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Compressive Sensing with Optimal Sparsifying
Basis and Applications in Spectrum Sensing

Youngjune Gwon, H. T. Kung, and Dario Vlah
Harvard University

Abstract—We describe a method of integrating Karhunen-
Loève Transform (KLT) into compressive sensing, which can
as a result improve the compression ratio without affecting the
accuracy of decoding. We present two complementary results:
1) by using KLT to find an optimal basis for decoding we can
drastically reduce the number of measurements for compressive
sensing used in applications such as radio spectrum analysis;
2) by using compressive sensing we can estimate and recover
the KLT basis from compressive measurements of an input
signal. In particular, we propose CS-KLT, an online estimation
algorithm to cope with nonstationarity of wireless channels in
reality. We validate our results with empirical data collected
from a wideband UHF spectrum and field experiments to detect
multiple radio transmitters, using software-defined radios.

I. INTRODUCTION

Sparse recovery techniques provide a new opportunity to
build communication and data-driven systems. We consider
compressive sensing (see, e.g., Candès and Tao [1]), a recent
theory to extract critical information of data and represent it
with substantially reduced measurements of the original data.
The simple but effective framework of compressive sensing
has enabled a broad range of applications in imaging, data
processing in wireless sensor networks [2], cloud comput-
ing [3], cognitive radios [4], spectrum sensing [5], and IC
Trojan detection [6].

Compressive sensing has three important properties. First,
the encoding is blind to the content of a signal (or data) and
has low computational complexity suitable for fast, real-time
usage. Secondly, the number of measurements required for
exact recovery is approximately proportional to sparsity of the
signal, not its size. Lastly, the decoding is adaptive in the sense
that the quality of recovered data can improve under a fixed
number measurements—or equivalently, the required number
of measurements that achieves the same quality can decrease—
when a more effective sparsifying basis becomes available.
Therefore, an algorithm to find an optimal basis would be
critical for performance improvement.

In this paper we propose a method to integrate the finding
and the use of optimal sparsifying bases into compressive sens-
ing to lower the number of measurements without affecting
the accuracy of decoding. We demonstrate the benefit of our
approach with an application system for spectrum sensing. The
principle behind our method is Karhunen-Loève Transform
(KLT) [7], a classical procedure that reveals the correlation
structure of a signal. KLT is optimal such that it decorrelates
the signal into a representation comprising only statistically
non-redundant coefficients. Thus we can use KLT to derive

sparsifying basis that can improve the sparse recovery process
of compressive sensing.

Despite the optimal sparsification, KLT has a well-known
drawback for being data-dependent. That is, when the cor-
relation structure of a signal changes, the KLT basis also
has to be updated. This has been a prohibitive limitation for
KLT in realistic settings, where the KLT basis is computed
numerically from a sample covariance matrix of training data
sets. It is contrasted to an approach based on a fixed support
set such as Discrete Fourier Transform (DFT). The recovery
with DFT as the sparsifying basis is suboptimal for a given
signal, but it is popularly used in compressive sensing because
it does not require any data-dependent adaptation.

A novelty in our approach is to recover KLT bases from
random projections of a signal, as we normally do to recover
the signal with compressive sensing. This allows us to update
the KLT basis incrementally from the measurements on the
original signal with relatively few measurements.

We summarize the main contributions of this paper con-
cerning the use of optimal bases in compressive sensing:
1) we show a drastic reduction in required measurements
when an optimal KLT basis, as opposed to DFT or DCT,
is used for decoding; 2) we formulate an online algorithm
to update the KLT basis directly from the measured input
signal via compressive sensing, which only requires a non-
adaptive, fixed support set for recovery (e.g., DFT basis);
3) we show how the previous two work together, using the
KLT basis to recover the signal and the DFT to update the
KLT basis. Although the latter requires more measurements,
it needs not take place frequently; and 4) we demonstrate our
approach lead to an overall gain in performance of spectrum
analysis using multiple software-defined radios (USRPs) [8]
and empirical data measured in the field.

The rest of this paper is organized as follows. In Section II,
we review compressive sensing and KLT. Section III intro-
duces a compressive spectrum analysis system. In Section IV,
we explain how to compute KLT basis with compressive
sensing. Section V presents the CS-KLT online algorithm and
discusses our implementation with USRPs. We evaluate the
performance of our approach in Section VI and discuss related
work in Section VII. Section VIII concludes the paper.

II. BACKGROUND

A. Compressive Sensing

Compressive sensing exploits a sparse structure (either
exposed or hidden) in data. Some data naturally exist as a
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sparse form, and most of the others can be made sparse so that
only several largest coefficients in some basis—which we call
sparsifying basis—suffice to represent the data (e.g., Fourier
transform of sinusoids). The fundamental premise of com-
pressive sensing is that we can directly encode all significant
coefficients without completely analyzing the data. More im-
portantly, the encoding does not require any prior knowledge
on sparsification of the data. Traditional compression schemes
such as entropy coding, however, require statistical analysis
of the data. Compressive sensing combines the measurement
and compression of the data into one—non-analytical, low-
complexity encoding based on matrix-vector multiplications
using a randomly generated measurement matrix.

