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Abstract

Background: During the 2009 H1N1 pandemic (pH1N1), morbidity and mortality sparing was observed among the elderly
population; it was hypothesized that this age group benefited from immunity to pH1N1 due to cross-reactive antibodies
generated from prior infection with antigenically similar influenza viruses. Evidence from serologic studies and genetic
similarities between pH1N1 and historical influenza viruses suggest that the incidence of pH1N1 cases should drop
markedly in age cohorts born prior to the disappearance of H1N1 in 1957, namely those at least 52–53 years old in 2009,
but the precise range of ages affected has not been delineated.

Methods and Findings: To test for any age-associated discontinuities in pH1N1 incidence, we aggregated laboratory-
confirmed pH1N1 case data from 8 jurisdictions in 7 countries, stratified by single year of age, sex (when available), and
hospitalization status. Using single year of age population denominators, we generated smoothed curves of the weighted
risk ratio of pH1N1 incidence, and looked for sharp drops at varying age bandwidths, defined as a significantly negative
second derivative. Analyses stratified by hospitalization status and sex were used to test alternative explanations for
observed discontinuities. We found that the risk of laboratory-confirmed infection with pH1N1 declines with age, but that
there was a statistically significant leveling off or increase in risk from about 45 to 50 years of age, after which a sharp drop
in risk occurs until the late fifties. This trend was more pronounced in hospitalized cases and in women and was
independent of the choice in smoothing parameters. The age range at which the decline in risk accelerates corresponds to
the cohort born between 1951–1959 (hospitalized) and 1953–1960 (not hospitalized).

Conclusions: The reduced incidence of pH1N1 disease in older individuals shows a detailed age-specific pattern consistent
with protection conferred by exposure to influenza A/H1N1 viruses circulating before 1957.
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Introduction

Consistent with earlier pandemics of the 20th century [1,2],

surveillance reports of hospitalized cases, laboratory confirmed

cases, and mortality due to the first wave of novel 2009 pandemic

influenza A/H1N1 (pH1N1) virus infection suggest a markedly

younger age distribution than typically observed during seasonal

influenza epidemics [3,4,5,6]. During seasonal influenza epidem-

ics, an estimated 90% of influenza-associated deaths occur among

people aged .65 years [7]. In contrast, the global experience

during the early months of the 2009 pandemic was a median age

of 37 years in confirmed fatal cases (n = 343 cases) with the

majority occurring in individuals aged 20–49 years [6]. Surveil-

lance for hospitalized and laboratory confirmed pH1N1 cases also
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showed the inverse pattern of seasonal influenza, with the youngest

age groups dominating incidence estimates and case counts. Only

five percent of the first 272 patients hospitalized in the United

States from pH1N1 were aged .65 years [4]. In a comparison of

confirmed cases of pH1N1 from 10 countries on five continents

the age distribution was consistent between countries and the

largest source of variability was between continents [5]. About

75% of these cases occurred in persons aged ,30 years with a

small peak in ages 10–19 years; less than 3% of cases occurred in

the elderly ($65 years) [5].

The global surveillance data suggest that being an older adult is

protective against pH1N1 infection and hospitalization. The risk

of pH1N1-associated death among the elderly who were

hospitalized was slightly elevated compared to younger age groups

but the overall risk of death was much less so than in seasonal

influenza [8]. The reduced risk of pH1N1-associated disease in the

elderly population is likely the result of some level of immunity

provided by cross-reactive antibodies generated from prior

vaccination or infection with antigenically similar influenza A

viruses [9]. Combined with genetic and antigenic studies

demonstrating the similarities between pH1N1 and the descen-

dants of the 1918 virus, the incidence of pH1N1 cases should drop

markedly in adults born prior to versus after the disappearance of

H1N1 in 1957, namely those at least 52–53 years old in 2009

[9,10,11].

To date, all published incidence data have used large age

categories due to the small numbers of confirmed cases in each

country or region. In order to evaluate whether sharp drops

associated with the protective effects of earlier exposure do indeed

exist, incidence should be compared across single-year age groups.

To test for any age associated discontinuities in the incidence of

laboratory-confirmed pH1N1 we analyzed data from 8 jurisdic-

tions in 7 countries, stratified by single year of age, sex, and

hospitalization status. We quantified sharp drops in incidence by

looking for statistically significant negative second derivatives in

the incidence risk with respect to age.

Methods

Data Sources
We obtained counts of laboratory confirmed cases of pH1N1

infection by single year of age and hospitalization status from

Argentina, Australia (Queensland), Hong Kong, New Zealand,

South Africa, Thailand, and the United States (Wisconsin and

New York City). All locations used a real time reverse transcription

polymerase chain reaction (RT-PCR) test to confirm cases of

pH1N1. The data were collected as part of routine surveillance for

pH1N1 conducted by the Ministries/Departments of Health in

each location, and were reported to us anonymously as aggregated

data covering many months (length of time varied by location).

