

Coordinated Resource Management in Networked Embedded
Systems

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Waterman, Jason. 2012. Coordinated Resource Management in
Networked Embedded Systems. Doctoral dissertation, Harvard
University.

Accessed April 17, 2018 3:44:10 PM EDT

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:9861674

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/9861674&title=Coordinated+Resource+Management+in+Networked+Embedded+Systems&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=null&department=Engineering+and+Applied+Sciences
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

c�2012 - Jason Waterman

All rights reserved.

Thesis advisor Author

Radhika Nagpal Jason Waterman

Coordinated Resource Management in Networked Embedded Systems

Abstract

This dissertation shows that with simple programming abstractions, network-wide re-

source coordination is efficient and useful for programming embedded sensor networks. Existing

systems have focused primarily on managing resources for individual nodes, but a sensor network

is not merely a collection of nodes operating independently: it must coordinate behavior across mul-

tiple nodes to achieve high efficiency. We need tools that can enable system-wide coordination at a

higher level of abstraction than what exists today.

We present three core contributions. The first is a service called IDEA that enables network-

wide energy management for sensor networks. It unites energy monitoring, load modeling, and

distributed state sharing into a single service that facilitates distributed decision making. Using sim-

ulation and testbed results, we show that IDEA enables improvements in network lifetime of up to

35% over approaches that do not consider energy distribution.

Our second contribution is Karma, a system for coordinating insect-sized robotic micro-

aerial vehicle (MAV) swarms, an emerging class of mobile sensor networks. Karmas system archi-

tecture simplifies the functionality of an individual MAV to a sequence of sensing and actuation

commands called behaviors. Each behavior has an associated progress function, a measure of how

much of that behavior has been completed. Programming is done by composing behaviors which

are coordinated using input from the progress functions. Through simulation and testbed experi-

iii

Abstract iv

ments, we demonstrate Karma applications can run on limited resources, are robust to individual

MAV failure, and adapt to changes in the environment.

Our final contribution is Simbeeotic, a testbed for MAV coordination algorithms. MAV

sensors must be codesigned with the software and coordination algorithms that depend on them.

This requires a testbed capable of simulating sensors to evaluate them before actual hardware is

available and the ability to test with real flight dynamics for accurate control evaluation. In addition,

simulation should be able to scale to hundreds or thousands of MAVs at a reduced level of fidelity

in order to test at scale. We demonstrate that Simbeeotic provides the appropriate level of fidelity to

evaluate prototype systems while maintaining the ability to test at scale.

Contents

Title Page . i
Abstract . iii
Table of Contents . v
List of Figures . vii
List of Tables . xi
Acknowledgments . xii
Dedication . xiv

1 Introduction 1
1.1 Wireless Sensor Networks . 2
1.2 Mobile Sensor Networks . 4
1.3 Coordination Challenges in Embedded Sensor Networks 5
1.4 Contributions and Structure of the Dissertation 6

2 IDEA: Integrated Distributed Energy Awareness for Wireless Sensor Networks 9
2.1 Motivation . 11

2.1.1 Example: Energy-Aware Routing . 12
2.2 Architecture . 14

2.2.1 Problem Definition . 14
2.2.2 Energy Objective Functions . 16
2.2.3 IDEA Overview . 18
2.2.4 Monitoring and Modeling . 20
2.2.5 Data Sharing . 21
2.2.6 Client Integration . 23

2.3 Evaluation . 25
2.3.1 Experimental Setup . 25
2.3.2 Low-Power Listening Parameter Tuning 27
2.3.3 Distributed Localization . 37

3 Simbeeotic: A Testing Platform for Micro-Aerial Vehicle Swarms 43
3.1 Motivation . 44

3.1.1 Core Requirements . 45
3.1.2 Why Other Simulators Could not Meet our Needs 46

v

Contents vi

3.2 Simulator Design . 50
3.2.1 Architecture . 51
3.2.2 MAV Domain Models . 57
3.2.3 Software Engineering Tricks . 58

3.3 MAV Testbed . 60
3.3.1 Remote Control . 61
3.3.2 Simulator Integration . 63
3.3.3 Hardware in the Loop . 64

3.4 Evaluation . 67
3.4.1 Simulation Performance . 68
3.4.2 Example Scenarios . 73

3.5 Summary . 76

4 Karma: A Framework for Coordinating Micro-Aerial Vehicle Swarms 77
4.1 Architecture . 78

4.1.1 Motivating Application: Alfalfa Crop Monitoring and Pollination 79
4.1.2 Hive-Drone Model . 80
4.1.3 Spatial Decomposition . 82
4.1.4 Data Model . 84
4.1.5 Programming Model . 85
4.1.6 Scheduling Problem . 87

4.2 Karma Implementation . 89
4.2.1 Programming the Swarm . 90
4.2.2 Karma Scheduler . 93
4.2.3 Dispatcher . 94
4.2.4 Execution Walkthrough . 96

4.3 Evaluation . 100
4.3.1 Simulation Setup . 100
4.3.2 Efficiency . 102
4.3.3 Resilience to Failure . 104
4.3.4 Adaptability . 106
4.3.5 Information Latency . 107
4.3.6 Helicopter Testbed . 111

4.4 Summary . 113

5 Related Work 115
5.1 Coordinated Energy Management . 116
5.2 Cluster Programming . 119
5.3 Resource Coordination for Swarms . 121

6 Future Work and Conclusion 124
6.1 Coordinated Energy Management . 124
6.2 Resource Coordination for Swarms . 125

Bibliography 130

List of Figures

1.1 A Telos mote. 3

2.1 An example routing problem. The edges are the energy in mJ to send and receive a
packet. 12

2.2 Overview of IDEA architecture. IDEA combines load and charge monitoring and
modeling, energy data distribution, and an application-provided energy objective
function into a single service that can easily be integrated into application compo-
nents. Client states are evaluated by the energy objective function and also assigned
an application utility. These scores are combined by the optimizer to select the state
best balancing the application’s distributed energy goals against the state’s intrinsic
desirability. 19

2.3 LPL overheads for sending and receiving packets. By lowering its LPL check in-
terval, a node increases its own energy usage but decreases the amount of energy
other nodes need to send packets to the node. Conversely, when a node increases its
LPL check interval, its own energy usage is reduced, but it also increases the energy
other nodes need to send packets to the node. 29

2.4 Topology used for LPL tuning experiments. 32
2.5 Optimality and overhead. IDEA consumes energy in order to propagate load, charge,

and state information. For the LPL-tuning component the energy overhead is related
to the rate at which we re-tune the local LPL interval, load model, and charge model.
This plot shows both the IDEA overhead and the degree of optimality achieved as
the update rate is varied. 33

2.6 LPL interval comparison with optimal. To assess the degree to which the IDEA-
driven approach finds a near-optimal global state, we plot the percent difference
between the intervals chosen by the IDEA-tuned and offline optimal systems. The
plot demonstrates that IDEA sets the LPL intervals of nodes similarly to the optimal
solution and helps explain its performance. 35

2.7 Energy density over time. Energy densities for the Closest heuristic and IDEA
using the WeightedEnergy objective function are shown at four points in time. The
event distribution is uniform. IDEA enables better load distribution, which leads to
a longer application lifetime. 39

vii

List of Figures viii

2.8 Performance of IDEA objective functions and heuristic. Simulation results are shown
for the localization application. The graph compares the Closest heuristic, imple-
mented without using IDEA, against three different IDEA objective functions: Max-
Energy, TotalEnergy and WeightedEnergy. The WeightedEnergy approach
using IDEA outperforms the non-energy-aware approach while the other objective
functions perform more poorly. 41

3.1 The Simbeeotic architecture. Domain models are plugged into a discrete event sim-
ulation engine. The kinematic state of models with physical presence is managed
by an integrated physics engine. Several levels of abstraction in the model layer
provide flexibility and convenience to modelers. The simulation architecture can be
augmented by user-supplied plugin components. 52

3.2 Code from a model initialization routine. This code demonstrates how to query for
attached equipment and schedule a periodic timer (starting immediately and firing
every sensorTimeout ms). 55

3.3 A class diagram for the RF communications package in Simbeeotic. The abstraction
defines a physical layer packet-driven radio. Interfaces are indicated with a and
classes are indicated with a . 58

3.4 Simbeeotic code demonstrating the use of the @Inject annotation for model pa-
rameterization. 60

3.5 The HWIL cycle in Simbeeotic. Vicon cameras track the position and orientation of
a helicopter and push frames to a tracking server (1), which pushes updates (2) to
registered clients. A Vicon input component in Simbeeotic receives the update and
overrides the kinematic state (3) of the corresponding object in the physics engine.
When the ghost model executes an event (4), it has the most recent state of the
helicopter. If a command is issued, it is sent to the RC command server (5) where it
is dispatched by the RF transmitter (6) to the helicopter. 62

3.6 The overhead of collision detection in Simbeeotic. A fixed number of MAVs are
simulated with a varying number of static obstacles. The amount of time to execute
the event logic is constant. The number of required collision checks between MAVs
and obstacles (and the time spent in the physics engine) grows linearly as obstacles
are introduced. 70

3.7 Scalability of Simbeeotic with respect to swarm size. The number of events to pro-
cess and kinematic states to integrate increases linearly with swarm size. The cor-
responding event and physics execution times reflect this increase. The dashed ver-
tical line indicates the point above which soft realtime cannot be achieved with this
workload (3,074 MAVs). 71

3.8 Simbeeotic performance with radio broadcasts. The simulation runtime does not
increase linearly for the broadcast scenario. A nontrivial amount of work is under-
taken for each radio transmission event, which may also generate reception events
on all other MAVs. The event execution time dominates this scenario as the swarm
scales. The dashed vertical line indicates the point above which soft realtime cannot
be achieved with this workload (550 MAVs). 73

List of Figures ix

3.9 A HWIL deployment of a MAV swarm. Five testbed MAVs are deployed alongside
45 simulated MAVs to search a space for flowers. The circle in the virtual world
represents a flower patch (also visible in the testbed floor), and the box at the center
denotes the MAV hive. 74

3.10 An overhead trace of five simulated MAVs navigating through the environment with
the assistance of a gradient field provided by RF beacons (square dots). The gradient
in this case specifies two paths away from the center. The MAVs use the value and
the signal strength of beacon packets as input to a biased random walk (chemotaxis)
algorithm. The MAVs are successful in traveling between the hive and the edge of
the gradient field along the two paths. 75

4.1 The hive-drone data model in action. Drones are dispatched with blank scratchpads.
As they execute a behavior, they populate their scratchpad. On return to the hive,
the scratchpad is appended to the Datastore. 85

4.2 Block diagram of the Karma design. Applications containing sets of processes are
submitted to the Karma hive by a user. Each process definition contains an activa-
tion predicate, a progress function, and a drone behavior. The Scheduler allocates
resources (available drones) to processes. The Dispatcher consumes the allocation
and programs behaviors on to drones and dispatches them on sorties. Upon their
return, drones transfer the contents of their scratchpad to the hive Datastore. 90

4.3 Pseudocode for the process definitions that make up the alfalfa crop monitoring and
pollination application. 91

4.4 Psuedocode for the definition of processes that make up the walkthrough applica-
tion. 96

4.5 Karma behavior allocation. Karma allocates drones to behaviors according to the es-
timated amount of work to be done and the measured progress rate of each behavior
per region. Remaining work is the sum of remaining progress across all regions. . . 98

4.6 Selective allocation in Karma. Processes are selectively activated by the presence or
absence of information. The righthand panel shows the regions in which the Survey
process is activated by the prior detection of environmental features. 99

4.7 Karma efficiency. Karma scales sub-linearly (w.r.t. completion time) as swarm size
increases. Gains are offset by relatively long charging periods in short scenarios. . . 103

4.8 Drone failure in Karma. Karma is resilient to individual drone failures, exhibiting a
graceful degradation in performance as the probability of failure increases. 106

4.9 Psuedocode for the definition of processes that make up the plume tracking appli-
cation. 108

4.10 A series of snapshots from the hive Datastore depicting the measured contour of an
expanding chemical plume. 109

4.11 Information latency measurements for one process-region pair in the plume tracking
application. The continuous dispatch policy consistently outperforms the greedy
policy. 110

4.12 The ground vehicle and helicopters operating in the indoor testbed. 111
4.13 Ground truth target location and helicopter flight paths as recorded by the motion

capture system during the testbed experiment. The target is solid and the helicopters
are dotted. 112

List of Figures x

4.14 The region occupied by the target throughout the vehicle tracking experiment. The
perceived location (dotted line) lags behind the truth location due to information
latency. 113

List of Tables

2.1 LPL tuning performance on MoteLab. The table shows results for MoteLab ex-
periments comparing the performance of the IDEA-driven LPL tuning component
against the best static parameter solution. IDEA shows gains for both the case where
all nodes start with the same battery level and randomly initialized battery states. . 36

2.2 LPL tuning performance with solar charging. This table displays results for TOSSIM
experiments comparing IDEA-based LPL parameter tuning with the best static in-
terval and an overhead-free version of IDEA. IDEA shows gains over the non-tuned
approaches across a range of different solar-charging profiles. The % increase col-
umn reflects the improvement between the best static LPL interval and the IDEA-
tuned intervals . 37

3.1 Open source libraries utilized in Simbeeotic. 51

xi

Acknowledgments

First I’d like to thank Matt Welsh. If it wasn’t for his support, I wouldn’t be here today.

I’ve learned so much from my time in his group and appreciate his philosophy of building and

evaluating real systems. I look forward to continuing that philosophy with my own students.

I’d also like to thank Margo Seltzer, Radhika Nagpal, Eddie Kohler, and Greg Morriset

for filling in after Matt left. I lost an adviser but gained a family in the process. It shows how much

the department cares about its students. A special thanks to Margo for keeping this dissertation on

track by figuratively poking me with her sharp, pointy stick. Her comments and suggestions have

greatly improved the clarity and quality of this dissertation.

One of the best parts of being in grad school is the grad students you get to collaborate

with. Bor-rong Chen, Konrad Lorincz, Geoffrey Mainland, and Geoffrey Challen (GWA) all wel-

comed me into Matt’s group and showed me the ropes. I am especially grateful for the collaboration

on IDEA with GWA. I learned a lot about the entire process of research–starting with a nugget

of an idea and taking it all the way to publication–while working with GWA. While I didn’t have

the pleasure to work directly with Rohan Murty, I am grateful for his friendship and I always look

forward to our conversations together.

During my time working on the RoboBees project, I couldnt have asked for better col-

leagues than Bryan Kate and Karthik Dantu. Our collaboration on Simbeeotic and Karma meant

many long hours in the lab together, and I was glad to be able to spend it with them. Bryans ex-

perience in writing simulators was very helpful in designing the architecture of Simbeeotic, and I

am grateful for his contribution to the Simbeeotic core. In addition to being great to work with,

Bryan and Karthik were wonderful traveling companions. I will always remember our conference

trips together in Seattle and Vancouver, as well as Bryan and I trying mystery foods in Beijing and

xii

Acknowledgments xiii

climbing the Great Wall of China together.

Last but not least, I’d like to thank my fiancé, Heather Campbell. We first met just a few

weeks before I started grad school, and I tried to warn her what dating a grad student was going to

be like. However, she was not deterred, and I am a lucky man for that. Heather’s sense of humor,

inspiration, and support got me through the tough times and I cannot thank her enough for that. I’m

looking forward to our next great adventure together.

Dedicated to my grandmother Mae.

xiv

Chapter 1

Introduction

Advances in system-on-a-chip manufacturing, low power communication, and micro-

electromechanical system (MEMS) sensors are enabling new forms of embedded systems such as

wireless sensor networks (WSNs). A typical WSN consists of a large collection of nodes distributed

throughout a physical area, sensing the environment through one or more sensors to achieve an

application-specific goal. This approach has several advantages over deploying a single or small

number of large, more sophisticated sensors. A dense large-scale deployment extends spatial cover-

age while still achieving high-resolution sensing. Having many deployed nodes increases the fault-

tolerance of the system, allowing the system to degrade gracefully in the event of node failure.

Mobile sensor networks are another emerging class of embedded systems. Nodes in these

networks have the ability, through self actuation, to move around the environment. Mobility allows

nodes to cover a larger spatial area and reposition themselves as conditions change in the environ-

ment.

Both classes of these embedded sensor networks present several programming challenges.

1

Chapter 1: Introduction 2

In these systems, resources such as energy, sensing, and processing are extremely limited and must

be carefully managed across the network. Existing systems have focused primarily on managing

resources for individual nodes, but these networks are not merely a collection of nodes operating in-

dependently: they must coordinate behavior across multiple nodes to achieve high efficiency. Subtle

changes to node-level behavior (such as the radio listening duty cycle or choice of routing path) can

have a tremendous impact on the overall efficiency and data yield of the network. As it is usual to

deploy these networks with a single purpose in mind, it is natural to conceive of an embedded sen-

sor network as a single programmable entity that operates in a coordinated fashion to achieve some

high-level system goal. However, programming these complex coordination behaviors is typically

done in an ad hoc fashion, using bare-bones APIs provided by the node-level OS. What is needed

are tools that can enable system wide coordination at a higher level of abstraction than what exists

today. In this dissertation I show that with simple programming abstractions, network-wide resource

coordination is efficient and useful for programming embedded sensor networks.

1.1 Wireless Sensor Networks

Wireless sensor networks (WSNs) are an important class of embedded systems with novel

applications in areas such as environmental monitoring [76], medicine [51], and industrial monitor-

ing [40]. A prototypical WSN node is the Telos ultra-low power wireless module (mote) [65] shown

in Figure 1.1.

Chapter 1: Introduction 3

Figure 1.1: A Telos mote.

Telos motes have a low-power microcontroller (MCU) for processing, limited on-board

storage, and a low-bandwidth radio for communication. They are powered by batteries, which al-

lows for untethered operation, but it means there are power consumption constraints for nodes. For

example, radio communication requires about an order of magnitude more energy than processing,

implying that communication should be kept to a minimum.

Typically, nodes in a WSN are deployed in areas where there is no existing infrastructure.

The nodes must be able to self-organize, withstand harsh environments, and cope with failure. With

the limited resources mentioned above, it is necessary to orchestrate resource management deci-

sions across the network as a whole. For example, consider a network to monitor seismic activity at

a volcano [84, 86]. Nodes must decide how much of their limited energy to invest in sampling, stor-

Chapter 1: Introduction 4

ing, and processing local sample data; transmitting signals to the base station; and listening for and

routing packets for other nodes deeper in the routing tree. The resource load on each node is a com-

plex function of the activity level of the volcano, quality of the sensor data, and packet-forwarding

demand from other nodes. This problem becomes more complex when nodes are powered by solar

cells, since the energy budget fluctuates. It is important to note that both resource load and resource

availability fluctuate over time: an offline static solution cannot suffice.

1.2 Mobile Sensor Networks

Micro-aerial vehicles (MAVs) are an emerging class of mobile sensing systems consisting

of small autonomous aerial vehicles capable of limited computing, communication, sensing, and

actuation. Example research platforms include quadrotors [55], fixed-wing aircraft [30], and small

“flying motes” [?]. At the forefront of MAV research is the RoboBees project whose goal is to

construct insect-sized flapping-wing MAVs [1]. Recent advances in airframe construction, flight

control, sensor design and high-density power sources are pushing insect-scale MAVs closer to

reality. With this class of devices, many novel research directions for mobile distributed sensing

applications have emerged.

Insect-scale platforms have two advantages – extremely small size and deployment in

large numbers. Insect-scale MAVs will be relatively inconspicuous and can operate in enclosed,

close-quartered areas where traditional aerial vehicles cannot fly. In the future, these systems can

be used to perform tasks that are challenging for larger platforms, such as landing on a flower

and collecting or depositing pollen. Further, hundreds to thousands of MAVs will be able to be

deployed in conjunction to achieve a specific task in a massively parallel fashion. In these cases, a

Chapter 1: Introduction 5

MAV swarm makes up for lack of sophisticated sensing and actuation through scale in deployment,

providing parallelism and robustness to failure in the field.

1.3 Coordination Challenges in Embedded Sensor Networks

Designing an embedded sensor network to make efficient use of scarce resources while

yielding high-quality data presents a number of challenges. Not only are node resources limited,

but small local changes in a node’s operation can have a ripple effect throughout the network. For

example, if a node shuts down its radio to save energy, many nodes in the network may need to

reconfigure their routing tables. Moreover, nodes are mutually dependent upon each other to relay

data, maintain time synchronization, perform collaborative event detection, and maintain spatial

sensor coverage. It is not enough to conceive of a network as a mere collection of independent nodes,

yet that is the dominant programming abstraction supported by existing sensor network operating

systems [29, 33, 52].

As applications increase in complexity, reasoning about the global effects of local changes

to node behavior can be difficult. The most common form of resource management is simple duty

cycling, in which a (usually static) period is assigned to each node to achieve a given target lifetime.

This works fine for applications with simple periodic behavior and few configuration changes over

time. However, applications with more dynamic resource requirements, such as the energy and

bandwidth needed for a high-fidelity body sensor network [50], need more sophisticated approaches

involving adaptation over time as well as both local and global knowledge of resource availability.

To achieve the greatest efficiency, nodes cannot simply make local decisions on how to

allocate their resources. Rather, it is necessary to perform resource adaptation in a coordinated

Chapter 1: Introduction 6

fashion, where nodes are assigned tasks and are allocated node-level resources to achieve the great-

est common good. Such coordination can be done in a distributed fashion within local clusters of

nodes done centrally network-wide. While network-wide coordination has the potential for greater

optimization, this must be traded off against the higher latency for communicating demand and

availability of a centralized controller.

Mobility allows a MAV swarm to cover a much larger area than a stationary sensor net-

work and to reposition the coverage as the features of interest change in the environment. However,

mobility also presents a unique set of challenges. Actuation dominates the weight and power bud-

gets for these devices, keeping sensing and control to the bare minimum. The limits on sensing and

control imply that MAVs will often fail in the field. A successful system must be able to detect the

failure of individual of MAV nodes and reallocate resources to gracefully degrade the performance

of the system.

1.4 Contributions and Structure of the Dissertation

In this dissertation we show that with simple programming abstractions, network-wide

resource coordination is efficient and useful for programming embedded sensor networks.

We show this by presenting two programming frameworks, IDEA and Karma. IDEA is

a distributed sensor network service enabling effective network-wide energy decision making, and

Karma is a centralized system for programming and managing MAV swarms. We also present Sim-

beeotic, a simulator and testbed for MAV swarm experiments, developed to support our MAV re-

search.

The rest of this dissertation is organized as follows. Chapter 2 presents Integrated Dis-

Chapter 1: Introduction 7

tributed Energy Awareness (IDEA), a network service enabling effective network-wide energy de-

cision making. Managing limited energy is a key challenge in sensor networks. While previous

research has addressed reducing the energy usage of individual nodes, these nodes do not act in

isolation. For example, the choice of how often a node listens for radio packets affects the en-

ergy usage of any node that wants to communicate with that node. Programming these complex

distributed behaviors is still done in an ad hoc fashion, using bare-bones APIs provided by the

node-level OS. IDEA integrates into the sensor network application by providing an API allow-

ing components to evaluate their impact on other nodes. IDEA distributes information about each

node’s load rate, charging rate, and battery level to other nodes whose decisions affect it. Finally,

IDEA enables awareness of the connection between the behavior of each node and the application’s

energy goals, guiding the network toward states that improve performance. We also describe the

IDEA architecture and demonstrate its use through two case studies. Using both simulation and

testbed experiments, we evaluate each IDEA application by comparing it to simpler approaches that

do not integrate distributed energy awareness. We show that using IDEA can significantly improve

performance compared with solutions operating with purely local information.

Chapter 3 describes Simbeeotic, our simulator and testbed for MAV swarm experiments.

MAV swarms are an emerging class of mobile sensing systems. Simulation and staged deployment

to prototype testbeds are useful in the early stages of large-scale system design, when hardware is

unavailable or deployment at scale is impractical. To faithfully represent the problem domain, an

MAV swarm simulator must be able to model the key aspects of the system: actuation, sensing,

and communication, as well as be able to scale to simulate thousands of MAVs. During a search

of existing simulators, we were unable to find one that adequately met our needs, so we developed

Chapter 1: Introduction 8

Simbeeotic. Simbeeotic enables algorithm development and rapid MAV prototyping through pure

simulation and hardware-in-the-loop experimentation. We demonstrate that Simbeeotic provides the

appropriate level of fidelity to evaluate prototype MAV systems while maintaining the ability to test

at scale.

Chapter 4 presents Karma, a framework for programming MAV swarms. We propose

a novel system architecture based on a hive-drone model that simplifies the functionality of an

individual MAV to a sequence of sensing and actuation commands coordinated by a centralized

controller. This decision simplifies the hardware and software complexity of individual MAVs by

moving the complexity of coordination entirely to a central hive computer. Through simulation and

testbed experiments we demonstrate how applications in Karma can run on limited resources, are

robust to individual MAV failure, and adapt to changes in the environment.

Chapter 5 discusses related work in coordinated resource management for programming

clusters, coordinated energy management for embedded sensor networks, and resource coordination

for swarms. We show how our work relates to and builds upon this work. Wrapping up, Chapter 6

concludes with possible future extensions to IDEA, Simbeeotic, and Karma.

Chapter 2

IDEA: Integrated Distributed Energy

Awareness for Wireless Sensor Networks

Managing limited energy resources is a key challenge in sensor networks. Every action

that a node takes reduces its finite energy store and must be carefully chosen so that the network is

able to meet its application goals and its lifetime target. To achieve high efficiency, it is necessary

to orchestrate energy management decisions across the network. For example, consider a network

monitoring seismic activity at a volcano [84, 86]. Nodes must decide how much of their limited

energy to invest in sampling, storing, and processing local sample data; transmitting signals to the

base station; and listening for and routing packets for other nodes deeper in the routing tree. The

resource load on each node is a complex function of the activity level of the volcano, quality of the

sensor data, and packet-forwarding demand from other nodes. This problem becomes more complex

when nodes are powered by solar cells [16], since the energy budget also fluctuates. It is important

to note that both resource load and resource availability fluctuate over time: an offline static solution

9

Chapter 2: IDEA: Integrated Distributed Energy Awareness for Wireless Sensor Networks 10

cannot suffice.

Coordinating energy resource management in a sensor network has received considerable

attention [9, 31]. However, programming these complex distributed behaviors is still done in an ad

hoc fashion, using bare-bones APIs provided by the node-level OS. Subtle changes to node-level

behavior (such as the radio-listening duty cycle or choice of routing path) can have a tremendous

impact on the overall efficiency and data yield of the network. Existing systems provide few tools

to assist developers in designing correct and efficient solutions.

