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Parallelization by Simulated Tunneling

Amos Waterland,1, ∗ Jonathan Appavoo,2 and Margo Seltzer1

1Harvard University
2Boston University

As highly parallel heterogeneous computers become commonplace, automatic parallelization of soft-
ware is an increasingly critical unsolved problem. Continued progress on this problem will require
large quantities of information about the runtime structure of sequential programs to be stored and
reasoned about. Manually formalizing all this information through traditional approaches, which
rely on semantic analysis at the language or instruction level, has historically proved challenging. We
take a lower level approach, eschewing semantic analysis and instead modeling von Neumann com-
putation as a dynamical system, i.e., a state space and an evolution rule, which gives a natural way
to use probabilistic inference to automatically learn powerful representations of this information.
This model enables a promising new approach to automatic parallelization, in which probability
distributions empirically learned over the state space are used to guide speculative solvers. We
describe a prototype virtual machine that uses this model of computation to automatically achieve
linear speedups for an important class of deterministic, sequential Intel binary programs through
statistical machine learning and a speculative, generalized form of memoization.

Introduction
Major challenges still remain in making efficient
use of highly parallel computing systems. Despite
decades of sophisticated research in automatic par-
allelization, we still do not have computers that we
can program in the sequential model best suited to
the human mind, but whose performance automat-
ically scales with the number of processors. In this
paper, we take a radically different approach to auto-
matic parallelization; rather than using the semantics
of programming languages to identify opportunities
for parallelism, we model computation at a lower se-
mantic level in exchange for a powerful new set of
conceptual and mathematical tools. In particular,
this model allows us to automatically identify oppor-
tunities for parallelization via Fourier analysis and
statistical machine learning.

Over the past century, physicists and mathe-
maticians have distilled concepts developed across
disparate fields whose objects of study are high-
dimensional and time-dependent into a model called
the dynamical system. This model has only two core
mathematical objects—a state space and an evolution
rule—but has a huge body of concepts and mathe-
matical techniques. In this paper, we describe a con-
crete, practical way to model von Neumann computa-
tion as a dynamical system, and show how this gives
a natural way to use probabilistic inference to orga-
nize and exploit large quantities of information about
the runtime structure of sequential binary programs.

The dynamical systems model of computation is
deeply related to familiar ways of thinking about
computation; e.g. operational semantics and finite
state automata, but allows us to bring to bear pow-
erful new conceptual and mathematical tools. In par-
ticular, in this model the state of computation is just
a vector, a trace of computation is just a matrix, and
we have a geometry of computation complete with

distance and angle between states of computation.
This model gives a natural way to apply inference,
in the form of Bayesian posterior maximization and
deep artificial neural networks, through highly par-
allel execution of Markov Chain Monte Carlo, simu-
lated annealing, and genetic algorithms.

In our model, the complete state of a computer is
represented as the coordinates of a point in our state
space. Computation is effected by repeatedly apply-
ing our evolution rule, which maps each point in the
state space to its successor point by simulating the
instruction encoded in the coordinates. A sequence
of such transitions forms a path through state space
called a trajectory. Some trajectories terminate in
fixed points – points that are mapped to themselves
by the evolution rule. The result of computation is
obtained by waiting until the trajectory being solved
halts at its fixed point, then reading out the answer
from the coordinates. Programming is effected by
preparing an initial condition – selecting a point in
state space whose coordinates represent the initial
values of the registers, machine code, and data.

We have designed and prototyped a system in
which a collection of virtual machines share the same
state space and evolution rule, but are given different
initial conditions. These virtual machines, in oper-
ation on heterogeneous manycore processors or net-
worked clusters, cooperate in parallel to accelerate
each other’s execution. Each virtual machine main-
tains a state vector representation of its simulated
computer, and has a simulation loop that calls the
evolution rule – which simulates one Intel instruc-
tion per invocation. Each virtual machine also main-
tains a compressed database of initial and final points
of state space trajectories it has already solved, and
when it has no other work to do, garbage collects and
updates its database by speculatively solving trajec-
tories given predictions for regions of state space that
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FIG. 1: Schematic representation of a tiny volume of the state space of computation. Each point is an n-dimensional
bit vector whose coordinates represent the entire state of a computer. Unfilled circles are fixed points of the evolution
rule – halting states. The initial condition of collatz.exe, an example studied in this paper, is shown as x0.

