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Genetic association and linkage studies can provide insights into complex disease biology, guiding the de-
velopment of new diagnostic and therapeutic strategies. Over the past decade, genetic association studies
have largely focused on common, easy to measure genetic variants shared between many individuals.
These common variants typically have subtle functional consequence and translating the resulting associ-
ation signals into biological insights can be challenging. In the last few years, exome sequencing has
emerged as a cost-effective strategy for extending these studies to include rare coding variants, which
often have more marked functional consequences. Here, we provide practical guidance in the design and
analysis of complex trait association studies focused on rare, coding variants.

INTRODUCTION

Over the past decade, genome-wide association studies have
identified hundreds of common risk alleles for complex
human diseases (1–9). These studies were enabled by a com-
bination of the availability of large well-characterized sample
collections (6–8, 10–13), advances in genotyping technolo-
gies (14–16) and advances in methods for the analysis of
the resulting data (17–20). These studies have provided
several biological insights, highlighting the role of the comple-
ment genes in age-related macular degeneration (21–23), of
autophagy in Crohn’s disease (24–26) or of specific regulatory
proteins in blood lipid levels (6), among others. Still, translat-
ing the resulting signals into function has been challenging
because most common variants have only subtle functional
consequences.

Over the past several years, great advances have been made
in sequencing and capture technologies, enabling accurate de-
termination of nearly all protein-coding sequence variants in
an individual (27–29). These exome-sequencing technologies
have already accelerated genetic studies of Mendelian disor-
ders (30) and there is great interest in extending them to
complex traits (31). To support this goal, many methods for
the design, analysis and interpretation of exome-sequencing

studies have been proposed (32–34) and focused candidate
gene-sequencing studies have been undertaken, with promis-
ing results (35–43).

We have been involved in the planning, execution and ana-
lysis of several exome-sequencing studies encompassing infor-
mation on .10 000 individuals. In this review, we focus on
the practical aspects of such studies, highlighting important
issues to consider when undertaking or evaluating exome-
sequencing studies to dissect complex trait genetics. Given
the rapidly changing nature of the field, we have tried not to
be prescriptive. Rather, we encourage readers to carefully con-
sider a series of key questions when evaluating alternatives for
study design, generation of sequence data and variant calling,
quality control of the resulting data, rare variant association
analysis and follow-up approaches (Fig. 1).

STUDY DESIGN: SAMPLE SELECTION

Perhaps the most important step in any exome-sequencing
study is the choice of samples to sequence. As with any
genetic study, we encourage researchers to start by clearly
stating their objectives at the outset (is the objective to
survey the range of variation in normal individuals, to find
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variants that predispose to risk of a specific disease, like dia-
betes or myocardial infarction, to find variants that influence
a specific quantitative trait, like glucose or lipid levels, or to
simultaneously investigate a wide-range of quantitative out-
comes?) and to systematically inventory all samples in
which the traits of interest might be examined (these might
include population samples, case and control series, and
even families that might be segregating Mendelian forms of
disease).

Nearly always, the range of potentially informative samples
exceeds the available sequencing budget. Therefore, careful
consideration of which samples to sequence will be extremely
important. In most instances, it will be fruitful to focus on
samples with an extreme outcome (44–46)—for a quantitative
trait, these are naturally defined as samples at the extremes of
the trait distribution after accounting for known modifiers,
which might include age, sex and diet but also previously
identified genetic risk factors. For a discrete trait, these are
samples whose outcomes are ‘unusual’ after accounting for
previously known risk factors (46)—for example, individuals
who present with myocardial infarction at an unusually
young age. Another general strategy for increasing power is
to focus on samples whose relatives have similarly extreme
phenotypes (such as high lipid levels) or a history of disease
(such as myocardial infarction) (47).

Although selecting individuals with phenotypes that appear
extreme or unusual based on known risk factors is important,
other considerations can also greatly impact outcome of the
study. For example, if a role for de novo mutation events is
suspected, it will be extremely useful to sequence related indi-
viduals (48–50) and, if the identification of individuals who
are homozygous for rare loss-of-function alleles is desired,

sequencing of individuals with evidence of inbreeding will
be appealing (27).

