

Macrocyclic Stereocontrol in Organic Synthesis: I. Efforts toward the Synthesis of (-)-Tetracycline II. Analysis of the Peripheral Attack Model

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation	Wzorek Jr., Joseph Stanley. 2012. Macrocyclic Stereocontrol in Organic Synthesis: I. Efforts toward the Synthesis of (-)- Tetracycline II. Analysis of the Peripheral Attack Model. Doctoral dissertation, Harvard University.
Accessed	April 17, 2018 3:49:03 PM EDT
Citable Link	http://nrs.harvard.edu/urn-3:HUL.InstRepos:9795486
Terms of Use	This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA

(Article begins on next page)

© 2012 by Joseph S. Wzorek Jr.

All rights reserved.

Abstract

Macrocyclic Stereocontrol in Organic Synthesis:

I. Efforts Toward the Synthesis of (-)-Tetracycline

II. Analysis of the Peripheral Attack Model

Joseph S. Wzorek Jr.

Harvard University

Professor David A. Evans

August 2012

I. Efforts Toward the Synthesis of (-)-Tetracycline

A macrocyclic approach toward (–)-tetracycline is described. Traditional approaches towards the synthesis of tetracycline antibiotics employ the linear construction of the core structure starting with either the A- or D-rings. In contrast to this iterative annulationbased strategy, we have sought to employ a chiral macrocycle in our approach. Key to the success of our synthesis endeavor is the execution of two key steps: (1) a transannular Michael addition, which forms the A-ring and sets the C4a-stereogenic center; and (2) an isoxazole substitution reaction, which effects a ring contraction to produce both the Band C-rings. This work describes our implementation of the strategy and focuses on the stereochemical interplay between the C4-, C4a-, C6-, and C12a-stereocenters within the context of the key steps.

II. Analysis of the Peripheral Attack Model

The application of the peripheral attack model to 34 literature examples of intermolecular macrocyclic stereocontrol is described. While the peripheral attack model has been broadly applied in complex molecule synthesis, the validity of the model has not been subjected to analysis since being proposed in the early 1980's. In order to assess the

value of the model to organic chemists, we have developed a systematic method for probing the conformational profile of macrocycles. Using this tool, we then analyzed each of the 34 literature substrates and concluded whether the peripheral attack model predicts the correct stereochemical outcome in both a binary- and magnitude-based capacity. Analysis of both the bulk dataset and subsets of the dataset is included.

Acknowledgments

I would like to acknowledge my advisor, Professor David Evans, for his significant contributions to my development as both a scientist and person. Dave has an unparalleled passion for organic chemistry, which captivates and energizes those who train under his guidance. This passion, coupled with his aptitude for education translated wonderfully to my graduate school experience as I sought to learn how to approach and solve scientific problems. An incredibly valuable characteristic of this education within the "Evans School" was that Dave offered far more suggestions than directives, meaning that I was responsible for critical decisions within the project. There is no better way to learn, and I know this experience will be invaluable as I seek solutions to problems in the future. Thank you for everything Dave.

During my first year in the group, I worked with Dr. Thomas Knöpfel, an extremely talented scientist to whom I attribute the majority of my experimental expertise. Having such a mentor at a critical time in one's development is unbelievably valuable, and I am grateful for his patience as I proceeded through the painful process of becoming "competent" in the laboratory.

I would also like to acknowledge the many people with whom I overlapped initially upon arrival to the group. At that time I was fortunate to have Joe Pero and Florian Schleth as bay mates. I thank them both for many lively discussions, the majority of which centered on sports. Other members of the group to whom I am immensely thankful during this first phase are Martin Juhl, Jon Lawrence, Shizue Mito, Scott Peterson, Sebastian Sonntag, Dennie Welch, and Joe Young.

Following the first phase of graduate school, I had the opportunity to overlap with many new lab mates who allowed me to develop considerably as a scientist. Dave Marcoux eventually occupied the desk next to mine, and immediately impressed me with his ability to envision and execute a synthesis plan. He also is a great friend, and I look back at our time as bay mates with great fondness. Lennart Brewitz arrived soon after Dave Marcoux and immediately made a huge impact on our bay. His intellect, coupled with an impressive work ethic, will serve him extremely well; I look forward to his future successes. Andrew Weiss and Egmont Kattnig are extremely knowledgeable colleagues who were always available to help with problems unrelated to their projects. Andrew also introduced me to Onitsuka Tigers and the summit of Mt. Washington, two actions for which I am ever grateful. Paulo Vital is acknowledged for his willingness to both participate in numerous amusing discussions, and accompany me on Starbucks trips and runs along the river. I wish him the best of luck in Denmark, Portugal, and beyond. Daniel Rost is a wonderful friend who gave me a unique perspective on German culture and I look forward to experiencing Berlin firsthand in the near future.

In the latter phase of graduate school I was fortunate to overlap with Pete Fuller and Simone Bonazzi, two postdocs that I respect immensely. Their input was greatly welcomed as I sought to determine my direction of study beyond graduate school. They were also great friends who offered significant support during many trying moments. Art Catino is acknowledged for many intriguing discussions of fundamental organic chemistry concepts. Tom Vargo later collaborated on the tetracycline project with me, and I thank him for helpful discussions.

As an entering graduate student to the group, I looked up to Drew Adams and Yimon Aye, two scientists who undoubtedly will have distinguished careers. I appreciate their help while in the group, and their continuing support even as they moved onto their respective postdocs. I wish you both well in your academic pursuits. Eugene Kwan is kindly acknowledged for his mentorship and eventual involvement in a collaboration detailed in this thesis. His expertise in NMR spectroscopy and computational chemistry were invaluable as I tackled some of my more difficult scientific problems.

Fellow graduate students Jason Beiger and Alex Speed shaped my graduate school experience more than any other group members. Jason is extremely gifted as a critical evaluator of logical progression, and his attention to such details were invaluable as I tried to gain a deeper understanding of both my project and organic chemistry in general. Alex has the most expansive memory of anyone I have known, this feature coupled with his unrivaled creativity were inspiring as I tackled my own challenges in graduate school. I must also acknowledge both Jason and Alex for being great friends who positively shaped every aspect of my time in graduate school. I hope there will be many Cambridge Common and Border Café dinners in our future. I wish Bichu Cheng the best of luck in the final year of his studies.

Nick Callahan, Jake Hervieux, Dave Webster, and Craig Yennie have been continuous sources of support, thank you all for your welcomed diversions. Andrea Jonas was a great source of support in the midst of graduate school. I wish her the best of luck in medical school and beyond. Dave Powers was a thoughtful resource as I attempted to answer various scientific questions along the way. Although, his greatest contribution came in the knowledge imparted to me regarding beer.

I have been rewarded in life with a wonderfully supportive family, to whom I attribute my ability to complete graduate school. Their continuous love formed a pillar of encouragement; thank you Mom, Dad, Brenda, Matt, and recent addition Bob Carey. Hannah Israel also deserves acknowledgement for her unrivaled card-making skills. Last but not least, I would like to acknowledge the person who has changed my life most significantly, Laura Brozek. Thank you for the love, support, and advice that were provided during critical times in graduate school. I anxiously await all of the wonderful places that life takes us.

Table of Contents

Chapter 1: Introduction

I. Discovery of the First Tetracyclines
II. Discovery of Additional Tetracycline Natural Products
III. Structure and Reactivity of Tetracycline
IV. The Bacterial Ribosome as a Target for Antibiotics7
V. Tetracycline Resistance
VI. Relevant Syntheses
VII. The Myers Route to Fully Synthetic Tetracyclines
VIII. Tetracycline Synthesis Strategy
IX. A Macrocyclic Approach to Polycyclic Structures
X. Project History within the Evans group

Chapter 2: Synthesis of the First Generation Macrocycle

I. Synthesis Plan	
II. Macrocycle Synthesis	

III. Macrocyclic Stereocontrol	45
IV. Hydroxylation at C12a	48
V. Conclusion	54
VI. Experimental Section	55

Chapter 3: Synthesis of the Second Generation Macrocycle

I. Revision of the Synthesis Plan	105
II. The Development of a Predictive Tool	107
III. Synthesis Plan	111
IV. Synthesis of a C4-Oxygenated Macrocycle	112
V. Transannular Michael Reaction with a γ-Silyloxy Enone	116
VI. The C4-C4a Stereochemical Relationship	119
VII. A Model System for C12a-Hydroxylation	125
VIII. Implications for the Synthesis of Anti-Cancer Tetracyclines	128
IX. An alternative Approach to a C4-OTBS Macrocycle	129
X. Conclusion	134
XI. Experimental Section	135

Chapter 4: Execution of a Transannular Cascade

I. Synthesis of a New Macrocyclic Diastereomer	165
II. Macrocyclic Stereocontrol	168
III. Proposed Mechanism of the Michael Reaction	171
IV. Elaboration of the Cascade Product	175
V. Delayed Installation of the Dimethylamine	178
VI. Conclusion	186
VII. Experimental Section	188

Chapter 5: Analysis of the Peripheral Attack Model

I. Introduction	215
II. The Peripheral Attack Model in Modern Organic Synthesis	219
III. Development of a Systematic Method for Stereochemical Prediction	221
IV. Examples Included in the Study	222
V. Analysis Procedure	223
VI. Bulk Dataset Analysis	226
VII. Subsets of the Complete Dataset	229
VIII. Conclusions	233

Appendix 1. Catalog of Spectra	241
Appendix 2. Stereochemical Proofs	340
Appendix 3. Crystal Structure Data	349
Appendix 4. Computed Geometries and Energies	365

List of Abbreviations

AB	AB spin system (Pople notation)
ap.	apparent
aq.	aqueous
Ar	aromatic (generic)
atm	atmosphere
Bn	benzyl
Boc	tert-butoxycarbonyl
Boc ₂ O	di-tert-butyldicarbonate
br. s	broad singlet
brsm	based on recovered starting material
Bu	butyl
С	concentration (g/100 mL)
COSY	correlation spectroscopy
CSA	camphorsulfonic acid
d	deutero
d	doublet
DCE	1,2-dichloroethane
DIBA1-H	di-iso-butylaluminum hydride

- DME dimethoxyethane
- DMF dimethylformamide
- DMP Dess-Martin periodinane
- DMS dimethylsulfide
- DMSO dimethylsulfoxide
- dr diastereomeric ratio
- *E* entgegen
- *ee* enantiomeric excess
- ESI electrospray ionization
- Et ethyl
- g gram(s)
- h hour(s)
- HMDS hexamethyldisilazane
- HMBC heteronuclear multiple bond correlation
- HPLC high performance liquid chromatography
- HRMS high resolution mass spectrometry
- HSQC heteronuclear single quantum coherence

Hz hertz

Im	imidazole
IR	infrared spectroscopy
J	coupling constant
KHMDS	potassium hexamethyldisilazide
LDA	lithium diisopropylamide
LiHMDS	lithium hexamethyldisilazide
Lut	2,6 lutidine
т	meta
m	multiplet
М	molar (moles/liter)
m/z	mass to charge ratio
m-CPBA	meta-chloroperoxybenzoic acid
Me	methyl
min	minute(s)
mL	milliliter(s)
mol	mole(s)
MOM	methoxymethyl
MS	mass spectrometry
Ms	methanesulfonyl

NCS	N-chlorosuccinimide
NMO	N-methylmorpholine-N-oxide
NMR	nuclear magnetic resonance
nOe	nuclear Overhauser effect
0	ortho
°C	degrees Celsius
OTf	trifluoromethanesulfonyl
р	para
Ph	phenyl
ppm	parts per million
PPTS	pyridinium para-toluenesulfonate
pyr	pyridine
R	rectus (Cahn-Ingold- Prelog system)
R	alkyl group (generic)
RCM	ring-closing metathesis
R_{f}	retention factor
rt	room temperature
S	sinister (Cahn-Ingold-Prelog system)
S	singlet

	٠	٠
XV	1	1

t	triplet
t	tertiary
TBAF	tetra(<i>n</i> -butyl)ammonium fluoride
TBAI	tetra(<i>n</i> -butyl)ammonium iodide
TBDPS	tert-butyldiphenylsilyl
TBS	tert-butyldimethylsilyl
TES	triethylsilyl
TFA	trifluoroacetic acid
THF	tetrahydrofuran
TLC	thin layer chromatography
TMS	tetramethylsilyl
Ts	para-toluenesulfonyl
vic.	vicinal
q	quartet
quant.	quantitative
Ζ	zusammen
δ	chemical shift (parts per million)

Chapter 1

Introduction

I. Discovery of the First Tetracyclines

In 1948, Benjamin M. Duggar, a researcher for American Cyanamid Company reported the discovery of a new organism, *Streptomyces aureofaciens*, from a timothy field in Missouri.¹ The name *aureofaciens* was used to describe both the golden yellow pigment found in the mycelium, and the golden yellow color of an antibiotic isolated from this organism. The antibiotic, appropriately named aureomycin (chlorotetracycline, **1.1**, Figure 1.1), showed broad-spectrum antibiotic activity toward both Gram-positive and Gram-negative organisms, as described by associated *in vitro*,² *in vivo*,³ and preliminary clinical trial⁴ data that followed the initial isolation report. A subsequent disclosure by researchers at Chas. Pfizer and Co. in 1950 revealed the isolation of another antibiotic, terramycin (oxytetracycline, **1.2**, Figure 1.1), from a new actinomycete *Streptomyces ri*-

¹ (a) Duggar, B. M. *Ann. N. Y. Acad. Sci.* **1948**, *51*, 177-181. (b) Duggar, B. M. Aureomycin and Preparation of the Same. U.S. Patent 2,482,055, Sept. 13, 1949.

² (a) Price, C. W.; Randall, W. A.; Welch, H. Ann. N. Y. Acad. Sci. **1948**, 51, 211-217. (b) Chandler, C. A.; Bliss, E. Ann. N. Y. Acad. Sci. **1948**, 51, 221-227.

³ (a) Little, P. A. *Ann. N. Y. Acad. Sci.* **1948**, *51*, 246-253. (b) Bryer, M. S.; Schoenbach, E. B.; Bliss, E. A.; Chandler, C. A. *Ann. N. Y. Acad. Sci.* **1948**, *51*, 254-266.

*mosus.*⁵ Together, these natural products captured the attention of the scientific community of the time, as researchers realized the importance of novel antibiotics in the face of emerging β -lactam resistance.⁶

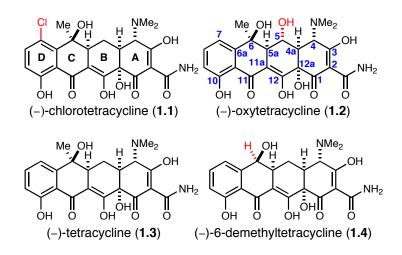


Figure 1.1 Naturally occurring tetracycline antibiotics.

Lacking significant structural information, researchers were unaware of the architectural homology between terramycin and aureomycin upon discovery. Yet, *in vitro* evaluation of terramycin revealed a similarly broad-spectrum of activity to that of aureomycin, a relationship that was documented in the initial isolation report.⁵ The gross structure of these two compounds was later elucidated through the efforts of R. B. Woodward in collaboration with researchers from Pfizer.⁷ However, the absolute⁸ and relative⁹ stereochemistry was not established until years later.

⁴ (a) Collins, H. S.; Paine, T. F. Jr.; Finland, M. Ann. N. Y. Acad. Sci. **1948**, *51*, 231-240. (b) Schoenbach, E. B.; Bryer, M. S.; Long, P. H. Ann. N. Y. Acad. Sci. **1948**, *51*, 267-279.

⁵ Finlay, A. C.; Hobby, G. L.; P'an, S. Y.; Regna, P. P.; Routien, J. B.; Seeley, D. B.; Shull, G. M.; Sobin, B. A.; Solomons, I. A.; Vinson, J. W.; Kane, J. H. *Science* **1950**, *111*, 85.

 ⁶ (a) Medeiros, A. A. Clin. Infect. Dis. 1997, 24(suppl. 1), S19-45. (b) Chambers, H. F. Emerg. Infect. Dis. 2001, 7, 178-182. (c) Wenzel, R. P. N. Engl. J. Med. 2004, 351, 523-526.

⁷ (a) Hochstein, F. A.; Stephens, C. R.; Conover, L. H.; Regna, P. P.; Pasternack, R.; Brunings, K. J.; Woodward, R. B. J. Am. Chem. Soc. **1952**, 74, 3708-3709. (b) Stephens, C. R.; Conover, L. H.; Hochstein, F. A.;

Tetracycline (**1.3**) was introduced initially to the scientific literature in 1953 as a hydrogenation product of aureomycin (Figure 1.1).¹⁰ However, in 1956 tetracycline was also determined to be a naturally occurring substance, having been isolated from the fermentation broth of *Streptomyces aureofaciens* acquired from a Texas soil sample.¹¹ In the following year, 6-demethyltetracycline (**1.4**), now a fourth naturally occurring tetracycline, was discovered from a mutant strain of the original *Streptomyces aureofaciens* organism isolated by Duggar.¹² This latter discovery capped an amazing decade of tetracycline antibiotic discovery.

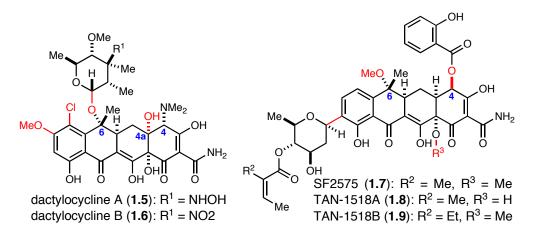
II. Discovery of Additional Tetracycline Natural Products

More recently, additional tetracyclines have been discovered, expanding the structural complexity and known bioactivity of this natural product class (Figure 1.2).¹³ Dactylocycline A (1.5) and B (1.6), isolated via fermentation of *Dactylosporangium* sp.

F. A.; Regna, P. P.; Pilgrim, F. J.; Brunings, K. J.; Woodward, R. B. *J. Am. Chem. Soc.* **1952**, *74*, 4976-4977. (c) Hochstein, F. A.; Stephens, C. R.; Conover, L. H.; Regna, P. P.; Pasternack, R.; Gordon, P.N.; Pilgrim, F. J.; Brunings, K. J.; Woodward, R. B. *J. Am. Chem. Soc.* **1953**, *75*, 5455-5475. (d) Stephens, C. R.; Conover, L. H.; Pasternack, R.; Hochstein, F. A.; Moreland, W. T.; Regna, P. P.; Pilgrim, F. J.; Brunings, K. H.; Woodward, R. B. *J. Am. Chem. Soc.* **1954**, *76*, 3568-3575.

⁸ Dobrynin, V. N.; Gurevich, A. I.; Karapetyan, M. G. Tet. Lett. **1962**, 20, 901-904.

 ⁹ (a) Hirokawa, S.; Okaya, Y.; Lovell, F. M.; Pepinski, R. Acta. Crys. 1959, 12, 811-812. (b) Hirokawa, S.; Okaya, Y.; Lovell, F. M.; Pepinsky, R. Z. Krys. 1959, 112, 439-464. (c) Takeuchi, Y.; Buerger, M. J. PNAS 1960, 46, 1366-1370. (d) Donohue, J.; Dunitz, J. D.; Trueblood, K. N.; Webster, M. S. J. Am. Chem. Soc. 1963, 85, 851-856. (e) von Wittenau, M. S.; Blackwood, R. K.; Conover, L. H.; Glauert, R. H.; Woodward, R. B. J. Am. Chem. Soc. 1965, 87, 134-135.


¹⁰ (a) Booth, J. H.; Morton II, J.; Petisi, J. P.; Wilkinson, R. G.; Williams, J. H. J. Am. Chem. Soc. **1953**, 75, 4621. (b) Conover, L. H.; Moreland, W. T.; English, A. R.; Stephens, C. R.; Pilgrim, F. J. J. Am. Chem. Soc. **1953**, 75, 4622-4623.

¹¹ Minieri, P. P.; Sokol, H.; Firman, M. C. U. S. Patent 2,734, 018, Feb 7, 1956.

 ¹² (a) McCormick, J. R. D.; Sjolander, N. O.; Hirsch, U.; Jensen, E. R.; Doerschuk, A. P. J. Am. Chem. Soc. 1957, 79, 4561-4563. (b) Webb, J. S.; Broschard, R. W.; Cosulich, D. B.; Stein, W. J.; Wolf, C. F. J. Am. Chem. Soc. 1957, 79, 4563-4564. (c) Boothe, J. H.; Green, A.; Petisi, J. P.; Wilkinson, R. G.; Waller, C. W. J. Am. Chem. Soc. 1957, 79, 4564.

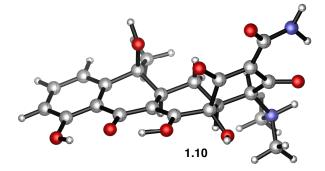
¹³ Pickens, L. B.; Kim, W.; Wang, P.; Zhou, H.; Watanabe, K.; Gomi, S.; Tang, Y. J. Am. Chem. Soc. 2009, 131, 17677-17689.

SC14051 (ATCC 53693), display activity toward tetracycline resistant strains of *S. aureus* and *S. epidermidis*.¹⁴ Further, novel C-glycosylated tetracyclines SF2575 (TAN-1518X, **1.7**),¹⁵ TAN-1518A (**1.8**),¹⁶ and TAN-1518B (**1.9**), have demonstrated intriguing anti-tumor activities via inhibition of DNA topoisomerase I. Collectively, these more recently discovered tetracyclines further validate the relevance of the core structure as a privileged template for molecular recognition within biological systems.

Figure 1.2 Structure of several tetracycline antibiotics that have been discovered more recently.

Of particular intrigue is the perturbation of previously conserved stereochemical relationships within the classic tetracyclines when compared to those in Figure 1.2. For example, the C4 substituent within SF2575 and TAN-1518A- and B is now beta, which

 ¹⁴ (a) Wells, J. S.; O'Sullivan, J.; Aklonis, C.; Ax, H. A.; Tymiak, A. A.; Kirsch, D. R.; Trejo, W. H.; Principe, P. J. Antibiot. 1992, 45, 1892-1898. (b) Tymiak, A. A.; Ax, H. A.; Bolgar, M. S.; Kahle, A. D.; J. Antibiot. 1992, 45, 1899-1906. (c) Devasthale, P. V.; Mitscher, L. A.; Telikepalli, H.; Velde, D. V.; Zou, J.-Y.; Ax, H. A.; Tymiak, A. A. J. Antibiot. 1992, 45, 1907-1913.


¹⁵ Hatsu, M.; Sasaki, T.; Watabe, H.; Miyadoh, S.; Nagasawa, M.; Shomura, T.; Sezaki, M.; Inouye, S.; Kondo, S. *J. Antibiot.* **1992**, *45*, 320-324. (b) Hatsu, M.; Sasaki, T.; Gomi, S.; Kodama, Y.; Sezaki, M.; Inouye, S.; Kondo, S. *J. Antibiot.* **1992**, *45*, 325-330.

¹⁶ Horiguchi, T.; Hayashi, K.; Tsubotani, S.; Iineuma, S.; Harada, S.; Tanida, S. J. Antibiot. 1994, 47, 545-556.

places the group within the concave face of the *cis*-decalin subunit of the A- and B-rings. Further, The C6-stereogenic center is now inverted with respect to tetracycline, placing the methoxide substituent *alpha*. It is intriguing to consider the implications of these resident stereocenters in the context of a larger synthesis effort.

III. Structure and Reactivity of Tetracycline

Structurally, tetracycline is a densely functionalized type II polyketide containing multiple sites of oxidation in addition to dimethylamine and vinyligous carbamic acid functions. In large part, the polar functionalities exist in the southern region of the molecule (C10-C2) in the form of an aryl hydroxyl in the D-ring, a 1,3-diketone moiety bridging the C- and B-rings, and a tertiary carbinol at C12a. The northern region of tetracycline is rich in stereogenic centers (C4-C6), containing a tertiary carbinol at C6, two tertiary carbon centers at C5a and C4a, and a dimethyl amino group at C4. Yet, the feature that defines the three-dimensional architecture of tetracycline is the cis ring fusion that joins the C4a and C12a stereogenic centers. This ring fusion forces the molecule to depart from planarity, establishing a concave and convex face to the overall structure (Figure 1.3).¹⁷

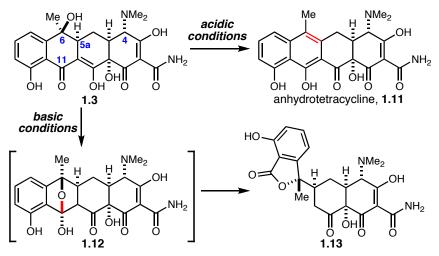


Figure 1.3 X-ray crystal structure of tetracycline hexahydrate (water molecules omitted for clarity).¹⁷

¹⁷ Caira, M. R.; Nassimbeni, L. R.; Russell, J. C. Acta Crys. **1977**, B33, 1171-1176.

The extensive oxidation of the carbocyclic framework within the tetracycline core structure results in an intriguing reactivity profile that is largely dominated by the C6-tertiary carbinol.^{7d} Specifically, in the presence of acidic conditions the C6-tertiary carbinol may be protonated, facilitating the elimination of this function and aromatization of the C-ring to produce anhydrotetracycline (**1.11**, Scheme 1.1). Alternatively, under basic conditions, fragmentation of the B-ring may occur to produce **1.13** through the intermediacy of hemi-acetal **1.12**. The C4-stereocenter is also sensitive to pH, as it is possible to epimerize the C4-dimethylamine moiety via exposure of tetracycline to slightly acidic conditions (pH 4.6), which produces a 1.5:1 mixture of tetracycline : 4-epi-tetracycline.¹⁸

 ¹⁸ (a) Doerschuk, A. P.; Bitler, B. A.; McCormick, J. R. D. *J. Am. Chem. Soc.* **1955**, 77, 4687. (b) Stephens, C. R.; Conover, L. H.; Gordon, P. N.; Pennington, F. C.; Wagner, R. L.; Brunings, K. J.; Pilgrim, F. J. *J. Am. Chem. Soc.* **1956**, 78, 1515-1516. (c) McCormick, J. R. D.; Fox, S. M.; Smith, L. L.; Bitler, B. A.; Reichenthal, J.; Origoni, V. E.; Muller, W. H.; Winterbottom, R.; Doerschuk, A. P. *J. Am. Chem. Soc.* **1956**, 78, 3547-3548.

IV. The Bacterial Ribosome as a Target for Antibiotics

The tetracycline antibiotics are part of a larger group of natural products whose fundamental function is the disruption of protein biosynthesis in bacteria.¹⁹ This mechanism of action involves binding to the bacterial ribosome, a complex machine tasked with the biosynthesis of proteins critical for cellular viability.²⁰ Structurally, the bacterial ribosome is comprised of two components, the 30S and 50S subunits which together produce the complete 70S ribosome (Figure 1.4).^{21,22} Protein synthesis occurs via utilization of three tRNA binding sites that are present when the two subunit structure is intact, known as the A (aminoacyl), P (peptidyl), and E (exit) sites.

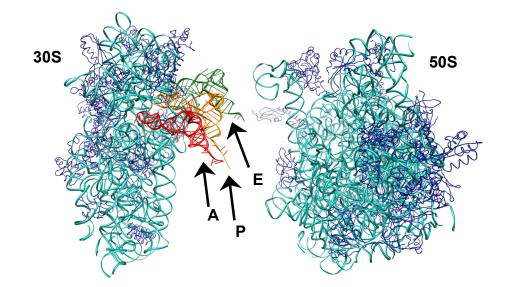


Figure 1.4 Crystal structure of the ribosome from *Thermus thermophilus*.²²

¹⁹ Poehlsgaard, J.; Douthwaite, S. Nat. Rev. Microbiol. 2005, 3, 870-881.

²⁰ (a) Ramakrishnan, V. Cell **2002**, 108, 555-572. (b) Schmeing, T. M.; Ramakrishnan, V. Nature **2009**, 461, 1234-1242.

²¹ The unit S is an abbreviation for "Svedborg", which represents the rate of sedimentation in centrifugation; this unit is non-additive.

²² Yusupov, M. M.; Yusupova, G. Z.; Baucom, A.; Lieberman, K.; Earnest, T. N.; Cate, J. H. D.; Noller, H. F. Science 2001, 292, 883-896.

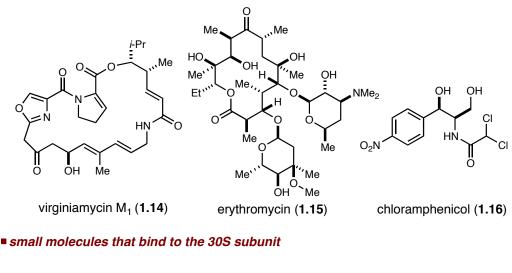
Given that targets critical to viability are considered attractive targets for antibiotic intervention, it is not surprising that the ribosome is considered one of four fundamental targets for antibacterial agents.²³ Further, natural products have emerged that target multiple locations within the ribosome on either the 30S or 50S subunits. For example, well-known macrolide antibiotics such as erythromycin (**1.15**)²⁴ inhibit protein synthesis via blockage of the tunnel into which the growing peptide travels during protein synthesis. Erythromycin specifically targets the 50S subunit to carry out this task. Other natural products that target the 50S subunit, which include virginiamycin (**1.14**) and chloramphenicol (**1.16**, Figure 1.5), may bind to different regions within the subunit in order to inhibit protein synthesis at another juncture in the cycle.²⁵ Small molecules also target the 30S subunit of the bacterial ribosome. For example, the aminoglycoside antibiotics paromomycin (**1.17**) and geneticin (**1.18**) bind to the decoding region of the A-site, perturbing the conserved process of codon-anticodon recognition necessary for proper protein synthesis.¹⁹ This perturbation results in the synthesis of proteins with errors in the overall amino acid sequence.

Biochemical²⁶ and crystallographic²⁷ evidence has revealed that tetracycline also targets the 30S subunit of the bacterial ribosome. The primary site of binding is found

²³ Antibiotics: Actions, Origins, Resistance; Walsh, C. ASM Press: Washington, DC, 2003.

²⁴ Saltzman, L.; Apirion, D. Molec. gen. Gen. 1976, 143, 301-306.

²⁵ (a) Parfait, R.; Cocito, C. Proc. Natl. Acad. Sci. 1980, 77, 5492-5496. (b) Long, K. S.; Porse, B. T. Nuc. Acids Res. 2003, 31, 7208-7215.


²⁶ Goldman, R. A.; Hasan, T.; Hall, C. C.; Strycharz, W. A.; Cooperman, B. S. *Biochemistry* 1983, 22, 359-368.

²⁷ (a) Broderson, D. E.; Clemons, Jr.; W. M.; Carter, A. P.; Morgan-Warren, R. J.; Wimberly, B. T.; Ramakrishnan, V. *Cell* **2000**, *103*, 1143-1154. (b) Piloletti, M.; Schlünzen, F.; Harms, J.; Zarivach, R.; Glühmann, M.; Avila, H.; Bashan, A.; Bartels, H.; Auerbach, T.; Jacobi, C.; Hartsch, T.; Yonath, A.; Franceschi, F. *EMBO J.* **2001**, *20*, 1829-1839.

near the A-site (**TET1**, Figure 1.6), where tetracycline may directly prevent aminoacyl tRNA binding via steric hinderance. The K_d for this site is estimated to be between 1 and 20 μ M.²⁶ Five other sites of binding have been proposed,^{27b} however the TET5 site is the only other location corroborated crystallographically by more than one study. Molecular dynamics simulations have provided a quantitative description of binding preferences, placing the TET5 site 3 ± 2 kcal/mol higher in energy than TET1.²⁸ Further, this same study predicts that tetracycline binds in the zwitterionic tautomer at both TET1 and TET5.

²⁸ Aleksandrov, A.; Simonson, T. J. Am. Chem. Soc. 2008, 130, 1114-1115.

small molecules that bind to the 50S subunit

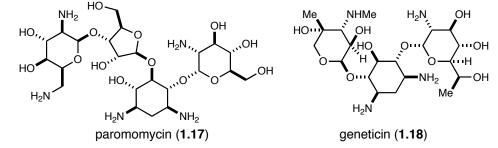
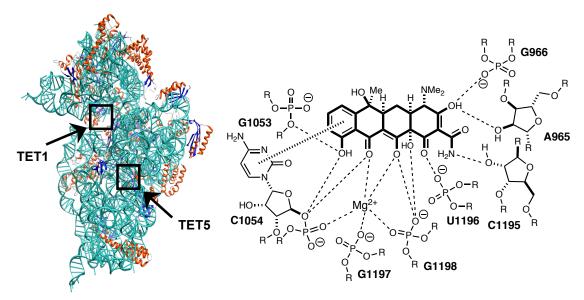



Figure 1.5 Small molecule natural products target both the 50S and 30S subunits of the bacterial ribosome.

The major contacts made between the 30S subunit at the TET1 site and tetracycline take place in the southern region of the molecule.²⁷ Of particular importance is the ability for the bridging 1,3-diketone present in the B- and C-rings to bind to Mg²⁺, which in turn makes multiple contacts with the ribosome. Additionally, it is clear that the vinylogous carbamic acid is crucial to bioactivity, as this moiety acts as both a hydrogen bond donor and acceptor. What is most intriguing about the summary of contacts, however, is the lack of contacts made in the northern half of tetracycline. This lack of critical contacts implies that the region can be modified while maintaining bioactivity. Indeed, a survey of tetracycline natural products confirms this assertion, since much of the variability within the natural product class is present between C5 and C7.

Figure 1.6 Crystal structure of the 30S subunit of the bacterial ribosome containing tetracycline bound to both the TET1 and TET5 binding sites (left) and major contacts between tetracycline and the TET1 site of the 30s subunit (right).^{27a}

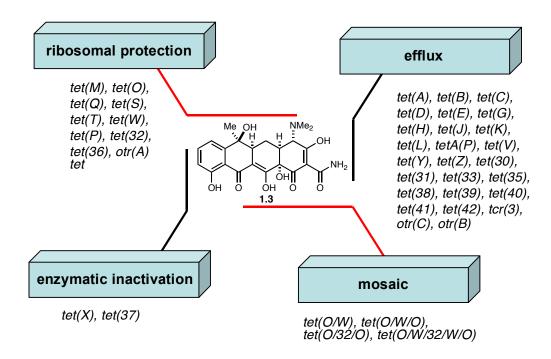
V. Tetracycline Resistance

A collection of *Enterobacteriaceae* accumulated between 1917 and 1954 containing 433 different strains revealed that only 9 (2%) were resistant to tetracycline.²⁹ This wide-spread susceptibility coupled with oral availability explains the near immediate application of tetracycline in both clinical and agricultural settings following isolation.³⁰ Unfortunately, as a result of widespread use, multiple resistance mechanisms have emerged in order for bacteria to combat the effects of the antibiotic. This resistance has reduced the

²⁹ Hughes, V. M.; Datta, N. Nature **1983**, 302, 725-726.

³⁰ Chopra, I.; Roberts, M. Micrbiol. Mol. Biol. Rev. 2001, 65, 232-260.

role of these antibiotics in the treatment of infection, as clinicians now seek other alternatives including second and third generation tetracyclines.³¹


Three distinct types of resistance have emerged to combat the effects of tetracycline in bacteria. The most studied mechanism is resistance by efflux, which involves the transport of an antibiotic out of the cell and away from the ribosome, its cellular target. This form of resistance is comprised of 26 different classes of efflux pumps identified from Gram-positive and Gram-negative bacteria (Figure 1.7).³² Until literature disclosures in the 1990's, tetracycline was one of the few drugs that suffered efflux-based resistance. Structurally, these pumps are integral membrane proteins that span the lipid bilayer 12-14 times forming a water-filled channel that is typically surrounded by six transmembrane helices.³³ Tetracycline is exported out of the cell while bound to Mg²⁺; this efflux is coupled with proton influx creating a vectoral flow of protons through the channel.³⁴

³¹ Roberts, M. C. FEMS Microbiol. Rev. **1996**, 19, 1-24.

³² Levy, S. B. Antimicrob. Agents Chemother. **1992**, *36*, 695-703.

³³ Tamura, N.; Konishi, S.; Yamaguchi, A. Curr. Opp. Chem. Bio. 2003, 7, 570-579.

³⁴ Kaneko, M.; Yamaguchi, A.; Sawai, T. *FEBS Letters* **1985**, *193*, 194-198.

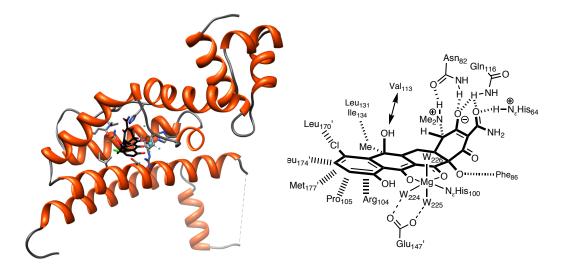


Figure 1.7 Tetracycline resistance as categorized by mechanism. Genes encoding the resistance proteins are listed below each mode of resistance. Adapted from [35].

The nature of tetracycline efflux protein expression is an important component of our understanding of the bioactivity of the tetracycline antibiotics. Two genes are regulated by tetracycline in organisms capable of tetracycline efflux, one encoding the efflux protein itself and a second encoding a repressor protein.³⁰ In the absence of tetracycline, the repressor protein binds as a heterodimer to the operators responsible for efflux expression. Thus, these genes remain silenced when tetracycline is not present and the machinery used for its export is not required. However, when tetracycline is in the cellular environment, it may bind to the repressor protein. This binding interaction changes the conformation of the overall heterodimeric structure, greatly reducing binding effi-

³⁵ Thaker, M.; Spanogiannopoulos, P.; Wright, G. D. Cell. Mol. Life Sci. 2010, 67, 419-431.

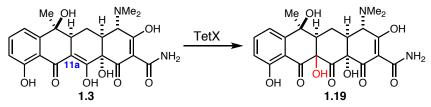
ciency.³⁶ Once the operator is freed from the repressor protein, transcription may proceed, ultimately enabling the synthesis of necessary efflux proteins.

Figure 1.8 Crystal structure of the TetR^D-(Cl-Tet)-Mg²⁺ complex and a threedimensional depiction of important protein/antibiotic interactions.³⁶

Beyond efflux, other modes of tetracycline resistance include ribosomal protection³⁷ and enzymatic inactivation.³⁸ While less studied, ribosomal protection proteins play a critical role in freeing a distressed ribosome from arrest induced by tetracycline binding. One such protection protein, Tet(O), binds to a location on the distressed ribosome that is quite removed from TET1.³⁹ Following binding, the protein induces ejection of tetracycline from the ribosome via a mechanism that is not completely understood. However, it is hypothesized that a long-range effect can be induced via an allosteric

³⁶ Kisker, C.; Hinrichs, W.; Tovar, K.; Hillen, W.; Saenger, W. J. Mol. Biol. 1995, 247, 260-280.

³⁷ Connell, S. R.; Tracz, D. M.; Nierhaus, K. H.; Taylor, D. E. Antimicrob. Agents Chemother. 2003, 47, 3675-3681.


³⁸ Yang, W.; Moore, I. F.; Koteva, K. P.; Bareich, D. C.; Hughes, D. W.; Wright, G. D. J. Biol. Chem. 2004, 279, 52346-52352.

³⁹ Spahn, C. M. T.; Blaha, G.; Agrawal, R. K.; Penczek, P.; Grassucci, R. A.; Trieber, C. A.; Connell, S. R.; Taylor, D. E.; Nierhaus, K. H.; Frank, J. *Mol. Cell* **2001**, *7*, 1037-1045.

mechanism that involves the shifting of helix 34 (h34), causing conformational perturbation near TET1.³⁹

The third mechanism of tetracycline resistance used by bacteria, enzymatic inactivation, is the only mechanism that directly reduces the local concentration of an antibiotic since it involves the enzymatic conversion of the molecule to a less effective form. While this is a relatively uncommon mode of resistance for the tetracyclines, it is quite common when one considers other classes of antibiotics such as the β -lactams and aminoglycosides.³⁸ One such tetracycline inactivating enzyme, TetX, was identified in 1989 from a strain of *Bacteroides fragilis*.⁴⁰ This flavin-dependent monooxygenase is proposed to mediate the oxidation of the C11a-position of the tetracycline core structure (Scheme 1.2).³⁸ Once formed, the sensitive intermediate **1.19** is proposed to undergo decomposition via multiple pathways, one of which involves aromatization of the C-ring.

Scheme 1.2 Proposed action of the TetX enzyme to induce the decomposition of tetracycline antibiotics.

VI. Relevant Syntheses

Considering the clinical relevance, resistance challenges, and structural complexity of the tetracycline antibiotics, it is not surprising that these molecules have captured sustained attention by the synthesis community. In the interest of brevity, a detailed summary of the various syntheses of relevant tetracyclines will not be included; rather, the strategic

decisions made in the retrosynthetic deconstruction of the targets will be emphasized.⁴¹ An overview of the syntheses discussed in this section can be found in Figure 1.9.

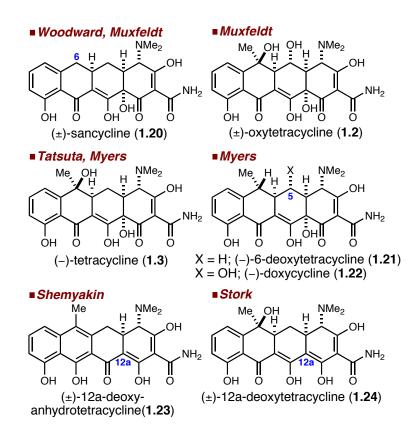
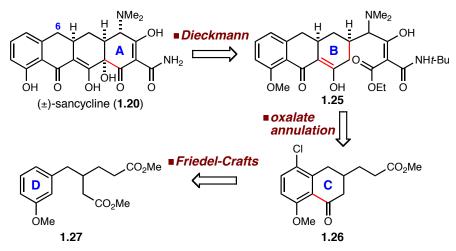


Figure 1.9 Relevant work towards the synthesis of tetracycline antibiotics.

