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Abstract 
Motivation: This work constructs a closed loop Bayesian Network framework for predictive medicine via integrative 
analysis of publicly available gene expression findings pertaining to various diseases. 
Results: An automated pipeline was successfully constructed. Integrative models were made based on gene 
expression data obtained from GEO experiments relating to four different diseases using Bayesian statistical 
methods. Many of these models demonstrated a high level of accuracy and predictive ability. The approach 
described in this paper can be applied to any complex disorder and can include any number and type of genome-
scale studies.  
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1 Introduction 
In recent years, several genome-wide technologies have been developed. As the amount of publicly available genomic 
data increases, the necessity for varying bioinformatics methodologies to conduct relevant analysis also increases. 
Much has been written about the obstacles presented by translating discoveries made via genomic data to medicine 
[1-4]. In order to circumvent these obstacles, the discipline of translational informatics has emerged – a discipline 
that focuses on the development of analytic and interpretive methods to evaluate the increasing amounts of 
biological data into diagnostics and therapeutics for the clinical environment [5]. Many researchers have used an 
integrative approach to isolate genes that are associated with certain diseases. For example, such research has been 
widely done with respect to type I diabetes and obesity [6, 7]. These studies, among others, have demonstrated the 
efficacy of utilizing data from several genetic and microarray studies. 
 
1.1 Gene Expression Omnibus 
The Gene Expression Omnibus (GEO) is a publicly accessible repository of genomic data [8]. This project was 
initiated in response to an increasing demand for a public database of high-throughput gene expression data. The 
GEO offers a flexible platform for submission and retrieval of heterogeneous data sets from high-throughput gene 
expression and genomic hybridization experiments.  
 
The GEO categorizes all user-submitted experiments into samples, series, and platforms, many of which are then 
manually curated into DataSet records [9]; in this study, all gene expression data was obtained from DataSets. 
 
1.2 Bayesian Networks and Multinets 
In a Bayesian approach to statistical analysis, the data analysis process begins with an already established 
probability distribution, referred to as the prior distribution. This process consists of using previously obtained 
sample data to update the prior distribution into a posterior distribution. The basic tool for this process is the Bayes’ 
theorem [10-11]. 
 
When dealing with complex problems, graphical models can help break down the complex systems into simpler 
parts, allowing for the analysis of a single variable. A Bayesian network is a directed, acyclic graphical structure. A 
simple Bayesian network is depicted in Figure 1. 
 

 
Figure 1: Example of a Bayesian network. In this example, A is the founder; X, Y, and Z are the children of A; A 
and Y are the parents of Z.

96



 
 

 
 
Bayesian networks, a class of multivariate probabilistic models, not only account for variability in biological system, 
but also can incorporate higher-order epistatic interactions and their interplay with environmental and clinical 
factors [10]. The modular nature of Bayesian networks, combined with computationally efficient algorithms to learn 
their structure, makes them an ideal tool for analyzing complex biological system. Using Bayesian networks, we can 
decompose a complex joint distribution of variables. This property allows compact factorization of complex 
distribution over a high-dimensional space, which, in turn, yields great advantage in “learning” and inference [10-
11]. 
 
In the research conducted prior to this work, a certain type of Bayesian model known as the Bayesian multinet was 
constructed for analysis of disease [12]. Rather than being a singly structured Bayesian network as described above 
and portrayed in Figure 1, a Bayesian multinet is a set of distinct yet related Bayesian networks [13]. In the multinet 
classifiers, the dataset is first partitioned by classes, and a single Bayesian network (here, a tree-augmented structure also known as 
TAN) is constructed on each partition [13-14]. Then the data is classified to the class that maximizes the posterior 
probability. Compared to a simple network, the multinet aims to more precisely model underlying pattern of dependency (e.g. 
epistatic dependencies) between features as the structure of the classifier is not forced to be static across classes. Therefore, the 
main difference for constructing singly structure Bayesian network and multinets is in treating the samples 
considered in the trial. For constructing multinets we keep the samples of each GEO experiment separate and we 
integrate the information content of each experiment through Bayesian inference step. However, for constructing the 
singly structure Bayesian networks we considered union of normalized samples from each GEO experiment. 
 