It is expected that many rare variants will have a very
restricted geographic distribution (51,52) so that careful
matching of case and control ancestries is likely to be extreme-
ly important. In contrast to genome-wide association studies of
common variants, where methods for removing artifacts due to
mismatches between case and control ancestries are mature
(18,53) and the use of ‘convenience’ control samples is rela-
tively widespread, we expect that extreme care will be
needed when using convenience controls in exome-sequencing
studies because of the potential for false signals to be intro-
duced by small differences in ancestry. As with genome-wide
association studies, when these concerns can be overcome,
convenience controls can provide for greatly increased
sample sizes and power (54).

Most protein-coding variants are extremely rare, previously
undescribed and with a geographically restricted segregation
pattern (52,55,56). Often, interesting and informative variants
will segregate in a population-specific manner. For example,
Y142X, a nonsense variant in PCSK9 that demonstrates that
knockout of the gene results in greatly reduced low-density
lipoprotein cholesterol levels and decreased coronary heart
disease risk has frequency of 0.8% in African-ancestry indivi-
duals but is virtually absent from European-ancestry samples
(44). For this reason, the most complete exome-sequencing
studies will examine individuals from a variety of ances-
tries—with the expectation that segregating variants will
provide insights about different (but potentially overlapping)
subset of genes in each population. In this context, founder
populations—where it may be possible to observe multiple
copies of alleles that are otherwise extremely rare—may

Figure 1. Key questions and considerations for different stages of an exome sequencing study of complex disease.
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prove very useful for exome-sequencing studies [just as they
were for earlier studies of Mendelian disorders (57,58)].

STUDY DESIGN: SEQUENCING STRATEGY

Standards for generation of high-quality exome sequence data
are rapidly emerging. There are several good summaries of
raw data quality, but it is common to aim for coverage with
high-quality bases to reach 20× or greater in 80–95% of
the protein-coding sequences in each genome, after removal
of ambiguously mapped reads and of duplicated reads
(4,55). With this level of coverage, it should be possible to
identify the vast majority of protein-coding variants with
high specificity (55). Because the efficiency of enrichment
protocols exhibits great local variation, achieving this level
of coverage requires sequencing the protein-coding regions
of each individual to an average depth of 60–80×.

Most protocols for targeted exome sequencing also result in
relatively light coverage of the rest of the genome, typically on
the range of 0.2–2.0× on average. Although these ‘off-target’
reads are sometimes discarded in analyses, in our view, they
can be extremely useful, particularly in samples that have
not been genotyped with whole genome arrays. These off-
target reads can be used to estimate the local or global ancestry
of each sample (enabling improved case–control matching in
association analyses or admixture mapping analyses), can be
combined with a panel of reference haplotypes to estimate
genotypes across the genome (59–61) and can facilitate detec-
tion of large structural variants (such as deletions of entire
genes) (62).

VARIANT CALLING

Once sequence data are generated, there are several steps
required to process raw short read sequences into high-quality
genotypes for each individual. Typically, we first check
whether DNA samples have been contaminated and, if DNA
fingerprints are available, also check whether samples were
tracked correctly during processing (63,64). Next, the
process proceeds to the alignment of short sequence reads to
the reference genome (65–67), calibration of base-quality
scores (68) and removal of duplicate reads (69). After this
initial processing, it is useful to examine per sample quality
metrics—which might include the fraction of the exome
covered at various depths, after removal of duplicates and
poorly mapped reads, evaluating the distribution of empirical
base quality scores, and the relationship between coverage
and GC content. Data for samples with outlier properties
such as a low fraction of the genome covered or low base
quality scores can be excluded, flagged and/or reprocessed.