Since the investigators of this study had no interaction with

patients and received no identifiable private information as part of

this study, we were not required to obtain ethics approval or

individual patient consent by the Harvard School of Public Health

institutional review board under the United States Department of

Health and Human Services’ regulations on human subjects.

These cases were reported in the first complete wave of the

pandemic for each location, under different testing protocols and

levels of surveillance, and subject to differing biases, yet were

analyzed together to have large cohorts within each age to identify

discontinuities. In Wisconsin, RT-PCR confirmed influenza A

cases that were not subtyped were included for the period June 1

to June 13, 2009, when testing confirmed that over 99.5% of

subtyped viruses were pH1N1; these unsubtyped influenza A

isolates were considered probable pH1N1 infections. In New York

City, 67/996 (7%) of cases were designated as probable, defined as

confirmed influenza A and negative for seasonal subtypes but

lacking confirmatory pH1N1 testing [12]. Argentina, Hong Kong

and Wisconsin further reported cases by sex. The case data used in

this study from Argentina, Hong Kong, and Wisconsin are

included as an online supplement (Table S1). The hospitalization

status was unknown for South Africa and these data were not

included in the weighted incidence risk ratios but are reported

separately.

Collaborators in several locations additionally provided esti-

mates of the 2009 population by single year of age. The

populations of South Africa [13] and Thailand were available in

5 year age groups, so we applied the Sprague Multiplier to

interpolate to population size for single year of age [14]. The 2010

census population of Argentina by single year of age and sex was

obtained from the National Institute of Statistics and Censuses

[15].

Calculation of a Weighted Incidence Risk Ratio
We generated incidence risk ratios (RR) for each single year of

age, hospitalization status, and location, dividing the incidence risk

for each age group by the total for all age groups in that location

and hospitalization status to normalize for differences in reporting.

Thus the RR represents the risk of being a pH1N1 case for a

person of a specific age relative to the overall risk in all ages

combined. The variable sampling periods between locations and

difficulty in defining person time at risk for an infectious disease

where the true disease incidence is unknown required the use of

cumulative incidence instead of an incidence rate calculation. The

RR was defined as follows for each hospitalization status (H = h for

1 = hospitalized cases and 2 = not hospitalized), age (I = i from 0

to $100 years old) and location (L = l for the 7 locations exclusive

of South Africa). The risk (rh|i,l) for each h given age = i and

location = l was calculated using all confirmed cases (xi,h,l) of each

age in a location and hospitalization status divided by the

population for that age and location, as in equation (1). Similarly,

an all age risk (Rh|l) was calculated for each location and

hospitalization status by summing the cases over all ages and

dividing by the total population in that location. The RR for each

age, hospitalization status and location (RRi,h|l) was then calculated

by dividing (rh|i,l) by (Rh|l), as demonstrated in equation (1).

RRi,hDl~
Pr case, H~hDI~i,L~lf g

Pr case, H~hDL~lf g ~
rhDi,l

RhDl
~

xi,h,l
Populationi,l

xh,l
Populationl

ð1Þ

A weighted risk ratio (WRR) was then calculated for each age

and hospitalization status where location specific RRs were

weighted relative to their contribution to the total number of

hospitalized or not hospitalized cases. The weights were compa-

rable to an inverse variance weighting, where locations contrib-

uting higher case counts were more heavily weighted than those

with smaller counts. The weights (wh,l) were calculated as follows in

equation (2), using the previously described nomenclature:

wh,l~
xh,l

xh

~

P
i

xi,h,l

P
xi,h,l

ð2Þ

The final product was the weighted risk ratio (WRRi,h) for each

age and hospitalization status, calculated as follows in equation (3):

Pandemic A/H1N1 Influenza Incidence
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WRRi,h~
X

l

RRi,h,l|wh,l ð3Þ

Since cases were stratified by sex in Argentina, Hong Kong, and

Wisconsin, we also created WRRi,h by sex for these locations.

Wisconsin had a small number of hospitalized cases and was only

included in the WRRi calculation for cases that were not

hospitalized. In addition, we compared the cumulative incidence

of being a male versus female among ,18, 18–64, and .64 year

olds cases that were and were not hospitalized. These subanalyses

allowed us to explore possible alternative mechanisms for any

significant changes in incidence by age, including gender related

exposure to pH1N1 or biological differences between the sexes in

immunologic response to pH1N1.

