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Partitioned Compressive Sensing with
Neighbor-Weighted Decoding

H.T. Kung and Stephen J. Tarsa
Harvard University, Cambridge, MA

Abstract—Compressive sensing has gained momentum in re-
cent years as an exciting new theory in signal processing with
several useful applications. It states that signals known to have
a sparse representation may be encoded and later reconstructed
using a small number of measurements, approximately propor-
tional to the signal’s sparsity rather than its size. This paper
addresses a critical problem that arises when scaling compressive
sensing to signals of large length: that the time required for
decoding becomes prohibitively long, and that decoding is not
easily parallelized.

We describe a method for partitioned compressive sensing, by
which we divide a large signal into smaller blocks that may
be decoded in parallel. However, since this process requires
a significant increase in the number of measurements needed
for exact signal reconstruction, we focus on mitigating artifacts
that arise due to partitioning in approximately reconstructed
signals. Given an error-prone partitioned decoding, we use large
magnitude components that are detected with highest accuracy
to influence the decoding of neighboring blocks, and call this
approach neighbor-weighted decoding. We show that, for appli-
cations with a predefined error threshold, our method can be used
in conjunction with partitioned compressive sensing to improve
decoding speed, requiring fewer additional measurements than
unweighted or locally-weighted decoding.

I. INTRODUCTION

The theory of compressive sensing states that, for a signal
X of length N that is known to have a representation with at
most k non-zero elements, X can be encoded as follows:

Y = ΦX

where Φ is an M ×N randomized measurement matrix used
to form linear combinations of X . The result is a vector of
measurements Y of length M , where M � N , and M is
approximately proportional to k. X can later be reconstructed
(or “decoded”) by finding a coefficient vector Ŝ in the basis
of sparse representation Ψ with minimum L1-norm:

min
Y=ΦΨŜ

||Ŝ||1

In words: if a k-sparse represention of a signal is known
to exist in some basis, reconstruction of the signal can be
achieved based on a small number of measurements relative
to the signal size. In practical scenarios, X is often not exactly
sparse, but has k components with large magnitude from which
an approximation of X may be reconstructed [1].

The implication of compressive sensing is that data acqui-
sition devices can enjoy reduced output data rates without the
need for heavy computation at encoding, even if the domain

of sparse representation is not known a priori. For example,
wireless sensor networks may realize large bandwidth savings
without media-specific compression hardware built into sen-
sors, lowering device cost, and reducing power consumption
[2]. When linear combinations happen in the analog domain,
as authors have interpreted wireless packet collisions [3],
compressive sensing is a natural fit for high speed data
compression. In a different context, exploiting the sparsity of
Magnetic Resonance Images (MRIs) reduces imaging time [4].
Applications beyond traditional signal and image processing
are starting to appear, such as using compressive sensing for
continuous fine-grain status monitoring in data centers for
anomaly detection [5], and to reduce measurements for off-
chip analysis in IC Trojan detection [6].

However, a major limitation is that the computational cost
of decoding scales poorly. Several algorithms for decoding
are commonly used, such as L1 minimization via a simplex
method in linear programming. This algorithm has the tightest
error bound, but has an empirical running time of O(N3) [7]
[8], which is prohibitively expensive for large N . Another
method is a greedy adaptation of Orthogonal Matching Pursuit
(OMP), which has a larger error bound and sometimes fails
under poor initial approximations, but a running time of
O(N2 logN) [9]. CoSamp improves upon OMP with more
rigorous error bounds, and a running time of O(N log2N)
[10]. In some cases, application specific algorithms such as
min total variation may be used to improve performance [11]
[4]. While trading off factors like accuracy and robustness
to poor initial approximations improves decoding time, we
consider the running time to beO(N3), since low-complexity
methods must resort to linear programming upon failure.

In this paper, we present a method for partitioned com-
pressive sensing that can be used along with any solver to
reduce computational costs and make decoding amenable to
parallel processing. Specifically, the signal X is partitioned
into B blocks of size N/B by encoding with a block diagonal
sensing matrix ΦB . This produces B independent sets of
measurements, y1, . . . , yB as follows:

y1

...
yB

 =


φ1

. . .

