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Abstract 

We introduce a principled computational framework and methodology for automated discovery of context-specific 
functional links between ontologies. Our model leverages over disparate free-text literature resources to score the 
model of dependency linking two terms under a context against their model of independence. We identify linked 
terms as those having a significant bayes factor (p < 0.01). To scale our algorithm over massive ontologies, we 
propose a heuristic pruning technique as an efficient algorithm for inferring such links.  

We have applied this method to translationalize Gene Ontology to all other ontologies available at National Center 
of Biomedical Ontology (NCBO) BioPortal under the context of Human Disease ontology. Our results show that in 
addition to broadening the scope of hypothesis for researchers, our work can potentially be used to explore 
continuum of relationships among ontologies to guide various biological experiments. 

 

1. Introduction 

Every year, over 400,000 new articles reportedly enter biomedical literature [1]. This staggering growth 
of biomedical findings has created an unprecedented corpus of knowledge that is impossible to explore 
with traditional means of literature consultation and database searches. This information overload has 
motivated the development of structured information repositories that organize biomedical findings 
according to hierarchical ontologies. 

Ontologies find themselves at the heart of two major complementary activities in biomedical research. 
Communities of researches create and maintain these ontologies to represent different types of entities 
and relations in different domains of biomedicine. On the other hand, biomedical experimentalists use 
ontologies to annotate data in order to facilitate data integration and translational discoveries. This 
activity is greatly intensified by the development of high-throughput experimental platforms such as gene 
expression microarrays [2], SNP microarrays [3] and next generation sequencing platforms [4]. 

The rise of such ontological organization has created a new problem, the proliferation of disparate and 
seemingly unrelated biomedical ontologies. For example, the National Center of Biomedical Ontology’s 
(NCBO) BioPortal [5] provides over 200 such ontologies to researchers. These ontologies are generally 
used by scientists to annotate their data, but which ontologies to use and how they relate to each other is 
generally unclear.  What is needed is the integration of these conceptualizations in a principled fashion, a 
“grand unification” of biological terms. It has been established [6] that the integration of these available 
ontologies will have a tremendous impact on the advancement of biomedical sciences. These integrated 
ontologies will provide a complete basis of biomedical knowledge representation and act as a foundation 
for inference on new biomedical data. Furthermore, a quantitative approach for integration would make 
the navigation of the complex space of ontologies more amenable to researchers by offering them 
guidance to numerous links among ontologies, ranking them according to a principled metric, thus 
making the discovery process faster and efficient. 

To date, the mapping and integrating of ontologies in the biomedical domain has relied on discovering 
links between syntactically and semantically similar terms across ontologies [7]. Such an approach can 
relate terms with similar meanings but would not deduce any relationships between seemingly disparate 
functional spaces such as diseases, drugs and anatomy. Approaches in the data integration community for 
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ontology integration use methods ranging from machine learning [8] to graph matching [9] to natural 
language processing [10]. These methods again inherently focus on mapping synonyms across 
ontologies. Recently, Ontology Alignment Evaluation Initiative [11] has been launched as a competition 
between alignment algorithms on a given standardized dataset. These methods generally cater to the 
definition of traditional ontology alignment considering synonyms. Even instance-based methods in these 
initiatives for mappings have the goal of converging two ontologies that represent the same knowledge 
base. For domains as disparate as biomedical ontologies, such methods do not work and moreover, the 
computational complexity of these algorithms makes them infeasible for massive scales of such 
vocabularies. Other approaches to infer these links use standard means of manual curation, which is 
again a tedious and labor intensive task with extremely bad scaling properties. 

Here we propose a novel computational and methodological framework for context-specific integration 
of biomedical ontologies using free-text literature analysis. We model context specificity using another 
ontology and derive context-dependent functional links between ontological concepts occurring as 
phrases in free-text literature. We cache massive amounts of literature data to enable efficient counts of 
co-occurring ontology terms. Based on these statistics, the penalized likelihood of the model of 
dependency and independency is computed by applying the well-known bayesian information criterion 
[12] over a context-sensitive model scoring function. We account for scalability via a depth-first branch 
and bound heuristic technique, to prune sub-graphs that do not yield significant links. 

