
 

Antibodies in Vaccine Protection against SIV and HIV-1 Infection

 

 

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Alpert, Michael.  2011.  Antibodies in Vaccine Protection against
SIV and HIV-1 Infection.  Doctoral dissertation, Harvard
University.

Accessed April 17, 2018 3:52:49 PM EDT

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:10036766

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/10036766&title=Antibodies+in+Vaccine+Protection+against+SIV+and+HIV-1+Infection&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=null&department=NONE
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
© 2011 Michael David Alpert  

All rights reserved. 



	   iii	  

Dissertation Adviser: Dr. David T. Evans                                   Author: Michael D. Alpert 
 

 

Antibodies in Vaccine Protection against SIV and HIV-1 Infection 

 

Abstract 

 

The properties of human immunodeficiency virus type 1 (HIV-1) and its simian 

counterpart SIV that enable persistent replication in the face of robust cellular, antibody, 

and innate immune responses have complicated efforts to develop a safe and effective 

vaccine.  Vaccine protection against HIV-1 infection may require a combination of 

immune mechanisms.  However, the types of immune responses that can be induced by 

vaccination to prevent HIV-1 infection remain unclear. 

The features of the viral envelope glycoprotein (Env) that confer inherent 

resistance to neutralization by antibodies also interfere with the development of antibody 

responses.  We therefore vaccinated rhesus macaques with single-cycle SIV (scSIV) 

strains expressing Env proteins mutated to remove features that interfere with the 

induction of antibody responses.  Antibodies capable of neutralizing Env-modified but 

not wild-type SIV were selectively enhanced. 

Identifying the immune responses underlying complete protection by live-

attenuated SIV against pathogenic SIV challenge may provide guidance for HIV-1 

vaccine design.  To test the hypothesis that antibodies not measurable by assays for virus 

neutralization correlate with protection by live-attenuated SIV, we developed a novel 

assay for antibody-dependent cell-mediated cytotoxicity (ADCC).  ADCC activity 
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increased progressively over time after inoculation, and was measurable against viruses 

expressing heterologous Env proteins from independent SIV isolates when neutralization 

was undetectable.  Two separate pathogenic SIVmac251 challenge experiments took 

advantage of either the strain specificity or the time-dependent development of immunity 

to overcome complete protection by live-attenuated SIV.  In both experiments, macaques 

inoculated with live-attenuated SIV that remained uninfected by SIVmac251 had 

significantly higher ADCC activity than those that became infected. 

We also measured ADCC for the primary immune correlates analysis of a recent 

HIV-1 vaccine clinical trial in Thailand (RV144) that reported modest vaccine protection 

(31%).  There was a nonsignificant trend towards lower risk of infection among 

vaccinees with high versus low relative ADCC activity.  However, Env-specific IgA 

correlated with risk, prompting an analysis stratified by IgA levels.  Among vaccinees 

with low Env-specific IgA, there was lower risk of infection among those with higher 

ADCC activity. 

These observations suggest that antibodies that direct ADCC may contribute to 

vaccine protection against SIV and HIV-1 infection. 
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CHAPTER 1: INTRODUCTION 
 
 

A primer on HIV-1 vaccine science 
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1. A. THE GLOBAL HIV-1 PANDEMIC 
 

Scale of the HIV-1 pandemic 

The pandemic caused by human immunodeficiency virus type 1 (HIV-1) is the 

great catastrophe of our time.  Approximately 30 million people have died of acquired 

immunodeficiency virus syndrome (AIDS)1, which is caused by infection with HIV-12-6.  

Globally, 33 million people are currently infected by HIV-11,7 (Fig. 1.1).  Prevalence 

rates exceed 10% in many sub-Saharan African countries, and are highest in Swaziland, 

at 26%1.  South Africa, Nigeria, India, Kenya, Mozambique, Tanzania, Uganda, the 

United States, and Zimbabwe each have over 1 million people living with HIV-1 

infection7.  HIV-1 has already caused and continues to cause vast suffering. 

 
Figure 1.1. Global distribution of HIV-1 infections1,7. HIV-1 is a pandemic disease, 
with the majority of infections and highest infection rates occurring in Africa.  However, 
the United States is among the 10 countries with the largest total number of people living 
with HIV-1. 
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Emergence and features of the HIV-1 pandemic 

HIV-1 was first identified as a lentivirus associated with the syndrome now 

known as AIDS in homosexual men in the United States 19818-10.  High transmission 

rates among homosexual men and intravenous (i.v.) drug users enabled the virus to 

spread rapidly among these high-risk populations11.  However, HIV-1 predominantly 

affects the general population in the countries with the highest prevalence rates1.  In sub-

Saharan Africa today, women are disproportionately infected by HIV-1, comprising 76% 

of HIV-positive people.  Among teenage girls aged 15-19 in Lesotho, nearly 8% are HIV-

positive1.  A prominent theme of the HIV-1 pandemic is that infection rates tend to be 

highest among otherwise vulnerable populations. 

 

Consequences of the HIV-1 pandemic 

Consequences of the HIV-1 pandemic cause additional hardship.  Shortened life 

expectancies, high morbidity, and the cost of caring for the sick handicaps economic 

development, perpetuating poverty.  The 16 million children orphaned by AIDS are an 

appalling but prominent component of this vicious cycle1.  These forces have the 

potential to fuel regional instability12.  HIV-1 has the potential to spawn additional public 

health crises, seen in a resurgence of tuberculosis (TB)13.  The effects of HIV-1 have 

ramifications beyond those who are infected.  
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Need for a safe and effective HIV-1 vaccine 

A safe and effective vaccine for HIV-1 is urgently needed.  Widespread 

awareness of the risk of HIV-1 infection through unprotected sex or the sharing of 

needles has not led to an adequate reduction in the spread of HIV-1 infection.  

Approximately 2.6 million new infections continue to occur per year1.  An international 

public health program to test all potentially at-risk individuals for HIV-1 infection, and to 

treat with highly active antiretroviral therapy (HAART) all persons identified as infected, 

could theoretically reduce new infections by curtailing viral replication in the would-be 

transmitter14-16.  However, a vast and expensive “test and treat” program has yet to 

materialize.  Only a safe and effective vaccine for HIV-1 can end the pandemic.  

 

1. B. RESISTANCE TO CELLULAR AND INNATE IMMUNITY  

Viral resistance to host immune responses complicates vaccine development 

 The difficulty of vaccinating against HIV-1 stems from features that enable it to 

replicate persistently for years17-20 in the face of vigorous antibody, T-cell, and innate 

immune responses.  In particular, the inherent resistance of primate lentiviruses to 

neutralization of viral infectivity by antibodies has impeded efforts to develop a vaccine 

that prevents HIV-1 infection.  Once infection has occurred, HIV-1 and SIV circumvent 

immunity by evolving to escape virus-specific immune responses, and by inducing 

immunodeficiency.  Thus, the resistance of primate lentiviruses to host immunity has 

prevented the development of a safe and effective vaccine. 
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Resistance to innate antiviral restriction factors 

 A vaccine against HIV-1 might have been superfluous, if not for viral resistance 

to proteins that mediate innate immunity.  The cytidine deaminase APOBEC3G is an 

innate antiviral restriction factor that can induce lethal hypermutation of nascent viral 

cDNA8,21-24 and interfere with reverse transcription25.  However, the Vif protein of HIV-1 

binds APOBEC3G and the E3 ubiquitin ligase complex Cul5/ElonginB/ElonginC/Rbx1 

to promote its ubiquitylation and proteosomal degradation, thereby freeing the virus from 

restriction26-29.  BST-2 is an interferon-inducible restriction factor, which prevents virus 

release by tethering virions to the producer cell, as well as promoting the internalization 

and degradation of virus particles30-33.  However, the Vpu protein of HIV-1 and the Nef 

protein of SIV have evolved to oppose restriction by BST-2 through mechanisms that 

inhibit its surface expression30,31,34,35.  In an example of genetic malleability and rapid 

evolution to oppose innate immunity, nef-deleted SIV acquired the ability to 

downmodulate BST-2 through mutations in the cytoplasmic tail of the SIV envelope 

glycoprotein36.  Rhesus macaque TRIM5α and owl monkey TRIM-Cyp can block 

infection by HIV-1 but not SIVmac23937,38.  The current level of resistance of SIVmac239 

to rhesus TRIM5α probably evolved after its cross-species transmission from sooty 

mangabeys, since common rhesus TRIM5 alleles partially restrict the sooty mangabey 

viruses SIVsmE660 and SIVsmE543-3 but not SIVmac23939-41.  Clearly, HIV-1 can 

replicate in the presence of human TRIM5α37.  Thus, countermeasures against innate 

antiviral restriction factors have enabled the primate lentiviruses to replicate in their hosts.  
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Resistance to cellular immune responses  

Downregulation of MHC class I. The primate lentiviruses interfere with 

effective cellular immunity though multiple mechanisms.  CD8+ T-cells can inhibit viral 

replication and also kill virus-infected cells42-55.  However, recognition of viral infection 

by CD8+ T-cells depends upon presentation of viral peptides by MHC class I molecules56.  

The Nef proteins of HIV-1 and SIV are capable of downregulating MHC class I 

molecules, thereby interfering with CD8+ T-cell recognition of viral peptides presented 

by MHC class I57.  The absence of this immune-evasion function probably contributes to 

the lower replication and pathogenicity of nef-deleted strains of SIV or HIV-1, relative to 

wild-type viruses58,59.  Although MHC class I downregulation impairs recognition of 

virus-infected cells by CD8+ T-cells, natural killer (NK) cells respond to the absence of 

MHC class I by killing cells missing these surface molecules60.  SIV and HIV-1 solve this 

dilemma with characteristic elegance by selectively downregulating a subset of MHC 

class I molecules61-63.  HIV-1 Nef reduces recognition by the majority of virus-specific 

CD8+ T-cells by selectively downregulating the MHC class I molecules HLA-A and 

HLA-B, while leaving HLA-C and HLA-E expressed on the surface of the virus-infected 

cell61.  While HLA-C represents the product of a unique duplication of the HLA-B locus 

that occurred in apes, rhesus macaques possess different duplications within the MHC 

locus64,65.  Using a similar strategy, SIV Nef proteins contribute to immune evasion by 

selectively downregulating specific macaque and sooty mangabey MHC alleles62.  

Selective downregulation of MHC class I interferes with CD8+ T-cell-mediated immunity. 
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CD8+ T-cell escape. The primate lentiviruses evolve to escape CD8+ T-cell 

responses during ongoing infection in vivo.  Novel mutations arise during HIV-1 

infection, which abolish MHC-restricted lysis by CD8+ T-cells of targets pulsed with the 

mutant peptide66.  Subsequent demonstrations of escape included studies showing that 

CD8+ T-cell escape is not only a hallmark of chronic infection67-71, but emerges early 

during acute infection72-74.  A loss of controlled viral replication could be temporally 

associated with the emergence of CD8+ T-cell escape variants, and the number of 

mutations in known CD8+ T-cell epitopes correlated with viral load70.  Furthermore, 

CD8+ T-cell escape can be achieved through mutations in flanking amino acids that affect 

the processing of peptides for presentation by MHC class I, without affecting epitope 

itself32.  Nevertheless, a loss of controlled viral replication and progression to AIDS can 

occur without CD8+ T-cell escape75.  The genetic plasticity of primate lentiviruses 

routinely permits the escape of CD8+ T-cell recognition through ongoing evolution in 

vivo, and represents a prominent immune evasion mechanism. 

 

Tropism for CD4+ T-cells. Induction of immunodeficiency by the primate 

lentiviruses is itself an immune evasion mechanism.  Direct infection of CD4+ T-cells and 

depletion of this lymphocyte population impairs immune responses76.  The extent of 

CD4+ T-cell depletion is predictive of progression to immunodeficiency and the onset of 

AIDS-defining illness77.  This association is probably due in part to the loss of CD4+ T-

cell functions critical to the orchestration of immune responses.  CD4+ T-cells produce 

cytokines and support lymphoid architecture critical to promoting antibody and cell-

mediated immune responses78-83.  Thus, a biological property of immunodeficiency 
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viruses as basic as their tropism for CD4+ T-cells is part of a multifaceted immune 

evasion strategy.   

 

Chronic immune activation and negative regulation. Viral persistence may 

contribute to immune evasion by inducing negative regulatory pathways that dampen the 

efficacy of cellular immune responses.  Tolerance to self versus responsiveness to 

pathogens is perhaps the central concept in understanding the regulation of immunity84.  

To prevent harm to healthy cells, and to prevent an uncontrolled proliferation of 

lymphocytes that would characterize leukemia or lymphoma, immune functions are 

negatively regulated by multiple mechanisms.  Self-reactive T-cells normally undergo 

programmed cell death (apoptosis), and thus do not undergo clonal expansion.  However, 

as redundant mechanisms to eliminate self-reactive T-cells and B-cells, and to prevent 

uncontrolled proliferation, these cells are also deleted by apoptosis in the periphery, or 

enter an unresponsive state known as anergy84.  Consistent with a role for chronic 

antigenic stimulation in immunodeficiency, T-cell activation predicted shorter survival 

better than viral load measurements in HIV-1 patients85.  In the context of chronic viral 

infection, the reduced capacity of T-cells to respond to antigen has been called 

“dysfunction” or “exhaustion”86-92.  However, since this state bears similarities to anergy 

and includes programmed cell death, the term “negative regulation” may be more 

accurate.  The negative regulation of immune responses in the context of chronic 

infection with HIV-1 or SIV may undermine cellular immunity and contribute to the 

development of AIDS-defining immunodeficiency. 
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Chronic immune activation due to increased microbial translocation. 

Microbial translocation across the intestinal epithelium contributes to the chronic immune 

activation induced by HIV-1 or SIV infection93,94.  The gastrointestinal tract is colonized 

by a high density of commensal bacteria (109-1012 bacterial cells per gram in the colon), 

which exist in mutually-beneficial homeostasis with their host95.  However, the integrity 

of gut mucosal immunity is compromised during HIV-1 or SIV infection, due at least in 

part to the depletion of gut CD4+ T-cells early after infection96-100.  In people infected 

with HIV-1 and in rhesus macaques infected with SIV, lipopolysaccharide (LPS), a major 

component of the cell wall of gram-negative bacteria, is detectable in plasma at elevated 

levels93,94.  Elevated LPS in plasma indicates that bacteria are exiting the lumen of the 

intestine and transiting across a breached mucosal barrier.  LPS is one of several 

molecules recognized by receptors for pathogen-associated molecular patterns (PAMPs).  

Binding of PAMPs such as LPS to their receptors activates the secretion of interferon and 

proinflammatory cytokines.  Consequently, higher plasma LPS is correlated with T-cell 

activation and interferon concentration in plasma.  Thus, microbial products that 

translocate across a compromised mucosal barrier may contribute to chronic immune 

activation in HIV-1 and SIV infection.  Chronic immune activation, as both a direct and 

an indirect consequence of HIV-1 or SIV infection, may facilitate viral replication by 

contributing to immunodeficiency. 

 

Negative regulation of immunity through Fas. One pathway HIV-1 and SIV 

exploit within the normal regulatory framework of the immune system is the induction of 

CD95/Fas on T-cells responding to viral infection.  CD95/Fas is used as a marker for 
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activated T-cells101.  Interaction between CD95/Fas and its ligand (FasL) initiates 

apoptosis102.  HIV-1-specific CD8+ T-cells express CD95/Fas, and hence are subject to 

depletion by this mechanism103.  The Nef proteins of HIV-1 and SIV induce FasL 

expression, conveying a pro-apoptotic signal to virus-specific CD8+ T-cells104,105.  This 

pro-apoptotic signal is also received by uninfected CD4+ T-cells, and thus serves as an 

additional mechanism promoting CD4+ T-cell depletion106,107.  Thus, the CD95/Fas pro-

apoptotic pathway is exploited by HIV-1 and SIV. 

 

Negative regulation of immunity through PD-1. Chronic viral infection can 

induce of a state of unresponsiveness in virus-specific T-cells, without deletion of these 

cells from the circulating lymphocyte population108.  This may be due to a combination of 

negative regulatory mechanisms that include expression of PD-1 (programmed death 1)86.  

The virus-specific T-cells from HIV-1-infected people and SIV-infected macaques 

express PD-1, and blocking the PD-1 ligand promotes the effector functions of these cells, 

suggesting that chronic infection by the primate lentiviruses promotes T-cell 

unresponsiveness associated with PD-1 expression86.  The PD-1 pathway is one 

mechanism through which cellular immune responses can be functionally inactivated by 

chronic viral infection. 

 

Negative regulation of NK cells. NK cells are capable of killing virus-infected 

cells, but are functionally impaired in chronic HIV-1 infection.  NK cells can be induced 

to kill targets by several triggers, including the absence of MHC class I, mentioned 

above60.  Antibody-dependent cell-mediated cytotoxicity (ADCC) is another mechanism 
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by which NK cells can kill virus-infected targets109,110.  NK cells will kill virus-infected 

cells by ADCC when a lattice of antibody-antigen interactions crosslinks CD16, a 

receptor for IgG isotype antibodies that is expressed on the surface of NK cells.  CD16 

crosslinking induces the NK cell to degranulate, releasing perforin and granzyme, which 

kill the virus-infected cell.  However, much of the cytolytic CD56dim CD16pos population 

of NK cells becomes replaced by a population of unresponsive CD56neg CD16pos NK 

cells in the context of chronic HIV-1 infection111-113.  The functional impairment of the 

ability of CD56neg CD16pos cells to secrete cytokines, degranulate, and lyse target cells 

appears to be due to a regulatory mechanism that includes a shift in the equilibrium of 

phosphoinositide metabolism and the downregulation of perforin expression112-116.  

Furthermore, HIV-1 patients have lower levels of CD16 expression on NK cells, perhaps 

due to the sloughing off of CD16 by matrix metalloproteinases following stimulation in 

the context of chronic viral infection117-120.  Chronic infection appears to compromise NK 

function, and thereby promote viral persistence.  Thus, viral persistence itself is an 

immune evasion mechanism that may partially explain AIDS-defining immunodeficiency. 

 

1. C. RESISTANCE TO ANTIBODY RESPONSES 

Basic context for understanding neutralization resistance 

An antibody-resistant fusion machine. To infect a cell, enveloped viruses must 

fuse the viral and cellular membranes, which delivers the viral genome into the cell.  For 

retroviruses, this membrane fusion is mediated by the viral envelope glycoprotein 

(Env)121.  Antibodies can block the entry of viruses into cells, and thereby neutralize viral 

infectivity122-124.  However, Env is able to mediate fusion of the viral and cellular 
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membranes in the presence of antibodies against it.  This capability is necessary for the 

persistent replication of these viruses in the face of vigorous Env-specific antibody 

responses.  The features that enable Env to resist the antibody responses mounted during 

ongoing infection render Env resistant to vaccine-elicited antibody responses.  Thus, the 

difficulty of vaccinating against HIV-1 and SIV is due to features of Env that have 

evolved to enable membrane fusion and persistent viral replication in the presence of 

Env-specific antibody responses.  The same features that minimize the binding of 

antibodies to Env also interfere with the ability of B-cells to interact with Env.  Therefore, 

the features that confer resistance to existing antibody responses interfere with the 

development of effective antibody responses in the context of natural infection, and 

thereby also interfere with attempts to elicit antibody responses by vaccination.  In 

addition, the Env protein has enormous sequence plasticity, which enables variants to 

arise that escape antibody responses.  Continual antigenic escape since the beginning of 

the HIV-1 pandemic has generated considerable sequence diversity125.  The inherent 

resistance of Env to antibodies and the enormous sequence diversity of circulating HIV-1 

isolates pose significant obstacles to the development of an effective vaccine against 

HIV-1.  

 

Gross anatomy of Env. Env is a class I viral fusion protein, the prototypical 

example of which is the hemagglutinin (HA) protein of influenza126.  Like all class I 

fusion proteins, Env is trimeric127,128.  Although synthesized as a 160 kilodalton (kDa) 

glycoprotein (gp160) precursor, it is cleaved by the protease furin into 2 polypeptides, 

gp120 and gp414,129 (Fig. 1.2a).  The names SU and TM refer to the N-terminal surface 
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and C-terminal transmembrane domains of retroviral Env proteins121.  Using retrovirus 

terminology, SU is gp120, and TM is gp41.  Env is heavily glycosylated, with 

approximately 24 N-linked glycans in gp120 that account for half of its molecular 

weight130, and 3-4 N-linked glycans in gp41131,132 (Fig. 1.2a).  Gp120 also possesses 5 

loops created by disulfide linkages, the sequences of which are highly variable, and are 

thus designated as variable loops 1-5 (V1, V2, V3, V4, and V5) (Fig. 1.2a).  The binding 

sites for the viral receptor (CD4)133 and the coreceptor134,135 are on gp120.  Primate 

lentiviruses can utilize one or more type of chemokine receptor as a coreceptor.  These 

chemokine receptors, which belong to the broader family of G protein-coupled receptors 

(GPCRs), include CCR2, CCR3, CCR5, CXCR4, GPR1, GPR15/BOB, and 

STRL33/BONZO134-139.  Interactions between gp120 and CD4 plus the coreceptor induce 

conformational changes in gp120 and gp41 that drive membrane fusion (Fig. 1.2c-g).  

However, antibodies can bind to Env such that they prevent the interactions necessary for 

membrane fusion, and thus neutralize virus infectivity.  Similarly, recombinant soluble 

CD4 (sCD4), expressed as a secreted protein that is truncated before the transmembrane 

domain, can also inhibit entry of HIV-1 and SIV140-145.  An exception to direct interaction 

with Env as a mechanism of neutralization is that antibodies can also inhibit fusion by 

binding directly to CD4 or the coreceptor146-149.  Env mediates fusion of the viral and 

cellular membranes, unless antibodies or sCD4 bind to Env and neutralize virus 

infectivity. 
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Figure 1.2. Major features and conformational rearrangements of Env. The SIV Env 
protein is depicted schematically, indicating N-linked glycans, variable loops, and the 
cleavage site between gp120 and gp41 (a).  Env trimer reconstructed from cry-electron 
tomography150 (b).  Landmarks of the gp120 crystal structure, including the CD4-binding 
loop (yellow), bridging sheet (dashed box), inner domain 7-stranded β-sandwich (blue), 
“topological layers” (green, brown, and magenta), and outer domain (red) (c) 151,152. 
NMR structure of the post-fusion 6-helix bundle of gp41153 (d).  Cartoon diagrams of the 
native trimer (e), gp120 bound to CD4 and CCR5 plus the extended PHI conformation of 
gp41 (f), and the post-fusion 6-helix bundle (g). 
 
  

T-cell line-adapted viruses are not resistant to neutralization. The extent to 

which HIV-1 Env proteins are inherently resistant to neutralizing antibodies, and the 

problem this poses to HIV-1 vaccine development, was not initially appreciated and 

remains controversial.  HIV-1 strains isolated earlier in the disease course typically use 
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CCR5 but not CXCR4 as a coreceptor, whereas strains isolated from AIDS patients late 

in the disease course frequently use CXCR4 instead of CCR5, or are capable of using 

both (i.e. are dual-tropic)154,155.  Although there are neutralization-sensitive variants of 

HIV-1 and SIV that utilize CCR5, no highly neutralization-resistant CXCR4-tropic or 

dual-tropic strains have been characterized to date, suggesting that CXCR4 usage may 

not be compatible with a high degree of resistance to neutralization by antibodies and 

sCD4156-160.  Nonetheless, the immortalized CD4+ T-cell lines utilized for growing HIV-1 

and also for various assays express CXCR4 but not CCR5161.  The sensitivity of HIV-1 or 

SIV to neutralization can be increased by passaging these viruses in CD4+ T-cell lines, or 

in stimulated lymphocytes162-170.  This loss of resistance to neutralization may be due to 

adaptation to CXCR4 and to prolonged replication in the absence of host antibody 

responses.  Commonly used lab strains such as HIV-1HxB2 and HIV-1MN were highly 

passaged, first in primary cells, and then in an immortalized CD4+ T-cell line, after being 

obtained from AIDS patients2,171-174.  Consequently, these lab strains are easily 

neutralized by antisera elicited by vaccination with 

recombinant gp120175-177 (Fig. 1.3), by sCD4162, and also by 

monoclonal antibodies with various specificities178.  After the 

experimental infection of chimpanzees and the accidental 

infection of a laboratory worker with HIV-1HxB2, this T-cell 

line-adapted strain acquired a neutralization-resistant 

phenotype, suggesting that its previous neutralization  

Figure 1.3. Neutralization of T-cell line-adapted strains but 

not primary isolates of HIV-1177. 
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sensitivity was an adaptation to growth in vitro179,180.  The testing of several vaccine 

products developed by companies in the early 1990’s was discontinued when antibody 

responses elicited by these vaccines were found to have no effect on the infectivity of 

HIV-1 strains that were minimally passaged or cloned directly without growth in vitro, 

known as primary isolates, despite their ability to neutralize T-cell line-adapted lab 

strains166,176,177. 

 

Many antibodies fail to neutralize T-cell line adapted viruses. Despite the 

sensitivity of T-cell line-adapted strains such as HIV-1HxB2 to neutralization, many 

gp120-specific monoclonal antibodies still fail to neutralize these viruses178,181.  This 

failure to neutralize T-cell line-adapted strains can be understood in terms of the ability of 

antibodies specific for gp120 to bind monomeric versus trimeric forms of the protein.  

Secreted, soluble trimeric forms of Env protein can be produced by mutating the furin 

cleavage site at the gp120/gp41 junction, plus adding a stop codon at the beginning of the 

membrane-spanning portion of gp41182,183.  These soluble trimers are generally 

designated “gp140,” since they have a lower molecular weight than gp160, due to the 

absence of the cytoplasmic tail of gp41.  The affinity of antibodies for gp120 or gp140 is 

typically assessed by enzyme-linked immunosorbent assay (ELISA).  A subset of gp120-

specific antibodies have significantly higher affinities by ELISA for gp120 than for 

preparations containing trimeric gp140182,184.  Although trimerization may decrease 

binding through conformational effects, this reduced binding to preparations containing 

gp140 appears to often be due to the occlusion of antibody epitopes by trimerization182,184.  

Preparations of trimeric gp140 often appear to contain a fraction of dissociated 
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monomeric protein, which may account for the incomplete elimination of signal against 

epitopes occluded specifically in the context of trimeric gp140185.  Since inter-subunit 

interfaces are not surface-exposed, they have probably not evolved to be poor targets for 

antibodies.  Due to occlusion in the trimer, antibodies that recognize the interfaces 

between gp120 subunits and between gp120 and gp41 cannot neutralize even T-cell line-

adapted viruses. 

 

Neutralizing, non-neutralizing, and silent faces of gp120. Neutralizing and 

non-neutralizing gp120-specific antibodies can be assigned to competition groups, based 

upon reciprocal binding inhibition experiments181,186.  For example, preincubation with a 

saturating concentration of the CD4-binding site antibody b12 inhibits the binding of a 

sCD4-IgG fusion construct, and preincubation with a saturating concentration of sCD4-

IgG inhibits binding of b12181.  Thus, sCD4-IgG and b12 belong to the same competition 

group.  Antibodies that bind gp120 but fail to neutralize even T-cell line-adapted viruses 

map to competition groups that are distinct from those that can neutralize T-cell line-

adapted viruses181,184.  Although a crystal structure for gp120 was not yet available, the 

authors of this early work were able to assign the distinct competition groups to separate 

neutralizing and non-neutralizing faces of gp120 (Fig. 1.4).  The spatial locations of the 

neutralizing and non-neutralizing faces of gp120 were identified when the amino acids 

necessary for the binding of various monoclonal antibodies were mapped onto the first 

HIV-1 gp120 crystal structure (Fig. 1.5)187,188.  The localization of neutralization epitopes 

to one surface, the neutralizing face, suggests that the other faces of gp120 are not 

exposed in the trimer187,188.  This crystal structure also identified a third face of gp120 as 



	   18	  

an immunogenically silent face, due to the absence of monoclonal antibodies that mapped 

to the underlying surfaces187,188.  Thus, a subset of gp120-specific antibodies competes 

for binding to epitopes at interfaces between Env subunits that are occluded in the trimer.  

Consequently, these antibodies cannot neutralize even T-cell line-adapted viruses.  

 

 

 
Figure 1.4. Some gp120-specific monoclonal antibodies map to surfaces that are 
occluded in the trimer. This drawing combines the cross-competition analysis of 
monoclonal antibody specificities conducted by Moore et al.181 with differences in the 
relative ability to bind gp120 versus gp140 conducted by Wyatt et al.184 Competition 
groups and monoclonal antibodies were drawn on the neutralizing face, which contains 
the CD4-binding site (a), and the non-neutralizing face (b). The intensity of red shading is 
proportional to the reduction in binding for gp140 relative to gp120. 
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Figure 1.5. Crystal structure of HIV-1 gp120 in complex with sCD4 and monoclonal 
antibody 17b. A ribbon structure for gp120 in the CD4-bound conformation is oriented 
with the side proximal to the virus membrane at top (a)187. A similarly-oriented space-
filling structure is colored to indicate the silent, non-neutralizing, and neutralizing faces 
of gp120 (b)188.  The CD4 and 17b polypeptide chains are not shown. 
 
 

Antibodies that bind monomeric gp120 but not Env expressed on cells. As 

observed for neutralization of T-cell line-adapted viruses, a subset of gp120-specific 

antibodies cannot bind Env that is expressed on the cell surface.  Among monoclonal 

antibodies that bound gp120, only the subset that were capable of binding to cells 

expressing Env were also capable of neutralizing virus infectivity189.  Despite having a 

similar ability to bind gp120 as sera from HIV-1 patients, sera from rabbits immunized 

with recombinant gp120 protein poorly bound to cells transfected with DNA encoding an 

Env derived from HIV-1HxB2
190.  The inability of these gp120-specific antibodies to bind 

Env expressed on the cell surface suggests that these antibodies recognized surfaces that 

reside at interfaces between subunits.  Therefore, antibodies that recognize the interfaces 

between gp120 subunits and between gp120 and gp41 are occluded within Env trimers on 

virions and cells. 
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Antibodies that neutralize but do not bind monomeric gp120. The converse to 

the inability of many gp120-specific antibodies to bind Env trimers is the class of 

antibodies that bind trimeric Env but not monomeric gp120.  For example, although most 

of the Env-specific monoclonal antibodies isolated by Walker et al. from an HIV-1 

patient with a potent neutralizing antibody response were non-neutralizing, most of those 

capable of neutralizing virus infectivity did not bind monomeric gp120 and gp41 (Fig. 

1.6)191.  Neutralizing antibodies that bind Env on virus particles and cells but do not bind 

monomeric gp120 or gp41 subunits are quaternary antibodies specific for conformational 

structures that depend upon interactions with other subunits of the Env trimer192-195.  Thus, 

most antibodies that bind monomeric Env subunits cannot neutralize, and many 

neutralizing antibodies cannot bind monomeric Env subunits. 

 
Figure 1.6. Neutralization versus gp120 and gp41 binding191. Most gp120- or gp41-
specific monoclonal antibodies failed to neutralize infectivity, and most neutralizing 
antibodies failed to bind recombinant gp120 or gp41 in an ELISA. 
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Primary isolates of HIV-1 and SIV are resistant to neutralization. Unlike T-

cell line-adapted viruses, primary isolates of HIV-1 are highly resistant to neutralization 

by antibodies and sCD4162,170,196-204.  For example, a panel of reagents including sCD4-

IgG, monoclonal antibodies, and patient sera failed to neutralize a panel of primary HIV-

1 isolates, despite having similar abilities to bind recombinant gp120 proteins from these 

viruses200.  The neutralization resistance of HIV-1 strains has recently been organized 

into a 3-tier system (Fig. 1.7)202.  In this tiered system, T-cell line-adapted viruses and 

some primary isolates comprised tier 1, the most neutralization-sensitive group.  

However, the majority of primary isolates fell into tier 2.  On average, pooled HIV-1 

patient plasma had 50% neutralization titers against tier 2 viruses of approximately 80 to 

300.  Those with average 50% neutralization titers by pooled plasma of less than 80 

comprised tier 3.  The primary isolates of SIV used in challenge studies, SIVmac239, 

SIVmac251, and SIVsmE543-3, were judiciously selected as models for HIV-1 infection 

and pathogenesis, since they are also resistant to neutralization by antibodies and 

sCD4158,164,205,206.  Whereas neutralization of SIVmac251 is undetectable for sera from 

most infected animals, the 50% neutralization titer against T-cell line-adapted 

SIVmac251TCLA is in excess of a 5120-fold dilution of serum164.  Therefore, neutralization 

resistance is a phenotype that can be lost, and the highly dilute concentrations of antibody 

that neutralize T-cell line-adapted viruses demonstrate that primary viruses resist 

neutralization by high concentrations of these antibodies156,166.  The high level of 

resistance of primary isolates of HIV-1 and SIV to neutralization is a consequence of 

having evolved to replicate persistently for years in the face of robust host antibody 

responses. 
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Figure 1.7. Tiered ranking system for neutralization sensitivity202. The sensitivity of 
109 primary HIV-1 isolates to neutralization by plasma pools representing different 
clades of HIV-1 was compared. The top and bottom of each vertical bar represent the 
highest and lowest neutralizing antibody titer against each virus listed below, and the 
means are indicated by black dots. 
 
 

Difference between transmitted versus chronic variants? Characterizing the 

HIV-1 strains that establish infection in new hosts is a critical element of HIV-1 vaccine 

research.  It is essential that vaccine candidates are evaluated in non-human primate 

challenge studies and in vitro assays using viruses that are similar to transmitted HIV-1 

isolates, since these are the viruses a vaccine will confront.  Initial attempts to deduce the 

characteristics of transmitted HIV-1 strains from viruses isolated during acute infection 

concluded that transmitted strains were comparatively sensitive to neutralization, had 

shorter variable loop sequences, and fewer N-linked glycans than viruses isolated during 

chronic infection207.  However, since this particular study, Derdeyn et al. shaped the 

conventional wisdom on the characteristics of transmitted HIV-1 variants, it may be 

worthwhile to present the caveats of the paper.  Only 8 transmission pairs were studied, 
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and the viruses from only 5 of these couples were compared for differences in 

neutralization sensitivity.  Although it would be difficult to make statistically meaningful 

conclusions based on the study of only 5 viruses, significant differences were observed 

by considering multiple isolates from the new host in aggregate.  However, since these 

viruses were likely to share a single recent common ancestor and are therefore not 

independent, it would be more realistic to only consider the characteristics of the most 

recent common ancestor.  Also, the significance of differences in the length of variable 

loop sequences was evaluated using a 1-sided t-test, although 2-sided statistical tests are 

standard for this type of comparison.  Fewer N-linked glycans was a function of shorter 

variable loops, which are rich in potential sites for glycosylation.  Furthermore, the 

viruses characterized were isolated during acute infection, during which antibody 

responses are initially absent.  It is theoretically possible that mutations that reduce 

resistance to neutralization may be tolerated prior to the emergence of effective antibody 

responses, and viruses harboring such mutations may increase the average neutralization 

sensitivity of acute-phase variants.  Another report showing shorter V1V2 sequences and 

fewer N-linked glycans was also limited to the study of acute-phase variants, rather than 

their most recent common ancestor208.  Therefore, although greater neutralization 

sensitivity for transmitted HIV-1 strains reigned as the conventional wisdom, caveats 

complicate this conclusion. 

 

Transmitted viruses are resistant to neutralization. Newer analyses suggest 

that the transmitted viruses that establish new HIV-1 infections are at least as resistant to 

neutralization as viruses isolated during chronic infection209,210.  The genetic sequence of 
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the virus or viruses responsible for establishing infection in a new host can frequently be 

deduced using a phylogenetic analysis of sequences obtained by single genome 

amplification (SGA) during acute infection (Fig. 1.8)209,210.  Using SGA, a single variant 

can be identified as a recent common ancestor in the majority of infections, although the 

frequency of multiple variants establishing infection is higher among homosexual men 

than among heterosexual men and women209-214.  Since it is conceivable that only the 

descendants of a single variant are detected due to the outgrowth of other transmitted 

variants by one virus, the most recent common ancestor in the acutely infected host is 

known as the transmitted/founder (t/f) virus.  Comparison of the neutralization resistance 

of 55 American HIV-1 clade B t/f viruses to 29 viruses obtained during chronic infection 

revealed that the t/f viruses were at least as resistant to neutralization by a panel of 

reagents as the chronic viruses209.  Among these, the t/f viruses were significantly more 

resistant to the monoclonal antibodies b12, 2F5, and 4E10 (Fig. 1.9).  In addition to 

neutralization, additional features of t/f variants have been characterized.  Among the 55 

t/f variants discussed above, 54 used CCR5 but not CXCR4 as a coreceptor, while one 

was dual-tropic.  Another study reported that t/f viruses were somewhat more sensitive to 

neutralization than chronic isolates, but 3 of the 24 t/f viruses tested in this study were 

dual-tropic215.  In contrast to early associations between the CCR5 usage of viruses 

present early in infection and macrophage tropism, more recent analyses indicate that t/f 

viruses replicate poorly in macrophages214.  Thus, the t/f viruses found by phylogenetic 

analysis to initiate infection in new hosts generally utilize CCR5 but not CXCR4, 

replicate in T-cells but not macrophage, and are resistant to neutralization. 
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Figure 1.8. Deduction of the t/f virus sequence by phylogenetic analysis214. The HIV-
1 sequences used in this analysis were derived from a man with acute HIV-1 infection 
from heterosexual contact, who had detectable viral RNA and viral p24 antigen in plasma, 
but had not yet developed detectable antibody responses.  Of 18 genomes obtained by 
SGA, 3 were identical to the deduced t/f sequence. Brackets indicate nucleotide 
substitutions that occur in more than one variant. 
 

 
 

Figure 1.9: Neutralization 
of t/f and chronic-phase 
isolates of HIV-1209. The t/f 
viruses were significantly 
more resistant to 
neutralization by b12, 2F5, 
and 4E10 than the chronic 
viruses.  HIVIG is pooled 
IgG purified from HIV-1 
patients.  Both HIVIG and 
2F5 neutralized all the 
chronic viruses, whereas a 
subset of t/f viruses were not 
neutralized by the highest 
concentrations of these 
reagents tested.  The t/f and 
chronic viruses were 
comparably resistant to 
sCD4, although 6 of 55 
(11%) were not neutralized 
by the highest sCD4 
concentration tested. 
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Fusion 

Env undergoes global rearrangements to fuse the viral and cellular 

membranes. To comprehend the basis of lentiviral antibody resistance, it is necessary to 

understand how the Env fuses the viral and cellular membranes.  Binding to CD4 and 

CCR5 is associated with extensive conformational changes in gp120.  Biophysical studies 

suggest that binding of gp120 to its receptor and coreceptor incurs a high, 

thermodynamically unfavorable entropy cost216,217.  Isothermal titration calorimetry 

shows that binding of gp120 to CD4 incurs an entropy (-TΔS) cost of approximately 50 

kcal/mol, which is a relatively large value for a protein-protein interaction216,217.  The 

binding of CD4 alone incurs approximately 90% of the total entropy cost of binding both 

CD4 and a monoclonal antibody used as a surrogate for CCR5 (monoclonal antibodies 

17b or 48d)217.  However, binding of 17b or 48d first, before CD4, incurs approximately 

60% of the total entropy cost217.  Therefore, binding of either CD4 or CCR5 facilitates 

the binding of the other.  This suggests the binding of CD4 and CCR5 may be more 

cooperative and simultaneous than sequential, as it is typically imagined.  These high 

entropy costs indicate that disordered regions of gp120 become ordered upon binding 

CD4 and CCR5216,217. 