Consider a vector x ∈ CN and an M × N measurement
matrix Φ for M � N . Compressive sensing encodes x into
compressive measurements y = Φx, an N to M reduction
in size. The encoding takes place without the knowledge of a
transform Ψ (an N ×N matrix), which sparsifies x such that
in s = Ψx there are only K � N nonzero elements (i.e., x
is K-sparse). Compressive sensing forms an underdetermined
system of equations susceptible to many solutions for x:

min
s∈RN

‖s‖`1 subject to y = Φx = (ΦΨ−1) s (1)

The Robust Uncertainty Principle [9] states that M needs to
be at least cK log N

K for some small constant c > 0 for exact
recovery. Also, the Restricted Isometry Property (RIP) [10] of
Φ can guarantee a unique solution with high probability by
the `1-norm minimization decoding of s. Linear programming
can be used to solve Eq. (1). Once s is recovered, x can be
determined from x = Ψ−1 s.

The quality of decoding depends on M . More interestingly,
the data recovery is incremental—using a smaller M (than
required for exact solution) does not disqualify the decoded
result entirely. The corresponding largest components recov-
ered (specific to M ) would still be approximately accurate. In
other words, the majority of decoding error is contributed by
the unrecovered components, and the sum of their magnitudes
quantifies the approximate error. If desired accuracy is not
met, one can increase M accordingly. Fixing M , however,
by no means fixes the decoding accuracy because the use
of a better sparsifying basis for the data can still improve
the performance. Estimating an optimal basis and using it for
decoding is the approach we take in this paper.

B. Karhunen-Loève Transform (KLT)

But how can we systematically find an optimal basis?
Consider x ∈ CN , a complex-valued, wide-sense stationary
signal with mean zero (for simplicity). The covariance matrix
of x can be computed numerically: Rx = E[xxH], where
the superscripted H denotes Hermitian transpose (i.e., xH =
x∗T). Rx is real and symmetric, and the eigen-decomposition,
Rx = Q Λ QH, gives columns of Q the eigenvectors of Rx

and Λ a diagonal matrix of the eigenvalues. Q is an orthogonal
matrix, thus Q−1 = QH.

The representation s = QH x is known as Karhunen-
Loève Transform (KLT) [7] of x, and we call Q the KLT
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representation of xi from Xi, which can be found using algorithms such as Kahrunen-Loève Transform [4]
or Coifman and Wickerhauser [5].

Compressive Sensing.
Optimal Basis Recovery.

3 Strategies

The basic idea to reduce the communication cost is to take advantage of statistical redundancy present in
measurements, which will lead to compression of measured samples.

3.1 Taking Compressive Measurements

We use compressive sensing that should provide two key advantages over conventional data compression.
First, we discussed earlier that multi-hop relays can reduce the number of uplink transmissions and sub-
stantially lower the communication cost. The use of multi-hop relays, however, could complicate the data
compression due to the need for join optimization of the compressive measurements passed on from the
previous hop at the current node. Otherwise, multi-hop relays will hardly save anything since after each
hop the size of data becomes additively larger. This joint optimization is a hard problem and will be (multi-
hop routing) path-dependent—indeed the problem is known NP-hard []. Thus, conventional compression
schemes such as joint entropy encoding are mostly undesirable for our purposes.

Secondly, the in-network measurement collection we consider depends heavily on communication and
computational costs. Conventional compression schemes likely require complex computations performed
on platform. We aim simple compressive encoding schemes that can be performed without burdening the
nodes.

3.2 Mixing Multiple Compressive Measurements from Heterogeneous Nodes

4 Recovery Algorithms

4.1 Separation-based Decoding

Btot =
J�

i=1

Bi (2)

4.2 Least Squares with Iterative Decoding on Residuals

We present an algorithm to recover almost exact original signals from P -way mixed compressive measure-
ments. The intuition underlying our algorithm is two-fold. First, we use the linear least squares jointly with
sparsifying bases of the original signals. The sparsifying bases we consider are optimal (e.g., KLT and local
cosine bases) in the sense that most information about the signal is captured in the first α (for some small
number α) leading components, which correspond to the largest eigenvalues. Secondly, we perform the
�1-minimization decoding on each residual that is P − 1 self-excluding measurements estimated using the
least squares solutions subtracted from the mixed compressive measurements.

3

*10<36!?1/<+61?104<!/61!-3?>61<<15!
/05!46/0<?;B15!:;6121<<29!/05!/AA61A/415!
/4!,/<1!<4/@30!

*10<36<!</?>21!4.1;6!/<<;A015!<+,-./0012<!

