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Professor Sarah M. Fortune            Christopher B. Ford 
 

The evolution of drug resistant Mycobacterium tuberculosis 
 

Abstract 
 

Mycobacterium tuberculosis (Mtb) poses a global health catastrophe that has been 

compounded by the emergence of highly drug resistant Mtb strains. We used whole genome 

sequencing (WGS) to directly compare the accumulation of mutations in Mtb isolated from 

cynomolgus macaques with active, latent and early reactivation disease.  Based on the 

distribution of single nucleotide polymorphisms (SNPs) observed, we calculated the mutation 

rates for these disease states.  Our data suggest that during latency, Mtb acquires a similar 

number of chromosomal mutations as would be expected to emerge in a logarithmically growing 

culture over the same period of time despite reduced bacterial replication during latent infection.  

The pattern of polymorphisms suggests that the mutational burden in vivo is due to oxidative 

DNA damage.  

We next sought to determine why some strains of Mtb are preferentially associated with 

high-level drug resistance. We demonstrate that Mtb strains from the East Asian lineage acquire 

drug resistances in vitro more quickly than Mtb strains from the Euro-American lineage. Their 

higher drug resistance rate in vitro reflects a higher basal mutation. Moreover, the in vitro 

mutation rate correlates well with the bacterial mutation rate in humans as determined by whole 

genome sequencing of clinical isolates. Finally, using an agent-based model, we show that the 

observed differences in mutation rate predict a significantly higher probability of multi-drug 

resistance in patients infected with East Asian lineage strains of Mtb. 

 Lastly, we sought to determine the mechanisms Mtb uses to proofread nascently 

polymerized DNA. Through fluctuation analysis of deletion mutants of two potential polIIIε 
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homologs, we demonstrate that neither is responsible for the maintenance of DNA replication 

fidelity.  To explore the possibility that one of these homologs, Rv3711c, participates in an 

unknown redundant pathway, we used transposon capture and sequence (TraCS) to identify 

genes conditionally essential in an Rv3711c deletion mutant. Our analysis suggests that while 

Rv3711c does not participate in proofreading, it may act in an alternative novel DNA repair 

pathway. Taken together, our fluctuation analysis and TraCS data suggest that mycobacteria do 

not use canonical methods of proofreading to maintain genomic fidelity.  
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Chapter 1 – Introduction 

1.1 Mycobacterium tuberculosis infection and treatment 

  Mycobacterium tuberculosis (Mtb), a pathogen of both ancient and modern man1-3, 

continues to cause a global health catastrophe that has in recent times been compounded by the 

emergence of highly drug resistant strains of Mtb4-7. Infection follows inhalation of aerosolized 

bacteria, and leads to either active disease or, in the majority of patients, latent infection8 (Figure 

1.1). From the time of infection, these latently infected individuals have a decreasing likelihood 

of reactivating and developing active disease.  Immunocompromise, through HIV infection, 

senescence or as a result of medication, greatly increases the chance of reactivation. In active 

tuberculosis, patients harbor large a large bacterial burden at diagnosis; in contrast latent 

infection is thought to be characterized by smaller population sizes with potentially reduced 

capacity for growth and mutation.  

 The emergence of drug resistant strains has greatly compromised treatment, leading to 

increased mortality, increased costs, and a desperate need for novel antibiotics. Since the advent 

of antibiotic therapy for the treatment of tuberculosis, drug resistance has been an ever-present 

complication to successful treatment9. This is in large part due to the mutational capacity of the 

bacterial population – a product of mutation rate and bacterial population size. Multidrug therapy 

was advanced as a solution to the rapid emergence of drug resistance during monotherapy10, and 

is in large part successful11. Though the initial combination of PAS and streptomycin has since 

been supplanted by newer, more effective antibiotics12, the fundamental observation remains 

unchanged. Successful treatment of tuberculosis requires prolonged simultaneous therapy with 

multiple antibiotics11.  
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Figure 1.1 Aerosol spread of Mtb leads either to active disease or latent infection.  
Inhalation of aerosolized droplets containing Mtb leads to phagocytosis of Mtb by resident 
aveolar macrophages.  In patients developing active disease, bacterial replication proceeds 
unchecked within the macrophage phagosome, leading to the development of primary and 
disseminated granulomas as disease progresses.  In latently infected individuals, bacterial 
dissemination is controlled, and the infection fails to spread or cause symptoms.  Latently 
infected individuals are at risk for later reactivation, leading to active disease.  
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Despite the application of multiple antibiotics, strains of Mtb resistant to many or all antibiotics 

have arisen5,6,13,14. As mycobacteria have little capacity for horizontal gene transfer and reside in 

a restricted and isolated niche, genetic diversity is principally driven by chromosomal mutation.  

Indeed, in Mtb, all drug resistances are the result of chromosomal mutation and depend on the 

bacterium’s capacity for mutation during the course of infection. In the absence of horizontal 

gene transfer, the most basic model of mutation predicts that the probability of drug resistance is 

the product of each rate of resistance for the components of multidrug therapy and bacterial 

population size. While estimates of in vivo bacterial burden at the time of diagnosis and 

treatment are difficult to obtain, over the range of possible values, multidrug resistance should 

emerge rarely if at all15. 

 How does Mtb generate sufficient genetic diversity to develop multidrug resistance? To 

properly address this question it is important to first understand the natural genetic diversity 

found in populations of Mtb. With the rapid development of whole genome sequencing (WGS) 

technologies, we have unprecedented capacity to detect genetic diversity. WGS is particularly 

powerful when applied to Mtb, which is characterized by a relatively low amount of genetic 

diversity that requires high resolution to be fully captured. WGS data has allowed us to 

reconstruct the phylogeny of Mtb, and in the process learn a great deal about it’s geographic 

distribution16,17.  More recently, studies have investigated the dynamics of evolution, 

transmission and treatment across shorter time scales18-22.  By sequencing strains from small 

outbreaks and single infections, groups have sought to understand the unique evolutionary 

dynamics inherent in the spread of tuberculosis20. Using WGS, we can address a broad range of 

topics - from questions on the transmission and fitness of clinical strains to how Mtb evolves 

over long and short time scales.  Here we have reviewed the insights gained from the use of 
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WGS and discuss those areas still to be addressed, moving from global  (phylogeography), to 

local (transmission chains and circulating strain diversity), to the single patient (clonal 

heterogeneity), to the bacterium itself (evolutionary studies), and finally discussing the platform 

of WGS, its strengths and current limitations.   

1.2 Genetic Diversity in M. tuberculosis. 

1.2.1 Global diversity 

WGS has been proposed as a sort of “gold standard” for strain typing in Mtb.   As such, it 

clarifies previous strain typing approaches used for phylogenetic and epidemiologic studies.  The 

standard genotyping methods are based on repetitive elements that provide limited functional 

information and are highly prone to convergent evolution, limiting their application to 

phylogenic reconstructions. The discriminative power of these methods varies, the results of 

different methods do not always agree, and the diversity of the markers can complicate the 

analysis16,23.   For example, Niemann et al sequenced two isolates of the rapidly spreading Mtb 

Beijing genotype clone from a high incidence region (Karakalpakstan, Uzbekistan)24.  The 

isolates possessed the same genotype by IS6110 restriction fragment length polymorphism 

(RFLP) and mycobacterial interspersed repetitive unit – variable number tandem repeat (MIRU-

VNTR) patterns; however, WGS demonstrated that they differed at 131 separate sites, including 

one large deletion.  Thus, typing methods can miss substantial amounts of genetic diversity, and 

where the overall diversity of circulating clones is limited, standard typing measures are 

insufficient to discriminate between strains.   

As the cost of WGS drops, it is more feasible to consider WGS as a primary tool for the 

typing of Mtb strains that is not subject to the limitations of standard methodologies.  However, 

use of WGS sequence data is subject to its own set of errors.  To demonstrate the power and the 
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pitfalls of this approach, we undertook a phylogenetic analysis of Mtb strains using all of the 

publically available Mtb genomes.   We utilized 55 whole (or nearly whole) genomes 

downloaded and assembled from GenBank, the Broad Institute, or obtained through personal 

communication from the authors of published papers by January 15 of 2011 (Table 1.1).  While 

each genome included more than 4 million bases, these genomes were not fully assembled, nor 

were they annotated in the same manner. To enable an inclusive comparison, we blasted these 

genomes against annotated genes of the reference strain F11 to form multiple strain alignments 

for each gene, including all available strains. Variable sequence positions or SNPs, where at least 

1 of 55 sequences differed from other sequences, were then extracted and concatenated, in the 

order they appear in the reference F11 genome, to create an abbreviated multiple alignment of 

SNP positions from all 55 sequences. A phylogenetic tree was built from these sequences by 

molecular parsimony using PAUP25 (Figure 1.2a).  Genes or regions of the genes that were 

misaligned, where one or several sequences had a high density of SNPs in close proximity, 

indicating possible either sequencing or alignment problems, were excluded from the analysis 

using a computational clean-up algorithm; the resulting trees are provided in Figure 1. The 

17740 aligned positions were in 3324 genes and included a mutation in at least one of 55 strains 

that differed from the other sequences. 

The relatively high number of SNPs we identified is in part the result of natural variation, 

as we have included all genes from 55 nearly complete globally diverse strains, and it is in part a 

consequence of the technical error present in some sequences. In particular, several strains out of 

the 55 available were highly enriched in regional clusters of SNPs, suggesting potentially 

problematic base calls (Table 1.1). The number of clustered SNPs was unusually high in several 

strains (8 strains have greater than 1000 regional clusters of SNPS), which indicates these 
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sequences tended to be noisier than the others. While such clustered SNP regions were excluded 

from our phylogenetic analysis, the not-clustered, stand-alone SNPs in those same strains were 

included in our collection of SNPs for phylogenetic analysis.  It is difficult to algorithmically 

resolve whether any given mutation is of biological origin or is a sequencing artifact.  Not 

surprisingly, the strains that have the highest number of clustered SNPs (Table 1.1) also have 

unusually long terminal branches (Figure 1.2a), a further indication of a higher frequency of 

sequencing error in these strains.  As our intent was to review the whole genome data currently 

publically available, however, we included all 55 sequences here.  While the long terminal 

branch lengths are likely to be contributed to by sequencing error, the approximate location of 

these sequences in the tree is of interest, as the phylogenetically informative SNPs that determine 

the branching order are likely to be valid.  Also, all 55 genomes may offer useful sequence 

information in particular genes of interest.  However, potential problems in these strains should 

be considered for any subsequent analysis. In particular, polymorphisms relating to drug 

resistance and any further studies based on these whole genomes should include manual 

inspection of the alignments. The reconstructed phylogeny of 55 whole genomes (Figure 1.1a) 

was compared to a phylogeny based on a minimal set 45 SNP positions determined by Filliol et 

al16 to be sufficient to resolve and differentiate Mtb and M. bovis isolates (Figure 1.1b).  In 

general, all main lineages were preserved and there is a high level of correspondence between the 

two trees.  Two of the three Beijing strain sub-lineages present in the whole genome tree 

converged into 1 sub-lineage in the 45-SNP tree.  Additionally, F11, the KZN strains, and the 

SUMu strains from Canada were related but clearly distinguishable on the whole genome tree, 

but they were collapsed on the 45-SNP trees.  In contrast, one sub-lineage of the Beijing  
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Figure 1.2 Comparison of phylogenies based on whole genome and targeted SNPs from the 
available WGS data (Table 1.1).  The phylogenies were reconstructed using molecular 
parsimony in PAUP software25. Different lineages are colored in distinct colors, with sub-
lineages colored in different shades of the same color. (a) Parsimony tree based on 17740 SNP 
positions taken from 3324 genes, where at least 1 of 55 sequences differed from other sequences.  
SNPs were extracted from multiple sequence alignments created for each gene using the 
following algorithm. Each annotated gene, from a total of 3941 genes for the reference strain 
F11, was used to perform pair-wise BLASTN search against the other 54 whole genomes. If the 
resulting partial sequence was shorter than the gene in F11, it was augmented by adjacent 
chromosome sequence to the length of the gene of F11. The homologous genes from 55 strains 
were then assembled into files so that each gene had a corresponding file. After assembling 
homologous sequences, the sequences were aligned using MUSCLE (version 3.8.31) to generate 
nucleotide multiple sequence alignments for homologous gene files (total 3596) that has at least 
one non-identical sequence. Resulting gene alignments were used to generate artificial SNP 
sequences, which contained a concatenated version of all SNPs identified (where at least 1 of 55 
sequences differed from other sequences). To minimize inclusion of sequencing errors in these 
artificial SNP sequences, we excluded SNPs that appeared to be clustered in a local region, 
specifically where three SNPs were found in a 10 base pair window when compared to genes in 
F11.  Furthermore we manually checked the files that have are enriched for clusters of mutations 
and excluded 70 problematic files.  Sequences that are highly enriched for clusters of potentially 
problematic bases (Table 1.1) are indicated with the stars. The strains that have the highest 
number of clustered SNPS (Table 1.1) also have unusually long terminal branches, a further 
indication of sequencing artifacts in these strains.  (b) Parsimony tree based on 45 SNP positions 
from Filliol et al16 taken from the same set of 55 genomes. 
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genotype formed its own lineage on the 45 SNP trees (orange cluster, Figure 1.1a, 1.1b).  

Similarly, H37 and close SUMu strains from Canada appeared further from F11, KZN and other 

SUMu strains from Canada on the 45-SNP tree than they appeared on a whole genome tree.  

Taken together, this confirms that the 45 positions determined by Filliol et al can successfully 

resolve the same main lineages that appear in the whole genome analysis and thus can be used 

for initial characterization of isolates, but WGS provides added resolution, which may be of 

value to applications that require finer resolution data.  

Whenever available for the near full-length genomes, we recorded an isolate’s sample 

history: the year and geographic location of isolate collection, and patient history including place 

of birth and drug resistance status (Table 1.1).  This allowed us to relate the isolate’s phylogeny 

with their geographic location and the date of sampling (Figure 1.3).  In agreement with Filliol 

et al., the 55 whole genomes fall into 7 major lineages.  We found 4 distinctive sub-lineages of 

the Beijing strain: 2 sub-lineages formed from strains isolated in USA in 1990-1998 and 2 sub-

lineages formed from strains isolated in Western Cape, South Africa.  Perhaps not surprisingly, 

one of the South African Beijing lineages also includes a strain isolated in San Francisco in 2002 

(Table 1.1, Figure 1.3). 

 In agreement with previous studies16,17,24, the tree revealed large genetic distances 

between isolates that were designated related to the Beijing strain.  The distances between 

different strains within the Beijing sub-lineages appear to be roughly comparable to the distances 

between different F11 and KwaZulu Natal (KZN) lineages, hence the latter are marked by the 

same light green background color on Figure 1.3.  The distances between the F11 / KZN sub-

cluster and Canadian SUMu sequences and H37Rv and H37Ra (colored in distinct shades of 

green on Figure 2) are comparable to the distances between Beijing sub-clusters.  Thus the 
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genetic distances in the hierarchy of relationships in Mtb lineages are not always consistently 

represented by commonly used nomenclature conventions and reference strains.  

1.2.2 Local Diversity 

WGS derived phylogenies build a framework upon which questions about evolution, 

transmission, and drug resistance can be asked.  The last of these is of particular interest as drug 

resistant strains have stymied the treatment of tuberculosis, leading to the need for novel 

therapeutics and carefully designed treatment regimens.  When different levels of drug resistance 

are observed among highly related strains, such as the KZN strains and the Beijing strains from 

the Western Cape of South Africa, it provides an opportunity for improved clarity and resolution 

in mapping the acquisition and spread of drug resistance.  

Using such comparisons, it has become clear that highly drug resistant strains are 

emerging independently in the same geographic locale to a greater degree than previously 

appreciated.   For example, in the Western Cape region of South Africa, the Beijing XDR strains 

are closely intermingled with MDR strains (Figure 1.2).  Standard genotyping methods 

suggested that the Beijing XDR strains emerged once but were undergoing clonal expansion and 

transmission in the region.  However, WGS-based phylogenetic analysis revealed the 

independent appearance of distinct XDR resistance mutations within different MDR sub-lineages 

of the Beijing genotype19. Similarly, in KwaZulu Natal, South Africa, the XDR KZN strains, 

isolated in 2005 and 2006, have a slightly longer phylogenetic distance from their most recent 

common ancestor of the KZN lineage than the MDR KZN strains, isolated in 1994, suggesting at 

first glance that the XDR KZN strains evolved stepwise from the MDR strains.  However, upon 

further inspection of the WGS data, the XDR strains and MDR strains have different rifampicin  
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Table 1.1 (Continued) 
We utilized 55 whole (or nearly whole) genomes downloaded and assembled from GenBank, the 
Broad Institute, or obtained through personal communication from the authors of published 
papers by January of 2011. This table provides the number of clustered SNPs for each sequence. 
For several strains high numbers of clustered SNPs were unusual (8 strains have greater than 
1000 regional clusters of SNPS), and indicated these sequences tended to be more problematic 
than the others. While such clustered SNP regions were excluded from our phylogenetic 
analysis, the not-clustered, stand-alone SNPs in those same strains were included in our 
collection of SNPs for phylogenetic analysis. Whenever available for the near full-length 
genomes, we recorded isolate’s sample history: the year and geographic location of isolate 
collection, and patient history including place of birth and drug resistance status. The total 
number of bases where at least one of 55 strains differed from other sequences was 17740, in 
3324 genes. 
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Figure 1.3
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Figure 1.3 (Continued) Phylogenetic lineages and geographic mapping. Whenever available 
for the near full-length genomes, we recorded isolate’s sample history: the year and geographic 
location of isolate collection, and patient history including place of birth and drug resistance 
status (Table 1.1). This allowed us to relate the isolates phylogeny with their geographic location 
and the date of sampling. Lower part of the figure: same phylogenetic tree that as shown in 
Figure 1.2a. The numbers on the brunches represent bootstrap values obtained using 200 
bootstrap replicates. Sequence names are removed except several reference strains, but the most 
relevant information (genotypes, isolation place, year of sampling) is noted on the tree. As in 
Figure 1A, sequences that are highly enriched for clusters of potentially problematic bases (Table 
1) are indicated with the stars. Each lineage is shown with a distinct background box color, 
which corresponds to the colors of Figure 1.2. The sub-lineages are shown with the shades of the 
same background box color. For example, the Beijing strain-related lineage is shown in shades of 
yellow and orange.  Additionally, drug resistance status is indicated by branch color. 4 colors for 
branches are used: black – drug resistant status of the strain is unknown; blue -- drug susceptible 
(DS); green – mono-resistant to INH or multi-drug resistant (MDR); red – extensively drug 
resistant (XDR), or pre-XDR (resistant to either fluoroquinolones or aminoglycosides). Arrows 
that are the same color as the background boxes from which they originate show the geographic 
places of the sequence isolation on the world map at the upper portion of the figure. The black, 
blue, green and red circles on the map correspond to the drug status of the isolates, the same 
coloring scheme as in the tree. The relative size of the circles corresponds to the number of 
whole genomes isolated in the particular location. The dashed black arrows pointing to the black 
circle in California represent isolates that were sequenced in San Francisco from patients that 
were born in India, China, South Korea and the Philippines. The more detail geographic 
distribution of whole genome isolates from South Africa is shown on insert at the right lower 
corner of the figure.   
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 and pyrazinamide resistance mutations, indicating that these strains emerged independently from 

monoresistant isolates18. 

 The high resolution of WGS based phylogenetic analysis has been informative in other 

public health settings, most notably in the context of outbreak tracing.  A recent outbreak of Mtb 

was detected in Vancouver, British Columbia, and by standard typing methods, it was defined as 

a single clonal outbreak 20.  The authors initially applied MIRU/VNTR to determine a source 

case and transmission chain; however, the MIRU-VNTR pattern was identical across all isolates 

and the addition of contact tracing did not reveal a source case.  The authors sequenced the 

genomes of 36 isolates, 32 from the outbreak and 4 historical isolates from the region with an 

identical MIRU-VNTR pattern.  Concatenation of polymorphic loci and subsequent phylogenetic 

analysis revealed a dendrogram with two primary branches, indicating two distinct transmission 

chains.  Overlaying the phylogenetic analysis with a social network analysis, Gardy et al 

identified the transmission chain through which the infection spread.  This study serves as the 

prototype for the use of WGS in outbreak tracing for Mtb, demonstrating its effectiveness 

particularly in low-endemic countries where even high resolution (24-loci) MIRU-VNTR is 

likely to be uninformative.   

1.2.3 Individual diversity  

The resolution provided by WGS also allows researchers to investigate long-standing 

assumptions about the nature of tuberculosis.  While Mtb infection is typically thought to be 

clonally homogeneous, recent studies have challenged this idea suggesting there is more 

heterogeneity within the infecting bacterial population than expected26,27.  There are several 

potential mechanisms by which bacterial population heterogeneity might exist within a host –  
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(1) an individual may be simultaneously infected by multiple strains, (2) an individual may be 

super-infected, or reinfected by a new strain, or (3) genetic diversity may arise in the bacterial 

population spontaneously during the course of infection (Figure 1.4).  While the level of 

heterogeneity created by each of these mechanisms varies, WGS provides both the depth of 

coverage and sensitivity necessary to accurately assess population heterogeneity and begin to 

probe its functional consequences. 

  Recurrent Mtb infection is a common clinical problem.  Many studies have used a variety 

of genotyping techniques to identify differences between the original strain and the recurrent 

one.  Where these strains are discordant, patients are typically assumed to have been infected 

with a second strain28-33.  Indeed, mixed infections have been reported to occur in up to 54% of 

patients sampled34.  Clinically, infection with multiple strains can lead to apparent differences in 

drug susceptibility35-37, which may only be one aspect of the differences between strains31 

making diagnosis and treatment significantly more complicated.  It is likely that with additional 

investigation and better sampling methods, mixed infections will be increasingly recognized, and 

the application of WGS will provide greater resolution in these studies, indentifying genetically 

distinct though highly related strains.  

Within-host evolution of strains is another important source of genetic heterogeneity, and 

the principle source of de novo drug resistances.   Saunders et al use deep resequencing of serial 

sputum isolates to characterize genetic diversity in a single patient infected with drug susceptible 

Mtb and in whom drug resistance evolved22.  Serial isolates were obtained over a 12-month 

period from presentation with an initial drug susceptible infection through stepwise development 

of multiple drug resistance.  Interestingly, only mutations conferring drug resistance were 

identified, with no additional mutations identified in non-repetitive regions.  These results 
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suggest that neither the host immune system nor exposure to antibiotics generates a 

hypermutable state in Mtb.  However, limits in sampling and tracking in vivo populations of Mtb 

make it difficult to fully understand the evolutionary dynamics of patient isolates, and such 

isolates can only be obtained from patients with active disease making it difficult to assess the 

evolution of the bacterium throughout all stages of infection. 

Indeed, until recently, it was assumed that Mtb has little capacity to acquire new 

mutations in the host because the bacterium is presumed to be quiescent through much of that 

time.   However, by applying WGS to Mtb isolates from the cynomolgus macaque model, we 

have recently shown that the mutation rate (mutations/bp/day) in active and latent disease is 

roughly equivalent, suggesting that bacteria continue to acquire genetic diversity, even during 

latency21 (Chapter 2).  Additionally, our results suggest that lesions are both genetically 

independent and genetically distinct, such that bacteria sampled from one lesion may not 

represent the true diversity present within the patient (Figure 1.4b). Thus, if extrapulmonary 

dissemination occurs from any one lesion, the extrapulmonary sites would be genetically related 

to that lesion but distinct from others. These results have particular relevance when taken in the 

light of our primary sample source – sputa.  Only bacteria present in cavitary lesions open to the 

airway will be present in sputa samples, and the cavitary lesions producing sputa may change 

dynamically during the course of infection as old lesions resolve and new lesions form.  Future 

studies investigating in-host bacterial diversity may provide additional insight into these issues.  

