
 

Characterization of the Mamu-A*01-Restricted CD8-Positive T
Lymphocyte Immunodominance Hierarchy in Simian
Immunodeficiency Virus-Infected Rhesus Monkeys

 

 

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Osuna-Gutierrez, Christa Elyse.  2012.  Characterization of the
Mamu-A*01-Restricted CD8-Positive T Lymphocyte
Immunodominance Hierarchy in Simian Immunodeficiency Virus-
Infected Rhesus Monkeys.  Doctoral dissertation, Harvard
University.

Accessed April 17, 2018 3:47:52 PM EDT

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:9817660

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/9817660&title=Characterization+of+the+Mamu-A*01-Restricted+CD8-Positive+T+Lymphocyte+Immunodominance+Hierarchy+in+Simian+Immunodeficiency+Virus-Infected+Rhesus+Monkeys&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=cccb9aac6132bed4fd24cac5fd99858c&department=NONE
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA


 

 

 

 

 

 

 

 

 

 

 

© 2012-Christa Elyse Osuna-Gutierrez 

All Rights Reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

iii 
 

Dissertation Advisor: Dr. Norman L. Letvin                Christa Elyse Osuna-Gutierrez 

 

CHARACTERIZATION OF THE MAMU-A*01-RESTRICTED CD8-POSITIVE T LYMPHOCYTE IMMUNODOMINANCE 

HIERARCHY IN SIMIAN IMMUNODEFICIENCY VIRUS-INFECTED RHESUS MONKEYS  

 

ABSTRACT 

CD8+ cytotoxic T lymphocytes (CTLs) play a critical role in controlling human 

immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication. The CTL 

responses that are thought to be the most protective against HIV and SIV are those that are of 

high frequency, recognize multiple epitopes, and perform multiple antiviral functions. 

Therefore, current vaccines aim to elicit CTLs possessing these characteristics. However, the 

phenomenon of immunodominance likely limits the potential of vaccines from generating such 

CTL responses by restricting the breadth of epitopes recognized by CTLs and the frequency and 

functionality of these CTL responses. In this dissertation, we explored the relationship between 

SIV epitope dominance and the functionality of the epitope-specific CTL populations. We also 

examined factors that contribute to the development of SIV epitope immunodominance 

hierarchies. 

 We initially investigated the relationship between SIV epitope dominance and the 

antiviral functionality of the epitope-specific CTL populations in rhesus monkeys. We performed 

a gene expression analysis in dominant and subdominant epitope-specific CTLs during the acute 

phase of SIV infection and observed differential expression of a number of genes during this 

time. Subsequent in vitro functional studies of these epitope-specific CTL populations during 

the chronic phase of infection confirmed the presence of differences in maturation phenotype 
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and functional capacity of dominant and subdominant epitope-specific CTLs. These studies 

demonstrate a relationship between epitope dominance and antiviral functionality of epitope-

specific CTLs and suggest that dominant and subdominant epitope-specific CTLs may differ in 

their protective role against HIV acquisition and replication. This has important implications for 

vaccine design. 

 In subsequent studies, we investigated the contribution of the binding of the 

peptide:MHC (pMHC) complex to the T cell receptor (TCR) in the development of 

immunodominance hierarchies. Using surface plasmon resonance, we measured the kinetics 

and the affinity of the interactions between dominant and subdominant epitope pMHC 

complexes with their respective TCRs. We found that epitope dominance was associated with 

higher affinities of pMHC:TCR binding. These findings indicate a molecular interaction that may 

be manipulated in vaccine-induced CTL responses to enhance their frequency and functional 

capacity. 
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HIV AND AIDS 

Acquired immunodeficiency syndrome (AIDS) is caused by infection with the human 

immunodeficiency virus (HIV) [1-5]. Currently, 33 million individuals are infected with this virus 

and 1.8 million people die from AIDS each year [6]. To combat spread of infection, intense 

efforts are being made to develop a vaccine that will confer protection from HIV infection. 

However, successful development of a HIV vaccine will require an improved understanding of 

the immune response to the virus. 

HIV belongs to the lentivirus genus of the retrovirus family. It contains nine reading 

frames that encode 15 proteins. Three of these reading frames encode polyproteins that are 

further cleaved into the final protein products: gag encodes the structural proteins matrix, 

capsid, nucleocapsid, and p6; Env encodes the structural proteins gp120 and gp41; and Pol 

encodes the enzymes reverse transcriptase, protease, and integrase. The other proteins 

encoded by the virus are accessory proteins that are required during various stages of the virus 

lifecycle and include vif, vpr, nef, tat, rev, and vpu [7].  

Infection of a cell with HIV results in the permanent integration of the viral DNA into the 

host’s DNA, resulting in a lifelong persistent infection in the host [8, 9]. Entry of HIV into a host 

cell requires the interaction of the envelope protein gp120 with the host cell-surface proteins 

CD4 [10, 11] and either CCR5 or CXCR4 [12-14]. CD4 is expressed on cells of the immune system 

including CD4+ T cells, macrophages, and dendritic cells (DCs) [15-17]. HIV preferentially infects 

activated memory CD4+ T cells as these cells also express CCR5 and can support viral replication 

[18-22]. Following infection, the virus spreads with exponential replication from the site of 

infection, to local lymphoid tissue, to other mucosal sites, and eventually throughout the entire 
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body [22-25]. Within a week after infection, due to the preferential infection of activated 

CCR5+CD4+ T cells and the abundance of these cells at mucosal sites, up to 20% of gut-

associated CD4+ T cells are infected and up to 80% are destroyed [26-28]. Virus replication in 

the blood peaks around day 21 and then declines [29-31], reaching a steady state two to six 

months after infection [32, 33]. This decline of virus replication is associated with a rebound in 

CD4+ T cell numbers that remain steady for many months. But the levels of CD4+ T cells 

eventually begin to decline slowly over the following years and this is associated with a decay 

and dysfunction of many other aspects of the immune system that eventually lead to AIDS [34, 

35]. 

 

Use of nonhuman primates as an AIDS model. As currently there is no appropriate small animal 

model of HIV infection, nonhuman primates (NHPs) have become a useful and necessary model 

for studies of HIV. African NHPs harbor viruses that are closely related to HIV, called simian 

immunodeficiency viruses (SIVs) [36]. Although SIVs usually do not cause disease in their 

natural hosts, infection of non-natural NHP hosts such as Asian primates, can result in disease. 

This was initially observed when captive rhesus monkeys (Macaca mulatta) developed AIDS-like 

symptoms due an infection of SIV from sooty mangabeys (Cercocebus torquatus, SIVsm), a 

species endemically infected with SIV with minimal pathology [37-40].  

The infection of rhesus monkeys with strains of SIVsm has become the most frequently 

used NHP model of HIV. A major advantage of using NHP AIDS models is the ability to exert 

experimental control over a number of variables that often confound studies in humans such as 
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viral sequence variability, route of infection, and dose of infection. In addition, there are many 

similarities between SIV and HIV both genetically and in the diseases that they cause in NHPs 

and humans, respectively. Humans and NHPs have similar genetic composition of their immune 

system including human leukocyte antigens (HLA) class I, HLA class II, and T cell receptors (TCRs) 

[41-44]. SIV and HIV have closely related nucleotide sequences [45, 46]. Additionally, SIV and 

HIV have similar cell tropisms, both using the CD4 molecule as their receptor and CCR5 as their 

coreceptor [47-51], resulting in infection and destruction of the CD4+ T cell population. Chronic 

infection with SIV or HIV results in similar AIDS-like syndrome namely weight loss, immune 

activation, wasting, and increased susceptibility to opportunistic infections [26, 48, 52].  

However, some differences between HIV infection in humans and SIV infection in rhesus 

monkeys should be considered when extrapolating findings in monkeys to humans. Although, 

both infections result in an early peak in viral load followed by a decrease and eventual set 

point, the viral kinetics are somewhat different. In rhesus monkeys, viral load peaks about one 

week before it does in humans. The viral setpoint also occurs earlier in rhesus monkeys and 

usually at higher levels. Additionally, the time to progression to AIDS occurs earlier in rhesus 

monkeys, usually in 0.5 to 3 years versus 8 to 10 years in humans [53]. Finally, rhesus monkeys 

do not have an HLA-C ortholog and they have greater polymorphisms within their MHCs [54, 

55]. 

 

Correlates of protection. From studies in both HIV-infected humans and SIV-infected monkeys, 

we have developed an understanding of the factors that are involved in, or serve as surrogate 

measurements of, protection from infection and disease progression. As HIV and SIV 
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preferentially infect CD4+ T cells, and CD4+ T cell are essential for multiple aspects of the 

immune system, there is a strong negative correlation between the number of CD4+ T cells in 

peripheral blood and disease progression. Indeed, CD4+ T cell count is used clinically as the 

basis for deciding when to initiate anti-retroviral therapy [56] and a rise in CD4+ T cell count is 

used as a measurement of effectiveness of anti-retroviral therapy in humans [57, 58].  

Most viruses are sensitive to neutralizing antibodies. Therefore, it is not surprising that 

neutralizing antibodies have also been associated with SIV and HIV control. Depletion of B cells 

in SIV-infected rhesus monkeys inhibited production of neutralizing antibodies and was 

associated with an increase in viral load [59]. Passive transfer of neutralizing antibodies to 

rhesus monkeys prior to challenge prevents infection [60-63]. Additionally, as HIV has been 

shown to rapidly mutate in the envelope region to become neutralization-resistant, it is clear 

that neutralizing antibodies are applying immune pressure [64, 65]. Finally, a recent vaccine 

trail using a recombinant canarypox vector prime and gp120 protein boost (the Thai 

ALVAC/AIDSVAX trial (RV144)), showed a marginal effect at reducing HIV acquisition. This 

protective effect was associated with antibodies rather than CD8+ T cell-mediated responses 

[66]. 

Many lines of evidence suggest that CD8+ T cells also play a substantial role in control of 

viral replication. First, there is a temporal association between the decrease in viral load during 

acute infection and the rise in virus-specific CD8+ T cells [67, 68]. This suggests that CD8+ T cells 

may be playing a role in the decrease in viral load. Indeed, antibody-mediated CD8+ cell 

depletion in rhesus monkeys either before or during SIV infection was associated with a 

substantial rise in viral load during acute infection and more rapid disease progression [69, 70]. 
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Additionally, the frequency of virus-specific CD8+ T cells during chronic infection is negatively 

correlated with viral load [71]. Second, there is a strong correlation between certain major 

histocompatibility complex (MHC) class I alleles, in both humans and rhesus monkeys, and 

superior viral control. This suggests that MHC class I presentation of viral epitopes to CD8+ T 

cells likely plays a role in viral control and that certain alleles are more protective than others 

[72]. Finally, mutations in the viral sequences that result in loss of recognition by the CD8+ T 

cells that leads to disease progression preferentially occur within MHC class I-restricted viral 

epitopes [73-87]. This suggests that the epitope-specific CD8+ T cells are applying immune 

pressure. 

Although most agree that a vaccine capable of generating high titers of broadly 

neutralizing antibodies would be ideal, creating such a vaccine has been challenging [88-92]. 

Considering the clear role that CD8+ T cells play in controlling HIV and SIV, much effort has been 

directed at developing a vaccine that would elicit virus-specific CD8+ T cells that could control 

infection and possibly induce sterilizing immunity. Rhesus monkeys receiving vaccines designed 

to induce virus-specific CD8+ T cell responses were often able to control virus more efficiently 

than unvaccinated controls [93-98]. Based on their success in rhesus monkeys, some have been 

taken to human clinical trials, but with limited success. The STEP trial used recombinant 

adenovirus type 5 vectors expressing the HIV proteins gag, pol, and nef. Although this vaccine 

increased the frequencies of virus-specific CD8+ T cell responses, as determined by IFNγ 

ELISPOT, ultimately it was neither protective against HIV acquisition nor did it decrease viral 

loads following acquisition [99]. Additionally, although the vaccine used in the RV144 trial 

showed a marginal effect at reducing HIV acquisition, the CD8+ T cell-mediated responses in the 
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protected individuals, as measured by IFNγ and IL-2 production, were weak [66]. Assuming that 

CD8+ T cells are truly important for HIV protection and control, there are at least three 

explanations for these disappointing results. First, although CD8+ T cells were elicited, perhaps 

they were not high enough frequency. Second, CD8+ T cells elicited may not have possessed the 

effector functions that were necessary for protection. Third, the vaccine-elicited CD8+ T cells did 

possess the appropriate protective functions, but these functions were not measured and, 

therefore, were not correlated to protection. These two vaccine trials illustrate the lack of 

understanding of the role of CD8+ T cells in HIV infection. The optimal characteristics of CD8+ T 

cells that convey protection, and how to generate these responses by vaccination, remain 

unclear and require further investigation.  

 

CD8+
 T CELLS 

T cells are a subset of lymphocytes that can be divided broadly into CD4+ T cells and 

CD8+ T cells. Via their TCR, CD4+ T cells recognize epitope peptides that are presented by MHC 

class II molecules on professional antigen-presenting cells (APCs), usually derived from 

extracellular pathogens [100]. CD4+ T cells generally are responsible for producing soluble 

molecules that direct the immune response to that particular pathogen: for example, 

promoting antibody production and facilitating the development of protective CD8+ T cell 

memory [101, 102]. On the other hand, the TCR expressed by CD8+ T cells recognizes epitopes 

that are presented by MHC class I molecules, usually derived from intracellular pathogens, such 

as viruses [16]. As all nucleated cells express MHC class I molecules, presentation of MHC class 

I-restricted epitopes to CD8+ T cells does not require professional APCs [16]. Although CD8+ T 
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cells also can produce soluble molecules, their most influential role during infection is the direct 

killing of infected cells [103-113]. 

 

Effector functions. CD8+ T cells can kill target cells by two different mechanisms, both of which 

result in apoptosis-induced death of the target cell: 1) the induction of signaling through the Fas 

death receptor (CD95) and 2) the release of perforin and granzymes [114]. The 

perforin/granzyme-dependent cytotoxic mechanism is more important for the control and 

clearance of pathogens [115-118], while the Fas-mediated mechanism is more important for 

the downregulation of the adaptive immune response following clearance of a pathogen and 

maintenance of peripheral tolerance by removal of autoreactive cells [119].  

Effector CD8+ T cells express perforin and granzymes and store them in organelles 

specialized for secretion called granules [120]. The particular pattern of expression of the 

different granzymes (-A, -B, -H, -K, and -M), together with perforin, depends upon the 

maturation stage of the CD8+ T cell [121-127]. Upon recognition of a target cell, a CD8+ T cell 

releases the contents of these granules directly toward the target cell, resulting in the initiation 

of apoptosis and death of the target cell [128-131]. Perforin is responsible for damaging the 

membrane of the target cell and allowing entrance of the granzymes into the cytoplasm [132-

136]. Once in the cytoplasm, the granzymes induce apoptosis via multiple mechanisms 

including a caspase-dependent pathway, a mitochondrial-dependent pathway, and induction of 

reactivate oxygen radicals [137]. For the killing of infected cells by CD8+ T cells, perforin is 
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absolutely necessary [113, 116, 138-140], while certain granzymes, notably granzyme A and 

granzyme B, are more important than others [141-148].  

One method frequently used to identify cellular responses that may be protective 

against HIV is the comparison of responses between HIV-infected individuals who control viral 

replication well, termed long-term non-progressors (LTNP), and individuals who do not control 

viral replication well, termed progressors. The rationale is that differences identified between 

these two groups of individuals may reveal factors that that contribute to viral control. Another 

useful method has been comparing the cellular responses against HIV to those responses 

against other chronic viruses that are usually better-controlled such as Epstein-Barr Virus (EBV) 

and cytomegalovirus (CMV). From such studies, we have identified multiple cellular functions 

that may contribute to control of HIV replication. 

In HIV, there is substantial evidence that killing of infected cells by CD8+ T cells is 

important for control of viral replication. Initial studies of cytotoxicity in the context of HIV 

demonstrated that HIV-specific CD8+ T cells were deficient in their cytotoxic capacity [149] and 

that this was associated with a deficiency in perforin content [150], suggesting lack of 

cytotoxicity as an explanation for poor viral control. It was later shown that although perforin 

expression was indeed deficient in many HIV-specific CD8+ T cells analyzed ex vivo from infected 

individuals, re-stimulation of cells from HIV-infected individuals resulted in proliferation that 

was associated with an upregulated production of perforin and that this function was 

preferentially maintained in LTNP [151]. Later studies discovered that perforin can be 

upregulated without the requirement for proliferation, providing CD8+ T cells with a mechanism 

to rapidly replenish their cytotoxic capacity without the lag of proliferation [152]. Analysis of 
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this function of rapid perforin upregulation found that HIV-specific CD8+ T cells from LTNPs also 

exhibited an enhanced capacity to upregulate perforin directly after stimulation compared to 

CD8+ T cells from progressors [153]. Finally, CD8+ T cells from LTNP have also been shown to 

possess in vitro suppression of viral replication [154] and killing of target cells [155] that is 

superior to CD8+ T cells from progressors. 

Soluble molecules produced by CD8+ T cells include: IL-2, IL-4, IL-5, IL-8, IL-10, IL-17, MIP-

1β, MIP-1α, RANTES, IFNγ, GM-CSF, and TNFα [156-159]. The most extensively characterized 

effector molecules produced by CD8+ T cells are IL-2, IFNγ, and TNFα. IL-2 is essential for the 

expansion of CD8+ T cells during primary and secondary responses as well as the development 

of effector functions [160-163]. Therefore, although not technically an antiviral effector 

molecule, the production of IL-2 by CD8+ T cells is frequently used as a measurement of the 

quality of the CD8+ T cell response. IFNγ acts on multiple cell types and has multiple functions 

during infections, notably, the upregulation of MHC class I and MHC class II epitope processing 

and presentation machinery and induction of expression of antiviral proteins [164, 165]. TNFα 

contributes to pathogen clearance possibly by inhibiting viral replication or stimulating the 

generation of reactive oxygen radicals [166-174].  

 The role of many of these soluble molecules have been studied in HIV and SIV infection 

and some have been found to be associated with protection and control of viral replication. IL-2 

has been identified as a soluble molecule produced by CD8+ T cells that is important for viral 

control [175-177]. IL-2 production is linked to CD8+ T cell proliferation and is, therefore, thought 

to be important for this process [175, 177], which is preserved in LTNP [151]. IFNγ is another 
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soluble molecule that has been associated with control of these viruses. The decline of CD4+ T 

cells associated with the progression to AIDS is associated with a decline in IFNγ production by 

CD8+ T cells [178, 179], a function that appears also to be preserved in LTNP [176]. TNFα, 

although frequently measured, has rarely been identified as being independently associated 

with protection. Although, a study comparing progressive versus non-progressive disease in 

SIV-infected rhesus monkeys did find as association of TNFα production by CD8+ T cells with 

control [180]. Finally, the β-chemokines MIP-1β, MIP-1α, and RANTES share a common 

receptor, CCR5, the same receptor used by many HIV and SIV isolates [12, 181, 182]. The 

binding of these chemokines to CCR5 can inhibit entry of HIV and SIV into target cells [183] and 

the production of these chemokines by CD8+ T cells during infection has been associated with 

viral control [184-186].  

As an alternative to seeking associations of individual CD8+ T cell functions with viral 

control, many studies have begun to perform analyses that consider multiple CD8+ T cell 

functions. These studies evaluate the ability of a single cell to simultaneously perform multiple 

functions including IL-2, IFNγ, TNFα, and MIP-1β production in addition to cytotoxicity. In these 

analyses, cytotoxicity is often measured by cell surface expression of CD107 following antigenic 

stimulation, a surrogate measurement for degranulation of cytotoxic granules [187]. Such 

analyses of a cell’s ability to perform multiple functions are considered a more global 

assessment of their “quality”. Those cells that can simultaneously perform multiple antiviral 

functions are termed “polyfunctional” or “multifunctional”. It has been shown that the quality 

of CD8+ T cells from progressors is different than those from LTNPs; the CD8+ T cells from LTNPs 

are often more polyfunctional compared to those from progressors. This has been 
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demonstrated in CD8+ T cells from both peripheral blood [188, 189] and from mucosal tissues 

[190, 191]. Although it is possible that the enhanced protective capacity that polyfunctional 

cells provide is simply due its more efficient antiviral functionality (a single cell can provide 

multiple functions), that is probably not the entire reason. Polyfunctional cells also produce 

more of each effector molecule per cell as compared to monofunctional cells, when measured 

by the fluorescence intensity of staining of these effector molecules by flow cytometry [192] .  