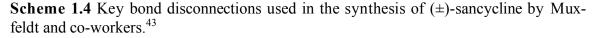

The initial foray into the total synthesis of a bioactive tetracycline was undertaken by Woodward and co-workers, who disclosed the synthesis of 6-demethyl-6deoxytetracycline (sancycline, **1.20**, Scheme 1.3) in 1962.⁴² This synthesis hinged on the late-stage Dieckmann reaction that was used to synthesize the A-ring of the tetracycline

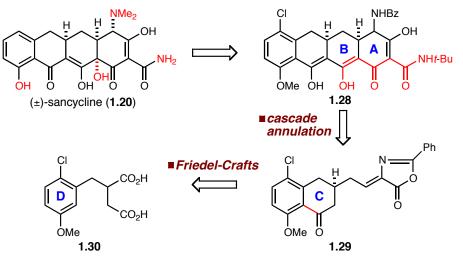
⁴⁰ Speer, B. S.; Salyers, A. A. J. Bacteriol. **1989**, 171, 148-153.

⁴¹ For a detailed review of syntheses relevant to the tetracycline antibiotics, please see: Brubaker, J. Ph.D. thesis, Harvard University, 2007.

core structure (1.25 to 1.20). This general strategy became an important component of all early syntheses targeting tetracycline-like structures, as it was incorporated in subsequent disclosures by Muxfeldt, Shemyakin, and Stork (*vide infra*). Following retrosynthetic disconnection of the A ring, annulation to form the B-ring was envisioned (1.26 to 1.25). In order to effect this transformation, dimethyloxalate was used as a two-carbon synthon, allowing B-ring formation to occur via deprotonation of 1.26 with sodium hydride. Lastly, a Friedel-Crafts acylation was envisioned to form the C-ring (1.27 to 1.26). Overall, this synthesis yielded (\pm)-sancycline in 25 steps and 0.0025% overall yield.

Scheme 1.3 Key bond disconnections used in the synthesis of (\pm) -sancycline by Woodward and co-workers.⁴²

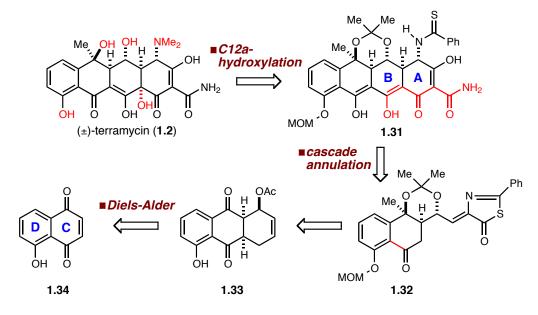



Soon after the Woodward synthesis, Muxfeldt also completed a synthesis of (±)sancycline while utilizing an elegant cascade annulation strategy.⁴³ Following late-stage functionalization (**1.28** to **1.20**), the A- and B-rings of the tetracycline core were targeted.

 ⁴² (a) Conover, L. H.; Butler, K.; Johnston, J. D.; Korst, J. J.; Woodward, R. B. J. Am. Chem. Soc. 1962, 84, 3222-3224. (b) Woodward, R. B. Pure Appl. Chem. 1963, 6, 561-573. (c) Korst, J. J.; Johnston, J. D.; Butler, K.; Bianco, E. J.; Conover, L. H.; Woodward, R. B. J. Am. Chem. Soc. 1968, 90, 439-457.

⁴³ Muxfeldt, H.; Rogalski, W. J. Am. Chem. Soc. 1965, 87, 933-934.

Utilizing sodium hydride in the presence of *N*-*t*-butyl-3-oxoglutaramate, the conversion of **1.29** to **1.28** proceeded in an extremely efficient process (82% yield). Intermediate **1.29** was then generated in a similar manner to that of the Woodward synthesis (*vide supra*).

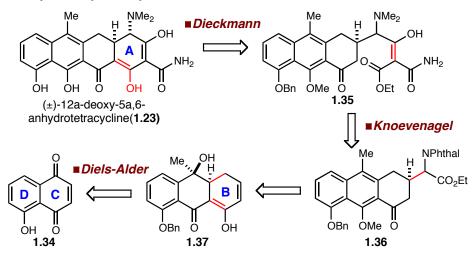

The Muxfeldt synthesis of (±)-sancycline was a precursor to the landmark synthesis of (±)-terramycin in 1968, which is regarded as an amazing achievement in organic synthesis.⁴⁴ Conceptually, the same strategy employed in the (±)-sancycline synthesis was employed for the (±)-terramycin synthesis, however terramycin contains added challenges which involve the sensitive C6-tertiary carbinol in addition to the secondary carbinol at C5. Further, the synthesis employed a C12a-hydroxylation reaction that was also developed by Muxfeldt and co-workers for the tetracyclines (**1.31** to **1.2**).⁴⁵ To disconnect the

 ⁴⁴ (a) Muxfeldt, H.; Hartmann, G.; Kathawala, F.; Vedejs, E.; Mooberry, J. B. J. Am. Chem. Soc. 1968, 90, 6534-6536. (b) Muxfeldt, H.; Haas, G.; Hardtmann, G.; Kathawala, F.; Mooberry, J. B.; Vedejs, E. J. Am. Chem. Soc. 1979, 101, 689-701.

⁴⁵ Muxfeldt, H.; Buhr, G.; Banger, R. Angew. Chem. Int. Ed. 1962, 3, 157.

core tetracyclic framework, a similar cascade annulation reaction was employed to that discussed in the context of (\pm) -sancycline (Scheme 1.4), this time using thioazolone precursor **1.32**. This precursor was synthesized from juglone (**1.34**) in 16 steps through the intermediacy of **1.33**, which is the Diels-Alder adduct of juglone and 1-acetoxy butadiene.

Scheme 1.5 Key bond disconnections used in the synthesis of (\pm) -terramycin by Mux-feldt and co-workers.⁴⁴

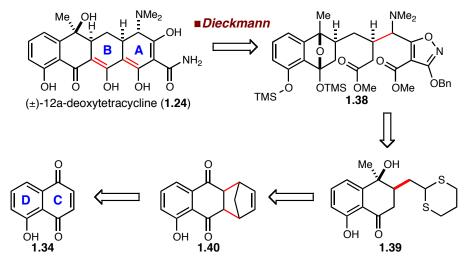


In 1966, Shemyakin and co-workers reported the formal total synthesis of tetracycline via means of the synthesis of 12a-deoxy-5a,6-anhydrotetracycline.^{46,47} The approach employed to synthesize this degradation product of tetracycline was similar to that of the Woodward (±)-sancycline synthesis because it employed a late-stage Dieckmann reaction to form the A-ring of the tetracycline core. Knoevenagel condensation with

⁴⁶ (a) Kolosov, M. N.; Popravko, S. A.; Shemyakin, M. M. *Lieb. Ann.* **1966**, *668*, 86-91. (b) Gurevich, A. I.; Karapetyan, M. G.; Kolosov, M. N.; Korobko, V. G.; Onoprienko, V. V.; Popravko, S. A.; Shemyakin, M. M. *Tet. Lett.* **1967**, *2*, 131-134.

ethyl ethoxymagnesium malonamate then enabled the conversion of **1.36** to **1.35**. Lastly, in much the same fashion that Muxfeldt utilized a Diels-Alder reaction with juglone, Shemyakin and co-workers targeted the Diels-Alder adduct **1.37**. While 12a-deoxy-5a,6-anhydrotetracycline is a known tetracycline degradation product, no attempt to convert this compound to tetracycline was reported in this literature disclosure.

Scheme 1.6 Key bond disconnections used in the synthesis of (\pm) -12a-deoxy-5a,6-anhydrotetracycline by Shemyakin and co-workers.⁴⁶

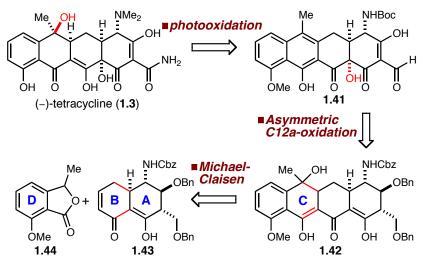

Stork and co-workers completed a synthesis of (\pm) -12a-deoxytetracycline in 1996, once again demonstrating the utility of a Dieckmann-based strategy (Scheme 1.7).⁴⁸ In this synthesis, formation of the A- and B-rings was targeted via a bis-Dieckmann cyclization. Ultimately this reaction was carried out by subjecting **1.38** to potassium hydride at low temperature, producing **1.24** after hydrogenation of the intermediate product. Intriguingly, a variant of this reaction fails in the absence of the silyl acetal, thus implicating the sensitive C6-tertiary carbinol as the functionality that facilitates decomposition in

⁴⁷ While a formal total synthesis of tetracycline is claimed, later inabilities to effect C12a-hydroxylation with the native stereochemistry at C4 call this claim into question.

⁴⁸ Stork, G.; La Clair, J. J.; Spargo, P.; Nargund, R. P.; Totah, N. J. Am. Chem. Soc. **1996**, 118, 5304-5305.

the presence of strong base. Another important feature of this synthesis is the utilization of the Stork-Hagedorn benzyloxy isoxazole.⁴⁹ This heterocycle uniquely protects the sensitive vinylogous carbamic acid functional group present within the tetracyclines until it may be unveiled. This work should have yielded a formal synthesis of tetracycline once the C12a-deoxy compound **1.24** had been synthesized. However, Stork and co-workers were unable to reproduce the C12a-functionalization methods described by others in earlier reports.^{42,45,50}

Scheme 1.7 Key bond disconnections used in the synthesis of (\pm) -12a-deoxytetracycline by Stork and co-workers.⁴⁸


Surprisingly, tetracycline itself did not succumb to total synthesis until 30 years after the Muxfeldt terramycin synthesis. It was Tatsuta and co-workers who were the first to synthesize tetracycline, disclosing their work in 2000 (Scheme 1.8).⁵¹ Retrosynthetically, the first strategic decision made in the synthesis was to delay installation of the

⁴⁹ Stork, G.; Hagedorn III, A. A. J. Am. Chem. Soc. 1978, 100, 3609-3611.

⁵⁰ (a) Holmlund, C. E.; Andres, W. W.; Shay, A. J. J. Am. Chem. Soc. **1959**, 81, 4748-4749. (b) Photochemical oxidation of tetracycline: Davies, A. K.; McKellar, J. F.; Philips, G. O.; Reid, H. G. J. Chem. Soc., Perkin Trans. 2 **1979**, 368-375.

C6-tertiary carbinol until the final stage of the synthesis. This not only allowed more inert 5a-6-anhydro-intermediates to be carried through much of the synthesis, but it also relied upon a highly precedented oxidation since both Scott⁵² and Wasserman⁵³ had studied similar reactions earlier. The most intriguing component of the synthesis, however, was the utilization of isobenzenefuranone **1.44** in a Michael-Claisen reaction. In this reaction, the benzylic position of **1.44** was deprotonated with LDA at low temperature, and coupled with enone **1.43** to effect annulation of the C-ring (**1.42**). Lastly, AB synthon **1.43** was synthesized in 12 steps from D-glucosamine.

Scheme 1.8 Key bond disconnections used in the synthesis of (–)-tetracycline by Tatsuta and co-workers.⁵¹

VII. The Myers Route to Fully Synthetic Tetracyclines

The first generation of tetracycline antibiotics used clinically were the natural products themselves. However, as resistance emerged, newer semisynthetic tetracyclines were

⁵¹ Tatsuta, K.; Yoshimoto, T.; Gunji, H.; Okado, Y.; Takahashi, M. Chem. Lett. 2000, 646-647.

⁵² Scott, A. I.; Bedord, C. T. J. Am. Chem. Soc. 1962, 84, 2271-2272.

⁵³ Wasserman, H. H.; Lu, T.-J. J. Am. Chem. Soc. 1986, 108, 4237-4238.

created in response. This led to the semisynthesis of minocycline (1.45) and doxycycline (1.22), two drugs that have been widely used by clinicians (Figure 1.10).³⁵ Ultimately, this was followed by the third generation of tetracycline antibiotics, the glycylcyclines, as exemplified by tigecycline (1.46). Yet, these too are semisynthetic antibiotics, obtained from the derivitization of minocycline.⁵⁴ It is not until recently that the accessibility of structurally diverse tetracyclines has dramatically improved.

■ First generation (1940's -1950's)

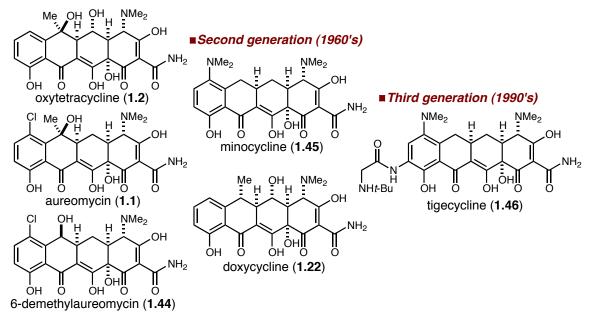
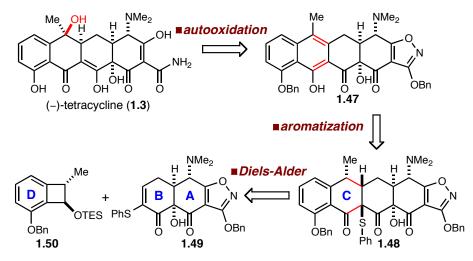
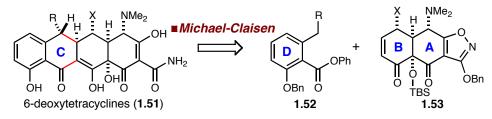


Figure 1.10 The evolution of clinically used tetracycline antibiotics.³⁵


In 2005, Myers and co-workers reported the synthesis of (–)-tetracycline via an exceedingly efficient sequence comprised of 17 steps from benzoic acid in 1.1% yield.⁵⁵ This was a remarkable improvement over the previous tetracycline synthesis completed

⁵⁴ Sum. P.-E.; Lee, V. J.; Testa, R. T.; Hlavka, J. J.; Ellestad, G. A.; Bloom, J. D.; Gluzman, Y.; Tally, F. P. J. Med. Chem. 1994, 37, 184-188.

⁵⁵ Charest, M. G.; Siegel, D. R.; Myers, A. G. J. Am. Chem. Soc. 2005, 127, 8292-8293.


by Tatsuta and co-workers, which required 34 steps and had an overall yield of 0.002%. The strategy that was employed relied upon the late-stage autooxidation of naphthol **1.47**, followed by hydrogenation (Scheme 1.9). In order to obtain intermediate **1.47**, a sulfox-ide elimination was envisaged, thus requiring sulfide **1.48** as the immediate precursor. In the key fragment coupling reaction, which would form the C-ring of the tetracycline core, a Diels-Alder reaction was employed using triethylsilyloxybenzocyclobutene derivative **1.50** and A,B-enone **1.49**. Unlike the Tatsuta synthesis, Myers and co-workers chose to implement the Stork-Hagedorn benzyloxy isoxazole, which dramatically reduced the number of manipulations required to produce the requisite vinylogous carbamic acid function. Additionally, the late-stage hydrogenation to set the C5a-stereocenter also deprotected the benzyl protecting groups, making the final sequence from naphthol **1.47** to tetracycline remarkably efficient.

Scheme 1.9 Key bond disconnections used in the synthesis of (–)-tetracycline by Myers and co-workers.⁵⁵

A contemporaneous literature disclosure also by Myers and co-workers fundamentally change the way that new tetracyclines are developed as it revealed a general approach to synthetic 6-deoxy analogs of this natural product class.⁵⁶ Using a convergent strategy that employed the use of A,B-enone **1.53** and potentially modifiable D-ring esters, the 6-deoxy-tetracycline core structure may be obtained in a single efficient reaction (Scheme 1.10). Since crystal structures of tetracycline bound to the bacterial ribosome have revealed the lack of significant contacts in both the northern region and eastern region of the molecule (*vide supra*), this strategy is ideal to produce analogs with improved antibacterial activity. Following this powerful new strategy, Myers and co-workers have disclosed further efforts to streamline the process and provide access to an even larger subset of tetracycline analogs.⁵⁷

Scheme 1.10 Key annulation used in the synthesis of 6-deoxytetracycline analogs by Myers and co-workers.⁵⁶

VIII. Tetracycline Synthesis Strategy

With an outline of past tetracycline syntheses now complete, it is useful to conceptualize the approaches. While each of the synthesis plans outlined in sections VI and VII are dis-

⁵⁶ Charest, M. G.; Lerner, C. D.; Brubaker, J. D.; Siegel, D. R.; Myers, A. G. Science 2005, 308, 395-398.

 ⁵⁷ (a) Brubaker, J. D.; Myers, A. G. Org. Lett. 2007, 9, 3523-3525. (b) Sun, C.; Wang, Q.; Brubaker, J. D.; Wright, P. M.; Lerner, C. D.; Noson, K.; Charest, M.; Siegel, D. R.; Wang, Y.-M.; Myers, A. G. J. Am. Chem. Soc. 2008, 130, 17913-17927. (c) Kummer, D. A.; Li, D.; Dion, A.; Myers, A. G. Chem. Sci. 2011, 2, 1710-1718. (d) Wright, P. M.; Myers, A. G. Tetrahedron 2011, 67, 9853-9869.

tinct, they each display a bias towards the linear construction of the naphthacene core. More specifically, early approaches to the tetracyclines by Woodward, Muxfeldt, Shemyakin, and Stork involve the stepwise introduction of rings via Claisen reaction, starting from the D-ring; this represents D- to A-ring directionality (Figure 1.11). More recently, Tatsuta and Myers have used a Michael-Claisen (or Diels-Alder) reaction to effect the annulation of the C-ring; this represents the inverse, A- to D-ring directionality. While *a priori* it is not obvious which approach is superior, certainly the literature disclosures by Myers reveal that the latter approach currently is most practical. Further, A- to D-ring directionality allows the assemblage of a single, unvarying eastern region; this is ideal considering these functionalities are crucial for bioactivity and therefore cannot be altered.

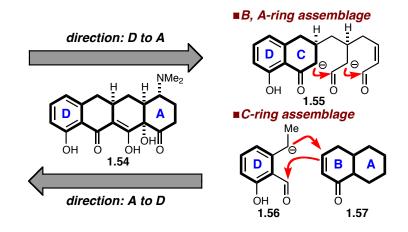
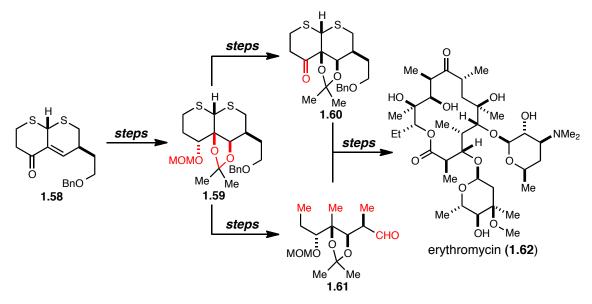


Figure 1.11 Previous tetracycline syntheses employ a linear introduction of the rings.

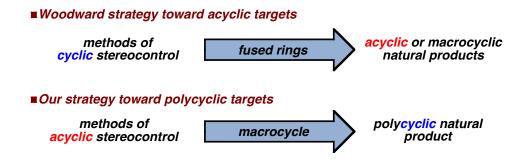

IX. A Macrocyclic Approach to Polycyclic Structures

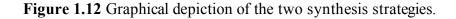
Progress in the field of organic synthesis is made with discoveries in three major areas: (1) new chemical reactions; (2) improved reaction conditions; and (3) novel synthesis strategies.⁵⁸ The experimental results disclosed in Chapters 2-4 summarize our efforts to further a synthesis strategy. Yet, in doing so, we hope that the reader will also be convinced that important discoveries have ultimately been achieved in all three areas, considering the development of a synthesis strategy requires execution of new reactions in previously unexplored situations.

To introduce the concept of synthesis strategy, it is instructive to consider initially a strategy established by R. B. Woodward and co-workers in the context of erythromycin (Scheme 1.11).⁵⁹ Within this synthesis, an initial dithioacetal was used to produce a bicy-cyclic ring system containing a stereocenter at the ring fusion. This single stereocenter was then utilized to control the formation of three additional stereocenters via ketone reduction and olefin dihydroxylation to produce **1.59**. Intermediate **1.59** was then utilized as a common building block for the synthesis of both **1.60** and **1.61**, two fragments that were later coupled and elaborated to produce erythromycin.

⁵⁸ Deslongchamps, P.; Aldrichimica Acta **1984**, 17, 59-71.

⁵⁹ Woodward, R. B. et al. J. Am. Chem. Soc. **1981**, 103, 3210-3213.

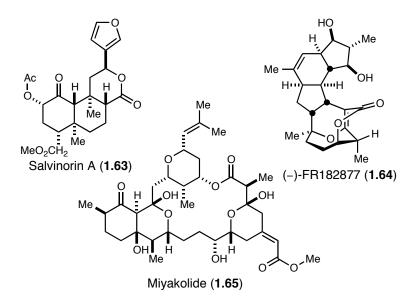



Scheme 1.11 Overview of the erythromycin synthesis completed by Woodward and coworkers.

Scrutiny of the strategy employed in the synthesis of erythromycin reveals the implimentation of fused ring systems for stereocontrol in the synthesis of a macrocyclic natural product.⁶⁰ In other words, Woodward connected methods of cyclic stereocontrol to the synthesis of acyclic or macrocyclic natural products, an approach that was advantageous in an era of organic synthesis with limited methods of acyclic stereocontrol (Figure 1.12). Some time ago, the Evans group began a research program aimed at the assessment of a fundamentally different synthesis strategy than that employed by Woodward and co-workers. Instead of targeting acyclic structures, we sought to redefine how polycyclic target structures are constructed. In contrast to the Woodward strategy, this strategy sought to connect powerful methods of acyclic stereocontrol to the synthesis of polycycles through the intermediacy of a macrocycle. In doing so, this forces the analy-

⁶⁰ Acyclic natural products and macrocyclic natural products are considered to be of the same general architectural category since a macrocyclic natural product is merely a macrocyclization step beyond being acyclic.

sis of reactivity and stereochemical transmission within a macrocyclic setting, which is an arena of heightened complexity.



Deslongchamps was among the first to demonstrate that a macrocyclic approach to polycyclic targets is an entirely reasonable strategy via application of the transannular Diels-Alder reaction.⁶¹ In complementary studies, Still demonstrated that conformational analysis of chiral macrocycles affords predictable levels of intermolecular asymmetric induction.⁶² Collectively, these observations deserve recognition in the evolution of approaches towards the synthesis of polycyclic structures. In an effort to expand and systematize this strategy, the Evans group has employed it in the total synthesis of three structurally distinct natural products to date: salvinorin A (**1.63**), (–)-FR182877 (**1.64**), miyakolide (**1.65**, Figure 1.13).⁶³

⁶¹ (a) Deslongchamps, P. Pure and Appl. Chem. **1992**, *64*, 1831-1847. (b) Marsault, E.; Toró, A.; Nowak, P.; Deslongchamps, P. Tetrahedron **2001**, *57*, 4243-4260.

⁶² Still, W. C.; Galynker, I. *Tetrahedron* **1981**, 37, 3981-3996.

⁶³ (a) Evans, D. A.; Ripin, D. H. B.; Halstead, D. P.; Campos, K. R. J. Am. Chem. Soc. **1999**, 121, 6816-6826. (b) Evans, D. A.; Starr, J. T. J. Am. Chem. Soc. **2003**, 125, 13531-13540. (c) Scheerer, J. R.; Lawrence, J. F.; Wang, G. C.; Evans, D. A. J. Am. Chem. Soc. **2007**, 129, 8968-8969.

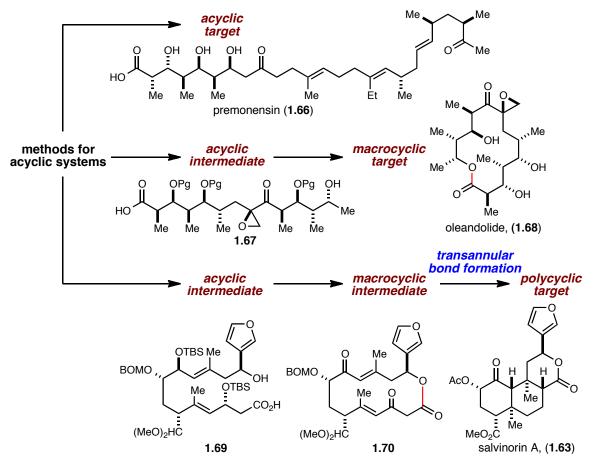


Figure 1.13 Natural products synthesized by Evans and co-workers while employing a macrocyclic approach.⁶³

To conceptualize the macrocyclic approach to polycyclic target structures, it is best to consider initially the larger Evans group research program. Over the past four decades, the Evans group has looked to establish methods for stereocontrolled carbon-carbon bond formation in acyclic settings.⁶⁴ This has led to considerable advances in the construction of polyacetate- and polypropionate natural products in particular. Further, these methods have been validated via implementation within numerous syntheses, including the biosynthetic precursor to monensin, premonsin (**1.66**), which was synthesized by Evans and co-workers in 1986 (Scheme 1.12).⁶⁵ Within that synthesis, aldol methodology was extensively employed, producing premonensin as the direct result of the work.

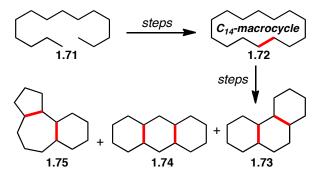
⁶⁴ Considerable advances have been made in cyclic settings as well, however this is less pertinent to the discussion at hand.

⁶⁵ Evans, D. A.; DiMare, M. J. Am. Chem. Soc. 1986, 108, 2476-2478.

Scheme 1.12 Overview of the Evans group synthesis philosophy towards architecturally distinct target structures.

Total synthesis of macrolide antibiotics represents an extension of the strategy employed to synthesize premonensin. Specifically, in the synthesis of the macrolide antibiotic aglycone oleandolide, aldol methodology was extensively employed to synthesize seco-acid **1.67**.⁶⁶ This acyclic intermediate was then utilized in a macrocyclization reaction, ultimately producing the natural product after deprotection. Thus, the beginning phase for the synthesis of both premonensin and oldeandolide, two architecturally distinct natural products, was the same: acyclic stereocontrol to generate an acyclic molecule. It

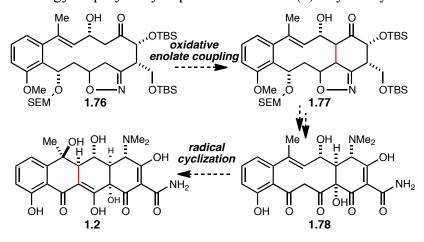
⁶⁶ Evans, D. A.; Kim, A. S.; Metternich, R.; Novack, V. J. J. Am. Chem. Soc. 1998, 120, 5921-5942.


was in the latter stage of the oleandolide synthesis that the strategies deviated.

The macrocyclic approach toward polycyclic natural products represents an extension of the strategy employed for the synthesis of oleandolide. The total synthesis of salvinorin A serves as an important example of the successful implementation of this strategy.^{63c} This synthesis specifically targeted macrocycle **1.70**, which was synthesized via the generation of an acyclic intermediate (**1.69**), followed by macrocyclization. Once formed, the macrocycle was used in an elegant trasannular cascade, ultimately producing the core of salvinorin A. Subsequent functionalization produced the natural product itself.

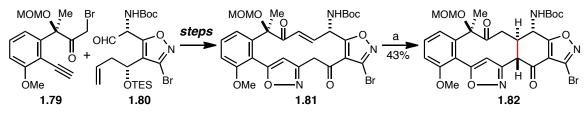
The completed salvinorin A synthesis is important for several reasons. First, it shows that the construction of polycyclic structures does not need to be dominated by intermolecular annulation reactions at the expense of the implementation of methods designed for acyclic settings. Secondly, it demonstrates that a rationally designed macrocycle can be a tremendous asset in complex molecule synthesis as exemplified by the transannular cascade that was both remarkably stereoselective and efficient. A reasonable criticism of the strategy is that it purposefully invokes the intermediacy of a macrocycle, which is a notoriously difficult entity to construct. I argue that given the plethora of methods now developed for previously difficult macrocyclizations, these large-rings should be perceived as an asset within the context of a synthesis endeavor rather than a liability.

The work presented within this thesis, which targets tetracycline for synthesis, is considered the fourth example of an intramolecular annulation strategy from our group. Generally speaking, the synthesis of tetracycline can be viewed as a "two-bond problem" when one considers the formation of two transannular bonds from a C14-macrocycle (Scheme 1.13).⁶⁷ Thus, our task was to devise an appropriately functionalized macrocycle such that stereoselective, late-stage transannular bond formation may occur to produce the tetracycline core (1.74). It should be mentioned that the tetracycline project is only a component of a larger program aimed at the synthesis of target structures from C14-macrocycles. Extension to other natural products with 6-6-6 (1.73) or 5-7-6 (1.75) ring systems from similar C14-macrocycles is also feasible with this approach


Scheme 1.13 Potential ring systems that can be accessed from a C14-macrocycle.

X. Project History within the Evans group

In 2004, Dr. Ioannis Sapountzis commenced a synthesis project in the Evans group targeting (–)-oxytetracycline (Scheme 1.14). Initial efforts targeted macrocycle **1.76**, a substrate that was envisioned to undergo oxidative enolate coupling to form **1.77**. Elaboration of **1.77** to advanced intermediate **1.78** would set the stage for the last C-C bond forming reaction of the synthesis, a radical cascade. Sapountzis was able to synthesize macrocycle **1.76**, however was unable to achieve transannular C-C bond formation.


⁶⁷ The term C14-macrocycle refers to 14-membered carbocyclic macrocycles.

Scheme 1.14 Strategy employed by Sapountzis towards (–)-oxytetracycline.

Stimulated by the arrival of Dr. Thomas Knöpfel to the Evans group, a secondgeneration route was proposed (Scheme 1.15). Fragments **1.79** and **1.80** were initially synthesized without my assistance. Upon my entrance into the Group, we scaled-up the synthesis of both fragments and elaborated these intermediates to macrocycle **1.81**. Ultimately, we validated a transannular Michael strategy via execution of the reaction from **1.81** to **1.82** employing inferior conditions that are no longer used (*vide infra*). Following the departure of Dr. Knöpfel, I redesigned the fragments in the pursuit of a viable synthesis, resulting in the material discussed in Chapters 2-4.⁶⁸

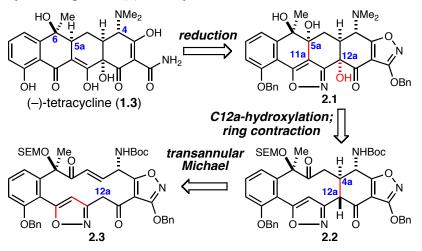
Scheme 1.15 Work performed with Dr. Thomas Knöpfel in an early approach to (–)-tetracycline.

Reagents and conditions: (a) LiOMe, LiClO₄, THF, -8 °C; 43%.

⁶⁸ While macrocycle **1.81** is considered the first macrocycle of its kind, for the purposes of this thesis, macrocycle **2.3** in chapter 2 will be considered the first generation of this route. This distinction is made since further generations that directly correspond to **2.3** will follow in chapters 3 and 4.

Chapter 2

Synthesis of the First Generation Macrocycle


I. Synthesis Plan

Tetracycline, by nature of the location and number of functional groups within the molecule, is prone to decomposition via multiple pathways, often involving the C6 tertiary carbinol.^{7d,69} Therefore, stabilization of this functional group is critical to the viability of a synthesis plan that requires its presence (*vide infra*). We envisioned replacement of the C5a-hydrogen with a hydroxyl function, reducing the propensity for intermediates to aromatize (Scheme 2.1). In turn, this requires a late-stage reduction of the C5a tertiary carbinol to introduce the requisite C5a stereogenic center in the final steps to the target. In order to further stabilize late-stage intermediates, we chose to protect the bridging 1,3diketone of the C- and B-rings as an isoxazole, which also may be cleaved via reduction. Thus, it was initially envisioned that both C5a- and isoxazole reduction could be coupled into a single reduction cascade transforming **2.1** to **1.3**.⁷⁰

⁶⁹ For a more detailed description of the decomposition pathways, please see chapter 1, section III.

⁷⁰ This putative reduction cascade is undoubtedly a challenging transformation, however its feasibility is supported by precedent from the Myers synthesis of tetracycline (see ref. [55]). In that case, an alky-lidine-1,3-diketone intermediate was accessed and subsequently hydrogenated from the convex face. In

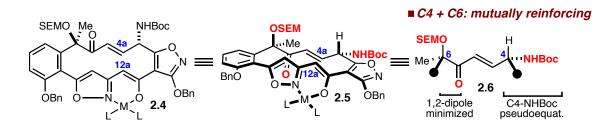
Scheme 2.1 Synthesis plan to (–)-tetracycline.

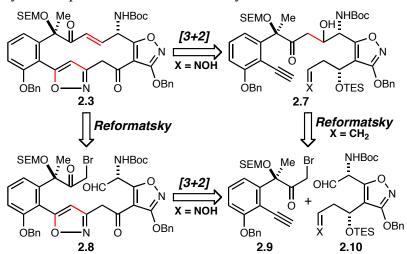
We next identified the C5a-C11a bond as a key retrosynthetic disconnection. Constrained within a 10-membered ring, we anticipated that the electron-rich isoxazole placed opposite the ketone would undergo a substitution reaction in the presence of a mild Lewis acid. The stereochemical outcome, while ultimately inconsequential, was presumed to arrive from a macrocyclic conformation that places the C6 tertiary carbinol and the C5a ketone anti to one another based upon a dipole minimization model. Installation of the C12a hydroxyl function was envisioned to arise from oxidation of an enolate derived from intermediate **2.2**. Admittedly, at the outset of this work it was unclear what bias the 10-membered ring might exhibit, yet given the plethora of established enolate hydroxylation methods, this oxidation was considered achievable.⁷¹

our synthesis plan, a similar intermediate should be accessed upon reductive cleavage of the isoxazole and ejection of the C5a-hydroxyl function.

⁷¹ For select examples of α-ketone oxidation via silyl enol ether intermediates, see: (a) Rubottom, G. M.; Vazquez, M. A.; Pelegrina, D. R. *Tet. Lett.* **1974**, *49*, 4319-4322. (b) Rubottom, G. M.; Marrero, R. J. Org. Chem. **1975**, *40*, 3783-3784. (c) Rubottom, G. M.; Gruber, J. M. J. Org. Chem. **1978**, *43*, 1599-1602. (d) McCormick, J. P.; Tomasik, W.; Johnason, M. W. *Tet. Lett.* **1981**, *22*, 607-610. (e) Andriamialisoa, R. Z.; Langois, N.; Langlois, Y. *Tet. Lett.* **1985**, *26*, 3563-3566. (f) Becicka, B. T.; Koerwitz, F. L.; Drtina, G. J.; Baenziger, N. C.; Wiemer, D. F. J. Org. Chem. **1990**, *55*, 5613-5619. For select examples of α-ketone oxidation of enolates, see: (a) Davis, F. A.; Chen, B. Chem. Rev. **1992**, *92*, 919-934. (b) Ishi-

Lastly, we targeted the C12a-C4a ring fusion. It was envisioned that selective enolization of intermediate **2.3** would enable a transannular Michael addition, forming the A-ring and setting the C4a-stereocenter. The C12a-stereocenter is inconsequential, since this position is later hydroxylated (*vide supra*). Assuming ground state conformational preferences translate to the transition state in this reaction, the stereochemical outcome will rely on the macrocyclic conformation of the enolate derived from intermediate **2.3**. Considering both stereocenters present within the macrocycle are proximal to the enone acceptor, they will undoubtedly play a critical role in the success or failure of this transformation (Figure 2.1). *A priori*, it was predicted that both the C6- and C4-stereocenters would be mutually reinforcing, as the former allows dipole minimization, and the latter places the bulky NHBoc group in the pseudoequatorial position (**2.5**). Yet, intriguing questions as to the extent of interplay between the two resident stereocenters remained unanswered with simplistic models. Thus, we sought to answer these questions via execution of our synthesis plan.



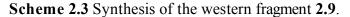

Figure 2.1 A priori conformational prediction justifies the synthesis of macrocycle 2.3.

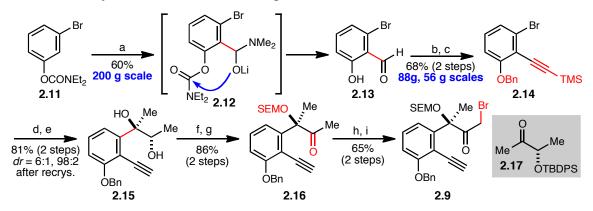
maru, T.; Shibata, N.; Nagai, J.; Nakamura, S.; Toru, T.; Kanemasa, S. J. Am. Chem. Soc. 2006, 128,

II. Macrocycle Synthesis

To maximize convergence, two key disconnections were targeted for the synthesis of macrocycle **2.3**, namely a nitrile-oxide⁷² cycloaddition and a samarium-diiodide promoted Reformatsky⁷³ aldol (Scheme 2.2). Due to the orthogonality of the functional groups required for each of these transformations, in principle, we had two options for this step-wise annulation. Since fragments **2.9** and **2.10** are of roughly equal complexity, it was initially anticipated that a Reformatsky fragment coupling, followed by nitrile-oxide macrocyclization, would be the most efficient sequence.⁷⁴ With this plan in mind, we embarked upon the synthesis of the requisite fragments.

Scheme 2.2 Synthesis plan towards C14-macrocycle 2.3.


16488-16489.

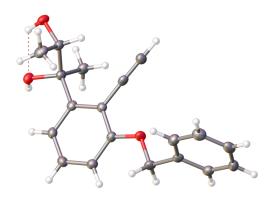

⁷² Huisgen, R. Angew. Chem. Int. Ed. 1963, 2, 565-632.

⁷³ Reformatsky, S. Berichte der deutschen chemischen Gesellschaft. **1887**, 20, 1210-1211.

⁷⁴ Intermolecular nitrile-oxide cycloadditions are typically performed with an excess of one coupling partner since dimerization of the nitrile-oxide is a common biproduct. For select examples of intermolecular nitrile-oxide cycloadditions, see: (a) reference 63a; (b) Dondoni, A.; Giovannini, P. P.; Massi, A. Org. Lett. 2004, 6, 2929-2932. (c) Schmitt, D. C.; Lam, L.; Johnson, J. S. Org. Lett. 2011, 13, 5136-5139.

The synthesis of the western fragment **2.9** began with known diethylcarbamate protected 3-bromophenol (**2.11**, Scheme 2.3).⁷⁵ Selective *ortho*-lithiation⁷⁶ followed by dimethylformamide quench furnished versatile trisubstituted bromosalicaldehyde **2.13** in two steps from commercially available material in 60% yield on a 200 g scale. Incorporation of an *in situ* cleavage of the carbamate protecting group was inspired by an observation made by Snieckus and co-workers in a related system, however it was not utilized to the full synthetic potential in that scenario.⁷⁶ Decomposition of the protecting group most likely proceeds through the intermediacy of DMF adduct **2.12**, which may facilitate carbamate migration to liberate the stabilized lithium phenolate. Importantly, the established procedure is a marked improvement compared with prior art, which utilizes an unselective Reimer-Tiemann reaction⁷⁷ or metallation of protected anisaldehyde.⁷⁸

Reagents and conditions: (a) LDA, DMF, THF, -78 °C; 60%; (b) BnBr, K₂CO₃, DMF, rt; (c) LDA, TMSCHN₂, THF, -78 °C to rt; LDA, TMSCI, -78 °C; 68%, (2 steps); (d) *n*-BuLi, **2.17**, THF, -78 °C; (e) TBAF, THF, 0 °C to rt; 81% (2 steps); (f) SO₃•pyr., NEt₃, DMSO, CH₂Cl₂, 0 °C; (g) SEMCI, TBAI, DIPEA, CH₂Cl₂, 40 °C; 86% (2 steps); (h) KHMDS, TMSCI, NEt₃, THF, -78 °C; (i) NBS, THF, 0 °C; 65% (2 steps).


⁷⁵ Sanz, R.; Castroviejo, M. P.; Fernández, Y.; Fañanás, F. J. J. Org. Chem. **2005**, 70, 6548-6551.

⁷⁶ Sibi, M. P.; Snieckus, V. J. Org. Chem. **1983**, 48, 1935-1937.

⁷⁷ Glennon, R. A.; Raghupathi, R.; Bartyzel, P.; Teitler, M.; Leonhardt, S. J. Med. Chem. 1992, 35, 734-740.

⁷⁸ Rawat, M.; Prutyanov, V.; Wulff, W. D. J. Am. Chem. Soc. 2006, 128, 11044-11053.

Intermediate **2.13** was then carried forward two additional steps via benzyl protection of the phenol and a one-pot conversion to the TMS-protected alkyne **2.14**. These steps also did not require chromatography as simple triteration and crystallization yielded pure material. Protected alkyne **2.14** was then lithiated and coupled via a Felkin-selective process to **2.17**, a known ketone⁷⁹ derived from lactic acid, to produce **2.15** in 6:1 dr after deprotection. This diastereomer ratio was improved to >98:2 upon recrystallization, and the major diastereomer was determined via X-ray crystallography (Figure 2.2). Four subsequent steps were then carried out to produce bromoketone **2.9**.

Figure 2.2 X-ray crystal structure of diol **2.15** confirms the stereochemistry of the C6-tertiary carbinol.⁸⁰

The synthesis of the eastern fragment commenced with the two-step conversion of

Garner's aldehyde **2.18**⁸¹ to alkynoate **2.19** (Scheme 2.4).^{82,83} A completely regioselective

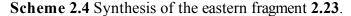
⁷⁹ Overman, L. E.; Rishton, G. M.; Org. Synth. Coll. Vol. 9, 139; Ann. Vol. 71, 56.