 

General agreement between crystallographic and biophysical data. A crystal 

structure of the unliganded conformation of gp120218 (i.e. not bound to CD4 or a 

monoclonal antibody) exhibits extensive differences when compared with any of the 

liganded gp120 co-crystals, and in this respect is consistent with the biophysical 

data216,217.  The liganded co-crystal structures include gp120 bound to both CD4 and the 
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coreceptor binding site-specific monoclonal antibodies 17b187, 48d152, 412d219, or X5219, 

or alternatively, gp120 bound to the CD4-binding site-specific monoclonal antibodies 

b12220, b13221, or F105221.  Consistent with the entropic costs associated with binding 

these ligands, the unliganded SIV gp120 crystal structure generally has less secondary 

structure than the liganded crystal structures.  However, this unliganded SIV gp120 

structure was shown to be inconsistent with cryo-electron tomography reconstructions of 

Env as it exists on virions, suggesting that some of the differences between the crystal 

structures may be artifacts of the conditions or truncations necessary for crystallization, 

of the absence of gp41 or trimerization, or of differences between SIV and HIV-1, rather 

than changes induced by binding CD4 and CCR5150.  Nevertheless, the general trends 

indicated by the unliganded SIV gp120 crystal structure are consistent biophysical data 

indicating that extensive conformational changes, including an ordering of disordered 

amino acids, occur upon binding CD4 and CCR5216-218. Therefore, some but perhaps not 

all of the differences between the unliganded and liganded gp120 structures probably 

represent conformational changes induced by binding CD4 and CCR5.    

 

 Conformational changes at the CD4 binding loop. Adopting the CD4-bound 

conformation creates novel secondary structure in the CD4 binding site.  Indeed, the 

ordering of interactions in secondary structure is consistent with the high entropy cost 

incurred by binding CD4.  The CD4 binding loop of HIV-1 and SIV gp120 has the 

conserved sequence motif GGDPE.  The DPE and the following 2 or 3 amino acids form 

an α-helix in all of the liganded gp120 structures, which does not exist in the unliganded 

gp120 structure, suggesting a critical secondary structure for interaction with CD4 does 
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not exist in the unliganded conformation152,187,218-221 (Fig. 1.2c).  The DPE residues make 

multiple contacts with residue F43 of CD4, which is critical for the interaction187,222.  The 

GG of GGDPE extends a β-sheet that is part of CD4 in the gp120 co-crystal structure 

with CD4 and 17b, and this structural element could not exist in the absence of CD4187 

(Fig. 1.2c).  Thus, novel secondary structures form within the CD4 binding site upon 

interaction with CD4.  

 

Formation of the bridging sheet. Binding of CD4 to gp120 creates a 4-stranded 

β-sheet, designated the “bridging sheet”152,187 (Fig. 1.2c).  This bridging sheet is absent 

from the unliganded SIV gp120 structure218.  The stem of the V1V2 loop, which is part of 

the gp120 outer domain, contributes 2 β-strands to the bridging sheet, but the other 2 β-

strands of the bridging sheet are part of the gp120 inner domain.  Thus, as with the CD4 

binding site, novel secondary structures are induced to form the coreceptor binding site.  

The backbone of the bridging sheet is hydrogen bonded with the E of the conserved 

GGDPE motif in the CD4 binding site, and therefore may contribute to stabilization of 

the CD4-bound conformation of the CD4 binding site152,187.  The bridging sheet also 

contains residues that interact with the coreceptor.  Formation of the bridging sheet may 

change the orientation of the inner and outer domains of gp120223. 

 

Conformational changes in the inner domain of gp120. Binding of CD4 and 

CCR5 induces additional conformational changes away from the CD4 binding site, in the 

inner domain of gp120.  A 7-stranded β-sandwich within the inner domain is thought to 

directly contact gp41, due to its probable location in cryo-electron tomographic images150, 
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and due to the locations of mutations that affect association of gp120 with gp41152,224-229 

(Fig. 1.2c).  Three loops extend from this 7-stranded β-sandwich, each of which contains 

an α-helix, at least in the CD4-bound conformation152 (Fig. 1.2c).  These 3 loops have 

been designated as topological layers 1, 2, and 3151,152.  It is layer 2 that contributes 2 β-

strands from the inner domain to form the 4-stranded bridging sheet, together with the 

stem of the V1V2 loop152.  The affinity for CD4 and CCR5 can be reduced by mutations 

at the interface between layers of the inner domain, but restored by compensatory 

mutations that stabilize the CD4-bound conformation, suggesting contacts between the 

layers of the inner domain of gp120 also affect the formation of the CD4-bound 

conformation151,230.  Therefore, transition to the conformation induced by binding CD4 

and CCR5 reshuffles the inner domain of gp120151.  The induction of novel secondary 

structure and other rearrangements in the CD4 binding loop, in the bridging sheet, and in 

the inner domain of gp120 would be expected to incur entropy costs, as indicated by the 

biophysical data. 

 

Extension of gp41. Adopting the CD4-bound conformation causes gp120 to 

disassociate from gp41, and promotes structural rearrangements in gp41 that initiate 

membrane fusion223,231.  The 7-stranded β-sandwich of the inner domain of gp120 is 

thought to transmit these conformational adjustments to gp41, due to its probable direct 

interaction with gp41151.  Cleavage of gp160 to create gp120 and gp41 during its initial 

processing endows gp41 with a hydrophobic N-terminal peptide, which remains 

sequestered in the unliganded Env trimer152.  Upon interaction with CD4 and CCR5, and 

the concomitant conformational rearrangements in gp120, the N-terminal region of the 
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gp41 ectodomain forms a coiled coil of α-helices223.  Formation of this extended coiled 

coil translocates the fusion peptide away from the base of gp41, and immerses it in the 

membrane of the target cell (Fig. 1.2f)223.  This extended gp41 conformation is 

designated as the “pre-hairpin intermediate,” or “PHI.” The PHI represents a meta-stable 

state, which precedes the lower-energy, highly stable 6-helix bundle that takes the shape 

of trimer of hairpins (Fig. 1.2d and g)153,223,232-234. 

 

6-helix bundle formation. Fusion of the viral and cellular membranes occurs 

when the extended conformation of the PHI collapses to form the 6-helix bundle (Fig. 

1.2d and g)223.  The C-terminal region of gp41, which is connected to the transmembrane 

domain in the viral membrane, collapses onto the N-terminal alpha helices.  After fusion, 

the resulting 6-helix bundle structure has the N-terminal fusion peptide and the C-

terminal transmembrane region adjacent to one another in the fused membrane153,223,232-

234.  The most complete 6-helix bundle structure is a solution structure obtained by 

NMR153, and is in agreement with crystal structures obtained from truncated forms of 

gp41232-234.  Thus, extensive structural rearrangements in gp120 trigger gp41 to enter a 

meta-stable state, which subsequently attains the lowest-energy state through a global 

rearrangement that fuses the viral and cellular membranes. 

 

Mechanisms of antibody resistance 

Occlusion by glycosylation. The central concept in the inherent resistance of 

primate lentiviruses to antibodies is the masking of Env surfaces.  The carbohydrate 

structures attached to the HIV-1 and SIV Env proteins are usually not immunogenic 
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themselves, since they are recognized as ‘self,’ and thus camouflage Env from antibody 

responses.  Although the broadly neutralizing monoclonal antibody 2G12 targets an 

epitope that includes carbohydrate235-237, 2G12 has a highly unusual structure238.  Several 

antibodies specific for a quaternary gp120 epitope that appears to include an N-linked 

glycan have recently been isolated, but these “PGT” antibodies may be unusual since 

they are the first reported to belong to the 2G12 competition group239.  The occlusion of 

potential antibody epitopes by glycosylation is responsible for the existence of the “silent 

face” on gp120188.  N-linked glycans are added to the asparagine residues of N-X-S/T 

motifs, where X is any amino acid except for proline, and the third residue is either serine 

or threonine.  Among more than 10,000 proteins in the SWISS-PROT library having at 

least 1 such predicted N-linked glycosylation site, only 3 present in the library at the time 

had a higher density of predicted N-linked glycosylation sites than HIV-1 gp120240. The 

extraordinary high density of predicted N-linked glycosylation sites is thought to 

comprise a “glycan shield,” which occludes the access of antibodies to surfaces of Env241.  

The density of N-linked glycans on the surface of gp120 is great enough that hydrogen 

bonded glycan clusters create a seamless surface of carbohydrate that covers parts of 

gp120218.  The C-terminal helices of gp41 are also modified by N-linked glycosylation, 

with 4 commonly predicted sites for N-linked glycosylation in HIV-1 gp41 and 3 

predicted sites in SIV gp41.  Although numerous monoclonal antibodies could be 

mapped to linear epitopes on HIV-1 gp41, none of these mapped to epitopes within the 

region between the 4 N-linked glycans242.  Likewise, the same region of SIVmac239 gp41 

did not contain any linear determinants that reacted with pooled serum from SIVmac239-
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infected macaques132.  Thus, part of the Env structure is immunologically silent, due to 

occlusion by carbohydrates. 

 

Neutralization sensitivity of glycan-deficient mutants. Mutational analyses 

support the model that glycosylation of Env masks potential neutralization epitopes.  

Mutations that remove potential N-linked glycosylation sites from gp120 that are not 

necessary for the proper folding or function of Env generally lead to a loss of resistance 

to neutralization156,243-246.  Although this loss of resistance is probably due in part to 

antibodies that target epitopes that are sterically occluded by carbohydrates in the native 

trimer, many of these mutations also cause conformational changes that lead to a global 

loss of resistance to neutralization, which complicates the interpretation of this 

phenotype156,244-246.  Macaques infected with strains lacking pairs of N-linked glycans in 

SIVmac239 gp120, or lacking a group of 5 N-linked glycans, developed antibody 

responses that neutralized the mutant strains at high titers, suggesting these N-linked 

glycans occlude potential neutralization epitopes244.  Removal of the 3rd N-linked 

glycosylation site on SIVmac239 gp120 by mutagenesis selectively increases its 

susceptibility to neutralization by sCD4 without leading to a general loss of resistance to 

neutralization by pooled plasma from SIV-infected macaques or selected monoclonal 

antibodies247.  Mapping of the 3rd N-linked glycan onto crystal structures for HIV-1 and 

SIV gp120 suggests it is positioned to sterically hinder the access of CD4 or antibodies to 

the CD4 binding site187,218,247.  Although removal of 2 or 3 of the 3 N-linked glycans in 

SIVmac239 gp41 did not appear to render this virus more globally sensitive to 

neutralization by plasma from wild-type SIVmac239-infected macaques, the animals 
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infected with these strains produced antibodies that neutralized the glycan-deficient 

strains at high titers132.  The specificity of these neutralizing antibodies for the glycan-

deficient strains, coupled with data showing linear epitopes at the N-linked glycosylation 

sites were recognized by antibodies, suggests that these N-linked glycans occlude 

potential neutralization epitopes in gp41.  Therefore, the sensitivity of viral mutants 

lacking specific N-linked glycosylation sites in gp120 or gp41 to neutralization by sCD4 

and antibodies indicates that N-linked glycans contribute to neutralization resistance. 

 

Evidence supporting the importance of glycosylation in vivo. Experimental 

infection of macaques with mutant SIV strains lacking specific N-linked glycans suggests 

that glycosylation is important for immune evasion in vivo.  Macaques infected with 

derivatives of SIVmac239 containing mutations that remove specific N-linked glycans in 

gp120 tend to have lower viral loads than animals infected with wild-type 

SIVmac239244,248.  Macaques infected with derivatives of SIVmac239 lacking 2 or 3 of the 3 

N-linked glycans in gp41 developed escape mutations in residues adjacent to the N-X-

S/T sites that conferred resistance to the neutralizing antibody responses132.  These 

included mutations that created novel N-X-S/T sites.  The lower viral loads in animals 

infected with strains lacking N-linked glycans in gp120244,248, and the selection for 

neutralization escape mutations in viruses lacking N-linked glycans in gp41132, suggest 

that N-linked glycosylation is important for immune evasion in vivo. 

  

Glycans interfere with the development of antibody responses. Glycosylation 

may interfere with the induction of antibody responses capable of binding wild-type Env 
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proteins.  As discussed above, macaques infected with SIV strains lacking specific N-

linked glycans produce antibodies that neutralize the glycan deficient strains at high 

titers132,244.  However, in comparison to animals infected with wild-type SIVmac239, the 

animals infected with derivatives of SIVmac239 lacking specific N-linked glycans 

developed antibodies capable of neutralizing wild-type SIVmac239 at unusually high titers.  

Specifically, serum from macaques infected with strains lacking pairs of the 4th and 5th, 

5th and 6th, or 4th and 6th N-linked glycosylation sites on gp120 developed 50% 

neutralizing antibody titers against wild-type SIVmac239 between 200 and 16,000 by 64 

weeks post-infection244.  Similarly, an animal infected with a strain derived from 

SIVmac239 lacking all 3 N-linked glycans in gp41 developed 50% neutralizing antibody 

titers against SIVmac239 of approximately 100 by 24 weeks post-infection132, and an 

animal infected with a strain lacking 2 of 3 N-linked glycans in gp41 also developed 

relatively high neutralizing antibody titers against wild-type SIVmac239 at later time 

points (Desrosiers, et al., unpublished observations).  Animals infected with SIVmac239 or 

SIVmac251 often do not produce detectable antibodies capable of neutralizing these 

viruses, or neutralize them at titers that occasionally reach 100 but are typically 

lower156,164,249.  Removal of an N-linked glycan also increased the stimulation of 

antibodies capable of neutralizing SHIV89.6P and SHIVSF162 (chimeras containing HIV-1 

env genes in a genomic backbone mostly consisting of SIV)250.  These higher neutralizing 

antibody titers suggest that N-linked glycans interfere with the induction of antibody 

responses capable of neutralizing wild-type viruses. Therefore, in addition to conferring 

resistance to existing antibody responses, glycosylation also interferes with the 

development of antibody responses. 
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The CD4 binding site is in a recessed cavity. The architecture of the CD4 

binding site renders it poorly accessible to antibodies.  In addition to its probable 

occlusion by the V1V2 loop structure150,188 and N-linked glycans247, the residues that 

interact directly with CD4 lie within a recess between the inner and outer domains of 

gp120187.  This surface cavity extends deep into the gp120 structure, and is partially filled 

by the phenyl ring belonging to F43 of CD4.  The distance of the F43 cavity from the 

surface of the trimer suggests that the generation of antibodies with the long 

complementarity determining region (CDR) excursions necessary to reach this surface 

may be inefficient188.  Thus, the recessed nature of the CD4 binding site contributes to the 

antibody resistance of lentiviral Env proteins. 

 

Thermodynamics of CD4 binding as an antibody resistance mechanism. The 

high entropy cost incurred when gp120 adopts the CD4-bound conformation may be a 

defense mechanism against antibodies.  Induction of the CD4-bound conformation of 

gp120 incurs an unusually high entropy cost of approximately 50 kcal/mol217.  With the 

notable exception of b12, binding of individual monoclonal antibodies to the CD4 

binding site incurs an entropy cost of 19-28 kcal/mol217.  These high entropy costs 

suggest that the binding of antibodies to the CD4 binding site induces many of the 

energetically unfavorable conformational changes in gp120 that are induced by binding 

CD4.  As described above, the basis for this entropy cost appears to be the induction of 

ordered secondary structure interactions in the CD4 binding site, the bridging sheet, and 

the topological layers of the inner domain of gp120151,152,187,217.  However, the high 
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entropy cost of adopting the CD4-bound conformation seems paradoxical, since it would 

reduce the ability of gp120 to interact with CD4, and thereby interfere with viral entry217.  

Kwong et al. appear to have resolved this paradox by measuring IC90 concentrations for 

monomeric sCD4 and a dodecameric CD4 construct against a panel of 6 primary isolates 

of HIV-1.  These primary isolates were neutralized at concentrations of 0.1 to 2.7 nM by 

the dodecameric construct, whereas monomeric sCD4 neutralized one strain at 280 nM, 

and did not reach a measurable IC90 against the other 5 viruses, even at the highest 

concentration measured, 1200 nM.  Thus, dodecameric CD4 neutralizes primary isolates 

of HIV-1 at a concentration at least 2 orders of magnitude lower than monomeric sCD4.  

Therefore, Kwong et al. conclude that the energetic barrier to adopting the CD4-bound 

conformation can be overcome through high-avidity interactions.  By analogy to 

dodecameric CD4, they propose that membrane-bound CD4, mobile only within a 2-

dimensional plane on the surface of a CD4+ T-cell, is restricted in movement sufficiently 

to achieve the avidity necessary to overcome the cost of inducing thermodynamically 

unfavorable conformational transitions gp120.  In contrast, soluble CD4 or free-floating 

antibodies to the CD4 binding site diffuse away from gp120 more readily, and 

consequently are unable to neutralize these primary isolates.  Thus, the primate 

lentiviruses are able to discriminate between CD4+ T-cells and free-floating antibodies to 

the CD4 binding site.  Therefore, the thermodynamic properties of lentiviral Env proteins 

render them inherently resistant to antibody responses. 

 

Thermodynamics of coreceptor binding as an antibody defense mechanism. 

The coreceptor binding site of gp120 is protected from antibodies by properties that are 
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the same or similar to those protecting the CD4 binding site.  The binding of individual 

coreceptor binding site antibodies to gp120, in the absence of CD4, incurs an entropy cost 

of 29-32 kcal/mol, which is similar to energetic barrier facing interactions between 

antibodies and the CD4 binding site217.  Therefore, although the experimental evidence 

supporting the conclusion that high-avidity interactions can overcome this energetic 

barrier was obtained using interactions between CD4 and the CD4 binding site of gp120, 

the same properties may be expected to apply to the coreceptor binding site.  The binding 

of either CD4 to the CD4 binding site, or of antibodies to the coreceptor binding site, 

lowers the energetic barrier for the other217.  Thus, as discussed above, induction of the 

CD4 and coreceptor-bound conformation of gp120 may be cooperative. Therefore, the 

primate lentiviruses may have evolved to distinguish between antibodies in solution that 

recognize the CD4 or coreceptor binding sites versus CD4 and CCR5 expressed on the 

surface of a T-cell by requiring avidity and cooperativity to stabilize these interactions. 

 

Spatial dispersion of the coreceptor binding site. The conformational changes 

required for gp120 to bind its coreceptor are a defense mechanism against antibody 

responses.  The binding of the CCR5 ligands macrophage inflammatory protein 1α (MIP-

1α) and MIP-1β to CCR5+ cells is inhibited more completely by complexes of gp120 

plus sCD4 than by gp120 alone251,252.  Therefore, the binding of gp120 to CCR5 is 

significantly enhanced by the interaction with CD4.  Comparisons between liganded and 

unliganded gp120 structures appear to show that the amino acids that comprise the 

coreceptor binding site are spatially-disparate in the unliganded structure, but are 

assembled in the CD4-bound conformation218.  The antibodies whose affinity for Env is 
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enhanced by the gp120-CD4 interaction are known as CD4-inducible (CD4i) antibodies.  

Thus, whereas the CD4 binding site and the coreceptor binding site both undergo 

conformational changes to adopt the CD4-bound conformation, the coreceptor binding 

site is further masked from antibodies in the unliganded conformation by spatial 

separation. 

 

Coreceptor binding site assembly in a sterically constrained space. Antibodies 

to the coreceptor binding site are poorly neutralizing due partly to the constrained 

geometry of CD4 and coreceptor engagement.  The natural, bivalent form of the 

monoclonal antibody b12 neutralizes HIV-1 entry more potently than monovalent Fab 

fragments, which lack the constant Fc region of the antibody253.  Presumably, the greater 

neutralization potency of bivalent antibodies owes to an avidity advantage over the 

monovalent Fab fragments of the same antibody.  However, the monovalent Fab 

fragments of the coreceptor binding site-specific monoclonal antibodies 17b, 48d, and X5 

unexpectedly neutralize HIV-1 entry more potently than the divalent forms of these 

antibodies that possess the full Fc region254.  Therefore, the close proximity of the target 

cell membrane to gp120 when it has adopted the CD4-bound conformation may restrict 

the access of antibodies with Fc domains, but not Fab fragments.  Thus, the coreceptor 

binding site is protected against neutralizing antibodies by steric constraints that are 

likely imposed by the proximity of the target cell membrane during receptor engagement. 

 

Tyrosine sulfation. Usage of a tyrosine-sulfated coreceptor contributes to the 

ability of primate lentiviruses to resist antibodies.  Inhibition of cellular sulfotransferases 



	   39	  

or substitution of phenylalanine or aspartate for the N-terminal tyrosine residues of CCR5 

inhibits HIV-1 entry, indicating that fusion requires interaction with sulfotyrosine 

residues in the N-terminus of CCR5255.  Sulfotyrosine has properties that appear to be 

ideal for facilitating entry and continuous viral replication despite vigorous Env-specific 

antibody responses.  Sulfotyrosine residues engage in relatively high-affinity interactions 

due to the electronegative sulfate group bonded to the phenyl ring of tyrosine256, but dock 

within relatively small recessed surfaces on gp120219.  Therefore, the primate lentiviruses 

may have minimized the area of the surface required to interact with CCR5, and thereby 

minimized the area of conserved surfaces available as potential antibody epitopes.  

Although people infected by HIV-1 can generate tyrosine-sulfated antibodies against the 

coreceptor binding site of gp120, such as the monoclonal antibodies 412d and E51257, the 

generation of antibodies bearing this post-translational modification may be an additional 

obstacle to the development of high-affinity antibodies to the coreceptor binding site.  

Thus, the properties of sulfotyrosine make CCR5 particularly well-suited as a coreceptor 

for viruses that have evolved to persistently replicate in the presence of Env-specific 

antibodies. 

 

Protection of gp41 during fusion. The access of antibodies to fusion 

intermediate forms of gp41 is limited by steric and kinetic constraints.  As described 

above, receptor and coreceptor engagement permits gp41 to adopt an extended 

conformation known as the pre-hairpin intermediate (PHI)223.  Collapse of the C-terminal 

helices of the PHI around the N-terminal helices to form the 6-helix bundle can be 

blocked by peptide inhibitors, or by the neutralizing antibodies 2F5 and 4E10122.  These 
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peptide inhibitors are derived from the N-terminal or C-terminal helices of gp41258,259.  A 

C-terminal peptide, T20, is marketed as a therapeutic under the names Enfuvirtide or 

Fuzeon.  However, by conjugating N-terminal and C-terminal peptides to proteins of 

increasing size, Hamburger et al. demonstrated that the PHI exists in a sterically-

constrained space, in which the access of larger proteins (i.e. antibodies) is reduced260.  

N-linked glycans on the C-terminal helices of gp41 and the positioning of CD4-gp120-

CCR5 complexes may contribute to this steric constraint.  The broadly neutralizing 

monoclonal antibodies 2F5 and 4E10 have epitopes at the C-terminal membrane-

proximal external region (MPER) of the PHI261-263.  However, antibodies that recognize 

fusion intermediates are constrained kinetically, since they bind a transient structure.  

Transient intermediates may also be poorly immunogenic due to this kinetic constraint.  

Furthermore, 2F5 and 4E10 bind to lipid membranes264,265, which may be interpreted as 

autoreactivity during B-cell development, potentially promoting the clonal deletion of B-

cells that produce antibodies similar to 2F5 and 4E10.  Therefore, gp41 intermediate 

structures that exist during fusion are protected from antibodies by steric and kinetic 

constraints. 

 

Cell-to-cell transfer of virus as a neutralization resistance mechanism. It is 

unclear whether assays for measuring virus neutralization accurately reflect the efficacy 

of virus neutralization in vivo.  Assays for measuring neutralizing antibodies typically 

include a step in which virus and antibody are pre-incubated together for 1 hour, prior to 

the addition of CD4+ target cells164,241.  However, the half-life of cell-free virus in plasma 

is on the order of minutes18,266.  The 1-hour pre-incubation step may therefore cause virus 
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neutralization assays to overestimate neutralization in vivo, where more rapid 

neutralization kinetics may be required.  Furthermore, HIV-1 induces the formation of 

virological synapses between infected and uninfected T-cells, which facilitate the transfer 

of virus to the uninfected cell, enhancing the efficiency of infection by 2-4 orders of 

magnitude267-270.  This degree of infectivity enhancement suggests that direct cell-to-cell 

transfer of virus may be responsible for the majority of ongoing virus replication in vivo.  

However, antibodies capable of neutralizing cell-free virus have little or no effect on 

infection mediated by cell-to-cell transfer of virus271,272.  Thus, direct transfer of virus 

through neutralization-resistant virological synapses may render antibodies that neutralize 

virus in vitro less efficacious in vivo.  On the other hand, there are considerations that 

may cause virus neutralization assays to underestimate virus neutralization in vivo.  The 

highest concentration of serum or plasma tested in virus neutralization assays is typically 

a 1:8 dilution, whereas plasma in vivo is not diluted.  Also, the local concentration of 

neutralizing antibodies in microenvironments that contain B-cells secreting these 

antibodies may be higher than is observed in plasma.  Therefore, it is unclear how 

measurements of virus neutralization in vitro translate to virus neutralization in vivo. 

 

D. THE PROBLEM OF SEQUENCE DIVERSITY 

Structural basis for antigenic plasticity in Env 

Variable loops. Lentiviral Env proteins are plastic in sequence, which facilitates 

escape from effective antibody responses.  However, this variation is concentrated in 

specific regions of gp120.  The 5 variable loops may present a moving target to host 

antibody responses.  The V1V2 loop of HIV-1 is approximately 70 amino acids long, 
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whereas the analogous region in SIVmac239 is 100 amino acids273.  The large size of this 

structure, plus its probable position at the top of the trimer in cryo-electron tomographic 

images of unliganded Env on viruses150, and the location of its stem as part of the 

bridging sheet between the CD4 and CCR5 binding sites187,188, suggest that V1V2 

occludes the access of antibodies to the CD4 and CCR5 binding sites.  The extreme 

neutralization sensitivity of a mutant strain deleted in V1V2 (SIVmac239ΔV1V2) is 

consistent with V1V2 serving as a steric block to the access of antibodies against internal 

regions of the Env protein156,273.  Whereas V1V2 is probably at the top of the trimer, V4 

and V5 appear to be located at the sides188.  Thus, the variable loops may serve as an 

antigenic decoy, directing antibody responses to easily changeable surfaces, and 

hindering the access of antibodies to conserved regions of the Env protein.  

 

 Plasticity of the “glycan shield”. The primate lentiviruses escape antibody 

responses that arise during ongoing infection through the addition and removal of N-

linked glycosylation sites in Env241,274.  Sequencing Env variants from an HIV-1 patient 

from early after infection through over more than 2 years later revealed a shuffling of 

predicted N-linked glycosylation sites, in which some N-X-S/T motifs were lost while 

new ones appeared.  The Env variants arising later in infection were resistant to 

autologous serum (i.e. from the same person) that neutralized the earlier Env variants, 

and this resistance to neutralization could be mapped to the N-linked glycosylation sites.  

Mutations in a putative O-linked glycosylation site in the SIV V1V2 region also emerge 

during ongoing infection and are associated with neutralization escape274,275.  A shifting 

“glycan shield” is one manifestation of the plasticity of lentiviral Env proteins. 
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An island of variation in the conserved CD4 binding site. Although the CD4-

binding site is relatively conserved, retaining prominent sequence features such as the 

GGDPE motif across HIV-1 and SIV, the surrounding amino acids nevertheless have a 

degree of inherent freedom to vary in sequence and escape antibody responses.  Despite 

the conservation of elements of the CD4 binding site, an island of sequence variation lies 

at its center.  A water-filled cavity lies at the interface between CD4 and gp120187.  The 

cavity is lined by residues A281, S364, S365, T455, and R469, using numbering for the 

gp120 of HIV-1HXB2, which do not participate in contacts with CD4 and are variable 

among HIV-1 isolates.  This cavity contrasts with the nearby residues that directly 

interact with CD4, which exhibit greater sequence conservation.  Thus, antibodies to the 

CD4 binding site that rely at least partly upon interactions with this variable, water-filled 

cavity may be easily escaped through sequence changes.  Therefore, a “variational island” 

at the center of the CD4-binding site serves a similar function to the variable loops, 

tolerating amino acid substitutions that permit antibody escape.  

 

Main chain interactions. Despite greater relative sequence conservation, the 

surfaces of gp120 that interact directly with CD4 also retain a degree of sequence 

plasticity.  Remarkably, 60% of the contacts between gp120 and CD4 are made by main 

chain atoms of the gp120 polypeptide backbone, rather than side chain atoms187.  The 

dependence on main chain contacts may lessen the requirement for particular amino acid 

identities, thus increasing the sequence plasticity that permits antibody escape.   
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Conformational diversity. Escape from neutralization can occur through amino 

acid changes that are not part of the neutralization epitope.  Individual amino acid 

changes at disparate sites in the SIV Env trimer independently conferred resistance to 

neutralizing sera, indicating that escape occurred through by global effects on the Env 

protein rather than changing an antibody binding site275.  Sequence variation in the inner 

domain of gp120 may permit antibody escape151,152.  Finzi et al. suggest that if movement 

between the topological layers of the inner domain modulates the transition between the 

unliganded and CD4-bound conformation, sequence variation in this region might permit 

conformational diversity.  Thus, sequence changes within the inner domain of gp120 

could permit antibody escape by altering the conformation of gp120 without requiring 

sequence changes in the CD4-binding site. Therefore, despite its relative conservation, 

the CD4 binding site may escape antibodies through sequence plasticity elsewhere in the 

protein.  Through conformational adjustments, the primate lentiviruses are capable of 

escaping antibody responses without directly changing the amino acid sequences of 

neutralization epitopes. 

 

Origins of sequence diversity 

Mutation rate × time. The sequence diversity of circulating HIV-1 strains 

presents a significant obstacle to vaccine development, which is superimposed over the 

inherent resistance of primary viruses to neutralization.  This diversity is a consequence 

of the high error rate of reverse transcriptase (RT).  With every round of replication, RT 

introduces approximately one new mutation into the ~10,000 base HIV-1 genome per 

newly infected cell276.  The diversity of contemporary HIV-1 strains reflects continuous 
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virus replication with a turnover rate for infected cells of 1-4 days17 ever since crossing 

the species barrier from chimpanzees some time in between 1884 and 1924277-279.  

Insertions, deletions, and recombination provide an additional source of diversity.  The 

sequence diversity generated by continuous replication and mutation over the century-

long history of HIV-1 in humans is one of the foremost obstacles confronting vaccine 

design. 

 

Selection for antigenic variation. Selection for immune escape variants and 

genetic drift drive the diversification of circulating HIV-1 strains.  As mentioned above, 

the primate lentiviruses adopt sequence changes that escape CD8+ T-cell responses66-74, 

and confer resistance to neutralizing antibodies180,241,274,275,280-285.  NK cells can also 

select for sequence changes in HIV-1286.   The most thorough description of neutralizing 

antibody escape was conducted by Richman et al., who analyzed neutralizing antibody 

titers for plasma and virus captured at longitudinal time points in a matrix format (Table 

1.1)285.  Most of the 14 treatment-naïve subjects who were identified during acute HIV-1 

infection developed antibodies capable of neutralizing autologous virus cloned from 

plasma collected on their first visit.  However, a pattern of sequential neutralization and 

escape emerged, in which significant neutralizing antibody titers were detected against 

virus isolated at previous but not contemporaneous time points.  The observation that 

emergent isolates appeared to preemptively escape variant-specific neutralizing 

antibodies is notable in two respects.  First, it illustrates the deftness with which HIV-1 

evades immunity.  Second, it suggests that nascent, variant-specific antibody responses 

exert selective pressure, despite poorly neutralizing the contemporaneous virus.  More 
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generally, Richman et al. demonstrate that the continuous selection of Env sequences that 

escape selective pressure from neutralizing antibodies is a hallmark of HIV-1 infection.  

Thus, the continuous selection of neutralization escape variants in most individuals 

infected with HIV-1 over the history of the pandemic has shaped the sequence divergence 

of modern Env sequences.  Furthermore, in parallel to classical Darwinian evolution by 

natural selection, neutral changes that do not affect viral fitness would also be expected to 

accrue over time and contribute to antigenic diversity287-289.  Therefore, in addition to the 

inherent resistance of Env to neutralizing antibodies, host immune responses have also 

promoted antigenic diversity that complicates vaccine development. 

 
Table 1.1. Relatively poor neutralization of contemporaneous variants within a 
single representative donor285. 
 
 

HIV-1 group M clades. The viral variants responsible for the HIV-1 pandemic 

can mostly be assigned to phylogenetically-distinct lineages that originated in the middle 

of 20th century290.  The pandemic HIV-1 strains all belong to the “major group” (group 

M), which descended from an ancestral virus that was more closely related to several 

chimpanzee SIV strains than to the non-pandemic group O and group N strains of HIV-1 
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(Fig. 1.10a).  Group M can further be divided into clades, lettered A through K (Fig. 

1.10b).  These clades are thought to represent founder events that occurred in the 1940’s, 

based on “molecular clock” analyses of the accumulation of mutations over time, which 

include HIV-1 sequences isolated from samples collected in 1959 and 1960277,291.  

Certain clades and founder events are linked with regional epidemics292.  The origin of 

clade B, which is responsible for the HIV-1 epidemic in the United States and Europe, 

was a founder event in Haiti estimated to have occurred between 1962 and 1970293.  

Likewise, the clade B epidemic in the United States represents a subsequent founder 

event293.  The HIV-1 strain circulating in India descends from a distinct founder event 

within clade C125.  Certain strains belong to recognized circulating recombinant forms 

(CRFs), which are chimeras that resulted from recombination between viruses from two 

different clades.  For example, the founder virus responsible for the epidemic in Thailand 

is CRF01_AE, which has a clade E gp120 sequence in a clade A backbone294,295.  Clade 

B circulates as a minor variant in Thailand.  Founder viruses responsible for 

approximately 95% of the epidemic in China are traceable to CRF01_AE from Thailand 

or to CRF07_BC, which contains a clade C env gene of Indian origin and clade B 

sequences of Thai origin292,296,297.  Circulating HIV-1 strains belong to distinct 

phylogenetic lineages linked to founder events, which in some cases have a geographic 

basis. 
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Figure 1.10. Phylogenetic relationships among primate lentiviruses290,298. The HIV-1 
group M viruses, which are responsible for the global HIV-1 pandemic, fall within a 
family of related lentiviruses isolated from other primate species (a).  HIV-1 group M env 
gene sequences can be grouped into clades A through K (b).  The scale bars represent a 
nucleotide substitution rate of 10%. 
 
 
Cross-reactivity of immune responses 

Impact of intra- and inter-clade diversity. Sequence diversity limits the cross-

reactivity of immune responses.  Gaschen et al. presented an analysis of inter-clade and 

intra-clade amino acid similarity across the HIV-1 proteome (Fig. 1.11)125.  Amino acid 
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sequences including all HIV-1 proteins typically diverge by 10-30% between clades, and 

by 5-15% within a clade.  The highest frequency of differences exists in gp120.  The 

median amino acid sequence homology in Env among a group of 23 clade C viruses was 

87.5% (range 83.5-90.6%).  Since the epitopes recognized by CD8+ T-cells are typically 

8 to 11 amino acids in length, an amino acid substitution rate of 5-15% would imply that 

CD8+ T-cell epitopes differ by one amino acid, on average, between any two viruses in a 

clade.  However, since some positions in CD8+ T-cell epitopes are tolerant to 

substitutions, the existence of a substitution does not necessarily imply a lack of cross-

reactivity299.  In addition to documenting serial escape from neutralizing antibodies 

within an infected individual, as mentioned above, Richman et al. also compared the 

ability of autologous neutralizing sera to cross-neutralize viruses from other individuals 

(Table 1.2)285.  Significant neutralization was only observed against autologous viruses, 

and not against heterologous viruses from the other patients in the study, even though all 

were clade B.  These observations show that neutralization-resistant primary isolates of 

HIV-1 generally lack sensitivity to neutralizing antibodies produced by other HIV-1 

patients.  Thus, sequence differences limit the efficacy of T-cell and antibody responses. 
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Figure 1.11. The sequence diversity facing a vaccine against HIV-1125. The amino 
acid substitution rate per position for 23 full-length HIV-1 clade C isolates compared 
with an individual clade B isolate (red), 2 individual clade C isolates (blue and purple), 
and the clade C consensus sequence (green) is indicated. Although the region with the 
maximum intra-clade diversity exists in gp120, the median level of homology in Env 
among 23 individual clade C isolates and the clade C consensus sequence was 87.5% 
(range 83.5-90.6%). 
 

 
Table 1.2. Development of neutralizing antibody titers against autologous and 
heterologous HIV-1 strains285. 
 
 

Strategies to reduce the sequence diversity facing a vaccine. The extent of 

antigenic diversity facing a vaccine for HIV-1 may appear daunting, but a vaccine does 

not need to protect against viruses differing from the immunogen by the typical distance 

between clades, or even the typical distance among isolates within a clade125.  Due to the 

lower antigenic variation within a clade than between clades, clade-specific vaccines 

would be expected to have greater efficacy than a pan group M vaccine.  In addition to 

comparing the substitution rate for 23 clade C viruses versus 2 additional clade C isolates 
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and a clade B isolate, Gaschen et al. also depict the distance to a clade C consensus 

sequence (Fig. 1.11).  This comparison shows that a clade-specific consensus or ancestral 

sequence in a vaccine immunogen typically halves the distance in sequence between the 

immunogen and individual circulating variants within a clade.  The advantage of clade-

specific vaccines is relatively straightforward in countries where one or a small number 

of clades or circulating recombinant forms predominate (i.e. in Haiti, Thailand, and 

China)293,295,300-302.  Where epidemics are due to geographically linked founder events 

within a clade, (i.e. in the United States, Europe, India, and China), a region-specific 

consensus or ancestral sequence would be even closer to circulating variants than a 

similar immunogen designed to cover the whole clade.  A basket of clade-specific 

vaccines, used in combination, may be necessary to address the diversity of HIV-1 

variants circulating in central Africa.  As an alternative or complementary approach to 

consensus or ancestral vaccines, the use of 3 or more mosaic sequences has been 

proposed as a strategy to maximize the preservation of T-cell epitopes that include more 

than one polymorphic amino acid303,304.  Although several strategies may help to lower 

the hurdle of sequence diversity, antigenic variation remains a significant challenge for 

HIV-1 vaccine design. 

 

Prevalence of broadly neutralizing antibody responses. Despite the antigenic 

diversity of HIV-1 and its inherent resistance to neutralization, some HIV-1 patients 

develop broadly neutralizing antibody responses after years of infection305,306.  The 

proportion of HIV-1 patients found to develop broadly neutralizing antibody responses 

depends upon the neutralization sensitivity of the viruses assayed.  For example, ability 
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of patient sera to neutralize different HIV-1 isolates is more closely related to the overall 

neutralization sensitivity of the viral isolate than to its genetic relatedness with the 

patient’s virus307,308.  Using different definitions of broad neutralization against different 

panels of test viruses, which include moderately sensitive isolates, 1-25% of HIV-1 

patients have been reported to develop moderate to broadly reactive neutralizing 

antibodies after years of persistent infection305,306,309-311.  Although quantifying the 

breadth of neutralization is complicated by the inclusion of viruses that are relatively 

sensitive to neutralization, some people infected with HIV-1 for several years develop 

broadly neutralizing antibodies. 

 

E. GENERATION OF ENV-SPECIFIC ANTIBODY RESPONSES 

Generation of rearranged antibody genes 

 The generation of antibodies that circumvent the inherent neutralization resistance 

of primate lentivirus Env proteins is not trivial.  The variable region of an antibody is the 

domain interacts with the antigen, whereas the constant region interacts with Fc receptors 

and complement109,312.  Variable regions consist of 3 complementarity-determining 

regions (CDRs) and framework regions.  For the antibody heavy chain, CDR1 and CDR2 

are derived from one of 40 different functional germline variable (V) segments, and 

CDR3 is derived through recombination that links the V segment with a diversity (D) 

segment and a joining (J) segment.  Human heavy chain genes have 6 J gene segments 

and 27 D segments.  Nucleotides at the junctions between the V, D, and J segments are 

usually deleted, but form short palindrome sequences separated by a spacer when they are 

not.  The spacer arises during V-D-J recombination, when terminal 
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deoxynucleotidyltransferase (TdT) adds random nucleotides to the 3’ end of the V 

segment, both ends of the D segment, and the 5’ end of the J segment.  The 

rearrangement of light chain genes is similar, except that light chains lack D segments.  

These DNA recombination events occur independently of antigen. 