Graphical and Statistical Analysis of the Weighted Risk
Ratios

To detect sharp drops in incidence by age, we searched for

statistically significant, negative second derivatives in the smoothed

WRR, with respect to time, reasoning that these would correspond

to departures from underlying linear incidence trends with age.

Using the SiZer package version 0.1–4.0 [16] in the statistical

software R [17], we examined the first (1D) and second derivatives

(2D) of the smoothed WRR as a function of age. SiZer is a tool for

quantitatively identifying whether features of a data series rise

above the level of noise. It is different from traditional approaches

of smoothing and statistical inference because SiZer removes the

bias inherent in selecting a bandwidth and allows an inspection at

a wide range of smoothing bandwidths to see which features are

insensitive to bandwidth selection and likely to be true features

[18]. Small bandwidths can result in undersmoothing with large

variances but low bias, as only the local data points are used to

estimate the smoothed curve. In contrast, a large bandwidth

oversmooths the data points and results in low variance but large

bias, since many local data points are used which might not

represent the local phenomenon. A true feature in a data series will

persist across bandwidths.

The smoothing method employed in SiZer is a locally weighted

polynomial regression (LWPR) using a Gaussian kernel at

bandwidths (b) that vary per the user’s specifications. We allowed

b to vary from 1.5 to 10 years and chose a second degree

polynomial to be fit to the WRRi,h at each age. We specified that

the values of the LWPR smoothed WRRi,h be evaluated at each

integer of age (0–100 years). SiZer looks across a range of b and

classifies the 1D and 2D as significantly positive, possibly zero or

significantly negative. The choice of b determines how many

neighbors are used to generate the LWPR. In our range of

bandwidths, the effective sample size varies from 4 to 25 years. At

b = 4, the effective sample size is 10 and is similar to smoothing

over a decade of age. We also plotted the smoothed WRRi,h and

the 1D and 2D using a fixed b of 1, 2, and 4 with a polynomial of

degree 2.

Results

Hospitalized Cases
Seven locations contributed surveillance records of hospital-

ized cases for a total of 18,788 pH1N1 hospitalizations (Table 1).

Hong Kong, Thailand, and Argentina contributed 40, 24, and

22% of the hospitalized cases, respectively. The hospitalized

cases had a similar age distribution to the previously published

surveillance reports described above (Table 1). The RR was

highest among children aged 2 years and younger in all

locations but Thailand, where it peaked at age 5 (Table 2 and

Figure 1A). The magnitude of the age-specific relative risks

between locations is not solely due to differences in disease

burden but likely also reflects differences in surveillance (active

versus passive), criteria for hospitalization, and changing

protocols and recommendations as the pandemic wave pro-

gressed. Of greater interest than the absolute difference between

locations for a given age is the risk relative to other ages within

a place and whether the trend of RRs by age persists regardless

of geography.

The decline in risk from infancy towards adulthood plateaus

around the early thirties and the risk begins to increase from

45 years of age to the early fifties (Figures 1B and 1C). This

increase in the overall trend is consistent through all locations –

with an additional relative maximum in the early to mid

twenties occurring in several locations as well. The risk peaks

again at 53 years of age and then begins to decline rapidly, with

the rate of decline accelerating until 60 years of age (Figure 1D).

These features persist throughout varying bandwidths, whether

the effective sample size of neighbors included is 5.25 years

(b = 2.1, the lowest bandwidth where there is enough data to

create a smoothed curve) or 25 years (b = 10, the highest

bandwidth we explored on the SiZer plot). The WRR smoothed

with a bandwidth of 4 gave the visually optimal fit in terms of

capturing most data points while removing the less interesting

noise. The second derivative of the smoothed WRR suggests

that there is a statistically significant drop in the slope of the

WRR (in fact, switching from positive slope to negative slope) in

individuals between the ages of 50 to 58 years (born between

1951 and 1959).

Cases that were not Hospitalized
Six locations contributed to the count of confirmed pH1N1

cases that were not hospitalized for a total of 43,426. Hong

Kong and Queensland, Australia contributed almost 75% of

these infections (Table 1). The distribution of cases between the

three broad age groups (,18, 18–64, and 65 and older) looks

very similar between cases that were and were not hospitalized,

with 52.1% of the cases being in the youngest age group. Only

a very small percentage of the cases that did not require

hospitalization were older than 64 years (0.7%). In contrast to

the hospitalized cases, the peak in risk amongst the differing

locations is shifted to slightly older children and appears

between 6 and 19 years of age (Table 2 and Figure 2A). The

range in peak RRs among locations is narrower in cases that

were not hospitalized (2.0–4.2).

