
 

A Nonlinear Dynamic Approach Reveals a Long-Term Stroke Effect
on Cerebral Blood Flow Regulation at Multiple Time Scales

 

 

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Hu, Kun, Men-Tzung Lo, Chung-Kang Peng, Yanhui Liu, and
Vera Novak. 2012. A nonlinear dynamic approach reveals a long-
term stroke effect on cerebral blood flow regulation at multiple
time scales. PLoS Computational Biology 8(7): e1002601.

Published Version doi:10.1371/journal.pcbi.1002601

Accessed February 19, 2015 10:48:11 AM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:10461890

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH 

https://core.ac.uk/display/28940952?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/10461890&title=A+Nonlinear+Dynamic+Approach+Reveals+a+Long-Term+Stroke+Effect+on+Cerebral+Blood+Flow+Regulation+at+Multiple+Time+Scales
http://dx.doi.org/10.1371/journal.pcbi.1002601
http://nrs.harvard.edu/urn-3:HUL.InstRepos:10461890
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA


A Nonlinear Dynamic Approach Reveals a Long-Term
Stroke Effect on Cerebral Blood Flow Regulation at
Multiple Time Scales
Kun Hu1,2,3*, Men-Tzung Lo2,3,4,5*, Chung-Kang Peng3,4, Yanhui Liu6, Vera Novak2,3

1 Division of Sleep Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America, 2 Division of Gerontology, Beth

Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America, 3 Center for Dynamical Biomarkers and Translational Medicine,

National Central University, Chungli, Taiwan, 4 Division of Interdisciplinary Medicine & Biotechnology and Margret & H.A. Rey Institute for Nonlinear Dynamics in Medicine,

Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America, 5 Research Center for Adaptive Data Analysis, National

Central University, Chungli, Taiwan, 6 DynaDx Corporation, Mountain View, California, United States of America

Abstract

Cerebral autoregulation (CA) is an important vascular control mechanism responsible for relatively stable cerebral blood
flow despite changes of systemic blood pressure (BP). Impaired CA may leave brain tissue unprotected against potentially
harmful effects of BP fluctuations. It is generally accepted that CA is less effective or even inactive at frequencies .,0.1 Hz.
Without any physiological foundation, this concept is based on studies that quantified the coupling between BP and
cerebral blood flow velocity (BFV) using transfer function analysis. This traditional analysis assumes stationary oscillations
with constant amplitude and period, and may be unreliable or even invalid for analysis of nonstationary BP and BFV signals.
In this study we propose a novel computational tool for CA assessment that is based on nonlinear dynamic theory without
the assumption of stationary signals. Using this method, we studied BP and BFV recordings collected from 39 patients with
chronic ischemic infarctions and 40 age-matched non-stroke subjects during baseline resting conditions. The active CA
function in non-stroke subjects was associated with an advanced phase in BFV oscillations compared to BP oscillations at
frequencies from ,0.02 to 0.38 Hz. The phase shift was reduced in stroke patients even at . = 6 months after stroke, and
the reduction was consistent at all tested frequencies and in both stroke and non-stroke hemispheres. These results provide
strong evidence that CA may be active in a much wider frequency region than previously believed and that the altered
multiscale CA in different vascular territories following stroke may have important clinical implications for post-stroke
recovery. Moreover, the stroke effects on multiscale cerebral blood flow regulation could not be detected by transfer
function analysis, suggesting that nonlinear approaches without the assumption of stationarity are more sensitive for the
assessment of the coupling of nonstationary physiological signals.
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Introduction

Cerebral blood flow (CBF) is regulated to provide adequate

blood supply to brain. One of the important CBF control me-

chanisms is cerebral autoregulation (CA) [1]. Involving dilation

and constriction of cerebral arterioles through myogenic and

neurogenic regulation, CA allows to maintain relatively stable

CBF despite changes of systemic blood pressure (BP) [2–7].

Impaired CA leads to more dependence of CBF on BP, leaving

brain tissue unprotected against the potentially harmful effects of

BP fluctuations, as demonstrated in cerebromicrovascular disease

associated with diabetes [8–10], or after ischemic stroke [11–14]

and brain injury [15–17].

A widely accepted concept of CBF regulation is that CA is less

effective or even inactive at high frequencies (.,0.1 Hz) or at

small time scales (,,10 seconds), thus leading to a passive

dependence of CBF on BP at small time scales [18]. Many studies

supported this concept [19–22] but all were exclusively based on

transfer function analysis (TFA) that utilizes the Fourier transform

to quantify the relationship between BP and cerebral blood flow

velocity (BFV; recorded by transcranial Doppler) [18]. The TFA

assumes stationary signals while physiological signals including BP

and BFV are highly nonstationary, displaying complex fluctuations

at different time scales with varying amplitude and period even

during baseline conditions [23,24]. Moreover, TFA assumes a

linear relationship between two signals while it is well known that

CA leads to a nonlinear pressure-flow interaction [18]. Thus, TFA

may render unreliable or even misleading results [25,26]. To

better understand CBF regulation at different time scales or

frequencies, we introduce a new analytical tool termed intrinsic
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multiscale pressure-flow analysis (IMPFA) that has no assumptions

of linearity and stationarity. Based on the empirical decomposition

analysis [27,28], this method extracts intrinsic oscillations of BFV

and BP at multiple time scales and provides a pressure-flow

spectrum to quantify dynamic BFV-BP interaction (see Methods).

Using this new method, we aimed to establish the multiscale

relationship between spontaneous BP fluctuations and BFV

fluctuations in old adults, and to determine the long-term effects

of ischemic stroke on CBF regulation.

