
 

Rapamycin Inhibits Proliferation of Hemangioma Endothelial Cells
by Reducing HIF-1-Dependent Expression of VEGF

 

 

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Medici, Damian, and Bjorn R. Olsen. 2012. Rapamycin inhibits
proliferation of hemangioma endothelial cells by reducing HIF-1-
dependent expression of VEGF. PLoS ONE 7(8): e42913.

Published Version doi:10.1371/journal.pone.0042913

Accessed February 19, 2015 10:49:23 AM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:10524361

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH 

https://core.ac.uk/display/28941078?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/10524361&title=Rapamycin+Inhibits+Proliferation+of+Hemangioma+Endothelial+Cells+by+Reducing+HIF-1-Dependent+Expression+of+VEGF
http://dx.doi.org/10.1371/journal.pone.0042913
http://nrs.harvard.edu/urn-3:HUL.InstRepos:10524361
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA


Rapamycin Inhibits Proliferation of Hemangioma
Endothelial Cells by Reducing HIF-1-Dependent
Expression of VEGF
Damian Medici1,2*, Bjorn R. Olsen2,3

1 Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America,

2 Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Medical School, Boston, Massachusetts, United States of America, 3 Department of

Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America

Abstract

Hemangiomas are tumors formed by hyper-proliferation of vascular endothelial cells. This is caused by elevated vascular
endothelial growth factor (VEGF) signaling through VEGF receptor 2 (VEGFR2). Here we show that elevated VEGF levels
produced by hemangioma endothelial cells are reduced by the mTOR inhibitor rapamycin. mTOR activates p70S6K, which
controls translation of mRNA to generate proteins such as hypoxia inducible factor-1 (HIF-1). VEGF is a known HIF-1 target
gene, and our data show that VEGF levels in hemangioma endothelial cells are reduced by HIF-1a siRNA. Over-expression of
HIF-1a increases VEGF levels and endothelial cell proliferation. Furthermore, both rapamycin and HIF-1a siRNA reduce
proliferation of hemangioma endothelial cells. These data suggest that mTOR and HIF-1 contribute to hemangioma
endothelial cell proliferation by stimulating an autocrine loop of VEGF signaling. Furthermore, mTOR and HIF-1 may be
therapeutic targets for the treatment of hemangiomas.
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Introduction

Hemangiomas are the most common tumors found in children.

These vascular anomalies arise via uncontrolled angiogenesis

through clonal expansion of vascular endothelial cells [1].

Heterozygous single amino acid substitutions in VEGFR2 or

TEM8 have been found in hemangioma patients and have been

linked to reduced NFATc2-dependent expression of VEGFR1 [2].

As a decoy receptor that binds and sequesters VEGF and prevents

it from activating VEGFR2 [3], the low level of VEGFR1

expression by hemangioma endothelial cells causes constitutive

VEGF signaling through VEGFR2. This results in increased

proliferation of the cells and tumor formation [2].

HIF-1 is a transcription factor that is activated during hypoxia

by a mechanism that involves stabilization of HIF-1 protein levels

[4–6]. However, various signaling pathways can also increase

expression and activity of HIF-1 [7]. The kinase p70S6K controls

translation of mRNA to protein for factors such as HIF-1 [8,9].

Therefore, phosphorylation of p70S6K through a constitutive

signaling pathway such as the VEGFR2 pathway in hemangioma

endothelial cells might increase HIF-1 activity. p70S6K has been

shown to be phosphorylated by mTOR [10], a downstream

signaling molecule in the phosphoinositide-3 kinase (PI3K)

pathway [11,12]. We previously showed that PI3K is constitutively

active as a result of enhanced VEGF-dependent VEGFR2

signaling in hemangioma endothelial cells [2]. Rapamycin, a

known mTOR inhibitor [13,14], can be used to determine the role

of this pathway in regulating biochemical and physiological

processes. Also, VEGF is a known HIF-1 target gene [15,16].

