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Wetting in Color 

Abstract 

Colorimetric litmus tests such as pH paper have enjoyed wide commercial success due to their 

inexpensive production and exceptional ease of use. However, expansion of colorimetry to new sensing 

paradigms is challenging because macroscopic color changes are seldom coupled to arbitrary differences 

in the physical/chemical properties of a system. In this thesis I present in detail the development of 

Wetting in Color Technology, focusing primarily on its application as an inexpensive and highly selective 

colorimetric indicator for organic liquids. The technology exploits chemically-encoded inverse-opal 

photonic crystals to control the infiltration of fluids to liquid-specific spatial patterns, projecting minute 

differences in liquids’ wettability to macroscopically distinct, easy-to-visualize structural color patterns. It 

is shown experimentally and corroborated with theoretical modeling using percolation theory that the 

high selectivity of wetting, upon-which the sensitivity of the indicator relies, is caused by the highly 

symmetric structure of our large-area, defect-free SiO2 inverse-opals. The regular structure also produces 

a bright iridescent color, which disappears when infiltrated with liquid     naturally coupling the optical 

and fluidic responses. Surface modification protocols are developed, requiring only silanization and 

selective oxidation, to facilitate the deterministic design of an indicator that differentiates a broad range of 

liquids. The resulting tunable, built-in horizontal and vertical chemistry gradients allow the wettability 

threshold to be tailored to specific liquids across a continuous range, and make the readout rely only on 

countable color differences. As wetting is a generic fluidic phenomenon, Wetting in Color technology 

could be suitable for applications in authentication or identification of unknown liquids across a broad 

range of industries. However, the generic nature of the response also ensures chemical non-specificity. It 

is shown that combinatorial measurements from an array of indicators add a degree of chemical 

specificity to the platform, which can be further improved by monitoring the drying of the inverse-opal 

films. While colorimetry is the central focus of this thesis, applications of this platform in encryption, 

fluidics and nanofabrication are also briefly explored. 
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Chapter 1. Introduction 

1.1. Background 

 There is a perpetual demand in society for new diagnostic devices, reflecting our never-ceasing thirst for 

greater knowledge of what is around us, what we are made of, what makes people sick, etc. There are some 

general performance metrics whose optimization is desired in many sensing platforms, such as sensitivity, 

selectivity (resistance to false positives), simplicity (ease of use, cost etc.), and broad applicability of a technique 

or an approach. However, it is difficult to design a sensing platform in which all of these ideals are achieved, as 

some of these qualities (e.g. sensitivity/specificity, generalizability and simplicity) generally are considered 

tradeoffs in a given sensor design [1]. Particularly pronounced is the tradeoff between simplicity/cost and all of 

the performance ideals [2-5]. A practical way to approach the problem of sensor design is to say “Given that I am 

willing to spend a fixed amount of money, time, and space on a sensing problem; how sensitive/specific can I 

make a sensor to address that problem?” For every level of simplicity, there is a range of applications (or 

customers) and a wide range of prior art. For some applications, specificity and sensitivity are paramount and 

costs are tolerable. Examples of such applications are the analytical components of synthetic chemistry (e.g. 

pharmaceuticals), high-quality materials synthesis (e.g. semiconductor device technology) and lab-quality 

biochemical assays (e.g. for disease detection at a hospital) [6-8]. For these problems, many highly sophisticated 

chemical analysis technologies have emerged, such as high-performance chromatography, mass-spectrometry, 

optical spectroscopy (FTIR, UV-Vis, etc.), nuclear magnetic resonance spectroscopy, high-resolution optical 

microscopy, electron microscopy, enzyme-linked immunosorbent assays, etc. [6-8].  

On the other hand, what if simplicity or low-cost was the paramount ideal? There are many sensing 

problems where this is the case, but most importantly, many of these sensing problems are yet to have an elegant 

solution. In fact, I would argue that this type of optimization currently dominates the field of chemical sensor 
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development. Some examples of chemical sensing problems of this type are: detection of hazardous compounds 

in the field (e.g. at home, on the job, on the battlefield or at the airport) [9], medical diagnostics at home or in the 

developing world [2-5], and authentication or quality-control of consumer products (e.g. food, fuel, drugs. 

cosmetics, etc.) at home or in the field [10], to name a few. While usually associated with a sacrifice in absolute 

performance (e.g. sensitivity or specificity), simple and low-cost diagnostic devices can be used both in more 

places and by more people, specifically by those who do not have sufficient resources and/or training to have 

access to the most sophisticated diagnostic technologies [2-5]. 

Colorimetry, where the readout is simply a change in an indicator’s color, is a particularly attractive 

approach to simple, low-cost diagnostics. Colorimetric litmus tests such as pH paper have enjoyed wide 

commercial success due to their inexpensive production and exceptional ease of use [11-13]. However, expansion 

of colorimetry to new sensing paradigms is challenging because macroscopic color changes are seldom coupled 

to arbitrary differences in the physical/chemical properties of a system.  For example, the color changes in pH 

paper are a result of protonation/de-protonation of dye molecules absorbed in the paper [14]. These dye 

molecules, which display different molecular absorption (and thus color) in the protonated and deprotonated 

states, can therefore only be used as a basis for colorimetric detection of chemical conditions that would induce 

protonation or deprotonation. Here, the inherent chemical specificity of the color change is both friend and foe, 

allowing exceptionally simple and fairly accurate colorimetric determination of the pH of an aqueous solution, 

but making impossible the generalization of this type of colorimetry to most other types of measurements. 

So how do we design a broadly generalizable platform for colorimetry? To do this, first we require a type 

of color change that can be induced by a very generic, chemically non-specific mechanism. This forms the basis 

of the approach, one that is common to any desired application and guarantees a colorimetric response. Then we 

can add a chemically-specific link between this generic color-change mechanism and the desired unknown 

property or specific analyte, to tailor the generalizable sensing platform to a specific individual sensing problem 

(e.g. detection of pentaerythritol tetranitrate at airport security).  
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Exploiting structural color is one promising route to broadly applicable platforms for colorimetry. 

Structural color is a result of light scattering rather than absorption, and as the name sounds, is derived from the 

structure of a material rather than its chemical composition [15].  Structural color is particularly pronounced to 

the eye when the scattering centers (e.g. roughness or porosity) are spaced on the scale of visible wavelengths and 

have some degree of spatial coherence (order) [15,16]. Structural color is also readily tuned by any mechanism 

that tunes the structure. This can be done by changes in the size, aspect-ratio, shape, refractive index, or the 

degree of spatial coherence in the structure or a component thereof [17-33].  These color changes can be induced 

by changes in the physical properties of a material forming the structure. They do not rely on a specific chemical 

state responsible for molecular absorption in a given wavelength region, as was the case with pH paper. Since the 

color changes are no longer bound to any one specific material or chemical process (the only requirement being 

that the material is heterogeneous, rough or porous on a scale that is comparable to the wavelengths of visible 

light), the chemical composition of the material forming the structure is a degree of freedom that can be tailored 

to impart colorimetric sensing capability to a particular stimulus.  

Tunable structural color has been a topic of interest for over a decade, and many applications both in and 

away from sensing/diagnostics have been explored [17-57]. In fact, the core requirements for colorimetry and 

tunable color in general are the same: both require a source of color (in this case a wavelength-scale structuring of 

the material) and a controlled response of the color to a particular stimulus (generally done by making the 

structure out of a material whose chemical properties are tuned such that changes in its shape, density, volume, 

etc. are tied to the target stimulus). Having the chemical and material properties forming a structurally-colored 

system as a versatile degree of freedom has facilitated the development of systems whose color responds to a 

wide range of stimuli [17-57].  

One of the simplest ways to impart dynamic character onto a structurally-colored material is by 

infiltration. This can be due to solvent swelling (causing a change in size) or filling of sub-wavelength porosity in 

the material (causing a change in density or effective refractive index), induced by either direct contact with a 

liquid [30,53,55] or by vapor adsorption [34,35,48,49,52]. Structurally colored materials based on hydrogels 
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(weakly cross-linked polymers that can reversibly expand and contract in aqueous media by absorbing or 

expelling liquid), can be engineered to have tunable color that responds to any stimulus that can induce its volume 

phase-transition [38,39,41,44-47,50,51,56]. Using hydrogels with wavelength-scale structure, researchers have 

been able to generate structurally colored materials whose color can tune in response to changes in pH [38,41], 

humidity [52], electric fields [46,47] and temperature [45]. Tunable color based on hydrogel swelling can also be 

tailored to respond to the presence of specific dissolved species (glucose, metals, small-molecule biological 

metabolites, etc.) [38,39,44,50,51]. Multifunctional hydrogels can also be synthesized to produce structural color 

that can tune in response to more than one of the above stimuli [56]. Color based on structured elastomeric 

materials is readily tuned by applying mechanical strain and can be used for pressure sensing or even color-

fingerprinting [27,40,54]. Structural color can also be tuned by inducing movement of scatterers. For example, 

the use of magnetic particles as a basis for coherent light-scattering facilitates color that is tunable by magnetic 

fields, which move the particles [32]. The addition of functional biomolecules as deformable defects in a 

structurally colored material has also been used to make colorimetric biosensors [57].    

While there exist a vast range of functional materials upon which a platform for dynamic structural color 

can be built (outlined in the above paragraph), equally essential to the design of such a platform is a means to 

impart wavelength-scale structure to these materials. While there are several routes to such structuring [16,22,58], 

colloidal crystal templating is by far the most widely used method, owing to its versatility, simplicity and 

scalability [20-26]. In this approach, a wavelength-scale periodic structure is formed by the self-assembly of 

monodisperse colloidal particles from a suspension into a close-packed lattice. Monodisperse suspensions of 

colloidal microshperes are most commonly made of polystyrene (PS), polymethylmethacrylate (PMMA), or silica 

with sphere diameters that can be readily controlled from synthesis conditions to be anywhere in the range from 

tens of nanometers to several microns, allowing the color (due to the wavelength-region of strongest Bragg 

reflection) of the structure to be tuned [20-26]. This self-assembly process can be induced in a variety of ways 

(e.g. sedimentation, centrifugation, evaporation, confinement etc.) [20]. Once the colloidal crystal is formed, the 

addition of functional material can be done by infiltrating the interstitial sites of the close-packed arrays. After 
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infiltration, the original colloidal crystal template can be removed (either by chemical etching or pyrolysis), 

leaving behind an inverse-opal. This can be done either to increase the refractive-index-contrast, or to open up 

porosity in the structure [20].  

This thesis describes the development of Wetting in Color technology, a versatile platform for structural 

colorimetry to identify liquids based on highly selective wetting in defect-free inverse-opal films (IOFs). Our 

IOFs are fabricated by a colloidal co-assembly technique developed by Hatton et al. [59], producing silica IOFs 

that are exceptionally ordered and crack-free over cm-scales. The scheme of colorimetry is made possible by two 

main advances described in detail here: 1) The first is the discovery that IOFs display a remarkably sharply-

defined threshold wettability for liquid infiltration. This threshold was investigated in detail and was found to be a 

function of the structure and regularity of the pore geometry. Its sharply-defined nature allows very subtle 

differences in liquid composition to produce macroscopically different filling behavior in IOFs (e.g. one fills the 

pores, while the other does not, leaving air-filled pores), which is naturally coupled to the film’s color, owing to 

vastly different refractive-index contrast between air-filled and liquid-filled porosity. 2) The second is the 

development of a variety of techniques to functionalize the porous IOFs with highly controlled and spatially 

diverse surface chemistry. This allows the wettability threshold in different regions of an IOF to be tuned to 

specific liquids. Thus, upon liquid immersion, the pores of these structurally-colored films are selectively 

infiltrated in a unique spatial pattern – creating an optical fingerprint of that liquid through the color contrast 

between wetted and non-wetted regions.  

Using these advances, the Wetting in Color platform was optimized for use as an inexpensive and highly 

selective colorimetric indicator for organic liquids. Its performance is analyzed and optimized with respect to the 

metrics outlined at the beginning of this chapter. With this colorimetric platform, cost, simplicity and portability 

come easy, as does the breadth of sensing problems for which it can potentially be applied. The latter owes to the 

fact that the fundamental stimulus for sensitivity is wettability, a generic property that exists for all liquids. These 

are considered the advantages of the Wetting in Color platform over other sensing options, and effort to preserve 
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these qualities is maintained throughout the optimization of the other performance metrics (e.g. sensitivity, 

specificity, etc.), as detailed in the proceeding sections.  

 

1.2. Overview of Wetting in Color technology 

“Un appareil révolutionnaire qui est le fruit d’une long collaboration entre les ‘scientists’ de la NASA et celles 

de Canadian Tire” – Têtes à Claques  

Defect-Free Inverse-Opal Films in SiO2 

The core topic covered by this thesis is the control of wetting in defect-free inverse-opal photonic crystals 

[59] and, in turn, control of the structural color, referred-to collectively as Wetting In Color technology. While the 

development of the colloidal co-assembly process to fabricate these inverse-opal films (IOFs) was done prior to 

my PhD work and is outside the scope of this thesis, it is worth briefly summarizing the key elements of the 

process and the properties of the films to provide the reader with context. Also included in Appendix A is the 

detailed experimental procedure that I used to make these films, to ensure that a reader would have all of the 

necessary information in this thesis alone to reproduce any of the experimental work presented here. A detailed 

characterization of this fabrication technique can be found in Ref. [59] as well as in Lidiya Mishchenko’s PhD 

thesis (Harvard University, School of Engineering and Applied Sciences, 2012).  

IOFs used in this work are made of SiO2 and are templated via colloidal co-assembly. The highly regular 

porosity of the inverse-opal structure also serves as a source of color (due to constructive interference from 

reflections off the close-packed air pores). An outline of the fabrication procedure is as follows: A solution of 

hydrolyzed tetraethoxysilane (TEOS) (a sol-gel precursor solution to SiO2) is added to an aqueous suspension of 

monodisperse polymethylmethacrylate (PMMA) microspheres (d~300nm). This mixture is then allowed to 

evaporate while containing a vertically-suspended oxidized silicon substrate. The evaporating composite solution 

leaves behind a close-packed (face-centered cubic) lattice of the polymer spheres with a silica gel matrix filling 

up the interstitial sites [59]. The polymer template is removed at high temperature (500°C) in air, leaving behind 

the final IOF structure. IOFs grown by this colloidal co-assembly technique possesses some unique properties 
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that make them ideal for the applications explored here. Namely, the structure is highly uniform, can be crack-

free over cm-scales (they are also single-orientation, with the (110)-growth direction strongly favored), and is flat 

over large areas with open porosity exposed at the top surface, lacking a silica over-layer [59]. The IOF structure 

is shown in Fig. 1. 

 

 

Figure 1. Scanning electron micrographs of inverse-opal films grown by colloidal co-assembly [59]. A: Side view, B: top 

view, also showing the small necks connecting the spherical pores. 

 

Encoding of Wettability in Inverse-Opal Films  

 Owing to the scale of their periodic porosity, IOFs display brightly iridescent color. Throughout the work 

discussed in this thesis, the color displayed by a porous IOF is tuned simply by filling the pores with a fluid. The 

effect of fluid-filling on the color and normal-incidence reflection spectrum is shown in Fig. 2. A redshifting of 

the principal reflectance peak is expected as the optical path-length of periodicity increases with the increased 

refractive index inside the pores. However, the more dramatic effect is a diminishing of the reflectance maximum, 

with the film becoming nearly transparent. This is evident in Fig. 2B, where the color of the IOF appears visibly 

indistinguishable from the bare silicon substrate. This increased transparency of the IOF is caused by the 

approximate refractive-index matching of the sol-gel silica matrix and most common liquids (n ~ 1.3-1.4). While 

high-quality silica has n = 1.46, the silica that makes up our IOFs is expected to have a slightly lower refractive 
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index. Spectral measurements (presented in Chapter 3) suggest that IOFs are perfectly index-matched to 

polydimethylsiloxane (PDMS, n ~ 1.4). Thus, wetting of an IOF is coupled with a macroscopic change in the 

film’s color. 

 

Figure 2. (A) Photograph (inset) and normal-incidence reflection spectrum of an IOF in air. (B) Photograph and normal-

incidence reflection spectrum of an IOF (in a hydrophilic state) after immersion of the film in water (the pores are filled). (C) 

Schematic depicting the core principle of operation of the devices described in this thesis. If different regions of an IOF are 

locally functionalized with different surface groups, different liquids may penetrate selectively only certain regions, but not 

others, revealing an optical contrast pattern in the process. 
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 Suppose now that we could selectively functionalize an IOF such that different surface moieties were 

locally attached to the pore surfaces in different regions, giving each region a different wettability of the pores to 

a given liquid. When such an IOF was exposed to a liquid (e.g. water), one might expect that the pores in some of 

the functionalized regions will become filled, but not others (shown schematically in Fig. 2C).  It is well known 

that, when submerged in water, porous structures with sufficiently low surface energies can resist the infiltration 

of the liquid into the pores. In fact, recently, spatial patterning of hydrophilicity has been used to manipulate the 

flow of water in three-dimensional porous networks [5,60], a promising approach to simple and inexpensive 

fluidic and diagnostic devices. Since liquid-filling in the case of our IOFs is tied to a macroscopic color change, 

exposure of such a functionalized IOF to a liquid could reveal a previously-invisible color pattern. With more 

than two functionalized regions, multiple liquids (having different surface tensions, for example) could penetrate 

different combinations of regions, producing different patterns (shown schematically in Fig. 2C).  

We developed techniques to encode complex wettability patterns into the pores of IOFs. All variants of 

the functionalization procedure used in this thesis rely on two core processes: i) exposure to alkylchlorosilane 

vapor to deposit organic surface groups, and ii) exposure to oxygen plasma to etch organic surface groups and re-

oxidize the silica surfaces. Silica is a very convenient material to work with for these studies because of the 

widespread commercial availability of alkylchlorosilanes with a wide variety of pendant groups. Fig. 3 shows a 

functionalization protocol that produces the type of multilevel wettability pattern shown in Fig. 2C. The entire 

IOF structure is first functionalized by exposure to vapors of an alkylchlorosilane bearing a functional group, R1. 

This R1 surface functionality is then locally erased and the surface re-activated by exposing the porous inverse 

opal to oxygen plasma through a removable mask [61]. As a mask, we used slabs of cured PDMS that were 

sealed to the surface under slight pressure and peeled off after the exposure without damaging the structure. 

Exposing the selectively oxidized structure to the vapors of a second alkylchlorosilane bearing a functional group, 

R2, now adds a new functionality to surface sites that were not protected by the mask in the previous step. Further 

plasma-etching through a different mask produces a pattern that is composed of three different surface 
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functionalities (Fig. 3). This process can be repeated many times to produce a surface with a highly diverse, 

spatially defined chemistry. 

 

 

Figure 3. Schematic of the chemical encoding procedure. The inner surfaces of IOFs are functionalized by repeated 

iterations of exposing the entire film to alkylchlorosilane vapors, followed by selective exposure to oxygen plasma, masked 

through slabs of PDMS sealed on top of the film. 

 

Although it has been previously shown that such masked plasma etching can be used to locally pattern 

self-assembled monolayers (SAMs) in 2D [61], the extension of this approach to 3D porous media is less 

intuitive, and has not been explored.  To obtain a high resolution from this type of shadow-patterning process on a 

3D porous surface, the modification process should be nearly isotropic to prevent shadowing effects from one 

pore to the next. In addition, the surface modification front must move sufficiently slowly that its penetration 

depth can be controlled. Under these conditions we can choose an exposure time that allows modification to 

occur throughout the depth of the structure, while not spreading too far underneath the mask. For our highly 

symmetric IOFs, which have a relatively small pore diameter (~300 nm) and inter-pore opening diameter (~80-
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100 nm), we found that modification occurs on a timescale of several minutes and the width of the lateral 

interface is comparable to the film thickness, typically ~5-20 µm (see Appendix A for more details).  

 

 

Figure 4. (A) Optical images of an IOF in which the word “W-INK” is encoded via the surface chemistry in an IOF: “W-” 

trimethylsilyl (TMS), “I” 1H,1H,2H,2H-tridecafluorooctyl (13FS), “N” n-decyl (DEC), “K” 3,3,3-trifluoropropyl (3FS), with 

a plasma-oxidized background (ROH). In different water-ethanol mixtures, different words appear. (B) Optical images of a 

film encoded with three bars (from left) 13FS, DEC, 3FS, displaying distinct optical patterns when immersed in the common 

solvents, water, acetone, and isopropanol. 

 Fig. 4A shows an example of an IOF, functionalized according to this procedure, with encoded messages 

containing five different local functionalities, the patterning appearing optically invisible when dry, but 

displaying four different messages when submerged in specific fluids. The word, “W-INK”, is encoded in a SiO2 

inverse opal with combinations of the hydrophilic surface functionality left behind after O2 plasma oxidation 

(referred to altogether as ROH hereafter for simplicity, see Ref. [61] for a detailed discussion of this type of 

surface chemistry) and four different surface groups with decreasing hydrophilicity: trimethylsilyl (TMS), 3,3,3-

trifluoropropylsilyl (3FS), n-decylsilyl (DEC), and of  (1H,1H,2H,2H-tridecafluorooctyl)silyl (13FS). While 
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displaying bright color and no pattern in air, the functionalized 3D photonic crystal reveals four different words 

when submerged in ethanol (EtOH), 85% (vol.) EtOH in water, 78% EtOH, and 50% EtOH, due to the area-

specific wetting of the functionalized IOF by liquids with increasing surface tension and the resulting 

disappearance of the color in the infiltrated regions.  In all cases, the message evaporates rapidly upon drying of 

the sample (several video examples of these encryption devices can be found on my YouTube channel: 

www.youtube.com/ibburges). The encoding via surface chemistry of many fluid-specific optical responses into a 

single material that appears homogeneous when dry is a type of multilevel encryption that could find many 

applications in security or authentication. This class of applications will be discussed further in Chapter 5. 