In this chapter, we present a design for sensor networks enabling coordinated energy man-

agement while providing the appropriate abstractions and mechanisms to support collaborative en-

ergy management. We present Integrated Distributed Energy Awareness (IDEA), a sensor network

service enabling effective network-wide energy decision making. IDEA integrates into the sensor

network application by providing an API allowing components to evaluate their impact on other

nodes. IDEA distributes information about each node’s load rate, charging rate, and battery level to

other nodes whose decisions affect it. Finally, IDEA enables awareness of the connection between

the behavior of each node and the application’s energy goals, guiding the network toward states that

improve performance. We describe the IDEA architecture and demonstrate its use through two case

studies, and show that using IDEA can significantly improve performance compared to solutions

operating with purely local information. This work was done jointly with Geoffrey Werner Challen;

parts of this chapter also appear in his dissertation [10].

Chapter 2: IDEA: Integrated Distributed Energy Awareness for Wireless Sensor Networks 11

2.1 Motivation

IDEA’s architecture is motivated by two observations. First, many sensor network appli-

cations require a large portion of the network to meet their application goals. As a result, failures of

sensor nodes can deeply affect operation of the system. Indeed, the most heavily-loaded nodes are

often those that are most critical to the application. Consider a node near the root of a spanning tree

that is responsible for forwarding traffic for a substantial portion of the network. Loss of this single

node can have a disproportionate effect on the whole network’s operation.

Second, in most applications, some portion of the load at each node is due to interaction

with other nodes. This is an external load and cannot be reduced unilaterally. In the case of routing,

nodes spend their own energy to listen for and forward packets for other nodes. In such cases, load

mitigation must be negotiated with the peer nodes producing the load. For example, a node with a

valuable sensor input might do everything possible to reduce its own power consumption, but unless

it can move itself off of a high-traffic routing path, it will be unable to reduce energy expenditure

beyond a certain point.

Existing approaches to sensor network energy management suffer from several weak-

nesses. Greedy approaches to local energy minimization assume that each node minimizing its own

power consumption is best for the network as a whole [52]. However, this is not always the case.

Such approaches also cannot address the external load problem described above, which requires

coordination between nodes. Some sensor network protocols embed forms of distributed energy

management into their operation [90], but these ad-hoc solutions encode policies that may be un-

suitable for other applications. IDEA addresses these deficiencies by providing a distributed service

allowing any component controlling distributed load to perform collaborative energy management.

Chapter 2: IDEA: Integrated Distributed Energy Awareness for Wireless Sensor Networks 12

2.1.1 Example: Energy-Aware Routing

As a simple example demonstrating the need for IDEA, consider a four-node routing

problem. Figure 2.1 shows the network topology, showing the energy required to reliably transfer

a packet over each link. To simplify the example, we assume the energy to receive a packet is the

same as that required to send it, so for Node 3 to send Node 1 a packet, it will cost each node 0.5 mJ.

We also assume that for correct operation of the application, all four nodes must remain operational,

meaning that the loss of a single node will render the network useless.

3

2

0

1

1.0mJ 0.5mJ

0.5mJ 0.5mJ

Figure 2.1: An example routing problem. The edges are the energy in mJ to send and receive a
packet.

Looking at Node 3, we see it has two routes to Node 0: 3 ! 1 ! 0 and 3 ! 2 ! 0. If

Node 3 tries to conserve power by making a local greedy decision, it will route through Node 1,

since sending a packet to Node 1 consumes 0.5 mJ of energy as opposed to 1.0 mJ for sending to

Node 2. Even if we assume Node 3 knows the power consumption of the links 1! 0 and 2! 0, with

no other information it still chooses the route though Node 1, which consumes less total energy per

packet than the route through Node 2. However, there are several conditions where route 3 ! 1 ! 0

actually harms application performance.

Chapter 2: IDEA: Integrated Distributed Energy Awareness for Wireless Sensor Networks 13

• Differences in initial battery levels: If Nodes 2 and 3 have significantly more energy than

Node 1, then routing through Node 2 can increase the lifetime of Node 1, which due to its

low battery level defines the lifetime of the network since all nodes must remain operational

in our example.

• Differences in non-routing load rates: If Node 2 has a higher sampling rate or is receiving

packets from another node, it may be draining its battery at a faster rate than the other nodes

even with Node 3 using the 3 ! 2 ! 0 route.

• Differences in charging rates: If Node 3 and Node 2 are harvesting energy from the envi-

ronment at a much greater rate than Node 1, routing packets through Node 2 will increase

network lifetime, even though it is using more energy overall.

Making a decision at Node 3 to meet application goals requires that it know the load rates,

charging rates, and battery levels at Nodes 1 and 2. IDEA addresses this problem by distributing this

information across the set of affected nodes. The cases above motivate several features in the IDEA

design. In general, the network may want to shift load toward nodes that have a great deal of stored

energy, low load rates, or high charging rates, and away from nodes with low batteries, low charging

rates, or that are already highly loaded. In cases where shifting load produces extra overall load for

the network, as it does above, changes in load distribution must be managed by the application

based on its own goals and requirements. Had our application above been able to tolerate the loss of

Node 1, it might have chosen to optimize charging at Nodes 2 and 3 in the third example. Respecting

these differences, IDEA is designed to incorporate application-level input into its decision-making

process.

Chapter 2: IDEA: Integrated Distributed Energy Awareness for Wireless Sensor Networks 14

2.2 Architecture

We now present the IDEA architecture, beginning with a formal problem definition and

brief overview, followed by a detailed description of each major system component.

2.2.1 Problem Definition

IDEA is intended to address the problem of energy-aware tuning in sensor network appli-

cations. In IDEA, we use the term client to refer to either an application (such as a tracking system)

or an individual software component (such as a MAC parameter tuning, routing, or time synchro-

nization protocol) that wishes to perform energy tuning. Clients interact with the IDEA runtime

residing on each sensor node to make decisions that affect energy consumption and data fidelity.

Sensor network software components commonly operate by making local decisions. For

example, routing protocols [24, 88] typically form a spanning tree by each node picking a parent

based on local information, such as the radio link quality or number of hops to the sink. Likewise,

duty-cycling MAC protocols [64] decide locally how often to poll the channel and check for traffic.

In IDEA, these choices are represented as a universe of possible states S that the client can be in at

any given time. As an example, a routing protocol’s states represent the set of possible parent nodes.

IDEA guides the selection of the optimal state for each client component based on both

the inherent value of that state (such as the path quality to the sink in a routing protocol) as well as

the distributed energy impact of choosing that state. In the case of routing, selecting a given parent

affects the energy of the parent as well as each node along the routing path to the sink. The ideal

choice of a parent may change over time, for example, based on network load or energy availability.

IDEA clients periodically reevaluate their current state and may switch to a new state if it is deemed

Chapter 2: IDEA: Integrated Distributed Energy Awareness for Wireless Sensor Networks 15

more desirable.

IDEA quantifies the distributed energy impact of each state using an application-defined

energy objective function. Each state s 2 S has a corresponding energy load vector, L̄, where each

component Ln
i (sn) represents the estimated energy load on node i that will result from node n setting

its local state to sn. We represent the current battery level (in joules) at node i by Bi and the current

charging rate (in joules per second) at node i by Ci. In networks without charging capability, Ci = 0.

Formally, we can define the problem as follows. At a given time, let us denote the global

state of all nodes in the network as S = {s1,s2, . . . ,sk}. The combined energy load at node i induced

by this selection of states is

Li(S) =
k

Â
j=1

L j
i (s j)

Based on the current battery levels Bi and charging rates Ci, we can define an energy objective

function O(L̄(S), B̄,C̄) that represents the global energy impact of the global state assignment S.

Likewise, this state assignment has an associated application-defined utility u(S) that represents

the intrinsic desirability of the state – for example, minimizing path length in a routing protocol.

The choice of u(S) can be provided by the application as a static function or learned over time by

measuring application quality as it runs. IDEA is agnostic as to its form as it is evaluated online.

The system’s goal is to determine the optimal state

S? = argmax
S

O(L̄(S), B̄,C̄) ·a +u(S) · (1�a)

where a represents the tradeoff factor between energy impact and intrinsic utility. Setting a = 1

optimizes only for energy; a = 0 only for application-defined utility.

Chapter 2: IDEA: Integrated Distributed Energy Awareness for Wireless Sensor Networks 16

2.2.2 Energy Objective Functions

Before describing the IDEA system itself, we first consider two energy optimization goals

that the system can target. We expect that different applications will allocate energy differently, and

the objective function allows the behavior of IDEA to be tuned to meet a variety of needs.

Examples of possible objective functions include:

• Maximize time to first node death. Depending on energy load and availability, different

nodes may run out of energy at different times. Given the current load and charging rates, one

can estimate the projected lifetime of each node i given global state S as

T(i,S) =

8
>><

>>:

Bi
Li(S)�Ci

Ci < Li(S)

• Ci � Li(S)

To maximize the time to the first node death, we find the state S? maximizing O=mini T (i,S).

This objective function will always choose states that shift load away from the node projected

to die first, irrespective of the load that is produced on other nodes, and may be suitable for

applications whose fidelity requirements are sensitive to the loss of single nodes.

• Maximize aggregate charging rate. Given the charging rate Ci, battery level Bi, and battery

capacity Pi on node i, the effective charging rate for node i given global state S (A(i,S)) is

A(i,S) =

8
>>>>>><

>>>>>>:

Ci �Li(S) Ci < Li(S)

Ci �Li(S) Ci � Li(S),Bi < Pi

0 Ci � Li(S),Bi = Pi

This reflects that when the node’s battery fills, it is no longer able to collect charge. By max-

imizing O = Âi A(i,S), we choose the state that leads to the network collecting charge as

Chapter 2: IDEA: Integrated Distributed Energy Awareness for Wireless Sensor Networks 17

quickly as possible. When node batteries are all still charging, this objective function will try

to find the state minimizing the total system load. However, once batteries begin to fill, it will

choose states that shift load toward nodes charging full batteries, since any additional charge

these nodes capture cannot be stored. Shifting load towards overcharging nodes allows nodes

without full batteries to charge more rapidly. This objective function prioritizes collecting

charge over preserving node uptime, and may be well suited to applications that expect to

experience periodic charging cycles and can tolerate some nodes running out of energy.

We chose to highlight these objective functions for their simplicity and usefulness. The

first objective function keeps all nodes in the network running for as long as possible, treating the

loss of the first node as the lifetime of the network. It is straightforward to measure the performance

of IDEA using this objective function by simply noting the time at which the first node runs out

of energy. For this reason, we use this objective function for the experiments in Section 2.3.2. The

second objective function shows an example of a policy that would be useful in a network that is

able to harvest energy from the environment, an active area of sensor network research [16, 77].

One of the tradeoffs IDEA objective functions may perform is between increasing the

amount of charge collected – which leads to reducing the cumulative network-wide impact of each

IDEA component – and periods of node downtime resulting from poor energy distribution. Some

applications may weight node downtime differently for each node, depending on the quality of the

sensor data it is providing, its location, or other factors. Application goals will differ, but the flexi-

bility provided by the objective function allows IDEA to support a variety of different requirements.

Chapter 2: IDEA: Integrated Distributed Energy Awareness for Wireless Sensor Networks 18

2.2.3 IDEA Overview

Thus far, we have defined the goal of the system as achieving a globally optimal assign-

ment of states to each sensor node. Performing such a global optimization would be possible through

a central node (such as the base station) collecting load and charge rates from every node and com-

puting the optimal assignment centrally, then informing all nodes of their states. However, in large

networks, this approach would induce large communication overheads, reducing energy efficiency.

Central control also precludes nodes from making rapid local changes to states, for example, to

select a new parent in a routing tree if the current parent dies.

IDEA performs optimization in a decentralized fashion, with the goal of closely approx-

imating the globally optimal solution. An important observation is that most state changes affect

only the energy consumption of a node’s immediate neighbors.1 Hence, nodes can perform a local

optimization using information gathered from their neighbors. Although this approach does not en-

sure that the state assignment will be globally optimal, we show in Section 2.3 that it approximates

the optimal solution without requiring each node to have full network state.

1 In the routing case referenced previously, while a node’s choice of parent impacts all nodes between it and the sink,

it can only directly control the load placed on its parent. The affect on nodes farther downstream is a function of

other local choices.

Chapter 2: IDEA: Integrated Distributed Energy Awareness for Wireless Sensor Networks 19

Figure 2.2: Overview of IDEA architecture. IDEA combines load and charge monitoring and mod-
eling, energy data distribution, and an application-provided energy objective function into a single
service that can easily be integrated into application components. Client states are evaluated by the
energy objective function and also assigned an application utility. These scores are combined by
the optimizer to select the state best balancing the application’s distributed energy goals against the
state’s intrinsic desirability.

Figure 2.2 provides an overview of the IDEA architecture. Each node monitors its own

load rate, charging rate, and battery level. Monitoring output is passed to a modeling component that

produces models of load and charging behavior. Model parameters are distributed to other nodes via

a data sharing component, which maintains a distributed table allowing energy information to be

queried by energy objective functions. IDEA monitors the accuracy of each node’s local model

parameters, re-propagating them as necessary to maintain the distributed energy information.

Clients periodically evaluate their current state, which can be driven either by application-

specific behaviors (e.g., disconnection from the parent node in the routing tree) or changes to energy

availability, triggered by IDEA. The IDEA component residing on each sensor node evaluates the

Chapter 2: IDEA: Integrated Distributed Energy Awareness for Wireless Sensor Networks 20

energy objective function O for each possible client state, which is combined with the client utility

function u to determine the next state s0. In the following sections we describe each component of

the architecture in more detail.

2.2.4 Monitoring and Modeling

IDEA relies on the ability to measure and model load and charging rates at each sensor

node. This can be performed using either hardware support, as in systems like Quanto [23], or

using software monitoring, as in Pixie [52]. Modularizing these components allows IDEA to easily

support multiple node platforms and a variety of energy-harvesting hardware.

IDEA monitors both the energy load on a node as well as the charging rate, both repre-

sented as joules per second. The battery level is monitored as well. The raw measurements are used

to build models that allow IDEA to estimate the projected future energy load and availability. In

addition, the model parameters are distributed to other nodes in the network, allowing those nodes

to estimate the source node’s energy load and charging profile over time.

IDEA provides a component that models load or charging rates by producing an average

across a fixed time window, which over time produces a piecewise linear model of varying load or

charging rates. To estimate the load on a single node n at time t, Ln(t), we compute ln =
R t

t�Dt Ln(t)dt
Dt ,

and distribute our estimate ln as the single model parameter. This model is used because it is easy to

compute on resource-constrained nodes, and the single model parameter requires little radio band-

width to share. However, IDEA’s modeling architecture is modular, and it would be straightforward

to incorporate more sophisticated charging models based on an understanding of the underlying dy-

namics of the energy harvesting technique being used. A seasonal ARIMA model such as used by

PRESTO [48] would provide more accuracy when projecting future charging behavior.

Chapter 2: IDEA: Integrated Distributed Energy Awareness for Wireless Sensor Networks 21

IDEA distributes the battery level Bn(t0) at time t0 when it updates the load or charging

model parameters. To estimate the battery level at time t1, Bn(t1), we integrate the load and charging

models such that Bn(t1) = Bn(t0)+
R t1

t0 Cn(t)dt �
R t1

t0 Ln(t)dt. Integrating the simple load model is

straightforward:
R t1

t0 Ln dt = (t1 � t0)⇤ ln. Other models may require more complex techniques.

We separate the modeling of load and charging rates for two reasons. First, load and

charging rates vary for different reasons: load fluctuates with application demands, whereas charg-

ing rates fluctuate with environmental variations. Disentangling energy inputs and outputs facilitates

more accurate modeling. For example, if they were not modeled separately, an increase in the load

rate could be masked by a simultaneous increase in the charging rate. Moreover, independent model-

ing of load and charging allows IDEA to accurately model times when a node’s battery is exhausted.

While a node is running its overall current draw In =Cn �Ln. If In > b , where b is a threshold cur-

rent necessary to enable battery recharging, then the node is charging its battery; otherwise it is

discharging. Once the node dies, however, we assume that Ln = 0 and In = Cn. Assuming future

energy inputs, a node that has completely drained its battery will be able to recharge and rejoin the

network once it has charged its battery past a certain threshold.

2.2.5 Data Sharing

In order for nodes to make informed decisions about local state changes, they must have

knowledge of the energy profiles of other nodes. IDEA provides a data sharing component that

distributes this information among nodes in the network. The distribution service maintains a local

shared data table allowing estimated energy information for other nodes – including their battery

levels Bi, load rate Li, and charge rate Ci – to be queried.

The data-sharing layer has evolved to minimize the communication overhead of data shar-

Chapter 2: IDEA: Integrated Distributed Energy Awareness for Wireless Sensor Networks 22

ing. Any gains made by making better energy decisions can be wiped out by the cost of sharing the

data used to make those decisions. This section describes the data-sharing layer in IDEA and dis-

cusses the features we added to reduce the communication overhead of data sharing.

Our first approach was to develop a network-wide state-sharing mechanism. We used

Trickle [47] to balance rapid propagation of updates with eventual consistency in the face of link

failures. Trickle uses a “polite gossip” policy where nodes periodically share data with their local

neighbors but stay quiet if they have recently heard the data. Updates cause immediate data propa-

gation. Nodes hearing the update relay it until the maximum number of retransmissions is reached.

We also used broadcast packets to opportunistically retransmit data for other nodes to reduce propa-

gation latency. When retransmission is triggered, a node fills the broadcast packet with other recent

updates from its shared data table, which also helps reduce the cost of data sharing.

IDEA clients may piggyback on this mechanism to propagate application-specific data to

other nodes. For example, nodes might wish to share information on MAC parameters to enable

coordinated communication scheduling. To simplify the implementation of the data-sharing service

we limited the amount of space available to client applications to ensure that the total payload fits

within a single radio message.

However, for some applications, propagating state across the entire network is not neces-

sary and contributes to extra overhead. If a node’s choice of state only affects the energy behavior

of its neighbors, then a more limited form of state sharing will suffice. We then added the ability

to let the application give input on how far to propagate shared data. IDEA provides a k-hop data-

sharing component that disseminates shared data updates using broadcast messages. This approach

is similar to neighborhood communication schemes such as Abstract Regions [83] and Hoods [87].

Chapter 2: IDEA: Integrated Distributed Energy Awareness for Wireless Sensor Networks 23

Once our k-hop data-sharing layer was working, it was soon apparent that the raw charge,

battery, and load data was changing too quickly to be shared without unbearable communication

overhead. This led to the development of the modeling layer described above in Section 2.2.4. For

example, a node’s battery level can easily be calculated from the load and charge models and does

not need to be shared with every query to the node’s battery level. However, the calculated battery

level is only as good as the accuracy of the load and charging models.

Maintaining the accuracy of load and charging models on external nodes requires the data-

sharing layer to periodically distribute updated model parameters. The data-sharing level works with

the modeling layer to monitor the accuracy of the model they have previously distributed. Using our

simple linear model as an example, if lt0
n is the model parameter distributed for node n at time t0,

then at time t1 the model will recompute lt1
n . If the relative model error

���lt1
n �lt0

n

���

lt0
n

> E, where E is an

application-configurable error tolerance, then the modeling component will push a new parameter to

the data-sharing layer, which is responsible for updating other nodes. For example, if an application

only wanted to know if a node’s battery was “High,” “Medium,” or “Low,” it would not need the

most accurate battery level information. Error tolerance allows applications to reduce data-sharing

overhead at the cost of some accuracy. With the addition of the modeling layer and the sharing

of the model parameters instead of raw data, we were finally able to manage the overheads of the

data-sharing layer.

2.2.6 Client Integration

The interface between client components and IDEA is intended to simplify integration

of IDEA with existing software. The IDEA optimizer provides chooseState(), an interface that

the client can invoke to select a new state in an energy-aware fashion. Normally components may

Chapter 2: IDEA: Integrated Distributed Energy Awareness for Wireless Sensor Networks 24

reexamine states periodically to ensure that they respond to changes in network dynamics. IDEA

also provides event triggers that indicate when nearby energy conditions have changed significantly,

since these may also be opportunities for clients to reevaluate their local state selection. chooseS-

tate() takes three arguments:

• a list of possible local states sn =
�

sn
1,s

n
2, . . . ,s

n
k

that the client component on node n can

enter;

• for each state sn
i , the intrinsic utility u(sn

i) of that state, represented as a scalar value; and

• for each state sn
i , a projected energy load vector L̄(sn

i) representing the estimated energy im-

pact (in terms of joules/sec) induced by the node entering state sn
i . L̄ has one element for each

of the node’s neighbors. If it not possible to easily calculate the projected energy load vector,

an energy profiling system such as Quanto [23] could be used to empirically determine the

projected energy load vector.

IDEA combines this information with knowledge of energy load and availability to de-

termine the ideal state s0 the node should enter based on the weighted combination of the objective

function O and the utility u. chooseState() returns the new state s0 selected by the optimizer. To

reduce the possibility of two or more nodes oscillating between different states, hysteresis can be

added to the objective function to avoid wasting energy through frequent reconfiguration.

In many cases it is straightforward to interface IDEA to existing code. As we demonstrate

in Section 2.3.2, IDEA has been used to add energy awareness to tune radio listening intervals with

minimal code changes. Existing software components can be supported by wrapping them in code

that estimates energy impact, enumerates states, and interfaces to the IDEA service.

Chapter 2: IDEA: Integrated Distributed Energy Awareness for Wireless Sensor Networks 25

2.3 Evaluation

To evaluate IDEA, we built and tested an energy-aware component for adjusting radio

listening intervals and one energy-aware application for distributed acoustic localization. For the

radio listening component, we compare the performance of our IDEA-based implementations to

approaches that are not energy-aware. For the localization application we use IDEA to implement

several energy objective functions and compare their performance against each other and against a

heuristic that does not consider energy availability.

2.3.1 Experimental Setup

Throughout the evaluation we present results run in several different environments. We

have implemented IDEA for TinyOS in order to run experiments on MoteLab [85], our 180 node

Telos mote [65] ultra-low power wireless sensor network testbed. The Telos motes consist of a Texas

Instruments (TI) MSP430 16-bit microcontroller running at 8 MHz, 48 kB program memory, 10 kB

RAM, and 1 MB of on-board flash storage. When the MSP430 is in its low-power standby state, it

draws only 1 µA of current and while fully active draws less than 2 mA. For radio communications,

Telos has a TI CC2420 2.4 GHz IEEE 802.15.4 with a maximum data rate of 250 kbps. While the

radio is active, either while listening or transmitting, the CC2420 uses less that 20 mA.

We also present results obtained using TOSSIM [45], the TinyOS simulator. TOSSIM

incorporates a closest-fit pattern-matching noise model to accurately capture complex link dynam-

ics [44]. TOSSIM allows us to run longer experiments incorporating various solar-charging models.

To improve the realism of TOSSIM we began with a modified version developed for the Koala

project [68] and performed further modifications to correctly simulate the operation of the radio

Chapter 2: IDEA: Integrated Distributed Energy Awareness for Wireless Sensor Networks 26

protocol described in section 2.3.2. We use information collected on MoteLab to build a realis-

tic TOSSIM radio model for our simulations. For the acoustic localization application, we built a

Python simulator to allow rapid prototyping of various energy objective functions.

IDEA is designed to tune components in the face of variations in both load and charg-

ing rates, and to test this we present experiments using solar-charging data collected off of a solar

panel deployed on an Arlington, Massachusetts rooftop in March 2009. Battery levels are calculated

using a charging model based on a nickel-metal hydride battery technology with a 66% charging

efficiency. We attenuate this data to simulate the charging produced by solar panels of several dif-

ferent sizes in order to evaluate IDEA’s performance as available energy changes. We also perform

experiments with a randomly attenuated charging profile to simulate bad solar panel placement or

obstacles to incident sunlight affecting the spatial distribution of collected energy.

For our MoteLab experiments we determine the system’s ability to span periods without

charging inputs. We use two sets of initial conditions based on the interaction between the charging

data we collected and the capacity of the batteries deployed. If the solar panel is large enough and it

is sufficiently sunny, the panel will provide considerable charging input and completely charge small

batteries during the day so all nodes will begin the night with full batteries. If the solar panel is not

large enough to completely charge the batteries nodes will begin the night with varying amounts of

charge depending on their load rates during the day.

Energy tracking is done by IDEA using a software-only approach developed for the

Pixie [52] project. The component captures state transitions and applies an energy consumption

model for each state based on current consumption measured offline. The short lifetimes for some

experiments are explained by the use of extremely small batteries, which were chosen to allow ex-

Chapter 2: IDEA: Integrated Distributed Energy Awareness for Wireless Sensor Networks 27

periments to complete in reasonable amounts of time. We expect that application developers will

want to use a battery size and charging technology suitable to allow their system to achieve a de-

sired level of performance, and the improvements in energy efficiency possible using IDEA will

allow smaller batteries or solar panels to be used, reducing the size and cost of the hardware pack-

age.

Experiments for the radio listening intervals use the “maximize time to first node death”

energy objective function described in Section 2.2.2, and therefore we evaluate the network lifetime

as the time at which the first node runs out of energy. Our distributed localization application illus-

trates the process of designing an effective energy objective function when the overall goal of the

system is known.

2.3.2 Low-Power Listening Parameter Tuning

Low-power listening (LPL) enables radio duty-cycling without requiring nodes to arrange

fixed transmission schedules [59]. It is well-suited for environments where network topologies and

traffic patterns are highly variable, since these variations challenge duty-cycling techniques that

assume a priori knowledge of traffic patterns.

When using LPL, nodes poll the radio channel at a fixed rate, listening for packets ad-

dressed to them. The radio is shut off when not polling or sending packets. To send a packet to

another node, the sender must know that node’s polling interval, and repeatedly send the packet

with reduced MAC backoffs until either the packet is acknowledged, ending the packet train and

indicating a successful transmission, or the length of the packet train exceeds the receiver’s polling

interval, at which point the transmission fails.

The choice of LPL polling rate at a given node affects the continuous energy drain re-

Chapter 2: IDEA: Integrated Distributed Energy Awareness for Wireless Sensor Networks 28

quired to periodically poll the channel as well as the cost to other nodes to communicate with the

given node. Assuming we model the radio as drawing Ilisten and Itransmit mA of current in listen

and transmit modes, respectively, then, given an interval between radio checks of g sec, the current

draw required to poll the channel is 1
g · tcheck · Ilisten, where tcheck is the time the radio must remain

on to detect channel activity. The cost to transmit a packet to a node using an LPL interval of g is,

on average, g
2 · Itransmit . We can observe then that increasing g or polling the channel less frequently

reduces the current draw on the receiving node while increasing the communication cost on sending

nodes.

