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Abstract

Pollution studies have sought to understand the relationships between adverse

health effects and harmful exposures. Many environmental health studies are

predicated on the idea that each exposure has both acute and long term health ef-

fects that need to be accurately mapped. Considerable work has been done linking

air pollution to deleterious health outcomes but the underlying biological path-

ways and contributing sources remain difficult to identify. There are many statis-

tical issues that arise in the exploration of these longitudinal study designs such

as understanding pathways of effects, addressing missing data, and assessing the

health effects of multipollutant mixtures. To this end this dissertation aims to ad-

dress the afore mentioned statistical issues.

Our first contribution investigates the mechanistic pathways between air pollu-

tants and measures of cardiac electrical instability. The methods from chapter 1

propose a path analysis that would allow for the estimation of health effects ac-

cording to multiple paths using structural equation models. Our second contri-

bution recognizes that panel studies suffer from attrition over time and the loss of

data can affect the analysis. Methods from Chapter 2 extend current regression cal-

ibration approaches by imputing missing data through the use of moving averages

and assumed correlation structures. Our last contribution explores the use of fac-

tor analysis and two-stage hierarchical regression which are two commonly used

approaches in the analysis of multipollutant mixtures. The methods from Chap-
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ter 3 attempt to compare the performance of these two existing methodologies for

estimating health effects from multipollutant sources.
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1.1 ABSTRACT

Epidemiological studies have consistently demonstrated that elevated levels of

particulate matter (PM) are associated with increased mortality and morbidity.

Further studies have demonstrated a consistent increased risk for cardiovascular

events such as myocardial infarction, stroke, cardiac arrhythmia, atherosclerosis,

and angina (Mittleman et al. 2000; Rich Q, 2005; Dockery et al., 2005; Berger et

al., 2006). In spite of prior evidence linking air pollution to these adverse health

outcomes, the underlying causal, physiological, and biological pathways are less

understood. The purpose of this article is to model and identifying the mechanis-

tic pathways of effects by conducting a path analysis within a structural equation

framework. This approach corresponds to jointly fitting two generalized additive

distributed lag health outcome models, such that inferences on the health effects

can be determined through direct and indirect pathways. We compare the perfor-

mance of our approach in estimating the health effects ( changes in cardiovascular

outcomes) to that of an existing approach of modeling the outcomes separately.

Simulation results and subsequent data analysis suggest that the proposed dis-

tributed lag path analysis are effective in simultaneously estimating the health

effects from direct and and indirect path while conventional methods can not.

We employ the proposed methods in the analysis of an Exposure, Epidemiology,

and Risk Program study that investigates the effects of particulate air pollution

(PM2.5) on ST-Segment depression, T-wave alternans (TWA), and heart rate vari-

ability (HRV).
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1.2 INTRODUCTION

Epidemiological studies have consistently demonstrated that elevated levels of

particulate matter (PM) are associated with increased mortality and morbidity.

Further studies have demonstrated a consistent increased risk for cardiovascular

events such as myocardial infarction, stroke, cardiac arrhythmia, atherosclerosis,

and angina (Mittleman et al. 2000; Rich Q, 2005; Dockery et al., 2005; Berger

et al., 2006). In spite of prior evidence linking air pollution to these adverse

health outcomes, the underlying causal, physiological, and biological pathways

are less understood. Identifying these mechanistic pathways will allow scientists,

researchers, and medical professionals to become more informed and thus effec-

tively focus medical interventions and treatments.

One of the primary objectives of PM research is the assessment of the health ef-

fects related to specific types of air pollution. Particulate matter, sulfur dioxide,

oxides of nitrogen, carbon oxides, and ozone have each been shown to be both

chronic and acute contributors to adverse effects on human health (Brook et al.

2004). The scientific interest of this paper is to explore the relationship between

particulate air pollution and a measure of cardiac electrical instability, T-wave al-

ternans (TWA). Further, this study seeks to explore whether pollution leads to

TWA through causing autonomic dysfunction, measured as a reduction in heart

rate variability (HRV). We hope to jointly model these phenomena to understand

interrelationships between the separate cardiac outcomes so that the effects of ex-

posure can be decomposed into direct and indirect effects (via other outcomes).

Investigations looking at the health effects of air pollution recognize that a health

outcome can be affected by exposures experienced either at the time the outcome

is measured or during some time previous to the health assessment. Accounting
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for both contemporaneous and lagged effects would give a more well rounded as-

sessment of pollution and help to avoid exposure misclassification biases. Some

studies have shown that pollutant exposures measured at different lengths of time

have will have a varied impact on the outcome (Chuang et al. 2008). Further, the

relevant time windows may change depending on the outcome. Therefore, ap-

propriate models must account for both immediate and lagged exposure effects,

repeated measures, smoothed terms, and missing values. In this paper, we pro-

pose to develop methods that allow one to examine pathways of effects, when the

lagged effects of exposure are potentially of interest. We plan to use distributed

lag models merged within a structural equation framework to examine the rela-

tionship between air pollution and different electrical cardiac outcomes that are

known precursors to cardiovascular events.

At present, existing analyses attempt to consider temporal resolution through the

use of moving averages. The ”moving average” method of analysis calculates ex-

posure concentrations over various pre-specified intervals of time. Hence, each

model produces one effect estimate for the respective moving average. In this

modeling scheme the pollutant could be modeled as a linear or smoothed term

depending the assumed relationship. It has been recognized in the literature that

the effects of pollution are sensitive to the length of the moving averages used for

exposure measures so effects may not be fully captured.

Another issue arises when attempting to consider multiple cardiac endpoints si-

multaneously, because different lags of exposure may be most relevant for the dif-

ferent outcomes. This means that each endpoint has its own pivotal time interval

where the adverse health effects may be the highest in magnitude. If all of the

models used the same time interval and resolution, it is possible that effects may

4



be seen in one outcome but not others. In this paper, we propose a path anal-

ysis that jointly fits two or more distributed lag models using the pollutants as

exposures and the measures of cardiac electrical instability as outcomes. Modeling

these outcomes jointly will allow for both direct and indirect effects to be estimated

at varying time lags.

The data that motivates the proposed research comes from three analyses con-

ducted through the Exposure, Epidemiology, and Risk Program in Boston on the

effects of particulate air pollution (particulate matter, black carbon, carbon monox-

ide, ozone, nitrogen dioxide, and sulfur dioxide) on T-wave alternans and heart

rate variability. Harvard researchers have conducted a number of regression anal-

yses using moving averages of exposure and these outcomes. Pollutants were mea-

sured from a central site while the heart outcomes were calculated by a personal

monitor at half hour intervals. There has been some exploration of potential bi-

ological pathways for this relationship such as; Direct paths through the cardio-

vascular system, blood, and lung receptors, or indirect paths through pulmonary

oxidative stress and inammatory response (Brook et al. 2004). In order to explore

the intermediate effects and their inter-relationship with other outcomes, a path-

way model can be implemented and we will introduce and derive approaches for

the implementation of such a model. Our proposed work seeks to help elucidate

the electro-physiological mechanism to complement the existing research.

This paper is organized as follows: Section 1.3 describes in detail the design and

data from a study evaluating the effects of particulate air pollution on electrical

cardiac instability. Section 1.4 presents the distributed lag model and subsequent

pathway model, while Section 1.5 discusses the direct and indirect effects of expo-

sure. Section 1.6 gives a short treatment of the Bayesian approach to estimation
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and Section 1.7 presents a simulation study to examine the effectiveness pathway

analytic model, compared to the moving average approach. Section 1.8 demon-

strates an application of the distributed lag pathway model (DLPWM) to analyze

the afore mentioned study from Exposure, Epidemiology, and Risk Program and

finally in Section 8 we discuss our findings along with implications for future path

analyses.

1.3 DATA DESIGN

1.3.1 Data Collection

The study population consisted of a recruited panel of patients with documented

coronary artery disease from the greater Boston area. Specifically, subjects were re-

cruited within route 495 (the outer most boundary of the greater Boston metropoli-

tan region) and a 40 km radius from the central pollution monitoring site. Each

subject had experienced a percutaneous coronary intervention for an acute coro-

nary syndrome or for worsening stable coronary artery disease. In each study,

patients were excluded with atrial fibrillation and left bundle branch block (LBBB)

because of the intent to evaluate heart rate variability and ST-Segment as outcomes.

Further exclusions included patients who had bypass graft surgery within the last

3 months because accurate interpretations of the T-wave and ST-Segment would

have been compromised. Other exclusions were active smokers, drug or alcohol

abuse problems, and those with psychiatric illness. Subjects received a home visit

within 2 to 4 weeks after the hospital discharge, followed by 3 additional visits at

approximately 3 month intervals. There were 48 subjects yielding 129 person-visits

with 6135 observations. Each patient had approximately 48 half-hour ST-segment,
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T-wave alternans, and heart rate variability (HRV) measurements taken, which

were linked with air pollution measurements at corresponding times.

The outcomes were measured using 24 hour 3 lead Holter ECG monitoring and the

electrodes were placed in modified V5 and VF positions. In the subsequent visits,

patients were given a follow-up questionnaire regarding cardiac and respiratory

symptoms, and medication use. They later received 24-hour Holter monitoring.

Ambient concentrations of particulate air matter with aerodynamic diameter less

than 2.5µm (PM2.5) and black carbon (BC) were measured at the central moni-

toring site located on the roof of Countway Library, Harvard Medical School, in

downtown Boston, MA. PM2.5 concentrations were measured using Tapered Ele-

ment Oscillation Microbalance (TEOM, Model 1400A, Rupprecht and Pataschnick,

Albany, NY). Ambient BC was measured using an aethalometer. PM2.5 and BC

concentrations were summarized in half hour intervals with analysis based on half

hour, 12 hour lagged, and cumulative exposures. Indoor PM2.5 and BC measure-

ments were also taken. O3, SO2, and CO measurements were obtained using state

monitoring sites in Boston, MA.

1.3.2 Single Outcome Analyses

A first analysis assessed the relationship between heart rate variability (HRV) and

ambient air pollution among the post coronary event patients (Zanobetti et al.

2009). Authors explored this relationship because reduced HRV has been linked to

increased risk of myocardial infarction, increased mortality in patients with heart

failure, and is a marker for fatal ventricular arrhythmia (Gold et al. 2000; Task

Force of the European Society of Cardiology the North American Society of Pac-

ing Electro-physiology, 1996). HRV was measured using four different metrics;
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standard deviation of normal-to-normal heart beat intervals (SDNN) and square

root of the mean of the squared differences between adjacent normal RR intervals

(r-MSSD), high frequency (HF), and total power (TP). The smaller the standard de-

viation in the RR intervals corresponded with lower HRV measures. The authors

used generalized additive models to control for confounding, which allowed for

the covariates to have non-linear effects on outcome. For both r-MSSD and HF, the

authors found significant negative associations with PM2.5 and BC. There was a

tendency for the stronger r-MSSD associations to occur at longer averaging times.

The second analysis of this study was to explore the relationship between partic-

ulate pollution and T-wave alternans (Zanobetti et al. 2009). T-wave alternans

(TWA) are periodic beat to beat variations in the amplitude of the T-wave in an

electrocardiogram (ECG). It is most often measured in patients who have had my-

ocardial infarctions or other heart damage to see if they are at high risk of devel-

oping a potentially lethal cardiac arrhythmia. The shape of the T-wave could be

a key indicator of cardiac health and mortality (Nieminen et al. 2007; Stein et al.

2008). For example, inverted or negative T-waves can be a sign of coronary is-

chemia, whereas tall or tented symmetrical T-waves may indicate hyperkalemia.

TWA is also a marker of cardiac electrical instability measured as differences in the

magnitudes between adjacent waves. Increases in the previous 1 to 12 hour av-

eraged ambient PM2.5 and BC were associated with increases in TWA, with peak

cumulative effects in between 6 and 12 hours. The authors’ estimated that for a

1 unit increase in 6 hour averaged PM2.5 there was an increase of 1.7%(0.6, 2.7)in

TWA.
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1.4 MODEL AND NOTATION

1.4.1 Modeling Framework

An alternative to separate ”moving average” models is the distributed lag model

(DLM). Distributed lag models generalize the single time point or moving average

models because they estimate differential air pollution effects for all lagged time

points simultaneously, rather than from separate models. Our data have been col-

lected so that measurements for each pollutant have been collected for 48 separate

half-hour time lags along with the corresponding electrical cardiac instability out-

comes at those times. Therefore the data are suited for distributed lag modeling

framework.

We begin with a generalized additive distributed lag model that adjust for lagged

exposures, linear and non-linear effects of confounders, and random subject ef-

fects,

Yit = η0 +

q∑
l=0

βlxi,t−l +
d∑
j=1

fj(sitj) + γTxit,linear + Ui + εit (1.1)

where q is the the number of lagged time points. Xit is the half-hour pollution mea-

sure of subject i at time t ( PM2.5) (Zanobetti et al., 2000). Yit is the outcome measure

of subject i at time t. The εit is the error of subject i at time t and is normally dis-

tributed with zero mean and constant variance σ2
ε . The Ui is the random coefficient

due to subject i also with mean zero and variance σ2
u. The vector xit,linear is a vec-

tor of variables modeled linearly and γ represent the effect estimates. The overall

impact of a unit change in in exposure over q days is given by Σq
t=0βl (Schwartz et

al., 2000). Due to collinearity, it is necessary to constrain the βl to be a polynomial
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or spline function of l. For each βl there were three different options utilized. They

will be represented by the following equations.

Option 1(Parametric):

βl =

p∑
r=1

τrl
r

where 0 ≤ l ≤ q

Option 2 (Thin-Plate Spline)(Crainiceanu et al., 2005):

βl =
2∑
r=1

τrl
r +

K∑
k=1

νk|l − κk|3

where 0 ≤ l ≤ q and

Option 3 (Truncated Spline):

βl =

p∑
r=1

τrl
r +

K∑
k=1

νk(l − κk)p+

where 0 ≤ l ≤ q and

(l − κk)p+ =

{
(l − κk)p if l ≥ κk

0 if l < κk

,

where κ1, . . . , κK is a set of K distinct numbers between 0 and q. βl is a piecewise

pth degree polynomial in l, with join points (knots) at the κk. The νk are coefficients

associated with the basis function (l − κk)p+.

Each smooth function fj can be estimated using a penalized spline of degree p
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(Carroll et al., 2003):

fj(sitj) =

p∑
c=1

αj,cs
c
itj +

Kj∑
k=1

ωj,k(sitj − κj,k)p+

The sijt is the confounder variable for the ith subject, the jth variable modeled as a

smooth function at time t. The αj,c is the coefficient for jth smoothed term. While

the ωj,k are the coefficients corresponding to the basis function (sitj − κj,k)
p
+ for

the jth smoothed variable. Each smoothed term can be expressed in the form of a

linear mixed model with both fixed and random terms.

1.4.2 Distributional Assumptions

Model (1.1) can be simplified through matrix representations below:

Y = XLagτ + ZLagu +
∑d

j=1 Xsmooth,jαj +
∑d

j=1 Zsmoothwj + XLinearγ + ε

τ = [η0, τ0, τ1, . . . , τp]
T

α = [α0, α1, . . . , αp]
T

u = [U1, U2, . . . , Um]T

ν = [ν1, ν2, . . . , νK ]T

wj =
[
ω1, ω2, . . . , ωKj

]T
γ = [γ1, γ2, . . . , γb]

T

Let p represent the the polynomial degree, let m represent the total number
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of distinct subjects such that 1 ≤ i ≤ m. , and let ni represent the number of

observations at time t. By concatenating the model further and using the fact that

the spline coefficients can be modeled as random effects, the above equation can

be reduced to the simple mixed model (1.2) in the following form:

Y1 =

[
XLag XSmooth XLinear

]
τ

α

γ

+

[
ZLag ZSmooth

] u

w

+ ε (1.2)

Y1 = Xβ1 + Zb1 + ε (1.3)

Cov

 b

ε

 =



σ2
uI 0 0 0

0 σ2
ν I 0 0

0 0 σ2
ω,jI 0

0 0 0 σ2
ε I


The form of this model could be applied to other outcomes, for example ST seg-

ment. The model would be analogous to the one above including the same con-

founders but with a different outcome.

Y2 = Xβ2 + Zb2 + ε, (1.4)

1.4.3 The Pathway Analytic Model

Path analysis can be used to test theoretical models that specify causal relation-

ships between a number of observed variables (Hatcher, 1994). Structural equa-
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tion models (SEM’s) are a set of flexible models that enable the modeling of mul-

tivariate data for path analyses. SEM’s can handle both simple and hierarchical

modeling structures (Sanchez et al., 2005). An essential tool for SEM’s is the path

diagram or directed acyclical graph (DAG) that details causal relationships graph-

ically. Each variable is represented by its own box. Single-headed arrows represent

causal relationships between two different variables. In Figure 1.1, the x variable

represents the independent variable or antecedent variable, predicted to precede

and have a causal effect on y. The y box represents the consequent variable or the

dependent variable. The straight, single-headed arrow is generally used to repre-

sent a directional causal path in a path diagram while also detailing the statistical

model that describes the relationship. The z variable can be considered an inter-

mediate (mediator) variable because it is on the causal pathway from x to y and it

is caused by x.

Through normal likelihood theory, estimation of parameters, confidence intervals,

and p-values can be calculated. Standard approaches to pathway analysis usually

make the assumption that the variables of interest are normally distributed. Sub-

sequently, direct paths have point and interval estimates while indirect paths are

the product of the estimate of the independent variable to the intermediate variable

and that for the association between estimate of the intermediate variable to the de-

pendent variable. In the normal theory case, these parameters could be estimated

using to least squares equations. The following example is a simple illustration of

the modeling scheme.

Let y be the outcome variable, x be the independent variable, and z be the

intermediate variable whereby θ2 denotes the linear association between x and y,

θ1 denotes the linear association between x and z, and θ3 the linear association
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between z and y. The DAG for the model is as follows:

z = θ0 + xθ1 + ez (1.5)

y = θ00 + xθ2 + zθ3 + ey (1.6)

..

 

θ1  θ3 
 

θ2 
                      x                        y 

                      z 

Figure 1.1: General Form

By substituting the value z from equation (1.5) into equation (1.6) we have the

resulting equation that allows one to estimate θ1θ3 and θ2.

y = θ00 + θ0θ3 + xθ2 + xθ1θ3 + ezθ3 + ey (1.7)

This method is effective when the variables are normally distributed (Gajewski et

al., 2006). There is also the question of calculating the appropriate standard errors

using this method because the standard errors for θ1 and θ3 are correlated. There-

fore, there is a natural congruence between the directed acyclical graph (DAG) and

its corresponding model.

Extending this basic conceptual structure using generalized distributed lag mod-

els we present Figure 1.2 below as a potential directed acyclical graph (DAG). We
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propose that the GADLMs below are an accurate reflection of the DAG and will

be able to estimate the direct effects of pollutant on T-wave alternans as well as the

indirect effects through the intermediary HRV. Equation (1.8) represents a model

that estimates the direct effects of the exposure (xit) on outcome 1 (Y1,it) where the

β1,l are the parameters of interest. While model (1.9) estimates the effect of expo-

sure (xit) on the second outcome (Y2,it) through the intermediary (Y1,it). The β2,l

are the distributed lag function for the direct effects between T-wave alternans and

the pollutant. The ϕl represents the coefficient of the intermediate outcome (Y1,it).