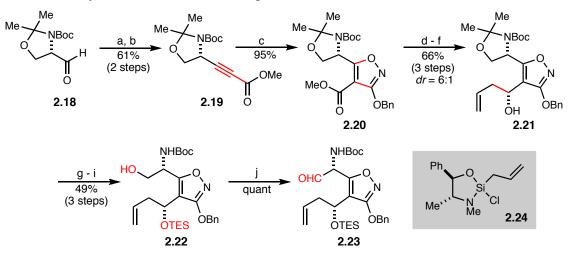
⁸⁰ This image was generated by Shao-Liang Zheng from the Harvard University X-ray Crystallographic Laboratory.

⁸¹ Garner, P.; Park, J. M. Org. Synth. Coll. Vol. 9, 300; Ann. Vol. 70, 18.

⁸² Mander, L. N.; Sethi, S. P. Tet. Lett. 1983, 48, 5425-5428.

⁸³ (a) Ohira, S. Synth. Comm. 1989, 19, 561-564. (b) Müller, S.; Liepold, B.; Roth, G. J.; Bestmann, H.-J. Synlett. 1996, 521-522.

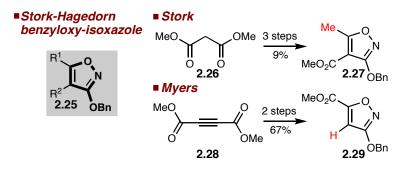

nitrile-oxide cycloaddition was then performed⁸⁴ yielding benzyloxy-isoxazole **2.20**.⁸⁵ Asymmetric allylation,⁸⁶ protecting group manipulation, and Dess-Martin oxidation⁸⁷ yielded aldehyde **2.23**. While each of the reactions in this sequence was scalable, the final oxidation was the most challenging to perform on large scale. Specifically, oxidation of primary alcohol **2.22** proceeds cleanly and rapidly as observed in NMR tube experiments. However, extraction of the aldehyde from the reaction mixture required significant optimization since **2.23** is exceedingly sensitive to basic conditions, and also decomposes readily upon sustained heating (during solvent evaporation for example). Thus, quenching of the reaction required the use of pH 7 buffer and rotory evaporation necessitated a bath temperature of < 30 °C.


⁸⁴ El-Seedi, H. R.; Jensen, H. M.; Kure, N.; Thomsen, I.; Torssell, K. B. G. Act. Chem. Scand. 1993, 47, 1004-1011.

⁸⁵ Stork, G.; Hagedorn III, A. A. J. Am. Chem. Soc. 1978, 100, 3609-3611.

⁸⁶ Kinnaird, J. W. A; Ng, P. Y.; Kubota, K.; Wang, X.; Leighton, J. L. J. Am. Chem. Soc. 2002, 124, 7920-7921.

⁸⁷ Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155-4156.



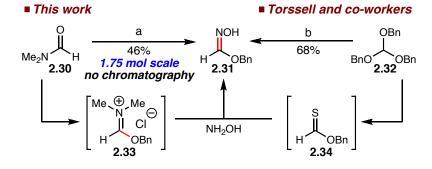
Reagents and conditions: (a) Ohira-Bestmann reagent, K_2CO_3 , MeOH, 0 °C to rt; (b) *n*-BuLi, NCCO₂Me, THF, -78 °C; 61% (2 steps); (c) BnOCHNOH, KHCO₃, NCS, EtOAc, 48 °C; 95%; (d) DIBAI-H, toluene, -78 °C; (e) SO₃•pyr., NEt₃, DMSO, CH₂Cl₂, 0 °C; (f) Leighton reagent **2.24** (1st gen.), toluene, -10 °C; 66%, *dr* = 6:1 (3 steps); (g) TFA, MeOH, 0 °C; Boc₂O, NaHCO₃, dioxane, 0 °C; (h) TESCI, Imidazole, DMF, rt; (i) AcOH, MeOH, 0 °C to rt; 49% (3 steps); (j) DMP, CH₂Cl₂, rt; quantitative.

The Stork-Hagedorn benzyloxy-isoxazole⁴⁹ has been a mainstay in modern tetracycline syntheses since it masks the difficult-to-handle vinylogous carbamic acid, and is easy to cleave late-stage (Scheme 2.5). Our strategy for the generation of this heterocycle (Scheme 2.3, **2.19** to **2.20**) was a critical component of the synthesis, and thus deserves comment. At the outset of this work, literature precedent involved the synthesis of an unfunctionalized isoxazole, followed by subsequent elaboration.^{48,55,88} This elaboration phase typically requires strong-base deprotonations of weakly activated positions, greatly reducing the functional group tolerability of the approach. Since we targeted Garner's aldehyde as an ideal starting point for the synthesis of **2.23**, this eliminated the applicability of precedent and created a need for an alternative method.

⁸⁸ A third method to produce benzyloxy-isoxazolines from the corresponding bromo-isoxazole involves alkoxide displacement, see: Conti, P.; De Amici, M.; Roda, G.; Pinto, A.; Tamborini, L.; Madsen, U.; Nielsen, B.; Bräuner-Osborne, H.; De Micheli, C. *Tetrahedron* 2007, 63, 2249-2256.

Scheme 2.5 Traditional approaches to benzyloxy-isoxazoles. Sites that require functionalization are highlighted in red.^{48,49,55}

A literature disclosure by Torssell attracted our attention since it revealed that the seldom-used N-hydroxy benzylformimidate (2.31, Scheme 2.6) is a competent nitrileoxide precursor.⁸⁴ Indeed, utilization of this reagent in the context of our synthesis was quite successful (*vide supra*). Yet, we were unable to produce the significant quantity of 2.31 that was needed using the reported procedure. Therefore, we initially attempted to intercept the requisite benzyloxy nitrile-oxide generated in our [3+2] cycloaddition via activation of various O-silylated hydroxamic acids,⁸⁹ however these attempts were unsuccessful. Thus, we turned to the development of a new route to 2.31, ultimately resulting in the execution of a coupling reaction employing the Vilsmeier reagent,^{90,91} benzyl alcohol, and hydroxylamine.⁹² After extensive optimization, which was required due to the propensity of intermediate 2.33 to decompose forming benzyl chloride and DMF, we


⁸⁹ Muri, D.; Bode, J. W.; Carreira, E. M. Org. Lett. 2000, 2, 539-541.

⁹⁰ Vilsmeier, A.; Haack, A. Chem. Ber. 1927, 60, 119-122.

⁹¹ While multiple methods exist for the synthesis of the Vilsmeier reagent, we preferred the procedure reported by Ramage and co-workers, see: Jiang, L.; Davison, A.; Tennant, G.; Ramage, R. *Tetrahedron* **1998**, *54*, 14233-14254.

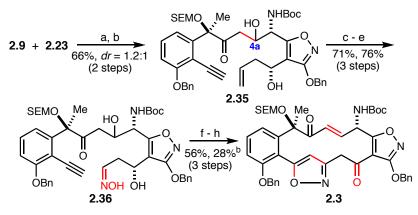
⁹² Conditions for the synthesis of aryl hydroximates are known, see: Tanyama, E.; Imada, S.; Okui, A.; Kin, E. Japanese Patent 05,051,357, March 2, 1993. However, these conditions failed in our hands to yield **2.31**. Further, these conditions required the use of the alcohol nucleophile as co-solvent, a requirement that was not practical for our system.

have been able to synthesize over 120 grams of **2.31** in a single batch via the conditions outlined in Scheme 2.6.

Scheme 2.6 Comparison of methods to produce 2.31.

Reagents and conditions: (a) SOCI₂; BnOH, DMF, pyr., H₂NOH•HCI, -40 °C to 0 °C; 46% (b) H₂S, H₂NOH•HCI, NaOH, K₂CO₃, rt; 68% (reported).

The coupling of fragments **2.9** and **2.23** proved more difficult than anticipated due to the propensity for the aldehyde to decompose (Scheme 2.7). Accordingly, a mild samarium diiodide-promoted Reformatsky reaction was employed to facilitate an aldol coupling of the two fragments.⁹³ The aldol adducts were immediately treated with CSA to cleave the TES group, producing **2.35** as a 1:1.2 ratio of diastereomers. At this point, the two C4a-diastereomers were separated, and carried on individually to macrocycle **2.3**. Conversion of the terminal olefin to an oxime was uneventful, yielding **2.36** in a high-yielding three-step procedure for both diastereomers. The nitrile-oxide macrocyclization of intermediate **2.36** proved to be a very efficient reaction for either diastereomer as well. While macrocyclizations of this type have been documented using various conditions,^{94,95}


⁹³ (a) Moslin, R. M.; Jamison, T. F. J. Am. Chem. Soc. 2006, 128, 15106-15107. (b) Sparling, B. A.; Moslin, R. M.; Jamison, T. F. Org. Lett. 2008, 10, 1291-1294.

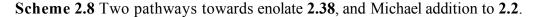
⁹⁴ For the preparation of nitrile-oxides from oximes via chlorination see: Liu, K.-C.; Shelton, B. R.; Howe, R. K. J. Org. Chem. **1980**, 45, 3916-3918.

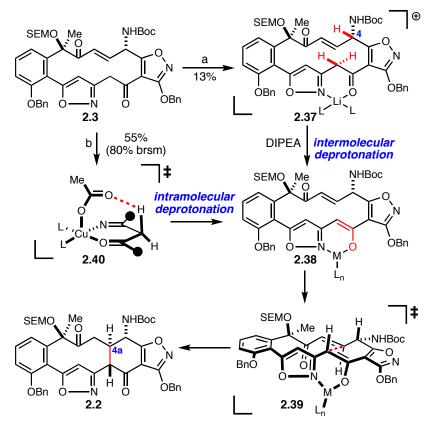
⁹⁵ (a) Sengupta, J.; Mukhopadhyay, R.; Bhattacharjya, A.; Bhadbhade, M. M.; Bhosekar, G. V. J. Org. Chem. 2005, 70, 8579-8582. (b) Paek, S.-M.; Seo, S.-Y.; Kim, S.-H.; Jung, J.-W.; Lee, Y.-S.; Jung, J.-K.;

we found that the conditions developed by Mulzer⁹⁶ worked best in our system (NCS, pyridine, refluxing chloroform). Finally, a regioselective dehydration was performed with the Martin sulfurane reagent,⁹⁷ followed by oxidation of the remaining alcohol to afford macrocycle **2.3**. Intriguingly, one C4a alcohol diastereomer underwent dehydration at higher temperature, highlighting the reduced reactivity of functionalities that are presumably placed on the interior of a macrocycle. With this key compound in hand, we were able to explore the transannular reactions proposed in the planning stage of the synthesis.

Scheme 2.7 Fragment coupling and elaboration.

Reagents and conditions: (a) Sml₂, THF, -78 °C; (b) CSA, MeOH, CH₂Cl₂, 0 °C; 66% (2 steps); (c) 5 mol% OsO₄, NMO, acetone, THF, pH 7 phosphate buffer, rt; (d) NalO₄, THF, pH 7 phosphate buffer, rt; (e) NH₂OH•HCl, pyridine, EtOH, rt; 71%, 76% (3 steps);^a (f) NCS, pyridine, CHCl₃, 60 °C; (g) Martin sulfurane, CH₂Cl₂, -78 °C to -55 °C; (h) DMP, NaHCO₃, CH₂Cl₂; 56%, 14% (28% brsm), (3 steps).^{a a} Consecutive yields refer to the yield for each C4a diastereomer.


III. Macrocyclic Stereocontrol

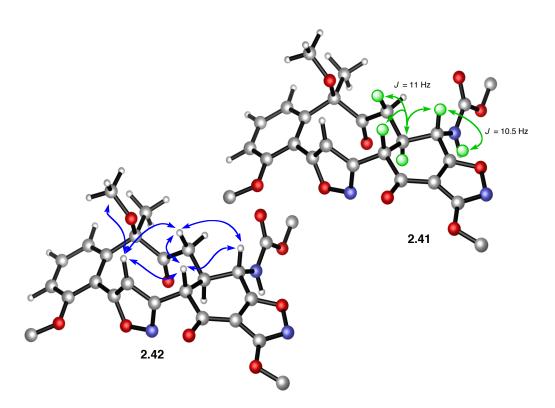

The first transformation that was attempted with macrocycle **2.3** was a transannular Michael addition; this addition should establish both the A-ring of the tetracycline core as

Suh, Y.-G. Org. Lett. 2005, 7, 3159-3162. (c) Paek, S.-M.; Yun, H.; Kim, N.-J.; Jung, J.-W.; Chang, D.-J.; Lee, S.; Yoo, J.; Park, H.-J.; Suh, Y.-G. J. Org. Chem. 2009, 74, 554-561.

⁹⁶ Enev, V. S.; Drescher, M.; Mulzer, J.; *Tetrahedron* **2007**, *63*, 5930-5939.

well as the C4a-tertiary stereogenic center. Initial experiments indicated that few metal ions were competent in the execution of the desired transformation. However, soft-enolization conditions employing the use of lithium bromide and DIPEA did afford the desired product **2.2** in 13% yield and as a single diastereomer (Scheme 2.8). Disappoint-ingly, the major product of this reaction was an enamine consistent with isomerization of the enone moiety into the C4 position (61% yield).

Reagents and conditions: a) LiBr, DIPEA, EtOAC, rt; 13%; (b) Cu(OAc)₂•H₂O, MeOH, 0 °C; 55% (80% brsm).


The poor yield of **2.2** obtained with lithium bromide and DIPEA suggested that a new enolization strategy was required. It was hypothesized that upon lithium-ion com-

⁹⁷ Arhart, R. J.; Martin, J. C. J. Am. Chem. Soc. 1972, 94, 5003-5010.

plexation, activation of hydrogen atoms at both the C12a and C4 positions may occur simultaneously. Since the deprotonation is presumably an intermolecular process, the enhanced acidity at both positions led to an unselective mixture of deprotonated intermediates. In an effort to overcome this problem, we considered the use of metal-ions containing basic ligands since a selective intramolecular deprotonation could occur under this scenario. Accordingly, various metal acetates were screened for reactivity, allowing us to identify Cu(OAc)₂•H₂O as a competent reagent to effect this transformation. In the first key step of the synthesis we were able to obtain **2.2** in 55% yield (80% brsm) and as a single diastereomer.⁹⁸ Despite the facile nature of this transformation, the reaction was stopped prior to complete conversion due to an emerging byproduct that forms from oxidation of the Michael product with Cu(II).⁹⁹ The stereochemistry was determined via 1D nOe data and coupling constants, and all data obtained for this product are consistent with the proposed structure.

⁹⁸ Cu(OAc)₂•H₂O has been shown to facilitate deprotonations in somewhat related nitro-aldol (Henry) reactions, see: Evans, D. A.; Seidel, D.; Rueping, M.; Lam, H. W.; Shaw, J. T.; Downey, C. W. J. Am. Chem. Soc. 2003, 125, 12692-12693.

⁹⁹ (a) Baran, P. S.; Richter, J. M. J. Am. Chem. Soc. 2004, 126, 7450-7451. (b) DeMartino, M. P.; Chen, K.; Baran, P. S. J. Am. Chem. Soc. 2008, 130, 11546-11560.

Figure 2.3 Relevant coupling constant (green arrows, **2.41**) and nOe (blue arrows, **2.42**) and data used to determine the stereochemistry of Michael product **2.2**. Molecular modeling was performed with truncated protecting groups, see reference [100] for details.

IV. Hydroxylation at C12a

With efficient access to Michael product **2.2**, we turned our attention to what would become the most challenging aspect of this synthesis, hydroxylation at C12a. Our plan for the execution of this transformation was quite similar to our plan to execute the Michael reaction, that is, we intended to perform a soft-enolization at C12a via Lewis acid activation and allow it to react with an electrophilic partner. What was immediately encountered, however, was a strong preference to deprotonate at the C4-position rather than at

¹⁰⁰ Molecular modeling of intermediates **2.41**, **2.42**, **2.46**, and **2.47** was performed using Spartan 2008, v. 1.1.2 (Wavefunction, Inc., Irvine, CA, USA), at the molecular mechanics (MM2) level of theory.

C12a (Figure 2.4). We therefore could not access the C12a-hydroxylated product under a variety of conditions, including strong-base deprotonation with LDA or KHMDS.

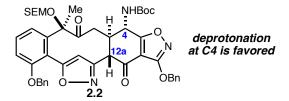
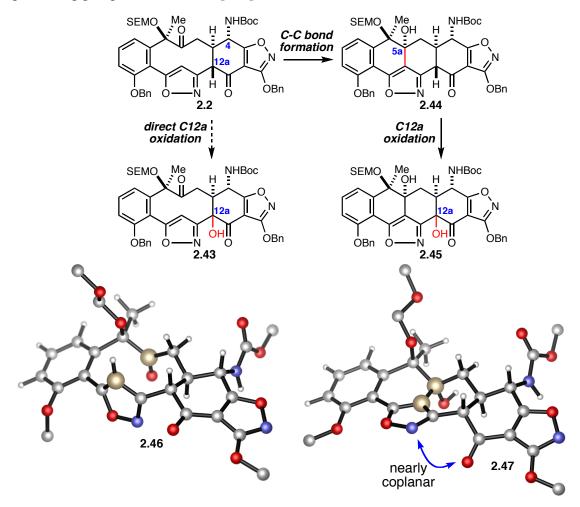
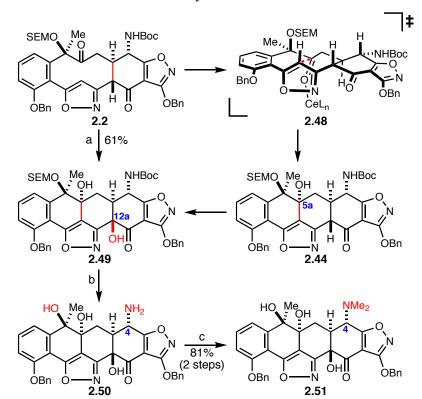



Figure 2.4 Possible sites for deprotonation under soft-enolization conditions.


Simple molecular modeling¹⁰⁰ of Michael product **2.2** provided insight into this troubling transformation and also revealed a possible solution. With the C12a-C4a bond present, as in intermediate **2.2** (Scheme 2.9), the isoxazole is forced to adopt a conformation that alleviates steric compression across the 10-membered macrocycle (conformer **2.46**). This conformation places the two heteroatoms that were proposed to participate in Lewis-acid complexation anti to one another, effectively eliminating the possibility for bidentate chelation. With newfound understanding of the enolization regioselectivity, it was proposed that the original sequence of events be inverted such that isoxazole substitution is performed prior to C12a-hydroxylation. Contraction of the 10-membered ring to the tetracycline core structure **2.44** places the isoxazole and ketone at a position of near co-planarity, enabling a more effective soft-enolization (conformer **2.47**).

Scheme 2.9 C12a-hydroxylation requires C-C bond formation prior to oxidation. Gold spheres represent carbon atoms that are required to react in order to achieve an appropriate conformation for hydroxylation. Molecular modeling was performed with truncated protecting groups, see reference [100] for details.

Fortuitously, we discovered a reagent that was capable of carrying out both the isoxazole substitution and C12a-hydroxylation reactions, CeCl₃•7H₂O (Scheme 2.10). Treatment of **2.2** with this reagent in an atmosphere of oxygen cleanly furnishes the C12a-oxidized compound **2.49** after reducing the intermediate peroxide with dimethyl

sulfide.¹⁰¹ The mechanism that accounts for the facile nature of this transformation is most likely an initial Lewis-acid-mediated isoxazole substitution (**2.48**), followed by a cerium-catalyzed hydroxylation reaction.^{102,103} Two subsequent transformations were then carried out to deprotect the C6-tertiary carbinol and install the requisite dimethyl amine, thus producing **2.51** in good yield for the entire sequence.

Scheme 2.10 Conversion of 2.2 to tertiary carbinol 2.51.

Reagents and conditions: a) CeCl₃·7H₂O, O₂, *i*·PrOH, rt; Me₂S, CH₂Cl₂, rt; 61%; (b) HCl, THF, rt; (c) NaBH₃CN, AcOH, H₂CO (aq.), CH₃CN, rt; 81% (2 steps).

¹⁰¹ Extended reaction times in the presence of Ce(III) also facilitates reduction of the intermediate peroxide. However, extended stirring with our substrate led to reduced yields; thus we opted to perform the oxidation for a shorter period of time, followed by a second reductive step.

¹⁰² Christoffers, J.; Werner, T. Synlett. **2002**, *1*, 119-121.

¹⁰³ It is interesting to note that the conditions for this oxidation are similar to those employed by Woodward in the synthesis of (\pm)-sancycline (see ref. 42 for details). However, in that system the yield was <10%. It is likely that the presence of the C11-C12 isoxazole in our system restricts the number of potential sites for oxidation, improving the overall yield.

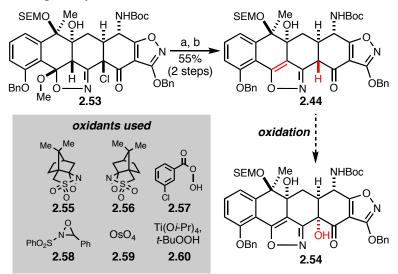

Conversion of **2.2** to the C12a-tertiary carbinol **2.49** occurred in a completely stereoselective manner, which in this case was a very unfortunate result given that the stereochemical outcome was exactly opposite to that required to synthesize tetracycline. This result was not unexpected, since attempts to produce a *cis*-ring fusion in similar substrates have been unsuccessful⁴⁸ with the exception of the Muxfeldt terramycin synthesis.^{44,104} Unfortunately, the lack of reactivity exhibited by 10-membered macrocycle **2.2** demanded that we abandon our initial plan to oxidize prior to ring-contraction, forcing us to seek a solution to the C12a-hydroxylation dilemma with the tetracycline core intact.

In order to more exhaustively probe C12a-hydroxylation, we needed to establish a method to effect the ring contraction of the 10-membered ring in **2.2** without subsequent oxidation at C12a. In other words, we needed to disrupt the cascade after C-C bond formation. This would allow the subsequent exposure of an enolate at C12a to a variety of oxidants. The solution to this problem arose during studies to expand the Michael reaction and cerium-catalyzed reactions into a one-pot procedure. We found that simply mixing both Cu(OAc)₂•H₂O and CeCl₃•7H₂O in methanol afforded the C12a-chlorinated compound **2.53** in a completely diastereoselective and high yielding reaction (Scheme 2.11). Mechanistically, it is believed that the Michael addition occurs first, followed by the isoxazole substitution reaction, and lastly a Cu(II)-mediated¹⁰⁵ chlorination. The methanol adduct arises via trapping of the intermediate oxocarbenium ion after isoxazole

¹⁰⁴ In the Muxfeldt case, we speculate that the acetonide used to protect the C5- and C6-hydroxyl groups gears the molecule in a way that facilitates correct C12a-oxidation. Otherwise, it is unlikely that the reaction would have been successful. See Chapter 3 for further insight into the stereochemical outcome of this reaction.

¹⁰⁵ (a) Giordano, C.; Castaldi, G.; Casagrande, F.; Belli, A. J. Chem. Soc., Perkin Trans. I 1982, 2575-2581.
(b) Shi, X.-X.; Dai, L.-X. J. Org. Chem. 1993, 58, 4596-4598. (c) Nobrega, J. A.; Gonçalves, M. C.; Peppe, C. Synth. Comm. 2002, 24, 3711-3717.

substitution with methanol from solvent; this was a step that was suppressed in the original hydroxylation procedure since isopropanol was used in that case.



Scheme 2.11 A transannular cascade producing C12a-chlorinated compound 2.53.

With access to intermediate **2.53**, we decided to perform a two-step procedure involving reduction of the C12a-position with samarium diiodide, and restoration of aromaticity to the isoxazole via ejection of methanol under acidic conditions (Scheme 2.12). Intermediate **2.44**, which exists as 5.4:1 mixture of keto:enol tautomers, was then exposed to a variety of oxidants with the hope that the selectivity might be perturbed. Unfortunately, under a variety of conditions, which included both chiral and achiral oxygen-sources, we were unable to obtain any of the desired *cis*-ring fusion. It was at this point in the synthesis, that we decided to re-evaluate our synthesis plan, with the hope that we could arrive at a substrate with a bias toward selective oxidation at C12a with the desired sense of diastereoinduction.

Reagents and conditions: (a) Cu(OAc)₂•H₂O, CeCl₃•7H₂O, MeOH, rt; 78%.

Scheme 2.12 Attempted synthesis of 2.54.

Reagents and conditions: (a) SmI₂, THF, MeOH, -78 °C; (c) CSA, CH₂Cl₂, rt; 55% (2 steps).

V. Conclusion

This chapter describes the realization of several key objectives as we pursue the synthesis of (–)-tetracycline. First, a route to the targeted macrocycle containing all of the necessary functionality for late-stage manipulation was validated. The synthesis of this macrocycle employed two fragments, each of which was synthesized in an efficient and scalable manner. Secondly, conditions for the execution of a selective transannular Michael addition employing Cu(OAc)₂•H₂O were discovered, validating the first key step of the synthesis. Further, the complete carbocyclic ring system was synthesized via execution of a second transannular reaction employing CeCl₃•7H₂O, which additionally facilitated Cl2a-hydroxylation. While this latter reaction did not yield the appropriate stereochemistry at the Cl2a-position, the reactivity of the substrate nevertheless was established. Chapter 3 will address the selectivity of this reaction in detail.

Chapter 2

VI. Experimental Section

A. General Information

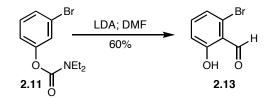
See the "list of abbreviations" section for standard abbreviations of chemicals and protecting groups. Reactions in anhydrous solvents were conducted under an atmosphere of nitrogen or argon in glassware that was flame-dried unless otherwise specified. Analytical thin layer chromatography (TLC) was performed on EMD Reagent 0.25 mm silica gel 60 F_{254} plates. Visualization was accomplished with UV light (254 nm) followed by heating after staining the plate with ceric ammonium molybdate unless otherwise noted. Extraction and chromatography solvents were reagent grade or HPLC grade, and were used without further purification. Product purification was performed by flash column chromatography¹⁰⁶ using Sorbent Technologies silica gel (40-63 µm, 230–400 mesh), MPLC using MP Biomedicals silica gel (18-32 µm), and semi-preparative HPLC using a Rainin Dynamax solvent delivery system empoying an Agilent Zorbax RX-SL 21.2 x 250 nm

¹⁰⁶ Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. **1978**, 43, 2923.

column and Rainin Dynamax absorbance detector model UV-C operating at 215 nm.

B. Analytical Information

Unless otherwise stated, all isolated and characterized compounds were >95% pure as judged by ¹H NMR spectroscopic analysis. ¹H NMR spectra were recorded at room temperature on a Varian Inova 600 spectrometer (600 MHz), a Varian Inova 500 spectrometer (500 MHz), or a Mercury 400 spectrometer (400 MHz). ¹H NMR data are reported in the following format: chemical shift (multiplicity, coupling constants, integration). Chemical shifts are reported in ppm with the residual solvent resonance as internal standard (7.26 ppm for CDCl₃, 7.15 ppm for C₆D₆, 2.05 ppm for acetone-d₆, 3.58 ppm for THF-d₈, and 2.49 ppm for DMSO-d₆). Multiplicity is abbreviated as follows: m = multiplet, s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sext = sextet, sept = septet, oct = octet, br = broad, app = apparent.

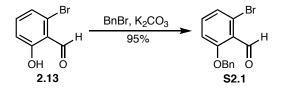

¹³C NMR spectra were recorded at room temperature on a Varian Inova 500 spectrometer (126 MHz), or a Mercury 400 spectrometer (101 MHz) with broadband proton decoupling. Chemical shifts are reported in ppm with the solvent resonance as internal standard (77.0 ppm for CDCl₃, 128.0 ppm for C_6D_6 , 206.0 ppm for acetone-d₆, 67.4 ppm for THF-d₈, and 29.5 ppm for DMSO-d₆).

Infrared spectra were recorded as thin films on NaCl plates using a Perkin Elmer 1600 series FT-IR spectrometer at a resolution of 4 cm⁻¹. Optical rotations were measured on a Jasco P-2000 digital polarimeter with a sodium lamp, and are reported as: $[\alpha]_{T(C)D} XX^{\circ}$ (*c* (g/100 mL), solvent). High-resolution mass spectra were obtained on an Agilent 6210 TOF LC/MS at the Harvard University Mass Spectrometry Laboratory.

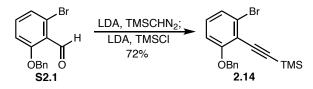
C. Materials

Tetrahydrofuran, diethyl ether, toluene and dichloromethane employed as reaction solvents were dried by passage through a column of activated alumina under an argon atmosphere.¹⁰⁷ Other reaction solvents (e.g. benzene, acetonitrile, HMPA, etc.) were distilled from calcium hydride under a nitrogen atmosphere prior to use, with the exception of methanol, which was distilled from magnesium prior to use. Amine bases (triethylamine, diisopropylethylamine, diisopropylamine, pyridine) were distilled from calcium hydride prior to use. EMD chloroform stabilized with ethanol, EMD DriSolv *N*,*N*-dimethylformamide were used.

D. Experimental Procedures

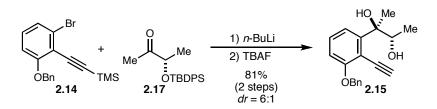


2-bromo-6-hydroxybenzaldehyde (2.13). A flame-dried 5 L 3-necked flask equipped with a mechanical stirrer under an atmosphere of argon was charged with anhydrous THF (735 mL, 1.00 M wrt **2.11**) and cooled to 0 °C. Next, diisopropylamine (124 mL, 0.882 mol, 1.20 equiv.) was added rapidly via syringe, followed by the addition of *n*-BuLi (310 mL of a 2.61 M solution in hexane, 0.809 mol, 1.10 equiv.) over 15 minutes while keeping the internal temperature at ca. 10 °C. This solution was stirred for 15 additional minutes.


 ¹⁰⁷ Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics. 1996, 15, 1518.

Meanwhile, in a 1 L flame-dried flask under argon, 2.11 (200 g, 0.735 mol, 1.00 equiv.) was added followed by the addition of anhydrous THF. Both flasks were then cooled to -78 °C, and 2.11 in THF was added via cannula to the LDA solution over 25 minutes while keeping the internal temperature of the reaction < -72 °C. During this addition, the reaction became dark brown. The reaction was then stirred at -78 °C for an additional 35 minutes. Next, DMF (140 mL, 1.84 mol, 2.50 equiv.) at room temperature was added via syringe directly into the solution over 10 minutes while keeping the internal temperature of the solution < -68 °C. No major color change was noted during this addition. The resulting solution was stirred for 1.25 h at -78 °C, upon which time the cooling bath was removed, revealing a dark green solution. The reaction was stirred for 1.5 h during which time the reaction apppeared red in color. After the reaction reached 5 °C, the solution was transferred via cannula to an Erlenmeyer flask containing 3.5 L of 1.5 N HCl at 0 °C over 30 minutes. Bubbling was observed during this addition. After complete transfer, the ice bath was removed and the reaction was stirred for 14 h. The resulting orange/yellow mixture was extracted four times with 750 mL of hexanes each. The organic extracts were then washed two times with 1 L of water each, and then dried with Na₂SO₄ and concentrated *in vacuo*. The crude material was purified via flash chromatography on silica gel (25:1 hexanes: EtOAc) affording 2.13 (88.0 g, 60%) as a slightly yellow solid. The physical data of **2.13** was in agreement with the data reported in the literature.¹⁰⁸

¹⁰⁸ Rawat, M.; Prutyanov, V.; Wulff, W. D. J. Am. Chem. Soc. 2006, 128, 11044.



2-(benzyloxy)-6-bromobenzaldehyde (S2.1). To a solution of 2.13 (88.0 g, 0.438 mol, 1.00 equiv.) exposed to air in DMF (550 mL, 0.8 M) at room temperature, K₂CO₃ (63.6 g, 0.460 mol, 1.05 equiv.) was added in a single portion, followed by the rapid addition of BnBr (53.1 mL, 0.447 mol, 1.02 equiv.) via syringe. The reaction was then capped and stirred for 14 h, upon which time the reaction was poured into a separatory funnel containing 1 L of water (caution, slightly exothermic). The mixture was extracted three times with 750 mL of Et₂O each, and the aqueous extracts were washed one time with brine. The resulting solution was dried with Na₂SO₄, and concentrated *in vacuo*. The residue was purified via triteration in hexanes at room temperature affording S2.1 (121 g, 95%) as a white solid. $R_f = 0.73$ (6:1 hexanes:EtOAc); MP = 54-56°C; IR (neat) 3090, 3030, 2879, 1745, 1691, 1583, 1567, 1444, 1411, 1390, 1286, 1178, 1021, 879, 834; ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 10.48 \text{ (s, 1H)}, 7.47 - 7.23 \text{ (m, 7H)}, 7.00 \text{ (dd, } J = 8.0, 1.2 \text{ Hz}, 1\text{H)},$ 5.19 (s, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 189.97, 161.09, 135.61, 134.58, 128.66, 128.20, 127.02, 126.80, 124.16, 123.88, 112.44, 70.87; HRMS: Exact mass calcd for $C_{14}H_{11}BrO_{2}[(M+Na^{+})]$: 312.9835; found: 312.9831 (ESI).

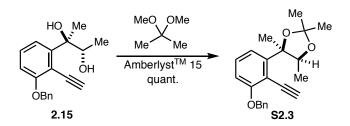
((2-(benzyloxy)-6-bromophenyl)ethynyl)trimethylsilane (2.14). A flame-dried 3necked 3 L flask equipped with a mechanical stirrer under an atmosphere of argon was charged with THF (630 mL, 0.3 M), followed by addition of diisopropylamine (30.6 mL, 0.219 mol, 1.15 equiv.) rapidly via syringe. This solution was cooled to 0 °C, and n-BuLi (76.4 mL of a 2.61 M solution in hexane, 0.200 mol, 1.05 equiv.) was added rapidly while keeping the internal temperature of the solution < 10 °C. After stirring for 20 minutes, the solution was cooled to -78 °C and TMSCHN₂ (100 mL of a 2.0 M solution in hexane, 0.200 mol, 1.05 equiv.) was added rapidly directly into the solution via syringe while keeping the internal temperature < -68 °C. The reaction was allowed to stir for 30 minutes at -78 °C, upon which time S2.1 (55.5 g, 190 mmol, 1.00 equiv.) in THF (380 mL, 0.5 M) at -78 °C under an atmosphere of nitrogen was added to the reaction mixture directly into the solution via cannula over 15 minutes. The resulting slightly orange solution was stirred for 10 minutes at -78 °C, upon which time it was warmed to room temperature by removal of the cooling bath. The reaction was stirred for 3 h, during which time the solution turned red/orange and slow bubbling was observed. During this warming period, a second solution of LDA was prepared via addition of n-BuLi (76.4 mL of a 2.61 M solution in hexane, 0.200 mol, 1.05 equiv.) to diisopropylamine (30.6 mL, 0.219 mmol, 1.15 equiv.) in THF (380 mL, 0.5 M wrt S2) at 0 °C. Upon completion of the 3-hour warming period, the reaction mixture was cooled back to -78 °C, and the newly prepared LDA solution (also at -78 °C) was added via cannula over 15 minutes directly into the

solution. The cloudy and intensely red solution was stirred at -78 °C for 25 minutes, upon which time TMSCl (60.7 mL, 0.475 mol, 2.50 equiv.) at room temperature was added along the side of the flask via cannula over 10 minutes. The resulting clear red solution was stirred for 20 minutes at -78 °C, upon which time the reaction was quenched with 500 mL of sat. NaHCO₃, and warmed to room temperature. The resulting cloudy yellow mixture was diluted with water (2 L) and the resulting mixture was extracted three times with Et₂O. The combined organic extracts were dried with Na₂SO₄ and concentrated in vacuo. The residue was purified via crystallization from hexanes (250 mL, heated to reflux and gently cooled to 0 °C) affording 2.14 (49.0 g, 72%) as a slightly yellow solid. $R_f = 0.50$ (10:1 hexanes:EtOAc); MP = 71-73°C; IR (neat) 2959, 2899, 2160, 1584, 1561, 1450, 1440, 1282, 1265, 1250, 1026, 863, 844; ¹H NMR (500 MHz, CDCl₃) δ 7.50 (dd, J = 7.9, 1.0 Hz, 2H), 7.38 (dd, J = 10.2, 4.7 Hz, 2H), 7.32 (t, J = 7.3 Hz, 1H), 7.19 (dd, J = 8.1, 0.9 Hz, 1H), 7.09 (t, J = 8.2 Hz, 1H), 6.86 (d, J = 8.3 Hz, 1H), 5.15 (s, 2H), 0.28 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 160.83, 136.53, 129.72, 128.42, 127.79, 126.85, 126.72, 124.87, 115.84, 111.20, 104.39, 99.25, 70.61, -0.09; HRMS: Exact mass calcd for $C_{18}H_{19}BrOSi[(M+Na^+)]$: 381.0281; found: 381.0284 (ESI).



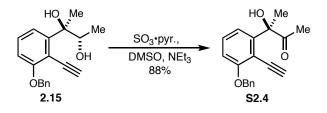
(*2R,3S*)-2-(3-(benzyloxy)-2-ethynylphenyl)butane-2,3-diol (2.15). To a solution of 2.14 (18.8 g, 52.3 mmol, 1.00 equiv.) in THF (174 mL, 0.3 M) at -78 °C under an atmos-

phere of nitrogen, *n*-BuLi (20.6 mL of a 2.66 M solution in hexane, 1.05 equiv.) was added over 5 minutes directly into the solution while keeping the internal temperatures < -70 °C. The reaction was allowed to stir for 25 minutes, upon which time **2.17** (17.1 g, 52.3 mmol, 1.00 equiv.) in THF (174 mL, 0.3 M) at room temperature was added via cannula directly into the reaction mixture over 25 minutes. During this addition the internal temperature was kept < -68 °C. The resulting yellow solution was stirred at -78 °C for 50 minutes, upon which time it was quenched with sat. NH₄Cl (100 mL) at -78 °C and allowed to warm to room temperature. Upon warming, the reaction was poured into an Erlenmeyer flask containing 400 mL of H₂O, and stirred vigorously for 5 minutes. The resulting mixture was extracted three times with Et₂O, the combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. **R**_f = 0.64 (6:1 hexanes:EtOAc)

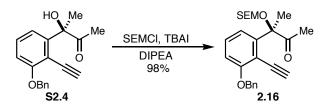

The crude residue was dissolved in THF (174 mL, 0.3 M wrt 2.14) and cooled to 0 °C under an atmosphere of nitrogen. To this solution, TBAF (160 mL of a 1.0 M in THF, 3.00 equiv.) was added directly to the solution via syringe over 5 minutes. The reaction was allowed to stir for 14 h, during which the ice bath was allowed to slowly expire. The reaction was quenched at room temperature (with a water bath present to dissipate any potential heat) with sat. NH₄Cl (100 mL), and stirred for 5 minutes. The mixture was then diluted with 300 mL of H₂O and extracted three times with EtOAc. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. The residue was purified via flash chromatography on silica gel (2:1 hexanes:EtOAc) affording **2.15** as a 6:1 ratio of diastereomers (12.6 g, 81%). The undesired diastereomer was removed via recrystallization from 100 mL of a 1:1 mixture of hexanes:EtOAc to obtain material with < 5% undesired diastereomer as determined via NMR. **R**_f = 0.28 (2:1 hexanes)

anes:EtOAc); **MP** = 126-128°C; $[\alpha]_D = -17$ (*c* 0.45, CHCl₃); **IR** (neat) 3413, 3286, 2879, 2360, 1572, 1443, 1372, 1265, 1027, 742; ¹**H NMR** (500 MHz, CDCl₃) δ 7.49 (d, *J* = 7.6 Hz, 2H), 7.38 (t, *J* = 7.7 Hz, 2H), 7.35 – 7.27 (m, 3H), 6.87 (d, *J* = 8.1 Hz, 1H), 5.17 (s, 2H), 4.87 – 4.72 (m, 1H), 3.69 (s, 1H), 2.93 (s, 1H), 1.81 (s, 3H), 0.99 (d, *J* = 6.4 Hz, 3H); ¹³C **NMR** (126 MHz, CDCl₃) δ 161.30, 149.58, 136.78, 129.64, 128.49, 127.78, 126.84, 118.67, 111.07, 108.12, 88.54, 79.58, 77.34, 70.96, 70.57, 25.13, 17.75; Mass unable to be obtained under the specified ionization conditions (ESI).

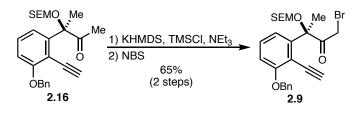
(2*R*,3*R*)-2-(3-(benzyloxy)-2-ethynylphenyl)-2,3-dimethyloxirane (S2.2). To a solution of 2.15 (105 mg, 0.354 mmol, 1.00 equiv.) in CH₂Cl₂ (1.18 mL, 0.3 M) at room temperature under an atmosphere of nitrogen, pyridine (0.43 mL, 5.31 mmol, 15 equiv.) was added, followed by the addition of MsCl (44 μ L, 0.566 mmol, 1.6 equiv.) dropwise directly into the solution. The reaction was stirred at room temperature for 1 hour, upon which time the flask was sealed and heated to 40 °C for 1 hour. The flask was cooled to room temperature, and methanol (5 mL) was added, followed by K₂CO₃ (490 mg, 3.54 mmol, 10 equiv.). The resulting suspension was stirred for 1.5 h at room temperature, upon which time the reaction was poured into a sep. funnel, diluted with H₂O and extracted with hexanes. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. The residue was purified via flash chromatography on silica gel (10:1


hexanes:EtOAc) affording **S2.2** (92 mg, 93%) as a colorless oil. $R_f = 0.76$ (3:1 hexanes:EtOAc); $[\alpha]_D = -74$ (*c* 0.55, CHCl₃); **IR** (neat) 3283, 2996, 1574, 1450, 1380, 1298, 1264, 1028, 876, 793, 740, 696, 612; ¹H NMR (500 MHz, CDCl₃) δ 7.47 (d, J = 7.0 Hz, 2H), 7.38 (t, J = 7.5 Hz, 2H), 7.31 (t, J = 7.4 Hz, 1H), 7.28 – 7.22 (m, 1H), 7.06 (dd, J = 7.7, 1.0 Hz, 1H), 6.82 (dd, J = 8.4, 0.8 Hz, 1H), 5.18 (s, 2H), 3.56 (s, 1H), 3.10 (q, J = 5.5 Hz, 1H), 1.60 (s, 3H), 1.46 (d, J = 5.5 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 159.98, 149.09, 136.99, 130.19, 128.77, 128.06, 127.11, 118.87, 111.46, 109.86, 86.37, 78.53, 70.69, 62.19, 60.51, 18.45, 14.46; **HRMS**: Exact mass calcd for C₁₉H₁₈O₂ [(M+Na⁺)]: 301.1199; found: 301.1194 (ESI).