On the CC2420 radio used in our experiments, Ilisten = 18.9 mA and Itrasmit = 17.4 mA.

The radio can rapidly leave and return to a low-power state so tcheck is short, on the order of 10

ms, allowing the continuous receive cost to be minimized. Adjusting LPL intervals offers a way

of changing the energy consumption for communication between two nodes, and an opportunity

for IDEA to tune the intervals to match the availability of energy within the network. To develop

intuition about the tuning process, we consider a simple example where Node 1 is transmitting

packets to Node 2. If Node 1 has a lot of energy while Node 2 has little, then Node 2 should poll

the channel slowly and let Node 1 pay the high per-packet penalty. On the other hand, if Node 2 has

a lot of energy while Node 1 has little, then Node 2 should poll the channel rapidly, increasing its

own energy consumption but reducing the per-packet cost to Node 1.

IDEA allows us to build a component to tune the LPL parameters on each node adaptively.

Our local state space is sn =
�

s5
n,s6

n, . . . ,s10
n

, where s j
n corresponds to polling at intervals of 2 j on

node n, so the smallest interval is 32 and the largest interval is 1024. For each state s j
n, we construct

the projected energy load vector L̄(s j
n) out of two components: one measuring the receive cost to

Chapter 2: IDEA: Integrated Distributed Energy Awareness for Wireless Sensor Networks 29

node n, the other measuring the transmission cost to other nodes to send to node n. The receive cost

on node n, r̄n, has only a single component for node n, rn
n(s

j
n) = 1024

2 j · 0.010sec · 18.9 mA, where

0.010 second is the check interval and 18.9 mA is the radio receive current. The transmission cost

to nodes sending to node n, t̄n, has components of the form ti
n(s

j
n) = 1

2 ·
2 j

1024 sec · d (i,n) · 17.4 mA,

where d (i,n) is the rate at which node i is sending packets to node n, and 17.4 mA is the radio

transmission current.

Figure 2.3: LPL overheads for sending and receiving packets. By lowering its LPL check interval,
a node increases its own energy usage but decreases the amount of energy other nodes need to send
packets to the node. Conversely, when a node increases its LPL check interval, its own energy usage
is reduced, but it also increases the energy other nodes need to send packets to the node.

We construct the total energy load vector L̄n(s
j
n) as the component-wise sum of r̄n and t̄n,

and pass this information to IDEA to evaluate each state. Figure 2.3 shows the LPL check overhead

for receiving LPL packets and the LPL overhead to transmit packets at the data rates used in the

experiments described in Section 2.3.2. From the figure it is easy to see how changing a node’s LPL

interval shifts the energy burden either to the node (by decreasing its LPL check interval) or from

Chapter 2: IDEA: Integrated Distributed Energy Awareness for Wireless Sensor Networks 30

the node (by increasing its LPL check interval).

The tuning component intercepts outgoing transmissions, queries IDEA for the correct

LPL interval to use for the given destination, and sets the packet’s LPL interval accordingly. When

the LPL tuning component switches states, it must propagate this information to nearby nodes that

might be sending it data. We use the ability of IDEA to propagate component state to disseminate

this information as described in Section 2.2.5. It is worth noting that this data, and all state informa-

tion, is propagated by using a radio broadcast packet. The node does not necessarily know the LPL

intervals of all other nodes that may be in broadcast range, so it must transmit the broadcast packet

for the longest LPL check interval, which is 1 second for our experiments. To put this in perspective,

this broadcast packet is roughly the equivalent of 16 minutes of sending data at an LPL interval of

250 ms at the data rates used in the experiments below. This also helps explain why the modeling

component of IDEA, which helps to minimize the amount of updates that are needed, is important

to keeping overheads down.

Changing the LPL interval also affects the total throughput possible over the link, which

provides the component-specific measure of desirability, although the relationship is complicated

by the ability of LPL to bunch transmissions to amortize the cost of awakening the receiver. For

our evaluation we chose to set the tradeoff factor a = 1 and optimize only for energy, since the

throughput of the link was not a limiting factor at the data rates we tested.

IDEA is designed as a service, so it is up to the application to decide when to evaluate

a new state. IDEA will select the state that best satisfies the weighted combination of the energy

objective function and utility of the state, but it does not take into consideration any costs associated

with changing to a new state. This can affect how often the application chooses to evaluate a new

Chapter 2: IDEA: Integrated Distributed Energy Awareness for Wireless Sensor Networks 31

state. At one extreme, if there is no overhead for the application to change its state, then the cost of

evaluating the state is just the cost of computing the energy objective function and utility for all of

the possible states. For the energy objective functions and utilities we have experimented with, this

cost is negligible so increasing the evaluation rate should not negatively affect the network.

However, there is almost always some cost associated with changing state. In the case

of LPL tuning, a node’s new LPL state must be shared with its neighbors, which is done with a

broadcast message at the longest LPL interval in the system. For example, in the LPL experiments

below, if IDEA suggests a node increases its LPL check interval from 250 ms to 500 ms to conserve

energy, the cost to share the new LPL interval (assuming no errors in communication) will offset the

savings for the first 46 seconds in the new state. This implies that how often IDEA evaluates state

should be weighted against the cost of changing to a new state.

Experimental Results

We first look at the overhead of the IDEA LPL-tuning component as we vary the rate at

which updates are performed in the system. IDEA can vary how often nodes evaluate their LPL

intervals as well has how often to evaluate load and model parameters. A more frequent evaluation

of LPL intervals allows the system to react more quickly to changes in the network with the potential

for higher energy costs as more state changes may need to be propagated across the network. By

the same token, more frequent evaluation of load and charge model parameters allow IDEA to react

quickly to fluctuations in energy in the network, but may result in more energy consumed as new

models must be propagated via the data sharing mechanism.

We begin by using TOSSIM to configure 20 nodes into a collection tree based on topology

and link quality obtained from data collection experiments on Motelab. In this experiment each node

Chapter 2: IDEA: Integrated Distributed Energy Awareness for Wireless Sensor Networks 32

sends messages to the sink (Node 118) once every 2 minutes. Figure 2.4 shows the topology used

for this and all of the other LPL tuning experiments.

Figure 2.4: Topology used for LPL tuning experiments.

For this experiment, all nodes start out with the same battery level, and there is no incom-

ing charge on the nodes (i.e., they are not hooked up to a solar panel). IDEA is using the “maximize

time to first node death” energy objective function, and the experiment runs until the first node

runs out of battery. We vary the update rate of IDEA (for both propagating new state information

and evaluating new LPL intervals) from 5 to 50 minutes in 5-minute increments and compare the

lifetime to an optimal solution.

Chapter 2: IDEA: Integrated Distributed Energy Awareness for Wireless Sensor Networks 33

Figure 2.5: Optimality and overhead. IDEA consumes energy in order to propagate load, charge,
and state information. For the LPL-tuning component the energy overhead is related to the rate at
which we re-tune the local LPL interval, load model, and charge model. This plot shows both the
IDEA overhead and the degree of optimality achieved as the update rate is varied.

We obtain an offline-optimal estimate of the lifetime performance by treating the problem

as a multi-dimensional, multiple-choice knapsack problem and computing the solution offline with

a linear program solver. In the optimal case, every node has the up-to-date load rate and current

battery level for every node in the system, i.e., every node has the entire global network state. We

assume in the optimal case that there is no overhead in sharing this information. The battery size was

chosen such that in the optimal case the network lifetime was just under 14 hours, which allowed

the TOSSIM simulations to be run in a reasonable length while still being able to understand how

Chapter 2: IDEA: Integrated Distributed Energy Awareness for Wireless Sensor Networks 34

IDEA performs.

Figure 2.5 shows the variation in lifetime, plotted as percent of the optimal solution, and

the percent overhead used by IDEA overall, as well as the subset of IDEA energy used for tuning

the LPL parameters as we vary both the LPL and load model evaluation rate.

Most of the gap between IDEA and the offline-optimal solution is due to the overhead

of propagating state information and new LPL parameters. As we decrease the update rate, model

parameters are shared less frequently and the network consumes less energy, causing the overhead to

decrease. LPL tuning overhead remains relatively constant since the workload for this application is

static and most evaluation periods do not produce a change in LPL intervals. For this application the

lifetime curve shows the best results with an update rate of 15 minutes. At the left end of the curve

with a rapid update rate the overheads associated with data sharing reduce the system’s lifetime.

At the right end of the curve the system is slower to find the optimal state and may spend some

time with sub-optimal intervals, and the lifetime again suffers. Across the entire range, however, the

achieved network lifetime remains above 74% of the optimal offline solution.

We can also use the optimal solution as a qualitative point of comparison. Figure 2.6 shows

the differences between intervals picked by the IDEA-driven and optimal solutions in the case of

15-minute update intervals for the above experiment. IDEA chooses near-optimal intervals for Node

21, the energy bottleneck (within 1% of optimal) and the worst case, Node 118 (the sink), was still

within 15% of optimal. Node 118 does the worst because as IDEA is sub-optimally lowering its

LPL interval to assist Node 21, the energy bottleneck.

Chapter 2: IDEA: Integrated Distributed Energy Awareness for Wireless Sensor Networks 35

Figure 2.6: LPL interval comparison with optimal. To assess the degree to which the IDEA-driven
approach finds a near-optimal global state, we plot the percent difference between the intervals
chosen by the IDEA-tuned and offline optimal systems. The plot demonstrates that IDEA sets the
LPL intervals of nodes similarly to the optimal solution and helps explain its performance.

For our next set of experiments we ran IDEA on a 20-node subset of Motelab with the

same topology and settings as the previous experiments. As a point of comparison, we ran ex-

periments using static intervals assigned a priori, with all nodes using the same LPL interval. We

compared the results from all six LPL intervals IDEA could choose from and picked the one that

performed the best. Note that this experimentation itself is a form of tuning and would be diffi-

cult to do beforehand. We ran one-hour MoteLab experiments and used each node’s rate of energy

consumption to compute a projected lifetime. Table 2.1 summarizes the results of experiments.

Chapter 2: IDEA: Integrated Distributed Energy Awareness for Wireless Sensor Networks 36

Initial Battery Lifetime (hours) Increase
Levels Static Idea (%)
Uniform 4.6 5.6 22%
Random 2.8 3.0 7%

Table 2.1: LPL tuning performance on MoteLab. The table shows results for MoteLab experiments
comparing the performance of the IDEA-driven LPL tuning component against the best static pa-
rameter solution. IDEA shows gains for both the case where all nodes start with the same battery
level and randomly initialized battery states.

The table shows that the tuned LPL intervals produce improvements in projected lifetimes

when compared with the best static interval under both non-charging scenarios discussed in Sec-

tion 2.3.1. We observe an improvement of 22% for the case where nodes start with the same initial

charge and 7% when random initial battery levels are used. This is in spite of the fact that the LPL

tuning component produces significant overhead propagating new states early in the experiment as

nodes are moving from their initial states into their IDEA-tuned intervals.

Table 2.2 summarizes results from experiments performed on TOSSIM that include solar-

charging inputs discussed above. IDEA provides 5% and 13% performance improvements for cases

in which all nodes see the same input charging profile and a 35% improvement in the case where

charging inputs are randomly attenuated. This is due to the increased difference in battery levels

due to the random attenuation, which creates more diversity in the amount of available charge. The

table also shows numbers that indicate the best that IDEA can do when its overhead is artificially

eliminated, showing that future work on improving the load and charge modeling and more efficient

data sharing will continue to improve performance.

Chapter 2: IDEA: Integrated Distributed Energy Awareness for Wireless Sensor Networks 37

Solar Charging Lifetime (hours) Increase
Pattern Static Idea No Overhead (%)
Large Panel 22.7 23.8 24.0 5%
Small Panel 16.8 18.9 21.2 13%
Randomly 13.8 18.6 20.4 35%Attenuated

Table 2.2: LPL tuning performance with solar charging. This table displays results for TOSSIM
experiments comparing IDEA-based LPL parameter tuning with the best static interval and an
overhead-free version of IDEA. IDEA shows gains over the non-tuned approaches across a range of
different solar-charging profiles. The % increase column reflects the improvement between the best
static LPL interval and the IDEA-tuned intervals

2.3.3 Distributed Localization

This application illustrates how to use IDEA to control a system designed to perform

acoustic source localization. Several previous systems have explored this application in different

contexts, including urban sniper localization [73] and localizing animals based on mating calls [3].

Using IDEA, it is possible to carefully manage the energy load at each sensor node to prolong

battery lifetime while maintaining high localization accuracy.

Acoustic source localization calculates the location of an acoustic source by collecting

arrival times at several stations and performing a back-azimuth computation [63]. We assume a

dense sensor network deployment, so that an acoustic event is detected by many sensors. We also

assume that for each event, any set of four sensors that heard the event can correctly perform the

localization to within the application’s error tolerance.

A centralized approach to localization requires nodes to transmit data to a base station

where the computation is performed. Because we assume that nodes cannot accurately compute an

arrival time by considering only their own sampled data, they must transmit a sizable amount of

data to the base station to implement the centralized strategy, with the bulk data transfer required

Chapter 2: IDEA: Integrated Distributed Energy Awareness for Wireless Sensor Networks 38

producing a significant load on the nodes that heard the event as well as nodes required to route

data. This approach also does not scale well as the size of the network increases.

To avoid the overheads of centralization, we want to perform the localization inside the

network. However, the cost to transmit signals and perform the computation are still high, so it

is important that localization be done in a way sensitive to the availability of energy within the

network.

When an event occurs, the goal is to select a single aggregator node and three signal

provider nodes from the set of nodes that detected the event. The signal providers will transmit a

portion of the acoustic signal to the aggregator, which performs the localization computation using

a time-of-arrival and angle-of-arrival computation [61]. For each event we expect multiple valid

aggregator and signal provider sets to exist, each with its own energy consumption signature. We

refer to a selection of four such nodes as a localization plan.

Nodes that heard the signal participate in a leader election process, seeded by the value of

the IDEA energy objective function for each proposed localization plan. Each candidate aggregator

computes the energy objective function for the localization plan or plans for which they are the

aggregator. If more than three nodes within a single hop of an aggregator heard the event, then the

aggregator will have multiple plans to consider. The aggregator chooses the local plan with the best

score and broadcasts a message advertising that score, which is propagated to all nodes that heard

the event. If the aggregator does not hear a broadcast with a better score, it assumes that it won the

leader election and proceeds to perform the localization as planned.

Chapter 2: IDEA: Integrated Distributed Energy Awareness for Wireless Sensor Networks 39

Experimental Results

To evaluate the distributed localization application, we built a Python simulator, which

improves significantly on TOSSIM performance at this scale and allowed rapid iteration and exper-

imentation with different energy objective functions. Our simulator models acoustic event sources

within the sensor network, each of which triggers a distributed localization operation. The energy

overheads of communication, both the leader election process and the subsequent data transfer, are

modeled in the simulator based on empirical measurements taken on our MoteLab testbed.

Figure 2.7: Energy density over time. Energy densities for the Closest heuristic and IDEA using
the WeightedEnergy objective function are shown at four points in time. The event distribution is
uniform. IDEA enables better load distribution, which leads to a longer application lifetime.

For these experiments we arranged 100 nodes into a 100 m by 100 m area, resulting

in the placements shown in Figure 2.7. We simulate a sensing range equal to the communication

range, each set to 20 m, and randomize the reliable transfer protocol bandwidth across each link

to between 768 and 1280 bytes/sec, a feasible range based on results from data transfer protocols

such as Flush [39] and Fetch [84]. Events are simulated using a uniform random distribution so that

events have equal probability of occurring anywhere in the sensor field.

Chapter 2: IDEA: Integrated Distributed Energy Awareness for Wireless Sensor Networks 40

To evaluate network performance, we define the capability of the network as the percent

of the last 100 operations that succeeded, where success is defined as localizing the event. We

assume that the application requires that the network be able to localize 90% of events that occur,

and design our energy objective functions with this in mind. We quote the system lifetime as the the

90% capability time, that is, the time at which the network’s capability drops below 90%.

We experimented with several approaches to choosing a localization plan, one that does

not use IDEA and three that do, using different energy objective functions:

1. Closest: produces a localization plan with the node closest to the event source as the aggre-

gator and the next three closest nodes as signal providers. We assume a real solution would

use an imperfect estimate of proximity such as total signal energy or signal-to-noise ratio, but

for the simulations we use the known simulated event location to choose the closest nodes.

Closest does not require energy state information and so could be implemented without

IDEA. It is implemented as an example of a plausible non-energy-aware solution.

2. MaxEnergy: chooses the node with the most energy (that heard the event) as aggregator and

the next three highest-energy nodes as signal providers.

3. TotalEnergy: chooses the localization plan that consumes the lowest amount of total energy

summed across all nodes in the network.

4. WeightedEnergy: weights the total energy consumption using a weighted version of the co-

sine similarity index [71] to measure the degree to which the energy vector for the localization

plan is a good “fit” given the current energy availability.

Chapter 2: IDEA: Integrated Distributed Energy Awareness for Wireless Sensor Networks 41

400 500 600 700 800 900 1000
Lifetime (min)

50

60

70

80

90

100
Ca

pa
bi

lit
y

(%
)

Closest

MaxEnergy

TotalEnergy

WeightedEnergy

Figure 2.8: Performance of IDEA objective functions and heuristic. Simulation results are shown
for the localization application. The graph compares the Closest heuristic, implemented with-
out using IDEA, against three different IDEA objective functions: MaxEnergy, TotalEnergy and
WeightedEnergy. The WeightedEnergy approach using IDEA outperforms the non-energy-aware
approach while the other objective functions perform more poorly.

We began by experimenting with the Closest, MaxEnergy and TotalEnergy approaches.

As Figure 2.8 shows, the Closest heuristic outperformed the two IDEA-based approaches. How-

ever, when examining the energy density plot shown in Figure 2.7 for the Closest heuristic, we

could see that it led to concentrations of available energy on nodes at dense locations on the irregu-

lar grid. This is despite the uniform distribution of acoustic event sources, which one might expect

to produce good energy load distribution without the need for tuning. After exploring several ad-

Chapter 2: IDEA: Integrated Distributed Energy Awareness for Wireless Sensor Networks 42

ditional approaches, we found an energy objective function capable of producing extremely good

load distribution, the WeightedEnergy approach described above. Figure 2.8 shows that it outper-

forms Closest, increasing the network’s lifetime by 15%, while Figure 2.7 illustrates how it uses

all the nodes’ available energy. Our experience with the localization application illustrates the role

of the proper energy objective function in enabling good application performance, and points to the

increases in system lifetime possible through better energy distribution.

In this chapter we looked at IDEA, a system that enables effective network-wide energy

decision making. IDEA automatically distributes the state of incoming and outgoing energy to a

node, as well as the state of its battery, to nodes throughout the network. With input from the

application on how application states affect energy usage , IDEA chooses states that best maximize

energy optimization goals set by the application. We looked at two case studies and have shown,

through simulation and testbed experiments, that IDEA can improve energy performance compared

with solutions that operate with local information.

Chapter 3

Simbeeotic: A Testing Platform for

Micro-Aerial Vehicle Swarms

MAV swarms are an emerging class of mobile sensing systems. These MAV swarms are

connected to the environment through sensing and actuation and benefit from testing in a physical

environment. However, developing programming models that can coordinate the resources of hun-

dreds or thousands of MAVs requires simulation in order to easily test at scale. We need a testing

environment that can span both of these domains, from testing individual MAVs with real flight dy-

namics to simulating a swarm of hundreds or thousands of MAVs. In this chapter we present Simbee-

otic [36], a testing platform that facilitates the development of micro-aerial vehicle (MAV) swarms,

an active area of our current research. Simbeeotic supports both pure simulation and hardware-in-

the-loop (HWIL) experimentation with a radio controlled (RC) helicopter testbed. The simulator

relies on modular software design principles and a commitment to deployment-time configuration

to provide modeling flexibility and ease of use. It is highly extensible and is designed for repeated

43

Chapter 3: Simbeeotic: A Testing Platform for Micro-Aerial Vehicle Swarms 44

experimentation. With Simbeeotic we demonstrate that whole-system modeling is feasible for the

MAV swarm domain. This chapter first explains why a new testing platform is needed for our re-

search, then describes the design of Simbeeotic. Next, we detail hardware testbed and then evaluate

both the simulator and testbed. Finally, we wrap up with a summary of the chapter. This work was

done jointly with Bryan Kate, who developed the core simulator, while I developed the MAV testbed

for evaluating hardware using HWIL simulation.

3.1 Motivation

Our research is focused on the emerging class of MAV swarms comprised of hundreds

to thousands of insect-sized mechanical RoboBees [1]. In this subset of the MAV swarm space,

the challenges MAV nodes face are similar to the challenges stationary sensor nodes face: storage

and computation are limited, communication bandwidth is minimal, and energy is scarce. However,

mobility places even greater demands on these limited resources, especially energy, as the limited

thrust provided by these robots limit the weight of the energy source they can carry.

Autonomous mobility at this size and scale is a new domain for sensor networks. Current

devices exist only as prototypes, capable of a few seconds of flight while tethered to a power source,

but advances are pushing these MAVs closer to reality. The small size of these MAVs introduces new

complexity for development and testing. Existing sensing technologies are too big or too heavy to

be used at this scale, so new sensors need to be developed and tested, leading to the codevelopment

of the hardware and software for these devices.

In these cases, simulation can be used to design and test control algorithms before the

physical sensors are available for use. Simulation can also be used to rapidly evaluate new sensing

Chapter 3: Simbeeotic: A Testing Platform for Micro-Aerial Vehicle Swarms 45

technologies for inclusion to the platform. For both of these cases, accurate real-time flight dynamics

are required for proper testing and evaluation. However, for evaluating MAV swarm algorithms,

modeling accurate flight dynamics may not be important to the final results. In this case we can

trade fidelity for speed, allowing simulations to scale to hundreds or thousands of MAVs with the

fidelity only in the areas important to the experiment at hand. An effective testing platform should

be able to span these two areas, from testing a small number of MAVs with real flight dynamics, to

simulating large numbers of MAVs for effective swarm evaluation.

To enable MAV research that spans both of these domains, we have built Simbeeotic, a

simulator capable of modeling thousands of MAVs, tightly coupled with a physical MAV testbed for

testing with real flight dynamics. As we describe in Section 3.1.2, existing solutions are inadequate

for our testing needs, failing in one or more of our core requirements: scalability, completeness,

variable fidelity, or staged deployment. The next section talks about these core requirements in

more detail.

3.1.1 Core Requirements

The core requirements of our MAV swarm simulator are similar to those of other simula-

tors [46] and are defined as follows:

• Scalability: The simulator must be able to simulate thousands of MAVs in a single simulation.

Scale of deployment is an important aspect of swarm research. Without the ability to study

algorithms at true swarm scale, some of the hard problems will be missed.

• Completeness: Simulations should model as much of the problem domain as possible. Though

research may be conducted on a subset of swarm design (e.g., flight control or networking),

Chapter 3: Simbeeotic: A Testing Platform for Micro-Aerial Vehicle Swarms 46

it is advantageous to construct a holistic view of the problem in which complex interactions

are revealed. For MAV swarms, this means modeling actuation, sensing, and communication

for each application.

• Variable Fidelity: The desire to improve the accuracy of models is often at odds with simula-

tion performance (scalability in this case). Users should be free to construct models with the

appropriate level of fidelity to capture the subtleties of their problem. For example, researchers

working on emergent algorithms may not require realistic flight control loops, whereas those

working on controls will require accurate sensor and flight dynamics models but may not be

concerned with network protocols. Using the same simulator, these researchers can work to

improve the modeling of their domain while retaining the ability to combine their efforts and

simulate the system as a whole.

• Staged Deployment No matter how detailed, simulation cannot completely capture every

situation that will be encountered in the real world. While the ultimate goal is to deploy a

swarm of MAVs, building hardware can be expensive and time consuming. The simulator

can facilitate the development of control software and inform the hardware design process by

providing a staged deployment feature, allowing prototype hardware to respond to both real

and simulated inputs.

3.1.2 Why Other Simulators Could not Meet our Needs

The MAV swarm domain intersects with other research areas, including biologically-

inspired algorithms, robotics, and sensor networks. There are high-fidelity simulators that exist in

each of these communities; prior to implementing our own simulator, we investigated the possibility

Chapter 3: Simbeeotic: A Testing Platform for Micro-Aerial Vehicle Swarms 47

of using these tools. In general we were unable to find a simulator that satisfied our completeness

and staged deployment requirement. We considered combining multiple simulators to satisfy this

goal but determined that performance would suffer due to the high fidelity of some of the tools. Each

simulator uses considerable machine resources to model its own domain for thousands of agents,

making our scalability goal untenable with this approach. Finally, we considered the engineering

cost of repurposing multiple simulators to be too high, given that these tools are written in a number

of languages and are not uniformly maintained.

The first set of tools we consider come from the multiagent systems and swarm intelli-

gence communities. These simulators are appealing because they can generally model thousands

of agents at once. Swarm [32] and MASON [53] are two such tools. The main drawback of these

simulators is that the they do not faithfully model the environment and actuation, opting for cell-

based or 2D continuous worlds. For both Swarm and MASON, a significant amount of effort would

be put into modeling a 3D, physics-based world that is accurate enough to support the staged de-

ployment requirement. MASON provides a built-in 3D space (known as a field in MASON-speak)

but leaves manipulation of objects in the field (e.g., kinematics, collision detection) to the modeler.

Breve [41] is a discrete event simulator with an embedded physics engine. Unfortunately, models

are written in a domain-specific language called Steve (there is limited support for Python), which

hinders adoption and limits the number of existing math and science packages available to modelers.

The robotics community has long used simulators as design tools, since building hardware

is often expensive and time consuming. Similar to our situation, the hardware and software are often

codesigned, driving the need for accurate modeling of the physical environment. Thus, the strength

of robot simulators is generally in modeling the interaction of the robot with the environment (e.g.,

Chapter 3: Simbeeotic: A Testing Platform for Micro-Aerial Vehicle Swarms 48

actuation and sensing). Two commonly used tools are Webots [57] and Player-Stage [25] [79].

Webots models the environment as a 3D continuous space and has physics-based sensor models.