Hence, through the SEM framework model (1.9) accounts for multiple endpoints

on the causal pathway and yields interpretable direct and indirect effects.
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Figure 1.2: DAG for Air pollutant exposure

Y1,it = η1,0 +

q∑
l=0

β1,lxi,t−l +
d∑
j=1

fj(sitj) + γT1 wit + U1,i + ε1,it, (1.8)

Y2,it = η2,0 +

q∑
l=0

β2,lxi,t−l +

q∑
l=0

ϕlY1,i,t−l +
d∑
j=1

gj(sitj) + γT2 w1,it + U2,i + ε2,it, (1.9)
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1.5 DIRECT AND INDIRECT EFFECTS

1.5.1 Interpretation

In a broad sense, the relationship between an exposure of interest and an outcome

can be singular or multifactorial. We are interested in quantifying the relationship

through detailing the magnitude, direction, and causal pathway. A direct effect is

defined as a link between an exposure and outcome. Given the previous DAGs,

the direct effects are represented by a single arrow with no intermediaries. On the

other hand an indirect effect is the link between an exposure and outcome that con-

sist of intermediaries on the pathway. Therefore, more than one arrow is needed

to describe the relationship. This is significant because researchers will be able to

explore whether the effects of a pollutant can be seen directly or indirectly through

an intermediary. This will illuminate many questions regarding the electrophysio-

logical pathway between pollutants and electrical cardiac outcomes as well as test

for interrelationships. For example, in our current data set, HRV precedes TWA

on the electro-physiological pathway and researchers would like to investigate the

scientific trail where the pollutants are the most influential.

Using figure 1.2 as the model DAG, we estimate the direct effect between outcome

(TWA) and the exposure (pollutant) with a set of parameters β2,l represented by

a smoothed curve, and the indirect effects between the outcome variable and the

exposure through the mediating variable is represented by another curve proven

below:

Y1,it = η1,0 +

q′∑
l′=0

β1,l′xi,t−l′ +
d∑
j=1

fj(sitj) + γT1 wit + U1,i + ε1,it, (1.10)
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Y2,it = η2,0 +

q∑
l=0

β2,lxi,t−l +

q∑
l=0

ϕlY1,i,t−l +
d∑
j=1

gj(sitj) + γT2 w1,it + U2,i + ε2,it (1.11)

Now we substitute equation (1.10) into equation (1.11) and rearrange the terms.

Y2,it = η2,0 +

q∑
l=0

β2,lxi,t−l +

q∑
l=0

ϕl

[
η1,0 +

q′∑
l′=0

β1,l′xi,t−l′−l + · · ·+ ε1,i,t−l,

]

+
d∑
j=1

gj(sitj) + γT2 w1,it + U2,i + ε2,it

Since we are only interested in the direct and indirect effects of exposure and their

interpretations we will use the following as our model of interest where [∗∗] repre-

sents the other terms/confounders in the model after some.

Y2,it =

[
q∑
l=0

β2,lxi,t−l +

q∑
l=0

q′∑
l′=0

ϕlβ1,l′xi,t−l′−l

]
+ [∗∗] .

=

[
q∑
l=0

β2,lxi,t−l +

q+q′∑
k=0

β∗kxi,t−k

]
+ [∗∗]

The β2,l parameters represent the set of direct effects of lagged exposure on our

outcome and

where β∗k =
∑

l+l′=k [ϕlβ1l′ ] represents the indirect effect of the lagged exposure on

outcome.
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1.6 ESTIMATION

Standard distributed lag models (DLM’s) could be fit using maximum likelihood

methods by including all covariates in a generalized linear-mixed model. ML

methods require large sample sizes for asymptotic optimality of the resulting ML

estimators. Since we have 48 lagged exposures to be included in the model, these

methods may not be optimal. Further, the number of parameter estimates increases

when conducting the pathway analyses to account for the new effects.

We propose a non-informative Bayesian approach to modeling these distributed

lag data. We wish to estimate the effect of PM2.5 on two separate cardiovascular

outcomes simultaneously. The estimates will be represented by τr for r = 1, . . . , p.

Non-informative priors are proposed for each parameter so that the estimates are

primarily data driven. Each τ is distributed as follows:

τ ∼ N(0,Ψ)

Where Ψ = 10,000. An informative approach could have been done as well but

more data from previous studies would have been needed.

1.7 SIMULATION STUDY

We conducted a simulation study to examine the effectiveness of DLM pathway

model to estimate the changes in TWA and HRV. We would also like to perform a

direct comparison of estimates between a moving average, parametric, and semi

parametric approaches. The intended outcomes, the lagged exposure, and the co-
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efficients must be simulated under varying assumptions in order to get a complete

picture of the model effectiveness while decomposing the exposure-outcome re-

lationship. We began with 50 subjects yielding 100 person-visits with 5000 total

observations. There were also 50 measurements taken for each of the 100 subjects

and 50 lagged time-points created to mimic those in the real data.

1.7.1 Simulating Lagged Data

To simulate exposure, we generated 50 PM2.5 exposure variables lagged by half

hour intervals from X ∼ N(µx,Σx). We assumed,

Σx =



σ2
x ρ ρ2 . . . ρ49

ρ σ2
x ρ . . . ρ48

ρ2 ρ σ2
x . . . ρ47

...
...

... . . . ...

ρ49 ρ48 ρ47 . . . σ2
x


,

where ρ = 0.4 to reflect the fact that PM2.5 measurements taken at closer intervals

are more highly correlated. σ2
x = 1 and µx = 5 were taken from averages in the

real data.

1.7.2 Simulating Outcome 1

Next, we picked initial values under varied conditions for τ that were also chosen

based estimates from the models of the real data. Each βl was then calculated

using the afore mentioned formula: βl =
∑p

r=1 τrl
r where p= 3 representing a cubic
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polynomial spline. These values were needed to simulate the direct effect between

Y1(HRV) and X(PM2.5). Y1 was simulated from the following distribution:

Y1|X, β1 ∼ N(

q′∑
l′=0

β1,l′xi,t−l′ , σ
2
y1

)

1.7.3 Simulating Outcome 2

Our next task was to simulate Y2 which reflects the indirect effect PM2.5 and TWA.

In addition to choosing initial values for τ2, initial values for ϕ were designated as

they represent the intermediary effects between HRV and TWA. Since HRV only

acts on TWA for a short period of time, the lagged relationship between HRV and

TWA only spanned 2 time points. Although for thoroughness in understanding

we conducted simulation with 6 intermediary time points. The intermediary time

point values denoted by the variable ϕl and given by the function, ϕ[i] = 0.1−.001i2

for i = 1, . . . , 6. Y2 was then simulated from the following distribution:

Y2|Y1, β2 ∼ N(

q∑
l=0

β2,lxi,t−l +

q∑
l=0

ϕlY1,i,t−l, σ
2
y2

)

1.7.4 Simulation Path Model

Table 1.1 gives the assumed true values used for each simulated scenario. They

represent distinct, biologically plausible combinations of distributed lag functions

for HRV and TWA. Using the values of τ in table 1.1, the corresponding health

effect estimates βl are calculated. Next, the X, Y1, and Y2) values are generated for

100 data sets on which the distributed lag pathway model was conducted. Each
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path model only included lagged exposure variables and lagged Y2 values. The

form of the simulated path model is as follows:

Y1,it = η1,0 +

q′∑
l′=0

β1,l′xi,t−l′ + U1,i + ε1,it, (1.12)

Y2,it = η2,0 +

q∑
l=0

β2,lxi,t−l + U2,i + ε2,it (1.13)

where βl =
∑p

r=1 τrl
r. Both the parameters and hyper parameters were given the

following non-informative priors.

τ ∼ N(0, 100000)

Ui ∼ N(0, σ2
u)

σ2
u ∼ IG(0.01, 0.01)

σ2
y ∼ IG(0.01, 0.01)

For each data set, the posterior distribution is estimated using MCMC methods

using 10,000 iterations and subsequently keeping 1,000 posterior values. The mix-

ing of each model is checked visually by the trace plots to see if convergence was

achieved. Next, the median and point-wise 95% credible interval of each lagged

time point are calculated for each of the 100 sets of posterior effect estimates.
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1.7.5 Simulation Results

Each simulated pathway model will be designated by 4 output graphs where the

X-axis represents the lagged time points and the Y-axis is the magnitude of the pos-

terior effect estimate. Each plot includes a true (red curve) and estimated (black

curve) distributed lag function and 95% confidence bands (black) for the relation-

ship between: 1) PM and HRV (β1,l), 2) PM and TWA (β2,l), 3) HRV and TWA

(ϕl), and 4) Indirect Effect of PM on TWA through HRV(β∗l ). The blue curve in the

3rd position plot represents a reduced setting on the magnitude of the relationship

between HRV and TWA. The blue curve in the 4th position gives the indirect asso-

ciation of PM2.5 on TWA through HRV for the afore mentioned reduced setting.

Figure 1.3 represents the first simulation setting model due to its biological pattern.

In the literature we see that HRV has a negative relationship with PM2.5 and TWA

has a positive relationship with PM2.5. For this simulation scenario we note that

the estimated distributed lag function quite accurately estimates the true DLF and

is also within 95% credible limits in all 4 graphs.

The pathway model for the first simulation shows that the relationship between

PM2.5 and HRV is negative. Early lags reflect the highest effects while later lags

move towards 0. The relationship between PM2.5 and TWA is positive with most

of the effect occurring at earlier lags as well. The distributed lag function for the

indirect effects (β∗l ) are almost identical to the distributed lag function between

PM2.5 and HRV except for the first 12 time points. As we would expect, the indi-

rect effect depends on the magnitude of the distributed lag function for the rela-

tionship between HRV and TWA given by ϕl, and our procedure is able to appro-

priately separate out these direct and indirect effects. Other simulation scenarios

were completed and the conclusions were similar.
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Model Initial-τ0 Initial-τ1 Initial-τ1 Initial-τ3
Model 1:
HRV(τ1) -0.01 0.0011 -0.000041 0.00000043
TWA(τ2) 0.01 -0.0011 0.00004 -0.00000043
Model 2:
HRV(τ1) 0.00 0.00 0.00 0.00
TWA(τ2) 0.01 -0.0011 0.00004 -0.00000043
Model 3:
HRV(τ1) -0.01 0.0011 -0.000041 0.00000043
TWA(τ2) 0.0 0.00 0.00 0.00
Model 4:
HRV(τ1) -0.01 0.0011 -0.000041 0.00000043
TWA(τ2) 0.001 -0.0005 0.00006 -0.000001
Model 5:
HRV(τ1) 0.01 -0.0005 0.00006 -0.000001
TWA(τ2) 0.01 -0.0011 0.00004 -0.00000043
Model 6:
HRV(τ1) 0.01 -0.00055 0.000041 0.000001
TWA(τ2) 0.01 -0.0011 0.00004 -0.00000043
Model 7:
HRV(τ1) -0.001 0.00015 -0.000005 0.0000002
TWA(τ2) 0.01 -0.0011 0.00004 -0.00000043
Model 8:
HRV(τ1) 0.01 0.0011 0.000041 0.00000043
TWA(τ2) 0.01 -0.0011 0.00004 -0.00000043

Table 1.1: This table represents the initial values chosen for the simulation study. For each model,
4 initial values were chosen for both HRV and TWA. Each model corresponds to a distinct plausible
distributed lag function.

1.8 DATA ANALYSIS

1.8.1 Prior Elicitation

Given the motivating heart data, DLMM models were fit using the same con-

founders as the initial analysis described in Section 1.2. The following model was

used for this analysis:

Y1,it = η1,0 +

q′∑
l′=0

β1,l′xi,t−l′ + γ
T
1 wit + U1,i + ε1,it, (1.14)
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Figure 1.3: Model 1-Regular HRV; Regular TWA

where:

β1,l =

p∑
r=1

τrl
r

where 0 ≤ l ≤ q

We used the above parametric parameterization of β1,l for p=2, 3, and 4 which

corresponds to quadratic, cubic, and quartic single pollutant models. We also at-

tempted to use the ”Thin-plate spline” and ”Truncated spline” parameterizations

for β1,l but the results were less stable. Each model adjusted for subject and day
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of the week as indicator variables while average heart rate, mean temperature,

hour of the day using quadratic effects. Quadratic effects were chosen for these

variables because univariate generalized additive models were run and quadratic

effects seemed to be a plausible approximation. Lastly, numerical date was con-

trolled for using the following parameterization:

date1 = sin(2∗π∗date)
T

, date2 = cos(2∗π∗date)
T

To conduct this Bayesian analysis we utilized Markov Chain Monte Carlo meth-

ods MCMC to estimate the parameters for the DLM using the R statistical pack-

age (The Comprehensive R Archive Network: http://cran.r-roject.org/). The

”R2Winbugs” function was used so that Winbugs could be accessed within the R

platform (Crainiceanu et al., 2005). Since our model was fit in the Bayesian setting,

we assigned non-informative priors for the model parameters.

τ ∼ N(0, 100000)

ui ∼ N(0, σ2
u)

ωj ∼ N(0, σ2
ωj

)

σ2
u ∼ IG(0.01, 0.01)

σ2
ωj
∼ IG(0.01, 0.01)

σ2
y ∼ IG(0.01, 0.01)

Each model was run using a burn-in period of 20,000 iterations. The convergence

of each estimated parameter was checked by visual inspection of the trace plots.

We kept 5,000 posterior samples thinned by 5 for each of the 49 lagged estimates.
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The total effect of a particular pollutant over q hours was calculated by summing

over the lagged coefficients given by the posterior samples. This yielded 5,000

posterior samples of the total pollutant effect over 24 hours so that medians and

confidence intervals could be produced.

1.8.2 Health effects analysis

Heart Rate Variability

Figure 1.4 is a plot of the distributed lag function for the relationship between HRV

(measured as r-MSSD) and PM2.5. Each graph represents a quadratic, cubic, and

quartic parameterization of this relationship. Subject, day of the week, average

heart rate, mean temperature, hour of the day, and were the included confounders.

Figure 4 reveals that the effect of PM2.5 on heart rate variability has a curvilin-

ear shape that is concave and the effect is mostly negative across the three model

versions. The overall impact of a unit change in PM2.5 over 48 lags (24 hours)

was associated with a -0.00872 (-0.013, -0.0049) reduction in HRV for the quadratic

model, -0.0085 (-0.0124, -0.0046) reduction in HRV for the cubic model, and -0.0084

(-0.0124, -0.0042) reduction in HRV for the quartic model. This shows consistency

across the parameterization. These results are consistent with the moving average

results of Zanobetti et al. 2000.

T-wave alternans

Figure 1.4 also contains plots of the distributed lag function for the relationship

between TWA and PM2.5. Each plot represents a quadratic, cubic, and quartic
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(a) Quadratic Model (HRV) (b) Cubic Model (HRV) (c) Quartic Model (HRV)

(d) Quadratic Model (TWA) (e) Cubic Model (TWA) (f) Quartic Model (TWA)

Figure 1.4: Top Row: SINGLE OUTCOME MODEL HRV - Each graph represents the DL function
of the relationship between PM2.5 and HRV adjusting for subject, day of week, average heart rate,
mean temperature, hour of the day, and date. Bottom Row: SINGLE OUTCOME MODEL TWA -
Each graph represents the DL function of the relationship between PM2.5 and TWA adjusting for
subject, day of week, average heart rate, mean temperature, hour of the day, and date.
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parameterization of this relationship. Figure 5 reveals that the effect of PM2.5 on

TWA has a curvilinear shape that begins with a highly positive effect for early lags

and approaches zero for later lags. The overall impact of a unit change in PM2.5

over 48 lags (24 hours) was associated with a 0.0023 (0.00042, 0.00421) increase in

TWA for the quadratic model, 0.0030 (0.0012, 0.0050) increase in TWA for the cubic

model, and 0.0032 (0.0013, 0.0051) increase in TWA for the quartic model. Each

of the estimates show a significant and positive relationship between PM2.5 and

TWA-. Zanobetti et al., 2009 shows that with increasing moving averages, there is

an increase in the TWA which means that the two approaches are in accord (See

Appendix Figure 8).

1.8.3 Path Analysis

The path analyses in Figures 1.5, 1.6, and 1.7 reflect the real data from the Expo-

sure, Epidemiology, and Risk Program in Boston. The outcomes of specific interest

are HRV (measured through r-MSSD) , TWA, and the exposure is PM2.5 just as in

sections 1.8.1 and 1.8.2. In the previous sections, the distributed lag models were

used to show the univariate relationships between exposure and outcome control-

ling for potential confounders. In the current section, the path models seek to

estimate these effects simultaneously and in aggregate along with the inclusion of

an indirect effect. The path model is included below:

Y2,it = η2,0 +

q∑
l=0

β2,lxi,t−l +

q∑
l=0

ϕlY1,i,t−l + γT2 w1,it + U2,i + ε2,it, (1.15)

where Y1,i,t−l is given by:
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Figure 1.5: QUADRATIC PATH MODEL - Clockwise : 1) PM2.5 on HRV, 2) PM2.5 on TWA, 3)
PM2.5 on TWA indirectly through HRV, and 4) HRV on TWA.

Y1,it = η1,0 +

q∑
l=0

β1,lxi,t−l + γT1 wit + U1,i + ε1,it, (1.16)

In order for the path model to be fully implemented a lag structure needed to be

created for Y1,i,t−l (HRV). 4 lags were used to describe the relationship between

HRV and TWA because the largest effects were seen within that time. As a result

of the creation of these new lags 4 observations per study id had to be removed.

We also investigated 8 lags for the HRV vs.TWA relationship and the results were

comparable. Figures 1.5 - 1.7 show the distributed lag function for the following

relationships in a clockwise fashion: 1) PM2.5 on HRV, 2) PM2.5 on TWA, 3) PM2.5

on TWA indirectly through HRV, and 4) HRV on TWA. Each plot consists of a

median posterior curve and a corresponding 95% credible interval. The distributed
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Figure 1.6: CUBIC PATH MODEL - Clockwise : 1) PM2.5 on HRV, 2) PM2.5 on TWA, 3) PM2.5

on TWA indirectly through HRV, and 4) HRV on TWA.

lag functions in position 1) and 2) from each of the path models are similar in shape

to their separate model counterparts respectively.

In Table1. 2 we see the overall estimated effects of the separate models juxtaposed

with overall estimated effects of the pathway models. We found significant asso-

ciations between HRV and PM2.5 in both the separate and pathway models in all

cases, and the overall estimates were similar. All of the estimates show a negative

relationship whereby increases in PM2.5 are associated with decreases in HRV. Fur-

ther, the distributed lag functions of the quadratic, cubic, and quartic path models

are similar. Significant associations were found between TWA and PM2.5 in both

the separate and pathway models in all cases as well. All of the estimates show

a positive overall relationship whereby increases in PM2.5 are associated with in-
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Figure 1.7: QUARTIC PATH MODEL - Clockwise : 1) PM2.5 on HRV, 2) PM2.5 on TWA, 3) PM2.5

on TWA indirectly through HRV, and 4) HRV on TWA.

creases in TWA. Once again, the distributed lag functions of the quadratic, cubic,

and quartic path models are similar. The effect estimates from the separate models

were attenuated by approximately 37-46% in comparison with the pathway model

estimates for TWA. The direct and indirect effects are intrinsically included when

conducting the single outcome models, which leads to the dimmed effect estimate.

