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Abstract

Bacterial pathogens continue to threaten public health worldwide today. Identification of bacterial virulence factors can
help to find novel drug/vaccine targets against pathogenicity. It can also help to reveal the mechanisms of the related
diseases at the molecular level. With the explosive growth in protein sequences generated in the postgenomic age, it is
highly desired to develop computational methods for rapidly and effectively identifying virulence factors according to their
sequence information alone. In this study, based on the protein-protein interaction networks from the STRING database, a
novel network-based method was proposed for identifying the virulence factors in the proteomes of UPEC 536, UPEC
CFT073, P. aeruginosa PAO1, L. pneumophila Philadelphia 1, C. jejuni NCTC 11168 and M. tuberculosis H37Rv. Evaluated on
the same benchmark datasets derived from the aforementioned species, the identification accuracies achieved by the
network-based method were around 0.9, significantly higher than those by the sequence-based methods such as BLAST,
feature selection and VirulentPred. Further analysis showed that the functional associations such as the gene neighborhood
and co-occurrence were the primary associations between these virulence factors in the STRING database. The high success
rates indicate that the network-based method is quite promising. The novel approach holds high potential for identifying
virulence factors in many other various organisms as well because it can be easily extended to identify the virulence factors
in many other bacterial species, as long as the relevant significant statistical data are available for them.
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Introduction

TheEscherichia coliO104:H4bacteriaoutbreak sinceMay-02-2011

in Germany has brought into focus the need to use reagents to rapidly

identify pathogenic organisms and genes involved in the mechanisms

ofpathogenicity.AlthoughthemajorityofE.Coli strainsarebeneficial

to human bodies, the genome of this new strain of O104 was modified

by mutations or the genetic materials secreted from other bacteria,

rendering it able to produce Shiga toxin and resist to many kinds of

antibiotics and also to the mineral tellurium dioxide, causing

foodborne illness [1]. In the course of pathogens infection and

pathopoiesis, virulence factors (VFs) play a key role. VFs are the

molecules produced by pathogens that increase the ability of

pathogens to cause disease. According to their mechanisms and

functions, VFs can be generally classified into the following seven

groups: (1) adhesins that attach microbes to their hosts, (2)

colonization factors that enable certain bacteria to colonize within

host cells, (3) effectors that suppress hosts’ defenses, (4) invasions that

disrupt the host membranes and stimulate endocytosis, (5) toxins that

poison the host cells and cause tissue damage, (6) capsular

polysaccharides that protect pathogens from host defenses, and (7)

siderophores that take up iron [2–4].House-keeping proteins that are

required for maintaining the basic cellular functions and are not

related to pathogenesis are not virulence factors [2]. Therefore,

virulence factors can be the potential targets of drugs to treat

infectious diseases specifically, without killing or inhibiting other

bacterial growth, avoiding the higher evolutionary pressure to

develop drug resistance [4].

At present, complete genome sequences of almost all major

bacterialpathogenshavebeendetermined(http://cmr.jcvi.org/tigr-

scripts/CMR/CmrHomePage.cgi), providing significant insights

into microbial pathogenesis and drug resistance. Meanwhile, several

repositories aiming at collecting the virulence factors with their

structures, functions and mechanisms have also emerged, facilitating

the study of virulence factors of bacterial pathogens. The Virulence

Factor Database (VFDB, http://www.mgc.ac.cn/VFs/), construct-

ed by the virulence-guided classification system, currently contains

409 virulence factors and 2,353 VF-related genes (accessed June
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2011) [5]. The Lawrence Livermore National Laboratory Virulence

Database (MvirDB, http://predictioncenter.llnl.gov/) integrates

DNA and protein sequence information from various databases

and provides a browser tool enabling keyword and virulence

classification search [6]. Researchers have identified many genes of

potential virulence factors by analyzing comparative genomics or

homology searching against the virulence factor databases. For

example,Guliget al. [7] identified80genesexclusively foundinclade

2, which was the predominant clade among the clinical strains and

generally possessedhigher virulencepotential in theanimal modelsof

Vibrio vulnificus. Conducting the investigation with a different

approach, Wegmann et al. [8] used BLASTP to search against the

toxin in the virulence factor database MvirDB to assess the GRAS

(generally regarded as safe) status of L. lactis MG1363. Although the

data relevant to virulence factors are expanding rapidly, it is still quite

limited in the area of using computational tools to interpret, identify

and characterize virulence factors. A large number of proteins in the

microbial genomes are still annotated as hypothetical or with little

functional characterization, or with contradictory information to

confuse the comparative genomics analysis. Homology searching

methods like BLAST [9] could only identify conserved virulence

factors but failed to identify novel virulence factors that are

evolutionary distant from known virulent proteins. In order to deal

with such situation, several machine-learning approaches have been

proposed, such as SPAAN [10] for identifying adhesins and adhesin-

like proteins and VICMpred [11] for classifying bacterial proteins

among the following fourdifferent functional classes: cellular process,

information molecule, metabolism molecule and virulence factors.

However, the former was restricted to adhesins only, while the latter

was trained with merely 670 gram-negative bacterial proteins

[10,11]. To improve these kinds of situations, VirulentPred [12]

and Virulent-GO [13] were developed recently for predicting

bacterial virulent proteins based on their sequences information

alone: the samples in the former were formulated by a vector

consisting of five kinds of sequence features; while the samples in the

latterbyavectorcontaining theGO[14] information. Itwasreported

that the two predictors yielded an overall success rate of 81.8% [12]

and 82.5% [13], respectively.