After this step, the reads overlapping each position are
inspected to identify variant sites. Typically, these sites will
be covered by many reads that differ from the reference
genome (68,70). The initial list of variant sites is then
inspected by a machine-learning-based classifier that tries to
separate variants likely to be polymorphic from those that
might be calling artifacts (lists of known variants and
common artifacts generated by the 1000 Genomes Project
can often be used to train these classifiers) (4,68,71). To

distinguish true and false positive variants, the machine learn-
ing classifiers typically evaluate metrics like the mapping
quality of reads supporting each allele, the fraction of reads
supporting the alternate allele in putative heterozygotes and
sequencing depth. In very small data sets, it may not be prac-
tical to tune machine-learning-based classifiers, and it may be
necessary to manually review each of these quality metrics to
determine appropriate quality cut-offs for each quantity (31).
Note that, while variant calls can be generated across the
entire genome, producing accurate genotypes in regions that
are not deeply covered typically requires an additional post-
processing step—using a haplotype aware genotype caller
(59,72,73). These haplotype aware callers are quite useful
for variants shared across many individuals but are not
useful for the rarest variants (including private variants). We
also note that calling of insertion–deletion polymorphisms
remains especially challenging and that improved analysis of
these important variants will likely require a new generation
of sequence analysis tools.

At this stage in the process, it is again common to generate a
series of quality metrics—these might include the number of
variants per individual (typically, we expect 10 000–12 500
synonymous variants, 9500–12 000 non-synonymous variants
and 100–200 stop or splice altering variants per individual),
the fraction of variants in each category that is unique to
each sequenced sample (typically, we expect that nearly all
the variants in each sample have been previously described),
the fraction of heterozygous sites per sample and the fraction
of coding indels that result in a frameshift. Samples with
unusual profiles can be flagged, reprocessed or excluded
from downstream analyses (55). Within each of these categor-
ies, it is also common to compare the transition–transversion
ratio of new and previously described variants (74). The tran-
sition–transversion ratio is a useful diagnostic metric because,
in nature, transitions (A,-. G and C ,-. T) occur much
more often than transversions (A ,-. C, A ,-. T, G
,-. C or G ,-. T). For the exome, we expect the ratio
to be a little above 2.0 for non-synonymous variants and
above 5.0 for synonymous variants (55, 71). It is often a
good idea to manually review the evidence supporting a
random subset of the sites—for example, using the integrative
genomics viewer (75,76)—and this review should always be
carried out for the key variants supporting a manuscript or
novel finding. If sufficient resources are available, genotyping
or Sanger sequencing of putative carriers can validate a subset
of newly identified variants.

Although it is not yet standard to do so, we recommend that
the depth of coverage with high-quality bases and the fraction
of samples reaching coverage of 20× or greater at each pos-
ition should also be recorded for each position. These quan-
tities facilitate comparisons between exome-sequencing
studies, helping distinguish regions where one study found
variation and another study had poor coverage from regions
where there truly are differences in the rate of variation
across studies.

While there are many reasonable choices for these steps
(ranging from the choice of read mapper, specific criteria for
filtering poorly mapped reads, criteria for declaring variant
calls to be high quality), we note that these choices—just
like choices of sequencing and exome capture technology

Human Molecular Genetics, 2012, Vol. 21, Review Issue 1 R3



and protocol—do have a small impact on results and can make
it difficult to directly contrast samples analyzed with different
protocols. In particular, in a few hard to interpret regions or
genes, different analytical protocols (or variations on the
same protocol) can result in markedly different lists of var-
iants. A welcome development in this area is the development
of standards for storing sequence data (69) and resulting
variant calls (77), which make it easy for tools developed in
different groups to interoperate.

ASSOCIATION ANALYSIS

The final step before association analysis is annotation of func-
tional effects for each variant. There are now reliable, widely
used tools for this purpose (78–81). According to their impact
on protein-coding transcripts, these tools can identify single
nucleotide variants that result in synonymous, missense, non-
sense, splice site alterations [typically defined as within 2 bp
of an intron–exon boundary, as supported by empirical ana-
lyses (82)] or read-through alleles; indels are typically anno-
tated according to whether or not they result in a frameshift
or not. Typically, they also assign each variant a score,
based on analysis of protein structure or evolutionary conser-
vation, to separate variants with little functional impact from
those more likely to damage protein function (83,84). A strat-
egy must be selected for dealing with variants that have mul-
tiple annotations—for example, a variant might alter the
protein-coding sequence for one transcript but not for other
overlapping transcripts. These annotation conflicts can be
resolved by focusing only on canonical transcripts for each
gene (for example, RefSeqGene), by focusing on the longest
transcript in each gene, or by using the most deleterious pre-
diction from all available transcripts.

