
 

Use of Artificial Intelligence to Shorten the Behavioral Diagnosis of
Autism

 

 

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Wall, Dennis P., Rebecca Dally, Rhiannon Luyster, Jae-Yoon
Jung, and Todd F. DeLuca. 2012. Use of artificial intelligence to
shorten the behavioral diagnosis of autism. PLoS ONE 7(8):
e43855.

Published Version doi:10.1371/journal.pone.0043855

Accessed February 19, 2015 10:50:39 AM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:10482567

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH 

https://core.ac.uk/display/28941212?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/10482567&title=Use+of+Artificial+Intelligence+to+Shorten+the+Behavioral+Diagnosis+of+Autism
http://dx.doi.org/10.1371/journal.pone.0043855
http://nrs.harvard.edu/urn-3:HUL.InstRepos:10482567
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA


Use of Artificial Intelligence to Shorten the Behavioral
Diagnosis of Autism
Dennis P. Wall1,2*, Rebecca Dally1, Rhiannon Luyster3, Jae-Yoon Jung1, Todd F. DeLuca1

1Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America, 2Department of Pathology, Beth Israel Deaconess Medical

Center, Boston, Massachusetts, United States of America, 3 Laboratories of Cognitive Neuroscience, Boston Children’s Hospital, Boston, Massachusetts, United States of

America

Abstract

The Autism Diagnostic Interview-Revised (ADI-R) is one of the most commonly used instruments for assisting in the
behavioral diagnosis of autism. The exam consists of 93 questions that must be answered by a care provider within
a focused session that often spans 2.5 hours. We used machine learning techniques to study the complete sets of answers
to the ADI-R available at the Autism Genetic Research Exchange (AGRE) for 891 individuals diagnosed with autism and 75
individuals who did not meet the criteria for an autism diagnosis. Our analysis showed that 7 of the 93 items contained in
the ADI-R were sufficient to classify autism with 99.9% statistical accuracy. We further tested the accuracy of this 7-question
classifier against complete sets of answers from two independent sources, a collection of 1654 individuals with autism from
the Simons Foundation and a collection of 322 individuals with autism from the Boston Autism Consortium. In both cases,
our classifier performed with nearly 100% statistical accuracy, properly categorizing all but one of the individuals from these
two resources who previously had been diagnosed with autism through the standard ADI-R. Our ability to measure
specificity was limited by the small numbers of non-spectrum cases in the research data used, however, both real and
simulated data demonstrated a range in specificity from 99% to 93.8%. With incidence rates rising, the capacity to diagnose
autism quickly and effectively requires careful design of behavioral assessment methods. Ours is an initial attempt to
retrospectively analyze large data repositories to derive an accurate, but significantly abbreviated approach that may be
used for rapid detection and clinical prioritization of individuals likely to have an autism spectrum disorder. Such a tool
could assist in streamlining the clinical diagnostic process overall, leading to faster screening and earlier treatment of
individuals with autism.
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Introduction

Although autism has a considerable genetic component [1], it is

currently diagnosed through behavior. The clinical practice of

diagnosis has been formalized through instruments containing

questions carefully designed to assess impairments in three

developmental domains: communication and social interactions,

restricted interests and activities, and stereotypical behaviors. One

of the most widely adopted instruments is the Autism Diagnostic

Interview – Revised (ADI-R) [2]. This examination contains 93

items targeted for individuals with a mental age 18 months or

older. The exam is delivered in a clinical setting by a trained

professional and can take up to 2.5 hours to complete. While the

instrument is highly reliable, consistent across examiners [3–5],

and results in a rich understanding of the individual suspected of

having autism, its length can be prohibitive.

The practice of diagnosing autism varies widely in terms of

standards and timeframes. Families may wait as long as 13 months

between initial screening and diagnosis [6] and even longer if part

of a minority population or lower socioeconomic status [7]. These

delays directly translate into delays in the delivery of speech and

behavioral therapies that have significant positive impacts on

a child’s development, especially when delivered early [8,9]. In

addition, the recognition of the severity of the phenotype can vary

significantly across clinicians performing formal diagnosis [10].

Thus a large percentage of the population is diagnosed after

developmental windows in which behavioral therapy would have

had maximal impact on future development and quality of life.

The average age of diagnosis in the United States is 5.7 years and

an estimated 27% remain undiagnosed at 8 years of age [11]. At

these late stages in development, many of the opportunities to

intervene with therapy have evaporated. A shortened and readily

accessible test that can be delivered in advance or as part of

a clinical visit could improve these statistics.