However, a device that displays many fluid-specific optical responses could also be used as a 

colorimetric indicator that identifies liquids based on wettability. As an example of such an application, Fig. 4B 

shows a sample patterned with three stripes (13FS, DEC, 3FS) with an ROH background. Different color patterns 

are produced when the film is submerged in the three common cleanroom solvents, isopropanol, acetone and 

water. 

While the general function of the IOF with regionally patterned surface chemistry is exactly as it was 

envisioned in Fig. 2C, a closer look at these proof-of-concept experimental results yields some striking and 

somewhat surprising results. Notably, (i) that the non-wetting state can be observed even for very low-surface-

tension liquids (for example, 13FS-functionalized regions resist penetration of ethanol, γEtOH = 22.3mN/m, and 

even liquid precursors to PDMS, γPDMS ~ 20mN/m) and (ii) the high selectivity of wetting with respect to quite 

similar liquids or their mixtures (e.g. 78% vs. 85% ethanol (aq)). To explain these properties, Fig. 5A shows 

measured contact angles for different water-ethanol mixtures on flat silicon wafers (acid-piranha cleaned and O2 

plasma oxidized to ensure a native oxide layer) functionalized with 13FS, DEC, 3FS and TMS groups. These 

measurements are designed to estimate the intrinsic contact angle (sometimes also called the “equilibrium contact 

angle” in some sources [62]) corresponding to the onset of the infiltrated state. Notably, for the IOF shown in Fig. 

4A, this boundary between the non-wetted and wetted states occurs in the contact angle range θ ~ 20º in all cases.  
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Resistance to pore-infiltration down to such a low intrinsic contact angle implies that contact-line pinning 

and metastable states [62,63] must dominate the wetting dynamics of IOFs. This effect can be explained by the 

reentrant curvature (overhang) associated with the narrow openings between adjacent pores [63]. In an ideal IOF, 

all pores have the same diameter and spherical geometry and are connected to their nearest neighbors by inter-

pore necks of identical radius. In such a symmetric system, the free-energy landscape associated with the 

propagation of the liquid front from one pore to the next is the same everywhere throughout the structure. 

Therefore, the global non-wetting state should occur when there is an energy barrier associated with propagation 

of the liquid front through a single unit cell. Figure 5B shows a schematic of a fluid front advancing through a 

single unit cell. The azimuthal angle subtended by an inter-pore neck in our IOFs typically fell in the range of φ0 

~ 15-25º (see Chapter 2 for a detailed discussion of the neck-angle distribution typical of our IOFs). The total 

free-energy change associated with the liquid front having descended from the top of the pore down to an 

azimuthal angle, φ, is given by: , where γla is the liquid-air 

surface tension, and θc is the intrinsic contact angle. Since the geometry at the top of the pore is reentrant with 

respect to the liquid front, there is a tradeoff between the energetically favorable liquid-solid interaction (when θc 

< 90º), and the energy cost of creating liquid-air interface. An energy barrier, and thus a metastable non-wetting 

state exists when 
   

  
       . This occurs when θc > φ0. Therefore in our geometry, a transition from the non-

wetting to the wetting state is expected to occur at θc = φ0 ~ 15-25º, well in the wetting range, and in agreement 

with what is observed in Fig 4A, 5A. 
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Figure 5. (A) Measured contact angles from different ethanol concentrations in water on flat silicon surfaces after exposure 

to 13FS, DEC, 3FS, TMS vapors. Filled markers indicate that regions of an IOF functionalized with the same groups are 

being infiltrated by the corresponding EtOH/water mixture. (B) Schematic of a liquid front propagating through a single unit 

cell of an inverse opal. 

The remarkable selectivity of wetting observed here can be attributed to the highly regular geometry and 

defect- and crack-free nature of our IOFs [59]. Unlike typical porous materials, inverse-opal photonic crystals 

fabricated via co-assembly [59] have a particularly regular geometry, with uniform pore and pore-neck sizes, that 

leads to a high density of localized chemical information and thus sharply defined wetting thresholds for 

individual liquids. The absence of defects or cracks eliminates the irregular wicking artifacts and enables a high 

resolution of the wetting patterns.   

At first glance, there are several unique properties of this material platform that lend it to many possible 

applications: (i) the high selectivity of infiltration, (ii) the range of fluid surface tensions across which this 

selectivity is observed, and (iii) its coupling to an easily detectable optical response. Beyond encryption, this 

system could find use as an optical litmus test that differentiates liquids based on wetting, as easy to use as pH 

paper is for detecting pH, but exploiting a property that exists for all liquids (surface tension) and thus could be 
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used to distinguish between similar liquids of any class (e.g. organic solvents, beverages, liquors, liquid fuels, 

etc.).  

In Chapters 2, 3 and 4, I show how the W-Ink concept was developed for low-cost sensing into a scheme 

for colorimetry that we called a Wetting-In-Color-Kit (WICK). An effective sensor based on this concept must 

satisfy more performance requirements than a simple encryption device. In the design of our colorimetric 

indicator, we needed to consider sensitivity (how small a change in liquid composition can we detect?), the 

selectivity (how robust is a measurement against unknowns/contaminants?), and the adjustability (how can we 

tailor an indicator to fit a specific user need, e.g. to differentiate a specific user-defined set of liquids?).  

In Chapter 2, we characterize the optofluidic properties of functionalized IOFs and use that 

characterization to estimate the maximum sensitivity of WICK. As the response is fundamentally sensitive to 

intrinsic contact angle, the sensitivity is estimated as the minimum difference in intrinsic contact angle that can be 

colorimetrically distinguished. Chapter 3 describes chemical functionalization techniques that were developed to 

tailor the response of a WICK to differentiate customer-defined liquids. In an encryption device, such as shown in 

Fig. 4A, the liquids (e.g. concentrations of water in ethanol) can be post-selected to match the desired patterns 

that are revealed. However in a useful indicator, this must be done the other way around.  

In Chapter 4, the specificity of WICK is discussed. While sensitivity to such a generic property of liquids 

as wettability gives this type of indicator a potentially broad list of suitable applications (in principle, we could 

apply it to any low-cost sensing problem involving liquids), it also ensures that the sensor’s response has 

fundamentally poor specificity. This tradeoff between generalizability and specificity is really not unique to 

WICK, but is ubiquitous to sensing problems in general. Two methods to enhance the specificity of WICK are 

described in Chapter 4. The first follows the well-studied approach of combinatorial sensing. Namely, an array of 

sensors, while each being independently weakly-specific, can produce combinations of responses that have much 

higher specificity [35,36,64,65]. This general approach, when combined with some of the techniques developed 

in Chapter 3, allowed us to produce WICK arrays that had much improved specificity. The second approach to 

specificity enhancement that was developed was to combine a wetting-based colorimetric measurement with an 
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equally simple measurement of a liquid’s volatility, a different, but equally generic property of liquids, using a 

single WICK. 

In Chapter 5, I will discuss some of the general pros and cons of the WICK platform applied to sensing, 

and also introduce some additional applications (not related to sensing) that the Wetting in Color technology may 

be well suited to. In addition to revisiting encryption, I will discuss some possible further applications of this 

approach in fluidics and nanofabrication. Finally, Appendix A provides detailed experimental procedures for all 

of the techniques described in this dissertation. It is my hope that a reader will be able to reproduce any of the 

experimental work presented here, based on the procedures given in this section. Appendix B gives a description 

of the theoretical methods used, and includes MATLAB code for the percolation simulation. 

 

 

 

 

 

 

 

 

 

 



Author: Ian B. Burgess                                                   Advisor: Prof. Marko Lončar 

17 

 

 

Chapter 2. Developing a Scheme for Colorimetry, 

Part 1: The Selectivity Limits 

Structural color, derived from coherent scattering from wavelength-scale roughness or porosity, has 

received considerable interest in the development of new technologies, largely due to its broad capacity for tuning 

[17-57]. In particular, the prospect of easy-to-read, self-reporting sensors, which are based on structural color 

changes induced by specific chemical or physical properties of an unknown, has the promise to greatly expand 

the availability of portable and inexpensive diagnostics beyond those amenable to specific chemical processes or 

complex optical readouts [35-57]. Structural color is tied to a wide range of changes in the physical properties of 

a material forming the structure (e.g. the shape and density of a material) rather than a specific chemical state 

responsible for absorption in a characteristic wavelength region (e.g. a protonated or deprotonated molecule in pH 

indicators). This color, therefore, has no inherent specific chemical requirements (e.g. any material with periodic 

optical density displays iridescence as long as the periodicity is comparable to the wavelengths of visible light) 

[35-57]. This gives immense flexibility in the chemical properties of structural colorimetric sensors. Thus, tunable 

structural color carries the potential for broad applicability in colorimetric sensing. With chemistry as a versatile 

degree of freedom, structured materials have been engineered to change their shape, volume or density, and thus 

their color, in response to pH [38,41] magnetic fields [32], vapor adsorption [34,35,48,49,52], and mechanical 

strain [27,40,54] to name a few [20].  

To design a sensitive, self-reporting colorimetric indicator that can be used over a broad class of 

materials, we must include the following properties in the design. (1) Our indicator should have the ability to 

elicit multiple responses to broad range of stimuli (e.g. different liquids). This requires the ability to encode 

complex chemical information into a single material platform [5,22,61,66-74]. (2) To make our indicator platform 



Author: Ian B. Burgess                                                   Advisor: Prof. Marko Lončar 

18 

 

applicable to a very broad range of sensing problems, we require high sensitivity to a general property defined for 

a wide class of materials (i.e. mass, density, surface tension, etc.) [75,76]. (3) A colorimetric indicator must be 

cost-effective and easy to use, therefore we require our colorimetric response to be as simple to read as possible.   

In Chapter 1, it has been shown that defect-free silica inverse opal films (IOFs) [59] can be encoded to 

display distinct wetting patterns in different liquids by functionalizing them with a spatial pattern of organic 

surface groups. These patterns are clearly visible due to the large difference in refractive-index contrast between 

the wetted and non-wetted regions of the 3D photonic crystal. We used this concept to demonstrate a platform for 

multilevel encryption that we called W-Ink. The W-Ink encryption platform has the potential to satisfy all three of 

the above requirements for a colorimetric indicator for liquids. It allows for different liquids to produce distinct 

color patterns according to wettability, a universal property.  

In this chapter, we will provide a thorough analysis of this highly selective wetting phenomenon observed 

in IOFs, and in Chapter 3, will demonstrate how it can be manipulated through simple and robust techniques to 

tune the surface chemistry to tailor the response to specific liquids. In Chapter 1, it was suggested that the 

remarkable selectivity of wetting observed in those preliminary experiments is caused by the unique, highly 

symmetric pore geometry of IOFs fabricated by colloidal co-assembly [59]. Here, we will use percolation 

modeling to identify the correlation between the selectivity and the uniformity of the sizes of the IOFs’ inter-pore 

openings. Our model will be compared to wetting experiments and structural analysis of the IOFs. Using these 

results it is estimated that the colorimetric response is selective to differences in intrinsic contact angle (cos(θc) = 

[γsa - γsl]/ γla, where γsa is the solid-air surface tension, etc.) smaller than 5° when the surface chemistry is spatially 

uniform. In Chapter 3, it will be shown that this selectivity can be increased when the surface chemistry is graded 

vertically. Selectivity is ultimately limited by short-range disorder in the pore-geometry. Using these insights, the 

W-Ink concept can be expanded to develop a Wetting-in-Color-Kit (WICK) – an indicator that displays distinct 

colorimetric patterns in liquids in response to subtle differences in their wettability.  
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2.1. Structural disorder and selectivity 

In this chapter, the selectivity limit of WICK is analyzed. Our IOFs each consist of a SiO2 slab with a 

regular array of spherical air pores, arranged in a face-centered cubic (fcc) lattice [59]. Nearest neighbors are 

connected by small openings (necks). Scanning electron microscope (SEM) images of two IOFs are shown in Fig. 

6A,B. When a porous material is immersed in liquid, spontaneous filling of the pores requires both an 

energetically favorable liquid-solid interaction (i.e. θc < 90°) and the absence of an activation barrier (metastable 

state) associated with the propagation of the fluid front through the structure [63].  

When a liquid front propagates through the narrow inter-pore necks, there is a free-energy tradeoff 

between the favorable wetting of the solid surface (assuming θc < 90°) and the unfavorable creation of liquid-air 

interface [63]. An activation barrier associated with the propagation of the liquid front through the neck exists if 

θc is larger than the azimuthal angle subtended by the narrow neck in between the pores (shown schematically in 

Fig. 6C). For a given liquid and pore surface functionality, the corresponding θc defines a critical neck angle, 

smaller-than-which the liquid front will not be able to pass from one pore to the next. Therefore, the ability to 

precisely control the infiltration of liquids (and thus the colorimetric response to liquids) relies on our ability to 

control two parameters: i) the surface chemistry (which determines θc), and ii) the IOF’s neck angles (which 

determine the critical θc for infiltration). Our strategy to maximizing selectivity while maintaining versatility of 

the indicator will be to exploit surface chemistry, which is treated as a tuning parameter, to illustrate highly 

liquid-selective control of wetting, while treating the IOF structure as a control parameter (to be kept as constant 

as possible). The selectivity, therefore, is ultimately limited by our ability to regulate the pore-structure.   

 In a perfectly symmetric IOF with exactly identical neck-widths throughout, the transition between an 

IOF that is completely impervious to liquid infiltration (displaying iridescent color) and one that is completely 

infiltrated (transparent, showing the color of the underlying substrate) at equilibrium would occur over an 

infinitesimally narrow range of liquid contact angles (θc). Given a technique to specify the surface chemistry of 

the pores with unlimited adjustability and precision, we could design a colorimetric indicator based on such a 

“perfect” structure that could detect arbitrarily small differences in wettability. An inherent advantage of using 
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IOFs fabricated by colloidal co-assembly for these studies is that they are characterized by an exceptionally 

regular structure [59]. However, they do display some degree of both short-range (< mm scale) and long-range (> 

mm scale) variations in the neck angles (φ0). These variations must be considered to understand the wetting 

response, and controlled for as much as possible if we are to reproducibly study the effects of surface chemistry.  

 

Figure 6. (A,B) Optical images of IOFs uniformly functionalized with DEC groups, submerged in 85% ethanol (aq) (top), 

and corresponding SEM images of the pore structure (bottom). (C) Schematic illustrating the relationship between the neck 

angle (φ0, where sin(φ0) = rneck/rpore) and the wetting response. Infiltration of a pore occurs if the intrinsic contact angle (θc, 

where cos(θc) = [γsa - γsl]/ γla) is less than φ0 (bottom schematic), while no infiltration occurs for smaller pores where θc > φ0 

(top schematic). 

Fig. 6A,B illustrates the effects of sample-to-sample variability in φ0 on the wetting outcomes when the 

surface chemistry is fixed. The samples are functionalized with n-decylsilyl (DEC) groups (from exposure to 

vapors of the corresponding alkylchlorosilane). Photographs of both (top) show the two IOFs immersed in 85% 

(vol.) ethanol (EtOH) in water. The film in Fig. 6A is infiltrated by the liquid (discernible from the color), while 

the film in Fig. 6B is not infiltrated. As shown in the SEM images (bottom), the more easily-infiltrated IOF is 
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characterized by larger φ0. We estimated the neck angles by measuring the ratio of the pore and neck widths 

(measured in the tangential direction), using sin(φ0) = rneck/rpore. This estimation relies on the assumptions that our 

pores are near-spherical and that the top layer (where the neck-widths can be easily measured) well-represents the 

structure throughout. As φ0 is derived from a ratio of lengths, scaling errors (e.g. calibration) in our SEM imaging 

do not affect our estimation. The mean and standard deviation in neck angles measured from the images shown in 

Fig. 6A,B  are indicated on the images. The maximum standard deviation in the neck angles, estimated from the 

largest value for short-range variability measured from a single SEM image, was 3.2°. This value was further 

used in theoretical study of the sensitivity limits described below. 

2.2. Modeling the optical response to partial filling 

 Short-range variability in the neck angles is what ultimately limits the selectivity of an IOF’s colorimetric 

response to liquids. Infiltration of a liquid through an IOF with uniform surface chemistry and a random 

distribution of neck-angles will proceed as percolation through a regular fcc lattice [77] with a bond connectivity 

determined by θc. The final equilibrated infiltration state will be a statistical distribution of filled and empty pores 

over a range of θc determined by the local variance of φ0. We used a numerical percolation model to derive the 

expected equilibrium filling states from bond connectivities (see Appendix B). The input parameters that are used 

to determine the bond connectivity are the intrinsic contact angle and the distribution of neck angles. The model 

considered an fcc lattice of pores with a uniform thickness (given as the number of close-packed layers) and a 

large lateral area (10
4
 unit cells). Neck-angles were randomly assigned to each nearest-neighbor connection 

according to a normal (Gaussian) distribution. For the results shown in Fig. 7, we used a neck-angle distribution 

with <φ0>=19.6°, SD(φ0)=3.2°, a typical mean neck angle observed in our IOFs and the maximum standard 

deviation measured from a single SEM image (see section 2.1). We chose the maximum variability in order to get 

a conservative estimate of the selectivity. Inputting θc and starting with a completely filled top layer (as these are 

half-spheres in our IOFs and have no re-entrant curvature [59], see SEMs and schematics in Figs. 1,6), the 

simulation filled all pores with paths of inter-pore fluid-connectivity (i.e. where φ0 > θc) connecting them to the 

top filled layer.  
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Figure 7. (A) Connectivity as a function of intrinsic contact angle and (B) pore filling profile as a function of depth for 

different intrinsic contact angles. 2D FDTD optical simulations showing the normal incidence reflection spectra (C) and the 

total reflectance (D) of an IOF as a function of intrinsic contact angle. The statistical filling profiles (as a function of depth) 

are taken from the percolation simulation (A,B). (E) Total filling percentage (all layers) plotted as a function of intrinsic 

contact angle from the percolation simulation. (F) Predicted selectivity limits (expressed in terms of θc) as a function of 

maximum tolerated fraction of unfilled pores defined as the “filled” state. The colorimetric “unfilled” state is defined as 

having bond connectivities below the percolation threshold (12%). (<φ0>=19.6°, SD(φ0)=3.2° in all simulations) 



Author: Ian B. Burgess                                                   Advisor: Prof. Marko Lončar 

23 

 

Fig. 7A shows the pore-to-pore connectivity as a function of the intrinsic contact angle. Connectivity is 

obtained simply by integrating the φ0 distribution from θc  ∞ (for an infinite lattice), and thus was computed 

analytically. Since the filling of IOFs by fluid using this model is a bond-percolation problem with an ideal 

standard geometry of possible connectivity (fcc lattice), the percolation threshold for this problem has been 

previously computed numerically, occurring at 12% connectivity [77]. For an infinite lattice, the percolation 

threshold connectivity (or the fraction of pores where φ0 > θc) defines the value above-which infinite paths of 

connectivity will exist in the lattice [77].  

Fig. 7B shows filling profiles (filling fraction at equilibrium vs. depth in the structure) for θc in the range, 

21°-25°, where the majority of the range of partial filling can be observed (the thickness is 10 close-packed 

layers. Interestingly, the form of the filling only follows one of two general qualitative patterns. For connectivity 

above the percolation threshold (smaller θc values), the filling fraction is approximately constant throughout the 

structure (with the exception of a decrease at the very bottom layer, as a result of lattice sites having fewer nearest 

neighbors in this layer). This trend holds for any input thickness in the simulation. This reflects the long paths of 

connectivity typical of this regime, which allows diffusion throughout the structure without a strong effect of 

proximity to the boundary. For connectivity below the percolation threshold, on the other hand, the filling profile 

takes on the form of an exponential decay with distance from the top layer (the source of liquid), with the rate of 

decay increasing with decreasing connectivity. This is reflective of the fact that the average path-length of 

connectivity should be short in this regime (on the order of the constant of exponential decay). 

We used Finite-Difference-Time-Domain (FDTD) optical simulations to qualitatively estimate the 

correlation between the fluid-filling states shown in Fig, 7B and the observed reflected color. To reduce the 

computational load, we ran simulations in two dimensions. We collapsed each layer into a one-dimensional row 

of pores (100 unit-cells long) while maintaining the correct filling fraction for each layer determined by the full 

3D percolation simulation. In these simulations, the IOF is considered to be fully immersed in the fluid and the 

refractive-index matching between the fluid and the IOF was considered perfect (both were given n = 1.4). The 

structure was excited by a plane-wave, propagating at normal incidence and the reflectance was monitored by 
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transformation to the far-field. Fig. 7C shows the computed reflectance spectrum for each value of θc shown in 

Fig. 7B (the total thickness is 5 close-packed layers in this simulation). In red, the computed spectrum of the IOF 

in air is shown for comparison.  

 

Figure 8. (A) Experimental evolution of partial filling. Normal incidence reflection spectra from a region of an IOF 

functionalized with DEC groups having a thickness of 5 close-packed layers, taken dry (in air) and submerged in ethanol-

water mixtures with concentration of ethanol varying from 75%-90% (vol). (B) Reflectance contrast of the central peak 

(defined as [Rmax-Rmin]/Rmax) as a function of ethanol concentration. 

Fig. 7D shows the peak reflectance and the average reflectance as a function of the θc determined by these 

simulations. The saturation of the reflectance occurs near the percolation threshold. This makes sense if we 

consider that below the percolation threshold, sufficiently thick IOFs must possess completely empty layers at a 

certain depth (this follows directly from the result that infinite paths of connectivity cannot exist in this regime). 