φB

X
At decoding, solution vectors ŝi of length N/B are decoded
by solving B independent problems:



min
y=ΦiΨiŝi

||ŝi||1 i = 1 . . . B,

where the Ψi’s are bases of reduced dimension, e.g. in the case
of Fourier-style transforms, N/B-point transforms (throughout
this paper, we will use DCT-II transforms for illustration,
though results generalize to any choice of basis). After solving
each problem independently, a decoded signal of length N is
obtained by concatenating independent blocks x̂i = Ψiŝi:

X̂B = [x̂1, . . . , x̂B ] for i = 1 . . . B

When used in combination with L1 minimization via a linear
program, partitioning reduces running time to O(B(NB )3). The
reduction in decoding time can be significant; for example
when N = 10, 000 and B = 10, the running time is reduced
by 103, or three orders of magnitude.

Ideally, we would like X̂B to equal X̂ , the signal recovered
without partitioning. We can expect this lucky case to only
arise when each block can be exactly recovered, meaning
the total number of measurements must be increased by a
factor of B. That is, for the M × N measurement matrix,
M becomes MB , on the order of B ∗ k log( NBk ), instead of
k log(Nk ) Ultimately, although a huge reduction in decoding
time is achieved, increasing the number of measurements by
approximately a factor of B swallows up the data-reduction
gains afforded by compressive sensing (In [12], for applica-
tions like target detection tasks, one can use a progressive
reconstruction algorithm to overcome the problem of increased
measurements due to partitioning). Therefore, we focus on
approximate recovery of blocks, with the goal of taking as
few additional measurements as possible in order to meet a
predetermined error threshold for decoded signals.

To summarize our contributions: (1) We identify an incom-
patibility problem at the partition boundaries of reconstructed
signals, the presence of which we call a “blocking artifact”
in this paper (see Section II). This problem is due to incon-
sistency in approximate recovery of neighboring blocks. To
our knowledge, we are the first in the literature to identify
this incompatibility issue for partitioned compressive sensing.
(2) We propose neighbor-weighted decoding for mitigating
blocking artifacts (Section III). This method is encoding-blind
in the sense that it does not require comprehension of the input
signal. However, during decoding, our method can adapt to the
results of decoded neighboring blocks in order to maximize
their compatibility along partition boundaries. Adaptation is
implemented by importing neighbors’ dominant components
and weighting those components in decoding. (3) We suggest
a performance metric for evaluating incompatibility mitigation
schemes (Section IV) and relate it to perceptual artifacts that
result from blocking artifacts. We use this metric to show the
effectiveness of neighbor-weighted decoding.

II. RECOVERY INCOMPATIBILITY IN PARTITIONED
COMPRESSIVE SENSING

In general, when the number of measurements M is not
large enough to support exact recovery, decoding is lossy;

only coefficients with the largest magnitudes can be recovered,
either exactly or approximately [13]. We term this set of
coefficients for a fixed M the dominant coefficients of the
signal, and their corresponding signal components dominant
components, or in the cases where Ψ is a Fourier transform,
dominant frequencies (in this paper, we use these terms
interchangeably depending on context). Furthermore, during
decoding, information is lost when the smallest coefficients
are erroneously truncated to 0 magnitude, and we call this set
the tail coefficients, and their corresponding components tail
components/frequencies. With these definitions, it is known
that the decoding quality under partitioning will be determined
by the characteristics of the two sets [13].

A. Incompatibility and Blocking Artifacts

Si+1 

Bi 

Bi+1 

Si 

xi 

xi+1 

swath 

Fig. 1. Two neighboring blocks xi and xi+1, and a swath centered at the
partition boundary. Bi, Si, Bi+1, and Si+1 denote sets of the dominant
components in their respective regions.

First, we define a desired state of compatibility that exists
when X̂B is the same as the X̂ that would have been recovered
without partitioning, up to an error threshold. In scenarios
where X̂B is incompatible with X̂ , inconsistent recovery
arising from partitioned decoding, such as the loss of certain
frequencies, is most apparent in the form of blocking artifacts
along a swath at the boundary between two blocks. Note that
our use of the term blocking artifacts refers specifically to
errors that arise due to partitioned compressive sensing, and
not to abrupt transitions between blocks that the original image
may already exhibit. Thus we are interested in mitigating
blocking artifacts induced by the compressive sensing recovery
process that are not present in the original image.

