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ABSTRACT: Mammalian Nod2 is an intracellular protein 
that is implicated in the innate immune response to the bacte-
rial cell wall and is associated with the development of 
Crohn’s disease, Blau syndrome and gastrointestinal cancers.  
Nod2 is required for an immune response to muramyl dipep-
tide (MDP), an immunostimulatory fragment of bacterial cell 
wall, but it is not known if MDP binds directly to Nod2.  We 
report the expression and purification of human Nod2 from 
insect cells. Using novel MDP-self-assembled monolayers 
(SAMs) we provide the first biochemical evidence for a direct, 
high affinity interaction between Nod2 and MDP.  

The innate immune system is the body’s first line of defense 
against invading pathogens 1,2. This ancient system has 
evolved to exist in a symbiotic relationship with commensal 
bacteria and at the same time to recognize and destroy virulent 
bacteria 1-3. Chronic inflammatory diseases such as asthma, 
rheumatoid arthritis, and Crohn’s disease are thought to arise 
from an inappropriate innate immune response to bacteria 4-9. 
Chronic inflammation has also been shown to lead to a variety 
of types of cancers including those affecting gastric, colon, 
and lung 10.  

Mammalian Nod2 is an intracellular protein that is involved 
in the signaling response to bacterial cell wall fragments 11,12. 
Mutations in Nod2 correlate with the development of Crohn’s 
disease, a chronic inflammatory disease of the gastrointestinal 
tract 13-15. In order to generate the proper immunologic re-
sponse, the Nod2 signaling pathway must recognize bacteria.  
The biochemical mechanism by which Nod2 detects bacteria 
is not known, but it has been proposed that Nod2 senses bacte-
rial cell wall fragments directly. Nod2 could sense bacterial 
cell wall fragments through at least three mechanisms:  (1) a 
direct interaction; (2) a mediated interaction; or (3) a signaling 
relay.  The mechanism of activation remains unresolved be-
cause until now the proper tools to probe the mechanism have 
been unavailable. 

Nod2 is essential for the cellular response to a small frag-
ment of bacterial cell wall, muramyl dipeptide, consisting of 
one carbohydrate and two amino acids (MDP-(D), 1, Figure 1) 
12,16. MDP is found in both Gram-negative and Gram-positive 
bacteria.  Cellular and in vivo assays have shown that when 
mammalian cells expressing Nod2 are treated with MDP, an 
inflammatory response is activated via the NF-kB and MAP 

kinase pathways 17-20. Moreover, the response is not observed 
if a diastereomer of 1, (MDP-(L), 2, Figure 1), is used in the 
cellular assays. For this reason, MDP is often referred to in the 
literature as the “ligand” for Nod2 signaling21.  However, there 
is no biochemical or biophysical data that demonstrates an 
interaction between the two molecules 22. The purpose of our 
investigation was to determine if Nod2 and MDP interact in 
vitro.  We developed an expression system and a biochemical 
assay using synthetic probes to investigate this question.   
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Figure 1:  Muramyl Dipeptides:  MDP-(D) is the biologically rele-
vant isomer;  MDP-(L) is a synthetic diastereomer of the com-
pound found in Nature.  

Human Nod2 is a large protein (1040 residues, 110 kD) 
with multiple domains: two N-terminal caspase recruitment 
domains (CARDs), a central nucleotide oligomerization do-
main (NOD) and a C-terminal leucine rich repeat (LRR) do-
main 16.  To determine if Nod2 interacts directly with MDP we 
first expressed a Flag-tagged version of Nod2 using baculovi-
rus-infected Sf21 cells (Figure S1a in the Supporting Infor-
mation) with a yield of 1 mg/L. CD spectroscopy and limited 
proteolysis experiments are consistent with Nod2 being a fold-
ed protein (Figure S1b and S1c in the Supporting Infor-
mation). 

With purified Nod2 in hand, a Surface Plasmon Resonance 
(SPR) assay was developed to assess binding to MDP. Initial 
attempts to develop a SPR assay with biotinylated-MDP23 
failed, as we observed significant non-specific binding of 
Nod2 to the streptavidin/biotin chip lacking MDP (Figure S2).  
In order to develop a SPR assay, we coupled 6-amino MDP (3 
& 4, Figure 1) directly to the chip without the use of biotin.  3 
& 4 are synthetic intermediates of the biotinylated -MDPs and 
have been shown to activate Nod2 in the appropriate manner23.  
Using methodology developed by Whitesides and co-workers, 
we prepared carboxy-terminated alkane thiol self assembled 
monolayers (SAMs) and then used on-chip NHS/EDC activa-
tion of the carboxylic acid (Figure 2) 24 to couple 6-amino-
MDPs to the chip surface.   



 

A typical SPR assay uses four sensor lanes on a single 
chip25.  In the assay, we included two controls:  (1) the iso-
glutamine diastereomer of MDP (4, Figure 1) that does not 
activate the Nod2 pathway and (2) an ethanolamine-capped 
monolayer (Figure 2). A typical assay setup involved flowing 
Nod2 over each lane of the sensor chip and observing changes 
in resonance units (RU).  The assay was robust and allowed 
the screening of a wide variety of conditions.  There was lower 
background binding of Nod2 to the synthetic chip as compared 
to the biotin chip (Figure S2 and S3).    
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Figure 2:  Synthesis of the MDP Chip:  A mixed SAM consisting 
of 1% mole fraction of hexa(ethylene glycol)-carboxylic acid 
(EG)6CO2H)-terminated thiol in tri(ethylene glycol) ((EG)3OH)-
terminated thiol was prepared.  The carboxylic acid groups were 
then activated with NHS and EDC to form the NHS ester.  Dis-
placement of the NHS ester with the amino group of MDP afford-
ed the formation of an amide bond.  Excess NHS esters were de-
activated with ethanolamine.  