Fig. 8A shows measured optical spectra of an IOF (DEC-functionalized) when immersed in different water 

dilutions of ethanol, in increments of 2.5%. Qualitatively, these spectra resemble the results of the simulations. 

However, there is not perfect refractive-index matching in the filled state, as evidenced by the small oscillations 

in the filled state spectrum (90% ethanol). It is also worth noting that only a 2.5% increase in ethanol 

concentration takes the spectrum from a point likely below the percolation threshold (85%), where a photonic 
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crystal peak is clearly visible, to a much flatter spectrum (87.5%) more indicative of near total filling. Shown in 

Fig. 8B, the reflectance contrast of the central peak depletes over an ethanol-concentration range of 5% 

(corresponding to Δθc ~ 9°). However, a substantial drop in contrast and a large qualitative change in the 

spectrum are observable over a half of that range (85%  87.5%). 

To extract a colorimetric selectivity from this continuous distribution of partial filling states we must 

determine what constitutes “easily visually distinct” color patterns, which is inherently subjective. One way to 

define what constitutes two visually distinct color patterns in a way that ensures user-friendliness is to specify that 

they must have countable differences (e.g. each region can only be assigned two possible states). We assign this 

binary scale to the color response of IOFs by allowing a user to only be able to designate a region with uniform 

surface chemistry as being “unfilled” (bright color) and “filled” (transparent, negligible contrast with the 

underlying substrate).  

To implement this binary evaluation system, we must choose a maximum fraction of filled pores that 

defines the colorimetric “unfilled” state and a maximum fraction of unfilled pores that defines the “filled” state. 

In this definition, the colorimetric selectivity (minimum resolvable difference in θc) is defined by the range of θc 

over-which the filling fraction does not fit into either of these definitions. To extract this range, we choose lower 

and upper bounds of connectivity to define the selectivity limit of WICK. The bond percolation threshold (12% 

connectivity) is a logical upper-bound connectivity to define as the “unfilled” state. For connectivity below the 

bond percolation threshold all paths of fluid flow have finite length [77]. This means a sufficiently thick IOF will 

have completely empty layers at equilibrium, thereby producing color that can be easily distinguished from the 

filled state. This general notion that connectivity below the percolation threshold will produce bright color is also 

qualitatively supported by our FDTD simulations. 

We define the onset of the “filled” state by a maximum tolerance of empty pores. Fig. 7F plots the 

selectivity (expressed in terms of θc) as a function of this tolerance. The smallest tolerance shown in Fig. 7F (10
5
 

unit cells per unfilled pore) should be a very conservative estimate of this limit. 10
5
 unit cells per unfilled pore 

corresponds to an average distance of >30µm (100 unit cells) between scattering centers and a fractional 



Author: Ian B. Burgess                                                   Advisor: Prof. Marko Lončar 

26 

 

scattering cross-sectional area of <10
-4

 for a film of typical thickness of 5 layers illuminated from above. Thus the 

scattered intensity from empty pores will be very low in this limit (the film appears transparent). Therefore an 

IOF with uniform surface chemistry has the capacity to colorimetrically differentiate liquids based on differences 

in θc of less than 5°.This corresponds to concentration selectivity of at least 5% in water-ethanol mixtures, in 

agreement with our experimental observations. Using the leveling of the reflectance at the upper and lower values 

in Fig. 7D as a less conservative definition of the “filled” state, we get that differences in θc of ~3° should be 

colorimetrically resolvable in an IOF with our simulated distribution (<φ0>=19.6°, SD(φ0)=3.2°). Fig. 9A shows 

how the selectivity correlates to the short-range variability (SD(φ0)) for an IOF with <φ0>=19.6° (here the “filled” 

state is defined by an empty-pore tolerance of 1:1000), and gives an estimate of how sensitive the selectivity is to 

the uniformity of the structure. 

 

Figure 9. (A) Predicted selectivity limits (expressed in terms of intrinsic contact-angle) as a function of the neck-angle 

standard deviation (Mean = 19.6°). While we define the colorimetric “unfilled” state as having bond connectivity below the 

percolation threshold (12% for fcc lattice). In this curve, the colorimetric “filled” state is defined by a maximum tolerance of 

1 empty pore per 1000 pores. (B) Simulated equilibrium filling percentages calculated from the neck angle distribution using 

percolation modeling of IOFs functionalized uniformly with DEC groups immersed in 80%, 85%, and 90% ethanol (aq). 

Isolated points overlaid correspond to mean neck angles measured from SEM images. The y-axis values (right axis) depict 

the colorimetric state observed (F = filled, U = unfilled) in 80% EtOH (green diamonds), 85% EtOH (blue squares), 90% 

EtOH (red X’s).  
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2.3. Selectivity and long-range variability 

 The modeling in the previous section shows the limits on selectivity imposed by short-range variability in 

φ0. However, variability can be much larger at larger scales within a sample (e.g. mm-scales) or from one sample 

to the next (see Fig, 9B). On the other hand, this type of variability may be controllable, either by post-selection 

of samples/regions or by finer control of the IOF fabrication parameters. Using intrinsic contact angles measured 

from DEC-functionalized flat surfaces (see Chapter 1, Fig. 5), we used our percolation model to try to correlate 

variability in filling in IOFs with the same surface chemistry (see Fig. 6) to long-range variability of the structure. 

For these simulations, a sample 30 close-packed layers thick with a large lateral area (10
4
 unit cells) was used. 

The solid curves in Fig. 9B show the simulated overall filling fraction for 90% (θc = 13° ± 5°), 85% (θc = 22° ± 

5°), and 80% (θc = 29° ± 5°) EtOH for DEC-functionalized IOFs as a function of mean neck angle. A standard 

deviation of 3.2° was used in the simulations.  

To verify the correlation between the neck angle and the wetting behavior, we characterized the neck 

angle distribution (from SEM images sampled randomly across each film) and the infiltration state (from the 

presence or absence of iridescent color) in 80%, 85% and 90% EtOH of 12 IOFs uniformly functionalized with 

DEC groups.  These measurements are represented by the isolated points in Fig. 9B. Fig. 9B shows good 

agreement between our theoretical predictions and experimental results, and that the long-range variation in the 

response of a DEC-functionalized IOF to these liquids correlates to the long-range variation in the neck angles. 

As will be described in Chapter 3, we can exploit this to develop a non-destructive quality control procedure to 

limit the effect of long-range variability in the neck-angles. 
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Chapter 3. Developing a Scheme for Colorimetry, 

Part 2: Optimization and Tuning 

As the colorimetric selectivity only exists at a specific wettability threshold (intrinsic contact angle, θc ~ 

20°, see Chapter 1), a WICK displaying mutually distinct colorimetric responses in n different liquids requires 

spatial regions containing at least (n-1) different surface functionalities. Furthermore, the ability to practically 

exploit WICK for liquid identification requires that IOFs have access to a continuously adjustable range of 

surface functionalities. This allows for specific colorimetric responses to be designed to distinguish specific 

liquids that are designated a priori. To address these challenges, we describe two protocols in this chapter based 

on chlorosilane chemistry and plasma-oxidation, which give us the power to generate continuously adjustable 

surface chemistry within the pores. We also implement a non-destructive quality control procedure to regulate the 

long-range variability in the pore geometry. These protocols allow us to both maximize the selectivity of the 

indicator and give us the capability to design a WICK that mutually colorimetrically differentiates arbitrary sets 

of liquids. We present several examples to illustrate this point: differentiating between water dilutions of ethanol 

with selectivity down to 2.5% differences in concentration; distinguishing different pure alcohols (methanol, 

ethanol, isopropanol), and alkanes (hexane, heptane, octane, nonane, decane); and differentiating between grades 

of automotive fuel (gasoline and diesel).  

3.1. Non-destructive quality control 

Fig. 9B shows that the variability in the surface chemistry (at least for DEC functionality) is generally 

below that of the neck angles. However it also illustrates, that while the short-range variability of the IOF neck 

angles is generally small (SD ≤ ~3°) the variability from one sample to the next can be sufficiently large to skew 

the effects of surface chemistry. To limit this effect, we introduced a quality control step in the studies described 
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below: All samples described hereafter in this chapter were first uniformly functionalized with DEC groups and 

characterized optically in 85% and 90% EtOH. In order to be considered for further use, the IOF must display an 

unfilled state (no loss of iridescent color) in 85% EtOH and a filled state (no contrast with the blank substrate) in 

90% EtOH (see bottom row of Fig. 10B for example). After a sample passes this test, the DEC functionality is 

removed by oxygen plasma and subsequent acid piranha cleaning, and the samples are re-functionalized in one of 

the manners described below. This limits the mean neck angles to approximately the range of 14°-18° (see Fig. 

9B). Consistent with the statistics displayed in Fig. 9B, roughly one third of our samples showed out-of-range 

neck angles and were discarded as a result of this quality control process. 

3.2. Continuous tuning of the response 

 To use WICK to differentiate any two liquids, it is essential to be able to encode a continuous range of 

wettability in the IOFs. In contrast to the encryption-type application of the W-Ink platform described previously 

(Chapter 1, where the decoding solvents can be determined a posteriori based on the availability of specific 

alkylchlorosilanes), effective design of a solvent indicator requires that one can choose two liquids for 

differentiation a priori and then be able to tune the surface chemistry such that the IOF displays different filling 

states in each liquid. We have developed two different techniques for tailoring surface functionality continuously. 

In both approaches, one requires only two alkylchlorosilanes, SiCl3R1 and SiCl3R2, where the IOF functionalized 

with only the R1 groups displays the unfilled state and the IOF functionalized with the R2 groups displays the 

filled state in both liquids. To illustrate these techniques, we used 13FS and DEC groups as R1 and R2 and 

ethanol-water mixtures of varying concentration to produce a continuum of surface tensions (and values of θc). 

13FS-functionalized IOFs display an unfilled state in all water-ethanol mixtures (including 100% EtOH) and 

DEC-functionalized IOFs display a filled state in EtOH concentrations larger than 85% (as enforced by quality 

control). In section 3.4 we illustrate the general applicability of these techniques, performing analogous 

optimizations, but replacing water-ethanol mixtures with several other classes of liquids (pure alcohols, pure 

alkanes, auto-fuels). 
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Figure 10. (A) Schematic depicting the formation of mixed functionalities by evaporating mixtures of two alkylchlorosilanes 

(13FS in red and DEC in yellow) to produce wetting responses that span the range in between that of a homogenous 

monolayer of each. (B) Color-map illustrating an array of IOFs (each square is 1cm x 1cm), functionalized with various 

mixed monolayers of 13FS and DEC, that allow mutual colorimetric distinction of 85%, 90%, 95% and 100% ethanol (aq). 

All photographs in a single row are of the same IOF. The y-axis denotes the vol. fraction of 13FS-trichlorosilane used in the 

liquid-liquid mixture that evaporated onto the IOF. 

Perhaps the most intuitive method to functionalize an IOF such that the wettability displayed lies between 

that from homogeneous coatings of 13FS and DEC is to deposit a heterogeneous mixture of 13FS and DEC 

groups on the surface (illustrated in Fig. 10A). We generated mixed 13FS:DEC monolayers by exposing IOFs to 

vapors from a liquid-liquid mixture of 13FS- and DEC-trichlorosilanes. Adjusting the relative concentration of 

13FS- and DEC-trichlorosilanes in the liquid-liquid mixture should alter the relative density of groups on the 

surface and was used to tune the infiltration threshold to occur at any ethanol concentration between 85% and 

100%. Fig. 10 shows a response color-map showing four samples (each row is one IOF) functionalized with 



Author: Ian B. Burgess                                                   Advisor: Prof. Marko Lončar 

31 

 

13FS, DEC and different mixtures of the two. Using mixtures of 13FS and DEC groups, we were able to create 

IOFs whose wetting threshold occurs at 90% and 95% EtOH. By comparing the columns of the color-map, we 

see that samples with these four functionalities produce an array that colorimetrically identifies the relative 

concentration of a water-ethanol mixture to a precision of 5% across the full range selectivity offered by DEC and 

13FS functionalities (85%-100% EtOH). 

 

3.3. Vertical gradients of wettability 

Generating continuous gradients of wettability in an IOF is a second method that can be used to produce 

distinct colorimetric responses across a continuous range of surface tensions. We generated vertical gradients of 

wettability using short plasma-exposure times (insufficient to completely remove the existing groups throughout 

the depth of the structure) between successive silane depositions. Lin et al [61] showed surface modification by 

oxygen plasma that propagates through tightly confined channels and proceeds as a front with a graded boundary 

through the porous network slowly (several minutes for 20µm-wide channels). Depicted in Fig. 11A, we first 

functionalized an IOF with the more lyophobic group (R1, 13FS). Following a short (< 2min) exposure of the 

structure to oxygen plasma, we expect incomplete removal of the R1 groups, with the efficiency of removal 

decreasing with increasing depth. Subsequent addition of less lyophobic groups (R2, DEC) via exposure to 

SiCl3R2 vapors generates a mixed, graded surface chemistry with an increasing ratio of R2/R1 from the bottom to 

the top of the IOF.  

We expect IOFs with vertical gradients of chemistry (in which the wettability decreases with depth) 

display distinct partial infiltration patterns in incrementally different liquids, each penetrating a fixed depth (Fig. 

11B). As the total thickness of our IOFs can be made to vary across the sample (naturally occurring in vertical 

evaporative depositions
 
[59]), distinct depths of penetration are viewed as distinct rainbow patterns whose size 

and location in the chip is unique to the depth filled. The schematic in Fig. 11C illustrates this principle. The top 

photo in Fig. 11C shows a film that has been functionalized uniformly with 13FS groups, exposed to oxygen 

plasma for 45s and then functionalized with DEC groups.  
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Figure 11. (A) Schematic depicting the use of short O2 plasma exposure between successive silanizations to generate a 

vertical gradient of wettability. (B) Using vertical gradients where wettability decreases toward the bottom of the sample, 

liquids penetrate up to a fixed depth that increases with decreasing surface tension (decreasing θc). (C) This depth translates 

into a distinct color pattern in IOFs having a naturally varying total number of layers (shown in schematic). Photographs 

show an IOF functionalized DEC13FS (45s plasma exposure) in air (top) and after soaking in PDMS precursors (cured 

before imaging). The total thickness of this IOF is increasing from the left to the right of the image. The color completely 

disappears in the regions where the total thickness is less than the penetration depth (n = 6). The black line on the images 

indicates the boundary between regions with 6 and 7 total layers (N). (D) Scanning electron micrograph cross-sections 

illustrating the fixed degree of layer penetration of the PDMS precursors (subsequently cured) over a wide range of film 

thicknesses.  

 The total thickness of the film varies from only two close-packed layers on the far left to a large number 

(>20 layers) on the far right, each visible “stripe” representing a region of fixed thickness, having one more layer 

than the stripe to the left of it. In thinner regions (N < ~10) these stripes are wide enough to be visible by eye 
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(~0.5-1mm wide). In the thickest regions very close to the edges, the thickness increases on shorter length-scales 

and the stripes become harder to resolve. When this sample is immersed in liquid precursors to 

polydimethylsiloxane (PDMS, Sylgard 184, subsequently cured to allow visualization by SEM), the liquid 

completely penetrates the first 6 layers (n = 6) and the IOF becomes transparent (displaying the grey of the silicon 

substrate) in regions where N ≤ 6.  The SEM cross-sections in Fig. 11D show the consistent penetration depth 

from the top of the IOF that is independent of the total thickness.  

The color displayed by an IOF having N layers, the top n of which are filled (n < N), should match the 

color produced by an empty (N - n)-layer IOF, since the filled regions become transparent, provided there is 

sufficient index-matching between the fluid and the silica. Fig. 12A shows four segments of an IOF, which are all 

functionalized with a DEC13FS vertical gradient using different plasma-exposure-times, immersed in PDMS 

precursors (subsequently cured). Owing to the varied oxygen plasma exposure time, the PDMS completely filled 

the lattice up to a different depth in each sample. However, as illustrated by the normalized reflectance spectra in 

Fig. 12B-D, the apparent color in a given region depends only on the number of unfilled layers (N-n) and is 

relatively insensitive to the total thickness (N).  

While at face value, this technique is far less simple and straightforward than the uniformly mixed 

functionalities described in section 3.1, it possesses two important advantages with respect to the colorimetric 

differentiation of liquids: i) the minimum colorimetrically discernible difference in wettability can be smaller for 

vertical gradients than for uniformly functionalized IOFs (for the same short-range variability in the neck-angle, 

φ0); and ii) a single vertical gradient produces many distinct patterns in many different liquids. Vertical gradients 

allow enhancement of the colorimetric selectivity, not by decreasing the range of θc over which partial infiltration 

patterns are observed, but by transforming partial infiltration patterns to a form that becomes easy to mutually 

distinguish visibly (i.e. have countable differences).  
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Figure 12. (A) Photographs of four segments of an IOF functionalized with a DEC13FS vertical gradient using different 

plasma-exposure times, from top: 15s, 30s, 45s, 60s, submerged in PDMS precursors. The number of completely filled layers 

(n) is listed on each image. The black line drawn on the images indicates the boundary between regions with 8 and 9 total 

layers (N). (B-D) Normalized reflectance spectra for the three colored stripes indicated in (A) showing that the color is 

sensitive to neither N nor the n independently, but depends only on (N - n).  

Fig.13B shows two percolation simulations (using the model described in section 1 with 15-layer IOFs) 

comparing IOFs with uniform and graded surface chemistry that illustrate this effect. Fig. 13A shows the filling 

fraction as a function of the depth in an IOF (<φ0> = 19.6°, SD(φ0) = 3°) with spatially homogeneous surface 

chemistry for liquids with all integer θc values over the range of [12°-27°]. Fig. 13B shows simulated infiltration 

profiles for the same IOF structure with θc increasing with depth. To approximate the type of gradation that might 

be produced by short oxygen plasma exposure, we let θc obey a cumulative normal distribution (mean = 7 layers, 

SD = 3 layers) as a function of depth, having the same values as Fig. 6A (shown for each curve in Fig. 13B) at the 



Author: Ian B. Burgess                                                   Advisor: Prof. Marko Lončar 

35 

 

top layer, but increasing with depth by a total magnitude of 10° over 15 layers (12°-27° at layer 1, 22°-37° at 

layer 15). As shown in Fig. 13A, partial wetting in uniformly-functionalized IOFs takes on two qualitative forms. 

For θc higher than the percolation threshold (θc > 23° for this IOF), the filling fraction decays exponentially with 

depth. These filling profiles can be colorimetrically identified as “unfilled” because regions of sufficiently large 

total thickness will contain completely unfilled layers. For θc lower than the percolation threshold (θc ≤ 23° in Fig. 

13A), the filling fraction is roughly homogeneous throughout the structure.  

Since the iridescent color of IOFs, like most structurally colored materials, depends on the viewing angle, 

the comparison of colors in a non-binary fashion (e.g. using a color guide) could prove difficult. In contrast to 

uniformly functionalized IOFs, partial filling patterns produced by vertical chemical gradients are easy to 

distinguish by eye in our IOFs, because they contain natural variations in total film thickness. What is notable 

about the curves in Fig. 13B is that most (e.g. θc = 13°-21°) display the same filling profile, but successive curves 

are shifted by one or more layers. Recalling that, as shown in Figs. 11 and 12, completely filled layers do not 

contribute to the color of an IOF, adjacent curves in Fig. 13B would appear as identical “rainbow” patterns that 

are shifted in space by one layer-step in an IOF having a varying total-thickness such as in Fig. 12A. These 

patterns could be easily visually differentiable at any angle because instead of comparing colors (each of which 

are viewing-angle dependent), the problem has been reduced to that of measuring the distance (or counting the 

number of layer steps) to the start of the “rainbow” pattern. 

Fig. 13C shows a DEC13FS (45s etch time) vertical gradient in which 92.5% EtOH, 95% EtOH, 

97.5% EtOH and 100% EtOH are distinguished colorimetrically. In this sample, a 2.5% increase in ethanol 

concentration is sufficient to increase the final filling depth by enough to produce a clearly different visual 

pattern. An array of hydrophilic “teeth” have been defined via selective oxidation
 
to aid in the visualization (i.e. 

increase the countability).  
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Figure 13. (A,B) Simulated layer-by-layer wetting profiles for liquids differentiated by one degree of intrinsic contact angle 

(12°-27°), in an IOF (<φ0>=19.6°, SD(φ0)=3°) with spatially uniform wettability (A), and a graded wettability (B), where the 

intrinsic contact angle increases with depth by 10° (12°-27° at layer 1, 22°-37° at layer 15) according to a cumulative normal 

distribution (mean = 7 layers, SD = 3 layers). The boundary condition of a completely-filled top layer (half-spheres) is 

assumed in all simulations. (C) Photographs illustrating the colorimetric distinction of different ethanol-water mixtures using 

an IOF functionalized with a vertical gradient DEC13FS (45s plasma exposure).  
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3.4. Selective deconstruction to guide the eye 

 An important ingredient in the design of any colorimetric indicator is that it is as easy to read as possible. 

We can enhance the visual perceptibility of WICK readings by selectively oxidizing (to make lyophilic) certain 

regions of the IOFs as a last step to control the patterns that appear in the different test liquids. Fig. 14 shows four 

examples of indicator strips using both homogeneously mixed monolayers (Fig. 14A) and vertical gradients of 

wettability (Fig. 14B-D), where this extra step has been incorporated to enhance the readability of the strips.  