(4R,5S)-4-(3-(benzyloxy)-2-ethynylphenyl)-2,2,4,5-tetramethyl-1,3-dioxolane


(S2.3). To a solution of 2.15 (114 mg, 0.385 mmol, 1.00 equiv.) in CH₂Cl₂ (1.3 mL, 0.3 M) at room temperature under an atmosphere of nitrogen, dimethyoxypropane (142µL, 1.16 mmol, 3 equiv.) was added, followed by 15 mg of AmberlystTM 15 beads. The reaction was stirred for 1 hour, upon which time the solution was filtered through a plug of cotton and concentrated *in vacuo*. The residue was purified via flash chromatography on silica gel (10:1 hexanes:EtOAc) affording S2.3 (129 mg, quant.) as a colorless oil. $R_f = 0.73$ (3:1 hexanes:EtOAc); $[\alpha]_D = -106$ (*c* 0.55, CHCl₃); **IR** (neat) 3283, 2984, 2937,

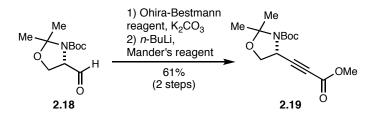
1574, 1448, 1371, 1290, 1263, 1234, 1098, 1047, 1028, 743, 696; ¹H NMR (500 MHz, CDCl₃) δ 7.48 (d, J = 7.6 Hz, 2H), 7.44 (dd, J = 7.9, 1.0 Hz, 1H), 7.38 (t, J = 7.5 Hz, 2H), 7.34 – 7.24 (m, 2H), 6.86 (dd, J = 8.3, 0.7 Hz, 1H), 5.17 (s, 2H), 4.84 (q, J = 6.5 Hz, 1H), 3.59 (s, 1H), 1.86 (s, 1H), 1.55 (s, 3H), 1.51 (s, 3H), 1.06 (d, J = 6.5 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.06, 149.76, 137.09, 129.78, 128.73, 128.01, 127.10, 119.20, 111.33, 108.81, 108.49, 87.71, 86.64, 80.45, 79.92, 70.81, 30.38, 29.62, 28.21, 19.53; HRMS: Exact mass calcd for C₂₂H₂₄O₃ [(M+H⁺)]: 337.1798; found: 337.1814 (ESI).


(*R*)-3-(3-(benzyloxy)-2-ethynylphenyl)-3-hydroxybutan-2-one (S2.4). To a solution of 2.15 (4.60 g, 15.5 mmol, 1.00 equiv.) in CH₂Cl₂ (52 mL, 0.3 M) at 0 °C under an atmosphere of nitrogen, DMSO (9 mL, 1.7 M) was added followed by triethylamine (8.64 mL, 62.0 mmol, 4.00 equiv.). To a second flask, DMSO (23 mL, 2 M wrt SO₃•pyr.) was added, followed by SO₃•pyr. (7.40 g, 46.5 mmol, 3 equiv.). This mixture was stirred for 5 minutes upon which time most solid had dissolved. Next, the SO₃•pyr. solution was added to the solution containing 2.15 over 3 minutes via syringe. The resulting clear and slightly brown mixture was stirred for 1.25 h at 0 °C, upon which time the reaction was poured directly onto a silica gel column and purified via flash chromatography (3:1 hexanes:EtOAc) affording S2.4 (4.02 g, 88%) as a colorless liquid. $R_f = 0.25$ (3:1 hex-

anes:EtOAc); $[\alpha]_{D} = -36$ (*c* 0.95, CHCl₃); **IR** (neat) 3467, 3280, 1717, 1573, 1451, 1354, 1271, 1128, 1027, 790, 742, 697, 616; ¹H NMR (500 MHz, CDCl₃) δ 7.45 (d, *J* = 7.0 Hz, 2H), 7.37 (t, *J* = 7.4 Hz, 2H), 7.32 (t, *J* = 8.1 Hz, 2H), 7.20 (d, *J* = 7.9 Hz, 1H), 6.94 (d, *J* = 8.4 Hz, 1H), 5.18 (s, 2H), 4.49 (s, 1H), 3.56 (s, 1H), 2.12 (s, 3H), 1.75 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 208.87, 161.21, 145.37, 136.51, 129.76, 128.48, 127.80, 126.79, 118.90, 112.56, 110.45, 89.10, 80.00, 77.58, 70.57, 24.68, 24.47; **HRMS**: Exact mass calcd for C₁₉H₁₈O₃ [(M+H⁺)]: 295.1329; found: 295.1335 (ESI).

(*R*)-3-(3-(benzyloxy)-2-ethynylphenyl)-3-((2-(trimethylsilyl)ethoxy)methoxy)butan-2-one (2.16). To a solution of S2.4 (924 mg, 3.14 mmol, 1.00 equiv.) in CH₂Cl₂ (3.1 mL, 1.0 M) at room temperature under an atmosphere of nitrogen, DIPEA (2.19 mL, 12.6 mmol, 4.00 equiv.) was added followed by SEMCl (1.67 mL, 9.42 mmol, 3.00 equiv.) rapidly directly into the solution. Next, TBAI (1.16 g, 3.14 mmol, 1.00 equiv.) was added, the reaction was sealed and heated to 40 °C. The reaction was stirred at this temperature for 20 h, upon which time the brown mixture was quenched with sat. NH₄Cl (10 mL), diluted with H₂O (10 mL), and extracted three times with CH₂Cl₂. The combined organic extracts were dried with Na₂SO₄ and concentrated. The crude residue was purified via flash chromatography on silica gel (8:1 hexanes:EtOAc) affording **2.16** (1.30 g, 98%) as a colorless liquid. $R_f = 0.76$ (2:1 hexanes:EtOAc); $[\alpha]_p = -39$ (*c* 1.2, CHCl₃); **IR**

(neat) 3281, 2952, 2894, 1721, 1574, 1449, 1351, 1274, 1249, 1023, 860, 836, 742, 696; ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 7.2 Hz, 2H), 7.35 (dt, J = 19.8, 7.2 Hz, 5H), 6.93 (d, J = 7.2 Hz, 1H), 5.17 (s, 2H), 4.73 (dd, J = 23.6, 7.2 Hz, 2H), 3.67 (qd, J = 17.3, 9.2 Hz, 2H), 3.53 (s, 1H), 2.21 (s, 3H), 1.76 (s, 3H), 1.00 – 0.77 (m, 2H), 0.01 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 206.57, 160.91, 146.03, 136.66, 129.60, 128.50, 127.80, 126.83, 119.04, 112.05, 109.86, 90.09, 89.20, 84.32, 77.67, 70.54, 65.75, 25.80, 21.06, 18.01, -1.42; HRMS: Exact mass calcd for C₂₅H₃₂O₄Si [(M+H⁺)]: 425.2143; found: 425.2140 (ESI).



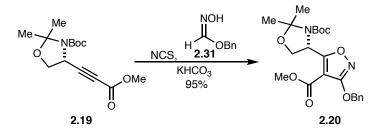
(*R*)-3-(3-(benzyloxy)-2-ethynylphenyl)-1-bromo-3-((2-(trimethylsilyl)ethoxy)methoxy)-butan-2-one (2.9). To a solution of 2.16 (1.51 g, 3.56 mmol, 1.00 equiv.) in THF (18 mL, 0.2 M) at -78 °C under an atmosphere of nitrogen, a solution of KHMDS (781 mg, 3.92 mmol, 1.10 equiv.) in THF (18 mL THF, 0.1 M wrt 10) at room temperature was added via syringe over 3 minutes. The resulting slightly yellow solution was stirred for 30 minutes at -78 °C, upon which time TMSCl (2.26 mL, 17.8 mmol, 5.00 equiv.) was added directly into the solution. The yellow color faded after this addition, and the resulting solution was stirred at -78 °C for 15 minutes, upon which time triethylamine (2.98 mL, 21.4 mmol, 6.00 equiv.) was added and the reaction was stirred for another 15 minutes. Next, the reaction was quenched with sat. NaHCO₃ and warmed to room temperature and the resulting mixture was extracted three times with Et₂O. The

perature and the resulting mixture was extracted three times with Et₂O. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. The residue was purified via flash chromatography on silica gel (10:1 hexanes:EtOAc with 0.5% triethy-lamine) affording an intermediate silyl enol ether (1.32 g, 75%). $R_f = 0.59$ (6:1 hexanes:EtOAc).

The silvl enol ether (1.32 g, 2.66 mmol, 1.00 equiv.) was dissolved in THF (27 mL, 0.10 M), cooled to 0 °C under an atmosphere of nitrogen, and the flask was wrapped with aluminum foil in order to exclude light. Next, NBS (497 mg, 2.79 mmol, 1.05 equiv.) was weighed out in a foil-covered flask and dissolved in THF (11 mL, 0.24 M wrt the silvl enol ether) under an atmosphere of nitrogen. This solution was added to the silvl enol ether at 0 °C via syringe rapidly. The resulting mixture was stirred at 0 °C for 30 minutes, upon which time the reaction was quenched with sat. NaHCO₃ (25 mL), and extracted three times with Et_2O . The combined organic extracts were dried with Na_2SO_4 and concentrated in vacuo. The crude material was purified via flash chromatography on silica gel (9:1 hexanes: EtOAc) affording 2.9 (1.15 g, 86%) as a slightly yellow liquid that was homogeneous by both NMR and TLC. Yield for the two steps: 65%. $R_f = 0.48$ (6:1) hexanes: EtOAc); $[\alpha]_D = -41$ (c 1.35, CHCl₃); IR (neat) 3277, 2953, 2894, 1739, 1575, 1451, 1382, 1276, 1249, 1005, 836, 742, 696; ¹H NMR (500 MHz, CDCl₃) δ 7.45 (d, J =7.5 Hz, 2H), 7.37 (ddd, J = 10.3, 4.1, 2.5 Hz, 2H), 7.34 – 7.28 (m, 3H), 6.94 (dd, J = 7.2, 2.2 Hz, 1H), 5.16 (s, 2H), 4.71 (dd, J = 30.0, 7.3 Hz, 2H), 4.42 (dd, J = 42.6, 15.0 Hz, 2H), 3.83 – 3.65 (m, 1H), 3.65 – 3.49 (m, 2H), 1.85 (s, 3H), 0.97 – 0.79 (m, 2H), 0.01 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 199.96, 160.97, 144.81, 136.41, 129.69, 128.44, 127.78, 126.78, 119.09, 112.48, 109.86, 90.12, 89.63, 84.07, 77.67, 70.51, 65.93, 34.38,

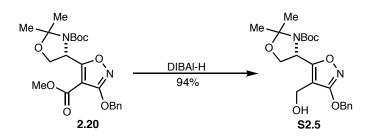
22.02, 17.93, -1.47; **HRMS**: Exact mass calcd for $C_{25}H_{31}BrO_4Si$ [(M+H⁺)]: 503.1248; found: 503.1241 (ESI).

(*R*)-tert-butyl 4-(3-methoxy-3-oxoprop-1-yn-1-yl)-2,2-dimethyloxazolidine-3carboxyl-ate (2.19). A solution of Garner's aldehyde 2.18 (35.0 g, 0.153 mmol, 1.00 equiv.) in methanol (200 mL, 0.62 M) was treated with the Bestmann-Ohira reagent^{83,109} (35.2 g, 0.183 mol, 1.20 equiv.) and cooled to 0 °C. K₂CO₃ (40.0 g, 0.289 mol, 1.89 equiv.) was then added in a single portion. The resulting bright yellow suspension was stirred for 14 h, while warming to 23 °C (the cooling bath was allowed to expire). The reaction mixture was diluted with hexanes and treated with sat. aq. NH₄Cl and extracted three times with hexanes. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. The crude residue was combined with the crude from a different batch, which started with 14.7 g (0.0641 mol) of the intermediate alkyne; total material: 49.7 g (0.217 mol). The combined residue was purified by distillation (300 mTorr, 63 °C) to give

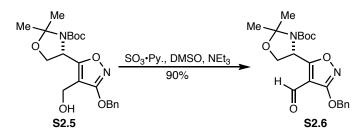

¹⁰⁹ Pietruszka, J.; Witt, A. Synthesis, **2006**, 4266-4268.

42.5 g (87%) of the intermediate terminal alkyne. The physical data for this compound were in agreement with data reported in the literature.¹¹⁰

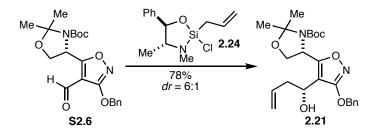
A solution of intermediate alkyne (7.10 g, 31.5 mmol, 1.00 equiv.), co-evaporated one time with benzene, in THF (210 mL, 0.15 M) at -78 °C under an atmosphere of argon, was treated with *n*-BuLi (11.0 mL of a 2.92 M solution in hexane, 1.02 equiv.) dropwise over 5 minutes while maintaining the internal temperature < -70 °C. The resulting yellow solution was stirred for 30 minutes, upon which time Mander's reagent⁸² (2.55 mL, 32.1 mmol, 1.02 equiv.) was added dropwise over 5 minutes while maintaining the internal temperature at less than -70 °C. The resulting orange solution was stirred at -78 °C for 45 minutes, upon which time the reaction was quenched via the addition of 100 mL of H_2O . The reaction was allowed to warm to room temperature with the assistance of a water bath and the resulting clear and slightly brown mixture was extracted three times with hexanes. The combined organic extracts were washed with brine, dried with Na₂SO₄, and concentrated in vacuo. The residue was purified via flash chromatography on silica gel (4:1 hexanes:Et₂O) affording 2.19 (6.27 g, 70%) as a slightly yellow liquid. Yield for the two steps: 61%. This compound was characterized as a ca. 2:3 mixture of boc rotomers. $\mathbf{R}_f = 0.49$ (4:1 hexanes: EtOAc); $[\boldsymbol{\alpha}]_{\mathbf{D}} = -129$ (c 0.60, CHCl₃); IR (neat) 2982, 2936, 2241, 1706, 1436, 1376, 1260, 1170, 1102, 1054, 901, 845; ¹H NMR (500 MHz, CDCl₃) δ 4.71 (s, 0.4H), 4.59 (s, 0.6H), 4.05 (d, J = 3.1 Hz, 2H), 3.75 (s, 3H), 1.61 (s, 3H), 1.47 (s, 12H); ¹³C NMR (126 MHz, CDCl₃) δ 153.62, 150.99, 94.79,


¹¹⁰ Meffre, P.; Gauzy, L.; Branquet, E.; Durand, P. Tetrahedron, 1996, 34, 11215-11238.

94.27, 85.99, 81.23, 80.91, 73.72, 67.70, 52.67, 48.30, 28.29, 26.88, 25.74, 24.97, 24.23; **HRMS**: Exact mass calcd for C₁₄H₂₁NO₅ [(M+Na⁺)]: 306.1312; found: 306.1322 (ESI).

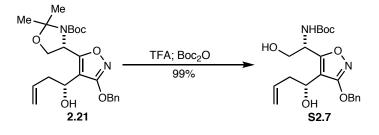

(S)-methyl 3-(benzyloxy)-5-(3-(*tert*-butoxycarbonyl)-2,2-dimethyloxazolidin-4-yl) isoxazole-4-carboxylate (2.20). To a solution of 2.19 (6.15 g, 21.7 mmol, 1.00 equiv.) in EtOAc (110 mL, 0.2 M) at room temperature exposed to air, 2.31 (1.64 g, 10.9 mmol, 0.50 equiv.) was added, followed by the addition of KHCO₃ (10.86 g, 109 mmol, 5.00 equiv.) and NCS (1.45 g, 10.9 mmol, 0.50 equiv.). The flask was fitted with a reflux condenser, and the suspension was heated to 48 °C under an atmosphere of nitrogen for 12 h. The reaction was treated with an additional 0.50 equiv. of both 2.31 and NCS every 12 h for a total 5 additions or 2.50 equiv. of each (requiring 60 h of heating at 48 °C). The resulting cloudy and slightly yellow mixture was passed through celite, and the resulting pad of celite was washed with EtOAc. After concentration of the solution *in vacuo*, the resulting solid was purified via flash chromatography on silica gel (12:1 hexanes:EtOAc \rightarrow 9:1 hexanes: EtOAc) affording 2.20 (8.95 g, 95%) as a white solid that was approximately 95% pure as determined by NMR. $R_f = 0.41$ (4:1 hexanes:EtOAc, stain: KMnO₄). This compound was characterized as a ca. 2:3 mixture of boc rotomers. $[\alpha]_D = -37$ (c 1.65, CHCl₃); **IR** (neat) 2979, 1736, 1708, 1618, 1511, 1456, 1377, 1367, 1310, 1263,

1169, 1096, 1070; ¹**H** NMR (500 MHz, CDCl₃) δ 7.46 (t, J = 7.8 Hz, 2H), 7.40 – 7.28 (m, 3H), 5.62 (dd, J = 6.6, 1.9 Hz, 0.4H), 5.53 (dd, J = 6.8, 2.8 Hz, 0.6H), 5.36 (s, 1H), 5.32 (s, 1H), 4.30 (dd, J = 9.4, 6.8 Hz, 1H), 3.97 (dd, J = 9.4, 2.6 Hz, 1H), 3.83 (s, 1.8H), 3.80 (s, 1.2H), 1.75 (s, 1.8H), 1.72 (s, 1.2H), 1.59 (s, 1.8H), 1.56 (s, 1.2H), 1.48 (s, 3.7H), 1.26 (s, 5.3H); ¹³C NMR (126 MHz, CDCl₃) δ 178.18, 177.93, 168.85, 168.60, 161.33, 151.75, 150.83, 135.46, 135.36, 128.43, 128.29, 128.22, 127.77, 127.73, 99.94, 99.89, 95.14, 94.57, 81.10, 80.43, 71.73, 71.65, 67.70, 67.57, 55.40, 54.77, 51.85, 51.77, 28.25, 27.97, 25.92, 24.86, 24.64, 23.90; **HRMS**: Exact mass calcd for C₂₂H₂₈N₂O₇ [(M+H⁺)]: 433.1969; found: 433.1975 (ESI).

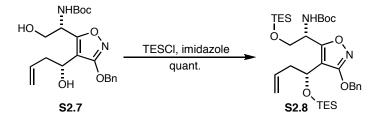

(S)-tert-butyl 4-(3-(benzyloxy)-4-(hydroxymethyl)isoxazol-5-yl)-2,2-dimethyloxazol -idine-3-carboxylate (S2.5). To a solution of 2.20 (17.6 g, 40.8 mmol, 1.00 equiv.) in toluene (200 mL, 0.2 M) at -78 °C under an atmosphere of argon, DIBAI-H (86.2 mL of a freshly prepared solution from neat DIBAI-H, 1.5 M, 2.50 equiv.) at -78 °C was added against the side of the flask over 15 minutes via cannula. The resulting slightly yellow solution was stirred at -78 °C for 30 minutes, upon which time methanol (41 mL) at -78 °C was added along the side of the flask over 15 minutes (caution, foaming observed upon addition of initial drops of methanol). The resulting cloudy solution was stirred for 15

minutes at -78 °C, upon which time it was poured into an Erlenmeyer flask containing 1 N HCl (500 mL) at 0 °C. The resulting cloudy mixture was stirred for 15 minutes, upon which time it was extracted four times with EtOAc. The combined organic extracts were dried with Na₂SO₄ and concentrated in vacuo. The crude residue was purified via flash chromatography on silica gel (3:1 hexanes: EtOAc \rightarrow 2.5:1 hexanes: EtOAc) affording S2.5 (15.5 g, 94%) as a clear liquid. This compound was characterized as a ca. 2:3 mixture of boc rotomers. $R_f = 0.17$ (3:1 hexanes:EtOAc); $[\alpha]_D = -28$ (c 0.80, CHCl₃); IR (neat) 3450, 2979, 2881, 1702, 1672, 1513, 1455, 1394, 1367, 1285, 1249, 1169, 1098, 1060, 847; ¹H NMR (500 MHz, CDCl₃) δ 7.48 – 7.43 (m, 2H), 7.40 – 7.31 (m, 3H), 5.33 – 5.25 (m, 2H), 5.19 (d, J = 4.5 Hz, 1H), 4.52 (d, J = 4.4 Hz, 0.4H), 4.50 (d, J = 4.4 Hz, 0.6H), 4.40 (dd, J = 13.2, 8.7 Hz, 1H), 4.30 – 4.14 (m, 2H), 3.98 (d, J = 3.4 Hz, 1H), 1.65 (s, 2.7H), 1.56 (s, 3.3H), 1.45 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 169.71, 166.60, 152.38, 135.73, 128.48, 128.37, 128.20, 108.43, 94.68, 81.91, 71.47, 65.76, 52.12, 52.00, 28.31, 26.22, 24.81; **HRMS**: Exact mass calcd for $C_{21}H_{28}N_2O_6$ [(M+H⁺)]: 405.2020; found: 405.2025 (ESI).

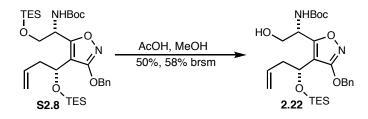
(S)-tert-butyl 4-(3-(benzyloxy)-4-formylisoxazol-5-yl)-2,2-dimethyloxazolidine-3carboxylate (S2.6). To a solution of S2.5 (5.50 g, 13.6 mmol, 1.00 equiv.) in CH₂Cl₂ (45


mL, 0.3 M) at 0 °C under an atmosphere of nitrogen, DMSO (8 mL, 1.7 M) was added followed by triethylamine (7.58 mL, 54.4 mmol, 4.00 equiv.). To a second flask, DMSO (20 mL, 2 M wrt SO₃•pyr.) was added, followed by SO₃•pyr. (6.50 g, 40.8 mmol, 3 equiv.). This mixture was stirred for 5 minutes upon which time most solid had dissolved. Next, the SO₃•pyr. solution was added to the solution containing S2.5 over 5 minutes via syringe. The resulting clear and slightly brown mixture was stirred for 30 minutes at 0 °C, upon which time the reaction was poured directly onto a silica gel column and purified via flash chromatography (6:1 hexanes:EtOAc) affording S2.6 (4.91 g, 90%) as a clear liquid. This compound was characterized as a ca. 1:1 mixture of boc rotomers. $R_f = 0.67$ (2:1 hexanes: EtOAc); $[\alpha]_D = -55$ (c 1.3, CHCl₃); IR (neat) 2978, 2881, 1695, 1604, 1509, 1455, 1366, 1295, 1263, 1168, 1097, 1056, 965, 909; ¹H NMR (500 MHz, CDCl₃) δ 9.80 (d, J = 1.8 Hz, 1H), 7.47 (t, J = 8.0 Hz, 2H), 7.44 - 7.35 (m, 3H), 5.56 - 5.49 (m, 0.5H), 5.46 (dd, J = 6.7, 2.4 Hz, 0.5H), 5.36 (d, J = 20.6 Hz, 2H), 4.33(dd, J = 9.4, 6.8 Hz, 1H), 4.01 - 3.90 (m, 1H), 1.75 (s, 1.6H), 1.71 (s, 1.4H), 1.59 (s, 1.6H), 1.59 (s, 1.6H), 1.71 (s, 1.4H), 1.59 (s, 1.6H), 1.71 (s, 1.4H), 1.59 (s, 1.6H), 1.59 (s, 1.61.6H). 1.56 (s, 1.4H), 1.49 (s, 4H), 1.28 (s, 5H). ¹³C NMR (126 MHz, CDCl₃) δ 183.34, 183.20, 178.00, 177.56, 169.67, 169.55, 151.81, 150.83, 134.92, 134.83, 128.88, 128.83, 128.68, 128.49, 107.42, 107.22, 95.37, 94.77, 81.34, 80.72, 72.36, 72.29, 67.46, 67.34, 55.28, 54.88, 28.31, 28.09, 26.03, 25.01, 24.67, 23.84; HRMS: Exact mass calcd for $C_{21}H_{26}N_2O_6[(M+H^+)]$: 403.1864; found: 403.1868 (ESI).

4-(3-(benzyloxy)-4-((R)-1-hydroxybut-3-en-1-yl)isoxazol-5-yl)-2,2-(S)-tert-butyl dimethyloxazolidine-3-carboxylate (2.21). To a solution of S2.6 (12.3 g, 30.6 mmol, 1.00 equiv.) in toluene (150 mL, 0.2 M) at -10 °C under an atmosphere of nitrogen, 2.24¹¹¹ (16.4 g, 61.2 mmol, 2.00 equiv.) in toluene (50 mL, 0.6 M wrt S2.6) at room temperature was added rapidly via syringe. The reaction was stirred at -10 °C for 84 h, upon which time the reaction was treated with EtOAc (100 mL) and 1 N HCl (100 mL) at -10 °C. The reaction was immediately warmed to room temperature and stirred for 20 minutes upon which time the resulting mixture was extracted three times with EtOAc. The combined organic extracts were dried with Na_2SO_4 and concentrated *in vacuo*. The crude residue was purified via flash chromatography on silica gel (4:1 hexanes:EtOAc) to yield 2.21 as a 6:1 mixture of diastereomers (10.58 g, 78%). The mixture of diastereomers was further purified via MPLC (6:1 hexanes:EtOAc \rightarrow 3:1 hexanes:EtOAc) affording 2.21 (8.57 g, 63%) as a colorless liquid. $R_f = 0.54$ (3:1 hexanes:EtOAc); $[\alpha]_D = -30$ (c 0.80, CHCl₃); **IR** (neat) 3425, 2928, 2877, 1688, 1511, 1463, 1388, 1366, 1281, 1252, 1169, 1096, 1067, 915, 847; ¹**H NMR** (500 MHz, CDCl₃) δ 7.44 (dd, J = 7.8, 1.0 Hz, 2H), 7.41 -7.31 (m, 3H), 5.82 (ddd, J = 24.2, 10.1, 7.1 Hz, 1H), 5.36 -5.25 (m, 2H), 5.22 (dd, J =


¹¹¹ Kinnaird, J. W. A; Ng, P. Y.; Kubota, K.; Wang, X.; Leighton, J. L. J. Am. Chem. Soc. 2002, 124, 7920-7921.

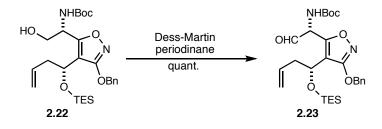
6.5, 2.4 Hz, 1H), 5.18 – 5.00 (m, 2H), 4.73 (dd, J = 12.2, 6.6 Hz, 1H), 4.31 – 4.13 (m, 2H), 2.71 (dd, J = 15.2, 6.8 Hz, 2H), 2.51 (s, 1H), 1.65 (s, 3H), 1.55 (s, 3H), 1.45 (s, 7.2H), 1.31 (s, 1.8H). ¹³C NMR (126 MHz, CDCl₃) δ 169.36, 166.22, 152.30, 135.88, 134.77, 128.48, 128.25, 127.90, 117.49, 110.21, 94.64, 81.75, 71.48, 65.93, 64.56, 51.87, 38.86, 28.30, 26.22, 24.87; **HRMS** Exact mass calcd for C₂₄H₃₂N₂O₆ [(M+Na⁺)]: 467.2153; found: 467.2173 (ESI).


tert-butyl ((*S*)-1-(3-(benzyloxy)-4-((*R*)-1-hydroxybut-3-en-1-yl)isoxazol-5-yl)-2hydroxyethyl) carbamate (S2.7). To a solution of 2.21 (7.80 g, 17.5 mmol, 1.00 equiv.) in methanol (58 mL, 0.3 M) at 0 °C exposed to air, TFA (117 mL, 0.15 M) was added via syringe over 3 minutes. The reaction was stirred at 0 °C for 30 minutes, upon which time the cooling bath was removed and the reaction was allowed to stir for 1.5 h. The reaction was directly concentrated *in vacuo*. The resulting residue was dissolved in dioxane (90 mL, 0.2M) and the solution was cooled to 0 °C while exposed to air. Next, sat. NaHCO₃ (170 mL, 0.1 M) was added portion-wise over 3 minutes (caution, gas evolution). The resulting cloudy white solution was stirred vigorously for 1 hour, upon which time Boc₂O (7.64 g, 35 mmol, 2.00 equiv.) was added in a single portion. The reaction was stirred at 0 °C for 2 more h, upon which time the reaction was diluted with H₂O (200 mL) and ex-

tracted three times with CH₂Cl₂. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. The resulting residue was purified via flash chromatography on silica gel (2:1 hexanes:EtOAc \rightarrow 1:1 hexanes:EtOAc) affording **S2.7** (7.03 g, 99%) as a colorless liquid. **R**_f = 0.54 (1:1 hexanes:EtOAc); [α]_D = -32 (*c* 0.55, CHCl₃); IR (neat) 3350, 2978, 2935, 1687, 1642, 1521, 1453, 1367, 1252, 1166, 1048, 997, 915, 860; ¹**H NMR** (500 MHz, CDCl₃) δ 7.45 – 7.31 (m, 5H), 5.79 (dq, *J* = 10.1, 7.0 Hz, 1H), 5.66 (d, *J* = 8.5 Hz, 1H), 5.27 (s, 2H), 5.17 – 4.99 (m, 2H), 4.74 (dt, *J* = 7.7, 5.6 Hz, 1H), 4.03 – 3.88 (m, 1H), 3.88 – 3.78 (m, 1H), 3.06 (s, 1H), 2.60 (qd, *J* = 14.0, 7.4 Hz, 2H), 1.42 (s, 9H); ¹³**C NMR** (126 MHz, CDCl₃) δ 169.33, 166.72, 155.72, 135.61, 134.02, 128.53, 128.39, 127.96, 127.92, 118.19, 109.65, 80.79, 71.65, 71.61, 64.44, 63.01, 48.44, 40.25, 28.25; **HRMS**: Exact mass calcd for C₂₁H₂₈N₂O₆ [(M+H⁺)]: 405.2020; found: 405.2021 (ESI).

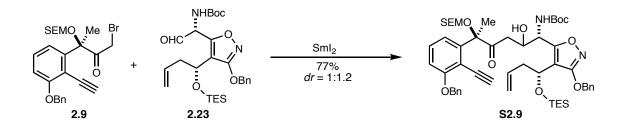
tert-butyl ((*S*)-1-(3-(benzyloxy)-4-((*R*)-1-((triethylsilyl)oxy)but-3-en-1-yl)isoxazol-5yl)-2-((triethylsilyl)oxy)ethyl)carbamate (S2.8). To a solution of S2.7 (4.29 g, 10.6 mmol, 1.00 equiv.) in DMF at room temperature under an atmosphere of nitrogen, imidazole (3.61 g, 53.0 mmol, 5.00 equiv.) was added, followed by TESCI (7.10 mL, 42.4 mmol, 4.00 equiv.) over 3 minutes. The resulting clear solution was stirred at room temperature for 12 h, upon which time it was cooled to 0 °C and quenched sequentially with

H₂O (5 mL), sat. NaHCO₃ (10 mL), and another portion of H₂O (20 mL) over 5 minutes. The resulting solution was extracted three times with hexanes. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. The residue was purified via flash chromatography on silica gel (9:1 hexanes:EtOAc) affording **S2.8** (6.70 g, quant.) as a colorless liquid. $R_f = 0.70$ (5:1 hexanes:EtOAc); $[\alpha]_D = -6.4$ (*c* 0.50, CHCl₃); **IR** (neat) 2956, 2912, 2877, 1719, 1509, 1458, 1366, 1241, 1170, 1112, 1005; ¹H NMR (500 MHz, CDCl₃) δ 7.45 – 7.40 (m, 2H), 7.40 – 7.30 (m, 3H), 5.70 (ddt, *J* = 17.3, 10.2, 7.2 Hz, 1H), 5.50 (d, *J* = 8.9 Hz, 1H), 5.28 (s, 2H), 5.13 – 5.04 (m, 1H), 5.00 (m, 2H), 4.66 (t, *J* = 6.9 Hz, 1H), 3.84 (qd, *J* = 9.9, 5.6 Hz, 2H), 2.56 (ddd, *J* = 31.5, 13.4, 6.7 Hz, 2H), 1.44 (s, 9H), 1.00 – 0.82 (m, 18H), 0.64 – 0.46 (m, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 169.32, 167.01, 154.79, 136.09, 134.10, 128.40, 128.15, 127.83, 117.66, 109.21, 79.62, 71.23, 64.83, 64.03, 49.41, 42.78, 28.30, 6.78, 6.69, 6.59, 6.40, 4.57, 4.22; HRMS: Exact mass calcd for C₃₃H₅₆N₂O₆Si₂[(M+H⁺)]: 633.3750; found: 633.3734 (ESI).

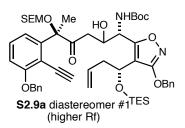

tert-butyl ((*S*)-1-(3-(benzyloxy)-4-((*R*)-1-((triethylsilyl)oxy)but-3-en-1-yl)isoxazol-5yl)-2-hydroxyethyl)carbamate (2.22). To a solution of S2.8 (9.50 g, 15.0 mmol, 1.00 equiv.) in methanol (75 mL, 0.2 M) exposed to air at 0 °C, AcOH (0.86 mL, 15.0 mmol, 1.00 equiv.) was added dropwise. The resulting slightly turbid solution was stirred for 2 h at 0 °C, upon which time the cooling bath was removed and the reaction was allowed to

stir for 24 h. The reaction was quenched with sat. NaHCO₃ (20 mL) and extracted three times with CH₂Cl₂. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. The crude residue was purified via flash chromatography on silica gel (9:1 hexanes:EtOAc \rightarrow 3:1 hexanes:EtOAc \rightarrow 2:3 hexanes:EtOAc), affording **2.22** (3.86 g, 50%) as a colorless liquid, diol **S2.7** (1.63 g, 27%), and starting material **S2.8** (1.32 g, 14%). $R_f = 0.24$ (3:1 hexanes:EtOAc); $[\alpha]_D = -8.7$ (*c* 1.0, CHCl₃); **IR** (neat) 3413, 3334, 2956, 2877, 1712, 1642, 1511, 1461, 1367, 1247, 1169, 1080, 1004; ¹**H NMR** (500 MHz, CDCl₃) δ 7.44 – 7.32 (m, 5H), 5.79 – 5.59 (m, 2H), 5.27 (s, 2H), 5.18 (dd, J = 13.7, 5.6Hz, 1H), 5.07 – 4.93 (m, 2H), 4.68 (t, J = 6.8 Hz, 1H), 3.93 – 3.76 (m, 2H), 2.55 (dd, J =14.4, 7.5 Hz, 3H), 1.45 (s, 9H), 0.89 (t, J = 8.0 Hz, 9H), 0.58 (q, J = 7.9 Hz, 6H); ¹³C **NMR** (126 MHz, CDCl₃) δ 169.25, 166.61, 155.53, 135.79, 133.46, 128.49, 128.36, 127.98, 118.16, 109.60, 80.22, 71.52, 65.04, 64.67, 50.01, 42.75, 28.28, 6.66, 4.53; **HRMS**: Exact mass calcd for C₂₇H₄₂N₂O₆Si [(M+Na⁺)]: 541.2704; found: 541.2705 (ESI).

$$Me_2N \xrightarrow[A:3]{O} H \xrightarrow{SOCl_2; BnOH, DMF;} pyr., H_2NOH \cdot HCl H \xrightarrow{NOH} H \xrightarrow{O} OBn 2.31$$

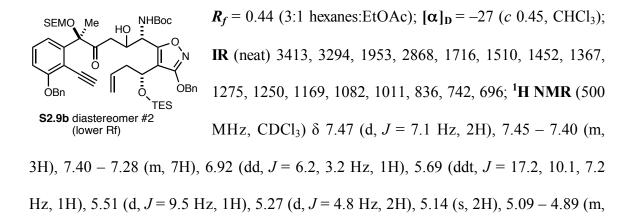

benzyl *N*-hydroxyformimidate (2.31). To DMF (135 mL, 1.75 mol, 1.00 equiv.) at room temperature in a 5 L 3-necked flask equipped with a stirbar, positive nitrogen flow, and an outlet to two consecutive KOH solutions (for SO₂ trapping), SOCl₂ (127 mL, 1.75 mol, 1.00 equiv.) was added over 15 minutes via syringe. The internal temperature of the solution rose to 35 °C during this addition. Next, the reaction was heated to 40 °C for 2.5

h upon which time the flask was placed under reduced pressure (50 torr) for 3 h (while heated to 40 °C). The resulting slightly yellow mixture was allowed to cool to room temperature and the reaction was stirred for 14 additional h (under reduced pressure) during which time the mixture solidified. The reaction was returned to atmospheric pressure with nitrogen, and the stirbar was replaced with a mechanical stirrer. To the reaction, DMF (1.87 L, 0.938 M) was added rapidly using a funnel, and the reaction was cooled to -40 °C while stirring vigorously. Next, BnOH (181 mL, 1.75 mol, 1.00 equiv.) was added via syringe over 10 minutes while maintaining the internal temperature < -34 °C. During this addition, the suspension became nearly clear and free of particulates. After 5 minutes, hydroxylamine hydrochloride (122 g, 1.75 mol, 1.00 equiv.) was added in a single portion. To the resulting suspension, pyridine (311 mL, 3.85 mol, 2.20 equiv.) was added via funnel (open to air) over 30 seconds. Note: rapid addition of pyridine is critical since prolonged addition dramatically increases the amount of benzyl chloride byproduct formed. The reaction, now with an internal temperature of -34 °C, was warmed quickly to 0 °C with an ice/water bath and stirred for 30 minutes. The reaction was quenched with the addition of 1.5 L of sat. NaHCO₃ solution (caution, gas evolution), followed by solid NaHCO₃ until solid crashed out of solution and rose to the top of the mixture. The resulting mixture was extracted three times with EtOAc. The combined organic extracts were then dried with Na₂SO₄ and concentrated in vacuo. The resulting solid was suspended in dichloromethane at 0 °C, and filtered with a fine frit. The solid was then repeatedly washed with cooled dichloromethane until a white solid remained. This procedure yielded 2.31 (121 g, 46%) as a white powder after removal of trace solvent in vacuo. The physical data of **2.31** were in agreement with data reported in the literature.⁸⁴

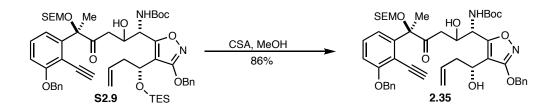


tert-butyl ((R)-1-(3-(benzyloxy)-4-((R)-1-((triethylsilyl)oxy)but-3-en-1-yl)isoxazol-5yl)-2-oxoethyl) carbamate (2.23). To a solution of 2.22 (1.06 g, 2.05 mmol, 1.00 equiv.) in wet CH₂Cl₂ (21 mL, 0.1 M) at room temperature exposed to air, DMP¹¹² (1.30 g, 3.08 mmol, 1.50 equiv.) was added in a single portion. The reaction was stirred for 35 minutes upon which time the cloudy mixture was poured into an Erlenmeyer flask containing pH 7 phosphate buffer (0.1 M buffer, 100 mL) and $Na_2S_2O_3$ (2.00 g). The reaction flask was washed three times with 10 mL portions of hexanes and this was poured into the vigorously stirring mixture in the Erlenmeyer flask. After 20 minutes of vigorous mixing, the reaction was extracted 3 times with hexanes. The resulting organic extracts were washed 2 times with pH 7 phosphate buffer, and the aqueous (only from second washing with pH 7 buffer) washings were back extracted once with hexanes. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo* to yield a 2.23 (1.06 g, quant.) as a colorless liquid that was used without purification. Note: during concentration, the rotory evaporation bath was kept at 29 °C. This compound was subjected immediately to the fragment coupling reaction (immediately beneath this entry).

¹¹² Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155-4156.

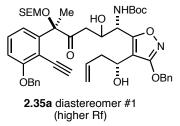


tert-butyl ((1S,5R)-5-(3-(benzyloxy)-2-ethynylphenyl)-1-(3-(benzyloxy)-4-((R)-1-((tri-ethylsilyl)oxy) but-3-en-1-yl)isoxazol-5-yl)-2-hydroxy-4-oxo-5-((2-(trimethylsilvl)eth-oxy)methoxy)hexyl)carbamate (S2.9). A solution of 2.9 (1.03 g, 2.05 mmol, 1.00 equiv.) and 2.23 (1.06 g, 2.05 mmol, 1.00 equiv.) in THF (41 mL, 0.05 M) at -78 °C under an atmosphere of nitrogen was added to a solution of SmI₂ (102 mL of a 0.1 M solution in THF, 5.00 equiv.) at -78 °C via cannula directly into the solution over 10 minutes. The resulting dark blue solution was stirred at -78 °C for 30 minutes, upon which time air was bubbled through a glass pipet directly into the solution at -78 °C for 10 minutes until the blue color disappeared and a yellow color persisted. A solution of sat. Na- HCO_3 (100 mL) also containing $Na_2S_2O_3$ (10 g) was added and the reaction was allowed to warm to room temperature while stirring vigorously. The mixture was then extracted three times with Et₂O. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. The crude residue was purified via flash chromatography on silica gel (8:1 hexanes:EtOAc \rightarrow 6:1 hexanes:EtOAc \rightarrow 4:1 hexanes:EtOAc) affording S2.9 (1.48 g of a 1:1.2 mixture of diastereomers, 77%) as a colorless foam. The diastereomers could be separated via MPLC (5:1 hexanes:EtOAc).