other virtual machines are likely to visit.
At regular intervals, each virtual machine broad-

casts its current state vector to the other virtual ma-
chines, all of whom in response search their databases
for a match. A match is found when the broadcast
state vector is equivalent under a symmetry trans-
form to the initial point of a previously solved trajec-
tory. This trajectory was either speculatively solved
given a prediction or lies on an unrelated trajectory
whose initial condition is a different program that for
a time executed a sequence of instructions identical
to those of the current program. In both cases, the
virtual machine that found a match applies the in-
verse symmetry transform and replies with the final
point of the matched trajectory.

Upon receiving the reply, the virtual machine that
sent the broadcast then jumps forward—in state
space and simulation time—from its current point
to the final point it received in reply. This instan-
taneous jump through state space—which skips over
the many applications of the evolution rule that it
would have had to do—is called tunneling. There is
no free lunch, as some virtual machine somewhere
had to solve each trajectory up to symmetries, but
from the perspective of the virtual machine that sent
the broadcast – it has been accelerated.

Tunneling can be seen as a speculative, general-
ized form of memoization. Traditional memoization
speeds up programs by building a table of the inputs
and outputs of pure functions. Once a memoized
function has been executed for a particular input, it
never has to be executed again when called with the
same input; the result can simply be looked up in the
table. Tunneling is a generalization of memoization
in that it can jump forward from any program loca-
tion – not just at a function boundary, and it can
use results from one program to speed up a differ-
ent program. It is speculative in that instead of just
storing the results of computation that has already
happened, it solves trajectories in the hope that they
will be useful later to other virtual machines. These

tunnels can be seen as warping the state space of
computation so that useful and important trajecto-
ries are drastically compressed.

This system design is probabilistic, in that it
uses Bayesian inference to calculate the predictive
probability distributions used by speculative trajec-
tory solvers, but it is not probabilistic or approxi-
mate computing in the sense that it might halt with
the wrong result. When predictions are poor, the
worst that can happen is that communication and
simulation overhead is not recovered. We preserve
the deterministic sequential programming model, our
initial conditions are prepared by gcc, and the result
of simulation is identical to that of running the input
binary program on a uniprocessor Intel computer.

Our use of Bayesian inference gives a natural divi-
sion of work on heterogeneous systems – in which
speculative trajectory solvers run on full-featured
cores, but feature extraction and predictive infer-
ence is done by massive arrays of simple proces-
sors in GPUs. Our vision is that on a single many-
core computer a small collection of our virtual ma-
chines will accelerate unmodified sequential binary
programs acceptably, but performance improves dra-
matically when a GPU is present, and improves fur-
ther when a network is available through which the
databases of remote virtual machines can be queried.
By pursuing this vision at the runtime level, our
Bayesian predictors are able to exploit our exper-
imental evidence that there is significant statisti-
cal structure—not accessible at compile time—in the
runtime behavior of real programs on real data that
causes their dynamics to be confined to low dimen-
sional manifolds in state space.

The contributions of this paper are: (1) showing
how the dynamical systems model of computation
can be operationalized, (2) showing how this model
yields a new approach to automatic parallelization,
and (3) evaluating a prototype implementation of the
model and approach.
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FIG. 2: State vector organization.

Model of Computation
A number of physicists have previously observed that
computers can be abstractly modeled as dynamical
systems [1–4, 6, 8]. Definition – a discrete time, finite
dynamical system is a mathematical structure (X , f),
where X is a finite set called the state space, and f
is a map from X to X called the evolution rule.

This model might seem quite abstract. However,
we have shown that we can operationalize it by build-
ing a carefully designed virtual machine. The inter-
nals of this virtual machine are explicitly organized
as a dynamical system, but the external interface is
just an Intel architecture functional simulator that
runs programs compiled by gcc. These two design
decisions combine to make it possible to get real,
practical engineering utility out of the model’s math-
ematical results.