 Fig. 14A and B both show indicators that mutually distinguish methanol (γ = 22.1mN/m), ethanol (γ = 

21.8mN/m) and isopropanol (γ = 20.9mN/m). The sample in Fig. 14A consists of two chips, held together: on the 

left, the letter “M” has been defined in an IOF that is functionalized with 1% 13FS (99% DEC); on the right, the 

letter “E” has been functionalized with 16.7% 13FS. When the two are submerged together, they read “ME” for 

methanol, “E” for ethanol and appear blank in isopropanol. In Fig. 14B, the same alcohols are distinguished in an 

IOF that has been functionalized with a DEC13FS vertical gradient. In this sample, the IOF thickness increases 

from the left to the right, thus increased penetration depth of the liquids shifts the colored rainbow to the right. To 

enhance the readability of patterns produced by vertical gradients, we patterned the functionalized region into an 

array of “teeth” by selectively oxidizing the background. This patterning reduces a “measuring” problem to a 

“counting” problem, which is easier to do roughly by eye (i.e. without a ruler). Methanol, ethanol, and 

isopropanol are distinguished simply by counting the number of “teeth” visible. As each “tooth” contains only 

two or three layer steps, a change in penetration depth of ~1 layer (e.g. ethanol vs. isopropanol) induces the 

disappearance of a large fraction of the third tooth from the left. Fig. 14C shows the same strategy applied to 

differentiating aliphatic compounds. Distinct “teeth” profiles are viewed in hexane (γ=18.6mN/m), heptane 

(γ=19.9mN/m), octane (γ=21.4mN/m), nonane (γ=22.6mN/m), and decane (γ=23.6mN/m). 

Figure 14D illustrates how regions of uniform functionality and vertical gradients can be combined in the 

same IOF. The IOF is patterned with two stripes on an oxidized (ROH) background. The rightmost strip is 

functionalized with 13FS while the leftmost stripe is comprised of a vertical gradient of DEC13FS. This is 

accomplished by masking the left half of the IOF during the short oxygen-plasma step. The sample displays one 
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stripe when immersed in regular unleaded gasoline and two stripes when immersed in diesel. These examples 

illustrate how a final oxidation step enhances the user-friendliness of WICKs.  Through the use of a small legend 

sheet accompanying the chip, users could compare patterns or simply count the number of visible bars to quickly 

and reliably differentiate the set of liquids for which a given WICK has been optimized. These examples also 

illustrate how the design protocols developed in this chapter for EtOH-water mixtures are generalizable to any list 

of liquids, from pure substances, to complex mixtures. 

 

Figure 14. (scale bars: 5mm) (A) Two IOFs patterned with 99:1 and 5:1 ratios of DEC and 13FS are used to distinguish 

between alcohols. The background of the IOF has been selectively oxidized to reveal “ME” in methanol, “E” in ethanol, and 

no color in isopropanol. (B,C) Photographs of strips functionalized with a vertical gradient of wettability (DEC13FS) to 

distinguish between alcohols and alkanes. An array of “teeth” is oxidized (to render wetting) to make the patterns easier to 

visibly distinguish. (D) Photographs of an IOF regionally functionalized with 13FS (right stripe) and a vertical gradient of 

DEC13FS (left stripe) on an oxidized background, that shows different patterns in regular unleaded gasoline and diesel.  
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Chapter 4. Enhancing Chemical Specificity 

“Mais là, tu dis ‘Whoa, une minute Uncle Tom là! ‘It’s impossible’ là!’ Mais je comprends parfaitement ton 

‘skepticism’” – Têtes à Claques 

4.1. The problem of chemical interference 

 In the previous two chapters, we have demonstrated how WICK can be used to differentiate different 

closely related liquids with remarkable selectivity (ethanol-water mixtures with varying concentrations, different 

pure alcohols and aliphatic compounds, and different grades of auto fuel). As WICK differentiates liquids based 

on wettability, a general property of a liquid, this platform could be applied to any class of liquid. However, 

sensitive response to such a generic property of liquids also means that chemical interference presents a 

significant challenge in WICK’s application to chemical sensing. We envision that the WICK platform could be 

applied as an inexpensive and easy-to-use field test for: 1) the authentication of liquid formulations (e.g. for anti-

forgery or quality control) and 2) the identification of unknown liquids (e.g. chemical spills, unlabeled containers 

etc.). It is worth making the distinction between these two types of applications because of how the potential for 

chemical interference influences their applicability.   

 The key design characteristic that distinguishes liquid authentication from liquid identification is that the 

target liquid is known beforehand. In this case it is possible, using the techniques presented in this paper, to 

design a strip that shows one pattern (e.g. two stripes) in the target liquid, but different patterns when the 

wettability is lowered (e.g. three stripes) or raised (e.g. one stripe) with respect to the target formulation. The fact 

that a change in the wetting properties of a liquid mixture can be induced by changes in any of the components of 

a given formulation is actually an advantage of WICK with respect to liquid authentication. An example of such 

an application would be to use WICK to protect against forgeries of a given pharmaceutical formulation.  
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Chemical interference is an important limitation to consider when applying WICK’s for identification of 

unknown liquids. As with any sensor that detects changes in a generic property of a substance (e.g. density 

[75,76], pH in pH paper [14]), it is not possible to deduce the specific chemical nature of an unknown without any 

prior information. However, it is rare that absolutely no information is given a priori about an unknown in 

practice. For example, an unlabeled beaker containing an unknown organic liquid in a lab that commonly uses a 

finite number of solvents (e.g. acetone, isopropanol, hexane) most likely contains one of these. In this case, a 

WICK designed to have distinct responses only in these liquids would be sufficiently selective to identify the 

unknown.  As is illustrated in several examples in the previous two chapters, this type of indicator could also be 

useful for rough determination of the relative concentrations of effectively two-component mixtures. Liquor 

would be an example of this type of mixture, where ethanol and water are the primary components, and the 

surface-tension contrast of the two components is very high. In this case, we could expect interference to restrict 

the precision of ethanol concentration measurement somewhat, but not prohibitively, and would also not be able 

to give any information about the minor components (e.g. sugars, etc.) unless there was extremely precise prior 

knowledge of the ethanol concentration.  

4.2. Enhanced specificity with arrays 

Colorimetry is a powerful form of chemical sensing. Without expensive equipment or extensive training, 

a colorimetric test gives a user at-home access to increasingly sophisticated chemical and biological diagnostic 

methods [35-57]. The color response provides an elegant visualization to this class of sensor, but also poses the 

greatest challenge to its development.  While some target properties of an unknown can be easily coupled to color 

change in an indicator material (e.g. pH), it is generally challenging to couple a colorimetric response that is 

sensitive to a general physical or chemical property.  
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Figure 15. (A) Schematic depicting the color response to partial infiltration of liquids in IOFs with vertically graded 

wettability. (B) Illustration of the chemical non-specificity of WICK: while the sample shown (3FS13FS functionalization) 

shows distinct patterns in 80% ethanol and 90% ethanol, these two color patterns can also be reproduced in entirely different 

liquids (n-octane, and acetone, here). (C) Chemical specificity derived from a WICK array (WICKAr): Comparison of the 

color responses of two WICKs (left: DEC13FS, right: 3FS13FS) in methanol and octane. The methanol penetrates fewer 

layers than the octane in the DEC13FS WICK, but penetrates more layers than octane in the 3FS13FS WICK. (D) Using 

reference liquids to assign numerical values to the colorimetric response: The color response of a test liquid (o-xylene 

shown) in an element in the array is quantified by identifying ethanol-water mixtures that produce the same degree of 

wetting. In this example, o-xylene is given the following scores: PTOL13FS: 85, 3PP13FS: 75, 3FS13FS: 50. Scale 

bars: 5mm. 
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 In the preceding chapters, we have developed a platform for colorimetry based on wetting in silica 

inverse-opal films (IOFs), whose surface chemistry was graded such that the lyophobicity of the porous network 

increased with depth, which we called a Wetting In Color Kit (WICK). When immersed in a liquid, the structure 

is infiltrated up to a fixed depth, and displays a structural color pattern that is highly sensitive to the liquid’s 

wettability to the surface chemistry. When this procedure is applied to an IOF that varies in total thickness 

laterally across the sample (and where the individual layers steps can be seen as regions of distinct color), distinct 

depths of infiltration can be visualized by a shift in the rainbow pattern corresponding to the number of unfilled 

layers, as shown in Fig. 15A. Intuitively, this shift will proceed in the direction of the thicker area as more of the 

lattice is filled.  

 A scheme of colorimetry that is sensitive to wettability (a generic property of liquids) can be applied in 

principle to any sensing problem that involves liquids. However, the sensitivity of WICK to such a generic 

property of liquids also means that no chemical information about the unknown can be discerned without any 

prior-given information. Fig. 15B illustrates this principle in a WICK, whose vertical gradient of wettability is 

applied by first functionalizing the IOF with 13FS groups (by exposure to vapors of the corresponding 

trichlorosilane), then exposing it to oxygen plasma for a short time (30s), and then functionalizing it with 3FS 

groups (this type of functionalization will hereafter be abbreviated 3FS13FS, see Appendix A for a more 

detailed description of this method). While the two ethanol-water mixtures shown (80%EtOH, 90%EtOH) 

produce visibly distinct color patterns, it is relatively easy to find different liquids whose wetting behaviour 

exactly mimics those of the above ethanol-water mixtures. In this WICK, n-octane and acetone mimic the 

response of 80% EtOH and 90% EtOH respectively, as shown in Fig. 15B. In this example, if it is known 

beforehand that the unknown is a mixture of ethanol and water, WICK would be able to measure the ethanol 

concentration colorimetrically (with up to 2.5% sensitivity, see Chapter 3). However, if no information is given 

beforehand, then it is impossible to identify the unknown. 

 In this section, it is shown that chemically specific information can be extracted from a combination of 

colorimetric wetting responses displayed by a WICK array, with each element displaying a vertically graded 
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wettability that is designed to exhibit a partial wetting response in most organic liquids (e.g. surface tension in the 

20-30mN/m range), but each using distinct types of surface groups to achieve the wetting gradient. Combinatorial 

sensing, exploited in our olfactory system as well as by several synthetic systems, is a useful approach to 

extracting chemically specific responses from an array of individual weakly-specific sensors [1,35,36,64,65]. A 

wetting-based response is potentially ideal for combinatorial sensing because of the broad range of materials that 

can elicit the response (any liquid) and its weakly specific dependence on the chemical interactions between the 

liquid components and the surface chemistry. Fig 15C shows how chemical specificity is added by comparing the 

responses of two different WICKs employing different surface groups to achieve the wetting gradient (left: 

DEC13FS, right: 3FS13FS) in methanol (γ = 22.1 mN/m) and octane (γ = 21.4 mN/m). In the sample on the 

right (3FS13FS) the octane is less wetting than the methanol, showing more colored layers, while the trend is 

reversed on the left. The combination of patterns in the two samples gives more information about the liquid than 

one sample alone. For example, a water-dilution of methanol could have produced the pattern mimicking octane 

at right, but not the one on the left. 

 We produced WICK arrays consisting of six samples, whose chemistry was vertically graded, each using 

different surface groups. When choosing the surface groups for IOF functionalization, it was important that all 

elements produce non-trivial wetting responses in most organic liquids (i.e. partially filled IOFs; trivial responses 

occur when all layers are filled or all layers are unfilled). To ensure that this condition was satisfied, we used 

13FS as the first group deposited on all IOFs, since this functionality, by itself, facilitates a nonwetting response 

to nearly all liquids. After the oxygen plasma exposure, each element of the array was functionalized with a 

different (less lyophobic than 13FS) surface group: pentafluorophenylpropyl (5FP), 3,3,3-trifluoropropyl (3FS), 

n-decyl (DEC), p-tolyl (PTOL), trimethylsilyl (TMS), 3-phenylpropyl (3PP). The plasma exposure time (30s) was 

chosen to eliminate trivial responses and maximize the range of penetration depths observed in our library of 

organic liquids. 

 To facilitate interpretation of the results, we developed a system to translate qualitative wetting patterns 

to numerical values. Each element of the WICK array was first characterized in a series of reference liquids. To 
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serve as ideal reference liquids, a set of liquids would have to induce a wide range of wetting responses in each 

element, ideally covering the broad range of penetration depths observed in test liquids. Most importantly, the 

relative order of wettability of the reference liquids would ideally be the same in each element in the array. For 

example, methanol and octane would make a bad set of reference liquids because methanol wets more than 

octane in 3FS13FS samples, while the reverse is true in DEC13FS samples (shown in Fig. 15C). As 

reference liquids, we chose the set of water-ethanol mixtures (in increments of 5% EtOH by volume) and 

isopropyl alcohol (IPA). IPA was found to wet more than ethanol in all elements, and is thus a suitable addition to 

extend the effective range of detectable responses covered by the reference liquids. Color patterns produced by 

unknown liquids (test liquids) were then assigned a numerical score for each element of the array based on the 

reference liquid(s) that produced the most similar pattern. The scoring system is illustrated in Fig. 15D for o-

xylene as a test liquid, having scores of 50 (3FS13FS), 75 (3PP13FS), and 85 (PTOL13FS) in three 

elements of the array. To integrate IPA into the scoring system, it was assigned the numerical value of 110. When 

a test liquid produced a wetting response that fell in between that of adjacent reference liquids, a midpoint score 

(ending in 2 or 7) was assigned (e.g. a liquid that wet more than 80% EtOH but less than 85% EtOH in a given 

element would be assigned a score of 82, or 87 for a liquid whose response fell in between 85% EtOH and 90% 

EtOH). 

 Fig. 16 shows the complete sample set of color patterns and reference liquid scores from an array tested 

in 17 different organic solvents. Notably, each liquid yielded a unique combinatorial color response and thus a 

unique set of scores. Fig. 18A shows the ethanol scores for a wide range of organic solvents in the 3FS13FS 

and DEC13FS elements of the array. Aliphatic compounds displayed higher scores (i.e. more wetting relative 

to reference liquids) in the DEC13FS element than they displayed in the 3FS13FS element. As a general 

trend, the elements of the array with fluorinated surface groups (3FS, 5FP) produced lower scores relative to the 

other elements of the array in the nonpolar hydrocarbons, with deviation from the reference line (given by the 

reference liquids) negatively correlating with polarity of the liquid.  
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Figure 16. Reference liquid scoring system: (A) Photographs of a six-element array, tested in reference liquids (ethanol-

water mixtures and isopropyl alcohol) and several organic test liquids. (B) Reference-liquid scores for each liquid extracted 

from the photographs in (A). 
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Also as expected, the scores of the linear alkanes in all elements decreased monotonically with increasing chain 

length (increasing surface tension), since the chemical affinity for the different surface groups should be of the 

same type. The monotonically varying scores of the linear alkanes form a nearly straight line in this plot.  

 

 

Figure 17. (A) 2D principal component analysis of the reference liquid scores of all six elements of an array, showing 

differentiation of the different liquid classes. (B) Estimation of inter-sample error using the reference liquid scoring system. 

Three WICKs with each type of chemistry gradient were tested. All mutually distinct combinations of scores from every 

possible “array” combination (made by one sample with each chemical functionality) are plotted. There are 729 such 

combinations possible, however not all produce distinct sets of scores. Although the plot shows the presence of some 

variability from array to array, the scoring system preserves the general trends that provide chemical information about the 

unknowns from one array to the next. There are relatively few areas of response overlap between different liquids. 

 Fig. 17A shows a two-dimensional principal component analysis (PCA) [35,36,64,65] where the 

aforementioned 6-dimensional set of numerical wetting scores are projected onto a new two-dimensional set of 

principal component axes (see Appendix B for more detail on our principal component analysis). These two axes 

account for 98% of the total variance. Qualitatively Fig. 18A and Fig. 17A look similar, indicative of the fact that 

the contrast between the wetting behaviour in fluorinated and non-fluorinated elements of the array was the 

largest source of variability between the different liquids. However, the principal component analysis, which 
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includes contributions from all six elements, is able to distinguish iso-octane and cyclohexane from the linear 

alkane line. Principal component analyses using fewer elements of the array (Fig. 18B-D) show that even three 

elements are able to differentiate the 17 test liquids successfully, thus suggesting that the 6-dimensional set is 

largely redundant.  

 

 

Figure 18. Redundancy of the Array: Comparison of the information given from just two components of a WICK array 

(3FS13FS, and DEC13FS) (A), and 2D Principal component projections of arrays where three (B), four (C), and all six 

(D) elements are included. Much of the information distinguishing the different types of liquids can be obtained from 

relatively few elements, meaning that the increased specificity garnered by an array versus a single element can come at a 

minimal sacrifice in simplicity. 

 A hallmark of ideal combinatorial sensors is that they give information as to what the chemical makeup 
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of an unknown (not previously entered in the library) is likely to be [35,36,64,65]. To test the applicability of this 

principle to our WICK sensor, we tested the array in a randomized mixture of the linear alkanes between C6 and 

C10. Its response is shown in Fig. 17A. Naïvely, we would expect that its response should fall along the arc 

(nearly straight line) connecting the responses of consecutive linear alkanes and this is exactly what is observed. 

 While the sophistication and selectivity of this array-based sensor is below that of many other previously 

reported “artificial noses” that have a much higher effective dimensionality of the variability [35,36,64,65], the 

value of WICK array lies in its ease of use and technical simplicity relative to the information it is able to extract. 

Unlike most artificial noses [35,36,64,65], the reference-liquid scoring system allows measurements to be done 

easily by eye, by simply comparing the response produced by a test liquid to that of reference liquids. Shown in 

Fig. 17B, the relative nature of the reference-liquid scoring system also facilitates measurements that are fairly 

robust against sample-sample variability, potentially eliminating the need for costly quality-control procedures. 

Notably, unlike previously reported color-based combinatorial sensors [35,36,64,65], it does not require image 

analysis, RGB subtraction, or any other complex analysis technique that places constraints on the type of 

equipment amenable for use in the field. Furthermore, as shown in Fig. 18, a significant enhancement of chemical 

specificity can be achieved by using an array with only two or three elements. This requires a minimal increase in 

complexity compared to the original WICK litmus paper concept. 

  Using arrays of WICKs, each with distinct chemical functionality, but exhibiting a nontrivial wetting 

response over a common range of liquids, we are able to extract chemical specificity from a sensing platform 

whose widespread applicability is derived from sensitivity to wettability, a general (non-chemically specific) 

property of all liquids. Furthermore, through the use of a simple-to-use reference-based scoring system, we are 

able to translate qualitatively perceptible degrees of wetting to numerical values that can be assigned by eye 

(using a reference card), without the need for sophisticated equipment or software, in a manner that 

simultaneously desensitizes the system to inter-sample variability.  In addition to the ability to differentiate a 

wider range of liquids, our WICK arrays also allow users to make rough predictions about the chemical nature of 

a previously uncharacterized unknown liquid by comparing relative degrees of wetting of the different elements.  
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4.3. Drying in color: Further differentiation of liquids based on volatility  

 At the beginning of this thesis, we motivated the development of WICK in the broader picture of 

developing a simple field-test technology that allows one to gain as much information as possible about an 

unknown liquid. We identified specific performance ideals for the technology, most importantly: i) the sensing 

mechanism had to be very simple, low cost, portable, and easy to use; ii) without requiring a significant sacrifice 

in the previous category, the specificity (the amount of information on the unknown discernible from a 

measurement) of the sensing platform should be as high as possible; iii) we wanted the technology to be 

applicable to a broad range of sensing problems. We satisfied requirement iii) by choosing a generic property of 

liquids (wetting) as the basis for a colorimetric response. In Chapters 2 and 3, we showed that a highly selective 

colorimetric response to wettability existed in highly symmetric IOFs with spatially patterned surface chemistry. 

This formed the basis for our Wetting In Color Kit (WICK) technology. WICK, as it stood at the end of Chapter 

3, had satisfied ideals i) and iii) very well, however, as was pointed out in the beginning of this chapter, it lacked 

in specificity. This was a direct, but unfortunate consequence of choosing such an inherently weakly-specific 

property of liquids as the basis for sensing. The general question addressed in this chapter could be expressed as 

“How can the specificity be improved without significantly sacrificing its simplicity?”  

In the previous section, we showed how comparing responses from a few WICKs with different chemical 

bases provided chemically specific combinatorial signatures. It is well-known that combinatorial analysis is a 

good way to extract specificity from weakly specific measurements [35,36,64,65]. The specificity of an array of 

weakly specific measurements scales with the effective dimensionality of the array, that is the number of principal 

components that encompass all or most of the variability in the responses [65]. Another way to think of the 

effective dimensionality is it is a measure of how different the measurements in the array are from one-another.  
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Figure 19. (A): The drying in color concept: (A) In addition to the information on a liquid’s composition offered by WICK’s 

colorimetric sensitivity to wettability, additional information about a liquid can be derived from a WICK (or WICK array) by 

measuring the time it takes for the sample to dry. As drying correlates with the reappearance of color in the originally wetted 

regions, the drying time in samples which are wetted in a reproducible manner can be estimated by eye, providing a crude 

measure of the volatility of the liquid in addition to its wettability. (B) Average drying times for linear alkanes C6-C10. To 

remove most of the liquid over-layer, the IOF was flushed with water (which does not wet the pores, nor is miscible with the 

alkanes) immediately after being flushed with the alkane.   (C,D): Time-resolved spectral evolution of an IOF (uniformly 

functionalized with DEC groups) that is drying after being exposed to n-octane (B) and n-decane (C). The spectral evolution 

during drying displays several distinct stages: i) the ‘thick-droplet’ phase, ii) the thin-film overlayer phase, and iii) the pore 

emptying phase. Stage iii, indicated by the dashed box (presumed to start at the point where the top of the IOF becomes 

exposed to the air) shows the same spectral evolution in both cases. In fact, the spectral can be perfectly overlaid in this 

region if by expanding the time-frame of octane to fit that of decane. 
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For example, in the WICK arrays described in the previous section, it was found that the majority of the 

variability (and thus the chemically specific new information) could be derived from looking at two elements, one 

containing a fluorinated second surface group and the other without one (e.g. 3FS13FS, DEC13FS). These 

produced different behavior because of the difference in relative affinity to polar and aliphatic liquids.  

