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Abstract

We introduce a new method for detecting communities of arbitrary size in an undirected weighted network. Our approach
is based on tracing the path of closest-friendship between nodes in the network using the recently proposed Generalized
Erdös Numbers. This method does not require the choice of any arbitrary parameters or null models, and does not suffer
from a system-size resolution limit. Our closest-friend community detection is able to accurately reconstruct the true
network structure for a large number of real world and artificial benchmarks, and can be adapted to study the multi-level
structure of hierarchical communities as well. We also use the closeness between nodes to develop a degree of robustness
for each node, which can assess how robustly that node is assigned to its community. To test the efficacy of these methods,
we deploy them on a variety of well known benchmarks, a hierarchal structured artificial benchmark with a known
community and robustness structure, as well as real-world networks of coauthorships between the faculty at a major
university and the network of citations of articles published in Physical Review. In all cases, microcommunities, hierarchy of
the communities, and variable node robustness are all observed, providing insights into the structure of the network.
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Introduction

The topology of networks occurring in biological or chemical

[1,2], social [3,4], political [5], or technological [6] systems can

give profound insights into a variety of important aspects of these

systems, such as the processes that generated the network [7], the

stability of the system [8] or the properties of processes occurring

on it [9]. An important aspect of common real-world networks is

that of community structure [10], where subsets of the network are

densely connected internally and weakly connected externally.

Nodes in the same community have more in common than those

in distinct communities, reflected in the topology of denser intra-

community edges than inter-community edges. However, the

detection of communities in networks without apriori knowledge of

their structure is highly nontrivial, and methods for community

detection have recently attracted a great deal of interest.

Perhaps the most common approach for community detection

in networks is based on modularity maximization [11,12]. Each

node i in a network of N nodes and M edges is assigned to a single

community, ci , with the partition chosen to maximize

Q~
1

2W

X
ij

(wij{
WiWj

2W
)d(ci,cj), ð1Þ

where wij is the weight of the edge between nodes i and j,

Wi~
P

j wij is the strength of node i, W~
1

2

X
i
Wi, and

d(ci,cj)~1 if ci~cj and 0 otherwise. For an unweighted network,

wij:aij = 0 or 1, where aij is the adjacency matrix, and thus

Wi~ki is the degree of the node. Modularity compares the network

in question to a randomly generated network with each node

constrained to have the same strength, and is maximized by a

partition into communities fcig that have a higher intra-community

weight than would be expected randomly. This choice of a random

network acts as a null model, although other choices are possible

[13], and a wide variety of numerical approaches for efficiently

computing the maximal partition exist, including statistical

mechanical methods [14], bisection algorithms [11], and other

greedy searches [15,16]. While modularity maximization is both

intuitive and accurate in a variety of settings, Q has a natural

system-size resolution limit [17,13]: if the number of nodes becomes

large (N??), but the typical strength Wi of all nodes remains

finite, the total strength W?? and the second term in the sum in

Eq. 1 becomes small (since Wi and Wj do not diverge). Thus,

modularity maximization may not detect small communities in

large networks due to this resolution limit. Simple methods to

overcome this limitation include the introduction of a resolution

parameter [14,13] c, with the redefinition of Q~(2W ){1P
ij (wij{cWiWj=2W )d(ci,cj), or multiresolution methods [18]

which impose a self-loop of strength r on the network (i.e.

wij?wijzrdij ) in Eq. 1. Both of these approaches overcome the

problem of a resolution limit by introducing an arbitrary parameter

in detecting community structure that must be tuned. Alternate

approaches to community detection avoid a resolution limit through

other means, such as thresholding the resistance distance between

nodes, with nodes having low resistance distance between each

other belonging to the same community [19], maximizing the

‘fitness’ of each node in a greedy fashion [20], creating block models

to detect communities if the number of expected communities is

exactly known [21], or refining communities by finding ‘statistically

significant’ nodes [22]. In all these approaches, at least one free

parameter is required to detect the communities, which may be

useful in giving the ability to tune the resolution at which
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communities are detected, but with no a-priori method for

determining the ‘correct’ value that leads to a meaningful partition.

In this paper, we develop a new parameter-free, resolution-

limit-free method for community detection, most easily understood

intuitively in the context of a social network: a person belongs in

the same community as his or her ‘closest friend’ (the node to

which he or she has the greatest measure of ‘closeness,’ discussed

below). Our method requires a way to measure closeness (or

friendship) between nodes in a network, and a variety of such

measures are available [23]. We will focus primarily on a recently

proposed non-metric measure of closeness [24], the Generalized

Erdös Numbers (GENs), which have been found useful in a variety

of contexts in understanding the structure of network topology.

