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Abstract. Extending Barro (1999) and Luttmer & Mariotti (2003), we intro-

duce a new model of time preferences: the instantaneous-gratification model. This

model applies tractably to a much wider range of settings than existing models. It

applies to both complete- and incomplete-market settings and it works with generic

utility functions. It works in settings with linear policy rules and in settings in which

equilibrium cannot be supported by linear rules. The instantaneous-gratification

model also generates a unique equilibrium, even in infinite-horizon applications,

thereby resolving the multiplicity problem hitherto associated with dynamically in-

consistent models. Finally, it simultaneously features a single welfare criterion and

a behavioral tendency towards overconsumption.
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1. Introduction

The discrete-time quasi-hyperbolic discount function {1, β δ, β δ2, β δ3, ...} is used to model
high rates of short-run discounting.1 With β < 1, this present-biased discount function

generates a gap between a high short-run discount rate (− lnβ δ) and a low long-run

rate (− ln δ). The quasi-hyperbolic discount function has been used to study a range of
behaviors, including consumption, procrastination, addiction and search.2

Extending the work of Barro (1999) and Luttmer and Mariotti (2003) on continuous-

time models of non-exponential discounting, the current paper shows how to operationalize

quasi-hyperbolic time preferences in continuous time. Our model — which we call the

instantaneous-gratification model or IGmodel — applies tractably to a much wider range of

settings than existing models. It applies to incomplete-market settings in which liquidity

constraints arise because future labor income can’t be used as collateral; and it works

with an economically rich class of utility functions which is much larger than the class

with constant relative risk aversion. Consequently, we do not need to restrict analysis to

linear policy rules or to settings in which such rules support an equilibrium.

We develop the IG model in two steps. In the first step, following Barro and Luttmer-

Mariotti, we assume that the present is valued discretely more than the future, mirroring

the one-time drop in valuation implied by the discrete-time quasi-hyperbolic discount

function. However, we assume that the transition from the present to the future occurs

with a constant hazard rate λ. This assumption reduces the Bellman equation to a pair

of stationary differential equations that characterize the current- and continuation-value

functions. We call the resulting model the present-future model or PF model.

In the second step, we let the hazard rate λ of transitions from present to future go

to ∞. This brings us to the IG model. The Bellman equation for the IG model is even
simpler than that of the PF model: it is a single ordinary differential equation.

Using convex duality we characterize the solution of the IG model. We prove and then

exploit the fact that the value function of the IG model is identical to the value function

of an optimization problem with (i) the same long-run discount rate as the IG model, and

(ii) a different flow utility function that depends on both the level of consumption and

the level of financial assets.
1See Phelps and Pollak (1968) and Laibson (1997). Strotz (1956) first formalized the idea that the

short-run discount rate is greater than the long-run discount rate.
2For example, see Akerlof (1991), O’Donoghue and Rabin (1999), Angeletos, Laibson, Repetto, Tobac-

man and Weinberg (2001), DellaVigna and Malmendier (2004), and Della Vigna and Paserman (2005).
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Hence the IG model, which is dynamically inconsistent, has the same value function as

a non-standard but dynamically consistent optimization problem. The IG model is not,

however, observationally equivalent to this optimization problem: the IG model and the

optimization problem share the same long-run discount rate and value function, but they

have different instantaneous utility functions and equilibrium policies.3 The non-standard

optimization problem is interesting, not because we think it is psychologically relevant,

but rather because its partial equivalence enables us to use the machinery of optimization

to study the value function of a dynamically inconsistent problem.

The IG model therefore carves out a tractable niche between dynamically inconsistent

models and dynamically consistent models. On the one hand, it features dynamically

inconsistent behavior and rational expectations. So, at each moment, the individual acts

strategically with regard to her future preferences. On the other hand, the fact that the

IG value function coincides with the value function of a related optimization problem

implies that the IG model inherits many standard regularity properties.

For example, the value-function-equivalence result implies that the IG model has a

unique equilibrium. This uniqueness result is surprising, since the quasi-hyperbolic model

is a dynamic game. Indeed, Krusell and Smith (2000) have shown that Markov-perfect

equilibria are not unique in a deterministic discrete-time setting. In contrast, we provide

two uniqueness results. First, we prove uniqueness in the case in which asset returns

are stochastic. Second, we show that the unique equilibrium of the stochastic IG model

converges to an equilibrium of the corresponding deterministic model as the noise in the

asset returns goes to zero. In other words, we are able to select a unique equilibrium of

the deterministic IG model by using a standard equilibrium-refinement procedure.4

Similarly, we can give a detailed characterization of the consumption function in the

IG model. When the expected rate of return is below a key threshold, the equilibrium

consumption function displays a discontinuity at the liquidity constraint. Consequently,

consumption falls discontinuously when a consumer spends down her assets and hits the

liquidity constraint. This intuitive prediction is not possible in dynamically-consistent

consumption models, which imply that the timepath of consumption is continuous, even

at the point at which the consumer hits a liquidity constraint.

3See Laibson (1997) and Barro (1999) for cases with observational equivalence of policy functions.
4Our uniqueness result even offers something new in settings in which linear policy rules support an

equilibrium: it tells us that if one can find an equilibrium in linear policy rules then that equilibrium is
unique in the set of all policy rules, linear or non-linear.
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Finally, the IGmodel features a single welfare criterion, even though the model involves

dynamically inconsistent behavioral choices. Because the present is valued discretely more

than the future, the current self has an incentive to overconsume; but the discretely higher

value of the present only lasts for an instant, so this overvaluation does not affect the

welfare criterion. Hence, the model simultaneously features a single welfare function and

a behavioral tendency toward overconsumption.

In summary, the IG model is generalizable with regard to both market completeness

and consumption preferences, supports a unique equilibrium, makes new predictions about

the consumption function, and identifies a single sensible welfare criterion.

In Section 2 we present the PF model of time preferences. In Section 3 we present

the consumption problem that we use as our application. In Section 4 we describe the

IG model, which arises when we start with the PF model and let the hazard rate of

transition from present to future go to infinity. In Section 5 we show that the IG model

has the same value function as a related, but non-standard, dynamically-consistent opti-

mization problem. We use this partial equivalence result to prove equilibrium existence

and uniqueness. We also use it to derive a unique equilibrium of the limiting version of

our model in which the noise in the economy goes to zero. In Section 6, we characterize

the equilibrium consumption function for the limiting case of no labor income. In Section

7, we characterize the equilibrium consumption function for the general case with labor

income. Section 8 concludes.

2. The Present-Future Model of Time Preferences

We now describe a class of discount functions that model present-biased preferences in

continuous time. There are two alternative representations: a stochastic discount function,

which we present first, and a deterministic discount function.

2.1. A Stochastic Discount Function. In the discrete-time formulation of quasi-

hyperbolic time preferences, it is natural to divide time into two intervals: the present —

consisting of only the current period — and the future. All periods, present and future, are

discounted exponentially with the discount factor 0 < δ < 1. Future periods are further

discounted with uniform weight 0 < β ≤ 1. Combining these pieces, the present period
(i.e. t = 0) receives full weight, and future periods (i.e. t ≥ 1) are given weight β δt.
This model can be generalized in two ways. First, the present could last for an arbitrary

length of time, instead of ending after the current period. Second, the duration of the
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present could be stochastic, instead of being deterministic. Both of these generalizations

have natural continuous-time analogues.

Consider an economic self born at time s0 = 0. Call this self ‘self 0’. The lifetime

of self 0 is divided into two intervals: a ‘present’, which lasts from s0 to s0 + τ 0; and

a ‘future’, which lasts from s0 + τ 0 to ∞. Think of the present as the interval during

which control is exercised by self 0, and of the future as the interval during which control

is exercised by subsequent selves. The length τ 0 of the present is stochastic, and is

distributed exponentially with hazard rate λ ∈ [0,∞).
When the present of self 0 ends at s0 + τ 0, a new self is born and takes control of

decision-making. Call this new arrival ‘self 1’. The preferences of self 1, like those of

self 0, can be divided into two intervals. Self 1 has a present that lasts from s1 = s0+ τ 0

to s1 + τ 1, and a future that lasts from s1 + τ 1 to ∞. Continuing in this way, we obtain
a sequence of selves {0, 1, 2, ...} born at dates {s0, s1, s2, ...}. For all n ≥ 1, self n has a
present that lasts from sn = sn−1 + τn−1 to sn + τn, and a future that lasts from sn + τn

to ∞. Figure 1 provides a visual representation.
We assume that all selves discount exponentially with discount factor 0 < δ < 1.

Furthermore, each self values her future discretely less than her present, discounting it

by the additional factor 0 < β ≤ 1. More explicitly, we assume that self n applies the
discount factor Dn(t) to the utility flow at time sn + t, where

Dn(t) =

(
δt if t ∈ [0, τn)
β δt if t ∈ [τn,∞)

)
. (1)

In other words, her discount function Dn decays exponentially at rate γ = − ln δ up to
time τn, drops discontinuously at τn to a fraction β of its level just prior to τn, and

decays exponentially at rate γ thereafter.5 Figure 2 plots a single realization of this

discount function, with τn = 3.4.

This continuous-time discount function nests exponential discounting: either set λ = 0,

so that the future never arrives; or set β = 1, so that there is no distinction between

present and future. It is similar to some of the deterministic discount functions used in

Barro (1999) and Luttmer and Mariotti (2003). However, we assume that τn is stochastic.

Among other things, this ensures that the expectation of the discount function is smooth.

5The lengths {τ0, τ1, τ2, ...} of the present intervals are i.i.d.
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When λ→∞, the discount function Dn converges to the limiting function:

D∞(t) =

(
1 if t = 0

β δt if t ∈ (0,∞)

)
.