However, since all elements of a WICK array measure wettability (intrinsic contact angle between a 

liquid and a surface chemistry) certain information (e.g. the general trend of decrease in wetting with increasing 

surface tension of the liquid) is inherently redundant. If the effective dimensionality of WICK arrays is inherently 

limited, one simple way to greatly increase the specificity of the platform would be to find additional, equally 

generic, but orthogonal properties of liquids that can be easily estimated with WICK. While the unique properties 

of the WICK platform enable highly selective wetting measurements, a selectivity/sensitivity that would not 

necessarily extend to measurements of other properties, even a very crude measurement of an orthogonal property 

might add great value to a WICK array measurement. This is because we would already have the specificity of 

the WICK array to build on, and so this orthogonal measurement might only need to help the user tell the 

difference between two specific liquids (e.g. n-undecane and cyclohexane) that happen to have overlapping 

combinatorial wetting signatures. 

We note that colorimetric wetting information from WICK (or WICK arrays) can be complimented in the 

same platform, simply by taking note of time-dependent phenomena that occur as a wetted IOF dries. The 

simplest and most obvious observation to make is that more volatile liquids dry more quickly, and thus recording 

the drying time will provide at least a coarse indication of volatility. Drying of a wetted IOF (or most other 

surfaces) typically occurs over timescales that are sufficiently slow to measure with a stopwatch with some 

relative degree of precision.  Furthermore, the structure couples the drying process, the inverse of the wetting 

process, to an easy-to-read color change (the reappearance of color, shown schematically in Fig. 19A). 

To design as accurate as possible of a drying measurement based on WICK, we must be mindful of the 

fact that this is a measurement that is likely to be much more sensitive than wetting to ambient conditions (e.g. 

airflow, humidity) and initial conditions (how much liquid is on top of the pores). While recognizing that crude 
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measurements may still give very useful information, when added to a WICK array response, it is in our best 

interest to try to control some of these variables where possible.  

The first variable we aimed to control was the volume of the liquid in the pores. Fig. 19A shows the 

drying time recorded for the linear alkanes C6-C10. To limit the variability in amount of liquid above the pores 

for this experiment, we adopted the following procedure: The IOF was uniformly functionalized with DEC 

groups. The functionality was chosen such that water would not wet the structure, but most aliphatic compounds 

could penetrate the pores. The IOF was first exposed to the aliphatic compound by flushing with a syringe, and 

then immediately flushed with water while held at a tilt angle. The water, both immiscible with the alkanes and 

unable to penetrate the pores served to flush off as much as possible of the alkane over-layer, while preserving the 

alkane layer inside of the porous network. Drying time was measured from the end of the water flushing step until 

the time that the IOF color had completely returned (no visible trace of pore-filling). Video analysis was used to 

ensure accurate drying times. Fig. 19B shows a plot of the average drying times and variability for linear alkanes 

C6-C10. As expected, an inverse monotonic correlation was observed between volatility and drying time. For this 

type of measurement, in a single environment (all measurements were done on the same day at the same lab 

location), an average error of 26% was observed.  

Time-resolved spectra of the IOF during drying were taken and shown in Fig. 19C,D for octane and 

decane. Across all four liquids the spectra show three common phases: i) the ‘thick-droplet’ phase, ii) the thin-

film overlayer phase, and iii) the pore emptying phase. While not necessarily informative for our discussion of 

liquid identification, it is worth briefly discussing the information given by these spectra, because they reveal 

information about the general dynamics of drying porous films, and could serve to validate current models that 

describe this type of phenomenon [78]. Phase i) is characterized rapidly changing and very closely-spaced 

reflection peaks, consistent with interference fringes from a ‘thick’ film. Phase ii) begins with a sharp collapse in 

the thickness of the film. This may be evidence of a bistable film thickness, where the thick films can be 

considered thin droplets that leave behind a much thinner film as they recede. The abruptness of this transition is 

consistent with such receding drop behavior.  
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Figure 20. Drying time of an IOF (ROH-functionalized) as an added “element” of a WICK array (A): A reproduction of Fig. 

17B (reproduced here for easy comparison with drying results), showing, with error, the ability of WICK arrays to 

differentiate 17 different organic liquids based on wetting. (B): Average drying time (standard deviation shown as the error 

bar) of the same liquids after swabbing an IOF uniformly functionalized ROH. (C): Data from (A) and (B) shown as a 3-

dimensional plot (the two principal components of the 6D WICK array measurement with IOF drying time as the z-axis). All 

combinations of individual wetting (729 in total per liquid) and drying (3 per liquid) measurements are shown as distinct 

points on the graph to estimate the volume in this parameter-space covered by a given liquid. With the exception of n-hexane 

(C6) and iso-octane, all of the liquids occupy a mutually exclusive volume in this plot. Most notably cyclohexane and n-

undecane (C11), having overlapping wetting profiles, have drying times that differ by several orders of magnitude 

(cyclohexane is much more volatile). Color scheme: blue-linear alkanes, red-alcohols, green-cyclic compounds, magenta-

polar aprotic solvents, cyan-iso-octane, black-dichloromethane. 
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This type of bistable thickness is not unusual for liquid films on surfaces [62,79]. Since the IOF and these 

liquids are refractive-index-matched, any state in which all of the pores remain filled (with or without an over-

layer) should display a reflection spectrum of a simple thin film, with associated interference fringes. Therefore 

thinning of the over-layer during drying should show up spectrally as continuous shifting and spreading of 

equally-spaced reflectance peaks. With the exception of the abrupt transitions between stages, the spectral 

evolution within stages i) and ii) is consistent with this picture.  

We attribute the beginning of stage iii) to the disappearance of the over-layer and the beginning of the 

pore-emptying process. We know that stage iii) ends with the film completely dry because all spectral changes 

cease at its end and the spectra matches that of the dry film. The spectral evolution during this phase proceeds 

differently from the others and possesses some unique characteristics that are seem to be liquid-independent. In 

particular, by choosing the correct relative time-rescaling, corresponding spectral maps from different runs, even 

when different liquids are used, can be nearly perfectly superimposed.  

The evolution is characterized by both spectral shifts and a washout of the reflection peak/through 

contrast during the intermediate stage between the completely filled and completely dry states, both of which are 

characterized by pronounced reflection peaks. This is consistent with an expected increase in the degree of 

disorder in partially filled photonic crystals. Qualitatively, reduction in peak/trough contrast is expected with 

decreased spatial coherence of the light scattering since the structural bias toward certain length-scales washes 

out. We also expect the degree of disorder to be maximal at an intermediate degree of filling, since both the 

completely empty and filled lattices are perfectly ordered structures. 

While the water-flushing technique incorporates a measure to somewhat control the liquid volume in the 

pores at the start of the drying (it eliminates the presence of large droplets), it possesses the significant drawback 

that it can only be used on test liquids that have no miscibility with water. Granted that it also does not produce 

impeccably small errors, we sought out simpler techniques that might display comparable degrees of variability, 

but be applicable to a broader range of liquids. Perhaps the simplest method to wet an IOF with a thin film of 



Author: Ian B. Burgess                                                   Advisor: Prof. Marko Lončar 

55 

 

liquid (without leaving behind large droplets) is to swab it with a cloth that is damp with the test liquid. Samples 

were wiped with a lint-free wipe from one side to the other with sufficient pressure to ensure that large droplets 

were not left behind. Drying time was measured (video analysis was used to ensure accuracy) from the time the 

wipe left contact with the sample to the time the sample was completely dry. All measurements were done on the 

same ROH-functionalized IOF in the same ambient environment. 

Fig. 20 shows the average drying time (standard deviation shown as error bars) of three runs using the 17 

test liquids used in the previous study of WICK arrays. The maximum variability measured in drying times for a 

single liquid was 43%. The drying times are compared with the combinatorial wetting measurements of the same 

liquids from the previous section. Despite the relatively large relative error, the drying times actually add 

information that makes easily-distinct some liquids that had overlapping ranges of response across several 

combinatorial wetting measurements. The most notable such example is n-undecane (C11) and cyclohexane. 

While their wetting profiles largely overlap (Fig. 20A), their vastly different volatility results in drying times that 

differ by more than two orders of magnitude. Fig. 20C shows the liquid test results expressed in a three-parameter 

space, consisting of the two principal components of the combinatorial wetting measurement with the drying time 

as the third axis. To give an estimate for the maximum total volume covered by each liquid in this parameter 

space, all possible combinations of the 7 measurements (6 elements of the WICK array + drying time) for three 

repeats of each are plotted as separate points. Inclusion of the drying data results in a significant improvement in 

the separation of the liquid responses; with only n-hexane and iso-octane as the only remaining liquids with 

significant overlapping volume (separation between the other apparent overlaps visible in Fig. 20C can be seen by 

rotating the plot).  

Despite its weak specificity (further weakened by large variability in measurements), measuring the 

drying time of an IOF adds valuable information to a combinatorial wetting profile from a WICK array because it 

measures a separate, largely independent, property of liquids. The utility of this added parameter may be most 

pronounced in the identification of mixtures. Fig. 21 shows the comparison of a WICK array wetting profile and 

the drying times for several different grades of gasoline from different stations (Mobil and Shell gas stations), a 
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sample of diesel fuel and our randomized C6-C10 alkane mixture from the previous section. As an aside, one 

noteworthy trend, visible in Fig. 21A is that the wetting response of the gasoline samples was more closely tied to 

their source (Shell or Mobil) than to their grade. Comparing diesel with our alkane mixture, we see that they 

exhibit markedly similar wetting responses, yet their drying times differ by nearly 2 orders of magnitude. Drying 

may be a particularly useful additional measurement to make when trying to identify or authenticate types of 

petrol, since they are often specifically defined by their volatility in manufacturing, as a fractional distillation of 

crude. On the other hand, as evident in Fig, 21A, an individual grade (e.g. premium unleaded) may often have 

variable wetting properties from sample to sample, or from source to source. 

 

 

Figure 21. Comparison of WICK array wetting (A) and drying times after swabbing (B, ROH-functionalized IOF) of regular 

and premium gasoline from two different sources (Mobil and Shell), diesel, and our randomized mixture of linear alkanes 

C6-C10 from section 4.2.    
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Figure 22. Comparison of drying times in a IOF (ROH functionalized, wetted by wiping) for linear alkanes from C6-C10 

and 50:50 mixtures of different alkanes. Particularly for the more non-volatile compounds, drying times of the mixture was 

closer to that of the less volatile component. 

While one could imagine a variety of factors being influential in the wetting response of a mixture (e.g. 

the presence of even a small amount of surfactant), we expect the total drying time to be most heavily influenced 

by the least volatile major components. Thus wetting and drying measurements may give vastly different results 

relative to other liquids. For example, diesel fuel, typically containing aliphatic compounds in the C8-C21 range 

[80], shows a wetting signature resembling that of octane, but takes about 45 minutes to dry, over an order of 

magnitude longer than n-undecane. Fig. 22 compares the drying times (measured in the same IOF as above) of 

50:50 mixtures of linear alkanes with the corresponding pure liquids. Particularly pronounced for the longer-

chain, less-volatile liquids, the drying time of the mixture is closer to that of the less volatile component. 

 By looking at how fast an IOF dries after being wetted by a liquid, we add an additional dimension to a 

combinatorial wetting measurement from a WICK array. While the specificity of the drying time measurement is 
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reduced by the inherent sensitivity of drying time to the precise initial conditions associated with wetting the IOF, 

it provides valuable additional information based on sensitivity to a properties of the liquid that are more 

decoupled from what is probed by the WICK array. This additional degree of freedom may be helpful in 

identifying mixtures, particularly if different components of a mixture have the largest effects on the wetting and 

drying responses respectively. Furthermore, similar to the combinatorial wetting approach discussed in the 

previous section, the improvements in specificity offered by this approach come at a minimal cost in terms of 

simplicity and cost (the major addition is the requirement of a stopwatch or other time-measuring device). One 

potential shortcoming of the particular wiping technique used above, is that it has the tendency to cause damage 

to IOFs after repeated wiping. This would limit how many times an IOF could be used in the field for that 

purpose. However, in the absence of expensive cleaning supplies, wetting measurements in the field will be only 

practical for one-time use anyway. 

 This brief study of drying in IOFs also motivates further studies on dynamic processes associated with 

the interaction between a fluid and a porous photonic crystal, both from a scientific and a technological 

standpoint. From the scientific standpoint, the liquid-independent evolution of the reflection spectrum as the 

pores empty during drying suggests that this phenomenon could be described by a relatively simple percolation 

model. A better understanding of the partial filling statistics (the distribution of filled pores) at various 

intermediate time-points would allow us to learn more about the role disorder plays in the modifying the optical 

properties of a photonic crystal.  

From the point of view of development of simple and inexpensive techniques for fluid identification, 

monitoring of dynamic wetting processes that cause the color response of a WICK to change over time (resulting 

from an increased degree of wetting) may yield powerful new information in some liquid mixtures. Although 

having not conducted an exhaustive search, we have found relatively few cases where such a change can be 

observed. For example, we have not observed time-dependent wetting in our WICKs in ethanol-water mixtures. 

We reason that this is because wettability is expected to decrease over-time as the more volatile alcohol 

evaporates more quickly than the water. Since the observed wetting in IOFs is governed by pinning and 
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metastable non-wetting states, we generally expect that only an increase in the degree of wetting could be 

observed as a color that changes over time, as a decrease in wetting is generally energetically unfavorable. For 

most liquids of the same class (e.g. linear alkanes) the surface tension and volatility generally correlate inversely, 

meaning that in mixtures thereof, the surface-tension would also tend to increase over time  (thus decreasing the 

wettability to most surfaces)  as the volatiles evaporate first. In these cases, we would not expect to observe 

dynamic wetting behavior in a WICK. However, when mixing liquids of different classes, it should be possible to 

find miscible combinations of liquids where the surface tension of the mixture is expected to decrease over-time 

as the volatile component started to evaporate. One only has to look at Fig. 20 to make good guesses as to which 

combinations might work. Fig. 23 shows one such example, a mixture of acetone (γ = 23.6 mN/m, VP = 184 

mmHg [81]) and octane (21.4 mN/m, VP=11 mmHg [81]). After a WICK functionalized DEC13FS is left in 

the mixture for 24 minutes the number of non-wetted layers noticeably decreases.   

 

 

Figure 23. Dynamic wetting in a mixture of acetone and n-octane in a WICK functionalized DEC13FS. 
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Chapter 5. Discussion: Opportunities, Limitations, 

and Extended Applications 

 “Destroy 99% of household pests with pre-sliced, rust-proof, easy-to-handle, low-calorie Simpson’s Individual 

‘String-ettes’, free from artificial coloring, as used in hospitals!” – John Cleese, Monty Python 

 

5.1. Outlook: Sensing 

 In the last three chapters, I have described in detail the performance capabilities of the Wetting in Color 

technology in the context of sensing. From a technical standpoint, the system has been characterized in detail and 

performance characteristics (e.g. selectivity, specificity) have been demonstrated for a few specific examples 

(determination of the relative concentrations of an ethanol/water mixture, differentiation of simple pure organic 

solvents). In this section, I discuss the vision of practical implementation for the WICK sensor. Using specific 

examples of how WICK could be applied to sensing problems for-which preliminary commercial interest in our 

technology has been expressed, I will highlight what I think are the strengths and weaknesses of this approach, 

and how they may compare to existing approaches. In general, WICK can be used as a sensor in one of two ways: 

1) authentication of known liquid formulations; or 2) identification of unknown liquids. 

WICK as a Liquid Authentication Device 

As an authentication device, WICK somewhat benefits from the inherent chemical non-specificity of a 

wetting-based measurement. For this type of application, it is assumed that the ‘correct’ liquid formulation is a 

known quantity. A WICK would be designed to display a specific pattern in the known formulation, and a 

different pattern in incorrect formulations (either due to forgery attempt or poor quality control of the 

formulation). To make a WICK best serve this purpose, wettability thresholds for some regions of the IOF would 
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have to be designed to exist very near the properties of the known ‘correct’ liquid formulation on either side. The 

goal is to make the smallest change possible to the formulation (that either increases or decreases the wettability) 

result in the appearance of a different pattern (either a greater or lesser extent of wetting). The strengths of this 

authentication approach are its simplicity and portability. It would be relatively straightforward to incorporate a 

small WICK into the packaging of a liquid product along with a small sticker showing the authentication pattern 

for comparison (an IOF could even perhaps be grown on a sticker placed directly on the packaging). Putting a 

drop of the liquid on the WICK would provide an instant, simple measure of the formulation quality. 

For this type of application, it is likely to not be chemical specificity, but rather quality control that most 

limits the performance and applicability of WICK. Let us consider first chemical specificity. In the example in 

Fig. 15B, it was shown how a WICK designed for differentiating different ethanol concentrations in water could 

be ‘fooled’ by completely different mixtures, mistaking acetone and n-octane for 90% and 80% ethanol. If this 

single WICK was used for the purpose of authenticating the ethanol concentration of an aqueous mixture (for 

example, in liquor), then it is highly unlikely that the liquid will turn out to be something completely different 

(e.g. one will probably not find pure acetone in the bottle). From an initially infinite array of possibilities, the 

response of single WICK measurement narrows (within its error) the possible formulation down to a smaller 

subset of liquids with matching wettability to the particular chemistry gradient used. However, the more precise 

this single measurement is, the more different the chemical nature of two liquids that produce the same pattern are 

likely to be.  

For example, outside of the range of error, one would not expect two different ethanol-water mixtures to 

be able to produce the same pattern in any WICK. To mimic the authentication pattern with an incorrect ethanol 

concentration in that example, one would probably have to add a third liquid (e.g. methanol) with a very specific 

concentration. In general, a sensitive, but poorly specific indicator such as WICK is expected to do a better job at 

identifying the liquid with every extra piece of prior information as to the rough chemical composition. In an 

authentication setting, usually the deviations from the correct formulation are expected to be relatively small. This 

means that there is much prior information about the liquid formulation. However, assuming that a liquid 
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authentication device needs to be able to identify small deviations from a known formulation, sensitivity and 

quality control are likely to be important sources of limitation. While a cost-effective quality-control procedure 

was implemented in Chapter 3 based on post selection, and resulted in the loss of only ~1/3 samples, we have yet 

to study scale-up protocols and their potential impact on the variability of our pore geometry. 

It may prove difficult to practically implement WICK as a field-test for authentication of complex 

mixtures, particularly those in which the chemical composition of a ‘good’ sample can vary enough to produce a 

wide range of wetting responses (gasoline is one good example). As shown in Fig. 21 for example, gasoline 

samples from different sources differed more from each other than gasoline samples of different grades from the 

same source in the responses of a WICK array. In this example, WICK may not be a useful test for authentication 

of gasoline grade quality since the definition of ‘good’ quality fuel is independent of wetting properties and 

surface tension, and wetting properties of ‘good’ quality gasoline shows a fairly large variability of response in 

WICK measurements (Fig. 21). On the other hand, in some complex mixtures such as liquors, limited 

authentication (e.g. a rough verification of ethanol concentration) could be possible if the wetting properties are 

likely to be predominantly controlled by the concentration of one or two components (e.g. ethanol for liquors).  

 This approach to liquid authentication would have to compete in the marketplace with several other 

competing technologies, most-notably additives used as tracers, which can be easily identified (e.g. by 

fluorescence) [82]. The detection of injectable tracers is decoupled from the composition of the liquid, which can 

be an advantage for authentication of compositionally variable liquids such as gasoline. Tracer additives can act  

as a signature of the supplier, validating that the product is in fact coming from them and that it passes their 

quality standards. The presence of such tracers also makes forgery difficult. One tradeoff is that the verification of 

these tracer molecules/nanoparticles by the user requires a more sophisticated measurement than the simple 

colorimetric response of WICK, thus limiting the number of customers that can perform the validation.  

WICK as a Liquid Identification Device 

 For application as a liquid identification device, chemical specificity of the WICK indicator(s) is likely to 

be the most important limiting property. While it is unlikely that there is absolutely no prior knowledge about the 
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possible composition of an unknown sample in practice, there is certain to be more possibilities than there would 

be for a liquid-authentication application. The less there is known about the liquid in advance, the more important 

the specificity-increasing measures discussed in Chapter 4 (combinatorial measurements with WICK arrays and 

monitoring of dynamic behavior to elucidate rough estimates of orthogonal properties such as volatility) will be in 

extracting any useful information from this technology.  

Using the identification of the contents of an un-labeled beaker in a chemistry lab as an example, I 

envision the ideal practical application of the technology to resemble the following general form: 1) A WICK 

array, where the gradients of wettability are optimized as in Chapter 4 to respond to a broad range of liquid 

surface tensions, would first be used to map the response of the unknown liquid against a library of known 

chemicals (e.g. Fig. 17). This would be used to gain rough information about the chemical class of the unknown 

(e.g. it is probably aliphatic, or an alcohol, etc.). Depending on how little is known beforehand (e.g. what is the 

total inventory of chemicals known to exist in the lab), the WICK array could be supplemented with a timed 

drying to further group the unknown. 2) If necessary, fine-scale differentiation between closely related liquids 

(e.g. beyond the selectivity of the WICK array, which was optimized for dynamic range) could be done with a 

second WICK (single sample) that is optimized for selectivity rather than dynamic range.  