This closest-friend community detection method is shown to be

able to accurately detect communities in a variety of widely used

benchmarks, in some cases outperforming some modularity-

maximizing detection schemes in real world networks with a

known ‘correct’ partition. We also extend the method to detect

community structure at a lower resolution (macrocommunities

formed from higher resolution microcommunities) without

appealing to a free parameter. Our approach has the advantages

of being intuitively accessible, free of arbitrary parameters, and

able to accurately find communities in complex networks. We

leverage our chosen measure of closeness between nodes in

determining the robustness of assignment of each node into its

community (rather than a global measure of the quality of the

partition using modularity). Finally, our approach is applied to a

citation network and a coauthorship network, and the complex

hierarchical structure of each network is examined in detail.

Methods

Communities from Closeness
In a network with community structure, nodes in a community

have a higher density of edges internally (to other nodes in their

community) than they do externally. While one approach to

community detection maximizes global quality functions that

depend on the density of edges [10], we could alternatively search

for high densities of edges locally to find communities. Such a local

method may use an appropriate measure of closeness between

nodes, with ‘close’ nodes having multiple short-length paths

between one another (implying a locally high density of edges; see

below for examples). In the context of a social network, for

example, it is natural to expect that closest friends (those who feel

closest to one to another given a measure of ‘closeness’) should be

found in the same community. Such an expectation can be

enforced by determining the closest friend (CF) of each node i,

denoted f (i), and requiring them to be in the same community. In

other words, node i is assigned to the same community as the node

to which it is topologically closest. The closest friend of f (i)
(denoted f (f (i))) is also found in this community, and we generate

a path of closest friendship pi~fi,f (i),f (f (i)), . . .g (halting when a

self-intersection occurs after which the cycle would repeat). Nodes i

and j that share elements of their closest friend paths (i.e.

Dpi\pj D=0) will all trace to the same central loop, and each of the

elements of pi and pj are placed in the same community. If the

closeness measure is well chosen (such that a higher density of

edges implies a stronger feeling of ‘closeness’), the closest friend

paths for nodes in each community will remain within the correct

communities, allowing for an accurate partition of the network

(discussed further in Supplementary Information S1). This

approach has the advantage of generating a single partition

(rather than a tree of many possible partitions from which the

‘correct’ partition must be chosen, commonly used in clustering

algorithms) and without a system-size resolution limit [17,13], and

therefore unambiguously chooses a ‘natural’ partition of the

network.

Despite the simplicity of our method, there exist pathological

network topologies may require modification of the algorithm in

order to accurately detect the community structure. As a simple

example, a node that is connected to every other node in the

network will be everyone’s closest friend, regardless of the topology of

the rest of the network, and only one community will be detected

using our approach (see Supplementary Information S1 for further

discussion). Failure of the detection algorithm in this case can be

avoided by searching for the closest unpopular friend (CUF), where

the CUF is detected by sorting the closest friends of node i in

descending order of node degree, and choosing the first node fu(i)
who has degree less than or equal to the next-closest node. This

ensures that we avoid nodes with extremely high degree (the

popular close friends), who may have many out-of-community

connections, and choose fu(i) to be a node that is simultaneously

(a) a close friend (but not necessarily the closest) and (b) less likely

to have out-of-community edges. The path of closest friendship is

modified to be pi
u~fi,fu(i),fu(fu(i)), . . .g, and community detec-

tion proceeds as described above. We note that neither the CF nor

CUF approaches depend on the graph being Hamiltonian: the

particular path pi or pi
u need not span the entire graph for any

starting node i (and must not, if there is to be more than one

community). Additional modifications to both the CF and CUF

methods are required due to community fracture: communities

may be split into two or more disjoint pieces due to the random

fluctuations of the edges [25] (see Supplementary Information S1

for further discussion). Fractured communities may occur for any

community detection algorithms, and a greedy approach to detect

and merge fractured communities is described in Supplementary

Information S1.

Choosing a Closeness Measure
Before we apply the CF or CUF method for community

detection, we must choose a measure of closeness between nodes

in that network, with the only requirement being that nodes i and j

are ‘closer’ if there is a higher density of edges (multiple short-

ranged paths) between them. We focus on the use of a recently

developed closeness measure, the Generalized Erdös numbers [24]