The WRR of cases who were not hospitalized peaks in 8 year

olds and then declines nearly continuously until the early

eighties (Figure 2B and 2C). The WRR flattens out briefly around

47–48 years of age but then declines again until 75 years of age

where the slope is zero until 82 years when the WRR declines

further. The rate of decline of the WRR slows dramatically

from 28 to 45 years of age but then this trend reverses between

49 and 56 years and the rate of decline in the WRR accelerates

(Figure 3D). From 61 to 75 years the rate of decline again slows

down and becomes stable after 75 years of age. The WRR

suggests that incidence begins to stabilize among adults in their

forties, but that around 49 years of age the incidence declined

rapidly.

In South Africa (N = 12,497), the age distribution of confirmed

cases (in which hospitalization status was not recorded) looks

similar to the distribution of cases that were not hospitalized,

suggesting that the majority of reports had not been hospitalized

Pandemic A/H1N1 Influenza Incidence
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(data not shown). The patterns observed in South Africa also

mirror those of cases that were not hospitalized (Figure S1). A peak

in risk occurs at 14 years of age (RR = 4.2) and then declines until

31 years, with the rate of decline significantly decreasing between

21 and 35 years of age (Figure S1). The RR plateaus between 32–

45 years of age but then a rapid acceleration in the rate of decline

occurs between 41–52 years of age at slightly higher bandwidths.

The RR declines steadily from 46–73 years of age and then it

plateaus again.

Role of Sex
To explore potential sex variation in age-specific incidence risk,

we further stratified the datasets from Argentina, Hong Kong, and

Wisconsin, for which sex information was available. Among men

hospitalized for pH1N1-related disease, the WRR declines from 4

to 28 years of age but then stabilizes and begins to rise again from

44 to 52 years of age before reaching a plateau again (Figure 3A). A

final decline in the WRR occurs from 61 to 67 years of age but the

WRR is then stable until 100 years of age. There is a narrow

acceleration in the rate of decline around 53 years of age, but it is

only statistically significant at larger bandwidths (Figure 3B).

Among hospitalized women, a similar rise in WRR occurs

between 46–52 years of age (Figure 3C), but then there is a rapid

acceleration in the rate of decline between 52 and 60 year olds

that is absent in men (Figure 3D).

This pattern of acceleration in the rate of decline among women

(which is less pronounced among men) beginning in the early fifties

and continuing until the early sixties occurs in cases that were not

hospitalized as well. Among men who where not hospitalized the

WRR increases initially and then declines from 11 to 45 years of

age when the WRR starts to stabilize and then declines again from

54 to 72 years of age (Figure 4A). Among adult men, there is little

statistical evidence of an acceleration in the rate of decline

(Figure 4B). The WRR among women who were not hospitalized is

Table 1. Confirmed cases of 2009 pandemic A/H1N1 influenza by location and hospitalization status, the associated weights used
to calculate the weighted risk ratio (shown as %), and the cumulative incidence risk ratio (95% confidence intervals) of male versus
female cases by hospitalization status and age group for locations where sex was known.

Hospitalized Not Hospitalized M:F Risk Ratio M:F Risk Ratio

(%) (%) Hospitalized1 Not Hospitalized2

Location

Argentina 4,068 (21.7) 2,586 (6.0)

Australia, Queensland 726 (3.9) 10,820 (24.9)

Hong Kong 7,425 (39.5) 21,330 (49.1)

New Zealand 991 (5.3) 2,202 (5.1)

Thailand 4,421 (23.5) 2,169 (5.0)

United States, NYC 996 (5.3)

United States, Wisconsin 161 (0.9) 4,319 (9.9)

Age Group in years

,18 9,794 (52.1) 22,618 (52.1) 1.16 (1.10, 1.22) 1.24 (1.11, 1.38)

18–64 8,175 (43.5) 20.503 (47.2) 0.86 (0.81, 0.91) 0.85 (0.82, 0.88)

.64 819 (4.4) 305 (0.7) 1.72 (1.47, 2.03) 0.52 (0.37, 0.72)

Total 18,788 43,426

1An unweighted cumulative incidence risk ratio determined using lab confirmed hospitalized cases from Argentina and Hong Kong.
2An unweighted cumulative incidence risk ratio determined using lab confirmed cases that were not hospitalized from Argentina, Hong Kong, and Wisconsin.
doi:10.1371/journal.pone.0042328.t001

Table 2. Peak risk ratio by location, age and hospitalization status.1

Hospitalized Peak RR (Age) Not Hospitalized Peak RR (Age)

Location

Argentina 3.3 (,1) 2.0 (6)

Australia, Queensland 4.6 (,1) 2.2 (7)

Hong Kong 11.1 (2) 4.2 (6)

New Zealand 7.1 (,1) 2.8 (19)

Thailand 4.4 (5) 3.3 (6)

United States, NYC 6.2 (,1)

United States, Wisconsin 3.9 (2) 3.8 (9)

Overall Weighted Risk Ratio 5.9 (1) 3.2 (7)

1This is the actual risk ratio, not the peak in the locally weighted polynomial regression smoothed risk ratio.
doi:10.1371/journal.pone.0042328.t002

Pandemic A/H1N1 Influenza Incidence
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similar to men who were not hospitalized (Figure 4C) with the

exception that the rate of decline accelerates in a statistically

significant way among women between the ages of 49–56

(Figure 4D).