When selecting our state space X , we weighted
heavily the following considerations. Above all, we
want to avoid confinement to combinatorics, and to
have a meaningful geometry of computation [7] im-
posed by a distance and angle between computer
states. We want to meaningfully subtract two states
to obtain a difference vector. In sum, we want our
state space to have the structure of an abelian group,
and for it to be easy to embed this group in Rd, so
that we may bring to bear the mathematical struc-
ture of a vector space with an inner product and
metric. In particular, an embedding in Rd allows us
to bring to bear much of modern machine learning.
These considerations drove us to what is perhaps the
obvious choice. Our state space X is just the set of
n-dimensional bit vectors, constructed as the n-fold
product of Z2: X = Z2 × Z2 × . . .× Z2 = Zn

2 .
Our virtual machine simulates the Intel instruc-

tion set at the user mode privilege level, so we have
simply that n = 16 × 32 + m, which corresponds
to the sixteen user mode visible 32-bit registers and
m bits of memory. We do not model a disk or any
I/O devices, and all input data is specified at launch
time. Since the smallest possible program consists
of one hlt instruction, we have that n is bounded
below by 16 × 32 + 8 = 520. The space Z520

2 then
serves as the fundamental subspace for all programs.
When preparing its initial condition, the virtual ma-
chine chooses n ≥ 520 based on the .text segment of
the input binary program and an estimated heap and
stack size. At simulation time step t, the current co-
ordinates in state space are represented by the state
vector xt ∈ X . Figure 2 shows how we organize the
state vector so that the leftmost coordinates repre-

sent the sixteen 32-bit user-visible registers. The first
32 coordinates correspond to eax, the next 32 coor-
dinates to ecx, and so forth in the usual Intel order.
After the coordinates of gs, the 16th register, we have
the 8 coordinates corresponding to the lowest byte
of memory with physical address 0x0, and so forth.
Our evolution rule f maps the current state vector
xt to its successor xt+1 as a time-invariant map hav-
ing the same domain and codomain: f : X → X , i.e.
f : Zn

2 → Zn
2 .

Note that f is a single rule, but it is parametrized
by its argument. That is, what distinguishes
dynamical systems capable of computation from
other dynamical systems is that their evolution
rule can be “programmed” to simulate other rules
by suitably arranging its argument. Our vir-
tual machine’s internal representation of f is
as a pointer to a function whose signature is
evolution(uint8 t *y, uint8 t *x, int n). This
function maps the state vector x to its successor state
vector y by simulating a single instruction and then
returning. Internally it is just a straightforward Intel
architecture simulator. The main loop of the virtual
machine repeatedly calls the evolution function until
it reaches a fixed point, which causes it to halt. Fig-
ure 1 gives a 2-dimensional schematic representation
of this model of computation – the true geometry
is of course n-dimensional. Each point in the figure
corresponds to an n-dimensional state vector. The
space is partitioned into trajectories. Some trajec-
tories do not have a fixed point and correspond to
infinite loops. Trajectories cannot branch, but they
can merge, since the system is forward but not back-
ward deterministic.

New Approach to Parallelization
At an intuitive geometric level, our parallelization
approach is to try to divide a program’s state space
trajectory into segments that can be solved in par-
allel. At a more precise algebraic level, note that
in every dynamical system the evolution rule has
by definition the same domain and codomain. The
dynamics—which simulate von Neumann computa-
tion in our case—are produced by repeated compo-
sitions of the evolution rule – our computer state at
time step k is xk = f(f(· · · f(x0) · · ·)). A standard
result in dynamical systems theory is that evolution
rules under composition have the algebraic structure
of a composition monoid. That is, the iterates of
f form a structure ({f (0), f (1), . . . , f (k)}, ◦) that is
closed, associative, and has an identity. So the com-
puter state at time step k can also be written as
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FIG. 3: The same region of state space as in Figure 1, but instead of an oracle view it represents the system’s beliefs.

xk = f ◦f ◦· · ·◦f(x0) = f (k)(x0), and in particular
as xk = f (k1)f (k2) · · · f (kp)(x0), where

∑
ki = k.

The key idea behind our approach is to automat-
ically parallelize sequential computation by solving
the f (ki) in parallel.