Significant attention has been paid to the design of abbreviated

screening examinations that are meant to foster more rapid

diagnosis, including the Autism Screening Questionnaire (ASQ,

designed to discriminate between PDD and non-PDD diagnoses

[12]), the Social Communication Questionnaire (SCQ) [13], and

the Modified Checklist for Autism in Toddlers (MCHAT) [14].

However, most of these have been adopted for basic screening

rather than formal diagnosis, and may often be used prior to

administering the ADI-R or Autism Diagnostic Observation

Schedule (ADOS) [15]. While some pediatricians conduct routine
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autism screenings during well-child visits, it has yet to become

a universal practice [16] leaving much of the burden on the parent

or care provider. Parents often hesitate to take immediate action

without a clinical assessment and formal diagnosis, furthering

delays in the treatment of the child through behavioral therapy or

other means [8,17]. An exam that preserves the reliability of the

ADI-R but that can be administered in minutes rather than hours

would enable more rapid clinical diagnosis, higher throughput, as

well as timely and likely more impactful delivery of therapy.

A direct way to test whether an abbreviated ADI-R provides the

same level of accuracy as the full examination is to look

retrospectively at answers to the full ADI-R for a large set of

individuals with autism. Many efforts to-date on shortening the

behavioral diagnosis of autism have leveraged clinical experience

and criteria established by the DSM-IV to prospectively design

and test new instruments. However, as a valuable byproduct of the

widespread adoption and use of ADI-R, we now have large digital

repositories of item-level answers to each question coupled with

the clinical diagnosis that can be mined to test this question

directly. In the present study, we employed analytical strategies

from the field of machine learning to retrospectively analyze the

full ADI-R for over 800 individuals with autism, with our aim

centered on significantly reducing the number of questions while

preserving the classification given by the full ADI-R.

Results

We began by downloading the complete set of ADI-R data from

the Autism Genetic Resource Exchange (AGRE) (Table 1) for

classifier training and testing. We then compared the performance

of 15 different machine learning algorithms (Table 2) on the 93

item from the complete ADI-R and found that the Alternating

Decision Tree (ADTree) performed best in terms of both

sensitivity and specificity of classification, with perfect sensitivity

of 1.0, a false positive rate (FPR) of 0.013, and overall accuracy of

99.90% (Figure 1). This classification algorithm creates a mapping

from class instances to real numbers that is defined in terms of a set

of base rules that when summed generate a real value prediction.

The classification of an instance is the sign of the prediction. In our

study, a negative sign corresponded to a classification of autism

and a positive sign corresponded to a classification of non-

spectrum. The ADTree classifier correctly classified all AGRE

individuals previously labeled with a diagnosis of autism using the

full ADI-R exam and misclassified only 1 control individual. The

ADTree classifier contained only 7 questions from the 93 used in

the analysis. These were ageabn, grplay5, conver5, peerpl5, gaze5,

play5, and compsl5 (Table 3), and together represent a ,93%

reduction in the total number of elements overall.

The 7 questions formed the elements of a decision tree through

which the classifications of autism and non-spectrum were derived.

Three questions appeared more than once in the tree (ageabn,

play5, and peerpl5); each question either increased or decreased

a sum score called the ADTree score. A negative score resulted in

a classification of autism and a positive score yielded the

classification of non-spectrum. The amplitude of the score

provided a measure of confidence in classification outcome, with

larger absolute values indicating higher confidence overall. In our

study, the vast majority of the scores were near or at the maximum

for both the case and control classes, with comparably few

individuals classified with intermediate or low confidence values

(Figure 2) indicating that the predictions made by the classifier

were robust and well supported.

To independently validate our 7-question classifier, we used

completed ADI-R score sheets from two repositories, the Simons

Foundation (SSC) and the Boston Autism consortium (AC)

(Table 1). The classifier performed with high accuracy on both

the SSC and AC data sets. All individuals in the SSC previously

diagnosed with autism were accurately classified as having autism

by the classifier. In the AC, the classifier accurately classified 321

of the 322 cases with autism (99.7% accuracy). Interestingly, the

single misclassified individual from AC was assigned a low-

confidence ADTree score of 0.179 casting possible doubt on the

classification and suggesting the potential that a further behavioral

assessment of this individual could result in a non-spectrum

diagnosis.