 

Affinity maturation 

Somatic hypermutation and selection. The affinity of antibody responses for 

antigen can increase over time through Darwinian natural selection in vivo.  B-cells that 

bind antigen with higher affinity are at a selective advantage, since the primary signal for 

B-cell proliferation is crosslinking of the B-cell receptor, which is a transmembrane form 

of antibody produced by alternative splicing109.  In addition, higher affinity for antigen 

may facilitate antigen uptake and processing for presentation by MHC class II to CD4+ T-

cells, which promote B-cell survival and proliferation.  Although V(D)J recombination 

generates considerable diversity, variable regions among B-cells that encounter antigen 

are further diversified by somatic hypermutation.  The rate of somatic hypermutation is 

approximately 10-3 per base pair per round of cell division313.  However, the frequency of 

mutations decreases exponentially with distance from the promoter314.  Thus, more 

somatic mutations occur in CDR1 than CDR3.  The framework regions are also subject to 

somatic hypermutation, although mutations here are underrepresented, probably due to 

the higher likelihood of a deleterious effect.  Activation-induced cytidine deaminase 

(AID), which is a paralog of the APOBEC proteins, is essential for somatic 

hypermutation315,316.  Tight regulation of AID at the levels of transcription317, 

phosphorylation by protein kinase A (PKA)318-320, and a mechanistic link with 
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chromosome duplication321, restrict somatic hypermutation to proliferating germinal 

center B-cells322.  Although deamination of cytidines would itself be mutagenic, this 

activity may promote mutagenesis by recruiting error-prone DNA polymerases109,313,323.  

Resolution of AID-induced lesions appears to involve the generation of double-stranded 

breaks, the 3’ ends of which can serve as a substrate for nucleotide addition by TdT324.  

The activity of TdT may contribute to the observation that insertions or deletions are 

found in approximately 4% of in-frame variable regions in germinal center B-cells325.  

These mutations diversify the variable regions of B-cells responding to antigen, and the 

selective advantage conferred to B-cells with improved affinity for antigen drives an 

increase in the affinity of the antibody response over time. 

 

Somatic mutation in Env-specific antibodies. Env-specific antibodies, and the 

subset of these antibodies that are capable of neutralizing HIV-1 entry, are highly 

mutated.  Scheid et al. compared the number of mutations in 502 Env-specific 

monoclonal antibodies from the memory B-cells of HIV-1 patients against the number of 

mutations in non-Env specific memory B-cells326.  Env-specific light and heavy chains 

from memory B-cells had a sum of approximately 40 mutations on average, whereas the 

corresponding memory B-cell population negative for Env binding had approximately 26 

mutations.  Larger numbers of mutations were observed in HIV-1 Env-specific antibodies 

using primers outside of the mutated regions327.  Therefore, the Env-specific antibody 

clones selected during HIV-1 infection are more highly mutated than the rest of the 

memory B-cell repertoire.  Scheid et al. found that the CDR3 regions of Env-specific 

antibodies were significantly longer than the CDR3 regions of antibodies from memory 
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B-cells that did not bind Env326.  Likewise, Huang et al. reported that most CD4i 

antibodies have unusually long CDR3 regions328.  The unusually long CDR3 regions of 

Env-specific antibodies suggest that these antibodies recognize poorly accessible cavities 

rather than surface epitopes.  These properties of Env-specific antibodies may help to 

counteract features of Env that have evolved to interfere with effective antibody 

responses. 

 

Somatic mutation in broadly neutralizing antibodies. Broadly neutralizing 

monoclonal antibodies exhibit exceptionally high levels of somatic hypermutation.  The 

heavy and light chains of b12 have 45 amino acid substitutions compared with germ line-

encoded sequences328.  PG16, a recently isolated broadly neutralizing monoclonal 

antibody191, has 48 amino acid substitutions relative to the germ line-encoded sequence, 

plus one of the longest CDR3 regions reported for a human monoclonal antibody to 

date329.  Incredibly, the heavy and light chains of another recently-isolated broadly 

neutralizing monoclonal antibody, VRC01, have approximately 70 amino acids that differ 

from the germ line-encoded sequences from which they were derived330.  VRC01 also 

possesses unusual features that are rarely observed in antibodies, including an extra 

disulfide bond, an N-linked glycan, and a deletion of 2 codons in the light chain330.  To 

elucidate the development of antibodies like VRC01, Wu et al. employed deep 

sequencing (i.e. 454-pyrosequencing) to sequence the B-cell repertoire from individuals 

who made VRC01 and VRC01-like antibodies331.  Over 7x105 heavy-chain sequences 

were obtained from one individual, enabling divergence from the germline sequence to 

be plotted against similarity to a given antibody sequence (Fig. 1.12)331.  These plots 
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show that VRC01 and VRC01-like antibodies, as a population, diverge from the 

germline-encoded sequence by approximately 30%.  Although it is conceivable that the 

large number of mutations observed in anti-Env antibodies are a consequence of the 

persistent nature of HIV-1 infection, rather than a requirement for Env binding, Zhou et 

al. demonstrated that reversion to the genomic sequence of residues involved in contacts 

between VRC01 and gp120 reduced binding and neutralization330.  The number of non-

germline residues in VRC01 was significantly correlated with binding and neutralization.  

In an another remarkable example illustrative of the extent of divergence from germ line-

encoded sequences that may be required to neutralize HIV-1, 2G12, which has 51 amino 

acid substitutions relative to the germ line-encoded sequence329, has a highly unusual 

tetravalent structure in which the heavy and light chains are swapped between divalent 

IgG molecules238.  Artificial, non-mutated precursor antibodies containing heavy and 

light chain sequences that correspond to the recombined germ line sequences that gave 

rise to several broadly neutralizing antibodies lacked any detectable ability to bind Env, 

indicating that somatic mutation was essential for their capacity to neutralize327,330,332.  

These data indicate that the generation of neutralizing antibodies requires extensive 

somatic hypermutation. 

 
Figure 1.12. Deep sequencing of mutated 
heavy chain genes331.  The percent 
divergence from the germline IGHV1-2*02 
sequence is compared with similarity to an 
IGHV1-2*02-derived neutralizing monoclonal 
antibody, VRC-PG04. The heavy chain 
sequences at the top right have diverged away 
from the IGHV1-2*02 germline towards VRC-
PG04-like sequences.  
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F. EXPERIMENTAL VACCINES AGAINST SIV AND HIV-1 

Failure of classical vaccine approaches 

Historical success of classical vaccine approaches. Eradication of a virus 

previously responsible for pandemic disease has been achieved by vaccination for 

smallpox, and nearly for polio333,334.  Successful viral vaccines have been live-attenuated 

viruses, inactivated (i.e. killed) viruses, and viral proteins.  Once HIV-1 could be grown 

in cell culture conditions in the laboratory in 1984, Robert Gallo famously speculated that 

a vaccine for HIV-1 could be developed within 2-3 years1.  By analogy to the seasonal 

influenza vaccine, which consists of inactivated virus and induces neutralizing 

antibodies335, a similar approach might reasonably have been expected to be effective 

against HIV-1 before the problems of inherent neutralization resistance and sequence 

diversity were appreciated.   

 

Inactivated virus vaccines tested in macaques. Early successes attempting to 

protect rhesus macaques from infection with SIV suggested that an inactivated virus 

vaccine could prevent acquisition of infection336-339.  However, these vaccines were 

grown in human cells, and similar vaccines produced in macaque peripheral blood 

mononuclear cells (PBMC) were not protective340-342.  Furthermore, macaques vaccinated 

with uninfected human cells were protected against virus grown in human cells, and 

antibody titer to human antigens correlated with protection343.  The protective effect of 

inactivated SIV vaccines produced in human cells was traced to antibody responses 

against human antigens present on the human T-cell lines used to prepare the vaccine 
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virus.  Thus, studies in the macaque model suggested that inactivated vaccines would fail 

to protect people from HIV-1 infection. 

 

Live-attenuated vaccines tested in macaques. Live-attenuated SIV achieved 

remarkable initial success, providing complete or apparent sterilizing immunity against 

i.v. challenge with neutralization-resistant pathogenic strains of SIV, thus demonstrating 

that vaccine protection against HIV-1 is theoretically possible.  The first live-attenuated 

SIV strain tested as a vaccine concept, SIVmac239Δnef, was constructed by deleting 182 

nucleotides in the middle of the nef open reading frame58.  Complete or apparent 

sterilizing protection is therefore defined as the absence of detectable challenge virus 

RNA at any time point using RT-PCR primers within the deletion in nef344.  However, 

live-attenuated SIV has not been under consideration for use in humans since the late 

1990’s due to well-justified safety concerns.  SIVmac239Δnef establishes a persistent 

infection in macaques, but has less pathogenic potential than wild-type SIVmac23958.  

Peak SIVmac239Δnef viral loads are approximately 2 orders of magnitude lower than peak 

SIVmac239 viral loads.  Some but not all animals inoculated with SIVmac239Δnef control 

SIVmac239Δnef replication to undetectable levels58,345, whereas relatively rare animals 

with highly protective MHC class I alleles naturally control wild-type SIVmac239 

infection to undetectable levels43,55.  Despite the lower relative pathogenicity of 

SIVmac239Δnef, a subset of adult animals infected with SIVmac239Δnef eventually 

develops AIDS346.  Alexander et al. demonstrated that SIVmac239Δnef evolves in vivo to 

increase its replicative capacity and pathogenicity346.  A more attenuated vaccine strain, 

SIVmac239Δ3, was therefore engineered by making additional deletions in vpr and the 
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long terminal repeat (LTR) promoter region347.  However, SIVmac239Δ3 also caused 

disease in adult macaques after prolonged observation348.  Moreover, SIVmac239Δ3 was 

pathogenic in neonatal macaques, which raised the specter of mother-to-child 

transmission of the vaccine strain causing AIDS in babies born to vaccinated 

mothers349,350.  To address these safety concerns, increasingly attenuated SIV strains were 

engineered (SIVmac239Δ3X and SIVmac239Δ4)351,352.  However, these strains afforded 

less consistent protection than SIVmac239Δ3 against challenge with SIVmac251.  

Therefore, the least attenuated strain capable of consistently providing complete 

protection against pathogenic SIV challenge lacked an acceptable safety profile. 

 

Recombinant protein vaccines tested in chimpanzees. Vaccines based on 

recombinant protein have been tested for efficacy in humans and non-human primates.  

As mentioned above, recombinant Env protein vaccines elicited antibodies capable of 

neutralizing T-cell line-adapted HIV-1 strains, but not primary isolates166,176,177.  In 

challenge studies using chimpanzees, recombinant gp120 protein formulated with an 

adjuvant elicited gp120 ELISA titers, and in some cases but not others may have 

protected these animals from infection with neutralization sensitive challenge viruses353-

356.  While these studies could be interpreted as supporting the capacity of antibody 

responses to prevent HIV-1 infection, they provide no information on the ability of these 

vaccines to protect against circulating HIV-1 strains due to their usage of neutralization-

sensitive challenge viruses. 
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Recombinant protein vaccine phase III human clinical trial VAX003. 

Repeated inoculations of gp120 formulated with alum adjuvant was tested as a vaccine 

for HIV-1 in two placebo-controlled, phase III efficacy trials, VAX003 in Thailand357 and 

VAX004 in the United States, Canada, and The Netherlands358.  These recombinant 

protein vaccines were produced by VaxGen under the brand name AIDSVAX.  

AIDSVAX B/E, which was tested in Thailand, was derived from the clade B virus HIV-

1MN, and from the CRF01_AE isolate HIV-1A244.  The 2546 i.v. drug users in Bangkok 

who participated in VAX003 received 7 inoculations with AIDSVAX B/E.  During the 

course of the trial, 106 vaccine recipients and 105 placebo recipients became infected 

with HIV-1.  Therefore, there was no protection from infection.  When infections due to 

clade B versus CRF01_AE viruses were considered separately, there was also no 

difference in risk of infection among vaccine versus placebo recipients.  No differences 

were observed in viral RNA loads or CD4+ T-cell counts among vaccine versus placebo 

recipients either.  An attempt was made to correlate risk of infection with different 

measures of antibody responses.  Plasma from the 106 vaccine recipients who became 

infected with HIV-1 was compared to plasma from 115 randomly selected vaccine 

recipients that remained uninfected for the ability of antibodies to bind recombinant 

gp120, a V2 peptide, a V3 peptide, to block an interaction between recombinant gp120 

and CD4, and to neutralize HIV-1MN infectivity.  The infected versus uninfected vaccine 

recipients were perfectly matched for activity in these assays.  Therefore, multiple 

immunizations with recombinant gp120 failed to prevent infection or to improve clinical 

outcomes of infection, and measures of antibody responses provided no evidence of 

immune protection. 
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Recombinant protein vaccine phase III human clinical trial VAX004. In 

VAX004, 5095 homosexual men and 308 women who belonged to high-risk groups for 

HIV-1 infection were inoculated 7 times with clade B gp120 plus adjuvant immunogens, 

or just with the adjuvant as a placebo358.  Among the VAX004 trial participants, 362 men 

and 6 women became infected with HIV-1.  Kaplan-Meier plots of the time to acquisition 

appeared identical for vaccine and placebo recipients who were white or reported low or 

medium behavioral risk, whereas small, non-significant trends were in the direction of 

vaccine efficacy were reported for non-whites (P=0.13), and for people who reported the 

highest level of behavioral risk (P=0.29).  Furthermore, as observed in the VAX003 trial, 

there were no differences in viral RNA loads or CD4+ T-cell counts among vaccine 

versus placebo recipients among participants who became infected during the VAX004 

trial.  Therefore, immunization with recombinant gp120 provided no protection from 

HIV-1 infection or disease among high-risk groups for sexual transmission in the 

VAX004 trial. 

 

Antibody and risk of infection in VAX004. There were small but statistically 

significant differences between the antibody responses of 239 of the infected vaccine 

recipients and 163 randomly selected vaccines who remained uninfected359.  These 

differences were observed in the ability of plasma samples to block the binding of 

recombinant gp120 protein to CD4 (Cox proportional hazards, P=0.006, 0.006, and 0.003 

for the 2nd, 3rd, and 4th quartiles of CD4 blocking versus the 1st quartile).  It is not intuitive 

that measures of a vaccine-elicited immune response would correlate with a lower 
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infection rate for a vaccine that provided no protection relative to a placebo.  This 

observation was possible because vaccinees with lower measures of these antibody 

responses were at an elevated risk of HIV-1 infection, relative to the placebo recipients.  

One interpretation of this outcome is that VAX004 elicited antibodies that conferred 

some protection among the higher responders, but also elicited another type of immune 

response that enhanced the risk of HIV-1 acquisition.  Although the authors 

acknowledged this interpretation, they favored the alternative explanation that antibody 

responses were a non-causal correlate of lower risk.  A follow-up study by Forthal et al. 

also reported a lower risk of infection for greater antibody-dependent cell-mediated virus 

inhibition (ADCVI) against the dual-tropic360 primary isolate HIV-192US657 (P=0.019)361.  

However, the authors present the caveat that the plasma samples for the vaccinees that 

became infected were, in general, collected at earlier time points after fewer 

immunizations than the plasma samples for the vaccines that remained uninfected.  The 

authors state that this may have biased the analyses by creating lower ADCVI activity 

among the infected versus uninfected vaccinees.  Therefore, higher antibody responses 

may have correlated with reduced risk of infection in VAX004, but the absence of 

vaccine protection complicates the interpretation of this relationship. 

 

Vaccines based on recombinant viral vectors 

Poxvirus vector vaccines tested in macaques. Vectors based on poxviruses met 

with early success against neutralization-sensitive challenge viruses, but mostly failed to 

provide similar protection against neutralization-resistant challenge viruses in non-human 

primate studies.  Hu et al. reported that pig-tailed macaques primed with a modified 
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vaccinia Ankara (MVA) vector expressing Env, and boosted with recombinant gp160 

protein, produced antibodies that neutralized the SIVmneCLE11S challenge virus at 50% 

titers >100 and were completely protected362.  Amara et al., Barouch et al., Robinson et 

al., and Shiver et al. showed that prime-boost vaccine strategies using MVA vectors 

could reduce viral loads and prevent the rapid disease progression observed among naïve 

control animals challenged with SHIV89.6P
363-366, which is a dual-tropic, neutralization-

sensitive challenge virus367-369.  However, Pal et al. reported that among macaques 

immunized with the canarypox-derived vector ALVAC and boosted with recombinant 

gp120 protein, the only significant differences in viral loads after challenge with 

SIVmac251 were observed for the comparison between vaccinated macaques that 

possessed the protective MHC class I allele Mamu-A*01 versus unvaccinated, Mamu-

A*01-negative animals370.  Also disappointingly, Horton et al. and Vogel et al. saw only 

modest differences in viral loads after challenge with SIVmac239, and no differences in 

disease progression for animals immunized with a DNA prime, MVA boost vaccine 

regimen42,48.  However, in a study intended to model breast milk transmission, Van 

Rompay et al. reported that 14 of 16 naïve control animals became infected after oral 

exposure of neonatal macaques to SIVmac251, whereas 11 of 16 MVA-vaccinated and 6 

of 16 ALVAC-vaccinated animals were infected371.  Therefore, with the exception of the 

oral transmission study in neonates, poxvirus-based vaccines afforded protection against 

the neutralization-sensitive challenge strains SIVmneCLE11S and SHIV89.6P, but not 

neutralization-resistant viruses SIVmac239 and SIVmac251.  
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Poxvirus vector vaccines tested for safety and immunogenicity in humans. 

Poxvirus-based vaccines have been evaluated for safety and immunogenicity in several 

phase I and II human clinical trials.  Immunization with ALVAC-vectored gp120 or 

gp160 alone or in combination with recombinant gp120 protein elicited detectable virus-

specific CD8+ T-cell responses in comparable minorities of immunized human 

volunteers372-374.  However, whereas the ALVAC immunogen alone elicited low titer 

antibodies capable of neutralizing HIV-1MN in a subset of these trial participants, 

boosting with recombinant gp120 increased the proportion who had detectable 

neutralizing antibody titers against HIV-1MN to >90%, and also increased the magnitude 

of these titers.  Likewise, some studies evaluating the combination of ALVAC and 

recombinant gp120 also observed virus-specific CD8+ T-cell responses in a minority of 

participants, and HIV-1MN neutralizing antibody titers in many or all375-377.  However, 

other studies testing immunization with ALVAC in combination with recombinant gp120 

were unable to detect virus-specific CD8+ T-cell responses, although antibodies capable 

of neutralizing HIV-1MN were elicited378,379.  A recent phase I test of an MVA-based 

vaccine elicited low-frequency CD8+ T-cell responses in less than half the vaccinees, plus 

antibodies capable of neutralizing HIV-1MN and other tier 1 viruses380.  None of the trials 

reported neutralizing antibodies against neutralization-resistant primary isolates.  

Therefore, poxvirus vectors sometimes elicit CD8+ T-cell responses and antibodies 

capable of neutralizing T-cell-line adapted viruses, and these antibody titers can be 

boosted with recombinant protein. 
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Human clinical trial testing ALVAC/AIDSVAX efficacy in Thailand (RV144). 

Due to the limited protection afforded by similar vaccine regimens against neutralization-

resistant challenge viruses in the macaque model, the absence of detectable CD8+ T-cell 

responses in the majority of human volunteers immunized with poxvirus-based vectors, 

the induction of antibody only capable of neutralizing T-cell line-adapted viruses, and the 

lack of protection in VAX003/004, the borderline significant protection reported in 

September of 2009 for recipients of ALVAC and AIDSVAX was unexpected379,381,382.  

The aforementioned observations had previously led leaders of the field to express 

concern over the futility of proceeding with this trial383.  Participants in the RV144 trial 

were immunized with ALVAC-vCP1521 on weeks 0, 4, 12, and 24, and with AIDSVAX 

B/E (formulated as in VAX003) on weeks 12 and 24379.  In total, 8197 volunteers 

received at least one dose of the vaccine, and 8198 received at least one dose of the saline 

placebo.  Among these, 2021 vaccinees and 1832 placebo recipients were excluded from 

the “per protocol” group, mostly due to having not received all 4 inoculations.  CD4+ T-

cell responses against Env were detected in approximately one third of vaccine recipients, 

but no differences in CD8+ T-cell responses were measured among vaccine versus 

placebo recipients.  Nearly all vaccinees made antibodies capable of binding recombinant 

gp120 in an ELISA.  One source of controversy surrounding the RV144 trial was that the 

“per protocol” analysis did not indicate a statistically significant protective effect 

(P=0.16).  Rather, a statistically significant outcome was only achieved in a “modified 

intention to treat” (MITT) analysis, which excluded only those participants found to be 

infected at baseline (P=0.04).  In the MITT analysis, 51 vaccinees and 74 placebo 

recipients became infected with HIV-1, which is a 31% reduction in infections over the 
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42-month follow-up period (95% CI=1.7 to 51.8%).  These P-values and confidence 

intervals relate to the size of the vaccine effect.  However, a Bayesian analysis (i.e. 

testing the hypothesis that there is no effect) performed later by Gilbert et al. suggested 

there was a 22% chance that the vaccine had no protective effect382.  A second 

controversy stems from the lack of any difference in viral RNA loads or CD4+ T-cell 

preservation among vaccine versus placebo recipients who became infected379,381.  The 

expectation that a vaccine capable of preventing HIV-1 infection would also provide 

some control over viral replication among people who became infected is reasonable.  

Given the available information, vaccination with a canarypox-based vector and 

recombinant gp120 probably provided modest protection against HIV-1 infection. 

 

Adenoviral vector vaccines tested in macaques. Vaccines based on adenoviral 

vectors elicit higher magnitude CD8+ T-cell responses and afford better control of post-

challenge viral loads in nonhuman primates than vaccines based on poxviruses.  Albeit 

among small numbers of animals, Shriver et al. presented evidence that prime-boost 

regimens using vectors derived from adenovirus serotype 5 (Ad5) elicited higher 

frequencies of virus-specific CD8+ T-cells and provided better control of SHIV89.6P than 

regimens using MVA366.   Likewise, Wilson et al. reported better protection against 

SIVsmE660 challenge by an Ad5-based vaccine among Mamu-A*01-positive macaques 

than Seth et al. reported for an MVA-based vaccine among Mamu-A*01-positive 

animals384,385.   Nevertheless, the significant protective effect of an Ad5-based vaccine 

regimen was lost when the Mamu-A*01-positive animals were excluded386.  Since pre-

existing immunity to Ad5-based vectors may decrease their immunogenicity, higher 
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CD8+ T-cell responses and better protection were attained by priming and boosting with 

vectors derived from different adenovirus serotypes47,387,388.  Although adenoviral vectors 

improved upon the protection provided by poxvirus-based vectors, and newer strategies 

may augment their immunogenicity, the protection reported in earlier studies was 

observed in the contexts of protective MHC class I alleles or challenge with a 

neutralization-sensitive virus. 

 

T-cell-based vaccines and protection against SHIV89.6P. Vaccine control of 

SHIV89.6P replication has historically been ascribed to CD8+ T-cell responses, but 

evidence suggests that antibody responses contribute significantly.  SHIV89.6P is highly 

pathogenic, rapidly causing a nearly complete loss of CD4+ T-cells and germinal centers, 

progression to AIDS, and death, often within just weeks of infection366,369,389-391.  

Unvaccinated animals therefore stand little chance of developing an effective antibody 

response.  In fact, vaccinated animals make neutralizing antibody responses after 

infection with SHIV89.6P, whereas naïve control animals do not.  For example, the number 

of animals mounting detectable neutralizing antibody responses against SHIV89.6P after 

infection was 0/4 naïve controls versus 16/16 vaccinees in Amara et al363., 2/8 controls 

versus 12/12 vaccinees in Barouch et al392., and 1/6 controls versus 17/18 vaccinees in 

Letvin et al393.  Since the later two studies included immunogens that lacked Env, the 

neutralizing antibodies are not due to the priming of Env-specific antibody responses by 

vaccination.  Therefore, vaccine-elicited T-cell responses mitigated the pathogenicity of 

SHIV89.6P sufficiently to allow for neutralizing antibody responses to develop.  These 

antibodies may be important for the long-term control of SHIV89.6P replication. 
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Human clinical trials testing adenoviral vector vaccine efficacy 

(STEP/Phambili). Based on various lines of evidence indicating that CD8+ T-cell 

responses control viral replication, including the success of Ad5 vectors against SHIV89.6P, 

Merck initiated the STEP trial North America, the Caribbean, South America and 

Australia, and the Phambili trial in South Africa366,394-396.  In the STEP trial, 1494 

volunteers were immunized with 3x1010 Ad5 particles containing HIV-1 clade B gag, pol, 

and nef genes on weeks 0, 4, and 26, and 1506 volunteers received placebos395.  No 

attempt was made to elicit Env-specific antibodies.  The study population consisted of 

women in high risk groups, homosexual men who reported multiple sex partners or 

unprotected sex, and in the Caribbean, heterosexual men who reported a combination of 

other risk factors.  However, the STEP trial was aborted early, due to futility and risk of 

harm.  There were 49 HIV-1 infections among 914 male vaccinees, and 33 among 922 

male placebo recipients.  Women who participated in the trial were excluded from these 

analyses, since only one became infected.  The risk of HIV-1 infection was significantly 

higher among vaccine versus placebo recipients who had pre-existing antibodies that 

neutralized Ad5 or were uncircumcised.  Among those who became infected with HIV-1, 

the vaccine had no effect on post-infection viral loads or disease progression394,397.  The 

same Ad5 clade B vaccine was tested in South Africa, which has a clade C epidemic, in 

the Phambili trial398.  Phambili was terminated early in response to the STEP trial.  

Unlike in STEP, the majority of the infections in the Phambili trial occurred in women, 

and the overall infection rate was much higher (8% of participants seroconverted).  Also 

as observed in STEP, there were more infections among the vaccine than placebo 
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recipients, although the difference was not significant.  Thus, repeated immunization of 

human volunteers with an Ad5-based vaccine lacking an Env component did not confer 

protection against infection, viral replication, or disease progression, and may have 

increased the likelihood of HIV-1 acquisition among certain groups. 

 

Mechanisms of protection by live-attenuated SIV 

Back to basics. The limited success of empirical vaccine discovery continues to 

renew interest in a basic science approach to HIV-1 vaccine development399.  Identifying 

immune responses capable of preventing infection by SIV and HIV-1, and understanding 

the stimuli required to elicit them, may be necessary to develop a vaccine against HIV-

1400.  Live-attenuated SIV remains the only experimental vaccine approach that 

consistently prevents SIV infection in the most rigorous challenge models.  The 

mechanisms responsible for protection by live-attenuated SIV could therefore serve as a 

model for the rational design of an HIV-1 vaccine, but they remain enigmatic.  

Although from an intuitive point of view, one might expect neutralizing antibodies to be 

associated with complete protection, most animals completely protected from infection 

with SIVmac251 lack detectable antibodies capable of neutralizing this virus345,347,352.  

Therefore, we were interested in identifying an immune response associated with 

protection by live-attenuated SIV and understanding its development. 

 

Treatment of complete protection as potentially distinct from control. Early 

infection may present unique opportunities to contain viral replication and block systemic 

dissemination401,402.  These opportunities may help to explain why macaques 



	   70	  

paradoxically often exhibit complete or apparent sterilizing protection against challenge 

with SIVmac239 or SIVmac251 while SIVmac239Δnef viral loads reflect ongoing vaccine 

strain replication (Reeves et al., manuscripts in preparation).  The primary difference 

between the early events in virus acquisition versus ongoing infection relate to 

differences between focal virus replication in the mucosa versus systemic infection.  An 

in situ hybridization experiment showed that following vaginal challenge of macaques 

with SIVmac251, virus replication is highly focal403.  The cells containing viral RNA were 

adjacent to one another, and only found in a single tissue section.  Consistent with the in 

situ data, the vast majority of tissue sections were negative for viral RNA by RT-PCR.  In 

general, viral RNA was restricted to the genital tract until 6 to 10 days after challenge, 

when it became detectable in the gut, lymph nodes, spleen, and plasma.  The authors 

propose that acquisition typically begins with one infected cell at the portal of entry, 

which infects its neighbors, and these cells infect other nearby cells, until the number of 

infected cells becomes sufficient to efficiently seed virus to gut and lymphoid tissue.  A 

single t/f virus being responsible for most sexually transmitted HIV-1 infections also 

appears consistent with early events being focal in nature209-214.  It is conceivable that 

homing signals (i.e. chemokines) produced by virus-specific T-cells, by cells with 

crosslinked Fc receptors, and by fixed complement could promote the recruitment of 

effector cells to focal sites of early virus replication.  Also, soluble molecules produced 

locally may be present at significantly higher concentrations at a focal site of virus 

replication than at a distant site.  More generally, there may be features unique to 

mucosal immunity, or that differ between healthy adults versus hosts with varying 

degrees of chronic immune activation and dysfunction.  Therefore, we treated the 
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categorical phenomenon of complete or apparent sterilizing protection as distinct from 

quantitative differences in post-infection viral loads. 

 

Time-dependence of protection by live-attenuated SIV. Complete protection 

by live-attenuated SIV may require a combination of T-cell, antibody, and innate 

immunity.  However, the efficacy of at least one of the immune responses necessary for 

complete protection increases over time, since animals challenged with pathogenic 

SIVmac251 months after inoculation with live-attenuated SIV are protected from infection, 

whereas those challenged at early time points become infected.  Wyand et al. reported 

that 0/4 animals challenged with SIVmac251 8 weeks after inoculation with SIVmac239Δ3 

were completely protected, whereas 1/4 challenged at week 20, and 4/6 challenged at 

week 79 were completely protected347.  Similarly, Connor et al. reported that 0/4 animals 

challenged with SIVmac251 5 weeks after inoculation with SIVmac239Δnef were 

completely protected, whereas 2/4 challenged at week 10, 4/4 challenged at week 15, and 

3/4 challenged on week 25 were completely protected345.  The shorter time period 

required for the maturation of protection by SIVmac239Δnef versus SIVmac239Δ3 

probably relates to the better protection provided by less attenuated vaccine strains347,352.  

The results of experiments with other challenge strains are also consistent with an 

increase in protection against superinfection over time404,405.  Therefore, an immune 

response that is essential for complete protection by live-attenuated SIV increases in 

efficacy over time.  Cole et al. showed that antibody responses elicited by live-attenuated 

SIV increase over time in titer and in their ability to resist being stripped from an ELISA 

plate by a high concentration of urea406.  Weeks to months are required for neutralizing 
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antibodies to become detectable in the context of wild-type SIV and HIV-1 infection275,285.  

Antibodies that have undergone affinity maturation may be responsible for the time-

dependent development of protection by live-attenuated SIV, but may be considerably 

more difficult to elicit by vaccination than T-cell responses.   

 

Lessons from adoptive and passive transfer studies. Although the present 

dissertation specifically addresses a role for antibodies, it is unlikely that antibodies are 

the only immune response necessary for complete protection by live-attenuated SIV.  The 

immune system has evolved to respond with multiple effector cell populations, which 

may work cooperatively.  This concept was demonstrated in mice by Dittmer et al., who 

showed that the adoptive transfer of CD4+ T-cells, CD8+ T-cells, and B-cells in 

combination reconstituted complete protection, whereas any 2 of these 3 populations 

failed to confer complete protection407.  This adoptive transfer experiment supports the 

intuitively logical proposition that different arms of adaptive immunity have evolved to 

operate synergistically as an integrated system. 

Passive transfer experiments in the macaque model may offer clues on the relative 

efficacy of antibodies alone, in the absence of virus-specific T-cells.  However, passive 

transfer of plasma from animals inoculated with live-attenuated SIV strains has yielded 

mixed results.  In one study using adult cynomolgus macaques, passive sera conferred no 

protection408.  Likewise, Desrosiers et al. have observed no protection by passive transfer 

of IgG purified from animals infected with SIVmac239 or SIVmac239Δ3 in unpublished 

experiments.  However, passive transfer completely protected neonatal rhesus macaques 

from oral challenge with SIVmac251409.  Experiments using passive transfer of 
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neutralizing monoclonal antibodies to protect against SHIV challenge suggest that a 50% 

neutralizing antibody titer in serum >100, or that neutralizes 100% of virus infectivity at 

low dilutions, is the minimum necessary to achieve complete protection410-414.  These 

concentrations contrast with the low or undetectable antibodies capable of neutralizing 

the challenge virus in animals completely protected by live-attenuated SIV345,347,352.  

Therefore, if antibodies are important for complete protection by live-attenuated SIV, 

another adaptive immune response (i.e. T-cells) is probably necessary in combination.  

  

T-cells in protection by live-attenuated SIV. It is possible that the time 

dependence of protection by live-attenuated SIV against SIVmac251 challenge relates to 

the maturation of T-cells, not antibodies.  However, in contrast to antibody titers, virus-

specific CD8+ T-cell responses decline in frequency after the acute peak of live-

attenuated SIV replication415 (Reeves et al., manuscript in preparation).  Also, since 

adenovirus-based vaccines that do not confer complete protection can elicit higher 

magnitude T-cell responses than live-attenuated SIV47, it is unlikely that the degree of 

protection afforded by live-attenuated SIV is a function of the overall frequency of virus-

specific CD8+ T-cells.  For T-cells to account for the time-dependent maturation of 

protection, one must invoke an increase in effector function over time, which has not yet 

been shown.  Rollman et al. have shown that the CD8+ T-cells of 2 animals inoculated 

with a live-attenuated SIV strain degranulated with more rapid kinetics than those of 2 

animals inoculated with a poxvirus-based vaccine416.  However, these experiments were 

conducted with just 2 pairs of animals at a single time point, and it is unclear whether 

degranulation kinetics are generally more rapid for CD8+ T-cells elicited by live-
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attenuated SIV versus prime-boost regimens.  In addition to promoting other immune 

responses, CD4+ T-cells themselves can possess direct effector function against virus-

infected cells.  Live-attenuated SIV elicits relatively high-magnitude CD4+ T-cell 

responses, and CD4+ T-cells can recognize and suppress viral replication in macrophages.  

Although the time-dependence of protection by live-attenuated SIV does not appear to be 

related to the magnitude of virus-specific CD8+ T-cell responses, other changes may 

occur over time. 

 

Protection against heterologous SIV challenge strains. Live-attenuated SIV 

affords greater protection against challenge viruses that are more closely related in 

sequence.  SIVmac239 and its derivatives are closely related to SIVmac251, differing in 

Env by approximately 5% on the amino acid level417.  SIVsmE660 is an independent SIV 

isolate, which differs in Env by 15% from SIVmac239 at the amino acid level.  Since this 

distance is comparable to the median level of intra-clade variation, researchers interested 

in the cross-reactivity of virus-specific immune responses have tested the degree of 

protection afforded by vaccines derived from SIVmac239 against challenge with 

SIVsmE660384,418-420.  In contrast to challenge with SIVmac251 at late time points after 

inoculation with SIVmac239Δ3347, 0/6 animals challenged with SIVsmE660 >2 years after 

inoculation were completely protected420.  Likewise, just 2/10 animals were completely 

protected against challenge with SIVsmE660 6 months after inoculation with 

SIVmac239Δnef418.  The more limited protection provided by live-attenuated SIV strains 

derived from SIVmac239 against challenge with SIVsmE660 versus SIVmac251 suggests 

that protection is mediated by adaptive immune responses susceptible to antigenic 
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variation.  Although there were sequence differences between SIVmac239Δnef and 

SIVsmE660 in some of the CD8+ T-cell epitopes recognized by these animals, many 

cross-reacted and expanded in anamnestic responses after superinfection with SIVsmE660.  

However, consistent with the poor neutralization of heterologous HIV-1 isolates285, 

antibodies capable of neutralizing SIVsmE660 were undetectable418.  Although weaker 

than the time-dependence argument, the better protection against SIVmac251 than 

SIVsmE660 despite the presence of cross-reactive CD8+ T-cells also appears consistent 

with a role for Env-specific antibodies in protection by live-attenuated SIV. 

 

Functions of antibodies other than neutralization. Despite the absence of 

detectable antibodies capable of neutralizing SIVmac251 in most animals completely 

protected against this challenge strain, the time-dependence of protection, and perhaps its 

strain specificity, remain consistent with a role for Env-specific antibodies in protection 

by live-attenuated SIV.  The antibodies that bind Env as it exists on virions and virus-

infected cells would be expected to have numerous effector functions.  As mentioned 

above, NK cells kill virus-infected cells by ADCC in response to the crosslinking of 

CD16 by antibodies bound to Env109,110.  Effector cells stimulated by the crosslinking of 

Fc receptors also release soluble factors that interfere with viral replication421.  ADCVI 

assays presumably measure the combined effects of ADCC and noncytolytic inhibition of 

viral replication422,423.  Noncytolytic mechanisms of viral inhibition include the release of 

molecules that induce an antiviral state and that, perhaps fortuitously, interfere with 

access to the viral coreceptor.  The β-chemokines MIP-1α, MIP-1β, and RANTES 

directly compete with gp120 for access to CCR5, inhibit HIV-1 and SIV replication, and 
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contribute to ADCVI135,139,251,360,422,424.  The binding of CCR5 to its ligands, and the 

binding of other chemokine receptors to their respective ligands, which include products 

of complement fixation, induces the downregulation of CCR5 as part of the signal 

desensitization built into GPCR signaling cascades425-427.  The cytokines and chemokines 

released subsequent to crosslinking of Fc receptors also promote the homing of immune 

effector cells428,429.  Complement fixation can lyse virions and virus-infected cells430,431, 

and likewise, produces molecules that promote the homing of immune effector cells432-436.  

Clearance of virions by phagocytosis may also interfere with viral replication437.  HIV-1 

replication can be inhibited by α-defensins438, which are produced by neutrophils439.  

Thus, the potential antiviral functions of antibodies are numerous and varied, and include 

neutralization, ADCC, complement fixation, homing, activation, induction of an antiviral 

state, and interference with access to viral coreceptors.  Antiviral functions of antibodies 

mediated by cells of the innate immune system, such as NK cells, dendritic cells, 

neutrophils, monocytes and macrophages, or by complement, are examples of the 

integration of antibody and innate immunity. 

 

Additional observations supporting a role for antibodies other than 

neutralization. Observations outside of live-attenuated SIV also support a role for 

antibodies other than neutralization.  As mentioned above, SIV and HIV-1 appear to 

preemptively escape neutralizing antibody responses, since plasma poorly neutralizes 

contemporaneous viral variants, and mutations accumulate in Env in the absence of 

significant neutralization285,440.  Therefore, antibody responses exert selective pressure in 

the absence of significant neutralization.  Although higher Env expression and virion 
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incorporation increases viral infectivity and resistance to neutralization, the cytoplasmic 

domains of Env proteins possess internalization signals that limit their surface expression 

and virion incorporation249,441-443.  The limited surface expression of Env may reflect a 

trade-off that favors resistance to non-neutralizing mechanisms through lower Env 

expression versus greater infectivity and neutralization resistance through higher Env 

expression.  Early studies testing killed virus vaccines suggest that mechanisms other 

than neutralization and ADCC can prevent SIV infection336-343.  Antibodies to human 

cellular antigens were responsible for protection of macaques from infection by virus 

grown in human cells.  However, antibodies to human cellular antigens do not neutralize 

the infectivity of viruses produced in human cells159,334.  Although it is possible that the 

amount human cellular antigen delivered onto a macaque CD4+ T cell after fusion of the 

viral and cellular membranes can serve as a target for ADCC or complement, the amount 

of protein carried by the virus is relatively small compared with a cell, and may diffuse 

laterally.  Therefore, direct effects of antibody on the virion other than neutralization may 

prevent infection.  These observations bolster the case for the importance of antibody 

functions other than neutralization. 

 

Summary. Development of a vaccine capable of preventing HIV-1 infection is a 

difficult problem due to properties of the primate lentiviruses that have evolved to enable 

persistent replication and transmission in the face of host immune responses.  Inherent 

features of the Env protein interfere with the induction and the efficacy of antibody 

responses, and provide the sequence plasticity that facilitates antigenic 

diversification187,188,217,241,244,251,252,254,274.  No vaccines under consideration for clinical 
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evaluation are capable of eliciting antibodies that neutralize primary isolates of HIV-1 

and SIV representative of CCR5-tropic neutralization-resistant t/f viruses.  Although 

antibodies that neutralize autologous HIV-1 isolates are frequently elicited during natural 

HIV-1 infection, these typically lack significant ability to neutralize heterologous HIV-1 

isolates285, suggesting that antigenic diversity is a significant problem.  The level of 

somatic hypermutation among HIV-1-specific antibodies is unusually high326,328, and is 

exceptionally high among antibodies that neutralize a broad range of viruses191,329-332.  