The present study was devoted to develop a novel network-based

method by incorporating the information of protein-protein inter-

action (PPI) for identifying bacterial virulence factors in UPEC 536,

UPEC CFT073, P. aeruginosa PAO1, L. pneumophila Philadelphia 1, C.

jejuni NCTC 11168 and M. tuberculosis H37Rv. Compared with the

sequence-based methods such as BLAST, feature selection and

VirulentPred, the network-based method achieved a remarkable

improvement with the identification accuracy of 0.9.Further analysis

showed that the functional associations such as the gene neighbor-

hoodandco-occurrencewere the primaryassociations between these

virulence factors in STRING database. The high success rates

indicate that the network-based method is quite promising. It is

anticipated thatwith the increasingamountofPPInetworksavailable

in more and more organisms, the current network-based approach

will play a more and more important role in both applications and

stimulating new strategies for in-depth investigation into the relevant

areas.

Materials and Methods

1. Benchmark Dataset
Datasets of virulence factors were downloaded from VFDB [5],

a well-established database based on experimentally validated

virulence factors extracted from literatures and supplemented with

comprehensive genomics information from bacterial pathogens. A

total of 2,295 proteins of virulence factors were obtained, involving

24 pathogens from Bacillus to Yersinia.

According to the total amount of virulence factors in each of

these species, we selected five of them that contained the largest

amounts of virulence factors. These five species were: (i) Escherichia

coli 536 (UPEC 536), (ii) Pseudomonas aeruginosa PAO1 (P. aeruginosa

PAO1), (iii) Salmonella enterica (serovartyphimurium) LT2, (iv) Escherichia

coli CFT073 (UPEC CFT073), and (v) Legionella pneumophila

Philadelphia 1 (L. pneumophila Philadelphia 1). The numbers of

virulence factors in the above five species were 230, 190, 165, 117

and 117, respectively. Since these five species are closely related,

we also selected another two species that were distant in

phylogeny. The two species were Campylobacter jejuni NCTC

11168 (C. jejuni NCTC 11168) and Mycobacterium tuberculosis

H37Rv (M. tuberculosis H37Rv), and they contained 98 and 86

virulence factors, respectively. All the aforementioned species,

except Salmonella enterica (serovartyphimurium) LT2, were included in

the STRING database [15]. Consequently, the virulence factors in

the remaining six species would form our first-hand dataset.

The protein-protein interaction (PPI) network used here was

retrieved from the STRING database [15] (http://string-db.org/).

For each of the six species, a PPI network was constructed by

integrating different sources of information derived from exper-

imental, computational, and text-mining methods. Furthermore,

all interactions in STRING are provided with a probabilistic

confidence score, representing a rough estimate of how likely a

given interaction describing a functional linkage between two

proteins might occur. In order to predict virulence factors based

on the STRING database, we extracted all the proteins and

interactions between them for the 6 species mentioned above.

Mapping these known virulence factors from VFDB to STRING

proteins, we found 207, 110, 189, 116, 98 and 83 proteins for

UPEC 536, UPEC CFT073, P. aeruginosa PAO1, L. pneumophila

Philadelphia 1, C. jejuni NCTC 11168, and M. tuberculosis H37Rv,

respectively, by BLASTP with the cutoff of HSP score being 90.

These proteins comprised our positive dataset. Proteins, not

known as virulence factors, were randomly selected from the

remaining proteins of each species in STRING to compose the

negative dataset, with the ratio between the size of negative dataset

and positive dataset equaling 5:1. Then, all the virulent and non-

virulent sequences of the six species were randomly divided into a

training dataset with a proportion of 80% and a testing dataset

with 20%. The training dataset was used by the jackknife cross-

validation method to assess the identification performance of each

virulence factor classifier developed by us, while the testing dataset

was used to compare our methods with other existing tools (such as

VirulentPred) in identifying the virulence factors.

2. STRING Network-Based Method
It has been demonstrated that the STRING network-based

method could be used to predict protein phenotypes [16]. The

prediction accuracy thus obtained was 65.4% for budding yeast,

much higher than the success rate (15.4%) by a random guess. In

this study, we are to apply this novel method to predict virulence

factors. In the PPI network, when predicting whether a protein

was a virulence factor or not, we considered two kinds of

information: the number of its neighbor nodes (proteins) and the

strengths of its interactions (confidence scores) with them. The

detailed process of the prediction based on STRING network is

described as follows.

Firstly, suppose a PPI network consisting of n nodes

fp1,p2,:::,png, in which each node is divided into 2 classes

(T = [T1, T2]), where T1 stands for ‘‘virulence factor’’, T2 the

‘‘non-virulence factor’’. Then we denoted the class of the i-th

Identifying Virulence Factors
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protein in the PPI network by

T(Pi)~½ti,1,ti,2� (i~1,2,:::,n) ð1Þ

where

ti,j~

1, ifPi belongs to the j-th class

0, otherwise

8><
>:

ð2Þ

For a query protein Pk, its interaction weights with m proteins

(nodes) can thus be defined by

W (Pk)~½wk,1,wk,2,:::,wk,i,:::,wk,m�T (i~1,2,:::,m) ð3Þ

where wk,i is the interaction weight (confidence score) between Pk

and the i-th protein Pi in the dataset concerned. If there is no

interaction between them, let wk,i~0. Since the self-interaction of

proteins was not taken account here, we have wk,i~0 when k~i.

In order to estimate the likelihood of the protein Pk belonging to

the j-th class, we defined a score function as given by

S Pk[jð Þ~
Xm

i~1
wk,iti,j j~1,2ð Þ ð4Þ

where proteins without any associations with the queried protein

would have no contribution to the score function S(Pk[j). Thus,

the likelihood of protein Pk belonging to the j-th class can be

deemed as the sum of the interaction weights of all its neighbor

proteins being labeled as the j-th class in the training dataset.