We then examined the classification performance on the few

non-spectrum individuals present in the SSC and AC data

collections. Three of the 5 SSC subjects were accurately classified,

and 6 of the 12 AC subjects were accurately classified. Further

inspection of these 8 misclassified controls revealed possible autism

spectrum behaviors. Five had a previous diagnosis prior to

recruitment to the study (2 with Asperger’s Syndrome and 3 with

PDD-NOS) and all 8 were diagnosed on the autism spectrum by

an alternative diagnostic instrument, the Autism Diagnostic

Observation Schedule (ADOS) [15].

Given the large imbalance in numbers of autism cases and non-

spectrum controls and the potential biases that such class

imbalance could have on the outcome of the classifier, we elected

to simulate 1000 non-spectrum controls by random sampling from

the pool of observed answers given by 92 non-spectrum

individuals. We then tested the performance of the 7-question

classifier against this population of simulated data. The classifier

performed with 99.9% specificity on these simulated controls,

misclassifying only one. To broaden the distribution beyond that

represented in the 92 observed samples, we also simulated 1000

new controls by creating random permutations of the 93 questions

contained in the full ADI-R that would correspond to a non-

spectrum diagnosis using the ADI-R algorithm. We ensured that

these simulated data would fall close to but below established

cutoffs for social interaction, communication, and repetitive

behaviors. The classifier incorrectly categorized 62 of the 1000

controls simulated using this larger distribution of ADI-R data,

corresponding to a specificity of 93.8%.

Table 1. Summary of the data used for both construction and
validation of the autism classifier.

Classifier Data Validation Data

AGRE SSC AC

Autism Not Met Autism Not Met Autism Not Met

Sample Size 891 75 1654 5 322 12

Q1 (Age) 6.44 6.38 6.75 8.38 6.50 5.42

Median (Age) 8.06 9.24 8.75 9.75 8.50 9.50

Q3 (Age) 10.84 11.88 11.25 12.25 11.54 13.58

IQR (Age) 4.4 5.5 4.5 3.88 5.04 8.17

Full sets of answers to the Autism Diagnostic Instrument-Revised questionnaire
were downloaded from the Autism Genetic Research Exchange (AGRE), the
Simons Simplex Collection (SSC), and the Boston Autism Consortium (AC). The
AGRE data were used for training, testing, and construction of the classifier. The
SSC and AC data were used for independent validation of the resulting
classifier. The table lists the total numbers of spectrum and non-spectrum
individuals represented in each of the three data sets with a breakdown of age
by quartiles.
doi:10.1371/journal.pone.0043855.t001
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Given the importance of diagnosis at early ages, we also tested

the accuracy of our classifier on the collection of answers from

children diagnosed at ages under 5. Although 5 of the 7 questions

in the classifier probe for the most abnormal behavior between 4

and 5 years of age, we speculated that the answers to those

questions with the ‘‘current’’ behavior would be equally accurate

and allow expansion to younger children. Because the SSC

restricted case recruitment to ages 4 and older and we could use

only the AGRE and AC datasets, which contained sufficient

numbers of children below age 5, to test our hypothesis. For this

analysis, we had a total of 1589 individuals previously listed as

having autism in either AGRE or AC and 88 individuals flagged as

not meeting the criteria for an autism diagnosis. All but 1 of the

children with autism were correctly categorized by our classifier,

a near perfect accuracy of 99.9%, and 12 of the 88 controls were

misclassified as having autism, corresponding to an 86% accuracy.

As in the validation steps above, all 12 of these individuals had

a conflicting ADOS categorization, suggesting the possibility that

additional inspection and behavioral analysis may reveal char-

acteristics consistent with an autism diagnosis.

Table 2. The 15 machine learning algorithms used to analyze the Autism Genetic Resource Exchange ADI-R data.

Classifier Name Description FPR TPR Accuracy

ADTree An ADTree combines decision trees, voted decision trees, and voted decision stumps.
This particular algorithm is based on boosting, which produces accurate predictions
by combining a series of ‘‘weak’’ learners that together, can classify accurately [29].

0.013 1.000 0.999

BFTree The top node of the decision tree is the one that splits
the data so that the maximum reduction of impurity (misclassified data) is achieved. This is called
the ‘‘best’’ node,
and it is expanded upon first (unlike in a C4.5 tree, for example, where nodes are
expanded upon according to depth-first) [30].

