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Abstract: Mobile, social, real-time: the ongoing revolu-
tion in the way people communicate has given rise to a
new kind of epidemiology. Digital data sources, when
harnessed appropriately, can provide local and timely
information about disease and health dynamics in
populations around the world. The rapid, unprecedented
increase in the availability of relevant data from various
digital sources creates considerable technical and com-
putational challenges.

This is an ‘‘Editors’ Outlook’’ article for PLoS Computational

Biology.

Epidemiology, literally the ‘‘study of what is upon people’’, is

concerned with the dynamics of health and disease in human

populations. Research in epidemiology aims to identify the

distribution, incidence, and etiology of human diseases [1] to

improve the understanding of the causes of diseases and to prevent

their spread. Traditionally, epidemiology has been based on data

collected by public health agencies through health personnel in

hospitals, doctors’ offices, and out in the field. In recent years,

however, novel data sources have emerged where data are

frequently collected directly from individuals through the digital

traces they leave as a consequence of modern communication [2]

and an increased use of electronic devices.

The communication revolution—the explosion of mobile phone

and Internet usage—unfolding in the past few decades has led to

two major outcomes: that all types of modern communication are

now digital, and that the number of users of devices enabling

digital communication is in the billions, rapidly approaching full

coverage in large parts of the world [3]. As a consequence, an

increasingly large fraction of what we do and say—including

epidemiologically relevant behaviors such as deciding on preven-

tive measures and treatment choices, as well as reporting disease

symptoms—is stored electronically, often in accessible form and

thus amenable to analysis. Extracting meaningful information

from this data deluge is challenging, but holds unparalleled

potential for epidemiology. The observation of the spatiotemporal

movements of millions of people during disease outbreaks [4], the

rapid detection of an unusual respiratory illness in a remote village

anywhere on the globe [5], the near real-time estimation of

influenza activity levels [6,7], and the assessment of vaccination

sentiments during pandemic preparedness efforts [8] are examples

of realizations of this potential.

Web-based data mining is having a revolutionary impact on the

way we monitor global health outcomes and behaviors. Some

types of infectious and chronic disease data can be captured from

and disseminated in near real-time through an array of online

sources including chat rooms, social networks, blogs, web search

records, and online news media. These online sources provide a

picture of global health that is often different [9] from the picture

created by traditional surveillance systems. In fact, these data

streams have become invaluable data sources for a new generation

of public health surveillance systems that operate across interna-

tional borders, fill in gaps in public health infrastructure, and

complement existing traditional surveillance systems [10,11].

While for many of the most vulnerable countries, lab and clinical

surveillance capacity are still years from being realized, health

information is already being exchanged via web queries, social

networking sites, and mobile devices.

These data sources, when harnessed appropriately, can provide

local and timely information about disease outbreaks and related

events around the world. Further, these sources have been credited

with decreasing the time between an outbreak and formal

recognition of an outbreak [12], thus allowing for an expedited

response to the public health threat. Data from search engines can

now provide early warning of respiratory illnesses in local

communities while data from social networking sites can provide

early warning of vaccine refusal stemming from conspiracy

theories or other reasons. Online news media can provide a

window into the emergence of pandemics weeks before it is

brought to light by traditional surveillance. Similarly, data from

social media could tell us about emerging trends in a wide range of

health behaviors—e.g., the uptake of new tobacco products—at

the local and national level.

Traditional surveillance methods emerged in a world that was

very different from an epidemiological perspective. Prior to the

introduction of vaccines, most deaths were caused by infectious
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diseases (see [13] for the vital statistics rates in the United States).

In the past, networks on which diseases spread were much more

limited geographically in their expansion, due to limited social and

spatial mobility. This was also manifested by slower geographic

dissemination of diseases [14,15]. Nowadays, non-communicable

diseases are by far the main cause of illness and death in high-

income countries, while accounting for about half of the burden of

disease in low- and middle-income countries [16]. Depression,

type-II diabetes, and cardiovascular and pulmonary diseases pose

a substantial public health risk and are typically associated with

behavioral risk factors [17]. These risk factors—such as drug

abuse, smoking, and poor diet and exercise—and the associated

diseases are often found to be clustered in the population [18]. The

processes by which this empirical pattern arises are currently not

fully understood, but as more individual health behaviors and

outcomes are shared online, digital epidemiology offers an

increasingly clear picture of the dynamics of these processes. With

respect to infectious diseases, newly emerging pathogens can appear

unexpectedly, spread very rapidly, and be potentially devastating to

millions. A consequence of this change in the epidemiologic

landscape is that individual behaviors are now at the center of

disease dynamics and control. Individual behaviors will play a key

role in social distancing efforts as early responses to newly emerging,

rapidly spreading infectious diseases. One of the key advantages of

online social media data, apart from the increasingly large data

volumes, is that they are highly contextual and networked [8], and

increasingly hyperlocal (Figure 1). For example, the networked

nature of the Twitter data in the vaccination sentiment study by

Salathé and Khandelwal [8] allowed for the identification of

network clusters with strong sentiment bias, and of positive dyadic

assortativity of vaccination sentiments across the entire network of

users. Overall, these advantages allow us to study individuals and

groups in the rich contexts in which their lives unfold, and to study

person-to-person spread of disease and behaviors at the level at

which it actually occurs.

Thus, there is great potential to deepen understanding of disease

dynamics through the analysis of digital traces. To date, however,

most epidemiologic studies involving such data have focused on

presumed routes of transmission that have not yet been empirically

established. For instance, we are still in need of data that indicate

the relative importance of droplet, airborne, and contact

transmission of influenza and other common respiratory infections

in natural community settings [19]. Until researchers employ

rigorous and sensitive study designs for identifying modes of

transmission with confidence [20], the empirical basis of preven-

tion advice for many infectious diseases will remain weak.