However, the rate of somatic hypermutation of approximately 10-3 nucleotide 

substitutions per cell division imposes a speed limit on affinity maturation313.  The failure 

of efforts to elicit antibodies that neutralize primary HIV-1 isolates, and of an empirical 

approach to HIV-1 vaccine discovery more generally, has renewed interest in basic 

research to understand mechanisms of vaccine protection.  Protection by live-attenuated 

SIV increases over a time scale on the order of months345,347, consistent with an essential 

role for the affinity maturation of antibody responses322,406.  Although neutralizing 

antibodies are typically undetectable among most animals completely protected from 

wild-type SIV infection by vaccination live-attenuated SIV345,352, antibodies may 

contribute to protection through mechanisms other than neutralization110,135,139,360,421-

424,428,429,431,436-438,444.  It is therefore our priority to evaluate the possible contribution of 

antibodies to protection by live-attenuated SIV, and also to understand the induction of 

antibody responses by live-attenuated SIV.  Although the induction of effective antibody 

responses may represent the most significant obstacle to the development of a safe and 

effective HIV-1 vaccine, other immune responses will probably be required in 
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combination, since antibody, T-cell, and innate immunity have evolved to operate 

synergistically as an integrated system407. 
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CHAPTER 2 
 
 

Envelope-modified scSIV selectively enhances antibody responses and partially protects 

against repeated, low-dose vaginal challenge 

  



	   81	  

Acknowledgements 
 

The data presented in this chapter are mostly derived from the published work:  
 

Alpert MD, Rahmberg AR, Neidermyer W, Ng SK, Carville A, Camp JV, Wilson 
RL, Piatak M Jr, Mansfield KG, Li W, Miller CJ, Lifson JD, Kozlowski PA, Evans DT. 
Envelope-modified single-cycle simian immunodeficiency virus selectively enhances 
antibody responses and partially protects against repeated, low-dose vaginal challenge. J 
Virol. 2010 Oct;84(20):10748-64. 
 

We thank Nancy Wilson, Gretta Borchardt, and David Watkins at the University 
of Wisconsin-Madison for providing MHC class I tetramers and for MHC typing the 
animals.  In addition, we thank Jackie Gillis and Michelle Connole in the Division of 
Immunology, NEPRC, for flow cytometry services.   

 
Most of the flow cytometry and longitudinal ELISPOT data were collected by 

Andrew Rahmberg, William Neidermyer, and Sharon Ng.  The mucosal antibody 
specimens were processed in the laboratory of Pamela Kozlowski. 
 

This work was supported by grants AI063993, AI071306, and RR000168 from 
the National Institutes of Health, and by federal funds from the National Cancer Institute, 
National Institutes of Health, under Contract No. HHSN261200800001E.  David T. 
Evans is an Elizabeth Glaser Scientist supported by the Elizabeth Glaser Pediatric AIDS 
Foundation.   

 
 

  



	   82	  

2. A. ABSTRACT 

 

Immunization of rhesus macaques with strains of SIV that are limited to a single 

cycle of infection elicits T cell responses to multiple viral gene products and antibodies 

capable of neutralizing lab-adapted SIV, but not neutralization-resistant primary isolates 

of SIV.  In an effort to improve upon the antibody responses, we immunized rhesus 

macaques with three strains of single-cycle SIV (scSIV) that express envelope 

glycoproteins modified to lack structural features thought to interfere with the 

development of neutralizing antibodies.  These envelope-modified strains of scSIV 

lacked either five potential N-linked glycosylation sites in gp120, three potential N-linked 

glycosylation sites in gp41, or 100 amino acids in the V1V2 region of gp120.  Three 

doses consisting of a mixture of the three envelope-modified strains of scSIV were 

administered on weeks 0, 6, and 12, followed by two booster inoculations with VSV G 

trans-complemented scSIV on weeks 18 and 24.  Although this immunization regimen 

did not elicit antibodies capable of detectably neutralizing SIVmac239 or SIVmac251UCD, 

neutralizing antibody titers to the envelope-modified strains were selectively enhanced.  

Virus-specific antibodies and T cells were observed in the vaginal mucosa.  After twenty 

weeks of repeated, low-dose vaginal challenge with SIVmac251UCD, six of eight 

immunized animals versus six of six naïve controls became infected.  Although 

immunization did not significantly reduce the likelihood of acquiring immunodeficiency 

virus infection, statistically significant reductions in peak and set-point viral loads were 

observed in the immunized animals relative to the naïve control animals. 
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2. B. INTRODUCTION 

 

Development of a safe and effective vaccine for HIV-1 is an urgent public health 

priority, but remains a formidable scientific challenge.  Passive transfer experiments in 

macaques demonstrate neutralizing antibodies can prevent infection by laboratory-

engineered SHIV strains410-413,445-447.  However, no current vaccine approach is capable of 

eliciting antibodies that neutralize primary isolates with neutralization-resistant Env 

proteins.  Virus-specific T cell responses can be elicited by prime-boost strategies 

utilizing recombinant DNA and/or viral vectors42,48,363,364,384,386,392,448, which confer 

containment of viral loads following challenge with SHIV89.6P
363,366,392,449.  Unfortunately, 

similar vaccine regimens are much less effective against SIVmac239 and 

SIVmac25142,48,369,386, which bear closer resemblance to most transmitted HIV-1 isolates in 

their inability to utilize CXCR4 as a coreceptor62,158,215,450,451 and inherent high degree of 

resistance to neutralization by antibodies or sCD4164,205,209.  Live-attenuated SIV can 

provide complete or apparent sterile protection against challenge with SIVmac239 and 

SIVmac251, or at least contain viral replication below the limit of detection345,347,452.  Due 

to the potential of the attenuated viruses themselves to cause disease in neonatal rhesus 

macaques349,350,453, and to revert to a pathogenic phenotype through the accumulation of 

mutations over prolonged periods of replication in adult animals346,348,454, attenuated 

HIV-1 is not under consideration for use in humans. 

As an experimental vaccine approach designed to retain many of the features of 

live-attenuated SIV, without the risk of reversion to a pathogenic phenotype, we and 

others devised genetic approaches for producing strains of SIV that are limited to a single 
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cycle of infection159,455-459.  In a previous study, immunization of rhesus macaques with 

single-cycle SIV (scSIV) trans-complemented with VSV G elicited potent virus-specific 

T-cell responses159, which were comparable in magnitude to T-cell responses elicited by 

optimized prime-boost regimens based on recombinant DNA and viral 

vectors42,48,363,366,386,448.  Antibodies were elicited that neutralized T-cell line-adapted 

SIVmac251TCLA
159.  However, despite the presentation of native, trimeric SIV Env on the 

surface of infected cells and virions, none of the scSIV-immunized macaques developed 

antibody responses that neutralized SIVmac239159.  Therefore, we have now introduced 

Env modifications into scSIV to facilitate the development of neutralizing antibodies.   

Most primate lentiviral envelope glycoproteins are inherently resistant to 

neutralizing antibodies due to structural and thermodynamic properties that have evolved 

to enable persistent replication in the face of vigorous antibody 

responses132,217,241,244,251,252,254,274,460.  Among these, extensive N-linked glycosylation 

renders much of the Env surface inaccessible to antibodies130,241,243,247,274.  Removal of N-

linked glycans from gp120 or gp41 by mutagenesis facilitates the induction of antibodies 

to epitopes that are occluded by these carbohydrates in the wild-type virus132,244.  

Consequently, antibodies from animals infected with glycan-deficient strains neutralize 

these strains better than antibodies from animals infected with the fully-glycosylated 

SIVmac239 parental strain132,244.  Most importantly with regard to immunogen design, 

animals infected with the glycan-deficient strains developed higher neutralizing antibody 

titers against wild-type SIVmac239132,244.  Additionally, the removal of a single N-linked 

glycan in gp120 enhanced the induction of neutralizing antibodies against SHIV89.6P and 

SHIVSF162 in a prime-boost strategy by 20-fold250.  These observations suggest that 
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potential neutralization determinants accessible in the wild-type Env are poorly 

immunogenic unless specific N-linked glycans in gp120 and gp41 are eliminated by 

mutagenesis. 

The variable loop regions 1 and 2 (V1V2) of HIV-1 and SIV gp120 may also 

interfere with the development of neutralizing antibodies.  Deletion of V1V2 from HIV-1 

gp120 permitted neutralizing monoclonal antibodies to CD4-inducible epitopes to bind to 

gp120 in the absence of CD4, suggesting that V1V2 occludes potential neutralization 

determinants prior to the engagement of CD4461.  A deletion in V2 of HIV-1 Env exposed 

epitopes conserved between clades462, improved the ability of a secreted Env trimer to 

elicit neutralizing antibodies in rabbits463, and was present in a vaccine that conferred 

complete protection against SHIVSF162P4
464.   A deletion of 100 amino acids in V1V2 of 

SIVmac239 rendered the virus sensitive to monoclonal antibodies with various 

specificities156.  Furthermore, 3/5 macaques experimentally infected with V1V2-deleted 

SIVmac239 resisted superinfection with wild-type SIVmac239465.  Thus, occlusion of 

potential neutralization determinants by the V1V2 loop structure may contribute to the 

poor immunogenicity of the wild-type Env protein. 

Here we tested the hypothesis that antibody responses to scSIV could be 

improved by immunizing macaques with strains of scSIV engineered to eliminate 

structural features that interfere with the development of neutralizing antibodies.  

Antibodies to Env-modified strains were selectively enhanced, but these did not 

neutralize the wild-type SIV strains.  We then tested the hypothesis that immunization 

might prevent infection in a repeated, low-dose vaginal challenge model of heterosexual 

HIV-1 transmission.  Indeed, while all six naïve control animals became infected, two of 
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eight immunized animals remained uninfected after twenty weeks of repeated vaginal 

challenge.  Relative to the naïve control group, reductions in peak and set-point viral 

loads were statistically significant in the immunized animals that became infected.  
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2. MATERIALS AND METHODS 

 

Animals. The animals included in this study were all female Indian-origin rhesus 

macaques (Macaca mulatta).  They were housed in a biosafety level 3 containment 

facility at the New England Primate Research Center (NEPRC), and given care in 

accordance with standards of the Association for Assessment and Accreditation of 

Laboratory Animal Care and the Harvard Medical School Animal Care and Use 

Committee.  These experiments and procedures were approved by the Harvard Medical 

Area Standing Committee on Animals, and were conducted in accordance to the Guide 

for the Care and Use of Laboratory Animals466. 

The animals in this study were typed for the MHC class I alleles Mamu-A*01, -

A*02, -A*08, -A*11, -B*01, -B*03, -B*04, -B*08, -B*17, and -B*29, as well as the MHC 

class II alleles DRB1*w201, DRB1*0401/06, and DPB1*06.  The MHC typing results are 

summarized in Table 2.1.  Typing was performed in Dr. David Watkins’ laboratory at the 

Wisconsin National Primate Research Center (WNPRC), as previously described by 

Kaizu et al467. 

 

Table 2.1. MHC typing of immunized and naïve macaques467. 
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Env-modified strains of scSIV. Mutations were introduced into the 3’ half of the 

SIVmac239 genome132,244,273. A fragment containing a stop codon followed by two single-

nucleotide deletions in nef456 plus a stop codon at position E767 of Env was cloned into 

the NheI and SphI sites of the 3’ halves of SIV genomes containing the M5, g123, and 

ΔV1V2 Envs.  Sequence tags gsa, cao, and ggr were previously introduced into scSIV 

constructs containing the mutated frameshift region, and deletions in pol468.  SphI-SphI 

fragments of the 5’ halves containing the three sequence tags were cloned into the SphI 

sites of the 3’ halves containing the M5, g123, and ΔV1V2 Envs, and stop codons in Env 

and Nef. 

 

Preparation of scSIV. Virus stocks of scSIV were produced by co-transfection of 

293T cells with the Gag-Pol expression product pGPfusion, and the proviral DNA for 

each strain of scSIV455.	  293T cells were seeded on day 0 at a density of 3x106 cells per 

100 mm dish in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% 

fetal bovine serum (FBS), L-glutamine, penicillin and streptomycin.  Cells were 

transfected on day 1 with 5 μg of each plasmid, using the GenJetTM transfection reagent 

according to the manufacturer’s instructions (SignaGen Laboratories, Gaithersburg, MD).  

Media was removed on day 2, and cells were washed twice with serum-free DMEM, 

which was replaced with DMEM supplemented with 10% rhesus serum (Equitech-Bio, 

Kerrville, TX).  Cell culture supernatant was collected on day 3.  Cellular debris was 

removed by centrifugation at 2095 x g, and supernatants were concentrated by repeated, 

low-speed centrifugation in YM-50 ultrafiltration units (Millipore, Bedford, MA), 

according to the manufacturer’s instructions.  Aliquots of scSIV were cryopreserved at -
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80°C until use.  The virus concentration was determined by SIV p27 antigen capture 

ELISA (Advanced BioScience Laboratories, Kensington, MD). 

 

Immunization of macaques with scSIV. Eight animals were inoculated 

intravenously with identical doses containing 5 μg p27 of scSIVmac239M5, 

scSIVmac239g123, and scSIVmac239ΔV1V2 on weeks 0, 6, and 12.  The animals were 

boosted with 15 μg p27 scSIVmac239 trans-complemented with VSV GNJ (New Jersey 

serotype) on week 18, and 15 μg p27 scSIVmac239 trans-complemented with VSV GI 

(Indiana serotype) on week 24.  Animals were anesthetized by 15 mg/kg intramuscular 

injection of ketamine-HCl, and the concentrated scSIV stock was injected through a 22-

gauge catheter aseptically placed into the saphenous vein. 

 

Neutralizing antibodies. Neutralizing antibodies were titered by measuring the 

inhibition over serial, two-fold plasma dilutions of the activity of a secreted alkaline 

phosphatase (SEAP) reporter gene under transcriptional control of the SIV LTR promoter 

in a C8166-derived T-cell line164. SEAP activity was measured using the Phospha-Light 

SEAP detection kit (Applied Biosystems, Foster City, CA).  Cells incubated without 

virus or without plasma were used to determine the minimum and maximum SEAP 

activities, respectively.  The nearest values above and below 50% SEAP activity were 

used to calculate what plasma dilution would intercept the 50% inhibition line. 

 Virus was incubated with plasma dilutions in 100 μl volumes for 1 hour at 37°C 

before adding a 100 μl volume containing the C8166-SEAP reporter cells.  Due to 

differences in infectivities between Env mutants, different amounts of input virus and 
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C8166-SEAP cells were used per well for each strain.  Minimizing the amount of input 

virus and time to reading SEAP activity maximizes the apparent 50% neutralization titer 

(data not shown).  These amounts and incubation times were as follows: 12.5 ng p27 

SIVmac239M5 and 50,000 cells, read on day 5; 10 ng p27 SIVmac239g123 and 50,000 

cells, read on day 4; 2.5 ng p27 SIVmac239ΔV1V2 and 40,000 cells, read on day 3; 2 ng 

p27 SIVmac251TCLA and 15,000 cells, read on day 3; 0.5 ng p27 SIVmac239 and 15,000 

cells, read on day 3; 0.5 ng p27 SIVmac251UCD and 15,000 cells, read on day 3.  

SIVmac239M5, SIVmac239g123, and SIVmac239 stocks were produced by transfection of 

293T cells.  An uncloned SIVmac239ΔV1V2 stock that was passed in H. saimiri-

transformed macaque 221 cells273, and expanded in CD8-depleted, PHA-activated rhesus 

PBMC was selected for the neutralizing antibody assays due to its higher infectivity.  

SIVmac251TCLA was grown in MT4 cells.  The SIVmac251UCD used for neutralization 

assays was an uncloned stock, expanded from the challenge stock for five days in CD8-

depleted, PHA-activated rhesus PBMC. 

 

Collection and processing of mucosal specimens. Cervicovaginal and rectal 

secretions were collected atraumatically with pre-moistened Weck-Cel sponges 

(Medtronics, Minneapolis, MN), and extracted by centrifugation as previously 

described469.  Vaginal biopsies containing both epithelium and underlying tissue were 

collected using sterile pinch biopsy forceps.  Lymphocytes were isolated from biopsy 

specimens as previously described470,471.  Biopsies were incubated in 1 mM EDTA for 30 

minutes at 37°C, then twice incubated for an hour in fresh media containing collagenase 

Type IV while shaking vigorously.  A cell suspension was obtained by mechanical 
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dispersion of collagenase-treated samples with a blunt-ended 18 G needle, followed by 

filtration using a 70 µm nylon cell strainer.  Cells were layered over a 35%/60% 

discontinuous Percoll gradient and centrifuged for 20 minutes at 1000 x g to enrich for 

lymphocytes. 

 

Mucosal antibodies. Concentrations of total IgG, total IgA, and antibodies to 

gp120 and viral lysates were measured by chromagenic ELISA as previously described472 

using microtiter plates coated with goat anti-monkey IgG (MP BioMedicals, Solon, OH), 

goat anti-monkey IgA (Rockland, Gilbertsville, PA), SIV mac251 rgp120 

(ImmunoDiagnostics, Woburn, MA), or a 500-fold dilution of SIV mac251 viral lysate 

(Advanced Biotechnologies Inc, Columbia, MD).  Preparations of rhesus macaque serum 

containing known quantities of each immunoglobulin or gp120-specific antibody were 

used as standards.  Prior to analyses for IgA antibodies, specimens were depleted of IgG 

using Protein G Sepharose as described previously469 Plates were developed with 

biotinylated goat anti-monkey IgA (Alpha Diagnostics, San Antonio, TX) or anti-human 

IgG (SouthernBiotech, Birmingham, AL) polyclonal antibodies.  The concentration of 

SIV-specific IgG or IgA in secretions was normalized relative to the total IgG or IgA 

concentration by calculating the specific activity (ng gp120-specific antibody per µg total 

IgG or IgA).  Specific activity (SA) values were considered to be significant if greater 

than the mean plus three standard deviations of samples from naïve macaques. 

 

IFNγ  ELISPOT assays. Longitudinal T-cell responses to Gag, Tat, Rev, Vif, Vpr, 

Vpx, Env, and Nef were measured using pools of 15-mer peptides overlapping by eleven 
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residues at 2.5 µg/ml.  PBMC were plated at 3x105 and 1x105 cells per well in duplicate 

wells at each density on Multiscreen 96-well plates (Millipore, Bedford, MA), incubated 

overnight, and IFNγ was detected using the Mabtech ELISPOT kit for monkey/human 

IFNγ (Mabtech, Mariemont, OH).  Spots were enumerated by an automated ELISPOT 

reader (Zellnet Consulting, New York, NY).  The number of spot forming cells (SFC) per 

million PBMC was calculated by subtracting the number of background spots in wells 

that received cells but not peptide. 

Full-proteome epitope mapping was expedited through the use of a deconvolution 

matrix.  Each animal was mapped using deconvolution matrices consisting of one 96-well 

ELISPOT plate containing 92 matrix wells, 3 DMSO-only negative control wells, and 

one concanavalin A (ConA) positive control well.  Peptides covering Gag, Pol, Tat, Rev, 

Vif, Vpr, Vpx, Env, and Nef were each present in 2 of the 92 matrix wells.  The matrix 

was designed to minimize the number of potentially positive peptides that would require 

individual testing.  Mapping of CD4+ T cell epitopes was performed using PBMC 

depleted of CD8+ cells by Dynal anti-CD8 magnetic beads (Invitrogen, Carlsbad, CA).  

CD8+ T cell epitopes were mapped using PBMC depleted of CD4+ cells.  Depletions 

were conducted at a 3:1 bead-to-cell ratio for 45 minutes on a rotator at 4°C, and 

confirmed by flow cytometry to have reduced the target population to a maximum of 

0.1% of lymphocytes.  Cells were seeded to the matrix plate at 1x105 cells per well.  

Surplus CD4- or CD8-depleted cells were rested at 37°C overnight.  After processing and 

enumeration of spots, peptides present in two wells deemed positive, defined as greater 

than 50 SFC per million PBMC and 3 standard deviations above background, were 

selected for individual testing on the rested CD4- or CD8-depleted PBMC. 
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MHC class I tetramer staining. MHC class I tetramer staining of virus-specific 

CD8+ T cells was conducted for the Mamu-A*01- and A*02-positive macaques.  A 200 µl 

volume of whole blood was incubated for 30 minutes at 37°C with one of the APC-

conjugated tetramers, Mamu-A*01 Gag181-189 (CM9), Mamu-A*01 Tat28-35 (SL8), Mamu-

A*02 Nef159-167 (YY9), or Mamu-A*02 Gag71-79 (GY9).  These tetramers were provided 

by Dr. David Watkins’ laboratory (WNPRC, Madison, WI).  Samples were then stained 

for 30 minutes at room temperature with FITC-conjugated anti-CD3 (clone SP34, BD 

Biosciences, San Jose, CA), and PerCP-conjugated anti-CD8 (clone SK1, BD 

Biosciences).  Erythrocytes were then eliminated by treatment with FACS Lysing 

solution (BD Biosciences, San Jose, CA).  Samples were washed and fixed in 2% 

formaldehyde in PBS.  A FACSCalibur flow cytometer was used for data collection (BD 

Biosciences, San Jose, CA).  Data was analyzed using the FlowJo version 8.7.1 software 

package (Tree Star, San Carlos, CA). 

 

Repeated, low-dose vaginal challenge with SIVmac251UCD. The SIVmac251UCD 

virus stock used for challenges was prepared at the California National Primate Research 

Center in June, 2004.  We have adopted the UCD designation to indicate that this virus 

stock has its own passage history, in PBMC and in monkeys, although it was derived 

from a SIVmac251 stock originally provided by Dr. Ronald Desrosiers. 

 Fresh vials of virus were thawed at 37°C, transferred immediately to ice, and 

diluted 1 to 100 in RPMI tissue culture medium (Invitrogen, Carlsbad, CA) containing no 

additional additives.  Each 1 ml dose contained 1 ng SIV p27 equivalents or 1000 TCID50.  
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Doses were stored on ice until inoculation.  Animals were anesthetized by 15 mg/kg 

intramuscular injection of ketamine-HCl, and positioned with their hindquarters raised 

for vaginal inoculation and the following 30 minutes.  Four hours later, the above 

challenge procedure was repeated.  Challenge days were spaced one week apart, and 

were discontinued once viral RNA was detectable in plasma for 2 consecutive weeks. 

 

Plasma viral RNA loads. Plasma samples were collected in 0.5 to 1.5 ml 

volumes of sodium citrate anticoagulant and ultracentrifuged at 20,000 x g for 1 hour to 

pellet virus.  RNA was extracted, reverse transcribed into cDNA, and quantified by real-

time PCR as previously described473.  The limit of detection for this assay is 30 copies of 

RNA per ml.  The primer/probe sets for the quantitative, multiplex real-time RT-PCR 

assay for the unique sequence tags ggr, cao and gsa have previously been described by 

DeGottardi et al468. 

 

CD4+ T cell subsets. The maintenance or destruction of naïve, central memory, 

effector memory, CCR5+ memory, and total CD4+ T cell populations was monitored by 

flow cytometry.  Total CD4+ T cell counts and the concentrations of each cell population 

per µl whole blood were calculated by enumerating lymphocytes per µl of whole blood 

by complete blood count (CBC), and multiplying by the percentage belonging to each 

CD4+ T cell subpopulation as determined by flow cytometry.  Whole blood was stained 

with FITC-conjugated anti-CD3 (clone SP34, BD Biosciences, San Jose, CA), PerCP-

conjugated anti-CD4 (clone L200, BD Biosciences, San Jose, CA), APC-conjugated anti-

CD95 (clone DX2, BD Biosciences, San Jose, CA), and PE-conjugated anti-CD28 (clone 
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CD28.2, BD Biosciences, San Jose, CA) or PE-conjugated anti-CCR5 (clone 3A9, BD 

Biosciences, San Jose, CA).  Erythrocytes were eliminated with FACS Lysing solution 

(BD Biosciences, San Jose, CA), and cells were washed and fixed in 2% formaldehyde in 

PBS.  Flow cytometry data for CD4+ T cells was collected and analyzed as described for 

tetramer data. 

 

Statistical methods. All statistical evaluations were conducted using SPSS 15.0 

(SPSS Inc., Chicago, IL), and Strata MP 10.0 (Strata Corp., College Station, TX).  The 

differences in the ratio of anti-gp120 IgG SA in CVS to plasma was compared between 

the uninfected immunized animals (n=2) and those immunized and infected (n=6) using a 

generalized estimation equation (GEE) model.  Correlations between repeated 

measurements within the same subject were accounted for by use of unstructured 

covariance as well as first order autocorrelation.  Both approaches lead to a similar result.  

In total, 31 measurements from 8 animals were included. 

A 2-tailed Mann-Whitney U test on the highest measured log-transformed values 

between weeks 1 and 5 post-infection was used to determine the significance of 

differences in peak viral loads.  A linear mixed model analysis was used to determine the 

significance of differences in CD4+ T cell counts and log-transformed set-point viral 

loads between the immunized versus naïve groups474.  Set-point viral loads were 

evaluated for the period between weeks 5 and 67 post-infection, centered on week 28. 



	   96	  

2. RESULTS 

 

Immunization of macaques with Env-modified strains of scSIV. Rhesus 

macaques were immunized with three strains of scSIV, each of which had different 

mutations that deprive the SIV envelope glycoprotein of specific countermeasures against 

host antibody responses.  The wild-type SIVmac239 Env has 23 potential N-linked 

glycosylation sites in gp120, and three potential N-linked glycosylation sites in gp41 (Fig. 

2.1a).  The 5th, 6th, 8th, 12th and 13th potential N-linked glycosylation sites in gp120 were 

eliminated by mutagenesis in the Env-modified scSIV strain scSIVmac239M5 (Fig. 

2.1b)244.	  	  All three potential N-linked glycosylation sites in gp41 were eliminated in the 

strain scSIVmac239g123 (Fig. 2.1c)132.  The third Env-modified scSIV strain, 

scSIVmac239ΔV1V2, had 100 amino acids in the V1V2 loop structure deleted (Fig. 

2.1d)273.  These three strains of Env-modified scSIV also had a glutamate to stop codon 

change to truncate the cytoplasmic tail of gp41, which maximizes Env incorporation onto 

virions, viral infectivity, and the Env-specific antibody response (Fig. 2.1b-d)249,468.  In 

order to maximize CD8+ T-cell responses, each scSIV strain contained a premature stop 

codon in nef that eliminates 26 amino acids from the C-terminus of the protein required 

for MHC class I downregulation (Fig. 2.1b-d)475. 
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Figure 2.1. Animals were immunized with Env-modified single-cycle SIV, and 
challenged by repeated, low-dose vaginal inoculation. A schematic representation of 
the wild-type SIVmac239 Env appears at the top (a).  Positions of potential sites of N-
linked glycosylation (N-X-S/T motifs) are indicated by tree-like symbols.  Features 
removed from each Env-modified strain are indicated (red).  The M5 Env has asparagine 
to glutamine substitutions that eliminate the 5th, 6th, 8th, 12th and 13th potential N-linked 
glycosylation sites in gp120 (b).  The g123 Env has all three potential N-linked 
glycosylation sites in gp41 similarly eliminated (c).  Variable loops 1 and 2 of the 
ΔV1V2 envelope are deleted (d).  All of the modified envelopes have a glutamate-to-stop 
codon change at position 767 (E767*).  Eight macaques received an intravenous injection 
consisting of a mixture of 5 μg p27 equivalents of scSIVmac239M5, scSIVmac239g123, 
and scSIVmac239ΔV1V2 on weeks 0, 6, and 12 (e).  All 8 animals also received 15 μg 
p27 equivalents of VSV G trans-complemented scSIVmac239 intravenously on weeks 18 
and 24.  Beginning on week 32, the animals were challenged vaginally with 1000 TCID50 
(1 ng p27) of SIVmac251UCD twice per day of the same day each week for 20 weeks, or 
until viral RNA was detected in plasma on 2 consecutive weeks. 
 
 

Eight female rhesus macaques received 3 intravenous inoculations consisting of a 

mixture of 5 μg p27 equivalents of each of the 3 Env-modified scSIV strains on weeks 0, 
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6, and 12 to prime antibody responses to Env surfaces with limited accessibility in the 

native trimer (Fig. 2.1e).  These immunogens would be expected to also prime antibody 

responses to novel surfaces unique to the mutant Envs.  Truncation of the Env 

cytoplasmic tail can also alter the conformation of the ectodomain443,476-478.  Therefore, to 

focus the antibody response on surfaces exposed in the native trimer, the animals were 

boosted on weeks 18 and 24 with 15 μg p27 equivalents of scSIVmac239, which expresses 

the wild-type SIVmac239 Env with a full-length cytoplasmic tail (Fig. 1e).  These 2 

booster doses were trans-complemented with VSV G to maximize infectivity.  To prevent 

neutralization of the second boost by VSV G-specific antibodies159,479, scSIV was trans-

complemented with the New Jersey serotype (VSV GNJ) on week 18, and the Indiana 

serotype (VSV GI) on week 24.  This immunization regimen was designed to maximize 

the stimulation of both Env-specific antibody responses and the magnitude of virus-

specific T cell responses. 

To determine whether this immunization regimen might reduce the likelihood of 

viral transmission by the vaginal route, the 8 immunized animals and 6 naïve controls 

were repeatedly challenged for 20 weeks by low-dose vaginal inoculation of 

SIVmac251UCD, beginning on week 32 (Fig. 2.1e).  This challenge regimen was expected 

to be sufficient to infect all the naïve control animals480.  Thus, significant differences in 

the number of doses required to establish infection, or in the final number of infections 

for the immunized versus naïve groups, might indicate that immunization reduced vaginal 

transmission. 
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Transient viremia following each dose of Env-modified and VSV G trans-

complemented scSIV. Transient viral loads in plasma representing the progeny virions 

released by cells infected with each Env-modified strain of scSIV were measured 

independently using a quantitative, multiplex real-time RT-PCR assay specific for unique 

sequence tags cloned into the pol gene of each strain468.  Since cell-free virus is cleared 

from plasma with a half-life on the order of minutes18,266, these viral RNA load 

measurements reflect the lifespan of cells productively infected with scSIV in vivo, and 

thus the duration of antigenic stimulation.  The peaks of viremia for scSIVmac239M5 and 

scSIVmac239g123 were nearly identical, with geometric mean peak viral loads after the 

first inoculation of 6.8x103 and 6.1x103 RNA copies per ml (Fig. 2.2).  However, peak 

viral loads for scSIVmac239ΔV1V2 were considerably lower than the 2 other Env-

modified strains, resulting in detectable viral loads in only 4 of the 8 immunized animals, 

the highest of which peaked at 170 copies of viral RNA per ml in Mm 158-02.  Except 

for the first dose of scSIVmac239M5 in Mm 316-98, all single-cycle viral loads for each 

strain were cleared to below the limit of detection by 3 weeks after inoculation.  Relative 

to the first dose, peak viral loads were lower after the second inoculation for both 

scSIVmac239M5 (2-tailed Mann-Whitney U test, P=0.0002) and scSIVmac239g123 (2-

tailed Mann-Whitney U test, P=0.0002).  Following the booster inoculations with VSV 

GNJ and VSV GI trans-complemented scSIV on weeks 18 and 24, peak geometric mean 

viral loads were 1.8x104 and 7.8x103 copies of viral RNA per ml, consistent with the 

infectivity enhancement afforded by VSV G159.  These viral load measurements confirm 

the productive infection of cells in vivo by the Env-modified and VSV G trans-

complemented strains of scSIV. 
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Figure 2.2. Plasma viral RNA following each inoculation with single-cycle SIV. The 
level of viral RNA in plasma was measured independently for each of these strains using 
a quantitative, multiplex real-time RT-PCR assay for the unique sequence tags ggr, cao 
and gsa cloned into each of the three scSIV strains468.  This assay has a threshold of 
detection of 30 copies of viral RNA per ml plasma (dashed line).   
 

 
Neutralization of Env-modified and T-cell line-adapted SIV, but not wild-

type SIVmac239 or SIVmac251UCD. To determine whether immunization with the Env-

modified strains of scSIV significantly enhanced antibody responses to surfaces occluded 

by the N-linked glycans and V1V2 loops, neutralization of the Env-modified viruses by 
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plasma samples from this study was compared to neutralization by plasma samples from 

a previous study, in which animals were immunized with strains of scSIV expressing 

wild-type envelope glycoproteins from SIVmac239, SIVmac316, and SIVmac155T3 (Fig. 

2.3a-h)159.  The plasma samples utilized for this comparison were collected 2 weeks after  

 

 

Figure 2.3. Plasmas neutralized Env-modified and T-cell line-adapted SIV, but not 
wild-type SIV. Neutralizing antibody titers were compared between the animals 
immunized with Env-modified scSIV that subsequently became infected (blue) or 
remained uninfected (green), and historical control plasmas from animals immunized 
with scSIV expressing wild-type Envs (black).  Pooled pre-immune plasma served as a 
negative control (gray).  The dashed line indicates 50% inhibition of SEAP activity 
measured in relative light units (RLU).  Plasma samples collected 2 weeks after the third 
dose of scSIV were tested for neutralization of SIVmac251TCLA (a), SIVmac239M5 (b), 
SIVmac239g123 (c), SIVmac239ΔV1V2 (d), and SIVmac239 (i).  Fifty-percent 
neutralization titers are shown for SIVmac251TCLA (e), SIVmac239M5 (f), SIVmac239g123 
(g), and SIVmac239ΔV1V2 (h).  P-values were determined by 2-tailed Mann-Whitney U 
tests.  Week 26 plasmas were tested for neutralization of SIVmac239 (j).  Plasma samples 
drawn on week 32 were tested for neutralization of SIVmac251UCD (k). 
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the third intravenous inoculation with scSIV in both studies.  Neutralization assays using 

plasma samples from both studies were performed in parallel. 

No significant difference was detected for neutralization of SIVmac251TCLA by 

plasmas from the 2 groups (2-tailed Mann-Whitney U test, P=0.30) (Fig. 2.3a and e).  

This suggests that any differences in neutralizing antibody titers against the Env-modified 

strains do not reflect non-specific differences in overall antibody titers between the 2 

studies.  All of the animals immunized with Env-modified or wild-type strains of scSIV 

neutralized SIVmac239M5, consistent with previous observations that elimination of these 

carbohydrate attachment sites increases the susceptibility of this virus to 

neutralization156,244.  However, neutralizing antibody titers to SIVmac239M5 were not 

significantly different for animals immunized with Env-modified versus wild-type strains 

of scSIV (2-tailed Mann-Whitney U test, P=0.37) (Fig. 2.3b and f), indicating that 

scSIVmac239M5 did not specifically facilitate the induction of antibodies to epitopes 

occluded by the 5th, 6th, 8th, 12th and 13th N-linked glycans in gp120.  In contrast, 

SIVmac239g123 was detectably neutralized at low titers by only 2 of the animals 

immunized with wild-type scSIV, but was neutralized by all of the animals immunized 

with the Env-modified strains of scSIV, and at titers 5 times higher (2-tailed Mann-

Whitney U test, P=0.01) (Fig. 2.3c and g).  The difference in 50% neutralization titers 

between the groups remains statistically significant even if the outlier, Mm 284-99, with 

a titer of 5763, nearly 200-fold higher than the average for the rest of the group, is 

excluded from the analysis (2-tailed Mann-Whitney U test, P=0.02).  These results 

suggest that the N-linked glycans in gp41 interfere with the induction of Env-specific 
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antibody responses, and that the elimination of these glycans by mutagenesis can enhance 

the induction of antibodies to surfaces accessible in this N-linked glycan-deficient strain. 

Immunization with Env-modified strains also elicited higher neutralizing antibody 

titers to the V1V2-deleted virus than did scSIV expressing wild-type Envs.  While plasma 

from animals immunized with either the Env-modified or wild-type strains of scSIV both 

neutralized SIVmac239ΔV1V2, titers for the animals immunized with Env-modified 

strains were 7 times higher (2-tailed Mann-Whitney U test, P=0.01) (Fig. 2.3d and h).  

Indeed, the animals immunized with Env-modified scSIV were all able to neutralize 

SIVmac239ΔV1V2 infectivity to <2%, and had 50% neutralization titers that ranged from 

3.1x103 to 8.4x104.  Thus, in spite of the comparably poor take of infection by 

scSIVmac239ΔV1V2 (Fig. 2.2), immunization with Env-modified scSIV enhanced the 

induction of antibodies to determinants revealed by deletion of the V1V2 loops. 

Although immunization with Env-modified strains of scSIV enhanced the 

induction of antibodies that neutralize SIVmac239g123 and SIVmac239ΔV1V2, plasma 

samples collected 2 weeks after the third dose of Env-modified scSIV (week 14) and 2 

weeks after the second VSV G scSIV boost (week 26) failed to detectably neutralize 

SIVmac239 (Fig. 2.3i and j).  Likewise, plasma collected on the first day of challenge 

(week 32) did not detectably neutralize the SIVmac251UCD challenge strain (Fig. 2.3k). 

 

SIV-specific antibodies in mucosal secretions. Mucosal secretions were tested 

for SIV-specific antibodies before and after challenge (Fig. 2.4).  Vaginal and rectal 

secretions were collected using pre-moistened Weck-Cel sponges to avoid abrasion of the 

mucosal epithelium469.  This approach permits the nearly exclusive collection of 
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secretions, without drawing fluid from the underlying tissue.  To control for significant 

variability in the concentrations of total IgG and IgA in mucosal secretions over time and 

over the menstrual cycle, the specific activity (SA) of antibody titers to gp120 or viral 

lysates was calculated by dividing the μg amount of SIV-specific antibody by the mg 

amount of total IgG or IgA in the sample (Fig. 2.4). 

Gp120-specific IgG was detectable in the cervicovaginal secretions (CVS) of all 

the immunized animals prior to challenge (Fig. 2.4a).  Comparison of the specific activity 

of IgG in CVS versus plasma revealed a positive correlation (Fig. 2.4b) (Spearman 

Rs=0.91, P<0.0001).  This correlation demonstrates that the proportion of total IgG 

specific for gp120 in the vaginal mucosa closely mirrors the proportion found in plasma.  

Indeed, the median ratio of the specific activities in CVS versus plasma was 1:1 (Fig. 

2.4c).  However, the 2 immunized animals that remained SIV-negative after the 20-week 

challenge period had significantly higher pre-challenge ratios of specific activity in CVS 

versus plasma than the 6 animals that subsequently became infected (Fig. 2.4c) (ratio 

(95% CI): 3.6 (3.1, 4.0), P<0.001). 

Gp120-specific IgA was measured in CVS, rectal secretions, and plasma (Fig. 

2.4d and e).  Prior to challenge, none of the animals had detectable gp120-specific IgA 

titers in plasma (data not shown) or CVS (Fig. 2.4d).  Likewise, with the exception of 

Mm 305-99, none of the animals had detectable Env-specific IgA titers in rectal 

secretions (Fig. 2.4e).  High-titer gp120-specific IgA responses were observed post-

infection in both CVS and rectal secretions for all 6 of the scSIV-immunized animals that 

became infected (Fig. 2.4d and e). 
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Figure 2.4. Virus-specific antibody responses were detected in mucosal secretions. 
Anti-gp120 IgG specific activity (SA) was monitored longitudinally in CVS of 
immunized animals prior to infection (black), from the week each became infected (blue), 
and for the 2 that did not become infected (green) (a).  Mucosal antibody responses in the 
naïve animals were measured prior to infection (gray) and post-infection (red).  The 20-
week challenge phase is shaded.  The dashed line indicates the limit of detection, defined 
as the mean plus three standard deviations of negative samples.  Anti-gp120 IgG SA in 
CVS and plasma are correlated (Spearman Rs=0.91, P<0.0001) (b).  The ratios of anti-
gp120 SA in CVS versus plasma were significantly higher at the 5 pre-challenge time 
points in the 2 animals that remained SIV-negative (c) (ratio (95% CI): 3.6 (3.1, 4.0), 
P<0.001).  IgG samples containing readings below the limit of detection, defined as 3 
standard deviations above the average SA for naïve controls, were excluded from 
correlative and ratio analyses (b and c).  IgA SA was monitored against gp120 in CVS (d) 
and rectal secretions (e), and against viral lysate in CVS (f) and rectal secretions (g). 
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IgA in CVS, rectal secretions, and plasma was tested for reactivity against a 

SIVmac251 viral lysate preparation (Fig. 2.4f and g).  No IgA specific for viral lysates 

was detectable in plasma prior to challenge (data not shown), but low levels were 

detectable in CVS from Mm 234-99 (Fig. 2.4f), and in rectal secretions from Mm 259-03 

and Mm 261-00 (Fig. 2.4g).  High levels of viral lysate-specific IgA were detectable in 

CVS and rectal secretions after infection of all of the immunized animals (Fig. 4f and g).  