The overall picture of bacterial diversity is clearly a complex one – with diversity 

existing between patients, within a patient, and within a lesion.  Mixed Mtb infection (whether 

by mixed inoculum, super-infection, or in-host evolution) raises a set of important questions.  
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Figure 1.4 Sources of within individual genetic diversity a) In-host heterogeneity complicates 
the study of the genetic diversity and makes treatment and diagnosis of tuberculosis more 
difficult.  There are several potential mechanisms by which heterogeneity might exist within the 
host – (1) a host may be simultaneously infected by multiple strains, (2) a host may be super-
infected, or reinfected by a new strain, or (3) heterogeneity may arise spontaneously during the 
course of infection. b) Experimental results suggest that lesions are both genetically independent 
and genetically distinct, such that bacteria sampled from one lesion may not represent the true 
diversity present within the patient.  Thus sputa samples are likely to under-estimate the amount 
of diversity present within a single patient, and serial sputa samples may not originate from the 
same lesion within the host.   

super infectionmixed infection  in-host evolution

Figure 3

Sputum 
Sample

a) b) 
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Could apparent phenotypic classifications (such as drug resistance) based on culture sometimes 

be incorrect due to mixed populations, leading to misdiagnosis in clinical settings? Can we look 

at key SNPs from pooled sweeps of colonies to estimate their frequencies in mixed cultures and 

rapidly detect low frequencies of drug resistance mutations in an individual?  Finally, is Mtb 

superinfection enhanced in HIV high prevalent populations? For HIV-infected individuals, rapid 

HIV-1 depletion of Mtb-specific CD4 T cells can aggravate Mtb infections38, raising the 

possibility that immune dysfunction in HIV-infected people may make them more susceptible to 

serial Mtb infection, including superinfection with drug resistant strains. WGS will allow us to 

implement carefully crafted studies to address these important questions.   

1.2.4 Bacterial diversity 

The accumulation of WGS data allows us to assess the genetic diversity across the 

genome, seeking signatures of selective pressure.  Selection can be quantified by relating the 

ratio of nonsynonymous genetic changes to synonymous changes (dN/dS), where a dN/dS 

greater than one is thought to reflect positive selection for increased diversity.  Recently, Comas 

and colleagues used WGS to assess selection in a panel of 21 clinical strains39.  Not surprisingly, 

essential genes had a lower dN/dS (0.53) than non-essential genes (0.66), indicating that while 

the genome overall is under purifying selection, essential genes are under greater purifying 

selective pressure.  The authors then examined an experimentally defined set of T-cell epitopes40, 

hypothesizing that these might represent regions of increased functional diversity as a 

mechanism of immune evasion.  Intriguingly, the T-cell epitopes analyzed appear to show the 

greatest amount of sequence conservation, with a dN/dS less than that of essential genes (0.25 

for the epitope-coding region of the ORF).  This may suggest that Mtb growth and transmission 

requires T-cell recognition, and therefore that the bacterium actually benefits from the host T-cell 
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response. While further work is needed to clarify the dynamics of host-pathogen co-evolution in 

Mtb, these early results suggest that Mtb may depart from classic paradigms.  

1.2.5 Challenges in WGS 

While the capacity to perform low cost, high quality whole genome sequencing has 

transformed phylogenetic and population analyses in Mtb, there are some limitations with the 

current sequencing methodologies that can significantly skew our interpretation of the data.  

Most of the analyses described above hinge on the power of WGS to identify SNPs.  Deletion or 

insertion of entire genes or large regions can be detected relatively easily (by absence of 

expected reads, or presence of novel contigs relative to a reference genome), and gene loss in 

particular has been frequently noted as a source of variability among mycobacteria41-43.  

However, polymorphisms in repetitive regions, gene duplications, chromosomal rearrangements, 

and copy-number changes of tandem repeats, are more challenging to detect by next-generation 

sequencing methods, such as Illumina, and can have significant biologic consequences. Paired-

end read technology is quickly becoming the standard in generating WGS data, and offers some 

solutions to the problem of resolving these otherwise inaccessible regions.    

Repetitive Regions:  The limitations in sequencing repetitive regions apply to several 

genes and repeat elements scattered throughout the Mtb genome.  These include some lipid 

biosynthetic genes as well as insertion elements, including IS6110, MIRUs and the clustered 

regularly interspaced short palindromic repeats (CRISPR) elements, which have been exploited 

extensively for strain typing. One example of the pitfalls associated with the sequencing of these 

regions has emerged from the debate over whether there is indeed purifying selection on T cell 

epitopes as suggested by Comas et al39.  Uplekar et al. recognized that the genes encoding many 

of the ESX proteins, a family of secreted proteins that are represent strong CD4 and CD8 T cell 
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antigens, were extremely homologous and thus poorly assessed by Illumina technology.  Thus, 

the authors used Sanger sequencing to resequence these genes from a panel of clinical isolates 

and found, contrary to the previously mentioned report, that some of these genes are highly 

polymorphic, in part because of high levels of recombination44.  When this diversity is taken into 

account, these antigens appear to be under diversifying selection.  Similarly other important 

antigens including the PE and PPE genes are simply not accessible to short read sequencing 

technology and thus may obscure significant antigenic variation.  

Genomic Duplications:  Large-scale genomic duplications have been observed among 

mycobacterial strains, and in some cases, are postulated to have an influence on phenotype.  For 

example, some members of the Beijing strain family have recently been found to have a large-

scale duplication of ~350kb in the region of Rv3128c to Rv3427c45, including DosR, the 

transcriptional regulator of the hypoxic response46.  This type of polymorphism is difficult to 

detect with short reads because there are multiple alternative ways to build contigs, producing 

ambiguity in assembly. Current advances in data analysis, including de Bruijn graph methods47 

and methods of statistical analysis48 are designed to detect signatures of large duplications, often 

using variations in depth of coverage to detect when large regions have been copied.  

Genomic rearrangements:  Genome rearrangements are difficult to detect with short 

reads because of the localized nature of the lesion.  Genomic sequence on either side of the 

cross-over point might be well-covered by reads, but detection of the rearrangement point itself 

requires longer reads (e.g. from Roche 454) that span the discontinuity, or paired-end/mate-pair 

data as evidence of the connectivity.  However, genome rearrangements have not been reported 

among M. tuberculosis strains (although there is a chromosomal inversion between M. 

tuberculosis and M. leprae49.  The wild-type (drug-sensitive) KZN 4207 strain isolate from the 



 21 

KwaZulu-Natal region of South Africa was initially reported to have an inversion 

(http://www.broadinstitute.org/annotation/genome/mycobacterium_tuberculosis_spp/), although 

sequencing of the same strain in another lab did not find evidence for this inversion18.  In 

practice, the large-scale genomic stability of Mtb justifies the use of a comparative assembly 

approach50 in which sequencing data for new M. tuberculosis strains are aligned against H37Rv, 

F11,  or the genome sequence of another representative strain for comparative analysis. 

1.2.6 Future perspectives 

 Because of the paucity of genetic diversity in Mtb, WGS is a uniquely powerful tool, 

providing both the sensitivity to detect rare genetic events, and the broad applicability to detect 

multiple forms of genetic change.  Already, we have learned a great deal about the bacterium and 

the nature of the disease.  Early reports show surprising amounts of heterogeneity in bacterial 

populations, even between strains with identical MIRU/VNTR, RFLP patterns, or spoligotypes.  

Many questions remain, however.  Perhaps chief amongst these is the true nature of in-host 

diversity: its clinical consequences and the mechanisms behind it.  WGS has the capacity to 

address these and other questions with minimal bias and unprecedented sensitivity.  However, it 

will be important to remember that current WGS methodologies do not cover all regions of the 

genome and there is likely to be important biology hidden in these uncharted areas. 

 Through the use of new tools, such as WGS, and traditional methodologies such as Luria 

Delbrück fluctuation analysis and molecular genetics, we can begin to quantify the determinants 

of Mtb mutation in the setting of host infection.  Ultimately, these studies will allow us to better 

understand and predict the emergence of drug resistance and develop treatment protocols geared 

towards suppressing novel resistances.   



 22 

1.3 Summary of Aims 
 The aims of this dissertation probe the dynamics and mechanism of mutation in Mtb, 

with the ultimate goal of improving our understanding of the evolution of drug resistance in this 

global pathogen. Prior to this work, all data on drug resistance rates and mutation rates in Mtb 

were derived from in vitro experimentation.  In Chapter 2, the dynamics of mutation are 

quantified in vivo using the cynomolgus macaque model of disease and WGS. This per base 

mutation rate is comparable to the per base mutation rate observed in vitro.  As the estimate of  

mutation rate was similar in both active disease and latent infection this work suggests that Mtb 

retains surprising capacity for mutation during latency.   

 Clinical evidence suggests that strains of the East Asian Beijing sublineage are more 

commonly associated with drug resistance, relative to their association with drug susceptible 

disease.  To test the hypothesis that certain strains more rapidly acquire drug resistance, in 

Chapter 3 we have used a combination of fluctuation analysis and mathematical modeling to 

demonstrate that the evolution of multidrug resistance is possible before the onset of treatment, 

and based on the estimated drug resistance parameters of East Asian strains, is more likely in 

patients infected with strains from this lineage.  

 The mechanisms responsible for repair, recombination, and replication of DNA in Mtb 

are unclear. From homology and limited experimental studies, it is becoming clear that these 

core processes are fundamentally divergent from other organisms.  In Chapter 4, the role of 

potential proofreading enzymes is investigated.  From both functional studies with exonuclease 

deletion mutants and transposon capture and sequencing experiments in those same mutants, it is 

clear that mycobacteria do not employ canonical mechanisms of proofreading to maintain 

genomic fidelity.   
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Chapter 2 – Use of whole genome sequencing to estimate the mutation rate of 

Mycobacterium tuberculosis during latent infection 

2.1 Introduction 

Mycobacterium tuberculosis (Mtb) has generated a global health catastrophe that has been 

compounded by the emergence of drug resistant Mtb strains. In active tuberculosis, patients 

harbor large numbers of replicating organisms and are treated with multiple antibiotics to prevent 

the emergence of novel drug resistance mutations. In contrast, Mtb from latent infection is 

thought to have little capacity for mutation and is typically treated with a single antibiotic, 

isoniazid (INH). Recent epidemiologic studies have found that INH preventive monotherapy 

(IPT) for latent tuberculosis is associated with INH resistance51,52. In Mtb, all drug resistances 

are the result of chromosomal mutations and depend on the bacterium’s capacity for mutation 

during the course of infection. Therefore, we seek to define the mutational capacity of the 

bacterium during infection to better predict the rate at which drug resistance can be expected to 

emerge in active, latent, and reactivated disease.  

We used whole genome sequencing to compare the accumulation of mutations in Mtb 

isolated from cynomolgus macaques with active, latent and reactivated disease. Based on the 

distribution of SNPs observed, we calculated the mutation rates for these disease states. Our data 

suggest that Mtb acquires a similar number of chromosomal mutations during latency as occurs 

during active disease or in a logarithmically growing culture over the same period of time despite 

reduced bacterial replication during latent infection. The pattern of polymorphisms suggests that 

the mutational burden in vivo is due to oxidative DNA damage. Thus, we demonstrate that Mtb 

continues to acquire mutations during latency and provide a novel explanation for the 
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observation that isoniazid monotherapy for latent tuberculosis is a risk factor for the emergence 

of INH resistance51,52.   

2.2 Results 

Conventional approaches to measuring bacterial mutation rates cannot be applied to Mtb in 

vivo. However, high-density whole genome sequencing (WGS) allows us to assess the capacity 

of Mtb for mutation over the course of infection with minimal bias and maximum sensitivity53-55. 

As the nonhuman primate is the only animal model that mimics the broad range of disease seen 

in human tuberculosis56,57, we performed WGS on the infecting strain of Mtb, Erdman, and 33 

isolates from nine cynomolgus macaques that represented the three major clinical outcomes of 

infection (active disease, persistently latent infection and spontaneously reactivated disease after 

prolonged latency57) (Figure 2.1). Genome coverage averaged 93% across these isolates, and 

average read depth was 117x across the genomes (Supplementary Table 2.1). Putative 

polymorphisms were identified using both a scaffolded approach18,58 and a de novo assembly 

method59, and polymorphic sites were validated by Sanger sequencing or through independent 

identification by WGS. Through these analyses, we identified 14 unique single nucleotide 

polymorphisms (SNPs) (Figure 2.2). There was no evidence that these SNPs were present in the 

inoculum either from repeated deep sequencing and PCR resequencing of the inoculum, or from 

shared polymorphisms between bacteria from different lesions. While we have used WGS 

previously to detect insertions and deletions18, we did not detect either in the 33 genomes 

analyzed. Within lesions, we identified both shared and independent polymorphisms as would be 

expected if the SNPs accrued within lesions over the course of the infection.  
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Figure 2.1 Experimental protocol for assessing mutational capacity in different disease 
states 1) Cynomolgus macaques were infected with ~25CFU of Mtb Erdman via bronchoscopy. 
2) Animals were euthanized in the indicated stages of disease for strain isolation. 3) 18 
pathologic lesions were plated for bacterial colonies. 33 strains were isolated for WGS. 4) 
Genomic DNA was isolated from these strains and then analyzed via Illumina sequencing. 5) 
Reads were assembled using both de novo and scaffolded approaches. 15 SNPs were predicted 
by both methodologies. Insertions and deletions were not detected using either methodology. 6) 
Sanger sequencing confirmed 14 of the 15 putative SNPs identified by both scaffolded and de 
novo analysis.  

15 SNPs

  

14 SNPs

Active (6)

Latent (6)

Reactivated (5)

1) Infect (~25CFU) 2)Isolate lesions 3)Plate for CFU

4)Illumina Sequence5)Scaffolded &
de novo assembly

6)Validate each SNP
by resequencing

Figure 1
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Figure 2.2 WGS identifies SNPs in strains isolated from animals with active, latent, and 
reactivated latent infection. SNPs were predicted through WGS in 33 Mtb strains isolated from 
nine cynomolgus macaques at various stages of disease. All SNPs predicted through WGS were 
confirmed via Sanger sequencing or through independent identification by WGS. Genome 
coverage and the original notation used to describe each animal are found in Supplementary 
Table 1. The total length of infection in days is listed for each animal below the animal identifier 
(A-I). Lesion locations are abbreviated as follows: LLL – left lower lobe, RLL – right lower 
lobe, RML – right middle lobe, RUL – right upper lobe, ACL – accessory lobe, CN – cranial 
lymph node, BN – bronchial lymph node. Inoculum represents the sequence at the given 
coordinate of the inoculating strain, Mtb Erdman.  
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We next sought to quantify the average mutation rate of the bacterium in the different 

stages of clinical disease. The mutation rate (µ) of a bacterium in vivo can be estimated from the 

number of mutations (m) that have occurred for a genome of known size (N) over a known 

number of generations (t/g where t is length of infection and g is generation time). However, the  

generation time of Mtb in humans or non-human primates is unknown. In vitro, Mtb has a 

generation time of approximately 20 hours under nutrient rich conditions60. In mice, the bacterial 

organ burden increases at roughly this rate during the first weeks of infection, but the subsequent 

onset of the adaptive immune response causes bacterial replication to slow substantially or cease 

entirely61,62. In clinical latency in nonhuman primates and humans, the immune response limits 

infection to the point that there are no clinical or radiographic signs of overt disease. This is 

thought to be associated with a dramatic slowing or cessation of bacterial replication, although 

we have recently shown that lesions from clinically latent cynomolgus macaques display a range 

of histopathology and bacterial burdens, suggesting a spectrum of bacterial physiologies may 

occur in latency63,64.  

Because of the inherent uncertainty in the generation time of Mtb in vivo, we estimated the 

mutation rate across a broad range of generation times (18-240 hours), calculating the rate that 

would be required to generate the number of polymorphisms identified by WGS (Figure 2.3a-c). 

In order to compare the mutation rate of bacteria from each clinical condition, we derived a 

lower limit for the bacterial mutation rate in vivo, which we define as the predicted mutation rate 

per generation if the in vivo generation time were equivalent to the in vitro generation time of 20 

hours, µ(20hr). While Mtb is likely to have a much longer generation time in vivo, especially 

during prolonged latent infection, we use µ(20hr) as a highly conservative boundary estimate of 

the in vivo mutation rate that allows us to directly compare the mutational capacity of the  
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Figure 2.3 The mutational capacity of strains from latency and reactivated disease is 
similar to that of strains from active disease or in vitro growth. (a-c) Mutation rate (µ) was 
estimated based on the number of unique SNPs (m) observed in each condition (4 active, 3 
latent, 7 reactivated). This calculation was performed over a range of generation times (g, 18-240 
hours per generation) to allow for the uncertainty in growth rate in vivo. The probability of 
observing µ when g is fixed at any given time was determined to build the probability 
distribution function around each estimate and to define the 95% confidence intervals. The single 
base mutation rate of the bacterium during in vitro growth (µin vitro) was determined by 
fluctuation analysis (Supplementary Figs. 1a-c) and is indicated by an arrow. In each clinical 
condition, µ20 (the predicted mutation rate if the generation time in vivo were as rapid as the 
generation time in vitro) is similar to µin vitro. Generation time in vivo is predicted to be 
substantially slower than in vitro, and thus the mutation rate must be proportionally higher to 
produce the observed number of SNPs. (d) Given the uncertainty in generation time, a mutation 
rate per day can be calculated to determine the rate at which mutations occur regardless of 
generation time. Mutations occur at a similar rate per day regardless of the disease status of the 
host. Error bars represent 95% confidence intervals.   
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bacterium in different in vivo conditions. Strikingly, we found that the bacterial population’s 

capacity for mutation, µ(20hr), during latency (2.71x10-10) and reactivated disease (3.03x10-10) is 

equivalent to that of Mtb from animals with active disease (2.01 x10-10) (Table 2.1). Mutation 

rate can also be calculated as the number of mutations that occur per day of infection rather than 

per generation. We therefore calculated the mutation rate per day required for the bacterial 

populations in each disease state to acquire the number of polymorphisms that we identified by 

WGS (Figure 2.3d). Our data indicate that in macaques with active, latent and reactivated 

disease, the bacterial populations acquire mutations at the same rate over time, regardless of the 

number of bacterial replications that have occurred. 

We then sought to benchmark these rates against the mutation rate of the bacterium in 

vitro. Luria and Delbrück fluctuation analysis measures the rate at which coding polymorphisms 

conferring a selectable phenotype arise under stable in vitro conditions65. While standard and 

widely applied, this approach is limited in that it only measures the rate of a small set of coding 

mutations within a single region of the genome and is therefore not as sensitive as WGS. 

However, the fluctuation analysis derived mutation rate can be converted to a per base mutation 

rate by defining the number of mutations conferring resistance66 and then compared to the 

mutation rate determined with WGS. Using fluctuation analysis and scoring for the acquisition of 

rifampicin resistance, we found that the rate of resistance is 2.1x10-09 (Supplementary Figure 

2.1a,b), consistent with or slightly higher than previously published values for Mtb67,68. We then 

used Sanger sequencing to define the number of coding mutations conferring rifampicin 

resistance under our growth conditions and found it occurred through ten unique polymorphisms, 

consistent with previous reports69 (Supplementary Figure 2.1c). Dividing the phenotypic rate 
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by the target size, we determined that the in vitro mutation rate of the inoculating strain 

(Erdman) is µin vitro=2.1x10-10. Thus µ(20hr), our conservative estimate of the in vivo mutation 

rate from every disease state, is highly similar to the bacterium’s mutation rate observed during 

in vitro growth.  

Why does the bacterial population in macaques with clinically latent infection acquire 

mutations at a similar rate to rapidly replicating bacteria in vitro? One possibility is that Mtb 

could be actively dividing during the entire course of prolonged clinical latency, perhaps 

balanced by robust killing. However, though the generation time of Mtb in animals or humans 

with latent infection is unknown, several lines of evidence suggest that Mtb replication slows 

during clinical latency61-64. If the generation time slows, the mutation rate would have to be 

proportionally higher to generate the number of mutations observed. For example, if Mtb from 

animals with latent infection replicate on average every 135 hours, as in mice after ten weeks of 

chronic infection61, the bacterial population must have an average mutation rate per generation of 

1.80x10-09, nearly an order of magnitude greater than the in vitro mutation rate (Table 2.1).  

An alternative interpretation is that the mutational capacity of Mtb during latent infection is 

determined primarily by the length of time the organism spends in the host environment rather 

than the replicative capacity and replicative error of the organism during infection. We noted that 

eight of the ten polymorphisms that we identified in our isolates from animals with persistent 

latent or reactivated latent infection are possible products of oxidative damage, either cytosine 

deamination (GC>AT) or the formation of 8-oxoguanine (GC>TA) (Figure 2.4a). This is 

consistent with the model that Mtb faces an oxidative environment in the macrophage 

phagolysosome70,71 and data indicating that genes involved in the repair of oxidative damage are 
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essential for bacterial survival during murine infection72. In addition, we found that the pattern of 

polymorphisms in Mtb from cynomolgus macaques is similar to the pattern of neutral  

Table 2.1 The predicted mutation rate for biologically relevant generation times. 

Gen. 
Time 

(hrs) (g) 

Growth 
Condition 

µ(g)active, 
(95% CI)a 

µ(g)latent, 
(95% CI)a 

µ(g)reactivated, 
(95% CI)a 

20 Rich Media 2.01x10-10 

(8.09x10-11,4.15x10-10) 
2.71x10-10 

(5.57x10-11,7.89x10-10) 
3.03x10-10 

(1.22x10-10,6.24x10-10) 
45 Macrophage 4.77x10-10 

(1.30x10-10,1.22x10-9) 
5.99x10-10 

(1.23x10-10,1.75x10-9) 
6.71x10-10 

(2.70x10-10, 1.38x10-9) 

135 
Mouse 

Infection at 
10 weeks 

1.43x10-9 

(3.90x10-10,3.66x10-9) 
1.80x10-9 

(3.70x10-10,5.25x10-9) 
2.01x10-9 

(8.09x10-10,4.15x10-9) 
 

aMutation rates were estimated using the equation shown µ=m / [N*(t/g)], over g = 18 to 240 
hours. The generation time (g) was varied from 18 to 240 hours, t represents total time of 
infection in hours and N is equal to the number of bases sequenced. The values shown represent 
the predicted µ and 95% confidence intervals of a bacterial population in animals with active, 
latent or reactivated disease estimated for the indicated, biologically relevant generation 
times60,61,73. 
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polymorphisms that emerged during the evolution of extensively drug resistant Mtb strains in 

patients from South Africa (Figure 2.4a)18. Thus, the mutational capacity of Mtb during latent 

infection as well as the spectrum of those mutations suggests that the dominant source of 

mutation during latency is oxidative DNA damage rather than replicative error74 (Figure 2.4b). 

This may occur because the immune response that results in latent infection causes more 

oxidative damage to the bacterial DNA63,75 or because a portion of the bacteria may enter a 

metabolically quiescent state in which DNA repair is diminished76,77. 