A WICK could be optimized for dynamic range by making a vertical gradient of wettability in a thick 

sample using a long plasma-exposure time, where the two surface functionalities have vastly dissimilar 

wettability. On the other hand, a WICK could be optimized for selectivity (at the expense of dynamic range) by 

applying a vertical gradient of wettability using two very similar surface groups. Comparing Figs. 13 and 15, one 

can see the tradeoff between selectivity and dynamic range. In the WICK shown in Fig. 13, a 2.5% change in 

ethanol concentration produces a shift in the infiltration pattern by 1 layer step, but non-trivial responses are only 

observed for a range of ethanol concentrations spanning about 10%. In the WICK shown in Fig. 15 the same 

single-step shift is accomplished by a 10% change in ethanol concentration indicating a poorer selectivity. On the 

other hand, nontrivial responses are observed over a concentration range of nearly 50%.  
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In comparison to other means of analyzing similar compounds (e.g. identifying an unknown organic 

liquid), simplicity and cost are the main advantages of this approach. If performance enhancements (e.g. to 

sensitivity or specificity) came with significant tradeoffs in simplicity, cost or portability, the sensitivity and 

specificity required for practical use would then have to compare to the many established and sophisticated 

laboratory-based technique (e.g. mass-spectrometry). On the other hand, in its current form, there are no 

currently-existing technologies that can be used with the same degree of simplicity and portability that can be 

applied to as broad a range of compounds. The best applications are those where a simple end-user analysis would 

be useful, and the specificity or sensitivity requirements are not that high (i.e. one can probably forget about using 

WICK to detect ppb-levels of a contaminant). In my opinion, the most promising current application, from the 

standpoint of technical feasibility, is the use for identifying unknown organic solvents in a lab or workplace 

setting. In this type of setting, the number of possible liquids that could make up the unknown is not likely to be 

prohibitively high, with a low likelihood of encountering mixtures with the compositional complexity of 

something such as diesel fuel. This type of setting is also one that currently sees widespread use of pH-paper as a 

simple diagnostic for acid-base discrimination. Using WICK for identifying hazardous organics shares many of 

the advantages that pH-paper has for acid-base discrimination (simplicity, cost) as well as the drawbacks (poor 

chemical specificity). The widespread use of pH-paper in this setting suggests that a sizeable market could exist 

for WICK. 

The next step of development required for practical application of this technology in the commercial 

world is the scale-up of the co-assembly fabrication protocol [59]. We are capable of synthesizing very high-

quality IOFs, suitable for very high selectivity of wetting, however we currently can only produce six ~1cmx5cm 

films in one batch. The deposition, as it takes place by evaporation, is also very slow (takes 1-2 days on average, 

see Appendix A). While there are many different protocols we could use for scale-up, such as dip-coating with 

controlled withdrawal speed [83] (this also allows thickness-control), or spin-coating a suspension containing the 

polymer microspheres and the silica precursor [84], how the quality and the regularity of these films would be 

affected by these protocols, and how the colorimetric wetting selectivity would be affected, has not been studied. 
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5.2. Extended applications 

 Thus far, the central focus of this thesis has been the study of highly selective wetting in inverse opals 

and its relation to the displayed structural color, with particular emphasis on applications in colorimetric sensing. 

This section describes other applications of this platform, not directly related to colorimetry, that we have 

explored. Broadly speaking, there are two fundamental original scientific advances that underlie the results 

presented in this thesis. The first is the discovery that defect-free inverse opals display a remarkably consistent 

and abrupt threshold wettability for infiltration of the pores, which due to the highly re-entrant geometry at the 

inter-pore necks, occurs in a surprisingly low range of intrinsic contact angles (θc ~ 20°). Secondly, to facilitate 

greater manipulation of wetting, we have developed several straightforward protocols to spatially pattern the 

surface chemistry of the porous network in 3D. In addition to colorimetry based on wetting, these advances may 

be useful to several unrelated technological problems.  

The ability to encode complex chemical information in a single system underlies much of modern 

technology, from encrypting messages and data [66-68] to designing sensors that can distinguish among a wide 

range of stimuli [35,36], to creating templates that direct the assembly or growth of materials [60,61,69-71,85-

89]. The development of self-assembled monolayers (SAMs) [69,90,91] as a means for generating intricate 

surface chemical patterns, combined with the vast array of available chemical functionalities, has greatly 

expanded the capacity for embedding chemical information on 2D surfaces [60,61,69-71,85-91]. However, 

extending chemical patterning of this nature to 3D surfaces would not only enable much higher complexity but 

would introduce an entirely new range of properties that arise from the 3D configuration. In particular, the surface 

area of 3D microporous materials confers material properties that are useful for many applications in optics, 

scaffolding, energy storage, catalysis, etc. [20,22,92,93]. While recent advances have enabled the fabrication of 

porous films with increasingly complex 3D architectures and function [20-22,92,93], to our knowledge, a 

versatile technique for local patterning of multiple, site-specific, arbitrary surface functionalities in their pores has 

yet to be developed prior to this work, and thus this the techniques developed here to generate highly controlled 
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an spatially diverse surface chemistry within 3D porous structures may be useful in some of these areas. In the 

following sub-sections, I list a few that we have briefly explored. 

 

Multi-level Encryption 

 As was briefly discussed at the end of Chapter 1, one direct application of the technology developed here 

that is unrelated to sensing is multi-level encryption (W-Ink). An encryption device really works in the same way 

that a sensor would: different optical messages are revealed in response to different liquids, all of which would be 

invisible when the sample is dry. In principle, any device that displays a previously-encoded visual response to a 

stimulus can be considered an encryption device (the same can be said about sensors!). One consequence is that 

there are many other ways to make an optical encryption device. Encoding of secret messages for security or 

authentication applications is a very crowded market with many technological options available 

[27,66,67,68,94,95]. It is worth listing the pros and cons of W-Ink against the plethora of other options available 

for encryption to assess the viability of this technology in this market.  

 The unique feature of this approach to encryption that could be advantageous for some applications is 

that it is a form of multi-level encryption. It is relatively easy to encode a large number of different messages (at 

least as many different messages as there are distinct functionalized regions) that would be revealed in response 

to different liquids, but would remain invisible when dry or when immersed in the wrong decoding liquid. Fig. 4 

(Chapter 1) shows a simple example where four different messages are encoded. The ability to layer encrypted 

messages provides a substantial increase in complexity (making forgery much more difficult with each additional 

encryption), while minimally increasing the cost (the same protocol can be repeated over and over to make new 

messages). The primary disadvantage of this technology compared to other possible encryption devices is that it 

requires liquids for decoding. For applications such as bank note authentication, it seems unlikely that tellers will 

want to replace the current dry techniques (e.g. blacklight illumination) in favor of an approach that constantly 

requires getting the bank notes wet.  
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 As mentioned in the previous section, one authentication application where the advantages of W-

Ink/WICK versus other technologies may outweigh the disadvantages is in the authentication of liquid 

formulations (e.g. liquid pharmaceutical formulations, high-end alcoholic beverages etc.). Here the liquid product 

could itself act as the decoding liquid. An appropriately functionalized strip included in the packaging (e.g. as a 

sticker) would add two layers of security to the product: 1) the standard anti-forgery protection for the packaging 

(analogous to the watermark on some bank notes), and 2) anti-forgery protection against the liquid contents 

themselves, if the response was sufficiently selective to produce a different “failure” message if any changes were 

made to the formulation that influenced the liquid’s wetting properties. 

 

 

Figure 24. Integrated porous, chemically functionalized fluidic channels. (A) “Visible” microporous fluidic channel defined 

by selective PDMS-filling in the channel walls. Optical and SEM images of a “visible” porous microfluidic channel, showing 

the PDMS-filled (dark) regions of the channel walls and the unfilled (bright) regions of the porous channel. (B): “Invisible” 

microporous fluidic channels defined by contrasting solvent compatibility.  The entire system has open porosity. Vertical 

(ROH) and horizontal (TMS) channels were patterned in a 13FS background. The drop of water placed at the end of the 

ROH channel spreads only through the vertical channel via capillarity. Repeating the experiment with ethanol results in fluid 

flow into both the vertical and horizontal channels. 
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Microfluidics (directed wicking)  

This wetting-in-color concept can be extended to create a new kind of microfluidic platform that contains 

porous, chemically functionalized channels. While synthesizing a highly ordered porous medium inside of a 

prefabricated microfluidic channel is very challenging [74], we can define channels in an initially homogeneous 

inverse opal in two different ways, denoted here as “visible channels” and “invisible channels”. The former are 

formed by patterning an IOF with 13FS functionality in the channel regions and ROH functionality outside. 

Submerging the sample in un-cured PDMS prepolymer results in selective infiltration into the ROH regions while 

the 13FS regions remain clear. After curing, a microfluidic device with a visible porous channel is generated 

(“visible” due to its bright photonic color in contrast with the dark, PDMS-infiltrated channel walls, see Fig.24A). 

The 13FS functionality can then be erased by plasma and the channels further functionalized to allow or resist 

infiltration by different fluids. Invisible channels are defined using 13FS-functionalitzed regions, resisting 

infiltration by most liquids, as the channel walls. Invisible channels can be both chemically and configurationally 

re-patterned, through the same erasing-rewriting procedure. Fig. 24B shows an example of invisible channels 

making a “T” junction. While water travels via capillarity through the vertical ROH channel, ethanol travels both 

vertically and horizontally across a second channel defined by TMS surface groups, which is completely invisible 

(uninfiltrated) in the water experiment. 

5.3. Planar lithography on porous surfaces (PLOPS) 

 Top-down nanofabrication based on planar lithography has been the workhorse of modern 

nanofabrication, enabling the current microelectronics industry as well as the development of a wide range of 

device architectures for many other types of technology (photonics, microfluidics, etc.). However, while planar 

lithography allows the designer sculpting of a wide range of materials in 2D, the extension of such capabilities to 

truly 3D architectures has proved challenging [96]. The ability to tailor the shape of materials in 3D would open 

the door for many exciting technologies that have already been proposed. Perhaps most notably, the prospect of 

3D-photonic crystals (dielectric superlattices with wavelength-scale periodicity) with designer defects has the 

promise to enable devices that channel the flow of light without losses due to diffraction [16,96-100]. This could, 
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for example, lead to the development of defect-tolerant ultrahigh-Q optical resonators. Presently, there are very 

few techniques that allow truly 3D nanofabrication, and those that do exist are presently limited in their 

applicability. Focused ion-beam milling can be used to mold a wide variety of materials in 3D, however, this 

technique is both not scalable (very time consuming, cannot be done in parallel), and generally results in material 

damage due to ion implantation [101].  Direct-laser writing [96] and two-photon lithography [102] can be used to 

imprint designer 3D patterns in appropriate resist materials (these patterns can be transferred to other materials by 

infiltration and inversion), however their resolution is inherently limited by diffraction. 

Bottom-up techniques based on self-assembly have emerged as a powerful platform for templating 

structures that are patterned in 3D with feature sizes ranging from a few nanometers to several microns [20-

26,87,92,93]. Unlike their top-down counterparts, they allow scalable 3D-patterning of materials, however the 

variety of patterns that can be made through bottom-up techniques are very limited in comparison to top-down 

lithography (generally restricted to periodic or polycrystalline patterns with random defects). For example, while 

self-assembly has enabled the realization of 3D photonic crystals with complete photonic band-gaps [103], the 

incorporation of designer defects has thus far been very limited [104], preventing the experimental realization of 

many of the device properties that initially generated excitement about 3D photonic crystals [16]. 

In this section we develop techniques to build 3D-periodic nanostructures that contain lithographically 

patterned planar defect layers. Recent proposals [97-99] have shown that many of the attractive properties of 3D 

photonic crystal circuits (such as diffractionless control of light flow) can also be accomplished in hybrid 3D-2D-

3D structures, consisting of 2D photonic crystals with designer defects sandwiched between two uniform 3D 

photonic crystals. We developed two techniques to incorporate lithographically patterned planar layers on-top of 

or inside of self-assembled 3D porous inverse-opal films.  
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Figure 25. PLOPS-1, exploitation of selective wetting to facilitate the fabrication of 2D-planar structures on top of a porous 

IOF. After standard IOF fabrication (A), the porous network is functionalized with 13FS to facilitate prevention of solvent 

and resist infiltration. 5s of oxygen plasma is applied to make the top-surface sufficiently adhesive for the resist, while 

preserving the 13FS functionality further down the structure. Photoresist (or electron-beam resist) can then be spun and 

patterned using standard lithographic techniques.  

 

PLOPS-1: Selective wetting as a means to separate planar and porous films 

We used the chemical patterning techniques developed in Chapters 1,3 to exploit selective wetting to 

direct the deposition of resist on the top of the IOFs without penetrating the porous structure.  The fabrication 

protocol is shown in Fig. 25. IOFs are functionalized first with 13FS groups. These groups provide the structure 

with the ability to resist infiltration of nearly any liquid, including the precursors and solvents for most resists. 

We then exposed to the surface to oxygen plasma for a very short time (5s), much shorter than would be used 

even to form a vertical gradient of wettability in the structure. The purpose of this step is to activate the top 

surface just enough for sufficient adhesion of the resist to occur, while not enough to let the resist penetrate 

beyond the first row of necks. Finally the resist can be spun and patterned. Fig. 26A shows a cross-section of an 

IOF with a film of SU-8 photoresist spun on top of it. The SU-8 resist was deposited from a 1-methoxy-2-propyl-
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acetate (PGMEA) solution. While delamination was not observed, even during cleaving, indicating some 

adhesion between the film and the substrate, penetration of the SU-8 is not observed beyond the top layer of half-

pores. In particular, no resist is observed beyond the top row of necks. Fig. 26B,C show a patterned film of 

ZEP520 resist (Zeon corp., patterned by direct electron-beam lithography) suspended on top of an IOF. The resist 

was deposited from an anisole solution. Again, adhesion of the resist to the film was observed, but no infiltration 

of the pores beyond the top row of necks. 

 

 

Figure 26. PLOPS-1, SEM images. (A) Cross-section showing a planar SU-8 film deposited on top of an IOF. The SU-8 

does not penetrate the pores beyond the top layer of half-spheres. (B,C) SEM images of a film of ZEP520 resist, patterned by 

electron-beam lithography, suspended on top of an IOF. 
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Figure 27 – PLOPS-2: (A) Schematic showing the PLOPS-2 route to stacking of IOF and 2D-patterned planar layers.  Co-

assembly of the polymer colloidal crystal template and the silica interstitial matrix is performed [59], but the polymer spheres 

are not immediately removed, resulting in a solid, non-porous film (plugged IOF). A spin-on-glass electron-beam resist 

(hydrogen silsesquioxane, HSQ) is deposited on top of the plugged IOF and patterned by electron-beam lithography. A thick 

polymer film is then spun on top of the 2-D patterned layer to planarize. Following the activation of the planarizing film 

surface, a second co-assembly step is done to deposit a second plugged IOF. Finally all polymer components are removed by 

a slow calcination procedure (ramp up to 500°C over 5hr), leaving behind a stack consisting of a 2D-patterned planar layer 

wedged between two IOFs. (B,C) SEM images 3D-2D and 3D-2D-3D stacks prepared by the PLOPS-2 method. (B) A 3D-

2D structure is formed by removing the polymer template right after the electron-beam lithography. An array of 500nm wide 

posts are shown suspended on top of an IOF with a ~300nm pore diameter. (C) A cross-section of a 3D-2D-3D structure 

showing adhesion between the layers. The same array of 500nm wide posts is used in this structures. 

 

PLOPS-2: 3D-2D-3D silica stacks from plugged IOFs and planarized 2D layers 

 While possessing the highly selective wetting properties that enable the PLOPS-1 technique, IOFs 

fabricated by co-assembly also benefit from the advantage of having very flat top surfaces after deposition [59]. 

Before removal of the polymer template (a state I refer to as a plugged IOF), plugged IOFs are completely flat 

and solid films of material [59]. Owing to the flatness and lack of porosity in plugged IOFs, 2D patterned-resist 
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layers can be easily deposited before removal of the polymer spheres. However, this order of fabrication steps 

requires the use of a resist that can withstand the conditions used to remove the polymer spheres (this rules out 

many organic polymer-based resists). We used spin-on-glass (hydrogen silsesquioxane, HSQ) as a resist for this 

demonstration since upon curing it becomes chemically similar to the sol-gel silica material that makes up the 

IOF. The resist was patterned by electron-beam lithography. When the structure was calcined after this e-beam 

patterning, a 3D-2D hybrid structure similar to the type formed in PLOPS-1 is left behind.  

 

 

Figure 28. Planarizing layer residue: (A,B) While SU-8 served as a planarizing layer that remained hydrophilic after 

activation for a sufficiently long time to allow deposition of IOFs, it had the tendency to leave behind residue after 

calcination. (C) PMMA (the same material used in the polymer sphere template) was found not to remain activated long 

enough for film deposition, however if a thin layer of silica was vapor-deposited on the PMMA film immediately after 

activation [105], the surface remained hydrophilic for sufficient time for growth of the second IOF. After calcination, this 

protocol left behind fewer residues and also seemed to enhance adhesion between the layers. 
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 However, if the IOF remains plugged, a second IOF can be grown on top of the patterned HSQ layer, 

sandwiching this lithographically 2D-patterned layer between two 3D-periodic structures, producing the type of 

3D-2D-3D architecture proposed in Refs. [97,98]. Successful deposition of the second IOF requires first 

planarizing the patterned 2D HSQ layer. This can be done by spin-coating a thick film on top of the HSQ pattern. 

We deposited a planarizing film with ~5µm thickness for a ~250nm thick resist layer. In order for the second IOF 

to grow successfully, the surface of this planarizing layer must be able to be rendered very hydrophilic (zero-

degree contact angle) for a long time. We found that while the hydrophilicity of many common polymers did not 

last for sufficiently long times after oxygen-plasma activation for a successful deposition of a second IOF (we 

tried polymethyl methacrylate, polystyrene, and polypyrrole), SU-8 (flood exposed with UV-light to cure) did 

retain long-lived hydrophilicity after oxygen-plasma exposure and successful growth of IOFs was possible on 

these films. After deposition of the second plugged IOF, the entire structure was calcined to remove the polymer 

spheres and the planarizing polymer. To facilitate gentle removal of the planarizing polymer, allowing for the top 

layer IOF to fall on top of the lower layers without large amounts of cracking, the temperature was ramped up to 

500°C over five hours. Before deposition of the second IOF, the planarizing layer could also have been thinned 

down using reactive-ion etching, however this process, if not strictly necessary, would add significant complexity 

to the otherwise simple fabrication procedure. Fig. 27C shows a cleaved section of a 3D-2D-3D stack formed 

using an SU-8 planarization layer. As evident from the cross section, the top layer IOF manages to rest flush 

against the surface of the 2D layer after calcining. 

Although SU-8 was found to be a polymer planarizing layer that could remain activated for sufficiently 

long times to allow for successful deposition of the top layer IOF, it was also found to leave behind a significant 

amount of residue after calcining. Fig. 28A,B show examples of this residue. Due to the highly aromatic structure 

of SU-8, the appearance of significant amounts of carbonaceous remnants after pyrolysis is not unexpected. To 

limit the appearance of residue, we searched for an alternative to SU-8 for the planarizing layer. Based on the 

absence of residue observed after calcination of a standard IOF (one 3D layer only), PMMA (the same material 

used in the spheres) would be expected to leave no residue behind as a planarizing layer, however we were unable 
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to grow IOFs successfully on plasma-oxidized PMMA films, since their hydrophilicity degrades over time. To 

enhance the lifetime of a PMMA film’s hydrophilicity, we performed a sol-gel vapor-deposition immediately 

after activation of the surface that can deposit a very thin layer of silica (~5-10nm) [105]. This protocol, 

developed by Hatton et al [105] (colloquially referred to as the ‘poor man’s ALD’) consists of two steps, both 

performed under ambient pressure and humidity in air: 1) the activated film was suspended in a closed test tube 

for 1 minute, with a small amount of the silica precursor, tetramethyl orthosilicate (TMOS), at the bottom. This 

step facilitated the chemisorption of a small amount of TMOS vapor on the surface. 2) The second step consisted 

of reactivating the TMOS-covered surface through base-catalyzed hydrolysis by exposure to a saturated 

atmosphere of ammonium hydroxide (this exposure was done for 10 minutes). This cycle can be repeated many 

times to control the thickness of the film, with ~5nm deposited per cycle [105]. We found that two cycles of 

deposition provided a significantly long-lived, uniform activated surface, sufficient to allow the successful growth 

of IOFs on PMMA films. Fig. 28C shows a 3D-2D-3D stack fabricated using a PMMA planarizing layer that was 

activated using two ‘poor man’s ALD’ deposition cycles. This protocol eliminated the residue that was observed 

with SU-8 as a planarizing layer. 

In this section, we have demonstrated two techniques to integrate 2D-lithographically-patterned planar 

layers on top of or in between 3D-periodic inverse-opal films. Both of these techniques are enabled by the 

uniform, crack-free and flat-surfaced nature of these films when grown by colloidal co-assembly [59]. Using 

simple chemical surface-modifications and the unique wetting properties of the IOFs (these properties are 

characterized in Chapters 2 & 3), we have shown that we are able to spin-coat and pattern resist layers on top of 

IOFs that show good adhesion to the top of the porous surface, but no penetration inside of the pores. These 

fabrication procedures, combining advantages of both top-down and bottom-up fabrication, may prove useful in 

the development of 3D-2D photonic crystal devices [97-99]. 
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Chapter 6. Conclusions and Outlook 

6.1. Conclusions 

This thesis has provided a detailed description of the development of Wetting In Color technology, 

exploring the principles behind and the applications of the highly spatially selective infiltration of liquids in 

defect-free inverse-opal films (IOFs) grown by colloidal co-assembly. At a fundamental level, there are two 

significant advances developed here. The first is the discovery and characterization of the highly selective nature 

of wetting in IOFs and its natural coupling to an easy-to-detect optical response, owing to the vast difference in 

refractive-index contrast between air-filled and fluid-filled films. Using a combination of percolation modeling 

and optical modeling to corroborate our experimental observations, it has been shown that fluids differing by only  

~3° of intrinsic contact angle to the pore surfaces can induce macroscopically distinct structural color responses 

(with uniform pore surface chemistry). The second major advance described here is the development of 

techniques, based only on chlorosilane chemistry and oxygen plasma, enabling us to define highly controlled 3D 

spatial patterns of wettability within the porous network. 