(GENs), created with two simple principles in mind: (i) connections

from node j to nodes that feel close to a specified node (nodes {k}

with low Eik) are more important than connections to other nodes,

and (ii) a connection of high weight from j to some node k should

make node j feel more close to node k and less close to node i. This

second expectation is natural if closeness is defined with a limited

resource in mind, such as the time spent between people in a social

or coauthorship network [24]. These expectations naturally lead to

a weighted harmonic mean [24], with Eii~0 and

Wj

Eij

~
X
k[Cj

wjk

Eikzw{1
jk

:

with Cj the set of nodes that are connected to j. Eij is not a distance

metric (as Eij=Eji), a desirable property because unpopular (low

degree or low weight) individuals may feel close to popular (high

weight) nodes, but not vice-versa. The GENs are computed

numerically by setting E
(0)
ij ~(1{dij) and iteratively computing

E
(tz1)
ij ~Wj=

P
k wjk=(E

(t)
ik zw{1

jk ), halting when maxij DE
(tz1)
ij

{E
(t)
ij Dƒd for some tolerance d (we used 5|10{3. Computing

the closeness between all pairs of nodes i and j will scale as N|M,
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and is the slowest step in detecting communities using the CF or

CUF approaches.

To see how our closeness measure works in detecting

communities in a network with known community structure, we

examine the Girvan-Newman benchmark [1,12] in Fig. 1(a),

which consists of four equal-sized communities of 32 nodes, each

with kout edges leading out of the community and 16{kout edges

within the community. The connectivity between communities

can also be described by the mixing parameter m~kout=

(kinzkout)~kout=16, with detection of the correct communities

becoming difficult when kout
*> 8 or m *> 0:5. The level of

agreement between the detected and correct partition is quantified

using the normalized mutual information [10]:

I~2

P
i[Pt,j[P0

nij log
Nnij

nt
in

0
j

 !
P
i[Pt

nt
i log (nt

i=N)z
P

j[P0

n0
j log (n0

j =N)
ð2Þ

with nt
i the number of nodes in community i of the trial partition

(Pt), n0
j is the number in community j of the true partition (P0), and

nij is the number simultaneously occurring in i and j of Pt and P0.

In Fig. 1(a), we see that the accuracy of the CUF approach does

depend on the choice of closeness measure, where we compare the

performance of the GEN measure with others [23] such as the

overlap measure (Oij~DCi\Cj D with Cj the set of neighbors of j)

and the Jacard coefficient (Jij~DCi\Cj D=DCi|Cj D ). Similarly, in

real-world networks with an apriori known community structure

(shown in Fig. 1(b)) such as the Football network [1], the Political

Blogs network [26], and the Political Books network [27] (see

Supplementary Information S1), both the GENs and overlap are

consistently more accurate in community detection than greedy

modularity maximization. Because the GENs are the most

accurate on both real world and artificial networks of all of the

closeness measures attempted, we choose to focus on them as our

measure of closeness in the rest of the paper.

Additional Benchmarks of Community Detection
As a systematic test of the method on a more complex

benchmark, apply our detection method to the benchmark of

Lancichinetti, Fortunato, and Radicchi [28]. Communities are of

variable size (with the size s of each drawn from a power law

distribution, P(s)*s{b) and the degree of each node is drawn from

a scale free distribution as well (P(k)*k{c). Each node has on

average a fraction m of its edges within its assigned community and

1{m edges outside of its community. The complex structure of this

network makes community detection non-trivial, but as seen in

Fig. 1(c-f) our method is accurately able to reconstruct the correct

partition for various values of b, c, and m (for N~1000 and 50

realizations of the network for each data point). So long as mƒ0:5,

we typically find the normalized mutual information I *> 0:9,

indicating a good agreement with the correct partition. Our

approach produces partitions that are less accurate than the results

reported in Fig. 5 of Ref. [28], in accordance with the observations

in Fig. 1(a) that the method underperforms modularity maximiza-

tion when the correct partition is also modularity maximizing.

However, the CUF method still performs admirably, with the

additional benefits of no fitting parameters or resolution limits.

Hierarchical Communities
In many cases [29,20] networks have community structure at

multiple resolutions, begging the question of how to detect such a

hierarchical community structure. Instead of using a tunable

resolution parameter whose ‘correct’ value(s) are unknown a-

priori, the CF/CUF method naturally suggests a simpler

approach: to iteratively coarse grain the network using a high-

resolution partition (detected as described above) and then reapply

our detection method on the lower resolution network. Commu-

nities in the high-resolution partition act as coarse grained nodes,

and the average closeness felt between communities serves to

determine closest friends. If the GENs are chosen as the measure

of closeness, the averages are taken as (Ec
hg){1~

P
i[g,j[h

E{1
ij =ngnh, where ng is the number of nodes in g. While the choice

of a method of coarse graining the network implies an additional

degree of freedom in our algorithm, it is important to note the

differences between the CUF method and modularity maximiza-

tion with a variable resolution parameter. In the CF/CUF

method, the resolution can not be tuned continuously by choosing

different closeness measures or methods of coarse graining.