Based on these findings, we sought to determine whether a HIF-

1-dependent autocrine loop of VEGF signaling might contribute

to the hyper-proliferation of hemangioma endothelial cells. We

also asked whether rapamycin could inhibit HIF-1 expression and

reduce VEGF signaling in these cells.

Results

To determine HIF-1a protein levels we performed immuno-

blotting using lysates from cultured normal human dermal

microvascular endothelial cells (HDMEC) and hemangioma

endothelial cells (EC2, EC17B, EC21A). We found that heman-

gioma endothelial cells show significantly higher expression of

HIF-1a than in control cells (Figure 1A and S1). Immunocyto-

chemistry showed constitutive nuclear localization of activated

HIF-1a in hemangioma endothelial cells, but not in control

endothelial cells (Figure 1B).

To determine whether the elevated levels of HIF-1a found in

hemangioma endothelial cells is the result of their constitutive

VEGF/VEGFR2 signaling as previously described [2], we treated

cells for 6 hours with neutralizing antibodies specific for VEGF-

A165. Luminex assays were performed to measure real-time

quantitative protein expression levels of HIF-1a. The data showed

that the VEGF antibodies significantly reduced the elevated HIF-

1a levels in hemangioma endothelial cells (Figure 1C). We
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previously reported that hemangioma endothelial cells have

constitutive PI3K/AKT signaling as a result of this VEGF activity

[2]. Addition of a chemical inhibitor of PI3K (LY294002) was

sufficient to reduce elevated HIF-1a levels in hemangioma

endothelial cells almost to the levels of control endothelial cells

(Figure 1D).

To assess the effects of HIF-1a siRNA in the primary control and

hemangioma endothelial cells, we performed immunoblotting and

Luminex assays using lysates from cells transfected with either HIF-

1a siRNA or a negative control siRNA duplex. Our data show a

substantial knockdown of HIF-1a protein expression by HIF-1a
siRNA (Figure 2A and 2B). To establish whether the elevated VEGF

levels observed in hemangioma endothelial cells are the result of

HIF-1a activity, we performed immunoblotting and Luminex

analysis using the same siRNA treated samples. HIF-1a siRNA

significantly reduced the higher levels of VEGF-A165 in hemangi-

oma endothelial cells (Figure 2A and 2C). These data were

confirmed with a second HIF-1a siRNA duplex (Figure S2A and

S2B).

Next, we sought to confirm a role for HIF-1a on the

proliferation rates of hemangioma endothelial cells. Cultured

normal or hemangioma endothelial cells transfected with HIF-1a
siRNA or negative control siRNA were stained in suspension for

BrdU incorporation. Hemangioma endothelial cells showed much

higher proliferation rates than control cells. HIF-1a siRNA

significantly reduced the hyper-proliferation of hemangioma

endothelial cells (Figure 3A and 3B). These results were confirmed

by quantifying the total number of cells in culture over time

(Figure S3A) and by using a second HIF-1a siRNA duplex (Figure

S2C).

To determine whether HIF-1 expression increases VEGF levels

we decided to over-express HIF-1a in control endothelial cells

(HDMEC) using a pcDNA3-HIF-1a plasmid. Cells transfected

with the HIF-1a expression plasmid showed higher levels of HIF-

1a and VEGF-A165 protein by immunoblotting compared to those

transfected with the pcDNA3 empty vector (Figure 4A). Flow

cytometry was performed to assess cell proliferation by BrdU

staining. Cells containing the HIF-1a expression plasmid showed

higher BrdU incorporation compared to those with the empty

vector. However, in the presence of VEGF-A165 neutralizing

antibodies, the HIF-1a-dependent increase in cell proliferation

was blocked (Figure 4B and 4C). These results were confirmed by

quantifying the total cell numbers in culture over time (Figure

S3B).