2.3 Discussion 

Thus, using WGS, we demonstrate that Mtb has greater mutational capacity in latency and 

early reactivation disease than predicted by in vitro measurements of mutation rate and estimates 

of in vivo generation time. These data indicate that Mtb retains the ability to acquire drug 

resistance mutations during latency. The rate at which clinical drug resistance will emerge after 

IPT treatment of latently infected individuals harboring an initially drug-sensitive population 

also depends upon the number of bacteria in a latently infected individual and the rate of 

reactivation, which is low in immunocompetent individuals. Indeed, there is only a modest 

increased risk of INH resistance after IPT in immunocompetent populations51,52, some of which 

may be attributable to selective killing of susceptible bacterial populations, leaving only resistant 

populations to reactivate78. Our results suggest that in addition to these mechanisms, part of the 

increased risk of INH resistance after IPT may be due to selection of monoresistant mutants that 

arise during latency. IPT is now being recommended globally for HIV+ individuals with 

clinically latent tuberculosis where bacterial burden and the rate of treatment failure may be 

higher because of immunocompromise79. If our data from the macaque model are predictive of 

the mutational capacity of Mtb in HIV+ individuals, INH monoresistance could arise at a  



 34 

 

 

Figure 2.4 Mutations in Mtb isolated from macaques with latent infection and related 
human isolates are putative products of oxidative damage. (a) Ten of the fourteen mutations 
observed in this study could be the product of oxidative damage: the deamination of cytosine 
(GC>AT) or the production of 7,8-dihydro-8-oxoguanine (GC>TA) by the oxidation of guanine. 
One of each type of mutation observed was seen in active disease (four mutations total). In 
contrast, eight of ten mutations observed in latent and reactivated disease are potential products 
of oxidative damage. There is a similar mutational spectra observed in the synonymous SNPs 
identified by WGS of a set of closely related strains from South Africa18. (b) These observations 
lead to a model of mutational pressures on Mtb during active disease and latent infection in 
which oxidative damage may play a central role in the generation of mutation. 

a

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Latent and Reactivated 

AT>GC GC>AT AT>CG GC>TA AT>TA GC>CG

N
u

m
b

er

Polymorphism

*

*

Drug susc. KZN, sSNP 

MDR/XDR KZN, sSNP 

* Oxidative Mutation

Infection

Active
Disease

Latent
Disease

Oxidative
 Damage

chromosomal mutation

Active 
Metabolism 
and 
DNA Repair

Reduced
Metabolism

and 
DNA Repair

Rapid 
Replication

Reduced
Replication

Replicative 
Error

Oxidative
Damage

DNA
Repair

b



 35 

 substantial rate. These findings emphasize the importance of drug resistance testing and careful 

monitoring for treatment failure in these patient populations. 
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2.5 Materials and Methods 

Preparation of isolates 

Animals were infected as described previously57 via bronchoscopy with a small number (~25) of 

organisms. Like humans, macaques developed either active disease or controlled latent infection. 

In latency, animals became clinically asymptomatic, without microbiologic or radiographic 

evidence of disease. Clinically latent animals were followed as described previously57 for 

prolonged periods of time in the absence of treatment. Spontaneous reactivation of latent 

infection occurred in a small number of animals. Animals were euthanized at the indicated times 

after infection and lesions identified on necropsy were plated for bacterial colonies (Figure 2)57. 

Colonies from necropsy were subsequently streaked onto LJ slants and expanded for extraction 

of genomic DNA. Minimal expansion occurred between isolation of strains and extraction of 

genomic DNA.  

 

Illumina Sequencing 

 Two µg of genomic DNA from each isolate were used for sequencing with the Illumina Genome 

Analyzer (Illumina). Single-read & paired-end read sequencing was performed with read lengths 

of 36 bases or 75 bases and a target coverage of at least 3 million high quality bases. Libraries 

were prepared using standard sample preparation techniques recommended by the manufacturer. 

Libraries were quantified using a Sybr qPCR protocol with specific probes for the ends of the 

adapters. The qPCR assay measures the quantity of fragments properly adapter-ligated that are 

appropriate for sequencing. Based on the qPCR quantification, libraries were normalized to 2nM 

and then denatured using 0.1 N NaOH. Cluster amplification of denatured templates occurred 

according to manufacturer’s protocol using V2 Chemistry and V2 Flowcells (1.4mm channel 
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width). Sybr Green dye was added to all flowcell lanes to provide a quality control checkpoint 

after cluster amplification to ensure optimal cluster densities on the flowcells. Flowcells were 

sequenced on a Genome Analyzer II, using V3 Sequencing-by-Synthesis kits and analyzed with 

the Illumina v1.3.4 pipeline. Standard quality control metrics including error rates, % passing 

filter reads, and total Gb produced were used to characterize process performance prior to 

downstream analysis. Paired-end reads of 51 bases were acquired and analyzed as described 

previously18. Short sequence read data is available on the NCBI SRA (accession numbers in 

Supplementary Table 2.1) and on an independent site hosted by the Broad Institute and linked 

through the TB Database (see URLs).  

 

Data filtering and assembly 

Two read lengths were generated (Supplementary Table 2.1). Prior to mapping or assembly, the 

2x75 bp reads were trimmed to 48 bases and filtered. Any read containing an unknown base was 

discarded. Reads with homopolymeric runs of A/Ts greater than nine bases or G/Cs greater than 

ten bases were discarded. Reads with an average quality score of less than 20 were removed. On 

average greater than 8,000,000 reads were retained after filtering. The 36 bp reads were not 

filtered. For de novo assembly, reads were processed with Edena v2.1.159 in overlapping mode 

with the default parameters to allow for the detection of insertions and deletions as well as SNPs. 

In assembly mode, “strict” was enforced and independent assemblies were generated with length 

overlaps ranging from position 23 to 37 bases. Assemblies generating the largest N50 values 

were selected for polymorphism discovery. Each assembly was analyzed by pair wise 

comparison using the MUMmer script, dnadiff80. Polymorphisms were further processed from 

the ‘SNP’ files with Perl scripts and mapped to the reference genome H37Rv (GenBank 
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Accession AL123456). For scaffolded assembly, Illumina reads were mapped to the reference 

genome Haarlem with MAQ v0.7.158. Illumina fastq files for each pair were converted with 

sol2sanger, individually mapped to the reference and merged together for each isolate. Three 

mismatches in the alignment seed were allowed during mapping. A minimum read depth of ten 

was required to call SNPs and remaining parameters were defaults from the script easyrun. For 

51bp paired end reads, a minimum read depth of five was required to call SNPs. For 36bp reads, 

reads were aligned to the reference using easyrun defaults except that we allowed up to three 

mismatches in the seed. For the Erdman inoculum, four runs were merged to generate the 

assembly. As this represented the first WGS of the Erdman strain of Mtb, multiple Mtb finished 

genomes were used as references in preliminary alignments. The Haarlem sequence resulted in 

the fewest number of SNPs and was selected as the reference sequence for the remainder of the 

alignments (see URLs). Only sites of difference between the experimental isolates were pursued 

for further analysis. A master list of sites was created and calls for each site from all samples 

were extracted with the MAQ command “pileup”, combined into a table and inspected manually. 

All polymorphic loci were validated either by Sanger sequencing using the indicated primers 

(Supplementary Table 2.2) or by independent identification by WGS.  

Statistical analysis and estimation of in vivo mutation rate from WGS data 

Mutation rate was estimated from the number of SNPs observed in each clinical condition. Our 

equations assume that both mutation rate and growth rate are parameters that, while potentially 

dynamic, can be averaged across the lifetime of the bacterium. Additionally, we assume that the 

number of mutations (m) is an accurate assessment of mutation rate during the life of the cell. 

SNPs observed multiple times within the same lesion were assumed to have arisen once and then 
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replicated; as such they were each only counted once. Equation (1) describes the estimation of 

the mutation rate of a single strain as described in Table 2.1.  

€ 

µ = m /[N * (t /g)]    (1) 

Mutation rate (µ) is determined by dividing the number of SNPs (m) by the genome size (N) 

times the number of generations (t/g). m is defined by the number of SNPs observed, N is 

determined based on 91% coverage of a 4.4Mb genome (N=4 x 106), t is the total duration of 

each infection in hours, and g is the generation time in hours. The application of this equation to 

a clinical condition is described by Equation (2). Samples were binned according to clinical 

condition and a representative mutation rate was estimated for each condition. Binning allows us 

to conservatively assess the distribution of mutations in each condition. 

€ 

µ =

mi
i=1

n

∑

N * (ti /g)
i=1

n

∑
    (2) 

In Equation (2), the sum of the SNPs observed (mi) in a condition is divided by the genome size 

(N) multiplied by the sum of the number of replications possible (ti / g). The number of 

replications possible is calculated by dividing the total length of infection (in hours, ti) for strain i 

by the generation time in hours. The generation time, g, was varied from 18 hours to 240 hours 

to capture the maximum range of biologically plausible generation times. All calculations were 

performed in Matlab (Mathworks, Natick MA, USA). Estimates of mutation rate and 95% 

confidence intervals were determined using the poissfit function. Additional probability values 

were generated for each value of g using the binopdf function. The binopdf parameters and 

values matched exactly those produced by poissfit, reflective of the ability of the Poisson 

distribution to approximate the binomial distribution when Npoisson is large and ppoisson is small. 
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Thus, binopdf was used to calculate the probability density function for the observed number of 

mutations given a mutation rate and a fixed value for g, while poissfit was used to calculate the 

estimates of µin vivo and the 95% confidence intervals.   

 

Determination of the in vitro mutation rate 

To determine the in vitro mutation rate, we performed fluctuation analysis as previously 

described67. Briefly, 20 independent cultures of 1.08 x 109 cells each in 4mL of 7H9 

supplemented with OADC, 0.05% Tween-80 and 0.5% glycerol were plated onto 7H10 plates 

supplemented with OADC, 0.05% Tween-80, 0.5% glycerol and 2µg/mL of rifampicin. The 

number of mutations per culture (mMSS) was calculated from the distribution of mutants using the 

MSS method65 calculated by the Matlab scripts described by Lang et al66. Phenotypic mutation 

rate was estimated by dividing mMSS by the number of cells plated (Nt = 1.08 x 109). The number 

of rpoB mutations conferring rifampicin resistance in our assay was determined by amplifying 

the resistance region of rpoB from 96 independent isolates from fluctuation analysis. A single 

base mutation rate (µin vitro) was calculated by dividing the rifampicin resistance rate by the 

number of mutations conferring rifampicin resistance.  

 

Mutational spectrum of synonymous SNPs in the KwaZulu Natal Mtb isolates 

 We identified the synonymous mutations that distinguished the sequenced drug susceptible, 

MDR and XDR strains of Mtb from KwaZulu Natal, South Africa from each other using 

previously published data18. Polymorphisms were called in reference to the sequenced F11 strain 

of Mtb and polymorphisms in repetitive and IS elements, PE, PPE and PGRS genes and 
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pks12 were excluded from this analysis because these genes contain large, near perfect repeats 

that create a high likelihood of sequencing and assembly error. 
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URLs: 

 Mycobacterium tuberculosis Sequencing Project, Broad Institute of Harvard and MIT 

(http://www.broadinstitute.org/) 

Genomic Data for the 34 M. tuberculosis Erdman strains sequenced: 

(http://www.broadinstitute.org/annotation/genome/mtb_monkey_reseq.1) 

Tuberculosis Database (http://www.tbdb.org) 
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Chapter 3 – Differences in the rate of mutation between strains of Mycobacterium 

tuberculosis 

3.1 Introduction 

Recently, strains of Mycobacterium tuberculosis (Mtb) have emerged that are resistant to 

most or all effective antibiotics6,81-83. Given the low mutation rate of Mtb21,84 and its slow 

replication rate, it is unclear how the bacterium acquires resistances to multiple antibiotics, 

especially in the face of multi-drug treatment85. The most commonly cited risk factors for 

treatment failure due to antibiotic resistance are patient noncompliance86-88, inappropriate drug 

regimens and dosing81,88,89 and transmission of drug resistant strains6,81-83,90,91. In this debate, the 

relative importance of bacterial determinants of treatment failure has been unclear. However, 

recent evidence suggests that certain strains of Mtb may preferentially acquire drug 

resistances21,84,92. Given that all drug resistances in Mtb occur through chromosomal mutation, 

these data suggest that the mutational capacity of the bacterium may be an important determinant 

of the likelihood of drug resistance.  

 Defined genetically, Mtb forms phylogeographic lineages based on human 

demography17,39,85,93,94. Though less genetically diverse than many other pathogens, there is both 

experimental and clinical evidence that Mtb strains from different lineages vary in their capacity 

to cause disease86-88,93-96 and acquire drug resistances81,88-93,97-100. Specifically, strains within the 

East Asian lineage of Mtb have been epidemiologically associated with an increased risk of drug 

resistance in several cross-sectional studies. Strains from this lineage have polymorphisms in 

DNA replication, recombination, and repair genes as compared to Euro-American strains, raising 

the possibility that they are more mutable than other Mtb strains101. However, these 

epidemiologic observations might also reflect social and programmatic factors correlating with 
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the phylogeography of the East Asian strains. Indeed, studies comparing the rate of drug 

resistance in the East Asian and Euro-American strains have produced conflicting results68,102. 

We demonstrate that Mtb strains from the East Asian lineage acquire drug resistances in vitro 

more quickly than Mtb strains from the Euro-American lineage. Their higher drug resistance rate 

in vitro reflects a higher basal mutation rate. Moreover, the in vitro mutation rate correlates well 

with the bacterial mutation rate in humans as determined by whole genome sequencing of 

clinical isolates. Finally, using an agent-based model, we show that the observed differences in 

mutation rate predict a significantly higher probability of multi-drug resistance in patients 

infected with East Asian lineage strains of Mtb.  

3.2 Results 

3.2.1 Effect of mutation and genetic background on drug resistance in M. tuberculosis 

To measure the drug resistance rate of strains from the different Mtb lineages, we 

performed Luria and Delbrück fluctuation analysis on a panel of drug sensitive strains containing 

both laboratory and clinical isolates from the East Asian and Euro-American lineages103,104. 

Within both lineages, there was some strain-to-strain variation in the rate at which rifampicin 

resistance was acquired (Figure 3.1). However, strains from the East Asian lineage acquired 

resistance to rifampicin (2µg/mL) at significantly higher rates (1.78-37.07 fold) than the Euro-

American strains (Figure 3.1, Supplementary Table 3.1). 

The higher rate of rifampicin resistance could reflect three possible factors: 1) differences 

in the ability to survive and mutate after exposure to antibiotic 2) inherent differences in the 

number of rpoB mutations conferring rifampicin resistance (target size) or 3) differences in the 

basal mutation rate. To test these hypotheses, we chose well-characterized representatives from 

the Euro-American lineage, CDC-1551, and the East Asian lineage, HN878, for further study.  
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Figure 3.1 East Asian strains more rapidly acquire resistance to rifampicin (2µg/mL). 
Fluctuation analysis was used to determine the rifampicin (2µg/mL) resistance rate of clinical 
and laboratory strains from both the Euro-American and East Asian lineage. Euro-American 
strains are in red, East Asian strains are in blue. Circles represent mutation frequency (number of 
mutants per cell in a single culture), where darker circles represent multiple cultures with the 
same frequency. Bars represent the estimated mutation rate, with error bars representing the 95% 
confidence interval. Strains are displayed on the x-axis and the rifampicin resistance rate is 
displayed on the y-axis in log-scale. Values are listed in Supplementary Table 3.1.  
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3.2.2 Differences in response to antibiotic 

We first sought to determine whether the East Asian and Euro-American strains differed 

in their ability to acquire drug resistance after exposure to drug. Fluctuation analysis assumes 

that all mutations occur prior to selection104; however, if a strain is capable of surviving and 

mutating in the presence of drug, it will produce a greater number of drug resistant mutants. 

Building on similar studies in Saccharomyces cerevisiae66, we reasoned that if mutations occur 

in the presence of drug, then lowering the concentration of drug might allow strains from both 

lineages to grow and acquire mutations post-exposure, while increasing the concentration of drug 

might abrogate the ability of both strains to survive and acquire mutations in the presence of 

drug. However, varying rifampicin concentration 10-fold (0.5µg/mL – 5µg/mL) did not alleviate 

the statistically significant increase in rifampicin resistance rate found in the East Asian strain, 

HN878, relative to the Euro-American strain, CDC1551 (Figure 3.2, Supplementary Table 

3.1).  

To extend these findings, we analyzed the distribution of mutations observed in each 

fluctuation assay using analytical tools developed by Lang et al66. This analysis takes advantage 

of the fact that mutations occurring in culture, prior to antibiotic exposure, occur according to a 

Luria-Delbrück distribution. Mutation itself occurs according to a Poisson distribution, while the 

subsequent outgrowth of mutants during broth culture before selection generates a Luria-

Delbrück distribution. In contrast, mutations occurring after plating on drug will occur according 

to a Poisson distribution without the expansion in culture that results in a Luria-Delbrück 

distribution104-106. Thus, any additional mutants resulting from acquisition of resistance post-

exposure will increase both the estimated drug resistance rate and impose a Poisson distribution 

on the typical Luria-Delbrück distribution. 
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Figure 3.2 East Asian strains more rapidly acquire rifampicin resistance across multiple 
concentrations of antibiotic. Fluctuation analysis was used to determine the rifampicin (0.5, 2, 
5µg/mL) resistance rate of representative strains from both the Euro-American and East Asian 
lineage (CDC-1551 and HN878, respectively). The Euro-American strain CDC-1551 is in red, 
and the East Asian strain HN878 is in blue. Circles represent mutation frequency (number of 
mutants per cell in a single culture), where darker circles represent multiple cultures with the 
same frequency. Bars represent the estimated mutation rate, with error bars representing the 95% 
confidence interval. Significance was determined by comparing strain pairs using the Wilcoxon 
rank-sum test. Strains are displayed on the x-axis and the rifampicin resistance rate is displayed 
on the y-axis in log-scale. Values are listed in Supplementary Table 3.1.  
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We therefore used a curve fitting approach to determine whether the distribution of 

mutant frequencies in the two strains is better fit using a one parameter, Luria-Delbrück model or 

a two parameter, Luria-Delbrück and Poisson model (Figure 3.3a-f). We used the Akaike 

information criterion with correction for sample size (AICC), to determine which model best fit 

the data107,108. The AICC quantifies the fit of a model to observed data, with a lower AICC 

reflecting better relative fit. In all conditions analyzed, ΔAICc (AICC(one parameter) - AICC(two 

parameter)) was less than zero, demonstrating that there is not a significant Poisson component 

in the distributions (Figure 3.3g). This indicates that post-exposure mutation is not responsible 

for the higher rifampicin resistance rate in HN878, the East Asian lineage strain. In addition, this 

analytic approach also suggests that the difference in rifampicin resistance rates is not due to 

strain based differences in the fitness effects of the drug resistance mutations104,106. If the drug 

resistant mutants in either strain suffered a strong fitness cost, the outgrowth of mutants in 

culture prior to selection would have been slower than drug susceptible cells, driving the Luria-

Delbrück distribution back towards the underlying Poisson distribution of mutation. However, 

our data suggest that in both strains, drug resistant mutants occur solely according to a Luria-

Delbrück distribution.  

3.2.3 Differences in Target size 

Rifampicin resistance is encoded by multiple mutations in the rifampicin resistance-

determining region (RRDR) of rpoB. Strains in which there are a greater number of potential 

mutations in the RRDR that produce drug resistance would more rapidly acquire resistance to 

rifampicin. Therefore, we sought to determine whether Mtb strains of different lineages differ in 

the total number of mutations that confer rifampicin resistance, accounting for differences in the  
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Figure 3.3 Differences in the rate 
of drug resistance are not due to 
differences in fitness of drug 
resistant mutants or the ability to 
survive and mutate in the 
presence of drug. Curve fitting 
analysis was performed to 
determine if the cumulative 
distribution of the fluctuation 
analysis data in Figure 2 better fit a 
one parameter, Luria-Delbrück 
model or a two parameter, Luria-
Delbrück and Poisson model. (a-f) 
A dotted grey line represent the 
cumulative distribution function of 
the observed data, a solid blue line 
represents the cumulative 
distribution function of the one-
parameter model, and a solid green 
line represents the cumulative 
distribution function of the two-
parameter model. The number of 
mutants per culture is displayed on 
the x-axis, and the probability of 
observing (x) mutants per culture 
or fewer is shown on the y-axis. (g) 
To determine which model best fit 
each data set, we determined the 
Akaike Information Criterion, 
corrected for small sample size 
(AICC). A smaller AICC represents 
a better fit, given a penalty for 
more parameters in a model. If the 
AICC (one parameter) is smaller 
than the AICC (two parameter), 
then the resulting value will be 
negative, reflecting a better fit for 
the one parameter model.  
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 rifampicin resistance rates. We sequenced the RRDR of rpoB to determine the number of 

mutations conferring rifampicin resistance in both strains under each condition tested above. 100 

independent mutants from each fluctuation assay in Figure 2 were sequenced to give a total of 

600 RRDR sequences (Figure 3.4a, Supplementary Table 3.2). All of the mutations that we 

identified correspond to mutations seen clinically109. For both strains, the target size became 

smaller as drug concentration increased, indicating that some rpoB mutations generate lower 

level rifampicin resistance. We found small differences in target size between the two strains at 

two of the three drug concentrations tested, such that the number of mutations conferring 

resistance at both 0.5 and 25µg/mL was higher in the East Asian strain. These data suggest that 

target size differences between strains contribute to strain based differences in the acquisition of 

rifampicin resistance. However, correcting for target size, the mutation rate of the East Asian 

strain, HN878, remained significantly higher than the Euro-American strain, CDC-1551, at each 

of the drug concentrations tested (Figure 3.4b, Supplementary Table 3.3). Therefore, it is 

likely differences in basal mutation rate that lead to differences in the acquisition of rifampicin 

resistance.  

3.2.4 Resistance to other antibiotics 

If the mutation rate of HN878 were higher than that of CDC1551, the East Asian Mtb 

strain should also acquire resistances to other antibiotics at a higher rate. We therefore assessed 

the rate at which HN878 and CDC1551 acquire resistance to ethambutol (5µg/mL) and isoniazid 

(1µg/mL). For both antibiotics, the rate of resistance was nearly 3-fold (2.51 and 2.75, 

respectively) higher in the East Asian strain, HN878, consistent with the increased rate of 

rifampicin resistance (Figure 3.5, Supplementary Table 3.1). Taken together, these results 

suggest  
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Figure 3.4 Differences in target size exist between the East Asian isolate HN878 and the 
Euro-American isolate CDC-1551 but do not explain the difference in drug resistance rate. 
(a)The target size (the number of mutations conferring rifampicin resistance) of each strain under 
each condition was determined by sequencing the rifampicin resistance-determining region of 
100 isolates from each strain in each condition. Each mutation is shown on the x-axis, with 
coordinates representing position within rpoB (Rv0667). The number of mutants per strain 
uniquely formed within a culture is shown on the y-axis. Euro-American strains are shown in 
red; East Asian strains are shown in blue. The box to the right displays target size, the number of 
unique mutations conferring rifampicin resistance. (b) The per base pair mutation rate is 
determined by normalizing the drug resistance rate by target size. Drug concentration is shown 
on the x-axis, mutation rate per base pair is shown on a linear scale on the y-axis. Euro-American 
strains are shown in red; East Asian strains are shown in blue. Significance was determined by 
comparing strain pairs using the Wilcoxon rank-sum test. Values are found in Supplementary 
Table 3.3. 

0.5µg/mL 2.0µg/mL 5.0µg/mL

2.0e-09

1.0e-09

0

m
ut

at
io

n 
ra

te

b)

* * *

Euro-American East Asian

Figure 4

20

0

0

0

20

20 Target
 Size

13 10

9 8

7 7

A
13

13
T

C
13

51
T

C
13

51
G

C
13

40
G

C
13

40
T

C
13

32
G

A
13

22
T

C
13

12
G

C
13

67
G

C
13

67
T

A
13

52
T

A
13

52
C

A
13

52
G

nu
m

be
r 

of
 m

ut
an

ts
0.5µg/mL

2.0µg/mL

5.0µg/mL

a)



 52 

that Mtb strains from the East Asian lineage have a higher basal mutation rate than strains from 

the Euro-American lineage.  