Rather, the choice of measure and method set an optimal apriori

resolution for hierarchical community detection, which is likely to

be robust to changes in the method if the closeness measure and

the coarse graining method are well chosen.

The accuracy of our hierarchical detection method on a

commonly used artificial benchmark, implemented in Ref. [18], is

shown in Fig. 1(g), with additional benchmarks discussed further in

Supplementary Information S1. A network of 256 nodes is formed

from 16 communities of 16 nodes each, in turn composed of 4

macrocommunities containing 4 communities each. Each node

has on average 13 edges within its community and 4 edges outside

of its community but within its macrocommunity, and 1 edge

outside of its macrocommunity. This is similar to the Reichardt

and Bornholdt [14,20] benchmark discussed in Supplementary

Information S1 and adapted in the next section. We compare the

partitions detected using the CUF algorithm with a simulated

annealing maximization of the multiresolution modularity (that is,

Eq. 1 with wij?wijzrdij , where r is a resolution parameter

ranging from rmin~{W=N to ?). The average modularity Qr

for the modularity maximizing partition is shown by the red points

in Fig. 1(g), and this modularity maximizing partition transitions

smoothly between the high-resolution communities detected using

our CUF algorithm for large r and the low-resolution coarse

grained using our hierarchical algorithm for small r. Additional

analysis of a similar benchmark for our hierarchical detection

algorithm can be found in Supplementary Information S1.

Robustness of Individual Nodes
It is desirable that any method for community detection be

relatively robust to small changes in network connectivity.

Modularity may be used to assess the quality of a partition on a

global level at a particular resolution, but not the robustness of a

individual node. The assignment of node i to a particular

community may be fragile (non-robust) if it (a) has few edges

within its assigned community (i.e. small kin
i ~

P
j[ci

aij ) or (b) has

a small ratio of in-community and out-of-community edges (i.e.

small kin
i =(ki{kin

i )~kin
i =kout

i ). It is useful to incorporate both of

these elements into a single measure, which we call the degree of

robustness: d
(1)
i is the number of the kin

i nodes to which i feels

closest that are in i’s microcommunity. Nodes with high robustness

can be considered the ‘core’ of their community, since of all of the

nodes in the community they have the largest number of close

friends amongst the other community members. In networks with

a hierarchical community structure, nodes may have varying

robustness at each resolution. Nodes that are robustly assigned to a

microcommunity may have a fragile assignment to its macro-
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community, and vice versa. To assess the robustness at each level

of the hierarchy, we can compute D
(j)
i ~d

(j)
i {d

(j{1)
i , where d

(j)
i is

the robustness of a node i at the jth resolution in the hierarchy,

setting d
(0)
i ~0 for notational convenience so that D

(1)
i ~d

(1)
i .

Nodes with small D
(j)
i are weakly connected to the other nodes in

their community (i.e. their assignment to the micro- or macro-

community is fragile, regardless of the robustness in communities

of other resolutions). Note that the normalized degree of

robustness D
(j)
i =ki is useful in detecting nodes on the boundary

between communities (having many edges, but few close friends in

their assigned community), but that D
(j)
i more directly indicates

robustness as the number of strong in-community edges. At each

level of resolution, the average robustness of any community can

be estimated as r(j)
c ~SD

(j)
i Ti[c~n{1

c

P
i[c D

(j)
i .

An Artificial Benchmark with Variable Robustness
In order to introduce variable node robustness into an artificial

benchmark, we modify the benchmark of Reichardt and

Bornholdt [14,20] (similar to that in Fig. 1(g)) which includes

512 nodes, 16 microcommunities of 32 nodes, and 4 macro-

communities of 128 nodes (see Supplementary Information S1 for

more details). Each node i has on average kin
i edges connecting it

to its microcommunity, kout
i zkin

i edges in its macrocommunity,

and kmix
i edges outside of its macrocommunity. In order to

modify the benchmark to allow for variable node robustness, we

choose kin
i , kout

i , and kmix
i to depend on i in a simple fashion,

depending on the macrocommunity it is assigned to (labelled A–

D in Fig. 2(a)) and an asymmetry parameter a§0, with a~0
corresponding to the standard Reichardt-Bornholdt benchmark

[14] (see the table in the caption of Fig. 2 and discussion in

Supplementary Information S1). This modified benchmark allows

us to examine the effectiveness of the multi-level hierarchical

community detection as well as the utility of the degree of

robustness D
(j)
i .