Apparently, the larger the value of S(Pk[j), the more likely the

protein Pk would belong to the j-th class. Thus, the class of the

queried protein Pk can be determined by the following formula:

r~
S Pk[1ð Þ
S Pk[2ð Þ ð5Þ

If rw1, the queried protein Pk was predicted belonging to the

virulence factors; otherwise, other kinds of proteins.

3. BLAST
For the purpose of comparison, we also used BLAST to predict

the virulence factors as follows. First, let us denote the training set

as p1,p2,:::,pnf g, and a queried protein as Pk, then comparing the

queried protein Pk with the training set proteins by BLASTP with

default parameters. In the list of hit results

p1,p2,:::,pmf g 1ƒmƒnð Þ, we chose the positive and negative

samples both with the smallest e-values. If either positive or

negative sample did not exist in the list, the corresponding e-value

was set at 10. We computed the ratio of positive vs. negative

samples’ e-values by the following equation:

r~
min e{value(pm[1)f g
min e{value(pm[2)f g ð6Þ

where pm[1 means the protein pm was a virulence factor; pm[2,

not. Obviously, the queried protein is more likely to belong to the

same class as the hit protein with the smallest e-value in the hit list.

Thus, if rv1, the queried protein Pk was assigned to the category

of virulence factors; otherwise, other kinds of proteins.

4. Amino Acid and Pseudo Amino Acid Composition
In this method, virulence factors were coded by amino acid

composition (AAC) and pseudo-amino acid composition (PseAAC)

[17], from which some important features are selected by the feature

selection method. Generally, the frequency of the occurrence of each

amino acid in a protein sequence can be used to code the sequence.

That is, a protein can be represented by a 20-D (dimensional)

numerical vector. However, this traditional amino acid composition

nearly loses the sequence-order information completely. To

improve it, the pseudo amino acid composition (PseAAC) was

proposed [17,18] to complement the simple amino acid composition

(AAC) for representing the sample of a protein. Since the concept of

PseAAC was introduced, it has been widely used to study various

problems in proteins and protein-related systems, such as predicting

subcellular location of proteins [19], structural classes of proteins

[20] and DNA-binding proteins [21], etc. In this study, we only

employed the sequence-order information reflected by a series of

PseAAC components [17] to code proteins. These kinds of

sequence-order information were derived according to the following

five physicochemical and biochemical properties of amino acids: (i)

codon diversity, (ii) electrostatic charge, (iii) molecular volume, (iv)

polarity, and (v) secondary structure propensity. The values of such

five properties were retrieved from [22–24]. To get the optimal

results, we set ë = 50 and ù = 0.15 for the PseAAC, as done in [24].

Since each of the aforementioned five features can generate ë = 50

discrete numbers, each protein sample will be coded by a

(20+5065 = 270)-D vector in the feature space.

5. Feature Selection and NNA Classifier
In machine learning, feature selection is a technique that selects

an optimal subset of features to build a more robust learning

model. Here, we used Maximum Relevance Minimum Redun-

dancy (mRMR) method [25] to rank the 270 features based on

their relevance to the classification variable (maximum relevance)

and the redundancy among them (minimum redundancy). More

important features will be selected earlier and ranked in higher

position. Meanwhile, in spite of the features being ranked

according to mRMR criteria, it is a bit of a challenge to get the

optimal number of features used for the prediction. To solve the

problem, we adopted Incremental Feature Selection (IFS) [26] to

find the optimal number of features. For the 270 features ranking

from higher to lower, we added features one by one to code the

protein. Thus, we obtained a series of feature subsets

Si~ff1,f2,:::,fig (1ƒiƒ270) ð7Þ

where fi is the i-th feature in the ranked feature list. Subsequently,

a Nearest Neighbor Algorithm (NNA) [27] classifier was

constructed for each feature subset to predict whether a protein

was a virulence factor or not. NNA is one of the simplest and most

effective machine learning algorithms, which assigns the unknown

sample to the class of its nearest neighbor. The core of this

algorithm is the distance function:

D(vi,vj)~1{
vi
:vj

DDvi DD:DDvj DD
ð8Þ

where vi
:vj is the inner product of the two coding vectors vi and vj,

and DDvDD represents the module of vector v. Since each protein is

coded by an i-D (1ƒiƒ270) vector and the training set contains n

Identifying Virulence Factors
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proteins p1,p2,:::,pk,:::,pnf g, we can determine the class of a

queried protein p as follows

r~
min D(p,pk[1)f g
min D(p,pk[2)f g k~1,2,:::,nð Þ ð9Þ

where min D(p,pk[j)f g j~1,2ð Þ is the nearest distance of the

queried protein p and the j-th class protein pk[j, in which j~1
means protein pk belongs to positive samples and j~2 negative

samples. According to the theory of NNA, if rv1, the queried

protein is assigned to the virulence factors; otherwise not. Since the

NNA classifier can be applied for every feature subset to perform a

prediction, we draw an IFS (Incremental Feature Selection) curve

to reflect the relationship between the performance of the NNA

classifier and the feature subset. In the curve, x-axis is the number

of features of the subset Si and y-axis is the prediction accuracy of

the NNA classifier. The optimal prediction result is the highest

point in the curve, which corresponds to the feature subset in the

x-axis that achieves the highest overall accuracy in the curve.

6. Jackknife Cross-Validation and Evaluation
In statistical prediction, the jackknife cross-validation, also

known as the leave-one-out cross-validation (LOOCV), is regard-

ed as an objective and effective method to evaluate a classifier for

its effectiveness in practical application. Accordingly, we adopted

this method here to examine the quality of the present classifiers.