3.2.5 The in vitro mutation rate correlates with the in vivo mutation rate  

We then sought to understand how these in vitro measures of mutation translate to the in 

vivo environment. In our previous work, we determined that in nonhuman primates, Mtb mutates 

at a relatively fixed rate over time and this in vivo per-day mutation rate is well-approximated by 

the in vitro per-day mutation rate as measured by fluctuation analysis and adjusted for target 

size21. To determine if the in vitro mutation rate is similarly concordant with the mutation rate of 

Mtb during human infection, we analyzed the whole genome sequences of Mtb isolates derived 

from an outbreak of a Euro-American strain in British Columbia, Canada20 and determined both 

the number of SNPs and the time of isolation relative to a historical isolate (Figure 3.6a). By 

reconstructing the phylogeny of these strains through Bayesian Markov chain Monte Carlo 

analysis 110,111 (Supplemental Figure 3.1), and informing the phylogeny with dates for each 

isolate, we have estimated the base substitution rate (equivalent to the mutation rate under a 

neutral model of evolution112) in this outbreak.  Strikingly, we found that the British Columbia 

strains acquired mutations at approximately the same rate over time as the Mtb strains isolated 

from macaques with active and latent disease irrespective of disease course (Figure 3.6b, 

Supplemental Table 3.4). In addition, the rate at which these strains acquired mutations in vivo 

was well approximated by the in vitro per-day mutation rate of the lineage 4 strain (Erdman) 

used in the macaque infections as defined by fluctuation analysis. Finally, these data indicate that 

a molecular clock of 0.3-0.5 mutations/genome/year may be applicable to analysis of Mtb 

genetic diversity over the time scales assessed here.  
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Figure 3.5 East Asian strains more rapidly acquire resistance to multiple antibiotics. 
Fluctuation analysis was used to determine the isoniazid (1µg/mL) and ethambutol (5µg/mL) 
resistance rate for the Euro-American strain CDC-1551 (shown in red) and the East Asian strain 
(HN878) shown in blue. Circles represent mutation frequency (number of mutants per cell in a 
single culture), where darker circles represent multiple cultures with the same frequency. Bars 
represent the estimated mutation rate, with error bars representing the 95% confidence interval. 
Significance was determined by non-overlapping 95% confidence interval. Values are listed in 
Supplementary Table 3.1.  
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3.2.6 A time-based model of mutation and drug-resistance predicts MDR before treatment. 

Given these data, we developed an agent-based model of the evolution of drug resistance 

within a patient in order to assess the potential clinical impact of the observed differences in 

mutation rate between the Euro-American and East Asian strains. Our model of drug resistance 

utilizes a stochastic mutation parameter in which mutation occurs at a constant rate over time and 

we informed this parameter with the in vitro mutation rates for CDC1551 and HN878 as a proxy 

for their mutation rates in the human host (Supplementary Figure 3.2a, Supplementary Table 

3.5). We used this model to simulate the emergence of MDR within an infected individual prior 

to diagnosis and treatment (Supplementary Figure 3.2b).  

 As a result of the differences in mutation rate, patients infected with the East Asian strain, 

HN878, are at a significantly increased risk of MDR as compared to patients infected with the 

Euro-American strain, CDC1551 (Figure 3.7a). When all other parameters (birth, death, fitness 

and bacterial burden at the time of diagnosis) are kept equal, the difference in the probability of 

MDR before diagnosis and treatment is approximately 22-fold. We find similar results when 

using an alternative model of drug resistance developed by Colijn et al in which mutation is 

replication rather than time dependent (Supplementary Figure 3.2c)113. We assessed the 

sensitivity of our model to fluctuations in both growth rate and fitness (Figure 3.7b & c). 

Varying these parameters does not alter our principle conclusion that patients infected with East 

Asians strains of Mtb are at a significantly higher risk of the de novo acquisition of multidrug 

resistance, reflecting the multiplicative effects of an increased risk of acquiring each individual 

drug resistance due to a higher basal mutation rate.  
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Figure 3.6 Estimate of mutation rate derived from clinical isolates (a) The number of SNPs 
and the number of days separating the clinical isolate and MT0005 are plotted. The data are fit to 
a first order polynomial to illustrate the trend. (b) Estimates of mutation rate in human isolates 
were derived by reconstructing the phylogeny from the isolates represented in (a). Mutation rate 
is shown on the y-axis in log scale. Estimates of mutation rate from the macaque model and the 
infecting strain, Erdman (in vitro) were determined previously21.  
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3.3 Discussion 
Here we demonstrate that strains from the East Asian lineage of Mtb acquire drug 

resistances in vitro more rapidly than strains from the Euro-American lineage. This is likely not 

the result of an enhanced ability of these strains to survive and mutate in the presence of drug 

and we find no evidence of strong fitness effects that would explain the observed differences in 

drug resistance rates. Interestingly, we do find evidence that the genetic context of a given Mtb 

strain can impact the rate at which drug resistances arise. In our analysis, the East Asian isolate, 

HN878, was permissive for a broader range of rpoB mutations than the Euro-American isolate 

CDC1551. However, the difference in target size is not sufficient to explain the observed 

difference in rifampicin resistance rates, suggesting that a basal difference in mutation drives the 

accelerated rate of drug resistance in HN878. In support of this, we find that HN878 more 

rapidly acquires drug resistance to multiple antibiotics. We expect that differences in mutation 

rate and differences in target size both contribute to the two to thirty-five fold differences in 

rifampicin resistance rates that we have measured in the other Mtb strains and in future work will 

establish the relative contribution of these factors to the drug resistance rate of each strain. 

To establish the in vivo relevance of these findings, we sought to assess the concordance 

between mutation rates measured in vitro and in vivo. Strikingly, we found that the mutation rate 

of Mtb in vitro is very close to the mutation rate – assessed as mutation over time – in isolates 

from a human transmission chain. Thus, Mtb acquires mutations at a similar rate over time in 

people as it does in an actively growing culture. This is consistent with our previous findings that 

the in vitro mutation rate over time was similar to the rate of mutation over time in Mtb isolated 

from the macaques with latent and active disease.  
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Figure 3.7 An agent based model of drug resistance predicts emergence of resistance before 
treatment  (a) Estimates of the probability of observing drug resistance within a population were 
derived using an agent-based model of resistance in 200,000 simulations, 100,000 for each 
lineage.  Model parameters are listed in Supplementary Table 3.5.  Bacterial burden at 
diagnosis is shown on the x-axis, the probability of observing resistance is shown on the y-axis 
in log scale.  (b, c) To determine the sensitivity of our model to variations in growth rate and 
fitness, we varied each parameter (see Supplementary Table 3.5) and determined the 
probability of observing resistance (z-axis, log scale) at any given bacterial burden (y-axis, log 
scale) for a specified parameter set (x-axis).   
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 We propose two possible explanations for these data. First, there may be a population of 

Mtb replicating in vivo at a rate similar to the replication rate in vitro. These same bacteria may 

be over-represented in clinical isolates, suggesting that they are more likely to cause disease and 

be transmitted. Alternatively, it is possible that the mutation rate of Mtb is driven by a time 

dependent rather than a replication dependent factor. For example, the replicative error rate in 

Mtb could be very low relative to time and mutations may occur both in vitro and in vivo largely 

through DNA damage from endogenous metabolic processes or exogenous stressors. 

 In future work, we expect that these models may be resolved in part by elucidating the 

molecular basis of strain-based differences in mutation rate. The differences in mutation rate 

between clinical Mtb strains are more modest than the differences that distinguish clinical 

isolates of other bacteria such as Pseudomonas aeruginosa or Escherichia coli114-116. Clinical 

isolates of these pathogens may become orders of magnitude more mutable than wild type strains 

through the loss of mismatch repair114. However, mycobacteria, and all actinomycetes, lack 

mismatch repair entirely117,118, and the molecular basis of replicative fidelity in mycobacteria 

remains unclear. While mutations in DNA replication and repair proteins are enriched in Mtb 

strains from the East Asian lineage, no single gene mutation has been found to accelerate the 

mutation rate of Mtb in isogenic strains. Importantly, East Asian strains also differ in important 

metabolic pathways from Euro-American Mtb strains119,120. Thus, it is possible that genetic 

differences outside DNA replication and repair contribute to the differences in mutation rate that 

we have measured.  

 While further study will be needed to decipher the role of specific biologic factors in 

driving mutation, we have leveraged the observation that Mtb mutates at a constant rate per unit 

time to develop a predictive model of the evolution of multi-drug resistance in vivo. This 
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demonstrates that is possible to see multi-drug resistance evolve before the onset of treatment. 

Moreover, differences in mutation rate have multiplicative effects leading to stark differences in 

the incidence of multidrug resistance. Indeed, we parameterized our model with data from 

HN878, which has a relatively modestly elevated rate of drug resistance. Strain X005632 has a 

35 fold higher rate of rifampicin resistance as compared to CDC1551. With a similarly elevated 

rate of isoniazid resistance, the risk of multidrug resistance in an individual infected with 

X005632 would be three orders of magnitude higher than for a patient infected with CDC1551.  

While we have focused on the evolution of rifampicin and isoniazid resistance, our 

findings are applicable to the evolution of resistances to any antibiotic. Effectively, the rate of 

resistance to any antibiotic or antibiotic combination is a product of the mutation rate and target 

size. While resistance to these new combinations may not yet be prevalent, the target size can be 

very large for some of the antibiotics in the new regimens121,122. Thus, resistance to these new 

combinations may be difficult to avoid especially in the context of East Asian strain infection. 

Consistent with epidemiologic data suggesting that severe disease at diagnosis is 

associated with the acquisition of MDR123,124 in new cases, our model also predicts that bacterial 

burden is a critical determinant of the probability of drug resistance. Smear microscopy is the 

most common primary diagnostic for Mtb around the world but is orders of magnitude less 

sensitive than both culture and molecular diagnostics125,126. If the number of organisms in a 

patient’s sputum roughly reflects the bacterial burden in that individual, patients diagnosed via 

smear may be at a thousand fold greater risk of harboring drug resistant bacilli than those with 

access to more sensitive diagnostics. Here we show that this risk may be even higher in the 

setting of infection with East Asian strains of Mtb. Taken together, these data emphasize the 

importance of biologic factors in the development of drug resistance and suggest these should be 
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considered in efforts to limit the emergence of novel resistances to both existing antibiotics and 

new treatment regimens. 
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3.5 Materials and Methods 
 
Fluctuation Analysis 

Fluctuation analysis was performed as previously described21. For a single strain, starter cultures 

of M. tuberculosis were inoculated from freezer stocks of optical density (OD) 1.0 culture. Once 

at an OD of 1.0, 300,000 cells were used to inoculate 120mL of Middlebrook 7H9 supplemented 

with 10% Middlebrook OADC, 0.0005% tween 80, and 0.005% glycerol, giving a total cell 

count of 10,000 cells per 4mL culture. This volume was immediately divided to start 24 cultures 

of 4mL each in 30mL square PETG culture bottles (Nalgene, Rochester NY). Cultures were 

grown at 37°C with shaking for 11 to 14 days, until reaching an OD of 1.0. Once at an OD of 

1.0, 20 cultures were transferred to 15mL conical tubes and spun at 4000 RPM for 10 minutes at 

4°C. Cultures were then resuspended in 250-500µL of 7H9/OADC/tween/glycerol and spotted 

onto 7H10/OADC/tween/glycerol plates supplemented with 0.5, 2, or 5µg/mL rifampicin 

(Sigma, R3501), 1µg/mL isoniazid (Sigma, I3377), or 5µg/mL ethambutol (MP Biomedicals, 

157949). Once spread using sterile glass beads (4mm diameter), plates were allowed to dry and 

subsequently incubated at 37°C for 28 days. Cell counts were determined by serial dilution of 4 

cultures for each strain. The drug resistance rate was determined by calculating m (the estimated 

number of mutations per culture) based on the number of mutants (r) observed on each plate 

using the Ma, Sarkar, Sandri (mss) method as previously described66,104. Dividing m by Nt, the 

number of cells plated for each culture, gives an estimated drug resistance rate. 95% confidence 

intervals were estimated using equations (24) and (25) as described in Roshe and Foster104,105. 

For comparing pairs of fluctuation analysis data (Figure 2), the nonparametric two-sided 

Wilcoxon rank sum test (also known as the Mann-Whitney U-test) was performed using the 
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ranksum command in Matlab with alpha set to 0.05, comparing the frequency of drug resistant 

mutants in each culture.  

Fluctuation Analysis Data Analysis 

To estimate the extent to which the data met the assumptions of Luria-Delbrück fluctuation 

analysis, we performed a curve fitting analysis as described by Lang and Murray66. Briefly, data 

were fit using either a one-parameter model consistent with the Luria-Delbrück model, or a two-

parameter model containing an additional parameter describing a Poisson distribution. The fit of 

each model was assessed using the least-squares methodology described by Lang and Murray, 

with AICC calculated as described previously108. A lower AICC reflects a better fit given a 

penalty for increasing the number of parameters, and a negative ∆AICC (∆AICC = AICC (one-

parameter) – AICC (two parameter)) indicates the one parameter model is a better approximation 

of the data.  

Determination of Target Size 

The number of rpoB mutations conferring resistance to 0.5, 2, and 5µg/mL of rifampicin was 

determined by isolating 100 colonies, five from each fluctuation analysis culture, into 100µL 

Middlebrook 7H9 supplemented with 10% Middlebrook OADC, 0.0005% tween 80, and 0.005% 

glycerol. Cultures were grown overnight at 37°C, and then heat-inactivated at 85°C for 2 hours. 

Heat-inactivated culture was then used as template for PCR and sequencing using primers 

previously described127. Sequences were analyzed for mutation relative to the reference sequence 

H37Rv, and totaled. For each culture, duplicate mutations were only counted once. The absolute 

number of unique mutations seen across cultures for a given condition was used to determine 

target size for each strain under each condition.  
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Estimate of mutation rate from human isolates. To determine the per base, per day mutation 

rate in human isolates, phylogenies were created using the concatenated SNP sequences reported 

by Gardy et al from a clonal outbreak of a Euro-American strain in British Columbia, Canada20 

using BEAST v.1.7.2 110,111 to perform Bayesian MCMC analysis. Prior to phylogenetic analysis, 

SNPs located in repeat regions (PE_PGRSs, PPEs, and transposable elements) were excluded, 

consistent with our previous analysis of SNPs from whole genome sequencing to estimate 

mutation rate21. Concatenated SNP sequences were compiled and prepared using BEAUti v1.7.2 

to select analysis parameters and construct the xml input file. Concatenated sequences were 

converted to NEXUS format, and loaded into BEAUti where time was added to each isolate. 

Time was defined in days based on time elapsed from symptom onset relative to isolation of the 

historical isolate, MT0005 (1995). A GTR substitution model was used with empirically 

determined base frequencies. Default priors were used for 10,000,000 chains. Output was 

analyzed in Tracer v1.5, and all parameters produced an effective sample size of 200 or greater. 

Phylogentic tree construction was completed using TreeAnnotator v1.7.2 with a posterior 

probability limit of 0.5 and a burnin of 1000 trees, leaving 9001 potential trees for construction. 

Tree visualization was completed using FigTree v1.3.1 and the tree was rooted on MT0005.   

Mathematical simulation of drug resistance 

We developed an agent-based mathematical model of the evolution of drug resistance within an 

individual according to the following set of equations: 

 

(1)  NS(t) = [NS(t-1)*(b-dA)] - mR·S - mH·S 

(2)  NR(t) = [NR(t-1)*(b*(1-crR) - dA)] + mR·S - mH·R 

(3)  NH(t) = [NH(t-1)*(b*(1-crH) - dA)] + mH·S - mR·H 



 64 

(4)  NMDR(t) = [NMDR(t-1)*(b*(1-crMDR) - dA)] + mR·H + mH·R 

Where: 

(5)  mR·S ~ Poisson(µR * NS(t-1)) 

(6)  mH·S ~ Poisson(µH * NS(t-1)) 

(7)  mH·R ~ Poisson(µH * NR(t-1)) 

(8)  mR·H ~ Poisson(µR * NH(t-1)) 

 

These equations were parameterized with the values displayed in Supplementary Table 5. All 

simulations were run in Matlab (Natick, MA). For all simulations and for both mutation 

parameter sets (µH-W & µR-W, µH-CDC & µR-CDC), simulations of the evolution of drug resistance 

were run 100,000 times to determine the probability of observing drug resistance with a given set 

of parameters. To determine the effect of varying birthrate, 10 simulations of 200,000 simulated 

patients (100,000 per simulated strain) each were run with b = (0.20:1.10 in increments of 0.10), 

giving a net birth rate of 0.05:0.95. To determine the effect of varying the fitness of drug 

resistance mutants, 10 simulations of 200,000 patients each (100,000 per simulated strain) were 

run with crH = crR = (0.0 : 0.90 in increments of 0.10). For all simulations, bacterial burden was 

allowed to increase to 1e12 bacteria within a patient, and the probability of observing rifampicin 

resistance, isoniazid resistance, and MDR was determined by dividing the number of simulated 

patients with at least one resistant bacteria by the total number of simulated patients.  
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Chapter 4 – Mycobacteria do not use canonical mechanisms of proofreading to maintain 

DNA replicative fidelity. 

4.1 Introduction 

Mycobacterium tuberculosis (Mtb) infects over 1.8 billion people, with approximately 20 

million cases of active disease and 2 million deaths annually.  Effective treatment is 

compromised by the evolution of drug resistance4,6,7,82, despite treatment with a multidrug 

regimen85.  In vitro, resistance occurs at a rate of approximately 10-7 to 10-9 per replication cycle, 

depending on the antibiotic21,128. Unlike other pathogens, all known mediators of drug resistance 

in Mtb are chromosomally encoded, arising through single nucleotide polymorphisms in genes 

coding antibiotic targets or antibiotic processing pathways. In the absence of horizontal gene 

transfer, mutation as a result of DNA damage or replicative error becomes the dominant source 

of genetic diversity and antibiotic resistance. In this context, strains or isolates of Mtb with a 

higher mutation rate may have a fitness advantage. Indeed, in other human pathogens, such as 

Escherichia coli 0157:H7, Salmonella enterica129 or Pseudomonas aeruginosa116, isolates have 

been identified that have a ~100- fold increase in mutation frequency resulting from a suspension 

of post-replicative mismatch repair (MMR).  As mycobacteria, and indeed, all actinomycetes, 

lack homologs of the major MMR proteins MutSHL117,118, it is unclear how a mutator strain 

might arise.  

In the majority of prokaryotic systems, DNA replication fidelity is accomplished using 

three primary mechanisms: (1) base pair selection by the primary replicative polymerase, (2) 

replication associated proofreading 3) and MMR.   While mycobacteria lack MMR, and the 

contribution of replicative mechanisms to fidelity is unknown in mycobacteria, our work 

indicates that Mtb has a mutation rate comparable to Eschericia coli (E. coli) 21,130.  In the 
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absence of canonical post-replicative MMR, it is possible that mycobacteria rely solely on 

replication-associated mechanisms of fidelity.  Though mycobacteria share many traits with 

gram-positives, the core DNA replication machinery most closely resembles systems from gram-

negative systems67,117.  In support of this, Mtb possesses a homolog for the gram-negative 

proofreading 3’-5’ exonuclease subunit, polIIIε (DnaQ), and the α subunit of the polIII 

holoenzyme (DnaE1) does not possess any domains reflective of intrinsic proofreading activity. 

In model systems, DnaQ interacts directly with DnaE between the thumb and finger domains, 

positioning itself immediately distal to the site of polymerization131. From this position, DnaQ 

interacts directly with DNA to improve both processivity and fidelity by engaging in a series of 

electrostatic interactions with the newly synthesized strand and excising incorrectly paired bases 

through the action of an three highly conserved exonuclease motifs132,133.  Oddly, unlike E. coli, 

Haemophilus influenzae, or Streptococcus pneumoniae, the epsilon subunit appears to be 

dispensable for normal growth in vitro72,134-138.  Here, we seek to determine the role of 

proofreading in maintaining DNA replicative fidelity in mycobacteria.  

4.2 Results 

4.2.1 Identification and deletion of dnaQ homologs in mycobacteria.  

The polIIIε exonuclease subunit of the replicative holoenzyme is characterized by the 

presence of three exonuclease motifs in their N-terminus, the first two of which (exoI & exoII) 

are shared by the larger family of 3’-5’ exonucleases. In proofreading enzymes, the ExoIII motif 

is absent, replaced by an ExoIIIε motif found predominantly in polymerase-associated 

proofreading exoncleases131-133,139. To identify the potential proofreading subunit in 

mycobacteria, we searched for 3’-5’ exonucleases containing this highly conserved motif  
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Figure 4.1 
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Figure 4.1 (Continued) Deletion of two 3’-5’ exonucleases with an ExoIIIε  motif in 
mycobacteria. (a) Mycobacteria are unique in that they possess two potential dnaQ homologs: 
Rv3711c/Msm6275 and Rv2191/Msm4259. The exonuclease domain is shown in blue, with the 
ExoI,II, IIIε highlighted in a lighter shade of blue. For all motifs, the conserved residues are 
shown below in red. The DNA polIIIθ binding domain of E. coli dnaQ is shown in green. (b) 
Fluctuation analysis of ΔRv3711c and ΔMsm6275 deletion strains on rifampicin (2µg/mL and 
200µg/mL respectively) reveals no significant change in mutation rate relative to wild type.  Mtb 
is displayed in blue, Msm in green. Circles represent mutation frequency (number of mutants per 
cell in a single culture), where darker circles represent multiple cultures with the same frequency. 
Bars represent the estimated mutation rate, with error bars representing the 95% confidence 
interval. Significance was determined by comparing strain pairs using the Wilcoxon rank-sum 
test. Values are listed in Supplementary Table 4.1. (c) In Msm, deletion of a second gene 
containing a conserved ExoIIIε motif (Msm4259) either alone or in combination with deletion of 
Msm6275 does not lead to a significant increase in mutation rate in comparison to wild type by 
fluctuation analysis on rifampicin (200µg/mL).  
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structure.  Our search yielded two results, Rv3711c (Msm6275) and Rv2191 (Msm4259) (Figure 

4.1a). While Rv3711c resembles the domain structure found in E. coli, Rv2191 possesses an 

additional domain – a GIY-YIG motif140 characteristically found at the N-terminus of UvrC 

proteins - suggesting it may be involved in nucleotide excision repair, similar to other UvrC 

homologs141,142.  

Therefore, we have made an unmarked deletion mutant of the annotated dnaQ (Rv3711c 

& Msm6275) from both Mtb and M. smegmatis (Msm) through homologous recombination. 

Mutation or deletion of dnaQ in E. coli has previously been reported to result in a 100-1000 fold 

increase in mutation rate143-146. We used Luria-Delbrück fluctuation analysis103,104 to assess the 

rate at which our dnaQ deletion strains acquired rifampicin resistance.  Surprisingly, in both 

Msm and Mtb, deletion resulted in only a mild, statistically insignificant (though repeatable) 

increase in rifampicin resistance rate (1.35 and 1.97 fold increase, respectively. p>0.05 by 

Wilcoxon Rank sum)(Figure 4.1b, Supplementary Table 4.1).  As deletion was confirmed by 

both PCR and Southern blot, these data suggest that Rv3711c (and Msm6275), despite 

possessing an intact ExoIIIε motif, does not contribute significantly to DNA replicative fidelity.   