 

Activation of CD8+ T cells. Although capable of recognizing a pathogen-derived epitope, naïve 

CD8+ T cells (those lacking previous exposure to antigen) are unable to confer protection 

against pathogens due to their lack of effector function and low frequency [193]. Recognition of 

cognate epitope peptide by the TCR of naïve CD8+ T cell provides signals that activate these 

cells to undergo massive expansion, and to differentiate and acquire effector functions [194-

200]. Activation of naïve CD8+ T cells occurs in lymphoid tissues [201, 202] and requires three 

distinct signals. The primary signal, termed signal 1, is the TCR’s recognition of a foreign epitope 

bound by an MHC class I molecule on an APC or infected cell [203, 204]. The second signal, 

signal 2, results from the interaction of a CD8+ T cell costimulatory receptor, usually CD28, with 

its ligands, such as CD80 and CD86, on the APC [205-207]. The third signal, signal 3, is an 

inflammatory signal, determined by the binding of soluble inflammatory molecules to their 

receptors on the naïve CD8+ T cell [208-210]. Signal 1 without signal 2 and/or 3 will result in 

incomplete activation and may render the CD8+ T cell refractory to further stimulation [211-

214]. In addition, the quality and strength of these different signals shape the frequency, 

maturation, and function of the resulting CD8+ T cells.    
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Maturation of antigen-experienced CD8+ T cell subsets and identification of these subsets. 

Naïve epitope-specific CD8+ T cells circulate through secondary lymphoid organs, surviving by 

stimulation through MHC class I and by the binding of the homeostatic cytokine IL-7 to the IL-7 

receptor (CD127)[215-219]. The expression of the chemokine receptor CCR7 and the adhesion 

molecule CD62L allow them to enter secondary lymphoid organs where they can contact 

cognate foreign epitope presented by MHC class I on APCs [220, 221]. Recognition of cognate 

epitope by the TCR provides the CD8+ T cell with signals that allow it to undergo massive 

expansion and to mature and acquire effector functions [200]. The expression on the naive 

CD8+ T cells of the costimulatory molecules CD28 and CD27, as well as the phosphatase 

CD45RA, enhance the stimulatory signal initiated through the TCR [222-226]. 

The expansion of naïve CD8+ T cells is accompanied by a maturation program through 

which they acquire effector functions that allow them to combat the pathogen[227, 228]. This 

expansion can often be detected by changes in the expression of various cell cycle-associated 

molecules such as Ki-67, which is upregulated, and Bcl-2, which is downregulated during this 

expansion period [228-231].  Activated cells also downregulate the cell surface expression of 

CD62L and CCR7, allowing them to circulate in peripheral tissues rather than lymphoid tissues. 

They also downregulate the expression of CD127 and CD45RA and upregulate the expression of 

a different form of the CD45 phosphatase, CD45R0 [228, 232]. They also express a number of 

additional surface molecules that are often used to identify activated CD8+ T cells including PD-

1, HLA-DR, CD38, and CD69 [228, 233, 234].  
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Following clearance of the pathogen, the majority of the effector cells die by apoptosis 

[200, 235]. However, a small percentage of these cells survive and give rise to a pool of long-

lived memory cells [200, 228]. These memory cells persist in the host, often for the remainder 

of its lifetime, and provide enhanced protection if re-exposed to the same pathogen [236-241]. 

The transition from effector to memory cell requires a number of transcriptional changes that 

occur nonsimultaneously and gradually over time [228, 242, 243]. Although there appears to be 

a continuum over which these changes occur, and therefore enormous heterogeneity of 

phenotype and function within the memory pool [222], memory cells have been broadly 

categorized as either 1) central memory or 2) effector memory [244, 245]. These memory 

subsets have been distinguished by a number of unique functional characteristics as well as 

expression of particular cell surface molecules. 

Based on studies that measured the telomere lengths of different human CD8+ T cell 

subsets, which is a measurement of replicative history and proliferative potential [246-250], the 

central memory subset is considered the least-mature memory subset [251-253]. Cells found in 

this subset express many of the molecules found on naïve CD8+ T cells, such as CCR7, CD62L, 

CD28, CD27, and CD127 [217, 225, 245, 251, 254-259]. They similarly lack some of the effector 

functions such as the production of the cytolytic effector molecules perforin and granzyme 

[121, 127, 225, 251]. However, they have a number of functions that naïve cells do not have, 

notably, the capacity to expand more rapidly and produce IL-2 upon re-exposure to cognate 

epitope-MHC I [243, 260-262]. They also have some production of soluble effector molecules 

such as IFNγ and TNFα [263, 264]. Unlike naïve cells that express CD45RA, central memory cells 

continue to express CD45RO [121].  
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Some studies also have described a memory stage that appears to be an intermediate 

between central and effector memory, which was designated transitional memory. This stage is 

usually described as having many of the phenotypic markers of central memory cells, except 

the lack of expression of CCR7 [225]. In this transitional memory stage, cells start to upregulate 

the expression of the granzymes A and K; however they usually do not yet express perforin, and 

therefore do not have immediate cytotoxic capacity [125-127]. 

Cells found in the effector memory stage do not express CCR7 or CD62L but have 

upregulated expression of the cytokine receptor CXCR3, allowing them to enter peripheral 

tissues, rather than secondary lymphoid tissues [265]. Some show loss of expression of CD127 

[266-268]. They do not express the costimulatory receptor CD28 and some also show loss of the 

costimulatory receptor CD27 [225]. Loss of these costimulatory molecules contributes to the 

reduced expansion capacity that these cells exhibit following antigen re-exposure [269, 270]. In 

contrast to cells in the central memory subset, cells in the effector memory subset display an 

increased capacity to produce many effector molecules, including IFNγ and TNFα [263]. They 

maintain expression of granzyme A, lose some expression of granzyme K, and now show 

expression of both granzyme B and low amounts of perforin [121, 125-127]. Therefore, they 

possess some immediate cytotoxicity [225, 271, 272].  

Maturation of memory cells into fully mature effector cells is often defined by the 

expression of a large amount of perforin and granzymes A and B, and therefore increased 

cytotoxic capacity [121, 125-127]. Interestingly, effector cells have usually lost expression of 

granzyme K [125, 126]. They retain some level of IFNγ and TNFα production, but have lost the 
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ability to produce IL-2 [273]. Many have further lost the expression of CD27, although some 

retain it [251, 263]. They have also lost the expression of CD127 [175, 266-268]. This subset 

often has increased expression of the surface molecule CD57 and the inhibitory receptor KLRG-

1, both of which have been associated with the decreased proliferative capacity that is highly 

associated with this subset, often referred to as immunological senescence [121, 274-280]. 

Many effector CD8+ T cells have also re-gained the expression of the phosphatase CD45RA and 

this is often considered a marker of terminal differentiation [252, 281]. 

Although the particular pathway though which memory cells are generated from the 

effector cells that survive following primary infection remains disputed, it is clear that over 

time, following resolution of a pathogen, central and effector memory populations are formed, 

both of which possess the potential to give rise to functional effector cells if re-exposed to 

antigen [282]. Although some studies have concluded that central and effector memory cells  

represent distinct differentiation fates [283], others have found that given enough time in the 

absence of antigen following clearance of the pathogen, effector memory cells will give rise to 

the less mature central memory cells [243, 284-287]. However, this is not the case in the setting 

of unresolvable, chronic infections, such as EBV, CMV, HCV, and HIV. Under these conditions, 

CD8+ T cells are chronically exposed to antigen and the development of memory does not occur 

as it does in the setting of acute infection [260, 288, 289]. Phenotypically, epitope-specific CD8+ 

T cells in chronic infections can be found in the stereotypical central, transitional, and effector 

memory subsets; however, instead of the eventual conversion into the less mature subsets, 

these cells seem to be fixed at these different stages of memory development. Additionally, the 

distribution of cells among the different memory subets differs among different pathogens 
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[254, 260, 284, 287, 288]. For example, HCV-, EBV-, HIV-, and CMV-specific CD8+ T cells are 

predominately central memory, central/transitional memory, effector memory, and terminally 

differentiated effector memory, respectively [260, 288, 290]. Although it is not completely clear 

why the distribution of memory subsets differs for cells specific for different persistent 

pathogens, it is thought that the amount and quality of antigenic and inflammatory stimulation 

likely plays a role [232, 287, 291, 292].  

As mentioned above, the majority of HIV- and SIV-specific CD8+ T cells have been 

characterized as early effector memory (usually defined as CCR7-CD28-CD27+CD45RA-) [126, 

254, 260, 293]. More recently, HIV- and SIV-specific CD8+ T cells have been shown also to have 

reduced expression of CD127 [294]. The role of CD127 on the CD8+ T cells during HIV infection 

remains unclear. Although its expression pattern may simply be a reflection of maturation 

stage, it has also been suggested that the reduced expression of C1D27 may contribute to 

immune dysfunction [295, 296].  

The lack of HIV- and SIV-specific CD8+ T cells displaying more mature memory 

phenotypes has led some to speculate that this may represent a defect in these cells and that 

this defect may contribute to the inability of these cells to control viral replication. In support of 

the concept that more mature effector memory cells are more protective, it has been found 

that LTNPS contain a greater frequency of HIV-specific CD8+ T cells with a more mature 

phenotype [154, 297-300]. In addition, a recent study has tested CMV as a SIV vaccine vector, 

which had been demonstrated to induce CD8+ T cells displaying more mature phenotypes than 

previously-used vaccine vectors [301]. This study found that those monkeys that received an 
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SIV vaccination delivered by the CMV vector were provided greater protection than those 

monkeys receiving the vaccine by an adenovirus vector [301, 302]. 

The chronic antigenic stimulation that CD8+ T cells experience during unresolvable 

infections is often associated with the development of functional impairment of these cells, 

termed exhaustion. Exhaustion was first described in the setting of chronic lymphocytic 

choriomeningitis virus (LCMV) infection in mice where epitope-specific CD8+ T cells were found 

to have a reduced cytotoxic and IFNγ-producing capacity [303, 304]. Since then, the phenotypic 

and functional defects of exhausted cells have been more extensively defined and exhausted 

CD8+ T cells have been found in the setting on multiple chronic infections including HIV, SIV, 

HBV, and HCV [305-314]. The functional defects are gradually acquired; there is a progressive 

loss of proliferative potential accompanied by a loss of functions starting with the production of 

IL-2, followed by cytotoxicity, TNFα, and finally IFNγ [315, 316].  

As the phenotypic and functional characteristics of exhausted cells have become further 

elucidated, it has been suggested that exhaustion may be a distinct pathway of differentiation 

[316]. This is supported by the unique transcriptional profile that is associated with these cells 

[317, 318]. However, others argue that exhaustion is associated with differentiation in the 

setting of chronic exposure to antigen [319-322]. Regardless of their origin, exhausted cells 

have been found to display a unique combination of cell surface molecules, many of which are 

also used to define different effector and memory subsets, thus complicating their 

identification. Similar to terminally differentiated cells, exhausted cells have downregulated the 

expression of CD62L, CD127, CCR7, and CD28 [323-326]. They also express low levels of the 
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anti-apoptotic molecule bcl-2 [326]. They upregulate the expression of a number of inhibitory 

molecules including KLRG1, PD-1, 2B4, CD160, CTLA-4, LAG-3, and TIM-3 [318, 327, 328]. They 

also show increased expression of CD69, CD95, and CD44 [318, 323, 326]. 

Exhausted epitope-specific CD8+ T cells in the setting of HIV and SIV infection have now 

been described in multiple studies and their presence is thought to play a role in the inability of 

CD8+ T cells to ultimately control HIV and SIV replication. Exhausted HIV and SIV epitope-

specific CD8+ T cells express multiple inhibitory molecules including PD-1, TIM-3, CD160, 2B4 

[311, 312, 329-331]. These molecules are more highly expressed on CD8+ T cells from 

individuals with progressive disease compared to LTNP [332]. The increased expression of these 

molecules on HIV- and SIV-specific CD8+ T cells is associated with functional defects including 

decreased proliferation and cytokine production following re-stimulation [307, 311, 312, 329, 

332] that can be reversed following blockade of PD-1 either in vitro [307, 311, 312, 332, 333] or 

in vivo [314].  

 

Transcriptional regulation of CD8+ T cell maturation. The transition of naïve cells into effector 

and memory cells, as well as the development of exhaustion, is accompanied by global changes 

in their transcriptional program. In order to understand the process of CD8+ T cell maturation, 

and also to better identify cells at specific stages of maturation, much work has been done to 

identify the factors that control these transcriptional changes. A number of major 

transcriptional regulators have been identified and they include Eomesodermin (Eomes), T-bet, 

Blimp-1, and Bcl-6. 
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T-bet and Eomes are major regulators of CD8+ T cell maturation. Both T-bet and Eomes 

contribute to the production of the effector molecules IFNγ, perforin, and granzyme B [334-

336]. Combined deficiencies in both T-bet and Eomes leads to a lack of memory CD8+ T cells, 

suggesting that they have overlapping roles in memory formation and/or maintenance [337, 

338]. However, T-bet expression is preferentially upregulated in shorter-lived effector cells, 

suggesting that high expression levels favor effector formation rather than memory formation. 

However, low levels of T-bet expression have been shown to permit memory formation [334, 

339]. On the other hand, Eomes expression is preferentially increased in memory cells, 

suggesting that it favors the generation and maintenance of memory [339, 340]. Consistent 

with their opposing roles in CD8+ T cell maturation, IL-12 inversely regulates the expression of 

these transcription factors; IL-12 induces the expression of T-bet while inhibiting the expression 

of Eomes [337, 340].  

Bcl-6 is a transcriptional repressor that promotes the generation of memory CD8+ T 

cells, particularly central memory [341, 342]. Consistent with this, Bcl-6 has been found to 

promote proliferation, which is a function associated with central memory cells, and inhibit 

expression of granzyme B, which is associated with effector cells [341, 343]. A homologue of 

Bcl-6, Bcl-6b, also plays a role in the proliferative capacity of memory cells [344].  

Bcl-6 antagonizes, and is antagonized by, another transcription factor, Blimp-1 [345]. 

Consistent with this, Blimp-1 has roles that are opposite to that of Bcl-6; Blimp-1 promotes 

apoptosis and the production of granzyme and perforin while it inhibits proliferation and the 

production of IL-2 [345-348]. It is more highly expressed in effector CD8+ T cells, relative to 
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memory cells, suggesting that is favors terminal differentiation [345-347, 349]. Consistent with 

this, Blimp-1 expression is associated with increased T-bet expression and decreased Eomes 

[345]. Interestingly, very high levels of Blimp-1 are found in exhausted cells and are associated 

with increased levels of multiple inhibitory receptors [350]. On the other hand, T-bet does not 

appear to favor exhaustion; rather, it promotes sustained T cell responses during chronic 

infections and represses the expression of the inhibitory receptor PD-1 [351]. 

The aforementioned transcription regulators have major roles in CD8+ T cell maturation; 

however, there are other transcriptional regulators that have also been described to have roles 

in maturation, although their roles are not as well-defined. Id2 is a transcription factor that 

promotes survival of CD8+ T cells during the expansion phase and generation of memory, 

particularly effector memory [352]. XBP-1 is a transcription factor downstream of Blimp-1. It 

has also been found to be preferentially expressed in terminally differentiated CD8+ T cells and 

is required for the formation of this subset [353]. Bmi1 is a transcriptional repressor that 

enhances the proliferative and cytotoxic responses of effectors during expansion. It is also 

preferentially expressed in long-lived memory precursors, suggesting that it may be involved in 

subsequent memory formation [354]. Gfi-1 represses the expression of CD127 in effector cells 

while GABPα promotes its expression [355, 356]. RBP-J and CREB1 are transcription factors that 

contribute to the expression of granzyme B via Notch2 [357]. Tcf-1 and Lef-1 are transcription 

factors that favor formation of a subset of memory CD8+ T cells [358]. STAT4 plays a role in IFNγ 

production [359]. Runx3 induces Eomes expression and contributes to granzyme B, perforin, 

and IFNγ production. Notch1 also regulates Eomes expression as well as granzyme B and 

perforin expression [360]. STAT5 controls the expression of a number of genes, notably 
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granzyme B [361]. MBD2 is a transcriptional repressor that plays a role in inhibiting granzyme 

production and enhancing proliferative capacity in the memory population [362].  

With regard to the transcriptional regulation of the state of exhaustion, transcription 

factors NFAT2 and BATF appear to play a role. Exhausted cells show increased levels of NFAT2 

[318]. In these cells, the translocation of NFAT2 to the nucleus is impaired and is associated 

with their reduced cytokine production and cytotoxicity [155, 363]. Additionally, PD-1 ligation 

on exhausted cells results in increased expression of the transcription factor BATF, which 

contributes to the defect in proliferation and cytokine production in these cells [317]. 

 

peptide:MHC:TCR interactions in determining CD8+ T cell responses . Many studies have found 

that the “dose” of antigen that a CD8+ T cell is exposed to affects the subsequent frequency 

and/or functionality of the cell. “Dose” generally refers to how much antigen the cell is exposed 

to; dose is determined by both the amount of antigen available at a given time and by the 

duration that the antigen is available.  

Antigen duration is generally determined by the duration of infection with a pathogen. 

This is, of course, affected by the effectiveness of the immune response in pathogen clearance. 

Studies of antigen duration have found that prolonged antigen duration during primary 

infection usually results in higher frequencies of epitope-specific CD8+ T cells during the primary 

phase [364-367] and/or memory phase [368]. These increased frequencies have been shown to 

be at least in part determined by prolonged antigen exposure promoting survival [365, 366]. 

Antigen duration has, in some cases, also been shown to affect the composition of memory 
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subsets [368], possibly by determining the rate of central and effector memory formation 

following pathogen clearance [286].  

The amount of antigen available at a given time is determined in part by the amount of 

protein produced by the pathogen that is available for epitope processing and also by the 

efficiency of multiple steps of epitope processing. This ultimately determines the density of 

peptide:MHC (pMHC) complexes that are displayed on the cell surface and therefore available 

for CD8+ T cell recognition. pMHC density has been shown to influence frequency of epitope-

specific CD8+ T cells in the primary response with greater doses resulting in higher frequencies 

[369].  

 With respect to the role of the epitope processing on pMHC density, the factors that 

affect this include the efficiency of release of the epitope from the protein [370-372], the 

efficiency of the entry of the epitope into the endoplasmic reticulum (ER), and the loading of 

the epitope onto an MHC class I molecule [373-377]. The affinity of the epitope peptide for the 

MHC class I molecule also plays a major role determining pMHC density. Low peptide:MHC 

affinities reduce formation of peptide:MHC complexes in the ER, reducing the amount of pMHC 

complexes transported to the cell surface, thus reducing density [378, 379]. Once on the cell 

surface, the peptide:MHC affinity and complex stability will also contribute to pMHC density by 

affecting how long a pMHC complex will be displayed on the cell [380-383]. This is turn 

determines if the threshold is reached for CD8+ T cell activation [378, 384-388]. When the 

pMHC cell surface density is very low, TCR binding may produce a signal in the CD8+ T cells; 

however, this signal may be suboptimal and may induce anergy [389]. Alternatively, some low 
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densities may be sufficient to elicit functional CD8+ T cell responses, although, these responses 

have lower frequencies during the effector or memory phases compared to those elicited at 

relatively higher densities of pMHC [369, 390, 391]. Most studies of pMHC density have 

generally found only an effect on proliferation, although a few studies have demonstrated that 

increased density also enhanced in vivo function [384].  

Multiple aspects of the interaction of a TCR with a pMHC complex also influence the 

frequency and function of the responding CD8+ T cells. Much work has been done to identify 

epitope peptides that bind the same TCR but that their binding results in different quantities or 

qualities of CD8+ T cell functions. These epitope peptides, often referred to as altered peptide 

ligands (APLs), and the TCRs that recognize them, have provided useful systems to analyze the 

role of pMHC:TCR interactions on T cell activation and function [392-396]. Studies of the role of 

APL binding to their TCRs were initially limited to TCRs expressed on cell lines. These studies 

established that the potency of a pMHC for T cell activation was associated with alterations in 

TCR signal transduction [396, 397] that were associated with differences in the subsequent 

proliferation, cytotoxicity, and cytokine-producing abilities of the T cell [388, 393, 398-409]. 

Although some studies have suggested that the potency of APLs is determined by differences in 

thermodynamics, in structure, or in conformation [410-415], in most cases, the functional 

differences elicited by these APLs have, been attributed to differences in the strength of the 

binding between a pMHC complex and a TCR [409, 416-418].  

The particular parameter of the pMHC:TCR binding that is most important for 

determining strength and quality of CD8+ T cell stimulation remains a matter of debate. Some 
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studies suggested that the affinity was the most important parameter in predicting CD8+ T cell 

activation [388, 399, 400]. Subsequent studies found that although affinity was associated with 

ligand potency, it was the dissociation component that was more important, with slower 

dissociation rates being more stimulatory because it allowed the TCR to interact with the pMHC 

long enough to transmit the intracellular signals required for activation [403-409]. The 

subsequent finding that extremely slow dissociation rates were inhibitory [401] led to the 

model in which it was proposed that there was an optimal dissociation rate for activation; 

dissociation rates that were too fast did not allow complete TCR signaling, but those that were 

too slow did not allow the pMHC to engage multiple TCRs [419]. More recently, the apparent 

discrepancy between the role of affinity versus dissociation rate has been somewhat resolved. 