The power of our method in integrating different GEO experiments is three-fold: (1) Merging controls in related experiments results 
in a larger number of control group, which in turn increases the power of association, (2) The common-feature Bayesian multinet is 
able to capture different underlying pattern of dependency across multiple experiments, (3) The feature-differentiated Bayesian multinet 
is capable of not only capturing different pattern of dependency, but also utilizing different sets of features across experiments. 
 
1.3 Goals of Research 
Several studies have been done that merge gene expression data from multiple experiments with respect to a single 
disease. Though some of these studies have indeed used an automated approach to such research, they have focused 
on single diseases or disorders.  
 
This study aims to construct an automated framework that allows for the integration of genome-wide expression 
data (using the GEO) in regard to any disease or disorder, while also creating a predictive model for disease-related 
phenotypes that illustrates the relationship between various genetic factors and pathways in order to aid future 
treatment and study of these diseases. 
 
1.4 Diseases 
For this paper, the following disorders were studied: Huntington’s Disease, Obesity, Leukemia, and Lymphoma. 
These four diseases were selected based on the number of their respective related experiments in the GEO. The four 
aforementioned diseases are prevalent and pressing: Huntington’s Disease is a neurodegenerative disease with a 
worldwide prevalence of five to ten cases per 100,000 persons, Leukemia and Lymphoma are common causes of 
cancer-related deaths, and Obesity is a quickly growing problem. Though meta-analytic studies have been done with 
respect to these diseases, none of them have been examined extensively in a predictive sense. 
 

2 Materials and Methods 
The flowchart presented in Figure 2 outlines the methods used in this study. In the subsequent sections we detail 
each module in this flowchart.  
 
2.1 Downloading experiments from the GEO and disease mapping 
In order to create a mapping of all GEO DataSet files to diseases, a process similar to a study conducted at the 
Stanford University School of Medicine [5] was used. Several methods were presented in this paper; the 
GENOTEXT system [15, 16]  was initially explored as a possibility for creating the DataSet-disease mappings. 
However, it was eventually decided that a related but simpler method would be used for the purposes of this study. 
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All available GEO DataSet files were downloaded and read in order to obtain relevant information. Each experiment 
was mapped to disease(s) using their corresponding PubMed identification numbers and Medical Subject Heading 
terms.  
2.2 Merging experiments and obtaining expression data 
After generating this list of diseases and their associated GEO DataSets, a program was written in R to merge the 
GEO experiments and obtain all relevant gene expression data. The user first selects the disease to consider (i.e., 
Lymphoma), and using the disease-DataSet mapping list, looks up the relevant DataSet file names. This list of 
DataSet file names is fed into the automated program, which generates the multinets.  
 
Firstly, of the DataSet experiments fed into the program, it was determined which of the experiments were deemed 
“interesting” – for instance, in order to be relevant to the purpose of this study, an experiment must contain data 
comparing control versus non-control subjects in a manner that relates to the phenotype associated with the disease. 
This was done by looking for specific keywords in the DataSets (see Figure 2). After obtaining all “interesting” 
experiments, these experiments must be merged in some way. As gene expression values are unit-less and relative, 
each experiment’s data must be normalized with respect to all other experiments; this was done by selecting one 
experiment as the “reference” experiment and adjusting all other experiment’s values relative to the reference 
experiment. Subsequently, all samples from all experiments were merged according to control versus non-control 
samples.  
 
The top differentially expressed genes were found for each experiment individually via a number of steps. Firstly, a 
linear model was fit to each gene by using the design matrix of the microarray experiment, with rows corresponding 
to arrays and columns to coefficients to be estimated. Using this linear model, moderated t-statistics were computed 
by empirical Bayes shrinkage of the standard error toward a common value. This method was used to rank genes in 
order of evidence for differential expression. Finally, a table of the top-ranked genes from the linear model fit was 
extracted [17]. In this work, several trials were conducted; each one included a different number of top-ranked genes 
that were extracted. The genes that were studied were the ones that intersected across all experiments. 
 