Thus, the virus-specific IgA detected in some animals prior to challenge, and the high-

titer IgA responses that developed in immunized animals that became infected, may have 

contributed to the control of viral replication. 

 

Breadth of virus-specific T cell responses elicited by immunization with 

scSIV. T-cell responses to the 8 viral antigens expressed by scSIV were measured 

longitudinally during the immunization phase of this experiment by IFNγ ELISPOT 

assays (Fig. 2.5).  Each animal responded to multiple viral antigens.  These responses 

were boosted by inoculation with VSV G scSIV on weeks 18 and 24.  

The breadth of the CD4+ and CD8+ T-cell responses elicited by scSIV and 

SIVmac239Δnef was assessed by whole-proteome, deconvolution epitope mapping.  CD4+ 

T-cell epitopes were defined on week 25 (Table 2.2), and CD8+ T-cell epitopes were 

defined on week 26 (Table 2.3).  CD4+ T-cell epitopes were analyzed using PBMC 

depleted of CD8+ cells by anti-CD8 antibody-coated magnetic beads, and CD8+ T-cell 

epitopes were analyzed using PBMC depleted of CD4+ cells by anti-CD4 antibody-

coated magnetic beads.  In cases where consecutive 15-mer peptides both scored positive, 

the overlapping eleven amino acid sequence is shown due to the high probability that a 
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Figure 2.5. T-cell responses were detectable against all proteins expressed by scSIV. 
IFNγ ELISPOT responses against peptide pools of overlapping 15-mers representing the 
Gag, Tat, Rev, Vif, Vpr, Vpx, Env, and Nef proteins were measured over the 
immunization period (weeks 0-32).  The limit of detection was 50 spot forming cells 
(SFC) per 106 PBMC. 
 

single epitope exists within this region (Tables 2.2 and 2.3).  Due to routinely low 

PBMC yields from Mm 241-01, a comprehensive analysis of T-cell epitopes was not 

possible for this animal.  The 7 immunized animals that were mapped recognized an 

average of 5.4 CD4+ and 4.3 CD8+ T-cell epitopes.  The same mapping protocol was used 
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to determine that animals chronically infected with live-attenuated SIVmac239Δnef 

recognized an average of 5.2 CD4+ T-cell epitopes (n=5 animals) (Table 2.4), and 5.2 

CD8+ T-cell epitopes (n=17 animals) (Table 2.5).  The T-cell responses measured 1-2 

weeks after boosting with scSIV versus during chronic infection with SIVmac239Δnef 

were generally similar (Fig. 2.6).  However, CD8+ T-cell responses were higher in 

magnitude after boosting with scSIV than during chronic SIVmac239Δnef infection (2-

tailed Mann-Whitney U test, P=0.0263). Thus, the breadth of CD4+ and CD8+ T-cell 

responses elicited by scSIV were comparable to the magnitude and breadth of those 

observed during persistent infection with live-attenuated SIV. 

 
Table 2.2. CD4+ T-cell responses elicited by scSIV in 7 macaques.  
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Table 2.3. CD8+ T-cell responses elicited by scSIV in 7 macaques. 
 
 
 

 
Table 2.4. CD4+ T-cell responses elicited by SIVmac239Δnef in 5 macaques. 
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Table 2.5. CD8+ 
T-cell epitopes 
elicited by 
SIVmac239Δnef 
in 17 macaques. 
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Figure 2.6. Magnitude and breadth of T-cell responses elicited by scSIV and 
SIVmac239Δnef. Deconvolution epitope mapping was performed on CD4+ T-cell 
responses 1 week after boosting with VSV GI scSIV, and on CD8+ T-cell responses 2 
weeks after boosting with VSV GI scSIV.  The magnitude (a) and breadth (b) of the T-
cell responses were compared to those assessed by deconvolution epitope mapping 
during chronic infection with SIVmac239Δnef.  The higher magnitude CD8+ T-cell 
responses in scSIV versus SIVmac239Δnef was significant (2-tailed Mann-Whitney U test, 
P=0.0263). 
 

Virus-specific CD8+ T-cells in peripheral blood and vaginal mucosa. 

Immunization with scSIV elicited virus-specific CD8+ T-cells that were detectable in 

peripheral blood and the vaginal mucosa by MHC class I tetramer staining (Fig. 2.7).  

Tetramer+ CD8+ T-cells were detected in peripheral blood following the first inoculation 

in each of the Mamu-A*01 and -A*02-positive animals, except Mm 305-99.  These 

responses were boosted by immunization with VSV G scSIV on weeks 18 and 24.  Virus-

specific CD8+ T-cell responses identified by tetramer staining mirror the longitudinal 

IFNγ ELISPOT results (Fig. 2.5). 

The magnitude of MHC class I tetramer+ CD8+ T-cell responses elicited by 

immunization with scSIV varied from animal to animal.  Mm 284-99 had the highest pre-

challenge peak responses, with 6.7% of CD8+ T-cells recognizing Mamu-A*01 Gag181-189 

(CM9), and 2% of CD8+ T-cells recognizing each Mamu-A*01 Tat28-35 (SL8) and Mamu-
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A*02 Nef159-167 (YY9) (Fig. 2.7d).  Mm 305-99 had the lowest magnitude response to 

Mamu-A*01 Gag181-189 (CM9), which became detectable only after boosting with VSV G 

scSIV, and reached a maximal frequency of 0.5% of CD8+ T-cells (Fig. 2.7c).  The CD8+ 

T-cell response to Mamu-A*01 Tat28-35 (SL8) never exceeded the limit of detection in 

this animal.  These observations are consistent with the absence of T-cell responses to 

peptides containing this epitope for both the longitudinal analysis of IFNγ ELISPOT 

responses to the Tat peptide pool (Fig. 2.5), and to the individual 15-mer peptides 

containing this epitope (Table 2.3).  Thus, even among Mamu-A*01-positive macaques, 

there was considerable variation in the magnitude of CD8+ T-cell responses elicited by 

immunization with scSIV. 
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Figure 2.7. Virus-specific CD8+ T-cells were detected in peripheral blood and the 
vaginal mucosa. CD8+ T-cells binding the MHC class I tetramers Mamu-A*01 Gag181-189 
(CM9), Mamu-A*01 Tat28-35 (SL8), Mamu-A*02 Nef159-167 (YY9), and Mamu A*02 
Gag71-79 (GY9) were detected in peripheral blood (a-e).  The limit of detection indicated 
by the dotted line is 0.05% of CD8+ T-cells.  The 20-week challenge period is shaded.  
Tetramer+ CD8+ T-cell frequencies are shown prior to infection (black), and from the 
week each animal became infected (blue) (a, b and e).  Frequencies of tetramer+ CD8+ T-
cells are shown for the 2 immunized animals that remained uninfected (green) (c and d).  
Similar frequencies of CD8+ T-cells were tetramer+ among lymphocytes isolated from 
vaginal biopsies versus peripheral blood (f). 
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SIV-specific CD8+ T-cell frequencies were also measured in lymphocytes isolated 

from biopsies of the vaginal mucosa on week 26, 2 weeks after boosting with VSV G 

scSIV.  Tetramer+ cell frequencies among lymphocytes isolated from these biopsies were 

similar to the frequencies observed in peripheral blood samples processed in parallel (Fig. 

2.7f).  Frequencies of Mamu-A*01 Gag181-189 (CM9)-specific CD8+ T-cells in the 

biopsies ranged from 0.8% in Mm 305-99 to 3.1% in Mm 284-99.  These biopsy results 

confirm that intravenous immunization with scSIV elicited SIV-specific CD8+ T-cells 

that trafficked to the vaginal mucosa, and were therefore present at the site of challenge. 

Extraordinarily high anamnestic CD8+ T-cell responses ensued following 

infection of immunized animals.  Cumulative Mamu-A*01 Gag181-189 (CM9) plus Mamu-

A*01 Tat28-35 (SL8) responses peaked at 22% and 28% of CD8+ T-cells in peripheral 

blood from Mm 259-03 and Mm 261-00, respectively (Fig. 2.7a and b).  Likewise, an 

astonishing 44% of CD8+ T-cells recognized the Mamu-A*02 Nef159-167 (YY9) epitope in 

Mm 158-02 (Fig. 2.7e).  In contrast, the percentage of Mamu-A*01 Gag181-189 (CM9)-

specific CD8+ T-cells declined steadily in Mm 284-99 from 1.7% to 0.13% of CD8+ T-

cells during the 20-week challenge period (Fig. 2.7d).  In the case of Mm 305-99, Mamu-

A*01 Gag181-189 (CM9)-specific CD8+ T-cells increased in frequency on weeks 40-41 and 

46-47, perhaps reflecting the simulation of recall responses by the challenge virus (Fig. 

2.7c).  Robust anamnestic T-cell responses were observed in the 6 immunized animals 

that became infected, but not in the 2 that remained uninfected. 

 

Outcome of repeated, low-dose vaginal challenge. Repeated, low-dose vaginal 

inoculation with SIVmac251UCD was conducted to model heterosexual transmission of 
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HIV-1.  Beginning on week 32, each of the 8 immunized animals and 6 naïve control 

animals were challenged vaginally with 1000 TCID50 (1 ng p27) of SIVmac251UCD.  

Inoculations were administered in the morning and again in the afternoon of the same day 

each week, for 20 consecutive weeks.  Challenge doses were discontinued when viral 

RNA was detected in plasma for 2 consecutive weeks for any given animal.  All naïve 

control animals were expected to become infected480, and a significant difference in the 

number of doses required to establish infection, or in the final number of animals 

becoming infected in the immunized group versus the naïve controls would indicate that 

immunization prevented transmission.  All 6 naïve control animals and 6 of the 8 

immunized animals became infected (Fig. 2.8).  Four of the 6 naïve animals were 

infected by a single clone, as determined by single genome amplification (SGA), and 

analysis of sequences encoding Env at the first viral RNA-positive time point (Eric 

Hunter, Emory University, personal communication).  A Weibull regression analysis was 

performed to determine whether the immunized animals required significantly more 

doses than the naïve controls to establish infection.  The number of doses required to 

establish infection in each group computed a hazard (risk) ratio of 0.38 (95% CI=0.12, 

1.21), where a ratio of 1 would mean the groups are at equal risk of becoming infected.  

Although there was a trend toward greater resistance to infection for the scSIV-

immunized animals, this analysis did not reveal a statistically significant difference in the 

risk of infection relative to the control animals (P=0.10). 
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Figure 2.8. Animals were challenged by repeated, low-dose vaginal inoculation. The 
8 immunized animals (blue) and 6 naïve controls (red) were challenged vaginally with 1 
ng p27 (1000 TCID50) SIVmac251UCD for 20 weeks beginning on week 32.  Virus was 
administered twice on the days of challenge, once in the morning, and again in the 
afternoon on the same day each week.  All 6 naïve control animals became infected by 
the 11th week of challenge, but 2 of the 8 immunized animals remained uninfected after 
the 20th week. 
 
 

The repeated, low-dose challenge regimen resulted in animals becoming infected 

on different weeks (Fig. 2.9a).  Viral load measurements were therefore synchronized to 

the last week in which viral RNA was undetectable in each animal to compare differences 

in peak and set-point viral loads (Fig. 2.9b).  All viral load analyses excluded the two 

immunized animals that remained uninfected.  Peak viral loads were reduced 0.72 log for 

the immunized group relative to the control group (Fig. 8C).  The blunting of peak viral 

loads in the immunized group was statistically significant (P=0.0038, two-tailed Mann-

Whitney U test).  Geometric mean viral loads were 1.1, 1.2, 1.1, and 1.0 log lower on 

weeks 4, 6, 8, and 12 post-infection in the immunized group relative to the naïve controls.  

A linear mixed model analysis of chronic phase log viral loads also revealed a 

statistically significant difference in set-point viral loads for the period between 5 and 67 

weeks post-infection, centered on week 28 (P=0.004) (Fig. 8C).  Despite the convergence 

of viral loads after week 23 due to the loss of two rapidly progressing naïve control 



	   117	  

animals on weeks 16 and 23, viral loads for the immunized group were 0.96-log lower for 

this period (95% CI=0.31, 1.6).  Thus, immunization of macaques according to a prime-

boost regimen with Env-modified and VSV G trans-complemented scSIV resulted in 

statistically significant containment of viral replication. 

 
Figure 2.9. Post-challenge plasma viral RNA loads. Viral loads were measured at 
weekly intervals beginning on week 32 using a real time RT-PCR assay with a limit of 
detection of 30 copies of RNA per ml of plasma for the immunized animals that became 
infected (blue) or remained uninfected (green), and for the naïve controls (red) (a)473.  
Viral load measurements were synchronized to the last week in which viral RNA was 
undetectable in each animal that became infected (b).  Comparison of geometric mean 
viral loads for the infected animals revealed acute peak viremia was reduced by 0.72 log 
(2-tailed Mann-Whitney U test, P=0.0038), and was lower by 1.1, 1.2, 1.1, and 1.0 log on 
weeks 4, 6, 8, and 12 in the immunized group (c).  Set-point viral loads were significantly 
reduced for the period between weeks 5 and 67 post-infection, centered on week 28, as 
determined by a mixed linear model analysis (P=0.004; 0.96-log lower, 95% CI=0.31, 
1.6).  Due to progression to AIDS, naïve control animals Mm 230-04, Mm 215-98, Mm 
358-01, Mm 128-01 were euthanized weeks 16, 23, 43, and 51 post-infection, and 
immunized animals Mm 316-98 and Mm 158-02 were euthanized 38 and 44 weeks post-
infection. 
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Despite statistically significant differences in viral loads, immunization did not 

result in significant preservation of CD4+ T-cells.  CD4+ T-cell counts in peripheral blood 

were monitored beginning on the first day of challenge to determine whether the targets 

of SIV infection were better protected in the scSIV-immunized animals (Fig. 2.10a).  

Frequencies of naïve, central memory, and effector memory subsets were defined by 

staining for CD28 and CD95 (Fig. 2.10b-d).  CD4+ T-cells were also stained for CCR5 to 

identify this specific target population (Fig. 2.10e).  Although memory CD4+ T-cells in 

the immunized animals appeared to persist at higher levels during acute infection, 

differences in CD4+ T-cell counts between the groups were not significant (Fig. 2.10c-e).  

Therefore, although immunization reduced viral loads, this statistically significant 

reduction did not appear to translate into significant differences in CD4+ T-cell counts in 

peripheral blood. 



	   119	  

 
Figure 2.10. CD4+ T-cell populations after infection. CD4+ T-cell counts were 
synchronized to the last week in which viral RNA was undetectable for each animal.  The 
number of total CD3+ CD4+ (a), CD3+ CD4+ CD28+ CD95- naïve (b), CD3+ CD4+ CD28+ 
CD95+ central memory (c), CD3+ CD4+ CD28- CD95+ effector memory (d), and CD3+ 
CD4+ CCR5+ CD95+ memory (e) T-cells per μl of whole blood were monitored.  
 
 

During the challenge phase of this experiment, it was noted that the vaccine 

protection conferred by scSIV appeared to be greater after infection by intravenous 

challenge with SIVmac239159 than after infection by repeated, low-dose challenge with 

SIVmac251UCD.  Neutralization by sCD4 is frequently used to evaluate the neutralization 

resistance properties of different viruses209,249,417.  We therefore compared the ability of a 
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human sCD4-IgG construct to neutralize SIVmac251UCD and SIVmac239.  We also 

included the widely used SIVmac251NE challenge virus, from which the SIVmac251UCD 

challenge stock was derived by passage in animals and in rhesus PBMC480, and 

SIVmac316TM Open, which is known to be sensitive to sCD4, as a positive control.  

SIVmac239 was neutralized by sCD4-IgG with a 50% titer of approximately 13 µg per ml.  

Although SIVmac251NE was neutralized at a similar 50% titer, 23 µg per ml, SIVmac251NE 

resisted potent neutralization at high concentrations of sCD4-IgG.  Incredibly, 

SIVmac251UCD completely resisted neutralization by sCD4-IgG.  Although rhesus and 

human CD4 sequences differ, SIVmac251UCD is clearly capable of interacting with human 

CD4 for entry into the human CD4+ T-cell line used in this neutralization assay.  A subset 

of transmitted/founder HIV-1 strains also appear to be completely resistant to 

neutralization by sCD4209.  Thus, SIVmac251UCD may possess a level of inherent 

resistance to neutralization that is comparable to the most neutralization-resistant primary 

isolates of HIV-1.  Greater inherent resistance to neutralization than SIVmac239 may 

contribute to the greater difficulty of conferring protection against this challenge virus.   

 
Figure 2.11. Neutralization of challenge viruses by sCD4-IgG. The estimated 50% 
neutralization titers for sCD4-IgG against SIVmac239, SIVmac251UCD, SIVmac251NE, 
SIVsmE543-3, and SIVmac316TM Open are indicated in brackets.  
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2. E. DISCUSSION 

 

Stimulation of effective T-cell and antibody responses is likely to be essential for 

achieving protection against HIV-1.  As an experimental vaccine approach designed to 

elicit broad T-cell responses plus antibodies to the native conformation of the viral 

envelope glycoprotein as it exists on virions, we developed a technique for producing 

strains of SIV that are limited to a single cycle of infection159,455,456.  Immunization of 

rhesus macaques with scSIV stimulated robust virus-specific T-cell responses, and 

significantly reduced viral replication following an intravenous challenge with 

SIVmac239159.  While scSIV also elicited low-titer Env-specific antibodies capable of 

neutralizing T-cell line-adapted SIVmac251TCLA, these antibody responses were unable to 

detectably neutralize the primary isolate SIVmac239159.  In an effort to enhance Env-

specific antibody responses and the extent of protection afforded by scSIV, we 

immunized macaques with Env-modified strains of scSIV lacking specific structural 

features thought to interfere with the induction of neutralizing antibodies. 

Immunization with Env-modified scSIV facilitated the development of antibodies 

to epitopes accessible in Envs lacking the 3 N-linked glycans in gp41, or 100 amino acids 

in the V1V2 region of gp120.  However, none of the animals detectably neutralized 

SIVmac239 or SIVmac251UCD.  Therefore, the antibodies responsible for the enhanced 

neutralization of the g123 and ΔV1V2 Envs may have recognized surfaces that are not 

accessible on wild-type virions.  Alternatively, a subset of these antibodies may have 

interacted with the wild-type Envs, but bound with an affinity too low to detect 

neutralization.  Likewise, antibodies capable of binding wild-type Envs may have been 
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present, but were produced at concentrations too low to block infectivity.  However, the 

induction of antibodies that detectably neutralize these strains, in the absence of 

persistent infection by a replicating virus, would have been unprecedented.  Although no 

animals detectably neutralized the challenge strain, we cannot exclude the possibility that 

antibodies may have contributed to protection through various mechanisms other than 

neutralization. 

Antibodies present in mucosal secretions were measured due to their potential 

importance in preventing sexual transmission of HIV-1.  Immunization elicited gp120-

specific IgG that was detectable in the CVS of all of the animals, and appeared to be in 

equilibrium with the plasma in most cases.  Therefore, virus-specific IgG would be 

expected to be present in CVS for any immunization strategy that elicits virus-specific 

IgG in plasma.  In contrast, virus-specific IgA was not efficiently elicited.  Prior to 

challenge, none of the animals had detectable gp120-specific IgA in CVS, and low-titer 

gp120-specific IgA was detectable in the rectal secretions of only one immunized animal, 

Mm 305-99.  Despite having low to undetectable levels of virus-specific IgA prior to 

challenge, all the immunized animals that became infected developed high-titer IgA 

responses capable of binding to gp120 and to whole-virus lysate.  These high IgA titers 

are consistent with post-challenge anamnestic responses primed by immunization.  

Alternatively, the capacity of the immunized animals to mount high-titer virus-specific 

IgA responses after becoming infected may be an effect of immunological containment of 

viral replication. 

T-cell responses measured by IFNγ ELISPOT and MHC class I tetramer staining 

were similar in magnitude to responses elicited by prime-boost vaccine regimens 
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employing recombinant DNA and/or viral vectors42,48,363,366,386,448.  Virus-specific CD8+ 

T-cell frequencies among lymphocytes isolated from the vaginal mucosa were similar to 

frequencies in peripheral blood.  Thus, immunization with scSIV elicited T cell responses 

that trafficked to the vaginal mucosa and were present at the site of challenge.  

Deconvolution epitope mapping identified a mean of 5.4 CD4+ and 4.3 CD8+ T-cell 

epitopes per animal, which was similar to the breadth of responses elicited by persistent 

infection with live-attenuated SIV.  Therefore, immunization with scSIV elicited high-

frequency virus-specific T-cells that recognized multiple viral antigens, and trafficked to 

the vaginal mucosa. 

Protection was assessed by repeated, low-dose vaginal inoculation with 

SIVmac251UCD to model heterosexual transmission of HIV-1.  Although there appeared to 

be a trend towards a greater number of challenge doses required to establish infection for 

the immunized animals, this trend was not statistically significant (P=0.10; hazard ratio 

of 0.38, 95% CI=0.12-1.21).  However, peak and set-point viral loads were significantly 

lower in the six immunized animals that became infected relative to the naïve controls.  

Peak viral loads were reduced by 0.72 log (P=0.0038), and set-point viral loads were 

reduced by approximately one log for the period between 5 and 67 weeks post-infection 

(P=0.004; 0.96-log lower, 95% CI=0.31, 1.6).  Geometric mean viral loads converged 

after 23 weeks post-infection, due to the loss and subsequent exclusion of the 2 control 

animals with the highest viral loads. 

The SIVmac251UCD challenge strain appears to be particularly difficult to protect 

against by immunization, perhaps even more so than SIVmac239.  Differences in peak and 

set-point viral loads in the immunized animals relative to the naïve controls were not as 
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great as previously observed following intravenous challenge with SIVmac239159.  

Moreover, despite the partial containment of viral replication in the immunized animals, 

we did not observe better preservation of CD4+ T-cells.  It is possible that genetic 

differences between SIVmac239 and the SIVmac251UCD challenge stock may have been 

responsible for this difference in protection. The virus stock of SIVmac251UCD utilized for 

repeated, low-dose vaginal challenge in this study was derived from the original 

SIVmac251NE isolate by passage of acute-phase virus through animals, and selection of 

virus cultures with the fastest growth kinetics on rhesus macaque PBMC480.  This process 

may have favored the selection of more fit or more pathogenic variants.  SIVmac239 was 

neutralized by sCD4-IgG at 13 µg per ml, whereas SIVmac251UCD was not neutralized 

whatsoever at the highest concentration of sCD4-IgG tested, 340 µg per ml.  Therefore, 

the better protection after intravenous infection with SIVmac239 versus repeated, low-dose 

SIVmac251UCD challenge may, at least in part, be due to differences in inherent resistance 

to neutralization.  Furthermore, 2 amino acids in Env that consistently revert in animals 

infected with SIVmac239481 differ from the SIVmac251UCD challenge stock (data not 

shown).  These, plus additional differences including suboptimal nucleotides at positions 

elsewhere in the SIVmac239 genome482, might explain why it appears to be more difficult 

to protect against SIVmac251UCD than SIVmac239. 

Two immunized animals, Mm 284-99 and Mm 305-99, remained uninfected after 

20 weeks of repeated vaginal challenge with SIVmac251UCD.  Inherent genetic differences 

in the capacity to support SIV replication could explain why these 2 animals remained 

uninfected.  However, there is no evidence that these animals had reduced inherent 

capacity to support SIV infection, since peak viral loads following the first dose of scSIV 
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were similar in magnitude among all of the immunized animals.  Furthermore, these 

animals were not resistant to a subsequent intravenous challenge with SIVmac251UCD.  

Nevertheless, it is possible that genetic factors underlie differences in the T-cell and 

antibody responses stimulated in these animals by immunization with scSIV.  Both 

animals possessed the protective MHC class I allele Mamu-A*01370,483, and Mm 284-99 

had the highest virus-specific T-cell responses in the vaginal mucosa at week 26, and in 

the peripheral blood at the beginning of the challenge period.  Antibody responses in 

these 2 animals also appeared to differ from the 6 immunized animals that became 

infected.  Mm 284-99 neutralized SIVmac239g123 at a titer nearly 200-fold higher than 

the average for the rest of the group, and 80-fold higher than the next highest animal.  

Moreover, neutralization of SIVmac251UCD approached a 50% reduction in infectivity at a 

1:8 dilution of plasma from Mm 284-99 collected at the beginning of the challenge period.  

In addition, Mm 284-99 also had the highest anti-gp120 IgG specific activity in 

cervicovaginal secretions at four of five time points prior to challenge.  Both Mm 284-99 

and Mm 305-99 also had higher pre-challenge ratios of anti-gp120 IgG specific activity 

in cervicovaginal secretions versus plasma (ratio (95% CI): 4.0 (2.6, 6.0), P<0.01), 

perhaps reflecting local overproduction of gp120-specific IgG by B-cells residing in the 

cervicovaginal mucosa484-486.  Also, the only animal that had detectable gp120-specific 

IgA prior to challenge was Mm 305-99.  Hence, there were a number of qualitative and 

quantitative differences in the T-cell and antibody responses that may have contributed to 

the absence of SIV infection in Mm 284-99 and Mm 305-99. 

The partial containment of SIV replication afforded by T-cell based vaccines has 

thus far failed to provide adequate protection against immunodeficiency virus 
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infection42,48,70,75,370,386,487.  Neutralizing antibodies can prevent the acquisition of viral 

infection410-413,445,446, but eliciting such antibodies is a daunting challenge due to 

structural and thermodynamic properties of the envelope glycoprotein that render it 

resistant to antibodies132,188,217,241,244,251,252,254,274.  However, a strategy that elicits effective 

antibody responses to the viral envelope glycoprotein may be a necessary component of 

any protective vaccine against HIV-1.  In this study, we tested the hypothesis that 

removal of specific structural features thought to interfere with the induction of 

neutralizing antibodies might facilitate their development.  Despite significantly 

enhancing antibody responses to epitopes revealed by the removal of the V1V2 loops or 

the 3 N-linked glycans in gp41, neutralizing activity against SIVmac239 and 

SIVmac251UCD remained undetectable.  Nevertheless, 2 immunized animals remained 

uninfected after a 20-week period of repeated, low-dose vaginal challenge in which all of 

the naïve control animals became infected.  The 6 immunized animals that ultimately 

became infected had significantly lower peak and set-point viral loads relative to the 

naïve control animals.  The 2 that remained uninfected appeared to differ in several pre-

challenge measures of T-cell and antibody responses, suggesting multiple immune 

responses may have contributed to the absence of infection after multiple challenges. 
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CHAPTER 3 
 
 

An assay for quantifying ADCC based on an NK cell line  

and target cells infected by SIV or HIV-1 
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3. A. ABSTRACT 
 

Biological and technical impediments both hinder progress towards a vaccine for 

human immunodeficiency virus type 1 (HIV-1).  Neutralizing antibody titers are 

routinely measured in quantitative assays based on cell lines.  However, a dependence 

upon primary natural killer (NK) cells has, thus far, limited the scalability and 

consistency of assays for antibody-dependent cell-mediated cytotoxicity (ADCC).  We 

now report the development of an ADCC assay based on immortalized NK cell lines that 

stably express human or rhesus macaque CD16, and a CD4+ target cell line that expresses 

luciferase from a Tat-inducible promoter.  The loss of luciferase from infected target cells 

in the presence of NK cells and serial antibody dilutions indicates the killing of virus-

infected cells by ADCC.  The 50% ADCC titers measured using this assay are, on 

average, 250-fold higher than the 50% neutralizing antibody titers against the same virus.  

Since antibodies capable of neutralizing primary isolates of HIV-1 and simian 

immunodeficiency virus (SIV) are often undetectable, particularly in vaccine studies, 

antibodies capable of neutralizing T-cell line-adapted strains, or binding the gp120 

subunit of the viral envelope glycoprotein (Env) in an ELISA, are reported instead.  

Although ADCC activity was correlated with neutralization and gp120 ELISA titers, 

these assays may reflect distinct properties of the antibody response.  Thus, we have 

developed a sensitive assay based entirely on cell lines for the routine measurement of 

ADCC activity against cells infected with HIV-1 or SIV primary isolates. 
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3. B. INTRODUCTION 

 

 The replication of HIV-1 and SIV continues despite the mobilization of vigorous 

T-cell, antibody, and innate immune responses by infected hosts17-20.  The properties of 

the primate lentiviruses that enable immune evasion and persistent replication frustrate 

efforts to develop a safe and effective HIV-1 vaccine488,489.  Among these properties, the 

inherent resistance of primary HIV-1 isolates to neutralization by antibodies is perhaps 

the most significant obstacle490,491.   

Thus far, HIV-1 vaccine approaches under consideration for clinical development 

have only reported antibodies capable of neutralizing the infectivity of neutralization-

sensitive strains of HIV-1 and SIV, such as T-cell line-adapted viruses, not the 

neutralization-resistant primary isolates that are relevant to a 

vaccine166,176,177,209,214,357,358,376,377.  The physiological relevance of neutralization epitopes 

that emerge during in vitro passage remains unclear.  Vaccine-elicited antibodies that 

bind recombinant forms of the viral envelope glycoprotein (Env) can also be detected by 

enzyme-linked immunosorbent assays (ELISAs).  However, even controlling for 

antigenic variation, many antibodies that bind recombinant forms of Env cannot 

neutralize, and many that neutralize cannot bind recombinant forms of Env178,191,326.  

Antibodies in these two categories probably recognize interfaces between Env protein 

subunits, which are occluded in Env trimers expressed on virions and infected cells, or 

recognize quaternary epitopes182,184,188,195.  Therefore, assays based on T-cell line-adapted 

viruses or recombinant protein may not be ideal for studying the antibodies that are likely 

to have antiviral activity against primary isolates in vivo. 
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 Adaptive and innate immunity have evolved to operate synergistically as an 

integrated system.  Whereas the variable region of an antibody can interact with antigen 

and neutralize virus infectivity, the constant (Fc) region can activate compliment fixation, 

or interact with cells of the innate immune system430,431,492,493.  Crosslinking of Fc 

receptors on natural killer (NK) cells, dendritic cells, neutrophils, and macrophages 

stimulates the release of immune modulators including cytokines, chemokines, and 

interferons493,494.  NK cells represent approximately 10% of peripheral blood 

lymphocytes, are efficient cytotoxic effectors, and can be prompted by crosslinking of the 

Fc receptor CD16 to kill virus-infected cells by antibody-dependent cell-mediated 

cytotoxicity (ADCC)110,495.  Due to the potential for ADCC to be a potent effector 

mechanism, and to serve as a proxy for other functions of the same antibodies, we 

developed an assay for measuring the capacity of antibodies to direct ADCC against 

HIV-1 or SIV-infected cells.  
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3. C. METHODS 

 

Cell lines. Due to the variability and limited scalability of assays dependent upon 

primary cells496, we engineered a pair of cell lines to serve as targets and effectors in 

ADCC assays.  The target cells were derived from NKR.CEM-CCR5 CD4+ T cells 

(AIDS Research and Reference Reagent Program, Division of AIDS, NIAID, NIH, 

contributed by Dr. Alexandra Trkola). These were transduced with a pLNSX-derived 

retroviral vector to express Firefly luciferase under the transcriptional regulation of the 

SIV LTR promoter164.  Target cells were maintained in “R10” consisting of RPMI 

(Invitrogen) supplemented with 10% fetal bovine serum (FBS) (Invitrogen), 25 mM 

HEPES (Invitrogen), 2 mM L-glutamine (Invitrogen), and 0.1 mg/ml Primocin 

(InvivoGen).  The rhesus macaque CD16+ effector cells were derived from the CD16-

negative NK cell line KHYG-1497 (Japan Health Sciences Foundation) by stable 

transduction with a pQCXIN-derived retroviral vector expressing macaque CD16 

(FCGR3A variant 7)498.  The human CD16+ effector cells were similarly derived, but 

using a pQCXIP-derived retroviral vector expressing the human V158 variant of 

FCGR3A, which has a higher affinity for IgG than the F158 variant499.  The rhesus 

CD16+ NK line was selected using neomycin (G418), whereas the human CD16+ NK line 

was selected using puromycin.  The rhesus CD16+ NK effector cells were maintained at a 

density of 1×105 to 4×105 cells per ml in R10 media supplemented with IL-2 at 10 U per 

ml (Roche) and cyclosporine A (CsA) at 1 µg per ml (Sigma).  The human CD16+ NK 

clone requires less IL-2, and was cultured in otherwise identically formulated media 

containing IL-2 at 5 U per ml. 
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ADCC assay. Target cells were infected by spinoculation500, 4 days prior to each 

assay, and washed three times with R10 immediately before use.  ADCC assays were 

conducted in round-bottom 96-well plates, with each well containing 105 effector cells 

and 104 target cells.  Relative light units (RLU) indicate luciferase expression by infected 

targets.  Wells containing uninfected targets plus effectors defined 0% RLU, and wells 

containing infected targets plus effectors with no serum or plasma defined 100% RLU.  

ADCC activity was measured as the loss of luciferase activity after an 8-hour incubation 

in the presence of triplicate serial dilutions of heat-inactivated plasma collected in sodium 

citrate anticoagulant or serum.  Luciferase activity was read in black 96-well plates using 

BriteLite Plus (Perkin Elmer) luciferase substrate. 

 

Neutralization and ELISA assays. Neutralization assays were performed as 

previously described164,334.  Maxisorb ELISA plates (NUNC) were coated with 

recombinant, 6-His tagged SIVmac239 gp120 protein produced in 239T cells (Immune 

Technology).  Bound antibodies were measured using a horseradish peroxidase-

conjugated goat anti-monkey IgG antibody (Santa Cruz Biotechnology).  A statistically 

defined end-point titer was determined by calculating the mean plus 3 standard deviations 

for pre-immune plasma samples diluted 100-fold, which was the highest dilution tested501. 

 

Viruses. SIVmac239, scSIV-GFP, HIV-1NL4-3 and HIV-1YU2 were produced by 

transfection of 293T cells.  The virus stock of SHIVKB9 used here was adapted to growth 

on NKR.CEM-CCR5 CD4+ T-cells.  SHIVSF162P3 was expanded in PHA-activated rhesus 
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PBMC from a stock obtained from the AIDS Research and Reference Reagent Program, 

which was contributed by Drs. Janet Harouse, Cecilia Cheng-Mayer, Ranajit Pal and the 

DAIDS, NIAID. 

 

Depletion of antibodies to human cellular antigens. Some macaques, especially 

those immunized with material produced in human cells, have antibodies that direct 

ADCC against uninfected target cells.  These antibodies were measured by reading the 

background luciferase expression from the SIV LTR promoter of uninfected NKR.CEM-

CCR5 CD4+ T-cells on white 96-well plates.  Plasma samples from sets containing 

antibodies reactive against uninfected target cells were all depleted, regardless of anti-

target cell activity, to ensure identical treatment.  To deplete these antibodies, 107 

uninfected target cells were resuspended in the sample and incubated for twenty minutes 

at room temperature.  This procedure was typically repeated multiple times to remove 

detectable antibodies reactive with uninfected target cells. 

 

Calcineurin inhibitor experiment. An aliquot of the Mm CD16+ KHYG-1 clone 

was thawed and maintained in CsA for 3 weeks, prior to washing the cells, and 

transferring them to media lacking CsA.  These cells were cultured in the absence of CsA 

for another 3 weeks prior to being frozen in Recovery Cell Culture Freezing Medium 

(Invitrogen).  These cells were thawed the same day they were frozen, at which time 

additional aliquots of cells were treated with freezing media, with ionomycin at 1 µg per 

ml, or mock treated.  These groups of cells were each divided into 3 aliquots, which were 

cultured in the presence of CsA at 1 µg per ml, FK-506 at 1 µg per ml, or no drug.  The 
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ADCC assay was performed in the absence of these drugs 3 weeks after to these 

treatments. 

 

Laboratory animals. The animals were Indian-origin rhesus macaques (Macaca 

mulatta) housed in a biocontainment facility at the New England Primate Research 

Center (NEPRC), and given care in accordance with standards of the Association for 

Assessment and Accreditation of Laboratory Animal Care and the Harvard Medical 

School Animal Care and Use Committee. The experiments and procedures were 

approved by the Harvard Medical Area Standing Committee on Animals, and conducted 

in accordance to the Guide for the Care and Use of Laboratory Animals466. 

 

Statistical analysis. Fifty percent titers were calculated as the dilution at which a 

line connecting the values above and below 50% RLU would intercept the 50% RLU line.  

Area under the curve (AUC) values for ADCC were calculated such that they would be 

proportional to 50% ADCC titers, and represent the areas between 100% RLU and the 

titration curves as they appear in the figures.  Whereas %ADCC, defined as 100% 

minus %RLU, is asymptotic as it approaches 100%, minimum %RLU values are 

inversely proportional to 50% ADCC titers.  Therefore, AUC values for ADCC were 

calculated from the sum of the values over all dilutions for log10100 minus log10%RLU.  

This sum was multiplied by the log10-transformed dilution factor of two to find an area.  

Correlation coefficients and P values were calculated using Prism version 4.1b 

(GraphPad Software). 
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3. D. RESULTS 

 

CD16 expression on NK cell lines. Limiting dilution clones of KHYG-1 NK 

cells were selected that express comparable levels of human or macaque CD16, as 

determined by staining with the mouse anti-human CD16 monoclonal antibody 3G8, 

which is cross-reactive with rhesus macaque CD16 (Fig. 3.1a).  The level of CD16 

expressed on these clones was compared to the level expressed on primary NK cells from 

5 humans and from 5 rhesus macaques (Fig. 3.1b and c).  To make this comparison, 

human NK cells were defined as the CD20-, CD3-, HLA-DR-, CD8+, CD56+, NKG2A+ 

population.  Rhesus NK cells were stained in parallel using the same panel of 

fluorophore-conjugated antibodies, but were defined as the CD20-, CD3-, HLA-DR-, 

CD8+, NKG2A+ population.  This comparison demonstrates that the level of CD16 

expressed on the cloned NK cell lines is similar to, or slightly lower than, the level of 

CD16 expressed on primary human and macaque NK cells. 

 

 
Figure 3.1. CD16 expression on primary NK cells and on NK cell lines. CD16 
expression on the parental KHYG-1 cell line and the limiting dilution clones of KHYG-1 
cells transduced with human or rhesus macaque CD16 (a).  Expression level on the 
human CD16+ KHYG-1 clone (solid red) versus primary NK cells from 5 people (colored 
lines) (b).  Expression level on the rhesus CD16+ KHYG-1 clone (solid blue) versus 
primary NK cells from 5 macaques (colored lines) (c). 
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The loss of luciferase activity indicates the killing of infected cells. A time 

course experiment was performed to define the kinetics of luciferase loss.  Cells infected 

with SIVmac239 were incubated alone, or with NK cells plus pre-immune plasma, plasma 

raised against SHIVKB9, or plasma raised against SIVmac239.  Luciferase activity was 

measured in cells and supernatants collected every hour for 12 hours, and after 24 hours 

(Fig. 3.2).  No differences in luciferase activity were observed in the presence of NK 

cells plus pre-immune plasma, or plasma raised against SHIVKB9.  In contrast, plasma 

from an SIVmac239-infected animal caused a loss of luciferase activity in the SIVmac239-

infected cells, which reached a minimum between the 8- and 12-hour time points.  