To confirm that VEGF signaling can induce synthesis of HIF-

1a, we treated control endothelial cells with recombinant VEGF-

Figure 1. Elevated HIF-1 expression in hemangioma endothelial cells caused by VEGF/PI3K signaling. A: Immunoblotting showing high
expression of HIF-1a in hemangioma endothelial cells (EC2, EC17B, EC21A) compared to normal endothelial cells (HDMEC). B: Immunocytochemistry
showing constitutive nuclear localization of HIF-1a in hemangioma endothelial cells. C and D: Luminex analyses demonstrating that elevated HIF-1a
levels in hemangioma endothelial cells are reduced in the presence of VEGF-A165 neutralizing antibodies (VEGF Ab) or a chemical inhibitor of PI3K
(LY294002). Data represent mean (n = 3)6SD; *P,0.01 compared to IgG or vehicle.
doi:10.1371/journal.pone.0042913.g001
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A165. Immunoblotting confirmed increased phosphorylation of

p70S6K after 15 minutes of treatment, a kinase known to promote

translation of HIF-1 mRNA into protein [8,9]. The mTOR

inhibitor rapamycin successfully inhibited VEGF-dependent

increases in p70S6K phosphorylation (Figure 5A). Increased

HIF-1a expression was observed in cells treated with VEGF for

6 hours, and total VEGF-A165 levels themselves were also higher

when stimulating cells with exogenous VEGF-A165, suggesting an

autocrine loop of VEGF signaling. Exposing the cells to rapamycin

inhibited VEGF-dependent expression of HIF-1a and VEGF

(Figure 5B). Exposing the cells to HIF-1a siRNA inhibited VEGF-

dependent increases in cell proliferation as determined by flow

cytometry analysis of BrdU staining (Figure 5C and 5D) or by

counting cells is culture over time (Figure S3C).

We next attempted to assess potential therapeutic effects of

rapamycin on hemangioma endothelial cells, since their elevated

proliferation is caused by hyperactive VEGF signaling [2].

Immunoblotting and Luminex analysis showed that hemangioma

endothelial cells have constitutively higher phosphorylation of

p70S6K and higher expression of HIF-1a and VEGF-A165

compared to control cells. Treatment of these cells with rapamycin

for 6 hours dramatically decreased p70S6K phosphorylation,

HIF-1a expression, and VEGF-A165 expression (Figure 6A–6C).

To measure proliferation rates of control and hemangioma

endothelial cells, we performed BrdU staining of cells treated in

culture with vehicle or rapamycin. Hemangioma endothelial cells

showed a much higher rate of proliferation than normal

endothelial cells. This hyper-proliferation of hemangioma endo-

thelial cells was significantly reduced by exposure to rapamycin

(Figure 7A and 7B). These data were confirmed by quantifying

total cell numbers in culture over time (Figure S3D).

Taken together, our data suggest that constitutive VEGF-

dependent mTOR signaling in hemangioma endothelial cells

promotes HIF-1 activity, which increases expression of VEGF to

form an autocrine loop of signaling (Figure 8). This mechanism

enhances proliferation of hemangioma endothelial cells.

Discussion

Our results provide novel insight into the mechanism that

control hyper-proliferation of hemangioma endothelial cells. Our

previous studies identified VEGF, VEGFR1, and VEGFR2 as

potential targets for therapeutic treatment of hemangiomas.

Treating hemangioma endothelial cells with VEGF neutralizing

antibodies, recombinant soluble VEGFR1, or VEGFR2 siRNA

was sufficient to reduce their proliferation [2]. Here we show that

the PI3K–mTOR–p70S6K signaling pathway is constitutively

active in hemangioma endothelial cells. As a result of this activity,

the expression of a downstream target, HIF-1a, is up-regulated.

HIF-1 has been shown to be constitutively located in the nuclei of

hemangioma endothelial cells in vivo [17]. However, it has been

unclear as to what potential role HIF-1 plays in promoting the

hemangioma phenotype. We demonstrate that HIF-1 is a major

contributor to the elevated VEGF levels produced in hemangioma

endothelial cells, and that decreased expression of HIF-1 reduces

proliferation of these cells.

