM
SIGPLAN 2009 Conference on Programming Language Design and Implementation
(PLDI 2009), pages 327–337. ACM, 2009.

John Launchbury and Simon L. Peyton Jones. Lazy functional state threads. In
Proceedings of the ACM SIGPLAN 1994 conference on Programming language
design and implementation, PLDI ’94, pages 24–35, New York, NY, USA, 1994.
ACM. ISBN 0-89791-662-X. doi: http://doi.acm.org/10.1145/178243.178246. URL
http://doi.acm.org/10.1145/178243.178246.

Xavier Leroy. Formal certification of a compiler back-end, or: programming a compiler
with a proof assistant. In 33rd symposium Principles of Programming Languages,
pages 42–54. ACM Press, 2006.

Xavier Leroy. Formal verification of a realistic compiler. Communications of the
ACM, 52(7):107–115, 2009.

Xavier Leroy et al. The CompCert verified compiler. http://compcert.inria.fr, 2003–
2008.

Bibliography 244

version 2.8 LLVM. http://llvm.org, 2010.

Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming with ba-
nanas, lenses, envelopes and barbed wire. In Proceedings of the 5th ACM conference
on Functional programming languages and computer architecture, pages 124–144,
New York, NY, USA, 1991. Springer-Verlag New York, Inc. ISBN 0-387-54396-1.
URL http://portal.acm.org/citation.cfm?id=127960.128035.

E. Moggi. Computational lambda-calculus and monads. In 4th Logic in computer
science, pages 14–23. IEEE, 1989.

Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. Polymorphism and separa-
tion in hoare type theory. In In ICFP, pages 62–73. ACM Press, 2006.

Aleksandar Nanevski, Paul Govereau, and Greg Morrisett. Towards type-
theoretic semantics for transactional concurrency. In Proceedings of the
4th international workshop on Types in language design and implementa-
tion, TLDI ’09, pages 79–90, New York, NY, USA, 2009. ACM. ISBN
978-1-60558-420-1. doi: http://doi.acm.org/10.1145/1481861.1481872. URL
http://doi.acm.org/10.1145/1481861.1481872.

George C. Necula. Translation validation for an optimizing compiler. In Programming
Language Design and Implementation 2000, pages 83–95. ACM Press, 2000.

George C. Necula and Peter Lee. The design and implementation of a certifying
compiler (with retrospective). In 20 Years of the ACM SIGPLAN Conference on
Programming Language Design and Implementation 1979-1999, A Selection, pages
612–625. ACM, 2004.

Henrik Nilsson. Dynamic optimization for functional reactive programming using
generalized algebraic data types. In Proceedings of the Tenth ACM SIGPLAN
International Conference on Functional Programming (ICFP’05), Tallinn, Estonia,
September 2005. ACM Press. to appear.

Henrik Nilsson, Antony Courtney, and John Peterson. Functional reactive program-
ming, continued. In Proceedings of the 2002 ACM SIGPLAN Haskell Workshop,
pages 51–64, Pittsburgh, PA, October 2002. ACM Press.

Karl J. Ottenstein, Robert A. Ballance, and Arthur B. MacCabe. The
program dependence web: a representation supporting control-, data-, and
demand-driven interpretation of imperative languages. In Proceedings of the
ACM SIGPLAN 1990 conference on Programming language design and im-
plementation, PLDI ’90, pages 257–271, New York, NY, USA, 1990a. ACM.
ISBN 0-89791-364-7. doi: http://doi.acm.org/10.1145/93542.93578. URL
http://doi.acm.org/10.1145/93542.93578.

Bibliography 245

Karl J. Ottenstein, Robert A. Ballance, and Arthur B. MacCabe. The pro-
gram dependence web: a representation supporting control-, data-, and demand-
driven interpretation of imperative languages. SIGPLAN Not., 25:257–271, June
1990b. ISSN 0362-1340. doi: http://doi.acm.org/10.1145/93548.93578. URL
http://doi.acm.org/10.1145/93548.93578.

Ross Paterson. Arrows and computation. In Jeremy Gibbons and Oege de Moor,
editors, The Fun of Programming, pages 201–222. Palgrave, 2003.

Amir Pnueli and Anna Zaks. Validation of interprocedural optimization. In Proc.
Workshop Compiler Optimization Meets Compiler Verification (COCV 2008), Elec-
tronic Notes in Theoretical Computer Science. Elsevier, 2008.

Amir Pnueli, Michael Siegel, and Eli Singerman. Translation validation. In Tools and
Algorithms for Construction and Analysis of Systems, TACAS ’98, volume 1384 of
Lecture Notes in Computer Science, pages 151–166. Springer, 1998.

John Power and Edmund Robinson. Premonoidal categories and notions of com-
putation. Mathematical Structures in Computer Science, 7(5):453–468, October
1997.