0.053 0.991 0.988

ConjunctiveRule Within the ConjuctiveRule classifier is a conjunctive rule learner, which can predict for
both numeric and nominal class labels. A rule consists of a series of antecedents joined
by ‘‘AND’’s [31].

0.080 0.981 0.976

DecisionStump A DecisionStump classifier is a single-level decision tree with one node. The terminal
nodes extend directly off of this node, so a classification is made based on a
single attribute [31].

0.107 0.985 0.978

FilteredClassifier FilteredClassifier runs data through an arbitrary classifier after it’s been run through an
arbitrary filter. Classifiers are built using training data, and in this case, the filter is also
built based on the training data. This allows the user to skip the pre-processing steps
associated with transforming the data [32].

0.040 0.993 0.991

J48 J48 is a Java implementation of the C4.5 algorithm; it generates either an unpruned
or a pruned C4.5 decision tree. C4.5 uses the concept of information entropy to
build trees from training data [33].

0.053 0.998 0.994

J48graft This class generates a grafted C4.5 decision tree that can either be pruned
or unpruned. Grafting adds nodes to already created decision trees to improve
accuracy [34].

0.200 1.000 0.984

JRip This classifier is an optimized version of Incremental Reduced Error Pruning, and
implements a propositional learner, RIPPER (Repeated Incremental Pruning to Produce
Error Reduction). It produces accurate and ‘‘readable’’ rules [35]

0.053 0.997 0.993

LADTree LADTree produces a multi-class alternating decision tree. It has the capability to
have more than two class inputs. It uses the LogitBoost strategy, which performs
additive logistic regression [36]

0.027 1.000 0.998

NNge Nearest neighbor algorithms define a distance function to separate classes. Using
generalized exemplars reduce the role of the distance function (relying too heavily
on the distance function can produce inaccurate results) by grouping classes
together [37].

0.080 1.000 0.994

OneR This algorithm finds association rules. It finds the one attribute that classifies
instances so as to reduce prediction errors [38].

0.093 0.996 0.989

OrdinalClassClassifier This is a meta-classifier (meta-classifiers are like
classifiers, but have added functionality) used to
transform an ordinal class problem to a series of binary class problems [39].

0.053 0.998 0.994

PART A set of rules is generated using the ‘‘divide-and-conquer’’ strategy. From here,
all instances in the training data that are covered by this rule get removed and this process
is repeated until no instances remain [40].

0.040 0.996 0.993

Ridor This classifier is an implementation of a Ripple-Down Rule Learner. An example of
this is when the classifier picks a default rule (based on the least weighted error),
and creates exception cases stemming from this one [41]

0.080 0.996 0.990

SimpleCart Classification and regression trees are used to construct prediction models for data.
They are made by partitioning the data and fitting models to each partition [42].

0.053 0.993 0.990

These algorithms were deployed using the toolkit WEKA [28]. The false positive rate (FPR) and true positive rate (TPR) are provided together with overall accuracy. The
Alternating Decision Tree (ADTree) performed with highest accuracy and was used for further analyses.
doi:10.1371/journal.pone.0043855.t002

Fast and Accurate Behavioral Detection of Autism
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Discussion

Current practices for the behavioral diagnosis of autism are

highly effective but also prohibitively time consuming. A gold

standard in the field is the Autism Diagnostic Interview-Revised

(ADI-R), a 93-item exam that yields high inter-interviewer

reliability and accuracy. In the present study, we used machine

learning techniques to test whether the accuracy of the full ADI-R

could be achieved with a significantly shorter exam. Our analysis

found a small subset of 7 elements targeting social, communica-

tion, and behavioral abilities to be 99.97% as effective as the full

ADI-R algorithm for classification of 2867 cases with autism

drawn from three separate repositories. This represents 93% fewer

questions than the full ADI-R exam and 84% fewer questions than

contained in the ADI-R algorithm itself.

Our analysis used machine learning techniques to analyze

previous collections of data from individuals with autism. In our

case, several alternative machine learning strategies yielded

classifiers with high accuracy and low rates of false positives.

The top performing ADTree algorithm proved most valuable for

classification as well as for measuring classification confidence,

with a nearly 100% accuracy in the diagnosis of cases with autism.