Based on our data, it is clear that other factors besides HIF-1 are

involved in hemangioma endothelial cell proliferation. VEGF

signals through many pathways besides mTOR, which may play a

significant role in controlling proliferation. This would explain

why reduced proliferation rates after knockdown of HIF-1 with

siRNA were significant, but not dramatic. Furthermore, rapamy-

cin may have other effects on inhibiting proliferation other than

regulating HIF-1-dependent VEGF expression. Rapamycin had a

much greater effect on hemangioma endothelial cell proliferation

than by direct knockdown of HIF-1 with siRNA. Interestingly,

rapamycin also had a significant effect on the proliferation of

control endothelial cells, whereas HIF-1 siRNA did not.

Rapamycin is a potent inhibitor of the mTOR pathway and

treatment of hemangioma cells with rapamycin results in a

significant decrease in HIF-1 and VEGF levels and reduced

proliferation. Treatment with rapamycin may therefore prove

effective in the clinical management of large and rapidly

proliferating hemangiomas. Given the serious adverse effects of

rapamycin-based drugs when administered systemically to adult

and pediatric patients [18,19], systemic treatments with rapamycin

for even large hemangiomas is not advisable. However, recent

efforts to develop and clinically test topical rapamycin-based

therapy for cutaneous facial angiofibromas [20], the benign

tumors seen in patients with tuberous sclerosis [21], may provide a

basis for considering topical cutaneous rapamycin treatment also

for infantile hemangiomas. The outcome of randomized double

blind Phase I clinical trials for patients with tuberous sclerosis [20]

will provide a useful guide for further efforts along this line.

Figure 2. Elevated VEGF levels in hemangioma endothelial
cells are HIF-1-dependent. A: Immunoblotting showing the
expression knockdown effects of HIF-1a siRNA on HIF-1a and VEGF-
A165 in normal (HDMEC) and hemangioma (EC2, EC17B, EC21A)
endothelial cells. B and C: Luminex analysis showing suppression of
HIF-1a and VEGF-A165 protein levels in hemangioma endothelial cells by
HIF-1a siRNA. Data represent mean (n = 3)6SD; *P,0.05 compared to
control siRNA.
doi:10.1371/journal.pone.0042913.g002
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Materials and Methods

Ethics Statement
All cells were obtained from patients with informed written

consent and protocols for this study approved by the Investiga-

tional Review Board of Harvard Medical School (IRB# M10510-

110). The investigation conformed to the principles outlined in the

Declaration of Helsinki.

Cell Culture
Primary human dermal microvascular endothelial cells derived

from foreskin (HDMEC) or facial skin (HCMEC), human

umbilical vein endothelial cells (HUVEC), and primary human

hemangioma endothelial cells (EC2, EC17B, EC21A) derived

from three different proliferating-phase hemangioma tumors were

isolated as previously described [1]. Cells were tested for purity

and found to express no markers for lymphatic endothelial cells or

stromal cells (pericytes, smooth muscle cells, fibroblasts, etc.) as

previously described [2,22]. Cells were grown in standard culture

conditions of 5% CO2 at 37uC using EGM-2 medium (Cambrex),

containing 20% FBS and 1% Penicillin/Streptomycin, followed by

human endothelial serum free medium (Gibco) 24 hours prior to

all experimental conditions. Rapamycin (Sigma-Aldrich) was used

at a concentration of 10 nM. Recombinant VEGF-A165 (R&D

Systems) was added at a concentration of 25 ng/ml. The PI3K

inhibitor LY294002 (Cell Signaling Technology) was used at a

concentration of 50 mM and added to the cultures 1 hour prior to

experimental conditions. VEGF-A165 neutralizing antibodies

Figure 3. Inhibiting HIF-1 expression decreases proliferation of hemangioma endothelial cells. A: Flow cytometry analysis of BrdU
incorporation in normal (HDMEC) and hemangioma (EC2, EC17B, EC21A) endothelial cells transfected with control or HIF-1a siRNA duplexes. B:
Quantification of BrdU incorporation showing decreased proliferation of hemangioma endothelial cells transfected with HIF-1a siRNA. Data represent
mean (n = 3)6SD; *P,0.05 compared to control siRNA.
doi:10.1371/journal.pone.0042913.g003

Role of HIF-1 in Hemangioma Endothelial Cells
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(R&D Systems) were used at a concentration of 25 ng/ml. The

pcDNA3-HIF-1a expression plasmid was provided by Dr.