John Power and Hayo Thielecke. Closed Freyd- and kappa-categories. In ICALP,
volume 1644 of LNCS. Springer, 1999.

Martin Rinard and Darko Marinov. Credible compilation with pointers. In Workshop
on Run-Time Result Verification, 1999.

Xavier Rival. Symbolic transfer function-based approaches to certified compilation.
In 31st symposium Principles of Programming Languages, pages 1–13. ACM Press,
2004.

D.J. Rose, G.G. Whitten, A.H. Sherman, and R.E. Tarjan. Algorithms and software
for in-core factorization of sparse symmetric positive definite matrices. Comput-
ers and Structures, 11(6):597 – 608, 1980. ISSN 0045-7949. doi: 10.1016/0045-
7949(80)90066-8.

Benchmarks for Programming Language Comparisons Shootout.
http://shootout.alioth.debian.org/, 2010.

Simulink. http://mathworks.com, 2010.

2006 SpecCPU. http://www.spec.org/cpu2006/, 2006.

SQLite3. http://www.sqlite.org, 2011.

Bibliography 246

Michael Stepp, Ross Tate, and Sorin Lerner. Equality-based transla-
tion validator for llvm. In Proceedings of the 23rd international con-
ference on Computer aided verification, CAV’11, pages 737–742, Berlin,
Heidelberg, 2011. Springer-Verlag. ISBN 978-3-642-22109-5. URL
http://dl.acm.org/citation.cfm?id=2032305.2032364.

S. Doaitse Swierstra and Luc Duponcheel. Deterministic, error-correcting combina-
tor parsers. In ADVANCED FUNCTIONAL PROGRAMMING, pages 184–207.
Springer-Verlag, 1996.

V. Vene T. Uustalu. The essence of dataflow programming. In Revised Lectures from
Central European Functional Programming School, July 2005. to appear.

Robert E Tarjan. Applications of path compression on balanced trees. Technical
report, Stanford University, Stanford, CA, USA, 1975.

Robert Endre Tarjan. Applications of path compression on bal-
anced trees. J. ACM, 26:690–715, October 1979. ISSN 0004-
5411. doi: http://doi.acm.org/10.1145/322154.322161. URL
http://doi.acm.org/10.1145/322154.322161.

Robert Endre Tarjan. Fast algorithms for solving path problems. J. ACM, 28:594–
614, July 1981. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/322261.322273.
URL http://doi.acm.org/10.1145/322261.322273.

Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. Equality saturation:
A new approach to optimization. In 36th Principles of Programming Languages,
pages 264–276. ACM, 2009.

Zachary Tatlock and Sorin Lerner. Bringing extensibility to certified compilers. In
Proceedings of the 20 Conference on Programming Language Design and Implemen-
tation (PLDI 2010), pages 111–121. ACM, 2010.

Jean-Baptiste Tristan and Xavier Leroy. Formal verification of translation validators:
A case study on instruction scheduling optimizations. In 35th symposium Principles
of Programming Languages, pages 17–27. ACM Press, 2008.

Jean-Baptiste Tristan and Xavier Leroy. A simple, verified validator for software
pipelining. In 37th Principles of Programming Languages, pages 83–92. ACM Press,
2010.

Peng Tu and David Padua. Efficient building and placing of gating functions. In
Programming Language Design and Implementation, pages 47–55, 1995a.

Bibliography 247

Peng Tu and David Padua. Efficient building and placing of gating functions. In
Proceedings of the ACM SIGPLAN 1995 conference on Programming language de-
sign and implementation, PLDI ’95, pages 47–55, New York, NY, USA, 1995b.
ACM. ISBN 0-89791-697-2. doi: http://doi.acm.org/10.1145/207110.207115. URL
http://doi.acm.org/10.1145/207110.207115.

Peng Tu and David Padua. Efficient building and placing of gat-
ing functions. SIGPLAN Not., 30:47–55, June 1995c. ISSN
0362-1340. doi: http://doi.acm.org/10.1145/223428.207115. URL
http://doi.acm.org/10.1145/223428.207115.

Tarmo Uustalu and Varmo Vene. Signals and comonads. Journ. of Universal Comp.
Sci, 11:1310–1326, 2005.

William W. Wadge and Edward A. Ashcroft. LUCID, the dataflow programming
language. Academic Press Professional, Inc., San Diego, CA, USA, 1985. ISBN
0-12-729650-6.

Philip Wadler. Listlessness is better than laziness: Lazy evaluation and garbage
collection at compile-time. In LFP ’84: Proceedings of the 1984 ACM Symposium
on LISP and functional programming, pages 45–52, New York, NY, USA, 1984.
ACM Press. ISBN 0-89791-142-3.