We believe that such a methodological approach would turn machine-processable ontologies into a single 
landscape of integrated biomedical concepts and annotations. This would enable researchers to bear on 
each single finding the entire power of established biomedical knowledge. 

2. Methods 

A. Caching Sufficient Statistics 

We gather raw free-text literature from disparate sources and drive our concept search by finding exact 
matches of ontology terms. We use the MGREP [13], concept recognition tool that also powers the 
NCBO Annotator [14] to efficiently find occurrence of concepts in published literature and thus annotate 
the documents with those concepts. This allows us to leverage on a consolidate vocabulary (of about 4 
million ontology concepts) to temper the problem of missing synonyms and term permutations. 

We also used a pre-computed index containing the transitive closure of ontology terms for semantically 
expanding the  annotations, propagating them up the hierarchy of the ontology. The document 
annotations and the concepts are reverse indexed using a disk based b-tree structure an approach 
commonly used in information retrieval systems.  

                    
                Figure 1: Pipeline used for caching sufficient statistics for model scoring. 

We use Lucene [15], an open source high-powered information retrieval engine to create and store the b-
tree structure. To answer conjunctive queries for efficient counting we use a bitmap hash-based filter 
over the stored index. Our integrated pipeline is shown Figure 1 above. 

B. Alignment Algorithm 

For computing context dependent links between ontology terms, we have developed a novel technique 
relying on statistical analysis of literature. Our algorithm uses the observed co-occurrence of terms in the 
literature to infer the relationship between two terms A and B in the context of the ontology term C. As 
an example the term A can be the ontology concept, 5-fluorouracil, which we want to align with the term 
B, cell-cycle under the context of term C, say colon cancer. 

To do so it builds a contingency table like the one in Figure 3, collecting the frequencies of co-
occurrence of the two terms in the literature, a 2 x 2 table where n++ is the number of papers in which two 
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terms appear together, n+- is the number of papers in which A appears but B does not, n-+ is the number of 
papers in which B appears and A does not, and n-- is the number of papers in which neither appear all in 
the context of term C. 

 

                         
Figure 2: 2 x 2 contingency table to test relationship between two ontology terms A and B under C. 

Our method uses the Bayesian information criterion to compute the penalized likelihood of dependence 
A ⇔ B | C (where two terms are related) and the model of independence A ⇑ B | C (where the two terms 
are unrelated) as  

                              ,                                                             (1)  

 
where N is the number of observations, k is the number of parameters of the model, and MLL is the 
marginal log likelihood of the model. We assume that both the models of dependence and independence 
are equally likely in which case maximizing the posterior probability converges with maximizing the 
marginal likelihood as shown in Equation 1. 

The marginal log likelihood for the model of dependency is: 

 

                                               (2)  

whereas the marginal log likelihood for the model of independence is: 

                                                                        (3)  

where Γ is the gamma function, n++, n+-, n-+, n—are the co-occurrence frequencies as described above, α is 
the prior precision and,  αk is the prior precision per term, that is, α/|T|, where |T| is the number of terms 
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in the dependency: in our particular case, |T| = 2. In our case, we use α = 4 for 2 x 2 tables, so that for the 
initial prior precision we put 1 in each cell, maintaining the uniformity of the distribution and the lowest 
possible precision, so as to minimize bias on the precision.  

By plugging the marginal log likelihood into equation (1), we obtain respectively the penalized 
likelihood of dependency BIC (A ⇔ B | C), where the two terms are linked, and the model of 
independence BIC (A ⇑ B | C), where the two terms are not linked. The final score is the bayes factor 

 

€ 

Score = BIC(A⇔ B |C) − BIC(A⇑ B |C)                                                                              (4) 

 

that estimates how many times the model linking term A and B in the context of C is more likely than the 
model in which the terms are not related.  