Meanwhile, increases were measured in the luciferase activity in the supernatant.  The 

luciferase activity in the supernatant remained lower than that measured in cells, and 

returned to baseline levels after 8 hours.  Thus, luciferase is released into the supernatant, 

but its activity rapidly declines.  The release of luciferase into the supernatant indicates 

that the loss of luciferase from the virus-infected cells is associated with a loss of 

membrane integrity.  This experiment also suggests that reading luciferase activity at the 

8-hour time point would minimize the contribution of luciferase present in the 

supernatant while maximizing the sensitivity to detect the loss of luciferase activity from 

the virus-infected target cells. 
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Figure 3.2. Changes in luciferase activity over time in the presence of NK cells and 
plasma. Luciferase activity was measured in terms of percent relative light units (%RLU).  
The luciferase activity for wells containing infected target cells and NK cells with no 
plasma at each time point defined 100% RLU, whereas wells containing uninfected target 
cells and NK cells defined 0% RLU.  Cells infected with SIVmac239 were incubated alone 
(blue), or in the presence NK cells plus plasma from an uninfected macaque (gray), NK 
cells plus plasma from a SHIVKB9-infected macaque (teal), and NK cells plus plasma 
from an SIVmac239-infected macaque (red).  The luciferase activity for cells (solid 
symbols) and supernatants (open symbols) was measured for samples collected every 
hour, from 0-12 hours, and once again after 24 hours.  
 
 

To verify that the loss of luciferase activity from cells and its transient appearance 

in supernatants indicates cytotoxicity, we performed parallel assays using either 

luciferase or flow cytometry to measure ADCC activity.  Target cells were infected with 

scSIV that expresses green fluorescent protein (GFP) from the nef position455.  Prior to 

the addition of NK cells, the target cells were stained with a nonspecific membrane 

labeling dye (PKH26) to facilitate discrimination between the effector and target cell 

populations.  Target cells were incubated in the presence of NK cells and serial dilutions 

of plasma from an SIVmac239-infected animal.  After 8-hours, luciferase activity was 

measured for one assay, and cells from an identical assay processed in parallel were 

stained with an amine-reactive dye that allows living and dead cells to be differentiated 

by flow cytometry.  Living cells with intact cellular membranes exclude amine-reactive 

dyes.  Infected target cells incubated with NK cells but not plasma were used to define 
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100% luciferase activity, or 100% living, GFP+ cells.  The percentage of luciferase 

activity corresponded with the percentage of living, GFP+ cells over the range of plasma 

dilutions measured (Fig. 3.3a).  The percentage of dead target cells increased from 1.8 to 

2.87% for uninfected versus infected populations in the absence of plasma, due at least in 

part to the cytopathic effects of SIVmac239 (Fig. 3.3b and c).  In the presence of plasma 

diluted 102- to 103.5-fold, the loss of living, GFP+ target cells was associated with an 

increase in the number of dead target cells that stained positive for the amine-reactive dye 

(Fig. 3.3d-g).  Over higher plasma dilutions, 104 to 105.5-fold, the living, GFP+ 

population rose in frequency, nearly reaching the maximum observed in the absence of 

plasma (Fig. 3.3h-k).  Therefore, the loss of luciferase activity in the presence of the NK 

cell line and serial plasma dilutions indicates the dose-dependent killing of virus-infected 

cells. 
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Figure 3.3. Comparison of luciferase activity versus living, virus-infected target cells 
enumerated by flow cytometry. ADCC activity against target cells infected with scSIV-
GFP was quantified by measuring luciferase activity or the frequency of amine-reactive 
dye-negative, GFP-positive cells (a).  Uninfected target cells incubated with NK cells and 
no plasma were GFP- (b), whereas infected target cells incubated under the same 
conditions were GFP+ (c).  These populations defined the lower and upper limits for the 
percentage of living, GFP+ cells.  The frequencies of dead and living, GFP+ target cells 
were determined after incubation in the presence of NK cells and plasma diluted 102 (d), 
102.5 (e), 103 (f), 103.5 (g), 104 (h), 104.5 (i), 105 (j), or 105.5 (k) -fold. 
 

 
Env-specificity of ADCC activity. The ability of plasma samples from macaques 

infected with SIVmac239 or SHIVKB9 to direct ADCC against cells infected with these 

viruses was compared to determine the protein specificity of ADCC activity.  SHIVKB9 

contains HIV-1 env, tat, rev, and vpu genes in a genomic backbone derived from 

SIVmac239389,502.  Plasma raised against SIVmac239 directed ADCC against cells infected 

with SIVmac239 but not SHIVKB9 (Fig. 3.2).  Likewise, plasma raised against SHIVKB9 

directed ADCC against cells infected with SHIVKB9 but not SIVmac239.  Based on these 
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results, and the fact that Env is the only viral protein expressed on the cell surface, the 

ADCC activity measured using this assay is Env-specific. 

 

  
Figure 3.4. Reciprocal Env specificity. Relative light units (RLU) indicating live, 
luciferase-expressing virus-infected target cells after an 8-hour incubation are lost in the 
presence of the Mm CD16+ NK cell line and serial 2-fold dilutions of plasma raised 
against the matched virus (solid symbols).  ADCC activity was not detected against cells 
infected with viruses mismatched to the plasma sample (open symbols).  The target 
viruses were SIVmac239 (red) and SHIVKB9 (blue).  Dashed lines indicate 50% activity. 
 
 

Macaque antibodies cross-reactive with human cellular antigens. Antibodies 

reactive with human cellular antigens are a significant technical concern for measuring 

virus-specific ADCC activity in non-human primate studies.  Some macaques have pre-

existing antibodies that recognize the human CD4+ T-cell line used as targets in these 

assays, but these antibodies can routinely be depleted (see Materials and Methods) (Fig. 

3.5a).  Immunization of macaques with material produced in human cells, or with human 

cells themselves, elicits antibody responses against human proteins336-343.  Indeed, 

macaques immunized with scSIV, which is produced by transfection of human 293T cells, 

potently directed ADCC against cells infected with either SIVmac239 or SHIVSF162P3 (Fig. 

3.5b).  However, depletion of antibodies reactive with uninfected target cells revealed the 

SIV Env-specific ADCC activity elicited by immunization (Fig. 3.5b).  Multiple 
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iterations of the depletion procedure do not reduce the ADCC activity measured for 

animals that lack detectable anti-human antibodies (Fig. 3.5c and d).  In contrast to 

macaques, humans with baseline ADCC activity against these target cells are infrequent 

(Fig. 3.5e).  Of 100 HIV-1 negative human beings tested, plasma from only one appeared 

to have some detectable baseline activity against cells infected with HIV-1 (Fig. 3.5e).  

Thus, macaques but not humans frequently have antibodies that interfere with ADCC 

measurements, and these antibodies can be depleted without significantly affecting virus-

specific ADCC activity. 

 
Figure 3.5. Baseline 
ADCC activity for 
macaque but not 
human plasma. 
Plasma from some 
macaques contains 
antibodies reactive 
against uninfected 
target cells (red), but 
6 depletions are 
sufficient to deplete 
these antibodies from 
most of 25 
representative 
samples (black) (a). 
Pooled plasma from a 
group of animals 
immunized with 
scSIV had similarly 
potent ADCC activity 
against SIVmac239 
(red) or SHIVSF162P3 

(solid gray symbols) before depletions (b). However, after 20 depletions of antibody to 
human cellular antigens, ADCC activity was detectable against SIVmac239 (black) but not 
SHIVSF162P3 (open gray symbols). Performing 20 depletions on plasma from 2 animals 
that lack detectable baseline ADCC activity, Mm 382-03 (c) and Mm 333-07 (d), did not 
significantly reduce ADCC activity against SIVmac239.  Baseline ADCC activity was 
measured for plasma samples from 100 HIV-1 negative people against HIV-1-infected 
target cells (e). 
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ADCC compared with other assays. Antibody responses in animals chronically 

infected with SIVmac239 were measured using different assays to evaluate the 

relationships among these assays.  Plasma samples from 16 animals infected with 

SIVmac239 were tested for ADCC against cells infected with SIVmac239, or SHIVSF162P3 

as a negative control (Fig. 3.6a).  The ADCC activity against SIVmac239-infected cells 

was quantified by calculating 50% ADCC titers and area under the curve (AUC) values 

for ADCC.  The relationship between 50% ADCC titers and AUC values for ADCC was 

evaluated by calculating a Spearman correlation coefficient (Rs=0.88, P<0.0001) (Fig. 

3.6b).  These different methods for quantifying ADCC activity are therefore correlated 

with one another.  The same 16 samples were tested for neutralization of SIVmac239 

under conditions optimized for sensitivity (Fig. 3.6c).  The mean 50% titers for ADCC 

against cells infected with SIVmac239 were 250-fold higher than the mean 50% titers for 

neutralization of SIVmac239 infectivity.  Therefore, ADCC activity is a considerably more 

sensitive measure than neutralization against this neutralization-resistant primary isolate.  

These plasma samples were tested for neutralization of T-cell line-adapted 

SIVmac251TCLA, which is highly sensitive to neutralization (Fig. 3.6d).  Indeed, all the 

animals infected with SIVmac239 had detectable SIVmac251TCLA neutralizing antibody 

titers.  Lastly, antibodies capable of binding recombinant SIVmac239 gp120 protein were 

measured by ELISA (Fig. 3.6e).  The 50% ADCC titers and 50% neutralization titers 

against SIVmac239 were correlated reasonably well (Rs=0.53, P=0.032) (Fig. 3.6f).  

Consistent with the 250-fold greater sensitivity of ADCC versus neutralization, there 

appeared to be a stronger relationship between neutralization and ADCC for samples with 
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50% ADCC titers >2x103.  Although 50% ADCC titers correlated best with 

neutralization of SIVmac251TCLA (Rs=0.68, P=0.004), samples with a wide range of 50% 

ADCC titers had highly similar 50% SIVmac251TCLA neutralization titers (Fig. 3.6g).  

Likewise, gp120 ELISA end-point titers also correlated with 50% ADCC titers (Rs=0.53, 

P=0.032), but samples with varied 50% ADCC titers mostly had similar gp120 ELISA 

titers (Fig. 3.6h).  AUC values for ADCC were better suited for quantifying weak 

responses than 50% ADCC titers, and were similarly related to measurements made using 

the other antibody assays (Fig. 3.6i-k).  Since all of these animals were infected with 

cloned SIVmac239, the individual-to-individual differences were attributable to properties 

of the antibody response, rather than antigenic variation.  Although neutralization of 

SIVmac239 and SIVmac251TCLA, and gp120 ELISA assays generally correlate with ADCC 

activity, the differences indicate that none are an interchangeable substitute for measuring 

ADCC itself. 
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Figure 3.6. Comparison with other antibody assays. ADCC activity against SIVmac239 
(colors) and SHIVSF162P3 (gray) was measured for 16 macaques chronically infected with 
SIVmac239 (a).  The data were quantified by calculating 50% ADCC titers and area under 
the curve (AUC) values for ADCC, which are correlated with each other (b).  The same 
samples, plus an additional 4 from uninfected macaques (black), were tested for 
neutralization of SIVmac239 (c), T-cell line-adapted SIVmac251TCLA (d), and for binding to 
recombinant SIVmac239 gp120 protein in an ELISA (e).  The dashed lines indicate 50% 
RLU, or the absorbance level for a statistically defined end-point ELISA titer.  The 50% 
ADCC titers against SIVmac239 were compared to neutralization of SIVmac239 (f), 
neutralization of SIVmac251TCLA (g), and ELISA titers (h).  The AUC values for ADCC 
against SIVmac239 were also compared to neutralization of SIVmac239 (i), neutralization 
of SIVmac251TCLA (j), and ELISA titers (k). 
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ADCC by monoclonal antibodies. A panel of monoclonal antibodies was tested 

for ADCC activity against cells infected with the CXCR4-tropic T-cell line-adapted virus 

HIV-1NL4-3 (Fig. 3.7).  A dengue virus monoclonal antibody (DEN3) was included as a 

negative control.  The gp120-speicific monoclonal antibodies 2G12, PG9, PG16, b6, b12, 

and b13 all had detectable ADCC activity, with b12 directing ADCC at the highest titers.  

Although the gp41-specific broadly neutralizing monoclonal antibodies 2F5 and 4E10 

neutralize HIV-1NL4-3
214, these antibodies did not direct ADCC against cells infected with 

HIV-1NL4-3.  2F5 and 4E10 are thought to recognize a transient intermediate that exists 

during fusion263,265, which may not be a common form of Env on virus-infected cells.  

Thus, ADCC by all the HIV-1-specific monoclonal antibodies except 2F5 and 4E10 

suggests that neutralization and ADCC assays can measure antibodies with different 

specificities.   

 
Figure 3.7. ADCC by monoclonal antibodies. A panel of monoclonal antibodies was 
tested for ADCC against HIV-1NL4-3.  The dashed line indicates 50% ADCC, and 50% 
ADCC titers are bracketed.   
 
 

ADCC against an HIV-1 primary isolate. We have shown that ADCC activity 

is detectable at high titers against SIVmac239, which is a neutralization-resistant primary 

SIV isolate.  Here, we have measured ADCC against target cells infected with the 
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neutralization-resistant primary HIV-1 isolate, HIV-1YU2 (Fig. 3.8).  The majority of 14 

plasma samples from American HIV-1 patients directed ADCC against cells infected 

with HIV-1YU2.  Thus, this assay is capable of measuring ADCC activity against 

neutralization-resistant primary HIV-1 isolates. 

 
Figure 3.8. ADCC against cells infected 
with HIV-1YU2. Plasma from an HIV-1 
negative control subject (gray) and 14 HIV-1 
positive patients was titered for ADCC 
activity against cells infected by the primary 
isolate HIV-1YU2.  The dashed line indicates 
50% ADCC activity. 

 
 
 
 

Dose-dependent inhibition of ADCC activity by IL-2. For reasons that were 

mysterious at the time, the NK cell line lost its ability to direct ADCC after several 

months in culture.  IL-2 is required for the maintenance of KHYG-1 cells497.  The optimal 

IL-2 concentration for the growth of KHYG-1 cells was reported to be 100 U IL-2 per ml.  

Since IL-2 is a positive regulator of lymphocyte activation and cytolytic activity, we 

initially reasoned that increasing the IL-2 concentration from 100 U per ml to 1000 U per 

ml might reverse the loss of ADCC activity.  However, increasing the IL-2 concentration 

led to a more profound loss of ADCC activity (Fig. 3.9a).  The concentration of IL-2 

used for growing the cells was therefore titrated downwards, and indeed, culturing the 

NK cells at a lower concentration of IL-2 resulted in higher ADCC activity (Fig. 3.9b).  

This effect appeared to be dose-dependent.  Lymphocyte activation by IL-2 is mediated 

through the Janus kinase-signal transducer and activator of transcription (JAK-STAT) 

pathway, which induces negative feedback regulation by increasing the expression of 
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suppressor of proteins belonging to the cytokine signaling (SOCS) family503.  To 

determine whether the loss of ADCC activity at higher IL-2 concentrations may be 

explained by the induction of negative feedback regulation, we performed a semi-

quantitative RT-PCR experiment.  Indeed, we observed that higher concentrations of 

extracted RNA were necessary to amplify similar levels of SOCS1 and SOCS3 cDNA 

from NK cells cultured at 10 U IL-2 per ml than 100 U IL-2 per ml.  The identities of the 

SOCS1 and SOCS3 cDNA bands were confirmed by sequencing.  Therefore, IL-2 may 

induce a negative regulatory pathway in KHYG-1 cells.  These experiments indicate that 

it is necessary to culture the NK cell lines in a minimal concentration of IL-2. 

 

 
Figure 3.9. Inhibition of ADCC activity by IL-2. Culturing the Mm CD16+ KHYG-1 
line in the presence of high concentrations of IL-2 leads to a loss of ADCC activity (a). 
The loss of ADCC activity at different concentrations of IL-2 is dose-dependent (b).  
Dashed lines indicate 50% ADCC activity against cells infected with SIVmac239.  RNA 
extracted from the cells cultured at 100 U IL-2 or 10 U IL-2 per ml in (b) was amplified 
by RT-PCR using primers for β-actin, perforin, granzyme M, CISH, SOCS1, and SOCS3 
(c).  For each RT-PCR primer set, the lanes from left to right contain the following 
template RNA: no RNA, RNA from NK cells cultured 10 U IL-2 per ml diluted 10-1, 10-2, 
or 10-3, and RNA from NK cells cultured in 100 U IL-2 per ml diluted 10-1, 10-2, or 10-3. 
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Preventing the loss of ADCC activity after cryopreservation. Cryopreservation 

of the NK cell line under standard conditions leads to a loss of ADCC activity, but this 

loss can be prevented by the calcineurin inhibitors cyclosporine A (CsA) and FK-506.  

Although the NK cell line used in this assay rapidly recovers following a standard 

cryopreservation protocol, the recovered cells have markedly decreased ADCC activity 

(Fig. 3.10a).  This loss of activity represented a significant impasse in the development of 

this assay.  The addition of freezing media containing 10% dimethyl sulfoxide (DMSO) 

was sufficient to induce the unresponsive state observed after cryopreservation (Fig. 

3.10b).  DMSO can induce calcium flux504, which is a ubiquitous second messenger.  In 

the absence of costimulatory signals, calcium flux can induce anergy in T-cells84,505.  

Indeed, the addition of ionomycin, which mobilizes an influx of calcium into the 

cytoplasm, recapitulated the loss of ADCC activity observed after cryopreservation or the 

addition of freezing media (Fig. 3.10c.).  In the presence of calcium, calmodulin activates 

the phosphatase calcineurin, which dephosphorylates nuclear factor of activated T-cells 

(NFAT), exposing nuclear localization signals that promote the redistribution of NFAT to 

the nucleus where it regulates gene expression505.  Since calcium flux does not render T-

cells unresponsive in NFAT1 knockout mice, or in the presence of CsA, this pathway is 

thought to be important for anergy induction506,507.  We observed that two different 

inhibitors of calcineurin, CsA and FK-506, both preserve ADCC activity by Mm CD16+ 

KHYG-1 cells after cryopreservation or treatment with freezing media or ionomycin (Fig. 

3.10a-c).  Therefore, calcineurin activity is almost certainly necessary for the induction of 

unresponsiveness in this NK cell line.  These drugs did not affect ADCC activity in 

mock-treated cells (Fig. 3.10d).  However, it was necessary to culture cells in the absence 
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of CsA prior to this experiment, which may have led to some loss of activity (Fig. 3.10e).  

Although CsA and FK-506 are used in the clinic to suppress immune function505, these 

drugs can prevent the induction of unresponsiveness by inhibiting calcineurin activity in 

KHYG-1 cells. 

 
Figure 3.10. Freezing media causes a loss of killing activity, but this loss can be 
prevented with calcineurin inhibitors.  Mm CD16-expressing KHYG-1 cells 
previously cultured in the absence of cyclosporine A (CsA) were taken through a 
freeze/thaw cycle (a), treated with freezing media but not frozen (b), treated with 
ionomycin (c), mock treated (d), and compared with cells never taken off of CsA (e). 
These treatments were conducted in the absence of calcineurin inhibitors, in the presence 
of CsA, or in the presence of FK-506. The dashed line indicates 50% ADCC activity for a 
plasma sample from an SIVmac239-infected macaque against SIVmac239-infected target 
cells. 
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3. E. DISCUSSION 

 

We have developed a quantitative assay for measuring the capacity of antibodies 

to direct ADCC.  This assay is based entirely on cell lines and thus obviates any 

requirement for primary cells.  The scalability of ADCC assays dependent upon primary 

cells is limited by the number of NK cells that can be obtained from individual donors.  

Due to its exclusive usage of immortalized cell lines, the assay reported here is highly 

scalable for multiple parallel comparisons, and also avoids donor-to-donor variation.  

Thus, serum, plasma, or monoclonal antibodies can be routinely titrated over triplicate 

serial 2-fold dilutions in 96-well format.  In these ways, this assay is analogous to widely 

adopted assays for virus neutralization.  

This assay is preferable to a variety of common techniques for measuring 

antibodies against HIV-1 and SIV.  Measures of antibody responses, especially in vaccine 

studies, have often relied upon binding to recombinant forms of Env protein in ELISAs, 

or neutralization of T-cell line-adapted viruses.  However, many antibodies capable of 

binding recombinant forms of Env are directed against surfaces that are occluded in the 

native trimer, and cannot neutralize T-cell line-adapted viruses, let alone neutralization-

resistant primary isolates181,182,184,188,190,200.  Furthermore, antibodies that recognize 

quaternary epitopes are not detectable using recombinant gp120191.  The importance of 

epitopes exposed by adaptation to growth in T-cell lines remains unclear.  These assays 

are unaffected by differences in the isotype or glycosylation of the Fc region of the 

antibody, which affect CD16 crosslinking493,499.  Although ADCC activity against 

SIVmac239 was generally correlated with neutralization of T-cell line-adapted 
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SIVmac251TCLA and SIVmac239 gp120 ELISA titers, these measures were often quite 

similar for samples with a broad range of ADCC activity.  A subset of antibody 

specificities that are consistently targeted could account for the similarity of most 

SIVmac251TCLA neutralization and SIVmac239 gp120 ELISA titers.  Several recently-

described assays for ADCC against HIV-1 and SIV use CD4+ target cells that are coated 

with recombinant forms of Env protein508-517, coated with linear peptides517-519, or 

infected with T-cell line-adapted viruses509,510,520.  However, the inherent neutralization 

resistance of HIV-1 and SIV primary isolates stems from properties of Env that have 

evolved to limit the access of antibodies132,188,217,241,244,251,252,254.  For the principles that 

confer neutralization resistance to be inapplicable to ADCC would be inconsistent with 

our understanding of lentiviral immune evasion.  Therefore, assays that present primary 

isolate Env proteins in the native, membrane-bound, trimeric, physiologically relevant 

form that exists on virus particles and virus-infected cells are preferable for measuring 

antibody responses against HIV-1 and SIV. 

  Assays for antibody-dependent cell-mediated virus inhibition (ADCVI) are often 

used to measure ADCC422.  Indeed, ADCC is probably a component of the antiviral 

activity measured in ADCVI assays.  However, the ADCC assay described here has 

several advantages over ADCVI assays.  Although antibodies have numerous functions in 

vivo, the interplay between the multiple antibody-mediated mechanisms that 

simultaneously contribute to ADCVI may complicate a reductionist experimental 

approach.  The effect of virus neutralization is superimposed and perhaps amplified over 

the effects mediated by cells bearing Fc receptors.  Viral replication in ADCVI assays is 

typically quantified by measuring HIV-1 p24 or SIV p27361,422,423, but antibodies to p24 
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or p27 present in the sample being tested can interfere with antigen capture assays521.  

ADCVI also requires primary cells.  Thus, the ADCC assay described here possesses 

significant advantages over other current methods for measuring ADCC against HIV-1 

and SIV. 

There appear to be differences between the antibodies that neutralize and those 

that direct ADCC.  Neutralization and ADCC against SIVmac239 correlated moderately 

well, suggesting an incomplete overlap between the antibodies that mediate these 

functions.  ADCC against cells infected with SIVmac239 was measurable for several 

plasma samples that did not neutralize SIVmac239 infectivity at detectable levels.  The 

existence of ADCC in the absence of neutralization may largely be accounted for by the 

250-fold greater sensitivity of ADCC versus neutralization.  A more complete occupation 

of Env trimers by antibody may simply be required to detect neutralization than ADCC.  

However, there also appear to be differences in the epitopes responsible for ADCC versus 

neutralization.  The broadly neutralizing monoclonal antibodies 2F5 and 4E10 did not 

direct ADCC against the T-cell line-adapted virus HIV-1NL4-3, which is sensitive to 

neutralization by 2F5 and 4E10214.  The specificity of these antibodies for a fusion 

intermediate263,265, which may not be a dominant form of Env on infected cells, probably 

accounts for the absence of ADCC activity.  Although 2F5 and 4E10 mediated ADCVI, 

the observed inhibition could entirely be explained by neutralization447.  Thus, 2F5 and 

4E10 may be prototypical examples of antibodies that neutralize but do not appreciably 

direct ADCC against virus-infected cells.  Since ADCC appears to be important in vivo411, 

measuring both neutralization and ADCC may be optimal. 
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Antibodies that direct ADCC may relate to the modest protection reported in a 

recent phase III HIV-1 vaccine clinical trial in Thailand (RV144)379.  Although virus-

specific CD8+ T-cells were largely undetectable, and antibodies capable of neutralizing 

primary HIV-1 isolates were absent, vaccine recipients consistently had detectable 

antibodies that bound gp120 in an ELISA.  Antibody functions other than neutralization 

have therefore been postulated as potentially responsible for the protection reported in the 

RV144 trial522.  

The ADCC assay reported here is designed to isolate the interactions between 

CD16+ NK cells, antibody, and virus-infected cells for experiments that specifically 

address antibody function.  This assay is therefore not intended for the study of 

differences in effector cell function or phenotype, for which primary cells are clearly 

required.  One such difference that may contribute to immunodeficiency in HIV-1 

infection is the functional impairment of NK cells111-113,523.  However, the effects of IL-2 

and calcineurin inhibitors on KHYG-1 cells suggest that this cell line may also be a 

useful in vitro system for understanding the negative regulation of NK cells.  Therefore, 

these cell lines may contribute to studies of effector cell function, in addition to their 

intended purpose facilitating functional antibody measurements. 

We have developed an assay for ADCC that is analogous to modern assays for 

virus neutralization.  Its exclusive usage of immortalized cell lines and ability to measure 

ADCC against primary isolate Env proteins as they exist on virus-infected cells represent 

significant advantages over other available assays.  Differences between neutralization 

and ADCC suggest that measuring both activities is optimal.  The antibodies that direct 
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ADCC in this assay would be expected to have a variety of antiviral functions under 

physiological conditions in vivo. 
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CHAPTER 4 

 
 

Antibody-dependent cell-mediated cytotoxicity develops over time during persistent 

infection with live-attenuated SIV and is a correlate of protection  

against pathogenic SIV infection 
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4. A. ABSTRACT 

 

Immunization of rhesus macaques with live-attenuated strains of SIV routinely 

confers complete or apparent sterilizing immunity against challenge with pathogenic SIV.  

Identifying the mechanisms underlying this protection may provide guidance for HIV-1 

vaccine design.  Here we investigated the development of antibodies with effector 

functions against neutralization-resistant SIV strains after inoculation with SIVΔnef, and 

the potential contribution of these antibodies to protection against SIV infection.  In the 

absence of detectable neutralizing antibodies, Env-specific ADCC titers emerged three 

weeks after inoculation, increased progressively over time, and were proportional to the 

extent of SIVΔnef replication.  Persistent infection with SIVΔnef elicited significantly 

higher ADCC activity than transient immunization with SIV limited to single cycle of 

infection.  ADCC titers were higher against viruses matched to the vaccine strain in Env, 

but were measurable against viruses expressing heterologous Env proteins from 

independent SIV isolates.  Two separate pathogenic SIVmac251 challenge experiments 

took advantage of either the strain specificity or the time-dependent development of 

immunity to overcome complete protection by SIVΔnef.  In both experiments, SIVΔnef-

inoculated macaques that remained uninfected by SIVmac251 had significantly higher 

ADCC activity than those that became infected.  These results suggest that antibodies 

with ADCC activity contribute to protection by SIVΔnef.  
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4. B. INTRODUCTION 

 

Efforts to develop a vaccine against HIV-1 are hindered by our limited knowledge 

of the types of immune responses that may be capable of preventing HIV-1 infection.  

Identifying these immune responses and understanding the stimuli required to elicit them 

may be necessary to design a safe and effective HIV-1 vaccine400.  Inoculation of rhesus 

macaques with live-attenuated strains of simian immunodeficiency virus (SIV) often 

confers complete or apparent sterilizing immunity against pathogenic strains of 

SIV345,347,352,452.  Therefore, elucidating the immune responses that mediate protection by 

live-attenuated SIV may help to guide HIV-1 vaccine development524. 

 Antibody, T cell, and innate immunity have evolved to operate synergistically as 

an integrated system407, and a combination of these immune responses may be necessary 

for complete protection by live-attenuated SIV.  However, the efficacy of at least one of 

the immune responses necessary for complete protection increases over time, since 

animals challenged with SIVmac251 months after inoculation with live-attenuated SIV are 

protected from infection, whereas those challenged at early time points become 

infected345,347.  Although live-attenuated SIV elicits virus-specific T-cells525-527, and the 

quality of these T-cell responses may change over time, the magnitude of virus-specific 

CD8+ T-cell responses declines after the acute peak of live-attenuated SIV replication415.  

In contrast, antibody responses are known to increase in titer over time through affinity 

maturation322.  An essential role for the affinity maturation of antibody responses could 

account for the time-dependent development of protection by live-attenuated SIV406.  

However, SIVmac251 is inherently resistant to neutralization164, and antibodies capable of 
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neutralizing it are typically undetectable among completely protected animals345,352.  We 

therefore hypothesized that functions of antibodies other than neutralization contribute to 

protection by live-attenuated SIV. 

 In addition to virus neutralization, the antiviral functions of antibodies include 

complement fixation and numerous consequences of Fc receptor crosslinking, such as 

antibody-dependent cell-mediated cytotoxicity (ADCC)110,422,431,436,437,444.  Since ADCC 

represented a plausible effector mechanism and a proxy for other activities by the same 

functional antibodies, we developed a novel assay for quantifying the ability of 

antibodies to direct ADCC against virus-infected cells.  We use this assay to investigate 

the induction of antibodies with ADCC activity, and to test the hypothesis that higher 

ADCC activity against cells infected by the challenge virus correlated with protection. 

Our results indicate that persistent infection with SIVΔnef elicits ADCC titers that 

develop over time, are specific for the viral envelope glycoprotein (Env), are cross-

reactive with Env proteins from heterologous (i.e. independently isolated) SIV strains, are 

proportional to vaccine strain replication, and are correlated with protection against 

infection by SIVmac251.  
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4. C. METHODS 

 

ADCC assay. The ADCC assay has been described in Chapter 3.  Antibodies 

against human cellular antigens were depleted 20 times for the animals immunized with 

scSIV, and 12 times for the animals in the Env-mismatch and vaginal challenge studies. 

 

Neutralization assay. Neutralization was measured as previously described164,334.  

The sensitivity of the virus neutralization assay was maximized by minimizing the 

amount of virus input required to obtain consistent levels of infection.  These amounts 

were 0.5 ng p27 SIVmac239, 0.5 ng p27, 5 ng p27 SIVmac251NE, and 0.5 ng p27 

SIVmac251UCD per well containing 15,000 C8166-secreted alkaline phosphatase (SEAP) 

reporter cells.  The reciprocal neutralization experiment by week 22 sera against 

SIVmac239 and SIVmac239/E543-3env was performed under different conditions, with 2 

ng p27 and 5,000 C8166-SEAP cells per well.  Plasma or serum dilutions were pre-

incubated with virus for 1 hour at 37°C before adding C8166-SEAP cells.  After three 

days, SEAP activity was determined using a luminescent assay (Applied Biosystems). 

 

Animal experiments and sample preparation. The animals were Indian-origin 

rhesus macaques (Macaca mulatta) housed in a biocontainment facility at the New 

England Primate Research Center (NEPRC), and given care in accordance with standards 

of the Association for Assessment and Accreditation of Laboratory Animal Care and the 

Harvard Medical School Animal Care and Use Committee.  The experiments and 

procedures were approved by the Harvard Medical Area Standing Committee on Animals, 
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and conducted in accordance to the Guide for the Care and Use of Laboratory Animals466.  

When necessary, animals were anesthetized by ketamine-HCl at fifteen mg/kg.  

 

Viruses. The SIVmac239 and SIVmac239/E543-3env challenge doses used on week 

22 consisted of 20 animal-infectious doses of virus produced by transfection of 293T 

cells.  The week 33 challenge with SIVmac239 contained 10 animal-infectious doses of a 

rhesus PBMC-derived virus stock used in various previous studies159.  The intravenous 

SIVmac251NE challenge was 10 animal-infectious doses (32 pg p27) of a rhesus PBMC 

stock prepared in February 1991, used in other studies345,347,352.  Vaginal challenges 

consisted of 2 inoculations on 1 day of 1 ml undiluted SIVmac251UCD
480 (100 ng p27), 

prepared at the California National Primate Research Center in June 2004.  Neutralization 

and ADCC assays were done using SIVmac239 and SIVmac239/E543-3env produced by 

transfection of 293T cells, and SIVmac251NE and SIVmac251UCD expanded from the 

corresponding challenge stocks in rhesus PBMC.  SHIVSF162P3 was also expanded in 

rhesus PBMC (AIDS Research and Reference Reagent Program, NIAID, NIH, 

contributed by Drs. Janet Harouse, Cecilia Cheng-Mayer, Ranajit Pal and the DAIDS, 

NIAID).  Neutralization was measured as previously described164,334. 

 

Plasma viral RNA load measurements. Challenge viruses were detected using 

primers specific for the nef sequences of SIVmac239 or SIVmac251 within the deletion in 

SIVmac239Δnef344. Complete or apparent sterilizing protection was defined as the absence 

of detectable wild-type viral RNA using a real-time RT-PCR assay with a nominal 

threshold of detection of 10-30 copies of RNA per ml473. 
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Statistical analysis. Fifty percent titers were calculated as the dilution at which a 

line connecting the values above and below 50% RLU would intercept the 50% RLU line. 

AUC values for ADCC were calculated such that they would be proportional to 50% 

ADCC titers, and represent the areas between 100% RLU and the titration curves as they 

appear in the figures.  Whereas %ADCC, defined as 100% minus %RLU, is asymptotic 

as it approaches 100%, minimum %RLU values are inversely proportional to 50% ADCC 

titers.  Therefore, AUC values for ADCC were calculated from the sum of the values 

over all dilutions for log10100 minus log10%RLU.  This sum was multiplied by the log10-

transformed dilution factor of 2 to find an area.  Statistical significance was evaluated in 

Prism version 4.1b (GraphPad Software) using 2-tailed Mann-Whitney U tests, 2-tailed 

Fisher’s exact tests, 2-tailed Wilcoxon matched pairs tests, and Spearman correlation 

coefficients.  
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D. RESULTS 

 

Time-dependent maturation of antibody responses. Plasma samples drawn at 

longitudinal time points after inoculation with SIVmac239Δnef were tested for their ability 

to neutralize SIVmac239 and to direct ADCC against SIVmac239-infected cells. Only 4 of 

10 macaques developed neutralizing antibody titers, and these were not detectable until 

13 weeks after inoculation with SIVmac239Δnef (Fig. 4.1a). In contrast, ADCC titers were 

detectable in all animals just 3 weeks after inoculation with SIVmac239Δnef (Fig. 4.1b). 

These ADCC titers were Env-specific, since none of the plasma samples directed ADCC 

against target cells infected with SHIVSF162P3, which expresses the Env protein of HIV-

1SF162 in an SIVmac239 genetic background. To quantify ADCC titers, we calculated the 

plasma dilution that reduces the luciferase signal from virus-infected cells by 50%, and to 

measure differences in the extent of target cell elimination over all dilutions tested, we 

calculated values for the area under the curve (AUC). By both measures, progressive 

increases in ADCC activity were observed over 21 weeks. Thus, antibody titers capable 

of directing ADCC against SIVmac239-infected cells increased over time, but unlike 

neutralizing antibodies, emerged early and were detectable in all animals. 
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Figure 4.1. Development of neutralizing antibody and ADCC titers in macaques 
inoculated with SIVmac239Δnef. Plasma collected from 10 animals at 0, 3, 5, 7, 13 or 15, 
and 21 weeks after inoculation with SIVmac239Δnef was evaluated for its capacity to 
neutralize SIVmac239 (a) and to direct ADCC against SIVmac239-infected cells (b).  The 
loss of relative light units (RLU) indicates the loss of virus-infected cells during an 8-
hour incubation in the presence of plasma and an NK cell line.  Target cells infected by 
SHIVSF162P3 served as a negative control for all ADCC assays (gray).  Dashed lines 
indicate 50% activity.  All of these animals were completely protected against i.v. 
challenge with SIVmac239.  The top 5 animals were challenged on week 5, and the bottom 
5 were challenged on week 15. 
 
 

Persistent replication required to elicit high ADCC titers. The contribution of 

ongoing vaccine strain replication to the development of ADCC activity was evaluated by 

comparing SIVmac239Δnef to scSIV.  Plasma samples collected 2 or 12 weeks after a 

series of inoculations with scSIV159 were tested for ADCC against SIVmac239-infected 

cells (Fig. 4.2a).  Five weeks after inoculation with SIVmac239Δnef, 50% ADCC titers 

were on average 43-fold higher than those elicited by scSIV, and this difference 
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expanded to 250-fold by week 21 (Fig. 4.2b).  The 50% ADCC titers (Fig. 4.2b) and the 

AUC values for ADCC (Fig. 4.2c) at any time point after inoculation with 

SIVmac239Δnef were significantly higher than at either time point after inoculation with 

scSIV (2-tailed Mann-Whitney U tests, P=0.002 to P<0.001).  Since the geometric mean 

peak viral RNA loads in plasma for SIVmac239Δnef and scSIV were within 2-fold of each 

other, 1.3x105 and 7.4x104 copies per ml respectively (Fig. 4.3), the considerable 

differences in ADCC activity probably reflect differences in the persistence of 

SIVmac239Δnef versus scSIV. 

 
Figure 4.2. ADCC titers elicited by SIVmac239Δnef versus scSIV. Plasma samples 
drawn on weeks 2 and 12 after inoculation with scSIV were titered for ADCC against 
SIVmac239-infected cells (a).  Week 12 was the day of i.v. challenge with SIVmac239, 
when 11 of 12 of the scSIV-immunized animals became infected159.  Target cells infected 
with SHIVSF162P3 served as a negative control (gray).  Dashed lines indicate 50% activity. 
The 50% ADCC titers (b) and the AUC values for ADCC (c) elicited by SIVmac239Δnef 
were significantly higher than those elicited by scSIV (2-tailed Mann-Whitney U tests, 
P=0.002 to P<0.001). 
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Figure 4.3. SIVmac239Δnef versus scSIV vaccine strain viral loads. Geometric mean 
vaccine strain viral loads reflecting virus particles produced in vivo after inoculation with 
SIVmac239Δnef or scSIV are shown. The scSIV experiments are described in detail by Jia 
et al.159. The scSIV recipients in Group A were inoculated 3 times with scSIV that was 
trans-complemented with the vesicular stomatitis virus glycoprotein (VSV G), whereas 
the animals in Group B were inoculated 6 times with scSIV that was not trans-
complemented. 
 
 

Antibody recognition of heterologous Env proteins. The ADCC activity against 

SIV strains that were matched or mismatched with the vaccine strain in Env was 

compared.  Sera were collected from 12 macaques inoculated with SIVmac239Δnef (Fig. 

4.4a), and 12 inoculated with a recombinant form of SIVmac239Δnef containing the env 

gene of SIVsmE543-3206 designated SIVmac239Δnef/E543-3env (Fig. 4.4b).  Sera from all 

24 animals were tested for ADCC activity against target cells infected with SIVmac239 or 

SIVmac239/E543-3env.  On average, the 50% ADCC titers were 7-fold higher when the 

vaccine and test viruses were matched in Env than when they were mismatched (2-tailed 

Wilcoxon matched pairs test, P<0.0001).  The 50% ADCC titers were also approximately 

7-fold higher at week 22 than at week 6 (2-tailed Wilcoxon matched pairs test, P<0.0001).  

Thus, the 50% ADCC titers against the Env-matched virus at week 6 and the Env-

mismatched virus at week 22 were comparable.  Therefore, ADCC titers against Env-
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mismatched viruses were lower and required more time to develop than ADCC titers 

against Env-matched viruses. 

 
Figure 4.4. ADCC against target cells infected by viruses matched or mismatched to 
the vaccine strain in Env. Sera drawn 0, 6, or 22 weeks after inoculation with 
SIVmac239Δnef (a) or with the recombinant vaccine strain SIVmac239Δnef/E543-3env (b) 
were tested for ADCC against target cells infected with SIVmac239 (black), 
SIVmac239/E543-3env (green), or SHIVSF162P3 (gray). Dashed lines indicate 50% activity. 
 