Studies in both CD4+ T cells and CD8+ T cells demonstrated that both affinity and dissociation 

rate determine ligand potency, but each under different conditions. For pMHC with faster 

association rates from the TCR, affinity is the better predictor of T cell activation, while those 

with slower association rates, the dissociation rate is a better correlate [420-422].  

 

CD8+ T cell immunodominance hierarchies. Among the hundreds to thousands of MHC class I-

restricted epitopes that are encoded in viral proteins, only a very small fraction of them end up 

eliciting CD8+ T cell responses [423-426]. This phenomenon has been termed 

immunodominance [427]. Among those epitopes that elicit responses, not all of them have the 

same capacity to elicit a high frequency of CD8+ T cells. Instead, there is usually a few epitopes 

that elicit a relatively high frequency of epitope-specific CD8+ T cell responses, while the 
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remaining epitopes elicit CD8+ T cells at substantially lower frequencies [426, 428, 429]. The 

epitopes can be ranked based on the frequencies of the CD8+ T cells that they elicit and this 

rank has been termed the immunodominance hierarchy [427]. The epitopes that elicit very 

high-frequencies of CD8+ T cells are termed dominant epitopes; while those that elicit relatively 

lower-frequencies of cells are termed subdominant epitopes [427]. 

Immunodominance hierarchies are best studied in a genetically homogenous 

population, such as inbred mice. Infection of a group of mice with the same genetic 

background, particularly the same MHC haplotype, results in all the mice generating epitope-

specific CD8+ T cell responses to the same few epitopes and the relative frequencies of those 

cells within each mouse being identical [427]. That is, the immunodominance hierarchy is 

identical in each mouse. This reproducibility of the immunodominance hierarchy has been 

interpreted as being an intrinsic property of an epitope [430, 431]; although, numerous host 

factors, pathogen-associated factors, and endogenously-administered reagents can modify it 

[432-434]. Countless studies have tried to identify the factors that influence immunodominance 

hierarchies and numerous factors have been found. Generally, these factors influence either 

the density of pMHC complexes on the surface of an APC or the ability of a CD8+ T cell to 

respond to these pMHC complexes. 

Almost all of the immunodominance of a peptide, i.e. whether it elicits a CD8+ T cell 

response or not, is determined by one or more steps in the peptide processing and 

presentation pathway [427, 435, 436]. This includes the kinetics of expression of the protein 

from which the peptide is derived [437], the intracellular abundance of this protein [427], the 
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efficiency of peptide release from the protein by the proteasome [371, 377, 438-440], entrance 

into the ER via TAP [377, 441], and interaction with ER proteins such as ERAAP and tapasin [377, 

442]. But the most frequently-correlated factor is the affinity of the peptide for the MHC class I 

molecule [378, 443-448]. As discussed previously, each of these factors ultimately determine if 

the epitope will be presented on the surface of the APC and, if so, if it will be presented at a 

sufficient density and for a sufficient period of time to be immunogenic.  

The factors that determine the immunodominance hierarchy, i.e. the relative 

frequencies of the different epitope-specific CD8+ T cells, once the epitopes are on the cell 

surface at sufficient densities are sometimes different than those that simply determine if a 

peptide will be recognized or not. All of the aforementioned steps in antigen processing and 

presentation play a role in establishing immunodominance hierarchies since they regulate the 

density and duration of antigen presentation that, as discussed earlier, impacts that signal 

strength provided to a CD8+ T cell and therefore expansion capacity. Additionally, there are 

some situations where the presence of the dominant epitope actively inhibits the CD8+ T cell 

response to the subdominant epitope, a phenomenon termed immunodomination [435, 449, 

450]. This is sometimes simply a result of the dominant epitope more efficiently competing for 

peptide processing machinery and therefore being more highly represented on the APC surface, 

thus being more immunogenic [451]. In other cases of immunodomination, the presence of the 

dominant epitope-specific CD8+ T cells suppress the expansion of the subdominant epitope-

specific CD8+ T cells [452-455]. Other factors that have been associated with the frequency of 

epitope-specific CD8+ T cells in an immunodominance hierarchy include the number of 

circulating naive epitope-specific CD8+ T cells, thymic selection, direct- versus cross-
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presentation, and the TCR α and β chain usage [434, 456-461]. Many of these latter-mentioned 

factors affect immunodominance hierarchies by determining the number of naïve epitope-

specific CD8+ T cells available to respond rather than ability of an epitope-specific CD8+ T cell to 

expand following stimulation. 

One major understudied aspect of immunodominance is the potential functional 

differences that may be associated with dominant and subdominant epitope-specific CD8+ T 

cells. Indeed, if the dominance of an epitope is determined, for example, by its greater 

representation on the surface of an APC or the preferential selection of TCRαβ pairs that are 

more sensitive to being triggered, then one might expect that the stronger stimulation that the 

CD8+ T cell receives by this epitope may also impart that population with functional differences. 

This issue has been addressed to some extent, but mostly in mouse models, and mostly in 

models of acute infection. A study of LCMV epitope-specific CD8+ T cells by Rodriguez et al 

found that subdominant epitope-specific CD8+ T cells developed less cytotoxic capacity, 

although greater cytokine-producing capacity, than dominant epitope-specific CD8+ T cells 

during acute infection [462]. However, the mechanism determining these differences was not 

determined. A caveat to this study was that these functional studies were measured after DNA 

immunization followed by LCMV infection; thus they were looking at secondary responses 

rather than primary responses. Another study in the murine LCMV model found a positive 

correlation between the frequency of LCMV epitope-specific CD8+ T cells and the rapidity of 

IFNγ secretion during primary infection, suggesting that more rapid secretion of IFNγ may 

confer an expansion advantage to dominant epitope-specific CD8+ T cells [463]. Another study 

by Baron and colleagues investigated the functional differences between a dominant and 
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cryptic epitope (an epitope that does not generate a response unless the dominant epitope is 

absent). In this case, responses directed towards the cryptic and dominant epitope could be 

elicited simultaneously if they were presented on different APCs. In so doing, they found that 

the cryptic epitope-specific CD8+ T cells displayed an altered maturation development as 

measured by both gene and protein expression. Specifically, the cryptic epitope-specific CD8+ T 

cells showed relatively lower levels of expression of CD127 and granzyme A and increased 

levels of KLRG1 and CD62L during the primary response [464].   

Although there have been studies of CD8+ T cell immunodominance hierarchies in HIV 

and SIV, they remain scarce, leaving the determinants of immunodominance hierarchies mostly 

undefined. Those studies that do exist often focus on associations between the patterns of 

immunodominance hierarchies and viral control [465-469]. A few studies have addressed the 

factors that influence immunodominance hierarchies. These studies have found that many of 

the antigen processing steps that influence immunodominance in other infections also play a 

role in establishing HIV epitope immunodominance hierarchies including proteasomal release, 

affinity for TAP, modifications by ERAAP, and affinity for MHC [377, 440]. Other factors have 

been found that are specific to HIV. For example, a study by Liu et al found that epitopes that 

were more frequently found in viral sequences that were conserved within a population were 

more likely to be subdominant [470]. Comparisons of functional differences between HIV 

dominant and subdominant epitope-specific CD8+ T cells are rare. There has been one study of 

the functionality HLA-B27-restricted HIV-specific CD8+ T cell immunodominance hierarchy. In 

this study, they found that higher-frequency epitope-specific CD8+ T cells were associated with 
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superior in vitro viral suppression; although, subsequent functional studies could not identify a 

particular function that may have determined this suppression capacity [471].  

 

CURRENT INVESTIGATION 

Elicitation of high frequencies of protective CD8+ T cells is an objective of current HIV 

vaccine development. However, neither the nature of the CD8+ T cell required for protection 

nor the nature of the stimulation required to elicit such protective CD8+ T cells is known. 

Current evidence suggests that the particular phenotype, and therefore function, of epitope-

specific CD8+ T cells likely plays a role in protective capacity. Rational vaccine design will require 

further knowledge of how to manipulate CD8+ T cells to achieve the desired phenotype and 

function.  

Manipulation of immunodominance hierarchies will likely be required for optimal 

generation of protective CD8+ T cells by vaccines. However, the factors that determine the 

establishment of CD8+ T cell immunodominance hierarchies in HIV-infected individuals remain 

unknown. Additionally, the relationship between epitope dominance and functionality of the 

epitope-specific CD8+ T cell is not clear. Differences in antiviral functionality between dominant 

and subdominant epitope-specific CD8+ T cells may indicate that certain CD8+ T cell specificities 

should be targeted by vaccines. The studies presented in this dissertation aimed to shed light 

on these issues. In Chapter 2 of this dissertation, we explored the relationship between the 

functionality and the frequency of epitope-specific CD8+ T cells found the Mamu-A*01-

restricted immunodominance hierarchy in SIV-infected rhesus monkeys. In chapter 3, we 
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explored the relationship between the pMHC:TCR binding interactions and the frequency of 

epitope-specific CD8+ T cells found in SIV-infected rhesus monkeys. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

- 32 - 
 

CHAPTER 2 

 

 

 

 

 

 

 

PHENOTYPE AND FUNCTION OF DOMINANT AND 

SUBDOMINANT EPITOPE-SPECIFIC CD8+ T CELLS IN 

SIV-INFECTED RHESUS MONKEYS 
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INTRODUCTION 

CD8+ T cells play an important role in controlling HIV and SIV replication in infected 

individuals and SIV-infected monkeys [67-87, 472]. Additionally, studies of individuals who have 

been repeatedly exposed to HIV but have remained uninfected suggest that the CD8+ T cell 

response in some individuals may act to prevent HIV infection [473-478]. Based on these 

observations, the vaccine field remains interested in methods to enhance immunogen-elicited 

HIV-specific CD8+ T cell responses that can provide protection from acquisition of infection or 

can enhance control of viral replication. Consensus in the field is that the most protective HIV-

specific CD8+ T cells in infected individuals are those that exhibit the capacity to simultaneously 

perform multiple antiviral functions and maintain proliferative capacity in the setting of chronic 

antigen exposure [188, 189, 479, 480]. Therefore, current vaccine strategies aim at generating 

such polyfunctional HIV epitope-specific CD8+ T cells.  

Very little is known about the nature of the antigen stimulation that is required to 

generate epitope-specific CD8+ T cells with polyfunctional capacities. It is possible that MHC 

class I-restricted dominant and subdominant epitopes may elicit qualitatively or quantitatively 

different functional responses by their respective epitope-specific CD8+ T cells, and this may 

influence the preferences for which epitopes to include in vaccine constructs. However, the 

relationship between the immunodominance of an epitope and the functionality of the 

epitope-specific CD8+ T cells remains to be characterized fully. A few studies have explored this 

relationship between epitope dominance and epitope-specific CD8+ T cell function, and some 

have found evidence that functional differences do indeed exist between dominant and 

subdominant epitope-specific CD8+ T cells [188, 462-464]. However, many of these studies have 
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been conducted in mice using models of acute infection, and these findings may not be 

applicable to cellular responses in the setting of chronic viral infection in humans. 

Identifying HIV-infected individuals during the acute phase of infection is extremely 

difficult due to the variability and non-specificity of symptoms and the limitations of current 

diagnostic screening [481]. Therefore, studies of the human immune response against HIV 

during the acute phase of infection are currently limited. As a result, the evolution of the anti-

HIV immune response that occurs during the first few weeks following infection is poorly 

understood. Additionally, many confounding variables including date of infection, route of 

infection, heterogeneity of infecting virus, and heterogeneity of the host’s genetic composition 

further limit the ability to conduct HIV infection studies in an experimentally controlled setting 

[33, 481]. Therefore, the SIV-infected rhesus monkey model has proven invaluable for the study 

of antiviral immune responses due to the ability to control many of these potentially 

confounding factors and access to samples during the known acute phase of infection.  

Many studies in SIV-infected rhesus monkeys have focused on the relative contribution 

to viral control of different epitope-specific CD8+ T cell responses and the MHC class I alleles by 

which they are restricted [482-485]. One of these MHC class I alleles is Mamu-A*01. The CD8+ T 

cell epitopes restricted by this allele have been extensively characterized and the relative 

frequencies of the epitope-specific CD8+ T cells in infection studies have been found to be 

highly reproducible [450, 482, 486-490]. Moreover, the epitope immunodominance hierarchy in 

Mamu-A*01-positive rhesus monkeys is particularly stable due to the rare occurrence of 

epitope sequence evolution that occurs only during late infection [85, 466, 491]. Therefore, the 
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SIV-infected Mamu-A*01+ rhesus monkey model is a useful model in which to study 

immunodominance hierarchies. 

 The following study was conducted to determine if qualitative differences exist between 

dominant and subdominant epitope-specific CD8+ T cells in this well-characterized, highly 

reproducible, and stable model. We conducted a longitudinal gene expression analysis during 

acute SIV infection to screen for functional differences between dominant and subdominant 

Mamu-A*01-restricted epitope-specific CD8+ T cells. Using this approach, we were able to 

evaluate the gene expression patterns in these SIV epitope-specific CD8+ T cells as early as 

seven days following SIV inoculation. We observed multiple differences in gene expression 

during the acute phase of infection between the dominant and subdominant epitope-specific 

CD8+ T cells that suggested phenotypic and functional differences between these epitope-

specific cells. Using in vitro functional assays, we were able to confirm these differences and 

that they were maintained through the chronic phase of infection. The present data 

demonstrate that there is indeed a relationship between CD8+ T cell epitope dominance and 

the functionality of the responding epitope-specific CD8+ T cells. These findings add to our 

understanding of the basic immunology of immunodominance hierarchies and also may inform 

vaccine design. 
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RESULTS  

The dominant p11C- and the subdominant p54AS-specific CD8+ T cells of SIVmac251-infected 

rhesus monkeys express different gene transcripts. We used the SIV-infected rhesus monkey as 

a model to explore whether functional differences exist between dominant and subdominant 

epitope-specific CD8+ T cells during acute viral infection. We infected six Mamu-A*01+ rhesus 

monkeys with SIVmac251. The Mamu-A*01-restricted dominant SIV Gag p11C- and 

subdominant SIV Env p54AS-specific CD8+ T cells were characterized and sorted to ≥ 95% purity 

weekly during the first ten weeks post-inoculation. Consistent with previous reports of the 

kinetics of expansion of these two epitope-specific CD8+ T cells [450], the differences in 

frequency between these two epitope-specific CD8+ T cells were apparent as early as 14 days 

following infection and were maintained throughout the duration of infection (Fig. 1B). 

Interestingly, on day 7, while none of the monkeys contained detectable p11C tetramer+ CD8+ T 

cells, all of the monkeys contained detectable p54AS tetramer+ CD8+ T cells. The frequencies of 

the p54AS+ CD8+ T cells on day 7 were generally very low (<0.05%); however, two monkeys, 

112-06 and 133-06, showed substantial responses of 2.3% and 11.9% p54AS tetramer+ CD8+ T 

cells, respectively on day 7 (Fig 1A). Finally, the plasma viral loads peaked around day 14 at 

approximately 7 logs of viral RNA/mL and reached setpoint around day 28 at approximately 5.5 

logs of viral RNA/mL (Fig. 1C). 

To identify differences in gene expression patterns between the dominant p11C- and 

subdominant p54AS-specific CD8+ T cells, we measured whole genome RNA expression in these 

epitope-specific CD8+ T cells at each of the weekly timepoints post infection. We also isolated 
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A) Frequencies of the p11C- and p54AS-specific CD8+ T cells for each monkey. Left, p11C 

tetramer+ CD8+ T cells shown on a linear scale. Right, p54AS tetramer+ CD8+ T cells shown on a 

Log10 scale. B) Mean frequencies of the p11C- and p54AS-specific CD8+ T cells. Error bars 

indicate ± SEM. C) Plasma SIV RNA levels in the peripheral blood. Error bars indicate mean ± 

SEM.* indicates p ≤ 0.05 using Wilcoxon signed rank test.  

Figure 1- Frequencies of p11C- and p54AS-specific CD8+ T cells and plasma viral loads during 

primary infections of Mamu-A*01+ rhesus monkeys 
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total naïve CD8+ T cells (CD95-CD28+) before inoculation to establish the baseline expression of 

each transcript. Gene transcripts were detected using an Illumina HT-12 human BeachChip. 

Previous work in our laboratory had compared detection of rhesus monkey gene transcripts 

between Illumina’s human BeachChips and Affymetrix’s rhesus monkey GeneChips and found 

that they detected similar genes. In addition, the reproducibility of detection of transcripts was 

substantially higher using the Illumina human BeadChip than the Affymetrix rhesus GeneChip. 

Finally, the Illumina human BeadChip required less starting RNA, needing only 50 ng according 

to manufacturer specifications while the affymetrix GeneChip required microgram levels of 

starting RNA. This was important since we would be collecting small numbers of cells and 

therefore isolating small amounts of RNA. Therefore, for the reasons of superior reproducibility, 

less required starting RNA, and adequate homology, the Illumina Human BeachChip was chosen 

as the gene expression platform for these studies [492].  

To characterize functional differences that may exist between these two epitope-

specific CD8+ T cells based on their RNA expression profiles, we generated lists of genes that are 

known to be associated with specific CD8+ T cell functions (Table 1). These genes were grouped 

into the following categories: maturation, cytotoxicity, cell cycle and apoptosis, and cytokines 

and chemokines. For each of these genes, we identified those whose expression was 

significantly different between the two epitope-specific CD8+ T cells on at least one timepoint 

and whose median fold difference of expression (p11C/p54AS) was greater than 1.5 or less than 

-1.5. The expression patterns over time of the genes that met these two criteria are shown in 

Figures 2, 3, and 4 for all of the timepoints that were evaluated. For each timecourse graph (Fig. 

2A, 3A, and 4A), we also included the expression of the gene in the naïve CD8+ T cells  



 

- 39 - 
 

Table 1- Genes analyzed for differential expression 

MATURATION  CYTOKINES 
AND 

CHEMOKINES 

 
CELL CYCLE AND APOPTOSIS 

B3GAT1  
  

AIFM1 CASP8 DLG1 MAP2K1 RHEBL1 

BCL6  
  

AIFM2 CASP9 DLG3 MAP2K2 RHOA 

BMI1  
 

CCL18 
 

AKT1 CCNA1 DLG4 MAP3K5 RING1 
CCR7  

 
CCL20 

 
ANAPC1 CCNA2 E2F1 MAP3K7 RPS6KB1 

CD27  
 

CCL3 
 

ANAPC10 CCNB1 E2F2 MAPK1 RPS6KB2 
CD28  

 
CCL4 

 
ANAPC11 CCNB2 E2F3 MAPK14 RRAS 

CXCR3  
 

CCL5 
 

ANAPC13 CCNC E2F4 MAPK7 RRAS2 
EOMES  

 
CCL7 

 
ANAPC16 CCND1 E2F5 MAX SCRIB 

GFI1  
 

CSF2 
 

ANAPC2 CCND2 E2F6 MCL1 SFN 
ID2  

 
CX3CL1 

 
ANAPC4 CCND3 E2F7 MDM2 SKP2 

IL2RA  
 

CXCL10 
 

ANAPC5 CCNDBP1 ECT2 MDM4 SKP2 
IL7R  

 
CXCL11 

 
ANAPC7 CCNE1 EGR1 MEF2A SMAD1 

ITGAL  
 

CXCL5 
 

APAF1 CCNE2 EIF4EBP1 MEF2B SMAD2 
KLF2  

 
CXCL9 

 
APC CCNF ENDOG MEF2C SMAD3 

KLRG1  
 

FASLG 
 

ARAF CCNG2 EP300 MEF2D SMAD4 
MBD2  

 
IFNA1 

 
ARHGAP19 CCNH FADD MGA SMAD5 

PRDM1  
 

IFNB1 
 

ATM CDC16 FAS MKI67 SMAD6 
SELL  

 
IFNG 

 
ATR CDC20 FASLG MNAT1 SMAD7 

SPN  
 

IFNW1 
 

AURKB CDC23 FBX05 MXD1 SMAD9 
TBX21  

 
IL10 

 
BAD CDC25A FLT3 MXD3 SMC2 

XBP1  
 

IL12A 
 

BAK1 CDC25B FOSL1 MYB SMC4 

  
IL13 

 
BARD1 CDC25C FOSL2 MYC SNRPE 

  
IL16 

 
BAX CDC27 FOXO1 NAIP SOD2 

  
IL17A 

 
BBC3 CDC2L2 FOXO1 NCAPD2 SP1 

  
IL17D 

 
BCL2 CDC42 FOXO3 NCAPG STK11 

  
IL17F 

 
BCL2A1 CDC42EP4 FOXO3 NCAPH SUV39H1 

  
IL18 

 
BCL2L1 CDCA8 FOXO4 NFKB1 TACC3 

  
IL1A 

 
BCL2L10 CDK1 FOXO4 NFKB2 TCL1A 

CYTOTOXICITY 
 

IL2 
 

BCL2L11 CDK10 FZR1 NOL3 TERT 

AP3B1 
 

IL22 
 

BCL2L14 CDK11A GABPA NRAS TFDP1 
C1ORF9 

 
IL26 

 
BCL2L2 CDK11B GADD45A NUSAP1 TFDP2 

CSPG5 
 

IL29 
 

BCL3 CDK13 HDAC1 PCNA THAP5 
CTSC 

 
IL3 

 
BCL6 CDK16 HDAC2 PEA-15 TNFR1 

EBAG9 
 

IL4 
 

BID CDK2 HDAC3 PKMYT1 TNFRSF10A 
GNLY 

 
IL5 

 
BIK CDK3 HRAS PLK1 TNFRSF10B 

GZMA 
 

IL6 
 

BIN1 CDK4 HRK PMAIP1 TNFRSF21 
GZMB 

 
IL8 

 
BIRC2 CDK5 HTRA2 PPARA TNFRSF25 

GZMH 
 

IRF4 
 

BIRC3 CDK6 HUS1 PPKACA TNFSF10 
GZMK 

 
LTA 

 
BIRC5 CDK7 ID1 PPKACB TP53 

IQGAP1 
 

LTB 
 

BIRC6 CDKN1A ID2 PRKAR1A TP53AIP1 
JAKMIP1 

 
MIF 

 
BIRC7 CDKN1B ID3 PRKAR1B TP73 

LAMP2 
 

OSM 
 

BIRC8 CDKN1C ID3 PRKAR2A TRADD 
LYST 

 
SPP1 

 
BLK CDKN2A ID4 PRKAR2B TRAF2 

M6PR 
 

TGFB1 
 

BMF CDKN2B IGF1 PRKDC TRIM25 
PRF1 

 
TNF 

 
BNIP3 CDKN2C IGFBP3 PRPS1 TSC1 

RAB27A 
 

TNFSF11 
 

BNIP3L CDKN2D IRF1 RAC1 TSC2 
SMPD1 

 
TNFSF14 

 
BNIP3L CEBPA IRF2 RAD1 TSC22D1 

SNAP23 
 

XCL1 
 

BOK CEBPB IRF3 RAF1 TTK 
SNAP25 

 
XCL2 

 
BRAF CENPF IRF4 RALA UBE2C 

SRGN 
   

BRCA1 CFLAR IRF8 RALB UHRF1 
STOML2 

   
BRCA2 CFLAR IRF9 RALGDS WEE1 

STX11 
   

BTRC CHEK1 JUN RB1 XIAP 
STXBP2 

   
CABIN1 CHEK2 JUNB RBL1 YWHAB 

SYTL1 
   

CASP1 CKS1B KAT2B RBL2 YWHAE 
SYTL2 

   
CASP10 CKS2 KIT REL YWHAG 

TFF1 
   

CASP12 CPEB1 KLF10 RELA YWHAH 
TRIP10 

   
CASP2 CUL1 KLF4 RELB YWHAQ 

UNC13D 
   

CASP3 DAP KLF5 RGL1 YWHAZ 
VAMP7 

   
CASP6 DAXX KLF6 RGL2 YY1 

VAMP8 
   

CASP7 DIABLO KRAS RHEB ZMIZ1 
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that was measured on day 0. Unfortunately, there were four timepoints for which we were 