We recommend that every analysis of exome sequence data
should start with single variant association tests. While these
tests are typically not well powered for rare variants (most of
which will be seen only once or twice, even in very large data-
sets), they provide a convenient opportunity to quality check
the data—by verifying that previously reported common
variant signals are reproduced and by inspecting genome-wide
QQ plots to ensure samples are adequately matched and
results are not unduly influenced by population structure (85).

Because most variants are individually rare, achieving ad-
equate statistical power requires a design where additional
copies of the variant of interest can be sampled (perhaps in
a family study or in a founder population) or the ability to
combine and evaluate groups of variants likely to have
similar function (86). The basic idea behind most rare
variant association tests is to group variants likely to have
an impact on the function of a specific gene and to compare
the distribution of these variant groupings to the distribution
of the trait of interest.

There are two major categories of association tests for
groups of rare variants. In one type of test, the total number
of rare alleles across a gene is tabulated in each individual
and these totals are compared between cases and controls,
for a discrete trait, or correlated with trait values, for a quan-
titative trait (32). These tests can be carried out by assigning
all variants the same weight or they can be designed to

place more weight on rarer variants and other variants that
are expected to have more severe functional consequences
(87,88). While early versions of these tests require explicit
allele frequency cut-offs for defining rare variants, newer ver-
sions use adaptive thresholds whose choice is guided by avail-
able data (89).

Another type of test allows for the situation where a gene
might harbor both deleterious and protective variants.
Instead of comparing the total number of variants per individ-
ual, these tests examine whether the number of variants with
non-zero effect sizes (whether positive or negative) exceeds
chance expectations (33,89,90). In general, we recommend
that at least one test from each category (that is, one burden
test assuming all alleles impact the trait in the same direction
and one burden test allowing for alleles with opposite direc-
tions of effect in each gene) should be considered and that
variable threshold implementations of these tests should be
used. When it is not practical to use variable threshold
methods, we recommended that a variety of frequency
cut-offs should be considered (for example, 0.05, 0.01 and
0.001). An additional analysis, focused on individuals who
are homozygous or compound heterozygous for deleterious
variants in a gene, might eventually become a useful comple-
ment to these tests—because it focuses explicitly in indivi-
duals where gene function might be ablated.

A number of packages under active development now imple-
ment a variety of these tests (89–91, http://genome.sph.umich.
edu/wiki/EPACTS, http://atgu.mgh.harvard.edu/plinkseq). In
addition to implementing multiple tests, these packages make
it simple to consider different subsets of the data for analysis.
For example, an initial analysis might include all missense,
splice or stop altering variants, excluding only synonymous
and non-coding variants. Since many missense variants will
not significantly impact protein function (92,93), a second ana-
lysis might focus on the subset of these variants that are pre-
dicted to have deleterious consequences. And an even more
restricted analysis might focus only on splice, frame and
stop-altering variants among this later set (94).

We expect there will be no optimal statistical test, filtering
strategy or frequency cut-off for gene-based tests. The spec-
trum of functional variants and their characteristics will
likely differ between genes, depending on the importance of
the gene’s function for the organisms overall function and
the luck of the evolutionary draw. Given the multiplicity of
statistical tests (and of filtering strategies used to decide
which variants are proposed as input for these tests),
permutation-based approaches should be used for evaluating
statistical significance. Permutations can naturally account
for the fact that some genes have very few rare alleles (and
thus can never produce a significant burden test result) and
that multiple correlated tests might have been undertaken
(31). In the absence of permutation-based significance thresh-
olds, a good rule of thumb is that burden test results from
exome-sequencing studies should reach P-values on the
order of 5 × 1027 or less before being declared significant
(this stringent threshold accounts for the number of genes
tested but also for the variety of tests that must be considered
and the choice of variants to test inherent in the analysis of
these studies). Just as with single variant tests, we recommend
generating QQ plots to summarize association results across
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the genome and ensure test statistics are well behaved. We
note that it is valid to combine results for all the tests consid-
ered (single variant, burden tests using different frequency
thresholds and/or aggregation strategies, etc.) into a single
QQ plot.