It is an excellent teaching tool with support for many commercial robot platforms, but it fails to

meet our scalability requirements. In addition, its commercial nature does not allow for arbitrary

modification, as would likely be the case for modeling communication networks and bridging with

our testbed. Player-Stage consists of a robot driver interface, Player, and a simulated environment,

Stage. Player is used in a client/server fashion to control robot and sensor hardware. Stage is used to

simulate robots in a virtual environment but exports a Player interface so that code can be migrated

to a hardware platform. Stage is a 2.5D simulator that scales to handle hundreds of robots in real time

for realistic workloads and thousands of robots for simple workloads. Its key limitation as mentioned

by the authors [79] is that it is a first-order geometric simulator that does not model acceleration or

momentum. Our approach to MAV swarm simulation requires a more comprehensive treatment of

vehicle dynamics.

The Robot Operating System (ROS) is a collection of hardware drivers, algorithms, and

tools for building robotic applications [69]. ROS users compose agent behaviors from a large set of

open source packages that provide functionality for data acquisition and processing, planning, and

locomotion. For the most part, ROS is a complementary technology to Simbeeotic. It is primarily

used to construct a fully functioning software stack that can be deployed on one or more robots.

There are packages that integrate ROS with simulators (including Player-Stage) to execute a robot

in a virtual world, but these packages are insufficient for our needs due to shortcomings mentioned

above.

The construction of the GRASP Micro UAV Testbed [56] is similar to Simbeeotic in that

Chapter 3: Simbeeotic: A Testing Platform for Micro-Aerial Vehicle Swarms 49

an off-board computer remotely controls the vehicles, relying on accurate position and orientation

information from a motion capture system. One difference between the two testbeds is fidelity. The

researchers using the GRASP testbed are interested in vehicle control, so the simulation includes a

dynamics model and accounts for aerodynamic effects. Though we have performed a system identi-

fication on our helicopters and constructed a dynamics model, our efforts in simulation have focused

on modeling larger swarms with lower fidelity vehicle movements. If researchers are interested in

the aggregate behavior of a large swarm, foregoing the simulation of control loops can significantly

improve simulation scalability.

The wireless networking and sensor network communities have invested heavily in simu-

lation tools. GloMoSim [92] and ns-3 [62] are widely adopted simulators that model the OSI seven-

layer architecture. While they do an excellent job of implementing RF propagation, radio models,

and network protocols, these tools are singularly focused on networking. A significant effort would

be needed to model actuation and sensing to meet our completeness requirement. Rather, our ap-

proach is to start with a physical simulation and add networking fidelity as needed. This strategy

allows us to selectively integrate the parts of these tools that are useful in our domain.

TOSSIM [45] and EmStar [26] are two popular wireless sensor network simulators. TOSSIM

takes the completeness and bridging requirements to an extreme by providing a virtual environment

in which the embedded mote software (running TinyOS) is executed. Though the whole-system

approach is appealing, TOSSIM restricts users to writing applications in TinyOS. We borrow the

idea of staged deployment from EmStar, which allows virtual models (e.g., radios) to be replaced

by physical hardware in a testbed. Our staged deployment goal is derived from a desire to iterate

on software and hardware designs using virtualized representations prior to building a deployable

Chapter 3: Simbeeotic: A Testing Platform for Micro-Aerial Vehicle Swarms 50

system. We do not consider EmStar a viable starting point for a MAV swarm simulator because the

software is no longer maintained.

Implementing a new testing platform has several advantages. We can ensure that our re-

quirements are satisfied and make design decisions that suit our needs. Our approach also allows

us to evolve the fidelity of each subdomain (e.g., actuation, sensing, communication) as more ac-

curacy is needed. However, we do not want to reinvent what is considered state-of-the-art in each

domain. Whenever possible, we leverage open source tools and learn from existing models to avoid

duplication of effort.

3.2 Simulator Design

At its core, Simbeeotic is a general purpose discrete event simulator tightly coupled with a

physical MAV testbed. A simulation execution consists of one or more models that schedule events

to occur at a future point in time. The virtual time of the simulation is moved forward by an executive

that retrieves the next event from a queue of causally ordered pending events and passes it to the

intended recipient for processing. In effect, time passes in between events – the events themselves

represent discrete points in time. Since we are interested in modeling the MAV swarm domain,

Simbeeotic builds upon the basic discrete event mechanism to provide convenient abstractions for

building MAV swarm simulations, such as a virtual environment, robotic platforms, sensors, and

radios.

The Simbeeotic simulator is written in the Java programming language. Java was cho-

sen for a number of reasons. First, it is widely understood among our team and easily learned by

neophytes. Second, it is for the most part a cross-platform language. We have confidence that Sim-

Chapter 3: Simbeeotic: A Testing Platform for Micro-Aerial Vehicle Swarms 51

beeotic can be compiled on or distributed in binary form with little effort to the most popular (and

some esoteric) operating systems. Third, there exists a large repository of high quality, open source

libraries that can be leveraged by our modelers.

At present, Simbeeotic consists of 13,387 lines of Java code in 148 classes and 506 lines

of XML schema. Of this code base, 48% makes up the core (including the simulation executor,

modeling interfaces, base classes, and common model implementations), 26% is for testbed inte-

gration, 13% is example code, 6% defines tools that generate random enclosed environments (such

as mine shafts and office buildings), 6% is for visualization components, and 1% is for the main

entry point. This codebase builds atop a collection of open source libraries that provide support for

the simulator. The major libraries used are shown in Table 3.1

Library Version Description
jbullet 20101010 Physics engine
guice 2.0 Dependency injection for configuration
commons-math 2.1 Math library for statistics
jopt-simple 3.1 Command line parsing
jfreechart 1.0.12 Graph visualization
protobuf-java 2.3.0 Serialization for testbed integration
jama 1.0.2 Linear algebra package
j3d-core 1.5.2 3D Visualization
j3d-utils 1.5.2 3D Visualization
vecmath 1.5.2 Vector library
log4j 1.2.13 Logging library
junit 3.8.1 Unit testing

Table 3.1: Open source libraries utilized in Simbeeotic.

3.2.1 Architecture

We constructed Simbeeotic to fulfill the requirements established in 3.1 (scalability, com-

pleteness, variable fidelity, and staged deployment). In addition, we are careful to provide repeata-

Chapter 3: Simbeeotic: A Testing Platform for Micro-Aerial Vehicle Swarms 52

bility and promote ease of use and extensibility throughout our design. Simulation repeatability is

of utmost importance; experiments must be reproducible given identical inputs. As such, our frame-

work provides seeded random number streams to models and causally orders scheduled events using

a set of deterministically generated tiebreak fields. We also have a simple XML-based configuration

system for setting simulation parameters.

Figure 3.1 shows an overview of the simulation architecture (lefthand side) and a partial

class diagram of the modeling abstractions (righthand side). All objects in Simbeeotic are repre-

sented by models. Models can represent physical objects such as MAVs and obstacles in the envi-

ronment. Abstract models can also be used to represent things such as weather or wind (which do

not have a physical entity associated with them).

Models!

Components!

Sim Engine!

Physics Engine!

Comms!

Sensors!

Environment!

Visualization!

Logging!

Hardware I/O!

Platforms!

Figure 3.1: The Simbeeotic architecture. Domain models are plugged into a discrete event simu-
lation engine. The kinematic state of models with physical presence is managed by an integrated
physics engine. Several levels of abstraction in the model layer provide flexibility and convenience
to modelers. The simulation architecture can be augmented by user-supplied plugin components.

The heart of the simulator is the simulation engine, which manages the discrete event

queue and dispatches events to models, pushing virtual time forward. Prior to the commencement of

the simulation, the simulation engine populates the virtual world from a supplied configuration file,

Chapter 3: Simbeeotic: A Testing Platform for Micro-Aerial Vehicle Swarms 53

called a scenario, and initializes all of the models by calling a model-specific initialization routine.

The simulation engine is also responsible for answering queries about the model population. It

provides an API for locating models based on type or ID.

The model layer sits on top of the simulation engine. The majority of user-supplied code

uses model layer interfaces to implement features of the target domain. Simbeeotic employs a lay-

ered strategy to provide extension points within the model space. The layered approach API is one

way that Simbeeotic fulfills the variable fidelity design goal outlined in Section 3.1. Users model

particular applications by specializing model classes to match objects (either physical or virtual) in

their scenario. The model class hierarchy is intentionally detailed so that an application designer

can select the right layer at which to specialize.

At the very bottom are the Model and Event interfaces. All models implement the Model

interface, but few do so directly. The AbstractModel base class provides a default implementation

that introduces other useful mechanisms, such as a seeded random number generator and a timer

abstraction. We have committed to a continuous, 3D representation of space in Simbeeotic. The

PhysicalEntity interface is defined to standardize the representation of a physical object (its size,

shape, and mass), the information that can be queried about its kinematic state, and how its state can

be manipulated (by applying forces, torques, and impulses). While it is possible for users to directly

implement the PhysicalEntity interface, there exists a base class, AbstractPhysicalEntity,

that implements the interface by delegating to a rigid body physics engine (described below).

The next level of abstraction, the GenericModel class, treats the established physical

body as a robotic platform, allowing equipment (e.g., sensors and radios) to be associated with

the platform. The attached equipment models do not implement the PhysicalEntity interface.

Chapter 3: Simbeeotic: A Testing Platform for Micro-Aerial Vehicle Swarms 54

Rather, they are granted access to the host platform’s physical presence and are attached using a

body-relative position and orientation (e.g., antenna position and pointing direction). It is possible

for a modeler to develop a new robotic platform by extending GenericModel, attaching sensors and

radios, and defining custom agent logic using the timer mechanism. We introduce a final abstraction

layer with the SimpleBee base class. This class provides a simple actuation API (e.g., turn, set-

LinearVelocity, setHovering) that makes the simulation more accessible to modelers who do

not require high-fidelity actuation modeling. The SimpleBee carries out the actuation commands

with an internal kinematic update loop, translating the desired motion into the appropriate forces

and torques and applying them to the body.

Modelers do not generally use the event-scheduling mechanism directly. Rather, they im-

plement agent logic using the Timer mechanism introduced by the AbstractModel class. Timers

are a familiar abstraction that most modelers are comfortable using. Timers are scheduled period-

ically or for single use. The modeler provides a custom callback, which is fired when the timer

expires (Figure 3.2). Timers are implemented with a self-scheduled TimerEvent under the covers.

We also discourage the use of events for inter-model communication. In-domain commu-

nication mechanisms (e.g., the radios) should be used for the sake of realism and consistency. These

mechanisms expose a familiar API to the modeler and are implemented internally with events.

In addition to building models in the target domain, users can extend the functionality of

the simulator by providing components. Component implementations can interact with the simula-

tion engine and physics engine directly, or with models by scheduling events. Two components that

have received heavy use in our research are the 3D visualization component and a component used

to communicate with our MAV testbed (discussed in Section 3.3). Component instances are created

Chapter 3: Simbeeotic: A Testing Platform for Micro-Aerial Vehicle Swarms 55

compass = getSensor("compass", Compass.class);

// a timer that takes a compass reading periodically

Timer compTimer = createTimer(new TimerCallback() {

public void fire(SimTime time) {

float h = compass.getHeading();

...

}

}, 0, TimeUnit.SECONDS,

sensorTimeout, TimeUnit.MILLISECONDS);

Figure 3.2: Code from a model initialization routine. This code demonstrates how to query for
attached equipment and schedule a periodic timer (starting immediately and firing every sensor-
Timeout ms).

prior to model initialization and can operate in a separate thread of execution. This way it is possible

to provide asynchronous I/O components, such as buffered loggers.

The final piece of the Simbeeotic architecture is the physics engine. As described above,

the physics engine is used as the backing implementation for the PhysicalEntity interface, which

is implemented by all models with a physical presence in the simulation. The physics engine we use

is JBullet [35], a six-degrees-of-freedom (6DoF) rigid-body physics engine written in pure Java.

JBullet provides a number of features that are useful in modeling MAV swarms at high fidelity:

• Rigid Bodies: The MAV platforms and the virtual environment are composed from simple

Chapter 3: Simbeeotic: A Testing Platform for Micro-Aerial Vehicle Swarms 56

shapes (e.g., box, sphere, cone) and complex geometries (e.g., convex hull, triangular mesh).

• Dynamics Modeling: The kinematic state of every object is maintained by integrating the

forces and torques (e.g., rotor thrust, gravity, wind) applied to physical entities over time.

• 3D Continuous Collision Detection: Physical interactions between objects, such as environ-

mental manipulation by a robot or bump sensors, are easily modeled.

• Ray Tracing: Used primarily to implement sensors, such as range finders and optical flow.

When a descendant of AbstractPhysicalEntity is initialized, a representative rigid

body is registered with the physics engine. The information associated with the body includes its

size, shape, mass, inertial properties, initial position, and orientation. As the rigid body is manipu-

lated over time, its kinematic state is updated. During the course of an event, a model can query the

kinematic state of an AbstractPhysicalEntity, which delegates the request to the rigid body.

The simulation engine invokes JBullet in between events to push the dynamics simulation forward

to the time of the next discrete event. We modified the JBullet library to break out of the dynamics

simulation if a collision is detected during an update. In this case the simulation engine checks a

registry of interested collision listeners (registered by the models). If found, an event is generated to

inform the listener (e.g., a bump sensor) of the collision. If no listener is interested in the collision,

the dynamics simulation is resumed.

JBullet integration enables high-fidelity actuation and sensor models, but this fidelity

comes at a cost. Most of the routines in JBullet execute sequentially; therefore the performance

of the simulator is explicitly coupled with the size of the swarm and complexity of the environ-

ment (i.e., the number of states that must be integrated and bodies checked for collisions). Section

Chapter 3: Simbeeotic: A Testing Platform for Micro-Aerial Vehicle Swarms 57

3.4.1 evaluates the effect of environmental complexity and swarm size on simulation performance.

Our conclusion is that the performance tradeoff is acceptable given the corresponding increase in

fidelity.

3.2.2 MAV Domain Models

Modelers contribute new functionality to the community codebase using the extension

points described above. Simbeeotic constructs the virtual world from the rigid bodies defined by

the physical entities and object definitions supplied in a world configuration file. The configuration

file contains definitions of obstacles, structures, and environmental features to be inserted into the

environment. Weather is modeled in the simulation by an abstract model (one without physical

presence) that can be queried for the current weather state with respect to location. High fidelity

models can simulate the effects of weather on themselves (e.g., by applying a wind force to a

physical entity) or other models using the information provided (e.g., wind speed and direction).

Most of the built-in sensors provided by Simbeeotic are based on information provided by

the physics engine. At present, interfaces and default implementations exist for inertial (accelerom-

eter, gyroscope, optical flow), navigational (position, compass), and environmental (camera, range,

bump) sensors. The inertial and navigational sensors use the kinematic state of the host platform,

whereas the environmental sensors (and the optical flow sensor) use advanced features of the physics

engine, such as ray tracing and collision detection. All of the default sensor models can be config-

ured to produce inaccurate readings from truth state using a Gaussian noise model. Modelers can

introduce new implementations of sensors that closely reflect the accuracy, precision, and error pro-

file of real hardware.

Modeling RF communication is something that is done well by community standard simu-

Chapter 3: Simbeeotic: A Testing Platform for Micro-Aerial Vehicle Swarms 58

Figure 3.3: A class diagram for the RF communications package in Simbeeotic. The abstraction de-
fines a physical layer packet-driven radio. Interfaces are indicated with a and classes are indicated
with a .

lators [62]. As such, the philosophy for RF in Simbeeotic has been to implement the smallest portion

of the OSI seven-layer architecture possible and evolve the fidelity of the models (or integrate an-

other simulator) when the need arises. Figure 3.3 shows a class diagram for the communications

package in Simbeeotic. We implement a simple physical layer abstraction that includes the radio,

antenna, and path loss model interfaces. Modelers are free to implement layers on top of the packet-

driven radio abstraction.

3.2.3 Software Engineering Tricks

Simbeeotic relies on two features of the Java programming language, reflection and run-

time annotation processing, to provide convenient interfaces to the end user. Though not necessary

Chapter 3: Simbeeotic: A Testing Platform for Micro-Aerial Vehicle Swarms 59

to achieve our original design goals, this section describes how these two features enhance the us-

ability of our implementation.

Both reflection and runtime annotation processing are used to provide a flexible configu-

ration system in Simbeeotic. Our design treats models and components as plugins to the simulator

and configures them through dependency injection. Specifically, we use Java reflection to construct

scenarios from an arbitrary number and type of models. We define an XML schema for our scenario

configuration file that allows users to specify the fully qualified name of Java classes they wish to

load and execute. When the scenario file is parsed, the user-supplied type is checked for compliance

(that it implements the required interfaces), and the specified number of instances are instantiated,

registered with the simulation engine, and initialized. Other simulation frameworks, such as Player-

Stage, allow for an arbitrary number of user-defined scenarios to be loaded based on a configuration

file. However, users are restricted to a pre-existing set of known model types. By using reflection,

any class or component on the Java classpath is eligible for inclusion in the simulation.

The second part of configuration is parameterization. As a convenience to the user, we

allow for a set of key-value pairs to be associated with each model or component definition in the

scenario file. We use an open source dependency injection library, Google Guice [27], to configure

the newly instantiated objects using the supplied parameters. After an object is instantiated, Guice

inspects the instantiated class for injection sites (annotated fields or setters). To identify parameters

for a model or component, users simply annotate their classes with the @Inject annotation, which

can be attached to fields and methods. Guice uses the type of the field or method argument to

match the injection site with a supplied configuration parameter. An additional @Named annotation

is used to disambiguate between parameters of the same type. Figure 3.4 depicts the usage of these

Chapter 3: Simbeeotic: A Testing Platform for Micro-Aerial Vehicle Swarms 60

@Inject

private double maxVel;

private boolean useRadio = false;

@Inject(optional=true)

public void setUseRadio(@Named("use-radio")

boolean use) {

this.useRadio = use;

}

Figure 3.4: Simbeeotic code demonstrating the use of the @Inject annotation for model
parameterization.

annotations on fields and methods to prepare a model for parameter injection. With the ability to load

arbitrary model and component implementations and inject parameters, many decisions regarding

scenario construction can be pushed to deployment time.

3.3 MAV Testbed

In addition to the Simbeeotic simulator, we maintain an indoor MAV testbed for conduct-

ing small-scale experiments primarily used to test sensing and control with realistic flight dynamics.

Despite our best effort, the simulator cannot form a complete representation of the real world. Our

approach is to develop new systems and algorithms at scale in simulation and experiment with

smaller deployments in the testbed where they can be tested under realistic conditions.

As RoboBees are not ready to be deployed at this time, we chose the E-flite Blade

mCX2 [17] RC helicopter as the aerial platform for the testbed. The mCX2 is a low-cost ($100),

Chapter 3: Simbeeotic: A Testing Platform for Micro-Aerial Vehicle Swarms 61

off-the-shelf MAV that is quite limited in its capabilities. It has a payload of up to 5 grams and a

flight time on the order of 7 minutes. It carries a proprietary control board that processes RC com-

mands and stabilizes flight with an embedded gyroscope (yaw axis only). As a stock system it has

no other processors, sensors, or radios. There are several advantages to using this platform. First,

building a swarm from these helicopters is not prohibitively expensive. Second, the small size (20

cm in length) allows multiple helicopters to be flown in our 7 x 6 meter laboratory space. The heli-

copter serves as a convincing prototype for the intended target of our research, insect-scale MAVs,

in terms of flight time and capability. One disadvantage of the mCX2 is that it is a toy, not a research

robot. Processing, sensing, and communication hardware must be added to make the vehicle into an

autonomous swarm agent. However, the lack of on-board sensing allows for easy integration with

the sensing and control directly from the simulator.

3.3.1 Remote Control

The helicopter testbed is instrumented with a Vicon [80] motion capture system. The Vi-

con sensors are capable of capturing the position and orientation of an object (adorned with reflective

markers) in our testbed with sub-millimeter accuracy at 100 Hz. This information is made available

to programs that remotely control the helicopters. We achieve computer control by disassembling

the supplied joystick and removing the radio transmitter daughterboard. Though the wireless proto-

col between the transmitter and helicopter is proprietary, the transmitter board is driven by a serial

interface. The input signal to the transmitter is composed of four 10-bit RC command values; yaw,

pitch, roll, and throttle. We connect the transmitter to a PC with a USB-serial cable and allow the

RC commands to be generated programmatically.

A testbed gateway machine mediates access to the observed helicopter state and RC trans-

Chapter 3: Simbeeotic: A Testing Platform for Micro-Aerial Vehicle Swarms 62

mitters. For helicopter state (measured by Vicon) the gateway provides a publish-subscribe mech-

anism for pushing updates to interested clients. Clients receive updates via messages that are se-

rialized using Google Protocol Buffers [28]. The information in each update includes the Vicon

frame number (essentially a timestamp) along with the object’s identifier, position, orientation, and

an occlusion flag (indicating that Vicon has lost track of the object in this frame). The gateway also

provides a server for controlling each helicopter, which accepts <yaw, pitch, roll, throt-

tle> command tuples. The server ensures that at most one client is connected to each helicopter

and sends the latest RC commands to the transmitter at the required 50 Hz. Clients communicate

with the testbed gateway machine over a Gigabit Ethernet LAN.

Models!

Vicon Input
Component!

Sim Engine!

Physics Engine!

Simulator!

Testbed Gateway!

Tracking Server!

RC Server!

3!

2!

4!

6!

5!

1!

Figure 3.5: The HWIL cycle in Simbeeotic. Vicon cameras track the position and orientation of a
helicopter and push frames to a tracking server (1), which pushes updates (2) to registered clients.
A Vicon input component in Simbeeotic receives the update and overrides the kinematic state (3) of
the corresponding object in the physics engine. When the ghost model executes an event (4), it has
the most recent state of the helicopter. If a command is issued, it is sent to the RC command server
(5) where it is dispatched by the RF transmitter (6) to the helicopter.

Chapter 3: Simbeeotic: A Testing Platform for Micro-Aerial Vehicle Swarms 63

3.3.2 Simulator Integration

It is possible to write a standalone program that communicates with the testbed gateway to

control the helicopters in the testbed. However, we realize that writing such programs would result

in significant overlap with the Simbeeotic simulator, given that virtual sensor outputs would need to

be constructed from the absolute position and orientation information provided by Vicon. We chose

instead to integrate the helicopter testbed with the simulator, allowing the modeler to leverage the

virtual sensor implementations that already exist and conduct hybrid experiments with simulated

and real MAVs. We refer to this operating mode as hardware-in-the-loop (HWIL) simulation. This

technique is similar to the staged deployment mechanism in EmStar [26], which allows a simulated

network to be transparently backed by real hardware.

We accomplish the testbed integration, depicted in Figure 3.5, by introducing ghost mod-

els in the simulator for physical objects that are tracked by Vicon. The ghost models implement

the same PhysicalEntity interface as the simulated models, so interaction between the two is

unchanged. The difference is that the ghost model’s kinematic state is derived from the Vicon input,

not the physics engine. However, the virtual sensors and other models that interrogate the virtual

environment rely on the presence of an object in the physics engine for every physical entity. To

fulfill this requirement, we simply create an object with the correct size, shape, and mass in the

physics engine and periodically override its kinematic state with the information from Vicon. We

introduce a new component that is responsible for connecting to the testbed gateway and receiving

state updates. The simulation allows for the internal state of tracked objects in the physics engine

to be updated prior to executing each event. Thus, whenever an event is executed, the state of all

physical entities in the simulation is correctly represented by the physics engine. Some minor mod-

Chapter 3: Simbeeotic: A Testing Platform for Micro-Aerial Vehicle Swarms 64

ifications to JBullet were required to allow the state to be set and to integrate the new state forward

correctly in between Vicon updates.

Sending RC commands is similar. Upon initialization, each ghost MAV model opens a

socket that connects to the testbed gateway. The RC commands are fed over the wire to the trans-

mitter, which controls the helicopter in turn. The effects of the commands are witnessed by the

Vicon, and the loop is closed.

The Simbeeotic simulator processes events as quickly as possible when executing a pure

simulation. However, the simulator must make an effort to run in realtime when hardware is at-

tached. We make the assumption that the wallclock time necessary to execute an event is less than

the virtual time between the current event and its immediate successor. If this assumption holds,

then it is trivial to maintain a soft realtime schedule by delaying the processing of an event until a

corresponding system time has passed. When event processing violates this assumption, events are

processed as quickly as possible to catch up. This approach works in practice, though it compels

modelers to keep events simple (arguably a good thing) and avoid scheduling simultaneous events.

3.3.3 Hardware in the Loop

The testbed integration allows one to fly real MAVs using virtual sensors in a simulated

environment. This arrangement allows for the transformation of a laboratory space into an arbitrarily

complex proving ground with virtual obstacles and features. Sensors can be easily tested in differ-

ent positions and with varying amounts of sensor error to test the limits of control and navigation

algorithms. For these cases, pure simulation is not sufficient since the physics engine cannot al-

ways capture subtleties such as aerodynamic ground effects and servo actuation error, so the HWIL

tests can aid in the iterative design process by observing these phenomena early on using staged

Chapter 3: Simbeeotic: A Testing Platform for Micro-Aerial Vehicle Swarms 65

deployment.

We have modeled several sensors for navigation: optical flow, accelerometer, gyroscope,

and compass. We also have developed a flower sensor, which indicates when a flower is within range

and in the sensor’s field of view. In addition, we have also implemented a position and orientation

sensor, which gives three-dimensional position and orientation, respectively, of the MAV in space.

These two sensors are in essence ideal sensors, since they come directly from the physics engine in

simulation or the Vicon motion capture system in the testbed.

The first sensors evaluated in the testbed were the position and orientation sensors. As

these are the most accurate sensors, this is a natural place to start for evaluating the control al-

gorithms of the MAV. Control is performed by four proportional-integral-derivative (PID) con-

trollers [4], one each for thrust, yaw, pitch, and roll. PID controllers were chosen because they

can be implemented with minimal computing resources and are being used for control on the actual

RoboBees themselves. Using the four PID controllers and the position and orientation sensors, we

were able to develop several navigation primitives: takeoff, hover, move to a location, and land. In

addition to the navigation primitives, we implemented a simple obstacle avoidance system using

potential fields [38] and have tested it by flying up to five MAVs at one time, avoiding both virtual

obstacles and each other while using the flower sensor to search for virtual flowers to pollinate.

While developing these algorithms, the testbed’s tight integration with the simulator proved

very useful. We were able to use Simbeeotic’s 3D visualization tools to track the MAVs as they navi-

gated through the virtual world. When an MAV crashed or ran into an obstacle, Simbeeotic’s logging

facilities made it easier to go back and diagnose what happened.