We use the pipeline explained in the previous section to efficiently count the co-occurrence frequencies, 
for computing the bayes factor. Context-dependent functional links are then selected as the ones having a 
bayes factor greater than 20 (p < 0.01). 

C. Heuristic Pruning Using Depth First Branch and Bound 

To apply our 
algorithm we, in the 
worst case, would 
have to compare all 
possible triples of 
terms representing the 
ontologies. Such an 
approach would work 
for small ontologies 
but will not scale up 
to massive ontologies 
even with cached 
statistics. We apply a 
depth first branch and 
bound algorithm to 
prune away ontology 
sub-graphs where the 
likelihood of finding 
functional links is 
extremely low. We 
use the bayes factor 
as a scoring cue to 
find such sub-
graphs. 

We build on the empirical observation that if the bayes factor for an ontology concept A mapped to 
another ontology concept B under the context C is less than given a custom user-set threshold ε, then the 
bayes factor for mappings amongst majority of A’s children with the concept B under C would also be 
less than ε. An intuition towards such an observation can be gauged from the fact that any instance of a 
specific concept, say a paper, is also an instance of a more general concept. This follows the subsumption 
property that the taxonomy structure of an ontology follows. Hence, if not enough evidence is found for 
linking A to B under C, as demonstrated by the computed bayes factor it follows that a major fraction of 
A’s children would also not have enough evidence of a map to B under C. 

Further extending the empirical observation to span sub-graphs under A and B in context of the sub-
graph under C helps us to use the metric to prune away insignificant portions in the ontological graph. 
We rather than giving theoretical bounds on the likelihood of matches, experimentally analyze the effect 
of the given threshold ε over the running time and the amount of false negatives. Our results show below 
an expected exponential reduction in computations for inferring functional links. 

Figure 3: Graph depicting exponential reduction in running time as the 
minimum threshold for pruning increases. 

 
Figure 3: Graph depicting exponential reduction in running time as the 

minimum threshold for pruning increases. 
 
Figure 3: Graph depicting exponential reduction in running time as the 

minimum threshold for pruning increases. 
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We also depict below the 
linear increase in the 
amount of false negatives 
if we prune the full graph. 

We implement the depth 
first branch and bound 
algorithm allowing us to 
compute functional links 
with much greater 
efficiency with a trade-off 
in loss of some 
alignments. The minimum 
threshold can be controlled 
by the user, depending on 
the efficacy of the results 
required. A suitable 
threshold can be 
determined empirically, by 
running the algorithm with 
different thresholds and 
observing the occurrence 
of “false positive” links. 
Once this threshold is 
chosen, we say that if the 
bayes factor is greater than ε (or corresponding desired significance level via corresponding p-value), 
than a high-confidence link exists between concepts. 

3. Results 

We obtain in all about 200 ontologies from the National Center for Biomedical Ontology’s BioPortal 
interface. For caching sufficient statistics we obtain the dictionary of all available ontology concepts 
(4,153,358 terms) for searching in the corpora. We further create our b-tree index on the corpus 
containing the following: 

 

1. Adverse Event Reporting System [16] database containing about 774,606 records. 

2. Array Express [17] containing 9281 records. 

3. BioSiteMaps [18] data containing 1013 records. 

4. caNanoLab [19] data containing 444 records. 

5. Conserved Domain Databases [20] containing 34,735 records. 

6. Clinical Trials [21] database containing 75,828 records. 

7. Drug Bank [22] containing 4774 records. 

8. Database of Phenotypes and Genotypes [23] having 184 records. 

9. Gene Expression Omnibus [24] containing 15,968 records. 

10. Stanford Microarray Database [25] containing 16,148 records. 

11. Published articles in PubMed [26] containing about 100,000 records. 

Each element of the corpus contains the full abstract of corresponding published article. We then apply 
our proposed algorithm over the heuristic pruning technique described earlier to integrate Gene Ontology 
(containing 24,987 concepts) to all available ontologies in BioPortal under the context of Human Disease 
Ontology (containing 12,033 concepts). The threshold for a significant link was set to be with a bayes 
factor greater than twenty (p < 0.01), while the threshold for pruning was set to be with bayes factor less 
than zero. 