unable to obtain expression data for both epitope-specific CD8+ T cells in all six animals, limiting 

the study’s power to detect statistically significant difference in gene expression. We generated 

expression data from both epitope-specific CD8+ T cells from all six animals on days 14, 21, 56 

and 70. On day 7, data were obtained only for one animal; on days 35 and 42, for four animals; 

and on day 28, for five animals. 

Of the genes involved in CD8+ T cell maturation, we identified CCR7, SELL (CD62L), and 

IL7R (CD127) as genes that were differentially expressed between these cells based on the 

abovementioned criteria (Fig. 2). CCR7 was more highly expressed on the p54AS-specific CD8+ T 

cells with a significant fold difference of -2.4 on day 14. SELL was more highly expressed on the 

p54AS-specific CD8+ T cells with significant fold differences of -1.8 on day 14, -2.0 day 21, and -

1.7 on day 56. IL7R was more highly expressed on the p54AS-specific CD8+ T cells with 

significant fold differences of -1.8 on day 14, -1.5 on day 56, and -1.9- on day 70.  

Each of these genes are known to be expressed very highly on naïve CD8+ T cells and 

their expression decreases upon activation to effector CD8+ T cells. These genes are sometimes 

re-expressed during the memory phase [217, 251, 255-259]. Consistent with the expected 

expression profiles of these genes, all were expressed at relatively high levels in the naïve CD8+ 

T cels, and their expression decreased within one week following infection, a period when the 

epitope-specific CD8+ T cells are known have already entered the CD8+ T cell effector and 

memory phases [288, 293]. The trend of expression of these genes associated with maturation 

was similar for both the p11C- and the p54AS-specific CD8+ T cells; however, all of these genes 
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Figure 2- Differences in expression of maturation-association genes between dominant p11C- 

and subdominant p54AS-specific CD8+ T cells  
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Figure 2 (continued). The RNA expression of genes involved in maturation in the dominant 

p11C- and subdominant p54AS-specific CD8+ T cells was examined using the Illumina HT-12 

Human BeadChip. Fold differences in gene expression were calculated by dividing the 

expression in the p11C-specific CD8+ T cells by the expression in the p54AS-specific CD8+ T cells 

(p11C/p54AS). When p54AS expression values were larger than p11C values, the negative 

reciprocal was calculated. Fold changes of ≥+1.5 or ≤ -1.5 with a p ≤ 0.05, using a Wilcoxon 

signed rank test were considered significant. The normalized raw expression values, in 

fluorescence units (f.u.), of genes that were significant on at least one time point are shown 

(CCR7, SELL, and IL7R). For those genes that had more than one probe on the BeadChip, the 

probe IDs are included in the gene name. A) The median raw expression value for each epitope-

specific CD8+ T cell for each timepoint. The expression values of these genes from total naïve 

CD8+ T cells measured on day 0 are also shown. Red, p11C. Blue, p54AS. *indicates the days on 

which the fold change met the significance criteria. B) Each individual expression value for each 

epitope-specific CD8+ T cell for each timepoint, including the values for which its matching pair 

is missing. Data from only one monkey were obtained on day 7, therefore this timepoint was 

omitted. Fold change values are indicated in upper left corner.  
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were found to be expressed at relatively higher levels in the subdominant p54AS-specific CD8+ T 

cells compared to the dominant p11C-specific CD8+ T cells. Although not significant, this trend 

in differential expression remained consistent for both SELL and IL7R for all timepoints 

examined, showing high fold differences (Fig. 2B) and p values ranging from 0.1 to 0.06. The 

difference in CCR7 expression was lost after day 14. The finding that CCR7, SELL, and IL7R were 

all being expressed at relatively higher levels in the subdominant p54AS-specific CD8+ T cells 

than in the p11C-specific CD8+ T cells suggested that the p54AS-specific were at a less mature 

stage than the p11C-specific CD8+ T cells. 

Of the genes involved in cytotoxicity, three met the pre-determined criteria for being 

differentially expressed following SIV infection: GZMB (granzyme B), GZMK (granzyme K), and 

LAMP2 (CD107b) (Fig. 3). Granzyme B and granzyme K are well-defined cytotoxic effector 

molecules of CD8+ T cells [493]. The expression of these each of these cytolytic molecules, and 

their gene transcripts, are known to be absent in naïve CD8+ T cells and to increase as these 

cells transition to central memory, effector memory, and finally to effector subsets [251]. 

Consistent with the expected expression profiles of these genes, they were expressed at very 

low levels in the naïve CD8+ T cells, and expression increased following infection. LAMP2 

encodes a protein that is associated with lytic granules, although its function is not completely 

clear [494]. We observed that the expression of LAMP2 increased following infection in SIV 

epitope-specific CD8+ T cells, remained high during acute infection, and returned close to 

baseline at onset of chronic infection. All of the cytotoxicity-associated genes that were found 

to be differentially expressed were expressed more highly in the dominant p11C-specific CD8+ T 

cells compared to the subdominant p54AS-specific CD8+ T cells. GZMB was more highly 
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expressed in the p11C-specific CD8+ T cells with a significant fold difference of 1.5 on day 14. 

GZMK was more highly expressed in the p11C-specific CD8+ T cells with a significant fold 

difference of 1.9 on day 14. LAMP2 (1659753) was more highly expressed in the p11C-specific 

CD8+ T cells with a significant fold difference of 1.5 on day 14. LAMP2 (1752351) was more 

highly expressed in the p11C-specific CD8+ T cells with a significant fold difference of 1.8 on day 

70. These differences were particularly pronounced during peak viral load on day 14 (Fig 1C). 

The trend in differential expression was still apparent on day 21, but it was lost on the 

subsequent timepoints (Fig 3A and 3B). The kinetics of expression for all of these genes also 

appeared to differ between the p11C- and p54AS-specific CD8+ T cells; expression in the p11C-

specific CD8+ T cells peaked on day 14, while expression in the p54AS-specific CD8+ T cells 

peaked between day 35 and 56 following infection. The two LAMP2 probes detected similar 

trends of expression; although, probe 1659753 detected significant differential expression on 

day 14, while probe 1752351 detected significant differential expression on day 70. Finally, it is 

notable that both GZMA (granzyme A) and PRF1 (perforin), which are also key molecules 

involved in CD8+ T cell cytotoxicity, followed a similar trend of differential expression as GZMB 

and GZMK, both being more highly expressed in the p11C-specific CD8+ T cells (Fig. 3C). 

Expression of GZMA peaked on day 14 with a 1.4 fold difference in expression (p = 0.09). 

Expression of PRF1 peaked on day 21 with a 1.4 fold difference in expression (p = 0.03). 

The higher expression of GZMB, GZMK, and LAMP2 in the dominant p11C-specific CD8+ 

T cells suggested that these cells may have greater cytotoxic capacity than the p54AS-specific 

CD8+ T cells. It has been demonstrated that as CD8+ T cells mature, their expression of cytolytic 

effector molecules increases [121, 127, 251, 263]. Therefore, the increased expression of these 



 

- 45 - 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3- Differences in expression of cytotoxicity-associated genes between dominant p11C- 

and subdominant p54AS-specific CD8+ T cells 
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Figure 3 (continued) 

 

 

 

 

 

 

The RNA expression of genes involved in cytotoxicity found to be significantly differentially 

expressed between the dominant p11C- and subdominant p54AS-specific CD8+ T cells (GZMB, 

GZMK, LAMP2-1659753, and LAMP2-1752351). Data were analyzed as described in Fig. 2. A) 

The median raw expression value for each epitope-specific CD8+ T cell population for each 

timepoint. B) Each individual expression value for each epitope-specific CD8+ T cell population 

for each timepoint, including the values for which its matching pair is missing. Fold change 

values are indicated in upper left corner. C) The median raw expression values for each epitope-

specific CD8+ T cell population for the notable genes GZMA and PRF1. Red, p11C. Blue, p54AS.  
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cytolytic molecules in the p11C-specific compared to the p54AS-specific CD8+ T cells suggested 

that the p11C-specific CD8+ T cells were more mature than the p54AS-specific CD8+ T cells, 

consistent with the decreased expression of CCR7, SELL, and IL7R in the p11C-specific CD8+ T 

cells described above. 

Of the 300 cell cycle- and apoptosis-associated genes, nine were differentially expressed 

after SIV infection between the p11C- and p54AS-specific CD8+ T cells: ATM, AURKB (aurora B 

kinase), BIRC3, CASP2 (caspase 2), CCND2 (cyclin D2), CDC42, NUSAP1, UBE2C, and UHRF1 (Fig. 

4). UBE2C encodes a ubiquitin-conjugating enzyme (E2) that provides the ubiquitination activity 

of the anaphase-promoting complex or cyclosome (APC/C), a complex that coordinates cell 

cycle progression [495-497]. AURKB encodes the kinase aurora B, a kinase required for multiple 

steps of mitosis, which is highly expressed in proliferating cells [498, 499]. Interestingly, the 

ubiquitination and degradation of aurora B that is required for cell cycle progression is 

regulated by the APC/C complex that includes UBE2C [500, 501]. Upon infection, the expression 

of both UBE2C and AURKB increased in SIV epitope-specific CD8+ T cells, relative to naïve CD8+ T 

cells and decreased toward the end of acute infection. Both were found to be more highly 

expressed in the p11C-specific CD8+ T cells on day 56 with fold difference values of 1.6 and 1.5 

of UBE2C and AURKB, respectively.  
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Figure 4- Differences in expression of cell cycle- and apoptosis-associated genes between 

dominant p11C- and subdominant p54AS-specific CD8+ T cells 
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Figure 4 (continued). The RNA expression of genes involved in cell cycle and apoptosis in the 

dominant p11C- and subdominant p54AS-specific CD8+ T cells was examined using the Illumina 

HT-12 human beadchip. Data were analyzed as described in Fig. 2. A) The median raw 

expression value for each epitope-specific CD8+ T cell population for each timepoint. B) Each 

individual expression value for each epitope-specific CD8+ T cell population for each timepoint, 

including the values for which its matching pair is missing. Fold change values are indicated in 

upper left corner. Red, p11C. Blue, p54AS. 
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ATM is a serine/threonine protein kinase that inhibits cell cycle progression via 

induction of p53 expression upon detection of DNA damage [502]. Data in the present study 

showed that expression of ATM increased following infection in both SIV epitope-specific CD8+ 

T cells, and its expression was found to be significantly increased in the p54AS-specific CD8+ T 

cells, with a -1.5-fold difference on day 21.  

BIRC3 encodes cIAP2, a protein with multiple anti-apoptotic functions, including 

inhibition of caspases-7 and -9, activation of NFΚB, and ubiquitination Smac/DIABLO and 

caspases-3 and -7 [503]. The present data showed that BIRC3 expression in the SIV epitope-

specific CD8+ T cells decreased upon initial infection and then gradually increased after day 21. 

BIRC3 was differentially expressed on day 14, showing higher expression levels in the p54AS-

specific CD8+ T cells with a -1.8-fold difference.  

The gene CASP2 encodes caspase-2, a protease that induces apoptosis following cellular 

stress or death receptor signaling, and it also inhibits the cell cycle at the G2/M phase in 

response to DNA damage [504, 505]. CASP2 expression was found to be relatively low in naïve 

CD8+ T cells and increased in the SIV epitope-specific CD8+ T cells following infection. It was 

found to be expressed at 1.7-fold higher levels in the p11C-specific CD8+ T cells on day 14. 

CCND2 encodes cyclin D2, a cyclin that pairs with CDK4 and CDK6 in promoting cell cycle 

progression through G1 [506]. The expression of CCND2 showed a modest increase in the SIV 

epitope-specific CD8+ T cells through day 42 and then started to decrease after day 42. By day 

70, expression of CCND2 in the p54AS-specific CD8+ T cells had reached baseline levels while 

expression remained relatively higher in the p11C-specific CD8+ T cells by 1.6-fold. 
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The CDC42 gene encodes a GTPase that plays a role in cytoskeletal reorganization by 

promoting vesicular transport [507]. Increased expression of CDC42 has been shown to 

facilitate cytoskeletal changes that favor cell division [508, 509]. Compared to naïve CD8+ T 

cells, expression of CDC42 showed a modest increase in SIV epitope-specific CD8+ T cells 

following infection. We observed a 1.9-fold higher expression of this gene in the p11C-specific 

CD8+ T cells on day 70 following infection compared to the p54AS-specific CD8+ T cells. 

Interestingly, CDC42 is also required for the cytoskeletal changes necessary for the polarization 

of cytotoxic granules towards their targets [510]. Consistent with the increased expression of 

cytotoxicity-related genes in the p11C-specific CD8+ T cells on day 14, CDC42 also showed a 

modest increase in the p11C-specific CD8+ T cells of 1.3-fold on day 14. 

NUSAP1 encodes a pro-proliferative protein that is selectively expressed by proliferating 

cells. It is a microtubule-binding protein that is involved in spindle assembly during mitosis 

[511-514]. Expression of NUSAP1 has been shown to increase in epitope-specific CD8+ T cells 

following infection compared to naïve CD8+ T cells [227]. The present data showed that NUSAP1 

expression was very low in naïve CD8+ T cells and increased in SIV epitope-specific CD8+ T cells 

during acute infection. Although both p11C- and p54AS-specific CD8+ T cells manifested similar 

trends of NUSAP1 expression, there was a difference observed on day 70. While expression in 

p54AS-specific CD8+ T cells declined to baseline levels, it remained significantly higher in the 

p11C-specific CD8+ T cells by 2.7-fold. 

UHRF1 is an ubiquitin ligase that has been shown to play a role in maintaining genomic 

stability and promoting cell cycle progression. In its absence, cells undergo DNA damage-



 

- 53 - 
 

induced apoptosis [515, 516]. Expression of UHRF1 has been shown to increase in epitope-

specific CD8+ T cells following infection compared to naïve CD8+ T cells [227]. The present data 

showed that the expression of UHRF1 was very low in naive CD8+ T cells, increased in the SIV-

epitope-specific CD8+ T cells during acute infection, and declined at the onset of chronic 

infection. Expression of UHRF1 in p11C- and p54AS-specific CD8+ T cells followed a similar 

trend; however, it was 2.5-fold more highly expressed in p11C-specific CD8+ T cells on day 70. 

 

The dominant epitope-specific CD8+ T cell population was enriched with cells that exhibit a 

more mature phenotype. The present gene expression data suggested that functional 

differences existed between the dominant p11C-specific and the subdominant p54AS-specific 

CD8+ T cells. There were clear differences between these cells in differentiation- and 

cytotoxicity-associated gene expression that suggested that the dominant p11C-specific CD8+ T 

cells were more mature and contained greater cytotoxic potential than the subdominant 

p54AS-specific CD8+ T cells. We also observed differences in the expression of multiple 

proliferation- and apoptosis-associated genes between these cell populations; however, due to 

the complexity of the regulation of these processes, it was unclear what the implications of the 

differential expressions of these genes might be on proliferation and apoptosis in these cells. 

Finally, although we did not observe measureable differences of cytokine or chemokine gene 

expression patterns between these cells when measured ex vivo, we expected that differences 

would be manifested upon in vitro stimulation of these cells because of differences in their 

maturation status. Therefore, we decided to conduct a series of functional assays to confirm 
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and extend the observations made in the RNA expression data set. In addition to p11C- and 

p54AS-specific CD8+ T cells, we chose to include in these functional studies an additional 

Mamu-A*01-restricted CD8+ T cell specificity of even lower frequency, the CD8+ T cells that 

recognize the SIV Pol p68A epitope [450]. Moreover, we included in these analyses cells from 

SIVsmE660-infected monkeys in addition to cells from the SIVmac251-infected monkeys used in 

the gene expression studies. The immunodominance hierarchies of the p11C-, p54AS/E660-, 

and p68A-specific CD8+ T cells were similar in both infections (Fig. 5). All of the following data 

were obtained using PBMCs isolated from these chronically-infected monkeys. 

 

 

 

 

  

 

Frequencies of the p11C-, p54AS/E660-, and p68A-specific CD8+ T cells in peripheral blood of 

chronically infected (A)SIVmac251- and (B)SIVsmE660- infected rhesus monkeys. Error bars 

indicate the median ± interquartile range. p values were determined using a Friedman test.  

Figure 5- Mamu-A*01-restricted CD8+ T cell immunodominance hierarchies in SIVmac251- and 

SIVsmE660-infected rhesus monkeys 
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We first employed cell surface phenotyping to confirm the differences in CD8+ T cell 

maturation between the p11C- and p54AS-specific CD8+ T cells, which was suggested by the 

differential expression of the CCR7, SELL, and IL7R transcripts. We isolated PBMCs from both 

chronically infected SIVmac251- and SIVsmE660-infected Mamu-A*01+ rhesus monkeys. Cells 

were stained with tetramers that recognize the p11C-, p54AS/E660-, and p68A-specific CD8+ T 

cells, as well as antibodies against CCR7, CD28, CD27, and CD45RA, and analyzed by flow 

cytometry. Within each tetramer-positive population, we analyzed the differential expression 

of these molecules and categorized cells as central memory  (CCR7+CD28+CD27+CD45RA-), 

transitional memory (CCR7-CD28+CD27+CD45RA-), or effector/effector memory (CCR7-CD28-

CD27+/-CD45RA+/-) (Fig. 6).  

The phenotypic composition of HIV and SIV epitope-specific CD8+ T cells has previously 

been studied and it has been demonstrated that the vast majority are early effector memory 

cells (CCR7-CD28-CD27+CD45RA-) [126, 254, 260, 293]. Consistent with these observations, we 

found within each tetramer-positive CD8+ T cell population a large proportion of cells that were 

CCR7-CD28-CD27+CD45RA- (Fig. 6). However, there were some subtle differences between the 

SIVsmE660- and SIVmac251-infected animals, including a slight skewing of the cells in the 

SIVsmE660-infected monkeys to the less mature central and transitional memory phenotypes. 