Here we will precisely state our goal and motivate our
solution approach. Consider two neighboring blocks, xi and
xi+1, and a swath along the common boundary of the two
blocks, as depicted in Figure 1. In the figure, the blue dashed
line denotes the partition boundary between blocks, and the
red lines bound the swath. For block xi, we define Bi as a set
of some of the largest components over the entire block, and
also define Si as a set of some of the largest components local
to the region where the swath overlaps xi. Similarly, we define
Bi+1 and Si+1 for block xi+1. Note that a smooth transition
between blocks xi and xi+1 suggests overlap between the sets
Si and Si+1. We assume that all of these sets, Bi, Si, Bi+1,
and Si+1 have enough components to represent acceptable
approximations of their regions.

The fact that the original image does not have abrupt
transitions between blocks means that components in Si+1



must be in Bi, i.e. Si+1 ⊆ Bi. Otherwise, those components
of Si+1 not in Bi would contribute to the boundary region
of xi, but not to the boundary region of xi+1, resulting in
an abrupt transition. For a similar reason, we must have
Si ⊆ Bi+1. Thus we have the assumptions:

(1) Si+1 ⊆ Bi and Si+1 ⊆ Bi+1

(2) Si ⊆ Bi+1 and Si ⊆ Bi

Moreover, adjacent regions on either side of the partition
boundary must have compatible leading components:

(3) Si = Si+1

However, the relationships in (1), (2), and (3) may not hold
for recovered signals. We use B̂i, and B̂i+1, to denote the sets
of dominant components in recovered versions of both blocks,
x̂i and x̂i+1, based on a fixed number of measurements for
each. For example, when there are insufficient measurements
for block xi+1, B̂i+1 may not contain all of the components
of Bi+1. As a result, we may have Si+1 6⊂ B̂i+1 and by (3)
also Si 6⊂ B̂i+1. In this case, when the recovered signals are
images, we will see blocking artifacts along the boundary.

When we increase the number of measurements, additional
dominant components will be decoded, and B̂i and B̂i+1 will
approach Bi, and Bi+1. By assumptions (1) and (2), with
sufficient measurements, we will have:

(4) Ŝi+1 ⊆ B̂i and Ŝi+1 ⊆ B̂i+1

(5) Ŝi ⊆ B̂i+1 and Ŝi ⊆ B̂i+1

We call properties (4) and (5) together the compatibility
condition. In this paper, we address the challenge of satisfying
this condition without a significant increase in measurements.

To illustrate the idea behind the proposed neighbor-weighted
decoding approach, suppose

Bi = {f1, fa, fb, f2}
Bi+1 = {f3, f4, f5, f6, f7, f8, f9, fa, fb}
Si = {fa, fb}

Si+1 = {fa, fb}

where each set is a sequence of components in decreasing
order by magnitude. We can check that this example satisfies
assumptions (1), (2), and (3). Now suppose that there are insuf-
ficient measurements for blocks xi and xi+1 to warrant exact
recovery. As a result, we recover only dominant components:

B̂i = {f1, fa, fb}
B̂i+1 = {f3, f4, f5, f6, f7, f8}

Here, (4) and (5) do not hold and blocking artifacts arise.
Our neighbor-weighted decoding will mitigate this problem

by adapting the decoding process for neighboring blocks. For
example, for block xi+1, we will import top components
decoded from block xi and weight them in decoding to assure

their appearance in B̂i+1. In the example, this corresponds
to importing f1, fa, and fb from B̂i, and using weighted
decoding (Section III) to obtain

B̂i+1 = {f3, f4, f5, f1, fa, fb}
Ŝi+1 = {fa, fb}

to satisfy the compatibility condition.
The following theorem provides a condition for sufficiency

on the number of measurements required by neighbor-
weighted decoding to satisfy the compatibility condition. We
say that a signal is (K, ε)-sparse if only K out of its N
components have a magnitude greater than a small ε > 0.
Suppose that M measurements are used to encode a signal,
then we know from [14] that the reconstructed signal based on
L1 minimization has a small error when M > cK log(N/K)
for some positive constant c.