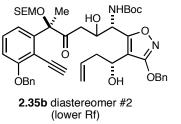


 $R_f = 0.50$ (3:1 hexanes:EtOAc); $[\alpha]_D = -34$ (*c* 1.3, CHCl₃); IR (neat) 3436, 3300, 2954, 2877, 1715, 1642, 1575, 1510, 1453, 1367, 1274, 1249, 1168, 1082, 1008, 836, 742; ¹H NMR (500 MHz, CDCl₃) δ 7.47 (d, *J* = 7.3 Hz, 2H), 7.43

(d, J = 7.0 Hz, 2H), 7.37 (td, J = 7.3, 1.4 Hz, 4H), 7.35 – 7.28 (m, 3H), 7.24 (s, 1H), 6.92 (d, J = 8.3 Hz, 1H), 5.72 (dt, J = 17.0, 7.1 Hz, 1H), 5.61 (d, J = 9.3 Hz, 1H), 5.28 (s, 2H), 5.14 (s, 2H), 4.99 (m, 3H), 4.84 – 4.60 (m, 3H), 4.39 (s, 1H), 3.70 (td, J = 10.1, 6.4 Hz, 1H), 3.60 (dt, J = 16.3, 8.1 Hz, 1H), 3.51 (s, 1H), 3.25 (s, 1H), 3.04 (d, J = 18.0 Hz, 1H), 2.92 (dd, J = 18.3, 9.3 Hz, 1H), 2.69 – 2.41 (m, 2H), 1.79 (s, 3H), 1.41 (s, 9H), 0.89 (t, J = 7.9 Hz, 11H), 0.58 (q, J = 7.9 Hz, 6H), 0.02 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 209.67, 169.42, 166.19, 160.98, 154.71, 144.92, 136.57, 135.99, 134.14, 129.48, 128.43, 128.37, 128.13, 127.78, 127.72, 126.78, 119.45, 117.61, 112.33, 110.30, 110.05, 90.13, 89.57, 84.72, 79.83, 78.15, 71.21, 70.48, 69.45, 65.75, 64.99, 51.39, 42.60, 41.72, 28.21, 21.79, 17.88, 6.66, 4.46, -1.44; HRMS: Exact mass calcd for C₅₂H₇₂N₂O₁₀Si₂[(M+Na⁺)]: 963.4618; found: 963.4615 (ESI).



3H), 4.78 – 4.60 (m, 3H), 4.52 (dd, J = 8.2, 3.7 Hz, 1H), 3.75 – 3.66 (m, 1H), 3.59 (dt, J = 16.4, 8.2 Hz, 1H), 3.46 (s, 1H), 3.16 (d, J = 2.7 Hz, 1H), 2.97 – 2.78 (m, 2H), 2.55 (ddd, J = 20.2, 13.6, 6.7 Hz, 2H), 1.77 (s, 3H), 1.40 (s, 9H), 0.87 (t, J = 7.9 Hz, 11H), 0.68 – 0.50 (m, 6H), 0.01 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 208.51, 169.55, 166.74, 160.99, 155.23, 145.06, 136.63, 135.98, 134.05, 133.44, 129.55, 128.45, 128.40, 128.18, 127.96, 127.83, 127.75, 126.83, 119.39, 118.16, 117.85, 112.23, 110.05, 109.24, 90.13, 89.36, 84.54, 79.83, 77.90, 71.50, 71.27, 70.48, 69.00, 65.80, 64.70, 51.46, 42.73, 42.46, 41.53, 28.27, 28.23, 21.44, 17.92, 6.72, 6.65, 4.52, -1.42; **HRMS**: Exact mass calcd for C₅₂H₇₂N₂O₁₀Si₂[(M+Na⁺)]: 963.4618; found: 963.4617 (ESI).


tert-butyl ((1S,5R)-5-(3-(benzyloxy)-2-ethynylphenyl)-1-(3-(benzyloxy)-4-((R)-1hydroxybut-3-en-1-yl)isoxazol-5-yl)-2-hydroxy-4-oxo-5-((2-(trimethylsilyl)ethoxy)methoxy)hexyl)carbamate (2.35). To a solution of S2.9 (903 mg, 0.959 mmol, 1.00 equiv., as a ca. 1:1 mixture of diastereomers) in methanol (9.6 mL, 0.1 M) at 0 °C under an atmosphere of nitrogen, a solution of CSA (22 mg, 0.095 mmol, 0.10 equiv.) dissolved in CH_2Cl_2 (2.0 mL, 0.48 M wrt S2.9) was added dropwise via syringe over 15 seconds. The resulting solution was stirred for 15 minutes at 0 °C, upon which time the reaction was quenched with sat. NaHCO₃ (10 mL), warmed to room temperature, and extracted three times with CH_2Cl_2 . The combined organic extracts were dried with Na₂SO₄ and

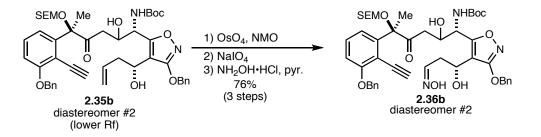
concentrated *in vacuo*. The crude residue was purified via flash chromatography on silica gel (3:1 hexanes:EtOAc) affording **2.35** (685 mg, 86%) as a colorless foam. The diastereomers could separated at this point via MPLC (3:1 hexanes:EtOAc).

 $R_f = 0.33$ (2:1 hexanes:EtOAc); $[\alpha]_D = -56$ (*c* 1.2, CHCl₃); **IR** (neat) 3403, 3297, 2952, 2888, 1715, 1509, 1452, 1368, 1274, 1250, 1166, 1026, 918, 835, 742, 696; ¹H NMR (500 MHz, CDCl₃) δ 7.45 (d, J = 7.0 Hz, 2H), 7.43 – 7.27 (m,

9H), 7.24 (d, J = 8.2 Hz, 1H), 6.93 (d, J = 8.3 Hz, 1H), 5.86 – 5.69 (m, 2H), 5.27 (s, 2H), 5.14 (s, 2H), 5.10 – 5.01 (m, 2H), 5.01 – 4.92 (m, 1H), 4.71 (t, J = 7.3 Hz, 2H), 4.64 (d, J = 7.3 Hz, 1H), 4.39 (s, 1H), 3.90 (d, J = 5.6 Hz, 1H), 3.68 (ddd, J = 16.0, 9.6, 5.1 Hz, 2H), 3.61 – 3.51 (m, 1H), 3.48 (s, 1H), 2.99 (d, J = 18.4 Hz, 1H), 2.83 (dd, J = 18.5, 9.3 Hz, 1H), 2.70 – 2.46 (m, 2H), 1.77 (s, 3H), 1.40 (s, 9H), 0.93 – 0.78 (m, 2H), 0.01 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 209.98, 169.26, 165.77, 161.08, 155.10, 144.72, 136.52, 135.77, 134.27, 129.64, 128.51, 128.49, 128.32, 127.88, 127.81, 126.84, 119.42, 117.81, 112.45, 110.83, 110.14, 90.13, 89.57, 84.65, 80.42, 78.19, 71.52, 70.56, 69.24, 65.90, 64.50, 51.13, 41.60, 40.08, 28.25, 21.70, 17.95, -1.42; **HRMS**: Exact mass calcd for C₄₆H₅₈N₂O₁₀Si[(M+H⁺)]: 827.3934; found: 827.3936 (ESI).

 $R_f = 0.29$ (2:1 hexanes:EtOAc); $[\alpha]_D = -56$ (*c* 0.4, CHCl₃); **IR** (neat) 3413, 3288, 2952, 1714, 1691, 1510, 1451, 1368, 1274, 1250, 1166, 1020, 836, 742, 696; ¹H NMR (500 MHz, CDCl₃) δ 7.50 - 7.26 (m, 12H), 6.97 - 6.90 (m, 1H), 5.78

(ddt, J = 17.2, 10.2, 7.0 Hz, 1H), 5.65 (d, J = 7.8 Hz, 1H), 5.28 (s, 2H), 5.15 (s, 2H), 5.11 – 4.98 (m, 2H), 4.95 (s, 1H), 4.70 (ddd, J = 28.3, 12.4, 6.6 Hz, 3H), 4.54 (s, 1H), 3.90 (d, J = 4.8 Hz, 1H), 3.70 (td, J = 9.9, 7.0 Hz, 1H), 3.63 – 3.53 (m, 1H), 3.51 (s, 1H), 3.07 (dd, J = 18.5, 2.5 Hz, 1H), 2.79 (dd, J = 18.6, 9.0 Hz, 1H), 2.74 – 2.48 (m, 2H), 1.75 (s, 3H), 1.38 (s, 9H), 0.92 – 0.77 (m, 2H), 0.01 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 209.69, 169.42, 166.72, 161.05, 155.68, 145.00, 136.54, 135.77, 134.29, 129.63, 128.52, 128.50, 128.32, 127.89, 127.82, 126.87, 119.33, 117.88, 112.34, 110.04, 109.92, 90.09, 89.52, 84.44, 80.53, 78.00, 71.58, 70.53, 67.93, 65.91, 64.44, 50.77, 41.07, 39.58, 28.26, 21.57, 17.91, -1.42; **HRMS**: Exact mass calcd for C₄₆H₅₈N₂O₁₀Si [(M+H⁺)]: 827.3934; found: 827.3929 (ESI).

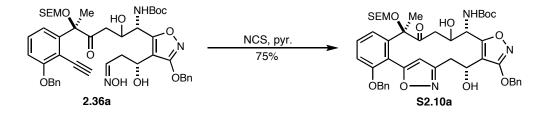

tert-butyl ((1S,5R)-5-(3-(benzyloxy)-2-ethynylphenyl)-1-(3-(benzyloxy)-4-((R)-1hydroxy-3-(hydroxyimino)propyl)isoxazol-5-yl)-2-hydroxy-4-oxo-5-((2-(trimethylsilyl) ethoxy)methoxy)hexyl)carbamate (2.36a). To a solution of 2.35a (350 mg, 0.423

mmol, 1.00 equiv.) in 1:1:1 acetone:pH 7 phosphate buffer:THF (5.7 mL total, 0.056 M) at room temperature exposed to air, NMO (74 mg, 0.635 mmol, 1.50 equiv.) was added, followed by OsO_4 (265 µL of a 2.5 wt% solution in *t*-BuOH, 0.05 equiv.). Upon addition of OsO_4 the reaction turned from turbid to clear and yellow. The reaction was stirred for 2.5 h at room temperature, upon which time it was cooled to 0 °C and a sat. NaHCO₃ solution (10 mL) containing 100 mg NaHSO₃ was added. The reaction quickly turned brown after this addition. The cooling bath was removed, and the reaction was stirred for 5 minutes. The resulting mixture was diluted with H₂O (10 mL) and extracted four times with EtOAc. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo* to afford a brown foam. $R_f = 0.17$ (1:1 hexanes:EtOAc).

The brown foam was immediately dissolved in a 3:1 mixture of THF:pH 7 phosphate buffer (8.5 mL total, 0.05 M) at room temperature exposed to air, and NaIO₄ (271 mg, 1.27 mmol, 3.00 equiv.) was added in a single portion. The reaction became cloudy upon this addition. After stirring for 1 hour at room temperature, the reaction was diluted with H₂O (10 mL), and extracted one time with CH₂Cl₂. To the remaining aqueous layer, brine was added (20 mL) and it was extracted three more times with CH₂Cl₂. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo* to afford a brown foam. $\mathbf{R}_f = 0.58$ (1:1 hexanes:EtOAc).

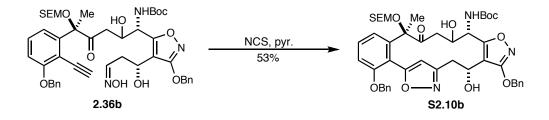
The brown foam was dissolved in absolute ethanol (8.5 mL, 0.05 M) at room temperature exposed to air, and pyridine (423 μ L, 1.0 M wrt **2.35a**) was added, followed by hydroxylamine hydrochloride (88 mg, 1.27 mmol, 3.00 equiv.). The resulting solution was stirred for 1.75 h, upon which time the reaction was cooled to 0 °C and sat. NH₄Cl

(10 mL) was added. The reaction was then diluted with H₂O (10 mL), and extracted three times with Et₂O. The combined organic extracts were dried with Na₂SO₄ and concentrated in vacuo. The crude residue was purified via flash chromatography on silica gel (1:1 hexanes:EtOAc) affording **2.36a** (255 mg, 71%) as a white foam and a ca. 1:1 mixture of E and Z oxime isomers. $R_f = 0.50$ (1:1 hexanes:EtOAc); $[\alpha]_D = -42$ (c 1.5, CHCl₃); IR (neat) 3372, 3294, 2953, 2883, 1713, 1694, 1512, 1453, 1368, 1274, 1250, 1164, 1026, 836, 744, 696; ¹H NMR (500 MHz, CDCl₃) δ 7.53 – 7.28 (m, 10.5H), 7.25 – 7.19 (m, 2H), 6.93 (d, J = 8.3 Hz, 1H), 6.91 – 6.84 (m, 0.5H), 6.02 (d, J = 8.8 Hz, 0.5H), 5.75 (d, J = 8.4 Hz, 0.5H), 5.27 (s, 2H), 5.14 (s, 2H), 4.96 (ddd, J = 22.3, 14.4, 6.0 Hz, 2H), 4.82 -4.58 (m, 3H), 4.42 (s, 1H), 4.30 (d, J = 6.4 Hz, 0.5H), 4.02 (d, J = 4.8 Hz, 0.5H), 3.76 -3.61 (m, 2H), 3.55 (dt, J = 15.0, 4.7 Hz, 2H), 3.11 - 2.62 (m, 4H), 1.77 (d, J = 5.8 Hz, 3H), 1.40 (d, J = 5.4 Hz, 9H), 0.86 (ddd, J = 9.8, 6.7, 3.1 Hz, 2H), 0.08 - -0.08 (m, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 209.89, 169.15, 166.16, 165.86, 161.09, 155.29, 149.14, 148.64, 144.67, 136.52, 135.66, 135.61, 129.64, 128.54, 128.52, 128.49, 128.37, 128.35, 127.96, 127.91, 127.81, 126.84, 119.43, 112.53, 110.57, 110.19, 90.12, 89.79, 89.74, 84.85, 84.62, 80.66, 78.18, 71.68, 70.56, 69.13, 65.94, 62.32, 51.29, 51.11, 41.78, 41.63, 35.02, 31.60, 28.25, 21.75, 21.62, 17.92, -1.43; HRMS: Exact mass calcd for $C_{45}H_{57}N_{3}O_{11}Si[(M+H^{+})]: 844.3835; found: 844.3822 (ESI).$

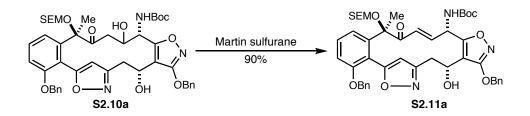


tert-butyl ((1S,5R)-5-(3-(benzyloxy)-2-ethynylphenyl)-1-(3-(benzyloxy)-4-((R)-1-hydroxy-3-(hydroxyimino)propyl)isoxazol-5-yl)-2-hydroxy-4-oxo-5-((2-(trimethyl silyl)ethoxy)methoxy)hexyl)carbamate (2.36b). To a solution of 2.35b (285 mg, 0.345 mmol, 1.00 equiv.) in 1:1:1 acetone:pH 7 phosphate buffer:THF (3.5 mL total, 0.1 M) at room temperature exposed to air, NMO (61 mg, 0.518 mmol, 1.50 equiv.) was added, followed by OsO₄ (216 μ L of a 2.5 wt% solution in *t*-BuOH, 0.05 equiv.). Upon addition of OsO₄ the reaction turned from turbid to clear and yellow. The reaction was stirred for 2.5 h at room temperature, upon which time it was cooled to 0 °C and a sat. NaHCO₃ solution (10 mL) containing 100 mg NaHSO₃ was added. The reaction was stirred for 5 minutes. The resulting mixture was diluted with H₂O (10 mL) and extracted four times with EtOAc. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo* to afford a brown foam. *R*_f = 0.12 (1:1 hexanes:EtOAc).

The brown foam was immediately dissolved in a 3:1 mixture of THF:pH 7 phosphate buffer (6.9 mL total, 0.05 M) at room temperature exposed to air, and NaIO₄ (221 mg, 1.04 mmol, 3.00 equiv.) was added in a single portion. The reaction soon became cloudy after this addition. After stirring for 1 hour at room temperature, the reaction was diluted with H₂O (10 mL), and extracted one time with CH₂Cl₂. To the remaining aqueous layer, brine was added (20 mL) and it was extracted three more times with CH₂Cl₂. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo* affording a brown foam. $R_f = 0.51$ (1:1 hexanes:EtOAc).


The brown foam was dissolved in absolute ethanol (6.9 mL, 0.05 M) at room temperature exposed to air, and pyridine (345 µL, 1.0 M wrt 2.35b) was added, followed by hydroxylamine hydrochloride (71 mg, 1.04 mmol, 3.00 equiv.). The resulting solution was stirred for 1.75 h, upon which time the reaction was cooled to 0 °C and sat. NH_4Cl (10 mL) was added. The reaction was then diluted with H₂O (10 mL) and extracted three times with Et2O. The combined organic extracts were dried with Na2SO4 and concentrated in vacuo. The resulting residue was purified via flash chromatography on silica gel (1:1 hexanes:EtOAc) affording 2.36b (221 mg, 76%) as a white foam and a ca. 2:1 mixture of E and Z oxime isomers. This compound was homogeneous by NMR and TLC, however NMR spectroscopic analysis is complicated due to three rotational isomers in addition to two oxime isomers; only peak shifts and coupling constants (¹H NMR) are tabulated. $R_f = 0.53$ (1:1 hexanes: EtOAc) $[\alpha]_D = -49$ (c 0.40, CHCl₃); IR (neat) 3370, 3292, 2950, 2894, 1711, 1694, 1575, 1510, 1452, 1368, 1274, 1251, 1164, 1018, 836, 742, 696; ¹**H** NMR (500 MHz, CDCl₃) δ 6.01 (dd, J = 35.8, 9.1 Hz), 5.69 (dd, J = 25.9, 7.4 Hz), 5.35 - 5.21 (m), 5.14 (d, J = 4.1 Hz), 5.05 (s), 4.95 (ddd, J = 23.7, 12.7, 5.8 Hz), 4.77 - 23.74.61 (m), 4.59 (s), 4.53 (s), 4.43 (s), 4.29 (s), 4.14 (s), 3.86 (d, J = 34.5 Hz), 3.77 - 3.62(m), 3.62 - 3.40 (m), 3.12 (dd, J = 47.3, 19.0 Hz), 3.02 - 2.88 (m), 2.81 (ddd, J = 31.7, 19.1, 9.6 Hz), 2.61 (dd, J = 16.3, 5.8 Hz), 1.75 (d, J = 6.2 Hz), 1.38 (d, J = 9.0 Hz), 0.85 (ddd, J = 9.5, 5.2, 1.9 Hz), 0.00 (td, J = 3.4, 2.0 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 210.13, 209.44, 169.24, 166.81, 161.00, 160.97, 155.81, 155.26, 148.89, 148.77, 148.49, 148.33, 144.97, 144.77, 136.49, 135.62, 135.57, 129.57, 129.43, 128.48, 128.46, 128.43,

128.34, 128.29, 128.26, 127.99, 127.87, 127.82, 127.76, 126.82, 126.80, 119.46, 119.25, 112.40, 112.30, 110.28, 109.97, 109.58, 109.45, 89.97, 89.67, 89.61, 84.79, 84.53, 84.46, 84.35, 80.68, 80.61, 78.09, 77.96, 71.65, 71.62, 70.46, 69.11, 67.72, 67.52, 65.89, 62.31, 62.07, 50.98, 50.74, 41.58, 41.08, 34.66, 31.86, 31.37, 28.20, 21.58, 21.38, 17.83, 17.80, -1.47, -1.49, -1.68; **HRMS**: Exact mass calcd for $C_{45}H_{57}N_3O_{11}Si$ [(M+K⁺)]: 882.3394; found: 882.3350 (ESI).


Macrocycle S2.10a. To a solution of **2.36a** (244 mg, 0.289 mmol, 1.00 equiv.) in CHCl₃ (29 mL, 0.01 M) at room temperature under argon, pyridine (70 µL, 0.867 mmol, 3 equiv.) was added via syringe, followed by NCS (41 mg, 0.303 mmol, 1.05 equiv., freshly recrystallized from benzene). The reaction was immediately sealed and heated to 60 °C for 46 h. The resulting slightly yellow solution was concentrated directly *in vacuo*. The residue was purified via flash chromatography on silica gel (2:1 hexanes:EtOAc) affording **S2.10a** (183 mg, 75%) as a white foam. NMR spectroscopic analysis is complicated due to peak broadening from slow rotation of the macrocycle; only peak shifts and coupling constants (¹H NMR) will be reported. $R_f = 0.81$ (1:1 hexanes:EtOAc); $[\alpha]_D = -108$ (*c* 1.3, CHCl₃); **IR** (neat) 3400, 2952, 1712, 1640, 1608, 1512, 1452, 1368, 1273, 1249, 1165, 1060, 1017, 860, 837; ¹H NMR (500 MHz, Acetone) δ 7.60 (bs), 7.49 (t, *J* = 8.2 Hz), 7.41 (t, *J* = 7.3 Hz), 7.37 – 7.22 (m), 7.20 (bs), 6.84 (bs), 6.34 (bs), 6.25 (bs), 5.92

(bs), 5.37 (bs), 5.09 (bs), 4.99 (bs), 4.81 – 4.00 (m), 3.73 (s), 3.42 (s), 3.10 (s), 2.92 – 2.45 (m), 2.07 (s), 1.77 (bs), 1.68 (bs), 1.40 (s), 1.10 – 0.65 (m), 0.03 (s); ¹³C NMR (126 MHz, Acetone) δ 213.09, 170.85, 169.49, 167.50, 160.92, 159.17, 158.41, 155.90, 155.27, 144.57, 137.76, 137.12, 131.92, 131.55, 129.20, 129.04, 128.60, 128.33, 127.49, 121.80, 119.89, 114.36, 113.36, 110.38, 109.66, 108.77, 91.60, 90.66, 86.12, 85.62, 79.88, 72.34, 72.03, 70.84, 66.14, 64.82, 53.06, 41.10, 32.15, 31.60, 28.37, 26.36, 23.14, 18.53, -1.32; **HRMS**: Exact mass calcd for C₄₅H₅₅N₃O₁₁Si [(M+H⁺)]: 842.3679; found: 842.3668 (ESI).

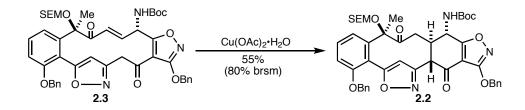
Macrocycle S2.10b. To a solution of **2.36b** (22 mg, 0.263 mmol, 1.00 equiv.) in CHCl₃ (26 mL, 0.01 M) at room temperature under argon, pyridine (64 μ L, 0.789 mmol, 3 equiv.) was added via syringe, followed by NCS (37 mg, 0.276 mmol, 1.05 equiv., freshly recrystallized from benzene). The reaction was immediately sealed and heated to 60 °C for 72 h. The resulting slightly yellow solution was concentrated directly *in vacuo*. The residue was purified via flash chromatography on silica gel (2:1 hexanes:EtOAc \rightarrow 1:1 hexanes:EtOAc) affording **S2.10b** (118 mg, 53%) as a white foam. $R_f = 0.23$ (1:1 hexanes:EtOAc); $[\alpha]_D = -59$ (*c* 0.55, CHCl₃); **IR** (neat) 3380, 2951, 2897, 1712, 1679, 1510, 1453, 1367, 1273, 1246, 1017, 859, 836; ¹H NMR (500 MHz, CDCl₃) δ 7.56 (d, *J* = 7.3 Hz, 2H), 7.46 – 7.33 (m, 5H), 7.31 – 7.21 (m, 3H), 7.16 (d, *J* = 7.9 Hz, 1H), 7.11 (d, *J* =

6.5 Hz, 1H), 6.93 (d, J = 8.4 Hz, 1H), 6.16 (bs, 1H), 5.95 (s, 1H), 5.37 (dd, J = 30.2, 11.7 Hz, 2H), 5.24 (s, 1H), 5.04 – 4.85 (m, 2H), 4.69 (s, 1H), 4.50 (dd, J = 49.2, 7.7 Hz, 2H), 4.10 (s, 1H), 3.69 (dd, J = 17.4, 9.2 Hz, 2H), 3.40 (dd, J = 17.1, 8.8 Hz, 1H), 3.04 (s, 1H), 2.47 (d, J = 8.4 Hz, 1H), 2.24 (s, 1H), 1.70 (s, 3H), 1.35 (s, 9H), 0.93 – 0.69 (m, 2H), 0.03 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 215.13, 169.11, 166.84, 166.56, 159.18, 158.37, 156.93, 142.46, 136.74, 136.19, 131.05, 128.77, 128.61, 128.58, 128.52, 127.86, 126.59, 121.13, 118.08, 113.38, 108.60, 107.14, 90.75, 85.58, 81.20, 72.12, 70.35, 69.52, 65.87, 65.35, 55.06, 40.97, 32.33, 28.44, 23.60, 18.41, -1.16; HRMS: Exact mass calcd for C₄₅H₅₅N₃O₁₁Si [(M+H⁺)]: 842.3679; found: 842.3673 (ESI).

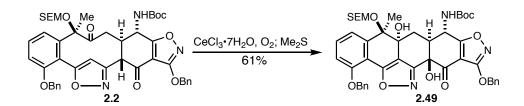
Macrocyclic-enone S2.11a. To **S2.10a** (175 mg, 0.208 mmol, 1.00 equiv.) in CH_2Cl_2 (6.9 mL, 0.03 M) at -78 °C under an atmosphere of nitrogen, the Martin sulfurane¹¹³ (6.1 mL of a 0.054 M solution in CH_2Cl_2 , 1.6 equiv.) at room temperature was added along the side of the flask over 1 minute. The resulting pale yellow solution was stirred at -78 °C for 12 minutes, upon which time it was warmed to -55 °C. The reaction was held at this temperature for 45 minutes, during which time the reaction became bright yellow. The

¹¹³ Arhart, R. J.; Martin, J. C. J. Am. Chem. Soc. 1972, 94, 5003-5010.

reaction was guenched via the addition of sat. NaHCO₃ (10 mL), warmed to room temperature while stirring vigorously, and extracted with three times with CH₂Cl₂. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. The crude residue was purified via flash chromatography (3:1 hexanes:EtOAc) affording **S2.11a** (155 mg, 90%) as a colorless oil. $R_f = 0.42$ (2:1 hexanes:EtOAc); $[\alpha]_D = -97$ (c 0.80, CHCl₃); **IR** (neat) 3360, 2953, 1712, 1511, 1452, 1367, 1272, 1250, 1166, 1016, 744, 695; ¹**H** NMR (500 MHz, DMSO) δ 7.86 (bs, 1H), 7.76 – 7.65 (m, 2H), 7.62 – 7.43 (m, 5H), 7.43 - 7.32 (m, 2H), 7.32 - 7.12 (m, 4H), 6.87 (bs, 1H), 6.55 (bs, 1H), 6.32 (bs, 1H), 5.61 (bs, 1H), 5.43 (s, 1H), 5.34 (q, J = 12.4 Hz, 2H), 5.18 – 4.96 (m, 2H), 4.84 (bs, 1H), 4.73 (bs, 1H), 4.58 (bs, 1H), 3.61 (d, J = 5.4 Hz, 1H), 3.46 – 3.30 (m, 2H), 2.98 (bs, 1H), 1.63 (s, 3H), 1.37 (s, 9H), 0.94 - 0.57 (m, 2H), -0.04 (s, 9H); ¹³C NMR (126 MHz, DMSO) & 200.43, 166.52, 164.89, 158.26, 157.54, 154.34, 145.88, 142.56, 139.92, 136.73, 136.19, 131.05, 130.68, 129.46, 128.37, 128.28, 128.21, 128.05, 127.55, 126.64, 124.06, 120.45, 117.26, 113.47, 109.61, 106.97, 89.74, 83.67, 78.81, 70.88, 69.32, 64.87, 61.84, 49.21, 31.70, 28.05, 22.36, 17.48, -1.41; HRMS: Exact mass calcd for $C_{45}H_{53}N_{3}O_{10}Si[(M+H^{+})]: 824.3573; found: 824.3582 (ESI).$


Macrocyclic-enone S2.11b. To **S2.10b** (55 mg, 0.065 mmol, 1.00 equiv.) in CH₂Cl₂ (2.2 mL, 0.03 M) at -78 °C under an atmosphere of nitrogen, the Martin sulfurane¹¹⁴ (2.2 mL of a 0.053 M solution in CH₂Cl₂, 1.8 equiv.) at room temperature was added along the side of the flask over 2 minutes during which time the internal temperature was kept less than -68 °C. The resulting pale yellow solution was stirred at -78 °C for 15 minutes, upon which time it was warmed to -55 °C. The reaction was held at this temperature for 30 minutes, during which time the reaction became bright yellow. The reaction was then allowed to warm to -40 °C over 30 additional minutes, and to 0 °C over 1 hour. The reaction was quenched via the addition of sat. NaHCO₃ (5 mL), warmed to room temperature was purified via flash chromatography (3:1 hexanes:EtOAc) affording **S2.11b** (18 mg, 33%) as a colorless oil in addition to **S2.10b** (26 mg, 47%). The spectroscopic data for **S2.10b** matched the data for the previous dehydration reaction employing **S2.10a** as substrate.

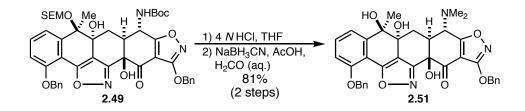
¹¹⁴ Arhart, R. J.; Martin, J. C. J. Am. Chem. Soc. 1972, 94, 5003-5010.



Macrocyclic-enone 2.3. To a solution of 2.3 (155 mg, 0.188 mmol, 1.00 equiv.) in wet CH₂Cl₂ (6.3 mL, 0.03 M), NaHCO₃ (240 mg, 2.86 mmol, 15.2 equiv.) was added, followed by DMP (120 mg, 0.282 mmol, 1.50 equiv.) in a single portion. The reaction was stirred for 35 minutes, upon which time more DMP (25 mg, 0.0589 mmol, 0.313 equiv.) was added. The reaction was stirred for 25 additional minutes, upon which time the reaction was poured into an Erlenmeyer flask containing sat. NaHCO₃ (20 mL) and Na₂S₂O₃ (190 mg). The original reaction flask was washed liberally with hexanes and these washings were poured into the vigorously mixing solution. After 10 minutes, the mixture was poured into a sep, funnel, the organic layer was removed, and the remaining aqueous layer was extracted two times more with hexanes. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. The crude residue was purified via flash chromatography on silica gel (4:1 hexanes: EtOAc) affording 2.3 (129 mg, 83%) as a colorless oil. $R_f = 0.73$ (2:1 hexanes: EtOAc); $[\alpha]_D = -93$ (c 0.40, CHCl₃); IR (neat) 1393, 2956, 1717, 1596, 1504, 1453, 1368, 1272, 1164, 1013, 837, 744, 696; ¹H NMR (500 MHz, DMSO) δ 7.91 (d, J = 6.4 Hz, 1H), 7.62 – 7.54 (m, 2H), 7.50 (t, J = 8.2 Hz, 2H), 7.42 (m, 2H), 7.35 - 7.28 (m, 3H), 7.28 - 7.21 (m, 4H), 6.65 (d, J = 15.5 Hz, 1H), 6.41 - 6.29 (m, 1H), 6.27 (s, 1H), 5.74 (t, J = 8.5 Hz, 1H), 5.43 (q, J = 11.9 Hz, 2H), 5.10 (dd, J = 29.8, 12.7 Hz, 2H), 4.57 (dd, J = 34.4, 6.5 Hz, 2H), 4.32 (d, J = 11.3 Hz, 1H), 3.83 (d, J = 11.5 Hz, 1H), 3.60 (td, J = 10.1, 6.3 Hz, 1H), 3.40 (dt, J = 16.0, 8.0 Hz, 1H), 1.60 (s, 3H), 1.39 (s, 9H), 0.88 – 0.65 (m, 2H), -0.03 (s, 9H); ¹³C NMR (126 MHz, DMSO) δ 199.46, 189.30,

175.36, 168.00, 166.41, 157.51, 155.49, 154.59, 151.37, 142.48, 137.95, 136.65, 135.32, 131.02, 128.51, 128.29, 128.03, 127.62, 126.78, 123.79, 120.86, 116.34, 113.57, 107.93, 107.78, 89.60, 83.85, 79.21, 72.15, 69.49, 65.01, 50.37, 38.65, 28.00, 22.10, 17.53, -1.46; **HRMS**: Exact mass calcd for C₄₅H₅₁N₃O₁₀Si [(M+H⁺)]: 822.3417; found: 822.3421 (ESI).

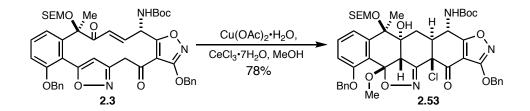
Transannular Michael product 2.2. To **2.3** (29 mg, 0.035 mmol, 1.0 equiv.) in degassed methanol (3.5 mL, 0.01 M) at room temperature under an atmosphere of argon, Cu(OAc)-²•H₂O (21 mg, 0.105 mmol, 3.00 equiv.) was added in a single portion. The reaction was immediately sealed and placed in a cooling bath at 0 °C for 65 h. The reaction was quenched with sat. NH₄Cl (5 mL), diluted with H₂O (5 mL), and extracted three times with CH₂Cl₂. The combined organics were dried with Na₂SO₄ and concentrated *in vacuo*. The crude residue was purified via flash chromatography on silica gel (3:1 hexanes:EtOAc) \rightarrow 2:1 hexanes:EtOAc) affording **2.2** (16 mg, 55%) as a colorless oil. Additionally, **2.3** (9.0 mg, 31%) was recovered. *R*_{*f*}(**28**) = 0.33 (2:1 hexanes:EtOAc); [α]_D = -152 (*c* 0.50, CHCl₃); **IR** (neat) 3335, 2954, 2893, 2470, 2361, 1705, 1619, 1514, 1482, 1454, 1409, 1369, 1250, 1166, 1052, 1015, 860, 835; ¹H NMR (500 MHz, Benzene) δ 7.43 (d, *J* = 7.2 Hz, 2H), 7.27 (d, *J* = 7.2 Hz, 1H), 7.11 (t, *J* = 7.5 Hz, 2H), 7.07 – 7.00 (m, 2H), 6.97 (dd, *J* = 15.5, 8.1 Hz, 2H), 6.93 – 6.86 (m, 4H), 6.59 (dd, *J* = 7.4, 1.7 Hz, 1H), 5.28 (dd, *J* = 25.3, 12.1 Hz, 2H), 4.79 (t, *J* = 15 Hz, 1H), 4.72 (d, *J* = 8.4 Hz, 2H), 4.55 (d, *J* = 7.4 Hz, 1H), 4.34 (d, J = 7.4 Hz, 1H), 3.96 (d, J = 10.4 Hz, 1H), 3.76 – 3.65 (m, 1H), 3.40 – 3.27 (m, 2H), 2.72 (d, J = 11.5 Hz, 1H), 2.59 (dd, J = 22.3, 11.2 Hz, 1H), 2.23 (d, J = 16.6 Hz, 1H), 1.46 (s, 3H), 1.39 (s, 9H), 0.94 – 0.79 (m, 2H), 0.03 (s, 9H); ¹³C NMR (126 MHz, C₆D₆) δ 202.63, 183.06, 179.03, 170.47, 168.24, 159.77, 158.02, 156.14, 144.91, 136.76, 135.87, 130.77, 128.81, 128.70, 128.69, 128.59, 127.47, 127.11, 121.73, 118.45, 113.88, 111.49, 108.38, 90.25, 85.25, 80.19, 72.27, 70.93, 65.84, 54.04, 49.59, 49.13, 35.98, 28.18, 24.21, 18.25, -1.29; ¹H NMR (600 MHz, *d*6-acetone) δ 7.57 – 7.53 (m, 2H), 7.51 (t, J = 8.2 Hz, 2H), 7.47 (d, J = 7.6 Hz, 2H), 7.44 – 7.40 (m, 2H), 7.40 – 7.34 (m, 3H), 7.33 – 7.27 (m, 2H), 7.25 (s, 1H), 6.79 (d, J = 9.6 Hz, 1H), 5.42 – 5.33 (m, 2H), 5.27 (q, J = 12.2 Hz, 2H), 5.20 (t, J = 10.4 Hz, 1H), 4.74 (dd, J = 23.6, 7.3 Hz, 2H), 4.38 (d, J = 11.5 Hz, 1H), 3.85 (dd, J = 17.0, 11.0 Hz, 1H), 3.72 (td, J = 9.9, 6.3 Hz, 1H), 3.44 (td, J = 10.0, 6.3 Hz, 1H), 2.90 (q, J = 11.4 Hz, 1H), 2.33 (d, J = 16.9 Hz, 1H), 1.64 (s, 3H), 1.46 (s, 9H), 0.96 – 0.69 (m, 2H), -0.01 (s, 9H); HRMS: Exact mass calcd for C₄₅H₅₁N₃O₁₀Si [(M+H⁺)]: 822.3417; found: 822.3402 (ESI).



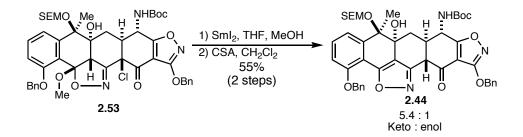
Linear pentacycle 2.49. To **2.2** (16 mg, 0.0195 mmol, 1.0 equiv.) at room temperature in isopropanol (1.9 mL, 0.01 M), O_2 (from a balloon) was bubbled through the solution for 10 minutes. Next, CeCl₃•7H₂O (3.6 mg, 9.8 µmol, 0.50 equiv.) was added to the solution and the reaction was stirred vigorously while O_2 was continuously bubbled through the

solution (a 21 gauge needle that was slightly blocked to reduce flow was used as an outlet). The reaction was stirred for 1 hour, during which time the solution became slightly yellow. Next, the reaction was immediately transferred to a silica gel column preequilibrated with EtOAc, and the reaction was passed through the column with 25 mL of EtOAc. The resulting solution was concentrated *in vacuo*.

The crude mixture was immediately dissolved in CH_2Cl_2 (1.9 mL, 0.01 M) at room temperature under an atmosphere of nitrogen, and dimethyl sulfide (8.0 μ L, 0.16 mmol, 8.0 equiv) was added directly into the solution. The resulting clear solution was stirred at room temperature for 15 minutes, upon which time the reaction was concentrated directly *in vacuo*. The crude material was purified via column chromatography on silica gel (2:1 hexanes:EtOAc), and further purified via preparatory HPLC (1.8% i-PrOH/hexanes), affording 2.49 (10 mg, 61%) as a white solid. $R_f = 0.33$ (2:1 hexanes: EtOAc); $[\alpha]_{D} = -38$ (c 0.34, CHCl₃); **IR** (neat) 3481, 3264, 2951, 2893, 1692, 1619, 1514, 1454, 1368, 1275, 1248, 1157, 1018, 836; ¹H NMR (600 MHz, d6-acetone) δ 7.64 (d, J = 7.9 Hz, 2H), 7.54 (d, J = 7.7 Hz, 2H), 7.46 - 7.39 (m, 5H), 7.37 (t, J = 8.2 Hz, 7.46 Hz)2H), 7.33 (t, J = 7.4 Hz, 1H), 7.29 (d, J = 8.4 Hz, 1H), 6.88 (d, J = 8.6 Hz, 1H), 6.04 (s, 1H), 5.45 - 5.27 (m, 5H), 4.41 (s, 1H), 4.34 (d, J = 7.3 Hz, 1H), 4.27 (d, J = 7.3 Hz, 1H), 3.48 - 3.39 (m, 1H), 3.13 (dt, J = 15.9, 8.0 Hz, 2H), 2.64 (t, J = 12.8 Hz, 1H), 2.17 (dd, J= 13.1, 2.0 Hz, 1H), 1.82 (s, 3H), 1.51 (s, 9H), 0.79 - 0.64 (m, 2H), -0.05 (s, 9H); ¹³C NMR (126 MHz, THF) δ 185.64, 181.84, 169.48, 163.34, 159.49, 156.77, 155.77, 141.88, 138.25, 137.04, 130.72, 129.19, 129.11, 128.91, 128.77, 128.29, 127.54, 122.54, 118.31, 115.95, 114.33, 105.88, 90.59, 81.73, 79.54, 75.32, 72.39, 70.97, 68.95, 67.93,


65.43, 48.49, 28.65, 25.81, 18.63, 16.55, -1.19; **HRMS**: Exact mass calcd for $C_{45}H_{51}N_3O_{11}Si[(M+H^+)]$: 838.3366; found: 838.3377 (ESI).

Tertiary amine 2.51. To a solution of 2.49 (6.5 mg, 7.8 μ mol, 1.0 equiv.) in THF (1.5 mL, 0.0052 M) at room temperature exposed to air, 4 *N* HCl (1.5 mL, 0.0052 M) was added rapidly. The reaction was then sealed and stirred for 20 h at room temperature. The resulting solution was neutralized via the addition of sat. NaHCO₃ (10 mL, caution, gas evolution) and extracted three times with EtOAc. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*.