During the jackknifing process, each of the proteins in the dataset

was in turn singled out for testing by the classifier trained with the

remaining proteins. To evaluate the performance quality, we

calculated the following six indexes: sensitivity (Sn), specificity (Sp),

precision (P), recall (R), accuracy (AC) and Matthews Correlation

Coefficient (MCC), as formulated below:

Sn~
TP

TPzFN

Sp~
TN

TNzFP

P~
TP

TPzFP

R~
TP

TPzFN

AC~
TPzTN

TPzFPzTNzFN

MCC~
(TP|TN){(FN|FP)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFN)|(TNzFP)|(TPzFP)|(TNzFN)
p

ð10Þ

where TP represents the true positive, TN the true negative, FP the

false positive, and FN the false negative. Sn, Sp and AC are the

percentages of virulent proteins, non-virulent proteins and any

proteins that are correctly predicted, respectively. Precision (P) is

the proportion of the true positives against all the positive results

(both true positives and false positives), while recall (R) in our

classification context is referred to as the true positive rate (Sn) in

fact but is used in precision/recall curves. MCC equaling to 1

indicates a perfect prediction, whereas 0 means a completely

random prediction. Then, we further calculated ROC score

defined as the areas under the ROC curves, the plot of true

positive rate (Sn) as a function of the number of false positive rate

(1–Sp) by R package ROCR [28]. We also used ROCR to draw

precision/recall curves for the comparison of the aforementioned

three methods.

Results and Discussion

1. Virulence Factors and Databases
By the use of the molecular version of Robert Koch’s postulates,

which built a causal relationship between pathogens and disease,

Stanley Falkow attempted to provide a definition of the term

‘virulence factor’: (1) the potential virulence factor gene should be

found in all pathogenic strains of the genus or species but be

absent from non-pathogenic strains; (2) virulence of the microbe

with the inactivated gene should be less than that of the unaltered

microbe in an appropriate animal model; (3) reintroduction of the

relevant gene into the microbe should restore virulence in the

animal model [29,30]. His work has provided an experimentally

rigorous approach to the study of virulence in certain bacterial

pathogens. However, it should be noted that the definition of the

virulence factor is also problematic and controversial [31,32]. For

example, some ‘‘classic’’ virulence factors, such as invasion genes

(e.g., yjjp, ibeB and ompA), were also found in the genomes of

commensal bacteria [32]. In spite of this imprecise definition, the

virulence factor concept has still been used as a powerful engine in

driving research in the fields of microbial pathogenesis and

infectious diseases, and thus has greatly furthered our understand-

ing of microbial pathogenesis [33–36].

Except VFDB and MvirDB mentioned above, several other

databases have been developed specially for virulence factors, such

as PHI-base (Pathogen Host Interations dataBase) [37], ARDB

(Antibiotic Resistance Genes Database) [38] and ATDB (Animal

Toxin Database) [39] and so on. Among these databases, VFDB

was found to be the broadest and most comprehensive and had the

highest quality with its curated dataset and virulence-guided

classification system [5,33]. Via exhaustive literature screening and

expert review, VFDB has provided up-to-date information

regarding experimentally validated bacterial virulence factors

from genera of medically important bacterial pathogens. And

Table 1. Prediction based on BLAST.

Species TP FP TN FN Sn Sp AC MCC

UPEC 536 74 105 694 87 0.45963 0.86859 0.80000 0.31484

UPEC CFT073 45 72 339 41 0.52326 0.82482 0.77264 0.31035

L. pneumophila Philadelphia 1 39 91 359 50 0.43820 0.79778 0.73840 0.20481

P. aeruginosa PAO1 21 24 159 17 0.55263 0.86885 0.81448 0.39494

C. jejuni NCTC 11168 35 69 311 40 0.46667 0.81842 0.76044 0.25190

M. tuberculosis H37Rv 34 52 262 32 0.51515 0.83439 0.77895 0.31646

doi:10.1371/journal.pone.0042517.t001

Identifying Virulence Factors

PLoS ONE | www.plosone.org 4 August 2012 | Volume 7 | Issue 8 | e42517



therefore, we used the virulence factors from VFDB as our

primary dataset.

2. Results by BLAST
At first, we conducted the homology search for each species by

BLASTP with the cutoff of HSP score being 90. However, most

of the proteins (more than 80 percent) in the training dataset will

be discarded for the poor homology among them. Thence, in the

following study, to make use of the most of the data, no cutoff

was set for the BLAST method. If the ratio of the smallest e-

values of positive and negative samples was less than one, then

the query protein was assigned to the virulence factor class

regardless of how poor the alignment was; if not, non-virulence

factor class. In some cases, it was also possible that no hit

whatsoever existed for a query protein, and then the query

protein would be excluded from the training dataset. For

example, in UPEC 536, among 993 (2076660.8) proteins, 960

were predicted by the BLAST and 33 proteins were discarded.

The prediction results are given in Table 1. As can be seen, the

Sn, Sp, AC, and MCC for UPEC 536 were 0.460, 0.869, 0.800

Figure 1. The IFS curve for each of the six species. It shows the relationship between the prediction accuracies of the NNA predictor and the
number of feature subsets. The optimal feature subset is determined when the IFS curve arrives at the apogee. (A) UPEC 536; (B) UPEC CFT073; (C) L.
pneumophila Philadelphia 1; (D) P. aeruginosa PAO1; (E) C. jejuni NCTC 11168; (F) M. tuberculosis H37Rv.
doi:10.1371/journal.pone.0042517.g001

Identifying Virulence Factors
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and 0.315, respectively. The results of the other 5 species are also

shown in Table 1. We can find that the overall prediction

accuracies are around or less than 0.8.