APPROACHES FOR FOLLOW-UP OF PROMISING

SIGNALS

In some rare cases, exome sequencing of a single large sample
will be sufficient to demonstrate association (perhaps after
technical validation of key genotypes, to show that they are
not genotyping artifacts). More often, it will be necessary to
examine the most promising variants in additional samples
(95). A range of approaches are available for follow-up,
ranging from in silico approaches (based on genotype imput-
ation) to targeted genotyping or targeted sequencing.

SNPs with frequencies .1% can usually be tested in thou-
sands of samples by direct genotyping or imputation since
these SNPs are frequent enough to be tested individually. A
recent Crohn’s disease-sequencing study illustrates the possi-
bilities (96): after analysis of sequence data for 350 cases
and 350 controls, 70 variants were examined in .16 000 add-
itional cases of Crohn’s, .12 000 cases of ulcerative colitis
and 17 000 controls—resulting in a clear association for a
splice variant in CARD9 (allele frequency ¼ 0.2–0.7%, odds
ratio ¼ 0.29, P , 1 × 10216). An important extension of this
approach are studies that attempt to examine essentially all,
or most, of the variants discovered in a sequencing experiment
in very large numbers of additional samples. One notable set
of these experiments, currently underway, are the exome
chip experiments. These experiments use arrays designed to
include .250 000 non-synonymous variants identified by se-
quencing .12 000 individuals and are being genotyped on
.1 000 000 individuals to explore genetic contributions to a
great variety of traits. A limitation of exome chips is that
they will miss a significant fraction (�15–20%) of variants
because their genomic context is incompatible with array-
based genotyping, variants highly specific to non-European
populations (�10 000 of the 12 000 sequenced individuals
considered for the design of exome chip were of European an-
cestry) as well as the rarest variants in any population. Still,
because of their focus on very rare coding variation (the vast
majority of variants on the exome chip have frequency
,0.5%), the analyses of exome chip experiments will be
more similar to the analysis of exome-sequencing studies
than to the analysis of genome-wide association studies—
requiring careful attention to ancestry matching and the con-
sideration of tests that consider many coding variants in a
gene, for example. While these exome chip studies will only
provide an imperfect approximation to the results of sequen-
cing studies, we hope they will provide a preview of the dis-
coveries that will be possible when exome sequencing is
applied to 100 000 s of samples.

When a very large number of individuals with exome se-
quence data and whole genome genotypes is available, statis-
tical imputation can also provide an effective strategy for
extending sample sizes (97,98). The approach can be relatively
fast and economical. Currently, sufficiently large reference

panels that can support imputation of very rare variants are
not available for most cosmopolitan populations. However,
several examples of the success of this approach exist, many
from the isolated population of Iceland. There, relatively
limited genetic diversity, a panel of sequenced Icelanders,
and the availability of 10 000 s of genotyped individuals
have enabled recent discoveries using imputation. MYH6
L721W (a variant with allele frequency of 0.4%) was evalu-
ated in 38 000 individuals and associated with the risk for
sick sinus syndrome (odds ratio ¼ 12.5, P ¼ 2 × 10229) (99)
and of variant APP A673T (allele frequency 0.1%) was eval-
uated in 71 000 individuals and associated with the risk for
Alzheimer’s disease (odds ratio ¼ 5.29 and P ¼ 5 × 10227)
(100).

When targeted genotyping and imputation are not possible
or when the association signal is driven by a burden of very
rare mutations (101), it will be necessary to undertake targeted
sequencing of genes prioritized on the basis of initial analyses.
While current methods for sequencing 50–200 genes in
10 000 s of samples are cumbersome, this is an area of
active technology development where we expect important
advances will soon be available. These advances should
perform at a fraction of the cost of traditional Sanger sequen-
cing and will allow follow-up of exome-sequencing studies to
explore promising signals due to a burden of rare variants.