An example of the benchmark is shown explicitly in Fig. 2(a)

for a~8, for which the in-, out-, and mix-degrees of nodes vary

significantly with i (see the caption of Fig. 2). Fig. 2(b-c) show the

in-degrees and in-out ratios for the highest resolution of the

hierarchy and (e-f) for the coarsest resolution, with a decrease in

kin
i implying a node is less connected to its community and a

decrease in r
(1)
i ~kin

i =(kout
i zkmix

i ) indicating a node is highly

connected to nodes outside of its community. When we apply

our community detection algorithm, the CUF approach

recovers the correct partition with a mutual information of

SImicroT~0:95 on the micro-scale and SImacroT~0:85 on the

macro-scale (see eq. 2) at a~8. The mutual information at each

scale increases for for decreasing a, but begins to drop rapidly

near a *> 10. The high value of the mutual information shows

that the CUF algorithm accurately detects the intended

communities for reasonably large asymmetry in the community

structure (see Supplementary Information S1 for further

hierarchical benchmarking).

The benchmark shows that the degree of robustness D
(j)
i

accurately determines nodes that are less robustly assigned to their

intended community at both levels of resolution (shown in Fig. 2(d)

and (g)). Nodes in macrocommunity A are less connected to the

network overall (and are less robustly assigned at all scales), with

and unsurprisingly both D
(1)
i and D

(2)
i are decreasing with

i�~½(i{1) mod 32�=31 as expected. In macrocommunity B,

nodes have a constant in-community degree and a decreasing ratio

of in- to out-of-community degree at each scale, so nodes should

Figure 1. Benchmarks of the community detection algorithm. (a) shows the mutual information between the detected and true partitions for
varying kout and for different closeness measures on the Girvan-Newman benchmark [1,12]. Up and down triangles show modularity maximization
using a greedy [16] (implemented in Mathematica) and Potts model [14,32] for comparison with the CUF method implemented using the Jacard
Coefficients (black circles), GENs (red squares) and overlap (blue stars) as closeness measures. (b) Percent improvement of the CUF approach over a
greedy modularity maximization [16] using the GENs (red), overlap (blue), and Jacard Coefficients (black) as a closeness measure for real world
networks with a ‘correct’ partition known apriori. Taken together, (a) and (b) suggest the GENs are typically more accurate measure of closeness. (c-f)
show the CUF method implemented on the benchmark of Lancichinetti, Fortunato and Radicchi for varying k, b and c (compare to Fig. 5 and 7 of Ref.
[28]). The CUF method performs well for mƒ0:5, although modularity maximization is more accurate (as is the case in (a)), and beings to fail
significantly for mw0:5 as expected. (g) shows the multiresolution modularity [18] Qr of the high (solid black line) and low (dashed blue line)
resolution partitions using our CUF algorithm, alongside the maximum modularity determined via simulated annealing. The modularity maximizing
solutions transition smoothly between the coarser partition for small r and the finer partition for larger r as expected, indicating that our CUF method
does indeed detect the two levels of hierarchy accurately without appealing to arbitrary parameters.
doi:10.1371/journal.pone.0038704.g001
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be less robust with increasing i�. While the expected decrease in

robustness is clearly observed for D
(1)
i , at the macro-scale there

is a slight (but unexpected) increase in the robustness of each

node as i� increases. This is due to errors in the macro-scale

community detection, with macrocommunity B being the most

difficult to detect of all of them. Nodes in macrocommunity C

have constant in-degree and in-out ratio at the micro-scale

(with the corresponding robustness D
(1)
i nearly constant), but at

the macro-scale are less robust with both the in-degree and in-

out ratio decreasing (leading to an expected decrease in D
(2)
i

with increasing i�). Finally, the nodes on the micro-scale in

macrocommunity D simultaneously have increasing in-degree

but decreasing in-out ratio with increasing i�. While we find the

degree of robustness D
(1)
i increasing, the rate of increase of D

(1)
i

depends on the interplay between the increased robustness due

to more in-community edges and the decreased robustness due

to more out-of-community edges. D
(1)
i in macrocommunity B

and D and D(2)
s in macrocommunity D are both clear examples

of the dependence of the rate of increase in D(j)
s on both kin and

r(j). The successes in correctly determining not only the

hierarchical community structure but also node robustness of

this simple benchmark suggest that our approach may be

fruitfully applied to complex real world networks with

hierarchical structure.