 

Sera collected on week 22 were also tested for neutralization of SIVmac239 and 

SIVmac239/E543-3env.  Although the majority of animals could neutralize the Env-

matched viruses, neutralization of the Env-mismatched viruses was low to undetectable 

(Fig. 4.5).  Thus, despite being low to undetectable in assays for virus neutralization, 

antibodies that cross-react with heterologous Env proteins could be measured using 

assays for ADCC. 
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Figure 4.5. Neutralization of viruses matched or mismatched to the vaccine strain in 
Env. Sera drawn 22 weeks after inoculation with SIVmac239Δnef (a) or the recombinant 
vaccine virus SIVmac239Δnef/E543-3env (b) were titered for neutralization of SIVmac239 
(black) or SIVmac239/E543-3env (green).  Dashed lines indicate 50% activity. 
 

 
ADCC activity is proportional to the extent of vaccine strain replication. The 

extent of vaccine strain replication was estimated by calculating AUC values for log10-

transformed SIVΔnef viral RNA loads in plasma over the first 21 or 22 weeks after 

inoculation.  AUC values for viral loads among animals inoculated with SIVmac239Δnef 

and SIVmac239Δnef/E543-3env were similar, averaging 65 and 67 log10-transformed RNA 

copies per ml × weeks, respectively.  The relationships between AUC values for viral 

loads and ADCC activity at the end of this time period were evaluated by calculating 

Spearman correlation coefficients (rs).  Vaccine strain replication correlated with 50% 

ADCC titers against Env-matched (rs=0.68, P<0.0001) and Env-mismatched (rs=0.55, 

P=0.006) viruses (Fig. 4.6a), and also with AUC values for ADCC against Env-matched 

(rs=0.64, P<0.0001) and Env-mismatched (rs=0.42, P=0.0421) viruses (Fig. 4.6b).  These 
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relationships suggest that the development of antibodies that direct ADCC is driven by 

the extent of antigenic stimulation provided by vaccine strain replication. 

 
Figure 4.6. Relationship between the extent of vaccine strain replication and ADCC 
activity. The extent of SIVmac239Δnef or SIVmac239Δnef/E543-3env replication was 
estimated from the area under the curve (AUC) of log10-transformed vaccine strain viral 
loads over weeks 0 through 21 or 22, and compared to ADCC activity at week 21 or 22.  
Vaccine strain viral load AUC values were correlated with 50% ADCC titers (a) against 
Env-matched (rs=0.68, P<0.0001) and Env-mismatched (rs=0.55, P=0.006) SIV strains, 
and also with AUC values for ADCC activity (b) against Env-matched (rs=0.64, 
P<0.0001) and Env-mismatched (rs=0.42, P=0.0421) SIV strains.  Linear regression lines 
are drawn. 
 
 

Challenge with viruses matched or mismatched in Env. Half the animals 

inoculated with each vaccine strain were challenged intravenously with SIVmac239 on 

week 22, and half were challenged with SIVmac239/E543-3env.  Three naïve control 

animals challenged with each virus all became infected, whereas only 2 of 24 immunized 

animals became infected.  Although both were in the group inoculated with 

SIVmac239Δnef and challenged with SIVmac239/E543-3env, mismatch in Env did not 

significantly affect protection (2-tailed Fisher’s exact test, P=0.48).  The 2 animals that 

became infected had lower ADCC activity against SIVmac239/E543-3env-infected cells 

than most of the animals that remained uninfected (Fig. 4.7).  However, significant 

differences cannot be detected with only 2 infected animals. 
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Figure 4.7. Neutralization and ADCC on the day of intravenous challenge with 
SIVmac239/E543-3env. Twelve macaques were challenged with an intravenous dose of 
SIVmac239/E543-3env on week 22 after inoculation with SIVmac239Δnef or 
SIVmac239Δnef/E543-3env.  The 50% neutralization titers against SIVmac239/E543-3env 
(a), and the 50% ADCC titers (b) and AUC values for ADCC (c) against cells infected by 
SIVmac239/E543-3env were compared for infected versus uninfected animals. The 
significance of differences could not be determined (ND) since only 2 animals became 
infected. 
 

 
 The animals that remained uninfected were subsequently re-challenged.  All 12 

that remained uninfected after intravenous challenge with SIVmac239 on week 22 again 

remained uninfected after re-challenge with SIVmac239 on week 33.  The 10 that had 

remained uninfected after challenge with SIVmac239/E543-3env on week 22 were re-

challenged with an intravenous dose of SIVsmE543-3 on week 46, and 3 of these animals 

became infected.  However, infection by SIVsmE543-3 appeared to be related to TRIM5 

genotype39-41 (Fig. 4.8). 
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Figure 4.8. Neutralization and ADCC on the day of intravenous challenge with 
SIVsmE543-3. Ten macaques were challenged with an intravenous dose of SIVsmE543-3 
on week 46 after inoculation with SIVmac239Δnef or SIVmac239Δnef/E543-3env.  Sera 
collected on the day of challenge were tested for neutralization of SIVmac239/E543-3env 
(a) and for ADCC of cells infected by SIVmac239/E543-3env (b).  Solid black symbols 
indicate animals that became infected by SIVsmE543-3.  Dashed lines indicate 50% 
activity.  Target cells infected with SHIVSF162P3 served as a negative control for ADCC 
assays (gray).  Differences in 50% ADCC titers (c) and in AUC values for ADCC activity 
(d) were not significant.  The only animal with the non-protective Q/Q TRIM5 genotype 
became infected, whereas all 4 animals with the protective TFP/TFP genotype remained 
uninfected39-41. 
 

 
ADCC correlates with protection against SIVmac251. The group of 6 animals 

inoculated with SIVmac239Δnef and 6 inoculated with SIVmac239Δnef/E543-3env that 

exhibited complete protection against 2 intravenous challenges with SIVmac239 were 

subsequently re-challenged with an intravenous dose of SIVmac251NE on week 46.  Three 

of these 12 animals became infected by SIVmac251NE, as did both naïve controls 
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challenged at the same time.  Although all three immunized animals that became infected 

were among those inoculated with SIVmac239Δnef/E543-3env, the trend toward more 

infections in this group was not significant (2-tailed Fisher’s exact test, P=0.18).  Neither 

vaccine strain viral loads among the animals that became infected versus those that 

remained uninfected (Fig. 4.9a and b), nor among those immunized with SIVmac239Δnef 

versus SIVmac239Δnef/E543-3env differed significantly (Fig. 4.9c and d).  

 
Figure 4.9. SIVΔnef viral loads among animals challenged with SIVmac251NE. There 
were no significant differences in vaccine strain viral loads among the animals that 
became infected versus those that remained uninfected after intravenous challenge with 
SIVmac251NE in terms of peak log10 RNA copies per ml (2-tailed Mann-Whitney U test, 
P=0.8636) (a), or AUC log10 RNA copies per ml × weeks for the period of weeks 0-46 
after inoculation (2-tailed Mann-Whitney U test, P=0.2091) (b).  SIVmac239Δnef and 
SIVmac239Δnef/E543-3env did not differ significantly in peak viral loads (2-tailed Mann-
Whitney U test, P=0.8182) (c), or in AUC viral loads over weeks 0-46 (P=0.9372) (d). 
 

 
Sera drawn the day of challenge with SIVmac251NE were tested for neutralization 

of SIVmac251NE (Fig. 4.10a).  Neutralizing antibody titers were low to undetectable, and 

differences among the infected versus uninfected animals were not significant at the 
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highest serum concentration tested (2-tailed Mann-Whitney U test, P=0.3727).  These 

serum samples were also tested for ADCC against SIVmac251NE-infected cells (Fig. 

4.10b), and all had measurable ADCC activity.  Although the titration curves for the 

animals that became infected by SIVmac251NE grouped together at the low end of the 

range of ADCC activity (Fig. 5.10b), differences in 50% ADCC titers were not 

significant (Fig. 4.10c).  However, the animals that remained uninfected by SIVmac251NE 

had significantly higher AUC values for ADCC than those that became infected (2-tailed 

Mann-Whitney U test, P=0.0091) (Fig. 4.10d).  Therefore, more complete elimination of 

the SIVmac251NE-infected target cell population by ADCC correlated with protection 

against infection by intravenous challenge with SIVmac251NE. 
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Figure 4.10. Neutralization and ADCC on the day of intravenous challenge with 
SIVmac251NE. Macaques were challenged with an intravenous dose of SIVmac251NE on 
week 46 after inoculation with SIVmac239Δnef or SIVmac239Δnef/E543-3env.  Sera 
collected the day of challenge were evaluated for neutralization of SIVmac251NE (a) and 
ADCC against SIVmac251NE-infected cells (b).  Solid black symbols indicate animals that 
became infected by SIVmac251NE.  Dashed lines indicate 50% activity.  Target cells 
infected with SHIVSF162P3 served as a negative control for ADCC assays (gray).  
Differences in 50% ADCC titers were not significant (c).  However, AUC values for 
ADCC were higher among the animals that remained uninfected versus those that became 
infected (2-tailed Mann-Whitney U test, P=0.0091) (d). None of these macaques had the 
MHC class I alleles Mamu-A*01, -B*08 or -B*17 associated with reduced viral 
replication370,483,528. 

 

To address the temporal association between the development of antibody 

responses and protective immunity, we measured neutralization and ADCC titers in 

animals challenged at different time points after inoculation with SIVmac239Δnef.  Groups 

of 6 female macaques each were challenged by high-dose vaginal inoculation of 

SIVmac251UCD at weeks 5, 20, or 40 after inoculation with SIVmac239Δnef (Reeves et al., 

manuscript in preparation).  All 6 animals challenged at week 5 became infected, as did 3 
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of 6 animals challenged at week 20, and 4 of 6 animals challenged at week 40. Three 

naïve control animals challenged at each time point all became infected, except for one 

challenged at week 20.  A trend towards higher SIVmac239Δnef AUC viral loads through 

5, 20, or 40 weeks after inoculation among the animals that remained uninfected versus 

those that became infected was not significant (Fig. 4.11).  

 
Figure 4.11. SIVmac239Δnef viral loads among animals challenged with 
SIVmac251UCD. Peak log10 SIVmac239Δnef viral loads did not correlate with protection 
against infection by SIVmac251UCD (2-tailed Mann-Whitney U test, P=0.8437) (a).  
SIVmac239Δnef AUC log10 RNA copies per ml × weeks for the period through the day of 
challenge with SIVmac251UCD at 5, 20, or 40 weeks after inoculation appeared higher 
among the animals that remained uninfected, but this difference was not significant (2-
tailed Mann-Whitney U test, P=0.0939) (b). 

 

Sera collected on the day of challenge with SIVmac251UCD were evaluated for 

neutralization of SIVmac251UCD (Fig. 4.12a-c).  However, neutralization of SIVmac251UCD 

was not detectable for any of these serum samples (Fig. 4.12a-c).  The capacity of the 

same sera to direct ADCC against SIVmac251UCD-infected cells was evaluated (Fig. 

4.12d-f).  In contrast to neutralization, all had measurable ADCC activity (Fig. 4.12d-f).  

Statistically significant outcomes could not be reached at individual time points, or for a 

group of animals that combines just those challenged on weeks 20 and 40 (Table 4.1). 

However, when the animals challenged 5, 20 and 40 weeks after inoculation with 

SIVmac239Δnef were analyzed together, those that remained uninfected had higher 50%  
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Figure 4.12. Neutralization and ADCC on the day of high-dose vaginal challenge 
with SIVmac251UCD. At 5, 20, or 40 weeks after inoculation with SIVmac239Δnef, groups 
of 6 macaques each were challenged by high-dose vaginal inoculation with SIVmac251UCD. 
Serum collected the day of challenge was evaluated for neutralization of SIVmac251UCD 
(a-c) and ADCC against SIVmac251UCD-infected cells (d-f). Symbols appear in color for 
immunized macaques that remained uninfected by SIVmac251UCD, and in black for those 
that became infected. Target cells infected with SHIVSF162P3 served as a negative control 
for ADCC assays (gray). Dashed lines indicate 50% activity. The groups challenged on 
weeks 5, 20, and 40 were combined for statistical analysis (g-j). The macaques remaining 
uninfected by SIVmac251UCD had higher 50% ADCC titers than those that became 
infected (2-tailed Mann-Whitney U test, P=0.0487) (g). A similar but non-significant 
trend was observed AUC values for ADCC (2-tailed Mann-Whitney U test, P=0.0761) 
(h). Non-significant trends were in the direction of lower peak SIVmac251UCD viral loads 
for animals with higher 50% ADCC titers (rs=-0.4615, P=0.1124) (i) and higher AUC 
measurements of ADCC activity (rs=-0.4560, P=0.1173) (j). Linear regression lines are 
shown. The macaque with the lowest ADCC titers among those remaining uninfected 
was the only animal possessing the protective combination of MHC class I alleles Mamu-
A*01 and -B*1743. 
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ADCC titers on the day they were challenged than those that became infected (2-tailed 

Mann-Whitney U test, P=0.0487) (Fig. 4.12g).  A similar pattern was observed using 

AUC values for ADCC, although the difference was not significant (Fig. 4.12h).  Also, 

among the animals that became infected, there was a trend towards higher ADCC activity 

in animals with lower peak SIVmac251UCD viral loads (Figs. 4.12i and j).  Therefore, 

higher ADCC titers present at late time points after inoculation with SIVmac239Δnef 

correlated with protection against infection by high-dose vaginal challenge with 

SIVmac251UCD. 

 

 
Table 4.1. 2-tailed Mann-Whitney U tests for the significance of differences among 
animals challenged vaginally with SIVmac251UCD. 
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4. E. DISCUSSION 

 

Identifying the immune responses that mediate protection by live-attenuated SIV 

and understanding their induction may inspire strategies for engineering a safe and 

effective HIV-1 vaccine.  We hypothesized that antibody functions other than 

neutralization contribute to the protective immunity provided by live-attenuated SIV 

against pathogenic SIV challenge.  We now show that ADCC activity correlates with 

complete or apparent sterilizing protection against SIVmac251 infection.  Furthermore, 

properties of the antibody response reflected in ADCC titers mirror hallmarks of 

protection by live-attenuated SIV.  The protective immunity conferred by live-attenuated 

SIV increases over time345,347, is usually incomplete against challenge with a 

heterologous SIV strain418,420, and is greater for vaccine strains that replicate at higher 

levels347,352.  In accordance with these observations, our data indicates that ADCC titers 

increase progressively over time, are lower against viruses expressing heterologous Env 

proteins, and are proportional to the extent of vaccine strain replication. Therefore, 

antibodies that direct ADCC may contribute to complete protection by live-attenuated 

SIV. 

In two separate challenge experiments, we observed a relationship between higher 

ADCC activity and protection against infection with SIVmac251.  In one experiment, 

macaques inoculated with SIVmac239Δnef or SIVmac239Δnef/E543-3env that remained 

uninfected after intravenous challenge with SIVmac251NE had higher AUC values for 

ADCC than those that became infected.  In another experiment, animals that remained 

uninfected after high-dose vaginal challenge with SIVmac251UCD at different time points 
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after inoculation with SIVmac239Δnef had higher 50% ADCC titers than those that 

became infected.  Although differences in AUC values for ADCC were significant in one 

experiment, whereas 50% ADCC titers were significant in the other, our power to detect 

correlates was limited by the small number of animals.  Also, these two measures of 

ADCC activity may not respond equally to differences in the vaccine strains, the 

challenge viruses, and the time of challenge.  The animals that became infected by 

SIVmac251NE were immunized with SIVmac239Δnef/E543-3env, whereas those challenged 

with SIVmac251UCD were all immunized with SIVmac239Δnef.  Animals inoculated with 

SIVmac239Δnef/E543-3env had higher AUC values for ADCC against the Env-matched 

virus at week 6 than against the Env-mismatched virus at week 22, despite having similar 

50% ADCC titers.  Thus, a greater sensitivity of AUC to detect differences in ADCC 

against Env-mismatched viruses may account for the significance of differences in AUC 

against SIVmac251NE in the first study.  More complete elimination of cells infected by 

SIVmac251NE versus SIVmac251UCD may have also favored differences in AUC over 50% 

titers.  This higher ADCC activity may be due to the longer time period for the 

maturation of antibody responses before challenge with SIVmac251NE (i.e. 46 versus 5, 20, 

and 40 weeks after inoculation), or to an increase in the antibody resistance of 

SIVmac251UCD as a result of its distinct passage history480.  Although differences between 

the two SIVmac251 challenge experiments may have favored one measure of ADCC 

activity over the other, ADCC activity correlated with protection against infection with 

SIVmac251 in both experiments. 

While the relationship between ADCC activity and the outcome of challenge 

suggests that these antibodies contribute to protection, correlation does not establish 
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causation.  In addition to ADCC, Fc receptor crosslinking stimulates the secretion of 

molecules that promote lymphocyte homing and activation, and that inhibit virus 

replication422,444.  The antibodies that direct ADCC may also mediate effector functions 

through complement fixation431,436.  Furthermore, ADCC assays may measure antibodies 

that block virus infection at concentrations present in vivo, but are undetectable in 

conventional neutralization assays.  Other mechanisms of immunity not mediated by 

antibodies may also covary with ADCC activity.  T-cell, antibody, and innate immune 

responses may all be affected by the extent of antigenic stimulation.  It is conceivable that 

the observed relationships are due to differences that exist among animals inoculated with 

SIVmac239Δnef versus SIVmac239Δnef/E543-3env, or among animals challenged 5, 20, 

and 40 weeks after inoculation with SIVmac239Δnef. Thus, while our findings implicate 

antibodies in protection by live-attenuated SIV, they do not preclude a role for other 

immune responses. 

More than one type of immune response elicited by live-attenuated SIV may be 

necessary for protection against infection with SIVmac251.  Passive transfer experiments 

in different live-attenuated SIV vaccine models have yielded mixed results on the ability 

of antibodies alone to protect against SIV infection, demonstrating complete protection in 

one study409, and no protection in another408.  In contrast to the sub-neutralizing 

polyclonal antibody responses that correlated with protection against SIVmac251 infection 

in this study, relatively high concentrations of neutralizing monoclonal antibodies were 

necessary to protect macaques against SHIV infection410-413,447.  T-cell responses present 

in macaques inoculated with SIVΔnef527, but absent in macaques that received antibodies 

passively, may help to explain this apparent difference in the neutralizing antibody titer 
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required to prevent infection.  Therefore, antibodies and T-cells elicited by live-

attenuated SIV may act in concert to mediate complete protection. 

Reports of protection against SIVmac239 by vaccination with SHIV89.6
529-534 have 

not ruled out a role for antibodies in complete or apparent sterilizing protection by live-

attenuated SIV.  Protection was defined in these studies as control of viral loads to less 

than 104 copies of viral RNA per ml529,530,533, which we would define as partial protection, 

not complete or apparent sterilizing protection.  The limit of detection for SIVmac239-

specific sequences was 100-1000 copies of proviral DNA per 105 cells, or 0.1-1% of 

lymphocytes529, which was a relatively high threshold.  Although some macaques had 

viral loads under 500 copies of RNA per ml529, they all had detectable viral RNA at 

necropsy532.  SIVmac239 RNA was present in tissues from 11 of 12 SHIV89.6-vaccinated 

macaques 14 days post-challenge531,534.  Moreover, infection of macaques with plasmid 

DNA containing the infectious molecular clone of SHIV89.6 did not confer as strong 

protection against SIVmac239535,536, suggesting the cell culture conditions in which the 

vaccine virus was produced may have contributed to protection.  Furthermore, in the 

reciprocal experiment, Wyand et al. showed that SIVmac239Δ3 does not protect against 

SHIV89.6P infection420.  Therefore, reports of protection by SHIV89.6 against SIVmac239 

challenge have not demonstrated complete protection in the absence of an Env-specific 

antibody response. 

Our observations are in agreement with other reports that have associated 

antibody responses with vaccine protection.  Studies from the Robert-Guroff laboratory, 

and most recently from Barouch et al., have correlated lower viral loads after infection 

with higher ADCC activity against target cells coated with monomeric gp120 
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protein508,515,537, or infected with T-cell line-adapted SIV509.  However, these studies did 

not correlate ADCC activity with protection from infection, or measure ADCC using 

target cells infected with neutralization-resistant SIV strains.  Nevertheless, antibodies 

capable of binding recombinant forms of gp120 and neutralizing neutralization-sensitive 

SIV strains correlated with protection from infection537.  In the context of vaccination 

with different live-attenuated strains of SIV, Johnson et al. found that antibody avidity 

correlated with control or protection from infection after vaginal challenge with 

SIVmac251NE
352.  Similarly, Wyand et al. reported that neutralization of SIVmac251NE at a 

1:4 dilution of serum correlated with protection in a combined group of animals that 

remained uninfected or strongly controlled SIVmac251NE viral loads347.  However, low-

titer neutralization of SIVmac251NE only appeared to be detectable in CEMx174 cells, and 

therefore may reflect a minor variant that enters this CCR5-negative T-cell line more 

efficiently538.  Taken together, these studies suggest that antibody responses contribute to 

protection. 

Interest in antibody functions other than neutralization has recently increased, due 

to a modest reduction in the rate of HIV-1 infection among recipients of a recombinant 

canarypox vector prime and protein boost vaccine in Thailand (RV144)379.  This 

approach elicited binding antibodies, but virus-specific CD8+ T cells and neutralizing 

antibodies were largely undetectable.  Functions of antibodies other than neutralization 

have therefore been postulated as potentially responsible for protection in the RV144 

trial522. 

Persistent expression of Env may be essential to elicit effective antibody 

responses.  The progressive increases in ADCC activity over time, and the considerably 
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higher ADCC activity elicited by SIVmac239Δnef versus scSIV, imply that the persistent 

antigenic stimulation provided by the ongoing replication of SIVmac239Δnef stimulated 

the development of high ADCC activity. These differences may also contribute to the 

better protection provided by SIVΔnef in comparison to scSIV159.  The SIVmac239Δnef-

inoculated animals used for the comparison with scSIV were all completely protected 

against i.v. challenge with SIVmac239, half on week 5 and half on week 15.  In contrast, 

11 of 12 scSIV-immunized animals became infected after i.v. challenge with the same 

dose of SIVmac239, albeit on a different day, 12 weeks after the last inoculation with 

scSIV.  Thus, in a comparison between vaccines that afford complete versus incomplete 

protection, complete protection was associated with significantly higher ADCC activity.   

In addition, a longer period of persistent infection with SIVΔnef was required to reach 

comparable ADCC titers against SIV strains expressing heterologous Env proteins.  

Persistent Env expression may therefore be required to induce high and broadly reactive 

ADCC titers against naturally transmitted HIV-1 strains with diverse Env sequences. 

A vaccine for HIV-1 must contend with sequence variation that typically renders 

neutralizing sera ineffective against heterologous HIV-1 isolates125,285.  The Env proteins 

of SIVmac239 and SIVsmE543-3 differ in amino acid sequence by 18%, which 

approximates the median difference between the Env proteins of individual HIV-1 

isolates within a clade125.  Since sera poorly neutralized viruses mismatched in Env, the 

ADCC titers against these viruses suggest that antibodies may have broader efficacy than 

is generally revealed by neutralization assays.  The complete protection in 10 of 12 

animals challenged with Env-mismatched viruses on week 22 is not incompatible with a 

role for antibody responses in protection.  The ADCC titers against the Env-mismatched 
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viruses on week 22 were comparable to those against the Env-matched viruses at week 6, 

but SIVmac239Δnef-inoculated macaques were completely protected against i.v. challenge 

with SIVmac239 on week 5.  The difference in time required for the development of 

protective immunity against SIVmac251 versus SIVmac239 may relate to differences in the 

inherent antibody resistance of these strains.  The extent of cross-reactivity in ADCC 

activity suggests that it may be possible to elicit antibody responses by vaccination that 

are capable of directing ADCC against diverse primary isolates of HIV-1. 

These results have implications not only at the basic level of supporting a 

protective role for antibodies when neutralization is low or undetectable, but also at the 

applied level of understanding the kind of stimulation that is necessary for a vaccine to 

induce effective antibody responses.  We show that properties of the ADCC titers elicited 

by SIVΔnef mirror hallmarks of protection by live-attenuated SIV, and that ADCC 

activity correlates with protection against SIVmac251 infection. These observations 

suggest that the antibodies responsible for ADCC activity contribute to complete 

protection by live-attenuated SIV.  Although our results imply that antibodies have 

greater breadth than is generally revealed by neutralization assays, they also suggest that 

persistent Env expression may be necessary to elicit high and broadly reactive ADCC 

titers by vaccination.  Therefore, strategies to persistently stimulate Env-specific antibody 

responses may improve the efficacy of vaccines against HIV-1. 
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CHAPTER 5 
 

ADCC in the immune correlates analysis of the ALVAC-AIDSVAX  

HIV-1 vaccine efficacy trial in Thailand (RV144) 
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5. A. ABSTRACT 

 

The RV144 trial was the first HIV-1 vaccine clinical trial to report protection 

against HIV-1 infection.  It therefore offers the first opportunity to identify correlates of 

vaccine protection against HIV-1.  Due to the availability of many different 

immunological assays, and the potential for a high false discovery rate if many 

hypotheses were tested, a pilot study was conducted to identify 6 primary variables for an 

immune correlates analysis.  The criteria evaluated were low background, a wide 

dynamic range for vaccine-elicited immune responses, reproducibility, and non-

redundancy with other assays.  Our assay for ADCC, which is based on an NK cell line 

and HIV-1-infected target cells, was selected based on its performance in these criteria.  

Significant relationships were found with 2 of the other 6 assays.  Antibodies against an 

HIV-1 V1V2 loop structure correlated with protection from HIV-1 infection, and Env-

specific IgA correlated with risk of infection.  Although the ADCC activity measured 

among RV144 vaccinees was weak, there was a non-significant trend suggesting that 

those with higher relative ADCC activity had a lower risk of HIV-1 infection.  Moreover, 

when IgA was eliminated as a risk factor by excluding most vaccinees with detectable 

IgA responses, there was a borderline significant inverse correlation between ADCC 

activity and HIV-1 infection.  Thus, among vaccinees without detectable IgA responses, 

ADCC activity may have contributed to vaccine protection.  These results suggest that 

ADCC activity should be measured in future HIV-1 vaccine clinical trials.  
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5. B. INTRODUCTION 

 

The RV144 trial provides the first opportunity to identify correlates of vaccine 

protection in an HIV-1 vaccine efficacy trial.  Among 8197 vaccine trial participants who 

received at least 1 of 4 scheduled doses of a canarypox vector (ALVAC-vCP1521) 

encoding a recombinant Env protein composed of a CRF01_AE gp120 engrafted onto a 

clade B gp41, and 2 boosts with CRF01_AE and clade B recombinant gp120 proteins 

formulated with adjuvant (AIDSVAX B/E), 51 became infected with HIV-1 over a 42 

month follow-up period379.  In contrast, 74 of 8198 volunteers who received at least one 

dose of a placebo became infected with HIV-1 over the same time period.  Vaccine 

efficacy was calculated to be 31% (95% CI=1.1 to 52.1%, P = 0.04).  Identifying immune 

responses that correlate with vaccine protection in the RV144 trial may generate 

hypotheses on the nature of the protective immune responses, and suggest parameters for 

the analysis of future HIV-1 vaccine studies. 

Correlates analyses must be designed to minimize the potential for false positives.  

To minimize the false discovery rate, P-values or significance thresholds need to be 

adjusted in proportion to the number of comparisons539.  Therefore, to maximize the 

potential for identifying significant correlates of vaccine protection in the RV144 trial, 

the primary correlates analysis was designed to minimize the number of hypotheses 

tested.  A pilot study was conducted to select a small number of assays for this analysis.  

Based on the criteria of having a low false positive rate, a large dynamic range for 

vaccine-induced immune responses, high reproducibility, and non-redundancy (i.e. low 

correlation among assays), 6 assays were selected for the primary analysis.  Holm-
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Bonferroni P- and Q-values adjusted for testing 6 hypotheses were reported540,541.  Since 

this study had the exploratory objective of generating hypotheses, relationships with a P-

value of 0.05 and a Q-value of 0.2 were deemed acceptable.  Significant correlations may 

be interpreted as a protective immune response, a surrogate for an unidentified but 

covarying protective immune response, or a marker for individual-to-individual variation 

in susceptibility to HIV-1 infection542-545. 

Based on the metric properties of data we generated for the pilot study, ADCC 

against target cells infected with the CRF01_AE virus HIV-192TH023 was selected as one 

of the 6 primary immune variables.  The 5 other primary variables, which were measured 

by different groups, were IgA against recombinant clade B gp140 and CRF01_AE gp120 

protein, IgG avidity for recombinant CRF01_AE gp120, neutralization of several 

neutralization-sensitive CRF01_AE viruses and T-cell line-adapted clade B viruses, 

binding to a recombinant protein with a clade B V1V2 loop sequence engrafted into a 

mouse retrovirus envelope glycoprotein (gp70-V1V2546), and cytokine expression by 

CD4+ T-cells stimulated with CRF01_AE gp120 peptides.  The focus on antibody and 

CD4+ T-cell responses reflects the observation that CD8+ T-cell responses were not 

distinguishable between vaccine and placebo recipients in the RV144 trial379. 

Relationships between the primary variables and vaccine protection were 

examined using 2 types of regression models.  The relationship between each primary 

variable and infection status at the end of a 42-month follow-up period was determined 

by estimating an odds ratio (OR) by logistic regression.  Any potential relationship with 

infection rate was evaluated using Cox proportional hazards to calculate a hazard ratio 

(HR) that is based on the estimated time of infection.  An OR or HR of 1 indicates no 
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relationship, whereas >1 indicates a positive correlation and <1 indicates an inverse 

correlation.  Two primary variables correlated with protection or risk.  Indexed IgA 

binding scores positively correlated with infection status (OR=1.54 per standard 

deviation (SD) increase, 95% CI=1.05 to 2.25, P=0.03, Q=0.08).  Binding to gp70-V1V2 

correlated with protection (OR=0.57 per SD increase, 95% CI=0.36 to 0.90, P=0.02, 

Q=0.08).  Interaction analyses conducted among IgA scores and the other primary 

variables suggested that all the other parameters have borderline significant correlations 

with protection among vaccinees with low IgA.  Thus, the pilot study and primary 

analysis suggested parameters for the evaluation of candidate HIV-1 vaccine approaches, 

and generated hypotheses on the types of immune responses associated with protection or 

risk of infection in the RV144 trial. 
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5. C. METHODS 

 

Plasma samples. Among the 51 vaccines who became infected with HIV-1, week 

0 and 26 plasma samples were available for 41.  Five vaccine recipients who remained 

uninfected after 42 months were paired with each of the 41 who became infected, for a 

total of 205 uninfected vaccinees.  This pairing was conducted based on gender, self-

reported behavioral risk, and number of immunizations.  For example, for 1 woman who 

received 2 immunizations and became infected, 5 women who received 2 immunizations 

and reported similar behavioral risk factors but remained uninfected were included as 

controls.  Plasma samples from 20 placebo recipients who became infected and 20 

placebo recipients who remained uninfected were included as well.  Thus, samples from 

286 participants (572 samples total) were tested for ADCC against cells infected by HIV-

192TH023 in the case-control study.  As of this writing, we remain blinded to the placebo 

versus vaccine and infected versus uninfected status of each sample. 

 

Viruses. ADCC was evaluated using 2 CRF01_AE viruses.  HIV-1CM235, which is 

a molecular clone, was prepared by transfection of 293T cells.  HIV-192TH023 was selected 

for testing of the RV144 samples, since the gp120 component of the recombinant Env 

protein expressed by the canarypox vector was derived from HIV-192TH023.  The uncloned 

HIV-192TH023 virus stock was obtained from the AIDS Research Reference Reagent 

Program (Division of AIDS, NIAID, NIH), and was originally contributed by UNAIDS.  

This virus was first expanded in human PBMC, but due to a relatively low yield, was 
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expanded in the CEM.NKR-CCR5 cell line that was used for the ADCC assays in this 

study. 

 

ADCC assay. The ADCC assay was conducted as described in “Chapter 3: An 

assay for quantifying ADCC based on an NK cell line and target cells infected by SIV or 

HIV-1.” The NK effector cells expressed the V158 variant of human CD16 (FCGR3A).  

The target cells are a limiting dilution clone derived from the previously described cell 

line CEM.NKR-CCR5, by transduction with a pQCXIP-derived vector expressing human 

CCR5, due to relatively low CCR5 expression by the original clone.  Target cells were 

spinoculated500 with 300 ng p24 HIV-192TH023 per 5x105 cells 4 days prior to use.  Week 0 

and week 26 plasma samples from individual trial volunteers were always tested on the 

same 96-well plate. 

 

Statistical analysis. The primary variable evaluated was a measure of partial area 

between the curves (pABC).  To calculate pABC, log10 RLU values for the week 26 

sample were subtracted from log10 RLU values for the week 0 (baseline) sample.  A log 

scale was used due to the linear relationship between log10 RLU values and 50% ADCC 

titers in a large sample set with a wide range of activity.  Areas were calculated by the 

trapezoidal method.  Negative values were replaced with zeroes, since negative areas are 

forbidden.  The sum of the differences over the 4 highest plasma dilutions tested was 

multiplied by log102, the dilution factor on a log scale.  Fifty percent ADCC titers were 

not used since the only samples to reach 50% were those with high baseline activity.  
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 Statistical analyses were conducted by Peter Gilbert and colleagues at The 

Statistical Center for HIV/AIDS Research & Prevention (SCHARP).    
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5. D. RESULTS 

 

Measurement of ADCC by RV144 plasma samples for the pilot study. A pilot 

study was performed to select a small number of assays to be included in the primary 

correlates analysis.  The first two criteria for assay selection were that assays must have a 

low false positive rate and a large dynamic range for measuring vaccine-elicited immune 

responses.  To address these criteria, we measured ADCC by blinded samples from 80 

vaccine recipients and 20 placebo-immunized controls.  The vaccine recipients chosen for 

the pilot study had received all 4 immunizations with the canarypox vector ALVAC-

vCP1521 and 2 boosts with AIDSVAX B/E.  Uncloned HIV-192TH023 was used as a target 

virus, since this strain is the source of the gp120 in the ALVAC-vCP1521 component of 

the vaccine.  As a measure of quality control, a plasma sample from a Thai HIV-1-

positive donor was tested in parallel with all RV144 samples (Fig. 5.1).  The ADCC 

activity and reproducibility for the positive control sample appeared to be quite robust.   

In parallel, plasma samples from RV144 participants collected on week 0 (baseline) and 

week 26 (2 weeks after the last boost) were tested for their capacity to direct ADCC 

against HIV-192TH023-infected cells (Fig. 5.2).  Based on an initial visual inspection, a 

subset of the week 26 plasma samples clearly had detectable ADCC activity over 

baseline.  However, only one plasma sample reached 50% ADCC, and this was the one 

with the highest baseline activity.  Although a range of vaccine-elicited ADCC activity 

was observed, it was relatively weak in comparison to the positive control sample from 

an HIV-1-infected donor. 
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Figure 5.1. ADCC by positive control plasma. A positive control sample from a Thai 
HIV-1 patient was tested along side the RV144 plasma samples in every assay run.  The 
dashed line indicates 50% activity.  This positive control plasma robustly directs ADCC 
against cells infected with HIV-192TH023. 
 
 

 
Figure 5.2. For the pilot study, plasma samples collected at week 0 (baseline) and 
week 26 (2 weeks after last boost) were tested for ADCC against cells infected with 
HIV-192TH023.  This figure depicts the primary data for blinded samples and continues on 
the next page.  The data displayed on this page were collected on 1.3.11.  The plasma 
samples tested for this component of the pilot study belonged to 80 vaccine recipients and 
20 placebo recipients.  The dashed lines indicate 50% activity. 
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Figure 5.2 continued. The data on this page were collected on 1.4.11.  This figure 
continues on the next page. 
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Figure 5.2 continued. The data on this page were collected on 1.6.11.  This figure 
continues on the next page. 
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Figure 5.2 continued. The data on this page were collected on 1.10.11.   
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The level ADCC activity at the highest concentration of plasma tested was 

selected for analysis.  The vaccine and placebo recipients were ranked by the difference 

in ADCC activity observed at week 0 versus 26 (Fig. 5.3).  This analysis revealed a range 

of ADCC activity.  A cut-off value of just 9% ADCC (91% RLU) was chosen to 

demarcate a positive response.  For an analysis using this relatively low threshold, 2 of 

the 20 placebo recipients had >9% ADCC activity at week 26, and 10 of 100 total had 

>9% ADCC activity at week 0.  Nevertheless, nearly all placebo and baseline samples 

had approximately 0% ADCC activity.  One sample had particularly high ADCC activity 

at week 26, but this was the vaccine recipient with the highest baseline signal.  Thus, 

aside from a single outlier, the week 0 and placebo samples scored close to 0% ADCC 

activity, and a range of activity was observed at week 26. 

 
Figure 5.3. Vaccine and placebo recipients ranked by ADCC activity. Plasma 
samples for 20 placebo and 80 vaccine recipients were tested for ADCC activity against 
HIV-192TH023 as part of the pilot study. 
 
 

Analysis of replicate samples for the pilot study. The third criterion for the 

selection of assays for the primary analysis was reproducibility.  To address the 

reproducibility of this assay, we measured blinded quadruplicate aliquots of plasma 
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samples from 6 HIV-1-infected donors and 2 HIV-1-negative controls (Fig. 5.4).  The 

data from the 6 HIV-1-infected donors were used to calculate an intra-assay coefficient of 

variation (CV).  The CV values for different assays related to ADCC were compared (Fig. 

5.5).  These assays included ADCC and ADCVI assays using fresh and frozen cells, and 

Biacore assays for Fc receptor binding.  Our assay had an optimal CV score for 

reproducibility.   

 
Figure 5.4. Blinded replicate ADCC assays using 
HIV-1 positive and negative plasma.  ADCC 
activity was measured against target cells infected 
with HIV-1CM235.  Samples from 6 HIV-1 patients 
are gray, yellow, cyan, green, pink and blue.  The 2 
negative samples are black and red. 

 
 
 
 
 
 

Figure 5.5. Coefficient 
of variation (CV) across 
the 6 HIV-1-positive 
plasma samples. ADCC, 
ADCVI, and Fc receptor 
binding data from 
different labs were 
quantified by partial area 
under the curve (pAUC), 
net percent activity, and 
log10 raw readout.  Our 
assay had an optimal CV 
score for reproducibility 
(yellow). 
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Correlation among assays. The fourth parameter evaluated in the pilot study was 

redundancy among assays.  Given the small number of hypotheses that could be tested in 

the primary analysis, it was reasonable to exclude assays that were correlated with one 

another.  To control for the possibility that a low correlation could be due to poor intra-

assay reproducibility, the analysis of correlations among assays used the quadruplicate 

data sets from the replicates analysis.  Although many correlations were initially explored, 

a subset of comparisons using pAUC values for ADCC are shown (Fig. 5.6).  The pAUC 

values for ADCC against target cells infected with HIV-1CM235 were compared against 

assays for IgG binding to recombinant gp120 (Fig. 5.6a), gp140 (Fig. 5.6b), and gp41 

(Fig. 5.6c).  ADCC activity was also compared with a magnitude-breadth (MG) index for 

the ability of these plasma samples to neutralize 27 different CRF01_AE viruses (Fig. 

5.6d).  Of particular interest was the relationship between ADCC assays that use infected 

versus recombinant gp120-coated CD4+ T-cells as targets (Fig. 5.6e).  However, none of 

these comparisons generated significant correlations.  Thus, measuring ADCC against 

virus-infected cells appears to be non-redundant with assays for IgG to recombinant 

forms of Env protein, including ADCC directed against gp120-coated cells, and virus 

neutralization. 
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Figure 5.6. Relationships between ADCC against infected target cells and other 
assays. The pAUC values for ADCC activity by blinded quadruplicate samples from 
HIV-1-infected people against target cells infected with the CRF01_AE virus HIV-1CM235 
were compared against assays for IgG binding gp120 (a), gp140 (b), and gp41 (c), MB 
indices for neutralization of 27 different CRF_01AE isolates (d), and against an ADCC 
assay that uses CD4+ target cells coated with recombinant gp120 protein (e). 
 