Normal CA function is characterized by a faster recovery of the

BFV than BP (i.e., BFV has advanced phases compared to BP) and

can be estimated by specific phase shifts between BP and BFV

oscillations [29,30]. We hypothesize that autoregulation is a con-

tinuous process operating over a wide range of time scales (from a

few heart beats to about one minute), and that the multiscale

autoregulation can be quantitatively assessed from the phase shift

between baseline BFV and BP fluctuations. We further hypoth-

esize that stroke leads to permanent CA impairment and affects

BFV-BP phase relationship at multiple time scales.

Results

BFV and BP fluctuations are complex and BFV-BP phase
shift was frequency dependent

Both BFV and BP signals showed complex fluctuations across a

wide range of time scales. Figure 1 showed all intrinsic oscillatory

components of a BP signal that were obtained in the first step of

the proposed IMPFA using the empirical mode decomposition

(see Methods) [27,28]. Figure 2 shows two of these oscillatory

components and the corresponding BFV components in the

frequency range of ,0.03–0.06 Hz (corresponding to cycle length

of ,16.7–30 seconds) and ,0.1–0.2 Hz (corresponding to cycle

length of ,5–10 seconds), respectively. The amplitude and period

of oscillations were highly variable among different cycles even in

the same component (see Text S1; Figure S1). The variability may

be due to nonstationary properties of the BP and BFV signals as

well as noise and artifacts in the recordings (see Methods). In the

non-stroke group, the mean BFV-BP phase shift was positive for

all tested time scales. Such phase shift would be expected during

an active cerebrovascular regulation that leads to a faster recovery

in BFV compared to BP fluctuations (see simulation results below).

The value of BFV-BP phase shift was generally larger at low

frequencies (or large time scales) and smaller at high frequencies

(mixed model ANOVA p,0.0001) (Figure 3A), e.g., BFV-BP

phase shift in the non-stroke group decreased from 54.864.3u
(Mean6SE) at 0.02–0.1 Hz to 10.763.2u at 0.3–0.38 Hz

(Figure 3B). Similar frequency dependence was also observed in

the stroke group, i.e., smaller phase shift at higher frequencies

(p,0.0001). We note that the phase shift value in non-stroke group

remained relatively constant within the frequency range of 0.02–

0.1 Hz while the stroke group showed a maximal phase shift at

,0.09 Hz (post hoc p,0.05).

BFV-BP phase shift was reduced in stroke subjects over a
wide range of frequencies

BFV-BP phase shift was consistently smaller in the stroke group

compared to the non-stroke group over the entire examined

frequency range of 0.02–0.38 Hz (p,0.0001) (Figure 3A). For

instance, at 0.02–0.1 Hz, BFV-BP phase shift in the stroke group

was 42.564.1u (SE) (,12u smaller than the value in the non-stroke

group); at 0.3–0.38 Hz, BFV-BP phase shift was 25.463.2u (16u
smaller than the value in non-stroke group) which was statistically

indistinguishable from zero (Wilcoxon signed-rank test p.0.35).

The mixed mode ANOVA indicated that there was no significant

interaction between effects of group and frequency (p.0.8), i.e.,

the group difference was not significantly dependent on frequency.

Repeating the same statistical analysis at four separated frequency

bins (0.02–0.1 Hz, 0.1–0.2 Hz, 0.2–0.3 Hz, 0.3–0.38 Hz) con-

firmed reduced phase shift in stroke patients at all frequencies

(Figure 3B). We note that the p value for the group difference was

smaller for bins at higher frequencies (smaller p value indicate

more significant group difference). This difference in p value might

be partially explained by the fact that there were generally more

cycles for a better estimate of mean BFV-BP phase shift at higher

frequencies.

In this case-control study, age, sex, BMI, mean BP, and baseline

CO2 were matched between the non-stroke and stroke groups

(Table 1). Thus, the observed group difference in BFV-BP phase

shift was independent of these variables. To test whether the

reduced BFV-BP phase shift in the stroke group was associated

with the changes in cerebrovascular resistance and/or CO2

vasoreactivity (Table 1), we repeated the statistical analysis with

including these variables as covariates in the mixed models. We

found that neither variable had significant influences on BFV-BP

phase shift (p.0.12 for both variables) while the effects of group

and frequency persisted. Using the similar approach, we found

that the observed group difference in BFV-BP phase shift was also

independent of mean BP (p.0.7), hypertension or normtension

(p.0.2), mean BFV (p.0.3), and mean heart rate (p.0.08).

Moreover, the difference between the stroke and non-stroke

groups remained (p,0.0001) when only normotensive subjects (13

stroke and 23 non-stroke subjects) were included in the analysis.

Within the stroke subjects, BFV-BP phase shifts were not

different between the stroke and non-stroke sides at all tested

frequencies (p.0.7). Indeed phase shifts of the stroke and non-

stroke sides were highly correlated (p,0.0001, r = 0.74; Figure 4).

These observations remained the same for 13 stroke subjects

Author Summary

Cerebral autoregulation is an important mechanism that
regulates blood supply to brain tissue to match metabolic
demands during daily activities. Impaired cerebral auto-
regulation increases the dependence of cerebral blood
flow on systemic blood pressure, and is associated with
fatal outcomes in patients after brain injury and acute
ischemic stroke. Reliable and noninvasive assessment of
cerebral autoregulation is still a major challenge in medical
diagnostics and clinic studies, mainly because blood pres-
sure and flow are intrinsically nonstationary (possessing
complex oscillations/fluctuations with varying amplitude
and frequency) while traditional methods for assessment
of the pressure-flow dependence assume stationary
signals. We propose a new computational technique that
is based on nonlinear theories without the assumption of
stationary signals. This technique allows us to detect the
degradation of cerebral autoregulation in patients with
mild ischemic stroke even at .6 months after the insult.
The degradation was present in both stroke and non-
stroke sides and was accompanied by an altered pressure-
flow interaction over a wide range of frequencies from
0.02–0.38 Hz. Our results challenges the traditionally
accepted functional region of autoregulation (,,0.1 Hz).
The observed long-term influences of stroke highlight the
importance of reliable monitoring of cerebral blood flow
regulation for the management and daily care of stroke
patients.