Regardless of hospitalization status, male children had a

higher risk of laboratory confirmed pH1N1 than females; the

cumulative incidence risk ratio (95% confidence interval) of

male versus females for hospitalized and not hospitalized cases

was 1.16 (1.10, 1.22) and 1.24 (1.11, 1.38), respectively (Table 1).

This pattern reversed in adults aged 18–64 years and women

had a higher incidence of pH1N1 disease than men; 0.86 (0.81,

0.91) and 0.85 (0.82, 0.88) for hospitalized and not hospitalized.

Figure 1. Laboratory confirmed hospitalized cases. A The smoothed risk ratio of laboratory confirmed hospitalized cases in a single year age
group compared to the overall risk in all age groups. Smoothed curves for each location were created by a locally weighted polynomial regression
with fixed bandwidth of 4. B The smoothed weighted risk ratio (WRR) of laboratory confirmed hospitalized cases in a single year compared to the risk
in all age groups combined using a fixed bandwidth of 4. The single year of age WRR used to create the smoothed curve are plotted as open circles
and the 95% confidence bounds are shaded. The inset figure shows the truncated WRR from 0 to 29 years of age while the larger figure focuses on
the ages from 30–100. C SiZer plot of the first derivative of the WRR by age. The X axis represents age while the Y axis corresponds to the log of the
bandwidth (h). For example, log(0.6) corresponds to the fixed bandwidth of 4 used to create Figures A and B and a black horizontal line identifies this
bandwidth. The shading corresponds to the significance and direction of the slope (first derivative) of the WRR by age: red is significantly decreasing,
purple is possibly zero, blue is significantly increasing, and light grey represents areas where there is insufficient data to generate a smoothed curve.
The grid lines correspond to 1 year of age intervals. D SiZer plot of the second derivative of the WRR by age, where the shading corresponds to that
described for Figure 1C.
doi:10.1371/journal.pone.0042328.g001

Pandemic A/H1N1 Influenza Incidence
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Among the elderly, men had an increased risk of hospitalization

versus women while the opposite was true among cases that

were not hospitalized; 1.72 (1.47, 2.03) and 0.52 (0.37, 0.72),

respectively.

Discussion

We have found evidence that the risk of laboratory confirmed

pH1N1 infection declines with age, but that there is a statistically

significant leveling off or increase in risk from about 45 to 50 years

of age, after which a sharp drop in risk occurs until the late fifties.

Figure 2. Laboratory confirmed cases that were not hospitalized. A The smoothed risk ratio of laboratory confirmed cases that were not
hospitalized in a single year age group compared to the overall risk in all age groups. Smoothed curves for each location were created by a locally
weighted polynomial regression with fixed bandwidth of 4. B The smoothed weighted risk ratio of cases that were not hospitalized in a single year
compared to the risk in all age groups combined using a fixed bandwidth of 4. The single year of age weighted risk ratios used to create the
smoothed curve are plotted as open circles and the 95% confidence bounds are shaded. The inset figure shows the truncated WRR from 0 to 29 years
of age while the larger figure focuses on the ages from 30–100. C SiZer plot of the first derivative of the weighted risk ratio by age. The X axis
represents age while the Y axis corresponds to the log of the bandwidth (h). For example, log(0.6) corresponds to the fixed bandwidth of 4 used to
create Figures A and B and a black horizontal line identifies this bandwidth. The shading corresponds to the significance and direction of the slope
(first derivative) of the weighted risk ratio by age: red is significantly decreasing, purple is possibly zero, blue is significantly increasing, and light grey
represents areas where there is insufficient data to generate a smoothed curve. The grid lines correspond to 1 year of age intervals. D SiZer plot of
the second derivative of the weighted risk ratio by age, where the symbols are as described for Figure 2C.
doi:10.1371/journal.pone.0042328.g002