As a basis for comparison, several trials were conducted using only single experiments to construct the models. 
Within each individual experiment, all samples related to the control state were merged with one another, while all 
samples related to the disease state were also merged. These data were then used to construct a Bayesian network 
using TAN structure [13]. 
 
2.3 Constructing multinets and receiver operating characteristic (ROC) curves 
In order to construct multinet Bayesian networks we first partition the data according to the classes (experiments) 
they are coming from. Then for each class of data a regular Bayesian network is constructed. One may use any type 
of Bayesian inference algorithm for construction of these “sub-networks”. We used TAN structure [13-14] for inferring 
the structure and conditional probabilities of each sub-network.  The Bayesian multinet classifier was validated using 3-fold 
cross-validation. In this procedure the set of samples is divided into three subsets of equal size. In each iteration, two 
subsets were used to find a common-feature set and train the model; the final subset is used to test the model. This 
procedure, known as external cross validation, is essential in correcting for the bias that is induced in cross-
validation through the feature selection. The AUROC was estimated by averaging the AUROCs across the three 
folds [18]. In essence, the samples are divided into ten approximately equally sized subsets. In repeated simulations, 
nine of these subsets are used for training and the tenth is used for testing. The area under the ROC curve 
(AUROC) value of the multinet’s cross-validation procedure indicates the model’s accuracy. 
 
The Receiver Operating Characteristic (ROC) is a curve that relates the true positive to the false positive rate for 
different thresholds. The AUROC is a statistical measure of robustness; the closer the AUROC is to 1, the closer the 
true positive ration is to 1, and the more accurate the predictive model. AUROC is a more comprehensive statistical 
measure of robustness than just predictive accuracy [17]. 

3 Results 
Several trials were done with each disease, varying the number of top differentially expressed genes that were 
examined. For each trial, the AUROC values were observed as a measure of accuracy. AUROC provides an 
objective metric for quantifying predictor accuracy. An AUROC of 0.7 to 0.8 is considered “fair,” from 0.8 to 0.9 is 
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considered “good”, and from 0.9 to 1.0 is considered “excellent” [20]. For each trial we constructed a singly 
structured Bayesian network as well as a multinet Bayesian network. The overall procedure is outlined in Figure 2. 
The main difference for constructing singly structure Bayesian networks from multinets is in treating the samples 
considered in the trial. For constructing multinets we kept the samples of each GEO experiment separate and we 
combined the information content of each experiment through assignment step (i.e. by finding the maximum 
posterior probabilities induced on each sub-network, see section 2.3 for details). However, for constructing the 
singly structure Bayesian networks we considered union of normalized samples from each GEO experiment.  

 
 
Figure 2: Outline of the design pipeline for comparison of multinets and single nets. 
 

4 Discussion 
In this work we present two ways to integrate the information contents of multiple independent experiments for 
classification purposes. One approach is to construct multinet Bayesian networks, which constructs a network on each 
experiment and combine the results in assignment step, and the other way is to construct a single network on the union of 
samples from all experiments. While both methods can be used for integrating the information of multiple experiments, 
we found that generally multinets outperform singly structured networks.  
 
 
Furthermore, we found that often times the most prominent genes were not present among the very top proportion of 
differentially expressed genes for each individual GEO experiment, but rather more toward the middle of the spectrum. 
The bias can be one factor that results in spurious differentially expressed genes for each experiment. In this regard, if all 
the conditions of multiple experiments were the same, the common list of differentially expressed genes across multiple 
experiments that we are considering is more robust to false positives. However, the application of our framework goes 
even beyond considering multiple experiments carried-out under exactly the same conditions or for exactly the same 
phenotype.  Here in order to achieve to a general view of the phenotype, we can consider various experiments on 
different subtypes, outcomes, conditions, and even different tissues in a predictive setting. Therefore, the implicated 
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genes are those that are presented in all considered aspect of the phenotype. These genes can be viewed as those genes 
that regardless of bias, subtypes, and conditions, are contributing to the phenotype.  
 