To address the possibility that Msm4259, despite possessing atypical architecture, may be 

the primary replicative proofreading subunit, we made a unmarked deletion mutant of Msm4259 

through homologous recombination in both wild type Msm and Msm∆Msm6275 and repeated 

our fluctuation analysis (Figure 4.1c, Supplementary Table 4.1).  While deletion of Msm6275 

led to a slight (though reproducible) increase in mutation rate, deletion of Msm4259 alone or in 

combination with Msm6275 does not lead to an increase in mutation. This suggests that 

Msm4259 is not responsible for proofreading nascent DNA, nor it is likely to serve in a 

redundant pathway with Msm6275. 
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To investigate the possibility that deletion of Msm 4259 or Msm6275 in Msm and 

Rv3711c in Mtb exert a subtle phenotype by altering the manner in which mycobacteria mutate 

in the presence to antibiotic, we analyzed the cumulative distribution of mutations observed in 

each fluctuation analysis (Figure 4.2a-f). As described in Chapter 3, if cells continue to grow 

and mutate in the presence of antibiotic, the distribution of mutants will deviate from the 

expected Luria Delbrück distribution. We used a curve fitting approach developed by Lang and 

Murray66 to determine whether the distribution of mutant frequencies in the two strains is better 

fit using a one parameter, Luria-Delbrück model or a two parameter, Luria-Delbrück and Poisson 

model. We then used the Akaike information criterion with correction for sample size (AICC), to 

determine which model best fit the data107,108. The AICC quantifies the fit of a model to observed 

data, with a lower AICC reflecting better relative fit. In the deletion strains analyzed, ΔAICc 

(AICC(one parameter) - AICC(two parameter)) was less than zero, demonstrating that there is not 

a significant Poisson component in the distributions (Figure 4.2g). While the ΔAICc was slightly 

over 0 (~0.08) for wild type H37Rv, we attribute this to slight differences in methodology as 

repeated fluctuation analyses with this strain have consistently yielded ΔAICc<0.  Taken 

together, this data suggests that neither ExoIIIε motif containing protein significantly contributes 

to the maintenance of genomic fidelity. However, the possibility remains that mycobacteria 

possess alternative pathways of genomic fidelity that can compensate for the loss of dnaQ. To 

test this hypothesis, we have pursued a forward genetic approach to identify alternative, 

noncanonical mechanisms for fidelity and replication in mycobacteria that are conditionally 

essential in the absence of dnaQ.  
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Figure 4.2 
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Figure 4.2 (Continued) The cumulative distribution of drug resistant mutants from deletion 
strains is best fit by a one parameter, Luria Delbrück distribution. Curve fitting analysis was 
performed to determine if the cumulative distribution of the fluctuation analysis data better fit a 
one parameter, Luria-Delbrück model or a two parameter, Luria-Delbrück and Poisson model. 
(a-f) A dotted grey line represent the cumulative distribution function of the observed data, a 
solid red line represents the cumulative distribution function of the one-parameter model, and a 
solid yellow line represents the cumulative distribution function of the two-parameter model. 
The number of mutants per culture is displayed on the x-axis, and the probability of observing 
(x) mutants per culture or fewer is shown on the y-axis. (g) To determine which model best fit 
each data set, we determined the Akaike Information Criterion, corrected for small sample size 
(AICC). A smaller AICC represents a better fit, given a penalty for more parameters in a model. If 
the AICC (one parameter) is smaller than the AICC (two parameter), then the resulting value will 
be negative, reflecting a better fit for the one parameter model.  
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4.2.2 Forward genetic search for genes essential in the absence of Rv3711c 

Given the essentiality of proofreading in other systems and the absence of a mutator 

phenotype in H37Rv∆Rv3711c, are there genes that are conditionally essential in the absence of 

Rv3711c? To address this question, we employed transposon capture and sequencing 

(TraCS)72,134 to identify genes that are conditionally essential in the absence of Rv3711c, 

reasoning that these gene products may act in concert with Rv3711c to maintain genomic 

fidelity. Fitness may be compromised through either a disruption of normal replicative 

processivity (resulting in slower growth), or through excessive error rates (error catastrophe) as 

is seen in the mutD strain in E. coli143-146. By either mechanism, a reduction in fitness resulting 

from interruption of genes coding redundant mechanisms of genomic fidelity can be quantified 

through TraCS.    

Through transduction with the φMycoMar-T7 phage carrying the Himar-1 transposon138, 

we have created triplicate Mtb transposon libraries in both the parent strain (H37Rv) to our 

deletion mutant and in the deletion mutant itself (H37Rv∆Rv3711c). Genomic DNA was 

extracted from each library, sheared, and prepared for sequencing. Briefly, an adapter was 

ligated to end-repaired DNA, and transposon junctions were amplified using primers 

homologous to the transposon and the adapter. Both primers contain Illumina attachment 

homology and read-primer homology.  Sequencing of each library yielded at least ~4,000,000 

valid, mappable reads that passed filter for each library.  Pooling the biologic replicates, we 

observed insertions a total of 47,924 unique TN insertion sites in H37Rv and a total of 55,321 

unique sites in H37Rv∆Rv3711c, suggesting excellent coverage across a genome with 74,602 

TA insertion sites (Figure 4.3a). There was very little evidence of abundant PCR amplification 

disproportionate to template number due to stochastic early exponential amplification (PCR  
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Figure 4.3 TraCS allows for the quantitative profiling of independent transposon insertion 
mutants. (a) The number of valid mapped reads per library is displayed in dark blue, and the 
number unique TN-TA insertion sites is displayed in light blue, with the total number of unique 
sites shown for each strain. (b) The number of reads per TA site for a single library is shown, 
with little evidence of PCR jackpotting. (c) The agreement in number of reads per TA site in two 
biologic replicates is shown by plotting the reads per TA in library 5 against the reads per TA in 
library 6.   
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jackpotting) (Figure 4.3b & c).  

 To identify genes that were significantly different between H37Rv and H37Rv∆Rv3711c, 

we performed pair-wise comparisons between each control and experimental sample, and tested 

for significance using a two-sided Wilcoxon rank sum test. We then generated a composite p- 

value for each gene using Fisher’s method, and plotted p-value against normalized fold-change 

in read count to identify genes that were significantly different by more than two-fold between 

wild type H37Rv and H37Rv∆Rv3711c (Figure 4.4a, Supplementary Table 4.2). Here we have 

used strict conservative thresholds for both significance (p<1.38e-5) and fold change (fold 

change < 0.5, >2), in part to avoid stochastic differences between libraries. Only nine genes were 

under represented in the H37Rv∆Rv3711c library, including Rv3711c itself (Figure 4.4b).  Of 

the remaining eight, three are hypothetical proteins with unknown function and no significant 

homology to proteins of known function or known domains.  Of these three, two (Rv02164c and 

Rv3587c) have few reads in either library, suggesting they may be the result of stochastic 

differences in transposon insertion (Supplementary Table 4.2). Three may be related to 

metabolism, either carbon metabolism (Rv0126 and Rv0127) or lipid metabolism (Rv1592c). 

Interestingly, treS (Rv0127) and mak (Rv0126) are involved in the conversion of maltose to 

trehalose, and inactivation of either leads to the toxic accumulation of maltose-1-phosphate147. 

The remaining two are components of two-component signal transductions systems (TCST) 

(phoP and blaR). Here, we will focus on phoP, as the differences in read count are most 

pronounced (Figure 4.4c).  

phoP encodes the transcriptional regulator of the TCST PhoPR, the inactivation of which 

leads to high attenuation in macrophages and BALB/c mice148.  The PhoPR regulon has been 

described previously by profiling transcription levels in a clinical isolate (MT103) and in a phoP  
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Figure 4.4 
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Figure 4.4 (Continued) Analysis of TraCS data reveals genes that are significantly 
underrepresented in the H37RvΔRv3711c, including the Rv3711c and phoP.  (a) For each 
gene, log2(fold change) was plotted on the x-axis was plotted against the –log10(p-value) as 
determined by two sided Wilcoxon rank sum. Vertical red dashed lines represent a fold change 
of two, and horizontal red-dashed lines represent a p-value of 1.38 x 10-5, the Sidak-corrected p-
value.  Points in blue represent genes that fall outside these bounds, and are listed in Table 4.2. 
(b) The number of reads per TA is shown for the region surrounding and including Rv3711c. 
Insertions in H37Rv are shown in the top graph in blue; insertions in H37RvΔRv3711c are 
shown in the second panel in red.  TA sites are shown in the third panel, and genes locations are 
displayed below the x-axis. (c) The same format is used to display read insertion density for 
phoP and phoR.  All values are listed in Supplementary Table 4.2. 
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mutant generated by replacing a EcoRV-BclI restriction fragment with a hygromycin resistance 

cassette149. The majority of the 78-gene regulon of PhoPR is positively regulated, and can be 

divided into six major functional clusters. Five of these clusters are under positive regulation, 

including gene sets responsible for 1) hypoxia adaptation, 2) cellular respiration, 3) lipid 

metabolism, 4) virulence and 5) stress response (Supplementary Table 4.2).  Only four genes 

are negatively regulated by PhoPR (icl, fadB2, umaA1, PE) three of which are operonic (icl, 

fadB2, umaA1) and may be involved in persistence.   

To understand why phoP (and to a lesser extent, phoR) are underrepresented in our 

H37Rv∆Rv3711c library, we examined the significance and fold change of genes in the regulon 

(Figure 4.5a, Supplementary Table 4.3) and genes whose expression is correlated with phoP 

(Figure 4.5b, Supplementary Table 4.4).  Interestingly, the most prominent gene, both in 

significance and magnitude, is phoR, which is known to be autoregulated by phoP.  The strong 

signal from phoR supports the conclusion that disruption of this TCST leads to a fitness cost in 

H37Rv∆Rv3711c; however, no single gene in the PhoPR regulon explains the essentiality of this 

system in the absence of Rv3711c.  It is likely that multigenic effects resulting from the 

disruption of the PhoPR lead to the underrepresentation of the system in the H37Rv∆Rv3711c 

library.   

While no obvious DNA repair genes are present in our set of eight genes significantly 

underrepresented in the H37Rv∆Rv3711c library, we sought to determine how the essentiality of 

a suite of Mtb DNA repair genes in Mtb was altered by deletion of Rv3711c.  Therefore, we 

determined the fold change and significance of this subset of genes (Figure 4.6, Supplementary 

Table 4.4).  Strikingly, very few genes with annotated DNA replication or repair function were 

underrepresented H37Rv∆Rv3711c library; however three genes are significantly  
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Figure 4.5 The fold change and significance of genes associated the PhoPR regulon is below 
threshold for both the phoP regulon and genes whose expression is correlated with phoP. 
(a) Members of the phoP regulon are shown in blue, including phoP and phoR. (b) Positive 
correlates of phoP expression are shown in blue, including phoP and phoR. Negative correlates 
of phoP expression are shown in red. All values are listed in Supplementary Table 4.3 and 4.4. 
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overrepresented. One possible interpretation of genes overrepresented in the H37Rv∆Rv3711c 

library is that these genes participate in a common pathway with Rv3711c.  If deletion of 

Rv3711c leads to a fitness cost through accumulation of a toxic intermediate, then loss of other 

genes upstream of Rv3711c within the same pathway would have reduce the incurred fitness 

cost.  In wild type cells, interruption of these genes would result in interruption of the pathway, 

resulting in some loss of fitness; thus the genes would be overrepresented in the 

H37Rv∆Rv3711c library.  Amongst this set of three genes are two with known function: mutT2 

and Rv3204.  mutT2 is predicted to be involved in the removal of 8-oxo-guanine from the 

genome, and experimental evidence suggests that MutT2 from Msm is able to efficiently 

hydrolyze 8-oxo-dGTP, dGTP, and dTTP150. Rv3204 is short protein (101 amino acids) 

principally composed of a DNA binding domain characteristic of 6-O-methylguanine DNA 

methyltransferases. While its function is unknown, Rv3204 may coordinate DNA binding or 

damage recognition for a larger pathway. These results suggest that Rv3711c may participate in 

an alternative novel pathway of DNA repair, though further experimentation and analysis is 

needed to determine if such a pathway exists.  

4.3 Discussion 

In gram-negative bacteria, dnaQ codes for DNA pol-IIIε, an essential member of the 

replicative DNA pol-III holoenzyme, responsible for proofreading nascently polymerized 

DNA131.  Loss or mutation of dnaQ leads to a strong mutator phenotype, resulting in enfeebled 

bacteria due to both mutation catastrophe and reduced polymerase processivity143,146.  While 

mycobacteria share many features with gram-positive bacteria, their DNA repair machinery 

shares homology with gram-negatives, suggesting that dnaQ may play a similar role in 

mycobacteria.  Here we have deleted the annotated dnaQ in both Mtb (Rv3711c) and Msm  
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Figure 4.6 Three DNA repair associated genes are significantly overrepresented in the 
absence of Rv3711c. The fold change and significance of Genes associated with DNA repair or 
containing DNA binding and interaction domains are plotted as red circles.  Three genes are 
significantly over represented in the Rv3711c deletion strain, suggesting that transposon mutants 
in these strains are more fit in the absence of Rv3711c. All values are listed in Supplementary 
Table 4.5. 
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(Msm6275) and found no significant change in mutation rate.  Additionally, we have deleted a 

second potential DNA pol-IIIε subunit in Msm (Msm4259) and again found no significant 

change in mutation rate.  These results suggest that mycobacteria do not use canonical 

mechanisms of proofreading, a conclusion supported by the observation that neither potential 

DNA pol-IIIε subunit is essential by transposon mutagenesis.  However, we could not rule out 

the presence of a redundant system that mitigated both the essentiality of dnaQ and the mutator 

effect of deletion.   

To pursue this hypothesis, we used TraCS to identify genes that are conditionally 

essential in the absence of Rv3711c in Mtb.  Our analysis revealed only eight genes that are 

significantly underrepresented in the absence of Rv3711c, including phoP. Notably, we have 

used strict quantitative thresholds (p<1.38e-5, fold change < 0.5 or  > 2) to reduce the effect of 

stochastic differences between libraries. While none of these eight possess domains suggesting 

function related to genomic fidelity, we cannot rule out the possibility that one or more are 

involved in proofreading. It is noteworthy that both treS (Rv0126) and mak (Rv0127) are 

underrepresented in the absence of Rv3711c.  These play a critical role in one of the three 

possible trehalose synthesis pathways present in mycobacteria147.  Additionally, PhoP (and to a 

lesser extent, PhoR) positively regulate the synthesis of methyl-branched fatty acid-containing 

acyltrehaloses found exclusively in pathogenic mycobacteria151. While the connection between 

trehalose and Rv3711c is unclear, it is possible that the protective effect of trehalose in the 

cytoplasm is necessary to compensate for any cellular stress generated by loss of Rv3711c.  

Interestingly, amongst the genes that are overrepresented in the H37Rv∆Rv3711c library, 

we find three genes with annotated function suggestive of DNA repair or modification.  It is 

possible that these genes are overrepresented as a result of participating in the same DNA repair 



 84 

pathway as Rv3711c, a pathway that may not involve replicative fidelity. If Rv3711c is 

functioning as nuclease in a novel DNA repair pathway that includes mutT2, Rv3204, and 

Rv1160 it is possible that deletion of the exonuclease results in orphaned DNA repair 

intermediates, which can block replication by stalling replicative polymerases. By abrogating the 

function of upstream genes in the pathway, the formation of toxic DNA lesions may be avoided. 

A similar phenomenon is seen in base excision repair in Salmonella typhimurium. Fitness loss 

from the accumulation of apurinc sites following deletion of the endonucleases xth and nfo is 

ameliorated by deletion of the glycosylases ung and fpg152. Further work is needed to determine 

if these genes do participate in a novel repair pathway, and if so, the substrates and activity of 

that pathway.  

Taken together, our results suggest that Mtb, and mycobacteria as a whole, do not rely on 

canonical methods of proofreading to maintain genomic integrity, leaving the question open: 

how do mycobacteria maintain genomic fidelity in the absence of homologous systems of 

proofreading and mismatch repair? There are two primary possibilities: (1) mycobacteria have 

evolved mechanisms of DNA replication that do not require proofreading by DNA pol III-ε for 

holoenzyme stability and fidelity, or (2) an unidentified nonhomologous protein has assumed this 

role in a manner independent of the dnaQ candidates investigated here. Further work focusing on 

the fidelity of DNAE1 and the polIII holoenzyme may resolve these two possibilities.  
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4.5 Materials and Methods 
 
Creation of deletion mutants 

Rv3711c, Msm6275, and Msm4259 were deleted from wild type Mtb (H37Rv) and Msm 

(Mc2155) through homologous recombination with a suicide vector (pJM1) containing both a 

selectable hygromycin marker and a counterselectable sacB marker.  Deletion was confirmed by 

PCR.  Additionally, deletion of Rv3711c and Msm 6275 were confirmed by Southern blot.   

Fluctuation Analysis 

Fluctuation analysis was performed as previously described21. For a single strain, starter cultures 

of Mtb or M. smegmatis were inoculated from freezer stocks of optical density (OD) 1.0 culture. 

Once at an OD of 1.0, 300,000 cells were used to inoculate 120mL of Middlebrook 7H9 

supplemented with 10% Middlebrook OADC, 0.0005% tween 80, and 0.005% glycerol, giving a 

total cell count of 10,000 cells per 4mL culture. For Mtb fluctuation analysis, this volume was 

immediately divided to start 24 cultures of 4mL each in 30mL square PETG culture bottles 

(Nalgene, Rochester NY). Mtb Cultures were grown at 37°C with shaking for 11 to 14 days, 

until reaching an OD of 1.0. Once at an OD of 1.0, 20 cultures were transferred to 15mL conical 

tubes and spun at 4000 RPM for 10 minutes at 4°C.  For Msm fluctuation analysis, the initial 

culture was immediately divided to start 24 cultures of 4mL each in 15ml Falcon conical tubes 

(BD Biosciences.) Once at an OD of 1.0, 20 cultures were spun at 4000 RPM for 10 minutes at 

4°C. Cultures were then resuspended in 250-500µL of 7H9/OADC/tween/glycerol and spotted 

onto 7H10/OADC/tween/glycerol plates supplemented with 2µg/mL rifampicin (Mtb) or 

200µg/mL rifampicin (Msm) (Sigma, R3501). Once spread using sterile glass beads (4mm 

diameter), plates were allowed to dry and subsequently incubated at 37°C for 28 days (Mtb) or 7 

days (Msm). Cell counts were determined by serial dilution of 4 cultures for each strain. The 
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drug resistance rate was determined by calculating m (the estimated number of mutations per 

culture) based on the number of mutants (r) observed on each plate using the Ma, Sarkar, Sandri 

(mss) method as previously described66,104. Dividing m by Nt, the number of cells plated for each 

culture, gives an estimated drug resistance rate. 95% confidence intervals were estimated using 

equations (24) and (25) as described in Roshe and Foster104,105. Pair wise comparison of 

fluctuation analysis data was done using the nonparametric two-sided Wilcoxon rank sum test 

(also known as the Mann-Whitney U-test) with the ranksum function in Matlab with alpha set to 

0.05, comparing the frequency of drug resistant mutants in each culture.  

Fluctuation Analysis Data Analysis 

To estimate the extent to which the data met the assumptions of Luria-Delbrück fluctuation 

analysis, we performed a curve fitting analysis as described by Lang and Murray66. Briefly, data 

were fit using either a one-parameter model consistent with the Luria-Delbrück model, or a two-

parameter model containing an additional parameter describing a Poisson distribution. The fit of 

each model was assessed using the least-squares methodology described by Lang and Murray, 

with AICC calculated as described previously108. A lower AICC reflects a better fit given a 

penalty for increasing the number of parameters, and a negative ∆AICC (∆AICC = AICC (one-

parameter) – AICC (two parameter)) indicates the one parameter model is a better approximation 

of the data.  

Preparation transposon mutant libraries 

Phage stocks were prepared as described previously153.  200mL of both H37Rv and 

H37RvΔ3711c were grown to an OD of 0.70, and then pelleted at 4000RPM for 10 minutes at 

37°C. Supernatants were discarded and cultures were resuspended in an equal volume of MP 

buffer (preheated to 37°C, 50mM Tris 7.5, 150mM NaCl, 10mM MgSO4, 2mM CaCl2).  
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Cultures were spun again, and again washed in an equal volume of MP buffer.  Washing was 

again repeated. Samples were resuspended in 20mLs of MP buffer (preheated to 37°C). At this 

point, 0.5mL of culture was removed and plated on 7H9/OADC/tween/glycerol supplemented 

with 25µg/mL kanamycin to determine the background rate of kanamycin resistance. Cultures 

were then transduced with 6mL of preheated (37°C) φMycoMar-T7 (1e11pfu/mL), and 

incubated at 37°C for 12 hours.  Samples were then immediately plated on 

7H9/OADC/tween/glycerol supplemented with 25µg/mL kanamycin and incubated at 37°C for 

30 days. Libraries were collected by scraping, and aliquots were prepared for both genomic DNA 

extraction and freezing.  

Extraction of genomic DNA 

 Genomic DNA was extracted by chloroform/methanol/phenol extraction.  Scrapped colonies 

were resuspended in 20mL TE (0.1M Tris and 1mM EDTA, pH 8.0), and centrifuged at 4000 

RPM for 10 minutes at 4°C.  Cultures were resuspended in 20mL TE and 20mL chloroform: 

methanol (2:1) and mixed thoroughly for 5 minutes. The cell suspension was then centrifuged at 

4000 RPM for 10 minutes at 4°C, both the supernatant (aqueous phase) and organic layer were 

discarded, leaving only the cell pellet.  The cell suspension was again centrifuged at 4000 RPM 

for 10 minutes at 4°C, and the remainder of the aqueous and organic layers was discarded.  Each 

pellet was allowed to dry for 1 hour before being resuspended in 20mL TE supplemented with 

lysozyme (final concentration 100µg/mL).  Cell suspensions were then incubated for 12 hours at 

37°C.  Following incubation, 2mL 10% SDS and proteinase K (final concentration 100µg/mL) 

were added to each suspension, which were then mixed vigorously by vortexing.  The suspension 

was then transferred to new 50mL Falcon tubes (BD Biosciences) containing an equal volume 

phenol: chloroform (1:1, phenol buffered to pH 8.0).  This suspension was again mixed 
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vigorously before incubating at room temperature for 1 hour. Suspensions were then centrifuged 

at 10,000RPM for 15 minutes at 4ºC.  The aqueous layer was removed and transferred to 

microcentrifuge tubes and supplemented with ½ volume of chloroform.  After mixing, the 

aqueous layer was again separated by centrifuging at 14,000RPM for 15 minutes at 4ºC and 

supplemented with RNase A to a final concentration of 25 µg/mL).  This suspension was 

incubated 37ºC for one hour, and then cooled for 10 minutes at 4ºC. An equal volume of phenol: 

chloroform (1:1) was again and after mixing, suspensions were centrifuged at 14,000RPM for 15 

minutes at 4ºC. ½ volume of chloroform was added to the aqueous layer, and suspensions were 

spun at 14,000RPM for 15 minutes at 4ºC.  The aqueous layer was removed, and mixed with one 

volume of isopropanol and 1/10th volume of sodium acetate (pH 5.2).  Precipitated DNA was 

removed by spooling and washed with 70% Ethos before being air dried and resuspended in 

200uL sterile distilled H2O.  

Generation of transposon junction genomic library 

Two aliquots of 100µL of purified genomic DNA at 50ng/µL per triplicate was sheared in the 

Covaris (Woburn, MA) E220 focused ultrasonicator using the following settings: duty cycle of 

5%, intensity of 3, cycles per burst of 200, and a duration of 90 seconds.  Sheared DNA was 

pooled and purified using Qiagen QIAQuick columns.  DNA ends were repaired using the NEB 

blunting kit (E1201L, New England Biolabs, Ipswich, MA) according to protocol. A-overhangs 

were polymerized on to the ends of genomic DNA fragments by incubation with 2mM dATP, 

Choice-Taq polymerase (Denville, Metuchen, NJ) and Taq PCR buffer at 72ºC for 45 minutes. 