&'()*+','-.)$/011'/.'2$"-3-'.40+5$!0+4(+2'2$!0+$)6'/.+*,$(-(17)")$

C/<1!*4/@30$

Fig. 1. In this system model, multiple distributed sensor nodes sample
their assigned portion of the target spectrum and transmit compressive
measurements in-network.

basis or matrix. The covariance matrix of s is diagonal:
Rs = E[s sH] = E[QH x xH Q] = QH Rx Q = Λ. Thus
KLT of x results in an uncorrelated representation s, whose
covariance matrix has zero cross-correlation terms. In other
words, s fully describes x without any statistical redundancy.

III. COMPRESSIVE RADIO SPECTRUM ANALYSIS

This section describes a system for spectral analysis of a
radio spectrum from compressive measurements. We explain
the spectrum recovery using a fixed support and contrast it to
the use of optimal bases.

A. System Model

Fig. 1 presents our system model. The objective of the
system is to build fine-grain frequency response using com-
pressive sensing. The system employs multiple sensor nodes
in parallel that are distributed across a geographical region.
Each node senses a portion of a wideband spectrum in time
domain and transmits its compressive measurements to the
system backend. (The term “system” designates the control
entity and “sensor node” an element providing measurements
to the system.)

The system partitions the target spectrum into J subbands
and dispatches an assignment (fi, Bi) for node i; the node
tunes to frequency fi (for subband i) and starts its measure-
ment according to the bandwidth Bi. The total bandwidth
sensed is Btot =

∑J
i=1Bi. In our model, the base station

serves as the data sink to which the compressive measurements
are sent first, before delivered to the system backend for
recovery.

B. Compressive Sensing with a Fixed Support Set

Radio signals do not typically reveal their characteristic
information in time domain, thus it is customary to look
for their frequency responses, for example, using Fourier
Transform. We consider Discrete Fourier Transform (DFT)
that computes the inner product of an input signal x with
sampled complex sinusoids and yields the frequency response
X = Fx, where F is the matrix form of DFT with coefficients
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Why Search for Better Basis? (1) 
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Fig. 2. Time domain representation of an actual wireless channel (source: 512
samples measured using USRP2 from UHF Ch. 21 (fc = 515 MHz, 6-MHz
bandwidth) in Cambridge, MA on Saturday May 21, 2011 23:03 EST)
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Fig. 3. The samples from Fig. 2 represented using fixed support F

fnk = e−j2πnk/N for n, k = 0, 1, . . . , N − 1. F is invertible,
so we have x = F−1X, the Inverse DFT (IDFT).

Using the DFT basis F , we can rewrite the compressive
measurements in Eq. (1):

y = Φx = Φ(F−1X) = (ΦF−1)X (2)

The key intuition here is that a fixed support F is used
as a sparsifying basis Ψ for compressive sensing decoding.
With the matrix product ΦF−1, the �1-minimum decoder can
recover X, then x from X by IDFT. We use compressive
sensing with F as the baseline approach against which our
new approach will be compared.

C. How Good Is Fourier Basis?

Fig. 2 illustrates the time-domain representation of the
samples measured from an actual UHF channel at its Nyquist
rate with N = 512, using GNU Radio-USRP2 [8], [11].
Evidently, we cannot conclude any sparse structure in the
time domain. We take FFT and depict the frequency domain
representation of the same samples in Fig. 3. About 23% of
the samples (≈ 117 out of 512 samples) are observed to have
relatively large magnitudes that can be said nonzero.

D. Compressive Sensing with Optimal Sparsifying Basis

Fixed support sets provide signal-independent sparsifying
matrix Ψ for decoding, but there is a drawback. Sparsity under
a fixed support is not uniform across different subbands, and
as a consequence, we should take different number (say, Mi

for subband i) of measurements for each subband. This partly
motivates the use of an optimal KLT basis for each subband,
which makes sparsity across different subbands more uniform
and, more importantly for decoding accuracy, also smaller.

In Section II.B, we derived that the KLT basis Q can give
the most compact representation for x with s = QHx. In fact,
Q is an ideal candidate for Ψ. Similar to Eq. (2), we write
compressive sensing with optimal KLT basis:

y = Φx = Φ(Qs) = (ΦQ)s (3)

We note that among all Ψ, Q makes s with the smallest
number of nonzeros. Fig. 4 depicts the KLT representation
of the same samples from Fig. 2. We estimated Q from

Optimal Basis via KLT: Finite Averaging 
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Fig. 4. The samples from Fig. 2 represented using optimal KLT basis

a sample covariance matrix with 10 previous measurement
sets. Compared to the fixed support F , we observed a 14-
fold gain in sparsity for this example. Such sparsity gain can
significantly improve the accuracy of recovery with the same
(or even fewer) number of compressive measurements.