Theorem. Consider any two neighboring blocks xi and xi+1.
Suppose that the signals for blocks xi and xi+1 are of length
NB and are (Ki, ε)-sparse and (Ki+1, ε)-sparse respectively.
Further, suppose that we use Mi and Mi+1 measurements
for decoding block xi and xi+1, with Mi = O(Ki log(NB

Ki
)

and Mi+1 = O((Ki + Ki+1) log( NB

Ki+Ki+1
). Then under

neighbor-weighted decoding, recovered signals for the blocks
satisfy the compatibility condition.

Proof: We note that Mi measurements are sufficient
to decode block xi with enough accuracy so that the top
Ki decoded components will include Si+1, and also Si by
assumption (3). Thus, we have Si+1 ⊂ B̂i and Si ⊂ B̂i. In
decoding block xi+1, we import all of these Ki components
and weight them in the decoding process. We note that Mi+1

measurements are sufficient to decode the top Ki + Ki+1

components for block xi+1, which include the imported Ki

components of Si. We have Si+1 ⊂ B̂i+1 and Si ⊂ B̂i+1.
This achieves compatibility by (4) and (5).

We notice from the proof that importing needs to be carried
out in only one direction when two neighboring blocks have
different sparsities. We can further tighten the condition on
Mi+1 given in our theorem by letting Mi+1 = O((K ′i +
Ki+1) log( NB

K′
i
+Ki+1

)) where K ′i is the number of those top
Ki components for block xi which are not in Si+1.

B. Causes of Blocking Artifacts

We next illustrate two cases where blocking artifacts can
be introduced by partitioned compressive sensing.

Case 1 The dominant frequencies of a block xi differ
from those of its neighbor xi+1, even though there is a
smooth transition between the two blocks in the space/time
domain of the original signal. To be precise, Bi 6= Bi+1 even
though Si = Si+1. After applying partitioned compressive
sensing with Mi and Mi+1 insufficient to satisfy (4) and (5),
assumption (3) breaks: Ŝi 6= Ŝi+1.



Figure 2 illustrates this scenario. The 200 × 100 image is
partitioned into equal sized top and bottom blocks. Examining
a 20-pixel wide swath xSW centered at the border between
blocks, we see that columns on the right side of the swath
would be dominated by low frequencies, even though all
columns in the lower block are dominated by high frequency
components, which are represented by fine stripes in the
image. A partitioned decoding of the whole image with
MB = 25 ∗ 200 is shown, and as expected, low frequency
components are lost in decoding, and only high frequency
stripes are recovered, leading to a blocking artifact.

Case 2 Neighboring blocks xi and xi+1 have the same
dominant frequencies, but the magnitudes of tail components
in each block are very different. When these tail components
are erroneously truncated during decoding due to insufficient
measurements, truncation error is introduced, whereby dom-
inant components are perturbed in an effort to fit the mea-
surements yi and yi+1. When neighboring blocks are subject
to different truncation errors, their dominant frequencies are
perturbed differently, resulting in varying degrees of error for
corresponding components. When these frequencies meet at
the block boundary, we have the situation Si = Si+1 but
Ŝi 6= Ŝi+1, leading to a blocking artifact.

Figure 3 shows the spectra for two blocks with different
tail behaviors: the top block is exactly sparse, so there is no
truncation error, while the bottom block’s long tail leads to
truncation error in dominant frequencies.

Both of these scenarios arise naturally when the composition
of signals varies over time or space, and the incompatibility
of partitioned decoding is a function of the input signal.

xSW 

xi 

xi+1 

(a) Original Signal

x̂i

x̂i+1

Recovered 

Recovered 

(b) Recovered Signal

Fig. 2. An image sparse in the DCT domain that exhibits blocking
artifacts when decoded via partitioned compressive sensing. (a) The image is
partitioned on the blue dashed line into two blocks and decoded independently,
treating each column as a separate signal. (b) In its recovered form, the lower
block erroneously drops low frequencies, leading to a blocking artifact that
is perceptually noticeable in the image.