Characterizing this limiting case is the main focus of the current paper.6

2.2. A Reinterpretation Using a Deterministic Discount Function. The ar-

guments in this paper are consistent with a second interpretation of the time preferences

described above: one can assume that a new self is born every instant ; that the present

of each self lasts only an instant; and that each self has a deterministic discount function

D̄ equal to the expected value of the stochastic discount function Dn described above

(Harris and Laibson 2001).7 We describe this alternative deterministic interpretation in

the current subsection and compare it with the stochastic approach in Subsection 2.3.

Readers who wish to skip this material, can jump immediately to Section 3 without loss

of continuity.

In the deterministic interpretation, each self uses the discount function D̄ given by

D̄(t) = E
£
Dn(t)

¤
= e−λ t δt + (1− e−λ t) β δt.

D̄(t) is the sum of two terms. The first term is the probability e−λ t that the drop in Dn

does not occur before time t, times the discount factor δt that applies before the drop.

The second term is the probability 1− e−λ t with which the drop in Dn occurs after time

t, times the discount factor β δt that applies after the drop. D̄(t) can also be written

D̄(t) = (1− β) e−(γ+λ) t + β e−γ t,

where γ = − ln(δ) > 0 is the long-run discount rate. Written this way, D̄(t) is seen to be
a convex combination of the short-run exponential discount factor e−(γ+λ) t, with weight

1− β, and the long-run exponential discount factor e−γ t, with weight β.

The instantaneous discount rate of the deterministic discount function D̄ is

− D̄0(t)

D̄(t)
= γ +

λ e−λ t (1− β) δt

D̄(t)
.

6Notice that, because τn → 0 as λ→∞, the expectation of the discount function – which is smooth
when λ is finite – has a discontinuity when λ =∞. This does not cause any problems.

7See footnote 15 for a development of this line of argument.
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It too is a sum of two terms. The first term is the long-run (exponential) discount rate

γ. The second term is the expected drop in D at time t, namely λ e−λ t (1−β) δt, divided

by expected value of D at time t, namely D̄(t). (The flow probability of a drop at time t

is λ e−λ t and the size of the drop is (1− β) δt.) Note that the instantaneous discount rate

falls from γ + λ (1− β) at t = 0 to γ at t =∞. Figure 3 plots D̄ for λ ∈ {0, 0.1, 1,∞}.

2.3. Comparison of the Stochastic and Deterministic Discount Functions.
The stochastic and deterministic discount functions differ in one key way: the stochastic

discount function assumes a present of non-infinitesimal duration τn > 0, whereas the

deterministic discount function assumes a present of infinitesimal duration dt. Hence the

stochastic discount function assumes a countable number of non-infinitesimal selves, while

the deterministic discount function assumes a continuum of infinitesimal selves.

The two formulations generate the same equilibrium behavior. To see why, note that

the current self in the stochastic formulation is dynamically consistent during her period

of control between time sn and time sn+1 = sn + τn. It therefore makes no difference

whether we regard her as a non-infinitesimal agent, who decides how to behave at the

outset of her control interval, or as a continuum of infinitesimal agents, each of which

makes a decision during its instant of control.

The stochastic formulation has two advantages over the deterministic one. First, it

can be set up using only standard mathematical tools. Second, when the stochastic

formulation is used, we can derive the IG model in a single step.8 We therefore focus on

the stochastic formulation.

3. Application to a Consumption Problem

We now describe an important economic environment that we use to illustrate the im-

plications of the discounting model. We study an infinite-horizon consumption-savings

problem with liquidity constraints (cf. Deaton 1991, Carroll 1992). We include liquidity

constraints, since they make a fundamental difference to the analysis by necessitating

non-linear policy rules. On the other hand, we exclude labor-income uncertainty, since

that would complicate the notation and does not affect our conclusions. This section also

defines equilibrium and introduces the Bellman-system representation.

8In the analysis using the stochastic discount function, we let λ→∞. In doing so, we simultaneously
pass from non-infinitesimal to infinitesimal selves and from the finite-λ discount function to the infinite-λ
discount function. By contrast, in order to set up the deterministic discount function, we first have to
formalize the idea of an infinitesimal self. This involves taking the limit as the span of control of a
non-infinitesimal self goes to 0. We then let λ → ∞.
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3.1. The Dynamics. At any time t ≥ 0, the consumer has a stock of financial wealth
x ≥ 0 and receives a flow of labor income y > 0. If x > 0, she can choose any consumption

level c > 0: wealth is a stock and consumption is a flow, so any finite consumption is

achievable provided it is not maintained for too long. If x = 0 then she can only choose

a consumption level 0 < c ≤ y: she has no wealth and cannot borrow, so she cannot

consume more than her labor income. This is the liquidity constraint.

Whatever the consumer does not consume is invested in an asset, the returns on

which are distributed normally with mean μdt and variance σ2 dt, where μ ∈ (−∞,∞)
and σ ∈ (0,∞). The change in wealth is therefore

dx = (μx+ y − c) dt+ σ x dz,

where z is a standard Wiener process.9

3.2. Equilibrium. Recall that the consumer is modeled as a sequence of autonomous

selves (see Figure 1). Each self controls consumption during her own present and cares

about — but does not control — consumption in her future. Our consumption problem is

therefore an intrapersonal game. Following the literature in intergenerational games, our

solution concept for this game will be stationary Markov-perfect equilibrium.10

Maskin and Tirole (2001) define Markov-perfect equilibrium (or MPE for short). MPE

is a refinement of subgame-perfect equilibrium which only allows strategies to depend on

information that is directly payoff relevant (i.e. information that is necessary to determine

players’ choice sets or payoffs). It does not allow strategies to depend on information that

is only indirectly relevant (e.g. it does not allow the strategy of one player to depend on

information that only becomes relevant if the strategy of another player depends on it).

In our model, the only information that is directly payoff relevant is the current level of

wealth, so MPE restricts analysis to strategies that map current wealth to consumption.11

We go further, restricting attention to stationary MPE (or SMPE for short). In other

9We could also make labor income stochastic: in addition to labor income flow y, the agent receives
sporadic (i.i.d.) lump-sum bonuses. To preserve stationarity, such bonuses would arrive with a constant
hazard. We could even allow for non-stationary labor income, at the expense of an extra state variable.
These generalizations would not change our results.
10For two important examples, see Bernheim and Ray (1987) and Leininger (1986).
11In our model, the information available to self n at time t ∈ [sn, sn+1) consists of the timepath

z : [0, t] → R of past shocks, the timepath x : [0, t] → [0,∞) of past wealth, the sequence {s0, s1, ..., sn}
of past transition times, the timepath c : [0, t) → (0,∞) of past consumption and the current time. Of
all this information, only the current value of wealth xt is directly payoff relevant.
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words, we study equilibria in which all selves use the same strategy.

Consider self n. Suppose that the future selves n + 1, n + 2, ... all employ the same

Markov strategy ec : [0,∞) → (0,∞). Then the dynamics of wealth from time sn + τn

onwards are given by

dxt = (μxt + y − ec(xt)) dt+ σ xt dz

and the continuation value of self n is

v(xsn+τn,ec ) = Esn+τn ∙Z ∞

sn+τn

e−γ(t−(sn+τn)) u(ec(xt)) dt¸ ,
where: sn+τn is the time at which control passes from self n to self n+1; xsn+τn is wealth

at time sn+τn; u : (0,∞)→ R is the instantaneous utility function; γ = − ln(δ) > 0 is the
long-run discount rate; and Esn+τn denotes expectations conditional on the information

available at time sn + τn.12

Suppose further that self n employs the Markov strategy c : [0,∞) → (0,∞). Then
the dynamics of wealth from time sn to time sn + τn are given by

dxt = (μxt + y − c(xt)) dt+ σ xt dz

and the current value of self n is

w(xsn, c,ec ) = Esn ∙Z sn+τn

sn

e−γ(t−sn) u(c(xt)) dt+ β e−γ τn v(xsn+τn,ec )¸ ,
where: sn is the time at which control passes from self n − 1 to self n; xsn is wealth at
time sn; and Esn denotes expectations conditioned on information available at time sn.

The objective of self n is to find a Markov strategy c∗ that is optimal in the sense that,

for all xsn ≥ 0, c∗ maximizes w(xsn, c,ec ) with respect to c.13 We denote by BR(ec ) the
set of all such Markov strategies c∗. An SMPE of our model is then any Markov strategy

c such that c ∈ BR(c).

3.3. Bellman System for v, w and c. An SMPE can be characterized in terms of

three functions: the equilibrium Markov strategy (or consumption function) c itself; the

associated continuation-value function v : [0,∞) → R; and the associated current-value
12Karatzas and Shreve (1991) discuss regularity conditions for stochastic differential equations.
13Given that all future selves are employing Markov strategies, a non-Markov strategy never does better

for the current self than an optimal Markov strategy.
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function w : [0,∞)→ R.
Since future selves use the consumption function c, the continuation-value function v

must satisfy the differential equation

0 = 1
2
σ2 x2 v00 + (μx+ y − c ) v0 − γ v + u( c ) (2)

for x ∈ [0,∞), where we have suppressed the dependence of v and c on x. This equation

reflects the fact that the following effects must sum to zero: the expected instantaneous

change in the value function (1
2
σ2 x2 v00 + (μx + y − c ) v0); the instantaneous change in

value due to discounting (−γ v); and the instantaneous utility flow (u(c)).
Similarly, since the current self also uses the consumption function c, and since the

continuation-value function is v, the current-value function w satisfies

0 = 1
2
σ2 x2w00 + (μx+ y − c)w0 + λ (β v − w)− γ w + u(c) (3)

for x ∈ [0,∞), where we have suppressed the dependence of v, w and c on x. This

equation is very similar to equation (2). The only differences are: (i) the current-value

function w replaces the continuation-value function v; and (ii) there is an additional term

λ (β v − w), which reflects the hazard rate λ of making the transition from the present,

valued by w, to the future, valued by β times v.