In the schematic of Figure 1, this corresponds to
solving segments k1 and k3 in parallel. But in or-
der to solve segment k3 the system would need to
know x28. Of course, if we are given only x0 a pri-
ori, the only way to know x28 is to solve it directly
as x28 = f (28)(x0), so we don’t seem to have saved
ourselves anything. However, our virtual machine
simulates deterministic, sequential binary programs.
It does not simulate an interrupt controller, and is
a program virtual machine rather than a system vir-
tual machine – it runs one program at a time with
all input data encoded in x0. The real time clock
is not simulated and programs are not allowed to is-
sue instructions that read from it. So the notation
x28 must be understood as: the point in state space
reached after 28 compositions of f on x0, and in turn
x0 must be understood as: the point in state space
that represents the initial condition of some program.
So the same point can be labelled xi and xj where
i 6= j, and the time index must be understood as rela-
tive to some initial condition. Now, the usual way to
prepare an initial condition is by loading a program
into memory and suitably initializing the instruction
and stack pointers, but any point in state space can
serve as an initial condition, since we are working
with a dynamical system. This fact is key to our sys-
tem design. We try to predict that x28 is likely to lie
on the trajectory, and then speculatively solve seg-
ment k3. If a trajectory solver ever—today or years
from now—reaches x28, it can tunnel instantaneously
to the final point of k3. So we have done a reduction
of the hard problem of parallelizing sequential von
Neumann computation to another—possibly equally
hard—problem of predictive inference in a dynamical
system.

We share the view of Jaynes [5] that a powerful—
and in a sense, the only consistent—way to do infer-
ence is Bayesian probability. So our predictions are

samples from a posterior predictive distribution cal-
culated from a likelihood that encapsulates our tran-
sition model and a prior that summarizes our domain
knowledge. Our basic predictive building blocks are
conditional distributions that give p(xt+k|xt) for any
current state xt and any offset k into the future.

We show a schematic representation of this view
in Figure 3, which is the same tiny volume of
state space as in Figure 1, but instead of an ora-
cle view it shows a schematic representation of the
system’s belief —under two different predictive prob-
ability distributions—after 8 time steps. At time step
4, predictive distribution #1 issued a prediction for
the point denoted y, and predictive distribution #2
issued a prediction for the point denoted x28. Refer-
ring to Figure 1 we see that the first prediction will
be wasted, but the second will be used to accelerate
computation by going through the k3 tunnel.

Prototype Implementation
In this section we focus on a base case – programs
with loops for which each iteration is independent of
the others. These programs have been heavily stud-
ied in the compiler literature, where they are called
“DOALL loops,” and encompass a surprising amount
of computation that humans are interested in. We

void main ( ) {
unsigned int i , j ;
for ( i = 1 ; ; i++) {

for ( j = i ; j > 1 ; ) {
i f ( j % 2 == 0)

j = j / 2 ;
else

j = 3 ∗ j + 1 ;
}

}
}

Listing 1: Source code for collatz.c

study in particular the collatz.c kernel given in
Listing 1 because it is a short C program with com-
plex runtime dynamics. This program implements a
search for a counterexample to the famous Collatz
Conjecture – the hypothesis that the inner loop al-
ways terminates. For some integers the inner loop is
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chaotic and is known to take millions of iterations,
but thus far no one has found an integer for which it
does not eventually terminate.

Most successful applications of Bayesian machine
learning rely heavily on a good inductive bias – a
set of assumptions about the problem domain, and
good feature extraction – transformations from the
raw state space into a dimensionally-reduced feature
space in which the inference problem is easier. Our
virtual machine is organized as an ensemble – so it
is easy for us to plug in predictors built from dif-
ferent inductive biases and feature extractors. This
results in the same points in state space being as-
signed different probabilities by different predictors,
as depicted in Figure 3. In addition, since calculat-
ing normalized probabilities is often intractable due
to the partition function, our virtual machine only re-
quires that predictors produce an energy functional
E : Rd → R. That is, E(y) maps a feature vector
to a real number, where small numbers are “good”.
When the virtual machine needs a prediction in order
to select the initial condition for a speculative trajec-
tory solver, it begins with an effective temperature T
and an initial prediction y′, then proposes a move y′′,
which it accepts with probability proportional to the
ratio e−E(y′′)/T /e−E(y′)/T . It repeats this process to
do in effect simulated annealing into a basin in the
energy landscape – then selects a point from the bot-
tom of the basin as its prediction. In summary, a pre-
dictor just takes in a training set of feature vectors
and produces an energy functional E(y) – the vir-
tual machine takes care of the rest. In the following,
we develop an inductive bias and feature extractor
optimized for the base case class of programs.