III. APPROACH, ANALYSIS, AND IMPLEMENTATION
DETAILS FOR MITIGATING BLOCKING ARTIFACTS

The discussion and examples from the previous section lead
to a strategy for mitigating blocking artifacts by influencing the
coefficient vector found during the decoding process. However,
first we must introduce weighted decoding, the tool we will
use to realize such a strategy.
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Fig. 3. Ground-truth sorted component magnitudes for a partitioned signal
with the same dominant frequencies, but different tail behaviors. The blue
dashed line shows recovered component magnitudes for M = 70. The top
block (a) is exactly sparse and its dominant components are recovered exactly,
while the bottom block (b) is approximately sparse, and truncation error causes
the perturbation of dominant frequencies. (c) and (d) show the input and
reconstructed images, respectively. Note in (d) that these errors create blocking
artifacts at the partition boundary.

In weighted decoding, a diagonal matrix W with non-
negative weights w1, w2, . . . , wn along its diagonal is used
to modify the constraints of the minimization step:

min
Y=ΦΨWŜ′

||Ŝ′||1

The resulting coefficient vector is then adjusted to recover Ŝ,
by Ŝ = WŜ′. This decreases the penalty for finding solutions
with energy in components of interest, improving the accuracy
of recovered solutions (after adjustment) with respect to these
components, and reducing overall error. This approach was
first introduced in [15], where iterative weighted decoding
was used to “enhance” signals’ sparsities, akin to amplifying
spikes and dampening noise. Other uses include [16], where
weighting is used to combine measurements from distributed
sensors for collaborative decoding.

In order to achieve compatibility and mitigate blocking
artifacts, we import the top decoded components from neigh-
boring blocks to apply weights during a second pass decoding.
Returning to the example from Figure 2, we demonstrate how
this process works: Figures 4(a) and 4(c) show the frequency
spectra for the top and bottom blocks of a column in the



problematic right side of our example image. As observed
in the image itself, the spectra confirm that the top block
is dominated by a set of low frequency components, which
we expect to be recovered first under a small number of
measurements. The bottom block is dominated by higher
frequencies, but still exhibits significant contributions from
low frequencies. As seen previously, under small M , those low
frequencies will be lost. Furthermore, Figures 4(b) and 4(d)
show that the blocks have large tails, indicating that solutions
will be prone to truncation errors. Differences in truncation
errors will cause blocking artifacts as described in Case 2.

While completely eliminating blocking artifacts requires
enough additional measurements for exact recovery, we will
show that this process of neighbor-weighted decoding mit-
igates the problem, allowing us to remove most blocking
artifacts with a smaller increase in measurements than locally-
weighted or unweighted partitioned decoding. Figure 5 shows
the result of our approach for the aforementioned problem-
atic column. After neighbor-weighted decoding, the solution
shown in red accurately captures low frequency components,
and reduces the number of erroneous peaks assigned to low
magnitude components.
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Fig. 4. (a) Component magnitudes by frequency and (b) sorted magnitude
for the top block of a column with significant blocking artifacts under
partitioned decoding. (c) and (d) show the corresponding frequency response
and sorted component magnitudes for the bottom block, which erroneously
drops low frequencies under small M . Notice that each block has different
dominant frequencies, but that the bottom block also contains contributions
from frequencies in the dominant set of the top block. Additionally, sorted
magnitudes show that neither block is exactly sparse, indicating that differ-
ences in truncation error contribute to blocking artifacts.

A. Analysis of Gains Due to Neighbor-Weighted Decoding

We derive an expression for the reduction in measurements
required to produce an approximately recovered signal free
of blocking artifacts using neighbor-weighted decoding. We
assume two blocks xi and xi+1, sparse in a chosen basis,
and rank their components in descending order by magnitude.
Under unweighted decoding, the number of measurements
required to recover a specific component is approximately
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Fig. 5. (a) Recovered component magnitudes for the signal shown in
Figure 4(c)/(d) with and without neighbor-weighted decoding for M = 25.
Our strategy results in a significant improvement in the recovery of low
frequencies, which are dropped in unweighted decoding under insufficient
M . (b) The result of using neighbor weighted decoding, and increasing the
number of measurements to 200*35, the amount required to achieve an error
of P=0.45. (See Section IV-A for a discussion of this error metric).

proportional to its rank. For simplicity, we assume exact
proportionality, noting that this constant cancels in our final
expression.