The indirect effects cannot be estimated in the separate models because they would

not have been simultaneously done. The pathway model estimates a negative

overall effect for the indirect relationship between PM2.5 and TWA through the

intermediary HRV in the quadratic, cubic, and quartic cases. The overall impact of

a unit change in PM2.5 over 48 lags (24 hours) is associated with a -0.0086 (-0.0126,

-0.0046), -0.0085 (-0.0124, -0.0044), and -0.0083 (-0.0124, -0.0042) decreases in HRV
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Outcome Quad. Separate Model Est. and 95% CI Quad. Path Model Est. and 95% CI
HRV(β1,l): -0.00872 (-0.013, -0.0049)† -0.0086 (-0.0126, -0.0046) †
TWA(β2,l): 0.0023 (0.00042, 0.00421)† 0.0043 (0.0025, 0.0063)†

Indirect(β∗) : N/A -0.0014 (-0.0022, -0.00071) †
Outcome Cubic Separate Model Est. and 95% CI Cubic Path Model Est. and 95% CI
HRV(β1,l): -0.0085 (-0.0124, -0.0046)† -0.0085 (-0.0124, -0.0044)†
TWA(β2,l): 0.0030 (0.0012, 0.0050)† 0.0050 (0.0031, 0.0069)†

Indirect(β∗): N/A -0.0014 (-0.0021, -0.00065) †
Outcome Quartic Separate Model Est. and 95% CI Quartic Path Model Est. and 95% CI
HRV(β1,l): -0.0084 (-0.0124, -0.0042)† -0.0083 (-0.0124, -0.0042)†
TWA(β2,l): 0.0032 (0.0013, 0.0051)† 0.0051 (0.0032, 0.0070)†

Indirect(β∗): N/A -0.0015 ( -0.0023, -0.00070)†

Table 1.2: This table represents the parameter estimates from separate parametric distributed
lag models and the parameter estimates from the pathway models for 48 lags (24 hours). The
intermediary ϕ is 4 lagged time-points. †Denotes significance at α = 0.05.

for the quadratic, cubic, and quartic models respectively. The overall impact of

a unit change in PM2.5 over 48 lags (24 hours) is associated with a 0.0043 (0.0025,

0.0063), 0.0050 (0.0031, 0.0069), and 0.0051 (0.0032, 0.0070) increase in log(TWA) µV

for the quadratic, cubic, and quartic models respectively. Finally, the overall indi-

rect impact of a unit change in PM2.5 over 48 lags (24 hours) is associated with a -

0.0014 (-0.0022, -0.00071), -0.0014 (-0.0021, -0.00065), and -0.0015 ( -0.0023, -0.00070)

decrease in log(TWA) µV through HRV for the quadratic, cubic, and quartic mod-

els respectively. We see that the distributed lag function for the indirect effects

mimics the the DL function for HRV except for the the first 6 time points.

This study provides evidence that exposure to ambient air pollution in the form

of PM2.5 increases cardiac electrical instability over a 24 hour period capturing

effects during sleep, morning hours, as well as normal activity. This finding offers

a possible parsing of the mechanisms that lead to cardiac events.
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1.9 DISCUSSION

In this paper, we considered methods to assess specific health effects of PM2.5 as

they relate to electrical cardiac outcomes. One objective was to detail the path

by which particulate matter effected cardio-vascular outcomes and to parse out

the effects between multiple outcomes. In a simulation study and corresponding

analysis, we showed that the path way distributed lag model was able to estimate

the effects of particulate matter on multiple outcomes simultaneously with relative

accuracy when compared to separate models.

As an alternative to the moving average approach and the separate lag model

method initially which allowed us to model a function rather than a single point

estimate at different times. The advantage is that the relationship can be viewed

with a fine, continuous resolution over the entire time period. We proposed a path

way distributed lag model to account for multiple effects at different time intervals

simultaneously. Simulations suggest that the proposed distributed lag pathway

model is effective in separating the effects of multiple outcomes, which when done

separately could be biased. The pathway models showed that the relationship be-

tween PM2.5 and TWA-MAX was underestimated by greater than 37%(37-46%)

compared to models being separately done. The pathway model was able to esti-

mate the relationship between PM2.5 and HRV with relative accuracy. All of the

indirect effects were significant which lends evidence to the hypothesis that there

are alternate/complementary/indirect biological pathways that can influence the

direct relationship. Our results suggest that the magnitude of the indirect effect

was highly dependent on the direction and length of the intermediate distributed

lag function of HRV.

We also demonstrated the flexibility of the pathway approach to accommodate
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different parametric modes such as quadratic, cubic, and quartic, set at different

initial values, and remain consistent/accurate in estimation. The overall estimates

were similar when moving from quadratic to cubic, from cubic to quartic, and

from quadratic to quartic and the highest effects ere seen at early lags. In our

data set and subsequent simulations, the distributed lag function for HRV nearly

always mimicked the indirect effect distributed lag function although the effect

was slightly attenuated. The changes in the DL function of the indirect effect

would occur most notably in the first 4,8, or 12 time points depending on the

number of lags in the HRV variable. Lastly, when including lagged HRV as a

confounder in the single outcome models, the estimates remain the same as those

given in the pathway models although the indirect effects could not be estimated.

One limitation of these analyses is the time resolution of HRV and TWA. There

were half-hour periods over which the outcomes measures for HRV and TWA

were averaged. Therefore if shorter time resolution were needed for HRV in

defining the pathway toTWA the model may not pick it up. Therefore it would be

beneficial to not only have an increased sample size but also a much more finely

measured time resolution which would allow effects to seen at the appropriate

time points.
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1.10 APPENDIX

1.10.1 Proof Direct and Indirect Effects

STit = η1,0 +

q′∑
l′=0

β1,l′xi,t−l′ +
d∑
j=1

fj(sitj) + γT
1 wit + U1,i + ε1,it

TWAit = η2,0 +

q∑
l=0

β2,lxi,t−l +

q∑
l=0

ϕlST1,i,t−l +
d∑
j=1

gj(sitj) + γT
2 w1,it + U2,i + ε2,it

Now we substitute STit into equation for TWAit and rearrange the terms.

TWAit = η2,0 +

q∑
l=0

β2,lxi,t−l +

q∑
l=0

ϕl

[
η1,0 +

q′∑
l′=0

β1,l′xi,t−l′−l + · · ·+ ε1,i,t−l,

]

+
d∑
j=1

gj(sitj) + γT
2 w1,it + U2,i + ε2,it

= η2,0 +

q∑
l=0

β2,lxi,t−l +

q∑
l=0

ϕl [η1,0] +

q∑
l=0

ϕl

[
q′∑
l′=0

β1,l′xi,t−l′−l

]

+

q∑
l=0

ϕl

[
d∑
j=1

fj(si,t−l,j)

]
+

q∑
l=0

ϕl
[
γT
1 wi,t−l

]
+

q∑
l=0

ϕl [U1,i] +

q∑
l=0

ϕl [ε1,i,t−l]

+
d∑
j=1

gj(sitj) + γT
2 w1,it + U2,i + ε2,it

=

[
η2,0 +

q∑
l=0

ϕlη1,0

]
+

[
q∑
l=0

β2,lxi,t−l +

q∑
l=0

q′∑
l′=0

ϕlβ1,l′xi,t−l′−l

]
+

+

[
q∑
l=0

d∑
j=1

ϕlfj(si,t−l,j) +
d∑
j=1

gj(sitj)

]
+

[
q∑
l=0

ϕlγ
T
1 wi,t−l + γT

2 w1,it

]

+

[
q∑
l=0

ϕlU1,i + U2,i

]
+

[
q∑
l=0

ϕlε1,i,t−l + ε2,it

]
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Since we are only interested in the direct and indirect effects of exposure and their

interpretations we will use the following as our model of interest where [∗∗] repre-

sents the other terms/confounders in the model.

TWAit =

[
q∑
l=0

β2,lxi,t−l +

q∑
l=0

q′∑
l′=0

ϕlβ1,l′xi,t−l′−l

]
+ [∗∗] .

The β2,l parameters represent the direct effects of lagged exposure on our outcome.

Next we will expand the expression of the double sum to get the indirect effect of

exposure on our outcome Taking this expression we have:

q∑
l=0

q′∑
l′=0

ϕlβ1,l′xi,t−l′−l = ϕ0 [β10xi,t−0 + β11xi,t−1 + β12xi,t−2 + · · ·+ β1q′xi,t−q′ ]

+ ϕ1 [β10xi,t−1 + β11xi,t−2 + β12xi,t−3 + · · ·+ β1q′xi,t−q′ ]

+ ϕ2 [β10xi,t−2 + β11xi,t−3 + β12xi,t−4 + · · ·+ β1q′xi,t−q′ ]

...

+ ϕq [β10xi,t−q + β11xi,t−q−1 + β12xi,t−q−2 + · · ·+ β1q′xi,t−q−q′ ]

By distributing and rearranging terms we have:
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= [ϕ0β10xi,t−0 + ϕ0β11xi,t−1 + ϕ0β12xi,t−2 + ϕ0β13xi,t−3 + · · ·+ ϕ0β1q′xi,t−q′ ]

+ [ϕ1β10xi,t−1 + ϕ1β11xi,t−2 + ϕ1β12xi,t−3 + ϕ1β13xi,t−4 + · · ·+ ϕ1β1q′xi,t−1−q′ ]

+ [ϕ2β10xi,t−2 + ϕ2β11xi,t−3 + ϕ2β12xi,t−4 + ϕ2β13xi,t−5 + · · ·+ ϕ2β1q′xi,t−2−q′ ]

...

+ [ϕqβ10xi,t−q + ϕqβ11xi,t−q−1 + ϕqβ12xi,t−q−2 + ϕqβ13xi,t−q−3 + · · ·+ ϕqβ1q′xi,t−q−q′ ]

=

β∗0︷ ︸︸ ︷
[ϕ0β10]xi,t−0 +

β∗1︷ ︸︸ ︷
[ϕ0β11 + ϕ1β10]xi,t−1 +

β∗2︷ ︸︸ ︷
[ϕ0β12 + ϕ1β11 + ϕ2β10]xi,t−2

+ · · ·+ [ϕ0β1q′ + ϕ1β1,q′−1 + · · ·+ ϕqβ10]xi,t−q−q′

= β∗0xi,t−0 + β∗1xi,t−1 + β∗2xi,t−2 + β∗3xi,t−3 + β∗4xi,t−4 + · · ·+ β∗q+q′xi,t−q−q′

=

q+q′∑
k=0

β∗kxi,t−k

where β∗k =
∑

l+l′=k [ϕlβ1l′ ] which represents the indirect effect of the lagged expo-

sure on outcome. The final models is as follows:
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TWAit =

Intercepts︷ ︸︸ ︷[
η2,0 +

q∑
l=0

ϕlη1,0

]
+

DirectandIndirectEffects︷ ︸︸ ︷[
q∑
l=0

β2,lxi,t−l +

q+q′∑
k=0

β∗kxi,t−k

]

+

NonlinearConfounders︷ ︸︸ ︷[
q∑
l=0

d∑
j=1

ϕlfj(si,t−l,j) +
d∑
j=1

gj(sitj)

]
+

LinearConfounders︷ ︸︸ ︷[
q∑
l=0

ϕlγ
T
1 wi,t−l + γT

2 w1,it

]

+

RandomEffects︷ ︸︸ ︷[
q∑
l=0

ϕlU1,i + U2,i

]
+

Error︷ ︸︸ ︷[
q∑
l=0

ϕlε1,i,t−l + ε2,it

]
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1.10.2 Simulations Scenarios 1-7

..

Figure 1.8: Model 2-No Effect HRV; Regular TWA
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..

Figure 1.9: Model 3-Shifted Effect HRV; Regular TWA
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..

Figure 1.10: Model 4-Regular HRV; Shifted Effect TWA
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..

Figure 1.11: Model 5-Heavy end Effect HRV; Regular TWA
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..

Figure 1.12: Model 6-Positive Effect HRV; Regular TWA
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..

Figure 1.13: Model 7-Positive Effect HRV (downward); Regular TWA
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2.1 ABSTRACT

Epidemiological studies have shown that an individual’s cumulative exposure to

pollutants is a result of both acute and lagged effects. Therefore, accurate measures

of exposure patterns are instrumental to conducting a health effects analysis. The

variables traditionally studied in environmental epidemiology, such as exposure to

ambient outdoor pollution, indoor pollutants, and environmental hazards are of-

ten subject to measurement errors. Although, there has been considerable research

conducted on missing data and measurement error, little work has been done to

address missing data in the moving average time series setting. In this article we

propose a new regression calibration approach that focuses on estimating missing

moving averages by conditioning on the observed data. We compare via simu-

lation the performance of our ”moving average” approach in estimating missing

exposure data to that of 2 existing approaches, a daily value imputation method

and a reduced method where missing observations are deleted. Simulation results

suggest that the proposed regression calibration using the moving average lead to

robust and less biased estimates of the parameters of interest.
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2.2 INTRODUCTION

Variables commonly studied in environmental epidemiology, such as exposure to

ambient outdoor pollution, indoor pollutants, and environmental hazards are of-

ten subject to measurement error. Such pollutants have many sources of variability

such as instrument error, recording error, and missing observations. Misclassifica-

tion of exposures is a well-recognized inherent limitation of panel studies linking

diseases to the environment. For many agents of interest, exposures have both spa-

tial and temporal influences. As a result, it is often a daunting task for investigators

to accurately represent the relevant exposures for each participant. Researchers

continue to take steps to control the consequences of measurement error through

conscientious study designs and data collection, and by making adjustments for

the error in the statistical analyses (Zeger et al., 2000).

In many panel studies, access to ambient exposure information for several con-

secutive periods (e.g. days, months, years previous) are available due to central

site monitoring but the precision of the measurements have inconsistencies. Al-

ternatively, access to indoor exposure measurements requires more resources for

accurate and complete data collection, include increased participant burdens, and

require higher costs for the longer term measurements. As the issue of exposure

errors has become well recognized in the literature, researchers have shown that

human activities impact the timing, location, and degree of pollutant exposure.

According to the National Human Activity Pattern Survey (NHAPS), respondents

reported spending an average of 87% of their time in enclosed buildings and about

6% of their time in enclosed vehicles (Klepeis N et al., 2001). Therefore human

behaviors are key contributors in explaining exposure variations. These statistics

underscore the need to detail pollutant exposures using indoor methods so that the
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most comprehensive arch of vulnerability and susceptibility could be captured. In

this paper, we seek to develop methods that correct covariate/exposure measure-

ment error due to missing data through the use of regression calibration.

Existing analyses, when confronted with missing indoor exposure data may at-

tempt to either remove participants/observations with incomplete data or conduct

regression calibration methods by imputing the individual exposure observations.

Since indoor exposure data tend to be sparse, discarding valuable observations

may not be an optimal option. In this paper, we propose to develop methods that

allow one to perform imputation methods on the moving averages of unobserved

covariate exposures conditional on the observed data. This is achieved using large

sample methods that require statistical models for the distribution of exposure X

conditional on observed covariates. In addition to these considerations, time series

models are used so that temporal components can be introduced and accounted for

in the exposure-outcome relationship. Typically, such data represent a sequence of

observations at successive times and spaced at uniform time intervals. An intrin-

sic statistical issue in the collection of time series data (lagged data) is having the

appropriate amount of sequenced information collected for each subject. More

specifically, the value of some of the the variables of interest may not be observ-

able for all study participants. For example, a variable may be observed for 80%

of the study, but unobserved for the other 20%. This presents a unique problem

when dealing with pollution exposure data and potentially any longitudinal study

where missing data are involved. A mechanism/procedure must accurately and

efficiently estimate the missing information or risk conducting an analysis with

insufficient data. This missing data issue could be more easily illustrated through

the following example:
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At the initial start date of a study, there are no indoor exposure measurements

for time lags previous to the start date. As a result, the data are incomplete and

those rows of data must be deleted in order to proceed further with an analysis.

For example, Table 2.1 shows sample exposure data for 7 lagged days. In order to

calculate the 4-day moving average the data are insufficient. In the sample data, it

can be readily seen that each subject was followed for 7 days but the 4-day moving

average can only be calculated for the last 4 measurements of each ID because the

rows with NA’s must be deleted as seen in Table 2.2. Subsequently, to conduct

the analysis investigators must work from a reduced data set like the one seen in

Table 2.3. Given that each subject should have a fixed number of measurements

taken at successive time points, our proposed regression calibration method seeks

to impute the missing moving averages using the existing exposure information.

We would like to condition on the current observed information to find estimates

for the missing 4-day averages as seen in table four. This would allow investigators

to utilize all of their data more efficiently.

Start Date
ID xi,0 xi,1 xi,2 xi,3 xi,4 xi,5 xi,6
1 3.6 4.7 5.2 3.8 4.1 3.9 5.6
2 3.5 5.6 4.3 4.7 3.2 2.9 6.4
3 2.6 6.5 3.4 5.6 2.3 3.8 5.5
4 3.7 5.2 4.5 5.2 3.6 4.8 6.5

Table 2.1: SAMPLE OBSERVED DATA - This table represents the observed exposure data over a
7 day period.

The data that motivates the proposed research comes from the analyses conducted

through the Electric Power Research Institute through the Harvard School of Pub-

lic Health on the effects of indoor and outdoor air pollution (particulate matter,

black carbon, carbon monoxide, ozone, nitrogen dioxide, and sulfur dioxide) on

children with respiratory illnesses. Investigators have conducted a number of re-

49



Start Date
ID X

(4)
i,0 X

(4)
i,1 X

(4)
i,2 X

(4)
i,3 X

(4)
i,4 X

(4)
i,5 X

(4)
i,6

1 NA NA NA 4.325 4.45 4.25 4.35
2 NA NA NA 4.525 4.45 3.775 4.3
3 NA NA NA 4.525 4.45 3.775 4.3
4 NA NA NA 4.65 4.625 4.525 5.025

Table 2.2: SAMPLE MOVING AVERAGE DATA - This table represents the observed exposure
data for a 4-day moving average by id.

ID X
(4)
i,3 X

(4)
i,4 X

(4)
i,5 X

(4)
i,6

1 4.325 4.45 4.25 4.35
2 4.525 4.45 3.775 4.3
3 4.525 4.45 3.775 4.3
4 4.65 4.625 4.525 5.025

Table 2.3: SAMPLE REDUCED MOVING AVERAGE DATA - This table represents the observed
exposure data for a 4-day moving average by id where the missing values were deleted.

gression analyses using moving averages of exposure and these outcomes. Pol-

lutants were measured from two central monitoring sites in New York City, NY

while the indoor exposures were measured using indoor sampling apparatus. The

outcomes of interests were onset of asthma, eczema, hay fever, and pulmonary

function.

This paper is organized as follows: Section 2.3 describes in detail the design and

data from a study evaluating the effects of particulate air pollution on outcome.

Section 2.4 presents the exposure/error model, subsequent imputation algorithms,

and model mis-specification. Section 2.5 presents a simulation study to examine

the effectiveness of the imputation methods compared to existing approaches and

tests the robustness of the regression calibration and Section 2.6 demonstrates an

application of the regression calibration methods to analyze the afore mentioned

study from Exposure, Epidemiology, and Risk Program. Finally in Section 2.7 we

discuss our findings along with its implications.
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ID X
(4)
i,0 X

(4)
i,1 X

(4)
i,2 X

(4)
i,3 X

(4)
i,4 X

(4)
i,5 X

(4)
i,6

1 µX(4)|X(1) µX(4)|X(2) µX(4)|X(3) 4.325 4.45 4.25 4.35
2 µX(4)|X(1) µX(4)|X(2) µX(4)|X(3) 4.525 4.45 3.775 4.3
3 µX(4)|X(1) µX(4)|X(2) µX(4)|X(3) 4.525 4.45 3.775 4.3
4 µX(4)|X(1) µX(4)|X(2) µX(4)|X(3) 4.65 4.625 4.525 5.025

Table 2.4: MOVING AVERAGE IMPUTATION IDEA - This table represents the observed expo-
sure data for a 4-day moving average by id.

2.3 DATA

Subjects were recruited from 6 different mediums; The Pediatric Emergency De-

partment at MSSM, Chest Clinic at MSSM, Asthma Support Group at MSSM,

Health Fairs, Referral from outside sources, and Advertisements. Children be-

tween the ages of 6 and 14 with moderate to severe asthma as defined by NIH

criteria. Each subject had to reside North of 96th Street in Manhattan and South of

Cross Bronx Expressway in the Bronx and sleep in the same place at least 5 nights

a week. Children with active disease other than asthma requiring daily medica-

tions and those with mental retardation were excluded. Further exclusions were

smoking in the home and family planning to move from current home within the

next six months.