Results and Discussion

The Harvard Coauthorship Network
Turning now to real examples, we look at the network of

scientific journals which we expect can be divided into sub-fields at

varying resolutions. We construct a network from publications

found in the Digital Access to Scholarship at Harvard (DASH)

repository, a database of journals, book chapters, and conference

proceedings uploaded by Harvard faculty. The available metadata

includes the authors and the journal of publication, which we use

to generate a weighted network with each journal as a node. The

weight of the edge between nodes i and j, wij , is the number of

article pairs that have at least one author in common, with one

article published in journal i and the other in journal j. The largest

connected component of this network (comprising N~779
journals as nodes, shown in Fig. 3(a)) has a complex structure:

while the degree of each node (the number of edges with non-zero

weight) is exponentially distributed, P(ki~k)*e{k=15:1, the

strength of each node is log-normally distributed, with a good fit

given by P(Wi~W )*W{1e{0:24½log (W ){5:3�2 (see Fig. 3(b-c)). It is

Figure 2. Benchmarks with variable node robustness. (a) A snapshot of the benchmark with hierarchical community structure and variable
node robustness at a~8. The behavior of the nodes as a function of a and i�~½(i{1) mod 32�=31 is described in the table, with

r
(1)
i ~kin

i =(kout
i zkmix

i ) the average in-out ratio at the microcommunity resolution, and r
(2)
i ~(kin

i zkout
i )=kmix

i is the in-out ratio at the
macrocommunity resolution. In the table, down arrows, up arrows, and dashes denote increasing, decreasing, and constant values (respectively)
of the quantities on average. (b) and (e) show the in-degrees at each resolution, kin

i for microcommunities and kin
i zkout

i for macrocommunities.

Likewise, (c) and (f) show the ratio of in- and out-degrees at each resolution, r
(1)
i and r

(2)
i . (d) shows the degrees of robustness D

(1)
i at the micro-scale

and (g) shows the robustness D
(2)
i on the macro-scale. The behavior of the degrees of robustness at both resolutions agrees with the expectations in

most cases: if the in-degrees or in- to out-degrees decrease, the nodes become less robust.
doi:10.1371/journal.pone.0038704.g002

Table 1.

Macrocom. kin
i

kout
i kmix

i kin
i r

(1)
i

Behavior kin
i zkout

i r
(2)
i

Behavior

A kin
0 {ai� kout

0 (1{ai�=kin
0 ) kmix

0 (1{ai�=kin
0 ) ; – Less robust ; – Less robust

B kin
0

kout
0 zai�=2 kmix

0 zai�=2 – ; Less robust – ; Less robust

C kin
0

kout
0 {ai�=2 kmix

0 zai�=2 – – Constant ; ; Less robust

D kin
0 zai� kout

0 z2ai� kmix
0 z3ai�=r(2)

i
: ; More robust{ : – More robust

{The robustness with increasing i� depends on how slowly kin
i increases.

doi:10.1371/journal.pone.0038704.t001
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interesting to note that an exponentially distributed degree

sequence is indicative of network growth without preferential

attachment [30], while log-normally distributed strengths may

indicate growth with a localized preferential attachment in the

weight (see ref. [31] and below for further discussion). This may

illuminate some of the details of how a publication network grows:

while authors preferentially publish in high-profile journals or

proceedings (leading to the fat tail on the strength distribution),

they may choose to publish in new or lower profile journals if

necessary (leading to the exponential, non-preferential attachment

distribution of the degree sequence).

In Fig. 3(a), 36 microcommunities in the DASH network are

found, and in most cases an inspection of the group memberships

showed the members of each community were related (a full list is

found in Supplementary Information S1). It is worth noting that

using a Potts model approach to modularity maximization [14,32]

(with resolution c~1) yields 32 distinct microcommunities, and the

partitions generated by the two methods share much in common,

suggesting the CUF results are reasonable. The hierarchical

detection scheme shows that each of the microcommunities falls

into 6 natural macrocommunities (see Fig. 3(a)). The two largest

macrocommunities show a division between the Physical Sciences

(physics, biology, chemistry, and geology) and the Mathematical

Sciences (pure mathematics, economics, and computer science).

Three additional macrocommunities consist of a combination of

Philosophy and the History of Science, Linguistics, and Law, and a

final macrocommunity having no obvious meaning on inspection

(see Supplementary Information S1 for the member journals of

each community). We note that this hierarchical partition is not

easily detected using the Potts modularity maximization approach:

even for c~0:02, there are still 23 microcommunities detected via

modularity maximization. Thus, the partition into distinct

scientific fields naturally arises from the coarse graining in our

approach, but is difficult to detect using modularity methods

alone. Further coarse graining shows that there is no additional

hierarchical structure to be found in the DASH network.