Suppose that, in order to be free of blocking artifacts, our
target application requires that block xi+1 include components
fa and fb. Let Mi+1 be the number of measurements required
under unweighted decoding to recover these two components:

(7) Mi+1 = max(ranki+1(fa), ranki+1(fb))

Furthermore, we assume a scenario in which conditions C1
and C2 below hold:

C1 : ranki+1(fa) = α · ranki+1(fb), for α > 1.
C2 : fa is among the Di dominant components of block xi

This yields two new expressions. By (7),

(8) Mi+1 = α · ranki+1(fb)
(9) Di ≥ ranki(fa)

Suppose that we use neighbor-weighted decoding for block
xi+1 where Di dominant components are imported from
block xi. Then by the theorem in Section II A, the required
number of measurements M ′i+1 under neighbor-weighted
decoding is:

M ′i+1 = Di + ranki+1(fb)
(10) ≥ ranki(fa) + ranki+1(fb)

We define the gain of neighbor-weighted decoding as the
ratio Mi+1/M

′
i+1. Then by (8) and (10),

(11) Gain = α·ranki+1(fb)
Di+ranki+1(fb)

Suppose that the input signal for block xi is exactly sparse
with sparsity ki. Then we have ki ≥ Di. Thus, by (11):

(12) Gain ≥ α·ranki+1(fb)
ki+ranki+1(fb)



Furthermore, if ranki+1(fb) ≥ ki, then by (12)

(13) Gain ≥ α
2

From (7) we see that if block xi+1 has a large α and xi is
exactly sparse with a small ki, then the gain is at least α/2.

B. Implementation Details

In order to implement neighbor-weighted decoding, we must
address several implementation details. The first is dominant-
component detection. When deriving weights, we should use
only those dominant components we trust to be accurate, since
erroneous weights may degrade the quality of the solution.
In our implementation, we make the conservative assumption
that, given an approximately sparse signal and M measure-
ments, the M/8 largest component values will be identified
with high accuracy during the first pass decoding. This is based
on the observation that, when using Bernoulli random matri-
ces, exactly sparse signals with M/4 non-zero components
will be recovered exactly. We found this method to perform
more consistently over a variety of signals than “knee detection
algorithms” that operate on the sorted component magnitudes.

The second issue is deciding in which direction to ex-
port/import weights. As seen in Figure 4(a)/(c), importing
weights from the bottom partition to the top will not help,
while importing in the opposite direction will provide sig-
nificant benefit. We export weights from the block whose
components have largest magnitude. This is based on the
observation the largest magnitude components are decoded
most accurately, and absent any natural abrupt transitions, are
most likely to contribute to surrounding blocks.

The third issue is what weight values to use. We found
decoding was not particularly sensitive to weight values, ex-
cept under very small numbers of measurements. In all cases,
we observed better performance when imported components
were weighted higher than locally-weighted components. This
is because, by virtue of being imported, their values are much
smaller than those of the dominant set.

IV. EVALUATION

A. Error Metric

We are interested in reducing blocking artifacts that present
along a swath of the signal at the border between partitions.
Our metric should capture the decoded accuracy with respect
to ground truth values over this swath of interest, xSW . To this
end, we define xSW to be a swath of fixed size, apply a DCT
transform to xSW , and compare the result to the corresponding
transform of the reconstructed swath x̂SW . We define our error
metric P as the proportion of dominant components decoded
to within 10% accuracy in this swath.

The choice of width for xSW influences the range of
values that P takes on with respect to a decoded solution.
At the extremes, using a swath that encompases two entire
neighboring blocks yields a comparison of decoding quality
over the entire signal. Using a very small swath centered on

the border between two partitions judges how closely the edges
of two blocks agree.