3. Results by the Feature Selection Method
We also applied feature selection method to predict whether a

protein is a virulence factor or not. The model was constructed as

follows. First of all, each of the proteins in the training dataset was

coded as a 270-D feature vector in the feature space (see Section 4

of Materials and Methods). Then, the mRMR program was run to

rank the 270 features according to the criteria of Maximum

Relevance and Minimum Redundancy. The mRMR-ranked

features can be found in Table S1 and will be participated in

IFS procedure for feature selection and analysis. For each feature

subset, a NNA classifier was built and its prediction accuracy was

calculated by the jackknife cross-validation. Based on the number

Figure 2. The distribution of the number of features of the optimal feature subset for each of the six species. In the feature space, all
the features can be classified into six classes: amino acid composition, codon diversity, electrostatic charge, molecular volume, polarity and secondary
structure.
doi:10.1371/journal.pone.0042517.g002
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Figure 3. Histogram illustration to show the difference of the amino acid occurrence frequency between virulence and non-
virulence factors. The histograms were plotted for Ala, Ser, Arg, and Val in UPEC 536, respectively. X-axis is the amino acid composition, while y-axis
is the frequency of sequences that own the corresponding amino acid composition in the dataset. P-values are given by the Wilcoxon rank sum test
and measure how much evidence we have against the null hypothesis that the amino acid composition distribution is the same for virulence and
non-virulence factors. Traditionally, when p-value ,0.05, we say the null hypothesis is rejected, that is, the amino acid composition distribution is
significantly different for virulence and non-virulence factors. The feature distribution histograms and p-values show the difference of the amino acid
composition frequencies between virulence and non-virulence factors is significant, and thus it is reasonable to pick out virulence factors from
proteomes based on amino acid composition features.
doi:10.1371/journal.pone.0042517.g003

Table 2. Prediction based on feature selection method.

Species TP FP TN FN Sn Sp AC MCC

UPEC 536 87 96 732 78 0.52727 0.88406 0.82477 0.39489

UPEC CFT073 47 66 374 41 0.53409 0.85000 0.79735 0.34901

L. pneumophila Philadelphia 1 40 55 409 52 0.43478 0.88147 0.80755 0.31223

P. aeruginosa PAO1 49 100 656 102 0.32450 0.86772 0.77729 0.19326

C. jejuni NCTC 11168 36 36 356 42 0.46154 0.90816 0.83404 0.38189

M. tuberculosis H37Rv 26 41 291 40 0.39394 0.87651 0.79648 0.26882

doi:10.1371/journal.pone.0042517.t002
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of the features in a feature subset and the corresponding prediction

accuracy, we plotted the IFS curve (Figure 1). Again take UPEC

536 for example: it was observed that when the feature subset

contained the first 47 features, the prediction accuracy got the

highest value of 0.824773. Hence, the optimal prediction model

should be constructed by the first 47 features in the mRMR

feature list. For the other five species, the optimal number of

features and the corresponding accuracy were (148; 0.797348),

(112; 0.807554), (20; 0.777288), (204; 0.834043) and (26;

0.796482), respectively.

As described in the Materials and Methods, two kinds of

features were used to code protein sequences. They were

conventional amino acid compositions and pseudo-amino acid

compositions, and the latter was based on 5 kinds of physico-

chemical and biochemical properties of amino acids, such as the

codon diversity, electrostatic charge, molecular volume, polarity

and secondary structure. The distribution of the number of

features in each property in the optimized feature subset was

investigated and shown in Figure 2. As the panel A of the figure

showed that, in the optimized feature subset of UPEC 536, there

were 15 features of amino acid compositions, 8 features of codon

diversity, 6 features of electrostatic charge, 6 features of molecular

volume, 7 features of polarity and 5 features of secondary

structure. This indicated that both amino acid composition and

pseudo-amino acid composition contributed to the prediction of

virulence factors and that conventional amino acid composition

may play an irreplaceable role in the prediction. Furthermore, the

amino acid composition analysis of virulence and non-virulence

factors revealed some interesting results. According to the criteria

of maximum relevance to the target (Table S1), we selected the top

4 amino acid composition features ranked by mRMR to

investigate the feature distribution between virulence and non-

virulence factors (Figure 3). It was observed that compositions of

residues Ala, Ser, Arg and Val, corresponding to AA composi-

tion1, AA composition16, AA composition15 and AA composi-

tion18 in the Table S1 respectively, contributed significantly to the

classification for virulence and non-virulence factors. This was

supported by the discovery of Aarti Garg et al.’s research [12].

Amino acid compositions had been successfully applied to the

predictions of antimicrobial peptides [24], bacterial virulent

proteins [12] and subcellular localization [40,41], etc. And in

many cases the approach outperformed the homology searching

methods [12,40], consistent with our results.

By analyzing the feature subset that achieved the best prediction

accuracy for each species (Figure 2), it was revealed that the

distribution of the features was different among the six species. For

UPEC 536 and P. aeruginosa PAO1, conventional amino acid

compositions played the most importance role, while for the other

4 species, pseudo-amino acid components such as codon diversity,

electrostatic charge, polarity and secondary structure contributed

more towards the prediction. The reasons may come from two

factors. One is that the completeness of the annotation of virulence

factors in each species is not the same: some may be studied by

more research groups and has more detailed and accurate

annotations. The other may be due to the inaccurate annotation

where some virulence factors are still annotated as non-virulence

factors.

Listed in Table 2 are the results obtained by the feature

selection method on the six species via the jackknife tests.