Third, if self n behaves optimally — taking the behavior of her future selves as given —

then c will satisfy the instantaneous optimality condition(
u0(c) = w0 if x > 0

u0(c) = max{u0(y), w0} if x = 0

)
. (4)

Intuitively, if x > 0, then there is no constraint on consumption. So consumption c

is chosen to equate the marginal utility of consumption u0(c) and the marginal value

of current wealth w0. If x = 0, then the liquidity constraint may or may not bind: if

w0 < u0(y), then the constraint binds, and c = y (or, equivalently, u0(c) = u0(y)); if

w0 ≥ u0(y) then the constraint does not bind, and u0(c) = w0.

Fourth, systems of second-order ordinary differential equations like (2-4) typically

require two boundary conditions. We have already supplied one boundary condition, by

requiring that equations (2-4) hold at x = 0, and not just in the interior of the wealth

space. We refer to this as the boundary condition at 0. But we need to supply a second
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boundary condition. This boundary condition has two parts: global upper bounds for v

and w, and global lower bounds for v and w. Among other things, these bounds have the

effect of controlling the behavior of v and w near infinity.

Let us assume temporarily that u is bounded below. Then it is easy to see that v is

bounded below by 1
γ
u(0), and that w is bounded below by γ+β λ

γ (γ+λ)
u(0). Furthermore v

is bounded above by the value function v of a consumer who: (i) has utility function u;

and (ii) discounts the future exponentially at rate γ. Finally, w is bounded above by the

value function w of a consumer who: (i) has utility function eu = u+max{0,−u(0)}; and
(ii) discounts the future exponentially at rate γ.14

Putting these observations together, we have the following characterization of equilib-

rium in the PF model.

Theorem 1. Suppose that u is bounded below. Then the consumption function

c : [0,∞) → (0,∞) is an SMPE of the PF model if and only if there is a continuation-
value function v : [0,∞) → R and a current-value function w : [0,∞) → R such that
(c, v, w) together satisfy the pair of differential equations

0 = 1
2
σ2 x2 v00 + (μx+ y − c) v0 − γ v + u(c), (5)

0 = 1
2
σ2 x2w00 + (μx+ y − c)w0 + λ (β v − w)− γ w + u(c) (6)

for all x ∈ [0,∞), the optimality condition(
u0(c) = w0 if x > 0

u0(c) = max{u0(y), w0} if x = 0

)
(7)

and the global bounds

1
γ
u(0) ≤ v ≤ v, (8)

γ+β λ
γ (γ+λ)

u(0) ≤ w ≤ w (9)

for all x ∈ [0,∞). We refer to (5-9) as the Bellman system of the PF consumer.15

In general, the PF model can be expected to have a finite number of equilibria. Fur-

thermore, if λ is close to 0 (a dynamically consistent limit case), then equilibrium is
14This is because: (i) considering utility flows in the present, we have u ≤ eu; and (ii) considering utility

flows in the future, we have β u ≤ β eu ≤ eu.
15In the model with the deterministic discount function D̄, the consumption function c is a SMPE iff
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unique. Similarly, if β is close to 1 (another dynamically consistent limit case), then

equilibrium is again unique. Much more interestingly, if λ is close to ∞ (a dynamically

inconsistent limit case), then equilibrium is unique. This is the case that we study next.

4. The Instantaneous-Gratification Model

Experimental evidence suggests that the present — in other words, the interval [sn, sn+τn)

during which consumption is not down-weighted by β — is short.16 This is the same as

saying that λ is large, since the arrival rate of the future is λ. In the current section,

we consider the limiting case λ → ∞, which serves as an approximation of situations in
which the duration of the present (namely τ) is short. We refer to the limiting case as

the instantaneous-gratification model, or IG model.

In Section 6 we show that λ→∞ is a good approximation for λ ≥ 12. In other words,
if time is measured in years and the average duration of the present is less than a month,

then the IG model (λ→∞) is a good approximation for the PF model (with λ ≥ 12).
There are two ways to derive the IG model. The first way is to derive the Bellman

equation of the IG consumer by taking the limit of the Bellman system of the PF consumer

as λ→∞. This explicitly links the PF model and the IG model. Moreover, defining an
equilibrium concept as the set of limit points of equilibria in a neighborhood of games is

there is a value function V such that (c, V ) jointly satisfy the partial differential equation

0 = 1
2 σ

2 x2 ∂2V
∂x2 (t, x) + (μx+ y − c(x)) ∂V∂x (t, x) + D̄(t)u(c(x)) + ∂V

∂t (t, x),

the optimality conditions ½
u0(c(x)) = ∂V

∂x (0, x) if x > 0
u0(c(x)) = max

©
u0(y), ∂V∂x (0, x)

ª
if x = 0

¾
and the global bounds ¡R∞

t
D̄(s) ds

¢
u(0) ≤ V (t, x) ≤ V (t, x).

for all (t, x) ∈ [0,∞)2. Here: V (t, x) is the value at time 0 of consumption over the interval [t,∞) when
financial wealth is x; ∂V

∂x (0, x) is the marginal value of wealth at time 0 when financial wealth is x; and
V is the value function of a time-consistent consumer with discount function D̄. We refer to this as the
Bellman system of the D̄ consumer. It is valid for general D̄. However, if D̄(t) = e−λ t δt+(1−e−λ t)β δt as
in the text, then there is a solution (c, V ) in which V (t, x) takes the form e−λ t δtw(x)+(1−e−λ t)β δt v(x)
iff (c, v, w) satisfies the Bellman system of the PF consumer. In other words: any solution of the Bellman
system of the PF consumer generates a solution of the Bellman system of the D̄ consumer; but the
possibility remains that the Bellman system of the D̄ consumer has other solutions.
16For example, McClure et al (2007) estimate a 50% discount rate over the course of an hour for

food/drink rewards. In most intertemporal choice studies, sharp short-run discounting (at least 10%
and usually much more) is observed at horizons of hours and days (e.g., see Ainslie 1992, Frederick,
Loewenstein, and O’Donoghue 2002).
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a technique with precedents (e.g., trembling-hand perfect equilibrium and proper equilib-

rium).17 The second way is to derive the Bellman equation of the IG consumer directly

from an analysis of her objective. This has the advantage that it generates intuitive in-

sights into the logic of the IG model. We describe the first approach — taking the limit of

the Bellman system of the PF consumer — here. For the alternative approach, see Online

Appendix E.

Suppose the triple (cλ, vλ, wλ) solves the Bellman system of the PF consumer (for a

given value of λ). In particular,

0 = 1
2
σ2 x2 v00λ + (μx+ y − cλ) v

0
λ − γ vλ + u(cλ), (10)

1
γ
u(0) ≤ vλ ≤ v (11)

for all x ∈ [0,∞), and (
u0(cλ) = w0λ if x > 0

u0(cλ) = max{u0(y), w0λ} if x = 0

)
. (12)

Moving to a subsequence if necessary, suppose further that vλ and wλ (along with their

first and second derivatives) and cλ converge to limiting functions v and w (along with

their first and second derivatives) and c.18 Then the equations characterizing (c, v, w) can

be derived as follows.

Note first that equation (10) does not depend directly on λ. This equation only applies

17For example, in the case of trembling-hand perfection, one finds the set of all Nash equilibria of an
ε-perturbed version of the original game; and then one finds the set of limit points of these equilibria as
ε goes to 0. In the case of the IG model, one finds the set of all SMPE of the game with finite λ; and
then one finds the set of limit points of these equilibria as λ goes to ∞.
18A rigorous proof of the fact that vλ and wλ converge in this way is beyond the scope of the current

paper. However, we offer the following motivation for the mathematically minded reader. First, it can
be shown that c is never infinite. Hence equations (5) and (6) are non-degenerate quasilinear elliptic
differential equations in (0,∞). Second, inequalities (8) and (9) show that the sets V = {vλ | λ ∈ [0,∞)}
and W = {wλ | λ ∈ [0,∞)} are equibounded. Third, combining the first and second observations, we
see that V and W are precompact in the space C2,1loc ((0,∞)) of functions which, along with their first and
second derivatives, are Lipschitz continuous on compact subsets of (0,∞). Passing to a subsequence if
necessary, we therefore conclude that ∃ v, w ∈ C2,1loc ((0,∞)) s.t. vλ → v and wλ → w (both in C2,1loc ((0,∞)))
as λ → ∞. Fourth, the convergence of cλ (which lies in C1,1loc ((0,∞))) can be deduced from that of w0λ
(which likewise lies in C1,1loc ((0,∞))) by inverting the first-order condition u0(cλ) = w0λ. We denote the
limit of cλ by c. Fifth, it can be shown, that the appropriate boundary conditions (which do not involve
second derivatives) also hold. Finally, we show below that the Bellman system of the IG consumer has
a unique solution. Hence the limit point (c, v,w) is unique. Hence, (cλ, vλ, wλ) converges (and not just
along a suitably chosen subsequence).
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after the transition to the future has taken place, so it is not affected by the arrival rate

of the future. Letting λ→∞ therefore preserves the form of (10), yielding

0 = 1
2
σ2 x2 v00 + (μx+ y − c) v0 − γ v + u(c) (13)

for all x ∈ [0,∞). In other words, just as vλ was the expected present discounted value
obtained when consumption was chosen according to the exogenously given consumption

function cλ, so v is the expected present discounted value obtained when consumption is

chosen according to the exogenously given consumption function c.

Second, wλ − β vλ is the value function of a consumer who: (i) has utility function

(1−β)u; (ii) discounts the future exponentially at rate γ+λ; and (iii) has the exogenously
given consumption function cλ.19 Hence wλ − β vλ → 0 as λ→∞.20 In particular,

w = β v (14)

for all x ∈ [0,∞).
Third, like equation (10), equation (12) does not depend directly on λ. Letting λ→∞

therefore preserves the form of this equation, yielding(
u0(c) = w0 if x > 0

u0(c) = max{u0(y), w0} if x = 0

)
. (15)

Just as cλ was the optimal consumption function when the current-value function was wλ,

so c is the optimal consumption function when the current-value function is w.