The crude material was immediately dissolved in acetonitrile (1.5 mL, 0.0052 M) at room temperature exposed to air, and H₂CO (0.75 mL of a 37% aq. Solution) was added. Next, acetic acid (2.0 μ L, 0.039 mmol, 5.0 equiv.) was added, followed by NaBH₃CN (2.5 mg, 0.039 mmol, 5.0 equiv.), and the reaction was stirred at room temperature for 15 minutes. The reaction was quenched via the addition of sat. NaHCO₃ (5 mL) and extracted three times with EtOAc. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. The crude residue was first purified via flash chromatography (2:1 EtOAc:hexanes), and further purified via preparatory HPLC (5% *i*-PrOH/hexanes), affording **2.51** (4.0 mg, 81%, 2) as a white solid over two steps. $R_f = 0.46$

(2:1 EtOAc:hexanes); $[\alpha]_D = -41$ (*c* 0.31, CHCl₃); **IR** (neat) 3379, 2934, 2803, 1712, 1652, 1602, 1574, 1513, 1474, 1454, 1372, 1274, 1026, 987, 911, 859; ¹H NMR (500 MHz, THF) δ 7.63 – 7.57 (m, 2H), 7.53 – 7.47 (m, 2H), 7.40 – 7.33 (m, 3H), 7.33 – 7.22 (m, 4H), 7.10 (dd, J = 7.3, 2.0 Hz, 2H), 6.15 (d, J = 1.3 Hz, 1H), 5.42 – 5.20 (m, 4H), 4.28 (s, 1H), 4.21 (d, J = 10.2 Hz, 1H), 4.17 (s, 1H), 3.00 (td, J = 9.3, 5.4 Hz, 1H), 2.57 (s, 6H), 2.44 – 2.38 (m, 2H), 1.69 (s, 3H); ¹³C NMR (126 MHz, THF) δ 186.19, 184.80, 169.41, 163.29, 159.99, 155.51, 146.82, 138.42, 137.05, 131.25, 129.17, 129.13, 128.93, 128.79, 128.24, 127.56, 120.38, 118.08, 115.43, 113.45, 107.42, 75.95, 75.44, 72.48, 70.90, 69.40, 67.93, 61.17, 44.93, 28.08, 25.81, 20.07; HRMS: Exact mass calcd for C₃₆H₃₃N₃O₈ [(M+H⁺)]: 636.2340; found: 636.2336 (ESI).

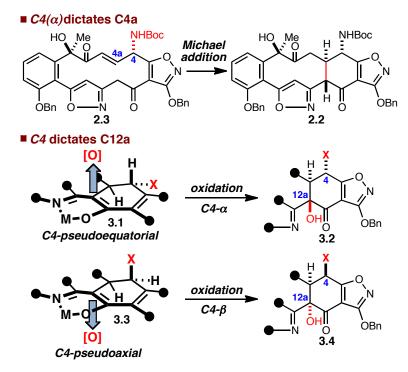
C12a-Chloride 2.53. To a solution of 2.3 (56 mg, 68 μ mol, 1.0 equiv.) in degassed methanol (3.4 mL, 0.020 M) at room temperature under an atmosphere of argon, Cu(OAc)₂•H₂O (34 mg, 0.17 mmol, 2.5 equiv.) was added, followed by CeCl₃•7H₂O (127 mg, 0.34 mmol, 5.0 equiv.). Following addition of CeCl₃•7H₂O, the color of the reaction changed from blue to slightly yellow. The reaction was stirred under an atmosphere of argon for 22 h during which time the color of the reaction became progressively more green. The reaction was poured into a 125 mL Erlenmeyer flask containing sat. NaHCO₃ (20 mL), and the biphasic mixture was stirred vigorously for 5 minutes. The mixture was

then transferred to a separatory funnel and extracted three times with CH₂Cl₂. The combined organic extracts were washed one time with brine, dried with Na₂SO₄, and concentrated in vacuo. The resulting residue was purified via flash chromatography (2:1 hexanes: EtOAc), affording 2.53 (47 mg, 78%) as a colorless oil. $R_f = 0.36$ (2:1 hexanes:EtOAc); $[\alpha]_{D} = -45$ (c 0.31, CHCl₃); **IR** (neat) 3362, 2953, 1717, 1615, 1580, 1516, 1479, 1455, 1370, 1290, 1250, 1162, 1073, 1022, 861, 836; ¹H NMR (600 MHz, CDCl₃) δ 7.58 (d, J = 7.6 Hz, 2H), 7.50 (d, J = 7.5 Hz, 2H), 7.43 – 7.28 (m, 7H), 7.20 (d, J = 7.9 Hz, 1H), 7.09 (d, J = 8.3 Hz, 1H), 5.37 (g, 2H), 5.16 (g, J = 11.7 Hz, 2H), 4.93 (d, J =9.9 Hz, 1H), 4.60 - 4.49 (m, 2H), 4.37 (s, 1H), 3.65 (td, J = 10.4, 5.7 Hz, 1H), 3.34 (s, 3H), 3.14 (s, 1H), 2.37 (t, J = 12.7 Hz, 1H), 2.28 – 2.14 (m, 1H), 1.72 (s, 3H), 1.64 – 1.44 (m, 9H), 0.87 - 0.70 (m, 2H), -0.08 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 178.50, 177.84, 168.89, 159.09, 155.62, 137.06, 136.45, 135.14, 130.98, 128.76, 128.70, 128.67, 121.52, 120.86, 115.17, 105.56, 90.83, 81.59, 78.23, 77.50, 77.45, 77.24, 76.99, 76.78, 76.55, 72.45, 70.86, 67.99, 65.64, 54.99, 51.52, 49.50, 48.45, 29.14, 28.46, 18.26, 17.73, -1.20; **HRMS**: Exact mass calcd for $[(M+H^+)]$: 888.3289; found: 888.3277 (ESI).

Keto/Enol 2.44. To a solution of SmI_2 (2.1 mL of a 0.10 M solution in THF, 0.21 mmol, 10 equiv.) at -78 °C under an atmosphere of argon, **2.53** (19 mg, 0.0214 mmol, 1.00

equiv.) in a degassed 1:1 mixture of THF and methanol (1.5 mL each, 0.0071 M total) at room temperature was added rapidly via cannula. The resulting blue/green solution was stirred at -78 °C for 40 minutes, upon which time air was blown through the solution until a yellow color persisted. Next, a solution of sat. Na₂S₂O₃ (5 mL) was added and the reaction was warmed to room temperature while stirring vigorously. The solution was poured into a separatory funnel, diluted with water (5 mL) and extracted three times with CH₂Cl₂. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. The crude residue was purified via flash chromatography (2:1 hexanes:EtOAc), affording des-Cl-**2.53** (12 mg, 78%) as a colorless oil.

To a solution of des-Cl-**2.53** (8.0 mg, 0.0094 mmol, 1.0 equiv.) in CH₂Cl₂ (1.8 mL, 0.0050 M) at room temperature exposed to air, CSA (2.2 mg, 0.0094 mmol, 1.0 equiv.) was added in a single portion. The reaction was stirred at room temperature for 1.5 h, upon which time the reaction was quenched via addition of pH 7 phosphate buffer (5 mL), and extracted three times with CH₂Cl₂. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. The crude residue was purified via flash chromatography (1:1 hexanes:EtOAc), affording **2.44** (6.4 mg, 83%) as a colorless oil. Yield for the two steps: 55%. $R_f = 0.23$ (2:1 hexanes:EtOAc); $[\alpha]_D = -57$ (*c* 0.45, CHCl₃); **IR** (neat) 3392, 2952, 1714, 1652, 1614, 1573, 1506, 1480, 1454, 1368, 1247, 1165, 1059, 1016, 836; ¹H NMR (500 MHz, CDCl₃) δ 7.56 (d, *J* = 7.6 Hz, 2H), 7.43 (d, *J* = 7.6 Hz, 2H), 7.15 (s, 7H), 6.92 (t, *J* = 8.1 Hz, 1H), 6.66 (d, *J* = 8.4 Hz, 1H), 5.24 (s, 1H), 4.99 – 4.80 (m, 2H), 4.36 (d, *J* = 7.5 Hz, 1H), 4.19 (d, *J* = 7.4 Hz, 1H), 4.06 (d, *J* = 10.1 Hz, 1H), 3.58 – 3.48 (m, 1H), 3.24 – 3.12 (m, 1H), 2.95 (d, *J* = 12.3 Hz, 1H), 2.60 – 2.43 (m, 1H), 2.21 (d, *J* = 3.9 Hz, 1H), 1.75 (s, 3H), 1.44 (s, 9H), 0.81 (ddd, *J* = 10.1, 6.4, 3.3 Hz,


2H), 0.01 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 182.57, 179.54, 168.03, 162.88, 155.71, 155.14, 154.85, 140.25, 136.84, 135.77, 130.18, 128.86, 128.81, 128.74, 128.59, 128.55, 128.51, 128.49, 128.43, 128.41, 128.20, 128.09, 128.00, 127.90, 127.81, 127.71, 127.51, 127.40, 127.24, 126.96, 121.98, 116.96, 115.31, 114.02, 108.13, 90.14, 80.90, 79.93, 72.04, 70.55, 68.75, 65.15, 50.92, 49.31, 42.57, 31.35, 28.32, 28.16, 18.11, 16.27, -1.38, -1.44; HRMS: Exact mass calcd for [(M+Na⁺)]: 844.3236; found: 844.3230 (ESI).

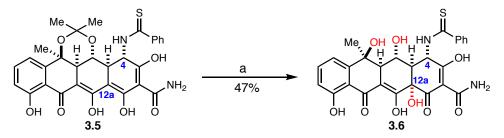
Chapter 3

Synthesis of the Second Generation Macrocycle

I. Revision of the Synthesis Plan

The established requirement for the C- and B-rings of the tetracycline core to be intact prior to C12a-hydroxylation forced us to reassess our overall synthesis plan. Of particular importance to any new strategy was the incorporation of our validated Michael reaction while also allowing for flexibility later in the route to tackle hydroxylation. At this point, we knew that the C4-stereocenter was appropriate to facilitate construction of the C4a-stereocenter via a Michael addition (**2.3** to **2.2**, Scheme 3.1). Additionally, we knew that this same C4-stereocenter directs C12a-hydroxylation to the incorrect face, producing an epimeric C12a-tertiary carbinol (**3.1** to **3.2**). Therefore, in order to proceed with the synthesis we needed to identify an appropriate substrate for successful C12a-oxidation, and engineer it into our synthesis plan.

Scheme 3.1 Stereochemical relationships for the Michael- and C12a-hydroxylation reactions.


Literature reports of both successful and unsuccessful C12a-oxidations, while at times contradictory or ambiguous, generally hinted at the requirement for the C4-substituent to be pseudoaxial, meaning it must be of opposite stereochemistry to that of tetracycline (**3.3** to **3.4**).^{42-44,115} This was unfortunate, since selective inversion of an amino-stereocenter is not a trivial task, especially on a highly functionalized substrate.¹¹⁶ Further, epimerization at C4 following the transannular Michael addition was not an option at this point since the NHBoc group resides in the thermodynamically favored pseudoequatorial position. An additional concern was that not all C12a-oxidations fit the

 ¹¹⁵ (a) Holmlund, C. E.; Andres, W. W.; Shay, A. J. J. Am. Chem. Soc. 1959, 81, 4748-4749. (b) Muxfelt, H.; Kreutzer, A. Naturwissenschaften 1959, 46, 204-205. (c) Muxfeldt, H.; Buhr, G.; Banger, R. Angew. Chem. Int. Ed. 1962, 3, 157. (d) Gurevich, A. I.; Karapetyan, M. G.; Kolosov, M. N. Khim. Prirodn. Soedin. 1966, 2, 141-142.

¹¹⁶ (a) Sørbye, K.; Tautermann, C.; Carlsen, P.; Fiksdahl, A. *Tet. Asymm.* **1998**, *9*, 681-689. (b) Said, S. A.; Fiksdahl, A. *Tet. Asymm.* **2001**, *12*, 1947-1951.

model, since the reaction performed by Muxfeldt and co-workers in the synthesis of (\pm) -terramycin seems to counter the idea that an axial C4-substituent directs oxidation to the opposite face (Scheme 3.2).

Scheme 3.2 Oxidation of the C12a-position executed by Muxfeldt and co-workers⁴⁴

Reagents and conditions: (a) O₂, NaH, P(OEt)₃, THF, DMF, H₂O, rt; 0.01 N HCI/MeOH; 47%.

II. The Development of a Predictive Tool

While the general model for C12a-oxidation depicted in Scheme 3.1 stands to chemical intuition, given the Muxfeldt case, we felt that more insight was needed in order to completely justify route revision. Unfortunately transition state calculations were considered unfeasible since the computational study of reactions involving lanthanides is sufficiently complicated,¹¹⁷ and the mechanism of cerium-catalyzed hydroxylation has not been studied in detail. Thus, we considered a simplified alternative involving the hypothetical chlorination of an enolate at C12a (Figure 3.1).¹¹⁸ While we were not interested in obtaining a barrier height for this reaction (indeed, this reaction would presumably proceed

¹¹⁷ Eisenstein, O.; Maron, L. J. Organomet. Chem. 2002, 647, 190-197.

¹¹⁸ Cl_2 was chosen as the electrophile since it represents the smallest molecule capable of reacting with an enolate other than F_2 . Due to the small nature of Cl_2 , we were hopeful that it would lend greater insight into the reactivity profile of the substrate without any major contribution from the electrophile (this would not be the case with larger electrophiles such as NCS). F_2 was not chosen since it was possible that this molecule would give anomalous results due to the exceedingly high electronegativity. Later halogens such as Br_2 were not chosen simply to reduce the computational cost associated with this tool.

without barrier), we were interested in obtaining an energy profile as the C12a position changes hybridization from sp^2 to sp^3 . Importantly, since data regarding the selectivity of hydroxylation at C12a is available, the results of this tool could be compared with actual examples therefore establishing whether the output is meaningful. Lastly, this tool is meant to give a binary sense of selectivity, no quantification was considered possible despite the energy values gathered from the computational data.

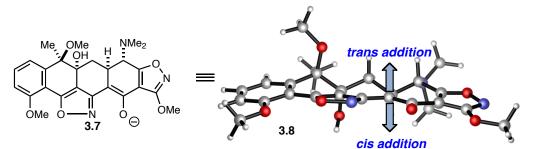
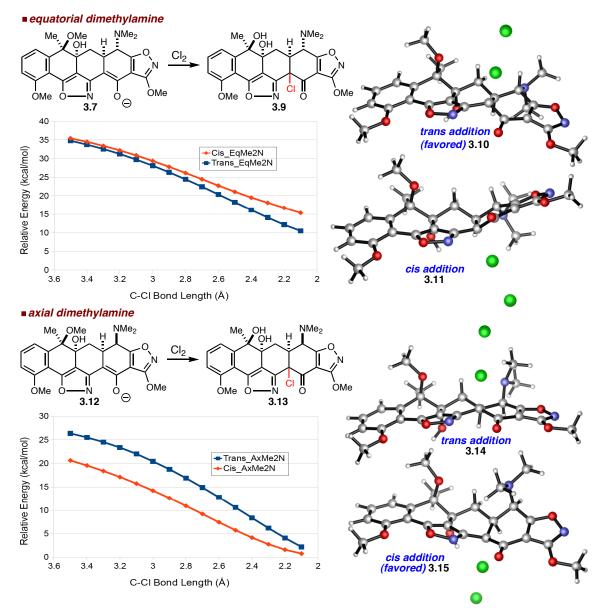



Figure 3.1 The hypothetical reaction of an electrophile with enolate 3.7 should yield insight into substrate biases.

Enolates **3.7** and **3.12** were initially optimized via DFT in the absence of Cl_2 (Figure 3.2). In parallel subsequent computational experiments, Cl_2 was forced via distance restriction to approach the enolate to form either a *cis* or *trans* C12a-chloride. The energy profile of each intermediate distance (0.1 Å iterations from a C-Cl bond-length of 3.5 - 2.1 Å) was plotted, and the two approaches to the enolate face were compared.

Initially the C12a-chlorination of both the equatorial and axial dimethylamine enolates were computed as we tried to determine whether the dimethylamine moiety is the major determinant of C12a-hydroxylation diastereoselectivity. As the data in Figure 3.2 reveals, the C4-dimethylamine does control facial selectivity, as evidenced by the fact that the trajectory of Cl_2 is lower in energy at all points for the *trans* addition with an equatorial amine, versus the preference for *cis* addition in the presence of an axial amine.

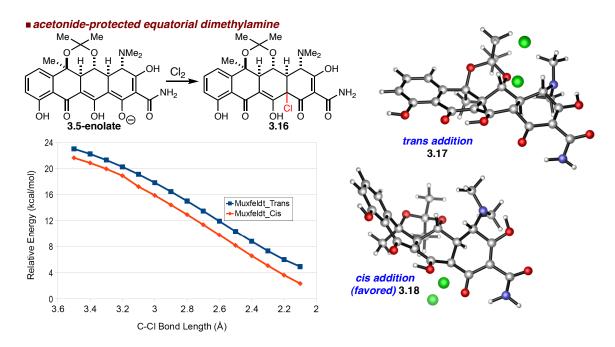


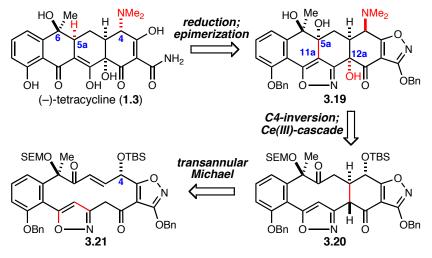
Figure 3.2 Computational analysis of C12a-chlorination reveals substrate stereochemical biases. Green spheres are chlorine atoms approaching the enolate. Each structure represents enolate chlorination with a C-Cl distance of 2.1 Å.¹¹⁹ The chloride counterion has been purposefully omitted in the reaction equations to simplify the figure.

¹¹⁹ The B3LYP hybrid functional with the 6-31G* basis set was used. M. J. Frisch.; *et al.* Gaussian, Inc., Pittsburgh, PA, 2006.

With computational data in support of the model proposed in Scheme 3.1, we next looked at the Muxfeldt example while employing the same enolate chlorination analysis (Figure 3.3). In this case, the data revealed that chlorination to form a *cis* ring fusion was favored, in agreement with the experimental result of enolate hydroxylation. Importantly, energy minimized structures with a C-Cl bond distance of 2.1 Å provide an explanation for the seeming defiance of the model. Due to the acetonide protecting the C5- and C6-hydroxyl functions, the molecule is geared in such a way that oxidation at C12a would proceed with a significant energetic penalty (**3.17**). Alternatively, reaction to form a *cis* ring fusion enables bond formation to occur from the convex face of the structure (**3.18**). With the data from these computational experiments coupled with chemical intuition, we felt confident that the relationship between the C4-substituent and oxidation at C12a was understood. Therefore, attention returned to the incorporation of this information into our larger synthesis plan.¹²⁰

¹²⁰ A reasonable criticism is that the computational experiments are quite removed from actual experimental conditions, thus reducing their overall utility. However, at the time we were quite confounded by the C12a-hydroxylation dilemma considering the Muxfeldt case in comparison to the other literature examples. While in retrospect simple molecular modeling may have been sufficient, the results of these com-

Figure 3.3 Computational analysis of C12a-chlorination as it applies to the Muxfeldt case.⁴⁴ Green spheres are chlorine atoms approaching the enolate. Each structure represents enolate chlorination with a C-Cl distance of 2.1 Å.¹²¹ The chloride counterion has been purposefully omitted in the reaction equations to simplify the figure.

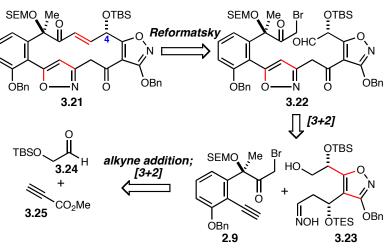

III. Synthesis Plan

Following our studies of C12a-oxidation, we decided it would be best to introduce a readily modifiable substituent at C4, such that a late-stage stereochemical inversion at this position may be performed (Scheme 3.3). Substitution of the C4-NHBoc group with a silyl-protected alcohol (**3.21**) was therefore proposed since this should maintain the stereochemical relationship between C4 and C4a during the Michael addition, while also providing the flexibility that we would need to intercept a competent substrate for hydroxylation. When activated, the hydroxyl function may be stereospecifically displaced with a

putations assuaged our concerns significantly. Any ability to become more certain about a transformation that requires a significant time commitment to even test was welcomed at this juncture.

nucleophilic nitrogen source, such as dimethylamine or azide, producing the requisite inverted C4 stereocenter. Hydroxylation should then proceed to form **3.19**. Lastly, a late-stage epimerization⁴² of the labile C4-stereocenter and hydrogenation should yield tetracycline.

Scheme 3.3 Revised synthesis plan to tetracycline employing the late-stage installation of a C4-dimethylamine with stereochemical inversion.


IV. Synthesis of a C4-Oxygenated Macrocycle

An alternative reaction sequence to that used for the synthesis of macrocycle **2.3** was proposed for the oxygenated macrocycle **3.21**. This decision was based primarily on reasons of practicality, since the previous route to macrocycle **2.3** required the isolation and individual throughput of secondary carbinol diastereomers following Reformatsky coupling. To obviate this requirement, we proposed the use of an intermolecular nitrile-oxide cycloaddition to couple fragments **2.9** and **3.23**. This would be followed by a Re-

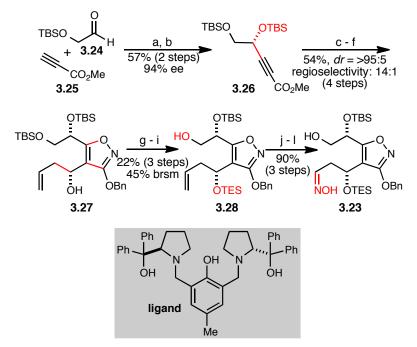
¹²¹ The B3LYP hybrid functional with the 6-31G* basis set was used. M. J. Frisch.; *et al.* Gaussian, Inc., Pittsburgh, PA, 2006.

formatsky macrocyclization¹²² to produce a mixture of aldol adducts which could be dehydrated immediately. Fragment **3.23** would be synthesized in a largely analogous manner to that of fragment **2.23**, with the exception being an asymmetric acetylide addition used to set the C4-stereocenter.

Scheme 3.4 Synthesis plan to C4-oxygenated macrocycle 3.21.

The synthesis of oxime **3.23** commenced via the asymmetric zinc acetylide addition to known aldehyde **3.24** in good yield and excellent enantioselectivity.^{123,124,125} Noteably, this reaction fails if both aldehyde **3.24** and methyl propiolate **3.25** are added at

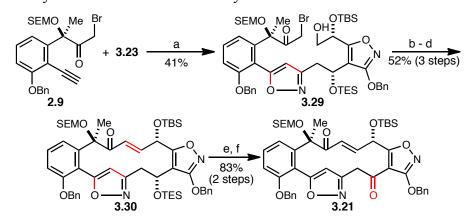
 ¹²² (a) Vedejs, E.; Duncan, S. M. J. Org. Chem. 2000, 65, 6073-6081. (b) Hong, Z.; Xu, X. Tet. Lett. 2003, 44, 489-491. (c) Nagamitsu, T.; Takano, D.; Fukuda, T.; Otoguro, K.; Kuwajima, I.; Harigaya, Y.; Omura, S. Org. Lett. 2004, 6, 1865-1867. (d) Nagamitsu, T.; Takano, D.; Marumoto, K.; Fukuda, T.; Furuya, K.; Otoguro, K.; Takeda, K.; Kuwajima, I.; Harigaya, Y.; Omura, S. J. Org. Chem. 2007, 72, 2744-2756.


¹²³ (a) Trost, B. M.; Weiss, A. H.; von Wangelin, A. J. J. Am. Chem. Soc. 2006, 128, 8-9. (b) Trost, B. M.; Weiss, A. H. Org. Lett. 2006, 8, 4461-4464.

¹²⁴ The TES-protected derivative of aldehyde 3.24 is an equally competent coupling partner in this reaction, and would have resulted in a more efficient fragment synthesis overall. Unfortunately, we could not TBS-protect the secondary carbinol at C4 without silyl scrambling.

¹²⁵ Use of Carreira methodology was considered for this addition since a literature report shows the successful application on a similar aldehyde to that in Scheme 3.5. However the use of a superstoichiometric quantity of ligand deemed this method inferior to that described by Trost and co-workers. For an example of the Carreira method being used in this addition, see: Watanabe, H.; Mori, N.; Itoh, D.; Kitahara, T., Mori, K. Angew. Chem. Int. Ed. 2007, 46, 1512-1516.

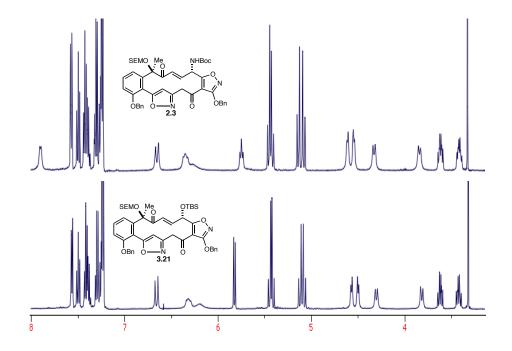
the beginning of the reaction as is the standard protocol, due to aldehyde dimerization. Accordingly, slow addition of aldehyde to the reaction mixture is imperative. Protection of the secondary alcohol, followed by nitrile-oxide cycloaddition¹²⁶ and ester functionalization¹²⁷ produced **3.23** in 7 steps. Lastly, a three-step procedure was performed to produce the requisite oxime function for the eventual [3+2] fragment coupling reaction.


Reagents and conditions: (a) Me_2Zn , 10 mol % **ligand**, PhMe, -15 °C; (b) TBSCl, imidazole, DMF, 0 °C; 57% (2 steps), 94% ee; (c) NCS, KHCO₃, BNOCHNOH, EtOAC; (d) DIBAI-H, toluene, -78 °C; (e) SO₃•pyr., DIPEA, CH₂Cl₂, DMSO, 0 °C; (f) (+)-IPC₂Ballyl, Et₂O, pentane, -78 °C; 54% (4 steps), *dr* = >95:5, regioselectivity = >14:1; (g) HF•pyr., pyr., THF, rt; (h) TESCl, imidazole, DMF, 0 °C; (i) AcOH, MeOH, 0 °C to rt; 22% (3 steps, 45% brsm; (j) OsO₄, NMO, THF, acetone, pH 7 buffer, rt; NaIO₄, THF, pH 7 buffer, rt; H₂NOH•HCl, pyr., EtOH, 0 °C; 90% (3 steps).

Fragments 2.9 and 3.23 were coupled via nitrile-oxide cycloaddition in moderate

yield (Scheme 3.6). The coupled material was next carried through the macrocyclization

¹²⁶ Nitrile-oxide cycloaddition with the acetylide addition product (which does not have a silyl group on the secondary carbinol) proceeds with a lower ratio of regioisomers (6:1 vs. 14:1).

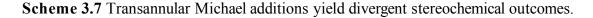

in good yield over the two steps. The inconsequential mixture of diastereomers was then dehydrated, and the intermediate macrocycle was elaborated to **3.21** in similar fashion to that established previously (*vide supra*). Notably, spectral comparison of **2.3** and the current macrocycle **3.21** (Figure 3.4) showed remarkable homology, alleviating our concerns that the overall conformation of the macrocycle might be perturbed by the NHBoc/OTBS substitution.

Scheme 3.6 Synthesis of elaborated macrocycle 3.21.

Reagents and conditions: (a) NCS, pyr., DIPEA, CHCl₃, rt to 60 °C; 41%; (b) DMP, CH_2Cl_2 , rt; (c) Sml_2 , THF, -78 °C; (d) Martin sulfurane, CH_2Cl_2 , -78 °C to -20 °C; 52% (3 steps); (e) CSA, MeOH, CH_2Cl_2 , 0 °C; (f) DMP, CH_2Cl_2 , rt; 83% (2 steps).

¹²⁷ (a) Brown, H. C.; Bhat, K. S.; Randad, R. S. J. Org. Chem. **1987**, *52*, 320-322. (b) Brown, H. C.; Bhat, K.

Figure 3.4 ¹H NMR spectral comparison of macrocycle **2.3** (upper) and macrocycle **3.21** (lower) in d_6 -DMSO.

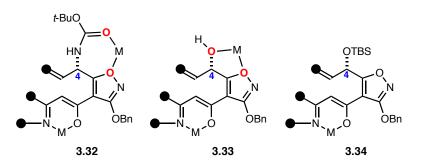

V. Transannular Michael Reaction with a γ-Silyloxy Enone

Upon the synthesis of macrocycle **3.21**, we looked to execute the key reactions of our synthesis plan. Accordingly, macrocycle **3.21** was subjected to the previously established conditions for the transannular Michael addition, which employed the use of Cu(OAc)-²•H₂O in methanol as solvent. Unbelievably, this reaction proceeded with the complete opposite sense of diastereoinduction, producing **3.31** as a sole detectable diastereomer (Scheme 3.7).¹²⁸ While the C12a-stereocenter is inconsequential, the C4a-stereocenter is now incorrect, eliminating the possibility of proceeding with **3.31** in the synthesis toward

S.; Randad, R. S. J. Org. Chem. 1989, 54, 1570-1576.

¹²⁸ This reaction was less efficient compared to the reaction with the NHBoc-containing macrocycle **2.3**. The decreased efficiency is attributed to the reduced rate of reaction, which allowed the oxidative decomposition pathway to decompose the transannular Michael product to a greater extent.

tetracycline. In order to further understand the factors involved in this unexpected stereochemical outcome, we deprotected the C4-TBS group, and subjected the macrocycle to the same conditions. Yet, this too resulted in the exclusive formation of the incorrect C4a-stereocenter.

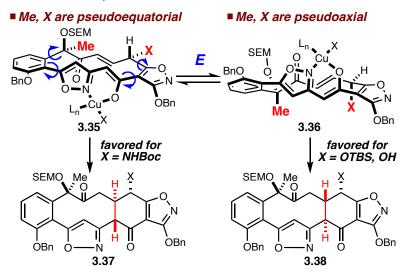


Reagents and conditions: (a) Cu(OAc)₂•H₂O, MeOH; see yield in equation.

It was initially believed that the divergence in diastereoselectivity could be attributed to chelation between the C4-substituent and the proximal isoxazole oxygen atom (**3.32**, Figure 3.5). This is feasible with an NHBoc group¹²⁹ but is uncommon with a TBS-protecting group unless special conditions are employed.¹³⁰ Thus, with the TBSprotected hydroxyl at C4, we may not have been able to access the macrocyclic enolate conformer needed to obtain the desired diastereomer. While the Michael reaction with a free hydroxyl at C4 is equally selective for the undesired diastereomer, this is not readily

 ¹²⁹ (a) Våbenø, J.; Brisander, M.; Lejon, T.; Luthman, K. J. Org. Chem. 2002, 67, 9186-9191. (b) Wang, D.-H.; Hao, X.-S.; Wu, D.-F.; Yu, J.-Q. Org. Lett. 2006, 8, 3387-3390.

comparable to the NHBoc example since it may not chelate as effectively. Also relevant to this discussion is the possibility that another mechanism of conformational perturbation is at play that does not involve chelation.¹³¹ Specifically, it is possible that methanol acts as a stabilizing H-bond donor, bridging both the isoxazole and C4-oxygen atoms. If present within the system, this H-bond would perform a similar role compared to the metal-dependent chelation pathway outlined above.


Figure 3.5 Possible modes of chelation with various substituents at C4. No chelation is feasible with **3.34** under the conditions used for the Michael reaction.

At this juncture, it was decided that the best course of action was to outline the system under which reaction was operating in order to more fully appreciate the perturbation induced by the C4-substituent (Scheme 3.8). In the originally proposed conformation, **3.35**, both the methyl group and NHBoc group are pseudoequatorial, which was considered the preferred conformation based upon dipole- and steric-based principles. Yet, with macrocycle **3.21**, another major conformation is being accessed in the transition state that places both the bulky TBS-protected alcohol and C6-methyl group pseudoaxial. Conformer **3.36** is most likely the ground state from which the transition state is emanat-

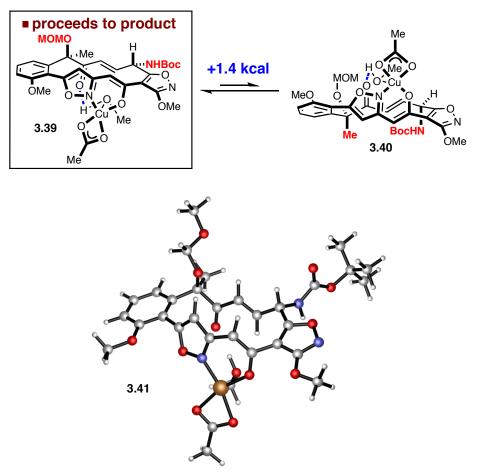
¹³⁰ (a) Evans, D. A.; Allison, B. D.; Yang, M. G.; Masse, C. E. J. Am. Chem. Soc. 2001, 123, 10840-10852.
(b) Stanton, G. R.; Johnson, C. N.; Walsh, P. J. J. Am. Chem. Soc. 2010, 132, 4399-4408.

ing, however we had no further insight to support this claim. Therefore, we turned to computational chemistry to not only gain further understanding of the current system, but to search for an alternative path forward once again.

Scheme 3.8 Interplay of two conformations may be responsible for the divergent stereochemical outcomes of macrocycles 2.3 and 3.21.

VI. The C4-C4a Stereochemical Relationship

Small perturbations may induce profound effects when stereochemical interplay within the system is not completely understood. In this instance, our solution for the C12ahydroxylation reaction had introduced a problem with the Michael addition, forcing us to once-again reevaluate the influence of the C4-substituent. In order to tackle this challenge, we chose to computationally interrogate the conformational profile of macrocyclic enolates formed during the various transannular Michael additions executed to this point. The purpose of this exercise was to gain quantitative insight into the ground state conformations of these enolates, which may be used to guide our decision-making as we

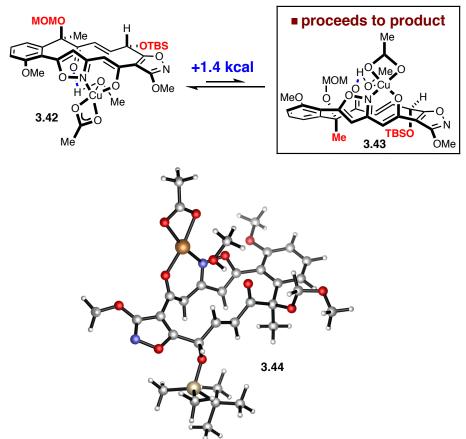

¹³¹ The feasibility of chelation understandably has been questioned since the reaction is conducted in a protic medium.

moved forward with the synthesis. While transition state computations would have been superior at this juncture, such a study was not feasible when time considerations were taken into account.

Ground state computations were performed using truncated forms of the macrocyclic enolates under consideration. An initial Monte Carlo conformational search was performed using Spartan 2004,¹⁰⁰ followed by refinement with DFT using Gaussian 2006.¹³² The coordination sphere surrounding copper was assigned as a κ^2 -acetate ligand and a bridging methanol ligand for reasons that will become apparent when the mechanism of the Michael reaction is formally addressed (*vide infra*).

We began the study by looking at the conformational profile of the C4-NHBoc macrocyclic enolate **3.39** in order to determine whether our initial assumptions were valid (Scheme 3.9). Encouragingly, favored enolate **3.39** places the –OMOM group anti to the ketone carbonyl oxygen and the NHBoc group in the pseudoequatorial position as we predicted at the outset of the project. If chelation or H-bonding is relevant in the Michael addition, it is likely that this conformer would be favored to an even greater extent, since the NHBoc group is nearly coplanar with the isoxazole oxygen atom. Based upon the stereochemical outcome of the Michael reaction with the corresponding macrocycle **2.3**, we can conclude that the low energy ground state most likely proceeds to the low energy selectivity determining transition state.

 ¹³² The B3LYP hybrid functional with the 6-31G* (for H, C, O, and N) and MDF10 (for Cu) basis sets were used on truncated derivatives of the macrocycles under scrutiny. M. J. Frisch.; *et al.* Gaussian, Inc., Pittsburgh, PA, 2006. See the supporting information for complete details.



Scheme 3.9 Equilibrium between conformers 3.39 and 3.40 derived from C4-NHBoc macrocycle 2.3.¹³²

Figure 3.6 Minimized structure of the low energy ground state 3.39.¹³²

When enolate conformers of macrocycle **3.21** were computed, we discovered a conformational profile that was remarkably similar to the NHBoc-derivative (Scheme 3.10). Specifically, the bulky silyloxy substituent is placed in the pseudoequatorial position and the heteroatom substituents at C5a and C6 were oriented anti to one another in the favored ground state conformer. Yet in contrast to the NHBoc-containing example above, this is not the structure from which the favored selectivity determining transition state emanates. Rather, Michael addition from the unfavored conformer proceeds to the observed diastereomer (Figure 3.7). This conformer profile, coupled with the high di-

astereoselectivity obtained experimentally, suggests that a long-standing suspicion about the system was true; the Michael reaction is operating under Curtin-Hammett kinetics.¹³³

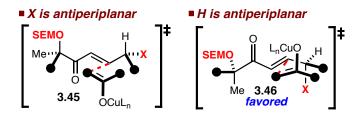

Scheme 3.10 Equilibrium between conformers 3.42 and 3.43 derived from C4-OTBS macrocycle 3.21.¹³²

Figure 3.7 Minimized structure of intermediate 3.43, the ground state from which the transition state emenates.¹³²

With the Curtin-Hammet kinetic system in mind, we closely examined conformer **3.43**, the conformer that proceeds to product in the Michael reaction, in an effort to glean insight into the transition state. Previously, it has been shown that γ -silyloxy- α , β -unsaturated carbonyl compounds undergo conjugate addition to yield products that arise

¹³³ (a) Seeman, J. I. Chem. Rev. **1983**, 83, 83-134. (b) Seeman, J. I. J. Chem. Ed. **1986**, 1, 42-48.

from a modified Felkin-Anh transition state model.¹³⁴ In the reported literature cases, the silyoxy substituent is oriented "inside", such that it is nearly coplanar with the acceptor enone. Indeed, in our macrocyclic setting, this appears to be dictating the outcome of the Michael addition. Transition state structure **3.45** (Figure 3.8) shows that the forming bond is antiperiplanar with the carbon-X bond in defiance of the model. Yet the structure that would emanate from conformer **3.43**, **3.46**, appears to be in a conformation that allows the X-type group to be nearly coplanar with the acceptor; the model predicts that this structure would be favored.

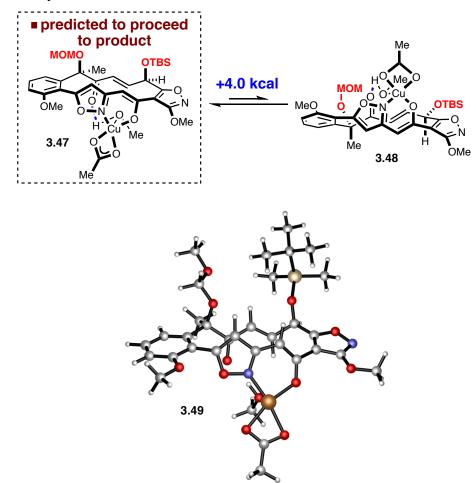


Figure 3.8 Interaction of the forming transannular C-C bond and the antiperiplanar substituent may control the diastereoselection in the Michael reaction.

In an effort to develop a revised synthesis plan, we chose to compute the conformational profile of a third macrocycle (Scheme 3.11). This enolate, which is the C4epimer of macrocycle **3.21**, was envisioned to facilitate the inversion of selectivity for the incorrect C4a-stereocenter. Encouragingly, ground state computations revealed the overwhelming preference for conformer **3.47**, which places both protected hydroxyls at C4 and C6 in the pseudoaxial position. Since the computed relative energy value of 4.0 kcal/mol is significantly greater than the 1.4 kcal/mol value obtained in the other two

 ¹³⁴ (a) Hanessian, S.; Sumi, K. Synthesis 1991, 12, 1083-1089. (b) Yamamoto, Y.; Chounan, Y.; Nishii, S.; Ibuka, T.; Kitahara, H. J. Am. Chem. Soc. 1992, 114, 7652-7660. (c) Amigoni, S.; Schulz, J.; Martin, L.; Le Floc'h, Y. Tet. Asymm. 1997, 8, 1515-1518.

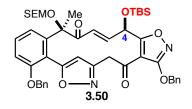
cases, the conformational preference suggests that the stereocenters at C4 and C6 are mutually reinforcing a single macrocyclic enolate conformation (Figure 3.9).

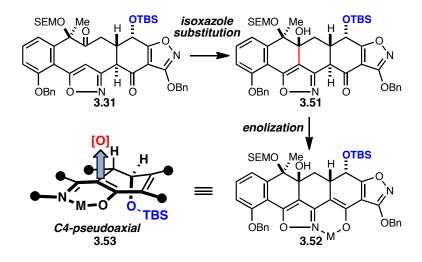
Scheme 3.11 Equilibrium between conformers 3.47 and 3.48 derived from a C4-*epi*-OTBS macrocycle.¹³²

Figure 3.9 Minimized structure of intermediate 3.47.¹³²

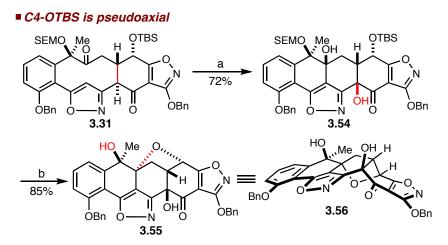
These energy values do not directly translate to the transition state barrier heights, since the putative reaction would likely also be a Curtin-Hammett scenario. Yet, favored enolate **3.47** is appropriately configured for enolate addition under modified Felkin-Anh control, the governing model to which we previously attributed the observed selectivity. If the relative energy values for enolate conformers **3.47** and **3.48** were reversed, it would

have been difficult to justify the synthesis of this new macrocyclic diastereomer, thus forcing us to consider a more significant route revision. With computational support for the synthesis of macrocycle **3.50**, we next looked to understand the implications of this new C4-stereocenter in the C12a-hydroxylation reaction.¹³⁵



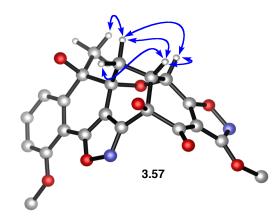

Figure 3.10 Experimental and computational data justify the synthesis of macrocycle 3.50.