Pandemic A/H1N1 Influenza Incidence
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This trend was more pronounced in hospitalized cases and

women, regardless of location. The age range at which the decline

in risk accelerates corresponds to the cohort born between 1951–

1959 (hospitalized) and 1953–1960 (not hospitalized). Although

this is the first study describing the age patterns of pH1N1 cases

and hospitalization by single year of age, our results are in broad

agreement with previous studies [5,19]. Several mechanisms,

which are not mutually exclusive, could account for the rapid

decline in influenza risk past 50 years of age: variation in prior

immunity from earlier life exposure (cellular immunity and cross-

Figure 3. Differences by sex in hospitalized cases. A Hospitalized Men. The smoothed risk ratio of laboratory confirmed hospitalized cases
among men in a single year age group compared to the overall risk in all male age groups. Smoothed curves were created by a locally weighted
polynomial regression with fixed bandwidth of 4. The single year of age weighted risk ratios used to create the smoothed curve are plotted as open
circles and the 95% confidence bounds are shaded. The inset figure shows the truncated WRR from 0 to 29 years of age while the larger figure
focuses on the ages from 30–100. B Hospitalized Men. SiZer plot of the second derivative of the weighted risk ratio by age among male
hospitalized cases. C Hospitalized Women. The smoothed risk ratio of laboratory confirmed hospitalized cases among women in a single year of
age compared to the overall risk in all female age groups. Smoothed curves were created by a locally weighted polynomial regression with fixed
bandwidth of 4. The single year of age weighted risk ratios used to create the smoothed curve are plotted as open circles and the 95% confidence
bounds are shaded. The inset figure shows the truncated WRR from 0 to 29 years of age while the larger figure focuses on the ages from 30–100. D
Hospitalized Women. SiZer plot of the second derivative of the weighted risk ratio by age among female hospitalized cases.
doi:10.1371/journal.pone.0042328.g003
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reactive antibodies to conserved epitopes), in exposure to pH1N1

during the pandemic, and immune function related to aging and

sex. We further discuss each in light of our findings.

The history of a person’s exposure to influenza A viruses

determines their response to a new infection. It is not currently

evident whether the clinical protection against pH1N1 observed

among the elderly comes from prior immunity associated with

their first encounter with an influenza virus (original antigenic sin)

or from an accumulation of exposures to conserved epitopes in

seasonal and older antigenically similar H1N1 that elicit a cellular

and humoral immune response [11]. Clinical protection could

result from both antibody-based protection from infection, which

Figure 4. Differences by sex in cases that were not hospitalized. A Men not hospitalized. The smoothed risk ratio of cases among men
who were not hospitalized in a single year age group compared to the overall risk in all age groups. Smoothed curves were created by a locally
weighted polynomial regression with fixed bandwidth of 4. The single year of age weighted risk ratios used to create the smoothed curve are plotted
as open circles and the 95% confidence bounds are shaded. The inset figure shows the truncated WRR from 0 to 29 years of age while the larger
figure focuses on the ages from 30–100. B Men not hospitalized. SiZer plot of the second derivative of the weighted risk ratio by age among men
who were not hospitalized. C Women not hospitalized. The smoothed risk ratio of cases among women who were not hospitalized in a single
year of age compared to the overall risk in all female age groups. Smoothed curves were created by a locally weighted polynomial regression with
fixed bandwidth of 4. The inset figure shows the truncated WRR from 0 to 29 years of age while the larger figure focuses on the ages from 30–100.
The single year of age weighted risk ratios used to create the smoothed curve are plotted as open circles and the 95% confidence bounds are shaded.
D Women not hospitalized. SiZer plot of the second derivative of the weighted risk ratio by age among women who were not hospitalized.
doi:10.1371/journal.pone.0042328.g004
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is determined by exposure to antigenically similar hemagglutinin

(HA), and lessened disease severity, which is influenced by T cells

and antibodies primed by multiple epitopes in the H1N1 virus. We

do not have the capability to distinguish between these types of

immune protection among the older adults in our study.

The theory of original antigenic sin stipulates that the first

encounter with an influenza A virus in childhood sets the immune

response to all other influenza A viruses in the future, which could

explain the observed clinical protection against 2009 pH1N1 in

seniors [20,21]. Even when a person is exposed to an influenza

virus that is antigenically dissimilar to the first virus they

encountered, their immune system will mount a strong immune

response to that first virus. If the theory of original antigenic sin

holds, then anyone born prior to 1957 (especially those born

several years prior, having lived through several H1N1 influenza

seasons) would likely have had their first influenza A encounter

with an H1N1 influenza virus and thus have some cross-protection

to pH1N1. At a population level, this protection would increase

past age 52 as the probability of a first infection with an H1N1

virus increases. In contrast, when H1N1 reemerged in 1977, it co-

circulated with H3N2 viruses, which would have resulted in fewer

individuals whose first exposure was to H1N1. This is consistent

with the results of our study, where we saw no sharp decline in risk

in the age cohort that was born after 1977 (those who were 32 in

2009) but a sharp decline in risk in those born prior to 1957.