Fourth, passing to the limit in equation (11), we obtain the global bounds

1
γ
u(0) ≤ v ≤ v (16)

19Note that wλ is obtained by discounting back to time s0 the utility flow u(cλ) during the span of
control of self 0, and the utility flow β u(cλ) during the spans of control of selves 1, 2, .... Similarly, vλ is
obtained by discounting back to time s1 the utility flow u(cλ) during the span of control of self 1, and the
utility flow u(cλ) during the spans of control of selves 2, 3, .... However, vλ could just as well be obtained
by discounting back to time s0 the utility flow u(cλ) during the span of control of self 0, and the utility
flow u(cλ) during the spans of control of selves 1, 2, .... Subtracting β times this latter utility flow from
the utility flow for wλ, we see that wλ − β vλ is obtained by discounting back to time s0 the utility flow
(1−β)u(cλ) during the span of control of self 0, and the utility flow 0 during the span of control of selves
1, 2, .... That is, wλ − β vλ is the value function described in the text.
20The assumption that u is bounded below is used here. It implies that wλ − β vλ ≥ 1−β

γ+λ u(0).
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for all x ∈ [0,∞). However, economic intuition suggests that the different selves should
be able to overcome the coordination problem among themselves, at least to the extent

of obtaining a minimum flow utility of u(y) instead of u(0). This intuition is vindicated

by the following lemma, which allows us to replace (16) with the tighter

1
γ
u(y) ≤ v ≤ v (17)

for all x ∈ [0,∞), and which is important for our theory.

Lemma 2. Suppose that u is bounded below. Then v ≥ 1
γ
u(y).

Proof. See Appendix A.

Taken together, equations (13-15) and (17) constitute the Bellman system of the IG

consumer. Eliminating w from this system, we arrive at the following definition:

Definition 3. The Bellman equation of the IG consumer consists of the differential
equation

0 = 1
2
σ2 x2 v00 + (μx+ y − c) v0 − γ v + u(c) (18)

for all x ∈ [0,∞), the optimality condition(
u0(c) = β v0 if x > 0

u0(c) = max{u0(y), β v0} if x = 0

)
(19)

and the global bounds
1
γ
u(y) ≤ v ≤ v (20)

for all x ∈ [0,∞).21

Notice that the Bellman equation of the IG consumer differs from the Bellman equation

of an exponential consumer with utility function u and discount rate γ only in that the

21In order to give a mathematically complete definition, we need to say what we mean by a solution
of the Bellman equation of the IG consumer. From a mathematical point of view, the best answer is
‘a viscosity solution’. This is because the equation is degenerate, in the sense that the coefficient of
v00 (namely 1

2 σ
2 x2) tends to 0 as x tends to 0. However, from a practical point of view, a perfectly

satisfactory answer is ‘a classical solution’. This is because: (i) any classical solution is a fortiori a
viscosity solution; (ii) as Theorem 5 below shows, the Bellman equation of the IG consumer has a unique
viscosity solution; and (iii) this unique viscosity solution is in fact twice continuously differentiable, and
therefore a classical solution. For an introduction to viscosity solutions, and an explanation of their
relationship to classical solutions, see Crandall et al (1992).
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marginal value of (future) wealth v0 is multiplied by the factor β in the optimality condition

(19). Furthermore the former reduces to the latter if we put β = 1. The presence of the

multiplicative β term is a slight variation on the usual form of the Envelope Theorem.

This “new” Envelope Theorem is quite natural since the future arrives instantaneously,

and the future has continuation value β v. Hence the marginal value of wealth is β v0.

This tells us two things. First, the liquidity constraint binds iff x = 0 and β v0 < u0(y), in

which case c = y (or, equivalently, u0(c) = u0(y)). Second, if the liquidity constraint does

not bind, then the current self sets consumption in such a way that u0(c) = β v0.

Notice too that, while both our characterization of equilibrium in the PF model in

terms of the Bellman system of the PF consumer, and our derivation of the Bellman

equation of the IG consumer from the Bellman system of the PF consumer, used the

assumption that u is bounded below, the Bellman equation of the IG consumer as such

makes economic and mathematical sense whether or not u is bounded below.22 This raises

the question whether it is possible to derive the IG model when u is not bounded below.

Note first that this question relates to the behavior of equilibria of the PF model

when λ is large. In the following discussion, we therefore restrict attention to λ ∈ Λ =

[max{0, μ− γ},∞). Note second that, whether or not u is bounded below, the PF model
possesses equilibria in which wλ is bounded below. We call such equilibria “well-behaved”.

Furthermore, if u is bounded below, then all equilibria are well-behaved. Third, in any

well-behaved equilibrium, we have wλ ≥ wλ =
γ+β λ
γ (γ+λ)

u(y). In other words, if wλ is

bounded below, then it is bounded below by the specific quantity wλ. Fourth, wλ is itself

bounded below on Λ (by min{ 1
γ
u(y), β

γ
u(y)}).

Armed with this extra information, the discussion above adapts easily to show that,

moving to a subsequence if necessary, any sequence of well-behaved solutions of the Bell-

man system of the PF consumer converges, as λ → ∞, to a solution of the Bellman
equation of the IG consumer.

The only catch is that, when u is not bounded below, there exist equilibria for which

wλ(0) = −∞.23 We call such equilibria “pathological”. For example, if u is not bounded
below, then the PF model admits a pathological equilibrium in which the consumption

function is 0. The mathematical logic behind this equilibrium is that, because future

22The global bounds (8-9) in the PF model involve u(0), which is negatively infinite if u is unbounded
below, whereas the global bounds (20) in the IG model involve u(y), which is bounded since y > 0.
23Note that wλ must be non-decreasing. This is because the current self has access to what is, effectively,

a free-disposal technology: she can consume at an arbitrarily high rate. Hence the only way in which wλ

can fail to be bounded below is if wλ(0) = −∞.
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selves consume at rate 0, the continuation value of the current self will be −∞, no matter
what she does. Hence her current value will be −∞, no matter what she does. Hence
she may as well consume 0 too. This mathematical logic flies in the face of the intuitive

logic of the situation: consuming nothing is the last thing that the current self should be

doing, since by doing so she is passing on resources to selves who will never use them.

Overall, it makes sense to rule out the pathological equilibria and focus on the well-

behaved equilibria. These always exist. Moreover, moving to a subsequence if necessary,

they converge to an equilibrium of the IG model. Finally, as we show below, equilibrium

is unique in the IG model. Hence no subsequence is in fact necessary: the well-behaved

equilibria converge to the equilibrium of the IG model.

5. Existence, Uniqueness and Value-Function Equivalence

In this section we show that the value function of the IG consumer exists and is unique.

To prove this, we use a key intermediate result. We describe an alternative consumer with

dynamically consistent preferences and a slightly altered utility function bu. We show that
a value function v solves the Bellman equation of the IG consumer if and only if it solves

the Bellman equation of this dynamically consistent “bu consumer”. We call this result
“value-function equivalence”. We also emphasize that value-function equivalence is not

the same as observational equivalence, and indeed that observational equivalence does not

hold : the consumption function of the IG consumer is not the same as the consumption

function of the bu consumer.
Value-function equivalence implies both the existence and the uniqueness of the value

function of the IG consumer, for the simple reason that the bu consumer solves an opti-
mization problem, and the value function of an optimization problem always exists and

is unique. Uniqueness is the most important property of the IG model: the IG model

resolves the multiplicity problem that has plagued the literature on dynamically incon-

sistent preferences. The current section also discusses a number of other issues, including

the extension of the uniqueness result to the deterministic version of our model (in which

asset returns are non-stochastic).

5.1. Assumptions. Before proceeding further, we introduce the simple assumptions

on which the analysis in the rest of the paper will be based:

A1 u(c) =

(
1
1−ρ (c

1−ρ − 1) if ρ 6= 1
ln(c) if ρ = 1

)
;
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A2 1− β < ρ;

A3 μ < μ, where μ =

(
1
1−ρ γ +

1
2
ρ σ2 if ρ < 1

∞ if ρ ≥ 1

)
.

Assumption A1 is standard: u has constant relative risk aversion ρ.24 Assumption A2

ensures that the dynamic inconsistency of the IG consumer (as measured by 1 − β) is

less than the coefficient of relative risk aversion.25 This inequality would be satisfied in

a standard calibration: empirical estimates of the coefficient of relative risk aversion ρ

typically lie between 1
2
and 5; and the short-run discount factor β is typically thought to

lie between 1
2
and 1.26 Assumption A3 is a one-sided (hence weaker) version of a standard

integrability assumption.27 It ensures that the consumer’s expected lifetime utility is not

positively infinite even when the utility function is unbounded above (i.e. ρ ≤ 1). It

achieves this by ensuring that wealth does not grow too fast.28

In fact, the assumption of constant relative risk aversion is more restrictive than

it needs to be (simplifying exposition). We could instead assume only that the utility

function has bounded relative risk aversion and bounded relative prudence: in other

words, relative risk aversion and relative prudence vary with consumption. This general

case is analyzed in an earlier working paper (Harris and Laibson 2000), and the argument

is summarized in Online Appendix H.