 

Disease 
 

Number of GEO 
Experiments 

% Top 
Genes 

Num. of 
Common Genes 

AUROC for 
each fold of 
CV 

Average 
AUROC 
 

Predictor 
Category 

Huntington's 
Disease multinet 4 15% 16 

0.857, 0.859, 
0.804 0.840 

 
Good 

Huntington's Disease 
single net 4 15%  

0.577, 0.610, 
0.588 0.592 

 
Poor 

Obesity  
multinet 12 35% 21 

0.840, 0.792, 
0.800 0.783 

 
Fair 

Obesity  
single net 12 35%  

0.568, 0.571, 
0.607 0.582 

 
Poor 

Leukemia  
multinet 12  25% 13 

0.796, 0.759, 
0.743 0.774 

 
Fair 

Leukemia  
single net 12  25%  

0.506, 0.538, 
0.561 0.535 

 
Poor 

Lymphoma  
multinet 6  15% 27 

0.763, 0.829, 
0.852 0.867 

 
Good 

Lymphoma  
single net 6  15%  

0.591, 0.640, 
0.566 0.599 

 
Poor 

 
Table 1: Summary of results for each disease. The second column displays the number of GEO experiments 
considered for constructing the multinet and single nets; the third column shows the percentage of top differentially 
expressed genes that were taken from each experiment; and the fourth column explains how many genes were found 
to be in common among the different experiments’ top differentially expressed genes. 
 
For instance, none of the 21 intersecting genes among the top 35% of differentially expressed genes across all twelve 
GEO experiments relating to Obesity were present in the gold standard Obesity Gene Map list [21]; however, when 
observing the 180 intersecting genes that were found from a larger proportion of the genes in each experiment, there 
were six genes also present on the gold standard list. Such a finding indicates that certain genes may have been 
overlooked in the past when studying these diseases; further research may focus on the effect and prominence of these 
seemingly “less” differentially expressed genes. 
 
With respect to the genetic factors related to Huntington’s Disease, the automated pipeline found there to be several 
genes that have already been studied in the context of the disease (RALA, CBX5, CALM3, GLG1, GLUL, MAPK8IP1, 
IMMT, MAP3K8, CDKN1A) [22-28]; however, certain genes were also discovered that have not been researched in 
regard to Huntington’s Disease. It has been shown that some of these genes (SCT, LMNB1, IVD) [29-32] have some 
relation to certain neurodegenerative diseases or are involved in pathways that are relevant to the development of 
Huntington’s Disease. Although the study for which this paper was written did not look into such genes into great detail, 
these findings demonstrate the possibility that this pipeline may be able to propose novel candidates for disease-related 
genes. 
 
A diagram showing the network of interactions of genes related to Huntington’s Disease is shown in Figure 3. For all 
four diseases, the AUROC values for the models constructed using single net structure were much lower than those of 
the multiple experiments. From these numbers, it is easy to see that the integrative approach using multinets provides 
much better predictive models than do the single net structure.  
The model created to represent genetic factors relating to leukemia also resulted in similar findings – several genes 
in this model have already been studied in varying degrees with respect to leukemia (WT1, PDE4DIP, NCAM1, 
AKAP13, SLC35E1, HFE, JUN) [33-42]; however, a few novel genes were also presented in the model (IVD, 
SYNJ2, TTLL3). Again, such findings demonstrate the power of this project’s methods in discovery of novel disease-
specific genes. 
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5 Conclusion 
New methods that this project explored include: 1) automated (rather than manual) mapping of GEO experiments to 
specific diseases and 2) a structure for automated construction of Bayesian networks with respect to analysis of the 
influence of genetic factors on specific diseases 
 
New findings that this project discovered include: 1) the two integrative frameworks presented in this paper can be 
used for discovery of novel disease-related gene candidates, 2) the accuracy of the integrative predictive models is 
generally greater once the integration is performed in assignment step (multinets approach) rather than data 
collection step (single net approach), 3) certain genes that may not be as greatly differentially expressed may still 
hold as much predictive power as those genes at the top of the list, and 3)  
 
 
 

 

 
Figure 3: Constructed Bayesian multinet showing the interactions among genes related to Huntington’s Disease and 
controls.
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