Multiscale Cerebral Blood Flow Regulation
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without hypertension (non-significant side effect: p.0.8; side

correlation: p,0.0001, r = 0.85). In addition, BFV-BP phase shifts

at all tested frequencies were not significantly correlated with the

time period after the stroke for both stroke (p.0.3) and non-stroke

sides (p.0.8).

Larger BFV-BP phase shift indicates faster response in
cerebrovascular resistance

To demonstrate that BFV-BP phase shift is an autoregulation

measure, we examined BFV changes in response to oscillatory BP

fluctuations utilizing the Aaslid-Tiecks model [29,31]. This model

Figure 1. Demonstration of empirical mode decomposition. A blood pressure (BP) recording was collected from finger plethysmography in a
non-stroke subject during supine rest condition (Top panel). Decomposed oscillatory components of the signal are shown in the followed panels.
Each component consists of oscillations within a narrow frequency band. Note that the amplitude and period of oscillations in each component were
not constant, indicating nonstationarity in the BP signal.
doi:10.1371/journal.pcbi.1002601.g001

Multiscale Cerebral Blood Flow Regulation
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was originally used to simulate CBF or BFV recovery in response

to sudden BP drop for different degree of cerebral blood flow

regulation that is characterized by an autoregulation index (ARI).

Ranging from 0 to 9, ARI indicates how quickly resistance can be

adjusted and BFV can be restored in response to BP change, i.e.,

ARI = 0 for no autoregulation or no recovery of BFV and ARI = 9

for best autoregulation [29,31]. In this study, we used a sinusoidal

waveform to simulate BP oscillations (Figure 5). As expected, the

Aaslid-Tiecks model showed that BP oscillations led to BFV

oscillations with a sinusoidal waveform at the same frequency of

BP (Figure 5A). BFV-BP phase shift was zero when ARI = 0 (red

lines in Figures 5A), indicating a passive dependence of BFV on

BP. At a fixed frequency of BP oscillations, BFV-BP phase shift

increased monotonically when ARI increased from 0 to 9

(Figure 5B, 5C). Such a relationship between BFV-BP phase shift

and ARI remained at all tested frequencies from 0.02–0.38 Hz

(Figure 5). These results are consistent with the well-accepted

belief that a large BFV-BP phase shift indicates a better auto-

regulatory function with quicker resistance adjustment.

The simulations also showed that BFV-BP phase shift for any

ARI.0 was generally larger at lower frequencies and become

smaller at higher frequencies (Figure 5). The similar frequency

dependence was also observed in human data (Figure 3). Thus, it is

important to specify frequency of BP/BFV oscillations when

comparing BFV-BP phase shift for assessment of differences or

changes in CA. In addition, this frequency-dependent relationship

is a key feature indicating that BFV-BP phase shift is not caused by

a simple time delay between BP and BFV (see Text S2; Figure S2).

Discussion

Most studies of cerebral autoregulation in health and disease

were focused on frequencies #0.1 Hz [18–22]. It is often

presumed that the BFV-BP relationship at smaller time scales is

beyond the range of autoregulation. Using the IMPFA, we

demonstrated that the phase of BFV oscillations is advanced

compared to BP oscillations at 0.02–0.38 Hz, indicating an active

cerebral blood flow regulation at multiple time scales (,2.6–

50 seconds). Ischemic stroke affected this multiscale regulation

even at $6 months after stroke insults, leading to more passive

dependence of BFV on BP that is characterized by consistent

reduction of BFV-BP phase shift at all tested frequencies. In

Figure 3. Group average of phase shift between BP and BFV
oscillations extracted by the empirical decomposition. Results
were presented (A) in 18 frequency bins with the same size of 0.02 Hz
from 0.02 to 0.38 Hz and (B) in 4 frequency bins (0.02–0.1 Hz, 0.1–
0.2 Hz, 0.2–0.3 Hz, and 0.3–0.38 Hz). Data are presented as Mean6SE,
where Mean was obtained by averaging the individual means for non-
stroke (or left) and right (stroke) sides and SE indicates between-subject
error. Shown are P values for group difference, frequency effect, and the
interaction between group and frequency. Here ‘‘NS’’ indicates P.0.1.
The gray region indicates the frequency range (.0.1 Hz) where cerebral
autoregulation was often considered to be less or even not active.
doi:10.1371/journal.pcbi.1002601.g003

Figure 2. Phase interaction between intrinsic oscillations of
cerebral blood flow velocity (BFV) and blood pressure (BP) at
different time scales or frequencies. Examples of extracted BP and
BFV components, and their instantaneous phases at ,0.03–0.06 Hz (A)
and ,0.1–0.2 Hz (B). Oscillatory components were extracted from
original BP and BFV signals using the empirical decomposition method
and their instantaneous phases were obtained using the Hilbert
transform. Individual cycles (separated by dashed lines) are identified
based on instantaneous phases and each cycle corresponds to a phase
increase of 360u. In each extracted component, oscillations are not
stationary with varying amplitude and period. Generally, the phase of BFV
oscillations was advanced compared to the phase of the corresponding
BP oscillations. Data in the last two BP cycles in B were excluded because
either (i) instantaneous phases BFV decreased as characterized by an
extra oscillation under the zero line (the grey-highlighted cycle; see
Criterion 1); or (ii) the BP period was significantly greater (.1.5 times)
compared to the BFV period (the hatched cycle; see Criterion 3).
doi:10.1371/journal.pcbi.1002601.g002

Multiscale Cerebral Blood Flow Regulation
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addition, this long-term stroke effect on cerebral blood flow

regulation was similar in the infarcted and non-infarcted

hemispheres. These findings raise the possibility that dynamic

CA may be engaging in cerebral blood flow regulation over a wide

range of time scales instead of being limited to a narrow band at

large time scales, thus providing a fast perfusion control.