4. Performance of the Network-Based Method
From STRING, the probabilistic confidence scores of inter-

actions between proteins can usually be acquired, which can then

be used to investigate biological problems [16,42,43]. However,

some proteins may not interact with any of other proteins in the

same training dataset. Take UPEC 536 as an example, only 959

proteins in its training dataset have interactions with other

proteins, while the remaining 9932959 = 34 proteins have no

interactions at all with the other proteins although they may

interact with proteins outside training dataset. Considering the

negative dataset was generated randomly, it is always possible

that some proteins do not interact with any others in the training

dataset. One feasible solution is to put all the non-virulence

factors in STRING into the negative dataset. Unfortunately, this

would make the size of the negative samples so large that Sn

would be very low, though AC could be high. In order to balance

the positive and negative samples, we tested the performance by

setting the ratio between positive samples and negative samples

to be 1:2, 1:5 and 1:10. And we found that when the ratio was

1:5, we obtained the desirable performance. For the other five

species (i.e., UPEC CFT073, L. pneumophila Philadelphia 1, P.

aeruginosa PAO1, C. jejuni NCTC 11168 and M. tuberculosis

H37Rv), the corresponding numbers of proteins without any

interaction with the others are 5282461 = 67, 5562506 = 50,

9072880 = 27, 4702467 = 3 and 3982372 = 26, respectively. All

these proteins were discarded.

Listed in Table 3 are the results obtained by the current

network-based method on the six species via the jackknife tests.

As we could see from the table, the AC values were more than

0.90 for all species except M. tuberculosis H37Rv, significantly

higher than those by either the BLAST method or the feature

selection method, indicating that the current network-based

method is quite promising that may hold very high potential for

identifying virulence factors in various organisms. However, it

was noted that although the AC value achieved by the network-

based method for M. tuberculosis H37Rv was higher than those

by the BLAST and feature selection methods, the value was

only 0.84140, much less than those for the other five species.

The poor prediction performance for M. tuberculosis H37Rv

Table 3. Prediction based on protein-protein interaction network.

Species TP FP TN FN Sn Sp AC MCC

UPEC 536 109 18 783 49 0.68987 0.97753 0.93014 0.73041

UPEC CFT073 80 19 359 3 0.96386 0.94974 0.95228 0.85480

L. pneumophila Philadelphia 1 59 20 397 30 0.66292 0.95204 0.90119 0.64503

P. aeruginosa PAO1 126 11 719 24 0.84000 0.98493 0.96023 0.85560

C. jejuni NCTC 11168 63 11 378 15 0.80769 0.97172 0.94433 0.79612

M. tuberculosis H37Rv 22 15 291 44 0.33333 0.95098 0.84140 0.36292

doi:10.1371/journal.pone.0042517.t003
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might be due to that the quality of protein-protein interaction

data for this organism in the STRING database is much poorer

[44].

5. Comparison between Network-based and Other
Methods

In this study, we developed three different methods to identity

virulence factors. As shown from Tables 1, 2, and 3, the network-

based method significantly outperformed the BLAST method and

feature selection method. Meanwhile, we also tried to perform the

ROC and precision/recall comparisons. For the BLAST method,

when the query protein sequence was very similar to some of the

protein sequences in the database, the e-value would be close to

zero, and hence their corresponding distance would also near zero

in the feature selection method as described above. Consequently,

many ratios would have extreme values, making the ROC and

precision/recall curves for both BLAST and feature selection

methods look abnormal. To tune this kind of extreme values, let us

adopt the following monotone decreasing function

Figure 4. The ROC curves of true positive vs. false positive for the three different prediction methods. The curves for the network-based
method are colored in red, while those for the BLAST method and the feature selected method in blue and green respectively. It can be seen that of
the three methods, the network-based method had the best performance for all the following six cases: (A) UPEC 536; (B) UPEC CFT073; (C) L.
pneumophila Philadelphia 1; (D) P. aeruginosa PAO1; (E) C. jejuni NCTC 11168; (F) M. tuberculosis H37Rv.
doi:10.1371/journal.pone.0042517.g004
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f (x)~e{x ð11Þ

where x is either the e-value or distance. By means of Eq. 11, all

the e-values and distances could be mapped into the region of

(0,1]. After such a transformation, we redrew the ROC and

precision/recall curves (Figures 4 and 5). As expected, the two

kinds of curves have showed once again that the network-based

method achieved the best performance among the three methods

for all the six species.

Moreover, based on the independent testing dataset for the six

species, we did plan to compare the prediction performance of

our three methods with other existing methods, including

VirulentPred [12] and Virulent-GO [13]. Unfortunately, no

downloadable or online tool whatsoever was available for

Virulent-GO. Thus, only the comparison with VirulentPred

was made here as a compromise. The concrete comparison

procedures are as follows. The positive and negative testing

dataset was submitted onto the VirulentPred online service

(http://203.92.44.117/virulent/submit.html) directly with default

parameters. For our three methods, it should be noticed that the

feature set used to code the testing dataset in the feature selection

method was the optimal subset, which was obtained from the

training dataset. The results of Sn, Sp, AC and MCC were also

calculated for each method, respectively. As can be seen from

Table 4, the network-based method achieved much better

Figure 5. The Precision/recall curves for the three different prediction methods. See the legend of Figure 4 for further explanation.
doi:10.1371/journal.pone.0042517.g005
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prediction performance than the BLAST and feature selection

methods, too. Although the value of Sn by VirulentPred was

slightly higher than that by the network-based method, the value

of Sp by the former was much lower than that by the latter,

indicating that the false positive outcome was really a serious

problem for VirulentPred and hence leading to its poor

prediction accuracy (AC) and MCC. As for M. tuberculosis

H37Rv, Zhou and his colleagues [44] have demonstrated that

the protein-protein interaction data of this organism in the

STRING database is of low quality and thus may unfavorably

affect our network-based method. Accordingly, it was not

surprising that the performance on the testing dataset for such

species was quite poor when compared with the other five.