Ernestina Schipani (Indiana University School of Medicine). Cells

were transfected using 1 mg of plasmid per sample with Lipofectin

and PLUS reagents (Invitrogen) according to the manufacturer’s

guidelines. All experiments for this study were performed at

minimum in triplicate.

RNA Interference
siRNA gene expression knockdown studies were performed

using the TriFECTa RNAi kit (Integrated DNA Technologies)

and corresponding protocol. Each 27 mer siRNA duplex was

transfected into cells using X-tremeGene siRNA transfection

reagent (Roche) following the manufacturer’s guidelines. Trans-

fections were performed in human endothelial serum free medium

(Gibco) without antibiotics using 1 mg of siRNA per sample. All

transfections were performed 24 hours prior to experimental

conditions or analysis. siRNA was synthesized (Integrated DNA

Technologies) with the following sequences: HIF-1a: 59- ACACG-

CAAAUAGCUGAUGGUAAGCCUC-39; HIF-1a (2): 59-AUA-

CUGUAACUGUGCUUUGAGGACUUG-39; negative control:

59- UCACAAGGGAGAGAAAGAGAGGAAGGA -39.

Flow Cytometry
Cells were stained in suspension for BrdU incorporation

8 hours after all experimental conditions with the 5-Bromo-29-

deoxy-uridine Labeling and Detection Kit I (Roche). Cells were

pre-labeled with BrdU for 30 minutes then fixed with ethanol.

Cells were then incubated with monoclonal antibodies against

BrdU mixed with nucleases, followed by fluorescein-conjugated

Figure 4. HIF-1 over-expression increases VEGF-dependent proliferation of endothelial cells. A: Immunoblotting showing increased HIF-
1a and VEGF-A165 levels in HDMEC containing the pcDNA3-HIF-1a expression plasmid. B: Flow cytometry analysis of BrdU incorporation showing
increased proliferation of cells with the pcDNA3-HIF-1a plasmid, which is prevented by VEGF neutralizing antibodies. Non-specific IgG and pcDNA3
vector were used as negative controls. C: Quantification of flow cytometry analysis of BrdU incorporation. Data represent mean (n = 3)6SD; *P,0.01.
doi:10.1371/journal.pone.0042913.g004

Role of HIF-1 in Hemangioma Endothelial Cells
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Figure 5. VEGF stimulates p70S6K phosphorylation and HIF-1 expression. A: Immunoblotting showing that treatment of normal
endothelial cells (HDMEC) with exogenous VEGF-A165 increases phosphorylation of p70S6K. B: Immunoblotting showing increased expression of HIF-
1a and VEGF-A165 in HDMEC treated with recombinant VEGF-A165, suggesting an autocrine loop of signaling. Rapamycin prevents these increases. C:
Flow cytometry analysis of BrdU incorporation showing that increased proliferation of HDMEC by VEGF-A165 is inhibited in the presence of HIF-1a
siRNA. D: Quantification of flow cytometry analysis of BrdU incorporation. Data represent mean (n = 3)6SD; *P,0.05.
doi:10.1371/journal.pone.0042913.g005

Figure 6. Rapamycin reduces elevated VEGF and HIF-1 levels in hemangioma endothelial cells. A: Immunoblotting showing the effects
of rapamycin on p70S6K phosphorylation, HIF-1a expression and VEGF-A165 expression in normal (HDMEC) or hemangioma (EC2, EC17B, EC21A)
endothelial cell lysates. B and C: Luminex analysis showing reduced expression of HIF-1a (B) and VEGF-A165 (C) in hemangioma endothelial cells
treated with rapamycin. Data represent mean (n = 3)6SD; *P,0.05 compared to vehicle.
doi:10.1371/journal.pone.0042913.g006

Role of HIF-1 in Hemangioma Endothelial Cells
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secondary antibodies according to the manufacturer’s protocol.