IV. RECOVERING KLT BASIS WITH COMPRESSIVE
MEASUREMENTS

We have mentioned earlier that compressive measurements
can be used to recover the KLT matrix. To explain this, we start
with the tie-in between the compressive encoding at sensor
nodes and KLT basis estimation. Recall that the KLT matrix
Q is computed from the covariance matrix of input signal
x, Rx = E[xxH]. Similarly, the covariance matrix of the
compressive measurements y is Ry = E[yyH]. By compres-
sive encoding y = Φx, we know: Ry = E[ΦxxHΦT] =
ΦE[xxH]ΦT. So, Ry = ΦRxΦ

T. Note that Φ is not a
square matrix. Using the pseudo-inverse (ΦT)†, we can have
the following expression:

Ry(ΦT)† = ΦRx (4)

Here, we find that we have been compressively measuring
Rx in Ry(ΦT)†, which can be approximated from y = Φx
that we used to encode our data x. Thus compressive mea-
surements y have sufficient information to recover Rx from
(4). Below is a procedure to estimate KLT basis Q with
compressive measurements in four steps:

1) Decode X from y = (ΦF−1)X using fixed support F ;
2) Recover x by computing x = F−1X;
3) Repeat the previous steps l times to numerically com-

pute: Rx = E[xxH] = 1
l

�l
i=1 xixi

H;
4) Obtain Q by eigen-decomposition Rx = QΛQH.

V. IMPLEMENTATION

A. Workflow and Subsystems

Fig. 5 outlines the workflow between a sensor node and
the system. We faithfully implement a compressive sensing
encoder without any modification. Our sensor nodes are
implemented in the GNU Radio software framework for
USRP2. The nodes perform direct bandpass sampling [12]
and convert the analog RF/IF into the complex digital in-phase
and quadrature (I-Q) samples. Each sampling instance buffers
uncompressed x containing N I-Q samples, and the encoder
uses a pre-generated, M × N Bernoulli random matrix Φ to
produce M compressive measurements before transmitted in-
network. We simulated wireless uplinks to the base station for
in-network transmissions.
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fnk = e−j2πnk/N for n, k = 0, 1, . . . , N − 1. F is invertible,
so we have x = F−1X, the Inverse DFT (IDFT).

Using the DFT basis F , we can rewrite the compressive
measurements in Eq. (1):

y = Φx = Φ(F−1X) = (ΦF−1)X (2)

The key intuition here is that a fixed support F is used
as a sparsifying basis Ψ for compressive sensing decoding.
With the matrix product ΦF−1, the �1-minimum decoder can
recover X, then x from X by IDFT. We use compressive
sensing with F as the baseline approach against which our
new approach will be compared.

C. How Good Is Fourier Basis?

Fig. 2 illustrates the time-domain representation of the
samples measured from an actual UHF channel at its Nyquist
rate with N = 512, using GNU Radio-USRP2 [8], [11].
Evidently, we cannot conclude any sparse structure in the
time domain. We take FFT and depict the frequency domain
representation of the same samples in Fig. 3. About 23% of
the samples (≈ 117 out of 512 samples) are observed to have
relatively large magnitudes that can be said nonzero.

D. Compressive Sensing with Optimal Sparsifying Basis

Fixed support sets provide signal-independent sparsifying
matrix Ψ for decoding, but there is a drawback. Sparsity under
a fixed support is not uniform across different subbands, and
as a consequence, we should take different number (say, Mi

for subband i) of measurements for each subband. This partly
motivates the use of an optimal KLT basis for each subband,
which makes sparsity across different subbands more uniform
and, more importantly for decoding accuracy, also smaller.

In Section II.B, we derived that the KLT basis Q can give
the most compact representation for x with s = QHx. In fact,
Q is an ideal candidate for Ψ. Similar to Eq. (2), we write
compressive sensing with optimal KLT basis:

y = Φx = Φ(Qs) = (ΦQ)s (3)

We note that among all Ψ, Q makes s with the smallest
number of nonzeros. Fig. 4 depicts the KLT representation
of the same samples from Fig. 2. We estimated Q from
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a sample covariance matrix with 10 previous measurement
sets. Compared to the fixed support F , we observed a 14-
fold gain in sparsity for this example. Such sparsity gain can
significantly improve the accuracy of recovery with the same
(or even fewer) number of compressive measurements.

IV. RECOVERING KLT BASIS WITH COMPRESSIVE
MEASUREMENTS

We have mentioned earlier that compressive measurements
can be used to recover the KLT matrix. To explain this, we start
with the tie-in between the compressive encoding at sensor
nodes and KLT basis estimation. Recall that the KLT matrix
Q is computed from the covariance matrix of input signal
x, Rx = E[xxH]. Similarly, the covariance matrix of the
compressive measurements y is Ry = E[yyH]. By compres-
sive encoding y = Φx, we know: Ry = E[ΦxxHΦT] =
ΦE[xxH]ΦT. So, Ry = ΦRxΦ

T. Note that Φ is not a
square matrix. Using the pseudo-inverse (ΦT)†, we can have
the following expression:

Ry(ΦT)† = ΦRx (4)