5.2. The Utility Function bu. The new utility function bu depends not only on con-
sumption bc, but also on wealth x: when x > 0, bu(bc, x) = bu+(bc); but when x = 0,bu(bc, x) = bu0(bc). In other words, the wealth-dependent utility function bu is made up of
two wealth-independent utility functions bu+ : (0,∞) → R and bu0 : (0, y] → R, with bu+
24Notice that Assumptions A1-A3 do not imply that u is bounded below. This is because the analysis

which follows takes the Bellman equation of the IG consumer (namely (18-20)) as its starting point, and
neither this equation nor our analysis of it depends on u being bounded below.
25The case 1 − β > ρ can also be analyzed. Now the consumer’s desire to consume immediately (as

measured by 1 − β) outweighs her desire to smooth consumption (as measured by ρ). The current self
therefore consumes all her financial wealth during her instant of control, forcing all subsequent selves to
consume only their labor income y. Since u(c)

c → 0 as c→∞, this burst of consumption by the current
self contributes nothing to the integral of lifetime utility. The value function is therefore v = 1

γ u(y).
(Notice that v0 = 0. This is consistent with the infinite consumption rate.)
26See Laibson et al (1998) and Ainslie (1992).
27In the model with y = 0 and β = 1, it is standard to assume γ > (1 − ρ) (μ − 1

2 ρ σ
2). This can be

divided into two parts: μ < 1
1−ρ γ +

1
2 ρσ

2 if ρ < 1; and μ > 1
1−ρ γ +

1
2 ρ σ

2 if ρ > 1. Wealth must not
rise too fast when u is unbounded above; and must not fall too fast when u is unbounded below.
28We do not need the other side of the standard assumption, which is designed to ensure that expected

lifetime utility is not negatively infinite, because we assume y > 0.
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being used to evaluate consumption when wealth is positive, and bu0 being used to evaluate
consumption when wealth is zero. The utility function bu+ is simply a rescaling of u. It is
given by the formula

bu+(bc) = ψ
β
u( 1

ψ
bc) + ψ−1

β
for bc ∈ (0,∞),

where

ψ =
ρ− (1− β)

ρ
.

(Notice that, under our assumptions, ψ ∈ (0, 1).) The utility function bu0 coincides withbu+ for bc ∈ (0, ψ y), and with the tangent to bu+ at ψ y for bc ∈ [ψ y, y].29

The relationship between u, bu+ and bu0 is plotted in Figure 4, using the parameter
values β = 2

3
, ρ = 3

4
and y = 1. Notice that bu+(bc) < u(bc) for all bc ∈ (0,∞) andbu0(bc) < u(bc) for all bc ∈ (0, y). This makes sense: the bu consumer optimizes fully, while

the IG consumer does not. Hence the bu consumer must be suitably handicapped in order
to prevent her from achieving a higher value than the IG consumer. Notice too thatbu0(y) = u(y). Once again this makes sense: in the liquidity constrained case, both the bu
consumer and the IG consumer consume their labor income y forever. So we must havebu0(y) = u(y) if they are both to obtain the same value.

5.3. Value-Function Equivalence. The bu consumer is a consumer who: (i) has the
utility function bu; (ii) faces the same wealth dynamics as the IG consumer; and (iii)

discounts the future exponentially at rate γ.

Theorem 4 [Value-Function Equivalence]. v is a value function of the IG consumer iff v

is a value function of the bu consumer.
Proof. See Appendix B.

The bu consumer has both conventional and unconventional features. On the conven-
tional side, she discounts exponentially (at rate γ), so she has dynamically consistent

preferences. On the unconventional side, her utility function depends on her financial

wealth x. When x > 0, her utility function is bu+. When x = 0, it is bu0. This unconven-
tional wealth-dependence is needed to generate value-function equivalence.

Using the Value-Function Equivalence Theorem, we can reduce the study of the prob-

lem of the IG consumer, which is game-theoretic, to the study of the problem of the bu
29I.e. bu0(bc) = bu+(bc) for bc ∈ (0, ψ y], and bu0(bc) = bu+(ψ y) + (bc− ψ y) bu0+(ψ y) for bc ∈ [ψ y, y].
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consumer, which is decision-theoretic (i.e. non-strategic). There is, however, an impor-

tant caveat: while the value function of the IG consumer coincides with value function

of the bu consumer, it is not the case that the consumption function of the IG consumer
coincides with the consumption function of the bu consumer. In particular, value-function
equivalence does not translate into observational equivalence in behavior.30

From the Value-Function Equivalence Theorem, it is easy to deduce the existence and

uniqueness of equilibrium in the IG model:

Theorem 5 [Existence and Uniqueness]. The IG model has a unique equilibrium.

The intuition for this result follows. First, optimization problems have unique value

functions, since there cannot be two state-contingent values that are both best values.

Hence, the bu consumer — who is an optimizer — must have a unique value function.
Second, the set of possible value functions of the bu consumer coincides with the set of
possible solutions of her Bellman equation. Hence the Bellman equation of the bu consumer
has a unique solution, namely her value function. Third, the Bellman equation of the IG

consumer is identical to the Bellman equation of the bu consumer. Hence the Bellman
equation of the IG consumer likewise has a unique solution, and this solution is the value

function of the bu consumer. Finally, one can use this common value function to derive
both the equilibrium policy function of the IG consumer, which is unique, and the optimal

policy function of the bu consumer, which is different from that of the IG consumer, and

which is not necessarily unique.31

Proof. See Appendix C.

5.4. The Deterministic Case: A Refinement. Until now we have assumed that

the standard deviation of asset returns is strictly positive (σ > 0). In other words, we

have been studying the stochastic IG model. In the present subsection, we discuss the

deterministic IG model (σ = 0).

30For a detailed exploration of the relationship between c and bc, see footnote 31 below and Online
Appendix G.7.
31For the IG consumer, equilibrium consumption is generated by the first-order condition u0(c) = β v0

if x > 0 and u0(c) = max{u0(y), β v0} if x = 0; and for the bu consumer, optimal consumption is generated
by the first-order condition bu0+(bc) = v0 if x > 0 and bu00(bc) = max{bu00(y), v0} if x = 0. Moreover,
it follows directly from the definition of bu+ that bu0+(bc) = 1

β u
0( 1ψ bc). Hence, when x > 0, we have

u0(c) = β v0 = β bu0+(bc) = u0( 1ψ bc) or bc = ψ c. In particular, bc is different from c. Furthermore, if
v0(0) = bu00(y) (a situation that arises iff μ = μ1), then bc can take on any value in the interval [ψ y, y] and
is not therefore unique.
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We begin by defining the Bellman equation of the deterministic IG consumer. We

then note that — as in the stochastic case — the Bellman equation of the deterministic

IG consumer is identical to the Bellman equation of the deterministic bu consumer. The
Value-Function Equivalence Theorem therefore holds for the deterministic IG model. In

particular, the deterministic IG model has a unique value function. This result is signifi-

cant, because it provides a way of resolving concerns that deterministic hyperbolic models

may have a continuum of equilibria (cf. Krusell and Smith (2000), Ekeland and Lazrak

(2006, 2010), and Karp (2007)).32 It eliminates not just the possibility of a continuum of

value functions, but even the possibility a finite multiplicity of value functions.

Next, in order to unify our deterministic and stochastic results, we show that the

value function of the deterministic IG consumer is the limit of the value function of the

stochastic IG consumer as noise converges to zero (σ ↓ 0). This implies that the value
function of the deterministic IG consumer is precisely the value function that would be

selected by a ‘trembling-hand’ analysis.33 In other words, uniqueness in the deterministic

IG model can be understood as a refinement result.

Finally, the deterministic model is tractable: the Bellman equation of the determin-

istic IG consumer can be transformed into an autonomous first-order differential equa-

tion, whereas the Bellman equation of the stochastic IG consumer is a second-order non-

autonomous differential equation. An earlier draft of this paper, Harris and Laibson

(2000), expands on these points and provides a complete characterization of the value

and policy functions of the deterministic case.

Turning now to the details, the first step is to define the Bellman equation of the

deterministic IG consumer. In Definition 3 above, we defined the Bellman equation of the

IG consumer for the case σ > 0. Definition 3 can therefore be thought of as the definition

of the Bellman equation of the stochastic IG consumer. We define the Bellman equation

32Like our paper, these papers are all continuous-time models and they all study discount functions that
are not exponential. However, there are some differences: (i) their models are embedded in a deterministic
economy and ours is in a stochastic economy (stochasticity smooths the value function and is also critical
for our characterization and global uniqueness results); (ii) our model sets up a present-future dichotomy
with a stochastic transition from one to the other (the stochastic transition makes the problem stationary,
improving tractability); (iii) finally, these papers emphasize that multiple equilibria exist, whereas our
key result is to show how to set up the model to obtain a unique equilibrium.
33There is a close analogy between using the limit as σ ↓ 0 to identify a unique equilibrium of the

deterministic IG model and using trembling-hand perfection to refine the set of Nash equilibria of a finite
game. In our case, the stochasticity of asset returns ensures that, starting from any interior state, every
other interior state will be reached with positive probability. In the case of trembling-hand perfection,
trembles ensure that all successor nodes of the game are reached with positive probability.
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of the deterministic IG consumer by putting σ = 0 everywhere in Definition 3.34

The second step is to demonstrate that value-function equivalence holds:35

Theorem 6 [Value-Function Equivalence]. v is a value function of the deterministic IG
consumer iff v is a value function of the deterministic bu consumer. ¥

From this in turn we obtain uniqueness:

Theorem 7 [Existence and Uniqueness]. The deterministic IG model has a unique value
function. ¥

The fourth step is to unify our deterministic and stochastic results:

Theorem 8. For all σ > 0, let vσ be the value function of the stochastic IG consumer;

and let v be the value function of the deterministic IG consumer. Then vσ → v uniformly

on compact subsets of [0,∞) as σ ↓ 0.

Proof. See Appendix D.

Remark. Assumptions A1 and A2 do not involve the parameter σ, and Assumption A3
becomes more restrictive as σ decreases. For the analysis of this section, it therefore

suffices to use the special case of Assumption A3 in which σ = 0.