2.4 MOVING AVERAGE IMPUTATION

To begin, let Xit represent the value of a particular air pollutant and X
(n)
i,t is the

n-day moving average for subject i at time t. Let Yit be the value of the outcome

of interest for subject i at time t. We recognize that pollution measures taken at

close intervals in time should be correlated and our estimate of the missing values

should take this into consideration. Allow each subject to have covariate expo-
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sure measurements for the current day and 6 previous days yielding a total of 7

measurements for each subject. In total one subject may have between 1 and 6

missing values (per visit if needed). For instance, if there is one missing value for

the moving average, then we can use the 6 day moving average from the remaining

observed values to estimate the 7 day moving average value of air pollution. In the

data, it can be readily seen that each subject was followed for 14(2 weeks) days but

the full 7-day moving average can only be calculated for the last 8 measurements

of each ID as in the example in section 2.2. To conduct the analysis without operat-

ing from a reduced data set that deletes unobserved moving averages, a regression

calibration can be performed. Each 7-day moving average will be estimated condi-

tional on incomplete but observed exposure information. Therefore each µX(7)|X(m)

is estimated conditional on the m-day moving average where m < 7. Table 2.5

can give a theoretical illustration of the values being estimated. We assume the

following mean model and error:

ID X
(7)
i,0 . . . X

(7)
i,6 X

(7)
i,7 X

(7)
i,8 . . . X

(7)
i,14

1 µX(7)|X(1) . . . µX(7)|X(6) x
(7)
1,7 x

(7)
1,8 . . . x

(7)
1,14

2 µX(7)|X(1) . . . µX(7)|X(6) x
(7)
2,7 x

(7)
2,8 . . . x

(7)
2,14

3 µX(7)|X(1) . . . µX(7)|X(6) x
(7)
3,7 x

(7)
3,8 . . . x

(7)
3,14

4 µX(7)|X(1) . . . µX(7)|X(6) x
(7)
4,7 x

(7)
4,8 . . . x

(7)
4,14

...
...

...
...

...
...

...
...

30 µX(7)|X(1) . . . µX(7)|X(6) x
(7)
30,7 x

(7)
30,8 . . . x

(7)
30,14

Table 2.5: MOVING AVERAGE IMPUTATION IDEA - This table represents the observed expo-
sure data for a 7-day moving average by id.

2.4.1 Simple Exposure Model Including of Covariates

The simple exposure model is as follows:
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Xi = βWi + εi (2.1)

Where Xi represents a vector of exposure observations for subject i. Each of its

components are of the form Xit for subject i at time t. Wi is a vector of possible

confounders that influence the level exposure and it components are of the form

Wit for the ith subject at time t. For 1 ≤ t ≤ T and 1 ≤ i ≤ N . εi ∼ N(0,Σ) so

that Xi ∼ N(βWi,Σ) . Also assume that the errors follow the AR(1) correlation

structure where ρ(n), and Λ(n) are the correlation matrix and variance-covariance

matrix for the n-day moving average respectively.

ρ(7) =



1 ρ ρ2 . . . ρ6

ρ 1 ρ . . . ρ5

ρ2 ρ 1 . . . ρ4

...
...

... . . . ...

ρ6 ρ5 ρ4 . . . 1


,

In general, we have the correlation and covariance relation formula that can be

rearranged to compute all of the components of the variance covariance matrix for

the errors.

ρ =
cov(x, y)

σxσy
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ε(7) ∼MVN


0,Σ(7) =



σ2 σ2ρ σ2ρ2 . . . σ2ρ6

σ2ρ σ2 σ2ρ . . . σ2ρ5

σ2ρ2 σ2ρ σ2 . . . σ2ρ4

...
...

... . . . ...

σ2ρ6 σ2ρ5 σ2ρ4 . . . σ2




,

2.4.2 Distribution of the Moving Average

E [Xit|W1it, . . . ,Wnit] = β0 + β1W1it + · · ·+ βnWnit

Let S(n)
it represent the sum of the pollutant measures for the ith subject at time t.

Therefore we have M (n)
it represents the n-day moving average for the ith subject at

time t. The respective distributions are as follows:

S
(n)
it = Xi1 +Xi2 +Xi3 · · ·+Xin

M
(n)
it =

S
(n)
it

n
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E
[
M

(n)
i |Wi

]
= E

[
1

n
S

(n)
i |Wi

]
= E

[
1

n

n∑
t=1

Xi|Wi

]

=
1

n

n∑
t=1

E [Xi|Wi]

=
1

n

n∑
t=1

[βWi]

= β
1

n

n∑
t=1

Wi

= βW
(n)
i

We assume the following AR(1) correlation structure as before. Below is the distri-

bution of the moving averages.

ε(7) ∼MVN


0,Σ(7) =



σ2 σ2ρ σ2ρ2 . . . σ2ρ6

σ2ρ σ2 σ2ρ . . . σ2ρ5

σ2ρ2 σ2ρ σ2 . . . σ2ρ4

...
...

... . . . ...

σ2ρ6 σ2ρ5 σ2ρ4 . . . σ2




,
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M
(7)
it =

1

7

t∑
l=t−6

Xil ∼MVN(βW
(7)
it ,L7Σ

(7)LT
7 )

M
(6)
it =

1

6

t∑
l=t−5

Xil ∼MVN(βW
(6)
it ,L6Σ

(6)LT
6 )

...

M
(1)
it =

t∑
l=t−0

Xit ∼MVN(βW
(1)
it ,L1Σ

(1)LT
1 )

Where L and LT are vectors of scalar values reflecting the moving average. Since

we know that M (7) and M (6) are both normally distributed, then the conditional

distribution is also normal. To formalize this notion we want the conditional dis-

tribution of M (7)|M (6). Given the following general formulas for the conditional

normal distribution:

µi|j = µi + ΛijΛ
−1
jj (Xj − µj) (2.2)

Λi|j = Λjj − ΛT
ijΛ
−1
ii Λij (2.3)

In particular we have the following equations related to our example in matrix

notation:

µM(7)|M(6) = µ[7] + Λ[7,6]Λ
−1
[6] (M

(6) − µ[6]

ΛM(7)|M(6) = Λ[6] − ΛT
[7,6]Λ

−1
[7] Λ[7,6]
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As scalars:

µM(7)|M(6) = µ[7] +
σ[7,6]

σ2
[6]

(M (6) − µ[6])

ΛM(7)|M(6) = σ2
[6] −

σ2
[7,6]

σ2
[7]

= σ2
[6](1− ρ2)

Now, we must solve for each of the missing values µ[7], σ[7,6], σ2
[6], and σ2

[7] using the

following equations.

µ[n] = E(M (n)) = E(
1

n

n∑
t=1

Xit) = βWi

σ2
[n] = V (M (n)) = V (

1

n

n∑
t=1

Xit) =
1

n2
V (

n∑
t=1

Xit) =
1

n2

[
n∑
t=1

V (Xit) +
∑∑

t6=t′
Cov(Xit, Xit′)

]

=
σ2

n2

[
n∑
j=1

(1) + 2
n−1∑
k=1

k∑
j=1

ρj

]

σ[n,m] = Cov(M (n),M (m)) =
σ2

nm

[
m∑
j=1

(1) + 2
m−1∑
k=1

k∑
j=1

ρj +
n−m∑
k=1

m+k−1∑
j=k

ρj

]

For the covariance between the 7-day and 6-day moving average, we have the

following derivation:
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Cov(M (7),M (6)) = Cov(
1

7

7∑
t=1

Xit,
1

6

7∑
t′=2

Xit′)

=
1

42

[
7∑
t=1

7∑
t′=2

Cov(Xit, Xit′)

]

=
1

42

[
7∑
t=2

7∑
t′=2

Cov(Xit, Xit′) +
7∑

t′=2

Cov(Xi1, Xit′)

]

=
1

42

[
V (

7∑
t=2

Xit) +
6∑
j=1

σ2ρj

]

=
1

42

[
7∑
t=2

V (Xit) + 2 ∗ [
7∑
t=2

7∑
t′=2

Cov(Xit, Xit′)] +
6∑
j=1

σ2ρj

]

=
1

42

[
6∑
j=1

σ2 + 2[
5∑
j=1

σ2ρj +
4∑
j=1

σ2ρj + · · ·+
1∑
j=1

σ2ρj] +
6∑
j=1

σ2ρj

]

=
1

42

[
6∑
j=1

σ2 + 2σ2

5∑
k=1

k∑
j=1

ρj +
7−6∑
k=1

6+1−1∑
j=1

σ2ρj

]

=
σ2

42

[
11ρ+ 9ρ2 + 7ρ3 + 5ρ4 + 3ρ5 + 1ρ6 + 6

]

The rest of the needed values can be derived in the same fashion and their values

are given below:
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µ[7] = βWi

µ[6] = βWi

µ[5] = βWi

µ[4] = βWi

µ[3] = βWi

µ[2] = βWi

µ[1] = βWi

σ[7,6] =
σ2

42
(11ρ+ 9ρ2 + 7ρ3 + 5ρ4 + 3ρ5 + 1ρ6 + 6)

σ[7,5] =
σ2

35
(9ρ+ 8ρ2 + 6ρ3 + 4ρ4 + 2ρ5 + 1ρ6 + 5)

σ[7,4] =
σ2

28
(7ρ+ 6ρ2 + 5ρ3 + 3ρ4 + 2ρ5 + 1ρ6 + 4)

σ[7,3] =
σ2

21
(5ρ+ 4ρ2 + 3ρ3 + 3ρ4 + 2ρ5 + 1ρ6 + 3)

σ[7,2] =
σ2

14
(3ρ+ 2ρ2 + 2ρ3 + 2ρ4 + 2ρ5 + 1ρ6 + 2)

σ[7,1] =
σ2

7
(1ρ+ 1ρ2 + 1ρ3 + 1ρ4 + 1ρ5 + 1ρ6 + 1)

σ2
[7] =

σ2

49
(12ρ+ 10ρ2 + 8ρ3 + 6ρ4 + 4ρ5 + 2ρ6 + 7)

σ2
[6] =

σ2

36
(10ρ+ 8ρ2 + 6ρ3 + 4ρ4 + 2ρ5 + 6)

σ2
[5] =

σ2

25
(8ρ+ 6ρ2 + 4ρ3 + 2ρ4 + 5)

σ2
[4] =

σ2

16
(6ρ+ 4ρ2 + 2ρ3 + 4)

σ2
[3] =

σ2

9
(4ρ+ 2ρ2 + 3)

σ2
[2] =

σ2

4
(2ρ+ 2)

σ2
[1] = σ2
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Conditional Distribution of the Moving Average

So finally, we know that the conditional distributions for the 7-day moving av-

erage are given below where µM(n)|M(m) = βW (n) +
σ[n,m]

σ2
[m]

(M (m) − βW (n)) and

ΛM(n)|M(m) = σ2
[m](1− ρ2) for n > m.

M (7)|M (6) ∼ MVN(βW (7) +
σ[7,6]

σ2
[6]

(M (6) − βW (7)), σ2
[6](1− ρ2))

M (7)|M (5) ∼ MVN(βW (6) +
σ[7,5]

σ2
[5]

(M (5) − βW (6)), σ2
[5](1− ρ2))

...

M (7)|M (1) ∼ MVN(βW (1) +
σ[7,1]

σ2
[1]

(M (1) − βW (1)), σ2
[1](1− ρ2))

Given the original mean model, the AR(1) correlation structure assumption, and

the resulting conditional distribution we can estimate the missing moving aver-

age values from table 2.5 in section 2.3. By running a regression model, estimates

for β̂, ρ̂, and σ̂2 would be obtained and those resulting values can be used to im-

pute/recreate missing estimates given the observed data. Consequently, a regres-

sion analysis can be conducted on the resulting data.

2.4.3 Nonparametric Moving Average Imputation

Initially, we assumed an exposure model, correlation of the errors, and the corre-

sponding exposure distribution. The resulting mean functions were linear in form

where each 7-day moving average of exposure was a linear function of the previ-
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ous days values. For example take

µM(n)|M(m) = βW (n) +
σ[n,m]

σ2
[m]

(M
(m)
im − βW (n))

= βW (n) +
σ[n,m]

σ2
[m]

∗M (m)
im −

σ[n,m]

σ2
[m]

∗ βW (n)

= (βW (n) −
σ[n,m]

σ2
[m]

∗ βW (n)

︸ ︷︷ ︸
α∗0

+
σ[n,m]

σ2
[m]︸ ︷︷ ︸
α∗1

∗M (m)
im

= α∗0 + α∗1 ∗M
(m)
im .

For Imputation method 2, we choose to assume an unspecified linear relationship

between the 7-day moving averages and the previous days. This relationship is

defined by the estimates α0 and α1.

M
(7,r)
it = α06 + α16M

(6,r)
it

M
(7,r)
it = α05 + α15M

(5,r)
it

M
(7,r)
it = α04 + α14M

(4,r)
it

M
(7,r)
it = α03 + α13M

(3,r)
it

M
(7,r)
it = α02 + α12M

(2,r)
it

M
(7,r)
it = α01 + α11M

(1,r)
it

Where M (nr)
it is the moving average from the reduced data set. Once, this simple

regression is conducted, the estimates of α̂0 and α̂1 can be extracted and used to

them to generate values for the missing moving averages.
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µM(7)|M(6) = M
(7)
i6 = α̂06 + α̂16M

(6)
i6

µM(7)|M(5) = M
(7)
i5 = α̂05 + α̂15M

(5)
i5

µM(7)|M(4) = M
(7)
i4 = α̂04 + α̂14M

(4)
i4

µM(7)|M(3) = M
(7)
i3 = α̂03 + α̂13M

(3)
i3

µM(7)|M(2) = M
(7)
i2 = α̂02 + α̂12M

(2)
i2

µM(7)|M(1) = M
(7)
i1 = α̂01 + α̂11M

(1)
i1

The values obtained could replace any absent moving averages that had been

deleted in the reduced data. The results are explained in the next section through

the use of a comprehensive table.

2.4.4 Data Reduction and Daily Imputation

Many investigators remove those subjects with missing exposure/covariate obser-

vations. This will represent the ”reduced method”. Imputation method #3 repre-

sents the conventional means of imputing data in panel studies. Rather than using

the the moving average to reproduce the missing moving averages, this calibration

strategy seeks to impute each of the individual missing observations and calculate

the resulting moving averages to conduct the analyses. This is accomplished by

regressing the original outcome data on the original exposure data and using the

predicted values to impute each missing value. Once the missing values are com-

puted and the unobserved covariates are then replaced by their predicted values

from the calibration model, merged with the existing data set, and regression anal-
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ysis can be undertaken. Finally, the standard errors are adjusted to account for the

estimation of the unknown covariates. The typical approach is to calculate stan-

dard errors using bootstrap or sandwich methods, but asymptotic standard errors

are available as well.

X̂i6 = β̂0 + β̂1W1i6

X̂i5 = β̂0 + β̂1W1i5

X̂i4 = β̂0 + β̂1W1i4

X̂i3 = β̂0 + β̂1W1i3

X̂i2 = β̂0 + β̂1W1i2

X̂i1 = β̂0 + β̂1W1i1

Then we substitute X̂i1, . . . , X̂i6 in for the missing daily values and subsequently

construct the moving averages.

2.4.5 Regression Calibration

Each one of the afore mentioned methods represents a form of regression calibra-

tion. In a conventional analyses, investigators would like to detail the relationship

between a particular response Y and its predictors. For simplicity we will dis-

tinguish between two different types of predictors X and Z. Z represents those

predictors that can be measured without error and X represents those that cannot

be observed for all subjects. We may be able to observe a variable W which is

related to X. Since the parameters of the model relating Y to (Z,X) cannot be fit-
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ted accurately due to the unobservable X, hence the surrogate relationship of Y on

(Z,W) must be modeled. The structure of the error model relating X to W is the

basis of regression calibration. Once the error model has been developed, the dis-

tribution and conditional distributions of X can be derived. Lastly, we replace the

unobserved exposures X by its mean function m(Z,W,β) and run the appropriate

standard regression analysis(Carroll, 1995). The following simulation will help to

illustrate these ideas.

2.5 SIMULATION STUDY

We conducted a simulation study to examine the effectiveness of the imputation

method in estimating missing values in time series data. Upon estimation of the

missing values, the next goal was to produce a parameter estimate for the effect of

exposure on outcome. The simulations were to be conducted in three phases; 1a)

We created three data sets where the first will be a reduced data set where rows

of data were deleted due to the missing observations. 1b) The second data set

consisted of a full data set where the previously missing values were imputed. 1c)

The last data set was simulating true data where no missing values existed or were

imputed. Our next step was to run mixed effects models on each of these data

sets and compare the effect estimates with the true given values. The intended

outcomes, the moving averages, and the initial coefficients needed to be simulated

in order to test consistency. We began by simulating exposure data with 30 unique

subjects and 20 lagged (24 hour) observations for each.
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2.5.1 Simulating The Moving Average Data

We assumed 30 unique ”ID”(subject) each had 20 measurements (T=20) taken at

consecutive days. The assumed exposure model:

Xit = β0 + β1W1it + εit,

where Xit is the exposure for subject i at time t. W1it represents simulated, ambient

pollutant exposure for weekday and weekends for subject i at time t. For example,

Wit represent ambient pollution on the weekday(WD) and weekend(WE).

W1it ∼

{
N(µ1,σw2

1
) if WD

N(µ2,σw2
1
) if WE

,

µ1 = 1, µ2 = 0, and σw2
1
,σw2

2
= 1. The errors were normally distributed

εit ∼ N(µx,Σx). There were 3 error correlation structures assumed for simula-

tions: AR(1), AR(2), and ARMA(1, 1). To simulate the daily exposure data we

used the following distribution: X ∼ N(µx,Σx). We assumed,

Σx =



σ2 σ2ρ σ2ρ2 . . . σ2ρ20

σ2ρ σ2 σ2ρ . . . σ2ρ19

σ2ρ2 σ2ρ σ2 . . . σ2ρ18

...
...

... . . . ...

σ2ρ20 σ2ρ19 σ2ρ18 . . . σ2


,
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where ρ = 0.4, 0.8, σ2 = 0.3, 0.9, 1.5, and µx
(n) = β0 + β1W

(n)
1it . The initial value of

β0 was 0 and β1 was 1. This structure was used to reflect the fact that exposure

measurements taken at closer intervals are more highly correlated. These initial

values were taken from averages in the real data.

2.5.2 Simulating Outcome

The linear model of interest could be written in the following way:

Yit = γ0 + γ1M
(7)
it + bi + δit

where M (7)
it is the moving average for the ith subject at time t.

• bi ∼ N(0, σ2
b ) are the random coefficients due to ith subject.

• δit ∼ N(0, σ2
δ ) is the error term for the ith subject and time t.

• Initial values were chosen for γ0 = 0 and γ1 = 1

• Yit was simulated from the following distribution:

Yit|M (7)
it , γ0, γ1 ∼ N(γ0 + γ1M

(7)
it , σ

2
y1

)

where σ2
yit

= σ2
bi

+ σ2
δit

.

The simulations were to be conducted in three phases where 5 data sets of ex-

posure were created. First, a reduced data set where rows of data were deleted

due to the missing observations. In this case, there would be 30 unique subjects
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at 7 time points (210 observations) remaining. This clearly decreases the amount

of exposure data available for modeling. Second, 3 imputed data sets where the

previously missing moving averages/values were imputed where the parametric

moving average imputation (PMA), the nonparametric moving average imputa-

tion (NPMA), and the daily value imputation (DIMA) are conducted. This will

amount to 30 unique subjects at 14 time points (420 observations) consisting of 180

imputed values for the 7-day moving average and 120 imputed values for the 4-

day moving average. Lastly, we simulated true data ”gold standard/truth” where

no missing values existed or were imputed. This will be represented by a fully

simulated data set where there are no missing values and the moving averages

can be calculated for each observation. This corresponds to 30 unique subjects at

14 time points (420 observations). In total, this amounts to each subject having 14

days of available exposure information to be used in the modeling process.