Taken together, we can draw a conclusion that the method

based on the STRING networks is really better in identifying the

bacterial virulence factors.

6. From the Sequence to the Network
Determining protein function is one of the most challenging

problems in the post-genomic era. In this context, sequence-

based methods such as BLAST are the primary tools to deal

with this kind of problems. However, their accuracy is

considerably affected by the type and amount of information

on the specific protein family. Also, these methods would fail for

those systems that contain a significant proportion of novel

proteins without functionally known homologous counterparts in

the current databases. Therefore, many new computational

methods have been developed to infer the protein function

using the principle of guilt-by-association of other functional

properties to complement the sequence-based methods [45].

Our method based on the STRING protein-protein interaction

network reflects one of the efforts in this regard. As the

cornerstone in the current network-based method, the STRING

database quantitatively integrates the interaction data from

many information sources such as phylogenetic, experimental

and existing knowledge information, extending the direct

(physical) associations to the indirect (functional) associations.

We have analyzed the detailed sub-score information of our

STRING network data for the virulence factors in the six

species. It was found that most of the interactions among

virulence factors in the STRING database were functional

associations, mainly with the neighborhood and co-occurrence

associations (Figure 6). In view of this, we further studied the

locations of the virulence factors in the genomes and biological

processes they were involved in.

It has been noted by previous investigators [32,46] that many

virulence factors are presented in the pathogenicity islands

involved in horizontal gene transfer. In 2009, with the number

and diversity of bacterial genomes sequenced, a systematic large-

scale analysis across diverse genera has indicated that virulence

factors are disproportionately associated with genomic islands

(GIs) [33]. Subsequently, we mapped our virulence factors of the

six species to the SEED subsystems by the SEED Viewer version

2.0 (http://pubseed.theseed.org/seedviewer.cgi) [47]. In the

microbial genome annotation, the SEED is the first annotation

environment that curates genomic data via the curation of

subsystems by an expert annotator across many genomes, not on

a gene-by-gene basis. These subsystems group genes by the

pathways or structures in which they participate. For instance,

type 4 secretion and conjugative transfer are composed of a set of

functional roles that some proteins perform (type IV secretion

system protein VirD4, inner membrane protein forms channel for

type IV secretion of T-DNA complex VirB3 and minor pilin of

type IV secretion complex VirB5, etc.). Our results revealed that

more than half of mapped virulence factors participated in a

specific biological process or structural complex with at least one

other virulence factor (Figure 7, Figures S1, S2, S3, S4, and S5). As

Figure 7 showed, in C. jejuni NCTC 11168, as many as 29 and 13

virulence factors were involved in the flagellum subsystem and

flagellar motility subsystem, respectively. Flagella belong to a

major virulence factor in Campylobacter in VFDB, and can

penetrate the mucus barrier and are important for intestinal

colonization. Clusters of virulence factors in prokaryotic genomes

and enrichments in biological pathways made it possible for their

functional associations such as neighborhood and co-occurrence to

be common and confident in the STRING database.

Our network-based method was based on hypothesis that

proteins participating in the same cellular processes or being

localized at the same cellular compartment usually share similar

functions. This is reasonable because a pair of proteins

participating in a same pathway or locating in a same complex

Table 4. Comparison of several methods, including BLAST,
Feature Selection, Network-based and VirulentPred, based on
the testing dataset.

Method Sn Sp AC MCC

UPEC 536

BLAST 0.54762 0.88718 0.82700 0.42332

Feature Selection 0.52381 0.86957 0.81125 0.37051

Network-based 0.78571 0.96500 0.93388 0.76544

VirulentPred 0.80952 0.69082 0.71084 0.38351

UPEC CFT073

BLAST 0.66667 0.90476 0.86508 0.54233

Feature Selection 0.59091 0.87273 0.82576 0.42836

Network-based 0.90909 0.94898 0.94167 0.81755

VirulentPred 0.90909 0.62727 0.67424 0.40093

L. pneumophila Philadelphia 1

BLAST 0.25000 0.81416 0.71533 0.06131

Feature Selection 0.54167 0.80172 0.75714 0.29611

Network-based 0.70833 0.96262 0.91603 0.70743

VirulentPred 0.95833 0.50000 0.57857 0.34982

P. aeruginosa PAO1

BLAST 0.55263 0.86885 0.81448 0.39494

Feature Selection 0.34211 0.81482 0.73568 0.14347

Network-based 0.78947 0.95109 0.92342 0.73300

VirulentPred 0.84211 0.61376 0.65198 0.34134

C. jejuni NCTC 11168

BLAST 0.50000 0.84211 0.78261 0.31437

Feature Selection 0.45000 0.86735 0.79661 0.30571

Network-based 0.75000 0.98980 0.94915 0.81074

VirulentPred 0.90000 0.41837 0.50000 0.24819

M. tuberculosis H37Rv

BLAST 0.41176 0.82432 0.74725 0.22221

Feature Selection 0.29412 0.81928 0.73000 0.10649

Network-based 0.35294 0.95000 0.84536 0.37876

VirulentPred 0.76471 0.75904 0.76000 0.41840

doi:10.1371/journal.pone.0042517.t004
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is many folds more likely to interact with each other than a

random pair of proteins [48]. In fact, during the course of

infecting susceptible hosts, it is necessary for multiple virulence

factors in bacterial pathogens to cooperate with each other

[13,34,49]. For example, it has been shown that the prototyp-

ical type 1 secreted toxin, á-hemolysin (HlyA) is encoded by

UPEC 536 and CFT073 and its expression is associated with

increased clinical severity in the urinary tract infections patients

[50]. However, the HlyA protein requires a post-translational

modification for activity. The inactive protoxin pro-HlyA is

activated by another virulence factor protein HlyC, which is an

acyl carrier protein that acts as the fatty acid donor and is

responsible for acylation of HylA, resulting in toxin activation

[49]. Another example is that the secreted virulence factors by

Pseudomonas aeruginosa, including â-lactamase, alkaline phospha-

tase, hemolytic phospholipase C, and Cif, are not released

individually as naked proteins into the surrounding milieu.