Flow cytometry was performed at the Harvard Medical School,

Department of Pathology flow cytometry core facility using a

FACSCalibur (BD Biosciences) cell sorter. Data were analyzed

using WinMDI software.

Proliferation Assays
Cells were seeded in 6-well culture dishes at 2.56104 cells using

human endothelial serum-free medium (Gibco). Cell counts per

cm2 were carried out 5 days after all experimental conditions.

Immunoblotting
Cell lysates were collected using RIPA buffer (Pierce) supple-

mented with Halt protease and phosphatase inhibitor cocktail

(Pierce). Protein (20 mg) was resolved by SDS-PAGE and

transferred onto immobilon-P-membranes (Millipore Corporation)

then blocked with 5% dry milk in TBS-T (TBS (pH 7.6), 0.1%

tween20). Primary antibodies against phospho-p70S6K, p70S6K

(Cell Signaling Technology), VEGF-A165 (R&D Systems), HIF-1a
(Santa Cruz Biotechnology); b-actin (Sigma-Aldrich) were used at

a dilution of 1:1000. HRP-conjugated IgG TrueBlot secondary

antibodies (eBioscience) were used at a dilution of 1:1000. Protein

bands were visualized using an enhanced chemiluminescence

detection system (Pierce).

Immunocytochemistry
Cells grown on glass cover slips were fixed and permeablized

with cold acetone for 15 minutes then washed with PBS. Cells

were blocked with 10% FBS mixed into a solution of 1% BSA for

1 hour at room temperature. HIF-1a antibodies (Santa Cruz

Biotechnology) were used at a dilution of 1:50 in a solution of 1%

BSA for 2 hours at room temperature. Cells were then washed

Figure 7. Rapamycin inhibits proliferation of hemangioma endothelial cells. A: Flow cytometry analysis of normal (HDMEC) or
hemangioma (EC2, EC17B, EC21A) endothelial cell proliferation by BrdU incorporation in the presence of rapamycin. B: Quantification of flow
cytometry assessing the effects of rapamycin on BrdU incorporation. Data represent mean (n = 3)6SD; *P,0.01 compared to vehicle.
doi:10.1371/journal.pone.0042913.g007

Role of HIF-1 in Hemangioma Endothelial Cells
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three times with PBS for 5 minutes each. AlexaFlour 488 IgG

secondary antibodies (Invitrogen) were used at a dilution of 1:200

in a solution of 1% BSA for 2 hours at room temperature. Cells

were washed three times with PBS for 5 minutes each then

allowed to completely dry. Vectashield (Vector Labs) fluorescent

mounting medium containing DAPI was used when attaching the

cover slips to glass slides. Images were acquired using a Nikon 80i

fluorescent microscope.