Our next step was to run mixed effects models on each of these data sets and com-

pare the effect estimates with the true given values. The mixed effects models

conducted:

Yit = γ0 + γ1M
(7,reduced)
it + bi + δit

Yit = γ0 + γ1M
(7,PMA)
it + bi + δit

Yit = γ0 + γ1M
(7,NPMA)
it + bi + δit

Yit = γ0 + γ1M
(7,DIMA)
it + bi + δit

Yit = γ0 + γ1M
(7,truth)
it + bi + δit

These models were simulated for 200 iterations and no covariates were included.
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The results are explained in section 4.5 through the use of a comprehensive table.

2.5.3 Relaxing the AR(1) Assumption

The conditional distributions are accurate under the given assumptions, but when

the AR(1) covariance structure is relaxed new derivations must be developed. The

AR(1) or ARIMA(1,0,0) covariance structure is a simplest case of ARIMA models.

ARIMA models are, in theory, they are the most general class of models for fore-

casting time series. It is of interest to determine whether the three afore mentioned

methods of imputation are robust when dealing with new correlation structures

and hence model mis-specification. In order to investigate this issue, alternative

correlation structures for simulating exposure data were constructed. The correla-

tion structures of interest were AR(2) and ARMA(1,1). Data was simulated from

these two distributions respectively and subsequently imputation methods were

performed and compared.

Simulating ARMA(1,1) Exposure Data

Suppose that the errors followed a different correlation pattern had the following

ARIMA(1,0,1) or ARMA(1,1) covariance structure. In order to simulate the expo-

sure data we first need to derive the variance covariance matrix. This was achieved

using the general equations for producing ARMA(p, q) errors in closed form by Jan

van der Leeuw where p are the autoregressive terms and q are the moving average

terms. Assume p = 1 and q = 1 for ARMA(1,1).
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V = [NM ][P̄ T P̄ − Q̄Q̄T ]−1[NM ]T

where P̄ , Q̄,M,N are well-defined toeplitz matrices of the following form:

P̄[21×21] =

 P̄1 0

P̄2 P̄3

 =



1 0 0 . . . 0

ρ1 1 0 . . . 0

0 ρ1 1 . . . 0

0 0 ρ1 . . . 0

0 0 0 . . . 0

...
...

... . . . ...

0 0 0 . . . 1



,

Q̄[21×1] =

 Q̄1

0

 =



ρ1

0

0

0

0

...

0



,
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M̄[20×20] =

 M̄1 0

M̄2 M̄3

 =



1 0 0 . . . 0

θ1 1 0 . . . 0

0 θ1 1 . . . 0

0 0 θ1 . . . 0

0 0 0 . . . 0

...
...

... . . . ...

0 0 0 . . . 1



,

N̄[20×1] =

 N̄1

0

 =



θ1

0

0

0

0

...

0



,

We define P to be a (square) T × T lower band matrix where T (T=20) represents

the total number of days being simulated. Q is T × p and is partitioned into an

upper p× p part and a lower (T − p)× p part, which consists of only zeros. M and

N have the same structure as P and Q with ri replaced by θ and p replaced by q. P̄

is the same as P but the dimensions are (T + p)× (T + p) while Q̄ has dimensions

(T +p)×p. Performing these matrix calculations result in the correlation matrix for

ARMA(p = 1, q = 1) errors [van der Leeuw,1994]. Initial values for ρ1 and θ1 can be

chosen according to previous analyses or subject specific estimates. The final form

of the ARMA(1,1) correlation structure is ρX below.
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ρX =



1 θ θρ1 . . . θρ18

θ 1 θ . . . θρ17

θρ1 θ 1 . . . θρ16

...
...

... . . . ...

θρ18 θρ17 θρ16 . . . 1


,

The corresponding covariance matrix will have the following form:

ε(X) ∼MVN


0,Λ(X) =



σ2 σ2θ σ2θρ1 . . . σ2θρ18

σ2θ σ2 σ2θ . . . σ2θρ17

σ2θρ1 σ2θ σ2 . . . σ2θρ16

...
...

... . . . ...

σ2θρ18 σ2θρ17 σ2θρ16 . . . σ2




,

To simulate the daily exposure data we used the following distribution: X ∼

N(µx,ΛxAR(2)
). Now that the exposure data has been simulated the outcome data

can be simulated in the same fashion as ”Simulating Outcome”.

Simulating AR(2) Exposure Data

Assume p = 2 for the autoregressive coefficient. For the ARIMA(p,0,0) or AR(p)

cases the covariance structure equations reduce to the following formula.

V = [P TP −QQT ]−1
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where P,Q are well-defined toeplitz matrices as before but are of different dimen-

sions of the following form:

P[20×20] =

 P1 0

P2 P3

 =



1 0 0 . . . 0

ρ1 1 0 . . . 0

ρ2 ρ1 1 . . . 0

0 ρ2 ρ1 . . . 0

0 0 ρ2 . . . 0

...
...

... . . . ...

0 0 0 . . . 1



,

Q[20×2] =

 Q1

0

 =



ρ2 ρ1

0 ρ2

0 0

0 0

0 0

...
...

0 0



,

The variance covariance matrix for AR(2) does not have a discernable pattern like

the others therefore the elements of the correlation structure will be left unspeci-
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fied.

ε(7) ∼MVN


0,Λ(7) =



a11 a12 a13 . . . a17

a21 a22 a23 . . . a27

a31 a32 a33 . . . a37

...
...

... . . . ...

a71 a72 a73 . . . a77




,

Cov(M (n),M (m)) =
1

nm

[
7∑

t=n−m

V (Xit) + 2[
7∑

t=n−m

7∑
t′=n−m

Cov(Xit, Xit′)] +
7∑

t′=n−m

Cov(Xi1, Xit′)

]

where n > m. So for the covariance between M (7) and M (6) we would have:

Cov(M (7),M (6)) =
1

42

[
7∑
t=2

V (Xit) + 2[
7∑
t=2

7∑
t′=2

Cov(Xit, Xit′)] +
7∑

t′=2

Cov(Xi1, Xit′)

]

=
1

42

[
7∑
j=1

ajj + 2[
7∑ 7∑

j>k

ajk] +
7∑
j=2

aj1

]

2.5.4 Simulation Results

We conducted a simulation study to examine the effectiveness of three regression

calibration methods of estimation for missing data. We would also like to perform

a direct comparison of the point estimates between each of the relevant methods

through calculation of the mean squared errors. The initial values for the corre-
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lation coefficients and variances must be simulated under varying assumptions

in order to get a complete picture of the regression calibration effectiveness. We

began with 30 unique subjects with 20 observations taken on 20 consecutive days.

The 20 lagged time-points were created to simulate 3 weeks of exposure data. Table

6 represents the initial values chosen for the simulation study. For each correlation

structure, AR(1), AR(2), and ARMA(1,1), the correlation coefficient, moving aver-

age coefficient, and variance were needed. Each scenario produced 5 data sets and

linear mixed models were run all assuming AR(1) error structures. We adjusted

the resulting standard errors to account for the estimation of γ by using the boot-

strap method. Both 7-day and 4-day moving averages were conducted over the

20 day period. Under the 7-day moving average 6 conditional exposure measure-

ments must estimated per subject while in 4-day moving averages only 3 must be

estimated per subject.

AR(1) Simulation Results

We found that when the model was properly specified meaning that the simulated

data was in accord with linear mixed model, all the point estimates among all data

sets are very close to the true values of γ0 = 0 and γ1 = 1. This shows that there was

little bias found in the well specified cases although there were clear differences in

efficiency. Model efficiency was determined by the mean squared error. Using the

first regression calibration method(PMA) yielded the lowest MSE as can be seen in

Table 2.7. The models that used the reduced had the highest MSE values and hence

the lowest efficiency because the standard errors and standard deviations were the

highest. Using PMA increased efficiency by approximately 25% − 40% over the

reduced method depending on the initial values for σ2. Further, PMA was more
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efficient than the other two calibration methods (NPMA and DIMA) but by smaller

margins. PMA tends to be around 5% − 10% more efficient than the other NPMA

methods when the model is properly specified. For example, in the simulation

scenario for AR(1) whereφ = .8 and σ2 = .9 for the 4-day moving average we have

the following output which can be seen in Table 2.7. All of the γ1 point estimates

are quite close to the simulated starting value of 1. But looking at the MSE of

γ̂1,reduced = 0.019 while for γ̂1,PMA = 0.009. This reflects more than a50% decrease in

the MSE which means the PMA is at an advantage above deleting incomplete data.

When comparing PMA to conventional regression calibration method 3 (DIMA),

there is no reduction in MSE when moving from γ̂1,reduced = 0.009 to γ̂1,DIMA = 0.009

for σ2 = .9 but for σ2 = 1.5 and σ2 = 2.0 there are small gains in efficiency. These

patterns are consistent throughout all of the proposed AR(1) cases.

AR(2) and ARMA(1,1) Simulation Results

We found that when the model was mis-specified, there were new patterns re-

vealed. There were two cases of mis-specification that were investigated. The first

was simulating data with an AR(2) error correlation structure but modeled with

an AR(1). The second was simulating data with an ARMA(1,1) error correlation

structure but modeled with and AR(1). Each of the these cases are different repre-

sentations of the larger class of ARIMA models with small parameter shifts.

PMA and NPMA methods performed with very little bias in most cases while the

conventional methodology used in DIMA experienced high levels of bias. Small

deviations from AR(1) were examined such as AR(2) with φ1 = .8,φ2 = .1 and

ARMA(1,1) withφ1 = .8,θ2 = .2 each of which were done with both 4 and 7

day moving averages. These cases reflect marginal departures from AR(1) error
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structure but elicit large responses in bias of the γ̂1 estimates. Table 7 shows that

the conventional DIMA for AR(2) has the following values for γAR(2): γ̂1,DIMA =

0.946(0.053), 0.943(0.022), 0.924(0.020), 0.927(0.015) for σ2 = .3, .9, 1.5, 2.0 respec-

tively. Each point estimate underestimates the simulated value of 1 by greater

than 5%. This trend is echoed in the ARMA(1,1) case for DIMA. The values for

γARMA(1,1) are as follows: γ̂1,DIMA = 0.9478(0.0495), 0.9359(0.0215), 0.9291(0.0180),

0.9347(0.0161) for σ2 = .3, .9, 1.5, 2.0 respectively which also underestimate the sim-

ulated value of 1 by > 5%. On the other hand, the PMA and NPMA methods show

very low bias in the point estimates as they are all very close to 1. The MSE’s are

also lower for PMA and NPMA methods than for the DIMA method for increas-

ing variability. For example, when σ2 = 2.0 the MSEAR(2)(DIMA) = 0.015 while

MSEAR(2)(PMA) = 0.010. Alternatively for σ2 = .3 theMSEAR(2)(DIMA) = 0.053

while the MSEAR(2)(PMA) = 0.055.

Large deviations from AR(1) were explored as well AR(2) with φ1 = .8,φ2 = .5

and ARMA(1,1), φ1 = .8,θ2 = .5 and findings are similar. These cases reflect larger

departures from AR(1) error structure but elicit smaller responses in bias. Table

8 shows that the conventional DIMA method for AR(2) has the following values

for γAR(2): γ̂1,DIMA = 0.992 (0.046), 0.969(0.013), 0.964(0.014), 0.964(0.011) for σ2 =

.9, 1.5, 2.0 respectively. Each point estimate underestimates the simulated value of

1 by greater than 3% accept when σ2 = 2. This trend is echoed in the ARMA(1,1)

case for the DIMA method. The values for γARMA(1,1) are as follows: γ̂1,DIMA =

0.961 (0.045),0.973(0.0190), 0.964(0.014), 0.972(0.009) for σ2 = .9, 1.5, 2.0 respectively

which also underestimate the simulated value of 1 by > 5%. On the other hand

PMA and NPMA methods show very low bias in the point estimates as they are

all very close to 1.
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2.6 DISCUSSION

These results show that both the parametric and nonparametric imputations us-

ing moving averages yield more robust health effects estimates than the reduced

and daily value imputation methods. This is the trend in all of the simulations

regardless of the correlation structure chosen. Further, the simulations show that

the daily value imputation methods (DIMA) experience higher levels of bias when

the models are mis-specified. This means that in the circumstance where the cor-

relations structures are unknown and are very different than AR(1), the DIMA ap-

proach may have clear issues with accuracy. On the other hand, the moving aver-

age imputation methods (PMA and NPMA) maintain high accuracy and efficiency

in comparison with the gold standard (truth). Our methods were conducted on 7-

day moving averages which required 6 imputed moving averages to be estimated

while the 4-day moving averages required 3 moving average estimates. The same

patterns were maintained irrespective of the length of the imputation. We also at-

tempted the bootstrap method to calculate the standard errors but due to the small

sample sizes in each panel, the values were higher than normal.

The reason for the differences in both bias an efficiency are a result of the PMA and

NPMA approaches consideration of specific correlation structures of the exposure

measurements. The DIMA imputation methods assume a linear relationship be-

tween the exposure measurements at different times and use estimated predicted

values to estimate missing exposure data. On the other hand, the PMA and NPMA

methods use correlations that allow the methods to draw upon pollution informa-

tion from previous days in order to estimate the missing moving averages. With

the inclusion of the assumed error structures for the exposures, the estimates from

the health effects model are closer to the best linear unbiased predictor (BLUP).
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2.7 APPENDIX

γ Estimate(MSE), MA4 Continuous Covariate
AR(1), φ = .8 σ2 = .3 σ2 = .9 σ2 = 1.5 σ2 = 2.0
AR(1), φ = .4 σ2 = .3 σ2 = .9 σ2 = 1.5 σ2 = 2.0

AR(2), φ1 = .4,φ2 = .2 σ2 = .3 σ2 = .9 σ2 = 1.5 σ2 = 2.0
AR(2), φ1 = .8,φ2 = .1 σ2 = .3 σ2 = .9 σ2 = 1.5 σ2 = 2.0
AR(2), φ1 = .8,φ2 = .4 σ2 = .3 σ2 = .9 σ2 = 1.5 σ2 = 2.0
AR(2), φ1 = .8,φ2 = .5 σ2 = .3 σ2 = .9 σ2 = 1.5 σ2 = 2.0

ARMA(1,1), φ1 = .4,θ2 = .2 σ2 = .3 σ2 = .9 σ2 = 1.5 σ2 = 2.0
ARMA(1,1), φ1 = .8,θ2 = .2 σ2 = .3 σ2 = .9 σ2 = 1.5 σ2 = 2.0
ARMA(1,1), φ1 = .8,θ2 = .5 σ2 = .3 σ2 = .9 σ2 = 1.5 σ2 = 2.0

Table 2.6: 30 Unique IDs - This table represents the initial values chosen for the simulation study.
For each correlation structure, AR(1), AR(2), and ARMA(1,1), the correlation coefficient, moving
average coefficient, and variance were needed. Each scenario produced 5 data sets.
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γ1 Estimate(MSE), MA4 Continuous Covariate
σ2 = .3 σ2 = .9 σ2 = 1.5 σ2 = 2.0

AR(1), φ = .8
γ̂1,reduced 0.966 (0.051) 0.986 (0.019) 0.998 (0.017) 0.986 (0.008)
γ̂1,PMA 0.992 (0.023) 0.997 (0.009) 1.009 (0.011) 0.995 (0.004)
γ̂1,NPMA 0.996 (0.025) 0.996 (0.009) 1.008 (0.011) 0.994 (0.004)
γ̂1,DIMA 1.005 ( 0.025) 1.006 (0.009) 1.019 (0.015) 1.006 (0.005)
γ̂1,true 0.988 (0.020) 0.992 (0.008) 1.006 (0.006) 0.996 (0.004)

AR(2), φ1 = .8,φ2 = .1
γ̂1,reduced 0.986 (0.099) 1.026 (0.040) 0.992 (0.029) 1.001 (0.018)
γ̂1,PMA 0.999 (0.055) 1.019 (0.023) 0.993 (0.015) 1.003 (0.010)
γ̂1,NPMA 1.021 (0.058) 1.030 (0.023) 1.001 (0.017) 1.007 ( 0.011)
γ̂1,DIMA 0.946 (0.053) 0.943 (0.022) 0.924 (0.020) 0.927 (0.015)
γ̂1,true 1.005 (0.049) 1.023 (0.020) 0.994 (0.012 ) 1.0030 (0.089)

ARMA(1,1), φ1 = .8,θ2 = .2
γ̂1,reduced 0.972 (0.099) 0.997 (0.036) 1.009 (0.025) 1.020 (0.022)
γ̂1,PMA 0.993 (0.049) 1.001 (0.020) 1.003 (0.014) 1.010 (0.014)
γ̂1,NPMA 1.013 (0.056) 1.007 (0.021) 1.008 (0.015) 1.015 (0.014)
γ̂1,DIMA 0.948 (0.050) 0.936 (0.022) 0.929 (0.018) 0.935 (0.016)
γ̂1,true 0.998 (0.046) 1.000 (0.017) 1.006 (0.012) 1.011 (0.012)

Table 2.7: Small Deviations from AR(1) for 4-day Moving Average - This table represents the pa-
rameter estimates for a 4-day moving average from 5 separate linear mixed model using simulated
data from the reduced, imputed, and true data sets. Linear mixed mean models were conducted
for 200 iterations. The subsequent estimates were aggregated into means with accompanying MSE.
Each model included one continuous covariate for weekend. All of the simulation standard errors
are < 0.019.