If protection relied solely on exposure to a specific virus that has

antigenic similarities to pH1N1, then we would have expected a

sharp drop in risk in those that were born before 1943, or in adults

66 and older. The likely origin of the HA of the 2009 pH1N1 is a

classical swine virus that has been relatively antigenically stable

since it entered into swine around 1918 [22,23]. The human 1918

and 2009 pH1N1 HA have the same neutralizing epitopes on the

receptor-binding domain and both lack glycosylation sites in this

region [24]. As the 1918 strain drifted in humans, glycosylation

sites were added to the HA head and the current seasonal H1N1

strain has 2 glycosylation sites, so that there is no cross-reactivity

between modern seasonal H1N1 strains and pH1N1 [25]. In

contrast, the pH1N1 virus is antigenically most similar to human

H1N1 viruses that circulated from around 1918 to the early 1940 s

and classical swine H1N1 viruses [26]. Thus our study results

suggesting a sharp decline in risk beginning at age 52, not age 66,

suggests that immunologic protection is derived primarily from

first exposure to any H1N1 virus and depends less on the antigenic

similarity of the H1N1 strains.

Studies of pre-pandemic stored serum have provided fairly

consistent evidence that cross-protective immunity from antibodies

against pH1N1 increases with age, with the highest levels

occurring in adults .60 years old [27,28]. Comparability of

serology studies published to date is hampered by a multitude of

factors. These studies show a broad range in the age-specific

prevalence of immune protection from prior H1N1 infection

[9,27,29,30,31,32]. Cross-protective immunity is most commonly

defined as a hemagglutinin inhibition (HI) titer of .1:40 or a

microneutralization (MN) assay titer of .1:160, which translates

into a 50% reduction in influenza infection or disease in a

population [27]. In the locations included in our study where pre-

pandemic serology studies have been conducted, most conclude

that around 20–30% of the population over 60 years old had pre-

existing antibodies. In New Zealand, 22.6% (95% CI: 15.3–30%)

of adults .60 years old (N = 124 samples) had pre-existing

protection (determined by HI assay) [29]. In North Queensland,

Australia, 19% (95% CI: 4–34%) of adults .65 years old (n = 27)

had pre-existing immunity (determined by HI assay) while a larger

study of 259 adults .60 years old in Australia found pre-existing

immunity in 37.5% (95% CI: 31.6–43.3%) [33,34]. In the United

States, 34% of adults born before 1950 (N = 115) had cross-

reactive antibodies to pH1N1 (determined by MN) [9] while in

Hong Kong 37% (n = 30) adults .65 years showed seroprotective

levels of antibodies to pH1N1 [35]. In Thailand, of 100 stored

serum samples from persons aged 11–86 years, only 2 (both from

adults aged .50 years), showed seroprotective HI assays, however

it is unclear from the study how many adults .50 years old were

sampled [36]. No serology studies have been published in

Argentina.

In studies grouped by 10-year increments of age, there was

evidence of cross-reactive antibodies in those born in the 1950 s,

suggesting some circulation of H1N1 viruses that were antigen-

ically similar to pH1N1. However, a positive cross-protective

antibody serum test is only part of the immune response that has

spared the elderly in this pandemic. If 20–30% of the population

aged .50 years had HI assay titers .1:40 and this corresponds to

a 50% reduction in infection, we could expect a risk reduction for

only 10–15% of this population. This reduction of risk is much less

than that observed among the elderly during the pandemic and

less than the risk reduction observed in our study.

While the HI and MN assays are good indicators of the immune

response to an influenza virus, other antibody responses and the

avidity of the antibodies produced also contribute to viral

clearance from a host [37]. In one study, the elderly had memory

B cells from prior exposure to 1918-like H1N1 viruses that were

rapidly recruited, underwent selection, and affinity maturation

when presented with pH1N1 vaccine, resulting in a quantitatively

and qualitatively superior response than adults aged 18–65 years

[37]. Given restrictions on the number of samples included in that

study, the group of most interest for comparison with our study

was aggregated into 46–64 years of age, which precludes a direct

comparison with our study results.

Memory B cells isolated from survivors of the 1918 pandemic

are capable of producing neutralizing antibodies against 1918

H1N1 and 1930 influenza A/Swine/Iowa/15/30, and to a lesser

degree 1943 and 1977 H1N1 viruses, after surviving more than

90 years in the human body; this suggests that immunity to

antigenically similar influenza A viruses is life long [38].

In addition to benefiting from immunologic protection resulting

from prior H1N1 exposure, adults in their late fifties during the

2009 pandemic also likely benefitted from a lower exposure to

school aged children; the age group with the highest attack rates

[39]. We could not assess this possibility further as we did not have

data on the number of children in the household for individual

cases. However, despite different age and family structures, we did

not find meaningful differences in the WRR between countries.