B. Performance in Target Scenario

In order to measure our success in the scenario described
in Section II-A, we apply unweighted, locally-weighted, and
neighbor-weighted decoding to a 200× 100-pixel test image.
We center xSW at the partition boundary, and set it’s width
to 30 pixels. This test case is constructed to have three sets
of frequencies: those dominant in block x1, those dominant in
block x2, and a third set that contributes to both blocks, but is
dominant in neither of them. Figure 6 illustrates this process,
where diagonal matrix “masks” are applied to space-domain
layers composed of each set of frequencies, and the results
added. The resulting image is shown in Figure 7(a).

Figure 7(b) shows the value of P as M is increased for
unweighted, locally-weighted, and neighbor-weighted decod-
ing. M represents the total number of measurements required
to decode the entire 200 × 100 pixel image. When M is
low, neighbor weighted decoding gives a consistent reduction
in error. As M is increased to the point where P = 0.70,
enough measurements are taken so that important components
are found in the first pass unweighted decoding, and there is
little differentiation between the two methods. At this point,
both methods apply weights to the same components, and their
results have the same degree of error.
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Fig. 6. (a) Magnitudes of the three sets of components used to generate the
input image for evaluating the performance of neighbor-weighted decoding
in the scenario from Section II-A. (b) An illustration of how these three
sets of components were combined in order to generate the test case signal.
By masking out the grey regions in the space domain for a given layer, the
associated set of frequencies will not be present in the corresponding region
of the image. As a result, the blue set of components becomes dominant in
xi+1, the red set in xi, and the green set in neither, though it contributes
equally to both blocks. The resulting image is shown in Figure 7(a)

C. Perception

While our goal is to reduce artifacts due to decoding
blocks independently, it is natural to try to interpret this as
a reduction of visual artifacts in image-based applications.
Though these are two different concepts, they agree in the
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Fig. 7. (a) An input image used for the evaluation of neighbor-weighted
decoding. The blue line denotes the partition boundary. (b) As M increases,
P represents the proportion of dominant components recovered to within 10%
accuracy in a 30 pixel-wide swath centered on the border between top and
bottom partitions of the image. At an error threshold of P = 0.25, neighbor-
weighted decoding has a compression ratio of 42%, while locally-weighted
decoding achieves 48% and unweighted decoding 58%.

P = 0.05  P = 0.10  P = 0.25  P = 0.45  P = 0.55 

Fig. 8. For images, improving the decoding accuracy of dominant compo-
nents in a border swath can result in a reduction in perceptual artifacts along
partition boundaries; example images are shown with their accompanying P
metric for a 20 pixel wide swath centered at the partition boundary.

sense that when compressive sensing is applied to signals
that will be perceptually interpreted, decoding errors lead to
perceptual errors. However, they differ in that signals may
naturally contain abrupt transitions between blocks that strike
the eye oddly, but are not a decoding error. Based on the
analysis in Section II-A, this case is excluded by assuming
that Si ⊆ Bi+1 and Si+1 ⊆ Bi. Also, given insufficient M for
exact reconsruction, X̂ will contain visual artifacts not induced
by partitioning that cannot be addressed by our method, and
will exist regardless of partitioning.

To give context to the connection between blocking artifacts
due to partitioning and the more general class of visual
artifacts, Figure 8 shows several recovered versions of our
demonstration image from Section II, and the corresponding
values for error metric P . Note that our P is a high bar for
perceptual accuracy; at values of P = 0.25, the transition be-
tween partitions becomes visually pleasing, and at P = 0.45,
the transition is barely perceivable.

D. Performance on Natural Images

Figure 9 shows the result of applying neighbor-weighted
decoding to a natural photograph. In this example, the top
block has sparsity ki = 8, and we can achieve exact recovery.
The bottom block is not exactly sparse, and exact recovery

with few measurements is not possible; xi+1 has three domi-
nant components, significant contributions from the top fifteen
components, and a tail that extends to thirty components. We
use Mi+1 = 10 to capture the dominant three components, and
import the Di = 8 components from xi, which ensures that the
solver puts energy in several of the top fifteen components that
were dropped under locally-weighted decoding. By expression
(12) in Section III-A, we expect gain ≥ 5×3