 

Figure 4: Graph depicting linear degradation in the amount of 
inferred links as the minimum threshold for pruning increases. 
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Figure 5: A part of mapping network showing links between Gene Ontology (green circles) and Minimal 
Anatomical Terminology (blue circles) under the context of Human Disease (red links).  

An example of such a network is shown above in Figure 5. This is a part of a full network containing 
about 2000 relevant links. Figure 6 another network in which we switch the context to Minimal 
Anatomical Terminology from Human Disease. In such ways, our framework can take any two 
ontologies and compute scalable mappings under any given context.  

To validate the soundness of our context-sensitive mappings we take a random sampling of about a 
thousand high information content links [27], having a significantly high bayes factor. We repeat the 
experiment about ten times and use published literature and a domain expert in the field of molecular 
biology to validate these links. The number of repetitions are constrained by time resource available at 
our disposal for the domain expert. The precision number for the algorithm using this approach was 
found to be about 0.78.  

We further validate the completeness of our mappings by again taking a random sampling of about a 
thousand high information content triplets of nodes. We then use published literature and the domain 
expert to predict links amongst these concepts. These predicted links are then matched against the ones 
inferred by our algorithm to get recall. We repeat the experiment about ten times to get the recall number 
for the algorithm, which was found to be about 0.91. This corresponds to f-measure about 0.83. These 
numbers underscore the robustness and quality of our inferred links. 

4. Discussion 

This work is based on data that is changing and evolving over time.  New data enters the biomedical 
literature and ontological databases constantly.  Thus, conclusions and links can change over time. This 
framework provides an efficient and scalable algorithm to incorporate big data prevalent in the 
biomedical domain. A limitation of such analysis is its inability to differentiate between positive and 
negative correlation. Though nodes may be connected but their type of association is not computed. 
Incorporating some shallow semantics from natural language processing domain would help such a 
cause. A sliding window that detects relationships in conjunction with ontology concepts can be 
implemented to classify these alignments. 

A better algorithm to incorporate and update new data would be a nice addition accompanied by a 
graphical visualization toolkit to succinctly map such links. We only consider textual abstracts for 
caching statistics ontology terms. Expanding to full-text articles and incorporating varied datasets like 
images and experimental data would be interesting and challenging. A further extension of such a 
framework to propagate annotations over these links and perform enrichment analysis on ontologies 
other than Gene Ontology would be extremely useful. Another exciting analysis for future work would 
be to look at the evolution of the derived links over time as biological knowledge expands. Such a 
network can provide insights of how different biological terms relate to each other as advancements and 
new knowledge is added. They can also be used to detect and predict clusters of influence and 
propagation. Combining these links into a continuous bridge between different domains can help guide 
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biological experiments and analyses. 

 
Figure 6: Portion of network showing context-specific links between Gene Ontology (blue circles) and 
Human Disease (green circles) in context of Minimal Anatomical Terminology (red links).  

5. Conclusion 

Our framework and algorithms combine disparate sources of data for discovery of relationships between 
ontologies. Unlike prior work, our approach tries to find context-specific functional links between 
ontologies, which is not possible if only semantically-relevant links were considered. By developing a 
novel algorithm we identified links across ontologies, which can be used for guided expansion of various 
biomedical experiments. We then augmented this algorithm with heuristic approaches, for scaling up to 
massive data sizes with marginal loss in functional quality of links. We further validated the utility of our 
algorithm, by manual verification using a domain expert, increasing confidence in our methodological 
approach. Our work provides a new approach for translationalizing diverse functional spaces in 
biomedical domain, making this huge space of knowledge amenable to researchers. 
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