6. The Consumption Function when y = 0

In the current section, we begin the analysis of the consumption function by studying the

limit cases of the IG model and the PF model in which there is no labor income.36 The

case y = 0 is useful for three reasons. First, both the IG model (in which λ → ∞ and

the present lasts only an instant) and the PF model (in which λ < ∞ and the present

has strictly positive duration) become highly tractable when y = 0: the value and policy

functions corresponding to the unique equilibrium are linear in wealth; and closed-form

34As in the case of the Bellman equation of the stochastic IG consumer, we need to say what we mean
by a solution of the Bellman equation of the deterministic IG consumer. This time there is only one
possible answer: ‘a viscosity solution’. This is because, for μ ∈ ( γ, 1β γ ), the unique solution of the
equation has a convex kink. In particular, it is not a classical solution. For an introduction to viscosity
solutions, and an explanation of their relationship to classical solutions, see Crandall et al (1992).
35Following math convention, we use a solid box, ¥, to signify that a theorem is stated without proof.
36The paper focuses on the case y > 0. The case y = 0 is analyzed only in the present section. The

two cases involve different considerations, and are treated separately.
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expressions can be found for both functions. Second, models in which policy functions are

linear in wealth are often used as benchmarks in the economics literature (for example,

Merton 1971, Barro 1999, Luttmer and Marriotti 2003). Third, we can use the case y = 0

to study the relationship between the IG model and the PF model. Empirical evidence

suggests that present bias affects utility flows in the immediate present (i.e., the current

week, day, or even hour) and does not affect utility flows that will come a few weeks or

months from now (e.g., McClure et al 2007). Hence, present bias describes a person who

wishes to break their diet today but keep the diet starting tomorrow, or a student who

prefers to take today off but get back to work tomorrow. Hence, present bias applies for

λ ' 365. Using the case y = 0, we show that λ → ∞ is a good approximation for all λ

values in the interval [12,∞), which subsumes the empirically relevant interval [365,∞).

6.1. The PF Model with y = 0. To analyze the PF model with y = 0, we make

two assumptions that differ from the y > 0 case. First, we focus exclusively on equilibria

in linear consumption functions. This allows us to dispense with the global upper and

lower bounds. Second, we need to strengthen Assumption A3 (which requires that μ <
1
1−ρ γ +

1
2
ρσ2 when ρ < 1) by requiring in addition that μ > 1

1−ρ γ +
1
2
ρ σ2 when ρ > 1.37

The Bellman system of the PF model with y = 0 is simpler than that of the PF

consumer with y > 0. It consists of the pair of differential equations

0 = 1
2
σ2 x2 v00 + (μx− c) v0 − γ v + u(c), (21)

0 = 1
2
σ2 x2w00 + (μx− c)w0 + λ (β v − w)− γ w + u(c) (22)

for all x > 0, and the optimality condition

u0(c) = w0, (23)

again for all x > 0. In particular, we no longer require that the differential equations or

the optimality conditions hold at x = 0, and we no longer require the global bounds.

It is natural to look for a solution to equations (21-23) in the form

v(x) = Θu(θ x), w(x) = Φu(φx), c(x) = αx,

where the constants Θ, Φ, θ, φ and α are all required to be strictly positive. Making this

37Cf. footnotes 27 and 28.



Instantaneous Gratification 23

substitution leads to the following quadratic equation for α:

0 =
λ

1 + λ
((ρ+ β − 1) α− eγ) + 1

1 + λ

¡
ρ (1− ρ)α2 + (2 ρ− 1) eγ α− eγ2¢ , (24)

where eγ = γ − (1− ρ) (μ− 1
2
ρ σ2).

See Online Appendix F for details. Furthermore it can be shown that only one of the two

solutions of this quadratic is relevant. This solution is always positive, varying from γ
ρ

when λ = 0 to γ
ρ−(1−β) when λ =∞.38

A more concrete understanding of this solution, and especially of its behavior as λ→
∞, can be obtained by taking expansions in λ−1. Indeed, we have

α =
γ̃

ρ+ β − 1 −
(1− β)β γ̃2

(ρ+ β − 1)3 λ
−1 +O

¡
λ−2

¢
.

The first-order effect of increasing λ is therefore to increase the average propensity to

consume. A higher value of λ implies that the multiplicative β-discounting associated

with the passage to the future arrives more quickly. More discounting lowers the value of

future consumption, thereby raising the propensity to consume today.

6.2. The IG Model with y = 0. To analyze the IG model with y = 0 we make

two assumptions that differ from the y > 0 case (mirroring our approach with the PF

model). First, we focus on equilibria in linear consumption functions. Second, we need

to strengthen Assumption A3 by requiring that μ > 1
1−ρ γ +

1
2
ρ σ2 when ρ > 1.

The Bellman equation of the IG consumer with y = 0 consists of the equation

0 = 1
2
σ2 x2 v00 + (μx− c) v0 − γ v + u(c) (25)

and the optimality condition

u0(c) = β v0, (26)

both for all x > 0.

This equation can be solved using the same methods as in Section 6.1. We look for

v(x) = Θu(θ x), c(x) = αx,

38Assumption A2 implies that ρ− (1− β) > 0, and Assumption A3 implies that eγ > 0.
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where the constants Θ, θ and α are all required to be strictly positive. Making this

substitution leads to the conclusion that

α =
eγ

ρ+ β − 1 , (27)

where eγ = γ − (1− ρ) (μ− 1
2
ρσ2) as before.39

It is easy to see that the right-hand side of equation (27) is the limit of the relevant

solution of equation (24) as λ→∞. Hence the policy function of the PF model converges,
as λ → ∞, to the policy function of the IG model. It can also be shown, as one would
expect in the light of the convergence of the policy functions, that the value function of

the PF model converges to the value function of the IG model as λ→∞.
Barro (1999) and Luttmer and Mariotti (2003) analyze continuous-time economies

with a general class of dynamically-inconsistent time preferences. In the economic envi-

ronments studied in these two papers linear policy rules always support an equilibrium

and the authors restrict attention to equilibria in this class.

Barro’s deterministic economy has returns that vary over time due to aggregate growth

dynamics, whereas our stochastic economy has returns that are i.i.d. For the log utility

case (ρ = 1), the propensity to consume in our economy is α = γ
β
, which matches the

propensity to consume that Barro derives for log utility when converging to the continuous

time analog of the quasi-hyperbolic discount function.

Like Barro, Luttmer and Mariotti (2003) study a range of time preferences, includ-

ing the continuous-time analog of the quasi-hyperbolic discount function. Unlike Barro,

Luttmer and Mariotti study a stochastic endowment economy, which they use to charac-

terize asset prices.

The IG model differs from Barro (1999) and Luttmer and Mariotti (2003) in that our

analysis is valid whether the equilibrium policies are linear or non-linear. For example,

the IG model can handle liquidity constraints, other forms of market incompleteness and

utility functions outside of the constant relative risk aversion class. In addition, we obtain

uniqueness for both the y = 0 and y > 0 versions of the IG model without restricting the

class of policy functions.

6.3. Calibration of the y = 0 Cases. We now provide a calibration of the y = 0

models. For this calibration we fix the parameters γ = 0.05, β = 2
3
, σ = 0.17 and

39We also obtain Θ = 1
γ and θ1−ρ = γ α1−ρ

γ̃+(1−ρ)α .
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μ = 0.06.40 We then vary the value of risk aversion (ρ) and the hazard rate at which the

future arrives (λ). This calibration identifies the range of λ for which the y = 0 cases of

the PF model and the IG model have quantitatively similar policy functions.

Specifically, we calculate the marginal propensity to consume for the PF model for

λ ∈
©
0, 1

10
, 1, 12, 52, 365, ∞

ª
. At λ = 0, the future never arrives; at λ = 52, the future

arrives on average once a week; and at λ = ∞, the future arrives instantaneously. We
believe that the appropriate calibration is λ = 365, implying that the psychological future

arrives on average once per day.

ρ = 1
2

ρ = 1 ρ = 2 ρ = 5

λ = 0 0.0472 0.0500 0.0405 0.000200

λ = 1
10

0.0797 0.0643 0.0463 0.000214

λ = 1 0.123 0.0733 0.0484 0.000214

λ = 12 0.140 0.0748 0.0486 0.000214

λ = 52 0.141 0.0750 0.0487 0.000214

λ = 365 0.142 0.0750 0.0487 0.000214

λ =∞ 0.142 0.0750 0.0487 0.000214

Table 1: The marginal propensity to consume as a function of the coefficient of relative
risk aversion (ρ) and the arrival rate of the future (λ).

Recall that the IG model is the case λ →∞. Table 1 shows that the IG model is a
good approximation for the PF model as long as λ ≥ 12. In other words, the IG model is
a good approximation of the PF model as long as the present lasts on average about one

month or less.

7. The Consumption Function when y > 0

We now turn to the more challenging case with non-zero labor income. For this case,

the PF model is not analytically tractable, and we therefore focus exclusively on the IG

model. Three general properties emerge. We first provide an overview of these properties

before delving into the details.

First, the consumption function is continuously differentiable in the interior of the

wealth space. This is a consequence of Brownian motion in the wealth process. Brownian
40These are standard calibration values based either on historical data (σ, μ) or parameter estimates

(γ, β). See Laibson, Repetto, and Tobacman (2011).
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motion makes the value function twice continuously differentiable, and thereby elimi-

nates discontinuities in the consumption function. More formally, optimality implies that

u0(c) = β v0 when x > 0. Differentiating this expression yields u00(c) c0 = β v00. Twice con-

tinuous differentiability of the value function therefore implies continuous differentiability

of the consumption function when x > 0.41

Second, if the expected rate of return μ is low enough, the consumption function will

have an upward discontinuity when wealth x = 0. Intuitively, if μ is low, then the liquidity

constraint binds at x = 0; but, even when μ is low, it cannot bind at any strictly positive

x (no matter how small) since x is a stock and c is a flow. The sudden arrival of a binding

liquidity constraint as x falls from any strictly positive value to 0 causes a downward jump

in c from c(0+) = c > y to c(0) = y. Moreover this downward jump can be understood

in terms of the consumer’s propensity to value immediate rewards discretely more than

delayed rewards. It does not arise when μ is sufficiently high, since in that case the

liquidity constraint does not bind at x = 0.