Using HWIL we were able to determine some key properties of our system that would

Chapter 3: Simbeeotic: A Testing Platform for Micro-Aerial Vehicle Swarms 66

have been difficult to determine otherwise. First, we were able to determine the limits of safe flight

for our MAVs. In open space the MAVs can travel at 2 meters per second. At this speed it takes

about 1 second to slow to a hover, which gives us a good idea at what density we can deploy MAVs

to a given area if we wish to travel at maximum speed. Also, while evaluating our flower sensor, we

found that slowing down from 0.25 to 0.5 meters per second gave the most reliable detections. We

use these numbers when modeling our swarm simulations.

Because the main focus of our research is resource coordination for swarms, we have only

currently evaluated the position, orientation, and flower sensors using HWIL. However, by designing

and testing control algorithms around these sensors, we have shown that HWIL is a viable platform

for evaluating sensing and control algorithms with real flight dynamics.

Our HWIL arrangement has a couple of disadvantages. First, we are coupled to Vicon.

Without a very accurate measurement of position and orientation, we would not be able to write

sensors that convey the truth about the physical object. As we are tied to the motion capture system,

we cannot fly outdoors. This is not a severe limitation at the moment, but our laboratory can only

accommodate a handful of physical helicopters. However, Simbeeotic is modular in its design, and

it is possible to replace Vicon with some other form of motion tracking. To demonstrate Simbeeotic

outside of our lab [82], we replaced the Vicon motion tracking system with a Microsoft Kinect [58]

sensor. The range and accuracy of the motion tracking was greatly reduced under this setup, but it

was still possible to have a single MAV fly and hover in a space of about two cubic meters.

Another potential disadvantage is that the control software for the helicopter is running

in the simulator on a PC-class system. There is a risk of developing software that uses far too

many resources for the eventual platform to handle. A TOSSIM-like approach to whole-system

Chapter 3: Simbeeotic: A Testing Platform for Micro-Aerial Vehicle Swarms 67

simulation may be needed to keep the modelers honest. Finally, our current setup does not allow for

any processing or sensing to occur on the physical helicopter. This is why we refer to the remote-

control HWIL solution as staged deployment. It is merely a stepping stone to truly autonomous

MAVs. Chapter 6 discusses the possibility of extending the HWIL approach to communication

hardware and how Simbeeotic can facilitate a move toward autonomous MAVs.

There are multiple sources of latency in the HWIL loop described above, including cap-

ture and processing time for Vicon frames, the transmission of MAV tracks to Simbeeotic over

the LAN, processing events in Simbeeotic, sending RC commands to the testbed gateway over the

LAN, and broadcasting the RC commands via the wireless link. If needed, the tracking server, RC

server, and simulation could be co-located, eliminating the LAN. Our experiments have shown that

the round-trip loop latency in the testbed does not cause control instability or a substantive delay in

MAV reaction time. The latency introduced by the processing loop is absorbed by the relatively slow

update rate of the RC helicopters (50 Hz). In addition, if a command is delayed there is not a notice-

able impact on the position and orientation of the MAV. Unlike the GRASP testbed, which focuses

on fast, complicated maneuvers, our MAVs typically move at a rate of 0.25–2.0 m
s . At this velocity

a 20 ms latency might result in a positional drift of a few centimeters. Since the HWIL loop latency

is not an observable hindrance to our experiments, little effort has been put into characterizing and

minimizing the delay in our testbed.

3.4 Evaluation

We have used Simbeeotic for almost three years (two years with HWIL) to conduct re-

search on MAV swarms. In this section we evaluate the performance of the simulator and present

Chapter 3: Simbeeotic: A Testing Platform for Micro-Aerial Vehicle Swarms 68

two applications that use Simbeeotic to explore the MAV swarm domain.

3.4.1 Simulation Performance

Since Simbeeotic is used in daily experimentation, we can state from experience that the

tool meets our needs. However, it is beneficial to know the limits of the simulator, how modeler and

user decisions can affect performance, and how the tool might be improved with future work. We

evaluate the performance of the simulator and our ability to meet our scalability objectives based on

three challenges:

• Environment Complexity: The number of objects defined in the environment (e.g., obstacles,

structures) determines how much collision checking is necessary during each physics update.

Complicated scenarios can slow down the simulator.

• Swarm Size: As more MAVs are introduced there is more work to be done by the physics

engine to maintain the kinematic states of the moving objects. In addition, each new MAV

represents an additional workload (events to process) to execute the agent’s logic.

• Model Complexity: Higher fidelity agent logic is likely to affect performance since complex

events take longer to simulate.

Defining a single performance goal for the simulator is difficult given that modelers can

construct scenarios that contain models of varying fidelity and execute in arbitrarily complex envi-

ronments. Our motivation for constructing the simulator was to study large swarms of less-capable

MAVs. Thus, we focus on a performance goal of simulating one thousand MAVs executing a typical

workload in soft realtime or better. The scalability goal is lowered for HWIL scenarios to ensure

Chapter 3: Simbeeotic: A Testing Platform for Micro-Aerial Vehicle Swarms 69

that RC commands are issued as close as possible to a realtime schedule so helicopters do not crash.

Our experiments show that Simbeeotic is capable of simulating thousands of MAVs executing a

typical workload and hundreds of MAVs executing a complex workload in soft realtime. As with

other discrete event simulators, Simbeeotic is capable of simulating faster than realtime when there

is no testbed hardware in the loop.

We define a typical MAV workload to consist of a random walk (10 Hz kinematic update

rate) and a periodic sensor reading (1 Hz compass). This models the performance we expect from

our target MAV. In all of the following experiments, the MAVs operate for 100 virtual seconds and

start from random locations within 20m of the origin. The operation time chosen allows enough

work be done to evaluate Simbeeotic while still allowing the simulations to be run in a reasonable

length of time. The starting distance from the origin was selected to give us a wide range of MAV

densities as the number of MAVs are increased. We instrument Simbeeotic to record the amount of

wallclock time necessary to simulate the physics (in between events) and run the agent logic (the

events themselves). All measurements are taken on a 2.2 GHz quad-core laptop with 8 GB of RAM

using the HotSpot JVM version 1.6.0 26.

We begin with an experiment that addresses the environmental complexity challenge. We

measure the overhead of collision detection by simulating a small swarm (32 MAVs) executing the

workload defined above. A variable number of static obstacles are introduced into the environment

at each iteration of the experiment. As the number of obstacles grows, we expect the collision detec-

tion routines to take more time. Performing naive collision detection is O(n2) in time. Fortunately,

JBullet employs more sophisticated collision detection routines that reduce the number of compared

objects. Since the kinematic state of a static object in JBullet is not integrated forward at each time

Chapter 3: Simbeeotic: A Testing Platform for Micro-Aerial Vehicle Swarms 70

step, we can attribute any increase in the physics simulation time to increased collision checks (and

likely some added overhead). Further, we expect this increase to be linear with respect to the num-

ber of obstacles (as opposed to quadratic) because two statically placed objects are not checked for

collisions. Thus, the only collisions being checked are between the MAVs and the obstacles. The

results in Figure 3.6 show that the amount of time to execute the events (agent logic) is constant

through the course of the experiment. This is to be expected, as the swarm size does not change and,

for this experiment, our event logic ignores the collision notification (i.e., colliding MAVs will pass

right through each other). However, the overall time spent in the physics simulator increases linearly

with the number of objects introduced. MAV swarm modelers must be informed that environmental

complexity, not just swarm size, can have a significant impact on the performance of the simulation.

 0.1

 1

 10

 100

 1000

 1000 10000 100000 1e+06

E
xe

cu
tio

n
 T

im
e

(s
e

c,
 lo

g
 s

ca
le

)

Number of Obstacles (log scale)

Physics Engine

Event Logic

Figure 3.6: The overhead of collision detection in Simbeeotic. A fixed number of MAVs are sim-
ulated with a varying number of static obstacles. The amount of time to execute the event logic is
constant. The number of required collision checks between MAVs and obstacles (and the time spent
in the physics engine) grows linearly as obstacles are introduced.

Chapter 3: Simbeeotic: A Testing Platform for Micro-Aerial Vehicle Swarms 71

The next experiment characterizes the scalability of the simulator with respect to swarm

size. With each iteration we vary the number of MAVs deployed into a constant environment (no

obstacles). The MAVs execute the workload defined above. We expect increased collision checks

(between MAVs) and a linear increase in the time needed to update the kinematic states of the

MAVs. Similar to the static obstacle experiment, JBullet’s collision detection routines reduces the

actual number of collision checks that are needed, improving performance. Figure 3.7 shows the

results of this experiment. The simulation scales roughly linearly as the swarm size is increased.

The number of events (and the corresponding event execution time) scales linearly as well. Using

this workload, it is possible to simulate 3,074 MAVs in soft realtime. These scalability results are

comparable to the performance of Player-Stage using a similarly defined “simple” workload [79].

 1

 10

 100

 1000

 16 64 256 1024 4096 16384

E
xe

cu
tio

n
 T

im
e
 (

se
c,

 lo
g
 s

ca
le

)

Swarm Size (MAVs, log scale)

other
events

physics

 1

 10

 100

 1000

 16 64 256 1024 4096 16384

E
xe

cu
tio

n
 T

im
e
 (

se
c,

 lo
g
 s

ca
le

)

Swarm Size (MAVs, log scale)

Figure 3.7: Scalability of Simbeeotic with respect to swarm size. The number of events to process
and kinematic states to integrate increases linearly with swarm size. The corresponding event and
physics execution times reflect this increase. The dashed vertical line indicates the point above
which soft realtime cannot be achieved with this workload (3,074 MAVs).

Chapter 3: Simbeeotic: A Testing Platform for Micro-Aerial Vehicle Swarms 72

We address the final performance challenge, model complexity, by introducing an addi-

tional element to the workload – each MAV broadcasts a radio message at 1 Hz. The result of this

addition is a significant increase in the event execution time. The increase in event time has two

main causes, event complexity and message explosion. The former refers to the nontrivial amount

of work that must be done to send each packet.

The propagation model considers every other radio-equipped model as a potential recip-

ient and performs path loss calculations between the two radios. This includes determining the

antenna positions and orientations, extracting the gains from the antenna patterns, and computing

the signal strength at the recipient. Though there is a cutoff distance in the path loss model, this

optimization is not useful in the scenario under test because the MAVs are closely spaced.

Message explosion refers to the number of receive events that will be generated as a result

of each packet transmitted. It is possible that n2 events are generated each second in the simulation.

In this case, some events are not generated due to low signal strength at the recipient. Despite the

relative simplicity of the receive event processing, the sheer number that need to be processed can

add significant overhead. The results of this experiment are shown in Figure 3.8. The overhead of

creating and enqueuing these events is likely the source of the increase in the “other” category. With

this workload, we can simulate 550 MAVs in soft realtime.

We set out to create a complete simulator for the MAV swarm domain. These experiments

demonstrate that Simbeeotic meets our scalability goals for typical workloads (thousands of MAVs

in soft realtime). They also reaffirm the premise that environment complexity and model fidelity

can significantly affect performance. Chapter 6 discusses potential modifications to improve the

scalability of the simulator.

Chapter 3: Simbeeotic: A Testing Platform for Micro-Aerial Vehicle Swarms 73

 1

 10

 100

 1000

 10000

 100000

 16 32 64 128 256 512 1024 2048 4096 8192

E
xe

cu
tio

n
 T

im
e
 (

se
c,

 lo
g
 s

ca
le

)

Swarm Size (MAVs, log scale)

other
events

physics

 1

 10

 100

 1000

 10000

 100000

 16 32 64 128 256 512 1024 2048 4096 8192

E
xe

cu
tio

n
 T

im
e
 (

se
c,

 lo
g
 s

ca
le

)

Swarm Size (MAVs, log scale)

Figure 3.8: Simbeeotic performance with radio broadcasts. The simulation runtime does not in-
crease linearly for the broadcast scenario. A nontrivial amount of work is undertaken for each radio
transmission event, which may also generate reception events on all other MAVs. The event execu-
tion time dominates this scenario as the swarm scales. The dashed vertical line indicates the point
above which soft realtime cannot be achieved with this workload (550 MAVs).

3.4.2 Example Scenarios

We describe two MAV swarm scenarios that we have simulated using Simbeeotic. The

main goal of the first scenario is coverage. The MAV swarm is deployed to search a space for

features of interest (e.g., flowers) and manipulate the environment where the features are located

(e.g., chemical sampling, pollination). There are many possible solutions to the swarm coordination

problem, including static task assignment, cooperative planning, and emergent behavior. We employ

Karma [11], a system that coordinates the actions of the swarm from a centralized location called

the hive. We discretize the world into cells and dispatch MAVs from the hive to perform a specific

task until they are low on energy, at which point they return to recharge. A planner at the hive an-

alyzes the results of the trip (the information collected) and determines which cells require more

Chapter 3: Simbeeotic: A Testing Platform for Micro-Aerial Vehicle Swarms 74

attention. Figure 3.9 shows a snapshot of our swarm management system executing a search and

survey scenario using 45 virtual MAVs and 5 testbed helicopters. The top picture shows a Simbee-

otic visualization of the virtual world, while the bottom picture shows the helicopters flying under

PC control. This example demonstrates that Simbeeotic has adequate modeling fidelity in actuation

and sensing to fly real hardware, and that the staged deployment goals are satisfied.

(a) Virtual World

(b) Helicopter Testbed

Figure 3.9: A HWIL deployment of a MAV swarm. Five testbed MAVs are deployed alongside 45
simulated MAVs to search a space for flowers. The circle in the virtual world represents a flower
patch (also visible in the testbed floor), and the box at the center denotes the MAV hive.

Chapter 3: Simbeeotic: A Testing Platform for Micro-Aerial Vehicle Swarms 75

The second scenario explores the possibility of using RF beacons embedded in the envi-

ronment as navigational aids for flying MAVs. Figure 3.10 shows an overhead trace of MAVs using

a biased random walk algorithm in a gradient field [15] to navigate along two preferred paths. The

MAVs and beacons are equipped with virtual CC2420 radios and isotropic antennas. The two-ray

RF propagation model is used to calculate path loss. The MAVs use the value and signal strength of

beacon packets to determine the direction of travel in the gradient. This example demonstrates one

way that RF communication can be used in a MAV swarm.

-30

-20

-10

 0

 10

 20

 30

-30 -20 -10 0 10 20 30

Y
 (

m
e

te
rs

)

X (meters)

 0

 1

 2

 3

 4

 5

 6

G
ra

d
ie

n
t

V
a

lu
e

Figure 3.10: An overhead trace of five simulated MAVs navigating through the environment with
the assistance of a gradient field provided by RF beacons (square dots). The gradient in this case
specifies two paths away from the center. The MAVs use the value and the signal strength of beacon
packets as input to a biased random walk (chemotaxis) algorithm. The MAVs are successful in
traveling between the hive and the edge of the gradient field along the two paths.

Chapter 3: Simbeeotic: A Testing Platform for Micro-Aerial Vehicle Swarms 76

3.5 Summary

MAV swarms are an emerging class of mobile sensor systems with strong ties to the

robotics, sensor networking, and swarm intelligence communities. This chapter presents Simbee-

otic, a simulation environment and testbed for MAV swarms to support research effort in this area.

Simbeeotic is designed to be flexible and easy to use. The domain modeling interfaces are designed

to cover a complete view of the application space, including actuation, sensing, and communication.

We show that Simbeeotic is capable of simulating MAV swarms at scale, and demonstrate its useful-

ness in exploring new concepts with real flight dynamics. Simbeeotic is available as open source at

http://github.com/RoboBees/simbeeotic. Our next chapter uses Simbeeotic to develop and

evaluate Karma, our programming and coordination framework for MAV swarms.

Chapter 4

Karma: A Framework for Coordinating

Micro-Aerial Vehicle Swarms

In this chapter we turn our attention to the unique set of challenges that face insect-sized

MAVs. Actuation dominates the weight and power budgets for these devices, keeping sensing and

control to the bare minimum. MAVs are required to move around in and to interact with an un-

predictable environment, and MAVs will often fail in the field. This can be mitigated by adding

redundancy to the swarm, but as the size of the swarm increases, it becomes harder to reason about

the swarm as a whole, and the complexity of coordination increases. Furthermore, the extreme re-

source limitations of this MAV platform restrict the complexity of the programs that can be executed

on the MAVs.

To address these problems, we present Karma, a centralized system architecture that co-

ordinates MAV swarm resources with simple programming abstractions. Karma applications are

composed of simple sensing and actuation commands allocated by a centralized controller. This

77

Chapter 4: Karma: A Framework for Coordinating Micro-Aerial Vehicle Swarms 78

decision simplifies the hardware and software complexity of individual MAVs and allow the appli-

cation developer to focus on the tasks to perform, while Karma handles the complexity of resource

coordination and allocation.

This chapter describes the architecture and implementation of Karma. Throughout the

chapter we use a running example of an alfalfa crop monitoring and pollination application to show

the ease of developing Karma applications and to demonstrate how Karma coordinates MAVs swarm

resources. We evaluate Karma with simulation and testbed experiments and demonstrate how ap-

plications in Karma run on limited resources, are robust to individual MAV failure, and adapt to

changes in the environment.

4.1 Architecture

The Karma system architecture is based on a hive-drone model, in which individual

MAVs, called drones, perform simple sensing and manipulation tasks required to fulfill the goals of

the swarm. To simplify programming, drones do not communicate with each other in the field and

operate without precise knowledge of their location, relying on proprioception or periodic external

localization for navigation. These restrictions simplify drone programs and allows swarm-scale be-

havior that is coordinated by a centralized hive, which contains sufficient sensing, computation, and

storage capabilities to manage the swarm. With the majority of the computational burden pushed to

the hive, the application programmer can focus on implementing the correct behaviors for the ap-

plication (what to do) while the system reasons about allocation and coordination of the resources

to carry out those behaviors (where and when to do it).

To achieve this decoupling, the Karma programming model allows the application pro-

Chapter 4: Karma: A Framework for Coordinating Micro-Aerial Vehicle Swarms 79

grammer to compose programs from simple MAV-level behaviors by relating the behaviors that

produce information to the ones that consume it. This model allows for an easy and flexible compo-

sition of programs and enables Karma to reason about MAV coordination efficiently.

4.1.1 Motivating Application: Alfalfa Crop Monitoring and Pollination

Throughout this chapter we use an example application to illustrate the design and opera-

tion of our system. The application, alfalfa crop monitoring and pollination [14], represents a typical

application of MAV swarms in that it relies on both information gathering and micromanipulation

behaviors in a relatively static environment. Alfalfa is an important food crop for cattle and requires

an external pollinator (e.g., bees) to produce seeds. In recent years, colony collapse disorder [75]

has devastated honeybee populations and jeopardized the cultivation of important crops. A swarm

of insect-scale MAVs is well-suited to performing this type of pollination.

In addition to pollination, alfalfa crops require periodic monitoring for pests and disease.

These tasks need to be performed at least three times a week and are normally done with visual spot

checks. We envision a full service application that not only pollinates the crop when it is in bloom,

but monitors the crop throughout the growing season.

To meet these requirements, the application consists of three periodic behaviors: searching

for pests, searching for diseases, and looking for flowers in bloom. Pest infestation is typically

detected by inspecting the leaves of the crop for damage caused by feeding insects. Diseases can be

detected by looking at the color of the leaves, which turn greenish-white or brown in the presence

of disease. If pests or diseases are found, the application notifies farmers so that they can treat the

infected area. If the flowers are in bloom, the system should start a one-time pollination behavior.

Together, the application has four behaviors in total. We will use this application to describe our

Chapter 4: Karma: A Framework for Coordinating Micro-Aerial Vehicle Swarms 80

design and evaluate our system.

4.1.2 Hive-Drone Model

A key challenge in designing swarm applications is to efficiently allocate resources to

perform a desired task, such as crop pollination. Deciding what resources to allocate and where to

allocate them is a complex function of available resources, conditions in the environment, deployed

resources, and the desired goals of the application. All these conditions change dynamically over

time, making offline static solutions inadequate.

The separation of concerns between the behaviors that run on the MAV and where and

when these behaviors are carried out is a driving influence in the design of Karma. We propose a

hive-drone model, which moves the resource coordination complexity to a centralized computer,

allowing the system to have an up-do-date and global view of the network. In this model, MAVs are

stationed at the hive, which has a physical presence in the environment and the capability to recharge

MAV batteries. The hive computer determines how MAV resources be allocated to accomplish the

swarm objectives and dispatches MAVs as drones to execute specific behaviors in the environment.

This system design is coupled with a programming model that allows the application programmer

to specify the desired swarm behaviors as sequences of sensing, sensor processing, and actuation

commands without concern for coordination.

In Karma, the complexity of coordination and fault tolerance becomes the responsibility

of the system, not the application programmer. We minimize the program complexity of individual

MAVs by eliminating in-field communication and restricting programs to a simple set of commands.

Therefore, by design, the application programmer is granted the freedom to describe how a MAV

behaves when it is dispatched but has no need to explicitly coordinate its actions in the field. While

Chapter 4: Karma: A Framework for Coordinating Micro-Aerial Vehicle Swarms 81

these restrictions prohibit the expression of some programs, they allow us to accomplish our original

goal of presenting a simple swarm interface to the user. Our approach is analogous to the philosophy

of the MapReduce programming model [13]: we provide a simple, powerful abstraction to the user

with the caveat that not all computations can be expressed using the abstraction. However, if the

invariants of the model are followed, the system will handle the inherent complexity of coordinating

the massively parallel operation.

Further, the hive-drone model fits well with the target hardware. In addition to the pro-

cessing and sensing limitations, there is a rather severe restriction on flight-time. Current estimates

of insect-scale MAV flight times suggest that a drone could operate for 5–10 minutes before its

energy source is depleted. If the drone must return to the hive to recharge after a short period of

time, it makes sense to perform coordination centrally at the hive. There are few scenarios that

would necessitate in-field communication given the flight time restrictions and inherent burden of

complexity.

The benefits of the hive-drone model can be summarized as follows:

• Simplify MAV programming: The drones need not coordinate among themselves, make

tasking decisions, or deal with MAV loss. Thus, their software complexity is reduced.

• Better decision making: The centralized hive is more informed than an individual drone

would be, making local greedy decisions based on partial information. The overhead for shar-

ing information in the field is eliminated. The hive has the advantage of collective intelligence

and more computation to better allocate resources.

In any sensing paradigm there will be a delay from the time an event of interest occurs

in the environment to when the end user is notified of the event. We call this delay the information

Chapter 4: Karma: A Framework for Coordinating Micro-Aerial Vehicle Swarms 82

latency in the system. In traditional sensor network deployments, this latency may be on the order

of a few seconds, depending on the duty cycle of the sensor and the properties of the network

that propagates the information to a base station. One drawback of the hive-drone model is that it

introduces an additional latency because drones retain information collected in the field until they

return to the hive rather than routing it through a network. It is up to the user to decide if this

latency (on the order of minutes) is tolerable given the nature of his or her application. Section 4.2.3

discusses optimizations that can be made in the system to reduce this latency at runtime.

To facilitate the description of our system and the discussion of the hive-drone model, we

introduce the following definitions that will be used throughout the chapter.

• Sortie: One round trip from the hive to the area of intrest and back to the hive, in which a

drone executes a single behavior.

• Behavior: A sequence of sensing, sensor processing, and actuation commands that are fol-

lowed by a drone on a sortie. For example, a disease-detection behavior for the alfalfa applica-

tion consists of performing a random walk to search for alfalfa leaves, acquiring an image with

a simple image sensor, checking for diseases with a color matching algorithm, and recording

the location if a disease was found.

• Application: A composition of low-level drone behaviors and high level-goals that is submit-

ted by a user for execution on the swarm.

4.1.3 Spatial Decomposition

Given the inherent spatial nature of swarm applications, it is necessary to coordinate the

allocation of swarm resources throughout the target space. At a high level, the user deploying the

Chapter 4: Karma: A Framework for Coordinating Micro-Aerial Vehicle Swarms 83

swarm application has some notion of how it should be distributed. For example, a farmer may

desire uniform coverage of the pest monitoring behavior, but want targeted execution of the polli-

nation behavior. The Karma system provides an abstraction that establishes a shared spatial context

between the hive and the application behaviors. At the time of deployment, the target area in which

the swarm will operate is divided into regions. The spatial decomposition may be influenced by

application parameters (e.g., the size of the field and the desired sampling resolution) but is ulti-

mately controlled by the hive. Behaviors are written in a location agnostic manner so that they can

be applied to any region in the target space. However, they are given access to a location service at

runtime that provides the current region for accounting purposes.

The choice to decompose space into regions benefits our system in multiple ways. First,

it transforms the area of deployment from a continuous space into discrete regions, making it eas-

ier to reason about MAV allocation. Second, it aligns the localization primitives available to the

drone behaviors with the likely capabilities of the MAV platform. Given the extreme limitations on

computation and sensing, it is unlikely that the MAVs will have access to high-resolution location

services in the field. The MAVs will rely on a combination of proprioception and exteroception

(e.g., odometry using inertial sensors and a polarized light compass [43]) to navigate in the field. It

may also be possible to externally localize the MAVs from the hive using RF triangulation or har-

monic radar [66]. This information could be used to update the MAVs in flight or correlate sensor

readings with a location when the drones return. We assume that it is possible to localize MAVs to

the resolution of a region through a combination of these techniques, though we do not solve this

problem directly.

Finally, it is not necessary for the regions in the spatial abstraction to be defined using

Chapter 4: Karma: A Framework for Coordinating Micro-Aerial Vehicle Swarms 84

a Cartesian coordinate system. The abstraction will work just as well if the regions are defined

topologically or as nodes in a graph. For example, it may be possible to embed beacons into a

target area and allow the drones to localize to the region that is defined by the closest beacon signal.

Though it is an exciting prospect, we do not explore the use of non-Cartesian decompositions in this

work.

4.1.4 Data Model

As the hive is the place where drones return to recharge, it is a natural location to store the

information that is collected in the field. For this purpose, the hive maintains a key-value repository

called the Datastore. Updates to this data structure are asynchronous, occurring when drones return

from a sortie. The value for each key is structured as a log, appending data and metadata describing

the time and location at which it was collected by the drone. Thus, the Datastore can be queried both

temporally and spatially (at the resolution of a region). The information collected in the Datastore

is used by the hive to track the progress of the application and make resource allocation decisions.

Figure 4.1 is an illustration of the hive-drone data model. A drone flies out with a blank

local store (called a scratchpad) that is populated as it executes a behavior. Upon its return, the

information it collected is uploaded to the hive Datastore. Thus, the Datastore at the hive has a

partial view of the environment at any given time, which is dependent on the information brought

back by drones that have completed their sorties.

Chapter 4: Karma: A Framework for Coordinating Micro-Aerial Vehicle Swarms 85

Figure 4.1: The hive-drone data model in action. Drones are dispatched with blank scratchpads.
As they execute a behavior, they populate their scratchpad. On return to the hive, the scratchpad is
appended to the Datastore.