 
 Measurement of ADCC for the primary analysis.  Based on the pilot study data, 

the assay for ADCC against virus-infected cells was selected to be one of the 6 primary 

variables for the RV144 immune correlates analysis.  The assays were performed over 10 

days, each in parallel with a positive control sample from an HIV-1-infected Thai donor 

(Fig. 5.7).  The average 50% ADCC titer for the positive control sample was 51,577, and 

the range was 31,237 to 81,954.  Blinded samples collected at week 0 and week 26 from 
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41 vaccinees who became infected, 205 vaccinees who remained uninfected, 20 placebo 

recipients who became infected, and 20 placebo recipients who remained uninfected were 

tested for ADCC against cells infected with HIV-192TH023 (Fig. 5.8).  In comparison to the 

HIV-1-positive donor plasma, the ADCC activity elicited in the RV144 is relatively weak.  

However, a subset of samples had vaccine-induced ADCC activity at week 26 that was 

detectable over baseline. 

 

 
 

 
 Figure 5.7. ADCC by positive control plasma tested in parallel with the RV144 case 
control plasma samples. The dashed line indicates 50% activity.  
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Figure 5.8. ADCC by RV144 case-control plasma samples. Plasma samples collected 
on week 0 (baseline) or week 26 (approximately 2 weeks after the last immunization) in 
the RV144 trial were evaluated for their ability to direct ADCC against target cells 
infected by HIV-192TH023.  The dashed line indicates 50% ADCC activity.  As of this 
writing, we remain blinded to the identities of the placebo versus vaccine recipients who 
became infected or remained uninfected.  This figure is continued on the next page. 
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Figure 5.8 continued. This figure is also continued on the next page. 
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Figure 5.8 continued. This figure is continued on the next page. 
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Figure 5.8 continued. This figure is continued on the next page. 
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Figure 5.8 continued. This figure is continued on the next page. 
 

  



	   209	  

 
Figure 5.8 continued. This is the last page containing the primary data for the case-
control plasma samples. 
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ADCC activity in infected versus uninfected vaccinees. Measures of vaccine-

induced immune responses for ADCC and the other 5 primary variables were ranked into 

high, medium, and low tertiles.  The partial area between the curves (pABC) at weeks 0 

and 26 for each RV144 participant was the primary variable for ADCC data.  The low 

and medium pABC values for the vaccine group overlapped with the pABC values for 

the placebo group, suggesting that it would be reasonable to consider the low and 

medium responders negative for ADCC activity (Fig. 5.9).  The univariate logistic 

regression analysis revealed a non-significant trend towards a lower risk of being infected 

at the end of the 42-month follow-up period in the high versus low ADCC groups 

(OR=0.60, 95% CI=0.24 to 1.48, P=0.27).  Similar numbers were computed for a 

multivariate logistic regression analysis (OR=0.59, 95% CI=0.22 to 1.59, P=0.30).  

Although there was a trend towards a lower risk of HIV-1 infection in the high versus 

low ADCC groups, there was no statistical evidence for protection in RV144 participants 

with high versus low ADCC activity. 

Rather than considering high versus low responders, the extent of ADCC activity 

was instead treated as a quantitative variable for univariate and multivariate logistic 

regression analyses of infection status at the end of the follow-up period.  The univariate 

logistic regression analysis revealed no relationship (OR=0.92 per SD increase, 95% 

CI=0.62 to 1.37, P= 0.68, Q=0.68).  The multivariate logistic regression analysis 

produced a similar outcome (OR=0.96 per SD increase, 95% CI=0.68 to 1.35, P=0.81, 

Q=0.81).  Thus, treated as a quantitative variable, the ADCC activity measured in RV144 

participants was unrelated to risk of infection.   
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Figure 5.9. ADCC activity for infected versus uninfected vaccine and placebo 
recipients. The pABC values for ADCC activity were ranked into low (open symbols), 
medium (shaded symbols), and high (solid black center) tertiles.  Women (red outlines) 
and men (blue outlines) are indicated separately. 

 
ADCC activity and HIV-1 infection rate. The incidence of HIV-1 infection over 

time was charted separately for placebo recipients, and for vaccinees in the low, medium, 

and high tertiles of ADCC activity (Fig. 5.10).  Cox proportional hazards were computed 

to evaluate the significance of any relationship between ADCC activity and HIV-1 

infection incidence over time.  For the univariate Cox regression analysis, there was a 

non-significant trend towards a lower hazard ratio (HR) for HIV-1 infection among the 

high versus low ADCC tertiles (HR=0.60, 95% CI=0.24 to 1.46, P=0.26).  Similar results 

were obtained for the multivariate Cox regression analysis (HR=0.59, 95% CI=0.22 to 

1.59, P=0.30).  Thus, there was a non-significant trend towards a lower infection rate for 

RV144 participants in the high versus low ADCC tertiles. 

ADCC was treated as a quantitative variable in additional Cox regression analyses.  

However, neither the univariate (HR=0.94 per SD increase, 95% CI=0.67 to 1.33, P=0.74, 

Q=0.77) nor the multivariate (HR=0.92 per SD increase, 95% CI=0.62 to 1.37, P=0.69, 
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Q=0.69) analyses suggested a relationship between infection rate and pABC values for 

ADCC as a quantitative variable.  As observed for the logistic regression analysis of 

infection status at the end of the 42-month follow-up period, the rate of HIV-1 infection 

over this time period was also unrelated to ADCC activity when it was treated as a 

quantitative variable. 

 

 
 
Figure 5.10. Incidence curves for HIV-1 infection by ADCC activity tertile.  HIV-1 
infection rates are shown for vaccinees with pABC values for ADCC in the high, medium, 
and low tertiles, and for placebo recipients.  For vaccinees in the high versus low tertiles, 
HR=0.60 to 0.61, P=0.26 to 0.32. 
 
 

Interaction analyses with Env-specific IgA scores. Since Env-specific IgA was 

correlated with risk, ADCC and the other 5 primary variables were analyzed in terms of 

IgA score.  Statistically significant interactions were observed between IgA score and 

ADCC activity for both a logistical regression analysis, and for an analysis of HIV-1 

incidence using Cox proportional hazards (for both, P=0.03, Q=0.1).  Among participants 

above the 80th percentile for ADCC activity, higher IgA score increased the number of 
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infections over the full follow-up period (OR=1.96 per SD, 95% CI=1.22 to 3.14, 

P=0.01), and increased the HIV-1 infection rate (HR=	  2.11 per SD, 95% CI=1.27 to 3.51, 

P<0.01).  Furthermore, among participants with low IgA scores below 20th the percentile, 

those with higher ADCC activity (treated as a quantitative variable) had a lower number 

of infections (OR=0.55 per SD, 95% CI=0.31 to 1.00, P=0.05), and had a decreased rate 

of infection (HR=0.58 per SD, 95% CI=0.34 to 0.99, P=0.05).  Therefore, with higher 

IgA eliminated as a risk factor, a borderline significant correlation between ADCC 

activity and protection was observed. 

 

Relationships among the primary variables. Although one of the objectives of 

the pilot study was to identify assays that were not redundant with each other, these 

analyses were based upon samples from 6 HIV-1-infected donors.  The potential 

redundancy of the 6 primary variables was therefore re-examined using the considerably 

larger data set of samples from RV144 vaccine recipients (Fig. 5.11).  This analysis also 

serves the purpose of determining which immune responses were related among RV144 

vaccinees.  In ascending order from the weakest relationship, indicated by the lowest 

Spearman rank coefficient, the Rs-values between ADCC activity and each other primary 

variable were IgA Rs=0.15, gp120 Rs=0.25, CD4+ T-cells Rs=0.27, gp70-V1V2 Rs=0.27, 

and neutralization Rs=0.44.  Thus, in line with the objectives of the pilot study, weak 

correlations were observed between ADCC and the other primary variables.  The weakest 

relationship was with IgA score, which was correlated with risk.  The strongest 

relationship was with virus neutralization, another measure of antibodies that react with 

membrane-bound, trimeric Env. 
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Figure 5.11. Relationships among the primary variables. The IgA scores (Log MFI), 
gp120 binding by Biacore (RU*sec*10-5), ADCC activity (pABC), neutralization 
magnitude-breadth indices (AUC-MB), gp70-V1V2 binding ELISA (OD), and CD4+ T-
cell responses (net% cytokine expressing CD4+ cells) in the primary analysis were 
compared with each other.  Spearman rank coefficients (Rs) are indicated. 
 
 

Infected versus gp120-coated CD4+ target cells. The results of ADCC assays 

using CD4+ target cells that are infected with virus or coated with recombinant gp120 

protein appear to differ.  Although the analysis of correlates of infection and risk in the 

RV144 trial evaluated just 6 primary variables that were selected on the basis of results 

from the pilot study, the plasma samples were tested in numerous other assays.  One of 

these was the recombinant gp120-coated CD4+ target cell ADCC assay514.  Whereas the 

multivariate Cox proportional hazards analysis revealed a non-significant trend towards a 

lower infection rate for vaccinees in the high versus low infected target cell ADCC 

tertiles (HR=0.59, 95% CI=0.22 to 1.59, P=0.30), the gp120-coated CD4+ target cell 

assay revealed a non-significant trend towards a higher infection rate for vaccinees in the 
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high versus low ADCC tertiles (HR=2.00, 95% CI=0.69 to 5.78), P=0.20).  Thus, in 

relation to the HIV-1 incidence curves, the trends for the virus-infected versus gp120-

coated target cell ADCC assays were in opposite directions. 

Antibodies that compete with the HIV-1 gp120-specific monoclonal antibody 

A32 appear to be responsible for a significant proportion of the ADCC activity measured 

using gp120-coated target cells515.  The A32 Fab fragment (i.e. no Fc region to interact 

with CD16) can block most ADCC activity by plasma from HIV-1-infected donors in the 

gp120-coated cell assay.  The A32 Fab fragment also blocks a significant proportion of 

the ADCC activity by RV144 plasma samples against gp120-coated target cells (Guido 

Ferrari, unpublished observations).  To address the hypothesis that A32 would block 

ADCC activity against HIV-192TH023-infected target cells in our ADCC assay, we tested 

week 0 and 26 plasma samples from 15 RV144 participants diluted 1:50 for ADCC in the 

presence of 10 µg per ml of the A32 Fab or a negative control Fab against respiratory 

syncytial virus (RSV) “Synagis” (Fig. 5.12).  For quality control, the Thai HIV-1-

infected donor plasma was titered in parallel, and its 50% ADCC titer of 52,250 was 

comparable to previous observations (Fig. 5.12 inset).  The ADCC activity by this 

plasma sample diluted 1:50 (almost 90%) was not appreciably different in the presence of 

the A32 blocking Fab versus Synagis (Fig. 5.12).  Since the positive control sample was 

known to have a 50% ADCC titer of approximately 50,000, we also tested the ability of 

A32 to block ADCC by a 1:50,000 dilution of the plasma.  However, even when the 

antibody concentration was brought down to a level that mediated 50% ADCC activity, 

which may optimize the dynamic range for a blocking experiment, the A32 Fab had no 

appreciable effect.  A moderate level of apparent blocking of ADCC by sCD4-IgG was 
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surprising, since A32 appears to enhance sCD4-IgG binding in the context of an 

ELISA181.  Only one RV144 plasma sample appeared to be blocked by the A32 Fab 

(614844).  However, among the 10 samples selected for having detectable ADCC activity 

against HIV-192TH023-infected target cells in the pilot study, 732807-603237, there was no 

evidence that A32 blocked ADCC activity.  Thus, different epitopes appear to be 

important for ADCC activity against virus-infected versus gp120-coated target cells. 

 

 
Figure 5.12. A32 Fab blocking experiment. Target cells infected with HIV-192TH023 

were pre-incubated with the A32 Fab fragment, or with the Synagis Fab as a negative 
control. Fifteen plasma samples collected at weeks 0 or 26 during the RV144 trial 
(participant identification numbers 614844-603237) were tested for ADCC at a 1:50 
dilution in the presence of each Fab. After addition of plasma, the final concentrations of 
each Fab were 10 μg per ml.  A plasma sample from a Thai HIV-1 patient with a 50% 
ADCC titer of approximately 1:50,000 was titered in parallel as a positive control (inset). 
Assays with A32 or Synagis Fab fragments with no plasma, the positive control plasma at 
1:50, the positive control plasma at 1:50,000, and sCD4-IgG at 10 μg per ml were also 
included. ADCC activity was calculated as 100 minus %RLU.  Error bars indicate 1 SD 
for triplicate tests. 
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5. E. DISCUSSION 

 

ADCC activity was evaluated as a primary variable in the immune correlates 

analysis of the RV144 HIV-1 vaccine efficacy trial.  The rationale for including an 

ADCC assay as one of the 6 primary variables stemmed from the consistent detection of 

antibody responses in the absence of detectable neutralization of primary HIV-1 

isolates379.  Thus, antibody activities other than neutralization have been suggested as 

potentially responsible for any vaccine protection in RV144522.  However, the ADCC 

assay based on an NK cell line and virus-infected target cells was selected over other 

candidate assays due to having low or zero baseline activity, the ability to detect a range 

of vaccine-elicited immune responses, high reproducibility, and non-redundancy with 

other assays included in the pilot study.  Indeed, the data set generated in the case-control 

experiment replicated these characteristics. 

The vaccine-elicited ADCC activity appeared to be relatively low.  Whereas none 

of the RV144 samples reached 50% ADCC at the highest plasma concentration tested (a 

1:32 dilution) in the absence of a high baseline, the positive control plasma from a Thai 

HIV-1-infected donor had a mean 50% ADCC titer of 51,577.  Thus, the ADCC activity 

by the positive control plasma exceeded that of the highest vaccine-induced ADCC 

activity by at least 3 orders of magnitude.  However, we have not surveyed the capacity 

of plasma from Thai HIV-1 patients to direct ADCC against cells infected with HIV-

192TH023, and the positive control plasma used here may represent an outlier.  Extensive 

overlap was observed between the pABC values for ADCC measured in the vaccine 

versus placebo groups.  However, this overlap was not attributable to high background.  
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Rather, it was observed since the vaccine-elicited ADCC activity was quite near the 

bottom of the dynamic range for detectable responses.  The low level of ADCC activity 

by RV144 vaccine recipients against virus-infected cells is perhaps consistent with this 

assay measuring a physiologically relevant immune response.  The reduction in infections 

among vaccine versus placebo recipients in RV144 was relatively modest (31%, 95% 

CI=1.7 to 51.8%, P=0.04)379.  Furthermore, no protection was observed in prior vaccine 

efficacy trials that included the recombinant protein component of the vaccine regimen 

tested in RV144357,358.  These vaccines did not elicit antibodies capable of neutralizing 

primary HIV-1 isolates.  Thus, a low response for a modestly protective vaccine may be 

the expected outcome for a physiologically relevant assay. 

The gp70-V1V2 and IgA binding assays may have been better suited for detecting 

antibody responses elicited in RV144 vaccinees than the assay for ADCC against virus-

infected cells.  In contrast to the overlap observed between placebo and vaccine recipients 

for ADCC against virus-infected target cells, only one placebo recipient was placed in the 

middle tertile for the gp70-V1V2 and IgA binding assays.  Thus, these assays may have 

had greater power to measure differences among RV144 vaccinees than the ADCC assay.   

Usage of different methods for analyzing the data affected the relationships 

observed among the primary variables and HIV-1 infection risk.  Whereas a non-

significant trend was noted towards a lower risk of HIV-1 infection among vaccinees in 

the high versus low tertiles of ADCC activity, similar trends were not observed in the 

corresponding analyses that treated ADCC activity as a quantitative variable.  It is 

possible that attempting to estimate the change in risk of infection per standard deviation 

increase in ADCC activity was futile since the majority of the data points were negative.   
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Consequently, differences between the high versus low tertiles may have been more 

meaningful.  However, there was a borderline significant relationship between ADCC 

activity treated as a quantitative variable and protection among the vaccinees with the 

bottom 20% of IgA scores (P=0.05), suggesting that the lack of any relationship in the 

other analyses that treated ADCC as a quantitative variable may be due to the inclusion 

of IgA responders.  Therefore, there was a trend towards fewer infections among the 

RV144 participants with detectable versus negative ADCC activity, and a borderline 

significant increase in protection per increase in ADCC among vaccinees with low IgA 

scores. 

Several of the assays used in the immune correlates analysis appear to measure 

distinct immune responses.  Whereas gp70-V1V2 binding correlated with protection, IgA 

scores correlated with risk.  Although vaccines with higher IgA did not have higher 

infection rates than placebo recipients, IgA or an associated response may have 

counterbalanced protective immune responses, or may be a surrogate for a non-protective 

immune response.  It is possible that distinct cues that promote class switching to IgA 

may have led to the stimulation of Env-specific IgA at the expense of IgG547, even though 

the immunizations in the RV144 trial were intramuscular, not mucosal.  However, 

another plausible explanation is that IgA is a marker for previous exposure to HIV-1.  

Virus-specific IgA responses have been detected in HIV-1-exposed, uninfected people548.  

It is possible that previous HIV-1 exposure may have primed IgA responses that were 

boosted in the RV144 trial.  Indeed, IgA binding to HIV-192TH023 gp120 correlated with 

behavioral risk (P=0.034).  Also, whereas we noted a non-significant trend towards lower 

risk of infection among vaccinees in high versus low tertiles of ADCC activity against 
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virus-infected cells, another group noted a non-significant trend towards increased risk of 

infection associated with higher ADCC against gp120-coated CD4+ target cells.  One 

potential explanation for this surprising result could be that gp120 binds to CD4 on the 

target cells, thus occluding the CD4-binding site.  RV144 participants who made 

antibodies to the CD4-binding site may have had lower scores for ADCC against gp120-

coated CD4+ target cells than against virus-infected cells.  Also in agreement with the 

existence of differences between ADCC assays based on virus-infected versus gp120-

coated CD4+ target cells, the A32 Fab was capable of blocking most ADCC activity in 

the gp120-coated cell assay but not in the virus-infected cell assay.  Furthermore, A32 

targets an epitope in constant region 1 (C1)515, and there was a non-significant trend 

towards greater risk of infection among vaccinees with higher antibody responses to C1.  

The opposing trends exhibited by ADCC against virus-infected cells versus IgA scores 

and ADCC against gp120-coated target cells suggest that these assays measure distinct 

antibody responses. 

Although the ADCC activity by RV144 vaccinees against virus-infected cells was 

relatively low, there were non-significant trends towards lower infection risk in vaccinees 

in the high versus low tertiles of ADCC activity.  Among vaccines who were low or 

negative for the risk factor of Env-specific IgA index, there was a borderline significant 

correlation between ADCC activity and protection.  Therefore, when higher IgA is 

eliminated as a risk factor, ADCC activity may be a correlate of protection.  These 

observations, and the metric properties of the ADCC assay that led to its selection as one 

of the primary variables, including its non-redundancy with other assays, suggest that 

immune responses elicited in future HIV-1 vaccine clinical trials ought to be measured 
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using this assay.  Taken together with the observation that antibodies against gp70-V1V2 

correlated with protection, these results suggest that antibody functions other than 

neutralization may have contributed to vaccine protection in RV144. 
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6. Conclusions 

Data support a role for antibodies in vaccine protection 

 Evidence presented in this dissertation supports a role for antibodies in 

vaccine protection, even when neutralization is not detectable. We have generated 

data suggesting that antibodies contribute to vaccine protection against SIV and HIV-1 

infection in the absence of detectable virus neutralization.  The degree of immune 

protection afforded by live-attenuated SIV against SIVmac251 challenge increases over 

time345,347, coinciding with the increase over time in ADCC activity.  SIVmac239Δnef 

routinely provides complete or apparent sterilizing protection, whereas scSIV does not159, 

and we show that SIVmac239Δnef elicits antibodies with significantly higher ADCC 

activity than scSIV.  Live-attenuated SIV strains that replicate at higher levels confer 

greater protection than those that replicate at lower levels347,352.  Consistent with this 

inverse relationship between the degree of attenuation and protection, we show positive 

correlations between the extent of SIVΔnef replication and ADCC activity.  Furthermore, 

the greater protection provided by live-attenuated SIV against homologous versus 

heterologous SIV challenge418,420 may be due, at least in part, to the reduced cross-

reactivity we observed against Env-mismatched SIV strains.  These differences in ADCC 

activity mirror differences in protection by live-attenuated SIV.  However, most 

compellingly, in two different animal experiments, we show that measures of ADCC 

activity correlate with complete protection against SIVmac251 in macaques inoculated 

with live-attenuated SIV.  Antibodies capable of neutralizing the challenge viruses were 

low to undetectable among these animals.  These observations suggest that the antibodies 

that direct ADCC contribute to protection by live-attenuated SIV. 
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The results of the immune correlates analysis of the RV144 trial are consistent 

with a role for antibodies in vaccine protection against HIV-1 infection, despite the 

absence of detectable virus neutralization.  We observed a non-significant trend favoring 

RV144 participants in the high versus low tertile of ADCC activity for lower risk of HIV-

1 infection.  Furthermore, there was borderline significant protection for vaccinees with 

higher ADCC activity when vaccinees with high Env-specific IgA are eliminated.  Taken 

together with the significant correlation of higher V1V2-specific antibodies with lower 

risk of HIV-1 infection, these data support a role for antibodies in vaccine protection 

against HIV-1 infection.  Since neutralizing antibodies were undetectable, these results 

suggest that functions of antibodies other than neutralization may have contributed to any 

modest vaccine protection against HIV-1 infection in the RV144 trial. 

 

Previous evidence antibodies contribute to protection in the absence of 

detectable neutralization. Previous observations provided the rationale for embarking 

on the study of antibodies in the absence of detectable neutralization.  HIV-1 appears to 

preemptively escape neutralizing antibody responses, suggesting that sub-neutralizing 

antibody titers select for escape mutants285.  However, the time-dependence of protection 

by live-attenuated SIV against SIVmac251 infection provided the most important 

suggestion of antibody-mediated protection in the absence of detectable neutralization.  

The affinity maturation of antibody responses over time is a well-characterized 

phenomenon109,322.  Thus, although most animals protected from infection with 

SIVmac251 lack detectable antibodies capable of neutralizing this challenge virus345,352, 

the maturation of immunity on the timescale of months nonetheless appeared to be 
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consistent with an antibody response.  In addition, the notion that neutralizing antibodies 

were perhaps less cross-reactive than T-cell responses against a heterologous virus, 

coupled with the incomplete protection against challenge with this heterologous 

virus418,420, were consistent with a role for antibodies in protection by live-attenuated SIV.  

Although the presence of antibody responses in the absence of significant CD8+ T-cell 

responses in RV144 was also consistent with a protective role for antibodies379,522, 

RV144 did not contribute to the rationale for this project.  We had developed the ADCC 

assay to address the hypothesis that ADCC is a correlate of protection by live-attenuated 

SIV before the results of the RV144 trial were announced.  Indeed, in July of 2009 we 

submitted our abstract for the 2009 Symposium on Nonhuman Primate Models for AIDS, 

where we first publically presented the ADCC assay549,550, whereas the RV144 results 

were first announced in September of 2009.  Other published observations, including 

studies that emerged after we began work on this project, support a role for antibody 

responses in protection against SIV and HIV-1 in the absence of detectable neutralizing 

antibodies. 

 

Difficulty of eliciting antibodies functional against SIV and HIV-1 

 Observations on the development of antibody responses. We have coupled 

studies aimed at identifying an immune response that contributes to vaccine protection 

with experiments that gain insight into its induction.  The progressive increases in ADCC 

activity over 21 weeks after inoculation with SIVmac239Δnef suggest that the stimulation 

of antibody responses is continuous, and stand in contrast to the relatively low ADCC 

activity elicited by the transient stimulation of antibody responses by scSIV.  A 
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comparison of the vaccine-strain viral loads for SIVmac239Δnef versus scSIV suggest that 

sustained antigenic stimulation is necessary to elicit high ADCC titers by vaccination.  

The ALVAC-AIDSVAX B/E vaccine regimen used in RV144 may be analogous to 

scSIV in providing transient antigenic stimulation rather than the persistent stimulation 

that appears to be required to develop high ADCC titers.  These differences are probably 

due to a requirement for extensive somatic hypermutation over a period of months.  

Furthermore, a longer time period (i.e. 6 versus 22 weeks) was required to elicit 

antibodies with similar ADCC titers against heterologous SIV strains.  Thus, our 

observations suggest that, going forward, experimental HIV-1 vaccines that provide only 

transient antigenic stimulation will fail to elicit high and broadly reactive ADCC titers 

against primary HIV-1 isolates.  However, our ability to detect an antibody activity that is 

functional at high titers against divergent neutralization-resistant viruses suggests that it 

may be possible to elicit antibodies that are effective against circulating HIV-1 isolates 

through novel vaccine strategies. 

The magnitude of antigenic stimulation appears to affect the induction of antibody 

responses.  Due to animal-to-animal variation, differences were observed in the extent of 

SIVΔnef replication over a fixed time period.  The positive correlation between AUC 

values for SIVΔnef viral loads over weeks 21-22 after inoculation and the ADCC activity 

measured at the end of this time period suggests that the magnitude of antigenic 

stimulation drives the development of Env-specific antibody responses.  Furthermore, the 

50% ADCC titers against the Env-mismatched virus among the animals with the highest 

SIVΔnef replication were equivalent to the 50% ADCC titers against the Env-matched 

virus among the animals with the lowest SIVΔnef replication.  Therefore, a higher dose of 
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antigen may elicit higher ADCC titers, and may help to overcome the reduction in 

antibody cross-reactivity associated with antigenic variation in Env. 

 

Difficulty of eliciting neutralizing antibodies. Several passive transfer studies 

have clearly demonstrated that neutralizing antibodies can prevent SHIV infection in 

macaques410-414,445-447.  Therefore, a vaccine capable of eliciting broadly neutralizing 

antibodies could potentially end the HIV-1 pandemic311,490.  However, these passive 

transfer studies suggest that a relatively high concentration that is capable of neutralizing 

100% of viral infectivity at low dilutions (i.e. close to the undiluted concentration present 

in vivo), or neutralizing 50% of virus infectivity at a 1:100 dilution, would be the 

minimum necessary to consistently prevent infection.  Thus, high titer broadly 

neutralizing antibodies could theoretically provide consistent protection against HIV-1 

infection.  However, the induction of antibodies able to potently neutralize a broad range 

of neutralization-resistant t/f HIV-1 isolates seems unrealistic at the present time. 

The difficulty of eliciting neutralizing antibodies stems from the inherent 

resistance of primate lentiviruses to neutralization.  These viruses possess Env proteins 

have evolved structural and thermodynamic properties that enable continuous replication 

and transmission to new hosts in the face of intense antibody 

responses132,188,217,241,244,251,252,254,460.  No vaccine approach under consideration for use in 

humans has successfully elicited antibodies capable of neutralizing primary isolates of 

HIV-1 or SIV.  Nevertheless, antibodies capable of neutralizing autologous HIV-1 

primary isolates at titers over 100 often develop months after infection285.  However, 

antibodies capable of neutralizing a broad range of heterologous HIV-1 isolates are 
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considerably less frequent, and arise over a time scale of years191,285,305,306,310,490.  

Therefore, in the context of natural HIV-1 infection, a considerable period of time is 

required to develop neutralizing antibody titers that may be capable of conferring 

protection against infection by circulating primary HIV-1 isolates. 

HIV-1 Env-specific antibody responses in general, but especially antibodies 

capable of neutralizing a broad range of HIV-1 isolates, exhibit unusually extensive 

somatic hypermutation191,326-328,330,331.  An estimated nucleotide substitution rate for 

somatic hypermutation of 10-3 mutations per round of cell division313 appears consistent 

with highly mutated neutralizing antibodies emerging over the observed time frame of 

months to years.  Therefore, the apparent requirement for extensive somatic 

hypermutation over an extended period of time represents a significant obstacle to the 

induction of broadly neutralizing antibodies by a vaccine. 

 

The problem with correlating antibody responses with protection 

 Counterbalancing factors on viral loads and antibody responses. Measuring 

an immune response or genotype, and attempting to correlate it with lower viral loads, 

higher CD4+ T-cell counts, or other clinical markers, is a typical premise for pathogenesis 

studies aimed at identifying correlates of protection551.  However, our observation that 

higher vaccine strain viral loads are associated with higher ADCC titers may complicate 

studies based on the above premise.  Whereas these antibodies may contribute to the 

control of viral loads, their stimulation also appears to be proportional to virus replication.  

Clearly, there may be a point of diminishing returns in the context of pathogenic SIV, 

HIV-1 or SHIV infection, beyond which higher viral loads interfere with the induction of 
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antibody responses366,369,389-393.  In the context of live-attenuated SIV, in which viral 

replication is decoupled from CD4+ T-cell depletion58,525,526, we did not observe such an 

inflection point.  Others have also observed a positive correlation between antibody 

responses and viral loads309,310,552.  This dynamic interaction between viral replication and 

its suppression by or stimulation of antibody responses may obfuscate attempts to 

correlate antibody responses with protection in pathogenesis studies. 

 

Sensitivity of assays for ADCC versus neutralization 

Proportion of Env bound by antibody. The simplest explanation for the 

sensitivity of ADCC versus neutralization assays is probably the most significant.  

Neutralization of SIV and HIV-1 may be related to antibody occupancy of Env 

trimers122,553.  Wild-type SIVmac239 has been estimated to possess 7 to 16 Env trimers per 

virion443.  It is possible that in a state of dynamic equilibrium between antibodies and Env, 

most or all of the trimers need to be constantly bound by antibody in order to detect virus 

neutralization.  Perhaps consistent with this premise, increasing the number of spikes per 

virion by truncating the cytoplasmic tail of Env increases the neutralization resistance of 

SIVmac239249.  During a neutralization assay, HIV-1 or SIV have many hours to achieve 

attachment and the steps necessary for entry.  Therefore, occupying 50% of Env trimers 

at any moment may not be sufficient to observe neutralization.  Although the number of 

crosslinked CD16 molecules necessary to trigger ADCC is unknown, it seems reasonable 

that the minimum proportion required to crosslink CD16 may be considerably lower than 

is required to detect neutralization.  Therefore, the most significant factor contributing to 
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the greater sensitivity of assays for ADCC versus neutralization is probably that lower 

antibody occupancy is necessary for ADCC than neutralization. 

 

The special case of CD4 and coreceptor binding site antibodies. The CD4 

binding site may be the most important antibody epitope for an HIV-1 vaccine.  It must 

be available to some extent for receptor engagement, and also is relatively conserved in 

sequence.  These factors alone make the CD4 biding site an ideal antibody epitope to 

target in a vaccine.  However, antibodies that bind the CD4-binding site often do not 

neutralize virus infectivity, and soluble forms of CD4 poorly neutralize primary isolates, 

if at all209,217.  Kwong et al. suggest that the poor neutralization of primary isolates by 

CD4 binding site antibodies and sCD4 owes to a neutralization resistance mechanism that 

has evolved to discriminate between antibodies in solution versus membrane-bound CD4 

molecules on the surface of a CD4+ T-cell217.  The observation that inspired this model 

was that dodecameric sCD4 neutralized the infectivity of primary isolates at titers that 

were least 2 orders of magnitude higher than monomeric sCD4.  Kwong et al. propose 

that high avidity interactions are necessary to overcome the entropy cost associated with 

adopting the CD4-bound conformation.  Thus, avid interactions with dodecameric CD4, 

or membrane-bound CD4 molecules restricted to a 2-dimensional plane on the surface of 

a CD4+ T-cell, overcome the thermodynamic cost of the conformational rearrangements 

necessary for stable CD4 binding, whereas soluble CD4 or antibodies directed to the CD4 

binding site diffuse away more readily and do not efficiently induce these conformational 

changes. 
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The mechanism proposed by Kwong et al. for HIV-1 to discriminate between 

soluble antibodies versus CD4 molecules on CD4+ T-cells may not confer comparable 

resistance to ADCC.  CD4 binding site antibodies bound by CD16 on the surface of an 

NK cell would similarly be localized to a 2-dimensional plane, and may mimic 

membrane-bound molecules on the surface of a CD4+ T-cell.  Thus, a mechanism that has 

evolved to discriminate between soluble antibodies versus CD4 localized to a 2-

dimensional plane may not effectively discriminate between a CD4+ T-cell and an NK 

cell armed with CD4 binding site antibodies.  In addition, coreceptor binding site 

antibodies bound by CD16 may cooperatively facilitate conformational changes in gp120.  

Thus, the thermodynamically unfavorable conformational changes necessary for CD4 and 

coreceptor binding may confer greater resistance to neutralization than ADCC.  Therefore, 

in comparison to antibodies targeting other epitopes, CD4 and coreceptor binding site 

antibodies may have disproportionately greater capacity to direct ADCC than to 

neutralize viral infectivity. 

 

Viral debris, shed gp120, or misfolded forms of Env. At first, we were 

concerned that the sensitivity of the ADCC assay relative to neutralization assays was 

potentially problematic.  It might be reasonable to expect neutralization to be detectable 

for any antibody capable of binding the native, trimeric form of Env that exists on virions 

and virus-infected cells.  Therefore, detection of ADCC at dilutions of antibody a couple 

of orders of magnitude higher than neutralization, in a range that would be more typical 

for ELISA assays using recombinant gp120 protein, might suggest the ADCC assay 

measures misfolded forms of Env, shed gp120, or viral debris.  However, other 
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explanations appear likely to account for our ability to detect intact Env trimers at lower 

antibody concentrations than are capable of neutralizing virus infectivity.  Vaccine 

recipients in the RV144 trial were immunized with recombinant gp120, and consistently 

made antibody response capable of binding to recombinant forms of gp120, but did not 

have particularly robust ADCC activity against virus-infected cells.  Therefore, the 

relatively low ADCC activity in RV144 vaccinees suggests that shed gp120 may not be a 

significant target for ADCC activity.  In assays using plasma from macaques, our use of 

SHIV-infected cells controls for ADCC activity against viral debris, since SIV-infected 

macaques make antibodies against Gag and other non-Env viral proteins.  Indeed, ADCC 

activity can be observed by SIV plasma against SHIV-infected cells if the target cells are 

not washed prior to the ADCC assay (data not shown).  It is possible for ADCC targeting 

viral debris on bystander infected and uninfected cells may have a role in vivo, but we are 

not measuring it.  Although it is possible that misfolded forms of Env contribute to 

ADCC activity, the presence of antibody-sensitive targets on cells infected with 

neutralization-resistant viruses would be inconsistent with our understanding of the 

immune evasion strategies of SIV and HIV-1.  It seems likely that properly folded, 

trimeric forms of Env account for most of the ADCC activity. 

 

Closing remarks 

Antibodies in vaccine protection. Our data on the ADCC activity in the contexts 

of live-attenuated SIV and the immune correlates analysis of the RV144 trial converge in 

support of a role for antibodies in vaccine protection against SIV and HIV-1 infection.  

Previous SIV and HIV-1 vaccine studies have typically focused on neutralizing 
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antibodies as the only measured activity of functional antibodies496.  Various vaccine 

approaches that fail to elicit antibodies detectable in assays for neutralization of primary 

isolates are able to elicit antibodies detectable in binding assays or that neutralize T-cell 

line-adapted viruses166,176,177.  However, it is unclear whether antibodies detected in these 

assays are capable of mediating any antibody functions against neutralization-resistant 

primary isolates, since recombinant forms of gp120 display conserved epitopes absent 

from intact trimers181,184,200,308, and the overlap between antibodies that neutralize T-cell 

line-adapted viruses versus those that mediate activities other than neutralization against 

neutralization-resistant primary isolates seems likely to be partial.  In contrast, we have 

developed and employed an assay that measures antibodies functional against 

neutralization-resistant primary isolates, in the absence of detectable neutralization.  

Using this assay, we show that the ADCC activity elicited by SIVΔnef mirrors features of 

protection by live-attenuated SIV, and correlates with protection against SIVmac251 

infection.  Due to the metric properties of the ADCC assay, it was selected as one of the 

primary variables for the immune correlates analysis of the RV144 trial.  Non-significant 

trends were observed in the direction of RV144 participants having a lower risk of HIV-1 

infection if they were in the high versus low tertiles of ADCC activity.  Other laboratories 

participating in this collaborative study identified IgG antibodies to V2 as a correlate of 

protection, and IgA antibodies to Env as a correlate of risk (Haynes et al., in review).  A 

borderline significant correlation between ADCC and protection was observed when 

vaccinees with Env-specific IgA responses were excluded.  These data support a role for 

antibodies in vaccine protection against SIV and HIV-1 in instances when neutralization 

is undetectable. 
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Multiple immune responses in vaccine protection. The induction of T-cell and 

antibody responses in combination is probably necessary to confer vaccine protection 

against HIV-1 infection.  Although an extraordinarily high concentration of neutralizing 

antibodies appears to be required to prevent infection by passive transfer of antibody to 

naïve macaques410-414, animals immunized with live-attenuated SIV are protected from 

infection by SIVmac251 despite having low to undetectable neutralizing antibody 

titers345,352.  The immune system is highly integrated, and different arms of the immune 

response confer vaccine protection in combination407.  Therefore, the contrast between 

the high titer of neutralizing antibodies that is required to confer complete protection in 

naïve macaques, and the low to undetectable neutralization by antibody responses we 

have correlated with protection by live-attenuated SIV, suggests that a combination of 

antibodies and T-cells elicited by live-attenuated SIV mediate protection. 

 

Nature, quality, and quantity of antibodies necessary for vaccine protection. 

The 2010 scientific strategic plan of the Global HIV Vaccine Enterprise articulated the 

fundamental problem that we lack basic insights into the nature, quality, and quantity of 

the immune responses necessary to confer vaccine protection400.  The data presented in 

this dissertation permit a commentary on this topic.  Live-attenuated SIV suggests that in 

the context of a vaccine that also elicits both CD4+ and CD8+ T-cell responses525-527, 

detectable virus neutralization may not be a requirement for vaccine protection.  This 

observation appears to be encouraging, since years of persistent infection elicits broadly 

neutralizing antibodies in only a minority of HIV-1 patients305,306,309-311.  However, we 



	   235	  

observed a wide range of ADCC activity for samples with sub-neutralizing antibody titers.  

Persistent stimulation of Env-specific antibody responses with SIVΔnef elicited 

significantly higher ADCC activity than transient stimulation of antibody responses with 

scSIV.  Although antibodies may contribute to vaccine protection in the absence of 

detectable virus neutralization, those that correlated with protection against SIVmac251 

were relatively potent after a 20-46 week maturation period.  Antibody responses appear 

to correlate with vaccine protection from HIV-1 infection in the RV144 trial, although the 

vaccine-elicited immune responses did not reliably prevent HIV-1 infection379.  Thus, the 

level of ADCC activity observed in the RV144 trial is below the potency that may be 

necessary to consistently confer vaccine protection against HIV-1 infection.  Therefore, 

antibody responses with ADCC activity that is at least as high as that observed 20 to 46 

weeks after inoculation with SIVΔnef, and that is significantly higher than that elicited by 

scSIV or in the RV144 trial, may contribute to reliable vaccine protection against HIV-1 

infection. 

 

Induction of effective antibody responses. The data presented here provide 

guidance for HIV-1 vaccine development by helping to understand the type of 

stimulation that is necessary to elicit antibody responses that are functional against 

neutralization-resistant lentiviruses.  The progressive increases in ADCC activity over 

time after inoculation with SIVΔnef, the significantly higher ADCC activity elicited by 

SIVΔnef versus scSIV, and the longer time period required to develop comparable ADCC 

titers against Env-mismatched viruses suggest that the persistent stimulation of Env-

specific antibody responses may be essential for the induction of high ADCC activity 
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against circulating HIV-1 isolates.  Higher magnitude antigenic stimulation also appeared 

to increase the ADCC activity elicited over a fixed time period.  The transient stimulation 

of Env-specific antibody responses in the RV144 trial elicited low to undetectable levels 

of ADCC activity.  Therefore, the induction of antibodies that remain functional in the 

face of antigenic diversity requires Env-specific antibody responses to be stimulated for a 

relatively long period of time.  In addition to being essential for their induction, persistent 

antigenic stimulation is also likely to be necessary to prevent the waning of vaccine-

elicited T-cell and antibody responses over time.  The data presented in this dissertation 

suggest that the antibodies capable of directing ADCC may contribute to vaccine 

protection against SIV and HIV-1 infection, but also suggest that persistent antigenic 

stimulation is necessary to elicit antibodies with high and broadly reactive ADCC activity.  
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