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Dynamics on algebraic surfaces

MPI Arbeitstagung 2007

Curtis T. McMullen

In this talk we discuss connections between algebraic integers and auto-
morphisms of compact complex surfaces.

Integers. Conjecturally, the smallest algebraic integer λ > 1 is the root
λLehmer = 1.1762808 . . . of Lehmer’s polynomial,

P (x) = 1 + x − x3 − x4 − x5 − x6 − x7 + x9 + x10.

By smallest we mean the Mahler measure, given by the product of the
conjugates of λ outside the unit disk, is minimized. In fact λLehmer is a
Salem number: it is the unique root of P (x) outside the disk, so it is its own
Mahler measure.

Lehmer’s polynomial has several geometric manifestations; especially, it
is the characteristic polynomial of the Coxeter element for the Weyl group
W10 with Coxeter diagram E10:

Figure 1. The E10 Coxeter graph.

In [Mc1] we use the Hilbert metric and the enumeration of minimal
hyperbolic Coxeter diagrams to show that Lehmer’s number has the minimal
Mahler measure for algebraic integers arising from reflections groups.

Theorem 1 The spectral radius of any element w in a Coxeter reflection

group satisfies ρ(w) = 1 or ρ(w) ≥ λLehmer.

An earlier result on pretzel knots by E. Hironaka motivated the theorem
above [Hir].

K3 surfaces. We now turn to the problem of constructing dynamically
interesting automorphisms f : X → X of compact complex surfaces.

The log of the spectral radius of the action of f∗ on H∗(X, Z) agrees with
the topological entropy h(f) and is a measure of its dynamical complexity.
By a theorem of Cantat, if h(f) > 0 then (up to a 2-fold cover) X must be
birational to a complex torus, a K3 surface or the projective plane.
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The automorphisms of P
2 and of C

2/Λ are essentially linear, but auto-
morphisms of K3 surfaces can be more complicated: over the reals, they
exhibit all the rich behavior of a generic area-preserving map. KAM theory
shows f : X(R) → X(R) can have orbits trapped in elliptic islands. Can
similar invariant islands exist for the complex points of X?

The answer is yes. Let us say U ⊂ X is a Siegel disk if f |U is holomor-
phically conjugate to an irrational rotation. In [Mc2] we show:

Theorem 2 There exists K3 surface automorphisms of positive entropy

with Siegel disks.

Such automorphisms can be synthesized from suitable Salem polynomials
S(x) of degree 22. One begins by constructing an automorphism f∗ of the
even unimodular lattice L of type (3, 19), such that S(x) = det(xI − f∗|L)
[GM]. Note that L is isomorphic to the middle-dimensional cohomology
H2(X, Z) of a K3 surface. Choosing an f∗-invariant Hodge structure and
applying the Torelli theorem, one obtains a K3 surface X and an automor-
phism f : X → X realizing f∗. Theorems of Lefschetz and Atiyah-Bott
then allow one to show that f has a unique fixed point p ∈ X, and that its
derivative Dfp is an irrational rotation. Finally results from transcendence
theory and analytic dynamics show f (near p) is conjugate to its linear part
Dfp, providing the desired Siegel disk.

Unfortunately, these Siegel disks are invisible to us: they live on non-

projective K3 surfaces, and we can only detect them implicitly, through
Hodge theory and cohomology.

What about the projective case? The answer is not known, but it is
possible that every positive entropy automorphism of a projective K3 surface
has a dense orbit.

Rational surfaces. While P
2 has no interesting automorphisms, Cantat’s

theorem actually admits the possibility of interesting dynamics on blowups

of the projective plane at n points.
In this case H2(X, Z) is isomorphic to Z

1,n with the Minkowski in-
tersection form. The sublattice orthogonal to the canonical class kn =
(−3, 1, 1, . . . , 1) is a copy of the En lattice, and we obtain a natural ac-
tion of the Weyl group Wn on H2(X, Z). By a theorem of Nagata, we have
f∗ ∈ Wn for any f ∈ Aut(X). Using Theorem 1 on Coxeter groups, we can
conclude:

Theorem 3 If f : X → X is a positive entropy automorphism of a compact

complex surface, then h(f) ≥ log λLehmer.
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Realization. One can then ask: which elements w ∈ Wn can be realized by
an automorphism of X, if the n points to be blown up are suitably chosen?
In [Mc3] we use configurations of points along a cuspidal cubic to show:

Theorem 4 For n ≥ 10, every Coxeter element wn ∈ Wn can be realized

by a rational surface automorphism fn with entropy h(fn) = log ρ(wn) > 0.

(For n ≤ 9, all automorphisms have zero entropy.)
Since ρ(wn) = λLehmer for n = 10, we find:

Corollary 1 The map f10 is a surface automorphism with the smallest pos-

sible positive entropy.

This automorphism first appears in the Appendix to [BK1].
In fact we obtain a different automorphism for each of the algebraic con-

jugates of λn; using conjugates on the unit circle, we finally obtain examples
of invariant islands for automorphisms of projective surfaces.

Corollary 2 There are infinitely many rational surfaces admitting auto-

morphisms of positive entropy with Siegel disks.

Invariant curves. Since we blow up points on a cubic curve in the con-
structions above, we obtain an effective anticanonical divisor Y ⊂ X, which
is invariant under f . The space X − Y behaves like an open K3 surface,
providing a bridge between these two types of examples. Similar considera-
tions apply to the blowup of the 10 double points of a generic rational plane
sextic, studied classically by Coble [Cob].

Very recently Bedford and Kim have shown there are rational surface
automorphisms of positive entropy with no invariant curves [BK2]. It is a
challenge to construct such examples synthetically.

Note. The papers [Mc1], [Mc2], [GM] and [Mc3] contain more details and
references, and are available at http://math.harvard.edu/~ctm/papers.
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