THE ROLE OF FUNCTIONAL ASSAYS IN

INTERPRETING EXOME-SEQUENCING STUDIES

Genetic analyses that consider groups of rare variants will
improve in power if functional variants can be separated
from those that have no impact on function so that association
tests and follow-up experiments can focus on the functional
variants. In this context, functional or computational assays
that identify variants most likely to impact gene function—
particularly when they can be carried out on a genomic
scale—could play a very important role in the successful inter-
pretation of exome-sequencing studies. As these functional
assays are expanded to the rest of the genome, they will
likely play a critical role in expanding studies of rare variation
beyond the exome and to the rest of the genome—where iden-
tifying, aggregating and grouping functional variants remain
much harder.

Functional characterization of non-synonymous changes
will also help interpret rare variant association signals and
help transform genetic findings into precise mechanistic
insights. Functional studies can reveal the specific molecular
changes consequences of coding variation on gene products,
as well as the molecular mechanisms by which genes
produce disease (102). However, such functional data, when
used to support statistical signals that cannot stand on their
own, are susceptible to many biases (94). The historical
example of candidate gene association studies is inform-
ative—in that setting, the widespread use of functional infor-
mation to support marginal genetic association signals
produced a situation where many published findings were irre-
producible and most such studies are now discounted. In our
view, claims of significance for marginal statistical signals
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based on modest functional evidence should be considered
only when generating additional genetic data is impossible.

We encourage human geneticists to carefully plan and con-
sider the functional experiments that will follow identification
of robust, rare variant association signals. However, in most
cases, these experiments should only be undertaken when
the initial association signal is clearly established. As noted
above, we do make an exception for high-throughput assays
that attempt to separate variants that are likely to be functional
from those are that are likely to be neutral—for example, so as
to focus burden analysis on the most deleterious variants.
These analyses can be productively used in the discovery
process—however, if not used judiciously, they will require
the use of even more stringent thresholds because they
imply an additional round of statistical tests and potential
false discoveries.

FORWARD GENETICS

Instead of characterizing function in model systems, exome
sequencing potentially allows for evaluating the functional
consequence of pathogenic mutations directly in humans. It
is now possible to envision an era of ‘forward genetics’ in-
volving humans. The concept involves understanding gene
function by identifying patients harboring specific mutations
and characterizing the physiologic and clinical consequences
of these mutations. Direct study of rare, human ‘knock-out’
variants may be particularly illustrative (103–105). For
example, humans heterozygous or homozygous for knockout
alleles at several plasma lipid genes have been identified and
detailed study of these individuals has led to new biologic
insights.

WHERE DO WE GO FROM HERE?

Exome sequencing has already been successful at identifying
the genetic cause of many Mendelian disorders. While appli-
cations of exome sequencing to common, complex diseases
will be more challenging, we expect that the continued avail-
ability of high-quality phenotyped samples, combined with
advances in sequencing technology and analytical methods,
will soon allow .10 000 s of individuals to be examined for
many common outcomes and quantitative traits. As large
numbers of sequenced individuals become available, a particu-
lar challenge will be the development of appropriate methods
for combining information (or results) across studies that
might have used different sequencing platforms or analytical
approaches for converting sequence data into genotypes. In
the context of common variant association studies, such
approaches have been instrumental in the rapid rate of discov-
ery of the past few years. In the context of rare variant studies,
we believe that new protocols and statistical methods that
allow rare variant burden tests to be reconstructed through
meta-analysis of study specific summary statistics will be ex-
tremely useful.

As larger exome-sequencing studies become common place,
and the barriers to cross study analyses are surmounted,
perhaps a harvest of specific biological insights will arrive—
producing a great need for cellular and model organism

systems where these hypotheses can be evaluated. As for
human geneticists, we predict they will then be ready to con-
tinue their systematic exploration of the genome—proceeding
from common variants, to rare coding variants, to a systematic
evaluation of all variation (including rare non-coding vari-
ation) using whole genome-sequencing approaches.
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