γ1 Estimate(MSE), MA4 Continuous Covariate
σ2 = .3 σ2 = .9 σ2 = 1.5 σ2 = 2.0

AR(2), φ1 = .8,φ2 = .5
γ̂1,reduced 1.004 (0.072) 1.021 (0.021) 1.001 (0.022) 0.992 (0.018)
γ̂1,PMA 1.002 (0.047) 1.006 (0.013) 0.989 (0.014) 0.999 (0.010)
γ̂1,NPMA 1.032 (0.051) 1.024 (0.014) 0.997 ( 0.013) 1.016 (0.011)
γ̂1,DIMA 0.992 (0.046) 0.969 (0.013) 0.964 (0.014) 0.964 (0.011)
γ̂1,true 1.007 (0.040) 1.012 (0.017) 0.991 (0.011) 1.005 (0.009)

ARMA(1,1), φ1 = .8,θ2 = .5
γ̂1,reduced 0.939 (0.084) 1.001 (0.034) 1.001 (0.022) 0.998 (0.019)
γ̂1,PMA 0.980 (0.046) 1.003 (0.019) 0.989 (0.014) 0.997 (0.009)
γ̂1,NPMA 0.992 (0.050) 1.007 (0.020) 0.997 (0.013) 0.999 (0.009)
γ̂1,DIMA 0.961 (0.045) 0.973 (0.0190) 0.964 (0.014) 0.972 (0.009)
γ̂1,true 0.980 (0.042) 1.006 ( 0.016) 0.991 (0.011) 0.991 (0.008)

Table 2.8: Large Deviations From AR(1) for 4-day Moving Average - This table represents the pa-
rameter estimates for a 4-day moving average from 5 separate linear mixed model using simulated
data from the reduced, imputed, and true data sets. Linear mixed mean models were conducted
for 200 iterations. The subsequent estimates were aggregated into means with accompanying MSE.
Each model included one continuous covariate for weekend. All of the simulation standard errors
are < 0.019.
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γ1 Estimate(MSE), MA7 Continuous Covariate
σ2 = .3 σ2 = .9 σ2 = 1.5 σ2 = 2.0

AR(1), φ = .8
γ̂1,reduced 1.013 (0.082) 0.989 (0.030) 1.008 (0.011) 0.988 (0.013)
γ̂1,PMA 1.015 (0.042) 0.997 (0.017) 1.020 (0.004) 1.016 (0.009)
γ̂1,NPMA 0.986 (0.046) 0.987 (0.019) 1.011 (0.004) 1.006 (0.009)
γ̂1,DIMA 1.016 (0.052) 0.989 (0.023) 1.004 (0.005) 1.007 ( 0.013)
γ̂1,true 1.015 (0.030) 0.988 (0.010) 1.004 (0.004) 1.001 (0.005)

AR(2), φ1 = .8,φ2 = .1
γ̂1,reduced 1.015 (0.111) 1.026 (0.040) 1.015 (0.071) 0.998 (0.049)
γ̂1,PMA 1.025 (0.070) 1.019 (0.023) 1.010 (0.041) 1.003 (0.033)
γ̂1,NPMA 1.048 (0.084) 1.030 (0.023) 1.0289(0.0450) 1.0151(0.0336)
γ̂1,DIMA 0.964 (0.064) 0.943 (0.022) 0.942 (0.039) 0.935 (0.035)
γ̂1,true 1.021 (0.057) 1.023 (0.020) 0.996 (0.030) 0.997 (0.022)

ARMA(1,1), φ1 = .8,θ2 = .2
γ̂1,reduced 0.948 (0.260) 0.958 (0.095) 1.015 (0.051) 1.026 (0.035)
γ̂1,PMA 0.978 (0.134) 0.989 (0.063) 1.024 (0.040) 1.037 (0.026)
γ̂1,NPMA 0.995 (0.163) 0.996 (0.063) 1.028 (0.041) 1.037 (0.026)
γ̂1,DIMA 0.946 (0.124) 0.945 (0.061) 0.973 (0.038) 0.984 (0.023)
γ̂1,true 0.971 (0.109) 0.984 (0.046) 1.007 (0.023) 1.008 (0.018)

Table 2.9: Small Deviations From AR(1) for 7-day Moving Average - This table represents the pa-
rameter estimates for a 7-day moving average from 5 separate linear mixed model using simulated
data from the reduced, imputed, and true data sets. Linear mixed mean models were conducted
for 200 iterations. The subsequent estimates were aggregated into means with accompanying MSE.
Each model included one continuous covariate for weekend. All of the simulation standard errors
are < 0.036.

γ1 Estimate(MSE), MA7 Continuous Covariate
σ2 = .3 σ2 = .9 σ2 = 1.5 σ2 = 2.0

AR(2), φ1 = .8,φ2 = .5
γ̂1,reduced 1.027 (0.272) 0.985 (0.121) 1.017 (0.076) 0.994 (0.051)
γ̂1,PMA 1.037 (0.168) 0.950 (0.089) 1.001 (0.047) 0.977 (0.031)
γ̂1,NPMA 1.089 (0.232) 1.005 (0.097) 1.051 (0.059) 1.019 (0.034)
γ̂1,DIMA 0.996 (0.156) 0.903 (0.089) 0.949 (0.045) 0.924 (0.034)
γ̂1,true 1.058 (0.151) 0.968 (0.059) 1.022 (0.040) 0.995 (0.022)

ARMA(1,1), φ1 = .8,θ2 = .5
γ̂1,reduced 1.036 (0.214) 0.983 (0.074) 1.006 (0.050) 0.991 (0.037)
γ̂1,PMA 1.051 (0.126) 0.998 (0.044) 1.010 (0.035) 0.999 (0.025)
γ̂1,NPMA 1.051 (0.134) 0.999(0.047) 1.011(0.033) 0.999(0.026)
γ̂1,DIMA 1.050 (0.119) 0.976(0.043) 0.986(0.034) 0.974(0.024)
γ̂1,true 1.018 (0.099) 1.001(0.033) 0.996(0.025) 0.988(0.015)

Table 2.10: Large Deviations From AR(1) for 7-day Moving Average - This table represents the pa-
rameter estimates for a 7-day moving average from 5 separate linear mixed model using simulated
data from the reduced, imputed, and true data sets. Linear mixed mean models were conducted
for 200 iterations. The subsequent estimates were aggregated into means with accompanying MSE.
Each model included one continuous covariate for weekend. All of the simulation standard errors
are < 0.036.
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3.1 ABSTRACT

One of the core questions in environmental health and pollution research is to

identify the health effects associated with specific pollution sources and their con-

stituents. The requirements of such studies include determining air pollution emis-

sions, ambient concentrations by pollution type and particle composition, and the

associated health impacts. Since most pollution studies are unable to directly ob-

serve the pollution contributions of specific sources, determining the source spe-

cific health risk can be difficult. Conventional approaches such as, source appor-

tionment, principle components analysis, and two-stage hierarchical regression

have been widely used in the analysis of multipollutant mixtures. Little work has

been done to evaluate the appropriate use of each method and characterizing the

premier approach has not been resolved. The purpose of this article is to develop

a simulation study that compares the source apportionment and two-stage hierar-

chical regression methods by detailing the power and type 1 errors of the related

health affects.
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3.2 INTRODUCTION

Exposure to air pollutants has been linked with adverse health outcomes, includ-

ing increased premature mortality and morbidity, respiratory and cardiovascular

disease, and increases in hospital admissions (Dockery et al., 1993; Pope et al., 1999;

Brooks et al., 2004; Zanobetti et al., 2004). Recent studies have shown that these

outcomes differ according to specific pollutant mixtures, sources of pollution, and

particle composition. Given these concerns, recent studies have attempted to ex-

amine the risks associated with pollutant mixtures as a whole as opposed to single

pollutants. Analyses from Brook et al. 2009 shows that health effects can vary

by air pollution mixtures. Alternatively, single pollutant approaches do not ade-

quately estimate cumulative or joint effects of multiple pollutants. In addition to

exploration of pollutant mixtures, it is of interest to understand the relative toxicity

of individual pollutants to identify the toxic sources. These are important scientific

goals, but the methods used to accomplish these aims have not been carefully vet-

ted. Conventional strategies for analyzing such data include: 1) fitting a full model

that contains a collection of individual pollutant concentrations; 2) using stepwise

model selection; and 3) conducting a number of separate models each containing a

single exposure. Each of these approaches do not provide satisfactory solutions to

the multiple, correlated exposure problem because of multiple testing issues and

the fact that they do not address pollution mixtures (Witte et al., 1996; Momoli et

al., 2009).

Two methods have primarily been used in the estimation of effects from multi-

ple correlation exposures. The first approach is source apportionment. Most PM

health studies do not directly observe the contributions of the specific pollution

sources. Given the knowledge of the chemical characteristics of known sources,
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investigators infer pollution source contributions via a source apportionment or

multivariate receptor analysis (Nikolov et al., 2006). These approaches typically

begin by sampling pollution composition and inferring the likely pollution sources

by matching common chemical and physical characteristics between source and

air pollution samples. These methods have been shown to effectively quantify

the relative contribution of the different sources to ambient air pollution. In ag-

gregate, source apportionment begins by ambient sampling of the concentrations

of individual PM constituents. Second, investigators must conduct source profil-

ing where each of the appropriate chemical constituents (receptors/markers) are

grouped according to emission source. Third, based on the source profiling one

can construct estimates of the contributions to ambient pollution levels from each

identified source. This approach is advantageous if the pollutants responsible for

the health effects are emitted from only one source. If the health effect is associ-

ated with a single element, grouping elements with varying toxicities into a single

source can attenuate the health effect (Suh et al., 2011).

The second approach is the use of a hierarchical regression model. Research has

shown that hierarchical models outperform conventional regression approaches

such as multiple linear regression with multiple exposures, when analyzing epi-

demiologic data on multiple exposures (Witte et al., 2000; Thomas et al., 2007). The

models attempt to measure the relationship between the health outcome and expo-

sure when the exposure variables have meaningful structures or groupings (Witte

et al., 1998; Young et al., 2008). For example, rather than estimating independent

effects of each pollution constituent separately, this approach seeks to estimate the

association between a health outcome and groups of elements that might be de-

fined by chemical properties or other characteristics of the individual exposures.

At the first stage, the model contains all of the elements/pollution constituents
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as covariates so there is no need for preliminary variable selection. The approach

then relates the independent effects of individual pollution constituents to charac-

teristics of these individual exposures in a second stage regression. Therefore the

hypotheses that risks differ by pollutant chemical property could be tested (Suh et

al., 2011).

The purpose of this paper is to compare the statistical performance of the two ap-

proaches by conducting a simulation study. Several existing studies have used one

of these approaches to analyze multi-pollutant health effects. (Lall et al., 2011; Ito

et al.; Laden et al, 2000). Alternatively, the hierarchical regression approach has

been used by Suh et al, 2011. None of these studies have sought to compare the

testing performances of these methods in various time series settings. For our anal-

yses, each method will be constructed under varying initial settings established by

previous study estimates (Hopke et al., 2006). For the source apportionment, an

exploratory factor analysis was applied to the exposure data collected at Harvard

School of Public Health to get estimates of the source contributions (Nikolov et al.,

2006). For the hierarchical regression models, the choice of second stage covariates

were also pre-specified. The power calculations and type I errors will be reported

and analyzed. Lastly, each approach will be compared using simulated data to

determine the appropriateness of its use.

The remainder of this paper is as follows: Section 3.3 reviews the pollution study

data and the experimental design. Section 3.4 describes factor analysis for times se-

ries data and then presents the two-stage hierarchical modeling approach. Section

3.5 details the simulation study to examine the statistical properties of the health

effects estimates obtained from the two-stage and factor analysis approaches along

with the corresponding results. Section 3.6 discusses the findings and the potential
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implications of the research.

3.3 DATA AND STUDY DESIGN

Investigators often use time series methods and data to describe the relationship

between pollutants and health outcomes. In this study design the day-to-day vari-

ations in elemental concentrations are employed to identify the sources of pollu-

tion and are correlated with daily mortality or hospital admission counts. Time

series methods also allow for time varying confounders to be included in the anal-

yses through adjustments for temperature, humidity, year, season, and days of the

week. The daily sampling schedule provides greater power and allows the inves-

tigation of distributed lag effects that may not be possible in other analyses (Lall

et al., 2011). Some investigators have also been able to include pollution source

(source related PM2.5) information through factor analyses in their times series

models (Lall et al., 2011).

The data that motivates the proposed research are from environmental health time

series studies where PM2.5 composition data are collected on each day. The pri-

mary exposure of interest is daily source-related fine particulate matter or aerody-

namic diameter ≤ 2.5 µm (PM2.5) and its relation to mortality or hospital admis-

sions.
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3.4 MODEL AND NOTATION

3.4.1 Factor Analysis Modeling Framework

We consider a full-likelihood approach that estimates the source contributions

from the receptor model and subsequently substitutes the estimates into the health

effects model taking the form of a generalized linear regression model. The factor

model is as follows:

Receptor Model:

Xt = ΛSt + εXt (3.1)

g(µt) = α0 +αTSt (3.2)

Notationally, Xt is the vector of [p × 1] elemental concentrations for a given time

t(day). Λ is the [p× k] matrix of factor loadings, St is a [k× 1] vector of unobserved

source contributions. Yt is the health outcome for a given time t. The α represent

[1 × k] effect estimates for the k pollution sources. Each component (elemental

concentration) of Xt is represented by equation (3.1).
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Λ =



λ11 λ12 . . . . . . λ1k

λ21 λ22 . . . . . . λ2k

λ31 λ32 . . . . . . λ3k

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

λp1 λp2 . . . . . . λpk


[p×k]

,

Xit =
k∑
j=1

λijsjt + εXit (3.3)

For the ith element (1 ≤ i ≤ p), the jth factor loading (1 ≤ j ≤ k), for day t

(1 ≤ t ≤ T ). The distributional assumptions are as follows:

St ∼ N(µ,Σ)

εXt ∼ N(0,Ψ)
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where,

Σ =



σ2
1 0 0 . . . 0

0 σ2
2 0 0

0 0 σ2
3 . . . 0

...
...

... . . . ...

0 0 0 . . . σ2
k


,Ψ =



ψ2
1 0 0 . . . 0

0 ψ2
2 0 . . . 0

0 0 ψ2
3 . . . 0

...
...

... . . . ...

0 0 0 . . . ψ2
p



3.4.2 Two-Stage Hierarchical Regression Modeling Framework

The Greenland (1993) method of hierarchical modeling seeks to perform dimen-

sion reduction on the effect estimates associated with multiple exposures rather

than the exposures variables themselves. Given equation (3.4) from section 3.3, the

corresponding health effects estimates (β) are calculated. Since the exposure vari-

ables may be correlated or if there are not enough events to accurately estimate the

β’s, these estimates are often unstable. A hierarchical approach can often remedy

some of these issues. The two-stage approach takes the form:

g(µt) = α0 + βT Xt (3.4)

βi = ωT Zi + δi, i ∈ 1, . . . , p. (3.5)

By substituting equation (3.5) into equation (3.4) we have the following model:

g(µt) = α + XtZω + Xtδ, (3.6)

where the ω are treated as a vector of fixed coefficients while δ is treated as a vec-
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tor of random coefficients with mean 0 and variance τ 2. The ith row of Z contains

second-stage covariates for the ith exposure in βi. ω is a vector of second-stage re-

gression coefficients, and the elements of δi are independent normal random vari-

ables with zero means and variances τ 2. Hence, as described above, we use the

second-stage covariates (that is, columns of Z) to model similarities among the βi

in an attempt to improve conventional estimates from equation (3.4).

For cases when we are interested in assessing the health effects of PM sources, the

question arises of which second stage covariate matrix (Z) should be chosen. If

one were to fit model (3.5) in two distinct stages, then the estimates for the second

stage coefficients ω would take the following form:

ω̂ = (ZTZ)−1ZTβ̂.

This shows that the second stage effect estimates (ω̂) are a function of the Z ma-

trix and the health effects estimates (β) from the elemental concentrations. This

relationship provides a motivation for some connection between the source appor-

tionment and two stage approaches. In the next section, to further motivate our

choices for Z, we consider a special case of a source apportionment model with

Xit =
∑k

j=1 λijsjt + εXit , where we allow the second stage covariates (Z) to become

different variations of the factor loadings Λ.
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Dimension Reduction

Factor analysis seeks dimension reduction of the receptor model by reducing the

dimension of the exposure in the health effects model. By substituting equation

(3.3) into equation (3.4) below, the model is reduced from p to k dimensions for

(k < p) different source contributions.

g(µt) = α0 + β1X1t + β2X2t + · · ·+ βpXpt

= α0 + β1

[
k∑
j=1

λ1jsjt

]
+ β2

[
k∑
j=1

λ2jsjt

]
+ · · ·+ βp

[
k∑
j=1

λpjtsjt

]
= α0 + β1 [λ11s1t + · · ·+ λ1kskt] + · · ·+ βp [λp1s1t + · · ·+ λpkskt]

= α0 + [β1λ11s1t + · · ·+ β1λ1kskt] + · · ·+ [βpλp1s1t + · · ·+ βpλpkskt]

= α0 + [β1λ11s1t + · · ·+ βpλp1s1t] + · · ·+ [β1λ1kskt + β2λ2kskt + · · ·+ βpλpkskt]

Therefore, the equations become:

g(µt) = α0 +

α1︷ ︸︸ ︷
[β1λ11 + β2λ21 + · · ·+ βpλp1] s1t +

α2︷ ︸︸ ︷
[β1λ12 + β2λ22 + · · ·+ βpλp2] s2t + . . .

+

αk︷ ︸︸ ︷
[β1λ1k + β2λ2k + · · ·+ βpλpk] skt

= α0 + α1s1t + α2s2t + · · ·+ αkskt
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α̂j =

p∑
i=1

βiλij (3.7)

Which means that the health effects represented by the k PM sources (α̂j) are a

linear combination of the element-specific coefficients (βi), weighted by the load-

ings of the elements for that specific source. Given these considerations, at least

thee choices of Z may be reasonable in the hierarchical formulation, each of which

allow Z to represent a variation of the factor loading matrix.

1. The non-overlapping case, where Zij = 1 if the source has the highest loading

for the particular element and Zij = 0 for the remaining sources for that

element.

2. A moderately overlapping case, where Zij = 1 if the source loading is greater

than some constant threshold and Zij = 0 for the remaining sources for that

element.

3. A general case, where Zij = zij where the zij could be representation of real

factor loadings measured or those given be previous or existing studies. Each

source has its own contribution for each element. In our case, we allow

zij = λij , where each λij is the factor loading for each element and source

combination from concentrator data.

Case 1 (No Overlap):

Assume the following sample Z:
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Z =



λ11 0 0 0

λ21 0 0 0

λ31 0 0 0

0 λ42 0 0

0 λ52 0 0

0 λ62 0 0

0 0 λ73 . . .

...
...

... . . .

0 0 . . . λpk


[p×k]

, (3.8)

where Z represents the p elemental concentrations for the kth source contribution

and β̂ is a p× 1 vector of coefficient estimates given from the health effects model

in equation (3.4). In this simple form of the factor loadings given by equation

(3.8), we choose Z to contain indicators reflecting which source is most responsible

for an element. In essence the Zij = {1, 0} and each elemental concentration is

assumed to be given fully by one source contribution. Each λij does not have to be

exactly like (3.8) the only restriction is that there is one non-zero factor loading per

row. Therefore, the normal equations and corresponding health effects estimates

are given by the following k × 1 matrix :

ω̂ = (ZTZ)−1ZTβ̂ =



Pp
i=1 λi1β̂iPp
i=1 λi1Pp

i=1 λi2β̂iPp
i=1 λi2

...Pp
i=1 λikβ̂iPp
i=1 λik


[k×1]

. (3.9)
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In this simple case ω̂j =
Pp

i=1 λij β̂iPp
i=1 λij

whereas α̂j =
∑p

i=1 λijβ̂i. In this case there are

overlapping terms and ω̂j proportional to α̂j . An example of the simple case of Z

could be the following where p = 13, k = 4:

Znon−overlapexample =



1 0 0 0

1 0 0 0

1 0 0 0

0 1 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1


[p×k]

Given this particular scenario and using the general equations for α̂ and ω̂ the health

effects estimates can be calculated as seen in Table 3.1.

Estimates α̂ ω̂

1 β̂1 + β̂2 + β̂3
β̂1+β̂2 +β̂3

3

2 β̂4 + β̂5 + β̂6
β̂4+β̂5 +β̂6

3

3 β̂7 + β̂8 + β̂9
β̂7+β̂8 +β̂9

3

4 β̂10 + β̂11 + β̂12 + β̂13
β̂10+β̂11+β̂12+β̂13

4

Table 3.1: Health effects estimates for α̂ and ω̂
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Case 2 (Moderately Overlapping Case):

In general, an element is not generated from a single source, which is why the source

profiles of a typical (Λ) are not non-zero for only one entry per row as in case 1. In these

settings where a single element is spread across many sources, we can extend the choice of

Z from case 1 to include such settings. We propose 2 new variations: In the first variation

we use indicators wherever the source profiles are greater than some threshold C and will

be called the ”moderately overlapping case”. In this case, an element’s loadings can be

distributed across different sources but indicator values (0,1) are still used. Assume Λ has

the following form:

Λ1 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0.88 0.00 0.01 0.00

0.83 0.08 0.34 0.09

0.91 0.02 0.31 0.17

0.00 0.95 0.00 0.01

0.02 0.65 0.05 0.26

0.16 0.04 1.02 0.03

0.18 0.58 0.26 0.43

0.17 0.41 0.44 0.65

0.13 0.27 0.51 0.81


[p×k]

(3.10)

Given these values of Λ1, an appropriate ”moderately overlapping” Z matrix can be con-

structed. By allowing each value of λij ≥ .30 to be valued at 1 and λij < .30 to be valued
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at 0 we are left with the following Z matrix.