Moreover, fewer cells from SIVsmE660-infected monkeys displayed an early effector memory 

phenotype compared to the cells from the SIVmac251-infected animals.  

When comparing the p11C- and p54AS-specific CD8+ T cells, we found that the p11C-

specific cells displayed a more mature cell surface phenotype than the p54AS-specific cells. This 
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finding was consistent with the gene expression data which showed that that the CCR7, CD62L, 

and SELL genes were expressed at lower levels in the p11C-specific CD8+ T cells, suggesting they 

were more mature than the p54AS-specific CD8+ T cells. In the SIVmac251-infected monkeys, 

this was most dramatically seen with the higher representation of cells with the CCR7-

CD28-CD27+CD45RA+ effector memory phenotype in the p11C-specific CD8+ T cell population. 

There were also decreases in the less mature central and transitional memory subsets in the 

p11C-specific population compared to the p54AS-specific population of CD8+ T cells.  

A comparison of p11C- and p54E660-specific CD8+ T cells from SIVsmE660-infected 

monkeys revealed a slightly different pattern. Like the cells from the SIVmac251-infected 

monkeys, p11C-specific CD8+ T cells from SIVsmE660-infected monkeys also showed an 

increased representation of more mature cells compared to the p54E660-specific cells. 

However, unlike in SIVmac251-infected animals, there was also a dramatic difference in the 

representation of the CCR7-CD28-CD27+CD45RA- effector memory subset, with the p11C-

specific CD8+ T cells containing a greater frequency of cells with this phenotype than the 

p54E660-specific CD8+ T cells. There were also clear increases of other effector/effector 

memory subsets within the p11C-specific population relative to the p54AS-specific population. 

Similar to cells from SIVmac251-infected monkeys, there was also a decrease in the central and 

transitional memory subsets in the p11C-specific population compared to the p54E660-specific 

CD8+ T cell populations. 
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Figure 6- The dominant p11C-specific CD8+ T cell population contained a greater proportion of 

more mature cells than the subdominant epitope-specific CD8+ T populations 
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Figure 6 (continued). PBMCs were stained with p11C, p54AS/E660, and p68A peptide/Mamu-

A*01 tetramers and antibodies and analyzed by flow cytometry. Flow data were gated for 

single, CD20-CD3+CD4-CD8+ lymphocytes. The phenotypic profile of each tet+ population was 

determined by its differential expression of CCR7, CD28, CD27, and CD45RA, as indicated by the 

+ and - signs below the bar graphs. Bars represent the mean ± SEM of the percent of the tet+ 

cells that comprise each phenotypic category. Top, SIVmac251-infected Mamu-A*01+ rhesus 

monkeys (n=8). Bottom, SIVsmE660-infected Mamu-A*01+ rhesus monkeys (n=3-4). p values 

were calculated using a Wilcoxon signed rank test, and significant p values were determined 

using a Bonferroni correction for a 3-way comparison. * p ≤ 0.017, ** p ≤ 0.003. 
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An analysis of the phenotype of the subdominant p68A-specific CD8+ T cells revealed an 

association between the frequency of the epitope-specific CD8+ T cells and their phenotype. We 

found that the p68A-specific cells showed even less maturation than the p54AS-specific of cells. 

This trend was true in both SIVmac251- and SIVsmE660-infected monkeys. 

In summary, we found that the p11C-specific CD8+ T cell population contained a greater 

frequency of more mature cells than the p54AS-specific population, consistent with the gene 

expression differences observed in the maturation-associated genes. We also found that there 

appeared to be a relationship between the frequency of epitope-specific CD8+ T cells and 

maturation phenotype, as the even lower-frequency p68A-specific CD8+ T cells showed a 

phenotype that was less mature than the p54AS/E660-specific CD8+ T cells. We found these 

trends to be true in monkeys infected with two different SIV isolates. 

 

The dominant p11C-specific CD8+ T cell population contained a greater frequency of cytolytic 

molecules and more cytolytic molecules per cell than subdominant epitope-specific CD8+ T cell 

populations. The relationship between the expression of cytolytic molecules and the 

maturation of CD8+ T cells has been well-defined. As CD8+ T cells become more mature, the 

expression of cytolytic molecules, such as granzymes and perforin, increases [127, 175, 253, 

254, 263, 517, 518]. Consistent with this finding, the gene expression data in the present study 

suggested that not only did the p11C-specific CD8+ T cells have a gene expression profile that 

was characteristic of more mature cells, but that it also exhibited increased expression of genes 

involved in cytotoxicity when compared to the p54AS-specific CD8+ T cells (Fig. 3). Using cell 
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surface staining and flow cytometric analysis, we found that the differences in maturation that 

were suggested by the gene expression studies were also seen at the level of protein 

production (Fig. 6). To confirm if differences in cytolytic molecule gene expression were 

similarly reflected in differences in protein production, we stained PBMCs from these 

chronically infected monkeys with tetramers and antibodies specific for perforin and granzyme 

B. The p11C-specific CD8+ T cell population had a greater frequency of cells that contained 

perforin and granzyme B than the p54AS/E660-specific CD8+ T cell population, which in turn 

had a greater frequency of perforin- and granzyme B-containing cells than the p68A-specific 

CD8+ T cell population (Fig. 7). We also found that the p11C- specific CD8+ T cells contained a 

greater amount of perforin and granzyme B on a per-cell basis than the p54AS/E660-specific 

cells, which in turn contained a greater amount of these proteins than the p68A-specific cells 

(Fig. 7C). This is consistent with previous findings that demonstrated that perforin- and 

granzyme-containing CD8+ T cells that display more mature phenotypes have more perforin and 

granzyme per cell [263]. 

In summary, we found that there was an association with the frequency of epitope-

specific CD8+ T cells and their content of cytolytic molecules. Not only did CD8+ T cell 

populations that recognize more dominant epitopes contain a greater frequency of perforin 

and granzyme B that those CD8+ T cell populations recognizing subdominant epitopes, but 

those cells also contained more perforin and granzyme on a per-cell basis. 
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Figure 7- The dominant p11C-specific CD8+ T cell population contained a greater frequency of 

cytolytic molecules and more cytolytic molecules per cell than subdominant epitope-specific 

CD8+ T cell populations 
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Figure 7 (continued). PBMCs were stained with p11C, p54AS/E660, and p68A peptide/Mamu-

A*01 tetramers and antibodies specific for surface and intracellular molecules, and analyzed by 

flow cytometry. Expression of perforin and granzyme B was analyzed on cells gated for single, 

CD3+CD4-CD8+ lymphocytes. A) Histograms show representative perforin (left) and granzyme B 

(right) staining in tet+ populations from one SIVsmE660-infected (left) and one SIVmac251-

infected (right) monkey. Filled gray histograms show the fluorescence of the cells in the FITC 

(perforin) and Alexa700 (granzyme B) channels for the FMO samples, which were used to set 

the positive gates for perforin and granzyme B staining. B) The percent of perforin and/or 

granzyme B staining in each epitope-specific CD8+ T cell population. Bars represent mean ± SEM 

of the percent of the epitope-specific CD8+ T cells that contained perforin and/or granzyme B. 

C) The geometric mean fluorescence (GMF) of perforin and granzyme B staining within each 

perforin+ and granzyme B+ epitope-specific CD8+ T cell population. Bars represent mean ± SEM 

of the GMF. p values were calculated using a Wilcoxon signed rank test, and significant p values 

were determined using a Bonferroni correction for a 3-way comparison. * p ≤ 0.017, ** p ≤ 

0.003.  
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The dominant p11C-specific CD8+ T cells exhibited decreased antigen-specific expansion 

compared to subdominant epitope-specific CD8+ T cells. The gene expression data in the 

present study showed differences in the expression of some genes involved in cell cycle and 

apoptosis that suggested that there may be differences in proliferative capacity between the 

dominant p11C- and subdominant p54AS-specific CD8+ T cells. However, it was unclear what 

impact the differential expression of these genes had on the relative expansions of these cells 

upon antigen stimulation during chronic infection. Since we had shown that the p11C-specific 

population contained a greater percentage of more mature and more cytotoxic cells than the 

subdominant epitope-specific populations, we predicted that these dominant epitope-specific 

cells would have a relatively lower expansion capacity than the subdominant epitope-specific 

CD8+ T cells, as has been described for more mature effector memory and effector CD8+ T cells 

[245, 260]. To explore this possibility, we stimulated PBMCs from SIV-infected Mamu-A*01+ 

rhesus monkeys with optimal epitope peptides and followed the expansion of the epitope-

specific CD8+ T cells over a 14 day-period. We also stained PBMCs with tetramers on day 0 in 

order to calculate the fold change of expansion at each timepoint relative to day 0. We did this 

for p11C-, p54AS/E660-, and p68A-specific CD8+ T cells from both SIVmac251- and SIVsmE660-

infected monkeys. 

We found that the dominant p11C-specific CD8+ T cells had a reduced capacity to 

expand when compared to both of the subdominant epitope-specific CD8+ T cells and this trend 

was consistent between cells from both SIVsmE660- and SIVmac251-infected monkeys (Fig. 8). 

The relative expansion capacities of the subdominant p54AS/E660- and p68A-specific 

populations were different between cells from the two different infections; the p54E660- 
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PBMCs were stimulated in vitro with peptide, harvested on days 3, 4, 5, 6, 8, 10, 12, and 14 

following stimulation, and analyzed following tetramer and antibody staining by flow 

cytometry. Flow data were gated for single, live, CD3+CD4-CD8+ tet+ lymphocytes. The fold 

change of the percent of each tet+ population, relative to day zero, was calculated. Data from 

three SIVsmE660- (top panel) and three SIVmac251-infected (bottom panel) Mamu-A*01+ 

rhesus monkeys are shown. 

Figure 8- The dominant p11C-specific CD8+ T cells exhibited decreased antigen-specific 

expansion compared to subdominant epitope-specific CD8+ T cells 
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specific cells from the SIVsmE660-infected monkeys usually showed enhanced expansion 

potential compared to the p68A-specific cells from the same monkeys while the p54AS- and 

p68A-specific cells from the SIVmac251-infected monkeys were comparable in their ability to 

expand. 

 

The dominant p11C-specific CD8+ T cell population contained a lower frequency of cytokine- 

and chemokine-producing cells than the subdominant epitope-specific CD8+ T cell populations. 

Although the gene expression data did not demonstrate that any cytokines or chemokines were 

differentially expressed by the p11C- and p54AS-specific CD8+ T cells , we considered that 

differences in their expression might be observed following antigen stimulation. Phenotypic 

and functional data suggested that the p11C-specific CD8+ T cell population, with its greater 

frequency of more mature cells, might exhibit a lower production of cytokines and chemokines 

than the p54AS/E660-specific CD8+ T cell population, and in turn the p54AS/E660-specific CD8+ 

T cell population might show lower production than the p68A-specific CD8+ T cell population. 

To investigate this, we isolated PBMCs from both SIVmac251- and SIVsmE660-infected Mamu-

A*01+ rhesus monkeys and stimulated them with optimal epitope peptides and measured IL-2, 

TNFα, IFNγ, and MIP1-β production in a standard intracellular cytokine staining (ICS) assay. We 

found that each of these cytokines and chemokines were produced at reduced frequencies by 

the p11C-specific CD8+ T cell population (Fig 9B). The p54AS/E660- and p68A-specific 

populations contained comparable frequencies of cytokine- and chemokine-producing cells. 
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Figure 9- The dominant p11C-specific CD8+ T cell population contained a lower frequency of 

cytokine- and chemokine-producing cells than the subdominant epitope-specific CD8+ T cell 

populations 
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Figure 9 (continued) 
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Figure 9 (continued). PBMCs were stimulated in vitro with p11C, p54AS/E660, or p68A epitope 

peptides and with anti-CD28 and anti-CD49d antibodies and incubated for six hours, with the 

addition of monensin and brefeldin A after the first hour. Cells were then stained with surface 

and intracellular molecule-specific antibodies and analyzed by flow cytometry. A) An example 

of the gating strategy used for analysis of the flow cytometry data. Flow data were gated for 

single, live, CD3+CD4-CD8+CD69+ lymphocytes. Unstimulated and PMA/Ionomycin-stimulated 

samples were used to determine the positive gates for CD69, IFN, TNF, IL-2, and MIP-1. B) 

Individual analyses of cytokine and chemokine production. Bars represent the mean ± SEM of 

the percent of each epitope-specific CD8+ T cell population that produced the indicated 

cytokine (IFN, TNF, and IL-2) or chemokine (MIP-1).  Top, SIVsmE660-infected animals (n=6). 

Bottom, SIVmac251-infected animals (n=3-5). C) Polyfunctional analysis of cytokine and 

chemokine production. The polyfunctionality of each epitope-specific CD8+ T cell population 

was determined using Boolean gating of each individually-gated cytokine and chemokine 

population. Bars represent the mean ± SEM of the percent of epitope-specific CD8+ T cells 

producing the combination of molecules indicated by the dots below.  
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We also determined the impact of this decreased production of soluble molecules by 

the dominant p11C-specific cell population on its polyfunctional properties compared to that of 

the subdominant epitope-specific cells. Using a Boolean analysis of the expression of each of 

these soluble molecules, we determined the extent of polyfunctionality, defined as responses 

producing more than one cytokine or chemokine, of each epitope-specific cell population. We 

found that the p11C-specific population contained a much lower frequency of polyfunctional 

cells than the subdominant epitope-specific populations (Fig 9C). Cells in the four molecule-

producing category were essentially absent in the p11C-specific populations from both 

SIVmac251- and SIVsmE660-infected monkeys. There were a small number of p11C-specific 

cells in the MIP1-β+ IFNγ- TNFα+ IL-2+ triple-positive category and a larger number in the MIP1-

β+ IFNγ+ TNFα- IL-2- double-positive category. Most of the p11C-specific cells produced MIP1-β- 

only or did not produce any of the measured molecules (quadruple-negative cells not plotted 

on graph). This finding is consistent with previous reports that more mature cytotoxic CD8+ T 

cells are more frequently MIP1-β-only producers compared to less mature populations [153, 

299]. 

 

The dominant p11C-specific CD8+ T cells did not exhibit greater exhaustion. The present data 

suggested that there was a relationship between the frequency of epitope-specific CD8+ T cells 

and maturation, as measured by differences in phenotype and function. However, exhaustion 

due to chronic antigenic stimulation also causes changes in the phenotypic and functional 

profiles of cells that sometimes resemble increased maturation [320, 323]. Exhaustion is a 
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progressive development of functional defects that initially manifests as a defect in IL-2 

production, and sometimes reduced cytotoxicity, followed by loss of TNFα and finally IFNγ 

production. These changes are also associated with a progressive loss of proliferative potential 

[316]. These functional defects are often associated with changes in expression of cell surface 

molecules such as an increase in expression of inhibitory molecules PD-1 and CTLA-4, as well as 

changes in expression of molecules involved in gene expression such as the transcription factor 

BLIMP-1 [350]. To examine whether the differences that we observed were a result of different 

extents of exhaustion among the epitope-specific CD8+ T cells , we sorted the p11C- and p54AS-

specific CD8+ T cells from the SIVmac251-infected monkeys at a chronic timepoint, day 210. We 

obtained gene expression data from these cells and looked for differential expression of a 

number of genes that are well-known to be modulated in exhausted cells.  

Comparison of the pattern of expression of these genes between the p11C- and p54AS-

specific cells did not suggest that there were different degrees of exhaustion (Table 2). In fact, 

most of the genes were expressed at the same level by the p11C- and p54AS-specific cells, as 

indicated by a fold change near one. We also observed differences in expression of genes that 

are also involved in maturation (PRF1, IL7R, SELL, and CCR7); although, these differences were 

not significant. There was one gene, LAG3, whose expression was significantly higher in the 

p11C-specific cells (p=0.05). However, differential expression of this gene alone, without 

coincident differential expression of other genes, is not suggestive of different extents of 

exhaustion [328].  
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Data are from either week 30 or 31 post inoculation with SIVmac251. For genes where there 

was more than one probe on the beadchip, the ID number of the Illumia probe that was used is 

provided in parentheses next to the gene. * p≤0.05 using a Wilcoxon signed rank test. n=5.  

 

 

 

Table 2- Expression of exhaustion-associated genes in dominant p11C- and subdominant 

p54AS-specific CD8+ T cells 
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DISCUSSION 

In the present study, we have identified an association between the frequencies of 

Mamu-A*01-restricted SIV epitope-specific CD8+ T cells in rhesus monkeys and the phenotype 

and function of these cells. Using a longitudinal whole genome expression analysis, we showed 

that the phenotypic and functional differences among these SIV epitope-specific CD8+ T cells 

are evident as soon as these cells are detectable in the blood, one to two weeks following SIV 

infection. Subsequent flow cytometric analysis confirms the presence of these differences and 

that they are maintained during chronic SIV infection. To our knowledge, this is the first time 

that a longitudinal whole genome expression profiling approach has been undertaken to 

characterize multiple HIV or SIV epitope-specific CD8+ T cells within an individual during acute 

infection.  

The gene expression analysis in the present study revealed that a number of genes that 

encode molecules involved in CD8+ T cell maturation were differentially expressed between the 

dominant p11C- and subdominant p54AS-specific CD8+ T cells. These findings were similar to 

those in a study by Baron and colleagues of a dominant and a cryptic H2-Db–restricted epitope-

specific CD8+ T cell population in mice [464]. In that study, gene expression analysis of these 

two epitope-specific CD8+ T cells was performed on day 14 following immunization with 

antigen-loaded DCs. Of over 39,000 transcripts analyzed, they found only 15 that were 

differentially expressed, based on their pre-determined criteria, between the dominant and 

cryptic epitope-specific CD8+ T cells. Several of these 15 transcripts were also found in our study 

to be differentially expressed between dominant and subdominant SIV epitope-specific CD8+ T 

cells. Similar to our study, they found IL7R and GZMA to be more highly expressed in the 
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dominant epitope-specific CD8+ T cells, while SELL was more highly expressed in the cryptic 

epitope-specific CD8+ T cells. A reexamination of our data indicated that some of the other 

genes that were found to be significantly differentially expressed in the Baron et al study also 

had high fold change values or low p values in our study: EOMES (on day 21, fold change -1.6 

and p=0.06), KLRG1 (on day 14, fold change -1.2 and p=0.03), S100A4 (on day 21, fold change 

1.5 and p=0.06, and on day 56, fold change 1.5 and p=0.06), VAMP5 (on day 56, fold change 1.4 

and p=0.03 and on day 70, fold change 1.5 and p=0.06), and CSF1R (on day 210, fold change -

1.5 and p=0.06). The patterns of differential expression of these genes in the present study 

were also the same as in the Baron et al study, that is, genes more highly expressed by the 

dominant epitope-specific CD8+ T cells were also found to be more highly expressed by the 

dominant p11C-specific cells in our study. Baron et al subsequently used flow cytometry to 

measure the expression of the proteins encoded by a few of these differentially expressed 

genes on the epitope-specific CD8+ T cells over time following immunization. They found that 

the difference in the expression of these molecules were present at all time points examined 

during the first few weeks following immunization. However, analysis of the expression of these 

molecules at a late time point (day 100) found that these populations now displayed similar 

expression. The discrepancy between the maintenance of phenotypic differences observed in 

the present study and the lack of maintenance of these differences in the study by Baron et al is 

likely due to the fact that the epitope-specific CD8+ T cell responses in the Baron et al study 

were induced by immunization, whereas ours were induced by viral infection. Therefore, the 

maintenance of the phenotypic differences that was observed in the present study was likely 

due to the chronic antigenic stimulation that these cells were experiencing, whereas in the 
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mouse study, the dominant and cryptic epitope-specific CD8+ T cells were able to develop 

similar memory responses as antigen was presumably cleared. However, the similarity in the 

differential gene expression patterns between the dominant and subdominant/cryptic epitope-

specific CD8+ T cells during the primary immune response between our study and the Baron et 

al study suggests that it may be a common feature of epitope-specific CD8+ T cell 

immunodominance hierarchies. 

Our analysis of cell cycle- and apoptosis-related genes did not show any major 

differences in gene expression between the dominant p11C- and subdominant p54AS-specific 

CD8+ T cells that would suggest differences in proliferation or death. However, cell cycle and cell 

death are very intricately-regulated processes and are not simply determined by the presence 

or absence of gene expression. They often depend on many other factors including cellular 

localization, presence of post-transcriptional modifications, stage in cell cycle, and the 

coordinated expression of additional genes [519]. Therefore, drawing conclusions about the 

rate of cell division or cell death based on the expression of one or a few individual genes may 

be misleading. However, from the expression patterns of the genes that we found to be 

differentially expressed between the p11C- and p54AS-specific CD8+ T cells during acute 

infection, several trends were evident. First, there was differential expression of apoptosis-

related genes early during infection. The pro-apoptotic gene CASP2 was more highly expressed 

in the p11C-specific CD8+ T cells on day 14 while the anti-apoptotic gene BIRC3 was more highly 

expressed in the p54AS-specific CD8+ T cells on day 14. This is consistent with the p11C-specific 

CD8+ T cells being more enriched in terminally differentiated effector cells, which are known to 

be more susceptible to apoptosis [199]. Second, we observed a number of pro-proliferation 
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genes being more highly expressed in the p11C-specific CD8+ T cells at the end of acute 

infection (AURKB and UBE2C on day 56 and, CCND2, CDC42, NUSAP1, and UHRF1 on day 70). 