Physiological meaning of BFV-BP phase shift at different
time scales

There is clear evidence that perfusion is only relatively stable and

BP fluctuations can induce CBF variations at different frequencies.

For instance, Claassen et al. showed that repeated squat-stand

maneuvers could induce oscillations at a designed frequency in

both BP and BFV in healthy young individuals with normal

autoregulation [32]; and we also showed BFV during baseline

conditions possessed oscillations that matched to BP oscillations

over a wide range of time scales (0.02–0.38 Hz; Figures 1–2).

Indeed, these BFV variations in response to BP fluctuations can

provide important information about cerebrovascular control

system. In this study, we focused on one of the useful biomarkers

derived from BFV and BP variations, namely BFV-BP phase shift.

This measure can reflect dynamic CBF regulation via adjustment

of cerebrovascular resistance (Figure 5) although it can also be

affected by other vascular properties such as absolute levels of

baseline cerebrovascular resistance and compliance [33].

The physiological understanding of CBF (or BFV) regulation

at different time scales is still debated and a high-pass filter-

cybernetic model is often used to describe the coupling between

BP and CBF/BFV [34]. This model predicts that a very slow

oscillation in BP (frequency approaching zero) will generate an

oscillation in BFV with very small amplitude and an advanced

phase close to 90u, while a fast oscillation in BP will be completely

transmitted to a BFV oscillation with phase lag close to zero. This

frequency-dependent feature is well demonstrated in our human

data (Figure 3) and our simulations using the Aaslid-Tiecks model

(Figure 5), as well as in previous studies using the TFA

[5,32,34,35].

It is important to note that the high-pass model did not suggest a

particular cutoff frequency or time scale of CA function. Many CA

studies using TFA did consider the BFV-BP interaction over a

Table 1. Demographic characteristics for non-stroke and stroke groups.

Non-stroke (N = 40) Stroke(N = 39) p value

Age (range) (years) 68.061.0 (51–80) 64.661.4 (50–80) NS

Sex Male/Female 17/23 20/19 NS

Body mass index 25.760.6 27.260.7 NS

HTN 17 26 NS

Mean blood pressure (mmHg) 84.061.5 85.861.6 NS

Heart rate (bpm) 65.061.4 69.761.4 0.022

CO2 level (mmHg) 36.560.4 35.260.8 NS

Cerebral blood flow velocity (cm/s) 0.0036*

Stroke or right side 46.763.2 37.062.6

Non-stroke or left side 48.062.3 37.863.2

Cerebrovascular resistance (mm Hg s/cm) 0.0006*

Stroke or right side 2.160.2 2.860.3

Non-stroke or left side 1.960.1 3.060.3

CO2 vasoreactivity 0.034*

Stroke or right side 1.260.2 0.860.2

Non-stroke or left side 1.460.2 0.860.2

Data are presented as Mean6SE. All p values are for comparisons between the non-stroke and stroke groups.
*indicates no difference between stroke and non-stroke sides.
doi:10.1371/journal.pcbi.1002601.t001

Figure 4. Comparison of phase shifts between the stroke and
non-stroke sides. Data of stroke subjects were presented. Each data
point indicates the group means of BFV-BP phase shifts for stroke side
(x axis) and non-stroke side (y axis) in each of 18 frequency bins from
0.02 to 0.38 Hz. Error bars indicate standard error between subjects. A
strong correlation between the phase shifts in stroke and non-stroke
sides was observed based on a linear regression analysis (R = 0.74,
p,0.0001), in which individual data (instead of group means) were
used while the effect of frequency was accounted.
doi:10.1371/journal.pcbi.1002601.g004

Multiscale Cerebral Blood Flow Regulation
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wide range of frequencies including .0.1 Hz [5,19,21,32,33,36].

However, most of these studies refute that BFV-BP relationship at

frequencies .0.1 Hz is useful in term of detecting physiological

and pathological changes in cerebrovascular system [18]. These

TFA-based studies might underlie the widely accepted concept of

the active CA region at low frequencies. Using the proposed

IMPFA, we showed in this study that the effect of stroke on the

BFV-BP interaction persists at high frequencies (0.1–0.38 Hz) as

well as at low frequencies (,0.02–0.1 Hz), leading to a reduction

of BFV-BP phase shift at multiple time scales. Additionally, our

simulation results based on the Aaslid-Tiecks model confirmed

that the association between BFV-BP phase shift and the degree of

autoregulation remained at all tested frequencies from 0.02–

0.38 Hz (Figure 5). These results indicate that the BFV-BP phase

shift at high frequencies may also provide insights into CBF

regulation.