8+3 ; this roughly
corresponds to the improvement in compression ratio from
16% to 10% that we observe when we increase the number
of measurements under locally-weighted decoding to achieve
a similar approximation.
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Fig. 9. Neighbor-weighted and locally-weighted decoding are applied to
a 600 × 400 pixel photograph. Inset, example recovered images using both
methods. The top block is ki = 8 sparse and can be exactly recovered,
while the bottom block has non-zero contributions from 30 components.
Perceptually, the components of the upper block are responsible for differ-
entiating the clouds from the sky in the lower block. When they are lost,
that shape definition is lost and the clouds bleed into the swath. Restoring
them with neighbor-weighted decoding reduces this effect, and results in a
perceptually smooth transition between blocks. Therefore, we use Mi+1 = 10
measurements on the bottom block to recover its top 3 components, and then
import components from the top block to yield an acceptable approximately
recovered signal.

E. Meeting Error Thresholds

The discussion of perception and the results in Figure 8 lead
to another practical implication when partitioned compressed
sensing is applied: exact accuracy is not required, but instead
we should try to meet an application-specific error threshold.
Figure 10 shows the total number of measurements required to
meet the range of error thresholds displayed in Figure 8 on our
test image. Neighbor-weighted decoding saves an average of
2700 measurements over unweighted decoding at a threshold
of P = 25%, when most visual artifacts in the boundary swath
are gone, and saves 1300 measurements over locally-weighted
decoding, reductions of 24% and 13% respectively.

V. RELATED WORK

The foundations for compressive sensing were laid in the
seminal papers [17] and [18]. Since then, methods for improv-
ing decoding speed have led to alternatives to L1 minimiza-
tion, such OMP, Total Variation, and CoSamp [11] [9] [10].
As with any signal processing method for large or infinite



P Unweighted Local- Neighbor-
Threshold Only Weighting
0.05 5800 3900 2000
0.10 7900 6500 4900
0.25 11300 9900 8600
0.45 13800 12800 12100
0.55 14500 13900 13200

Fig. 10. Given a predefined threshold for error metric P based on
application needs, neighbor-weighted decoding results in a significant savings
over unweighted decoding or local weighting. Here we show a range of
error thresholds corresponding to the visual examples in Figure 8. Neighbor-
weighted decoding saves ≈ 2000 measurements when P is low, and ≈ 800
measurements for high thresholds of P over locally-weighted decoding.

length signals, partitioned encoding arises as another natural
tack. In the compressive sensing field, partitioned encoding has
been studied for block encoding of natural images [19], with
basis-specific enhancements used to improve reconstruction
quality. Authors have also recently proven sufficiency of block-
diagonal matrices for signal recovery [20], and extended these
results to analyze signals heterogeneous across partitions [21].

In traditional signal processing literature, reducing artifacts
in discrete signal processing is often done by overlapping
boundaries of adjacent blocks using Lapped Orthonormal
Transforms such as the MDCT [22]. We are currently explor-
ing the application of this technique to partitioned compressive
sensing. Early experiments have produced visually appealing
results, and we note that decoding using lapped transforms is
a technique that fits well within the general framework of this
paper, and benefits from neighbor-weighed decoding.

VI. CONCLUSION

In this paper, we presented a method for partitioned com-
pressive sensing that reduces the running time of the decoding
step and makes decoding amenable to parallelization. Under
this framework, exact recovery is only possible when a large
number of additional measurements are taken, meaning that
approximate signal recovery is a more reasonable goal. We
showed that artifacts arising in approximate decodings due to
partitioning can be mitigated by weighting dominant frequen-
cies from neighboring blocks. This strategy is called neighbor-
weighted decoding. The resulting reduction in error makes par-
titioned decoding possible with fewer additional measurements
than an unweighted or traditional locally-weighted decoding.

Our method is a step towards addressing the system issues
that arise when applying compressive sensing in practical
scenarios with large numbers of unknowns. As such, useful
next steps would include validating our implementation
assumptions against the signal characteristics of real-world
datasets geared toward proposed applications. Partitioned
compressive sensing is an obvious extension of current theory,
however its utility will vary depending on a given scenario,
presenting an exciting avenue of future research.
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