The reason for this is unclear. It may be the p11C-specific CD8+ T cells were experiencing 

greater levels of stimulation causing these cells to divide more frequently than the p54AS-

specific CD8+ T cells.  

Our analysis of cytokine and chemokine gene expression failed to reveal differences 

between the dominant and subdominant epitope-specific CD8+ T cells. This finding was neither 

consistent with the differences that we found in the expression of other genes involved in CD8+ 

T cell maturation, nor was it consistent with the findings in our ICS experiments, which clearly 

demonstrated that these two populations have different capacities to produce multiple 

cytokines. Upon further examination of the gene expression data, we found that the expression 

of these cytokine and chemokine genes never changed over the course of infection when 

compared to the naïve baseline measurements. This lack of the detection of cytokine and 

chemokine gene expression above baseline values was most likely due to the absence of 

antigenic stimulation of the cells prior to sorting. Since expression of cytokine genes often 

requires re-stimulation immediately prior to assaying [520], the design of our gene expression 

experiment likely prevented us from detecting any differences in the expression of these 

cytokine and chemokine genes. 

To confirm our finding that the dominant p11C-specific CD8+ T cells were more mature 

than the subdominant epitope-specific CD8+ T cells, we performed an ex vivo measurement of 

cellular perforin and granzyme B content without stimulation, as the cellular content of these 
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proteins has been demonstrated to be linked to CD8+ T cell maturation [121, 127, 251, 263]. 

Consistent with our expectations, we detected more perforin and granzyme B content in 

dominant compared to subdominant epitope-specific CD8+ T cells. However, we did not 

perform a functional cytotoxicity assay or measure cell surface expression of CD107a following 

stimulation, and therefore cannot confirm that one CD8+ T cell specificity is more or less 

cytotoxic than the other. However, a recent study by Vojnov and colleagues performed an ex 

vivo viral suppression assay with sorted SIV epitope-specific CD8+ T cells and found that p11C 

(GagCM9)-specific CD8+ T cells exhibited substantially more viral inhibition than the p54AS 

(EnvTL9)-specific CD8+ T cells [521]. Additionally, a study by Wolint and colleagues 

demonstrated that central memory, effector memory, and effector LCMV epitope-specific CD8+ 

T cells all degranulated to similar levels, as measured by CD107a cell surface expression, despite 

the fact that they differed in their cytotoxic capacities [518]. Instead, the differences in 

cytotoxic potency of the cells were determined by amount of granzyme B stored in these cells 

prior to antigenic stimulation. Therefore, based on cytotoxicity assays performed by other 

groups and our measurements of cytolytic molecule content, it is likely that the dominant p11C-

specific CD8+ T cells were more cytotoxic than the subdominant p54AS/E660- and p68A-specific 

CD8+ T cells. 

  Consistent with our findings that the subdominant SIV epitope-specific CD8+ T cells 

exhibited a less mature phenotype, we found that they possessed a greater expansion capacity 

compared to the dominant epitope-specific CD8+ T cells. Interestingly, a study by Friedrich et al 

also suggested that subdominant epitope-specific CD8+ T cells had greater proliferative 

capacities than dominant epitope-specific CD8+ T cells [522]. In that study, CD8+ lymphocytes in 



 

- 77 - 
 

rhesus monkeys chronically infected with SIV were antibody-depleted and the natural re-

population of the SIV-specific CD8+ T cell pool was subsequently observed. Using tetramers to 

compare the percent of epitope-specific CD8+ T cells post-antibody depletion compared to pre-

antibody depletion, they found that those SIV epitope-specific CD8+ T cells that were 

considered subdominant prior to CD8+ cell depletion showed relatively higher frequency 

responses following re-population, and some even became the dominant population. This 

suggests that the subdominant epitope-specific CD8+ T cells expanded more extensively than 

the dominant epitope-specific CD8+ T cells during CD8+ T cell re-population. This is consistent 

with the findings in the present study and suggests that the higher proliferative capacity of 

subdominant CD8+ T cells compared to dominant CD8+ T cells during chronic infection may be a 

common feature of the SIV-specific CD8+ T cell response.  

Although we found similar trends in the phenotypes of epitope-specific CD8+ T cells in 

monkeys infected with the SIVmac251 and SIVsmE660 viral isolates, we did observe some 

minor differences. When comparing the maturation states of epitope-specific CD8+ T cells, we 

found that the populations from monkeys infected with SIVmac251 were slightly more mature 

than their counterparts from monkeys infected with SIVsmE660. Consistent with these small 

differences in maturation, we found that those epitope-specific CD8+ T cells taken from 

SIVmac251-infected monkeys had a significantly greater content of cytolytic molecules 

compared to their counterparts in SIVsmE660-infected monkeys. It is unclear in the NHP field 

whether one of these viral isolates is more pathogenic, more inflammatory, or generates a 

greater antigenic load than the other. However, the observation that SIVsmE660 is more 

sensitive to neutralization [523, 524] and causes a disease that progresses more slowly than 
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SIVmac251 [52, 525-527] suggests that SIVmac251 may be a more pathogenic virus. Therefore, 

it is tempting to speculate that SIVmac251 infection results in higher antigenic load than 

SIVsmE660 and that this provides greater CD8+ T cell stimulation, which in turn drives the SIV-

specific CD8+ T cell cells to be slightly more mature than those equivalent cells generated by 

SIVsmE660 infection.  

HIV and SIV epitope-specific CD8+ T cells displaying a fully differentiated effector 

phenotype are found only at low frequencies in the majority of HIV-infected humans and SIV-

infected monkeys [260]. It is thought that this inability of epitope-specific CD8+ T cells to mature 

fully contributes to the failure of these cells to ultimately control viral replication [150, 254, 

260, 528]. In support of this, it has been found that individuals who spontaneously control viral 

replication, termed long-term non-progressors, contain a greater frequency of HIV-specific CD8+ 

T cells with a more mature phenotype [154, 297-300]. In addition, a recent study testing 

cytomegalovirus (CMV) as a SIV vaccine vector (due to reports that CMV induces more mature 

CD8+ T cell phenotypes than previously used vaccine vectors [301]), found that this vaccine 

provided greater protection that was manifested by enhanced control of viral replication 

following SIV challenge [301, 302]. Interestingly, previous studies have demonstrated that the 

p11C-specific CD8+ T cells are predominantly responsible for control of SIV in Mamu-A*01+ 

rhesus monkeys as the selection of viral escape mutations within the p11C epitope results in 

loss of epitope recognition by the p11C-specific CD8+ T cells leading to rapid disease progression 

[85, 486]. It is possible that the strong protection afforded by the p11C-specific CD8+ T cell 

population is, at least in part, due to its increased number of more mature cells that likely 

exhibit increased cytotoxicity towards SIV-infected cells [150, 153, 154, 529]. Thus, the present 
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data support the concept that more mature epitope-specific CD8+ T cells provide enhanced 

protection against HIV and SIV and that vaccines should aim to generate such cells. Because our 

data suggest that dominant epitopes may generate more frequently epitope-specific CD8+ T 

cells with more mature phenotypes, it may be beneficial to include such epitopes in vaccine 

constructs.  
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MATERIALS AND METHODS 

Animals. Mamu-A*01+ Mamu-B*17- Mamu-B*08- Indian-origin rhesus monkeys (Macaca 

mulatta) were selected for these studies after PCR-based MHC typing as previously described 

[530]. All monkeys were housed in accordance with the guidelines outlined in the NIH Guide for 

the Care and Use of Laboratory Animals and with the approval of the Institutional Animal Care 

and Use Committee of Harvard Medical School and the National Institutes of Health. All 

monkeys were infected intrarectally with either SIVmac251 or SIVsmE660. SIVmac251 infection 

was administered by a single high dose challenge. SIVsmE660 was administered by a repeated 

low-dose challenge. 

 

Antibodies and flow cytometry reagents. Conjugated antibodies and staining reagents included 

anti-MIP-1-phycoerythrin (PE) (clone D21-1351), anti-CD3-Pacific Blue (PB) (clone SP34.2), 

anti-CD3-PE-Cy7 (clone SP34.2), anti-CD3-PerCP-Cy5.5 (clone SP34.2), anti-CD3-APC-Cy7 (clone 

SP34.2), anti-CD3-Horizon V450 (clone SP34.2), anti-CD4-PerCP-Cy5.5 (clone L200), anti-CD4-

AmCyan (clone L200), anti-CD4- fluorescein isothiocyanate (FITC) (clone 19thy5D7), anti-CD8- 

allophycocyanin (APC) (clone SK1), anti-CD8-APC-Cy7 (clone SK1), anti-CD8-AlexaFluor700 

(clone RPA-T8), anti-CD8-FITC (clone SK1), anti-CD8-APC-H7 (clone SK1), anti-CD69-electron-

coupled dye (ECD) (clone TP1.55.3, Beckman Coulter), anti-CD20-Horizon V450 (clone L27), anti-

CD45RA-ECD (clone 2H4, Beckman Coulter), anti-CCR7-FITC (clone 150503, R&D Systems), anti-

CCR7-PerCP-Cy5.5 (clone 150503), anti-CD27-APC-e780 (clone 0323, eBioscience), anti-CD28-

PE-Cy7 (clone 28.2, eBioscience), anti-granzyme B-AlexaFluor700 (clone GB11), anti-perforin-

FITC (clone Pf344, MabTech), anti-IFN-PE-Cy7 (clone B27), anti-TNFα- AlexaFluor700 (clone 
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Mab11), anti-IL-2-APC (clone MA1-17H12), anti-CD95-PE (clone dx2), anti-CD95-APC (clone 

dx2), and Aqua LIVE/DEAD Fixable Dead Cell Stain (Invitrogen). All reagents are from BD 

Biosciences unless indicated otherwise. 

 

Monomers and tetramers. The following peptides were synthesized by New England Peptide, 

LLC and were purified at >95% by HPLC: p11C (CTPYDINQM), p54AS (TVPWPNASL), p54E660 

(TVPWPNETL), and p68A (STPPLVRLV). The p11C, p54AS, p54E660, and p68A peptide-Mamu-

A*01 monomeric and tetrameric complexes were prepared as previously described [531, 532]. 

Tetrameric complexes for flow cytometry were prepared using either streptavidin-PE 

(Prozyme), -APC (Prozyme), -AlexaFluor488 (Invitrogen), or -Qdot655 (Invitrogen).  

 

Blood processing. Peripheral blood mononuclear cells (PBMCs) were isolated from 

ethylenediaminetetraacetic acid (EDTA)-preserved blood using Ficoll-paque (GE Healthcare) 

density gradient centrifugation. PBMCs were collected from the buffy layer and washed twice 

with a wash buffer of PBS (Gibco) supplemented with 2% fetal bovine serum (FBS, HyClone) 

(wash buffer). When necessary, red blood cells were removed by lysis with ACK buffer (150mM 

ammonium chloride, 10mM potassium bicarbonate, 30mM EDTA in water) for 3 minutes, 

followed by one wash.  

 

Sorting of epitope-specific CD8+ T cells for gene expression analysis. Peripheral blood was 

collected weekly for 10 weeks post-inoculation with SIVmac251.  In addition, blood was 

collected a week prior to infection and on the day of infection (day 0) for sorting of total 
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CD8+CD4-CD3+CD28+CD95- naïve CD8+ T cells. For each timepoint, 10 mL of blood was collected 

in EDTA, and PBMCs were isolated as described above. Cells were stained with p11C and p54AS 

tetramers for 15 min at 4°C in the dark.  Cells were washed once and then stained with a 

mixture of CD3 and CD8 antibodies for 10 min at 4°C in the dark.  Cells were washed, 

resuspended in cold PBS at 107 cells/mL, and sorted. Gates were set to include single CD3+CD8+ 

lymphocytes. The p11C+ and p54AS+ cells within these gates were sorted into RNAprotect 

(Qiagen) at 4°C. Sorting was performed using a FACS-Vantage flow cytometer/cell sorter (BD). 

 

RNA extraction. RNA was isolated from sorted tetramer-positive cells using a Trizol (Invitrogen) 

extraction protocol.  Briefly, the cell pellet was resuspended in 1 mL of Trizol and incubated for 

5 min at room temperature (RT).  A volume of 200 μL of chloroform was added and shaken 

vigorously by hand for 15 sec and then incubated at RT for 2 to 3 min. Samples were 

centrifuged at 13,000 rpm for 15 min at 4°C. The colorless upper aqueous phase was collected 

and transferred to a new tube containing 2 μL of linear acrylamide. An equal volume of 

isopropyl alcohol was then added and mixed.  The mixture was incubated at RT for 10 min and 

centrifuged at 13,000 rpm for 10 min at 4°C. The supernatant was collected, and the RNA was 

washed with 1 mL of 70% ethanol and centrifuged at 10,500 rpm for 5 min at 4°C.  The 

supernatant was completely removed, and the RNA pellet was allowed to air-dry.  The RNA was 

then resuspended in RNase-free water and stored at -80°C. RNA integrity was tested using an 

Agilent Bioanalyzer.  
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RNA amplification. RNA was amplified from Trizol-extracted total RNA using the TargetAmp 2-

Round Biotin-aRNA Amplification Kit 3.0 (Epicentre Biotechnologies) according to the 

manufacturer’s instructions.  The amplification was comprised of two rounds, including two 

steps of cDNA synthesis and in vitro transcription (IVT).  The first strand cDNA synthesis was 

primed with a T7-Oligo(dT) primer and was catalyzed by either Superscript II or III Reverse 

Transcriptase (Invitrogen).  Then, double-stranded cDNA was synthesized from the first-strand 

template by a DNA polymerase, and the IVT was catalyzed by a T7 polymerase. The first IVT 

round ran for 4 hr and the second IVT round for 9 hr, with biotin-UTP added in the second IVT.  

For the first RNA purification, Zymo RNA Clean and Concentrator columns (Zymo Research) 

were used, and for the second RNA purification, RNeasy MinElute Cleanup Kit (Qiagen) was 

used.  Amplified biotinylated antisense-RNA (aRNA) was resuspended in RNase-free water and 

stored at -80°C. A Nanodrop ND-1000 (ThermoScientific) was used to determine the aRNA 

concentration, and an Agilent Bioanalyzer was used to determine the aRNA integrity. 

 

Plasma RNA viral loads. Plasma was collected from the top layer following ficoll density 

gradient centrifugation and frozen at -80°C until use. Viral RNA levels from these samples were 

measured using an ultra-sensitive branched DNA amplification assay (Bayer Diagnostics, 

Berkeley, CA). 

 

Microarray processing. Amplified aRNA was hybridized to Illumina Human HT-12 Expression 

BeadChips according to the manufacturer's instructions and was stained with Streptavidin Cy3 

for detection (Illumina, San Diego, CA, USA). The Human HT-12 BeadChip assays 48,000 
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transcripts. The BeadChips were built with sequences derived from the National Center for 

Biotechnology Information Reference Sequence (NCBI RefSeq) database (Build 36.2, Release 

22). Arrays were scanned according to the manufacturer’s instructions. Processing of the raw 

array data was performed using Illumina BeadStudio software.  

 

Statistical analysis of gene expression. We used Matlab (Mathworks, Natick, MA, USA) to 

perform statistical analysis. The analysis began with quantile-normalizing of the whole 

expression data to remove system noise. Fold-differences of individual transcripts were 

computed as the ratios of the median expression levels of p11C- to those of p54AS-specific 

CD8+ T cells. When p54AS expression values were larger than p11C values, the negative 

reciprocal was calculated. A Wilcoxon signed-rank test was used to evaluate the significance of 

the differences in gene expression between p11C- and p54AS-specific CD8+ T cells.  

 

Quantification of epitope-specific CD8+ T cells. Freshly isolated PBMCs from chronically 

infected monkeys were resuspended in wash buffer, stained with tetramer for 15 min at RT in 

the dark, and then stained with a cocktail of CD3-, CD4-, and CD8-specific antibodies for 15 min 

at RT in the dark. Cells were washed once, resuspended in a solution of 2% paraformaldehyde 

(Polysciences) in PBS, and analyzed by flow cytometry.  

 

Cell surface maturation phenotyping. Cells were stained as described for the quantification of 

epitope-specific CD8+ T cells above. The staining cocktail contained CD3-, CD8-, CD4-, CD20-, 

CD27-, CD28-, CCR7-, and CD45RA-specific fluorochrome-labeled antibodies. Fluorescence 
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minus one (FMO) samples were also prepared to set the analysis gates for positive CD27 and 

CD45RA staining. In these FMO samples, either the CD27- or the CD45RA-specific antibody was 

omitted from the cocktail. 

 

Ex vivo intracellular staining of perforin and granzyme B. Cells were stained as described for 

the quantification of epitope-specific CD8+ T cell populations above. The staining cocktail 

contained CD3-, CD4-, and CD8-specific antibodies. Cells were then washed twice, resuspended 

in Cytofix/Cytoperm (BD Biosciences), and incubated for 20 min at 4°C. Cells were washed twice 

with a 1X solution of Perm/Wash buffer (BD), resuspended in a solution of 1X Perm/Wash 

buffer containing perforin- and granzyme B-specific antobodies and incubated for 30 minutes at 

RT in the dark. FMO samples were also prepared to set the analysis gates for positive perforin 

and granzyme B staining. In these FMO samples, either the perforin- or the granzyme B-specific 

antibody was omitted from the cocktail. Cells were washed twice with 1X Perm/Wash buffer, 

resuspended in a solution of 1% paraformaldehyde in PBS, and then analyzed by flow 

cytometry. 

 

Cytokine and chemokine production analysis. Freshly isolated PBMCs were resuspended in 

R10, a medium containing RPMI 1640 (Cellgro) supplemented with 10% heat-inactivated(HI) 

FBS and the antibiotics penicillin and streptomycin (Pen/Strep, Gibco), and rested for 1 hr at 

37°C. Cells were washed with R10 and resuspended in a solution of 1 μg/mL each of anti-CD28 

(BD) and anti-CD49d (BD) antibodies, 1 nM peptide, and tetramer in R10. Alternatively, control 

cells were either left unstimulated or stimulated with a final concentration of 10 ng/mL phorbol 
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12-myristate 13-acetate (Sigma) and 1 μg/mL ionomycin (Sigma). Cells were incubated at 37°C 

for 6 hours, with the addition GolgiStop (BD Biosciences) and Golgiplug (BD) at a final dilution of 

1:1,500 and 1:1,000, respectively, after the first hour. Following the 6 hour stimulation, cells 

were stored overnight at 4°C. Cells were then washed once with wash buffer, resuspended in 

PBS and aqua LIVE/DEAD (Invitrogen) at a final dilution of 1:500, and incubated for 20 min at RT 

in the dark. Cells were washed once with PBS and then stained following the ex vivo 

intracellular staining protocol above. The cell surface staining included tetramer and antibodies 

specific to CD4 and CD8, and the intracellular antibodies cocktail contained specific to CD3, 

CD69, IL-2, IFNγ, TNFα, and MIP-1β. 

 

Expansion of epitope-specific CD8+ T cells. Following isolation of fresh PBMCs, cells were 

resuspended in R10. The lymphocyte concentration was measured using the Guava EasyCyte 

automatic cytometer (Millipore) and then adjusted to approximately 3x106 lymphocytes/mL . A 

small sample of cells was also stained with tetramer and antibodies for CD3, CD4 and CD8, and 

analyzed by flow cytometry to measure the frequency each CD8+ T cell specificity before 

peptide-stimulated expansion. Cells were plated in either 96-, 48-, or 24-well flat bottomed 

culture plates and stimulated with a final concentration of 1 nM epitope peptide. A final 

concentration of 20 U/mL IL-2 (Hoffmann-LaRoche) was added on day 3, and media 

supplemented with IL-2 was changed thereafter as needed. Samples were harvested on days 3, 

4, 5, 6, 8, 10, 12, and 14 post-stimulation, resuspended in PBS, and stained with aqua 

LIVE/DEAD. Cells were washed and stained with tetramer and CD3-, CD4-, and CD8-specific 
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fluorochrome-labeled antibodies. Cells were washed once, resuspended in a solution of 2% 

paraformaldehyde, and analyzed by flow cytometry.  

 

Flow cytometry data collection and analysis. All flow cytometry data were collected on an LSRII 

(BD). In order to collect and analyze comparable numbers of each CD8+ T cell specificity, 

different numbers of PBMCs were used for each p11C, p54, and p68A sample. Input numbers of 

PBMCs were dependent on the expected relative frequency of each epitope-specific 

population. For example, if the expected magnitudes of the p11C-, p54-, and p68A-specific CD8+ 

T cell populations were 10%, 1%, and 0.1%, respectively, then the ratio of cells used for each 

sample was 1:10:100. Staining volumes, washing volumes, and amounts of staining reagents 

used were adjusted for each sample to ensure the same cell-to-reagent concentration ratios 

were used for all samples. Flow cytometric data was analyzed using FlowJo (Tree star). 