A possible concern on the multiscale flow-pressure coupling is

whether small phase shift at high frequencies was simply caused by

a time delay between BFV and BP recordings. Since BFV was

measured from arteries in brain and BP was measured from finger,

the pulse transit time could be different for the two locations. The

possible time delay would artificially induce certain BFV-BP phase

shift that contains not much physiological information. This is

unlikely because the phase shift in both simulation and experi-

mental data became smaller at higher frequencies while a simple

time delay would predict a larger phase shift at higher frequencies

(see Text S2; Figure S2). However, a time delay may still

contribute to BFV-BP phase shift, especially at frequencies

.0.3 Hz in control subjects (Figure S3), leading to an overesti-

mation of the phase shift. Such time-delay effect may potentially

contribute to the observed reduction of BFV-BP phase shift in

stroke subjects at the high frequencies since stiffer arteries in these

populations can lead to a reduced time delay. Furthermore, the

frequency-dependent pressure-flow relationship can also be

described by a mechanical model without active control of

cerebrovascular resistance — Windkessel model [33,37,38], in

which the cerebral arterial bed is composed of both resistance and

compliance elements. In this model, the compliance element can

lead to phase advance of flow oscillations, and the magnitude of

the resultant phase shift is smaller at higher frequencies. There-

fore, further studies are required to formally determine how the

mechanical properties of vasculature (vascular compliance and

stiffness) contribute to pressure-flow phase shift and its reduction in

stroke, especially at high frequencies.

To ensure a physiologically meaningful and reliable estimate of

BFV-BP phase shift, we only studied frequencies up to 0.38 Hz.

This choice was mainly based on the following two considerations.

There were not enough matched BFV-BP oscillations at frequen-

cies between ,0.38 Hz and ,1 Hz because there were not

enough BP oscillatory components over the frequency range. In

addition, the potential time-delay effect as discussed above would

have stronger effect on the phase shift estimation at .0.38 Hz. For

instance, the estimated time delay between BP and BFV

recordings in control subjects was generally ,50 ms (see Text

S2 and Figure S3), which would lead to an artificial phase shift

of ,7u at 0.38 Hz and ,18u at 1 Hz.

Physiological mechanisms underlying multiscale BFV-BP
coupling

Multiple control mechanisms are involved in the CBF

regulation from the cellular level to the neurovascular unit to

regional blood flow in main vascular territories. These feedback

mechanisms, including myogenic [2], metabolic [3,4,39,40],

endothelial [41], and neurogenic regulations [5,6], can operate

at multiple time scales from seconds to minutes [42]. For instance,

stretch of vascular muscles resulting from changes of intrava-

scular pressure can induce vasodilatation or constriction through

myogenic [2] and endothelial [7] responses within a few

heartbeats; cholinergic dilation of cerebral blood vessels is also a

rapid process that is engaged within neurovascular unit comprising

of a neuron, astrocyte and a microvessel [6]; and sympathetic

modulation is involved in modulating overall vascular tone at

larger time scales (.20 seconds) [5]. These mechanisms are

integrated within the CA process to accommodate and redistribute

CBF locally and regionally in response to changes of neuronal

activity, variations of arterial BP, and other physiological stimuli.

Future studies are required to test whether these complex

mechanisms are capable of affecting BFV-BP coupling across the

wide range of frequencies from 0.02 to 0.38 Hz or other vascular

mechanisms (different from cerebral autoregulation) are respon-

sible for flow-pressure phase interaction at high frequencies

(.0.1 Hz).

Figure 5. Frequency-dependent phase shift between BP and
BFV oscillations in the Aaslid-Tiecks model. (A) BP oscillations at
certain frequency induced oscillations in BFV at the same frequency. In
the Aaslid-Tiecks model [56], cerebral autoregulation is estimated by a
dynamic autoregulation index (ARI) that ranges from 0 (absence of
cerebral autoregulation) to 9 (best autoregulation). When cerebral
autoregulation is absent (ARI = 0), there is no phase shift between BP
and BFV oscillations, i.e., the locations of BFV and BP peaks coincide.
(B) BFV-BP phase shift at different frequencies for different auto-
regulation (ARI = 0 to 9 from bottom to top). (C) Normalized BFV-BP
phase shift as percentages of values of ARI = 9. Curves from bottom to
top correspond to ARI = 1 to 9, respectively. Note that y axis was in log
scale. Results in B and C showed that BFV-BP phase shift decreased with
increasing frequency and that phase shift is larger for larger ARI at all
tested frequencies (0.02–0.38 Hz).
doi:10.1371/journal.pcbi.1002601.g005

Multiscale Cerebral Blood Flow Regulation
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Influences of stroke on cerebrovascular system
There is accumulating evidence that influences of stroke on the

cerebrovascular system evolve in time and space and that they

may extend to regions distant form infarct site [43–46]. Our recent

study supported this notion, showing impaired vascular reactivity

in larger areas of brain including vascular territories that are

distant from the infracted site and were not damaged by acute

infarction [47]. Such long-term and dynamic effects of stroke on

cerebrovascular system may explain our finding of similar

degradation of CBF regulation in both stroke and non-stroke

sides in the stroke patients.

Vascular changes associated with other cerebromicrovascular

diseases than stroke such as hypertension and diabetes can also

lead to impaired autoregulation [8–10,14] and increase risk for

stroke [48]. Thus, it is possible that the observed impaired

autoregulation in both stroke and non-stroke sides may be caused

by certain vascular complication other than stroke that may

precede stroke onset or may be one of the causes of ischemic

stroke. To explore such possibility, we have checked many

vascular measures in this study including heart rate, blood

pressure, mean BFV, cerebrovascular resistance, and CO2

reactivity. Though many of these variables showed significant

differences between the stroke and non-stroke groups, none of

them could account for the observed group difference in BFV-BP

phase shift. For instance, we showed that the group difference

persisted when excluding hypertensive subjects, suggesting that the

group difference was not caused by the possible effect of

hypertension or antihypertensive medications. Note that such

results did not exclude the possible effects of antihypertensive

drugs on CBF regulation via their influences on the autonomous

nervous system, which shall be addressed in future studies.