Adapters were prepared by annealing the following sequences in 80µM MgCl2:  

5’ – TACCACGACCA-NH2 – 3’ (adapter 1.1) 

5’ – ATGATGGCCGGTGGATTTGTGNNANNANNNTGGTCGTGGTAT – 3’ (adapter 2.1) 
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where N represents a random nucleotide selected during oligonucleotide synthesis.  The 

annealing mixture was incubated at 95ºC for 4 minutes, with a subsequent ramp down to 20ºC 

with a slope of descent of 1ºC per minute.  Following annealing, 0.8µL of adapter mix adapters 

were ligated to 1.2µg of A-tailed genomic DNA fragments by T4 DNA ligase (New England 

Biolabs, Ipswich, MA) at 16ºC for 12 hours.  Transposon junctions were then amplified from 

ligated genomic DNA. The following transposon primers were mixed in equimolar ratio and 

combined with the adapter primer, where NNNNNNNN represents the sequence of multiplex 

index.  

Sol-Mar: 

5’AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGAT

CTCGGGGACTTATCAGCCAACC-3’  

Sol Mar 1b: 

5’AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGAT

CTTCGGGGACTTATCAGCCAACC-3’ 

Sol Mar 4b: 

5’AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGAT

CTGATACGGGGACTTATCAGCCAACC-3’ 

Sol Mar 5b: 

5’AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGAT

CTATCTACGGGGACTTATCAGCCAACC-3’ 

Adapter primer: 

5’CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGACTGGAGTTCAGACGTGTG

CTCTTCCGATCTATGATGGCCGGTGGATTTGTG-3’ 
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Amplification was performed using Phusion Polymerase (New England Biolabs, Ipswich, MA) 

supplemented with GC Phusion buffer. Samples were amplified using the following cycle 

conditions: (1) 98ºC for 1 minute; (2) 98ºC for 10 seconds; (3) 59ºC for 30 seconds; (4) 72ºC for 

30 seconds; (5) repeat 2-4 19 additional times; (6) 72ºC for 10 minutes.  Following amplification, 

samples were size selected by excising the 200-400bp fragment from a 2% agarose gel, purified 

by Qiagen QIAquick columns and sent for sequencing at the Broad Institute using a Illumina 

Genome Analyzer II. Reads were mapped to the recently re-annotated genome H37Rv, 

H37Rv_BD (GenBank ID: CP003248.1).  

Analysis of TraCS data 

Valid, mappable reads corresponding to insertion at a TA site were tabulated for each triplicate 

for both samples.  Read counts were normalized by dividing by the total number of observed for 

a given library divided by the minimum number of total reads observed for any library of a given 

biological comparison. For pair wise comparison of read counts between a control and 

experimental triplicate, the number of reads at each TA site was compared for a given gene by 

two-sample Wilcoxon rank sum (Matlab, Natick, MA).  Each possible pair wise comparison was 

performed, giving a total of nine p-values. A composite p-value was determined by Fisher’s 

method to given a final p-value comparing experimental and control samples.  Fold-change was 

calculated by dividing the total number of reads in the experimental sample by the total number 

of reads in the control samples for each gene.   
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Chapter 5 – Concluding Remarks 

5.1 The mutation rate of M. tuberculosis during the course of infection  

Here we have used WGS and the cynomolgus macaque model to show that mutation 

occurs at a constant rate across time, regardless of disease state.  These findings have distinct 

consequences for the evolution of drug resistance, particularly in latent infection, which is 

treated with only a single antibiotic51,78,154.  Recent evidence suggests that the spectrum of latent 

infection overlaps with that of active disease57,63,64, suggesting that bacterial burden in latently 

infected individuals may be higher than previously appreciated.  If true, there is potential for the 

development of INH resistance during latency. Indeed, meta-analyses have found associations 

between IPT and subsequent INH resistance51,52; however resistance remains rare – which is 

perhaps not surprising given the rarity of reactivation. However, this may not hold true for the 

application of IPT to HIV patients with latent or subclinical tuberculosis78,79 where bacterial 

burdens are likely higher. As IPT is deployed in this population, it will be critical to 

simultaneously deploy drug susceptibility testing to monitor INH resistance.  

Why does Tb mutate at a roughly equal rate per day, regardless of disease state and 

replication dynamics? The observed spectrum of mutations suggests that the principle driver of 

mutation in vivo may be DNA damage rather than replicative error74. It remains to be determined 

if DNA damage is incurred as a result of host factors or as a byproduct of metabolism. 

5.2 The consequences of variation in mutation rate 

Strains of the East Asian, Beijing sublineage have been clinically associated with drug 

resistance in several regions81,88-93,97-100. Our data indicate that this increased association is at 

least in part due to an increased basal level of mutation rate, as opposed to differences in target 

size or the ability to survive and mutate in the presence of drug. In order to interpret the impact 
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of these in vitro measurements on the in vivo evolution of drug resistance, we turned to our 

previously published work21 and published sequence data from a clonal outbreak in Vancouver20.  

From these data we determined that the per day mutation rate in vivo is well approximated by the 

mutation rate calculated in vitro.  Finally, we developed a model of drug resistance grounded in 

our observations of the mutation dynamics in vivo and our in vitro measures of drug resistance.  

From our model, we can draw two principle predictions relating to the clinical incidence of 

MDR: (1) with a per day dynamic of drug resistance, it is possible to see MDR emerge before 

the onset of treatment; (2) modest differences in mutation rate exist between strains, and these 

modest differences can translate to large differences in the probability of acquiring drug 

resistance. Additionally, it is striking to note that the mutation rate estimated from clinical 

isolates, from the cynomolgus macaque model, and in vitro data converge on a single per day 

mutation rate – approximately 4.0 *10-10, or 0.58 mutations per genome per year. These data are 

suggestive of a molecular clock54,155,156 for M. tuberculosis (Mtb), which may be of future use in 

the analysis of genetic diversity.  

Together, these data suggest two critical observations about the biology of mutation in 

Mtb.  First, the mutation rate does not vary in accordance with replication. Though the exact 

dynamics of Mtb growth in human infection are unknown, the replication rate of Mtb is thought 

to vary between in vitro culture, active disease, and latent infection61,62. Despite this, our 

observation of a consistent rate across conditions suggests that mutation is driven in large part by 

a time-based factor, such as DNA damage. Secondly, our data indicate that strains of the East 

Asian lineage are able to more quickly acquire drug resistance, likely due to an increase in basal 

mutation rate. The observation that mutation rate varies between strains may be reflective of 

differences in the molecular mechanisms governing mutation and fidelity. The mechanisms that 
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drive mutation and regulate fidelity are largely unknown in Mtb, though it is clear that they may 

differ in important ways from other systems. 

5.3 Mycobacteria do not employ canonical mechanisms of fidelity  

In the majority of model prokaryotic systems, replicative fidelity is regulated by three 

mechanisms: (1) polymerase base selection, (2) polymerase associated proofreading, and (3) and 

post-replicative mismatch repair (MMR). Mycobacteria lack homologs of the core post-

replicative repair proteins, MutSHL. To determine if mycobacteria compensate for a lack of 

MMR through enhanced proofreading, we deleted two potential polIIIε subunits.  While both 

contain a canonical ExoIIIε motif131,157, deletion of either gene alone or in combination did not 

result in a significant change in mutation rate, suggesting neither is necessary for maintaining 

genomic fidelity.  

While Msm4259/Rv2191 possesses additional domains suggesting it may be involved in 

NER142, Msm6275/Rv3711c bears striking homology to dnaQ. To address the possibility that 

Rv3711c acts in a redundant proofreading pathway with an unidentified gene, we utilized a 

forward genetic screen to search for genes significantly underrepresented in the absence of 

Rv3711c. While our TraCS screen failed to identify genes potentially involved in a redundant 

pathway that would obscure a mutator phenotype, we did uncover a pair of significant fold 

changes. The first is an enhanced requirement for PhoPR and a pair of genes involved in the 

TreS trehalose metabolism pathway. While none of the members of the PhoPR regulon were 

significantly underrepresented, PhoP is known to positively regulate the production of methyl-

branched fatty acid-containing acyltrehaloses. Taken together with the underrepresentation of 

treS and mak, these results suggest an important role for trehalose metabolism in the absence of 

Rv3711c. The second is a relaxed requirement for a trio of genes associated with DNA repair. It 
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is possible that these genes are involved in a potentially novel DNA repair pathway, one in 

which Rv3711c would act as the terminal exonuclease. If deletion of Rv3711c resulted in a toxic 

orphan repair intermediate, subsequent deletion of these upstream genes may halt the pathway 

prior to formation of toxic intermediates152. Whether Rv3711c participates in a novel repair 

pathway, and what role trehalose plays in tolerating the loss of Rv3711c remain open questions. 

However, from this work it is clear that Rv3711c, while annotated as dnaQ, does not serve a 

proofreading function in the cell, suggesting that mycobacteria do not use canonical mechanisms 

of proofreading.  

In the absence of homologs of both canonical MMR and proofreading, how do 

mycobacteria maintain genomic fidelity? It is possible that mycobacteria, including Mtb, have 

co-opted alternative systems to serve as mediators of replicative and post-replicative fidelity. In 

work not addressed here, we have undertaken a forward genetic screen for mutator alleles in M. 

smegmatis, the results of which may shed light on these novel systems.  Alternatively, the 

primary mycobacterial replicative polymerase (DnaE1) may possess intrinsic mechanisms of 

fidelity superior to homologous systems in model organisms. While the polymerase does not 

possess any domains reflective of 3’-5’ exonuclease activity, it is possible that it has evolved 

mechanisms to improve base selection. Indeed, antimutator alleles of the homologous dnaE from 

E. coli have been identified, though their effect was only a 30-fold reduction in mutation146,158. In 

E. coli144,145,159,160, the fidelity of polIIIα is at most 1x10-6. This suggests that if fidelity in 

mycobacteria is solely determined by base-selection, then the process must be at least 10,000 

times more specific in mycobacteria than E. coli. 

One proposed benefit of dissociating mechanisms of fidelity from the polymerase 

through both polIIIε and post-replicative MMR is the ability to suspend these processes in times 
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of stress131,161,162. This allows for replication to continue despite DNA damage, and results in the 

rapid creation of genetic diversity – potentially leading to adaptation. In the absence of both 

MMR and proofreading, it is possible that Mtb accomplishes this through use of DnaE2, an 

alternative polymerase with homology to both mycobacterial DnaE1 and DnaE from E. coli67. 

Indeed, DnaE2 is required for persistence in a mouse model of infection, suggesting it is 

involved in tolerating host-induced stress. While the molecular determinants of fidelity in 

mycobacteria remain unknown, it is clear that mycobacteria are highly divergent from model 

systems and further work may reveal novel insights into this core process.  

5.4 The future evolution of drug resistance 

Ultimately, this work is motivated by the occurrence of mutation leading to drug 

resistance in a clinical setting. The scope of the drug resistance epidemic is staggering – 

approximately 5% of cases are multidrug resistant, a percentage that climbs to 22% in some 

regions of the globe14. Given the strong association of drug resistant tuberculosis with 

mortality7,83, reversing the drug resistance epidemic is essential to reducing the morbidity and 

mortality burden of the disease.  

As reports of MDR, XDR, and TDR tuberculosis become more common, the need for 

new antibiotics is pressing. Fortunately, several new compounds are in late stage clinical 

development, and new regimens, driven in part by the Global Alliance for Tb Drug Development 

may offer a shortened course of therapy163. As new antibiotics and new regimens emerge, 

strategies to avoid a new generation of MDR, XDR, and TDR isolates must be pursued. While 

adherence to properly prescribed regimens will be essential, our work and the work of others113 

suggests that the mutational capacity of Mtb is sufficient to develop MDR before the onset of 

treatment. This is largely a result of the large bacterial burden present at diagnosis and treatment, 
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a factor determined by the limited sensitivity of diagnostics. In the face of substantial capacity 

for mutation and resistance, early and active case detection with novel, sensitive point of care 

diagnostics remains our best hope of curbing the drug resistance epidemic.  
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Supplementary Figure 2.1 The per base mutation rate of Mtb in vitro. (a,b) Luria and 
Delbrück fluctuation analysis was used to determine the rate of resistance to rifampicin. 20 
independent cultures containing 1.08 x 109 cells each were plated and the resistance frequency 
was determined for each. The rate of resistance, µrifampicin, was determined using the MSS method 
to calculate mrifampicin, the representative number of mutations per culture. These data are 
representative of 4 biologically independent experiments. (c) The number of mutations 
conferring rifampicin resistance in our assay was determined using Sanger sequencing. 
Sequencing rifampicin resistant isolates from 96 independent cultures identified ten unique 
mutations. The amino acid changes represent the standard codon annotation used in E. coli. The 
per base mutation rate, µin vitro, was determined by dividing µrifampicin by the target size. 
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Supplementary Table 2.1 Coverage and read depth for each sequenced isolate.  

Animal & 
Isolate 

Run 
Identifiera 

Read  
Length 
(bp)b 

Average  
Read 
 Depth 

Percent 
Coveragec  

A – 2 15304-1B 75 278 96 
A – 3  15304-3A 75 25 86 
A – 7 15304_2A 36 15 61 
A – 8  15304_4B 36 28 93 
B – 1 7404-1 75 141 95 
C – 1 7904-1 75 284 96 
C – 2 7904-2 75 132 94 
C – 3  7904-3 36 36 94 
C – 3  7904-5 51 62 99 
D – 4  11208-E4 51 15 97 
D – 5  11208-E5 51 47 99 
D – 7A  11208-E7 51 43 99 
D – 3  11208-J3 51 114 99 
D – 6  11208-J6 51 76 99 
D – 7B  11208-J7 51 18 97 
E – 2  7604-2 75 155 95 
E – 4  7604-4 51 63 99 
F – 1 8104-1C 75 148 89 
F – 2  8104-2A 75 46 66 
F – 4  8104_3B 36 22 91 
G – 1  6404-1A 75 86 94 
G – 2   6404-1B 75 183 95 
G – 6 6404-3B 75 163 94 
H-1  11105-1 51 62 99 
H – 2 11105-2 75 227 95 
H – 3 11105-3 75 208 96 
I – 1 10403-1 75 228 95 
I – 4 10403-4 75 121 90 
I – 7  10403-7 75 224 94 
I – 8 10403-8 75 205 95 
I – 9  10403-9 51 80 98 
I – 10 10403-10 75 189 96 
I – 11 10403-11 75 207 96 
Inoculum JF-Erdman 36 38 94 

Inoculum JF was sequenced four times, with the values shown representing total read depth from the four runs and 
total coverage. aRun Identifiers are based on the animal and strain identifiers used by Lin et al. b75bp reads were 
produced as paired-end reads by the Broad Institute of MIT and Harvard. Reads were subsequently trimmed to 48bp 
and pairing data was not used in assembly. 51 bp reads were produced by the Sacchettini lab at Texas A&M and 
were analyzed as paired end reads. 36bp reads were produced by Partners Healthcare Center for Personalized 
Genetic Medicine, Harvard Medical School. cPercent coverage values (defined as the fraction of sites covered in a 
genome) vary based on the method of assembly used. For 51bp reads, repetitive sequences were mapped using 
paired-end data to disambiguate the location of reads that map to multiple locations in the genome, allowing for a 
higher percent coverage value. A read depth of five was required to call a SNP. For 75 and 36 bp reads, repetitive 
sequences that could map to multiple locations were discarded resulting in a lower percent coverage for these 
isolates and a read depth of ten was required to call a SNP. 
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Supplementary Table 2.2 Primers used in PCR/Sequencing of validated SNPs.  
H37Rv 
Coordinate SNP Forward Primer Reverse Primer 

635497 C>T GACGTCGTCACTACCAGGG CTCGGTGACTTCGACCAGAT 
690264 G>C GCGATGGTGGTCAATCTGCTGCC TGCTACCTCCCGTCCCGTCAG 
693453 C>T TGGTGGTCCTTGGTTGGTAT TAGTCGTGGTGATCGTCTGC 
766229 G>A GACCCGTACATCGAAACCTC AGACCACCGGTGATGTCCTC 
975906 T>C GCAAGTACATCCGAGAACCC TTCCAATACTGCCGGAAGAC 

1256717 G>A GCGATCAGCTATCTCGGTG GTAGATGTCGGATTGGGTCG 
1854208 G>T ACCCATACAACGGCAAGTGT CGAGCGCTCTCATACAGACA 
1861203 G>A GAGGTTTCTCCCACCCTTACCGAC CTCGGGACACGTTGCGCAC 
2448250 G>A CCCTCTAGGCTTGACGACAG CGAGGTCTCGTAGGTCGGTA 
3655598 G>T GTGTCGACAAGCTGCATCAC ACGATGGTGATGGCGTAGAT 
4346906 C>A GTACATGTTGATGATGCCGC ACATATGACTGACCGGCTCC 

The following polymorphisms were identified multiple times by WGS and were not subjected to PCR resequencing: 
682043, 2350697, 4183984. 
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Supplementary Figure 3.1 Phylogenetic analysis of clinical isolates Phylogenetic trees were 
constructed based on Bayesian MCMC analysis.

Supplemental Figure 1
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Supplementary Figure 3.2 Model structure and development (a) Model structure described 
both graphically and mathematically.  (b) Simulation of bacterial growth and drug resistance 
within a simulated patient in which multidrug resistance evolved. (c) Comparison of time based 
model of mutation where probability of resistance is determined by simulation and a replication 
based model of resistance where probability is determined by the shown derived equation. 
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Supplementary Table 3.1 Rifampicin fluctuation analysis data 
Strain Lineage Drug 

(µg/µL) 
Total  

Cultures 
m Cell 

count 
Mutatio
n rate 

95% 
Confidence 

Interval 
CDC-
1551 

Euro-
American 

Rif  
2 

20 2.153 8.9e8 2.42e-9 1.14-3.82e-9 

Erdman Euro-
American 

Rif 
2 

20 2.274 8.64e8 2.63e-9 1.26-4.13e-9 

H37Rv Euro-
American 

Rif 
2 

20 4.337 8.73e8 4.97e-9 2.94-7.08e-9 

X005581 Euro-
American 

Rif 
2 

20 5.830 7.7e8 7.57e-9 4.09-8.58e-9 

X000630 Euro-
American 

Rif 
2 

20 4.815 8.50e8 5.67e-9 5.2-11.91e-9 

HN878 East 
Asian 

Rif 
2 

20 15.809 1.17e9 1.35e-8 1.095-1.605e-
8 

X005632 East 
Asian 

Rif 
2 

20 7.898 8.8e7 8.97e-8 6.34-11.67e-8 

X005631 East 
Asian 

Rif 
2 

20 3.225 1.37e8 2.36e-8 1.26-3.519e-8 

X005621 East 
Asian 

Rif 
2 

20 5.523 2.04e8 2.71e-8 1.73-3.715e-8 

CDC-
1551 

Euro-
American 

Rif 
0.5 

20 5.100 6.08e8 8.40e-9 5.24- 11.70e-
9 

CDC-
1551 

Euro-
American 

Rif 
2 

20 2.919 6.08e8 4.81e-9 2.48-7.28e-9 

CDC-
1551 

Euro-
American 

Rif 
5 

17 3.171 6.08e8 5.22e-9 2.73-7.88e-9 

HN878 East 
Asian 

Rif 
0.5 

16 
 

16.998 9.38e8 1.81e-8 1.49-2.14e-8 

HN878 East 
Asian 

Rif  
2 

19 18.223 9.38e8 1.94e-8 1.61-2.28e-8 

HN878 East 
Asian 

Rif 
5 

20 9.311 9.38e8 9.39e-9 7.29-11.26e-9 

CDC-
1551 

Euro-
American 

INH 
1 

20 145.31
9 

1.72e9 8.43e-8 8.14-8.728e-8 

HN878 East 
Asian 

INH 
1 

18 93.360 4.03e8 2.32e-7 2.19-2.43e-7 

CDC-
1551 

Euro-
American 

ETH 
5 

20 19.602 3.93e8 4.98e-8 4.18-5.80e-8 

HN878 East 
Asian 

ETH 
5 

20 20.020 1.60e8 1.25e-7 1.05-1.45e-7 
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Supplementary Table 3.2 rpoB mutations 
CDC -1551 HN878 

Drug Concentration (µg/mL) 

E. coli 
RpoB 
Coord. 

(amino acid) 

Mtb 
RpoB 
Coord. 

(amino acid) 

Mtb rpoB 
coord. 

(nucleotide) 
0.5 2 5 0.5 2 5 

Q513E Q438E C1312G - - - 2 1 - 
Q513L Q438L A1313T - - - 2 - - 
D516V D441V A1322T 1 - - 3 - - 
N519K N444K C1332G - - - 1 - - 
S522L S447L C1340T 7 7 - 4 13 2 
S522W S447W C1340G 4 2 5 4 3 3 
H526D H451D C1351G 14 9 4 9 3 7 
H526Y H451Y C1351T 10 12 12 10 15 14 
H526R H451R A1352G 7 7 13 15 10 14 
H526P H451P A1352C** 1 4 5 1 3 5 
H526L H451L A1352T 2 - - 1 - - 
S531L S456L C1367T 11 8 5 7 16 18 
S531W S456W C1367G 1 2 1 1 2 - 

Total Target Size 10 8 7 13 9 7 
** A1352C represents both single mutations found at this single site (quantity per strain : 1,2,-
,1,1,1 respectively), as well as three clustered mutations: C1350G, A1352C, A1354C (quantity 
per strain: -, 2,5,-,2,4).  These three mutations were found together, and the first of the three is a 
silent mutation.  
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Supplementary Table 3.3 Isoniazid and Ethambutol fluctuation analysis data 

  
Strain 

Drug 
Conc. 

(µg/mL) 

Mutation Rate 
(mut./bp/gen.) 