Statistical analysis of flow cytometric data was conducted in GraphPad Prism 5. 
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INTRODUCTION 

It is believed that an HIV vaccine strategy aimed at eliciting highly-functional epitope-

specific CD8+ T cells will need to elicit CD8+ T cells that are of high frequency [71, 96, 98, 533, 

534] and that broadly recognize multiple HIV-derived epitopes [297, 535]. However, the 

phenomenon of immunodominance may limit the potential of current CD8+ T cell-based vaccine 

strategies by restricting the number of vaccine-encoded epitopes that are able to elicit CD8+ T 

cell responses and by limiting the frequencies of these vaccine-elicited CD8+ T cells. Therefore, 

an effective vaccine must be able to overcome these limitations imposed by immunodominance 

in order to generate high-frequency CD8+ T cells of broad specificity. To do this, a better 

understanding of the factors underlying the establishment of immunodominance hierarchies is 

required. 

The strength and duration of the interactions between an epitope peptide and its 

restricting MHC molecule, as well as the interaction between a peptide:MHC class I complex 

(pMHC) and its cognate TCR influence the potency of the T cell response. Parameters including 

pMHC cell surface density [380, 386, 387, 536], pMHC:TCR affinity [388, 398-400], and 

pMHC:TCR dissociation [393, 401-409] have all been shown to determine the potential and 

extent to which a particular T cell becomes activated. Such factors also determine the extent to 

which the activated T cell, in response to antigen stimulation, exhibits cytotoxic capabilities 

[353, 386-388, 398, 399, 402, 403, 536], produces cytokines [380, 398, 400, 406, 408, 409, 536], 

or proliferates [393, 404, 407, 536].  
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The clear role that the peptide:MHC:TCR interactions have on determining T cell 

activation and proliferation suggests that differences in these interactions may play a role in 

determining the immunodominance hierarchy of multiple epitopes restricted by the MHC class I 

allele. Indeed, the peptide:MHC interaction, and specifically its dissociation rate, is frequently 

correlated with epitope dominance [378, 443-448]. Interestingly, few studies have assessed the 

impact of the pMHC:TCR interaction on immunodominance hierarchies. One study in the 

murine herpes simplex virus model used pMHC tetramers to measure dissociation rates of 

tetramers constructed with one dominant and one subdominant epitope peptide from their 

respective TCRs. Although there was a weak trend that the tetramer constructed with the 

subdominant epitope displayed a faster dissociation rate from the TCR compared to the 

tetramer with the dominant epitope, the authors concluded that these dissociation rates were 

similar [537]. The use of tetramers, which decreases the apparent dissociation rate though 

avidity effects, likely limited their ability to resolve dissociation rate differences between the 

two epitopes. Another study in the murine influenza virus model also used tetramers to 

measure the dissociation rate of a dominant and two subdominant epitopes from their 

respective TCRs. This study found an association between epitope dominance and dissociation 

rate [538]. However, the TCR had a faster dissociation rate from the dominant epitope tetramer 

than from the subdominant epitopes. This was opposite of the hypothesized relationship 

between epitope dominance and pMHC:TCR dissociation based on previous studies showing an 

association between antigen-induced cell proliferation and the pMHC:TCR dissociation rate 

[393, 404, 407, 536]. Both of these studies were conducted in murine systems and used 

tetramer dissociation as a surrogate measurement of the strength of pMHC:TCR interactions. 
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The role of pMHC:TCR interactions in determining immunodominance hierarchies in humans 

remains largely unexplored.  

To date, the tetramer-binding assay has been the most frequently used technique to 

measure pMHC:TCR interactions because it provides the convenience of being used on intact 

cells [406, 539, 540]. This is useful because it allows for the measurement of the pMHC:TCR 

interaction to be performed on a polyclonal population of cells. It also allows the TCR to be 

maintained in its physiological context (embedded in the outer membrane of the CD8+ T cell 

and accompanied by its associated surface molecules that contribute to the overall interaction). 

However, its utility in accurately predicting physiologic pMHC:TCR binding affinities is limited 

[541, 542]. In addition, the multiple valency of the tetramer and their propensity to aggregate 

can complicate the accurate measurement of these interactions [543]. In contrast, surface 

plasmon resonance (SPR) has been the gold standard for the measurement of overall affinity 

and also association and dissociation rates of almost any molecular interaction [544-548]. 

However, until recently, measurements of pMHC:TCR interactions using SPR has been limited to 

the study of a few individual recombinant TCRs [409, 549, 550]. Although this is useful to 

compare functional outcomes of individual T cell clones, it is not conducive to studying entire 

epitope-specific CD8+ T cell populations generated in vivo, which are almost always polyclonal.  

Our laboratory has recently developed an SPR-based technique that permits 

measurement of the TCR interaction of polyclonal epitope-specific CD8+ T cell populations for 

monomeric pMHC complexes [551]. In the present study, we have employed this technique to 

evaluate the role of pMHC:TCR binding affinity in determining the well-defined Mamu-A*01-
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restricted epitope immunodominance hierarchy in SIV-infected rhesus monkeys. We found that 

the frequencies of the different epitope-specific CD8+ T cells within this hierarchy were 

associated with the various parameters involved in the pMHC:TCR interaction. Specifically, we 

found that greater epitope dominance was associated with slower pMHC:TCR dissociation rates 

and higher affinities. These findings indicate a role of the pMHC:TCR interaction in determining 

immunodominance hierarchies and suggest that manipulation of this interaction may be a 

means by which the frequencies of epitope-specific CD8+ T cells can be enhanced for 

immunotherapy and vaccine design. 
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RESULTS 

We evaluated the role of pMHC:TCR binding in determining immunodominance 

hierarchies using a cohort of seven SIVsmE660-infected Mamu-A*01+ rhesus monkeys. The 

frequencies of the dominant p11C- and subdominant p54E660- and p68A-specific CD8+ T cells in 

these monkeys had been previously measured and are shown in Figure 5B in Chapter 2. We 

chose to measure the pMHC:TCR interactions using a novel SPR-based technique in which the 

TCRs being evaluated were derived from polyclonal epitope-specific CD8+ T cell populations 

sorted directly ex vivo from infected monkeys. This technique involved the use of a mild 

detergent to generate detergent-resistant micro-domain (DRM) preparations that were 

enriched in TCRs. This technique also permitted immobilization of the TCR on the Biacore™ L1 

chip in a more physiological setting surrounded by associated membrane proteins, such as CD8, 

which were free to move laterally within the membrane lipid environment [551]. The technique 

was initially validated using large numbers of T cell hybridomas. This guaranteed that large 

numbers of TCRs would be bound to the Biacore™ L1 chip and that the strength of the signal 

from the binding of the soluble monomeric pMHCs to these TCRs would be sufficient for 

analysis. However, ex vivo epitope-specific CD8+ T cells, such as those that were the focus of our 

studies, are often present at very low frequencies in the peripheral blood. Therefore, the DRMs 

that would be prepared from peripheral blood samples would contain lower numbers of TCRs 

compared to DRMs prepared from T cell hybridomas. It was previously unknown whether these 

small numbers of TCRs would be sufficient to detect a specific binding signal by SPR. Therefore, 

we first determined if we could detect a signal from small numbers of epitope-specific CD8+ T 

cells.  
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We used pMHC tetramers to sort by flow cytometry 1x103, 3x103, 5x103, and 10x103 

epitope-specific CD8+ T cells from peripheral blood of SIV-infected monkeys. Each of these 

sorted cell preparations were added to a sample of 1x106 total CD8+ T cells. DRMs were purified 

from these samples and captured on a Biacore™ L1 chip, and the binding of soluble pMHC 

monomers in the fluid phase to the TCRs in these DRM preparations was measured. Binding of 

a control pMHC monomer was also evaluated to establish the level of non-specific binding. This 

control pMHC monomer was constructed with the same MHC as the experimental monomer, 

but bound to a peptide which the CD8+ T cells in these samples did not recognize. We detected 

specific signals of similar magnitude from the samples containing 10x103, 5x103, and 

3x103epitope-specific CD8+ T cells (Fig. 10). A weaker signal was detected in the sample 

containing 1x103 epitope-specific CD8+ T cells. Therefore, we determined that we would need a 

minimum of 3x103 epitope-specific CD8+ T cells to detect a specific signal, although detection of 

a specific signal would likely also be dependent on the affinity of the TCR in question. 

Epitope-specific CD8+ T cells for the following experiments were isolated by flow 

cytometry. Cells were stained for sorting with anti-CD3 and -CD8 antibodies and a tetramer 

constructed with the Mamu-A*01-resticted SIV epitope TL8. Any cells that stained positively 

with this tetramer were excluded from the sorted CD3+CD8+ cells. A monomer constructed with 

the TL8 epitope peptide was used as a negative binding control in the SPR assays such that any  
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 1x103 (1K), 3x103 (3K), 5x103 (5K), and 10x103 (10K) epitope-specific CD8+ T cells were sorted, 

and each cell population was added to 1x106 total CD8+ T cells. DRMs were purified and 

captured on a Biacore™ L1 chip. Wildtype (red) and control (blue) pMHC monomers were 

flowed over these DRMs at 100 μg/mL and specific binding, measured in resonance units (RU), 

was detected.  

Figure 10- Determination of minimum input of epitope-specific CD8+ T cells required for SPR 

analysis 
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signal detected from the binding of the TL8 monomer was considered non-specific and was 

subtracted from the signals of the other monomers. 

For initial measurements of the binding of the p11C-, p54E660- and p68A-specific TCRs 

to their respective pMHC complexes, we sorted total TL8-negative CD8+ T cells from seven 

Mamu-A*01+ SIVsmE660-infected monkeys. A small amount of cells was also stained with p11C, 

p54E660, and p68A tetramers to measure the frequency of each CD8+ T cell specificity in the 

sample. From these frequencies, we estimated the total number of each CD8+ T cell specificity 

in our sorted sample. The estimations for each CD8+ T cell specificity were greater than 3,000 

for all samples. Initial binding assays with DRMs purified from these samples demonstrated that 

specific binding could be detected from the monomers constructed with the dominant p11C 

and subdominant p54E660 epitope peptides. The binding signal from the p54E660 monomer 

was weaker than p11C monomer binding at the same concentration. However, we were unable 

to detect specific binding of the monomers constructed with the more subdominant p68A 

epitope peptide at any of the concentrations of monomers that were evaluated (Fig. 11). We 

then performed titrations of the p11C and p54E660 pMHC monomers on the DRM preparations 

from each monkey, and we were able to detect specific binding within the range of 

concentrations evaluated (25 to 200 μg/mL for p11C monomers and 50 to 200 μg/mL for 

p54E660 monomers) (Fig. 12). From these titrations, we used a curve fitting analysis to 

calculate the association rate (kon) and the dissociation rate (koff) of both the p11C and p54E660 

pMHC monomer binding to DRMs from all seven monkeys (Table 3). The p11C monomers 

bound to the DRM samples with a median kon of 7.38x103/Ms (range 3.56-28.60x103/Ms), which 

was faster than the p54E660 monomers that had a median kon of 0.96x103/Ms  
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Total CD8+ T cells were sorted from SIVsmE660-infected rhesus monkeys. DRMs isolated from 

these cells were evaluated for specific binding with pMHC monomers constructed with p11C, 

p54E660, and p68A epitope peptides. Representative data are shown for binding of monomers 

to DRMs prepared from three monkeys (AP34, ZD57, and A6V031). Top, overlaid readings of 

the binding of p11C (red) and p54E660 (blue) pMHC monomers at 100 μg/mL. Bottom, overlaid 

readings of the binding of p68A pMHC monomers at the following concentrations: 25, 50, 100, 

150, and 200 μg/mL. Binding of the control monomer TL8 at the same concentration has been 

subtracted from all readings. 

Figure 11- Detection of p11C, p54E660, and p68A monomer binding 
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Figure 12 (Continued)- p11C and p54E660 monomer titrations for calculation of kinetics and 

affinity 
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Figure 12 (continued)- p11C and p54E660 monomer titrations for calculation of kinetics and 

affinity 

Binding of p11C and p54E660 pMHC monomers to DRMs purified from CD8+ T cells sorted from 

SIVsmE660-infected rhesus monkeys. Top panels, p11C monomer binding. Bottom panels, 

p54E660 monomer binding. Binding of the control monomer TL8 at the same concentration has 

been subtracted from all readings. p11C monomers were run at 25, 50, 100, and 200 μg/mL. 

The ARB0 plot shows a 150 μg/mL run in place of the 100 μg/mL. The AP34, ZD57, and A6V031 

plots do not show the 200 μg/mL run. p54E660 monomers were run at 25, 50, 150, and 200 

μg/mL for AP54, ARB0, 8B1, and AS47 and at 25, 100, and 200 μg/mL for AP34, ZD57, and 

A6V031. The ZD57 plot includes an additional 50 μg/mL run.  
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(range 0.66-1.87x103/Ms). The p11C monomers also dissociated more slowly from the DRMs 

with a median koff of 0.02/s (range 0.02-0.03/s) compared to the p54E660 monomers that 

dissociated with a median koff of 0.03/s (range 0.02-0.06/s). The equilibrium dissociation 

constant (Kd) values were derived from these kon and koff values. Binding of the p11C monomers 

had a median Kd of 2.01μM (range 1.03-6.77μM), which was lower than the binding of the 

p54E660 monomers which had a median Kd of 32.00 μM (range 22.00-43.00μM). Thus, 

monomers constructed with the dominant p11C peptide epitope showed faster association 

rates and slower dissociation rates that resulted in higher affinities (lower Kd) compared to 

monomers constructed with the subdominant p54E660 epitope peptide.  

We speculated that the inability to detect the binding of the p68A monomers to the 

DRM samples may be due to the interaction between the p68A pMHC complex with cognate 

TCRs being substantially weaker than the binding of the p11C and p54E660 pMHCs to their 

cognate TCRs. The difficulty in detecting this weak binding was also likely exacerbated by the 

fact that the p68A-specific CD8+ T cells were the lowest frequency epitope-specific CD8+ T cells, 

and therefore the p68A-specific TCRs were the least represented in the DRMs. Therefore, we 

repeated the sorting of CD8+ T cells from multiple bleeds from four of the SIVsmE660-infected 

monkeys and the cells from these sorts were pooled for DRM purification. These samples 

contained two- to six-fold more p68A-specific CD8+ T cells than samples from the previous 

experiments.  

We were able to detect a specific binding signal for p68A pMHC monomer binding to 

the DRM samples containing greater numbers of p68A-specific CD8+ T cells and with the pMHC  
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 p68A-specific CD8+ T cells were collected from multiple tetramer sorts and combined for DRM 

isolation. Titrations of p68A pMHC monomers were performed at 150, 200, 500, and 1000 

μg/mL for ZD57, 150, 200, and 500 μg/mL for ARB0, 150, 200, 250, and 300 μg/mL for AP34, 

and 150, 200, 250, and 300 μg/mL for A6V031. Binding of the control monomer TL8 at the same 

concentration has been subtracted from all readings. 

 

Figure 13- Detection of p68A monomer binding 
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injected at higher concentrations (>100 μg/mL) (Fig 13). However, the binding of these 

monomers exhibited extremely fast association and dissociation rates that could not be 

measured using curve fitting analysis, although we were able to estimate the binding values. 

Previous measurements of p11C and p54E660 monomer binding to DRMs indicated that p11C 

had the fastest association rate. The association rate of the p68A monomer to its respective 

TCRs was likely to be at least at fast as that of the quantifiable p11C monomer, although more 

likely to be even faster. Therefore, we estimated that the kon for p68A would be greater than 

10x103/Ms. Knowing that the Biacore™ instrument’s lower limit of detection of dissociation is 

about 1/s, we estimated that the dissociation of the p68A monomer from its respective TCR 

was at least as fast as 1/s. Using these estimated kon and koff, the estimated affinity of the p68A 

monomer for its respective TCRs would approach at least 100 μM.  

The estimated values for p68A monomer binding to DRMs are included in Table 3 for 

comparison with p11C and p54E660 monomers. Although the p11C monomers bound their 

cognate TCRs faster than p54E660 monomers, p68A monomers bound with the fastest 

association rate. In addition, the dissociation rates of the p11C monomers were slower than 

p54E660 monomers; p68A monomers had the fastest dissociation rate. Therefore, the 

calculated Kd values were lowest for p11C monomers, intermediate for p54E660 monomers, 

and highest for p68A monomers. In summary, epitope dominance was associated with higher 

affinities that were driven by the faster association rate of the dominant p11C epitope and the 

exceptionally fast dissociation rate of the more subdominant p68A epitope. 
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kon, association rate. koff, dissociation rate. Kd, equilibrium dissociation constant. Values indicate 

the median among readings from seven monkeys. Parentheses indicate range. a kon of the p68A 

monomers was estimated as being at least as fast as the fastest measured monomer, p11C. b 

koff of p68A monomers was estimated as being at least as fast as the limit of detection of the 

Biacore™ instrument, 1/s. c Kd of p68A monomer binding calculated using estimated values of 

the kon and koff using the equation  koff/kon.   

 

 

 

 

 

Table 3- pMHC:TCR binding values 
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DISCUSSION  

In the present study, we have addressed the previously unexamined role of the strength 

of pMHC:TCR binding in determining the differences in frequencies of epitope-specific CD8+ T 

cells that underlie the establishment of immunodominance hierarchies. We found that the SIV 

epitope-specific CD8+ T cells in rhesus monkeys that were of higher frequency expressed TCRs 

that had higher affinities for their pMHC complexes. These differences in affinity were driven by 

differences in both association and dissociation rates.  

These findings were made possible using a novel SPR-based technique that employs the 

Biacore™ L1 chip to immobilize cell membrane preparations, referred to as DRMs, onto the 

solid sensor surface [552]. This technique has many advantages over SPR-based approaches 

previously used to study pMHC interactions with TCRs. The technique we employed in the 

present study did not limit us to assessing the pMHC affinity of only one or a few cloned TCRs. 

Rather, we were able to measure the average pMHC:TCR affinity of a polyclonal population of 

epitope-specific CD8+ T cells sampled ex vivo. The lipophilic anchor of the L1 chip directly 

embeds itself into lipid bilayers, obviating the need for artificial adsorption of membrane 

preparations onto the sensor chip. Other cell surface proteins involved in TCR engagement with 

pMHC and TCR signaling, such as CD8, CD3, CD2, LFA-1, and CD28, likely also are enriched in the 

DRM fraction and anchored to the chip with the TCR. Finally, the TCRs were able to move 

laterally in the immobilized lipid membrane, allowing the assessment of their interactions in a 

physiological context. This SPR technique, therefore, enables the measurement of the affinity of 

pMHC for TCRs expressed in as close to their native environment as possible. 



 

- 107 - 
 

The mechanism by which the pMHC:TCR binding affinity or its kinetics may influence the 

frequencies of dominant and subdominant SIV epitope-specific CD8+ T cells is unclear. The most 

intuitive explanation is that TCR affinity and/or kinetics influence the rate of cellular expansion 

upon antigen recognition. Indeed, this explanation is supported by evidence from multiple in 

vitro and in vivo studies. A study by Dzutsev and colleagues sorted from mice CD8+ T cell clones 

that recognized the H-2Dd-restricted HIV Env p18 epitope either with either high or low affinity. 

Naïve mice were administered either the high or the low affinity p18-specific CD8+ T cells and 

then immunized with a vaccinia virus (VV) encoding the p18 epitope to stimulate proliferation 

of the p18-specific CD8+ T cells. Cell division was measured by the amount of BrdU incorporated 

into the proliferating cells following administration of the VV. They found that the high affinity 

population incorporated more BrdU than the low affinity population, demonstrating that the 

high affinity clones divided more rapidly than the low affinity clones. This study demonstrated 

that TCR affinity affects the rate of proliferation [553].  

Another study by Schmid and colleagues generated TCRs that recognized the same 

pMHC, but with varying affinities. These different-affinity TCRs were expressed in a T cell line 

and loaded with CFSE, and the T cells’ abilities to proliferate following stimulation with APCs 

expressing their cognate epitopes were assessed by CFSE dilution in vitro. T cells expressing the 

higher affinity TCRs proliferated more extensively than those expressing the lower affinity TCRs, 

as demonstrated by greater CFSE dilution of the cells expressing the higher-affinity TCRs [554]. 

Thus, this study is another demonstration of the role of TCR affinity in determining epitope-

elicited proliferation rate of CD8+ T cells. 
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Finally, a study by Hommel and colleagues performed a highly quantitative in vitro CFSE-

based study to measure the differences in proliferation and cell death of OVA-specific OT-1 TCR 

transgenic CD8+ T cells when stimulated by altered peptide ligands (APLs) of different affinities 

for the OT-1 TCR. They found that stimulation with high-affinity APLs was associated with an 

increased rate of proliferation that resulted from both higher numbers of cells entering the cell 

cycle following stimulation and lower rates of cell death during the proliferation stage [555].  