Overall, our results strongly suggest that the global degradation

of autoregulation in the stroke group reflects more likely the long-

term effect of stroke. However, in order to formally prove or refute

this hypothesized mechanism, it is necessary to examine autoreg-

ulation before, immediately following and after stroke for the same

subjects. Such data are not available in this study and future

longitudinal and prospective studies are warranted.

We note that the stroke subjects were studies at quite different

time after stroke insults (i.e., 0.5–30.9 years). This is not an ideal

approach considering the fact that the time course of the long-term

effect of stroke on cerebral blood flow regulation is not clear. In

this study, we did not find significant association between BFV-BP

phase shift and time after stroke (stroke side: p.0.3, non-stroke

side: p.0.8). These preliminary results suggest that the observed

impairment of cerebral blood flow regulation may occur within the

6 months following stroke insults. Since this is a pilot study with a

small sample size, future large-scale longitudinal and prospective

studies are needed to determine the long-term impact of stroke on

cerebral blood flow regulation.

Nonlinear approaches for CA assessment
Most of previous studies of CA at different time scales

(frequencies) utilized the TFA [18]. This traditional approach is

based on the Fourier transform, assuming that BP and BFV signals

are stationary and are composed of superimposed sinusoidal

oscillations of constant amplitude and period at a pre-determined

frequency range [26]. Recently, it has been realized that

physiological signals are intrinsically nonstationary, and that

traditional analysis with the stationary assumption may be

unreliable or even invalid [25,26]. In addition, the TFA assumes

a linear relationship between two signals and this assumption is

often verified or refuted by checking one TFA-derived measure,

namely coherence that ranges from 0 to 1. The mean TFA

coherence for the BFV-BP relationship is smaller than ,0.75 at all

frequencies ,0.5 Hz and even smaller at frequencies ,0.1 Hz

(close to or less than 0.5) (see Text S3; Figure S4). The low

coherence at ,0.1 Hz is believed to reflect cerebral autoregulation

that leads to a nonlinear BFV and BP interaction. Such a belief

would indicate that TFA-derived BFV-BP phase shift and gain at

low frequencies are not valid although these TFA measures have

been widely used to assess cerebral autoregulation and its change

under physiological and pathological conditions [5,19,21,32,33].

Therefore, the interpretation of TFA results should deserve more

careful considerations and further theoretical studies shall be

conducted to resolve the current contradiction in the interpreta-

tions of TFA results.

To better handle nonstationary signals, the multimodal

pressure-flow analysis (MMPF) was introduced and has been

successfully applied to identify altered CA in hypertension,

diabetes, stroke, and brain injury [8,14,17,49]. Though the

MMPF is also based on the empirical mode decomposition,

several notable concerns remain for this analysis. First only a single

BP mode and its corresponding BFV mode were selected and used

to quantify the BFV-BP phase interaction while all other

components of BP and BFV are ignored. Thus, the rich multiscale

dynamic information in BFV and BP fluctuations is not fully

examined in the MMPF. Second, the MMPF estimates BFV-BP

phase shift by averaging all oscillatory cycles that could have

different frequencies due to the intrinsic nonstationary feature of

physiological signals (Figure 2 and Figure S1). Depending on the

cycle frequencies in the selected mode, the estimated mean phase

shift can vary because it depends on frequency (Figure 3).

Moreover, artifacts caused by either data acquisition (missing

data or outliers) or nonstationarity in the data often exist and

contaminate each oscillatory component extracted by the EMD,

affecting the performance of the MMPF [26]. Thus, the per-

formance of the MMPF is limited because BFV-BP phase shift is

frequency dependent (Figure 3) and nonstationarity is an intrinsic

property of many physiological signals (Figure 2).

The proposed IMPFA overcomes many limitations of the

MMPF and TFA by examining the phase shift of intrinsic cycle-

by-cycle BFV-BP oscillations at different time scales. As compared

to the MMPF, the IMPFA uses a spectrum to describe frequency-

dependent phase interaction between BP and BFV oscillations,

thus providing more dynamic information in a more accurate

manner. Moreover, the IMPFA is designed to better account for

nonstationarities and noise in BP and BFV recordings by filtering

out data without matched BFV-BP cycles. We also performed the

TFA analysis in this study but the TFA-derived BFV-BP phase

shift did not reveal any stroke effect (p.0.07 for both sides) (see

Text S3; Figure S4). This might be due to influences of

nonstationarities and noise in BP and BFV signals which can

introduce significant variations and random errors in the TFA

results (see Text S3) [26].

In addition to the EMD-based approaches, many sophistical

analyses derived from modern concepts and techniques of

nonlinear dynamics such as synchronization, wavelet transform,

and adaptive filtering have been gradually applied to biological

and physiological research [50–52]. The current and previous

findings strongly suggest that these nonlinear approaches without

the assumption of stationarity are more suitable for the assessment

of complex physiological interactions including the BP and BFV

coupling.

Conclusion and future directions
In summary, we demonstrated a multiscale regulation in

cerebral blood flow during supine resting conditions and showed

Multiscale Cerebral Blood Flow Regulation
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a long-term effect of stroke that alters the regulation in both

hemispheres, thus compromising the ability to counteract pertur-

bations imposed on brain tissue during perfusion pressure

fluctuations. With impaired cerebral blood flow regulation,

pressure fluctuations are transmitted into cerebral vasculature,

exposing brain tissue to potential harmful variations of perfusion

and limiting the delivery of blood flow to areas of increased

metabolic demands. Thus, our findings highlight the potential

importance and benefit of reliable and non-invasive CBF

regulation monitoring for the management and daily care of

stroke patients. These findings also provide new insights into

cerebral blood flow regulation and also raise a new challenge to

the modeling of the cerebral autoregulation function. Different

control mechanisms such as myogenic, metabolic, and neurogenic

controls are involved in the CBF regulation. Future studies are

needed to test whether each of these control mechanisms con-

tributes to flow-pressure coupling in a specific time scale range or

at all time scales, and to determine which mechanisms affected by

stroke are responsible for the altered multiscale cerebral blood flow

regulation in these patients.