VII. A Model System for C12a-Hydroxylation


At this point, we had settled upon a path employing macrocycle **3.50** as a potential substrate to effect the formation of the C4a-C12a bond with the correct sense of diastereoinduction. Yet, the issue of C12a-oxidation had been left unaddressed. While we had hoped that an axial substituent would direct hydroxylation to the opposite face of the Aring, this remained untested. Fortunately, the C4a-epi Michael product **3.31** served as an ideal model system for this transformation since the C6-stereocenter was remote, and the C4-OTBS substituent should exist in the axial position (Scheme 3.12).

³⁵ This is another example of computational data helping direct the course of experimental research. Initially, I was not convinced that the synthesis of the C4-epimer was a reasonable endeavor since simple molecular models revealed that both the C4- and C6-protected hydroxyls would need to be pseudoaxial in the transition state. This conformation was considered difficult to access, and the complete conformational profile optomistically was thought to produce an unselective Michael reaction. Therefore, I was quite surprised to see the results of the conformational profile calculations. Without these data points, it is likely that I would not have pursued the synthesis of the new C4-macrocyclic diastereomer.

Scheme 3.12 Michael product **3.31** may serve as a valuable model system for the C12a-hydroxylation reaction since the silyloxy group at C4 is pseudoaxial.



In the event, we subjected **3.31** to the previously established Ce(III)-mediated C12a-hydroxylation conditions. Encouragingly, these conditions afforded **3.54** in good yield and as a single diastereomer (Scheme 3.13). While nOe data strongly suggested the formation of a *cis* ring fusion, further functionalization served to reaffirm this assertion. Specifically, in order to deprotect intermediate **3.54**, we treated it with 4 *N* HCl, which resulted in not only the cleavage of the SEM and TBS protecting groups, but the cyclization of the C4-hydroxyl to the C5a position. This newly formed polycyclic structure further established that we had indeed synthesized a *cis* ring fusion, since the C12a-epimer would be incapable of undergoing cyclization. Additionally, this rigid system allowed the facile collection of nOe data which enabled rigorous assignment of relative stereochemical relationships (Figure 3.11).

Scheme 3.13 Hydroxylation of 3.31, an intermediate containing a pseudoaxial C4-OTBS substituent.

Reagents and conditions: (a) CeCl₃•7H₂O, O₂, *i*-PrOH, rt; Me₂S, CH₂Cl₂, rt; 72%; (b) 4 N HCl, THF, rt; 85%.

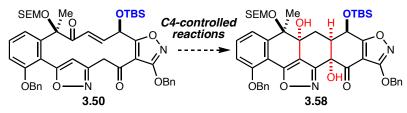
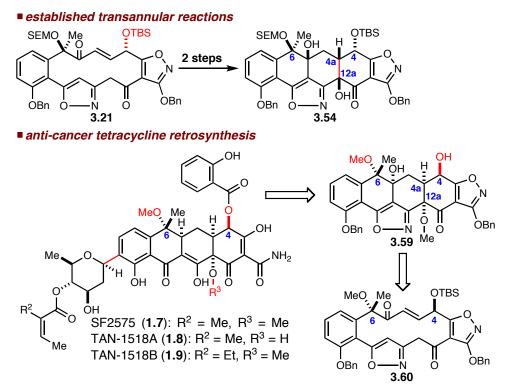


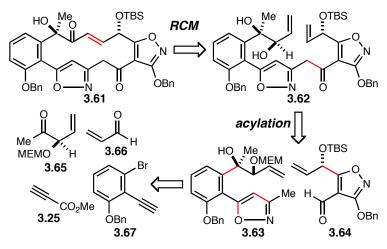
Figure 3.11 Relevant nOe data (blue arrows) used to determine the stereochemistry of polycycle **3.56**. Molecular modeling was performed with truncated protecting groups, see reference [100] for details.

Collectively, the experimental data gathered from model system **3.31** coupled with the computational data concerning the Michael addition led us to the understanding that macrocycle **3.50** should facilitate both of our key steps, since the same C4-stereocenter is necessary (Scheme 3.14). This is in contrast to our previous synthesis plan employing **3.21**, which required an inversion at C4 between key steps, followed by a late-stage epimerization. A reasonable criticism entails the pursuit of macrocycle **3.50** when evidence strongly suggested that protection of macrocycle **3.21** with a carbonate at C4


would have yielded a substrate competent for chelation, and thus would have led to the correct Michael diastereomer. While this scenario is possible, the synthesis would then have required the same displacement and epimerization strategy originally envisioned for the OTBS-containing derivative. The newfound understanding that an epimeric C4-OTBS substituent (macrocycle **3.50**) may facilitate both reactions without the need for epimerization was deemed a superior overall approach. Thus, with the path forward now evident we embarked upon the synthesis of **3.50** with great optimism.

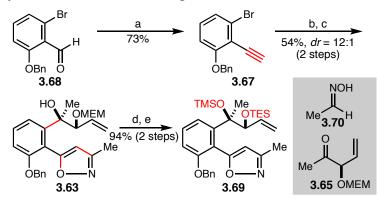
Scheme 3.14 A single C4-stereocenter should control both the Michael addition and C12a-hydroxylation reaction.

VIII. Implications for the Synthesis of Anti-Cancer Tetracyclines


While the transannular reactions employed to transform macrocycle **3.21** to **3.54** yielded material that was not useful as we attempted to synthesize tetracycline, it did open an interesting avenue for the synthesis of the anticancer tetracyclines 1.7 - 1.9 (Scheme 3.15). Specifically, since these natural products have an inverted C4- and C6-stereochemical relationship when compared with tetracycline, the result of the Michael and oxidation reactions discussed above is a compound that is enantiomeric to these natural products. Thus, using established reactions we can deconstruct 1.7 - 1.8 to intermediate **3.59**, which is a substrate that contains all of the requisite relative stereochemistry. Simply inverting the C4- and C6- stereocenters in macrocycle **3.21** should yield a viable synthesis of the natural configuration of these intriguing compounds.

Scheme 3.15 An approach to the anti-cancer tetracyclines utilizing the previously established transannular reactions.

IX. An alternative Approach to a C4-OTBS Macrocycle

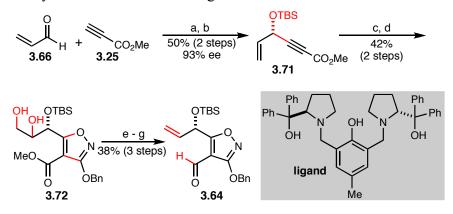

Prior to the synthesis of macrocycle **3.21** via an analogous route to that of the NHBoccontaining derivative **2.3**, we had considered an alternative and potentially more efficient approach (Scheme 3.16). Rather than performing an inter- or intramolecular nitrile-oxide cycloaddition, we envisioned using the intrinsic polarity of the C12a-position in a metalloenamine-like acylation event to couple fragments **3.63** and **3.64**. These fragments were envisioned to arise from a chelate-controlled addition of an aryl-lithium reagent to ketone **3.65** (western fragment) and zinc acetylide addition to acrolein (eastern fragment). The success of the approach hinged on the execution of a late-stage ring-closing metathesis reaction with substrate **3.62**. While this macrocyclization strategy undoubtedly is risky, the approach could enable the synthesis of macrocycle **3.61** in 12 longest-linear steps, a marked improvement over the existing macrocycle synthesis. Scheme 3.16 Retrosynthesis of macrocycle 3.61 employing a ring-closing metathesis reaction as the macrocyclization strategy.

Synthesis of the western fragment commenced via conversion of trisubstituted aromatic **3.68** to the terminal alkyne **3.67**. The alkyne was then utilized in an intermolecular nitrile-oxide cycloaddition with acetaldoxime (**3.70**). This intermediate was lithiated and coupled to known ketone 3.65^{136} in good yield and diastereoselection over the two steps. With the functionalized tertiary carbinol **3.63** in hand, we then performed a deprotection of the MEM ether and sequentially protected the remaining alcohol functions with silyl groups. Thus, **3.63** and **3.69** were considered viable fragments with which to couple to the eastern fragment.

¹³⁶ Ramachandran, P. V.; Liu, H.; Reddy, M. V. R.; Brown, H. C. Org. Lett. 2003, 5, 3755-3757.

Scheme 3.17 Synthesis of the western fragment.

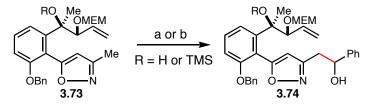
Reagents and conditions: (a) LDA, TMSCHN₂, THF, hexane, -78 °C to rt; 73%; (b) NCS, **3.70**, pyr., NEt₃, CHCl₃, 60 °C; (c) *t*-BuLi, Et₂O, THF, **3.65**, -78 °C; 54%, *dr* = 12:1 (2 steps); (d) HCl, MeOH, rt; (e) TESCl, TMSCl, imidazole, DMF, rt; 94% (2 steps).


Synthesis of the eastern fragment began with the asymmetric zinc acetyide addition to acrolein,¹²³ and the intermediate propargylic alcohol was protected as a TBS ether (Scheme 3.18). Unfortunately nitrile-oxide cycloaddition employing **3.71** failed since both the alkyne and alkene participated in the reaction. Even reduction of the alkynoate to the corresponding primary alcohol failed to yield a selective cycloaddition with the alkyne. Thus we were forced to "protect" the alkene via dihydroxylation,^{137,138} yielding **3.72** after [3+2] cycloaddition. Conversion of the vicinal diols back to the olefin,¹³⁹ reduction of the ester, and oxidation yielded aldehyde **3.64**.

¹³⁷ (a) Plietker, B.; Niggemann, M.; Pollrich, A. Org. Biomol. Chem. 2004, 2, 1116-1124. (b) Plietker, B.; Niggemann, M. J. Org. Chem. 2005, 70, 2402-2405.

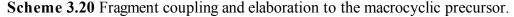
¹³⁸ The Plietker conditions employed in this transformation revealed the utility of the method. While OsO₄ failed to yield any dihydroxylated product, the ruthenium conditions yielded product exceedingly quickly (less than 30 minutes at room temperature). It is suggested that these conditions be employed more regularly in routine dihydroxylations due to the ease of operation, low reaction time, low catalyst loading, and relative low price and toxicity of ruthenium.

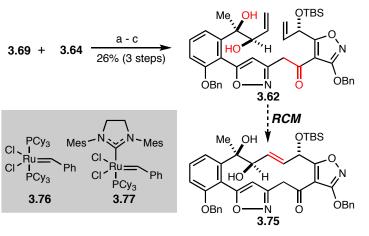
 ¹³⁹ (a) Liu, Z.; Classon, B. J. Org. Chem. 1990, 55, 4273-4275. (b) Luzzio, F. A.; Menes, M. E. J. Org. Chem. 1994, 59, 7267-7272. (c) Banda, G.; Chakravarthy, I. E. Tet. Asymm. 2006, 17, 1684-1687.


Scheme 3.18 Synthesis of the eastern fragment.

Reagents and conditions: (a) Me_2Zn , 10 mol % **ligand**, PhMe, -5 °C; (b) TBSCI, imidazole, DMF, 0 °C; 50% (2 steps), 93% ee; (c) 0.5 mol % RuCl₃•H₂O, 10 mol % CeCl₃•7H₂O, NaIO₄, EtOAc, CH₃CN, H₂O, 0 °C; (d) NCS, KHCO₃, BnOCHNOH; 42% (2 steps); (e) PPh₃, I₂, imidazole, THF, 50 °C; (f) DIBAI-H, toluene, -78°C; (g) DMP, CH₂Cl₂, rt; 67% (3 steps).

Initially, coupling of fragment **3.73** with benzaldehyde as a model system with either the free tertiary carbinol or the tertiary TMS ether failed when LDA was used as base (Scheme 3.19).¹⁴⁰ However, using *t*-BuLi at low temperature in ether afforded the desired coupling reaction with 70% conversion. While this reaction could be optimized further, at this juncture the current conditions were considered sufficient to proceed with the coupling of **3.73** to aldehyde **3.64** such that the late-stage RCM could be explored.


Scheme 3.19 Initial fragment coupling experiments.



Reagents and conditions: (a) LDA then PhCHO, THF, -78° C; no reaction (R = H or TMS); (b) *t*-BuLi then PhCHO, Et₂O, -78° C; 70% NMR yield (R = TMS).

¹⁴⁰ Coupling reactions of this type are feasible using amide bases. For select examples see: (a) Alberola, A.; Calvo, L.; Rodriguez, T. R. J. Heterocycl. Chem. 1992, 29, 445-450. (b) Alberola, A.; Calvo, L.; Rod-

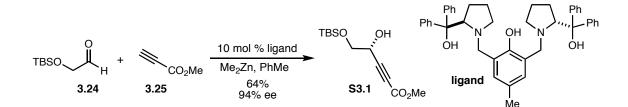
Employing the optimized conditions established from the coupling of **3.73** (R = TMS) and benzaldehyde, fragments **3.69** and **3.64** were coupled in an unoptimized 27% yield. Once coupled, the intermediate secondary carbinol was oxidized, and the silyl groups were removed under acidic conditions. The resulting vicinol diol **3.62** was then subjected to RCM conditions employing Grubbs I or Grubbs II catalysts. Unfortunately, no macrocyclized material was obtained in dichloromethane or benzene at room temperature or elevated temperature. This was surprising given previously successful macrocyclizations employing terminal olefins with allylic stereocenters.¹⁴¹ Attempts to perform the reaction with both alcohol functions protected as their silyl ether also failed under the described conditions.

Reagents and conditions: (a) t-BuLi, Et₂O, -78 °C; (b) DMP, CH₂Cl₂, rt; CSA, MeOH, 0 °C to rt; 26% (3 steps).

riguez, T. R.; Sañudo, C. J. Heterocycl. Chem. 1995, 32, 537-541. (c) Fuentes, J. A.; Maestro, A.; Testera, A.; Báñez, J. M. Tet. Asymm. 2000, 11, 2565-2577.

 ¹⁴¹ (a) Geng, X.; Danishefsky, S. J. Org. Lett. 2004, 6, 413-416. (b) Torssell, S.; Samfai, P. Org. Biomol. Chem. 2004, 2, 1643-1646. (c) Nicolaou, K. C.; Sun, Y.-P.; Guduru, R.; Banerji, B.; Chen, D. Y.-K. J. Am. Chem. Soc. 2008, 130, 3633-3644. (d) Hoveyda, A. H.; Lombardi, P. J.; O'Brien, R. V.; Zhugralin, A. R. J. Am. Chem. Soc. 2009, 131, 8378-8379.

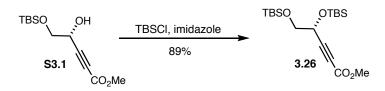
This approach, while ultimately unsuccessful, paves the way for a macrocycle synthesis with dramatically improved step efficiency. At the time, we were more concerned with access to the macrocycle itself, and less concerned about the route that was used for this access, thus we moved on to the established approach (*vide supra*). It is strongly believed that with persistence and a more exhaustive catalyst screen, this route would indeed be fruitful.


X. Conclusion

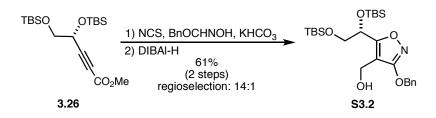
The results disclosed in this chapter reveal a possible solution to the C12a-hydroxylation problem presented in Chapter 2. This solution relies upon the incorporation of a pseudoaxial substituent in the C4-position. Importantly, computational data and chemical intuition were coupled to arrive at this conclusion, which was ultimately validated in a complex model system. Unfortunately, while the stereochemistry of C12a-hydroxylation has been satisfactorily addressed, the transannular Michael reaction was shown to be remarkly unpredictable since a minor perturbation to macrocycle **2.3** produced a divergent stereochemical outcome. Despite this unexpected result, computational data reveal a possible solution and further, both the Michael and C12a-hydroxylation reactions may now rely upon a single C4-stereocenter. If validated, this will represent a marked improvement over the existing synthesis plan. Chapter 4 will detail both the synthesis of this new macrocycle and the impact of the C4-stereocenter on the subsequent key steps.

Chapter 3

XI. Experimental Section

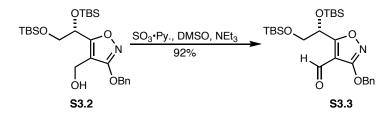

A. Experimental Procedures

(*R*)-methyl 5-(*tert*-butyldimethylsilyloxy)-4-hydroxypent-2-ynoate (S3.1). To a solution of *R-R*-bis-prophenol ligand¹⁴² (3.67 g, 5.75 mmol, 0.100 equiv.) in toluene (290 mL, 0.20 M wrt aldehyde 3.24) at room temperature under an atmosphere of nitrogen, methyl propiolate 3.25 (15.3 mL, 173 mmol, 3.00 equiv.) was added rapidly via syringe. Next, dimethylzinc (144 mL of a 1.2 M solution in toluene, 173 mmol, 3.00 equiv.) was added rapidly via syringe to the solution (some gas evolution occurs). The reaction was then cooled to -15 °C, and alehyde 3.24 (10.0 g, 57.5 mmol, 1.00 equiv.) in toluene (10 mL,

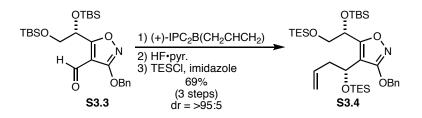

 ¹⁴² (a) Trost, B. M.; Weiss, A. H.; von Wangelin, A. J. J. Am. Chem. Soc. 2006, 128, 8-9. (b) Trost, B. M.; Weiss, A. H. Org. Lett. 2006, 8, 4461-4464.

5.8 M) at room temperature was added directly to the cooled reaction via syringe pump over 36 h. The reaction was carefully quenched via addition of sat. NH₄Cl (caution, gas evolution occurs) and extracted three times with Et₂O. The combined organic extracts were washed once with water, dried with Na₂SO₄ and concentrated *in vacuo*. The crude material was purified via MPLC (5% \rightarrow 20% EtOAc and hexanes) affording **S3.1** (9.46 g, 64% yield, 94% ee) as a slightly yellow liquid. $R_f = 0.34$ (6:1 hexanes:EtOAc); $[\alpha]_D = -$ 13.6 (*c* 1.45, CHCl₃); **IR** (neat) 3435, 2955, 2930, 2858, 2242, 1721, 1436, 1255, 1125, 1048, 838; ¹H NMR (500 MHz, C₆D₆) δ 4.08 (dt, *J* = 6.5, 4.8 Hz, 1H), 3.39 (qd, *J* = 10.1, 5.0 Hz, 2H), 3.20 (s, 3H), 2.02 (d, *J* = 6.6 Hz, 1H), 0.86 (s, 9H), -0.05 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (126 MHz, C₆D₆) δ 153.58, 128.09, 127.89, 127.70, 86.42, 76.97, 66.27, 63.13, 52.01, 25.81, 18.31, -5.47, -5.53; **HRMS**: Exact mass calcd for [(M+H⁺)]: 259.1360; found: 259.1358 (ESI).

(*R*)-methyl 4,5-bis(*tert*-butyldimethylsilyloxy)pent-2-ynoate (3.26). To a solution of S3.1 (9.30 g, 36.0 mmol, 1.00 equiv.) in DMF (90 mL, 0.40 M) at 0 °C under an atmosphere of nitrogen, imidazole (4.90 g, 72.0 mmol, 2.0 equiv.) was added in a single portion, followed TBSCl (5.97 g, 39.6 mmol, 1.10 equiv.) also in a single portion. The reaction was stirred for 4 h, upon which time it was quenched with water and stirred for 5 minutes. The resulting mixture was extracted three times with hexanes, and the combined or-


ganic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. The crude residue was purified via flash chromatography (16:1 hexanes:EtOAc) affording **3.26** (11.9 g, 89%) as a colorless liquid. $R_f = 0.63$ (10:1 hexanes:EtOAc); $[\alpha]_D = -24$ (*c* 0.85, CHCl₃); **IR** (neat) 2955, 2930, 2859, 2241, 1723, 1435, 1254, 1135, 1109, 960, 835; ¹H NMR (500 MHz, C₆D₆) δ 4.45 (dd, J = 6.7, 5.4 Hz, 1H), 3.81 - 3.54 (m, 2H), 3.19 (s, 3H), 0.95 (d, J = 5.7Hz, 8H), 0.32 - -0.08 (m, 12H); ¹³C NMR (126 MHz, C₆D₆) δ 153.46, 128.18, 128.08, 128.00, 127.89, 127.80, 127.70, 86.78, 77.24, 67.38, 64.79, 51.92, 25.90, 25.76, 18.37, 18.26, -4.76, -5.00, -5.37, -5.43; **HRMS**: Exact mass calcd for [(M+Na⁺)]: 395.2044; found: 395.2058 (ESI).

(*S*)-(3-(benzyloxy)-5-(2,2,3,3,8,8,9,9-octamethyl-4,7-dioxa-3,8-disiladecan-5-yl)isoxazol-4-yl)methanol (S3.2). To a solution of 3.26 (11.9 g, 31.9 mmol, 1.00 equiv.) in EtOAc (160 mL, 0.2 M) at room temperature exposed to air, BnOCHNOH (9.64 g, 63.8 mmol, 2.00 equiv.) was added, followed by the addition of KHCO₃ (31.9 g, 319 mmol, 10.0 equiv.) and NCS (8.52 g, 63.8 mmol, 2.00 equiv.). The flask was fitted with a reflux condensor, and the suspension was heated to 48 °C under an atmosphere of nitrogen for 12 h. The reaction was treated with an additional 1.00 equiv. of oxime and NCS every 12 h for a total 6 additions or 6 equiv. of each. The resulting cloudy and slightly yellow mixture was passed through celite, and the resulting pad of celite was washed with EtOAc.

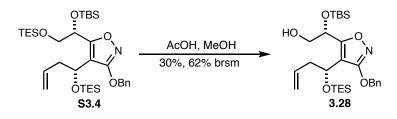

After concentration of the solution *in vacuo*, the resulting residue was suspended in hexanes and passed through celite once again. Following this second filtration, the solution was concentrated *in vacuo* once more. The crude material was purified via MPLC ($0\% \rightarrow$ 10% EtOAc and hexanes) affording the intermediate ester (12.9 g, 78% yield, 14:1 regioselectivity) as a slightly yellow liquid that was ca. 90% pure as determined by NMR.

To a solution of the intermediate ester (12.9 g, 24.7 mmol, 1.00 equiv.) in toluene (124 mL, 0.20 M) at -78 °C under an atmosphere of argon, DIBAI-H (74.0 mL of a 1.0 M solution in hexane, 74.1 mmol, 3.00 equiv.) at -78 °C was added against the side of the flask over 15 minutes via cannula. The resulting slightly yellow solution was stirred at – 78 °C for 2 h, upon which time it was carefully quenched with a 20% w/v solution of Rochelle's salt. The reaction was then warmed to room temperature while stirring vigorously for 12 h, upon which time the biphasic mixture was extracted three times with EtOAc. The combined organic extracts were dried with Na₂SO₄ and concentrated in *vacuo*. The crude residue was purified via flash chromatography on silica gel (10:1 hexanes:EtOAc) affording **S3.2** (9.54 g, 78%, 61% from **3.26**) as a clear liquid. $R_f = 0.63$ (5:1) hexanes: EtOAc); $[\alpha]_{\mathbf{D}} = -16$ (*c* 4.1, CHCl₃); **IR** (neat) 3446, 2954, 2930, 2858, 1646, 1512, 1464, 1362, 1257, 1131, 1006, 836; ¹H NMR (500 MHz, C₆D₆) δ 7.22 – 7.16 (m, 2H), 7.11 - 7.00 (m, 1H), 5.16 (s, 2H), 4.96 (t, J = 5.8 Hz, 1H), 4.64 - 4.38 (m, 2H), 3.95-3.75 (m, 2H), 2.49 (dq, J = 6.8, 2.5 Hz, 1H), 0.88 (d, J = 14.2 Hz, 18H), 0.18 -0.17(m, 6H); 13 C NMR (126 MHz, C₆D₆) δ 170.08, 169.46, 136.19, 128.50, 128.42, 128.32, 107.99, 71.68, 70.07, 66.94, 52.54, 25.93, 25.75, 18.42, 18.24, -5.14, -5.51, -5.61; **HRMS**: Exact mass calcd for [(M+Na⁺)]: 516.2572; found: 516.2569 (ESI).

(S)-3-(benzyloxy)-5-(2,2,3,3,8,8,9,9-octamethyl-4,7-dioxa-3,8-disiladecan-5-yl)isoxazole-4-carbaldehyde (S3.3). To a solution of S3.2 (9.54 g, 19.3 mmol, 1.00 equiv.) in CH₂Cl₂ (48 mL, 0.40 M) at 0 °C under an atmosphere of nitrogen, DMSO (11 mL, 1.7 M) was added followed by DIPEA (13.2 mL, 77.2 mmol, 4.00 equiv.). To a second flask, DMSO (29 mL, 2.0 M wrt SO₃•pyr.) was added, followed by SO₃•pyr. (9.22 g, 57.8 mmol, 3.00 equiv.). This mixture was stirred for 5 minutes upon which time most solid had dissolved. Next, the SO₃•pyr. solution was added to the solution containing S3.2 rapidly via syringe. The resulting clear and slightly brown mixture was stirred for one hour at 0 °C, upon which time the reaction was placed under reduced pressure, and the CH₂Cl₂ was removed *in vacuo* on a rotovap with the bath temperature set to 29 °C. The remaining solution was poured directly onto a silica gel column and purified via flash chromatography (15:1 hexanes: EtOAc) affording S3.3 (8.75 g, 92%) as a clear liquid. $R_f =$ 0.73 (10:1 hexanes: EtOAc); $[\alpha]_{\rm D} = -16$ (c 1.4, CHCl₃); IR (neat) 2955, 2930, 2858, 1697, 1610, 1509, 1464, 1362, 1257, 1115, 1005, 960, 834; ¹H NMR (500 MHz, C₆D₆) δ 9.87 (d, J = 1.1 Hz, 1H), 7.18 (d, J = 8.1 Hz, 2H), 7.06 (qd, J = 7.7, 3.9 Hz, 3H), 5.45 (t, J = 5.7 Hz, 1H), 5.21 - 4.99 (m, 2H), 3.89 (d, J = 5.8 Hz, 2H), 0.89 (d, J = 12.1 Hz, 18H), 0.16 - -0.13 (m, 12H); ¹³C NMR (126 MHz, C_6D_6) δ 182.41, 178.20, 169.78, 135.48, 128.55, 128.53, 128.42, 108.86, 72.16, 69.81, 66.37, 25.83, 25.68, 18.29, 18.20, -

5.13, -5.20, -5.50, -5.60; **HRMS**: Exact mass calcd for [(M+H⁺)]: 492.2596; found: 492.2597 (ESI).

3-(benzyloxy)-5-((S)-8,8-diethyl-2,2,3,3-tetramethyl-4,7-dioxa-3,8-disiladecan-5-yl)-4-((R)-1-(triethyl-silyloxy)but-3-enyl)isoxazole (S3.4). To a solution of (+)-IPC₂B(CH₂CHCH₂)¹⁴³ (23 mL of a 1.0 M solution in pentane, 23 mmol, 1.30 equiv.) in ether (40 mL, 0.58 M wrt reagent) at -78 °C under an atmosphere of nitrogen, S3.3 in Et-₂O (89 mL, 0.20 M) was added along the side of the flask via cannula while maintaining an internal temperature of < -72 °C. The resulting solution was stirred for 45 minutes, upon which time it was warmed directly to 0 °C, and a premixed solution of 2:1 2 *N* NaOH : 30% aq. H₂O₂ (89 mL) at room temperature was added portionwise. The reaction was then stirred vigorously for 30 miutes at 0 °C, upon which time the cooling bath was removed, and the cloudy mixture was stirred for an additional 1.5 h. The resulting solution was extracted three times with hexanes. The combined organic extracts were then dried with Na₂SO₄ concentrated *in vacuo*. The crude liquid was purified via flash chromatography on silica gel (pure hexanes → 15:1 hexanes:EtOAc) affording the intermediate ho-


 ¹⁴³ (a) Brown, H. C.; Bhat, K. S.; Randad, R. S. J. Org. Chem. 1987, 52, 320-322. (b) Brown, H. C.; Bhat, K. S.; Randad, R. S. J. Org. Chem. 1989, 54, 1570-1576.

moallylic alcohol (9.12 g, 96%, >95:5 dr) as a colorless liquid that was ca. 90% pure by NMR.

To a solution of 5:2:1 THF:pyr.:HF•pyr. (68.4 mL, 4 ml solution/mmol sm) at room temperature in a plastic bottle exposed to air, the homoallylic alcohol (9.12 g, 17.1 mmol) in THF (86 mL, 0.20 M) was added rapidly. The reaction was stirred for 45 minutes at room temperature, upon which time it was quenched with sat. NaHCO₃ (caution, gas evolution), and stirred vigorously for 12 h. The resulting mixture was extracted three times with CH₂Cl₂, and the combined organic extracts were dried with Na₂SO₄, and concentrated *in vacuo*. The resulting liquid was purified via flash chromatography on silica gel (2:1 hexanes:EtOAc) affording the intermediate diol (5.25 g, 73%) as a slightly pink liquid.

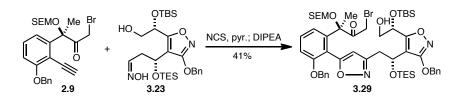
To a solution of the intermediate diol (5.05 g, 12.0 mmol, 1.00 equiv.) in DMF (60 mL) at room temperature under an atmosphere of nitrogen, imidazole (4.08 g, 60.0 mmol, 5.00 equiv.) was added, followed by TESCl (6.04 mL, 36.0 mmol, 3.00 equiv.) over 3 minutes. The resulting clear solution was stirred at room temperature for 1 hour, upon which time it was cooled to 0 °C, quenched with H₂O, and extracted three times with hexanes. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. The crude residue was purified via flash chromatography on silica gel (20:1 hexanes:EtOAc) affording **S3.4** (3.21 g, 99%) as a colorless liquid. Yield for the three steps: 69%. $R_f = 0.61$ (10:1 hexanes:EtOAc); $[\alpha]_D = -6.1$ (*c* 0.80, CHCl₃); **IR** (neat) 2955, 2878, 1641, 1509, 1460, 1414, 1361, 1251, 1128, 1089, 1006, 837, 742; ¹H NMR (500 MHz, C₆D₆) δ 7.27 (d, J = 8.1 Hz, 2H), 7.08 (t, J = 7.7 Hz, 2H), 7.03 (d, J = 3.9 Hz,

1H), 6.03 - 5.81 (m, 1H), 5.32 (dd, J = 7.9, 4.1 Hz, 1H), 5.22 (d, J = 1.9 Hz, 2H), 5.13 (dd, J = 17.1, 1.8 Hz, 1H), 5.06 (d, 1H), 4.97 (dd, J = 7.3, 6.0 Hz, 1H), 4.04 (dd, J = 10.0, 8.0 Hz, 1H), 3.94 (dd, J = 10.0, 4.1 Hz, 1H), 2.94 - 2.77 (m, 1H), 2.73 - 2.61 (m, 1H), 1.11 - 0.89 (m, 36H), 0.72 - 0.52 (m, 18H), 0.20 (d, J = 19.5 Hz, 6H); 13 C NMR (126 MHz, C_6D_6) δ 169.65, 167.97, 136.48, 134.80, 128.46, 128.30, 117.57, 109.33, 71.58, 70.12, 66.91, 65.60, 43.07, 25.98, 25.95, 18.43, 6.98, 6.89, 6.72, 5.16, 5.13, 4.56, -4.33, -4.63; **HRMS**: Exact mass calcd for [(M+Na⁺)]: 648.3930; found: 648.3967 (ESI).

(S)-2-(3-(benzyloxy)-4-((R)-1-(triethylsilyloxy)but-3-enyl)isoxazol-5-yl)-2-(tert-

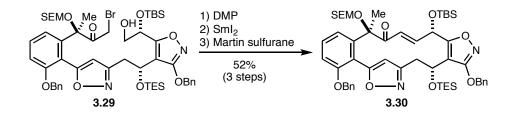
butyl-dimethylsilyloxy)-ethanol (3.28). To a solution of **S3.4** (6.31 g, 9.74 mmol, 1.00 equiv.) in methanol (49 mL, 0.20 M) at 0 °C under a balloon of nitrogen, AcOH (0.560 mL, 9.74 mmol, 1.00 equiv.) was added dropwise. The resulting slightly turbid solution was stirred for 26 h during which time the cooling bath was allowed to expire. The reaction was quenched with sat. NaHCO₃ and extracted three times with CH₂Cl₂. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. The crude residue was purified via flash chromatography on silica gel (8:1 hexanes:EtOAc \rightarrow 1:1 hexanes:EtOAc, affording **3.28** (1.55 g, 30%) as a colorless liquid and starting material **S3.4** (3.26 g, 52%). $\mathbf{R}_f = 0.17$ (10:1 hexanes:EtOAc); $[\alpha]_{\rm D} = -12$ (*c* 0.1.4, CHCl₃); **IR** (neat) 3451, 2955, 2934, 2878, 2859, 1641, 1510, 1462, 1414, 1360, 1255, 1082, 1005, 951,

837, 779, 743, 696; ¹**H** NMR (500 MHz, C₆D₆) δ 7.26 (d, J = 8.1 Hz, 2H), 7.08 (t, J = 7.1 Hz, 2H), 7.03 (d, J = 7.5 Hz, 1H), 5.83 (tdd, J = 10.0, 7.1, 2.7 Hz, 1H), 5.24 (td, J = 4.8, 2.3 Hz, 1H), 5.20 (d, J = 1.6 Hz, 2H), 5.08 (dt, J = 17.1, 1.9 Hz, 1H), 5.02 (dt, J = 10.4, 1.8 Hz, 1H), 4.88 (td, J = 6.6, 2.2 Hz, 1H), 3.93 – 3.72 (m, 2H), 2.83 – 2.52 (m, 2H), 1.99 – 1.79 (m, 1H), 1.14 – 0.81 (m, 18H), 0.56 (q, J = 7.7 Hz, 6H), 0.09 (q, J = 1.4 Hz, 6H); ¹³C NMR (126 MHz, C₆D₆) δ 169.41, 167.92, 136.33, 134.33, 128.49, 128.38, 128.32, 117.80, 109.32, 71.68, 69.63, 66.27, 65.49, 42.87, 25.83, 18.31, 6.89, 5.00, -4.68, -4.85; **HRMS**: Exact mass calcd for [(M+Na⁺)]: 556.2885; found: 556.2878 (ESI).


(*R*)-3-(3-(benzyloxy)-5-((*S*)-1-(*tert*-butyldimethylsilyloxy)-2-hydroxyethyl)isoxazol-4-yl)-3-(triethylsilyloxy)propanal oxime (3.23). To a solution of 3.28 (586 mg, 1.10 mmol, 1.00 equiv.) in 1:1:1 acetone:pH 7 phosphate buffer:THF (11 mL total, 0.10 M) at room temperature exposed to air, NMO (193 mg, 1.65 mmol, 1.50 equiv.) was added, followed by OsO_4 (550 µL of a 2.5 wt% solution in water, 0.050 equiv.). The reaction was stirred for 2 h at room temperature, upon which time it was cooled to 0 °C and a sat. Na-HCO₃ solution (10 mL) containing 100 mg NaHSO₃ was added. The reaction quickly turned brown after this addition. The cooling bath was removed, and the reaction was stirred for 5 minutes. The resulting mixture was diluted with H₂O (10 mL) and extracted

three times with EtOAc. The combined organic extracts were dried with Na_2SO_4 and concentrated *in vacuo* to afford a brown foam.

The intermediate diol was immediately dissolved in a 3:1 mixture of THF:pH 7 phosphate buffer (11.0 mL total, 0.10 M) at room temperature exposed to air, and NaIO₄ (941 mg, 4.40 mmol, 4.00 equiv.) was added in a single portion. The reaction soon became cloudy upon this addition. After stirring for 30 minutes at room temperature, the reaction was diluted with H₂O and extracted three times with CH_2Cl_2 . The combined organic extracts were washed once with brine, dried with Na₂SO₄, and concentrated *in vacuo* affording a brown foam.


The intermediate aldehyde was dissolved in absolute ethanol (11.0 mL, 0.10 M) and cooled to 0 °C under an atmosphere of nitrogen. Next, pyridine (1.1 mL, 1.0 M wrt **3.28**) was added followed by hydroxylamine hydrochloride (304 mg, 4.40 mmol, 4.00 equiv.). The resulting solution was stirred for one hour, upon which time the reaction was warmed to room temperature and stirred for an additional 30 minutes. The reaction was quenched at 0 °C with sat. NH₄Cl. The resulting mixture was then diluted with H₂O and extracted three times with Et₂O. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. The resulting residue was purified via flash chromatography on silica gel (3:1 hexanes:EtOAc) affording **3.23** (548 mg, 90%) as a white foam and a ca. 1:1 mixture of *E* and *Z* oxime isomers. Note: Characterized as a ca. 1:1 mixture of *E* and *Z* oxime isomers. Note: Characterized as a ca. 1:1 mixture of *E* and *Z* oxime isomers. Note: Characterized as a ca. 1:1 mixture of *E* and *Z* oxime isomers. Note: Characterized as a ca. 1:1 mixture of *E* and *Z* oxime isomers. Note: Characterized as a ca. 1:1 mixture of *E* and *Z* oxime isomers. Note: Characterized as a ca. 1:1 mixture of *E* and *Z* oxime isomers. Note: Characterized as a ca. 1:1 mixture of *E* and *Z* oxime isomers. Note: Characterized as a ca. 1:1 mixture of *E* and *Z* oxime isomers. Note: Characterized as a ca. 1:1 mixture of *E* and *Z* oxime isomers. Note: Characterized as a ca. 1:1 mixture of *E* and *Z* oxime isomers. Note: Characterized as a ca. 1:1 mixture of *E* and *Z* oxime isomers. Note: Characterized as a ca. 1:1 mixture of *E* and *Z* oxime isomers. R_f = 0.55 (2:1 hexanes:EtOAc); $[\alpha]_{\rm D} = -6.0$ (*c* 0.45, CHCl₃); **IR** (neat) 3339, 2956, 2879, 1509, 1459, 1363, 1259, 1087, 1005, 949, 838; ¹H NMR (600 MHz, C₆D₆) δ 8.90 (s, 1H), 8.39 (s, 1H), 7.44 (t, *J* = 6.1 Hz, 1H), 7.35 – 7.24 (m, 1000 MHz, C₆D₆) δ 8.90 (s, 1H), 8.39 (s, 1H), 7.44 (t, *J* = 6.1 Hz, 1H), 7.35 – 7.24 (m, 1000 MHz, C₆D

4H), 7.15 – 7.08 (m, 4H), 7.08 – 7.01 (m, 2H), 6.86 (t, J = 5.2 Hz, 1H), 5.22 (s, 4H), 5.22 – 5.13 (m, 6H), 5.09 (t, J = 6.6 Hz, 1H), 5.01 (t, J = 6.5 Hz, 1H), 3.91 – 3.72 (m, 4H), 3.15 (ddd, J = 15.7, 6.9, 5.2 Hz, 1H), 3.02 – 2.90 (m, 1H), 2.84 – 2.76 (m, 1H), 2.76 – 2.65 (m, 1H), 2.58 (s, 1H), 2.29 (s, 1H), 0.95 (d, J = 2.8 Hz, 18H), 0.90 (td, J = 8.0, 2.9 Hz, 18H), 0.55 (qd, J = 7.9, 2.3 Hz, 12H), 0.12 (dd, J = 4.3, 2.2 Hz, 12H); ¹³C NMR (126 MHz, C₆D₆) δ 169.54, 169.49, 167.94, 167.81, 148.16, 148.09, 136.28, 136.23, 128.52, 128.45, 128.39, 128.35, 109.05, 108.83, 71.83, 71.81, 69.48, 69.42, 66.09, 63.97, 62.88, 38.10, 34.04, 25.83, 18.32, 6.85, 4.95, 4.93, -4.69, -4.74, -4.85; **HRMS**: Exact mass calcd for [(M+Na⁺)]: 573.2787; found: 573.2796 (ESI).