4.1.5 Programming Model

A Karma application is a composition of low-level drone behaviors and high-level goals.

We restrict drone behaviors to be location agnostic so they can be applied to any region as deter-

mined by the hive. However, we do not restrict the actions taken by the behaviors; we only explore

simple algorithms in this work (e.g., random walks, open loop patterns, and periodic sensing).

The high-level goals of an application are more abstract. In general, the user will need to

specify the sequencing of behaviors and the area over which the swarm will operate. For our alfalfa

example, a farmer may wish to specify a portion of crops to be monitored and that a pollination

behavior should only be executed following the detection of alfalfa in bloom.

From the perspective of the hive, the sole purpose of a drone behavior is to populate

the Datastore with new information. We take this notion one step further and require that every

behavior produce some type of information under normal execution. For monitoring behaviors this

requirement is trivial to fulfill – a new piece of information can be produced with each sensor

Chapter 4: Karma: A Framework for Coordinating Micro-Aerial Vehicle Swarms 86

reading. A similar approach is taken by behaviors that manipulate the environment. For instance,

a pollination behavior could record attempted landings. All behaviors produce information that is

added to the Datastore when the drone returns to the hive. The hive uses this information to reason

about the state of the application at runtime, and this information is used to define relationships

between behaviors and selectively apply them to regions. In this abstraction, the programmer defines

an application as a set of simple drone behaviors along with two functions for each behavior:

• Activation Predicate: A boolean function based on the information in the Datastore. The

hive can allocate a drone to execute this behavior if the function evaluates to true.

• Progress Function: A function based on the information in the Datastore that evaluates to

a real number between 0 and 1, indicating the progress made toward the application goal

associated with the behavior. When this function returns a value of 1, the application has

achieved the behavior’s goal.

These function definitions enable the hive to make decisions about resource allocation

over time and space. Using the activation predicates, the hive can determine when it is appropriate

to execute each behavior. Since the Datastore can be queried spatially (at a regional resolution), the

context of the information passed to this function can be narrowed to determine where the behavior

is activated. This allows a programmer to specify a data dependency that defines the selective ex-

ecution of a behavior at runtime. Further, the information used by the activation predicate defines

the prerequisites for execution. That is, an implicit dependency is created between a behavior that

produces the information used by another behavior’s activation predicate. By defining the activation

predicates this way, a programmer can sequence the execution of behaviors. Since each activation

Chapter 4: Karma: A Framework for Coordinating Micro-Aerial Vehicle Swarms 87

predicate is evaluated independently, our model allows multiple behaviors to be activated concur-

rently, including behaviors that have a dependent relationship.

For example, consider our alfalfa application; the pollination behavior is dependent on

the bloom-monitoring behavior, but both could be activated once some flowers have been found.

Pollination could begin on the known flowers while more are sought. We would like to note that the

implicit behavior graph created by this representation may contain cycles. At this point, we make

no effort to detect cycles in an application.

The progress function is used by the hive to reason about resource allocation. By tracking

the rate of change of this function, it can determine an estimate for the number of drones that are

required to complete the behavior. Like the activation predicate, the Datastore query can be narrowed

to a regional context, allowing the hive to make more targeted drone allocations.

4.1.6 Scheduling Problem

The hive-drone model and our programming abstraction transform the problem of exe-

cuting an application on a MAV swarm into a problem of scheduling behaviors on drones. There

are many policies for determining the allocation of drones to behaviors. We have chosen the short-

est time to application completion as one objective. There is an economic argument for wanting to

finish an application as soon as possible – swarm maintenance (e.g., powering the hive computer

and charging drones) may be expensive. Other reasons might be environmental in nature; for ex-

ample, MAV flight will not be possible when it is raining, so an application may be racing against

an unfavorable weather forecast. This objective advocates greedily scheduling all available drones.

It could, however, lead to a policy that would execute behaviors that are concurrently activated in

a batch sequence. That is, the scheduling objective makes no distinction between a schedule that

Chapter 4: Karma: A Framework for Coordinating Micro-Aerial Vehicle Swarms 88

allocates all drones to behavior A until it is completed, followed by all drones to behavior B, and one

that interleaves allocations for A and B. Concurrently activated behaviors should be scheduled fairly

(without starvation) in the absence of prioritization information. A second objective is introduced to

achieve fairness between behaviors. Fairness can be defined as parity in the output of the progress

functions of individual behaviors. Therefore, the second objective of our scheduling function is to

minimize the difference in progress between any two activated behaviors.

More formally, let B = {bi | 1 i n} be the set of behaviors in the application. Let

previ be the total number of drones that have previously executed behavior bi. At the current time,

let progi(S) be the progress made toward the goal of behavior bi and S the state of the Datastore.

Let the estimate of the rate of progress made for behavior i per drone be defined as ratei =
progi(S)

previ
.

Let curri be the number of drones currently running this behavior. Let d be the number of drones

currently available for dispatch.

To solve our objectives, we need to allocate alloci drones to behavior i such that

max{ratek ⇤ (prevk + currk +allock)} 8 k 2 [1,n]

and

min {[ratei ⇤ (previ + curri +alloci)]

� [rate j ⇤ (prev j + curr j +alloc j)]} 8 (i, j) 2 [1,n], i 6= j

such that

Â
i2(1,n)

{alloci} d

Chapter 4: Karma: A Framework for Coordinating Micro-Aerial Vehicle Swarms 89

Given these objectives, the hive will allocate drones to behaviors as resources become

available.

4.2 Karma Implementation

We have built Karma, a resource coordination system for MAV swarms based on the hive-

drone model. Figure 4.2 depicts the functional block diagram of Karma. The Karma runtime at the

hive consists of a hive Controller, Scheduler, Dispatcher, and Datastore. The hive Controller is the

overall manager of the runtime and invokes the other modules when needed. When a user submits an

application to Karma, the hive Controller determines the set of active behaviors (using the activation

predicates), and invokes the Scheduler to allocate the available drones to them. The hive Controller

monitors the progress of each process and considers the application complete when the set of active

processes is empty. The Scheduler is periodically invoked by the Controller to allocate drones to

each active process. The Dispatcher is responsible for tracking the status of the physical resources

(the MAVs). It programs the drones with the allocated behavior prior to a sortie, tracks the size of the

swarm, and notifies the Controller when a drone returns to the hive and is ready for redeployment.

To accomplish any goal with the MAV swarm, a user must submit an application. Karma

applications are collections of processes that are executed at the hive. Each process defined by the

application has an associated behavior that is executed on the drone. Each process also specifies the

information that it yields when its behavior is executed, as well as the information that is required

to activate the process. This is accomplished by enumerating the Datastore keys for the information

that is used and yielded. The activation predicate and progress function are evaluated by the Sched-

uler in the context of queries made against the Datastore using these keys. As mentioned in Section

Chapter 4: Karma: A Framework for Coordinating Micro-Aerial Vehicle Swarms 90

4.1.4, these queries can be temporally bounded to suit the needs of the application.

Behavior!

Location!

Scratchpad!

User!
Karma!

Drone!

Hive!

Dispatcher!

Scheduler!

Datastore!

User!
Karma!

Process!
!
•  Behavior!
•  Act. Predicate!
•  Prog. Function!

Application!

Program!

Return!

Update!

process MonitorBloom
runs RandomWalkFlowerSearch
activated when (sum(’bloom_obs’:12h) < 2000)
progress := (sum(’bloom_obs’:12h) / 2000)

process MonitorPests
...

process MonitorDisease
...

process Pollinate
runs RandomWalkPollinate
activated when (sum(’bloom_det’:12h) > 0)
progress := (if isNull(’bloom_det’:12h)

then 1
else (sum(’pollinated’:12h) /

(2 * sum(’bloom_det’:12h))))

Figure 1. Pseudo-code for the process definitions that
make up the alfalfa crop monitoring and pollination ap-
plication.

process DetectPlume
priority = 2
runs RandomWalkPlumeSearch
activated when (sum(’plume_obs’:5m) < 400)
progress := (sum(’plume_obs’:5m) / 400)

process FindLevelSet
priority = 1
runs RandomWalkLevelSet
activated when (sum(’plume_det’:5m) > 0)
progress := (if (isNull(’plume_det’:5m)

then 1
else (sum(’level_obs ’:5m) / 500)))

process FindCenter
priority = 1
...

Figure 2. Psuedo-code for the definition of processes that
make up the plume tracking application.

1 Code

Figure 4.2: Block diagram of the Karma design. Applications containing sets of processes are sub-
mitted to the Karma hive by a user. Each process definition contains an activation predicate, a
progress function, and a drone behavior. The Scheduler allocates resources (available drones) to
processes. The Dispatcher consumes the allocation and programs behaviors on to drones and dis-
patches them on sorties. Upon their return, drones transfer the contents of their scratchpad to the
hive Datastore.

4.2.1 Programming the Swarm

Figure 4.3 shows pseudocode for part of our alfalfa crop monitoring and pollination ap-

plication described in Section 4.1.1. The code defines four processes, two of which are omitted for

brevity but are defined similarly to MonitorBloom. In this case, the pseudocode references library

behaviors that are specified outside of the application code. With this approach it is possible to

define common routines that execute on the drone and share them among applications.

Chapter 4: Karma: A Framework for Coordinating Micro-Aerial Vehicle Swarms 91

process MonitorBloom

runs RandomWalkFlowerSearch

uses ()

yields (’bloom_obs ’, ’bloom_det ’)

activated when (’bloom_obs ’:12h < 2000)

progress := (’bloom_obs ’:12h / 2000)

process MonitorPests

...

process MonitorDisease

...

process Pollinate

runs RandomWalkPollinate

uses (’bloom_det ’)

yields (’pollinated ’)

activated when (’bloom_det ’:12h > 0)

progress := (if isNull(’bloom_det ’:12h)

then 1

else (’pollinated ’:12h /

(2 * ’bloom_det ’:12h)))

Figure 4.3: Pseudocode for the process definitions that make up the alfalfa crop monitoring and
pollination application.

Chapter 4: Karma: A Framework for Coordinating Micro-Aerial Vehicle Swarms 92

The behavior associated with the MonitorBloom process, RandomWalkFlowerSearch,

executes a random walk pattern while periodically using an optical sensor to detect the presence

of flower blooms. Each time the sensor is read, a counter in the drone’s local scratchpad with the

key bloom obs is incremented. After analyzing the reading, a counter with the key bloom det is

incremented if a flower bloom was detected.

When the drone returns to the hive, this information is propagated to the hive Datastore,

where it can be queried by the Scheduler to evaluate activation predicates and progress functions.

In this case, it uses the total number of observations in the past 12 hours to determine if the Mon-

itorBloom process should be activated, as well as how much progress has been made toward its

completion. The Pollinate process references a similar behavior that executes a random walk and

lands the drone on flowers, collecting and depositing pollen through incidental contact. However,

unlike the MonitorBloom process, which is activated by a lack of observations in the past 12 hours,

this process is only activated when flower blooms have been detected (in the past 12 hours).

The information dependency on bloom det creates an implicit sequence of operations. For

the Pollinate process to activate, the Datastore must contain information for the key bloom det.

In our application, this means that a drone running the RandomWalkFlowerSearch behavior for

the MonitorBloom process must observe flowers on a prior sortie. Alternatively, should the need

arise to bootstrap the Pollinate process, the user could inject this information into the Datastore

manually. The information dependency also exists in the progress function defined by the Polli-

nate process. The function is defined such that the process is considered complete in regions where

there is no bloom det information. This allows the progress of the process to be evaluated regionally

and prevents drones from being allocated to regions where no blooms have been detected. Finally,

Chapter 4: Karma: A Framework for Coordinating Micro-Aerial Vehicle Swarms 93

recall that the activation predicate for each process is evaluated independently, potentially resulting

in multiple activated processes. In this case, the monitoring processes may execute concurrently

with the pollination process, and the Scheduler must allocate resources appropriately.

4.2.2 Karma Scheduler

Karma implements a fair, work-stealing scheduler that solves the optimization problem

illustrated in Section 4.1.6. It operates in two steps. First, it estimates the total workload to be

performed for the set of n active processes per region. Let P = {pi | 1 i n} be the set of active

processes. Let R be the set of regions the area of operation is divided into. Let St be the state

of the Datastore at the hive at time t. The progress of a process i in a given region r at time t

can be evaluated using the progress function provided (PFi(Sr
t)). Let us denote this progress as

progt
(i,r) = PF(Sr

t). At a future time t 0 (t 0 > t) when the scheduler is invoked, let there be k drones

executing sorties for process i in region r that have returned to the hive.

We can compute the rate of progress per drone-sortie for process i (q(i,r)) as q(i,r) =

(progt0
(i,r)�progt

(i,r))

k . Given the rate of progress per drone per sortie q(i,r), we can estimate the amount

of work remaining to complete process i in region r (in terms of number of drone-sorties) as

Nt 0
(i,r) =

(1�prog(i,r))
E[q(i,r)]

. Since the value of q(i,r) can vary significantly over time and with environmental

conditions, we compute the value E[q(i,r)] using a weighted average of historical q(i,r) values. Note

that the progress rates q(i,r) cannot be computed at t = 0. We bootstrap the progress estimation mech-

anism by sending a fixed number of scout drones to regions where there is insufficient progress in-

formation. Once the progress of the scout drones is known, q(i,r) can be computed as defined above.

We can then estimate the total work to be done across all active processes as Nt 0 = Âi2(1,n),r2R Nt 0
(i,r).

Note that the work estimate Nt 0 assumes a linear relationship between the number of drones dis-

Chapter 4: Karma: A Framework for Coordinating Micro-Aerial Vehicle Swarms 94

patched and the amount of progress made.

The second step is to allocate the available drones to the set of active processes fairly.

Karma takes a work-stealing approach to allocation, using a sorted queue with each element in the

queue representing an active process requesting drones in a region. The queue is sorted in ascending

order according to the service level of each request. We define service level as the ratio of remaining

amount of work to complete process i in region r (Nt 0
(i,r)) to the total work to be done by the applica-

tion for all active processes across all regions at the current time (Nt 0). As drones become available,

Karma allocates them iteratively by servicing the request at the head of the queue. If m drones are

available for allocation, this results in an allocation of alloct 0
(i,r) for each process i in region r at time

t 0

alloct 0
(i,r) =

Nt 0
(i,r)

Nt 0 ⇤m

This formulation meets our objective of fairness across processes, as illustrated in Section 4.1.6.

The above formulation ensures that resources are divided fairly across processes and re-

gions. However, there may be applications in which the processes must be executed in a predeter-

mined order. To address this class of applications, we allow for the specification of a process priority

in the application description. To accommodate these requirements, we first sort the queue used for

drone allocation by process priority and then by service level. In a resource-constrained situation,

we allocate drones to the higher priority processes, allowing lower priority processes to starve.

4.2.3 Dispatcher

The Dispatcher is responsible for carrying out the allocation decisions made by the Sched-

uler. Specifically, it manages the drone inventory and prepares drones for sorties by programming

Chapter 4: Karma: A Framework for Coordinating Micro-Aerial Vehicle Swarms 95

the specified behavior onto the drone and parameterizing the starting region. When a drone returns,

the Dispatcher invokes a process to merge the drone’s scratchpad with the hive Datastore and ini-

tiates a charge cycle. When drones are fully charged and ready to be dispatched, the Dispatcher

notifies the Controller of the resource availability.

In Section 4.1.2, we define the term information latency as the difference in time between

an event occurring in the world and the hive being informed of the occurrence. This latency is a

function of the swarm deployment (e.g., swarm size, sortie time, charge time, maximum velocity)

and dispatch policy. In general, it is desirable to minimize the information latency in the system, but

it is particularly important for applications that track highly dynamic or continuous phenomena. In

Karma we manipulate the dispatch policy to better fit the application and minimize the information

latency. The Controller in Karma operates in two phases; it first determines how many resources

each process-region pair should be granted by invoking the Scheduler, and then dispatches drones

(using the Dispatcher) to fill the allocation requests. The algorithm for determining the amount of

resources to grant is fixed, but the dispatch policy may vary. As such, we propose two dispatch poli-

cies. The goal of the continuous dispatch policy in Karma is to ensure a constant presence of drones

in the field and minimize the information latency in the system by amortizing the total allocation of

drones to a region over a period of time (sortie time + charge time). In contrast, the greedy dispatch

policy dispatches drones opportunistically. We investigate the effects of these policies in our system

evaluation.

Reducing information latency can have a significant impact on the quality of data col-

lected by applications that track continuously changing phenomena, such as chemical plumes. The

application programmer should decide how information latency affects the application at hand. We

Chapter 4: Karma: A Framework for Coordinating Micro-Aerial Vehicle Swarms 96

allow the application programmer to add this as part of the program specification, and the corre-

sponding dispatch policy is selected accordingly.

4.2.4 Execution Walkthrough

We conclude the description of the system by walking through an execution trace of a

simplified application. The pseudocode for this application is given in Figure 4.4.

process Search

runs RandomWalkSearch

uses ()

yields (’obs’, ’feature ’)

activated when (’obs’ < 250)

progress := (’obs’ / 250)

process Survey

runs RandomWalkSurvey

uses (’feature ’)

yields (’studied ’)

activated when (’feature’ > 0)

progress := (if isNull(’feature ’)

then 1

else (’studied’ / (2 * ’feature ’)))

Figure 4.4: Psuedocode for the definition of processes that make up the walkthrough application.

Chapter 4: Karma: A Framework for Coordinating Micro-Aerial Vehicle Swarms 97

We illustrate key features of the system by examining the decisions made by the Controller

over the course of the execution. The example application consists of two processes, Search and

Survey. Process Search runs a behavior executed uniformly over the target area and produces

information relating to interesting features observed in the field. Process Survey runs a behavior

that is triggered to execute only in areas identified as interesting by the Search process.

We execute this application in simulation using 200 drones in a target area that is 75 x 75

meters. The world is partitioned into regions by dividing the target area as a grid with 10 rows and

10 columns. The hive is placed at the center of this area. A circular area representing the presence of

interesting features is modeled with its origin at (15,15) and a radius of 10 meters. For simplicity,

no weather or hardware failure is modeled. A greedy dispatch policy is used on the hive. Each drone

is given enough energy to complete a 40-50 second sortie, with a subsequent charge time of about

2 minutes.

Figure 4.5 depicts an execution trace for this application. The top panel shows the amount

of remaining work over time. The bottom panel shows the number of drones that are allocated to

each process over time. This data illustrates two points about our scheduling algorithm. First, the

drones appear to be allocated in waves. For the most part, this is true. The peaks in the bottom panel

represent times when drones were dispatched (opportunistically using the greedy policy) and the

valleys represent charging cycles. Since the drones are returning from different regions in the target

area and have slightly different battery capacities upon returning, they are not available for schedul-

ing at exactly the same time. This creates the jagged appearance of each “step” in the allocation

plot.

Second, notice that the Survey process is initially idle and remains idle until the first

Chapter 4: Karma: A Framework for Coordinating Micro-Aerial Vehicle Swarms 98

Search sortie returns to the hive and the drones deposit the collected information into the central

Datastore, demonstrating the implicit dependency between the two processes. Third, the bootstrap-

ping sortie, as described in Section 4.2.2, is required when there is a lack of information about the

progress rate for a process in a given region. In this example the number of drones allocated to the

first sortie of each process is limited to one per region (100 total) despite the fact that more drones

are available at the outset. Finally, the number of drones allocated to each process is proportional

to the amount of work remaining and is a function of the estimated progress rate. For most of the

execution, the amount of work remaining for Survey is far below that of Search, so Search is

allocated most of the resources.

 0

 20

 40

 60

 80

 100

R
e
m

a
in

in
g
 W

o
rk

(r
e
g
io

n
s)

Search
Survey

 0

 20

 40

 60

 80

 100

0 5 10 15 20 25 30

%
 A

llo
ca

te
d

Time (min)

Figure 4.5: Karma behavior allocation. Karma allocates drones to behaviors according to the es-
timated amount of work to be done and the measured progress rate of each behavior per region.
Remaining work is the sum of remaining progress across all regions.

Chapter 4: Karma: A Framework for Coordinating Micro-Aerial Vehicle Swarms 99

Figure 4.6 illustrates how the dependency between processes results in selective alloca-

tion. The lefthand panel shows a drawing of the world in which the application is running. The

hive is at the center of the world and an area containing interesting features is set in the top right as

shown. The Search process records observations of these features when it executes in this area. The

scheduler evaluates the activation predicate for the Survey process in each region of the discretized

world and allocates drones accordingly. The righthand panel depicts the resulting cumulative allo-

cation of drones to regions for the Survey process over the course of the execution. Without prior

knowledge, our system correctly allocates drones to execute the Survey behavior only in regions

where this behavior is useful. This allocation falls out of a single data dependency in the activation

predicate.

Figure 4.6: Selective allocation in Karma. Processes are selectively activated by the presence or
absence of information. The righthand panel shows the regions in which the Survey process is
activated by the prior detection of environmental features.

This example demonstrates how the key features of Karma, progress rate estimation, pro-

portional scheduling, and selective activation of processes in regions can be combined to execute a

Chapter 4: Karma: A Framework for Coordinating Micro-Aerial Vehicle Swarms 100

swarm application.

4.3 Evaluation

In this section we demonstrate that Karma can be used to manage a swarm of MAVs and

effectively execute applications inspired by real world workloads. We also show how applications in

Karma can run on limited resources, are robust to individual MAV failure, and adapt to changes in

the environment. We characterize the effectiveness of our system by evaluating its performance with

respect to three metrics; execution time, energy cost, and information latency. Completion time and

energy cost are useful metrics of efficiency. For instance, a farmer may want to minimize the total

execution time so that a single hive can be shared among a number of fields on a fixed schedule.

However, minimizing completion time may result in more resources being consumed than is strictly

necessary, forcing a tradeoff to be made. We evaluate the scheduling decisions made by the system

in the context of this tradeoff. Increased information latency is a direct result of the hive-drone

paradigm. It is especially problematic for applications that track features of the environment that

change frequently or continuously. To this end, we use this metric to evaluate how the selection of

a dispatch policy can mitigate the negative effects of the sortie model.

4.3.1 Simulation Setup

For our experiments we use our Simbeeotic simulator, described in Chapter 3. The Karma

implementation consists of two runtimes: one that executes on the hive, and one that is embedded on

the drones. The hive runtime is responsible for monitoring the progress of applications, scheduling

and dispatching sorties, and charging drones. The drone runtime provides location and data storage

Chapter 4: Karma: A Framework for Coordinating Micro-Aerial Vehicle Swarms 101

services to running behaviors. The Karma hive runtime is implemented as a standalone Java applica-

tion and is decoupled from the drone runtimes by a custom dispatch driver. This arrangement allows

the Karma hive to execute the same application on multiple deployments. Our evaluation is based

on experiments carried out in Simbeeotic and on a testbed of toy helicopters using this mechanism.

All of the results shown are obtained in simulation, with the exception of the testbed experiment in

Section 4.3.6.

We evaluate our system by using the alfalfa crop monitoring and pollination application

introduced in Section 4.1.1 and depicted in Figure 4.3. In the following experiments, we run this

application in a model alfalfa field that is one acre in area (63.63 by 63.63 meters) discretized into

a 6 x 6 region grid (with each grid being 10.61 by 10.61 meters). The origin of the world is at the

center of the field, and the hive is placed outside the field at (�35,0). The application is designed to

execute for an entire growing season, periodically re-executing the three monitoring behaviors and

activating the pollination behavior when the crop is in bloom. As written, the application expects the

field to be monitored for pests, disease, and flower blooms once per day. Our experiments consist of

single-day snapshots of the application rather than the entire season. The battery and energy model

of the drones are parameterized to provide approximate sortie and charge times of 5 minutes and

20 minutes respectively, which represent the flight time and recharge time of the helicopters used in

our testbed. The drones have a top speed of 2 meters per second when cruising to and from the hive,

but operate at speeds between 0.25 and 0.5 meters per second when executing behaviors. These

numbers were also obtained empirically from the helicopters in our testbed. The Scheduler is set to

allocate drones (if available) every 10 seconds. Statistics for experimental results are gathered by

repeating simulated experiments five times with varying random seeds. Unless otherwise noted, a

Chapter 4: Karma: A Framework for Coordinating Micro-Aerial Vehicle Swarms 102

swarm size of 800 drones is used in combination with a greedy dispatch policy for all experiments.

4.3.2 Efficiency

We evaluate the efficiency of our system by comparing the overall completion time and

energy cost of the alfalfa crop monitoring and pollination application as executed by Karma in

Simbeeotic to a restricted version of an oracle offline scheduling model. For a fair comparison,

the offline solution is required to use the gridded spatial decomposition and search each region for

flower blooms despite having perfect knowledge of the bloom density. For each drone scheduled, the

oracle model has full knowledge of the performance of all previously deployed drones. Since drones

are scheduled concurrently, this implies that the oracle model has foreknowledge of all the activity

of the drones that are currently deployed. As such, the Scheduler can allocate the minimum number

of drones required to complete the application without having to estimate drone performance. We

use this oracle model as a theoretical lower bound for comparison with Karma, even though it is not

attainable in practice.

Figure 4.7 shows the scenario completion time and expended energy as a function of

swarm size. We do not expect the performance (w.r.t. completion time) of Karma to improve lin-

early with swarm size in short scenarios because recharging is the dominant contributor to swarm

overhead. Unless there is enough swarm growth to reduce the number of sorties executed by each

drone, the gains will be limited. As expected, the oracle solution scales nearly linearly to the point

where there are enough drones to complete all of the required work without recharging (about 850

drones). Karma scales sublinearly with swarm size. The performance gap between Karma and the

offline solution is mainly attributed to the initial test sortie (with the accompanying charge period)

and the information latency caused by muling data. The first sortie that Karma allocated is a boot-

Chapter 4: Karma: A Framework for Coordinating Micro-Aerial Vehicle Swarms 103

strapping sortie, where only a few MAVs are deployed to each region. This ramp up of allocation

ensures Karma will not initially overcommit resources.

 0
 100
 200
 300
 400
 500

En
er

gy
(d

ro
ne

 h
ou

rs
)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

200 400 600 800 1000 1200 1400 1600

C
om

pl
et

io
n

Ti
m

e
(m

in
)

Swarm Size

greedy
continuous

offline

Figure 4.7: Karma efficiency. Karma scales sub-linearly (w.r.t. completion time) as swarm size in-
creases. Gains are offset by relatively long charging periods in short scenarios.