This suggests that exposure to school aged children is not a

significant determinant in the age-associated decline in incidence.

An additional mechanism for the acceleration in WRR decline

that we observed could be changes in the sex specific hormones

that are dramatically altered in post-menopausal women. We

explored the differences in WRR decline between men and

women and found that regardless of hospitalization status, women

had a statistically significant acceleration in decline of the WRR

between 52–60 years (hospitalized) or 49–56 (not hospitalized),

which was more pronounced than in men. The paucity of data on

the response of post-menopausal women to influenza and in

particular the role of sex hormones in the modulation of disease

severity or susceptibility complicates our interpretation [40]. We

cannot rule out a possible role of menopause in causing the sharp

decline in risk that we observed in women more strongly than men

in their fifties. Whether this effect is a main effect of menopause, or

Pandemic A/H1N1 Influenza Incidence

PLoS ONE | www.plosone.org 9 August 2012 | Volume 7 | Issue 8 | e42328



a modifying effect of menopause on the strength of acquired

immunity cannot be assessed in this study.

The primary limitation in our study is that we have no

information about the cases other than their age and incomplete

data on sex. We do not know what their prior exposure to

influenza A viruses (including wild- or vaccine-type exposures) has

been, nor do we have information about comorbidities, family,

and social structure. As such, we have no sense of the unique

immunological history of each individual case. The immune

response to influenza A viruses is complex and not well understood

and operates in the landscape of other systems in a human body –

i.e. two equally aged individuals with the exact same exposure

history to influenza could have different responses to pH1N1

exposure based on other risk factors. Another limitation of our

study is the lack of information on testing practices and healthcare

seeking behaviors, and it is possible that there were age biases in

propensities to test or in ability to detect influenza given infection,

as well as gender biases in referral. Ideally, the age distribution of

laboratory confirmed pH1N1 cases could be compared to that of

seasonal influenza to adjust for such biases, but unfortunately no

highly detailed age-specific dataset was available from earlier

influenza seasons. Despite this complexity and the stratification of

our study by only single year of age, the acceleration in the decline

of incidence in cohorts born prior to 1957, consistently found in 8

international locations, is striking.

Our study has demonstrated that the relative risk of being a

laboratory confirmed pH1N1 case levels off among adults aged 30

to late 40 and even increases among hospitalized cases, and then

declines rapidly among adults in their fifties. Our results do not

show an exact drop in those born before 1957 (i.e. 52 years of age

in 2009) for several reasons. First, birth year is only an indication

of exposure to H1N1 or prior infection with influenza H1N1

viruses; not everyone is exposed to influenza every year and the

effect of these mechanisms should be spread out. Second, the use

of a smoothing bandwidth of 4 could account for the smoothed

WRR for cohorts born the three years after 1957 being involved in

the observed rapid decline, as smoothing borrows information

from the neighboring ages before and after the age for which it is

estimating the WRR. Overall, our multinational dataset is most

consistent with immune protection in people older than 52 years

in 2009, resulting from priming with any A/H1N1 virus

circulating before 1957, consistent with the theory of original

antigenic sin. In addition, our data highlight gender variation in

influenza risk by age that could be linked with changes in immune

function due to menopause. Interestingly, these variations are not

expected to be unique to the 2009 pandemic and hence the

importance of menopause could be confirmed with data from

seasonal outbreaks. Further experimental and epidemiological

studies should shed light on the role of sex in the risk of influenza

morbidity and mortality – a relatively new field of research [40].
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Figure S1 Confirmed Cases in South Africa. A The

smoothed weighted risk ratio (WRR) of laboratory confirmed

cases in a single year compared to the risk in all age groups

combined using a fixed bandwidth of 4. The single year of age

WRR used to create the smoothed curve are plotted as open

circles and the 95% confidence bounds are shaded. The inset

figure shows the truncated WRR from 0 to 29 years of age while

the larger figure focuses on the ages from 30–80+, where 5 cases in

80–90 year olds were aggregated into one single year of age. B
SiZer plot of the first derivative of the WRR by age. The X axis

represents age while the Y axis corresponds to the log of the

bandwidth. For example, log(0.6) corresponds to the fixed

bandwidth of 4 used to create Figures A and a black horizontal

line identifies this bandwidth. The shading corresponds to the

significance and direction of the slope (first derivative) of the WRR

by age: red is significantly decreasing, purple is possibly zero, blue

is significantly increasing, and light grey represents areas where

there is insufficient data to generate a smoothed curve. The grid

lines correspond to 1 year of age intervals. C SiZer plot of the

second derivative of the WRR by age, where the shading

corresponds to that described for Figure 1B.
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analyses.
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