Nod2 bound to MDP with high affinity (Figure 3). The bio-
logically active MDP, 3-Lane, bound to Nod2 with a KD of 51 
nM ± 18. Surprisingly, we found that Nod2 was able to bind to 
both isomers of MDP (Figure 3), as Nod2 bound to the 4-Lane 
with a KD of 150 nM ± 24, which is only slightly higher than 
the KD observed for the 3-Lane.  Thus, the iso-glutamine ste-
reochemistry is not a key recognition determinant.  To demon-
strate that binding of Nod2 to the MDP-chip is indeed specific, 
a competition study was performed.  When Nod2 was pre-
treated with either 3 or 4, diminished binding to the chip was 
observed (Figure 4). Encouragingly, the competition data 
show the same trend as the on-chip data, i.e. the free D-isomer 
of MDP is a better competitor than the free L-isomer. These 
data suggest that Nod2 senses bacterial cell wall fragments by 
binding directly to them. 
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Figure 3: Nod2 binds to MDP: 3 and 4 bind to MDP with high 
affinities.  Nod2 (pH 6.0) was applied to the MDP-Chip at varying 
concentrations at a rate of 3 mL min-1.  After ten minutes, the 

resonance signal was recorded, ethanolamine background was 
subtracted from the experimental signal and plotted. The data was 
fitted to a standard one site binding model by non-linear regres-
sion analysis using Prism 4 (GraphPad). 

 

Figure 4:  Binding of Nod2 to the MDP-chip is specific.  Nod2 
(pH 5.5, 0.5 µM, either in the presence or absence of free MDP (1 
µM)) was applied to the MDP-Chip.  The relative resonance sig-
nal was recorded after ten minutes.    

At low concentrations the MDP isomers 2 and 4 do not acti-
vate the NF-κB response via Nod2 in cellular assays 18,23. 
However, we show that MDP-(L) is able to activate the path-
way at higher concentrations using the established cellular NF-
kB luciferase reporter assay and transfected Nod2 (Figure 5).  
The NF-kB activation observed in the absence of transfected 
Nod2 DNA is the result of low levels of endogenous Nod2 in 
Hek293T cells26.  The cellular assay results demonstrate that 
both isomers of MDP are able to activate the Nod2/NF-kB 
pathway, which is consistent with the binding data showing 
that Nod2 can bind one isomer better than the other. Cellular 
potencies often do not exactly match their in vitro KDs 27,28. 
We find the cellular activation parallels in vitro binding but at 
slightly lower potency.   

 
Figure 5: 2 (MDP - (L)) activates the Nod2/NF-kB pathway at 
higher concentrations.  Hek293T cells were transfected with 
(±Nod DNA (0.1 ng), NF-κB reporter, and a Renilla control.  
The cells were treated with stimuli for 12h, harvested and test-
ed for luciferase activity.   

The in vitro interaction between Nod2 and MDP is depend-
ent on pH (Figure 6), with the pH range from 5.0 to 6.5 giving 
maximal binding.  The data suggest that in vivo binding could 
occur in an acidic cellular compartment, a model supported by 
cellular assays that show pH-dependent internalization of 
MDP 29,30. Girardin and coworkers show that the internaliza-
tion of MDP is optimal in the pH range of 5.5 to 6.5, which 
corresponds with the MDP/Nod2 binding data.   

Nod2 is predicted to have ATP binding capabilities, as it has 
Walker A and Walker B regions 31.  The ATP binding capaci-
ties of the protein have been suggested to be important for 



 

oligomerization, protein-protein interactions and subsequent 
activation32.   To test if the nucleotide binding was necessary 
for Nod2 to bind to MDP, we measured Nod2 binding to MDP 
±ATP/ADP.  Nod2 binds with no appreciable change to MDP 
in the presence and absence of 10 µM ATP/ADP (Figure 6), 
suggesting that ATP/ADP is not necessary for Nod2 to bind to 
MDP.  
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Figure 6:  Nod2/MDPs interact under a variety of conditions.  The 
pH of Nod2 was adjusted before application to the MDP-Chip. 
Nod2 was pre-incubated with 10 µM ATP or ADP before applica-
tion to the MDP-Chip.  The relative resonance signal was record-
ed after ten minutes.    

 Prior to our investigation, the mechanism of Nod2 activa-
tion of NF-κB by treatment with MDP was unclear.  We have 
taken a biochemical approach to demonstrate that Nod2 binds 
directly to bacterial cell wall fragments. Recombinant Nod2 
and the synthetic MDP tools allowed for the development of in 
vitro assay to detect binding.  The assay that we have devel-
oped will be a valuable asset in screening for inhibi-
tors/activators of the Nod2 signaling pathway and determining 
if Nod2 is able to differentiate commensal versus pathogenic 
bacteria.  In addition, the assay will be useful in determining 
the Nod2 Crohn’s mutants are capable of binding to MDP.   
This is the first biochemical evidence to show an interaction 
between the two molecules, and establishes that MDP is a 
high-affinity ligand for Nod2.  
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