Zmod.overlap =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

1 0 1 0

1 0 1 0

0 1 0 0

0 1 0 0

0 0 1 0

0 1 0 1

0 1 1 1

0 0 1 1


[p×k]

Case 3 (General Overlapping Case):

In the third and last variation of the second stage covariates we choose Z to be exactly

equal to the true Λ1 given in equation (3.10). In this case, each of the elemental concentra-

tions can be attributed to more than one source and the values represent real-valued factor

loadings that are not restricted to indicators. With this assumption, the normal equations

for both case 2 and case 3 can be generalized to:
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ω̂ = (ZTZ)−1ZTβ̂ =



c11α1 + c12α2 + c13α3 + c14α4 + · · ·+ c1kαk

c21α1 + c22α2 + c23α3 + c24α4 + · · ·+ c2kαk
...

ck1α1 + ck2α2 + ck3α3 + ck4α4 + · · ·+ ckkαk


[k×1]

Therefore, in the overlapping case ω̂j =
∑k

i=1 cji(λ)α̂(λ) whereas α̂j =
∑p

i=1 βiλij . The

two estimates differ by a factor of cji so there are some overlapping terms in the estimates.

The cji represent the components of the (ZTZ)−1 matrix and are functions of the λij . Again

the αi are linear combinations of the health effects estimates and the specific factor loadings

given by λij .

3.5 SIMULATION STDY

We conducted a simulation study to examine the statistical properties of the health effects

estimates obtained from the two-stage and factor analysis approaches. The objective of

this simulation is to compare the two methods and determine the settings where each

scheme is most powerful in detecting differences and maintaining low type 1 errors. The

standard errors from the two models are also reported so that comparisons in efficiency

can be made.

3.5.1 Simulating Source Data

We assume k = 4 source contributions. Although the source contributions are not directly

observed or measured in the studies motivating this research, we simulate them in this

study so that they are effectively known. First we simulate the source contributions St
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according to the following normal distribution:

St ∼MVN4(µ,Σ),

where µ = 0. Given each set of source contributions we are then able to simulate the

corresponding elemental concentrations from

Xt|St ∼MVN13(ΛSt,Ψ)

diag(Σ) =



RoadDust

PowerP lant

OilComb

V ehicles


=



2.36

1.60

1.49

1.62


,

diag(Ψ) =



ψSi

ψS

ψNi

ψOC

ψAl

ψT i

ψCa

ψSULF

ψSe

ψV

ψBr

ψBC

ψEC



= {Ψgiven =



0.08

0.05

0.22

0.45

0.05

0.28

0.35

0.05

0.31

0.05

0.31

0.11

0.10



,Ψ13 =



0.1

0.1

0.1

0.1

0.1

0.3

0.3

0.1

0.3

0.1

0.3

0.3

0.3



,Ψ31 =



0.3

0.3

0.3

0.3

0.3

0.1

0.1

0.3

0.1

0.3

0.1

0.1

0.1



}
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Both Ψ and Σ represent realistic variance structures for the source contribu-

tions and the exposure data respectively given by settings from concentrator data

(Nikolov et al., 2000). We assume the factor loadings of Λ follow the given form.

Because the source profiles are unknown and the source contributions are unob-

served the model may not be indentifiable and will not have a unique solution.

The model can be made indentifiable by constraining some of the factor loadings

in Λ1. The elements silicon (Si), sulfur (S), Nickel (Ni), and organic carbon (OC)

were chosen to be constrained because they were most unilaterally emitted by sin-

gle sources.

Λ1 =



S1 S2 S3 S4

Si 1 0 0 0

S 0 1 0 0

Ni 0 0 1 0

OC 0 0 0 1

Al 0.88 0.00 0.01 0.00

Ti 0.83 0.08 0.34 0.09

Ca 0.91 0.02 0.31 0.17

Sulf 0.00 0.95 0.00 0.01

Se 0.02 0.65 0.05 0.26

V 0.16 0.04 1.02 0.03

Br 0.18 0.58 0.26 0.43

BC 0.17 0.41 0.44 0.65

EC 0.13 0.27 0.51 0.81


[p×k]
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3.5.2 Simulating Health Outcome Data

The health outcome was simulated using a poisson distribution, since data repre-

sented counts. The outcomes of interest were mortality and number of hospital

admissions. Further, we generated health outcome assuming a health effect from

a single source

Yt ∼ Pois(µ),

where k is the source contribution at time t. Therefore,

Y
(1)
t |{α1 = α1, α2 = α3 = α4 = 0} ∼ Pois(µ = exp(α0 + α1S1),

Y
(2)
t |{α2 = α2, α1 = α3 = α4 = 0} ∼ Pois(µ = exp(α0 + α2S2),

Y
(3)
t |{α3 = α3, α1 = α2 = α4 = 0} ∼ Pois(µ = exp(α0 + α3S3),

Y
(4)
t |{α4 = α4, α1 = α2 = α3 = 0} ∼ Pois(µ = exp(α0 + α4S4).

Where Y
(1)
t |α1 represents the outcome associated with only the first source.

Y
(2)
t |α2, Y

(3)
t |α3, and Y

(4)
t |α4 are interpreted in the corresponding way. In the simu-

lation we generate the health effect on each of the four sources individually. There-

fore we have four sets of health outcomes Y
(1)
t , Y

(2)
t , Y

(3)
t , Y

(4)
t , where each health

effect corresponds to a different pollution source. The initial health outcome pa-

rameters were given by the following values:α0 = 3.00,
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α1 = {0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40}

α2 = {0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40}

α3 = {0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40}

α4 = {0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40}

Each model was run for T = 3000 days, N = 13 elemental concentrations, and

k = 4 pollution sources. Each simulation was run for 1000 iterations.

3.5.3 Approaches

1. Known source contribution model: We previously noted that the sources

were simulated so we estimate the health effects based on the known source

contributions using the poisson model.

Xt = ΛSt + εXt

log(µt) = α0 +αTSt

2. Factor Analyses: We conducted a confirmatory factor analyses (CFA) using

the SEM package in R in order to get estimates for the corresponding fac-

tor scores (estimated source contributions). The aforementioned initial val-

ues and the constrained factor loadings were used. Next, we performed an

exploratory factor analysis (EFA) using the ”factanal” package in R and a
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principle components analysis (PCA) using the ”princomp” package in R.

Both the EFA and the PCA models do not assume the factor loading struc-

ture nor do they assume a distribution for the source contributions. Once the

estimates for the respective source contributions were determined, a poisson

model was subsequently fit.

Xt = ΛSt + εXt

log(µt) = α0 +αT Ŝt

3. Two-Stage Approach: We begin with the health effects model. In the sec-

ond stage, we choose covariates Z to model similarities among the βi in an

attempt to improve conventional estimates from the health effects model.

log(µt) = α0 + βTXt

βi,[13×1] = Z[13×4]ω[4×1] + δi,[13×1], i ∈ 1, . . . , p

therefore,

log(µt) = α0 + XtZω + Xtδ

3.5.4 Choice of Second Stage Covariates

We allowed for three cases in the choice for Z.

• An non overlapping case we assume a simple form for the factor loadings
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of Z. Each elemental concentration is assumed to be attributed fully to one

source contribution. This is done by taking the largest source contribution

value for a given elemental concentration.

• A moderately overlapping case where we allowed each value of Λ : λij ≥ 0.3

to be valued at 1 and Λ : λij < 0.3 to be valued at 0. For some C > 0.

• In the overlapping case we assume each of the elemental concentrations can

be attributed to more than one source. In this case we allow Z to be our initial

case Λ (Z = Λ).

The three Z matrices follow:

Zno−overlap =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

1 0 0 0

1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 1 0 0

0 0 0 1

0 0 0 1



,Zmod.overlap =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

1 0 1 0

1 0 1 0

0 1 0 0

0 1 0 0

0 0 1 0

0 1 0 1

0 1 1 1

0 0 1 1



,Zgeneralcase =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0.88 0.00 0.01 0.00

0.83 0.08 0.34 0.09

0.91 0.02 0.31 0.17

0.00 0.95 0.00 0.01

0.02 0.65 0.05 0.26

0.16 0.04 1.02 0.03

0.18 0.58 0.26 0.43

0.17 0.41 0.44 0.65

0.13 0.27 0.51 0.81


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Figure 3.1: Overlaid Power and Type 1 Error Curves for Y (1)
t |St and Ψgiven : A(top left): The

power for α̂1 of each health effects model at the given initial value of α1. B(top right): The type 1
error for α̂2 of each health effects model at a given initial value of α1. C(bottom left): The type 1
error for α̂3 of each health effects model at a given initial value of α1. D(bottom right): The type 1
error for α̂4 of each health effects model at a given initial value of α1.

3.5.5 Simulation Results

Figures 3.1 and 3.2 display power and type 1 error curves for the health effects

estimates obtained from five different modeling schemes. The health effects es-

timates given by the known source contribution model (KSC) are considered the

”gold standard”. The health effects estimates from the estimated source contribu-

tions was determined using three different computing packages. The ”CFA” for

the confirmatory factor ananlysis using structural equation modeling package in

R, ”EFA” for the exploratory factor analysis (factanal package in R), and ”PCA” for

the principle components analysis (princomp package in R). There were three ver-
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Figure 3.2: Overlaid Power and Type 1 Error Curves for Y (2)
t |St and Ψgiven : A(top left): The

type 1 error for α̂1 of each health effects model at the given initial value of α2. B(top right): The
power for α̂2 of each health effects model at a given initial value of α2. C(bottom left): The type 1
error for α̂3 of each health effects model at a given initial value of α2. D(bottom right): The type 1
error for α̂4 of each health effects model at a given initial value of α2.

sions of the two-stage regression approach taken; 1) The second-stage covariates

did not overlap (”TSnov”) and 2) where the second stage covariates do overlap

(”TSmod”), and lastly the where the second stage covariates equal Λ (”TSlam”).

Each two-stage regression model of was run in glmmPQL package in R.

Each figure consists of four graphs that represent calculations for the health effects

estimates α̂1, α̂2, α̂3, and α̂4 at different initial values given along the x-axis. Each

model was simulated so that one specific source would be responsible for the en-

tire health effect. For example, Figure 3.1 represents Y (1)
t |St which denotes that the

health effect was simulated to be associated with source 1. Simultaneously, sources
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2 through 4 were assumed to have no association with the outcome. Therefore, Fig-

ure 3.1A (top left) shows six power curves at varying initial values that represent

each of the afore mentioned methods. The expectation is that the power curves to

detect differences in position A would be quite high because that is where the true

association lies. Alternatively, positions 3.1B (top right), 3.1C (bottom left), and

3.1D (bottom right) show seven type 1 error curves each at the varying initial val-

ues of α1. The expectation is that the type 1 errors in positions 3.1B through 3.1D

would be quite low (Pr{detect a difference | there is no difference} = 0.05) because

these sources were assumed to have no effect.

Figure 3.1A shows the power curves for α̂1 (outcome Y (1)
t given the health effect

is only associated with source 1. The 4 source apportionment power curves (CFA,

EFA, PCA, and KSC) begin at approximately 0.05 when α1 = 0 but increase to

nearly 100% for increasing initial values of the health effect estimate (α1). This

means that the source apportionment approach is able to estimate the appropriate

effect with high power. Similarly, the 3 two-stage regression power curves (TSnov,

TSov, and TSlam) follow that same pattern and increase in power for larger values

of α1. Figure 3.1B shows type 1 error curves for α̂2 (Y (1)
t given that the source 2 re-

flects a zero contribution to the health effect). The CFA, EFA, and PCA approaches

show increasing α̂2 type 1 errors for increasing initial values of α1. As the initial

health effect estimate (α1) increases the proportion of false positives for α̂2 rises

from approximately 0.05 to 0.30. Alternatively, the type 1 errors for α̂2 from ap-

proaches TSnov, TSmod, TSlam, and KSC straddle the 0.05 line for all values of

α1. Figure 3.1C shows type 1 error curves for α̂3 which reflects the outcome (Y (1)
t )

given that source 3 reflects a zero contribution to the health effect. For the health

effect α̂3, the CFA, EFA, and PCA approaches again show increasing type 1 errors

with increasing initial values of α1. As the health effect estimate α1 increases the
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proportion of false positives for α̂3 rises from approximately 0.05 to 0.90. TSmod

maintains a high type 1 error rate throughout the varying initial values of α1. On

the other hand, the TSnov and TSlam models have high type 1 error rates in the

early values of α1 but returns to below 0.05 when α1 = 0.15. The KSC model type 1

error curve straddles the 0.05 line as expected because the true simulated sources

were used. Figure 3.1D shows type 1 error curves for α̂4 where the outcome (Y (1)
t )

is given that the source 4 reflects a zero contribution to the health effect. The type

1 error for α̂4 from the CFA, EFA, and PCA approaches show increasing type 1

errors with increasing initial values of α1. As the initial health effect estimate (α1)

increases the proportion of false positives from α̂4 rise from approximately 0.05 to

0.55. The type 1 errors for α̂4 in the TSnov, TSmod, and TSlam approaches experi-

ence slight increases int type 1 errors for initial values before α1 = 0.20. For initial

values after α1 = 0.20, the type 1 error rates for α̂4 in models TSnov, TSmod, and

TSlam decrease to below 0.05.

Overall, the simulation suggests different patterns for the factor analyses and the

two stage approaches. For the factor analyses, the sources with the clear simulated

relationship are able to produce effect estimates that are highly powered. For the

remaining sources with no association to the health outcome, there are inflated

type 1 errors. The source apportionment methods in particular show increasing

type 1 errors for increasing initial health effect estimate values, for all settings ir-

respective of source variance structures. This would indicate that when there is

a large signal (health effect estimate) from one source, there is an accompanying

spill-over effect into the other sources. Both the EFA and PCA models have the

highest type 1 error levels while the CFA has just moderate increases.

On the other hand the two stage approaches showed different patterns. For both
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the non-overlapping, moderately overlapping, and the general two stage cases,

the power to detect differences is very high for the source with the clear simulated

effect. Alternatively, the sources that have no association to the health outcome

experience high type 1 error spikes which is in contrast with the factor analysis

models. For smaller health effect estimate values between α = 0.0 − 0.20, there

are large increases in the type 1 error rates. This would indicate that the two-stage

approach has difficulties estimating health effects that are very small but once the

health effects become larger in magnitude the type 1 error rates come down to

normal levels. Another possible predictor of the spikes in type 1 error rates for

the two-stage approaches are the distribution of single elements across the many

sources. There is a tendency for the spikes to coincide with health effects where

the elements are evenly spread across different sources.

3.5.6 Simulation Implications

The confirmatory factor analysis procedures (CFA) are able to estimate the source

contributions and health effects estimates with relatively low bias as can be seen

in Table 3.2. Table 3.2 shows the health effects estimates from a confirmatory fac-

tor analysis along with the model standard errors and the simulation standard

deviations. There are 4 sets of initial values represented in Table 3.2: 1) top left:

{Y(1)
t |α1 = 0.05, α2 = 0, α3 = 0, α4 = 0}which means the health effect associ-

ated with source 1 is 0.05 while the effect of the other sources is 0, 2) bottom

left: {Y(2)
t |α = 0, α2 = 0.05, α3 = 0, α4 = 0}which means the health effect asso-

ciated with source 2 is 0.05 while the effect of the other sources is 0, 3) top right:

{Y(1)
t |α1 = 0.30, α2 = 0, α3 = 0, α4 = 0}, and 4) {Y(2)

t |α1 = 0, α2 = 0.30, α3 = 0, α4 =

0}. Since the health effects estimates are unbiased, then the variability of the es-
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timates maybe leading to the higher false positive rates due to the bias-variance

trade off. Similar evidence of the discrepancy between the model standard errors

and the simulation standard deviations can be seen in Tables 3.2 - 3.4. Each of the

standard deviation estimates are larger than the standard error estimates for EFA

and PCA models while this pattern is present but attenuated in the CFA model. For

example in Table 3.2A, the CFA health effect estimate α̂1 is 0.05001 which is quite

close to the simulated value of 0.05, the standard error is 0.0027 and the standard

deviation is 0.0026. On the other hand, in Tables 3.3 and 3.4 show that the standard

deviations are in most cases twice as large as the standard errors for large values

of α. For example, in Table 3.3C it is noted that the SE for α̂1 is 0.0039 while the SD

is 0.0070 for initial values of 0.30. In order to correct the discrepancy in errors, a

bootstrap model can be conducted which will give more accurate estimates of the

precision/variability. Subsequently, the number of false positives will be reduced

to below 0.05 and the power estimates will be regulated/attenuated.

Yt|St, α1 = 0.05, α2 = 0, α3 = 0,α4 = 0

Coef. CFA Est. Std Err. Std. Dev.
α̂1 0.0500 0.0027 0.0026
α̂2 -0.0002 0.0033 0.0033
α̂3 0.0001 0.0034 0.0034
α̂4 0.0000 0.0033 0.0032

Yt|St, α1 = 0.0, α2 = 0.05, α3 = 0,α4 = 0

Coef. CFA Est. Std Err. Std. Dev.
α̂1 0.0000 0.0027 0.0028
α̂2 0.0500 0.0033 0.0033
α̂3 0.0002 0.0034 0.0034
α̂4 0.0000 0.0033 0.0034

Yt|St, α1 = 0.30, α2 = 0, α3 = 0,α4 = 0

Coef. CFA Est. Std Err. Std. Dev.
α̂1 0.2999 0.0025 0.0027
α̂2 0.0001 0.0031 0.0032
α̂3 -0.0004 0.0032 0.0035
α̂4 0.0002 0.0031 0.0033

Yt|St, α1 = 0.0, α2 = 0.30, α3 = 0,α4 = 0

Coef. CFA Est. Std Err. Std. Dev.
α̂1 0.0000 0.0026 0.0026
α̂2 0.3001 0.0031 0.0033
α̂3 -0.0003 0.0033 0.0033
α̂4 -0.0001 0.0032 0.0034

Table 3.2: A(top left), B(bottom left), C(top right), D(bottom right): This table represents the
parameter estimates and errors for the confirmatory factor analyses (CFA) models conducted on
simulated data. Generalized linear models were conducted for 1000 iterations. The subsequent
estimates were aggregated into medians. Each model included no covariates.

Alternatively, the two-stage hierarchical regression approach is unable to estimate

the health effects estimates without bias. The actual health effects estimates are

cannot be compared to the source apportionment models because they represent
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different values. Each two-stage model represents the relationship between first

and second stage covariates and the health outcome. In addition, the estimates are

poorly estimated due to the correlations between sources. Such correlations occur

when a single element is distributed among many sources. Table 3.5 shows the

health effects estimates and errors from the two-stage model. For this approach,

there are discrepancies between the model standard errors and the simulation stan-

dard deviations when there are spikes in the type 1 error curves. and the standard

errors are very similar and in some cases smaller than those of the standard devia-

tions. Therefore, this does not seem to represent a variance issue and the bootstrap

will be ineffective.