Most programs in the base case class have an inte-
ger induction variable controlling their outer loop – i
in Listing 1. So our feature extraction function takes
a state vector xt and maps each 32-bit register and
word of memory to an integer – resulting in a feature
vector yt ∈ Rn/32. When we study the geometry of
the dynamics in feature space, we see that under the
L2-norm the system at irregular intervals always re-
turns near elements of a small set of accumulation
points. This is caused by the fact that a good opti-
mizing compiler like gcc will in effect try to minimize
entropy – only keep information in the registers and
stack that it thinks the program really needs. In
particular, since each iteration of the outer loop is
independent, the machine code generated by gcc re-
sults in the entire state of the computer being one
of a small set of accumulation states between iter-
ations of the outer loop – modulo a change to the
feature that contains the induction variable. So our
predictor’s inductive bias is that there is one config-
uration of the computer that occurs repeatedly – it
just has to find it modulo changes to the induction
variable feature. In its training phase, our predic-

tor marginalizes out each component of the feature
space, selects one denoted m that most reduces the
empirical entropy, and selects the mode µ of the re-
sulting dimensionally-reduced space. Its energy func-
tional is then E(y) = ||µ − y[−m]||2. Intuitively, the
closer a proposed feature vector is to the mode µ—
ignoring the contents of feature m—the lower its en-
ergy so the higher the probability it will be accepted
as a prediction.

Our prototype virtual machine is a parallel MPI
program in operation on a Blue Gene supercomputer.
One of its predictors is the one we have just de-
scribed. In Figure 4 we show the scaling results
it achieves on collatz.exe. The Intel architecture
simulator encoded in our evolution rule is not yet
tuned, so the figure shows the raw number of calls to

FIG. 4: Scaling results for Collatz kernel.

the evolution rule the main virtual machine had to
do – the more times it tunneled the fewer calls to the
evolution rule it had to do.

One could imagine refactoring the code in Listing 1
to an outer loop that repeatedly calls a function and
then “speculatively memoizing” the function. How-
ever, the function often returns fairly quickly – so
memoization proper is not worth the overhead. How-
ever, our virtual machine is in fact able to profitably
parallelize this refactored code, because it “memo-
izes” trajectories – each of which contain several hun-
dred successive invocations of the function.

Conclusion
Scientific progress is sometimes made by turning hard
problems into different hard problems for which we
have better mathematical tools. We have turned
the problem of parallelizing sequential von Neumann
computation into one of predictive inference in a dy-
namical system. Bayesian predictive inference has
seen rapid growth in recent decades due to increased
high-performance computing resources, but turning
inference on von Neumann computation itself into
a high-performance computing job has received lit-
tle attention. In this paper we described a vision for
doing precisely this, and reported our current exper-
imental progress toward validating this vision.



6

∗ Electronic address: apw@seas.harvard.edu
[1] Henry G. Baker, Thermodynamics and garbage collec-

tion, SIGPLAN Not. 29 (1994), no. 4, 58–63.
[2] Roger W. Brockett, Dynamical systems that sort lists,

diagonalize matrices and solve linear programming
problems, Proc. 27th IEEE Conf. Dec. and Control
(Austin, TX), Dec. 1988, pp. 799–803.

[3] Marco Giunti, Computation, dynamics, and cognition,
Oxford University Press, 1997.

[4] John J. Hopfield, Hopfield network, Scholarpedia 2
(2007), no. 5.

[5] E.T. Jaynes, Probability theory: The logic of science,
Cambridge University Press, 2003.

[6] Todd Mytkowicz, Amer Diwan, and Elizabeth
Bradley, Computer systems are dynamical systems,
Chaos: An Interdisciplinary Journal of Nonlinear Sci-
ence 19 (2009), no. 3, 033124.

[7] Gerald Jay Sussman, Personal communication: How
the Shape of a Computational Process is Controlled
by the Program, 2010.

[8] Tommaso Toffoli, Action, or the fungibility of compu-
tation, pp. 349–392, Perseus Books, Cambridge, MA,
USA, 1999.

mailto:apw@seas.harvard.edu

	Introduction
	Model of Computation
	New Approach to Parallelization
	Prototype Implementation
	Conclusion
	References