 While many potential applications of this platform have been briefly introduced here (multilevel 

encryption, fluidics, nanofabrication), the primary focus of this thesis has been in sensing, the development of a 

Wetting In Color Kit (WICK), a colorimetric indicator for simple and at-home identification of organic liquids 

based on their wetting properties. With this application in mind, we have performed optimizations of the Wetting 

In Color platform with respect to several performance metrics. Broadly speaking, we can list the most important 

of these metrics as follows (in order of decreasing importance): 1) Ease-of-use and cost; 2) Versatility and 

adjustability (to how many sensing problems can we tailor this technology to); 3) Selectivity (how small a change 

in wettability can we detect?); 4) Chemical specificity; and 5) Reproducibility (how robust is our technology to 

variability in fabrication and what kinds of quality control can we implement?).  
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 The progress made on each of these fronts is as follows: 1) Ease-of-use and cost are paramount to all 

other performance metrics because they are what enables WICK to be used at home or in the field by users with 

minimal training and/or access to resources. The fact that WICK gives instant colorimetric readouts is an 

advantage that essentially comes for free. However, to ensure that WICKs can be read and interpreted easily 

without sensitivity to lighting conditions and viewing angle (a general drawback of sensors based on structural 

color), we have ensured that all of our readouts are based on countable changes in color (e.g. binary readout). 

Complete determination of our response can be done based on analyzing where on the WICK iridescent color can 

be observed, without a need to identify what color is shown.  

2) An attractive property of WICK is that its colorimetric response is sensitive to wettability, a generic 

property of liquids that makes this approach suitable, in-principle to any sensing paradigm involving liquids. 

However, the threshold wettability of an IOF only occurs at one value (θc ~ 20°), meaning that a region with a 

fixed surface chemistry only produces two distinct countable responses to liquids that are either above or below 

this threshold. The techniques we developed to control and spatially pattern the surface chemistry is what has 

allowed us to tailor many responses to many different liquids, all within a single WICK.  

3) The high selectivity of this indicator is a result of the unique, highly-regular geometry of our IOFs, 

which we have characterized in detail here. However, it was shown in Chapter 3 that we can actually further 

increase the selectivity of the response by vertically grading the wettability. This does so, not by shrinking the 

range of liquids that produce partially filled responses (in fact it does the opposite), but by making closely related 

partial filling profiles produce countable differences in the color pattern.  

4) As the response of WICK is based on wettability, a generic, non-specific property of liquids, 

identifying unknown liquids with chemical specificity (i.e. requiring minimal prior knowledge of the possible 

composition) is the greatest challenge in the development of WICK. In Chapter 4, we have shown here that the 

chemical specificity can be improved by comparing combinations of wetting responses in an array of WICKs, 

each of which is designed to exhibit non-trivial colorimetric responses to the same range of liquids, but using 

different chemical surface groups to define the wetting gradient. Further improvement of the specificity can be 
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attained by observing the time it takes for the film to dry after having observed the wetting responses to a WICK 

or a WICK array.  

5) In Chapter 3, we showed how the sample-sample variability in the pore geometry can be limited based 

on post-selection using wetting in liquid standards and a control surface functionality. In Chapter 4, it was shown 

that the use of combinatorial measurements based on WICK arrays gave the sensing platform an added robustness 

against variability in the response. 

 

6.2. Suggestions for future studies 

There are many scientific advances and potential applications of Wetting In Color technology that have 

been mentioned in the preceding chapters of this thesis, particularly relating to sensing, but also in encryption, 

fluidics and nanofabrication. However there are also a number of promising opportunities for this technology that 

are yet to be looked-at. In this section, concluding this thesis, I will outline several future studies relating to this 

work that I think are promising. 

Enantioselective Colorimetry 

Related to sensing, I think there are a few exciting avenues that could be explored in the future. One 

notable example is the application of WICK for enantiospecific colorimetric identification of chiral compounds. 

While enantiospecific surface interactions between a chiral liquid (or solute) and a chiral surface group are well 

documented and have been long exploited for applications such as chiral chromatography, it is only recently that 

enantiospecificity has been observed directly in wetting (measured as differences in contact-angle) [106]. The 

sensitivity of the WICK platform to changes in intrinsic contact angle may be sufficient in some cases to observe 

a large color difference between different enantiomers of the same structure. With even higher contrast, it may 

even be possible to design a WICK that can colorimetrically estimate the degree of racemization of a mixture of 

enantiomers. In addition to attaining sufficient sensitivity to observe this effect in WICK, a primary challenge 

likely to be faced in this implementation would be tuning of the IOF’s wettability threshold precisely to the 

difference between enantiomers, while simultaneously preserving the type of surface chemistry that facilitates 
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enantiospecificity. In this case, it might prove easier to tune the liquid composition (e.g. by dilution with a known 

liquid) or even the pore geometry (e.g. by conformally thickening the walls [105]). 

Enhanced Selectivity with Liquid-Liquid WICK 

 Another interesting future direction that may be worth exploring is the use of a liquid background 

medium (replacing air) in WICK measurements, with the potential to greatly enhance the sensitivity of the 

wetting threshold to the chemical composition of the liquid. With a structure whose response is sensitive to 

differences in intrinsic contact angle [cos(θc) = (γsa – γsl)/γla], the sensitivity to chemical differences is 

proportionally reduced with increasing liquid-air surface tension. Conversely, replacing the liquid-air-interface 

with a liquid-liquid interface would greatly reduce γla (this can be by an order of magnitude [106]), resulting in a 

large increase in the wetting selectivity. Two large challenges with this approach, however, would be finding a 

suitable background fluid/surface-chemistry combination (this would have to be both immiscible with the test 

liquid, and exhibit a solid-liquid-liquid contact angle in the range of the threshold wettability), and coupling this 

sensitivity to an easy-to-detect optical response. The latter would be difficult because there may be a minimal or 

even absent change in refractive-index contrast associated with the displacement of one liquid by another. This 

could be mitigated perhaps by adding a chromophore to either the test liquid or the background liquid. 

Alternatively, building on recent work by Wong et al. [107],  the displacement could be monitored by observing 

whether or not a stable drop of the test liquid can rest on (and easily rolled off of) a thin film of the background 

liquid, held in place by an IOF, without displacing it in the pores. 

Dynamic Wetting 

 With the exception of some very primitive examples of dynamic wetting behavior discussed at the very 

end of Chapter 4, this work has largely been restricted in scope to the study of static pore-filling states. The high 

sensitivity of the colorimetric wetting response near the threshold wettability could potentially also be used to 

induce changes in the filling behavior in response to subtle dynamic changes in either the liquid or the pore 

surface chemistry. At the end of Chapter 4, a very simple example of this type of behavior was shown, consisting 

of a liquid mixture whose wettability increased over time as the more volatile component evaporated. However, 
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much more interesting would be if a macroscopic wetting response could be induced to track chemical changes in 

a system, either in the liquid or on the surface. One potential application of this type of a system would be in 

monitoring stages of chemical reactions colorimetrically where no current indicator material exists. This could be 

taken further if the IOF in the non-wetted state was used as a physical barrier to sequester reagents until broken 

by a chemical change. One could envision the design of an integrated multi-step microfluidic reaction vessel 

based on this type of architecture, where the progress of one step of a reaction triggered wetting of an IOF barrier, 

which, in turn, released new reagents to induce the next step of the reaction.  

Application to Other Porous Materials 

The methods developed in Chapters 1-3 for generating controlled spatial pattern of surface chemistry 

should be applicable to many different types of porous materials, their use potentially enabling many applications 

when implemented in different types of porous structures (periodic mesoporous materials for example [92,93]). 

The spatial selectivity of patterning in both the vertical and lateral dimensions is possible because oxygen plasma 

modification fronts are found to move very slowly when the reactive species must move through highly confined 

porous geometries. This allows the timing of plasma exposure and the location of the inlets (unmasked regions of 

top-surface in our case) to be tuned to let the oxidation to reach only specific regions of the pore structure. This 

property of oxygen-plasma modification is not unique to our pore geometry and seems to be quite generalizable.  

For example, Lin et al [61] showed slow-moving oxidation fronts when the plasma was confined to move 

in a maze of micron-scale channels. Comparing our results to theirs, we expect the general trend that the front 

propagation speed positively correlates with the size of the pores. This suggests that spatial control of surface 

chemistry should work best in structures that have a highly regular pore-geometry. Very recently, we have shown 

that shadow-masked plasma oxidation can be used to pattern wettability in periodic mesoporous organosilicas 

[108]. Mesoporous materials, having vastly sub-wavelength porosity and very high surface area are useful for gas 

sensing because macroscopic changes in refractive index can be coupled to small amounts of vapor adsorption 

[35]. Incorporating spatial patterns of many different surface groups in these materials would potentially enable a 

versatile platform for combinatorial gas sensing, analogous to WICK arrays for liquid identification.   
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Appendix A. Detailed Experimental Techniques 

 The primary purpose of this Appendix is to provide sufficiently detailed accounts of our experimental 

procedures to make it easy for a future student or postdoctoral fellow who is new to the lab to be able to repeat 

any of these experiments to continue this work. Therefore, while some of these procedures are outlined in 

previous literature (e.g. ref [59]), the variants of these procedures that we used for these studies are described here 

in detail as well. As a second note, since the work described here was conducted over a long time-span (several 

years), some of the protocols underwent small modifications during the process. For this reason, after describing 

the general preparation of IOFs, methods will be generally divided by Chapter, with small chronological 

modifications of the procedures from one chapter to the next pointed out. 

A.1. Fabrication of defect-free inverse opals 

Synthesizing colloids 

Monodisperse aqueous suspensions of polymethylmethacrylate (PMMA) microspheres (d ~ 300nm) were 

synthesized according to the following procedure:  

A bath of silicon oil was prepared and heated to 80
o
C on a hot plate (the temperature is measured with a 

thermocouple immersed in the silicone oil). The bath was stirred by a magnetic stirrer at 400 RPM. A clean 500 

mL 3-neck round-bottom flask was added to the bath connected to a condenser on the leftmost hole, as shown in 

the figure.  90 mL of DI water was added to the round bottom flask. 0.2 g of ammonium persulfate (APS, the 

free-radical initiator) was added to the middle hole of the flask. A large football-shaped stir bar was added to the 

mixture and let stir at 400 RPM for at least 1 hour. In a separate vial, 10.5 mL of methyl methacrylate (MMA), 

0.0948 mL of ethylene glycol dimethacrylate, and 0.0473 mL of 1-dodecanethiol were combined. The mixture 

was sonicated for 5 minutes. After an hour of stirring the APS and water, a 12 mL syringe (with large needle) was 

used to inject the MMA mixture into the flask as fast as possible without creating too many bubbles. It was 
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ensured that the metal tip of the needle does not touch the contents of the flask. The total mixture was left to stir 

at 400 RPM for at least 3 hours (5-6 hours is ideal before removing from heat). If executed correctly, at this time, 

the contents of the flask appeared white, and opaque. As a quick test of the monodispersity of the suspension 

before cleaning, a small drop was left to dry on a glass slide and iridescence of the residue was verified.  

Before the colloidal suspension can be used to make good quality inverse opals, it has to be cleaned to 

remove any residual monomer and other unreacted reagents from the previous step. This was done via dialysis. 

The suspension was decanted into a dialysis bag. After sealing the bag, it was placed into a large (2L) beaker 

filled with DI water with a large clean stir bar. The bag was left in the water, gently stirring for at least 7 days. 

The water was replaced every 24hr. After 7 days, a small amount of the suspension was tested each day (while 

the remainder of the suspension remained in dialysis) by depositing an opal (no silica) on a clean, oxidized silicon 

wafer. The observation of uneven ‘banded’ growth (vertically alternating regions of many layers and regions with 

no growth), was used as an indicator that the dialysis cleaning needed to take place for longer. Consistent growth 

of good quality films was used as the indicator that the suspension was clean. 

 

Figure A1 – Diagram of the three-neck flask and attached condenser used in the colloid synthesis. 
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Preparing TEOS solution 

A solution of 0.01M HCl was periodically prepared by diluting an aliquot of a 1M stock solution. The pH 

of the solution should be checked periodically (every 2-3 weeks, pH paper is sufficient) before use. 5.00g of the 

0.01M HCl solution, 7.50g of ethanol and 5.00g of tetraethyl orthosilicate (TEOS, also called tetraethoxysilane, 

Si(OCH2CH3)4, Sigma-Aldrich) were added to a clean, unused 20mL vial (in the above order) along with a small 

clean magnetic stir bar. The TEOS solution was left to stir at 300rpm for 1hr in order for the TEOS to hydrolize. 

If control of inverse opal film thickness is desired, a TEOS solution should only be used the same day it was 

made.  

 

Preparing and Cleaning Substrates 

Fresh silicon wafers were cut it into ~5cm x 1cm strips using a diamond scribe, by cleaving along crystal 

planes. After air-blowing to blow away any loose shards, substrates were cleaned in acid-piranha solution (3:1 

concentrated sulfuric acid, 30% hydrogen peroxide) at 90°C for 5-10 mintues, followed by rinsing with DI water 

and then ethanol. Clean substrates were stored in a clean (unused) glass jar filled with ethanol.  

 

Depositing the Film: 

Clean, unused 20.5mL vials were filled with 20 mL of DI water. After briefly sonicating the stock 

colloidal suspension to ensure that nothing has settled (about 2 min), an aliquot of the stock suspension was added 

to the vial (typically 0.1-0.5mL of suspension, optimized by concentration measurements and trial & error, 

depending on the desired film thickness). Fig. A2 is a guide to this optimization. 
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Figure A2 – Scanning electron micrographs (SEM) of IOFs grown using different ratios of colloidal suspension and TEOS 

solution, showing the crack-free IOFs formed when the ratio is correct (middle) when there is not enough TEOS (or too 

much colloidal suspension, top) and when there is too much TEOS solution (or not enough colloidal suspension, bottom) 

[59]. 

 

Next 0.095-1.5mL of TEOS solution was added to the vial (again, the exact amount was optimized for 

each new stock solution of colloids, for the desired thickness of film and film quality). This mixture was then 

sonicated for 1-2 min to ensure adequate mixing. A previously piranha-cleaned Si substrate was removed from 

the ethanol bath, blow dried and oxygen plasma-cleaned for 3min with ~10sccm of oxygen flow (Diener Electric 

GmbH Femto-A plasma cleaner). The cleaned substrate was suspended vertically in the vial containing the water-

colloid suspension-TEOS solution (held using binder clips) and placed in an oven held at 65°C on a vibration-free 

table. To ensure that the relative humidity in the oven was kept roughly constant (which can affect the 

evaporation rate, and thus the thickness and quality of the films) the same number of vials, with suspended 

substrates, were placed in the oven simultaneously in all depositions (the optimization of concentration can be 
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done for any number in principle, as long as the same number is always used, which for us was six). The oven 

was left closed until the liquid had completely evaporated from the vial, leaving behind a film on the substrate. It 

is worth noting that opening and closing the oven during the deposition left large defect lines across the film at 

the height of the meniscus at the time the oven was opened (caused presumably by the resulting changes in 

humidity). Vibrations could cause the same effect. After removing the dry substrates from the oven, they were 

placed, polished-side-up in a tube furnace (connected to the air) to remove the polymer template. The temperature 

of the furnace was ramped up to 500°C over 5hrs, held at that temperature for 2hrs, and then ramped down to 

room temperature over 1 hr. After deposition and removal of the polymer spheres, samples were placed for 4 

hours in a bath of acid piranha (3:1 concentrated sulfuric acid: 30% hydrogen peroxide) held at 90°C on a hot 

plate. After rinsing and drying,  they were oxygen-plasma-cleaned for 1hr (100W, 5-10 sccm). As a final step, the 

IOFs were submerged in a dish filled with clean DI water overnight (for dialysis cleaning).  

 

A.2. Spatially patterning the surface chemistry for encryption (Chapter 1) 

The IOFs were exposed to vapors of 1H,1H,2H,2H-tridecafluorooctyl)trichlorosilane (13FS, Gelest, Inc.) 

in a vacuum chamber for 24h, followed by a 10 min bake at 150°C. Polydimethylsiloxane (PDMS) masks (2-

5mm-thick) were prepared by pouring a 10:1 (wt) mixture of PDMS resin and cross-linking agent (Sylgard 184, 

Dow Corning) into a clean, empty tissue culture dish and curing for 3-5h at 70°C. Patterns were carved in freshly 

cured slabs using pre-shaped blades (e.g. cookie-cutter) or with a scalpel or razor-blade, and masks were 

discarded after one use. For IOFs containing m complex patterns (e.g. letters) with n different functionalities on 

an ROH background, the surface chemistries were first defined in a simple stripe pattern, where m large stripes to 

contain the final patterns of a given functionality were used. This allowed us to clamp large PDMS masks directly 

to the sample (with no overhanging cover slip) and ensuring that exposure to the oxygen plasma was the same for 

all mask heights and shapes.  The mask could be peeled off after the exposure without damaging the structure. In 

each iteration of the patterning, the sample, with a PDMS mask clamped directly over the desired region is 

exposed to oxygen plasma (Diener Electric GmbH Femto-A plasma cleaner, O2 flow rate 5-10sccm) for 3-10min. 
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In the second step, the mask was removed and the sample was exposed to vapors of a different alkylchlorosilane, 

either n-decyltrichlorosilane (DEC, Gelest, Inc.), 3,3,3-trifluoropropyltrichlorosilane (3FS, Alfa Aesar) (each for 

24h) or chlorotrimethylsilane (TMS, Alfa Aesar) (20 min). Exposure was done under vacuum for all 

alkylchlorosilane depositions except for highly volatile TMS, which was done at 1atm. All exposures were 

followed by a 10 min bake at 150°C. In all experiments, we applied our functionalities in order of increasing 

wettability (13FSDEC3FSTMS). After large regions containing each surface chemistry in the desired final 

pattern have been defined, the background was re-activated by one final exposure to oxygen plasma, masked by 

the desired final pattern. To ensure good contact and a well-defined pattern, the PDMS masks (e.g. letters) were 

held under uniform pressure from a glass cover-slip. The sample was exposed in this state to oxygen plasma for 

10-30min (5-10sccm, long times used for thicker films) to impart ROH functionality on the background. 

A.3. Imaging of wetting interfaces 

PDMS-filling: 

For interface characterization, an IOF with regions of 13FS and ROH surface groups was fabricated as 

described above. 10:1 PDMS resin:cross-linker (Sylgard 184, Dow Corning) was poured over the sample until it 

was submerged. Penetration into the ROH pores was accelerated by placing IOF immersed in PDMS precursors 

under vacuum for 2-3h before curing for 2-5h at 70C. The vacuum step also served to remove any trapped 

bubbles. After curing, the PDMS overlayer was peeled off manually and was found to break naturally at the top-

surface of the IOF in infiltrated regions. 

Interfaces were characterized by optical and scanning electron microscopy (JEOL, Zeiss) as well as via 

scanning optical spectroscopy. Figure A3 shows optical micrographs, spectral scans and SEM images of an 

interface visualized by selective infiltration of PDMS into the IOF. All measurements show the presence of a 

partially-filled transition region, whose width varied from ~5-20µm, separating the completely filled region and 

the completely unfilled region. To characterize the interface of the functionalized regions, an IOF was first 

derivatized uniformly with (1H,1H,2H,2H-perfluorooctyl)silyl (R = 13FS) groups and then etched through a 

rectangular mask to reveal hydrophilic polar surfaces (referred to altogether as ROH hereafter for simplicity).  
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Figure A3. Optical characterization of a wetting interface visualized by the selective infiltration of PDMS into ROH-

functionalized regions. Regions functionalized by 13FS were not infiltrated upon immersion in PDMS prepolymer. A: 

Optical micrograph of the interface with complete infiltration on the right. B: Cross-sectional SEM image of an interface 

corner, showing the boundary between regions filled with PDMS (ROH) and remaining empty (13FS) C: Scanning optical 

spectroscopy image at 494nm, clearly showing three distinct regions  the completely filled region, the partially filled 

transition region, and the completely empty region. D-F: A few representative spectra taken from points in each of the three 

regions showing the transition from a more pronounced reflection peak at ~530 nm in the non-infiltrated regions to a multi-

peak thin-film interference pattern in the regions penetrated by PDMS, which is well index-matched with our sol-gel silica. 
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We found that the pores of the 13FS-functionalized IOF resisted infiltration by most solvents, including 

liquid precursors of PDMS. Selective infiltration of PDMS prepolymer into the lyophilic (ROH) regions of the 

crystal followed by thermal curing allowed us to freeze in place and characterize the chemical interface. Using 

SEM, optical microscopy and optical spectroscopy, we measured wetting interfaces to have widths of 5-20μm 

(see Fig. A3), which represents the resolution limit of our technique. 

 

A.4. Functionalization procedures for Chapters 2&3 

Quality Control  

After calcination, and cleaning, IOFs were exposed first to vapors of n-decyl (DEC) trichlorosilane for 

24h under vacuum, followed by baking at 150°C for 20 min. To test for viability before use, wetting in the IOFs 

was first characterized with this DEC functionality in 85% (vol) and 90% ethanol in water. In order to pass this 

quality control step, an IOF had to display an unfilled state in 85% and a completely filled state in 90% (using the 

binary definitions described in Chapters 2 & 3). In samples that satisfied these requirements, the uniform DEC 

functionality was erased via O2 plasma exposure for 1hour, followed by acid piranha cleaning (4hr, 85°C), 

followed by a second hour of O2 plasma exposure. 