Methods

Ethics statement
All data were previously collected in the Syncope and Falls in

the Elderly Laboratory at Beth Israel Deaconess Medical Center

(BIDMC). All participants provided informed consent and

research protocols were approved by the local Institutional Review

Board.

Subjects
To test our hypotheses, we studied 79 participants (50–85 years

old) with 39 stroke patients and 40 age- and sex-matched non-

stroke subjects. Subjects were recruited from the community-living

older people via advertisement in local newspapers. All subjects

were screened with a medical history, physical examination,

standard battery of autonomic tests and routine blood and urine

chemistries. All Stroke subjects had chronic large artery hemi-

spheric MCA infarcts documented on MRI or CT during the

acute phase. Neurological and functional status of stroke patients

was assessed by NIHSS (mean6SE: 2.660.4) and a Modified

Rankin Scale (1.160.2; ,4 for all patients, indicating ability to

walk). Studies were conducted at 0.5–30.9 years (mean = 6.1 years)

after stroke when these patient were clinically stable. The 40 non-

stroke subjects had no clinical history of stroke, no known carotid

stenosis, and no focal deficits on neurological examination.

Twenty-six of the stroke patients and 17 of the non-stroke subjects

had hypertension that was defined as use of antihypertensive

medications or systolic BP .140 mm Hg or diastolic BP.85 mm

Hg on 24 hour BP monitoring. Antihypertensive medications were

tapered and withdrawn for 3 days prior to the study with home BP

monitoring. We excluded subjects with intracranial or subarach-

noid hemorrhage on MRI or CT, diabetes mellitus, clinically

significant arrhythmias, uncontrolled hypertension (systolic

BP.180 mm Hg and/or diastolic BP.100 mm Hg; or subjects

taking $3 antihypertensives), morbid obesity, contralateral carotid

stenosis .50% cases (for stroke patients), or any contraindications

to MRI. There were no significant differences in age, body mass

index (BMI), mean BP, and CO2 level between the stroke and

non-stroke groups (Table 1). Baseline heart rate was higher and

the mean BFV was lower (for both stroke and non-stroke sides) in

the stroke group compared to the non-stroke group. Within the

stroke subjects, mean BFV did not show significant difference

between the stroke and non-stroke sides (p.0.6).

Experimental procedure
The experiment was performed between ,10AM–11:30AM (at

least 2 hours after the last meal) after subjects stayed overnight in

the inpatient room of the Harvard Clinical and Translational

Science Center at BIDMC. Before the test, Subjects were resting

comfortably in supine position in a quiet environment for at least

20 minutes. Then data were collected for at least 5 minutes during

a baseline condition when subjects remained awake and relaxed in

the horizontal and supine position. Following the baseline, CO2

vasoreactivity was assessed by performing a 3-minute hyperven-

tilation test and a 3-minute test of rebreathing air in a bag with

5% CO2.

Data acquisition
Changes in systemic BP were continuously assessed by

measuring beat-to-beat BP waveforms from a finger using a

Finapres device (Ohmeda Monitoring Systems, Englewood CO)

[18]. BFV was simultaneously measured from left and right middle

cerebral arteries using transcranial Doppler ultrasonography

system (PMD150 Spencer Technologies, Inc., WA). Doppler

probes were positioned to achieve maximal BFV, and stabilized

using a 3-D holder. During the data collection, subjects were

instructed to minimize movement and to breathe at their normal

respiratory frequency. Thus, the diameter of the insonated artery,

insonation angle and plasma hematocrit remained relatively

constant such that changes in BFV reflect changes in CBF, and

the BFV-BP phase relationship can represent the CBF-BP phase

interaction in the territory of the insonated vessel [53–55]. The

electrocardiogram was measured from a modified standard lead II

using a Spacelab Monitor (SpaceLab Medical Inc., Issaquah, WA).

End-tidal CO2 values were also recorded from the face mask

(Capnomac Ultima, Ohmeda Monitoring Systems, Englewood,

CO). Data were continuously recorded at a sampling frequency of

500 Hz and was re-sampled to 50 Hz for data analysis.

Note that the time course of the CO2 change in cerebral arteries

during breathing tests could vary considerably between subjects,

depending on the lung function and blood gas transport me-

chanisms of individuals. To account for such individual difference,

we selected a 30-second window during the hyperventilation test

when BFV reached minimum and a 30-second window during the

CO2 rebreathing test when BFV reached the maximum. The

mean BFV levels in the two 30-seconds windows were used to

calculate the CO2 vasoreactivity.

Intrinsic multiscale pressure-flow analysis (IMPFA)
To quantify the coupling between CBF (or BFV) and systemic

BP at different frequencies, we introduced an intrinsic multiscale

pressure-flow analysis (IMPFA) that is based on theories of

nonlinear dynamics without the assumption of linearity and

nonstationarity. The IMPFA quantifies dynamic phase relation-

ship between intrinsic BP and BFV oscillations at different

frequencies. The analysis includes three steps: (i) decompose BP

and BFV signals into multiple intrinsic oscillatory modes each

within a narrow frequency band (Figure 1); (ii) identify matched

individual BP and BFV cycles from all oscillatory modes (Figure 2);

and (iii) calculate BFV-BP phase shift for each matched BFV-BP

cycle, assign individual cycles to different frequency bins based on

cycle length, and calculate mean BFV-BP phase shift in each

frequency bin.