95% CI Wilcoxon 
Rank Sum 

p-value 
0.5 8.40e-10 5.24e-10 – 1.17e-9 
2 6.01e-10 3.10e-10 – 9.10e-10 

4.2866e-06  
CDC-
1551 5 7.46e-10 3.91e-10 – 1.13e-9 

0.5 1.39e-09 1.14e-9 - 1.65e-9  
1.8461e-05 

2 2.16e-09 1.79e-9 – 2.53e-9 
 

HN878 
5 1.42e-09 1.04e-9 – 1.80e-9 

3.8210e-04 
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Supplementary Table 3.4 Estimates of in vivo mutation rate 

Sample Mutations 
(m) 

Number 
of 

genomes 

Average 
time per 
genome 
(days) 

Mutation 
rate 95% CI 

Human 
isolates* n/a 32 n/a 2.21e-10 1.90 – 2.52 

e-10 
Active 

Disease, 
cynomolgus 
macaque** 

4 15 261.85 4.45e-10 
4.01 - 4.88 

e-10 
 

Latent 
infection, 

cynomolgus 
macaque** 

3 8 293.52 2.55e-10 6.59 – 93.3 
e-10 

Reactivated 
Disease, 

cynomolgus 
macaque** 

7 10 488.69 3.19e-10 1.44 - 7.38 
e-10 

All disease 
states,  

cynomolgus 
macaque** 

14 33 338.31 3.14e-10 1.71 - 5.26 
e-10 

In vitro, 
Erdman** 10 n/a n/a 3.16e-10 1.51  - 4.95 

e-10 
* Estimated using BEAST v1.7.2 
** Previously published, see reference (6).   
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Supplementary Table 3.5 Mathematical model parameter values 
Variable Descriptor Figure 7a Figure 7b Figure 7c 
NS(t) Susceptible 

bacterial population 
size at time (t)  

Variable Variable Variable 

NR(t) Rifampicin 
Resistant bacterial 
population size at 
time (t) 

Variable Variable Variable 

NH(t) Isoniazid Resistant 
bacterial population 
size at time (t) 

Variable Variable Variable 

NMDR(t) Multidrug resistant 
bacterial population 
size at time (t) 

Variable Variable Variable 

b Bacterial growth 
rate, replications 
per day  

0.40 0.20 : 1.10, 
increments of 
0.10 

0.40 

dA Bacterial death rate 0.15 0.15 0.15 
µR-CDC Rifampicin 

resistance rate, 
CDC-1551 

2.42e-9 2.42e-9 2.42e-9 

µH-CDC Isoniazid resistance 
rate, CDC-1551 

2.32e-7 2.32e-7 2.32e-7 

µR-W Rifampicin 
resistance rate,  
HN878 

1.94e-8 1.94e-8 1.94e-8 

µH-W Isoniazid resistance 
rate, HN878 

2.32e-7 2.32e-7 2.32e-7 

crH Fitness cost of 
resistance, isoniazid 
resistance 

0 0 0 : 0.9, 
increments of 
0.10  

crR Fitness cost of 
resistance, 
rifampicin 

0 0 0 : 0.9, 
increments of 
0.10 

crMDR Fitness cost of 
resistance, 
multidrug resistance 

crH*crR crH*crR crH*crR 

Number 
of runs 

Number of 
simulated patients 

200,000 
(100,000 per 
strain) 

2,000,000 
(100,000 per 
value of b, per 
strain) 

2,000,000 
(100,000 per 
value of cr, per 
strain) 
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Supplementary Table 4.1 Fluctuation analysis data 

Species, Strain Drug 
(µg/mL 

Total 
cultures m Cell 

count 
Mutation 

rate 

95% 
Confidence 

Interval 
Mtb H37Rv Rif 2 20 5.86 2.81e8 2.10e-8 1.37-2.86e-8 

Mtb 
H37RvΔRv3711c Rif 2 20 7.91 3.50e8 2.83e-8 2.00-3.69e-8 

Msm Mc2155 Rif 200 20 1.22 3.00e8 4.07e-9 1.97-6.71e-9 
Msm Mc2155 
ΔMsm4259 Rif 200 20 1.60 2.00e8 8.01e-9 3.65 – 13.0e-9 

Msm Mc2155 
ΔMsm6275 Rif 200 20 3.13 6.00e8 5.21e-9 2.75-7.81e-9 

Msm Mc2155 
ΔMsm4259 
ΔMsm6275 

Rif 200 20 2.12 3.00e8 7.05e-9 3.32-11.2e-9 
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Supplementary Table 4.2 Genes significantly two-fold above or below H37Rv in 
H37RvΔRv3711c, sorted by ratio. 

Gene p-value 
Read 

Count, 
H37Rv  

Read Count, 
H37Rv  
ΔRv3711c 

Ratio Function 

Rv3711c 1.33E-15 2468.20 52.77 0.0214 exonuclease, DNA polymerase 
III, epsilon subunit 

Rv0757 9.25E-06 118.62 2.87 0.0242 two-component system, OmpR 
family, response regulator 

Rv0127 5.92E-06 20.44 0.73 0.0358 maltose kinase, mak 
Rv1592c 1.05E-09 372.28 22.64 0.0608 triacylglycerol lipase 
Rv1845c 3.73E-06 584.23 90.19 0.1544 sensor transducer, blaR 

Rv0126 8.38E-06 50.25 9.46 0.1883 trehalose synthase, converts 
maltose to trehalose 

Rv2164c 0 16.99 5.46 0.3214 
unknown conserved 

hypothetical,proline rich 
membrane protein 

Rv1203c 3.24E-06 397.25 132.71 0.3341 unknown conserved hypothetical 

Rv3587c 0 1.89 0.73 0.3870 
hypothetical membrane protein, 
possible fibronectin attachment 

protein 
Rv2624c 0 14.89 389.64 26.1680 universal stress protein 
Rv2026c 1.80E-06 44.08 183.27 4.1577 universal stress protein 
Rv2944 1.73E-10 284.02 919.60 3.2378 transposase 
Rv2810c 9.57E-06 626.49 1324.30 2.1139 transposase 
Rv1377c 2.48E-10 329.84 909.86 2.7585 transferase 
Rv2274c 1.11E-16 18.65 488.55 26.1970 toxin 
Rv2764c 0 2.06 5.46 2.6530 thymidylate synthase 

Rv2832c 4.05E-11 5.81 286.00 49.2060 sn-glycerol 3-phosphate 
transporter ATP-binding protein 

Rv2253 8.41E-06 551.49 1380.10 2.5025 secreted protein 

Rv1003 2.06E-08 283.87 603.72 2.1268 ribosomal RNA small subunit 
methyltransferase I 

Rv2097c 0 0.94 2.92 3.0963 pup-protein ligase 
Rv1574 2.48E-08 168.82 340.20 2.0152 phiRv1 phage protein 
Rv2383c 0 1.39 74.35 53.6710 phenyloxazoline synthase MbtB 
Rv1089 1.24E-08 69.18 410.36 5.9314 PE family protein 
Rv3777 3.22E-06 466.76 1083.90 2.3222 oxidoreductase 
Rv3389c 8.59E-06 485.74 1247.00 2.5672 oxidoreductase 
Rv2322c 9.31E-10 4.87 372.76 76.5700 ornithine-oxo-acid transaminase 
Rv0899 4.80E-06 304.30 626.58 2.0591 OOP family OmpA-OmpF porin 
Rv0781 0 366.07 1029.90 2.8133 oligopeptidase B 
Rv1912c 7.43E-14 562.81 2004.30 3.5613 NADPH2:quinone reductase 
Rv1160 8.34E-10 18.88 450.44 23.8570 mutator mutT protein, mutT2 
Rv0187 3.42E-06 270.24 581.47 2.1517 methyltransferase 
Rv3342 4.99E-06 168.69 408.12 2.4194 methyltransferase 
Rv3204 1.01E-05 4.98 115.83 23.2400 methyltransferase 
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Supplementary Table 4.2, continued 

Gene p-value 
Read 

Count, 
H37Rv  

Read Count, 
H37Rv  
ΔRv3711c 

Ratio Function 

Rv0924c 2.34E-11 4251.80 10858.00 2.5537 
metal ion (Mn2+/Fe2+) 

transporter (Nramp) family 
metal ion transporter 

Rv0621 3.40E-06 547.70 1514.60 2.7653 membrane protein 
Rv3282 1.18E-05 96.76 223.43 2.3092 maf-like protein 
Rv2518c 0 1.35 3.71 2.7577 lipoprotein lppS 
Rv2171 3.83E-08 77.20 507.01 6.5678 lipoprotein lppM 
Rv1400c 1.84E-10 126.04 497.53 3.9476 lipase lipH 
Rv2213 5.66E-06 360.11 924.86 2.5683 leucyl aminopeptidase 
Rv1730c 0 320.53 985.85 3.0757 hypothetical protein 
Rv1006 0 2832.00 6525.30 2.3041 hypothetical protein 
Rv3643 1.24E-13 120.51 484.35 4.0191 hypothetical protein 
Rv2901c 9.56E-12 130.69 489.67 3.7469 hypothetical protein 
Rv1269c 8.84E-11 127.68 706.00 5.5293 hypothetical protein 
Rv2309A 2.03E-10 487.82 1881.70 3.8573 hypothetical protein 
Rv1551A 3.17E-08 27.49 452.74 16.4710 hypothetical protein 
Rv2669 3.81E-08 76.16 235.41 3.0910 hypothetical protein 
Rv2731 3.98E-08 1043.20 2637.60 2.5284 hypothetical protein 
Rv1669 4.78E-08 233.01 1191.40 5.1131 hypothetical protein 
Rv3562 6.02E-08 61.26 397.44 6.4878 hypothetical protein 
Rv3658c 1.51E-07 12.00 247.76 20.6430 hypothetical protein 
Rv2728c 2.98E-07 888.56 2071.10 2.3309 hypothetical protein 
Rv3693 7.10E-07 672.29 1358.90 2.0212 hypothetical protein 
Rv2227 7.32E-07 533.62 1332.90 2.4978 hypothetical protein 
Rv1929c 9.07E-07 363.49 862.91 2.3740 hypothetical protein 
Rv0310c 1.04E-06 276.37 823.16 2.9785 hypothetical protein 
Rv1154c 1.25E-06 1033.80 2509.10 2.4270 hypothetical protein 
Rv0312 2.39E-06 237.15 615.20 2.5941 hypothetical protein 

Rv1719A 3.11E-06 25.52 361.57 14.1710 hypothetical protein 
Rv0912A

c 4.28E-06 137.71 337.29 2.4493 hypothetical protein 

Rv3657c 7.23E-06 50.71 161.20 3.1787 hypothetical protein 
Rv0007 9.51E-06 224.37 587.96 2.6205 hypothetical protein 

Rv3078 3.36E-06 69.14 152.91 2.2115 hydroxylaminobenzene mutase 
hab 

Rv2715 1.12E-12 772.53 1903.60 2.4641 hydrolase 
Rv1694 9.78E-06 149.09 802.13 5.3803 hemolysin TlyA family protein 
Rv2031c 1.66E-08 509.61 1296.40 2.5439 heat shock protein hspX 
Rv1925 2.03E-07 113000.00 226230.00 2.0020 fatty-acyl-CoA synthase 

Rv1782 0 0.67 3.43 5.0900 ESX-5 secretion system protein 
eccB5 

Rv1426c 8.56E-14 857.33 1739.70 2.0292 esterase lipO 
Rv1142c 9.66E-06 579.06 1632.90 2.8199 enoyl-CoA hydratase 
Rv0905 1.23E-05 432.13 1284.20 2.9719 enoyl-CoA hydratase 
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Supplementary Table 4.2, continued 

Gene p-value 
Read 

Count, 
H37Rv  

Read Count, 
H37Rv  
ΔRv3711c 

Ratio Function 

Rv2748c 0 12.26 37.83 3.0864 DNA translocase ftsK 

Rv0794c 1.34E-05 580.81 1393.00 2.3984 dihydrolipoamide 
dehydrogenase 

Rv0695 3.77E-10 87.90 683.07 7.7708 creatinine amidohydrolase, 
mycofactocin system protein 

Rv2583c 5.22E-09 2569.20 9846.30 3.8324 bifunctional (p)ppGpp 
synthase/hydrolase relA 

Rv2262c 1.80E-11 792.13 1968.90 2.4855 apolipoprotein N-acyltransferase 
Rv2638 3.97E-07 140.76 775.50 5.5094 anti-anti-sigma factor 

Rv2380c 0 6.51 174.21 26.7670 amino acid adenylation domain-
containing protein 

Rv2379c 1.33E-10 44.26 88.91 2.0088 amino acid adenylation domain-
containing protein 

Rv2251 1.70E-07 263.38 1089.00 4.1348 alkyldihydroxyacetonephosphate 
synthase 

Rv3501c 2.65E-08 361.11 791.10 2.1908 ABC transporter permease 

Rv3569c 1.15E-08 241.92 512.13 2.1170 
4,5-9,10-diseco-3-hydroxy-

5,9,17-trioxoandrosta-1(10),2-
diene-4-oate hydrolase 

Rv0812 7.23E-14 10.51 72.81 6.9280 4-amino-4-deoxychorismate 
lyase 

Rv2002 2.85E-11 246.27 836.00 3.3946 3-alpha-(or 20-beta)-
hydroxysteroid dehydrogenase 

Rv2918c 0 766.45 2629.90 3.4313 [protein-PII] uridylyltransferase 

Rv2384 0 4.04 14.85 3.6751 
(2,3-

dihydroxybenzoyl)adenylate 
synthase 
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Supplementary Table 4.3 – Genes of the PhoPR regulon, sorted by ratio. 

Gene Z-
Score* p-value 

Read 
Count, 
H37Rv 

Read Count, 
H37Rv 
∆Rv3711c 

Ratio 

Rv1180 2.08 0.00E+00 0.00 0.00 0.0000 
Rv2524 2.12 0.00E+00 1.42 0.00 0.0000 
Rv0757 2.96 9.25E-06 118.62 2.87 0.0242 
Rv0758 2.43 1.08E-04 123.57 14.15 0.1145 
Rv0677 2.46 7.95E-01 2053.30 930.19 0.4530 
Rv3141 2.11 5.78E-01 1459.50 732.28 0.5017 
Rv2641 2.48 5.92E-01 1350.90 710.71 0.5261 
Rv0968 2.19 9.98E-01 1895.90 1006.10 0.5307 
Rv3880 3.33 1.00E+00 841.90 489.24 0.5811 
Rv3477 3.20 9.99E-01 424.85 257.74 0.6067 
Rv3129 3.44 7.77E-01 1004.20 617.81 0.6152 
Rv3862 2.59 7.14E-01 4413.70 2725.40 0.6175 
Rv3147 2.03 9.60E-01 1233.00 832.30 0.6750 
Rv0821 2.25 7.01E-01 1491.20 1033.90 0.6933 
Rv3148 2.01 6.57E-10 1542.50 1073.40 0.6959 
Rv3879 2.62 9.69E-01 8601.60 6057.30 0.7042 
Rv3878 2.89 1.00E+00 1722.60 1230.70 0.7144 
Rv3132 2.19 1.23E-02 2261.70 1678.30 0.7420 
Rv1812 2.17 7.59E-01 13047.00 9983.00 0.7652 
Rv0847 2.65 1.00E+00 1893.10 1450.30 0.7661 
Rv2389 2.47 9.75E-01 2745.90 2149.00 0.7826 
Rv3270 2.36 9.85E-01 908.19 711.39 0.7833 
Rv3822 2.72 1.16E-01 6605.30 5192.80 0.7862 
Rv3877 2.40 9.88E-01 8736.60 6869.70 0.7863 
Rv3866 2.11 9.81E-01 3210.20 2612.20 0.8137 
Rv1218 2.21 4.86E-01 850.26 693.31 0.8154 
Rv3487 3.17 9.87E-01 15382.00 12781.00 0.8309 
Rv3825 2.23 2.79E-04 20684.00 17297.00 0.8363 
Rv3876 2.46 9.00E-01 5485.70 4615.80 0.8414 
Rv3864 2.13 9.97E-01 2323.30 1982.20 0.8532 
Rv3197 2.54 9.99E-01 332.11 292.45 0.8806 
Rv1185 3.32 8.58E-05 3525.00 3211.10 0.9109 
Rv3873 2.37 1.64E-01 3722.70 3468.80 0.9318 
Rv2780 2.19 3.53E-05 2392.10 2231.20 0.9327 
Rv0251 2.14 8.73E-01 1088.40 1025.40 0.9421 
Rv0250 2.64 9.87E-01 515.90 489.79 0.9494 
Rv3881 2.41 7.35E-01 5421.30 5264.60 0.9711 
Rv3135 4.08 9.56E-01 1826.50 1778.70 0.9738 
Rv3127 2.51 9.09E-05 2679.10 2737.10 1.0217 
Rv1996 2.53 4.68E-02 2056.70 2104.20 1.0231 
Rv2137 2.61 4.25E-01 680.42 696.12 1.0231 
Rv3143 2.50 9.83E-01 546.05 567.58 1.0394 
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Supplementary Table 4.3, continued 

Gene Z-
Score* p-value 

Read 
Count, 
H37Rv 

Read Count, 
H37Rv 
∆Rv3711c 

Ratio 

Rv0186 2.17 1.10E-06 3406.10 3814.20 1.1198 
Rv3161 2.05 3.62E-01 2475.20 2785.10 1.1252 
Rv2329 2.82 6.95E-03 4606.60 5215.40 1.1322 
Rv2621 2.03 9.99E-01 235.33 277.76 1.1803 
Rv1184 3.12 4.30E-03 2353.80 2806.20 1.1922 
Rv3865 2.11 1.67E-01 970.41 1185.60 1.2217 
Rv3867 2.18 9.69E-01 1122.50 1378.30 1.2279 
Rv2590 3.14 6.86E-06 13295.00 17074.00 1.2842 
Rv1219 2.33 1.59E-05 953.69 1260.30 1.3215 
Rv2642 2.14 5.60E-01 643.49 874.63 1.3592 
Rv2390 3.33 9.88E-01 2276.50 3187.90 1.4003 
Rv3136 2.62 1.59E-05 1472.30 2076.30 1.4102 
Rv3146 2.13 3.06E-01 2857.80 4144.60 1.4503 
Rv1217 2.14 1.56E-04 857.20 1254.70 1.4638 
Rv3133 2.25 3.51E-01 1075.80 1586.80 1.4750 
Rv2396 4.08 9.48E-01 3242.30 4849.70 1.4957 
Rv2630 2.08 6.81E-04 428.64 641.22 1.4959 
Rv2628 2.24 4.14E-01 469.16 704.55 1.5017 
Rv3849 3.36 2.71E-02 17.90 31.61 1.7656 
Rv3155 2.14 8.12E-01 69.59 130.14 1.8700 
Rv1986 2.51 2.53E-01 471.85 886.22 1.8782 
Rv2744 2.21 5.28E-02 1074.70 2068.10 1.9243 
Rv3269 2.18 9.98E-01 21.08 43.31 2.0548 
Rv1639 3.75 3.86E-03 918.68 2071.70 2.2550 
Rv2376 2.65 8.88E-02 177.09 413.81 2.3368 
Rv0967 2.53 9.99E-01 56.63 197.85 3.4935 
Rv1687 2.64 7.36E-05 221.02 864.15 3.9099 
Rv3137 2.74 1.00E+00 0.00 0.73 Inf 
Rv0440 2.32 0.00E+00 0.00 0.00 NaN 
Rv2391 5.14 0.00E+00 0.00 0.00 NaN 
Rv2392 3.82 0.00E+00 0.00 0.00 NaN 
Rv2393 3.14 0.00E+00 0.00 0.00 NaN 

*Z-scores obtained from  
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Supplementary Table 4.4 Genes whose expression is correlated with PhoP, sorted by 
correlation.  

Gene Corr.with 
phoP  p-value 

Read 
Count, 
H37Rv 

Read 
Count, 

H37Rv∆
Rv3711c 

Ratio Function 

Rv1843c 0.400 2.19E-01 8080.00 10557.00 1.3065 inosine-5-monophosphate 
dehydrogenase guaB1 

Rv1699 0.381 0.00E+00 0.00 0.00 NaN CTP synthase pyrG 
Rv3059 0.368 1.23E-06 5516.40 5137.00 0.9312 cytochrome P450 136 cyp136 
Rv2602 0.363 7.53E-01 2901.60 2374.30 0.8183 conserved hypothetical protein 
Rv3734c 0.345 8.23E-02 5354.90 6852.20 1.2796 conserved hypothetical protein 

Rv0758 0.343 1.08E-04 123.57 14.15 0.1145 two component system sensor kinase 
phoR 

Rv1880c 0.342 8.16E-02 2471.20 2618.20 1.0595 cytochrome P450 140 cyp140 
Rv1478 0.335 9.54E-01 1740.70 1041.60 0.5984 invasion-associated protein 
Rv3865 0.335 1.67E-01 970.41 1185.60 1.2217 conserved hypothetical protein 
Rv3867 0.333 9.69E-01 1122.50 1378.30 1.2279 conserved hypothetical protein 
Rv0060 0.332 9.25E-01 35.50 52.40 1.4762 conserved hypothetical protein 
Rv2867c 0.331 2.08E-01 1036.90 651.27 0.6281 conserved hypothetical protein 
Rv2091c 0.317 2.62E-04 742.04 381.28 0.5138 membrane protein 
Rv3773c 0.316 9.40E-01 1185.20 1176.90 0.9930 conserved hypothetical protein 
Rv0673 0.313 4.40E-03 535.72 981.80 1.8327 enoyl-CoA hydratase echA4 
Rv0038 0.310 7.85E-01 633.79 907.80 1.4323 conserved hypothetical protein 
Rv2895c 0.307 3.54E-01 2352.90 3596.60 1.5286 mycobactin utilization protein viuB 

Rv3765c 0.304 3.85E-02 2835.90 3185.20 1.1232 two component system transcriptional 
regulator 

Rv3618 0.304 4.97E-01 3259.10 2783.30 0.8540 monooxygenase 
Rv3583c 0.303 1.00E+00 0.67 0.00 0.0000 transcriptional regulator 

Rv2153c 0.303 0.00E+00 0.00 0.00 NaN 

UDP-N-acetylglucosamine-N-
acetylmuramyl-

(pentapeptide)pyrophosphoryl-
undecaprenol-N-acetylglucosamine 

transferase murG 
Rv0455c 0.303 1.97E-01 21.79 39.26 1.8015 conserved hypothetical protein 
Rv1411c 0.301 9.97E-01 2846.90 2009.00 0.7057 lipoprotein lprG 

Rv2496c 0.301 8.52E-12 1152.50 1229.10 1.0665 pyruvate dehydrogenase E1 component 
beta subunit pdhB 

Rv0156 -0.441 0.00E+00 0.00 0.00 0.0000 NAD(P) transhydrogenase alpha 
subunit pntAb 

Rv2647 -0.407 1.00E+00 572.02 244.26 0.4270 hypothetical protein 
Rv2306c -0.382 7.69E-01 452.63 204.48 0.4518  
Rv3123 -0.375 9.59E-01 1483.50 712.39 0.4802 hypothetical protein 
Rv0403c -0.371 9.88E-01 1710.80 938.42 0.5485 membrane protein mmpS1 
Rv0316 -0.366 9.97E-01 1090.20 652.19 0.5982 muconolactone isomerase 
Rv3560c -0.354 1.00E+00 2614.60 1581.30 0.6048 acyl-CoA dehydrogenase fadE30 

Rv3820c -0.353 9.50E-01 6509.80 4367.10 0.6709 polyketide synthase associated protein 
papA2 

Rv2066 -0.339 1.00E+00 6272.10 4269.20 0.6807 bifunctional cobI-cobJ fusion protein 
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Supplementary Table 4.4, continued 

Gene Corr.wit
h phoP p-value 

Read 
Count, 
H37Rv 

Read 
Count, 

H37Rv∆
Rv3711c 

Ratio Function 

Rv2960c -0.335 3.85E-01 1310.70 974.60 0.7436 hypothetical protein 
Rv1850 -0.333 2.85E-01 756.72 563.98 0.7453 urease alpha subunit ureC 
Rv2600 -0.331 9.51E-01 3396.90 2614.20 0.7696 conserved membrane protein 
Rv0204c -0.331 9.27E-01 5640.80 4525.00 0.8022 conserved membrane protein 
Rv3832c -0.321 9.94E-01 2491.20 2210.40 0.8873 conserved hypothetical protein 
Rv2290 -0.319 1.56E-01 3031.90 2759.40 0.9101 lipoprotein lppO 
Rv1707 -0.317 5.52E-01 5878.90 5493.10 0.9344 conserved membrane protein 
Rv1244 -0.313 9.48E-01 2791.40 2790.90 0.9998 lipoprotein lpqZ 
Rv2272 -0.311 9.12E-01 170.02 174.72 1.0277 conserved membrane protein 
Rv3539 -0.311 5.45E-04 2105.20 2166.60 1.0292 PPE family protein 
Rv1900c -0.310 1.85E-05 2143.10 2311.30 1.0785 lignin peroxidase lipJ 

Rv1282c -0.309 2.37E-04 977.89 1116.50 1.1417 oligopeptide-transport membrane 
protein ABC transporter oppC 

Rv0008c -0.309 9.98E-01 140.63 163.56 1.1631 membrane protein 

Rv1901 -0.307 1.24E-03 5759.10 7085.30 1.2303 competence damage-inducible protein 
A cinA 