Fortunately, diverse types of digital trace data may enhance

exposure measurement and facilitate strong tests of specific routes

of transmission. For example, in studies of small communities,

such as schools or workplaces, individuals could carry or wear

digital devices that sense their face-to-face proximity to others as

well as record their spatial movements. Proximity and spatial

mobility data, when coupled with regular surveillance of symptoms

and incident infections and viral sequencing, may often distinguish

modes of transmission in particular cases. Persons with genetically

related infections who had no face-to-face proximity during the

period when any of them were symptomatic would imply that

transmission did not occur by droplets. Other combinations of

proximity and spatiotemporal overlap for persons with genetically

related infections would imply other modes of transmission.

The everyday movements of humans create the dynamic links

that connect populations and enable geographic spread and

Figure 1. Map generated by more than 250 million public tweets (collected from Twitter.com) with high-resolution location
information, broadcast between March 2011 and January 2012. Inset shows greater Los Angeles area. Brightness of color corresponds to
geographic density of tweets.
doi:10.1371/journal.pcbi.1002616.g001

PLoS Computational Biology | www.ploscompbiol.org 2 July 2012 | Volume 8 | Issue 7 | e1002616



sustained transmission of infectious diseases. Difficulties in

measuring these types of human movements, traditionally

estimated using travel surveys, road networks, or small-scale

global positioning system (GPS) studies, have long hindered efforts

to understand these dynamics. Mobile phone data in the form of

call data records (containing information about the location of the

mobile phone tower used during a call from a mobile phone)

provide one of today’s most exciting opportunities to study human

mobility [21] and its influence on disease dynamics. Analogously,

advances in wearable devices have radically improved our

capability to track human contacts at high spatial and temporal

resolution [22], affording a much more detailed characterization

and understanding of social behaviors [23], complementing

previous work based on large-scale surveys and self-reported

information [24]. Objective measurements of social contact and

mobility networks complement self-reported data and pave the

way to a more accurate description of infectious disease dynamics.

In particular, high quality data are needed to improve parame-

terization of large-scale computer simulation disease models. The

introduction of these models has enabled us to broaden the

traditional modeling perspective to encompass large numbers of

individuals, rather than population aggregates. Mobile phone data

have already been used to create realistic models of human

mobility [21], predict the rate of spread of drug resistance [25],

assess the prospects of malaria eradication [26], and monitor

population movements during the Haiti cholera outbreak in near

real-time [4]. Models based on recorded sequences of human

contacts can inform the design of containment measures and of

targeted immunization strategies [27] and marks an important

departure from the static representation of contact networks [28].

Large-scale mobility data can be used to map the worldwide

circulation of emerging infectious diseases such as the 2009 H1N1

pandemic [29,30]. In other words, data are increasingly shaping

the development of computer simulations that create in silico

experiments hardly feasible in real systems with the goal of

providing better scenario analysis for the policy making process

and crisis management.

The technical challenges in all these efforts are significant. The

collection, storage, and analysis of massively large data sets is made

through the interface of infrastructure, software, and sophisticated

algorithms. The infrastructure requirements include high band-

width, low-latency computer networks, access to vast amounts of

storage, and the availability of large clusters of machines for

computation. Through state-of-the-art innovations in the cloud

computing industry, unparalleled computational power and

storage resources can be leased on-demand and economically.

Given the real-time, large-scale demands of scientific data today,

data collection and storage software need to run continuously,

impervious to hardware, software, and network failure. A further

challenge is the design of algorithms and data structures that are

efficient and scalable for processing, mining, and analyzing

dynamic and large-scale epidemiologic data. This requires the

adaptation of current algorithms to run on computer clusters

(cloud or dedicated), and the development of new algorithms that

leverage emerging data processing techniques such as MapRe-

duce, a programming model for processing large data sets in

parallel on large distributed computer systems [31]. In addition,

the extraction of knowledge (e.g., filtering, classification, anomaly

detection) requires cutting-edge data mining algorithms specifically

designed for the context of epidemiology. These challenges require

a new breed of practitioners, combining epidemiologic expertise,

analytical expertise, and advanced computational skills. They also

require a curiosity to keep up with the fast pace at which novel

communication tools are adopted. The adoption of social media

services by hundreds of millions of people in just a few years is

staggering to contemplate. At the same time, novel data streams

always require careful consideration of potential biases. For

example, a recent Pew Internet study [32] of Twitter users in

the United States found significant differences among age groups,

race/ethnicity groups, and among geographic locations.

Finally, challenges regarding data access, data sharing, and

privacy need our constant attention. Some of the electronic traces

that we leave as digital citizens are meant to be public, while others

are not, resulting in ethical and legal challenges [33]. Furthermore,

while it is easy to imagine the potential benefits of extracting

information from big data, access to such data is often limited,

costly, or altogether impossible for many in the research

community [34]. There is also substantial variability in the sharing

of data after it has been analyzed, an issue that is particularly

problematic when dealing with very large data volumes because

numerous—often subjective—filters need to be applied to make

the original, noisy data suitable for analysis. What’s more, while

some data sources are legally accessible, their sharing is often not.

These challenges notwithstanding, we believe that a digital

epidemiology will on balance have substantial societal benefits

due to the great improvements in the speed, scope, and focus of

information available for public health purposes. And indeed,

while these challenges still remain significant obstacles, web- and

phone-based data mining is already having immediate impact on

the operational activities of public health agencies worldwide.
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