(i) The first step was fulfilled using the empirical mode

decomposition (EMD) (see details in Text S4) [27,28], which

allows the decomposition of a complex nonstationary signal into

multiple empirical modes with each mode representing a

frequency-amplitude modulation in a narrow band (Figure 1).
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Unlike the Fourier transform, the EMD is a nonlinear adaptive

decomposition processes without assuming the shapes of waveforms.

Thus, the resultant BP (or BFV) components are true intrinsic

oscillatory functions embedded in the complex fluctuations.

(ii) For each BP mode and its corresponding BFV mode,

instantaneous BP and BFV phases at all time points were obtained

using the Hilbert transform. Then the BP mode and the BFV

mode were divided into individual cycles with each cycle

corresponding to a phase increment of 360u, e.g., from 0u to

360u and from 360u to 720u (Figure 2). Not all EMD-derived BP

and corresponding BFV cycles necessarily reflect true underlying

BFV-BP interactions. This can be caused by influences of noise or

artifacts in the recordings such as artifacts in BFV signals when

subjects were talking or when head movements affected the

insonation angle of the TCD probe, missing data during the

calibration of Finapres device, and changes in BP signals due to

finger movement. Thus, we introduced the following criteria to

exclude BP-BFV cycles that were possibly contaminated by noise

and artifacts:

Criterion 1. There was a decrease in instantaneous BP

or BFV phases in a cycle (Figure 2B);

Criterion 2. There were more than 10 points

(0.2 seconds) in a cycle with instantaneous frequencies

(based on instantaneous phase changes) much larger

than the mean frequency of the cycle ($2.5 times);

Criterion 3. The BFV cycle length is much larger

($1.5 times) or much smaller (#1/1.5 time) than the

corresponding BP cycle length (Figure 2B).

The target of Criteria 1 and 2 is BFV or BP cycles that contain

extra oscillations at higher frequencies while Criterion 3 is aimed

for BFV (or BP) changes that were unrelated to BP (BFV) changes.

For all matched BFV-BP cycles we used for the estimation of BFV-

BP phase shifts, the difference in frequencies based on BP and

BFV was 0.0006760.0002 Hz (SE).

(iii) For each matched BFV-BP cycle, the start and end points of

the cycle were based on the determined BP cycle, and phase shift

was calculated by averaging all instantaneous phase differences

between BFV and BP components in the cycle. All matched BFV-

BP cycles were pooled and divided into non-overlapped frequency

bins based on cycle length. There were 18 frequency bins with size

of 0.02 Hz that cover the frequency range from 0.02 Hz to

0.38 Hz. Mean BFV-BP phase shift in each frequency bin was

calculated from all cycles in the bin.

Statistical analysis
Descriptive statistics were used to summarize data. One-way

analysis of variance was used for between-group comparisons of

age, body mass index, mean heart rate, and mean BP, mean BFV,

CO2, cerebral resistance, and CO2 vasoreactivity. To assess the

effects of frequency, group and their interaction on BFV-BP phase

while accounting for possibly different or missing data points in

certain bin(s) for different subjects, a mixed model ANOVA with

subject nested in group as a random factor was performed (JMP-

9.0 SAS Institute, Cary, NC). A similar mixed model was used to

assess the potential difference between stroke and non-stroke sides

in the stroke patients. In addition, possible influences on BFV-BP

phase shift of age, sex, BMI, heart rate, mean BP, CO2, cerebral

resistance, CO2 vasoreactivity were also explored using the mixed

model.

Supporting Information

Figure S1 Variations of frequency in a BP oscillatory
component. (A) Blood pressure recording of a non-stroke

subject. (B) One empirical mode extracted from the BP signal in

A. There are 78 cycles in the ,300 seconds. (C) Frequency of

individual cycles.

(PDF)

Figure S2 Phase shift due to time delay between BFV
and BP recordings. Shown are apparent BFV-BP phase shifts

for different time delays, Dt, from 20.1 to 0.3 seconds (blue lines

from bottom to top). The group means of BFV-BP phase shifts

(Figure 3) and their polynomial fits were also plotted for

comparison.

(PDF)

Figure S3 Blood flow velocity in radial artery and
middle cerebral artery simultaneously recorded from
a non-stroke subject. In each heartbeat, the peaks of two BFV

signals were very close, i.e. time lag ,50 ms.

(PDF)

Figure S4 Coherence and BFV-BP phase shift derived
from transfer function analysis (TFA). (A–B) Coherence

between BP and BFV in the left or non-stroke side (A) and the

right or stroke side (B). Coherence ,0.5 (gray region) indicates

that the assumption of linearity is not valid. (C–D) TFA derived

phase shift between BP and BFV in the left or non-stroke side (C)

and the right or stroke side (D). Data are presented as Mean6SE,

where Mean was obtained by averaging the individual means for

non-stroke (or left) and right (stroke) sides and SE indicates

between-subject error. Only data points with coherence .0.5 were

included for the analysis of TFA phase. Shown are P values for the

effects of group, frequency, and the interaction between group and

frequency on TFA phase shift. Here ‘‘NS’’ indicates P.0.1.

(PDF)

Text S1 Variations in BFV-BP phase shift due to
nonstationary oscillations.

(PDF)

Text S2 Effects of time delay between BFV and BP
recordings on phase shift estimation.

(PDF)

Text S3 Comparison of BFV-BP phase shifts derived
from transfer function analysis and intrinsic multiscale
pressure-flow analysis.

(PDF)

Text S4 Empirical mode decomposition.

(PDF)
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