Rv0366c -0.306 4.05E-02 530.64 677.06 1.2759 conserved hypothetical protein 
Rv2212 -0.306 6.75E-02 1320.80 1691.50 1.2807 conserved hypothetical protein 
Rv0840c -0.304 6.63E-01 1559.20 2149.90 1.3788 proline iminopeptidase pip 
Rv2529 -0.304 1.26E-05 909.56 1359.50 1.4946 hypothetical protein 
Rv1432 -0.303 9.18E-01 11.66 24.87 2.1323 dehydrogenase 
Rv0100 -0.303 1.20E-01 557.90 1193.70 2.1397 conserved hypothetical protein 
Rv2700 -0.303 4.26E-01 90.95 267.11 2.9368 conserved secreted protein 

Rv3657c -0.302 7.23E-06 50.71 161.20 3.1787 conserved alanine rich membrane 
protein 

Rv2601 -0.301 2.52E-01 0.94 130.10 137.81
00 spermidine synthase speE 

Rv2421c -0.301 0.00E+00 0.00 0.00 NaN nicotinate-nucleotide 
adenylyltransferase nadD 
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Supplementary Table 4.5 Genes associated with DNA replication, recombination and 
repair, sorted by ratio 

Rv 
number Gene p-value 

Read 
Counts, 
H37Rv 

Read Counts, 
H37RvDRv3711c Ratio Function 

Rv1402 priA 0.00E+00 0.71 0.00 0.0000 putative primosomal protein 
n' pria (replication factor y) 

Rv3711c dnaQ 1.33E-15 2468.20 52.77 0.0214 probable dna polymerase iii 
(epsilon subunit) dnaq 

Rv2592c ruvB 3.99E-01 10.86 2.73 0.2515 probable holliday junction 
dna helicase ruvb 

Rv3715c recR 9.92E-01 301.87 90.37 0.2994 probable recombination 
protein recr 

Rv0937c mku 1.22E-02 1231.30 466.07 0.3785 dna end-binding protein, 
mku 

Rv1696 recN 4.64E-01 1856.10 789.08 0.4251 
probable dna repair protein 
recn (recombination protein 

n) 

Rv3062 ligB 4.02E-01 3025.60 1291.80 0.4270 

probable atp-dependent dna 
ligase ligb 

(polydeoxyribonucleotide 
synthase [atp]) 

(polynucleotide ligase [atp]) 
(sealase) (dna repair protein) 

(dna joinase) 

Rv1287 Rv1287 9.44E-01 389.17 171.45 0.4405 conserved hypothetical 
protein 

Rv1629 polA 8.55E-01 190.21 85.91 0.4517 probable dna polymerase i 
pola 

Rv0330c Rv0330c 9.99E-01 3146.40 1681.40 0.5344 hypothetical protein 

Rv0767c Rv0767c 7.33E-01 1444.40 800.72 0.5544 conserved hypothetical 
protein 

Rv3674c nth 9.95E-01 1572.30 963.09 0.6125 

probable endonuclease iii nth 
(dna-(apurinic or 

apyrimidinic site)lyase) (ap 
lyase) (ap endonuclease class 

i) (endodeoxyribonuclease 
(apurinic or apyrimidinic)) 

(deoxyribonuclease (apurinic 
or apyrimidinic)) 

Rv3394c Rv3394c 9.99E-01 838.46 531.35 0.6337 conserved hypothetical 
protein 

Rv3735 Rv3735 1.00E+00 1672.60 1094.30 0.6543  

Rv0631c recC 1.91E-01 1218.00 799.62 0.6565 

probable exonuclease v 
(gamma chain) recc 

(exodeoxyribonuclease v 
gamma 

chain)(exodeoxyribonuclease 
v polypeptide) 

Rv2528c mrr 1.00E+00 2240.40 1474.70 0.6582 probable restriction system 
protein mrr 

Rv0269c Rv0269c 1.33E-01 2158.30 1459.40 0.6762 conserved hypothetical 
protein 
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Supplementary Table 4.5, continued 
Rv 

number Gene p-value 
Read 

Counts, 
H37Rv 

Read Counts, 
H37RvDRv3711c Ratio Function 

Rv3585 radA 9.97E-01 7223.40 5092.50 0.7050 dna repair protein rada (dna 
repair protein sms) 

Rv1534 Rv1534 7.64E-01 927.46 656.94 0.7083 probable transcriptional 
regulator 

Rv3201c Rv3201c 2.51E-02 3247.60 2334.10 0.7187 probable atp-dependent dna 
helicase 

Rv1020 mfd 9.74E-01 5301.70 3846.70 0.7256 probable transcription-repair 
coupling factor mfd (trcf) 

Rv2917 Rv2917 6.65E-03 4854.80 3528.10 0.7267 
conserved hypothetical 

alanine and arginine rich 
protein 

Rv0195 Rv0195 9.99E-01 3655.10 2703.80 0.7397 

possible two component 
transcriptional regulatory 
protein (probably luxr-

family) 

Rv0844c narL 9.08E-01 6122.50 4630.70 0.7563 
possible nitrate/nitrite 

response transcriptional 
regulatory protein narl 

Rv1904 Rv1904 4.41E-01 4492.40 3402.50 0.7574 conserved hypothetical 
protein 

Rv2132 Rv2132 1.00E+00 358.89 273.91 0.7632 conserved hypothetical 
protein 

Rv2896c Rv2896c 3.71E-01 1998.90 1529.30 0.7651 conserved hypothetical 
protein 

Rv2985 mutT1 8.11E-01 1664.00 1274.20 0.7657 possible hydrolase mutt1 

Rv3048c nrdF2 0.00E+00 0.94 0.73 0.7741 

ribonucleoside-diphosphate 
reductase (beta chain) nrdf2 

(ribonucleotide reductase 
small subunit) (r2f protein) 

Rv2807 Rv2807 2.58E-01 1523.90 1181.90 0.7756 conserved hypothetical 
protein 

Rv1701 Rv1701 1.95E-01 283.18 220.01 0.7770 probable 
integrase/recombinase 

Rv3732 Rv3732 9.99E-01 4704.00 3663.30 0.7788  
Rv3788 Rv3788 9.84E-01 2887.40 2250.10 0.7793 hypothetical protein 

Rv2593c ruvA 9.90E-01 18.16 14.46 0.7963 probable holliday junction 
dna helicase ruva 

Rv3202c Rv3202c 9.44E-01 146.90 118.33 0.8055 possible atp-dependent dna 
helicase 

Rv1420 uvrC 5.09E-02 3821.40 3088.40 0.8082 probable excinuclease abc 
(subunit c - nuclease) uvrc 

Rv0298 Rv0298 1.00E+00 1076.90 881.78 0.8189 hypothetical protein 

Rv0413 mutT3 9.86E-01 2681.00 2203.80 0.8220 

possible mutator protein 
mutt3 (7,8-dihydro-8-

oxoguanine-triphosphatase) 
(8-oxo-dgtpase)  

Rv0861c ercc3 4.62E-01 1702.20 1402.00 0.8236 dna helicase ercc3 

Rv2478c Rv2478c 1.00E+00 1699.40 1401.40 0.8246 conserved hypothetical 
protein 

Rv3750c Rv3750c 9.49E-01 2247.30 1856.50 0.8261 possible excisionase 
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Supplementary Table 4.5, continued 
Rv 

number Gene p-value 
Read 

Counts, 
H37Rv 

Read Counts, 
H37RvDRv3711c Ratio Function 

Rv1107c xseB 9.92E-01 675.28 560.95 0.8307 
probable 

exodeoxyribonuclease vii 
(small subunit) xsea  

Rv1108c xseA 2.28E-01 891.96 744.55 0.8347 
probable 

exodeoxyribonuclease vii 
(large subunit) xsea  

Rv2415c Rv2415c 2.10E-01 1892.80 1584.00 0.8369 conserved hypothetical 
protein 

Rv3555c Rv3555c 6.95E-01 972.60 823.35 0.8465 conserved hypothetical 
protein 

Rv3731 ligC 4.97E-01 5275.10 4501.30 0.8533 

possible atp-dependent dna 
ligase ligc 

(polydeoxyribonucleotide 
synthase [atp]) 

(polynucleotide ligase [atp]) 
(sealase) (dna repair protein) 

(dna joinase) 

Rv2024c Rv2024c 9.74E-01 7970.30 6877.20 0.8629 conserved hypothetical 
protein 

Rv2756c hsdM 1.24E-09 3353.70 2945.00 0.8782 

possible type i 
restriction/modification 

system dna methylase hsdm 
(m protein) (dna 

methyltransferase) 

Rv3198c uvrD2 6.94E-01 3661.90 3233.30 0.8830 probable atp-dependent dna 
helicase ii uvrd2 

Rv3714c Rv3714c 1.00E+00 5859.70 5181.10 0.8842 conserved hypothetical 
protein 

Rv3056 dinP 9.64E-01 3845.80 3417.70 0.8887 

possible dna-damage-
inducible protein p dinp 

(dna polymerase v) (pol iv 
2) (dna 

nucleotidyltransferase (dna-
directed)) 

Rv1537 dinX 4.07E-03 1474.30 1319.50 0.8950 

probable dna polymerase iv 
dinx (pol iv 1) (dna 

nucleotidyltransferase (dna-
directed)) 

Rv3733 Rv3733 9.96E-01 1077.10 973.21 0.9035  
Rv1179c Rv1179c 1.76E-06 5943.00 5457.90 0.9184 hypothetical protein 

Rv0427c xthA 9.66E-01 1744.50 1612.20 0.9241 

probable 
exodeoxyribonuclease iii 
protein xtha (exonuclease 

iii) (exo iii) (ap 
endonuclease vi) 

Rv1633 uvrB 9.22E-01 10414.00 9686.20 0.9301 probable excinuclease abc 
(subunit b - helicase) uvrb 

Rv2718c Rv2718c 2.79E-01 606.58 564.53 0.9307 conserved hypothetical 
protein 

Rv2464c Rv2464c 5.30E-01 3702.90 3521.70 0.9511 possible dna glycosylase 
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Supplementary Table 4.5, continued 
Rv 

number Gene p-value 
Read 

Counts, 
H37Rv 

Read Counts, 
H37RvDRv3711c Ratio Function 

Rv0825c Rv0825c 7.63E-01 5567.30 5343.20 0.9597 conserved hypothetical 
protein 

Rv2894c xerC 2.28E-01 254.95 245.56 0.9631 probable 
integrase/recombinase xerc 

Rv2761c hsdS 2.00E-05 1767.60 1704.70 0.9644 

possible type i 
restriction/modification 

system specificity 
determinant hsds (s protein) 

Rv0775 Rv0775 4.77E-01 3419.90 3323.70 0.9719 conserved hypothetical 
protein 

Rv2362c recO 8.41E-02 165.31 165.46 1.0009 possible dna repair protein 
reco 

Rv0123 Rv0123 9.97E-01 199.66 202.14 1.0124 hypothetical protein 
Rv1230c Rv1230c 6.99E-01 3172.80 3223.60 1.0160 possible membrane protein 
Rv2101 helZ 4.55E-01 5554.80 5650.10 1.0172 probable helicase helz 

Rv0630c recB 2.84E-14 2363.70 2426.00 1.0264 probable exonuclease v 
(beta chain)  

Rv2191 Rv2191 5.77E-06 4861.80 5008.20 1.0301 conserved hypothetical 
protein 

Rv2405 Rv2405 9.80E-01 633.91 654.56 1.0326 conserved hypothetical 
protein 

Rv0668 rpoC 1.00E+00 255.90 264.31 1.0329 

dna-directed rna polymerase 
(beta' chain) rpoc 

(transcriptase beta' chain) 
(rna polymerase beta' 

subunit). 

Rv2248 Rv2248 1.39E-01 870.52 926.64 1.0645 conserved hypothetical 
protein 

Rv0944 Rv0944 9.71E-01 790.36 869.02 1.0995 

possible 
formamidopyrimidine-dna 

glycosylase (fapy-dna 
glycosylase) 

Rv1277  1.77E-03 1673.80 1848.00 1.1040  

Rv3095 Rv3095 9.57E-01 1502.20 1667.10 1.1098 hypothetical transcriptional 
regulatory protein 

Rv0629c recD 1.70E-01 538.80 604.03 1.1211 

probable exonuclease v 
(alpha chain) recd 

(exodeoxyribonuclease v 
alpha chain) 

(exodeoxyribonuclease v 
polypeptide) 

Rv3586 Rv3586 2.53E-02 828.50 943.79 1.1392 conserved hypothetical 
protein 

Rv2924c fpg 7.52E-01 2449.70 2806.80 1.1457 

probable 
formamidopyrimidine-dna 
glycosylase fpg (fapy-dna 

glycosylase) 
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Supplementary Table 4.5, continued 
Rv 

number Gene p-value 
Read 

Counts, 
H37Rv 

Read Counts, 
H37RvDRv3711c Ratio Function 

Rv2090 Rv2090 8.06E-01 2380.80 2799.10 1.1757 probable 5'-3' exonuclease 

Rv1080c greA 8.17E-01 603.75 714.92 1.1841 

probable transcription 
elongation factor grea 

(transcript cleavage factor 
grea) 

Rv0570 nrdZ 7.67E-03 2914.30 3453.40 1.1850 

probable ribonucleoside-
diphosphate reductase (large 

subunit) nrdz 
(ribonucleotide reductase) 

Rv1329c dinG 1.53E-02 2570.60 3056.70 1.1891 probable atp-dependent 
helicase ding 

Rv3730c Rv3730c 1.23E-01 3402.40 4126.10 1.2127 conserved hypothetical 
protein 

Rv1828 Rv1828 0.00E+00 2.29 2.91 1.2686 conserved hypothetical 
protein 

Rv2976c ung 9.95E-01 369.34 469.33 1.2707 probable uracil-dna 
glycosylase ung (udg) 

Rv3734 Rv3734 8.23E-02 5354.90 6852.20 1.2796  

Rv3263 Rv3263 5.77E-05 9144.30 11720.00 1.2816 
probable dna methylase 

(modification methylase) 
(methyltransferase) 

Rv3589 mutY 2.53E-01 1030.70 1329.80 1.2902 probable adenine 
glycosylase muty 

Rv1041c Rv1041c 4.20E-01 1503.00 1961.50 1.3051 probable is like-2 
transposase 

Rv1317c alkA 2.73E-01 1298.90 1731.60 1.3331 

probable ada regulatory 
protein alka (regulatory 

protein of adaptative 
response) (methylated-dna--

protein-cysteine 
methyltransferase) (o-6-

methylguanine-dna 
alkyltransferase) (o-6-

methylguanine-dna 
methyltransferase) (3-

methyladenine dna 
glycosylase ii) 

Rv3370c dnaE2 1.48E-05 1519.10 2041.20 1.3436 
probable dna polymerase iii 

(alpha chain) dnae2 (dna 
nucleotidyltransferase) 

Rv0938 ligD 1.77E-11 1758.00 2378.40 1.3529 

atp dependent dna ligase 
(atp dependent 

polydeoxyribonucleotide 
synthase) (thermostable dna 

ligase) (atp dependent 
polynucleotide ligase) 
(sealase) (dna repair 

enzyme) (dna joinase) 

Rv0003 recF 6.35E-12 500.92 683.82 1.3651 
dna replication and repair 
protein recf (single-strand 

dna binding protein) 
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Supplementary Table 4.5, continued 
Rv 

number Gene p-value 
Read 

Counts, 
H37Rv 

Read Counts, 
H37RvDRv3711c Ratio Function 

Rv3856c Rv3856c 1.24E-01 588.04 810.94 1.3790 conserved hypothetical 
protein 

Rv1688 mpg 1.30E-02 930.04 1284.10 1.3807 possible 3-methyladenine 
dna glycosylase mpg 

Rv0001 dnaA 0.00E+00 0.71 1.00 1.4043 chromosomal replication 
initiator protein dnaa 

Rv1210 tagA 4.81E-01 7503.20 10550.00 1.4061 

probable dna-3-
methyladenine glycosylase i 

taga (tag i) (3-
methyladenine-dna 

glycosylase i, constitutive) 
(dna-3-methyladenine 

glycosidase i) 

Rv2973c recG 2.36E-02 1542.60 2170.50 1.4071 probable atp-dependent dna 
helicase recg 

Rv2515c Rv2515c 1.09E-06 1240.40 1823.80 1.4702 conserved hypothetical 
protein 

Rv2310 Rv2310 1.00E+00 188.90 279.81 1.4812 possible excisionase 
Rv2529 Rv2529 1.26E-05 909.56 1359.50 1.4946 hypothetical protein 

Rv1407 fmu 2.65E-08 2079.70 3216.00 1.5464 probable fmu protein (sun 
protein) 

Rv0949 uvrD1 1.44E-07 934.37 1459.40 1.5620 probable atp-dependent dna 
helicase ii uvrd1 

Rv1316c ogt 2.51E-02 1237.80 1941.10 1.5682 

probable methylated-dna--
protein-cysteine 

methyltransferase ogt (6-o-
methylguanine-dna 

methyltransferase) (o-6-
methylguanine-dna-

alkyltransferase) 

Rv0500A Rv0500A 1.00E+00 79.82 136.09 1.7049 conserved hypothetical 
protein 

Rv2069 sigC 2.31E-03 763.37 1316.10 1.7241 
probable rna polymerase 

sigma factor, ecf subfamily, 
sigc 

Rv0142 Rv0142 9.64E-01 421.51 739.35 1.7540 conserved hypothetical 
protein 

Rv0006 gyrA 1.00E+00 5.29 9.81 1.8536 

dna gyrase (subunit a) gyra 
(dna topoisomerase (atp-

hydrolysing)) (dna 
topoisomerase ii) (type ii 

dna topoisomerase) 
Rv1259 udgB 4.89E-04 259.14 526.42 2.0314  

Rv2160A Rv2160A 5.32E-02 105.09 224.25 2.1339 conserved hypothetical 
protein 

Rv2327 Rv2327 3.04E-01 128.86 305.70 2.3724 conserved hypothetical 
protein 

Rv0670 end 1.32E-02 441.26 1091.80 2.4744 probable endonuclease iv 
end (apurinase) 
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Supplementary Table 4.5, continued 
Rv 

number Gene p-value 
Read 

Counts, 
H37Rv 

Read Counts, 
H37RvDRv3711c Ratio Function 

Rv2737c recA 9.98E-01 52.66 135.61 2.5751 
reca protein (recombinase a) 
[contains: endonuclease pi-

mtui (mtu reca intein)]. 

Rv3297 nei 7.89E-04 514.92 1364.60 2.6501 probable endonuclease viii 
nei 

Rv2748c ftsK 0.00E+00 12.26 37.83 3.0864 possible cell division 
transmembrane protein ftsk 

Rv1981c nrdF1 9.99E-01 99.75 368.45 3.6936 

ribonucleoside-diphosphate 
reductase (beta chain) nrdf1 

(ribonucleotide reductase 
small subunit) (r2f protein) 

Rv2736c recX 1.66E-04 31.83 138.46 4.3504 regulatory protein recx 

Rv2898c Rv2898c 1.00E+00 24.33 126.55 5.2013 conserved hypothetical 
protein 

Rv2638 Rv2638 3.97E-07 140.76 775.50 5.5094 conserved hypothetical 
protein 

Rv1638 uvrA 7.69E-04 19.63 160.16 8.1607 
probable excinuclease abc 
(subunit a - dna-binding 

atpase) uvra 

Rv3204 Rv3204 1.01E-05 4.98 115.83 23.2400 
possible dna-

methyltransferase 
(modification methylase) 

Rv1160 mutT2 8.34E-10 18.88 450.44 23.8570 

probable mutator protein 
mutt2 (7,8-dihydro-8-

oxoguanine-triphosphatase) 
(8-oxo-dgtpase) 

Rv1547 dnaE1 0.00E+00 0.00 8.70 Inf 
probable dna polymerase iii 

(alpha chain) dnae1 (dna 
nucleotidyltransferase) 

Rv1685c Rv1685c 1.00E+00 0.00 0.71 Inf conserved hypothetical 
protein 

Rv1830 Rv1830 1.91E-01 0.00 175.01 Inf conserved hypothetical 
protein 

Rv2373c dnaJ2 1.00E+00 0.00 2.14 Inf probable chaperone protein 
dnaj2 

Rv0002 dnaN 0.00E+00 0.00 0.00 NaN 
dna polymerase iii (beta 

chain) dnan (dna 
nucleotidyltransferase) 

Rv0005 gyrB 0.00E+00 0.00 0.00 NaN 

dna gyrase (subunit b) gyrb 
(dna topoisomerase (atp-

hydrolysing)) (dna 
topoisomerase ii) (type ii 

dna topoisomerase) 

Rv0054 ssb 0.00E+00 0.00 0.00 NaN 
probable single-strand 

binding protein ssb (helix-
destabilizing protein) 

Rv0058 dnaB 0.00E+00 0.00 0.00 NaN probable replicative dna 
helicase dnab 
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Supplementary Table 4.5, continued 
Rv 

number Gene p-value 
Read 

Counts, 
H37Rv 

Read Counts, 
H37RvDRv3711c Ratio Function 

Rv0667 rpoB 0.00E+00 0.00 0.00 NaN 
dna-directed rna polymerase 

(beta chain) rpob 
(transcriptase beta chain)  

Rv1390 rpoZ 0.00E+00 0.00 0.00 NaN 

probable dna-directed rna 
polymerase (omega chain) 
rpoz (transcriptase omega 

chain) (rna polymerase 
omega subunit) 

Rv2343c dnaG 0.00E+00 0.00 0.00 NaN probable dna primase dnag 

Rv2413c Rv2413c 0.00E+00 0.00 0.00 NaN conserved hypothetical 
protein 

Rv2554c Rv2554c 0.00E+00 0.00 0.00 NaN conserved hypothetical 
protein 

Rv2594c ruvC 0.00E+00 0.00 0.00 NaN 

probable crossover junction 
endodeoxyribonuclease ruvc 
(holliday junction nuclease) 
(holliday junction resolvase) 

Rv2720 lexA 0.00E+00 0.00 0.00 NaN repressor lexa 

Rv2986c hupB 0.00E+00 0.00 0.00 NaN 

probable dna-binding protein 
hu homolog hupb (histone-
like protein) (hlp) (21-kda 
laminin-2-binding protein) 

Rv3014c ligA 0.00E+00 0.00 0.00 NaN 

probable dna ligase [nad 
dependent] liga 

(polydeoxyribonucleotide 
synthase [nad+]) 

Rv3051c nrdE 0.00E+00 0.00 0.00 NaN 

ribonucleoside-diphosphate 
reductase (alpha chain) nrde 

(ribonucleotide reductase 
small subunit) (r1f protein) 

Rv3457c rpoA 0.00E+00 0.00 0.00 NaN 

probable dna-directed rna 
polymerase (alpha chain) 
rpoa (transcriptase alpha 

chain) (rna polymerase alpha 
subunit) (dna-directed rna 

nucleotidyltransferase) 

Rv3596c clpC1 0.00E+00 0.00 0.00 NaN 
probable atp-dependent 

protease atp-binding subunit 
clpc1 

Rv3644c Rv3644c 0.00E+00 0.00 0.00 NaN possible dna polymerase 

Rv3646c topA 0.00E+00 0.00 0.00 NaN 
dna topoisomerase i topa 
(omega-protein) (relaxing 

enzyme)  

Rv3648c cspA 0.00E+00 0.00 0.00 NaN probable cold shock protein 
a cspa 

Rv3721c dnaZX 0.00E+00 0.00 0.00 NaN dna polymerase iii (subunit 
gamma/tau) dnaz/x 

Rv3917c parB 0.00E+00 0.00 0.00 NaN probable chromosome 
partitioning protein parb 

 