In the case where 1,600 drones were deployed, the large performance gap between Karma

and the oracle was because the oracle had enough drones to complete all of the behaviors in one

Chapter 4: Karma: A Framework for Coordinating Micro-Aerial Vehicle Swarms 104

sortie. First the oracle deployed drones to complete the three monitoring behaviors. As soon as those

drones were deployed, the oracle then immediately knew how many drones should be allocated to

complete the pollination behavior. The oracle then was able to immediately deploy enough drones

to complete the pollination behavior, which resulted in being able to complete the entire application

in about the time of one sortie. Since Karma ramps up allocation of resources with test sorties before

it commits significant resources to a region, it took several more sorties to complete the application

than the oracle. Under realistic application workloads, the amount of work far exceeds the number

of drones available, so this situation in the experiment represents a corner case rather than a typical

occurrence.

We evaluate Karma using the greedy and continuous dispatch policies described in Sec-

tion 4.2.3. Since the workload is fixed and the evaluation metric is total completion time, the perfor-

mance of the two dispatch policies is roughly equivalent. However, there is a disparity between the

two dispatch policies with respect to energy consumption. As the size of the swarm increases, the

system using the greedy dispatch policy consumes 50% more resources. This is due to a combina-

tion of poor allocation estimates and opportunistic dispatching. The greedy dispatch policy tends to

release drones in batches. We have seen when early allocation estimates are inaccurate, it leads to

an overcommitment of resources. Since the continuous policy staggers drone dispatching over time,

the erroneous resource allocations can be gradually corrected with limited overhead.

4.3.3 Resilience to Failure

We demonstrate Karma’s resilience to individual drone failure. Our system is designed

to provide a graceful degradation in performance (as measured by overall completion time) that is

proportional to the degree of failure that occurs. The approach we take follows naturally from the

Chapter 4: Karma: A Framework for Coordinating Micro-Aerial Vehicle Swarms 105

hive-drone model and the use of progress rates to estimate resource allocation needs. When a drone

fails in the field, it never returns to update the Datastore and, from the perspective of the hive, no

progress is made. The Dispatcher will detect the failure with a timeout and inform the Scheduler

that it has one less resource in the field and that the swarm size has decreased. The Scheduler will

take this into account during the next allocation cycle and update its estimates accordingly. This

mechanism works well when failure is uniformly distributed across all regions of the target area.

However, there is a corner case in which a disturbance (e.g., strong wind) is localized to a subset of

the area. In this case we would prefer that the system detect the anomaly and discontinue sending

drones to the hazardous area. Because this disturbance may also be time-varying, an attempt could

be made to resume allocation to the problem region after a period of time. Handling these situations

in Karma is left as future work.

We evaluate the effectiveness of our system design with respect to failure by executing

the alfalfa crop monitoring and pollination application with a swarm of drones that have a constant

probability of failure. With this model we expect to see an increase in the total execution time of

the application with an increase in failure. As shown in Figure 4.8, Karma handles the unexpected

failures with a predicted graceful degradation in performance. The majority of the extra time is due

to the swarm’s inability to immediately react to a detected failure (all of the drones are deployed or

charging). This issue can be mitigated by reserving drones or increasing the swarm size. In addition

to the time overhead, there is a small energy penalty (5% in the worst case scenario) that is caused

by the additional sorties required to make up for the lost drones. The swarm size may dwindle to

the point that no progress can be made, but that point is reached through graceful degradation, not

hard failure.

Chapter 4: Karma: A Framework for Coordinating Micro-Aerial Vehicle Swarms 106

 0
 20
 40
 60
 80

 100
 120

 0 0.5 1 1.5 2

C
om

pl
et

io
n

Ti
m

e
(m

in
)

Probability of Failure per Sortie (%)

Figure 4.8: Drone failure in Karma. Karma is resilient to individual drone failures, exhibiting a
graceful degradation in performance as the probability of failure increases.

4.3.4 Adaptability

Consider the impact on a drone of wind blowing at a constant speed and direction against

the flight path. The drone must work harder to compensate for the additional force and avoid being

blown off course. As a result, it will expend more energy to fight the wind, resulting in a shorter

sortie time. In turn, the progress rate for the behavior it is executing will be reduced and the system

will produce higher resource estimates.

In the following experiment we modify the alfalfa crop monitoring and pollination ap-

plication to introduce a constant wind over the bottom third of the field. Drones dispatched to the

bottom third of the field experienced a 32% reduction in sortie time. Because the workload is con-

stant for the four behaviors in this application, shorter sortie times result in less work accomplished

per sortie, which reduces the progress rate for these regions. In this case, the Scheduler responds by

Chapter 4: Karma: A Framework for Coordinating Micro-Aerial Vehicle Swarms 107

allocating 12% more drones to the windy regions than the wind-free regions to accomplish the same

amount of work. Correspondingly, the energy cost for executing in the presence of regional wind is

7% higher than that of the windless scenario.

The environmental dynamics are implicitly captured in the regional behavior progress

rates. Even though the Karma system did not explicitly measure the wind speed, the swarm was

able to adapt to its presence. By representing the dynamics in a single variable (the progress rate),

the hive is able to adapt to external influences, but it cannot disambiguate the causes or apply specific

solutions. Though this experiment demonstrates spatial variation, the dynamics of the environment

can also change over time. The Scheduler’s use of the regional progress rates to capture these dy-

namics also accounts for temporal fluctuation. The accuracy with which the scheduler can track the

progress rate (and implicitly the environmental dynamics influencing it) depends on how frequently

that rate is sampled (how often a drone returns from that region). This is defined in Section 4.1.2 as

the information latency problem, and is addressed in the next set of experiments.

4.3.5 Information Latency

The previous experiment focused on evaluating our system in the presence of environ-

mental dynamics. However, the features of interest in the environment were essentially static (or did

not change in any detectable way) over the period of execution. How does the system behave when

applications track phenomena that change continuously?

We demonstrate that the hive-drone paradigm can be used to continuously measure time-

varying phenomena. To this end, we define a chemical plume tracking application that consists of

three behaviors: one to perform a uniform search of the target area, one to detect a level set (contour)

of the plume, and one to find the center. Figure 4.9 defines this application in pseudocode.

Chapter 4: Karma: A Framework for Coordinating Micro-Aerial Vehicle Swarms 108

process DetectPlume

priority = 2

runs RandomWalkPlumeSearch

uses ()

yields (’plume_obs ’, ’plume_det ’)

activated when (’plume_obs ’:5m < 400)

progress := (’plume_obs ’:5m / 400)

process FindLevelSet

priority = 1

runs RandomWalkLevelSet

uses (’plume_det ’)

yields (’level_obs ’, ’level_det ’)

activated when (’plume_det ’:5m > 0)

progress := (if (isNull(’plume_det ’:5m)

then 1

else (’level_obs ’:5m / 500)))

process FindCenter

priority = 1

...

Figure 4.9: Psuedocode for the definition of processes that make up the plume tracking application.

Chapter 4: Karma: A Framework for Coordinating Micro-Aerial Vehicle Swarms 109

The application is executed in a target area that is 100 meters by 100 meters, discretized

into 10 meter by 10 meter regions. The plume is centered at (�25,25) and expands in a hemispher-

ical pattern at a rate of one centimeter per second. Unless otherwise noted, a swarm size of 800

drones is used along with the continuous dispatch policy.

All three processes defined by the plume tracking application are unbounded, meaning

that they are not meant to terminate after some fixed amount of work is done. Rather, they define

sliding windows in which the activation predicates and progress functions are evaluated as time

moves forward. Using these windows, drones are allocated to regions that have the most recent

information, allowing the frontier of swarm activity to follow the plume as it expands. Figure 4.10

depicts a series of snapshots taken from the Datastore as the plume tracking application is executed.

Using a windowed query, we are able define the regions in which the level det feature was most

recently observed. Older observations of this feature are stored in the Datastore but are not included

in the view defined by the windowed query.

Figure 4.10: A series of snapshots from the hive Datastore depicting the measured contour of an
expanding chemical plume.

In the next experiment, we quantify the effect the dispatching policy has on information

latency. We execute the plume tracking scenario with the two dispatch policies (greedy and continu-

Chapter 4: Karma: A Framework for Coordinating Micro-Aerial Vehicle Swarms 110

ous). As a proxy for information latency (as defined in Section 4.1.2), we measure the process-region

return period, the amount of time between consecutive drones returning from each region for each

process. This allows us to measure how frequently we receive information from a region, which is

directly related to the information latency on events that occur in that region. Because the drones

that are dispatched concurrently do not return at exactly the same time, we cluster return events that

occur within a 30-second period as one event.

Figure 4.11 shows the results of the experiment running for 6 virtual hours. Depicted is

the mean and standard deviation of information latency measurements for a single process-region

pair. As expected, the continuous policy outperforms the greedy policy with respect to minimizing

information latency. As the swarm size increases, there are more drones available when the Sched-

uler requests resources, and the charge time plays a smaller role in defining the information latency.

On average, switching policies reduces the measured information latency by 63%, with an order of

magnitude improvement (97%) when the swarm size is increased to 1,600 drones.

 1

 10

 100

 1000

 10000

200 400 800 1600

In
fo

rm
at

io
n

La
te

nc
y

(s
, l

og
 s

ca
le

)

Swarm Size

greedy
continuous

Figure 4.11: Information latency measurements for one process-region pair in the plume tracking
application. The continuous dispatch policy consistently outperforms the greedy policy.

Chapter 4: Karma: A Framework for Coordinating Micro-Aerial Vehicle Swarms 111

The takeaway is that information latency is inherent in the centralized design of Karma.

In general the continuous scheduler works better for applications that are monitoring the environ-

ment, because the scheduler staggers the allocation of MAV resources to a region. How tolerant an

application is to information latency depends on how fast the state of the environment of interest is

changing. That understanding is needed to plan how many total MAVs should be used for a given

application.

4.3.6 Helicopter Testbed

In addition to the experiments in simulation, we evaluate Karma on our MAV testbed

described in Section 3.3. We evaluate a simple tracking application using three helicopters and one

ground vehicle, which is shown in Figure 4.12.

Figure 4.12: The ground vehicle and helicopters operating in the indoor testbed.

Chapter 4: Karma: A Framework for Coordinating Micro-Aerial Vehicle Swarms 112

Our testbed space is divided into four equally sized regions. Initially, Karma dispatches

helicopters with the Search behavior, causing the helicopters to look for ground vehicles. When a

helicopter has located a vehicle, it writes the location of the vehicle on its local scratchpad. When

the drone returns to the hive and uploads its data, the tracking process is activated. Karma then

dispatches a helicopter with the Track behavior to the last known vehicle location to resume obser-

vation.

The ground vehicle starts off stationary in the center of one of the regions. After approx-

imately 30 seconds, the vehicle moves to an adjacent region and waits another 30 seconds before

moving on. This process repeats for the duration of the experiment. The helicopters fly 20-second

sorties. This is short of the seven-minute flight time of the helicopter but allows us to see Karma

perform several sorties during the course of the experiment. We equip the helicopters with a virtual

sensor that allows them to locate the ground vehicle if they are within 90 cm in the x-y plane.

Y

X

0 1

2 3

Figure 4.13: Ground truth target location and helicopter flight paths as recorded by the motion
capture system during the testbed experiment. The target is solid and the helicopters are dotted.

Chapter 4: Karma: A Framework for Coordinating Micro-Aerial Vehicle Swarms 113

Figure 4.13 shows a ground truth trace of the tracking experiment. At the start, the vehicle

begins in Region 1 and moves in a clockwise fashion. Figure 4.14 shows a region-level trace of the

target location during the experiment. The markers indicate when a helicopter records an observation

into its scratchpad. The hive-drone model introduces information latency, which can be seen here as

a gap (on the time axis) between the solid and dotted lines, which represent the truth and perceived

target location, respectively.

1

2

3

4

 0 20 40 60 80 100 120

R
e

g
io

n

Time (seconds)

ground truth
observations

Karma

Figure 4.14: The region occupied by the target throughout the vehicle tracking experiment. The
perceived location (dotted line) lags behind the truth location due to information latency.

4.4 Summary

Insect-sized MAV swarms are an emerging class of mobile sensing systems. These MAVs

can perform tasks that are challenging for larger platforms, such as landing on a flower to collect or

Chapter 4: Karma: A Framework for Coordinating Micro-Aerial Vehicle Swarms 114

deposit pollen, and their small size means they can be deployed in large numbers in a small area.

However, as the size of the swarm grows, so too does the complexity of resource coordination. We

propose a novel system architecture based on the hive-drone model that decouples the behaviors

performed by the MAV from where and when those behaviors are performed. This shifts the coor-

dination complexity from the application to a central hive, which maintains the current global state

of world to efficiently allocate MAV resources. We implement this model in our prototype system

called Karma and show that it is efficient, adaptive, and resilient to failure.

Chapter 5

Related Work

The research in this dissertation draws from three different areas: coordinated energy

management in embedded systems, distributed execution engines for programming clusters, and

resource coordination for swarms. Energy is a precious resource in embedded systems and needs to

be carefully managed. However, much of the work on coordinating energy usage has either focused

on point solutions, not general frameworks, or optimizing energy at the node-level without offering

network-wide solutions. Section 5.1 discusses these systems and how IDEA builds on and extends

ideas from these ideas.

Cluster-programming execution engines share goals similar to our research. They coordi-

nate work that needs to be done with the resources to do the work by exposing a simple programming

model while hiding the complexities of fault tolerance, scheduling, synchronization and communi-

cation. However, coordinating resources for embedded systems presents new challenges due to the

different workloads, severe constraints on resources, and the need for low-overhead coordination.

Section 5.2 discusses how our work extends these ideas to work in embedded systems.

115

Chapter 5: Related Work 116

Section 5.3 concludes the chapter with a discussion of the additional challenges mobil-

ity adds to embedded systems and how Karma relates to swarm programming languages and other

swarm systems. One difference is that Karma favors explicit coordination over the emergent behav-

ior of typical swarm systems. This allows for easier programming and reasoning about applications.

Users can think about applications in terms of explicit tasks to be completed and measuring progress

on those tasks, instead of having the desired behavior emerge somehow by the choice of purely local

actions.

5.1 Coordinated Energy Management

Energy is the critical limited resource in networked embedded systems and the need for

coordination in embedded systems to achieve good energy efficiency has been recognized in the

literature [42, 74, 91]. However, previous approaches have been ad hoc in nature, focusing on point

cases of specific problems, such as routing, tracking, or sensor coverage. Many of the proposed

algorithms have been studied only in simulations, and the few implementations would have required

substantial effort to build, given only low-level messaging support provided by the OS. As a result,

general-purpose abstractions for coordinated energy management have yet to emerge.

Eon [74] , Levels [42], and ECOSystem [91] provide programming models for adapting to

energy availability. Eon provides a dataflow model and automatically tunes timer rates and dataflow

paths based on energy availability; application code is not involved in resource management de-

cisions at runtime. Eon attempts to automatically chose states that match the energy consumption

to the energy production. While IDEA performs similar energy tracking and forward energy pro-

jection, IDEA takes a more explicit approach, allowing the application to decide when it is best to

Chapter 5: Related Work 117

choose a new state. Levels allows application components to define a stack of multiple fidelity lev-

els, which are configured in response to energy availability. Levels is targeted explicitly to systems

where no node should fail early, similar to IDEA’s “maximize time to first node death” energy ob-

jective function. However, Levels is a point solution for a specific problem domain, whereas IDEA

is a more general framework. ECOSystem [91] introduces the concept of Currentcy to allocate en-

ergy resources to tasks to achieve a target lifetime. ECOSystem does not require application code

changes, instead tuning OS scheduling parameters automatically based on energy availability, en-

forcing fairness between applications and tying the application to a specific set of policies. IDEA,

on the other hand, allows the user to specify the policy through the energy and utility objective

functions. However, the biggest difference between IDEA and these systems is that IDEA takes a

distributed, network-wide approach to allocating energy resources while all three of these systems

are focused on single-node, not network-wide adaptations.

SORA [54] focuses on decentralized resource allocation based on an economic model in

which nodes respond to incentives to produce data or perform specific tasks, with each node trying to

maximize its profit for taking a series of actions. While similar to the utility-based decision making

in IDEA, nodes in SORA perform purely local, decentralized tuning of their actions, but without any

explicit coordination across nodes. IDEA simplifies the problem of global network control through

the energy objective function, which directly expresses the application’s goal.

Nano-RK [18] provides real-time guarantees through static resource reservations based on

offline estimates of CPU time, packet rates, and sampling intervals used by an application. However,

this approach fails to address dynamically varying load or fluctuations in resource availability that

arise at runtime.

Chapter 5: Related Work 118

Systems such as Odyssey [20], PowerScope [21] and more recently Cinder [70] have ad-

dressed measuring or adapting to energy variations on battery-powered devices, primarily to support

mobile applications. Odyssey is a framework for adaptive mobile applications that permits applica-

tions to adapt to changing energy [22, 49] and other resources. PowerScope maps energy consump-

tion to program structure, producing a prole of energy usage by process and procedure. Cinder is an

energy-aware system for mobile computing devices that features a capacitor abstraction associated

with tasks. Each capacitor represents a task’s right to request energy from the system to perform its

operations.

IDEA’s approach is different from these systems, targeting networks consisting of multi-

ple nodes being treated as a single entity. Since nodes are collaborating, we can enable more sharing

and ask nodes to sacrifice for each other, whereas mobile device users would likely be upset if they

discovered that their phone was running low on power because it was trying to improve the lifetime

of a stranger’s phone located nearby.

Work on energy-aware routing [72, 89] has addressed equitable energy distribution within

the network by probabilistically choosing between multiple good paths between each source and

sink pair. LEACH [31] and other similar approaches attempt to distribute energy in an entirely

decentralized way, using local heuristics to do so. Lexicographically maximum rate allocation [19]

uses a decentralized algorithm to tune optimum data collection rates in perpetual networks when

static routes are used, all nodes route to a single sink, and the recharging profiles of the nodes

are known ahead of time. These are application specific solutions, while IDEA is a more general

framework. For example, it would be possible for rate allocation to be implemented in IDEA.

The IDEA architecture emerged from our own prior work on energy management for

Chapter 5: Related Work 119

wireless sensor networks, including Pixie [52], and Peloton [81]. Pixie proposes an operating sys-

tem and programming framework for sensor network nodes that promotes resources to a first-class

primitive, using tickets to manage resource consumption and brokers to enable specialized manage-

ment policies. Pixie does not consider the energy impact of a node on other nodes.

Peloton proposes an architecture for distributed resource management in sensor networks

combining state-sharing, vector tickets to represent distributed resource consumption and a decen-

tralized architecture in which nodes serve as ticket agents managing the resource consumption of

themselves and on behalf of nearby nodes. IDEA shares many features with Peloton and can be

viewed as the beginnings of an implementation of the Peloton design, with data sharing to enable

energy decision making and every node serving as a ticket agent for itself but considering the dis-

tributed impact of its own local state.

5.2 Cluster Programming

Resource coordination problems arise in many distributed systems, in particular, dis-

tributed execution engines [5, 34, 60]. These systems attempt to handle the difficult aspects of

distributed programming – fault tolerance, scheduling, synchronisation and communication – while

exposing a simple programming model. Networked embedded systems present new challenges from

programming clusters. While sharing the same overall goal as cluster programming – matching work

requests to the resources that are able to perform them – embedded systems have vastly different

workloads from clusters, typically running a single program throughout the life of the application,

with the application being tightly integrated with the physical environment instead of with human

operators. In addition there are large differences in communication bandwidth, cost, and latency be-

Chapter 5: Related Work 120

tween clusters and embedded systems. Instead of fast-wired connections for fast low-latency com-

munication within a cluster, embedded systems typically communicate via lossy low-bandwidth

wireless channels, where multihop routing can introduce signifiant latency. Further, the communi-

cation costs can dominate the energy budgets of these devices requiring new methods for resource

coordination to meet these challenges.

River [5] provides adaptive mechanisms that allow database query-processing applica-

tions to cope with performance variations in cluster platforms. They propose a dataflow program-

ming model and two new constructs – a distributed queue to decouple the dependence of producers

of data from consumers and a graduated declustering mechanism, which decouples the consumers

from producers. River handles massively parallel operations by estimating the performance varia-

tions and doing intelligent scheduling to achieve the best performance. However, the workloads are

inherently parallel in River, whereas the parallelism in networked embedded systems is achieved by

partitioning space. The Karma scheduler is designed around allocating and coordinating resources

spatially, relieving this burden from the application programmer.

Applications in Dryad [34] and CIEL [60] are expressed as dataflow graphs. Dryad sched-

ules jobs while optimizing for data locality, network usage, and resource availability. However, the

inputs and outputs of these systems are mostly deterministic (a static partitioning of existing data).

As embedded systems are tightly coupled with the physical world, applications can experience

vastly different workloads in response to changes in the environment, so they must be flexible and

adaptable during the course of their execution. This may be hard to express in the simple pro-

gramming model of systems like Dryad. The Karma programming model avoids the explicit par-

allelization used in Dryad graphs, allowing processes to be scaled with the size of the number of

Chapter 5: Related Work 121

nodes. Although the process interdependencies in Karma applications can be similarly expressed

with dataflow graphs, Karma takes a reactive approach to coordinating system resources, basing

decisions on feedback.

CIEL overcomes some of the limitations of Dryad by dynamically building the dataflow

graph as tasks execute. CIEL provides support for iterative and recursive computations by allowing

the dataflow graph to be modified at runtime using its own scripting language called Skywriting.

A single master dispatches tasks to many workers. CIEL it designed for course-grained parallelism

across large datasets and may not be suited for the finer grained task execution as nodes respond

to changes in the physical environment. CIEL assumes fast and low-cost communication, where

the master can easily communicate with all the workers and relies on workers sending periodic

heartbeats to demonstrate availability. On a typical sensor node, it costs an order of magnitude

more power to turn on the node’s radio, so supporting this model on resource constrained devices

with lossy wireless links may be energy cost prohibitive. For this reason Karmauses a centralized

coordination model where coordination and communication occur at a centralized hive, where the

nodes must periodically return to recharge anyway. IDEA also manages this issue with careful

energy monitoring and efficient state sharing among nodes.

5.3 Resource Coordination for Swarms

Adding mobility to networked embedded systems is an exciting new frontier for research.

Typically sensor nodes must be preinstalled in the area of interest. If the area of interest is uncertain

at the time of the deployment, nodes must be over provisioned at a greater cost to ensure adequate

coverage. Having the nodes be capable of controlled movement, i.e., able to move based on the

Chapter 5: Related Work 122

needs of the network application, adds adaptability and robustness to the system but requires new

ways of thinking about coordination.

Spatially oriented computing offers an alternative approach to swarm coordination. In

this paradigm, space is used as a first-class computing abstraction, and individual nodes typically

act according to some spatially oriented conditions. Protoswarm [7] is a language that presents the

swarm as a single continuous spatial computer. Meld [6] is a declarative-logic programming lan-

guage to program robotic ensembles. Meld was designed for modular robots where the inter-robot

communication is limited to immediate neighbors. Locally distributed predicates [12] are distributed

conditions that hold for a connected ensemble of the robotic system. Programs in this paradigm are

collections of LDPs with actions that are triggered when subensembles match a particular predicate.

Karma partitions space to achieve data-parallel operation.

Swarm robotics algorithms and systems typically focus on emergent behavior arising

from local decisions made by large numbers of simple agents. These often biologically inspired

algorithms have proven successful in diverse tasks such as collective construction [78] and multipa-

rameter optimization [37]. The large body of work in this area is directly applicable to MAV swarm

programming. In designing Karma, we have eschewed the principles of emergent collective behav-

ior in favor of explicit, global coordination based on the hive-drone model. This makes our tasks

easier to implement on our MAVs and allows for easier reasoning about application behavior. We

employ simple agent behaviors and move most of the complexity to the central hive. Since resource

allocation is an iterative, centralized problem, we are able to make a reasoned assessment of swarm

progress – something that is often difficult with emergent algorithms.

SensorFly [67] is a MAV sensing platform designed for indoor emergency response ap-

Chapter 5: Related Work 123

plications. The SensorFly nodes are lightweight (29 grams) and low-cost ($200), based on a coaxial

helicopter design, with two main rotors, one going clockwise and the other going counter clockwise

for stability. These nodes are similar to the helicopters we use in our testbed described in Section 3.3.

One important difference is that our testbed helicopters are controlled by a central computer while

the SensorFly nodes are designed to be autonomous. For flight control, the SensorFly nodes have

several sensors including a three-axis accelerometer, two-axis gyroscope, compass, and ultrasonic

rangefinder. A low-power radio is used for broadcasting sensor readings to a basestation and is also

used for internode range estimates.

SensorFly applications rely on implicit coordination, using internode ranging estimates to

try to disperse themselves throughout an area. Currently, no explicit coordination is done among the

nodes. For the simple sense-and-send applications they have implemented, this explicit coordination

is enough, but they have yet to tackle more sophisticated applications such as alfalfa monitoring as

described in Section 4.1.1. The SensorFly nodes would be an interesting target platform for both

IDEA and Karma.

Chapter 6

Future Work and Conclusion

In this dissertation we examined two programming frameworks, IDEA and Karma, and

showed with simple programming abstractions, network-wide resource coordination is efficient and

useful for programming embedded sensor networks. In support of our research in MAV swarms,

we developed Simbeeotic, a simulator and testbed for MAV coordination algorithms. We have been

using the testbed for over two years, and it has allowed us to evaluate prototype hardware and

explore new concepts with real flight dynamics while also simulating coordination algorithms at

scale. This chapter concludes the dissertation by discussing future work for these systems.

6.1 Coordinated Energy Management

In Chapter 2, we described the IDEA architecture in detail, motivated its use through two

examples, and demonstrated that IDEA can improve performance by better managing distributed

energy resources. We also discussed the process of developing an application-specific energy objec-

tive function and showed how this can improve the performance of a localization application while

124

Chapter 6: Future Work and Conclusion 125

maintaining application fidelity.

For future work we are interested in addressing the problem of cross-component interac-

tion to optimize several IDEA components running simultaneously. This is complicated by the fact

that there are likely to be dependencies between components that cause decisions made by one to

affect others. As an example, the LPL intervals used by a node would affect the power cost to use

the link seen by the routing protocol. In addition we are investigating ways to model the impact of

node failure on other nodes. Many sensor network protocols will try to work around nodes leaving

the network or going offline, but this repair process is costly and causes load within the network to

shift.