Third, it can happen that there is an interval over which the consumption function

is downward sloping. This occurs if the expected rate of return μ takes on intermediate

values. However, this non-monotonicity disappears when a bond is introduced, and the

investor can take both long and short positions in the bond. We therefore view the first

two properties as robust implications of the IG model, and the third property as an

artefact of the bond-free model that we study in the present paper.

These properties of the IG model contrast with the properties of the continuous-time

exponential model, the consumption function of which is continuous everywhere, including

at x = 0 where the liquidity constraint starts to bind, and monotonic for all choices of μ.

The properties of the IGmodel also contrast with the properties of the discrete-time quasi-

hyperbolic model, the consumption function of which may have several downward sloping

regions and a countable number of downward jumps.42 (Cf. Morris and Postlewaite 1997,

Krusell and Smith 2000, Harris and Laibson 2001, Morris 2002.)

7.1. Comparative Statics on μ. In order to simplify our description of the behavior

of the consumption function, we vary the expected rate of return μ and hold the other

41A deeper analysis shows that the value function is actually infinitely differentiable on the whole wealth
space (including the boundary). However, if the liquidity constraint binds, then this only translates into
infinite differentiability of the consumption function in the interior of the wealth space, because in this
case the consumption function is discontinuous at 0.
42Downward sloping regions and jumps are not eliminated by adding a bond to the discrete-time model.
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parameters fixed. It turns out that there are three qualitative cases to consider.

Recall that Assumption A3 requires that μ < μ, where μ = 1
1−ρ γ +

1
2
ρ σ2 if ρ < 1

and μ =∞ if ρ ≥ 1. We will show that there exists μ1 ∈ (γ, μ) such that the form of the
consumption function depends on the interval in which μ lies: (−∞, γ), (γ, μ1) or (μ1, μ).

We refer to these cases as the low-μ, intermediate-μ and high-μ cases respectively.

In all three cases, the consumption function is continuous everywhere except possibly

when x = 0, at which point the liquidity constraint may bind. When μ is low, the

consumption function is everywhere increasing, but the liquidity constraint is binding,

which generates an upward discontinuity at x = 0. When μ is intermediate, there is an

upward discontinuity at x = 0, followed first by a downward sloping region and thereafter

by an upward sloping region. When μ is high, the incentive to save is strong enough to

make the consumption function globally continuous and increasing.

Figure 5 shows three consumption functions corresponding to the three cases for μ.

These functions were obtained from careful numerical simulations of our model, but we

are also able to confirm their qualitative properties analytically. (See Online Appendix

G.) All three functions use the parameter values β = 2
3
, γ = 0.05, σ = 0.17, ρ = 3

4
and

y = 1. These values are illustrative, but they are all empirically sensible (and y = 1 is

a normalization): they involve a present bias of about a third, a long-run discount rate

of 5%, an annual standard deviation of stock returns of 17% and a coefficient of relative

risk aversion of 3
4
. The differences between the functions are the result of varying μ over

the set {0.04, 0.07, 0.09}: the top consumption function corresponds to μ = 0.04 (a low-μ
case); the middle consumption function corresponds to μ = 0.07 (an intermediate-μ case);

and the bottom consumption function corresponds to μ = 0.09 (a high-μ case). We will

refer back to this figure as we work through our formal results.

7.2. The low-μ case (discontinuity at zero wealth). The most novel case of our

model is μ < γ. The expected returns on the asset are not sufficiently attractive to induce

the IG consumer to save when her wealth is zero, and the liquidity constraint binds. More

precisely, let c ∈ (y,∞) be the unique solution of

u0(c) = β
u(c)− u(y)

c− y
. (28)

Theorem 9. If μ ∈ (−∞, γ) then: c(0) = y; c(0+) = c > y; and c0 > 0 on (0,∞).
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In other words: when the IG consumer has no wealth, she consumes all of her labor

income; if she acquires even a little wealth, then her consumption jumps up from y to

c; and her consumption increases monotonically with further increases in her wealth. In

particular, her consumption function is strictly increasing.

Proof. See Online Appendix G.

To understand Equation (28) consider a consumer with strictly positive wealth. In the

low μ case, the dynamics of wealth and consumption are causing wealth to trend lower.

We refer to the (stochastic) moment at which wealth runs out as the ‘crunch’. Suppose

that the consumption level of the pre-crunch self is c. Then the cost to the pre-crunch

self of putting aside an extra dx units of wealth is u0(c) dx. If the post-crunch self receives

a windfall consisting of an extra dx units of wealth, she can raise her consumption level

from y to c for a length of time dt = dx / (c − y). The benefit to the post-crunch self of

this increase in consumption is (u(c)− u(y)) dt, and the benefit to the pre-crunch self is

β (u(c) − u(y)) dt. The pre-crunch self is therefore indifferent between putting aside the

extra dx units of wealth and not putting them aside if and only if

u0(c) dx = β (u(c)− u(y)) dt.

Substituting for dt and dividing through by dx, we obtain equation (28).

As Theorem 9 implies, for the top consumption function in Figure 5: the liquidity

constraint is binding, i.e. c(0) = y = 1; there is an upward jump in consumption at x = 0,

from c(0) = 1 to c(0+) = c ≈ 3.45; and consumption rises monotonically thereafter.

7.3. The high-μ case. The other polar case of our model is that in which μ > μ1. In

this case, the expected return is sufficiently attractive to induce the IG consumer to save

even when her wealth is zero. More precisely:

Theorem 10. If μ ∈ (μ1,∞) then: c(0) < y; c(0+) = c(0); and c0 > 0 on [0,∞).

In other words: when x = 0, she consume strictly less than her labor income; acquiring

a little wealth does not lead to a jump in consumption; and consumption increases strictly

with x. The bottom consumption function in Figure 5 reflects this.

Proof. See Online Appendix G.

7.4. The intermediate-μ case. The remaining case of our model is that in which

γ < μ < μ1. Loosely speaking: when wealth is low, this case looks like the low-μ case; and
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when wealth is high, it looks like the high-μ case. However, the most striking feature is

the behavior of the consumption function during the transition between the two regimes.

Theorem 11. If μ ∈ (γ, μ1) then: c(0) = y; c(0+) = c > y; and there exists x ∈ (0,∞)
such that c0 < 0 on (0, x) and c0 > 0 on (x,∞).

In other words, when the IG consumer has no wealth, she consumes all of her labor

income. If she acquires even a little wealth, then her consumption jumps up from y to

c. As her wealth increases from 0 to x, her consumption decreases, but, once her wealth

reaches x, her consumption increases steadily with further increases in her wealth.

Proof. See Online Appendix G.

As Theorem 11 leads us to expect, for the middle consumption function in Figure 5,

the liquidity constraint is binding, i.e. c(0) = y = 1. There is also an upward jump in

consumption at x = 0, from c(0) = 1 to c(0+) = c ≈ 3.45. Finally, consumption declines
smoothly after the upward jump before bottoming out and rising thereafter.

Comparing Theorem 11 with Theorems 9 and 10, a simple pattern emerges. The

strategic interaction between the current self and future selves induces a form of positive

feedback: the higher the marginal propensity to save of tomorrow’s self, the greater the

willingness of the current self to save, and therefore the higher her ownmarginal propensity

to save.

There are therefore two possible regimes: a high-consumption regime and a low-

consumption regime. When μ is low, the consumer finds herself in the high-consumption

regime irrespective of her wealth. When μ is intermediate, the consumer finds herself in

the high-consumption regime when her wealth is low, and in the low-consumption regime

when her wealth is high. So, naturally, her consumption needs to decrease as her wealth

increases in order to effect the transition between the two regimes. Finally, when μ is

high, the consumer finds herself in the low-consumption regime irrespective of her wealth.

The non-monotonic consumption function in the intermediate-μ case is not a robust

feature of our model. We can show that this non-monotonicity vanishes when we introduce

a risk-free bond into the economy and allow investors to take long or short positions

in the bond. Taking a large short position in the bond enables the consumer to take

gambles that globally concavify her value function. This eliminates the regions of non-

monotonicity of the consumption function, since the value function would now have a

slope that is monotonically falling in wealth, and the consumer equates her marginal

utility of consumption to β times the slope of her value function.
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Hence, two robust properties emerge from our analysis: a continuously differentiable

consumption function in the interior of the wealth space, and the potential for an upward

discontinuity of the consumption function at the point where the liquidity constraint binds

(x = 0). This latter property cannot arise with an exponential discount function.

8. Conclusions

We have described a continuous-time model of quasi-hyperbolic discounting that extends

the analysis of Barro (1999) and Luttmer and Mariotti (2003). Unlike these models,

our instantaneous-gratification model allows for a generic class of preferences, includes

liquidity constraints and places no restrictions on equilibrium policy functions. In our

model, equilibrium is unique, resolving multiplicity problems in quasi-hyperbolic models.

Our paper studies a psychologically relevant limit case: we take the phrase ‘instant

gratification’ literally, analyzing the case in which individuals prefer gratification in the

present instant discretely more than consumption in the momentarily delayed future. This

limit case is analytically tractable, and can easily be adapted for a range of applications.43

Finally, from the perspective of calibration, the instantaneous-gratification model serves

as a good approximation for models in which the “present” lasts for as long as a month.

Christopher Harris, Faculty of Economics, University of Cambridge

David Laibson, Department of Economics, Harvard University, and National Bureau

of Economic Research
43A partial list of applications that use our framework include Amador (2003), Della Vigna and Paser-

man (2005), Grenadier and Wang (2007), Bisin and Hyndman (2009), and Hsiaw (2010, 2010a), Palacios-
Huerta and Pérez-Kakabadse (2011).
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A. Proof of Lemma 2

Note first that, if x = 0, then one option for the current self is to consume at rate y until

the future arrives, at which point she will get the continuation payoff β vλ(0). This option

yields the payoff
u(y) + λβ vλ(0)

γ + λ
.