Yt|St, α1 = 0.05, α2 = 0, α3 = 0,α4 = 0

Coef. EFA Std Err. EFA Std Dev.
α̂1 0.0041 0.0044
α̂2 0.0041 0.0041
α̂3 0.0042 0.0043
α̂4 0.0041 0.0041

Yt|St, α1 = 0.0, α2 = 0.05, α3 = 0,α4 = 0

Coef. EFA Std Err. EFA Std Dev.
α̂1 0.0041 0.0041
α̂2 0.0041 0.0041
α̂3 0.0042 0.0043
α̂4 0.0041 0.0039

Yt|St, α1 = 0.30, α2 = 0, α3 = 0,α4 = 0

Coef. EFA Std Err EFA Std Dev.
α̂1 0.0039 0.0070
α̂2 0.0039 0.0056
α̂3 0.0040 0.0056
α̂4 0.0039 0.0052

Yt|St, α1 = 0.0, α2 = 0.30, α3 = 0,α4 = 0

Coef. EFA Std Err. EFA Std Dev.
α̂1 0.0040 0.0056
α̂2 0.0040 0.0063
α̂3 0.0040 0.0052
α̂4 0.0040 0.0052

Table 3.3: A(top left), B(bottom left), C(top right), D(bottom right): This table represents the
parameter estimates and errors for the confirmatory factor analyses (EFA) models conducted on
simulated data. Generalized linear models were conducted for 1000 iterations. The subsequent
estimates were aggregated into medians, and 95% CI’s. Each model included no covariates.

Bootstrap Option/Solution

The bootstrap procedure for the CFA was chosen so that the precision of the health

effects estimate (regression coefficient) could be evaluated. For each data set, b =

100 bootstrap samples 1, . . . , 100 was retrieved. T = 3000 days, N = 13 elemental

concentrations, K = 4 sources, and r = 100 iterations. First, the CFA model was

fit using the observed/simulated data and the following estimates were reported:
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Yt|St, α1 = 0.05, α2 = 0, α3 = 0,α4 = 0

Coef. PCA Std Err. PCA Std Dev.
α̂1 0.0041 0.0043
α̂2 0.0041 0.0040
α̂3 0.0041 0.0042
α̂4 0.0041 0.0041

Yt|St, α1 = 0.0, α2 = 0.05, α3 = 0,α4 = 0

Coef. PCA Std Err. PCA Std Dev.
α̂1 0.0041 0.0041
α̂2 0.0041 0.0041
α̂3 0.0041 0.0042
α̂4 0.0041 0.003

Yt|St, α1 = 0.30, α2 = 0, α3 = 0,α4 = 0

Coef. PCA Std Err PCA Std Dev.
α̂1 0.0039 0.0071
α̂2 0.0039 0.0056
α̂3 0.0039 0.0054
α̂4 0.0039 0.0056

Yt|St, α1 = 0.0, α2 = 0.30, α3 = 0,α4 = 0

Coef. PCA Std Err. PCA Std Dev.
α̂1 0.0039 0.0057
α̂2 0.0039 0.0063
α̂3 0.0039 0.0050
α̂4 0.0039 0.0053

Table 3.4: A(top left), B(bottom left), C(top right), D(bottom right):This table represents the pa-
rameter estimates and errors for the confirmatory factor analyses (PCA) models conducted on sim-
ulated data. Generalized linear models were conducted for 1000 iterations. The subsequent esti-
mates were aggregated into medians, and 95% CI’s. Each model included no covariates.

Yt|St, α1 = 0.05, α2 = 0, α3 = 0,α4 = 0

Coef. TSnov Est. Std Err. Std Dev.
α̂1 0.0137 0.0007 0.0007
α̂2 -0.0001 0.0011 0.0011
α̂3 -0.0036 0.0017 0.0017
α̂4 -0.0012 0.0014 0.0014

Yt|St, α1 = 0.0, α2 = 0.05, α3 = 0,α4 = 0

Coef. TSnov Est. Std Err. Std Dev.
α̂1 -0.0005 0.0007 0.0007
α̂2 0.0156 0.0011 0.0012
α̂3 -0.0003 0.0018 0.0017
α̂4 -0.0038 0.0014 0.0016

Yt|St, α1 = 0.30, α2 = 0, α3 = 0,α4 = 0

Coef. TSnov Est. Std Err. Std Dev.
α̂1 0.0807 0.0163 0.0009
α̂2 -0.0001 0.0163 0.0016
α̂3 -0.0078 0.0232 0.0027
α̂4 -0.0025 0.0189 0.0021

Yt|St, α1 = 0.0, α2 = 0.30, α3 = 0,α4 = 0

Coef. TSnov Est. Std Err. Std Dev.
α̂1 -0.0007 0.0188 0.0010
α̂2 0.0780 0.0189 0.0017
α̂3 -0.0015 0.0267 0.0026
α̂4 -0.0026 0.0218 0.0022

Table 3.5: A(top left), B(bottom left), C(top right), D(bottom right):This table represents the pa-
rameter estimates and errors for the two-stage hierarchical regression models conducted on simu-
lated data. Generalized linear models were conducted for 1000 iterations. The subsequent estimates
were aggregated into medians. Each model included no covariates.

Λ̂, Ψ̂,Σ̂, and β̂. Second, using these initial values, bootstrapped source data was

generated from S(b) ∼ N(0, Σ̂). Third, bootstrapped exposure (elemental concen-

trations) data were generated from X
(b)
t ∼ N(Λ̂S(b), Σ̂). Lastly, health outcome

data were generated from Y(b) ∼ Pois(µ(b)), where µ(b) = exp(β̂S(b)). As a result

of this simulation structure poisson linear models could be fit using Y(b) and X(b)

as real data. From each of the 100 bootstrap samples the α̂(b) regression coefficients

for each source were stored and the 2.5% and 97.5% bootstrap confidence intervals

were calculated. The simulation was run for r =100 iterations which yielded 100
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confidence intervals for each source. Subsequently, the power and type 1 errors

were calculated.

The bootstrap procedure for the two-stage model begins with b = 100 bootstrap

samples 1, . . . , 100 for each data set. T = 3000 days, N = 13 elemental concentra-

tions, K = 4 sources, and r = 200 iterations. The two-stage model was fit using

observed/simulated data and ω̂ for each source, σ̂2
δ , and δ̂. Given the original sim-

ulated exposure data (elemental concentrations) Xt and the second stage covariate

matrix Z the bootstrap mean outcome can be estimated. The mean is given by

µ(b) = exp(µ̂0 + XtZω̂ + Xtδ̂}. Lastly, the health outcome data is generated from

Y(b) ∼ Poisson(µ(b)). The two stage model is refit and the from each of the 100

bootstrap samples and the ˆω(b)) regression coefficients for each source were stored.

The 2.5% and 97.5% bootstrap confidence intervals were calculated. The simula-

tion was run for r =200 iterations which yielded 200 confidence intervals for each

source. Subsequently, the power and type 1 errors were calculated.

Bootstrap Results

Figure 3.3 shows the CFA bootstrap power and type 1 error curves. Figure 3.3A

shows the power curves for outcome Yt given the health effect is only associated

with source 1 (St). The power ranges from 0.65 to 0.85. Figures 3.3B, 3.3C, and 3.3D

show the type 1 error curves and they all are below 0.05 which is expected. Figure

4 shows the power curves for outcome Yt given the health effect is only associated

with source 2(S2) and the patterns are the same.

Figures 3.5 and 3.6 show the two-stage bootstrap power and type 1 error curves.

Figure 3.5A shows the power curves for outcome Y1t given the health effect is only

associated with source 1 (S1t). The power estimates are near 100% for all coefficient
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Figure 3.3: CFA Bootstrap Power and Type 1 Error Curves for Y1t|S1t and Ψgiven : A(top left):
The power for each health effects model at the given initial value of α11. B(top right): The type 1
error for each of the health effects models at a given initial value of α12. C(bottom left): The type 1
error for each of the health effects models at a given initial value of α13. D(bottom right): The type
1 error for each of the health effects models at a given initial value of α14.

values which is the same as the non-bootstrapped values. Figures 3.5B, 3.5C, and

3.5D show the type 1 error curves and they all similar to the non-bootstrapped

values which is expected. Figure 3.6 shows the power curves for outcome Y2t given

the health effect is only associated with source 2(S2t) and the patterns are the same.

3.6 DISCUSSION

In this paper we evaluated the factor analysis and two-stage hierarchical model

estimation procedures. Each model included all relevant exposures. Issues arise
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Figure 3.4: CFA Overlaid Power and Type 1 Error Curves for Y2t|S2t and Ψgiven : A(top left):
The type 1 error for each of the health effects models at a given initial value of α21. B(top right):
The power for each health effects model at the given initial value of α22. C(bottom left): The type 1
error for each of the health effects models at a given initial value of α23. D(bottom right): The type
1 error for each of the health effects models at a given initial value of α24.

when estimating the effects of sources with no assumed effect on the outcome.

The expectation is that the type 1 error rates are to be ≈ 0.05. For each of the factor

analyses approaches the type I error rate was inflated for increasing values of the

corresponding effect estimate but the differences are larger in the EFA and PCA

models. This means that this source apportionment approach falsely rejects the

null hypothesis more than the allotted α = 0.05 for the sources that have no effect.

These patterns are echoed when the variance structures of the source contributions

are varied. Conducting a bootstrapped CFA model maintains the variability of the

effect estimates and the type 1 error rates so there is no effect. The EFA and PCA

bootstrapped models have similar results.
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Figure 3.5: CFA Bootstrap Power and Type 1 Error Curves for Y1t|S1t and Ψgiven : A(top left):
The power for each health effects model at the given initial value of α11. B(top right): The type 1
error for each of the health effects models at a given initial value of α12. C(bottom left): The type 1
error for each of the health effects models at a given initial value of α13. D(bottom right): The type
1 error for each of the health effects models at a given initial value of α14.

The two-stage hierarchical model also has issues when estimating effects from

sources with no assumed association with the outcome. Much of the data from

these models have instances where there are spikes in the type I error rates for

low effect estimate values and then the rates go back to ≈ 0.05. The spikes oc-

cur when there are elements that occur predominantly in more than one source

(overlap). The simulation study seemed to suggest that the two-stage approach

where one element was associated with a particular source (no-overlap) yielded

the best results. When the variance structures of the source contributions were

changed, the type I error results from the two-stage models increased and were

greater than 0.05. Conducting the two-stage bootstrapped model is ineffective be-
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Figure 3.6: CFA Overlaid Power and Type 1 Error Curves for Y2t|S2t and Ψgiven : A(top left):
The type 1 error for each of the health effects models at a given initial value of α21. B(top right):
The power for each health effects model at the given initial value of α22. C(bottom left): The type 1
error for each of the health effects models at a given initial value of α23. D(bottom right): The type
1 error for each of the health effects models at a given initial value of α24.

cause the variability of the effect estimates did not need to be adjusted rather the

estimates themselves were inaccurate.

These findings would indicate that both of these modeling approaches have the

ability to account for multiple exposures, estimate independent effects from cor-

related exposures, but each of the strategies has difficulty in accurately estimating

the unobserved source contributions which consequently lead to health effects es-

timates with high false positive probabilities. More work is needed to ensure that

proper control of false positives in empirical data settings.
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Figure 3.7: Overlaid Power and Type 1 Error Curves for Y (1)
t |St and Ψgiven : A(top left): The

power for α̂1 of each health effects model at the given initial value of α1. B(top right): The type 1
error for α̂2 of each health effects model at a given initial value of α1. C(bottom left): The type 1
error for α̂3 of each health effects model at a given initial value of α1. D(bottom right): The type 1
error for α̂4 of each health effects model at a given initial value of α1.
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Figure 3.8: Overlaid Power and Type 1 Error Curves for Y (2)
t |St and Ψgiven : A(top left): The

type 1 error for α̂1 of each health effects model at the given initial value of α2. B(top right): The
power for α̂2 of each health effects model at a given initial value of α2. C(bottom left): The type 1
error for α̂3 of each health effects model at a given initial value of α2. D(bottom right): The type 1
error for α̂4 of each health effects model at a given initial value of α2.
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Figure 3.9: Overlaid Power and Type 1 Error Curves for Y (3)
t |St and Ψgiven : A(top left): The

type 1 error for α̂1 of each health effects model at the given initial value of α3. B(top right): The
type 1 error for α̂2 of each health effects model at a given initial value of α3. C(bottom left): The
power for α̂3 of each health effects model at a given initial value of α3. D(bottom right): The type 1
error for α̂4 of each health effects model at a given initial value of α3.
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Figure 3.10: Overlaid Power and Type 1 Error Curves for Y (4)
t |St and Ψgiven : A(top left): The

type 1 error for α̂1 of each health effects model at the given initial value of α4. B(top right): The
type 1 error for α̂2 of each health effects model at a given initial value of α4. C(bottom left): The
type 1 error for α̂3 of each health effects model at a given initial value of α4. D(bottom right): The
power for α̂4 of each health effects model at a given initial value of α4.
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Figure 3.11: Overlaid Power and Type 1 Error Curves for Y (1)
t |St and Ψ13 : A(top left): The

power for α̂1 of each health effects model at the given initial value of α1. B(top right): The type 1
error for α̂2 of each health effects model at a given initial value of α1. C(bottom left): The type 1
error for α̂3 of each health effects model at a given initial value of α1. D(bottom right): The type 1
error for α̂4 of each health effects model at a given initial value of α1.
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Figure 3.12: Overlaid Power and Type 1 Error Curves for Y (2)
t |St and Ψ13 : A(top left): The type

1 error for α̂1 of each health effects model at the given initial value of α2. B(top right): The power
for α̂2 of each health effects model at a given initial value of α2. C(bottom left): The type 1 error for
α̂3 of each health effects model at a given initial value of α2. D(bottom right): The type 1 error for
α̂4 of each health effects model at a given initial value of α2.

122



..

0.00 0.10 0.20 0.30 0.40

0.
00

0.
25

0.
50

0.
75

1.
00

Type 1 Error:α̂1

α3

P
ow

er

CFA
EFA
PCA
KSC
TSmod
TSnov
TSlam

0.00 0.10 0.20 0.30 0.40

0.
00

0.
25

0.
50

0.
75

1.
00

Type 1 Error:α̂2

α3

Ty
pe

 1
 E

rr
or

CFA
EFA
PCA
KSC
TSmod
TSnov
TSlam

0.00 0.10 0.20 0.30 0.40

0.
00

0.
25

0.
50

0.
75

1.
00

Power:α̂3

α3

Ty
pe

 1
 E

rr
or

CFA
EFA
PCA
KSC
TSmod
TSnov
TSlam

0.00 0.10 0.20 0.30 0.40

0.
00

0.
25

0.
50

0.
75

1.
00

Type 1 Error:α̂4

α3

Ty
pe

 1
 E

rr
or

CFA
EFA
PCA
KSC
TSmod
TSnov
TSlam

Figure 3.13: Overlaid Power and Type 1 Error Curves for Y (3)
t |St and Ψ13 : A(top left): The type

1 error for α̂1 of each health effects model at the given initial value of α3. B(top right): The type 1
error for α̂2 of each health effects model at a given initial value of α3. C(bottom left): The power for
α̂3 of each health effects model at a given initial value of α3. D(bottom right): The type 1 error for
α̂4 of each health effects model at a given initial value of α3.
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Figure 3.14: Overlaid Power and Type 1 Error Curves for Y (4)
t |St and Ψ13 : A(top left): The type

1 error for α̂1 of each health effects model at the given initial value of α4. B(top right): The type 1
error for α̂2 of each health effects model at a given initial value of α4. C(bottom left): The type 1
error for α̂3 of each health effects model at a given initial value of α4. D(bottom right): The power
for α̂4 of each health effects model at a given initial value of α4.
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Figure 3.15: Overlaid Power and Type 1 Error Curves for Y (1)
t |St and Ψ31 : A(top left): The

power for α̂1 of each health effects model at the given initial value of α1. B(top right): The type 1
error for α̂2 of each health effects model at a given initial value of α1. C(bottom left): The type 1
error for α̂3 of each health effects model at a given initial value of α1. D(bottom right): The type 1
error for α̂4 of each health effects model at a given initial value of α1.
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Figure 3.16: Overlaid Power and Type 1 Error Curves for Y (2)
t |St and Ψ31 : A(top left): The type

1 error for α̂1 of each health effects model at the given initial value of α2. B(top right): The power
for α̂2 of each health effects model at a given initial value of α2. C(bottom left): The type 1 error for
α̂3 of each health effects model at a given initial value of α2. D(bottom right): The type 1 error for
α̂4 of each health effects model at a given initial value of α2.

Yt|St, α1 = 0.05, α2 = 0, α3 = 0,α4 = 0

Coef. TSov Std Err. TSov Std Dev.
α̂1 0.0040 0.0030
α̂2 0.0049 0.0035
α̂3 0.0058 0.0045
α̂4 0.0085 0.0069

Yt|St, α1 = 0.0, α2 = 0.05, α3 = 0,α4 = 0

Coef. TSov Std Err. TSov Std Dev.
α̂1 0.0052 0.0028
α̂2 0.0062 0.0038
α̂3 0.0071 0.0046
α̂4 0.0101 0.0068

Yt|St, α1 = 0.30, α2 = 0, α3 = 0,α4 = 0

Coef. TSov Std Err TSov Std Dev.
α̂1 0.01906 0.0039
α̂2 0.0222 0.0050
α̂3 0.0245 0.0050
α̂4 0.0336 0.0073

Yt|St, α1 = 0.0, α2 = 0.30, α3 = 0,α4 = 0

Coef. TSov Std Err. TSov Std Dev.
α̂1 0.0228 0.0039
α̂2 0.0266 0.0049
α̂3 0.0293 0.0050
α̂4 0.0402 0.0071

Table 3.6: This table represents the parameter estimates and errors for the 2-stage ”overlap” mod-
els conducted on simulated data. Generalized linear models were conducted for 1000 iterations.
The subsequent estimates were aggregated into medians, and 95% CI’s. Each model included no
covariates.
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Figure 3.17: Overlaid Power and Type 1 Error Curves for Y (3)
t |St and Ψ31 : A(top left): The type

1 error for α̂1 of each health effects model at the given initial value of α3. B(top right): The type 1
error for α̂2 of each health effects model at a given initial value of α3. C(bottom left): The power for
α̂3 of each health effects model at a given initial value of α3. D(bottom right): The type 1 error for
α̂4 of each health effects model at a given initial value of α3.

Yt|St, α1 = 0.05, α2 = 0, α3 = 0,α4 = 0

Coef. TSnov Std Err. TSnov Std Dev.
α̂1 0.0008 0.0007
α̂2 0.0011 0.0011
α̂3 0.0017 0.0017
α̂4 0.0014 0.0014

Yt|St, α1 = 0.0, α2 = 0.05, α3 = 0,α4 = 0

Coef. TSnov Std Err. TSnov Std Dev.
α̂1 0.0007 0.0008
α̂2 0.0011 0.0012
α̂3 0.0018 0.0017
α̂4 0.0014 0.0016

Yt|St, α1 = 0.30, α2 = 0, α3 = 0,α4 = 0

Coef. TSnov Std Err TSnov Std Dev.
α̂1 0.0163 0.0009
α̂2 0.0163 0.0016
α̂3 0.0232 0.0027
α̂4 0.0189 0.0021

Yt|St, α1 = 0.0, α2 = 0.30, α3 = 0,α4 = 0

Coef. TSnov Std Err. TSnov Std Dev.
α̂1 0.0188 0.0010
α̂2 0.0189 0.0017
α̂3 0.0267 0.0026
α̂4 0.0218 0.0022

Table 3.7: This table represents the parameter estimates and errors for the 2-stage ”no-overlap”
models conducted on simulated data. Generalized linear models were conducted for 1000 itera-
tions. The subsequent estimates were aggregated into medians, and 95% CI’s. Each model included
no covariates.
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Figure 3.18: Overlaid Power and Type 1 Error Curves for Y (4)
t |St and Ψ31 : A(top left): The type

1 error for α̂1 of each health effects model at the given initial value of α4. B(top right): The type 1
error for α̂2 of each health effects model at a given initial value of α4. C(bottom left): The type 1
error for α̂3 of each health effects model at a given initial value of α4. D(bottom right): The power
for α̂4 of each health effects model at a given initial value of α4.
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