Here, we find that we have been compressively measuring
Rx in Ry(ΦT)†, which can be approximated from y = Φx
that we used to encode our data x. Thus compressive mea-
surements y have sufficient information to recover Rx from
(4). Below is a procedure to estimate KLT basis Q with
compressive measurements in four steps:

1) Decode X from y = (ΦF−1)X using fixed support F ;
2) Recover x by computing x = F−1X;
3) Repeat the previous steps l times to numerically com-

pute: Rx = E[xxH] = 1
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Fig. 5 outlines the workflow between a sensor node and
the system. We faithfully implement a compressive sensing
encoder without any modification. Our sensor nodes are
implemented in the GNU Radio software framework for
USRP2. The nodes perform direct bandpass sampling [12]
and convert the analog RF/IF into the complex digital in-phase
and quadrature (I-Q) samples. Each sampling instance buffers
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uses a pre-generated, M × N Bernoulli random matrix Φ to
produce M compressive measurements before transmitted in-
network. We simulated wireless uplinks to the base station for
in-network transmissions.

Frequency (FFT sample index #) 

Frequency response (real) 

M
ag

ni
tu

de
 

Fig. 3. The samples from Fig. 2 represented using fixed support F

fnk = e−j2πnk/N for n, k = 0, 1, . . . , N − 1. F is invertible,
so we have x = F−1X, the Inverse DFT (IDFT).

Using the DFT basis F , we can rewrite the compressive
measurements in Eq. (1):

y = Φx = Φ(F−1X) = (ΦF−1)X (2)

The key intuition here is that a fixed support F is used
as a sparsifying basis Ψ for compressive sensing decoding.
With the matrix product ΦF−1, the `1-minimum decoder can
recover X, then x from X by IDFT. We use compressive
sensing with F as the baseline approach against which our
new approach will be compared.

C. How Good Is Fourier Basis?

Fig. 2 illustrates the time-domain representation of the
samples measured from an actual UHF channel at its Nyquist
rate with N = 512, using GNU Radio-USRP2 [8], [11].
Evidently, we cannot conclude any sparse structure in the
time domain. We take FFT and depict the frequency domain
representation of the same samples in Fig. 3. About 23% of
the samples (≈ 117 out of 512 samples) are observed to have
relatively large magnitudes that can be said nonzero.

D. Compressive Sensing with Optimal Sparsifying Basis

Fixed support sets provide signal-independent sparsifying
matrix Ψ for decoding, but there is a drawback. Sparsity under
a fixed support is not uniform across different subbands, and
as a consequence, we should take different number (say, Mi

for subband i) of measurements for each subband. This partly
motivates the use of an optimal KLT basis for each subband,
which makes sparsity across different subbands more uniform
and, more importantly for decoding accuracy, also smaller.

In Section II.B, we derived that the KLT basis Q can give
the most compact representation for x with s = QHx. In fact,
Q is an ideal candidate for Ψ. Similar to Eq. (2), we write
compressive sensing with optimal KLT basis:

y = Φx = Φ(Qs) = (ΦQ)s (3)
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Fig. 2. Time domain representation of an actual wireless channel (source: 512
samples measured using USRP2 from UHF Ch. 21 (fc = 515 MHz, 6-MHz
bandwidth) in Cambridge, MA on Saturday May 21, 2011 23:03 EST)
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Fig. 3. The samples from Fig. 2 represented using fixed support F

fnk = e−j2πnk/N for n, k = 0, 1, . . . , N − 1. F is invertible,
so we have x = F−1X, the Inverse DFT (IDFT).

Using the DFT basis F , we can rewrite the compressive
measurements in Eq. (1):

y = Φx = Φ(F−1X) = (ΦF−1)X (2)

The key intuition here is that a fixed support F is used
as a sparsifying basis Ψ for compressive sensing decoding.
With the matrix product ΦF−1, the �1-minimum decoder can
recover X, then x from X by IDFT. We use compressive
sensing with F as the baseline approach against which our
new approach will be compared.

C. How Good Is Fourier Basis?

Fig. 2 illustrates the time-domain representation of the
samples measured from an actual UHF channel at its Nyquist
rate with N = 512, using GNU Radio-USRP2 [8], [11].
Evidently, we cannot conclude any sparse structure in the
time domain. We take FFT and depict the frequency domain
representation of the same samples in Fig. 3. About 23% of
the samples (≈ 117 out of 512 samples) are observed to have
relatively large magnitudes that can be said nonzero.

D. Compressive Sensing with Optimal Sparsifying Basis

Fixed support sets provide signal-independent sparsifying
matrix Ψ for decoding, but there is a drawback. Sparsity under
a fixed support is not uniform across different subbands, and
as a consequence, we should take different number (say, Mi

for subband i) of measurements for each subband. This partly
motivates the use of an optimal KLT basis for each subband,
which makes sparsity across different subbands more uniform
and, more importantly for decoding accuracy, also smaller.