Deposition of heterogeneous (mixed) functionalities 

IOFs were exposed for 24hr to mixed 13FS (1H,1H,2H,2H-tridecafluorooctyl)-, DEC-trichlorosilane 

vapors by placing them under vacuum in a dessicator with two small vials, each containing 200µL of a 13FS-, 

DEC-trichlorosilane liquid-liquid mixture and a small dish containing dry dessicant (Drierite ®). The ratios 

shown in Fig. 10 represent the liquid-liquid ratios in these vials. Following sliane exposure, IOFs were baked at 

150°C for 20min. 
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Vertical Gradients of Wettability 

IOFs were exposed under vacuum to vapors of 13FS-trichlorosilane for 24hr. After baking for 20 minutes 

at 150°C, IOFs were exposed to O2 plasma (5-10 sccm) for 10-120s. All were then exposed to vapors DEC-

trichlorosilane for 24h under vacuum, followed by baking at 150°C for 20 min. 

 

Defining hydrophilic patterns (Guiding the Eye): 

To aid in visualization, hydrophilic regions were sometimes defined in IOFs using masked O2 plasma 

exposure. Polydimethylsiloxane (PDMS) masks (2-5mm-thick) were prepared by pouring a 10:1 (wt) mixture of 

PDMS resin and cross-linking agent (Sylgard 184, Dow Corning) into a clean, empty tissue culture dish and 

curing for 24h at 70C. Patterns were carved in freshly cured slabs with a scalpel or razor-blade, and masks were 

discarded after one use. The PDMS masks (e.g. letters) were held against the IOFs under uniform pressure from a 

glass cover-slip. The sample was exposed in this state to oxygen plasma for 10-30min (5-10sccm) to render the 

unmasked regions wetting to all liquids. 

A.5. Methods for combinatorial Wetting in Color (Chapter 4) 

Applying Vertical Gradients of Wettability.  

Since 13FS was used as the base group in all elements of the array, all IOFs were first exposed under 

vacuum to vapors of 1H,1H,2H,2H-tridecafluoroocytl (13FS) – trichlorosilane for 24hrs. To remove potential 

sensitivity of the protocol to ambient humidity, IOFs were exposed after silanization to a saturated atmosphere of 

water vapor (done simply by submerging the hydrophobic porous IOFs in a dish filled with DI water). IOFs were 

then baked for 20 minutes at 150 °C under atmospheric pressure and ambient humidity. To apply the gradient, 

IOFs were exposed to O2 plasma (5-10 sccm, 100W) for 30s. Samples were then functionalized with one of: n-

decyl -(DEC), 3-phenylpropyl- (3PP), 3,3,3-trifluoropropyl- (3FS), pentafluorophenylpropyl- (5FP), p-tolyl- 

(PTOL), or trimethylsilyl (TMS) groups. Functionalization with DEC, 3PP, 3FS, 5FP and PTOL groups were 

done by exposing the IOF to vapors of the corresponding alkyltrichlorosilane according to the same procedure as 

described for 13FS. TMS-functionalization was accomplished by exposing the IOF to vapors of 
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chlorotrimethylsilane under atmospheric pressure and ambient humidity for 20 minutes. After silanization, all 

samples were post-treated as described for 13FS functionalization. All trichlorosilanes were purchased from 

Gelest Inc. and used without further purification. Chlorotrimethylsilane was purchased from Alfa Aesar and used 

without further purification. Finally, before testing, all samples are vigorously rinsed in ethanol, and air dried. 

 

Testing  

Each sample is placed in a dish of desired liquid and its colorimetric wetting response photographed. 

Initially samples were photographed in ethanol-water mixtures to be used as references, beginning at 100% 

ethanol and decreasing in increments of 5% until all samples were completely non-wetted. Each element of the 

array was then photographed in a variety of solvents. Importantly, to ensure that the previous solvent does not 

affect the wetting response of the next, all samples were carefully cleaned and re-standardized in order to verify 

reliability of the response. Cleaning consisted of acetone and ethanol rinsing, baking at 150°C and then a further 

rinsing with ethanol (air drying). To verify the quality of the cleaning, all samples were re-immersed in the 100% 

ethanol and 90% ethanol references and their wetting patterns were verified to exactly match the patterns 

produced in the original reference-liquid testing stage. This indicated passing of quality control. If quality control 

step failed (e.g. one of the reference liquids did not produce the expected wetting pattern in the array), the 

cleaning process was repeated until all samples passed before continuing on to next liquid. 

 

Data Capture 

Optical images were captured using a Canon EOS Rebel T2i Digital SLR camera equipped with a macro 

lens, and fixed to a tripod. All images were taken under zero magnification and at roughly the same angle under 

consistent ambient lighting conditions. It should be noted that while all images were captured under roughly the 

same conditions, this is not strictly a necessary step since all subsequent analysis is based on countable 

differences in wettability (visualized by a shift in the rainbow pattern corresponding to the number of unfilled 

layers), which are independent of angle or lighting conditions.   
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Reference Liquid Scoring 

The reference liquids used were the ethanol-water mixtures (increments of 5% volume fraction) and 

isopropyl alcohol (IPA). Since IPA wetted to a greater extent than 100% ethanol in all elements of the array, the 

set of reference liquids produced a consistent monotonic relative wetting trend. The colorimetric wetting pattern 

produced by a test liquid (e.g. n-octane) in each element of the array was compared to each of the reference 

liquids. For a given element (e.g. 5FP13FS) if one of the reference liquids (e.g. 85% ethanol) produced an 

identical wetting pattern to the test liquid, then the test liquid was assigned a score corresponding to the ethanol 

concentration of the matching reference liquid (e.g. a score of 85). If a test liquid produced a pattern that matched 

none of the reference liquids, the score was interpolated to a value ending with 2 or 7. For example, if a test liquid 

wets more than 85% ethanol, but less than 90% ethanol, then a score of 87 would be assigned. A liquid whose 

wetting pattern matched IPA was assigned a score of 110. If a liquid wetted more than 100% ethanol, but less 

than IPA, then a score of 105 was assigned. If a liquid wetted more than IPA, a score of 115 was assigned. 
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Appendix B. Mathematical and Numerical Methods 

B.1. Principal component analysis (for Chapter 4) 

Performing a 2D principal component analysis (PCA) facilitates graphical sorting of the different liquid 

types by performing a mathematical optimization of a 2D projection plane that maximizes the variability in the 

6D dataset of reference liquid scores. The goal is to look at the smallest number of variables that preserves most 

of the information from the higher-dimensional complete set of axes. The first principal component is the linear 

axis on which the data is projected that gives the maximum possible variance to the data set. The second principal 

component is the linear axis, under the constraint of being orthogonal to the first principal component axis, which 

maximizes the variance of the projected data. The same optimization is done for the third axis, except it must now 

be orthogonal to the first two, and so on (see ref [109]). The first two principal components of our system, 

accounting for 98% of the variance of the data, provide some insight into which elements of the array provide the 

most information. In the co-ordinate system of [5FP13FS, 3FS13FS, DEC13FS, PTOL13FS, 

TMS13FS, 3PP13FS], the first two principal components axes are PC1 = [0.389638, 0.448862, 0.374264, 

0.393558, 0.423698, 0.414998], PC2 = [0.041843, -0.86808, 0.314051, 0.306926, 0.166533, 0.155311] (the 

global mean of 88.4057971 was subtracted from the whole data set to center the data before transforming to the 

principal component axes).  

The first principal component weights all elements nearly equally. The maximum variance in this 

direction reflects the trend that the degree of wetting (and thus the reference liquid scores) has a general negative 

correlation with surface tension of the liquids for all surface chemistry combinations. The second principal 

component primarily looks at the contrast between the 3FS13FS score and the scores of the non-fluorinated 

elements of the array (this axis is nearly orthogonal to the 5FP13FS axis). The principal components reflect the 

strong degree of correlation between the scores in the DEC13FS, PTOL13FS, TMS13FS and 3PP13FS 
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elements of the array (indicates redundancy in these elements), and that the 3FS13FS element provides the 

most distinct information from the others. This is also reflected in the qualitative similarity between the 2D 

3FS13FS vs. DEC13FS plot (Fig. 18A) and the 2D principal component plot including all 6 elements (Fig. 

18D). 

B.2. Numerical percolation simulation  

In this appendix, I have included a MATLAB script that calculates pore filling profiles for an IOF wetted 

by a liquid. This is a variant of the one used in Chapter 2 that has been commented in detail and has an added 

feature that allows a user to include anisotropy to the lattice (that could be caused by vertical compression during 

high temperature calcination). The script also lets the user input a vertical gradient of wettability described by a 

cumulative normal distribution with the step-height (the amount the intrinsic contact angle increases over the 

depth of the structure), mean and standard deviation (the latter two parameters given as depths in number of 

layers) as fitting parameters. The basic inputs are a distribution of neck angles (specified by a mean and standard 

deviation), and a list of liquids (defined by intrinsic contact angles). Anisotropy in the pore structure can be 

defined by giving mna_shift and sdna_shift non-zero values. These make the in-plane and out-of-plane neck 

angle distributions different. The outputs are FP, which stores the filling profiles by layer (percentage of the pores 

filled in a layer) for each liquid, and POREMAP, which stores a complete map of all filled and empty pores in the 

simulated lattice. It is worth noting, that since this simulation generates the spatial map of neck-angles based on a 

pseudo-random number generator (the ‘randn’ function), the POREMAP output will be different with each 

running of the program, while the statistics represented by the FP output will remain more or less the same (the 

fluctuation in the statistics from one simulation to the next can be minimized by increasing the simulation 

volume). The comment section at the end of the program explains the co-ordinate system used to index the fcc 

lattice of pores and the necks connecting them. 

 

MATLAB Code (Pore filling simulation)  

clear all; 
close all; 
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%% This program has two parts: 1 connects connectivities to 
% liquid/surface/pore properties. The second connects connectivities to a 
% filling profile. 

  
%% Size inputs 
l=100; 
t=10; %input thickness 
n=16; %number of liquids 

  
%% Define contact angle and gradients 
ca=linspace(21,25,n); %contact angles 
cag=zeros(t,n); %contact angle with gradient corrections 

  
% Cumulative normal distribution to fit the gradients 
% cai, mut and sigt are fitting parameters 
cai=0; %contact angle increase parameter for gradients 
mut=7; 
sigt=3; 
for tt=1:t 
   cag(tt,:)=ca+cai*0.5*(1+erf((tt-mut)/(sqrt(2)*sigt))); 
end 

  

     
mna=19.6; %mean neck angle in degrees for inter-layer movement 
mna_shift=0; % anisotropy, this is the difference between in-plane and out-of-plane 

mean neck angles 
sdna=3.2; %standard deviation neck angle in degrees (inter-layer movement) 
sdna_shift=0; %The change in sdna for in-plane movement 

  

  
%% Calculate the connectivity upfront (in-plane and out-of plane, gradients 

allowed) 
conn=zeros(t,n); 
conn_ip=zeros(t,n); 
for nn=1:n 
    for tt=1:t 
    % First the (out-of-plane) connectivity 
    conn(tt,nn)=1-0.5*(1+erf((cag(tt,nn)-mna)/(sqrt(2)*sdna))); 
    % Second the in-plane connectivity, if different 
    conn_ip(tt,nn)=1-0.5*(1+erf((cag(tt,nn)-mna-

mna_shift)/(sqrt(2)*(sdna+sdna_shift)))); 

     
    end 
end 

  
%% The pore filling simulation 

  
% Initialize output variables 
% Filling profiles 
FP=zeros(t,n); 

  
% A variable to store all of the pore coordinates 
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POREMAP=zeros(l,l,t,n); 

  
% The random number generator output 
R=randn(l,l,t,6); 

  
% Start the master loop (for each liquid) 
for nn=1:n 
    % Set the number of open and closed necks 
    P=zeros(l,l,t); % Pores 
    N=zeros(l,l,t,6); % Necks 

  
    % Set the top layer of pores to be filled 
    P(:,:,1)=ones(l,l); 
    for pp=1:l 
        for qq=1:l 
            for tt=1:t 
               for rr=1:6 
                   if rr>3 
                       % out of plane, use conn 
                       if R(pp,qq,tt,rr)<sqrt(2)*erfinv(2*conn(tt,nn)-1) 
                           N(pp,qq,tt,rr)=1; 
                       end 
                   else 
                       % in plane, use conn_ip 
                       if R(pp,qq,tt,rr)<sqrt(2)*erfinv(2*conn_ip(tt,nn)-1) 
                           N(pp,qq,tt,rr)=1; 
                       end 
                   end                 
               end 
            end 
        end 
    end 

     
    % Now the next big loop where we get to fill all the pores 

     
    % first we need to generate a counter variable zz, and a while loop 
    % variable kk to run the while loop and check for infinite loops 
    kk=1; 
    while kk>0 
        zz=0; 
        for i=1:l 
            for j=1:l 
                for k=1:t 
                    % look at each nearest neighbor, fill all pores that are 
                    % connected through an open neck (N(...)=1) to a filled 
                    % pore (P(...)=1 

                     
                    % Only do this if the pore is empty to start with 
                    if P(i,j,k)==0 

                     
                    % Start with pores above the test pore 
                    if k~=1 %no pores above the top 
                        if N(i,j,k-1,4)==1 
                            if P(i,j,k-1)==1 
                                P(i,j,k)=1; 
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                            end 
                        end 

                         
                        if j~=l 
                        if N(i,j+1,k-1,5)==1 
                            if P(i,j+1,k-1)==1 
                                P(i,j,k)=1; 
                            end 
                        end 
                        else 
                        if N(i,1,k-1,5)==1 
                            if P(i,1,k-1)==1 
                                P(i,j,k)=1; 
                            end 
                        end 
                        end 

                         
                        if i~=l 
                        if N(i+1,j,k-1,6)==1 
                            if P(i+1,j,k-1)==1 
                                P(i,j,k)=1; 
                            end 
                        end  
                        else 
                        if N(1,j,k-1,6)==1 
                            if P(1,j,k-1)==1 
                                P(i,j,k)=1; 
                            end 
                        end  
                        end 
                    end 

                     
                    % Next in plane 
                    % using periodic boundary conditions 

                     
                    % neck #1's 
                    if i~=l 
                        if N(i,j,k,1)==1 
                            if P(i+1,j,k)==1 
                                P(i,j,k)=1; 
                            end 
                        end 
                    else 
                        if N(i,j,k,1)==1 
                            if P(1,j,k)==1 
                                P(i,j,k)=1; 
                            end 
                        end 
                    end 
                    if i~=1 
                        if N(i-1,j,k,1)==1 
                            if P(i-1,j,k)==1 
                                P(i,j,k)=1; 
                            end 
                        end 
                    else 
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                        if N(l,j,k,1)==1 
                            if P(l,j,k)==1 
                                P(i,j,k)=1; 
                            end 
                        end 
                    end 

                    
                    % neck #2's 
                    if j~=l 
                        if N(i,j,k,2)==1 
                            if P(i,j+1,k)==1 
                                P(i,j,k)=1; 
                            end 
                        end 
                    else 
                        if N(i,j,k,2)==1 
                            if P(i,1,k)==1 
                                P(i,j,k)=1; 
                            end 
                        end 
                    end 
                    if j~=1 
                        if N(i,j-1,k,2)==1 
                            if P(i,j-1,k)==1 
                                P(i,j,k)=1; 
                            end 
                        end 
                    else 
                        if N(i,l,k,2)==1 
                            if P(i,l,k)==1 
                                P(i,j,k)=1; 
                            end 
                        end 
                    end 

                     
                    % Now the neck #3's N(i,j,k,3)->P(i+1,j-1,k) 
                    % For these we will treat the exceptions separately 
                    if i~=l 
                        if j~=1 
                            if N(i,j,k,3)==1 
                                if P(i+1,j-1,k)==1 
                                    P(i,j,k)=1; 
                                end 
                            end   
                        else 
                            if N(i,j,k,3)==1 
                                if P(i+1,l,k)==1 
                                    P(i,j,k)=1; 
                                end 
                            end 
                        end 
                    else 
                        if j~=1 
                            if N(i,j,k,3)==1 
                                if P(1,j-1,k)==1 
                                    P(i,j,k)=1; 
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                                end 
                            end   
                        else 
                            if N(i,j,k,3)==1 
                                if P(1,l,k)==1 
                                    P(i,j,k)=1; 
                                end 
                            end 
                        end 
                    end 

                     
                    % Now the neck #3's N(i-1,j+1,k,3)->P(i-1,j+1,k) 
                    % For these we will treat the exceptions separately 
                    if i~=1 
                        if j~=l 
                            if N(i-1,j+1,k,3)==1 
                                if P(i-1,j+1,k)==1 
                                    P(i,j,k)=1; 
                                end 
                            end   
                        else 
                            if N(i-1,1,k,3)==1 
                                if P(i-1,1,k)==1 
                                    P(i,j,k)=1; 
                                end 
                            end 
                        end 
                    else 
                        if j~=l 
                            if N(l,j+1,k,3)==1 
                                if P(l,j+1,k)==1 
                                    P(i,j,k)=1; 
                                end 
                            end   
                        else 
                            if N(l,1,k,3)==1 
                                if P(l,1,k)==1 
                                    P(i,j,k)=1; 
                                end 
                            end 
                        end 
                    end 

                     
                    % Now look at pores below the test pore 
                    if k~=t %no pores above the top 

                         
                        if N(i,j,k,4)==1 
                            if P(i,j,k+1)==1 
                                P(i,j,k)=1; 
                            end 
                        end 

                         
                        if j~=1 
                        if N(i,j,k,5)==1 
                            if P(i,j-1,k+1)==1 
                                P(i,j,k)=1; 
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                            end 
                        end 
                        else 
                        if N(i,j,k,5)==1 
                            if P(i,l,k+1)==1 
                                P(i,j,k)=1; 
                            end 
                        end 
                        end 

                         
                        if i~=1 
                        if N(i,j,k,6)==1 
                            if P(i-1,j,k+1)==1 
                                P(i,j,k)=1; 
                            end 
                        end  
                        else 
                        if N(i,j,k,6)==1 
                            if P(l,j,k+1)==1 
                                P(i,j,k)=1; 
                            end 
                        end 
                        end 
                    end 

                     

                     
                    if P(i,j,k)==1 
                        zz=zz+1; 
                    end 

                     
                    end %onto the next pore 

                 

                 
                end 
            end 
        end 
        %Print zz to check function 
        zz 
        if zz==0 
            kk=0; 
        end 
    end 

     
    POREMAP(:,:,:,nn)=P; 
    for tt=1:t 
        FP(tt,nn)=sum(sum(P(:,:,tt)))/(l^2); 
    end 
end 

  
% plot the filling profiles 
figure; 
x=linspace(1,t,t)'; 
hold on; 
plot(x,FP(:,1),'k'); 
plot(x,FP(:,2),'b'); 
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plot(x,FP(:,3),'m'); 
plot(x,FP(:,4),'g'); 
plot(x,FP(:,5),'c'); 
plot(x,FP(:,6),'r'); 
plot(x,FP(:,7),'y'); 
plot(x,FP(:,8),'k'); 
plot(x,FP(:,9),'k'); 
plot(x,FP(:,10),'b'); 
plot(x,FP(:,11),'m'); 
plot(x,FP(:,12),'g'); 
plot(x,FP(:,13),'c'); 
plot(x,FP(:,14),'r'); 
plot(x,FP(:,15),'y'); 
plot(x,FP(:,16),'k'); 

  
% plot the connectivity 
figure; 
y=linspace(1,n,n); 
plot(conn(1,:)); 

  

     
%% Description of the lattice used 
%lattice vectors are 1/2*{(1,1,0);(1,0,1);(0,1,1)} -->a,b,c 

  
% coordinates for each unit cell can be in terms of abc, define a,b as the in-plane 

%ones (in-plane refers to the close-packed planes that are vertically stacked in an 

%IOF 

  
% 1/2*: (110)(101)(011)(-1-10)(-10-1)(0-1-1)(1-10)(10-1)(01-1)(-110)(-101)(0-11) 

  
% a,b,c,-a,-b,-c,b-c,a-c,a-b,c-b,c-a,b-a 

  
%Nearest neighbors of i,j,k are: (i+1,j,k),(i,j+1,k),(i,j,k+1),(i-1,j,k),(i,j-

%1,k),(i,j,k-1),(i,j+1,k-1),(i+1,j,k-1),(i+1,j-1,k),(i,j-1,k+1),(i-1,j,k+1),(i-

%1,j+1,k) 
%Neck connecting (i,j,k) to above nearest neighbors (in the same order) are: 

%(i,j,k,1),(i,j,k,2),(i,j,k,4),(i-1,j,k,1),(i,j-1,k,2),(i,j,k-1,4),(i,j+1,k-

%1,5),(i+1,j,k-1,6),(i,j,k,3),(i,j,k,5),(i,j,k,6),(i-1,j+1,k,3) 

  
%Nearest Neighbor to (i,j,k) connected by (neck coordinates) 
%(i+1,j,k) --> (i,j,k,1) 
%(i,j+1,k) --> (i,j,k,2) 
%(i,j,k+1) --> (i,j,k,4) 
%(i-1,j,k) --> (i-1,j,k,1) 
%(i,j-1,k) --> (i,j-1,k,2) 
%(i,j,k-1) --> (i,j,k-1,4) 
%(i,j+1,k-1) --> (i,j+1,k-1,5) 
%(i+1,j,k-1) --> (i+1,j,k-1,6) 
%(i+1,j-1,k) --> (i,j,k,3) 
%(i,j-1,k+1) --> (i,j,k,5) 
%(i-1,j,k+1) --> (i,j,k,6) 
%(i-1,j+1,k) --> (i-1,j+1,k,3) 
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