An alternative explanation for the differences in frequency of dominant and 

subdominant epitope-specific CD8+ T cells was provided by a study by Zehn and colleagues that 

evaluated the in vivo expansion of OT-1 CD8+ T cells in response to a low and a high affinity 

APLs. CFSE-labeled OT-1 CD8+ T cells were grafted into mice and these mice were infected with 

a strain of Listeria monocytogenes that expressed either the low or the high affinity APL. By 

measuring CFSE dilution of the stimulated OT-1 CD8+ T cells in vivo, this study found that OT-1 

cells proliferated at the same rate regardless of whether they were stimulated with the high or 

the low affinity APL. However, the OT-1 cells stimulated by the low affinity ligand stopped 

proliferating before the OT-1 cells stimulated by the high affinity ligand [556]. Therefore, the 

differences in frequency of the OT-1 cells that were observed following high versus low affinity 

ligand stimulation were a result of differences in the duration of the expansion period, and not 

the rate of expansion.  

The remarkably rapid dissociation rate, and consequently the lower affinity, of the p68A 

pMHC interaction with its TCR observed in our study raises the question of how such a weak 

interaction can elicit an epitope-specific CD8+ T cell response. Until recently, it was generally 
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accepted that more potent TCR ligands were those exhibiting slower rates of dissociation from 

the TCR [403, 405-409]. Slow dissociation rates were thought to better enable more complete 

signal transduction through the TCR and thus allow complete T cell activation. However, some 

studies have described interactions where T cells were potently activated by TCR ligands even 

though they had relatively fast TCR dissociation rates [398, 557-560]. Recent studies have 

attempted to reconcile this apparent discrepancy and found that the potency of ligands with 

very fast dissociation rates can be compensated by very fast association rates [420, 422]. In 

these studies, it was found that potent CD8+ T cell stimulation with ligands displaying fast 

dissociation rates was dependent on multiple re-binding events of the same pMHC complex 

with the same TCR. The faster association rates of these ligands thus allowed these re-binding 

events to occur after rapid dissociation, before the pMHC or TCR diffused away laterally in the 

membrane. Therefore, the considerably fast dissociation rate of the p68A pMHC complex 

measured in the present study may be compensated by the considerably fast association rate 

to allow the p68A epitope to elicit a CD8+ T cell response. 

The present study found that the interaction of the dominant p11C pMHC with its TCR 

was characterized by Kd values of approximately 2μM and koff values of approximately 0.02/s. 

Other studies in our laboratory have recently used the same SPR technique to measure the 

pMHC:TCR interaction of the dominant epitope peptide p199RY restricted by the rhesus MHC 

class I molecule Mamu-A*02. In these studies, the interaction of the dominant p199RY pMHC 

with its TCR was characterized by similar Kd values ranging 1.1-1.5 μM and similar koff values 

ranging from 0.01-0.03/s [551]. In that study, however, the binding of subdominant Mamu-

A*02-restricted epitope peptide pMHCs were not evaluated. Yet, the similarities in the affinities 
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and the dissociation rates between the Mamu-A*01- and Mamu-A*02-restricted dominant 

epitopes further substantiate the concept that pMHC:TCR binding may influence the 

dominance of an epitope peptide. We speculate that measurement of a Mamu-A*02-restricted 

subdominant pMHC:TCR binding interaction would show that it has affinities and kinetics 

similar to that of the subdominant p54E660 pMHC:TCR binding measured in the present study. 

In summary, the data in the present study demonstrated a relationship between the 

affinity of a TCR for its pMHC and the frequency of those epitope-specific CD8+ T cells in SIV-

infected rhesus monkeys. The precise mechanism by which TCR affinity determines the 

frequency of epitope-specific CD8+ T cells is unclear, although it likely relates to the ability of 

the cells to expand. A high frequency of epitope-specific CD8+ T cells are thought to be required 

for optimal protection from pathogens such as HIV. Therefore, the pMHC:TCR interaction may 

be able to be manipulated by vaccines or immunotherapies to enhance the frequencies of 

epitope-specific CD8+ T cells, potentially enhancing protection. 
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MATERIALS AND METHODS 

Monomers and tetramers. The following peptides were synthesized by New England Peptide, 

LLC and were purified at >95% by HPLC: p11C (CTPYDINQM), p54AS (TVPWPNASL), p54E660 

(TVPWPNETL), p68A (STPPLVRLV), and TL8 (TTPESANL). The p11C, p54AS, p54E660, p68A, and 

TL8 peptide-Mamu-A*01 monomeric and tetrameric complexes were prepared as previously 

described [531, 532]. Monomers used in surface plasmon resonance studies were further 

quantified using an RC DC protein kit (Bio-Rad). Tetrameric complexes for flow cytometry were 

prepared using either streptavidin-PE (Prozyme), -APC (Prozyme), -AlexaFluor488 (Invitrogen).  

 

Preparation of detergent-resistant micro-domains (DRMs). Freshly isolated PBMCs were 

enriched for CD8+ T lymphocytes using Miltenyi’s magnetic-activated cell sorting (MACS) kit for 

isolation of untouched NHP CD8+ T cells according to the manufacturer’s instructions. Isolated 

CD8+ T cells were then stained at 4°C with tetramers and with CD3- and CD8-specific 

fluorochrome-labeled antibodies. Cells were resuspended in PBS at a concentration of 107/mL 

for sorting. Sorting was performed on an Aria flow cytometer/cell sorter (BD). Cells were sorted 

at 4°C into 2% FBS in PBS. Gates were set for single CD3+CD8+ lymphocytes. For initial TCR 

binding analyses, cells were only stained with the TL8 tetramers and those cells that were 

positive for TL8 were excluded from the sorted CD3+CD8+ population. For repeated TCR binding 

analysis for enrichment of p68A-specific TCRs, cells were stained with TL8, p54E660, and p68A 

tetramers and multiple populations were simultaneously sorted: p54E660- p68A- TL8-, p54E660+ 

p68A- TL8-, and p54E660- p68A+ TL8-. These sorted populations were subsequently combined 

during purification of the DRMs. For samples with low total cell number, there was concern 
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over not having enough cell mass and of losing the DRM pellet during the ultracentrifugation 

steps. To these samples extra DRMs from cells not specific for any of the epitopes being 

evaluated were added to provide extra cellular mass to the pellet. These extra DRMs were 

obtained from sorted single CD3+CD8+ lymphocytes that were negative for all evaluated epitope 

specificities (p11C-p54E660-p68A-TL8-). All sorted cell populations were resuspended in cold 

TNE buffer (25 mM Tris-HCL pH 8.0, 150 mM NaCl, 5 mM EDTA, 0.1% sodium azide, 1 μg/mL 

leupeptin, 1 μg/mL pepstatin, and 1 μg/mL aprotinin) and stored at -80°C until analysis. Frozen 

samples were lysed by subjection to 3 freeze-thaw cycles. Brij 58 was added to a final 

concentration of 1% and incubated on ice for 1 hr. Cell lysates were spun at 100,000 g for 10 

min at 4°C. Supernatants were transferred to new tubes and spun at 202,000 g for 2 hr. Pellets 

were resuspended in cold PBS and sonicated with three pulses of 55W using an interval pulse 

off time of 15 sec (Misonix Sonicator 3000). The cell membrane preparations were extruded 11 

times though a 100 nM polycarbonate filter and immediately used for SPR binding assays. 

 

Surface plasmon resonance (SPR) measurements. SPR binding analyses using T cell DRMs were 

carried out as previously described for protein-lipid interactions [410, 546, 547, 552, 561-564] 

and for reconstituted G protein-coupled receptors in liposomes [564]. DRMs were captured on 

a Biacore™ L1 sensor chip, which utilizes an alkyl linker for anchoring lipids. Before capturing 

DRMs, the surface on the Biacore™ L1 chip was cleaned with a 60 s injection of 40 mM OGP at 

100 μL/minute, and the chip and fluidics were washed with excess buffer to remove any traces 

of detergent as described previously [561]. TCR-containing DRMs were captured by slowly 

injecting the DRM preparation at 5 μL/min over the Biacore™ L1 sensor chip. Monomeric pMHC 
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complexes constructed with p11C, p54E660, p68A and TL8 epitope peptides were injected at 50 

μL/minute for 3 min at concentrations ranging from 25 μg/mL to 200 μg/mL for initial 

measurements and up to 1,000 μg/mL of p68A on repeated samples. The specific binding signal 

was obtained by subtracting the non-specific signal from TL8 pMHC monomer binding to the 

TL8-depleted DRM preparation when injected at the same concentration. The global curve 

fitting to the Langmuir equation was used to derive kinetic rate constants (kon and koff) for 

calculation of equilibrium dissociation constant Kd as described earlier [410, 416]. All SPR 

measurements were carried out on a Biacore™3000 instrument, and data analyses were 

performed using BIAevaluation 4.1 software (GE Healthcare).  
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CHAPTER 4 

 

 

 

 

 

 

 

GENERAL DISCUSSION 
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 The studies presented here were performed to gain insight into the relationship 

between epitope dominance and the functionality of epitope-specific CD8+ T cells and to 

identify factors that contribute to this relationship. Until now, there have been no studies 

relevant to HIV that determined if dominant and subdominant epitope-specific CD8+ T cells 

differ in their antiviral capacities. In the present study, we have investigated this in SIV-infected 

rhesus monkeys and found that dominant SIV epitope-specific CD8+ T cell populations were 

enriched in more mature cells compared to subdominant SIV epitope-specific CD8+ T cell 

populations. The increased maturation of the dominant p11C-specific CD8+ T cells was 

accompanied not only by decreased cytokine production and proliferative capacity but also by 

increased cytotoxic capacity. Thus, we have demonstrated that dominant and subdominant SIV 

epitope-specific CD8+ T cells, indeed, differ in antiviral functional capacity.  

Although an understanding of the relationship between epitope dominance and 

functionality may inform vaccine development, it would be advantageous also to identify the 

factors that contribute to these differences so that a vaccine can be developed that can more 

efficiently manipulate the epitope-specific CD8+ T cells. Therefore, we sought to identify factors 

that influenced the establishment of the differences in frequency of epitope-specific CD8+ T 

cells within an immunodominance hierarchy. Many studies had demonstrated that pMHC:TCR 

binding determines epitope-specific  CD8+ T cell proliferation and expansion and therefore 

frequency [553-556]. For that reason, we chose to examine if pMHC:TCR binding similarly 

determined immunodominance hierarchies. In so doing, we found an association between 

epitope dominance and pMHC:TCR binding, with the dominant p11C epitope exhibiting higher 

affinities than subdominant epitopes. 
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 As previously discussed, it is likely that the differences in the strength of the p11C, 

p54E660, and p68A pMHC binding to their TCRs that was measured in this study contributed to 

the differences in frequency of their epitope-specific CD8+ T cells. However, we found that 

these differences in frequency also were associated with differences in maturation and function 

of these cells. It is tempting to speculate that these differences in maturation and function 

resulted from the differences in pMHC:TCR binding that we measured here. Indeed, many 

studies that have evaluated the role of pMHC:TCR binding found that differences in 

proliferation were often accompanied by differences in function including cytotoxicity and the 

production of cytokines [380, 393, 398, 400, 404, 406-409, 536]. The majority of these studies 

were performed using cell lines where evaluations of maturation are not appropriate. However, 

there are a few more recent studies of the role of pMHC:TCR binding on T cell stimulation that 

have used cells from mice either directly ex vivo or even in vivo. These studies suggested that 

pMHC:TCR binding may indeed affect CD8+ T cell maturation and are discussed below.  

 A study by Denton and colleagues used APLs that bind the mouse OT-1 transgenic TCR 

with different affinities. They found that in vitro stimulation of naïve OT-1 CD8+ T cells with the 

APLs of different TCR affinities resulted in variable extents of CD62L downregulation- the 

stronger the affinity of the APL for the TCR, the more dramatic the CD62L downregulation 

[417]. This suggested that downregulation of CD62L immediately following stimulation was a 

surrogate measurement for the strength with which an epitope peptide binds its TCR. This is 

consistent with the findings in the present study, where we found that the dominant p11C-

specific CD8+ T cells had lower expression of the gene encoding CD62L (SELL) during acute 

infection compared to the subdominant p54AS-specific CD8+ T cells and that this was associated 
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with their TCR affinity (the p11C monomers showed higher affinity for their TCRs than the 

p54AS monomers did for their TCRs).  

Another study by Smith-Garvin and colleagues introduced mutations into the SLP-76 

protein, an essential adaptor protein for TCR signal transduction and T cell activation [565]. 

These mutations were shown to dampen the signaling transmitted by TCR binding, as indicated 

by reduced calcium mobilization and reduced phosphorylation of signal transduction proteins 

following TCR crosslinking. They found this dampened TCR signaling was associated with altered 

in vivo CD8+ T cell maturation that was indicated by an accelerated transition to the less mature 

central memory phenotype. Specifically, following infection with LCMV, epitope-specific CD8+ T 

cells with the mutant SLP-76 displayed a more rapid surface protein re-expression of CD62L and 

IL-7Rα following initial infection and increased percentages of CD27+ and CXCR3+ epitope-

specific CD8+ T cells throughout the immune response [566]. These experiments demonstrated 

that differences in the strength of TCR signal transduction can influence subsequent CD8+ T cell 

maturation. Interestingly, the differences in maturation phenotype that they observed between 

the stronger-signaling wildtype CD8+ T cells and the weaker-signaling mutant CD8+ T cells were 

similar to the differences we observed between the dominant and subdominant SIV epitope-

specific CD8+ T cells in our study. The affinity of the p11C-specific TCRs was greater than that of 

the p54E660 TCRs which was greater than that of the p68A TCRs. These TCR affinities were in 

turn associated with their phenotype; the p11C-specific CD8+ T cells showed lower expression 

of CD62L, IL-7Rα, and CD27 in both acute and chronic SIV infection than p54E660-specific CD8+ 

T cells, which showed lower expression of these molecules than p68A-specific CD8+ T cells. 



 

- 119 - 
 

 Finally, the role of TCR affinity in determining maturation has been more extensively 

characterized for CD4+ T cells and findings from this field may be informative for this discussion. 

Similar to CD8+ T cells, stimulation of CD4+ T cells with APLs of weaker TCR affinities results in 

altered TCR signal transduction and altered effector function such as reduced IL-2 production 

and proliferation. Most strikingly though, is the affect of APL stimulation on CD4+ T cell lineage 

decision. Whereas a TCR signal initiated by binding of a strong-affinity ligand promotes TH1 

differentiation, binding of a weaker ligand diverts CD4+ T cells down the TH2 pathway [567-569]. 

Additionally, weak TCR stimulation in the absence of an inflammatory stimuli favors generation 

of Foxp3+ regulatory T cells [570-573]. Therefore, differences in TCR signaling that occur 

between strong and weak affinity interactions with the TCR can influence T cell maturation, but 

these differences may be more subtle for CD8+ T cells than for CD4+ T cells. Additional studies 

need to be conducted to develop a more thorough understanding of the role of TCR affinity on 

CD8+ T cell maturation. 

The poor in vitro expansion capacity that we observed of the p11C-specific CD8+ T cells 

compared to the subdominant epitope-specific CD8+ T cells during chronic infection at first 

appeared inconsistent with the substantially higher frequency of the p11C-specific CD8+ T cells. 

However, these findings were not necessarily in disagreement and can be explained by the 

differences in antigen-elicited responses between naïve and memory CD8+ T cells. The initial 

stimulation that the p11C-, p54-, and p68A-specific naïve CD8+ T cells received elicited different 

levels of expansion, resulting in the differences in frequency  that define the 

immunodominance hierarchy. As discussed previously, these differences in frequency may be 

due to the differences in pMHC:TCR binding that the present study shows. We also show that 
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following initial stimulation by SIV infection, the different SIV epitope-specific CD8+ T cells 

develop different extents of maturation. As maturation determines proliferative capacity (less 

mature cells exhibit greater capacities to expand than more mature cells) [245, 261], the 

enrichment of the p11C-specific CD8+ T cell population with more mature cells likely resulted in 

its decreased capacity to expand upon in vitro re-exposure to peptide epitope. Therefore, the 

establishment of the SIV epitope immunodominance hierarchy was determined by the 

differential abilities of the naïve p11C-, p54-, and p68A-specific CD8+ T cells to expand in the 

primary response; the differences in expansion capacity observed during chronic infection were 

determined by their differences in maturation. 

 The finding that the protective dominant p11C-specific CD8+ T cells may be elicited by 

stronger TCR interactions suggests that epitope-specific CD8+ T cells of lower frequency or 

functionality may be enhanced by manipulation of the TCR interaction. Indeed, various 

approaches to manipulate the peptide:MHC:TCR interaction for enhancement of CD8+ T cell 

responses have been described and some have even been evaluated in clinical trials. First, 

administration of tetramers to mice primed epitope-specific CD8+ T cell responses and 

facilitated enhanced rejection of tumors expressing the epitope that the tetramer was 

constructed with [574]. This suggests that tetramers constructed with APLs that confer 

enhanced TCR binding may be used to enhance CD8+ T cell responses in vivo. Second, TCRs have 

been engineered to have higher affinities for pMHC complexes and recognition of pMHCs by T 

cells expressing these higher-affinity TCRs resulted in enhanced in vitro cytokine and chemokine 

production as well as enhanced suppression of infected target cells. Such higher-affinity TCRs 

have been engineered not only for recognition of the mouse QL9:H-2Ld pMHC [575] but also for 
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the human HIV SL9:HLA-A*02 pMHC [576]. As TCR-transduced T cells have been used 

successfully for cancer therapies in humans [577-579], T cells expressing enhanced-affinity TCR 

for pathogen-derived epitope peptides is therefore a possibility. Finally, APLs of melanoma 

epitopes that enhance CD8+ T cell functionality have been identified. Vaccination of cancer 

patients with these APLs has shown modest results in eliciting epitope-specific CD8+ T cells that 

has resulted in cancer regression [580, 581]. Although the APLs in these cases were selected 

based on their enhancement of peptide:MHC binding [582], it is possible that APLs engineered 

to have enhanced pMHC:TCR binding may be used in a similar manner [383, 583-586].  

Further studies are required to substantiate the findings of the present study. Analyses 

of the relationships between frequency of epitope-specific CD8+ T cells and the functionality of 

these cells should be examined, not only in immunodominance hierarchies restricted by other 

rhesus monkey MHC class I alleles, but also in mice and human CD8+ T cell immunodominance 

hierarchies. Of interest would be the finding that this relationship exists for HIV-specific CD8+ T 

cell immunodominance hierarchies. This would confirm that similar mechanisms exist for 

determining frequency and functionality of both HIV- and SIV-specific CD8+ T cells and therefore 

would validate the use of the SIV monkey model to test manipulations of immunodominance 

that are relevant to HIV.  

The murine LCMV-infection model would be an ideal system to further dissect the 

relationship between TCR affinity, and the frequency and functionality of the responding CD8+ T 

cells. The LCMV epitope immunodominance hierarchy in LCMV-infected mice is well-

characterized and APLs of multiple dominant and subdominant epitopes could be generated. 
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Epitope-specific CD8+ T cells could be elicited with wildtype epitopes or their APLs. We would 

expect that the APLs would alter the frequency of responding epitope-specific CD8+ T cells 

according to their TCR affinity. Any changes in phenotype of the CD8+ T cells elicited by the 

APLs, compared to that of the cells elicited by the wildtype epitope, can then be identified and 

further investigated.   

In summary, the findings in these studies enhance our understanding of CD8+ T cell 

immunodominance hierarchies, particularly in the context of HIV and SIV infection, and have 

important implications for vaccine design. We revealed that dominant and subdominant SIV 

epitope-specific CD8+ T cells differ in their antiviral capacities; dominant epitope specific CD8+ T 

cells exhibited enhanced cytotoxicity but reduced proliferation and production of cytokines and 

chemokines compared to subdominant epitope-specific CD8+ T cells. These differences were a 

result of different extents of CD8+ T cell maturation. Gene expression analyses showed that the 

divergence in maturation and function occurs immediately following SIV infection.  

 The differences in frequency of dominant and subdominant SIV epitope-specific CD8+ T 

cells in this study were associated with differences in the strength with which their TCRs bind 

their cognate pMHC complexes. Specifically, epitope dominance was associated with relatively 

higher affinities. While the relatively higher affinity of the p11C epitope was driven by its faster 

TCR association rate compared to the subdominant p54E660 and p68A epitopes, the relatively 

lower affinity of the p68A epitope was driven by its faster dissociation rate from its TCR 

compared the p54E660 and p11C epitopes. In light of the findings of the differences in antiviral 
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function also observed in this study, these differences in TCR affinity suggest that they may play 

a role in the differences in CD8+ T cell maturation and function.  
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