Luminex Assays
Assays were performed using the Beadlyte Universal Cell

Signaling Assay Kit and protocol (Millipore). VEGF-A165 (R&D

Systems) and HIF-1a (Santa Cruz Biotechnology), and b-actin

(Sigma-Aldrich) antibodies were conjugated to Bio-Plex carboxyl-

ated beads (BioRad) with unique optical codes using the Bio-Plex

Amine Coupling Kit (BioRad). Cell lysates were collected using

Beadlyte Cell Signaling Universal Lysis Buffer (Millipore). 25 ml of

each lysate was added to wells of a 96-well filter plate, and mixed

with 25 ml of each 1X bead type pre-conjugated with primary

antibodies overnight shaking at 4uC. Lysates were discarded by

vacuuming the buffer through the filter at the bottom of each well,

while the beads remained in the wells. Beads were washed twice

with Beadlyte Cell Signaling Universal Assay Buffer, followed by

addition of biotinylated secondary antibodies for 1 hour at room

temperature. The biotinylated reporter was then discarded

followed by addition of streptavidin-PE for 15 minutes, then

signal amplification buffer for 15 minutes. Amplification buffer

was removed and beads were resuspended in Beadlyte Cell

Signaling Universal Assay Buffer. The beads were then analyzed

on a Luminex 200 multiplex testing system (Luminex). Beads were

detected by two lasers; one determining the bead type (each

conjugated with different antibodies) and the other determining

the amount of fluorescence given off based on the amount of

protein attached to each bead. VEGF and HIF-1 values were

divided by the b-actin control values to provide normalized data.

Statistics
One-way analysis of variance (ANOVA) was performed and

confirmed with two-tailed paired student’s t test using GraphPad

Prism 4 software. P values less than 0.05 were considered significant.

Figure 8. Schematic diagram of mTOR signaling in hemangioma endothelial cells. Low levels of VEGFR1 in hemangioma endothelial cells
result in constitutive VEGFR2 signaling and cell proliferation [2]. PI3K and its downstream kinase AKT are constitutively phosphorylated in
hemangioma endothelial cells as previously described [2]. Phosphorylation of p70S6K, a known target of PI3K/AKT signaling, promotes translation of
HIF-1 mRNA into protein, which translocates to the nucleus to regulate expression of target genes such as VEGF. This causes an autocrine loop of
VEGF signaling via activation of VEGFR2. The mTOR inhibitor rapamycin prevents p70S6K phosphorylation and decreases expression of HIF-1. mTOR
and HIF-1 inhibition is sufficient to reduce VEGF levels and proliferation rate of hemangioma endothelial cells.
doi:10.1371/journal.pone.0042913.g008

Role of HIF-1 in Hemangioma Endothelial Cells
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Supporting Information

Figure S1 Elevated HIF-1a in hemangioma endothelial
cells. Immunoblotting showing higher expression of HIF-1a in

hemangioma endothelial cells (EC2, EC17B, EC21A) compared to

control cells (HUVEC, HCMEC, HDMEC). b-actin was used as

an internal control.

(TIF)

Figure S2 Assessment of the effects of a second HIF-1a
siRNA duplex. A and B: Luminex analyses of HIF-1a (A) and

VEGF-A165 (B) protein levels showing that HIF-1a siRNA (2)

reduces their expression in hemangioma endothelial cells (EC2,

EC17B, EC21A). C: Proliferation assays quantifying total cell

numbers in culture 5 days after treatment showing that HIF-1a
siRNA (2) perturbs hyper-proliferation of hemangioma endothelial

cells. Data represent mean (n = 3)6SD; *P,0.05 compared to

control siRNA.

(TIF)

Figure S3 Proliferation assays confirming the results of
BrdU incorporation experiments. A: Quantification of total

cell numbers in culture after 5 days of treatment with HIF-1

siRNA showing that it inhibits proliferation of hemangioma

endothelial cells. B: Total cell numbers of HDMEC 5 days after

treatment with vehicle or VEGF-A165 in the presence of control

siRNA or HIF-1a siRNA showing that VEGF-induced cell

proliferation is partially dependent upon HIF-1 expression. C:
Assessment of total cell numbers 5 days after transfection of

HDMEC with pcDNA3 or pcDNA3-HIF-1a plasmids in the

presence of non-specific IgG or VEGF-A165 neutralizing antibod-

ies (VEGF Ab) showing that HIF-1a-induced proliferation is

VEGF-dependent. D: Total cell numbers 5 days post treatment

with vehicle or rapamycin showing that rapamycin successfully

inhibits proliferation of hemangioma endothelial cells. Data

represent mean (n = 3)6SD; *P,0.05.

(TIF)
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