The ADTree algorithm resulted in a decision-tree classifier that

could be converted into a behavioral algorithm for deployment in

screening and/or diagnostic settings. In addition, the classifier

generated a score that provided an empirical measure of

confidence in the classification and that could be used to flag

borderline cases likely warranting closer inspection and further

behavioral assessment. In our case, a small number of controls

were misclassified, but many of these classifications were given

a low confidence score suggesting that further screening and

additional diagnostic evaluation might reveal problems with the

initial diagnoses.

The brevity of this machine learning classifier and its apparent

accuracy for classification of subjects both on and off the spectrum

suggests the possibility that it could be of value in early, rapid

Figure 1. Performance of 15 machine learning algorithms evaluated for classifying autism cases and non-spectrum controls. Plot
comparing 1-specificity and sensitivity for the 15 different machine learning algorithms used to construct classifiers from the 93-item Autism
Diagnostic Interview-Revised (ADI-R) instrument from the Autism Genetic Resource Exchange (AGRE). The best performing algorithm was the
alternating decision tree (ADTree), followed by LADTree, PART, and FilteredClassifier. Table 2 summarizes the 15 machine learning algorithms in more
detail, and the elements contained in the ADTree classifier are listed in Table 3.
doi:10.1371/journal.pone.0043855.g001

Table 3. The seven attributes used in the ADTree model.

ADI-R question Abbreviation Description

29 compsl5 Comprehension of simple language: answer most abnormal between 4 and 5

35 conver5 Reciprocal conversation (within subject’s level of language): answer if ever (when verbal)

48 play5 Imaginative play: answer most abnormal between 4 and 5

49 peerpl5 Imaginative play with peers: answer most abnormal between 4 and 5

50 gaze5 Direct gaze: answer most abnormal between 4 and 5

64 grplay5 Group play with peers: answer most abnormal between 4 and 5

86 ageabn Age when abnormality first evident

Listed are the number corresponding to the question in the full ADI-R instrument, the question code used by Autism Genetic Research Exchange (AGRE) and a brief
description of the question.
doi:10.1371/journal.pone.0043855.t003
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detection of autism, a potential shared by and possibly combinable

with recent work on observation-based detection of autism [18].

An approach such as the one here could require less specialty

training for administration and delivery and enable a wider reach

to the population at risk, particularly if delivered through

mobilized channels (internet and handheld devices) and used for

prioritization of cases for subsequent clinical evaluation and

diagnosis. However, work has shown performance problems of

rapid assessment tools like the Social Responsiveness Scale and

Social Communication Questionnaire [13] especially with differ-

entiation of autism spectrum cases from other neurodevelopmental

conditions and learning delays [19–21], as well as problems with

agreement in the clinical diagnosis even when full ADI-R and

other instruments are used in the diagnostic process [10]. Future

work must therefore involve further exploration of the clinical

potentials of this approach through prospective studies, being

careful to consider the additional limitations covered in the section

below.

Limitations
Our study was limited by the content of existing repositories,

and as consequence, we had a small number of matched controls

for construction and validation of the classifier. In a prospective

design for a study like ours, we would attempt to equalize the

numbers of cases and controls for optimal calculations of sensitivity

and specificity of the classifier. Nevertheless, the clear demarcation

between cases and controls found with our existing data (Figure 2)

provided some confidence that our classifier would scale to a larger

population with equal or similar accuracy. In addition, our

classifier performed with reasonable accuracy on two sets of

simulated controls. Although the first set of simulated data were

bounded by the empirical distribution of answers given by the true

control individuals, that empirical distribution covered a space of

answers likely to be provided by prospectively recruited controls.

The second set explored permutations of the full ADI-R that

would meet cutoff requirements for an ASD diagnosis in the core

domains of social interaction, communication, and repetitive

behavior, and resulted in a decreased specificity of 93%. Going

forward, we hope to expand our validation via prospective studies

that enable the inclusion of new ADI-R data from both individuals

with autism as well as non-spectrum individuals with neurodeve-

lopmental delays.

The data used also contained an abundance of older children,

with highest density between ages of 5 and 17, potentially making

the resulting classifier biased against effective assessment of

younger children. However, we were able to show near perfect

classification accuracy for children 4 years of age and younger,

with the youngest individual being 13 months (Figure 2). Given

that the sample sizes of younger children was small, we anticipate

that a larger sample will provide greater resolution and a larger set

of training data to develop and test if a new classifier can achieve

greater accuracy than the one generated here.