Philip Wadler. Deforestation: transforming programs to eliminate trees. In The-
oretical Computer Science, (Special issue of selected papers from 2’nd European
Symposium on Programming), pages 231–248, 1990.

Daniel Weise, Roger F. Crew, Michael D. Ernst, and Bjarne Steensgaard. Value
dependence graphs: Representation without taxation. In 21st Principles of Pro-
gramming Languages, pages 297–310, 1994.

Lenore Zuck, Amir Pnueli, Yi Fang, and Benjamin Goldberg. VOC: A methodology
for translation validation of optimizing compilers. Journal of Universal Computer
Science, 9(3):223–247, 2003.

Appendix A

Data-flow Semantics

A.1 Operational Semantics

In this section we will present a precise operational semantics for our term lan-

guage. The semantics are similar to a synchronous data-flow semantics. We will make

use of the step relation defined in Chapter 3 for our expression language.

Our judgement is of the form: t
v−→ t′. This can be read as t steps to t′ and

produces the value v on its output stream. The operational semantics is shown in

Figure A.1.

A.2 Static Semantics

The static semantics is a combination of a traditional clock calculus without re-

cursion, and the simply typed expression language from Chapter 3. The syntax of

types is shown below.

248

Appendix A: Data-flow Semantics 249

τ ::= int | bool Base Types

| τ → τ Function Types

| [τ] Stream Type

clk ::= c Basic Clock

| c on e Slowed Clock

The typing rules are shown in Figure A.2. The following soundness theorem holds.

Theorem 8 (Soundness). For all t, τ and c, if Γ ` t : τ, c, then there exists v and t′

such that

t
v−→ t′

Γ ` t′ : τ, c .

Appendix A: Data-flow Semantics 250

(pure0)

const v
ε−→ const v

(puren)

const v
v−→ const v

(map0)

x
ε−→ x′

map f x
ε−→ map f x′

(mapn)

x
v−→ x′ f v →∗ w

map f x
w−→ map f x′

(zip0)

x
ε−→ x′ y

ε−→ y′

zip(x, y)
ε−→ zip(x′, y′)

(zipn)

x
v−→ x′ y

w−→ y′

zip(x, y)
(v,w)−−−→ zip(x′, y′)

(φ0)

c
ε−→ c′ x

ε−→ x′ y
ε−→ y′

φ(c, x, y)
ε−→ φ(c′, x′, y′)

(φt)

c
true−−→ c′ x

v−→ x′ y
w−→ y′

φ(c, x, y)
v−→ φ(c′, x′, y′)

(φf)

c
false−−−→ c′ x

v−→ x′ y
w−→ y′

φ(c, x, y)
w−→ φ(c′, x′, y′)

(µ0)

x
ε−→ x′ y

v−→ y′

µ(x, y)
ε−→ ε : µ(x′, y′)

(µn)

x
v−→ x′ y

w−→ y′

µ(x, y)
ε−→ pre v y′

(η0)

x
ε−→ x′ c

ε−→ c′

η(x, c)
ε−→ η(x′, c′)

(ηf)

x
false−−−→ x′ c

w−→ c′

η(x, c)
w−→ const w

(ηt)

x
true−−→ x′ c

w−→ c′

η(x, c)
ε−→ η(x′, c′)

(σ0)

x
ε−→ x′ c

ε−→ c′

σ(v, x, c)
ε−→ σ(v, x′, c′)

(σt)

x
true−−→ x′ c

w−→ c′

σ(v, x, c)
w−→ σ(w, x′, c′)

(σf)

x
false−−−→ x′ c

w−→ c′

σ(v, x, c)
v−→ σ(v, x′, c′)

Figure A.1: Operational Semantics for terms.

Appendix A: Data-flow Semantics 251

(pure)

Γ `λ v : τ

Γ ` const v : [τ], c

(zip)

Γ ` x : τ1, c Γ ` y : τ2, c

Γ ` zip(x, y) : [τ1 ? τ2], c

(map)

Γ `λ f : τ1 → τ2 Γ ` x : [τ1], c

Γ ` map f x : [τ2], c

(φ)

Γ ` x : [bool], c Γ ` y : [τ], c Γ ` z : [τ], c

Γ ` φ(x, y, z) : [τ], c

(µ1)

Γ ` x : [τ], c Γ ` y : [τ], c

Γ ` µ(x, y) : [τ], c

(µ2)

Γ ` x : [τ], c Γ ` y : [τ], c on e

Γ ` µ(x, y) : [τ], c on e

(η)

Γ ` x : [τ], c Γ ` y : [bool], c

Γ ` η(x, y) : [τ], c on y

(σ)

Γ `λ v : τ Γ ` x : [τ], c Γ ` y : [bool], c

Γ ` σ(v, x, y) : [τ], c

Figure A.2: Typing rules for terms.