Second, as noted in the text, wλ − β vλ is the value function of a consumer who: (i) has

utility function (1 − β)u; (ii) discounts the future exponentially at rate γ + λ; and (iii)

has the exogenously given consumption function cλ. Hence wλ − β vλ ≤ (1− β) eγ+λ for

all x ∈ [0,∞), where eγ+λ is the value function of a consumer who: (i) has utility function
u; (ii) discounts the future exponentially at rate γ + λ; and (iii) chooses her consumption

optimally. Hence

β vλ ≥ wλ − (1− β) eγ+λ

for all x ∈ [0,∞). Third,
eγ+λ(0) =

1
γ+λ

u(y)

whenever λ ≥ μ− γ.

Combining these three observations, we obtain

wλ(0) ≥
u(y) + λβ vλ(0)

γ + λ
≥ u(y) + λ (wλ(0)− (1− β) eγ+λ(0))

γ + λ

= λ
γ+λ

wλ(0) +
γ+β λ
(γ+λ)2

u(y)

whenever λ ≥ μ− γ. Hence, rearranging,

wλ(0) ≥ γ+β λ
γ (γ+λ)

u(y).

Finally, because there is no upper bound on consumption, we must have w0λ ≥ 0. It

follows that

wλ ≥ wλ(0)

for all x ∈ [0,∞). Passing to the limit, we then obtain β v = w ≥ β
γ
u(y) for all x ∈ [0,∞).

The Lemma follows.
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B. Proof of Theorem 4

We begin with an overview of the proof. The first step is to use the optimality condition

of the IG consumer to eliminate c from her Bellman equation to yield what we call

the reduced Bellman equation of the IG consumer (i.e. the Bellman equation of the IG

consumer with c substituted out). The second step is to use the optimality condition of thebu consumer to eliminate bc from her Bellman Equation to yield what we call the Reduced
Bellman Equation of the bu consumer (i.e. the Bellman Equation of the bu consumer withbc substituted out). Third, we note that if we define bu+ and bu0 as in Section 5.2, then
the Reduced Bellman Equation of the IG consumer is identical to the Reduced Bellman

Equation of the bu consumer. Therefore the two reduced equations must have the same
set of solutions, and the two consumers must have the same set of value functions.

Turning to the first step, for all α > 0: let f+(α) be the unique c satisfying u0(c) = α;

and put h+(α) = u(f+(β α))−α f+(β α). Similarly, for all α ∈ R: let f0(α) be the unique
c satisfying u0(c) = max{u0(y), α}; and put h0(α) = u(f0(β α))− α f0(β α). Finally, put

h(α, x) =

(
h+(α) if x > 0

h0(α) if x = 0

)
.

Then we may eliminate c from the Bellman Equation of the IG consumer to obtain the

differential equation

0 = 1
2
σ2 x2 v00 + (μx+ y) v0 − γ v + h(v0, x) (29)

for x ∈ [0,∞) and the global bounds

1
γ
u(y) ≤ v ≤ v. (30)

We shall refer to equation (29) with global bounds (30) as the Reduced Bellman Equation

of the IG consumer.

As for the second step, let bu+, bu0 and bu be given exactly as in Section 5.2. Then it
can be checked that: (i) bu+ < u on (0,∞); and (ii) bu0 ≤ u on (0, y] with equality only

at y. It follows that, like the value function of the IG consumer, the value function bv of
the bu consumer satisfies bv ≤ v. It can also be checked that limc→∞ bu+(bc) = limc→∞ u(c).

Hence there exists b ∈ (y,∞) such that bu+(b) = u(y). Hence, if the bu consumer consumes
b when x > 0 and y when x = 0, then she will obtain a payoff of 1

γ
u(y). It follows that
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bv ≥ 1
γ
u(y). Overall, then, the Bellman Equation of the bu consumer takes the form of the

differential equation

0 = 1
2
σ2 x2 bv00 + (μx+ y − bc) bv0 − γ bv + bu(bc, x) (31)

for x ∈ [0,∞), the optimality condition(
∂u
∂c
(bc, x) = bv0 if x > 0

∂u
∂c
(bc, x) = max{bu 00(y), bv0} if x = 0

)
(32)

and the global bounds
1
γ
u(y) ≤ bv ≤ v. (33)

For all α > 0: let bf+(α) be the unique bc satisfying bu 0+(bc) = α; and put bh+(α) =bu+( bf+(α)) − α bf+(α). Similarly, for all α ∈ R: let bf0(α) be any bc satisfying bu 00(bc) =
max{bu 00(y), α};44 and put bh0(α) = bu0( bf0(α)) − α bf0(α) (which is uniquely defined even
when bf0(α) is not). Finally, put

bh(α, x) = ( bh+(α) if x > 0bh0(α) if x = 0

)
.

Then we may eliminate bc from the Bellman Equation of the bu consumer, namely (31-33),
to obtain the differential equation

0 = 1
2
σ2 x2 bv00 + (μx+ y)bv0 − γ bv + bh(bv0, x) (34)

for x ∈ [0,∞) and the global bounds

1
γ
u(y) ≤ v ≤ v. (35)

We shall refer to equation (34) with global bounds (35) as the Reduced Bellman Equation

of the bu consumer.
Finally, it is easy to see that equations (29) and (34) will be identical iff the functions

h and bh are the same. Moreover, as can be shown by direct calculation, this is indeed the
44In terms of bu+ and bf+, we have: bf0(α) = bf+(α) if α > bu 0+(ψ y); bf0(α) ∈ [ψ y, y] if α = bu 0+(ψ y) andbf0(α) = y if α < bu 0+(ψ y).
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case for the given choice of bu+, bu0 and bu. Hence the Reduced Bellman Equation of the IG
consumer is identical to the Reduced Bellman Equation of the bu consumer, as required.

C. Proof of Theorem 5

The proof of Theorem 4 in Appendix B above shows that v satisfies the Reduced Bellman

Equation of the IG consumer (i.e. the Bellman Equation of the IG consumer with c

substituted out) iff v satisfies the Reduced Bellman Equation of the bu consumer (i.e. the
Bellman Equation of the bu consumer with bc substituted out). Furthermore, standard
considerations show that v satisfies the Reduced Bellman Equation of the bu consumer iff
v is the value function of the optimization problem of the bu consumer. More explicitly, v
satisfies the Reduced Bellman Equation of the bu consumer iff, for all x ∈ [0,∞), v(x) is
the supremum of all payoffs that are feasible for the bu consumer when her initial wealth is
x. This already yields both existence and uniqueness of v, for the simple reason that the

supremum of any set of numbers exists and is unique. In particular, the supremum of all

the feasible payoffs of the bu consumer exists and is unique. Turning to the consumption
function, we recall that u0(c) = β v0 if x > 0 and u0(c) = max{u0(y), β v0} if x = 0. Since
u is strictly concave (and therefore u0 is invertible), the existence and uniqueness of c

follows directly from the existence and uniqueness of v.

D. Proof of Theorem 8

The basic idea behind the proof is to view vσ as the value function of the optimization

problem of the stochastic bu consumer and v as the value function of the optimization

problem of the deterministic bu consumer. There are several ways of implementing this
idea. One way is to note that the dynamics of the problem depend continuously on σ,

and that the utility function bu is upper semicontinuous. (It is continuous except at x = 0,
where it may jump up in the limit as x ↓ 0, because bu0 ≥ bu+.) From this it follows at once
that lim supσ↓0 vσ(x) ≤ v(x) for all x ∈ [0,∞). On the other hand, explicit consideration
of the form of the optimal consumption function bc of the deterministic bu consumer shows
that limσ↓0 vσ(x;bc) = v(x) for all x ∈ [0,∞), where vσ(x;bc) denotes the payoff to the
stochastic bu consumer when she employs the consumption function bc. Specifically: if
μ < 1

β
γ, then there exists ε > 0 such that bc is continuous on (0, ε) and bc(0+) = ψ c > y,

where ψ = ρ−(1−β)
ρ

; and, if μ ≥ 1
β
γ, then bc is continuous on [0,∞) and bc(0) ≤ ψ y < y. In

particular, lim infσ↓0 vσ(x) ≥ v(x).



The span of control (solid line) of self n lasts from its time of birth (t = sn) to the time 
of birth of self n+1 (t = sn+1).  The length of this control period, sn+1 – sn , is the 
stochastic variable  n , which has an exponential distribution.  

Figure 1: Sequential generations of autonomous selves.
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Figure 2: Realization of discount function (β = 0.7, γ = 0.1)
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The discount function represents the present value of one unit of future utility.  The discount 
function discretely drops when the present ends and the future begins.  This present-to-future 
transition occurs at a stochastic time. Figure 2 shows a particular realization of this transition.
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Figure 3: Expected value of discount function 

Time

The expected value of the discount function is plotted for β = 0.7 and γ = 0.1. With λ = 0, the future never arrives and
the function is exp(-γt).  As long as λ is strictly positive, the future will eventually arrive so the function asymptotes to 
β exp(-γt).  The higher the value of λ the faster the function asymptotes.  



Figure 4: graph of u, u�� and u�0
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The relationship between u, u�� and u�0 is plotted for the case Β � 2
3
, Ρ � 3

4

and y � 1. Utility function u has constant relative risk aversion Ρ. Utility

function u�� is given by
Ψ
Β

u� c
�

Ψ
� � Ψ�1

Β
, where Ψ � Ρ��1�Β�

Ρ
. Utility function

u�0 coincides with u�� up to Ψ y and thereafter with the tangent to u�� at Ψ y.
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Figure 5: Consumption functions for

These consumption functions were generated in Matlab by numerically solving the Bellman System of the IG 
consumer                                                                                .  The top two cases have a discontinuity at x = 0.(with 2 3,  0.05, 0.17,  3 4,  1)y       
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