With IDEA, node energy tracking is done entirely by software that we developed for the

Pixie project. Quanto [23] provides a framework for tracking and understanding energy consump-

tion in embedded sensor systems. The existence of systems such as Quanto was a primary motiva-

tion for IDEA, since the visibility distributed resource tracking provides creates an opportunity to

adapt to changes in availability across the network. A software-only approach may be difficult for

components with complex behavior. An interesting area of future work would be integrating Quanto

into IDEA to provide more precise tracking of energy at runtime, which could eliminate the need

for component-specific modeling and ease the process of integrating applications with IDEA.

6.2 Resource Coordination for Swarms

As our research moved to the even more resource constrained world of insect-sized MAV

swarms, we found that in order to simulate the swarm at scale, a new class of simulator was needed.

Chapter 3 described Simbeeotic, our simulator and testbed for testing MAV coordination algorithms.

Chapter 6: Future Work and Conclusion 126

We demonstrated, through our own experiments and using Simbeeotic for our own research, that

Simbeeotic provides the appropriate level of fidelity to evaluate prototype hardware while maintain-

ing the ability to test at scale.

There are three main directions for future work on Simbeeotic – scalability, fidelity, and

autonomy. From the results in Section 3.4.1 it is clear that the the physics engine can be a bottleneck.

We rely heavily on JBullet for modeling actuation (dynamics, collision detection) and sensing (ray

tracing). Though it has satisfied our needs thus far, we may consider replacing JBullet with Bullet [8]

as we move toward modeling swarms with tens of thousands of MAVs. JBullet is a pure Java port of

Bullet, which is written in C++. In addition to being written in a native language, newer versions of

Bullet support hardware acceleration on the GPU. The potential performance improvement may be

worth the modest engineering effort to create Java wrappers for the subset of the Bullet interfaces

used by Simbeeotic.

Though we model the breadth of the MAV swarm domain, the fidelity of the networking

models in Simbeeotic could be improved. To date, our work on MAV swarms has not focused on

communication. It is likely that the networking interfaces will need to evolve beyond the simple

physical layer implementation. We will look to leverage community standard tools and models such

as ns-3 as our needs develop. In addition, we may expand our HWIL capabilities to include real

radios in a mote testbed, much like in EmStar [26]. On first inspection, it appears that the ghost

model approach will work well with a radio interface. Packets sent on a ghost interface would

be transmitted on the physical radio in addition to the virtual radio, and packets received on the

physical radio would be captured and injected as a virtual packet reception. Some care must be

taken to prevent duplicate transmission and reception events by ghost radio models participating in

Chapter 6: Future Work and Conclusion 127

both domains.

As we develop the software stack that will execute on the autonomous MAVs, it may be

possible to leverage the Robot Operating System (ROS), described in Section 3.1. This presents

an opportunity for Simbeeotic to be used as a virtual input to software that will be embedded on a

vehicle. We view this TOSSIM-like approach as another (purely simulated) intermediate step toward

MAV autonomy that is orthogonal to HWIL operation.

A natural extension of the testbed would be to add a third stage to the staged deployment,

where MAV control is still done through Simbeeotic, but using real sensor input instead of data

from the virtual sensors. With such a deployment we can no longer rely on a purely simulated envi-

ronment. Obstacles must be represented in both worlds, a feat that can be accomplished by adding

Vicon markers to physical objects and creating a corresponding ghost representation in the simula-

tion. In this case we would feed physical sensor information wirelessly Simbeeotic, replacing the

input from the virtual sensor. To test the feasibility of this idea, we have attached a Texas Instru-

ments EZ430-RF2500 [2] development board to one of our MAVs. The EZ430-RF2500 is a small

and lightweight development board with MSP430 microcontroller and low-power 2.4 GHz radio.

The MAV was able to fly with this board attached to it without any noticeable control issues; how-

ever the overall flight time was reduced by 15-20%. We were able to send data from the onboard

radio to our testbed computer without difficultly, giving us confidence that a sensor (e.g., digital

compass) with an update rate of 50 Hz or less would be possible to implement in this fashion.

Our testbed currently depends on having an accurate motion capture system. On our path

toward fully autonomous MAVs, we may relax the requirement that physical objects and virtual

objects are covisible. Instead, we could construct a virtual world to match the physical world and

Chapter 6: Future Work and Conclusion 128

ignore interactions between MAVs. This would allow us to experiment outside of the testbed and

obviate the need for accurate tracking once the MAVs are fully autonomous (other than for ground

truth during experimentation). As discussed in Section 3.3.3, we have used a Microsoft Kinect sen-

sor that enables one of our helicopters to hover in a small area. Eventually, we hope this system can

be expanded with more Kinect sensors and be used for collecting ground truth positional informa-

tion of indoor exploration experiments. Simbeeotic would remain as a useful tool, allowing physical

MAVs to coordinate with simulated MAVs in the communication layer.

We demonstrated in Chapter 4 that Karma is capable of executing swarm applications with

reasonable efficiency and resiliency for the emerging class of MAV swarm mobile sensing systems.

Our novel system architecture based on the hive-drone model simplifies programming individual

MAVs and shifts the coordination complexity to a central hive, and we show that Karma is efficient,

adaptive, and resilient to failure.

However, some aspects of the system design warrant further discussion and study. In our

design each drone is assigned a behavior to execute per sortie. This policy is a direct result of the

short flight times of the current MAV prototype. If the drones had longer flight times, multitasking

on individual drones might allow for more efficient operation. Further, we only consider sorties that

keep the drones deployed for the maximum amount of time. It may be possible to reduce information

latency and gain more flexibility in scheduling by considering variable-length sorties. In addition, a

larger area could be covered if a multihive solution were adopted (with interhive communication),

allowing for one-way sorties that redistribute the swarm’s resources at runtime. For latency-sensitive

applications, such as target tracking, in-field coordination might allow the application to react more

quickly to changes in the environment. These features would require significant modifications to the

Chapter 6: Future Work and Conclusion 129

Scheduler to incorporate resource planning

The Karma scheduler relies on estimating the progress rates of drones executing behaviors

in the field. Though this allows the system to adapt to varying conditions, it can be problematic when

the estimate is inaccurate. It may be possible to produce more robust estimates by incorporating val-

ues from neighboring regions or using a priori models. An overprovisioning strategy could mitigate

the impact of overestimation (or underperforming drones) on completion time at an additional cost

in resources.

Bibliography

[1] http://robobees.seas.harvard.edu.

[2] http://www.ti.com/tool/ez430-rf2500.

[3] Andreas M. Ali, Kung Yao, Travis C. Collier, Charles E. Taylor, Daniel T. Blumstein, and
Lewis Girod. An empirical study of collaborative acoustic source localization. In IPSN ’07:
Proceedings of the 6th international conference on Information processing in sensor networks,
Cambridge, MA, 2007.

[4] Kiam Heong Ang, Gregory Chong, and Yun Li. PID control system analysis, design, and
technology. IEEE Transactions on Control Systems Technology, 13(4):559–576, July 2005.

[5] Remzi H. Arpaci-Dusseau. Run-time adaptation in River. ACM Transactions on Computer
Systems (TOCS), 21(1):36–86, February 2003.

[6] Michael P. Ashley-Rollman, Seth Copen Goldstein, Peter Lee, Todd C. Mowry, and Padman-
abhan Pillai. Meld: A declarative approach to programming ensembles. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 2007.

[7] Jonathan Bachrach, James McLurkin, and Anthony Grue. Protoswarm: a language for pro-
gramming multi-robot systems using the amorphous medium abstraction. In Proceedings of
the 7th International Joint Conference on Autonomous Agents and Multiagent Systems (AA-
MAS), pages 1175–1178, 2008.

[8] Bullet Physics Library. http://bulletphysics.org/wordpress.

[9] Nicolas Burri, Pascal von Rickenbach, and Roger Wattenhofer. Dozer: ultra-low power data
gathering in sensor networks. In IPSN ’07: Proceedings of the 6th international conference
on Information processing in sensor networks, pages 450–459, New York, NY, USA, 2007.
ACM.

[10] Geoffrey Werner Challen. Data fidelity and resource management for data-rich sensor net-
works. PhD thesis, Harvard University, Cambridge, MA, USA, 2010. AAI3414646.

[11] Karthik Dantu, Bryan Kate, Jason Waterman, Peter Bailis, and Matt Welsh. Programming
micro-aerial vehicle swarms with karma. In Proceedings of the 9th ACM Conference on Em-
bedded Networked Sensor Systems, SenSys ’11, pages 121–134, New York, NY, USA, 2011.
ACM.

130

Bibliography 131

[12] Michael De Rosa, Seth C. Goldstein, Peter Lee, Padmanabhan Pillai, and Jason Campbell.
Programming modular robots with locally distributed predicates. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pages 3156–3162, May 2008.

[13] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on large clusters.
In Proceedings of 6th USENIX Symposium on Operating Systems Design and Implementation
(OSDI), pages 137–150, 2004.

[14] Keith S. Delaplane and Daniel F. Mayer. Crop Pollination by Bees. CABI Publishing, New
York, NY, 2000.

[15] Amit Dhariwal, Gaurav S. Sukhatme, and Aristides A.G. Requicha. Bacterium-inspired robots
for environmental monitoring. In Proceedings of the 2004 IEEE International Conference on
Robotics and Automation (ICRA ’04), volume 2, pages 1436–1443, May 2004.

[16] Prabal Dutta, Jonathan Hui, Jaein Jeong, Sukun Kim, Cory Sharp, Jay Taneja, Gilman Tolle,
Kamin Whitehouse, and David Culler. Trio: Enabling sustainable and scalable outdoor wire-
less sensor network deployments. In Proceedings of the 5th international conference on Infor-
mation processing in sensor networks, IPSN ’06, pages 407–415, New York, NY, USA, 2006.
ACM.

[17] E-flite Blade MCX2. http://www.e-fliterc.com.

[18] Anand Eswaran, Anthony Rowe, and Raj Rajkumar. Nano-RK: An energy-aware resource-
centric RTOS for sensor networks. In Proc. IEEE Real-Time Systems Symposium, December
2005.

[19] Kai-Wei Fan, Zizhan Zheng, and Prasun Sinha. Steady and fair rate allocation for rechargeable
sensors in perpetual sensor networks. In SenSys ’08: Proceedings of the 6th ACM conference
on Embedded network sensor systems, pages 239–252, New York, NY, USA, 2008. ACM.

[20] Jason Flinn and M. Satyanarayanan. Energy-aware adaptation for mobile applications.
SIGOPS Oper. Syst. Rev., 33(5):48–63, 1999.

[21] Jason Flinn and M. Satyanarayanan. Powerscope: A tool for profiling the energy usage of
mobile applications. In WMCSA ’99: Proceedings of the Second IEEE Workshop on Mobile
Computer Systems and Applications, page 2, Washington, DC, USA, 1999. IEEE Computer
Society.

[22] Jason Flinn and M. Satyanarayanan. Managing battery lifetime with energy-aware adaptation.
ACM Transactions on Computer Systems (TOCS), 22(2), May 2004.

[23] Rodrigo Fonseca, Prabal Dutta, Philip Levis, and Ion Stoica. Quanto: Tracking energy in
networked embedded systems. In OSDI, pages 323–338, 2008.

[24] Rodrigo Fonseca, Omprakash Gnawali, Kyle Jamieson, Sukun Kim, Philip Levis, and Alec
Woo. The collection tree protocol (ctp). TinyOS Extension Proposal TEP-123, http://www.
tinyos.net/tinyos-2.x/doc/txt/tep123.txt, 2006.

Bibliography 132

[25] Brian P. Gerkey, Richard T. Vaughan, and Andrew Howard. The player/stage project: Tools for
multi-robot and distributed sensor systems. In Proceedings of the International Conference on
Advanced Robotics (ICAR 2003), pages 317–323, 2003.

[26] Lewis Girod, Jeremy Elson, Alberto Cerpa, Thanos Stathopoulos, Nithya Ramanathan, and
Deborah Estrin. EmStar: A software environment for developing and deploying wireless sen-
sor networks. In Proceedings of the annual conference on USENIX Annual Technical Confer-
ence (ATEC ’04). USENIX Association, 2004.

[27] Google Guice. http://code.google.com/p/google-guice.

[28] Google Protocol Buffers. http://code.google.com/apis/protocolbuffers.

[29] Chih-Chieh Han, Ram Kumar Rengaswamy, Roy Shea, Eddie Kohler, and Mani Srivastava.
SOS: A dynamic operating system for sensor networks. In Proc. Third International Confer-
ence on Mobile Systems, Applications, And Services (Mobisys), 2005.

[30] Sabine Hauert, Laurent Winkler, Jean-Christophy Zufferey, and Dario Floreano. Ant-based
swarming with positionless micro air vehicles for communication relay. Swarm Intelligence,
2(2-4):167–188, 2008.

[31] Wendi Heinzelman, Anantha Chandrakasan, and Hari Balakrishnan. Energy-efficient commu-
nication protocol for wireless microsensor networks. In Proc. The 33rd Hawaii International
Conference on System Sciences (HICSS), January 2000.

[32] David Hiebeler. The Swarm simulation system and individual-based modeling. In Proceed-
ings of Decision Support 2001: Advanced Technologies for Natural Resource Management,
Toronto, September 1994.

[33] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David E. Culler, and Kristofer S. J.
Pister. System architecture directions for networked sensors. In Proc. the 9th International
Conference on Architectural Support for Programming Languages and Operating Systems,
pages 93–104, Boston, MA, USA, November 2000.

[34] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad: Dis-
tributed data-parallel programs from sequential building blocks. In Proceedings of the 2nd
ACM SIGOPS/EuroSys European Conference on Computer Systems, 2007.

[35] JBullet. http://jbullet.advel.cz.

[36] Bryan Kate, Jason Waterman, Karthik Dantu, and Matt Welsh. Simbeeotic: a simulator and
testbed for micro-aerial vehicle swarm experiments. In Proceedings of the 11th international
conference on Information Processing in Sensor Networks, IPSN ’12, pages 49–60, New York,
NY, USA, 2012. ACM.

[37] James Kennedy and Russell Eberhart. Particle swarm optimization. In Proceedings of IEEE
International Conference on Neural Networks, 1995.

[38] Oussama Khatib. Real-time obstacle avoidance for manipulators and mobile robots. Interna-
tional Journal of Robotics Research, 5(1):90–98, April 1986.

Bibliography 133

[39] Sukun Kim, Rodrigo Fonseca, Prabal Dutta, Arsalan Tavakoli, David Culler, Philip Levis,
Scott Shenker, and Ion Stoica. Flush: A Reliable Bulk Transport Protocol for Multihop Wire-
less Networks. In Proc. SenSys’07, 2007.

[40] Sukun Kim, Shamim Pakzad, David Culler, James Demmel, Gregory Fenves, Steve Glaser,
and Martin Turon. Wireless sensor networks for structural health monitoring. In Proceedings
of the 4th international conference on Embedded networked sensor systems, SenSys ’06, pages
427–428, New York, NY, USA, 2006. ACM.

[41] Jon Klein. BREVE: A 3d simulation environment for the simulation of decentralized systems
and artificial life. In Proceedings of Artificial Life VIII, the 8th International Conference on
the Simulation and Synthesis of Living Systems, 2002.

[42] Andreas Lachenmann, Pedro Jose Marron, Daniel Minder, and Kurt Rothermer. Meeting life-
time goals with energy levels. In Proc. ACM SenSys, November 2007.

[43] Dimitrios Lambrinos, Ralf Moller, Thomas Labhart, Rolf Pfeifer, and Rudiger Wehner. A
mobile robot employing insect strategies for navigation. Robotics and Autonomous Systems,
30(1-2):39–64, 2000.

[44] HyungJune Lee, Alberto Cerpa, and Philip Levis. Improving wireless simulation through
noise modeling. In IPSN ’07: Proceedings of the 6th international conference on Information
processing in sensor networks, pages 21–30, New York, NY, USA, 2007. ACM.

[45] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. TOSSIM: Accurate and scalable
simulation of entire TinyOS applications. In Proc. the First ACM Conference on Embedded
Networked Sensor Systems (SenSys 2003), November 2003.

[46] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. TOSSIM: accurate and scalable
simulation of entire tinyos applications. In Proceedings of the 1st international conference on
Embedded networked sensor systems (SenSys ’03), November 2003.

[47] Philip Levis, Neil Patel, Scott Shenker, and David Culler. Trickle: A self-regulating algo-
rithm for code propagation and maintenance in wireless sensor networks. In Proc. the First
USENIX/ACM Symposium on Networked Systems Design and Implementation (NSDI), 2004.

[48] Ming Li, Deepak Ganesan, and Prashant Shenoy. Presto: feedback-driven data management
in sensor networks. IEEE/ACM Trans. Netw., 17(4):1256–1269, 2009.

[49] Xiaotao Liu, Prashant Shenoy, and Mark D. Corner. Chameleon: Application level power
management. IEEE Transactions on Mobile Computing, 2008.

[50] Konrad Lorincz, Bor-rong Chen, Geoffrey Werner Challen, Atanu Roy Chowdhury, Shyamal
Patel, Paolo Bonato, and Matt Welsh. Mercury: a wearable sensor network platform for high-
fidelity motion analysis. In SenSys ’09: Proceedings of the 7th ACM Conference on Embedded
Networked Sensor Systems, pages 183–196, New York, NY, USA, 2009. ACM.

Bibliography 134

[51] Konrad Lorincz, David Malan, Thaddeus R. F. Fulford-Jones, Alan Nawoj, Antony Clavel,
Victor Shnayder, Geoff Mainland, Steve Moulton, and Matt Welsh. Sensor Networks for
Emergency Response: Challenges and Opportunities. IEEE Pervasive Computing, Oct-Dec
2004.

[52] Konrad Lorincz, Bor rong Chen, Jason Waterman, Geoff Werner-Allen, and Matt Welsh. Re-
source aware programming in the pixie os. In SenSys ’08: Proceedings of the 6th ACM con-
ference on Embedded network sensor systems, pages 211–224, New York, NY, USA, 2008.
ACM.

[53] Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, and Keith Sullivan. MASON: A new multi-
agent simulation toolkit. In Proceedings of the 2004 SwarmFest Workshop, 2004.

[54] Geoffrey Mainland, David C. Parkes, and Matt Welsh. Decentralized, adaptive resource al-
location for sensor networks. In NSDI’05: Proceedings of the 2nd conference on Symposium
on Networked Systems Design & Implementation, pages 315–328, Berkeley, CA, USA, 2005.
USENIX Association.

[55] Nathan Michael, Jonathan Fink, and Vijay Kumar. Cooperative manipulation and transporta-
tion with aerial robots. Autonomous Robots, 30(1):73–86, September 2010.

[56] Nathan Michael, Daniel Mellinger, Quentin Lindsey, and Vijay Kumar. The GRASP multiple
micro UAV testbed. Robotics & Automation Magazine, IEEE, 17(3):56–65, 2010.

[57] Olivier Michel. WebotsTM: Professional mobile robot simulation. International Journal of
Advanced Robotic Systems, 1(1):40–43, 2004.

[58] Microsoft Kinect. http://www.xbox.com/kinect.

[59] David Moss, Jonathan Hui, and Kevin Klues. Low power listening. TinyOS Extension Pro-
posal TEP-105, http://www.tinyos.net/tinyos-2.x/doc/txt/tep105.txt, 2007.

[60] Derek G. Murray, Malte Schwarzkopf, Christopher Smowton, Steven Smith, Anil Mad-
havapeddy, and Steven Hand. Ciel: a universal execution engine for distributed data-flow
computing. In Proceedings of the 8th USENIX conference on Networked systems design and
implementation, NSDI’11, pages 9–9, Berkeley, CA, USA, 2011. USENIX Association.

[61] Dragos Niculescu and Badri Nath. Ad hoc positioning system (APS) using AOA. In INFO-
COM, pages 1734–1743, 2003.

[62] ns-3. http://www.nsnam.org.

[63] American Society of Civil Engineers, American Congress on Surveying, Mapping, Ameri-
can Society for Photogrammetry, and Remote Sensing. Glossary of the Mapping Sciences.
American Society of Civil Engineers, 1994.

[64] Joseph Polastre, Jason Hill, and David Culler. Versatile low power media access for wireless
sensor networks. In SenSys ’04: Proceedings of the 2nd international conference on Embedded
networked sensor systems, pages 95–107, New York, NY, USA, 2004. ACM.

Bibliography 135

[65] Joseph Polastre, Robert Szewczyk, and David Culler. Telos: enabling ultra-low power wireless
research. In Proceedings of the 4th international symposium on Information processing in
sensor networks, IPSN ’05, Piscataway, NJ, USA, 2005. IEEE Press.

[66] Dimitris Psychoudakis, William Moulder, Chi-Chih Chen, Heping Zhu, and John L. Volakis.
A portable low-power harmonic radar system and conformal tag for insect tracking. IEEE
Antennas and Wireless Propagation Letters, 7:444–447, 2008.

[67] Aveek Purohit, Zheng Sun, Memo Salas, and Pei Zhang. Sensorfly: Controlled-mobile sensing
platform for indoor emergency response applications. In Proceedings of the 10th International
Conference on Information Processing in Sensor Networks (IPSN), 2011.

[68] Razvan, Chieh, and Andreas Terzis. Koala: Ultra-low power data retrieval in wireless sen-
sor networks. In IPSN ’08: Proceedings of the 7th international conference on Information
processing in sensor networks, pages 421–432, Washington, DC, USA, 2008. IEEE Computer
Society.

[69] Robot Operating System. http://www.ros.org.

[70] Stephen M. Rumble, Ryan Stutsman, Philip Levis, David Mazières, and Nickolai Zeldovich.
Apprehending joule thieves with cinder. In MobiHeld ’09: Proceedings of the 1st ACM work-
shop on Networking, systems, and applications for mobile handhelds, pages 49–54, New York,
NY, USA, 2009. ACM.

[71] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing. Commun.
ACM, 18(11):613–620, November 1975.

[72] Rahul C. Shah and Jan M. Rabaey. Energy aware routing for low energy ad hoc sensor net-
works. In IEEE Wireless Communications and Networking Conference (WCNC), March 2002.

[73] Gyula Simon, Miklós Maróti, Ákos Lédeczi, György Balogh, Branislav Kusy, András Nádas,
Gábor Pap, János Sallai, and Ken Frampton. Sensor network-based countersniper system. In
SenSys ’04: Proceedings of the 2nd international conference on Embedded networked sensor
systems, pages 1–12, New York, NY, USA, 2004. ACM.

[74] Jacob Sorber, Alex Kostadinov, Matt Brennan, Matt Garber, Mark Corner, and Emery D.
Berger. Eon: A Language and Runtime System for Perpetual Systems. In Proc. ACM Sen-
Sys, November 2007.

[75] Erik Stokstad. The case of the empty hives. Science, 316(5827):970–2, 2007.

[76] Robert Szewczyk, Alan Mainwaring, Joseph Polastre, John Anderson, and David Culler. An
analysis of a large scale habitat monitoring application. In In Proceedings of the Second ACM
Conference on Embedded Networked Sensor Systems (SenSys, pages 214–226, 2004.

[77] Jay Taneja, Jaein Jeong, and David Culler. Design, modeling, and capacity planning for micro-
solar power sensor networks. In IPSN ’08: Proceedings of the 7th international conference
on Information processing in sensor networks, pages 407–418, Washington, DC, USA, 2008.
IEEE Computer Society.

Bibliography 136

[78] Guy Theraulaz and Eric Bonabeau. Coordination in distributed building. Science,
269(5224):686–688, 1995.

[79] Richard T. Vaughan. Massively multi-robot simulations in stage. Swarm Intelligence, 2(2-
4):189–208, 2008.

[80] Vicon Motion Capture Sytems. http://www.vicon.com.

[81] Jason Waterman, Geoffrey Werner Challen, and Matt Welsh. Peloton: Coordinated resource
management for sensor networks. In Proc. the 12th Workshop on Hot Topics in Operating
Systems (HotOS-XII), May 2009.

[82] Jason Waterman, Bryan Kate, Karthik Dantu, and Matt Welsh. Simbeeotic: a simulation-
emulation platform for large scale micro-aerial swarms. In Proceedings of the 11th interna-
tional conference on Information Processing in Sensor Networks, IPSN ’12, pages 139–140,
New York, NY, USA, 2012. ACM.

[83] Matt Welsh and Geoff Mainland. Programming sensor networks using abstract regions. In
Proc. the First USENIX/ACM Symposium on Networked Systems Design and Implementation
(NSDI ’04), March 2004.

[84] Geoff Werner-Allen, Konrad Lorincz, Jeff Johnson, Jonathan Lees, and Matt Welsh. Fidelity
and yield in a volcano monitoring sensor network. In Proc. 7th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 2006), Seattle, WA, November 2006.

[85] Geoff Werner-Allen, Pat Swieskowski, and Matt Welsh. MoteLab: A Wireless Sensor Network
Testbed. In Proc. the Fourth International Conference on Information Processing in Sensor
Networks (IPSN’05), April 2005.

[86] Geoffrey Werner-Allen, Stephen Dawson-Haggerty, and Matt Welsh. Lance: Optimizing high-
resolution signal collection in wireless sensor networks. In Proc. ACM Conference on Embed-
ded Networked Sensor Systems (Sensys), Raleigh, NC, USA, November 2008.

[87] Kamin Whitehouse, Cory Sharp, Eric Brewer, and David Culler. Hood: A neighborhood ab-
straction for sensor networks. In Proc. the International Conference on Mobile Systems, Ap-
plications, and Services (MOBISYS ‘04), June 2004.

[88] Alec Woo, Terence Tong, and David Culler. Taming the underlying challenges of reliable mul-
tihop routing in sensor networks. In Proc. the First ACM Conference on Embedded Networked
Sensor Systems (SenSys 2003), November 2003.

[89] Ya Xu, John Heidemann, and Deborah Estrin. Geography-informed energy conservation for
ad hoc routing. In MobiCom ’01: Proceedings of the 7th annual international conference on
Mobile computing and networking, pages 70–84, New York, NY, USA, 2001. ACM.

[90] Wei Ye, J. Heidemann, and D. Estrin. An energy-efficient mac protocol for wireless sensor
networks. In INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings. IEEE, volume 3, pages 1567 – 1576 vol.3, 2002.

Bibliography 137

[91] Heng Zeng, Xiaobo Fan, Carla S. Ellis, Alvin Lebeck, and Amin Vahdat. ECOSystem: Man-
aging Energy as a First Class Operating System Resource. In Proc. Architectural Support for
Programming Languages and Operating Systems (ASPLOS), San Jose, CA, October 2002.

[92] Xiang Zeng, Rajive Bagrodia, and Mario Gerla. GloMoSim: a library for parallel simulation
of large-scale wireless networks. In Proceedings of the twelfth workshop on Parallel and
distributed simulation (PADS ’98), pages 154–161. ACM, July 1998.