The average robustness of the nodes in each community of the

DASH data is very heterogeneous (the multi-colored bars in

Fig. 3(d)), which can be of use in determining which micro-

communities are held together weakly, either because of the

complex network topology involving the nodes in the community

or due to an incorrect partitioning of the network. Many of the

detected communities have few nodes, and are correspondingly

less robust on average. Even some large communities have low

average robustness, which could indicate an incorrect assignment

or an unexpected network topology around a community. For

example, Phys. Sci. 5 (PS5 in Fig. 3(d)) consists of 26 journals, with

a very small average degree of robustness of r
(1)
PS5~2:8. The

surprisingly low robustness of PS5 is not due to sparse connections

between nodes within the community (the average degree of nodes

in PS5, Skin
i T~7:6), but is because of the fact that these journals

are highly connected externally (SkoutT~5:5).

The robustness of a node’s assignment to its macrocommunity

(the thin black bars in Fig. 3(d)) is not determined by how robustly

assigned it is to its microcommunity. The average robustness r(2)
c

gives an indication of how strongly a microcommunity is attached

to its macrocommunity, and we find that Philosophy/History 1

(PH1) is the most weakly assigned, with r
(2)
PH1&0:12, despite the

very robust assignment of the nodes in the microcommunity

(r
(1)
PH1~9:8). Two journals in PH1 are very strongly connected to

the Mathematical Sciences macrocommunity (so much weight is

directed to Math. Sci. from PS1), while many journals in PH1 are

more weakly connected to the journals in its own macrocommu-

nity (so more edges are directed towards Philosophy and History).

The degree of robustness is thus able to home in on micro-

communities that may be on the boundary between macrocom-

munities and identifying particularly complex topologies.

The Physical Review Citation Network
Another real-world network where one may expect a hierar-

chical structure is that of a citation network (independent of their

journal of publication), with an expectation of divisions between

fields and sub-fields as was observed in the DASH network. We

examine the citation network of articles published in the Physical

Review journals [33,31], with articles as nodes and citations

between articles as edges. Citations naturally form directed edges

(a citation between i and j does not imply a citation between j and

i), but to apply our methods we study the undirected (wij~wji)

version. The degree distribution of this network has been

previously shown to be log-normally distributed [31], which may

indicate the underlying dynamics of the growth of the network.

Network growth coupled with with preferential attachment

produces a scale free degree distribution [30,7], but Redner [33]

has noted that a modified, locally defined preferential attachment

process explains the emergence of a log-normally distributed data.

Rather than citing the most important papers, an author chooses

to cite either a randomly chosen paper or one of the citations of

that paper (with the latter likely to be highly cited [34]). The log-

normal distribution is also observed in the highly-cited subset of

the network considered (see below for further discussion),

suggesting that this smaller sample is reasonably representative

of the structure of the full network.

Applying the CUF method to the Physical Review network detects

four distinct hierarchies of community structure, ranging from the

finest resolution of numerous small microcommunities to the

coarsest resolution with two large macrocommunities (see Fig. 4(a-

c) for a schematic ranging from coarsest to finest). At the highest

resolution, 266 communities are detected, and the partition has

the modularity Q1~0:63 (at c~1). This is in reasonable

agreement with a similar previously studied Phys. Rev. network

[33] with 274 detected communities and a modularity of Q~0:54,

suggesting that this fine resolution partition of the more current

data is reasonable. High-modularity partitions are also detected

using our coarse graining method, with the modularities Q2~0:75
for the 62 communities on the second level of the hierarchy and

Q3~0:74 for the 11 communities at the third level (see Fig. 4(a-b)).

The final level of coarse graining does not produce a very high

modularity (with Q4~0:33) for two macrocommunities, but the

meaning of the partition recognizable on inspection of the

component communities for its distinction between earth-bound

and cosmological research. At each level of hierarchy, the

partitioning is both reasonable from a scientific perspective as

well as generally producing a large modularity, suggesting that

CUF approach is able to discern the natural partitions of the

network without need for a resolution parameter.

The distribution of the degrees of robustness found in the

Physical Review network is shown in Fig. 4(d), along side the degree

distribution of the nodes. As mentioned earlier, the degree

distribution is well fit by a log-normal distribution [31]

P(ki~k)*k{1e{1:1½log (k){2�2 , with a fatter tail than exponential

but vanishing faster than a power law. The distribution of node

robustness D
(j)
i , which indicates how robustly the node i is assigned

at the jth level of the hierarchy, decays much more rapidly for large

D
(j)
i for all four of the hierarchical levels. At the finest resolution

(blue squares in Fig. 4(d)), the degrees of robustness are well fit by

an exponential decay P(D
(1)
i ~D)*e{D=4:5, and although the tail
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beyond D~20 (incorporating below 2.5% of the nodes) is slower

than exponential, it remains faster than log-normal. The far more

rapid decay of the degrees of robustness suggest that highly-cited

papers have applications in a wide variety of fields (i.e. are have

many out-of-community edges). The robustness of the nodes at the

lower-resolution partitions are all similar to one another (triangles

and stars in Fig. 4(d)), all satisfying an exponential initial decay of

P(D
(j)
i ~D)*e{D=2:8 over a somewhat shorter range. Each node

has roughly the same robustness on each level of the hierarchy,

suggesting that an equal fraction of nodes are involved in forming

the edges of the different levels of the hierarchies.