Finally, since our classifier was trained only on individuals with

or without classic autism it was not trained to pinpoint other

diagnoses along the autism spectrum including Asperger and

Pervasive Developmental Disorder-Not Otherwise Specified

(PDD-NOS). This was a byproduct of the data available to us at

the time of study, which did not have sufficient granularity to test

whether the classifier could be utilized for more fine-grained

diagnoses. Either a large sample of ADI-R data from a range of

ASDs, a series of prospective clinical studies, and also potentially

instrument administration via social networking and web-based

technologies (for example, like the one we have launched at

http://autworks.hms.harvard.edu/community/survey), would en-

able us to measure the performance of our classifier outside of

classic autism, and would also enable retraining of the classifier

should the performance decrease.

Conclusions
Currently, the diagnosis of autism is through behavioral exams

and questionnaires that require considerable time investment on

the part of parents and clinicians. Here we attempted to reduce

one of the most commonly used instruments for behavioral

diagnosis, the Autism Diagnostic Interview-Revised (ADI-R) to

Figure 2. Decision tree scores and classification of cases with and without a diagnosis of autism. The Alternating Decision Tree (ADTree)
scores of individuals in the both the AC and AGRE data sets versus their age in years. A majority of the ADTree scores were clustered towards greater
magnitudes according to their respective classifications, regardless of age.
doi:10.1371/journal.pone.0043855.g002
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begin addressing this time burden. Deploying a variety of machine

learning algorithms, we found one, the Alternating Decision Tree

(ADTree), to have high sensitivity and specificity in the classifi-

cation of individuals with autism from controls The ADTree

classifier consisted of only 7 questions, 93% fewer than the full

ADI-R, and performed with greater than 99% accuracy when

applied to independent populations of individuals with autism,

misclassifying only one out of the 1962 cases used for validation.

The classifier also performed with equally high accuracy on

children under 4 and as young as 13 months, indicating its

applicability to a younger population of children with autism.

Given the dramatic reduction in numbers of questions without

appreciable loss in accuracy, our findings may represent an

important step towards making the diagnosis of autism a faster

process that enables delivery of therapy at earlier and more

impactful stages of child development.

Methods

Ethics Statement
Our study (number: M18096-101) has been evaluated by the

Harvard Medical School Institutional Review Board and identi-

fied as not involving human subjects as defined under

45CFR46.102 (f) and as meeting the conditions regarding coded

biological specimens or data. As such, (a) the specimens/data were

not collected specifically for the research through an interaction or

intervention with a living person, and (b) the investigators cannot

‘‘readily ascertain’’ the identity of the individual who provided the

specimen/data to whom any code pertains. The Harvard Medical

School Institutional Review Board determined the study to be

exempt.

Constructing a Classifier
For constructing a classifier, we used phenotype data from the

Autism Genetic Resource Exchange [22] (AGRE) repository of

families with at least one child with autism. Specifically, we used

the answers to the 93 questions and sub-questions in the 2003

version of ADI-R. We restricted our initial analysis to children

with a diagnosis of autism from the categories autism, broad

spectrum, and ‘‘not quite autism’’. Having one of these

classifications was determined by the AGRE ‘‘affected status’’

algorithms, which used the domain scores from the ADI-R to

evaluate the individuals. The autism classification used by AGRE

follows the validated algorithm created by the authors of the ADI-

R [2]. If a child who took the ADI-R did not meet any of these

classification criteria, he or she was deemed non-spectrum, and

was used as a control in our study. We also restricted our machine

learning classification steps to subjects with and without an autism

diagnosis who were 5 years of age or older and under the age of

17 years of age as the majority of data were from within this age

range, thereby providing the most uniform collection of answers to

the ADI-R and the most complete matrix of data for machine

learning. These steps resulted in 891 individuals with a classifica-

tion of autism and 75 with a classification of not met (Table 1).

The answers to the 93 multiple-choice questions on the ADI-R

were encoded as discrete numbers between 0–3. A score of 0 was

given when ‘‘behavior of the type specified in the coding was not

present.’’ A score of 1 was given when ‘‘behavior of the type

specified was present in an abnormal form, but not sufficiently

severe or frequent to meet the criteria for a 2.’’ A score of 2

indicated ‘‘definite abnormal behavior’’ meeting the criteria

specified, and a score of 3 was reserved for ‘‘extreme severity’’

of the specified behavior, although scores of 3 were converted to 2

during scoring and classification. There were also scores of 7

(‘‘definite abnormality in the general area of the coding, but not of

the type specified’’), 8 (‘‘not applicable’’), and 9 (‘‘not known or not

asked’’) all of which were converted to 0 when conducting scoring

and classification. The answers, converted to the values appropri-

ate for scoring, were formatted into a matrix containing the cases,

controls, and diagnostic labels.