Instead, it is the bacterial-derived outer membrane vesicles

(OMV) that deliver these virulence factors simultaneously and

directly into the host airway epithelial cells in a coordinated

manner [34]. In addition, Lilburn et al. [42] also proposed an

approach by assembling a list of known virulent proteins and

using these proteins as bait proteins in STRING functional

association network to detect candidate virulent proteins

involving in virulence in Vibrio cholerae, including proteins that

are overlooked because of the incomplete annotation or the

requirement of a follow-up investigation to confirm their roles in

virulence. All these facts are consistent with the notion that

virulent functions depend on the interaction of a large number

of proteins. That is the essence of why the STRING network-

based method is able to perform better than the sequence-based

methods such as BLASTP and feature selection method

(Tables 1, 2, 3, 4 and Figures 4 and 5).

7. Application and Improvement
Although the network-based method was merely tested for the

proteins in six species, the high success rates obtained indicated the

promising potential to be applied to other species as well. At

present, we only considered virulence factors annotated in VFDB

and protein-protein interactions in STRING database. Many

other databases, such as MvirDB and SwissProt [51], also contain

a large number of virulence factors, some of which are not

collected in VFDB. Accordingly, for any other given bacterial

species, we can also use the current network-based method to

identify the virulence factors concerned once significant statistical

data are available for the species. In other words, the current

method can be easily extended to identify the virulence factors in

many other bacterial species.

Despite quite high prediction accuracy by the network-based

method, the following limitations should be pointed out. Firstly,

some of the hypothetical non-virulent proteins in the training set

could turn out to be virulence factors after more of their functions

Figure 6. The functional associations of virulence factors in the STRING database. For each protein-protein interaction in the STRING
database, there are seven evidence channels and each is assigned a confident subscore and then integrated to a combined score to show the
possibility of the interaction. We analyzed all the interactions of virulence factors of six species, and computed the mean scores of seven evidence
channels and percents of each evidence channel that had a score more than 0. After the normalization based on the combined score, we found that
gene neighborhood and co-occurrence were the main associations between these virulence factors.
doi:10.1371/journal.pone.0042517.g006
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are determined in future. It will be less of a problem when more

proteins are accurately annotated by experiments. Secondly, some

protein-protein interactions from STRING database might not be

reliable, such as the case in M. tuberculosis H37Rv. Also, some of

the methods that generate protein interaction data – e.g., two-

hybrids or gene neighbor – are susceptible to noise and might have

a high false-positive rate [52–54]. Nevertheless, the STRING by

combining the protein-protein interactions from multiple sources

could improve their expected accuracy with at least 80% for more

than half of the genes, clearly demonstrating the reliability of the

data [55] in many cases. With enhanced quality of this small

fraction of PPI networks in STRING, the performance of our

network-based method can be further improved. Thirdly, the

above network-based method has only taken into account of the

neighbors that directly interact with the query protein, without

considering the full topology of the network, during the prediction

process. Yet it has been observed that, up to 69% of yeast proteins

share functions with their indirect interaction partners, while only

48% share functions with their immediate interaction neighbors,

as indicated in BioGrid [56]. Lastly, since the pathogenicity

mechanism involves the interactions between the host and

pathogen proteins [57,58], more information about these kinds

of interactions would be very useful in improving the methodology

and even providing some clues or insights for revealing the

mechanism.

Supporting Information

Figure S1 Enrichment of virulence factors in SEED
subsystems by UPEC 536. VF: virulence factor.

(TIFF)

Figure S2 Enrichment of virulence factors in SEED
subsystems by UPEC CFT073. VF: virulence factor.

(TIFF)

Figure S3 Enrichment of virulence factors in SEED
subsystems by L. pneumophila Philadelphia 1. VF:

virulence factor.

(TIFF)

Figure S4 Enrichment of virulence factors in SEED
subsystems by P. aeruginosa PAO1. VF: virulence factor.

(TIFF)

Figure S5 Enrichment of virulence factors in SEED
subsystems by M. tuberculosis H37Rv. VF: virulence

factor.

(TIFF)

Table S1 The feature list for all the six species by
mRMR. The first part is the features ranked according to the

criteria of maximum relevance to target. And the second part is

the features ranked according to maximum relevance and

minimum redundancy. The mRMR method could assign a score

to each feature and then rank the features based on their scores.

Figure 7. Enrichment of virulence factors in SEED subsystems by C. jejuni NCTC 11168. VF: virulence factor.
doi:10.1371/journal.pone.0042517.g007
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For a detailed description, see [25]. In the list of each part, the first

column is the order of features ranked by mRMR; the second

column is the original order of features input into mRMR; the

third column is the names of features classified as amino acid

composition, codon diversity, electrostatic charge, molecular

volume, polarity and secondary structure; and the last column is

the mRMR score.

(XLS)
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