In Section II.B, we derived that the KLT basis Q can give
the most compact representation for x with s = QHx. In fact,
Q is an ideal candidate for Ψ. Similar to Eq. (2), we write
compressive sensing with optimal KLT basis:

y = Φx = Φ(Qs) = (ΦQ)s (3)

We note that among all Ψ, Q makes s with the smallest
number of nonzeros. Fig. 4 depicts the KLT representation
of the same samples from Fig. 2. We estimated Q from
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Fig. 4. The samples from Fig. 2 represented using optimal KLT basis

a sample covariance matrix with 10 previous measurement
sets. Compared to the fixed support F , we observed a 14-
fold gain in sparsity for this example. Such sparsity gain can
significantly improve the accuracy of recovery with the same
(or even fewer) number of compressive measurements.

IV. RECOVERING KLT BASIS WITH COMPRESSIVE
MEASUREMENTS

We have mentioned earlier that compressive measurements
can be used to recover the KLT matrix. To explain this, we start
with the tie-in between the compressive encoding at sensor
nodes and KLT basis estimation. Recall that the KLT matrix
Q is computed from the covariance matrix of input signal
x, Rx = E[xxH]. Similarly, the covariance matrix of the
compressive measurements y is Ry = E[yyH]. By compres-
sive encoding y = Φx, we know: Ry = E[ΦxxHΦT] =
ΦE[xxH]ΦT. So, Ry = ΦRxΦ

T. Note that Φ is not a
square matrix. Using the pseudo-inverse (ΦT)†, we can have
the following expression:

Ry(ΦT)† = ΦRx (4)

Here, we find that we have been compressively measuring
Rx in Ry(ΦT)†, which can be approximated from y = Φx
that we used to encode our data x. Thus compressive mea-
surements y have sufficient information to recover Rx from
(4). Below is a procedure to estimate KLT basis Q with
compressive measurements in four steps:

1) Decode X from y = (ΦF−1)X using fixed support F ;
2) Recover x by computing x = F−1X;
3) Repeat the previous steps l times to numerically com-

pute: Rx = E[xxH] = 1
l

�l
i=1 xixi

H;
4) Obtain Q by eigen-decomposition Rx = QΛQH.

V. IMPLEMENTATION

A. Workflow and Subsystems

Fig. 5 outlines the workflow between a sensor node and
the system. We faithfully implement a compressive sensing
encoder without any modification. Our sensor nodes are
implemented in the GNU Radio software framework for
USRP2. The nodes perform direct bandpass sampling [12]
and convert the analog RF/IF into the complex digital in-phase
and quadrature (I-Q) samples. Each sampling instance buffers
uncompressed x containing N I-Q samples, and the encoder
uses a pre-generated, M × N Bernoulli random matrix Φ to
produce M compressive measurements before transmitted in-
network. We simulated wireless uplinks to the base station for
in-network transmissions.
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We note that among all Ψ, Q makes s with the smallest
number of nonzeros. Fig. 4 depicts the KLT representation
of the same samples from Fig. 2. We estimated Q from
a sample covariance matrix with 10 previous measurement
sets. Compared to the fixed support F , we observed a 14-
fold gain in sparsity for this example. Such sparsity gain can
significantly improve the accuracy of recovery with the same
(or even fewer) number of compressive measurements.

IV. RECOVERING KLT BASIS WITH COMPRESSIVE
MEASUREMENTS

We have mentioned earlier that compressive measurements
can be used to recover the KLT matrix. To explain this, we start
with the tie-in between the compressive encoding at sensor
nodes and KLT basis estimation. Recall that the KLT matrix
Q is computed from the covariance matrix of input signal
x, Rx = E[xxH]. Similarly, the covariance matrix of the
compressive measurements y is Ry = E[yyH]. By compres-
sive encoding y = Φx, we know: Ry = E[ΦxxHΦT] =
ΦE[xxH]ΦT. So, Ry = ΦRxΦT. Note that Φ is not a
square matrix. Using the pseudo-inverse (ΦT)†, we can have
the following expression:

Ry(Φ
T)† = ΦRx (4)

Here, we find that we have been compressively measuring
Rx in Ry(Φ

T)†, which can be approximated from y = Φx
that we used to encode our data x. Thus compressive mea-
surements y have sufficient information to recover Rx from
(4). Below is a procedure to estimate KLT basis Q with
compressive measurements in four steps:

1) Decode X from y = (ΦF−1)X using fixed support F ;
2) Recover x by computing x = F−1X;
3) Repeat the previous steps l times to numerically com-

pute: Rx = E[xxH] = 1
l

∑l
i=1 xixi

H;
4) Obtain Q by eigen-decomposition Rx = QΛQH.