Using this matrix we conducted a series of machine learning

analyses to construct a classifier from the 93 ADI-R questions in

order to distinguish individuals classified with autism from those

deemed non-spectrum. We compared the performance of 15

machine learning algorithms (Table 2) that have been demon-

strated to be of value for the learning and classification problem

presented here. For each algorithm, we performed 10-fold cross

validation – using 90% of the data for training and the remaining

10% for testing – to build and assess the accuracy of the resulting

classifier. Such cross-validation has been shown to perform

optimally for structured, labeled data while reducing bias in the

resulting classifier [23] and was therefore best suited to our

learning tasks. For each of the 15 classifiers, we measured the false

positive rate (FPR), true positive rate (TPR), as well as the overall

accuracy. We then plotted the specificity (FPR) against sensitivity

(TPR) to visualize the performance and to identify the optimal

classifier for use in further analysis and validation. All machine

learning steps were conducted using the Weka toolkit [24]. While

the 15 machine learning algorithms used in this analysis

represented a diverse set well suited to the discrete nature of the

data studied, we did not test many other algorithms common to

machine learning including classification approaches that employ

graphical models and Bayesian inference [25].

Validating the Classifier
Although the 10 fold cross-validation steps served as an internal

validation of classifier accuracy, we also tested the performance of

the classifier using independent, age-matched ADI-R data from

other families with autism whose data have been stored in the

Simons Simplex Collection [26] (SSC) version 11 and in the

Boston Autism Consortium collection (AC). The SSC data

consisted of 1654 individuals classified with autism by the

diagnostic standards of ADI-R and 5 that were found to be non-

spectrum according to the Collaborative Programs of Excellence

in Autism (CPEA) diagnostic algorithms established by Risi et al.

[27]. The families in the SSC study were all simplex, i.e. only one

child in the family with an ASD diagnosis. The AC set contained

322 individuals classified through the standard 2003 ADI-R as

having autism and 12 classified as non-spectrum. Our objective

with these independent resources was to determine if the classifier

constructed from the AGRE dataset could accurately identify

autism spectrum cases and non-spectrum controls.

Exclusion of Questions
Prior to executing the machine learning algorithms on our data

matrix, we removed questions from consideration if they contained

a majority of exception codes indicating that the question could

not be answered in the format requested. We also removed all

‘special isolated skills’ questions and optional questions with hand-

written answers. A list of questions removed is available in Table

S1.

Balancing Classes through Simulation
Due to the limited number of non-spectrum controls and

because machine learning algorithms maximize performance

criteria that place equal weight on each data point without regard

to class distinctions, we elected to simulate controls to increase the

number of score sheets that would correspond to an ADI-R
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classification of non-spectrum. This enabled us to test whether the

imbalance in the classes of autism and non-spectrum introduced

biases that skewed downstream results. To create the simulated

controls, we randomly sampled scores from the existing set

individuals who did not meet the criteria for a classification of

autism or autism spectrum in all three studies (N= 84) for all of the

93 items in the ADI-R. This guaranteed the simulated scores were

drawn from the same distribution of observed scores. We repeated

this process 1000 times to create artificial controls for use in

secondary measurement of the specificity of the classifier. In

addition, we simulated 1000 controls based on a complete

collection of answers that would correspond to an official ADI-R

classification of non-spectrum. The ADI-R algorithm sums scores

within the three behavioral domains generating autism diagnosis

when all three totals exceed specified minimum cutoffs, a value of

10 for social interaction, 8 if verbal or 7 if nonverbal for the

communication and language domain, and 3 for restricted and

stereotyped behaviors. We designed our simulation to randomly

generate controls that would be close to but not exceed values for

all three. This enabled us to explore a larger distribution of scores

than available in our observed controls sample, and to examine

scores that might represent behaviorally borderline subjects. Both

simulated datasets were used to measure the specificity of the

classifier and to evaluate potential biases stemming from class

imbalance.

Supporting Information

Table S1 List of all the excluded questions from the
ADI-R. We removed questions from consideration if they

contained a majority of exception codes indicating that the

question could not be answered in the format requested. We also

removed all ‘special isolated skills’ questions and optional questions

with hand-written answers.

(PDF)
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