Conclusions
In this paper, we have described a new and intuitive method for

detecting hierarchical community structure in complex networks that

does not rely on free parameters or require advanced knowledge of

the number or size of the communities. Given a method for

measuring the ‘closeness’ between two nodes in a network, one can

trace a path of closest friendship that defines a high-resolution

partition of the community, resulting in a method with (1) reasonable

computational complexity in comparison to other methods [10], (2)

easy detection of multiple levels of community structure without the

need for an (unknown apriori) resolution parameter [17,13], and (3) a

simple yet powerful method of measuring the robustness of the

assignment of an individual node to its community. We must note

that there are also limitations to our approach, including the free

choice of a closeness measure, pathological network topologies

(which, for example, necessitates the use of the CUF over the CF; see

Supplementary Information S1), and the requirement that no

community can be formed from only one node. Despite these

possible limitations, the advantages of our approach in automatically

detecting and evaluating hierarchical community structure are

significant. Using the recently proposed Generalized Erdös Numbers

[24] as a closeness measure (which performs better than other

measures in benchmarks) we examined two real world systems where

a hierarchical community structure is naturally expected: a

Figure 3. The network of journals from the DASH data. (a) Low weight edges (with 1ƒwijƒ5) are shown in blue, while higher weight nodes
(wij§6) are shown in red. Nodes are ordered in order of descending macrocommunity size, then descending microcommunity size, and finally in
descending strength. The 36 microcommunities are denoted by the smaller black squares, while the 6 macrocommunities are shown in the larger

thick black squares. Some microcommunities are labelled with their two most robust nodes (having largest D
(1)
i ). The degree distribution of the DASH

data in (b) is exponential, while the distribution of node strengths in (c) appears to be log-normal. In (d), the average robustness of nodes in the

microcommunities (r(1)
c , thick bars of varying color) and macrocommunities (r(2)

c , thin black bars) for the DASH data. In (d), the bar for Mathematical

Sciences 2 (MS2) is cut off, having a very high average degree of robustness of r
(1)
MS2~39:8.

doi:10.1371/journal.pone.0038704.g003

Figure 4. The hierarchical community structure of the Physical Review network. (a-c) shows a progressively coarsened view of the network,
with the text labels of the communities composed of the most statistically significant words found in the titles of the articles in the communities. (a)
shows the microcommunity structure of 148 nodes, with (b) a zoomed-out picture of the 625 nodes in one macrocommunity of the second level of
the hierarchy, and (c) the full network (showing the final two levels of hierarchy). (d) shows the degree distribution as well as the distribution of node
robustness at each level of the hierarchy (shown log-linear in the inset). Black circles show the degree distribution, which is log-normally distributed
[31] (the best fit is the black line). The distribution of robustness on the micro-scale, D

(1)
i , is shown with the blue squares, while the distribution for the

other hierarchical degrees of robustness D
(j)
i are all quite similar (shown with the up triangles, down triangles, and stars). The initial decay of the

robustness is well-fit by an exponential in all cases (with the best fit for each shown as lines).
doi:10.1371/journal.pone.0038704.g004

Discovering Communities through Friendship

PLoS ONE | www.plosone.org 8 July 2012 | Volume 7 | Issue 7 | e38704



coauthorship network defined by the DASH data and a citation

network generated from the Physical Review data. Our approach is able

to detect a high-resolution partition of each dataset that is composed

of well defined communities of variable size, and an inspection of the

member nodes suggests that the partition is meaningful in both the

DASH- and Phys. Rev. networks. Our coarse graining method of

detecting hierarchy finds a reasonable macrocommunity partition for

the DASH data (with each of the macrocommunities clearly linked

upon inspection), with this coarse-grained partition not obviously

detected using modularity maximization. By examining the degree of

robustness of these communities on the micro- and macro-scale, we

are able to rapidly home in on the most interdisciplinary communities

(those with many significant connections to other communities). The

Phys. Rev. citation network naturally partitions into four distinct

hierarchies of communities (without any apriori assumption of the

correct number of hierarchies), with the nodes in the communities

generally related to each other upon inspection. The ability to find

communities of arbitrary size, detect the structure of a natural (and

system-defined) number of hierarchies, and locate particularly insular

or interdisciplinary communities are all significant advantages of our

method, and clearly displayed in the analysis of both the DASH and

Phys. Rev. networks.
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