V. IMPLEMENTATION

A. Workflow and Subsystems

Fig. 5 outlines the workflow between a sensor node and
the system. We faithfully implement a compressive sensing
encoder without any modification. Our sensor nodes are
implemented in the GNU Radio software framework for
USRP2. The nodes perform direct bandpass sampling [12]
and convert the analog RF/IF into the complex digital in-phase
and quadrature (I-Q) samples. Each sampling instance buffers
uncompressed x containing N I-Q samples, and the encoder
uses a pre-generated, M ×N Bernoulli random matrix Φ to
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Fig. 5. We implement unmodified compressive sensing encoder but place an
additional decoder block, namely CS-KLT, that estimates a KLT basis from
the procedure described in Section IV.

produce M compressive measurements before transmitted in-
network. We simulated wireless uplinks to the base station for
in-network transmissions.

A novelty in our implementation is in the decoder. We
added a new block for KLT basis estimation. It is labeled CS-
KLT in Fig. 5. CS-KLT is essentially a compressive sensing
decoder that recovers an estimate of the covariance matrix
from compressive measurements of the input signal. Based
on the procedure described in Section IV, we formulated an
online algorithm for CS-KLT, explained next.

B. Online Algorithm for CS-KLT
Algorithm 1 presents our pseudo-code implementation for

the CS-KLT online optimal basis estimation. The algorithm
aligns to incremental update or complete update duty cy-
cles (tested by a boolean completeUpdate) to determine
whether the sample covariance matrix Rx should be recal-
culated completely. This reestimate is necessary because in
reality wireless channels are time-varying, and stationarity
does not persist. Hence, we need to schedule a complete
update once every certain number of measurement intervals.
In the algorithm, procedure CSKLT invokes CSDECODERX,
triggering the system to flush the current Rx and reacquire
an estimate. On a normal measurement interval, procedure
CSKLT invokes DOINCUPDATERX. The incremental update is
based on weighted averaging (with weight α for 0 < α < 1)
between the two successive intervals (see lines 20–22).

C. Optimal Interval to Update KLT Basis
The complete update of Rx may take up multiple mea-

surement intervals and operate at low compression, costing
much more measurements than recovering the input signal
on a normal interval. So we should not do complete updates
too frequently. An optimal interval for complete updates can
be determined from the performance requirement (estima-
tion/decoding errors), stationarity of the channel, and the
relative cost of a complete update to an incremental update.

VI. EVALUATION

We evaluated the performance of our CS-KLT against
Fourier basis in the following scenarios: (1) spectrum analysis
of 200-MHz UHF whitespace; (2) sensing short radio trans-
missions. We collected all of the data presented in this section
empirically from our field and laboratory experiments, using
commercially available software radios.

Algorithm 1 The CS-KLT Online Optimal Basis Estimation
1: procedure CSKLT(curRx,y, α,ΦCU ,Φnormal,Q)
2: if completeUpdate == True then
3: newRx = CSDECODERX(y,ΦCU ,F−1)
4: else
5: newRx =

DOINCUPDATERX(curRx,y, α,Φnormal,Q)
6: end if
7: newQ = EIG(newRx)
8: return newQ
9: end procedure

10: procedure CSDECODERX(y, Φ, Ψ−1)
11: a← MTXMULTIPLY(Φ, Ψ−1)
12: b← `1-MINDECODE(y, a)
13: return b
14: end procedure

15: procedure DOINCUPDATERX(Rx, y, α, Φ, Ψ)
16: x← `1-MINDECODE(y,Φ,Ψ)
17: a← CMPLXCONJ(x)
18: b← VTRTRANSPOSE(a)
19: c← VTRMULTIPLY(x, b)
20: d← α× c
21: e← (1− α)×Rx

22: f ← d+ e
23: return f
24: end procedure

25: procedure CSENCODECH(f , bw, Φ)
26: (M,N)← SIZEOF(Φ)
27: TUNERF(f )
28: ts ← 1

2·bw
29: a← BANDPASSSAMPLE(ts)
30: b← MTXMULTIPLY(Φ, a)
31: return b
32: end procedure

A. Description of Experiments

1) UHF spectrum analysis: We prepared 4 USRP2 radios
in an indoor lab. The spectrum is partitioned into J = 8
subbands (i.e., each with 25-MHz bandwidth) with center
frequencies fc ∈ {512.5, 537.5, 562.5, 587.5, 612.5, 637.5,
662.5, 687.5} MHz. This spans UHF channels 19 to 51.
We configured each USRP2 node to alternate between two
subbands and measure. Duty cycles were counted in 1-msec
unit measurement intervals. The Nyquist rate of each subband
is 25 MHz × 2 = 50 million samples/sec (or 50,000 samples
per unit measurement interval). We ran multiple sessions over
different days at various hours, with each session lasting up
to a minute.

2) Detecting Harris radios: This was conducted in an
outdoor wireless test field. We used 4 USRP2 radios for
compressive sensing of 100-MHz target spectrum partitioned
in J = 4 subbands. The center frequencies for this experiment
were {363, 386, 409, 432} MHz, meaning there is a 2-MHz
overlap between two adjacent sensors. We placed 4 Harris
military radios [13], two of which were engaged in live voice
communications in the first subband. The other two were
turned on and off randomly in the second and the fourth
subbands. No radios transmitted in the third subband. The
sessions lasted 10–30 seconds, and we kept other measurement
parameters the same as before.
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Fig. 6. Error performance on recovering 200-MHz UHF spectrum
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Fig. 7. Error performance on sensing Harris radio transmissions

B. Spectrum Recovery Performance

1) UHF spectrum: Fig. 6 compares decoding errors of
our CS-KLT against Fourier basis under various compression
ratios (M/N ). For this analysis, we used N = 256 per
subband (resulting 2048-point frequency response for the 200-
MHz spectrum). CS-KLT had 100-msec incremental and 1-
sec complete update duty cycles. We adopted a normalized
`2-norm error metric computed in the frequency domain,
e`2 = ||X − X̂||`2/||X||`2 (X̂ indicates recovered frequency
response). Given a fixed error budget, our method resulted
substantial, 2x to 4.3x gains in compression. For illustrative
purposes, we plot the original frequency response and the re-
covered frequency responses from compressive measurements
in Fig. 9 (Fourier) and in Fig. 10 (KLT).

2) Harris radio sensing: We also observe a clear advantage
of CS-KLT in sensing Harris radio transmissions as indicated
by the error performances in Fig. 7. The use of KLT basis
for this case resulted about 2x to 3x gains in compression
compared to using Fourier basis for decoding.

C. Dynamic Identification of Trained Patterns via KLT

We examined a preliminary application of detecting the
ON/OFF state combinations of multiple transmitters using
previously trained KLT matrices. For this evaluation, we
reused the data collected from our Harris radio experiments.

Suppose we wish to detect which of the target transmitters
is in the ON state. To do this, we propose the following
target detection strategy based on CS-KLT. First, we perform a
training phase, where we estimate the KLT bases for individual
Harris radios by activating them one at a time. Let us call the
4 KLT matrices obtained in our field experiment Q1, . . . ,Q4.
There could be other ways to obtain the KLT characterizations
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Fig. 8. Error performance of CS-KLT in a real-world experiment

of the targets requiring less access—for example, through
training on reference signals or from known signal models
such as the power-spectral densities of specific modulation
schemes.

Secondly, we perform a separate CS-KLT decoding oper-
ation, using each KLT matrix Qi as the sparse transform.
Each decoding based on Qi detects the presence of target
i, as desired. Clearly, this decoding process can detect any
combination of active transmitters. Furthermore, since the KLT
bases of individual transmitters do not change, there is no need
for periodic updates.

We computed the detection error rate by taking 5-sec long
spectrum samples from each of our 4 USRP2s, encompassing
400 blocks of 2048 samples each. We added the samples to-
gether into a single stream of measurements and encoded them
with compressive sensing. On the decoding, we recovered the
combined samples with the KLT matrix Q3 and used a simple
threshold to decide whether Harris radio 3 was ON or OFF. We
present the detection error rate—the fraction of 400 CS-KLT
instances in which the decoding decision was incorrect—in
Fig. 8 versus the number of measurements (M ). We observe
that even for small M , the error rate is quite low. This is
an encouraging outcome, considering that the raw number of
samples per measurement interval is close to 104.

VII. RELATED WORK

Polo et al. [5] presented compressive spectrum sensing
with distributed cognitive radios, which assumed a similar
system model as ours. Wang et al. [14] proposed a com-
pressive sensing decoder that combined analog-to-information
converter (AIC) and the SOMP [15] algorithm. Duarte et
al. [15] leveraged model-based joint sparsity of wireless
signals to improve compressive sensing decoding. Our work
is not just about applying classical transforms in the pursuit of
optimal sparsifying bases for compressive spectrum sensing,
but adaptation to time-variance and nonstationarity, which pose
difficult yet most realistic problems. This differentiates our
work from others.

VIII. CONCLUSION

In this paper, we described how compressive sensing can
benefit from using optimal sparsifying basis. Our approach was
based on Karhunen-Loève Transform (KLT) that maximally
leverages the correlation structure of a signal. By using an
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optimal KLT basis for decoding, we were able to drastically
reduce the number of measurements without affecting the
accuracy of data recovery. Our method, highlighted by the CS-
KLT online algorithm, was designed to work with time-varying
wireless channels in reality, updating KLT basis incrementally
from compressive measurements. We demonstrated empirical
performance gains of our method in spectrum sensing applica-
tions. The results of this paper suggested that we can make an
effective use of optimal bases in compressive sensing when the
data dependency of KLT can be overcome with a proper online
updating mechanism. This represents a significant departure
from the current practice of compressive sensing applications
that almost always uses a fixed support set such as DFT. While
encouraged by our results, we realize the need for further
work. It would be useful to develop a comprehensive theory
on the efficiency limit of optimal basis compressive sensing.
For the time being, we recover the covariance matrix with
DFT basis, but other estimation method could be used for this
purpose. Lastly, we plan to explore applications that leverage
the new opportunity enabled by optimal basis compressive
sensing.
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