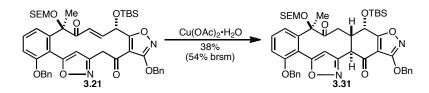
(*R*)-3-(3-(benzyloxy)-2-(3-((*R*)-2-(3-(benzyloxy)-5-((*S*)-1-(*tert*-butyldimethylsilyloxy) -2-hydroxyethyl)-isoxazol-4-yl)-2-(triethylsilyloxy)ethyl)isoxazol-5-yl)phenyl)-1bromo-3-((2-(trimethylsilyl)ethoxy)me-thoxy)butan-2-one (3.29). To a solution of 2.9 (1.54 g, 3.06 mmol, 3.06 equiv.) and 3.23 (549 mg, 1.00 mmol, 1.00 equiv.) in CHCl₃ (20 mL, 0.050 M) at room temperature under an atmosphere of nitrogen, pyridine (0.404 mL, 5.00 mmol, 5.00 equiv.) was added, followed by NCS (140 mg, 1.05 mmol, 1.05 equiv.). The reaction was stirred at room temperature for 45 minutes, upon which time DIPEA (0.342 mL, 2.00 mmol, 2.00 equiv.) in chloroform (5.0 mL, 0.2 M) was added directly to the solution over 24 h via syringe pump. The resulting orange/yellow solution

was treated with 2 additional equiv. of DIPEA (neat) and heated to 60 °C for 20 h, upon which time the reaction was concentrated *in vacuo* directly and purified via MPLC (5% \rightarrow 40% EtOAc and hexanes) affording 3.29 (430 mg, 41% yield) as a slightly yellow liquid. $R_f = 0.42$ (3:1 hexanes: EtOAc); $[\alpha]_D = -6.7$ (c 0.2.3, CHCl₃); IR (neat) 3433, 2954, 2879, 1740, 1612, 1577, 1511, 1454, 1274, 1250, 1067, 1005, 858, 837, 744, 696; ¹H **NMR** (500 MHz, C_6D_6) δ 7.34 (dd, J = 7.9, 1.4 Hz, 2H), 7.14 - 7.00 (m, 8H), 6.98 -6.90 (m, 2H), 6.52 (dd, J = 8.0, 1.4 Hz, 1H), 6.14 (s, 1H), 5.43 (t, J = 7.2 Hz, 1H), 5.33 -5.15 (m, 3H), 4.65 (s, 2H), 4.46 (q, 2H), 4.23 (q, 2H), 3.95 - 3.76 (m, 2H), 3.65 (td, J =8.9, 7.3 Hz, 1H), 3.55 (dd, J = 14.7, 7.4 Hz, 1H), 3.42 (dd, J = 14.7, 7.0 Hz, 1H), 3.37 -3.25 (m, 1H), 2.25 (t, J = 6.9, 1H), 1.68 (s, 3H), 1.06 - 0.86 (m, 18H), 0.80 (ddd, J = 8.6, 1.06)7.1, 0.9 Hz, 2H), 0.59 (q, J = 8.0 Hz, 9H), 0.15 (d, J = 7.5 Hz, 6H), -0.03 (s, 9H); ¹³C NMR (126 MHz, C₆D₆) δ 201.83, 170.06, 168.45, 166.95, 160.55, 158.27, 142.99, 136.96, 136.56, 131.14, 128.86, 128.68, 128.42, 126.74, 121.15, 117.29, 113.56, 109.06, 107.39, 91.09, 86.17, 71.84, 70.56, 69.83, 66.39, 66.02, 64.12, 35.14, 34.38, 26.06, 24.27, 18.52, 18.24, 7.11, 5.24, -1.26, -4.40, -4.61; **HRMS**: Exact mass calcd for $[(M+Na^+)]$: 1051.3986; found: 1051.3912 (ESI).

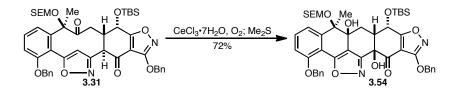
Macrocyclic-enone (3.30). To a solution of **3.29** (430 mg, 0.410 mmol, 1.00 equiv.) in wet CH_2Cl_2 (4.1 mL, 0.10 M) at room temperature exposed to air, DMP (1.04 g, 2.46

mmol, 6.00 equiv.) was added in a single portion. The reaction was stirred for 1.5 h upon which time the cloudy mixture was poured into an Erlenmeyer flask containing pH 7 phosphate buffer (0.1 M buffer, 10 mL) and $Na_2S_2O_3$ (200 mg). The reaction flask was washed three times with 10 mL portions of hexanes and this was poured into the vigor-ously stirring mixture within the Erlenmeyer flask. After 20 minutes of vigorous mixing, the reaction was extracted three times with hexanes. The combined organic extracts were washed with brine, dried with Na_2SO_4 , and concentrated *in vacuo* to yield crude aldehdye, which was immediately subjected to Reformatsky macrocyclization (*vide infra*).

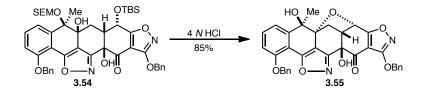
A solution of intermediate aldehyde (0.410 mmol, crude from the reaction above) in degassed THF (21 mL, 0.020 M) at -78 °C under an atmosphere of argon was added to a solution of SmI₂ (25 mL of a 0.10 M solution in THF, 6.00 equiv.) at -78 °C via cannula directly into the solution over 10 minutes. THF (4.0 mL) was then used to wash the flask, and this too was added to the SmI₂ solution. The resulting dark blue solution was stirred at -78 °C for 25 minutes, upon which time air was bubbled through a glass pipet directly into the solution at -78 °C for 10 minutes until the blue color disappeared and a yellow color persisted. A solution of sat. NaHCO₃ (20 mL) also containing Na₂S₂O₃ (1 g) was added and the reaction was allowed to warm to room temperature. The mixture was then extracted three times with CH₂Cl₂. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. The crude residue was purified via flash chromatography on silica gel (5:1 hexanes:EtOAc) affording the intermediate macrocyclic alcohol (238 mg, 66%) as a mixture of secondary carbinol diastereomers that will be dehydrated in the next step.


To the intermediate macrocyclic alcohol (238 mg, 0.245 mmol, 1.00 equiv.) in CH₂Cl₂ (4.9 mL, 0.050 M) at -78 °C under an atmosphere of nitrogen, the Martin sulfurane (4.9 mL of a 0.12 M solution in CH₂Cl₂, 2.5 equiv.) at room temperature was added along the side of the flask over 30 seconds. The reaction was allowed to warm to – 20 °C over 25 minutes, and held at this temperature for 30 minutes. The reaction was quenched via the addition of sat. NaHCO₃ (5 mL), warmed to room temperature while stirring vigorously, and extracted three times with CH_2Cl_2 . The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. The crude residue was purified via flash chromatography on silica gel (5:1 hexanes:EtOAc) affording 3.30 (203 mg, 87%) as a white foam. Yield for the three steps: 52%. $R_f = 0.40$ (3:1 hexanes:EtOAc); $[\alpha]_D = -50$ (c 2.2, CHCl₃); **IR** (neat) 2954, 2878, 1701, 1628, 1577, 1511, 1458, 1273, 1250, 1079, 1009, 837, 744; ¹**H NMR** (500 MHz, d_6 -DMSO) δ 7.59 – 7.45 (m, 3H), 7.44 – 7.32 (m, 3H), 7.32 - 7.11 (m, 7H), 6.89 (s, 1H), 6.54 (s, 1H), 6.31 (s, 1H), 5.52 - 5.41 (m, 1H), 5.42 - 5.30 (m, 2H), 5.19 - 5.00 (m, 2H), 5.01 - 4.85 (m, 1H), 4.65 (dd, J = 61.4, 7.4 Hz, 2H), 3.71 - 3.58 (m, 1H), 3.53 - 3.36 (m, 2H), 3.00 (d, J = 12.7 Hz, 1H), 1.65 (s, 3H), 1.04 - 0.76 (m, 17H), 0.71 - 0.54 (m, 9H), 0.05 (d, J = 9.2 Hz, 6H), -0.02 (s, 9H); ^{13}C NMR (126 MHz, d₆-DMSO) δ 200.04, 169.75, 166.43, 165.02, 157.65, 142.19, 136.69, 136.12, 130.86, 128.32, 128.28, 128.20, 128.06, 127.53, 127.47, 126.61, 126.46, 122.76, 120.48, 117.17, 113.65, 109.82, 106.49, 89.75, 83.83, 70.95, 69.37, 67.89, 64.83, 63.14, 32.73, 25.56, 25.44, 25.37, 22.69, 17.73, 17.50, 6.55, 6.51, 4.32, 4.23, -1.46, -1.48, -4.52, -5.14; **HRMS**: Exact mass calcd for $[(M+H^+)]$: 953.4618; found: 953.4622 (ESI).

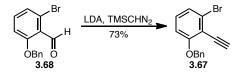
Elaborated macrocycle (3.21). To a solution of 3.30 (490 mg, 0.514 mmol, 1.00 equiv.) in methanol (10 mL, 0.050 M) and CH_2Cl_2 (2.0 mL, 0.26 M) at 0 °C under an atmosphere of nitrogen, CSA (12 mg, 0.051 mmol, 0.10 equiv.) was added in a single portion. The resulting solution was stirred for 3 h, upon which time the reaction was quenched with sat. NaHCO₃ and warmed to room temperature. The resulting mixture was extracted three times with CH_2Cl_2 , and the combined organic extracts were dried with Na₂SO₄, and concentrated *in vacuo*. The crude residue was purified via flash chromatography on silica gel (4:1 hexanes:EtOAc) affording the intermediate alcohol (380 mg, 88%) as a colorless foam.


To a solution of the intermediate secondary carbinol (123 mg, 0.147 mmol, 1.00 equiv.) in wet CH₂Cl₂ (2.9 mL, 0.05 M) at room temperature exposed to air, DMP (374 mg, 0.882 mmol, 6.00 equiv.) was added in a single portion. The reaction was stirred for 1.5 h, upon which time the reaction was poured into an Erlenmeyer flask containing sat. NaHCO₃ (20 mL) and Na₂S₂O₃ (500 mg). The original reaction flask was washed liberally with hexanes and these washings were poured into the vigorously mixing solution. After 10 minutes, the mixture was poured into a sep. funnel, the organic layer was removed, and the remaining aqueous layer was extracted two times more with hexanes. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. The crude residue was purified via flash chromatography on silica gel (4:1 hexanes:EtOAc) affording **3.21** (116 mg, 94%) as a white foam. Yield for the two steps: 83%. $R_f = 0.52$ (3:1 hex-

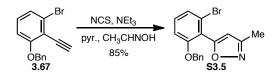
anes:EtOAc); **IR** (neat) 2953, 2930, 1695, 1595, 1505, 1453, 1365, 1272, 1250, 1121, 1068, 1009, 838, 696; $[\alpha]_{D} = -129$ (*c* 3.2, CHCl₃); ¹H NMR (500 MHz, *d*₆-DMSO) δ 7.60 – 7.55 (m, 2H), 7.51 (t, *J* = 8.2 Hz, 1H), 7.46 – 7.37 (m, 3H), 7.34 – 7.21 (m, 7H), 6.67 (d, *J* = 15.7 Hz, 1H), 6.42 – 6.04 (m, 2H), 5.84 (d, *J* = 8.1, 1H), 5.43 (dd, *J* = 11.9, 2H), 5.11 (dd, *J* = 12.9 Hz, 2H), 4.70 – 4.42 (m, 2H), 4.31 (d, *J* = 12.0 Hz, 1H), 3.83 (d, *J* = 12.1 Hz, 1H), 3.63 (td, *J* = 9.6, 7.3 Hz, 1H), 3.43 (td, *J* = 9.6, 7.2 Hz, 1H), 1.61 (s, 3H), 0.88 (s, 9H), 0.80 (ddd, *J* = 9.1, 6.8, 1.6 Hz, 2H), 0.08 (s, 6H), -0.00 (s, 9H); ¹³C NMR (126 MHz, *d*₆-DMSO) δ 199.31, 189.39, 174.99, 167.93, 166.40, 157.58, 155.46, 142.32, 141.33, 136.65, 135.30, 131.09, 128.51, 128.37, 128.29, 128.21, 128.10, 127.76, 127.62, 126.77, 122.83, 120.92, 116.33, 113.65, 107.84, 89.55, 83.99, 72.22, 69.52, 68.65, 64.95, 25.44, 22.33, 17.88, 17.51, -1.45, -4.98, -5.21; HRMS: Exact mass calcd for [(M+H⁺)]: 837.3597; found: 837.3566 (ESI).


Transannular Michael product 3.31. To **3.21** (55 mg, 0.066 mmol, 1.0 equiv.) in degassed methanol (3.3 mL, 0.02 M) at room temperature under an argon atmosphere, $Cu(OAc)_2 \cdot H_2O$ (66 mg, 0.33 mmol, 5.0 equiv.) was added in a single portion. The reaction was immediately sealed, and allowed to stir at room temperature for 22 h. The blue/green solution was quenched with sat. NaHCO₃ and extracted three times with CH_2Cl_2 . The combined organic extracts were dried with Na₂SO₄ and concentrated *in*

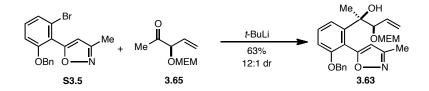
vacuo. The crude residue was purified via flash chromatography on silica gel (5:1 hexanes: EtOAc \rightarrow 4:1 hexanes: EtOAc \rightarrow 3:1 hexanes: EtOAc) affording starting material 3.21 (16 mg, 29%) and Michael product **3.31**. The Michael product was further purified via HPLC (0.4% *i*-PrOH and hexanes) affording **3.21** (21 mg, 38%, 54% brsm) as a colorless oil. $R_f = 0.52$ (3:1 hexanes: EtOAc); $[\alpha]_D = +9.7$ (c 0.18, CHCl₃); IR (neat) 2882, 2852, 1709, 1624, 1574, 1511, 1472, 1362, 1262, 1118, 1000, 836, 780, 739, 696; ¹H NMR (600 MHz, C6D6) δ 7.50 (dd, J = 8.0, 0.8 Hz, 1H), 7.41 – 7.34 (m, 2H), 7.31 – 7.20 (m, 2H), 7.14 - 7.07 (m, 2H), 7.04 (ddt, J = 15.2, 8.2, 1.7 Hz, 4H), 6.99 - 6.93 (m, 1H), 6.52(dd, J = 8.3, 0.8 Hz, 1H), 5.79 (s, 1H), 5.21 (m, 2H), 4.86 (d, J = 6.5 Hz, 1H), 4.73 (dd, J)= 14.6, 6.2 Hz, 3H), 4.00 (d, J = 2.7 Hz, 1H), 3.88 (d, J = 10.2 Hz, 1H), 3.75 (td, J = 9.3, 7.1 Hz, 1H), 3.59 (td, J = 9.2, 7.0 Hz, 1H), 3.17 – 2.94 (m, 2H), 2.13 (d, J = 15.9 Hz, 1H), 1.74 (s, 3H), 0.92 (ddd, J = 9.3, 6.8, 2.4 Hz, 2H), 0.81 (s, 9H), 0.25 - -0.20 (m, 15H); ¹³C NMR (126 MHz, C6D6) δ 195.01, 184.09, 179.40, 170.55, 168.32, 158.91, 157.15, 150.15, 136.85, 135.73, 132.12, 128.88, 128.75, 128.58, 128.54, 127.13, 120.88, 116.47, 112.39, 111.74, 107.48, 92.44, 83.38, 72.43, 70.79, 66.61, 65.89, 49.84, 47.55, 42.24, 30.09, 25.83, 18.55, 18.32, -1.27, -1.33, -4.69, -5.01; **HRMS**: Exact mass calcd for [(M+Na⁺)]: 859.3416; found: 859.3416 (ESI).


Linear pentacycle 3.54. To 3.31 (11 mg, 0.013 mmol, 1.0 equiv.) at room temperature in isopropanol (1.3 mL, 0.010 M), O_2 (from a balloon) was bubbled through the solution for 10 minutes. Next, CeCl₃•7H₂O (2.4 mg, 6.5 µmol, 0.50 equiv.) was added to the solution and the reaction was stirred vigorously while O_2 was continuously bubbled through the solution (a 21 gauge needle that was slightly blocked to reduce flow was used as an outlet). The reaction was stirred for 1 hour, during which time the solution became slightly yellow. Next, the reaction was immediately transferred to a silica gel column pre-equilibrated with EtOAc, and the reaction was passed through the column with 25 mL of EtOAc. The resulting solution was concentrated *in vacuo*.

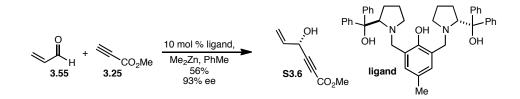
The crude mixture was dissolved in CH₂Cl₂ (1.3 mL, 0.010 M) at room temperature under an atmosphere of nitrogen, and dimethyl sulfide (three drops) was added directly into the solution. The resulting clear solution was stirred at room temperature for 15 minutes, upon which time the reaction was concentrated directly *in vacuo*. The crude material was purified via column chromatography on silica gel (3:1 hexanes:EtOAc), affording **3.54** (8.0 mg, 72%) as a white solid. $\mathbf{R}_f = 0.07$ (3:1 hexanes:EtOAc); $[\alpha]_D = +52.6$ (*c* 0.095, CHCl₃); **IR** (neat) 3379, 2956, 1708, 1655, 1613, 1573, 1512, 1476, 1371, 1260, 1023, 839, 687; ¹H NMR (500 MHz, C6D6) δ 7.47 – 7.41 (m, 2H), 7.33 – 7.27 (m, 2H), 7.23 – 7.18 (m, 3H), 7.10 – 6.96 (m, 5H), 6.47 (d, *J* = 8.2 Hz, 1H), 5.84 (d, *J* = 5.8 Hz, 1H), 5.15 (m, 2H), 4.92 – 4.71 (m, 3H), 4.68 (d, *J* = 7.3 Hz, 1H), 4.38 (s, 1H), 3.83 (ddd, *J* = 12.5, 5.8, 2.0 Hz, 1H), 3.79 – 3.62 (m, 3H), 2.61 (dd, *J* = 13.7, 2.1 Hz, 1H), 1.87 (t, J = 13.2 Hz, 1H), 1.00 (s, 9H), 0.97 – 0.91 (m, 2H), 0.86 (s, 3H), 0.15 (d, J = 28.1 Hz, 6H), -0.04 (s, 9H); ¹³C NMR (126 MHz, C₆D₆) δ 184.38, 180.10, 163.77, 158.48, 155.22, 146.93, 137.15, 135.65, 131.68, 128.86, 128.68, 128.60, 128.58, 126.99, 119.53, 116.32, 114.03, 112.49, 104.38, 91.21, 86.07, 78.56, 72.52, 70.48, 70.37, 66.40, 64.77, 48.21, 29.52, 26.06, 23.51, 18.64, 18.32, -1.35; **HRMS**: Exact mass calcd for [(M-H₂O+H⁺)]: 835.3441; found: 835.3391(ESI).


Polycycle 3.55. To a solution of **3.54** (8.0 mg, 0.0094 mmol, 1.0 equiv.) in THF (0.50 mL, 0.019M) at room temperature exposed to air, 4 *N* HCl (0.5 mL, 0.019 M) was added rapidly. The reaction was then sealed and stirred at room temperature for 24 h. The resulting slightly yellow solution was quenched with sat. NaHCO₃ (caution, gas evolution) and extracted three times with CH₂Cl₂. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. The crude residue was purified via flash chromatography on silica gel (3:2 EtOAc:hexanes) affording **3.55** (4.7 mg, 85%) as a white solid. $R_f = 0.19$ (1:1 hexanes:EtOAc); $[\alpha]_D = -240$ (*c* 0.31, CHCl₃); **IR** (neat) 3426, 2925, 1715, 1668, 1619, 1572, 1514, 1453, 1288, 1027, 750; ¹H NMR (500 MHz, C₆D₆) δ 7.35 – 7.25 (m, 2H), 7.21 – 7.17 (m, 2H), 7.10 (dd, J = 8.2, 6.7 Hz, 2H), 7.07 – 6.98 (m, 4H), 6.96 (d, J = 7.8 Hz, 1H), 6.86 (t, J = 8.1 Hz, 1H), 6.44 (d, J = 8.3 Hz, 1H), 4.98 (d, J = 12.0 Hz, 1H), 4.80 (s, 1H), 4.76 – 4.66 (m, 2H), 4.60 (d, J = 12.5 Hz, 1H), 4.48 (d, J = 12.0 Hz, 1H), 4.80 (s, 1H), 4.76 – 4.66 (m, 2H), 4.60 (d, J = 12.5 Hz, 1H), 4.48 (d, J = 12.0 Hz, 1H), 4.80 (s, 1H), 4.76 – 4.66 (m, 2H), 4.60 (d, J = 12.5 Hz, 1H), 4.48 (d, J = 12.0 Hz, 1H), 4.80 (s, 1H), 4.76 – 4.66 (m, 2H), 4.60 (d, J = 12.5 Hz, 1H), 4.48 (d, J = 12.0 Hz, 1H), 4.80 (s, 1H), 4.76 – 4.66 (m, 2H), 4.60 (d, J = 12.5 Hz, 1H), 4.48 (d, J = 12.0 Hz, 1H), 4.80 (s, 1H), 4.76 – 4.66 (m, 2H), 4.60 (d, J = 12.5 Hz, 1H), 4.48 (d, J = 12.0 Hz, 1H), 4.80 (s, 1H), 4.76 – 4.66 (m, 2H), 4.60 (d, J = 12.5 Hz, 1H), 4.48 (d, J = 12.0 Hz, 1H), 4.80 (s, 1H), 4.76 – 4.66 (m, 2H), 4.60 (d, J = 12.5 Hz, 1H), 4.48 (d, J = 12.0 Hz, 1H), 4.80 (s, 1H), 4.76 – 4.66 (m, 2H), 4.60 (d, J = 12.5 Hz, 1H), 4.48 (d, J = 12.0 Hz, 1H), 4.80 (s, 1H), 4.76 – 4.66 (m, 2H), 4.60 (d, J = 12.5 Hz, 1H), 4.48 (d, J = 12.0 Hz, 1H), 4.80 (s, 1H), 4.76 – 4.66 (m, 2H), 4.60 (s, J = 12.5 Hz, 1H), 4.48 (d, J = 12.0 Hz, 1H), 4.80 (s, 1H),

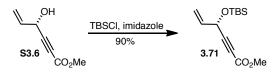
6.0 Hz, 1H), 2.74 (t, *J* = 5.5 Hz, 1H), 2.54 (d, *J* = 12.4 Hz, 1H), 2.06 (dd, *J* = 12.4, 5.0 Hz, 1H), 1.66 (s, 3H), 1.12 (s, 1H); ¹³C NMR (126 MHz, C₆D₆) δ 187.17, 176.80, 167.55, 161.86, 159.94, 155.19, 144.08, 136.80, 135.41, 131.62, 128.80, 128.66, 128.58, 128.54, 126.89, 119.46, 116.10, 113.62, 113.53, 105.80, 82.35, 74.73, 73.27, 72.51, 70.51, 69.40, 48.77, 33.98, 20.08; **HRMS**: Exact mass calcd for [(M+H⁺)]: 591.1762; found: 591.1754 (ESI).


1-(benzyloxy)-3-bromo-2-ethynylbenzene (3.67). A flame-dried 3-necked 1 L flask equipped with a mechanical stirrer under an atmosphere of argon was charged with THF (320 mL, 0.30 M), followed by addition of diisopropylamine (16 mL, 0.114 mol, 1.20 equiv.) rapidly via syringe. This solution was cooled to 0 °C, and *n*-BuLi (38.2 mL of a 2.61 M solution in hexane, 0.100 mol, 1.05 equiv.) was added rapidly while keeping the internal temperature of the solution < 10 °C. After stirring for 25 minutes, the solution was cooled to -78 °C and TMSCHN₂ (50 mL of a 2.0 M solution in hexane, 0.100 mol, 1.05 equiv.) was added rapidly directly into the solution via syringe. The reaction was allowed to stir for 30 minutes at -78 °C, upon which time **3.68** (27.7 g, 95.0 mmol, 1.00 equiv.) in anhydrous THF (190 mL, 0.5 M) at -78 °C under nitrogen was added to the reaction mixture directly into the solution via cannula over 10 minutes. The resulting slightly orange solution was stirred for 10 minutes at -78 °C, upon which time it was warmed to room temperature by removal of the cooling bath. The reaction was stirred for

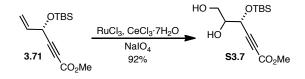
2.5 h, during which time the solution turned red/orange and slow bubbling was observed. The resulting clear orange solution was quenched with sat. NH₄Cl and stirred for 2 h, upon which time the mixture was extracted three times with hexanes. The combined organic extracts were washed once with brine, dried with Na₂SO₄, and concentrated *in vacuo*. The crude residue was purified via triteration with hexanes affording **3.67** (20.0 g, 73%) as a white powder that was homogeneous by NMR and TLC. $R_f = 0.62$ (5:1 hexanes:EtOAc); **MP** = 54 – 56 °C; **IR** (neat) 3288, 1583, 1562, 1438, 1380, 1269, 1024, 871; ¹**H NMR** (500 MHz, CDCl₃) δ 7.45 (d, J = 7.6 Hz, 2H), 7.38 (t, J = 7.5 Hz, 2H), 7.32 (t, J = 7.3 Hz, 1H), 7.20 (d, J = 8.1 Hz, 1H), 7.10 (t, J = 8.2 Hz, 1H), 6.86 (d, J = 8.3 Hz, 1H), 5.19 (s, 2H), 3.63 (s, 1H); ¹³**C NMR** (126 MHz, CDCl₃) δ 161.22, 136.46, 130.26, 128.74, 128.10, 127.16, 126.98, 125.03, 114.81, 111.43, 86.41, 78.53, 70.90; **HRMS**: Exact mass calcd for [(M+H⁺)]: 287.0066; found: 287.0072 (ESI).


5-(2-(benzyloxy)-6-bromophenyl)-3-methylisoxazole (S3.5). To a solution of acetaldoxime (0.424 mL, 6.96 mmol, 4.00 equiv.) in CH_2Cl_2 (8.5 mL, 0.82 M) at room temperature under an atmosphere of nitrogen, pyridine (0.014 mL, 0.17 mmol, 0.10 equiv.) was added. To this solution, NCS (929 mg, 6.96 mmol, 4.00 equiv.) was added in a single portion, and the resulting mixture was stirred for 5 minutes. This solution was then drawn into a gas-tight syringe and added to a mixture of **3.67** (500 mg, 1.74 mmol, 1.00 equiv.) in chloroform (17 mL, 0.10 M) at 60 °C over 24 h via a Teflon® tube connecting the syringe

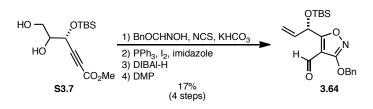
to the flask. The reaction was poured into a separatory funnel containing water, and extracted three times with CH₂Cl₂. The combined organic extracts were washed once with brine, dried with Na₂SO₄, and concentrated *in vacuo*. The crude residue was purified via flash chromatography on silica gel (6:1 hexanes:EtOAc \rightarrow 5:1 hexanes:EtOAc) affording **S3.5** (508 mg, 85%) as a slightly yellow solid. $R_f = 0.56$ (5:1 hexanes:EtOAc); **IR** (neat) 3065, 3033, 2930, 1622, 1567, 1444, 1410, 1273, 1241, 1023; ¹H NMR (500 MHz, CDCl₃) δ 7.38 – 7.31 (m, 2H), 7.32 – 7.26 (m, 3H), 7.23 (t, J = 8.2 Hz, 1H), 6.94 (d, J =8.2 Hz, 1H), 6.26 (s, 1H), 5.10 (s, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 165.77, 159.59, 158.12, 136.22, 132.07, 128.69, 128.06, 126.87, 125.62, 124.71, 119.96, 112.08, 106.49, 70.88, 11.77; **HRMS**: Exact mass calcd for [(M+H⁺)]: 344.0281; found: 344.0290 (ESI).


(2*R*,3*R*)-2-(3-(benzyloxy)-2-(3-methylisoxazol-5-yl)phenyl)-3-((2-methoxyethoxy) meth-oxy)pent-4-en-2-ol (3.63). To S3.5 (425 mg, 1.23 mmol, 1.00 equiv.) coevaporated once with benzene, Et_2O (12 mL, 0.10 M) was added, and the solution was cooled to -78 °C under an atmosphere of argon. Next, *t*-BuLi (1.41 mL of a 1.79 M solution in pentane, 2.52 mmol, 2.05 equiv.) was added dropwise over 60 seconds. The cloudy solution was then stirred for an addition 60 seconds. To this solution, 3.65 (255 mg, 1.35 mmol, 1.10 equiv.) in THF (12 mL, 0.11 M) at room temperature was added over 3 minutes directly into the solution via syringe. The resulting clear yellow solution

was stirred at -78 °C for 25 minutes, upon which time it was quenched with sat. NH₄Cl and warmed to room temperature. The resulting mixture was diluted with water and extracted three times with CH₂Cl₂. The combined organic extracts were dried with Na₂SO₄ and concentrated in vacuo. The crude residue was purified via MPLC (10% \rightarrow 60%) EtOAc and hexanes) affording 3.63 (350 mg, 63%) as a white foam. $R_f = 0.36$ (1:1 hexanes: EtOAc); $[\alpha]_{D} = -37$ (c 0.70, CHCl₃); **IR** (neat) 3448, 2981, 2933, 2887, 1612, 1572, 1452, 1413, 1265, 1106, 1027; ¹**H NMR** (500 MHz, CDCl₃) δ 7.38 (t, *J* = 8.1 Hz, 2H), 7.32 (dd, J = 8.0, 6.4 Hz, 2H), 7.28 (t, J = 3.6 Hz, 1H), 7.26 – 7.19 (m, 3H), 6.90 (d, J =8.1 Hz, 1H), 6.23 (s, 1H), 5.84 – 5.70 (m, 1H), 5.34 (dd, J = 10.3, 1.8 Hz, 1H), 5.22 (dd, J = 17.4, 1.7 Hz, 1H), 5.04 (s, 2H), 4.69 (d, J = 7.0 Hz, 1H), 4.52 (d, J = 7.0 Hz, 1H), 4.39 (d, J = 8.2 Hz, 1H), 3.30 (s, 3H), 3.29 - 3.16 (m, 2H), 3.07 - 2.95 (m, 1H), 2.38 (s, 3H), 3.29 - 3.16 (m, 2H), 3.07 - 2.95 (m, 1H), 2.38 (s, 3H), 3.29 - 3.16 (m, 2H), 3.07 - 2.95 (m, 1H), 2.38 (s, 3H), 3.29 - 3.16 (m, 2H), 3.07 - 2.95 (m, 1H), 2.38 (s, 3H), 3.29 - 3.16 (m, 2H), 3.07 - 2.95 (m, 1H), 2.38 (s, 3H), 3.29 - 3.16 (m, 2H), 3.07 - 2.95 (m 3H), 1.34 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 167.84, 159.47, 157.80, 148.51, 136.84, 133.38, 130.65, 128.55, 127.81, 126.67, 121.16, 120.00, 116.67, 111.35, 106.50, 92.57, 83.48, 77.25, 71.62, 70.59, 67.05, 59.03, 26.12, 11.75; HRMS: Exact mass calcd for [(M+H⁺)]: 454.2224; found: 454.2230 (ESI).


(*R*)-methyl 4-hydroxyhex-5-en-2-ynoate (S3.6). To a solution of *R*-*R*-bis-prophenol ligand (2.00 g, 3.13 mmol, 0.100 equiv.) in toluene (160 mL, 0.20 M wrt aldehyde 3.55) at room temperature under an atmosphere of nitrogen, methyl propiolate 3.25 (8.35 mL,

93.9 mmol, 3.00 equiv.) was added rapidly via syringe followed by acrolein (2.09 mL, 31.3 mmol, 1.00 equiv.). Next, dimethylzinc (78 mL of a 1.2 M solution in toluene, 93.9 mmol, 3.00 equiv.) was added rapidly via syringe to the solution (caution, gas evolution). The resulting slightly yellow solution was stirred for ten minutes with an outlet needle allowing the gas to escape. Next, the reaction was sealed, transferred to a 4 °C bath and stirred for 48 h. The reaction was then cooled to 0 °C, carefully quenched via addition of sat. NH_4Cl (caution, gas evolution) and extracted three times with Et₂O. The combined organic extracts were washed once with brine, dried with Na₂SO₄ and concentrate in *vacuo*. The crude material was purified via flash chromatography on silica gel (hexanes \rightarrow 8:1 hexanes: EtoAc \rightarrow 4:1 hexanes: EtOAc) affording **S3.6** (2.45 g, 56% yield, 93% ee) as a slightly yellow liquid. $R_f = 0.42$ (4:1 hexanes:EtOAc); $[\alpha]_D = +33$ (c 0.75, CHCl₃); IR (neat) 3404, 2344, 2239, 1719, 1437, 1254, 1124, 1027, 987, 952, 892; ¹H NMR (500 MHz, C_6D_6) δ 5.97 (ddd, J = 17.1, 10.2, 5.3 Hz, 1H), 5.52 (dd, J = 17.0, 1.6 Hz, 1H), 5.40 - 5.27 (m, 1H), 5.01 (ddd, J = 8.5, 4.2, 1.5 Hz, 1H), 3.80 (s, 3H), 1.98 (d, J = 6.9Hz, 1H); ¹³C NMR (126 MHz, C₆D₆) δ 153.80, 134.90, 118.15, 85.70, 77.51, 62.94, 53.04. HRMS could not obtain mass via ESI.


(*R*)-methyl 4-((*tert*-butyldimethylsilyl)oxy)hex-5-en-2-ynoate (3.71). To a solution of S3.6 (2.58 g, 18.1 mmol, 1.00 equiv.) in DMF (37 mL, 0.50 M) at 0 °C under an atmosphere of nitrogen, imidazole (1.97 g, 29.0 mmol, 1.6 equiv.) was added in a single portion,

followed TBSCI (3.55 g, 23.5 mmol, 1.30 equiv.) also in a single portion. The reaction was stirred for 3 h, upon which time it was quenched with sat. NaHCO₃ and extracted three times with hexanes. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. The crude residue was purified via flash chromatography (20:1 hexanes:EtOAc) affording **3.71** (4.15 g, 90%) as a colorless oil. $\mathbf{R}_f = 0.69$ (4:1 hexanes:EtOAc); $[\alpha]_D = -57$ (*c* 1.45, CHCl₃); **IR** (neat) 2956, 2931, 2859, 2239, 1721, 1436, 1253, 1082, 1033, 839; ¹H NMR (500 MHz, C₆D₆) δ 5.89 (ddd, *J* = 17.0, 10.1, 5.0 Hz, 1H), 5.44 (dt, *J* = 16.9, 1.3 Hz, 1H), 5.22 (dt, *J* = 10.1, 1.3 Hz, 1H), 5.00 (dt, *J* = 5.0, 1.6 Hz, 1H), 3.78 (s, 3H), 0.92 (s, 9H), 0.15 (d, *J* = 10.9 Hz, 6H); ¹³C NMR (126 MHz, C₆D₆) δ 153.77, 135.80, 116.33, 86.55, 76.65, 63.43, 52.72, 25.74, 18.29, -4.61, -4.91; **HRMS**: Exact mass calcd for [(M+Na⁺)]: 277.1230; found: 277.1225 (ESI).

(4*S*)-methyl 4-((*tert*-butyldimethylsilyl)oxy)-5,6-dihydroxyhex-2-ynoate (S3.7). To a 100 mL flask, NaIO₄ (4.90 g, 22.8 mmol, 1.50 equiv.) was added, followed by water (7.6 mL, 2.0 M) and CeCl₃•7H₂O (566 mg, 0.387 mmol, 10 mol %). A heat gun was used to heat the cloudy suspension until it became a persistent yellow mixture (approximately 30 seconds). This suspension was cooled to 0 °C, and acetonitrile (23 mL, 0.66 M) and EtOAc (19 mL, 0.80 M) were added sequentially. Next, RuCl₃ (16 mg, 0.076 mmol, 0.5 mol %) in water (1.0 mL) was added rapidly. After 60 seconds of stirring, **3.71** (3.87 g, 15.2 mmol, 1.00 equiv.) in EtOAc (8.0 mL, 1.9 M) was added via syringe. The reaction

was stirred vigorously while open to air at 0 °C for 15 minutes, after which time the reaction was filtered through a plug of cotton. The filtrate was diluted with brine, and shaken in a separatory funnel. The resulting aqueous layer (yellow) was removed, and the remaining organic layer was washed with sat. Na₂S₂O₃, dried with Na₂SO₄, and concentrated in vacuo. The crude residue was purified via flash chromatography (1:1 hexanes: EtOAc) affording the white foam S3.7 (4.03 g, 92%) as a 1.6:1 ratio of diastereomers. The diastereomers could be further separated via HPLC (2.5% i-PrOH and hexanes). The major diastereomer could be completely separated and was therefore the compound that was characterized: $\mathbf{R}_{f} = 0.64$ (1:1 hexanes:EtOAc); $[\alpha]_{D} = -60$ (c 0.65, CHCl₃); **IR** (neat) 3418, 2956, 2931, 2859, 2240, 1721, 1472, 1436, 1254, 1105, 1061, 840; ¹**H NMR** (500 MHz, C_6D_6) δ 4.61 (d, J = 4.7 Hz, 1H), 3.97 – 3.86 (m, 1H), 3.84 – 3.72 (m, 4H), 2.68 (d, J = 6.6 Hz, 1 H), 2.05 (s, 1H), 0.92 (s, 9H), 0.18 (d, J = 18.0 Hz, 1 Hz)6H); ¹³C NMR (126 MHz, C_6D_6) δ 153.64, 85.74, 77.92, 73.65, 65.53, 62.86, 53.02, 25.77, 18.21, -4.57, -5.15; **HRMS**: Exact mass calcd for [(M+Na⁺)]: 311.1285; found: 311.1289 (ESI).

(S)-3-(benzyloxy)-5-(1-((*tert*-butyldimethylsilyl)oxy)allyl)isoxazole-4-carbaldehyde
(3.64). To a solution of S3.7 (500 mg, 1.73 mmol, 1.00 equiv.) in EtOAc (17 mL, 0.10 M) at room temperature exposed to air, BnOCHNOH (131 mg, 0.865 mmol, 0.500

equiv.) was added, followed by the addition of KHCO₃ (1.73 g, 17.3 mmol, 10.0 equiv.) and NCS (116 mg, 0.865 mmol, 1.00 equiv.). The flask was fitted with a reflux condensor, and the suspension was heated to 48 °C under an atmosphere of nitrogen for 12 h. The reaction was treated with an additional 0.500 equiv. of oxime and NCS every 12 h for a total 10 additions or 5 equiv. of each. The resulting cloudy and slightly yellow mixture was poured into a separatory funnel containing water and extracted three times with CH₂Cl₂. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. This crude material was purified via MPLC (10% \rightarrow 50% EtOAc and hexanes) affording the intermediate isoxazole (350 mg, 46%) as a mixture of secondary carbinol diastereomers.

The intermediate isoxazole (680 mg, 1.55 mmol, 1.00 equiv.) in THF (15.5 mL, 0.10 M) at room temperature exposed to air was treated with PPh₃ (1.22 g, 4.65 mmol, 3.00 equiv.). Next, imidazole (633 mg, 9.30 mmol, 6.00 equiv.) was added, followed by I₂ (1.18 g, 4.65 mmol, 3.00 equiv.). The reaction was sealed and heated to 50 °C for 3 h upon which time the brown solution was poured into a separatory funnel containing sat. NaHSO₃ and the mixture was extracted three times with hexanes. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. The resulting crude material was purified via flash chromatography on silica gel (20:1 hexanes : EtOAc) affording the intermediate ester (310 mg, 50%) as a colorless oil.

The intermediate ester (310 mg, 0.768 mmol, 1.00 equiv.) was dissolved in toluene (10 mL, 0.08 M) and cooled to -78 °C under an atmosphere of nitrogen. Next, DIBA1-H (2.3 mL of a 1.0 M solution in toluene, 2.30 mmol, 3.00 equiv.) was added along the side

of the flask over 10 seconds. The reaction was then stirred at -78 °C for 50 minutes, upon which time a 20 wt% solution of Rochelle's salt (10 mL) was added. The reaction was then allowed to warm to room temperature, upon which time it was poured into an Erlenmeyer flask containing water and EtOAc, and stirred vigorously for 30 minutes. The resulting solution was extracted three times with EtOAc. The combined organic extracts were washed once with brine, dried with Na₂SO₄, and concentrated *in vacuo*. The resulting crude residue was purified via flash chromatography on silica gel (5:1 hexanes:EtOAc) affording intermediate primary alcohol (248 mg, 76%) as a colorless liquid.

The intermediate primary alcohol (35 mg, 0.093 mmol, 1.00 equiv.) in wet CH₂Cl₂ (3.1 mL, 0.03 M) at room temperature exposed to air was treated with DMP (47 mg, 0.11 mmol, 1.2 equiv.) and the reaction was stirred for 1 hour. The reaction was quenched via addition of a sat. NaHCO₃ and Na₂S₂O₃, diluted with hexanes, and stirred vigorously until the mixture became clear (10 minutes). The resulting biphasic mixture was poured into a separatory funnel, the hexanes layer removed, and the remaining aqueous layer was extracted twice more with hexanes. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. Aldehyde **3.64** was used without any further purification (35 mg, quant.). Yield for the 4 steps: 17%. **R**_f = 0.75 (6:1 hexanes:EtOAc); $[\alpha]_D = -52$ (*c* 0.75, CHCl₃); **IR** (neat) 2955, 2930, 2858, 1693, 1605, 1508, 1463, 1363, 1255, 1066, 939, 839; ¹**H** NMR (500 MHz, C₆D₆) δ 9.76 (s, 1H), 7.20 – 7.16 (m, 2H), 7.10 – 6.98 (m, 3H), 5.89 (ddd, *J* = 16.8, 10.1, 6.0 Hz, 1H), 5.84 – 5.80 (m, 1H), 5.41 (dt, *J* = 16.8, 1.3 Hz, 1H), 5.06 (d, *J* = 1.1 Hz, 2H), 4.96 (dt, *J* = 10.0, 1.3 Hz, 1H), 0.89 (s, 9H), -0.01 (d, *J* = 8.3 Hz, 6H); ¹³**C** NMR (126 MHz, C₆D₆) δ 182.53, 178.15, 169.88, 135.78, 135.61, 128.75, 128.61, 128.35, 117.34, 107.49, 72.32, 69.63, 25.82, 18.39, -4.92, -5.05; **HRMS**: Exact mass calcd for [(M+Na⁺)]: 396.1602; found: 396.1604 (ESI).

B. Computational Methods

Molecular Mechanics. All molecular mechanics calculations were performed using Spartan 2008, v. 1.1.2 (Wavefunction, Inc., Irvine, CA, USA), using the molecular mechanics MM2 force field. To generate an initial subset of reasonable conformers, a conformer distribution calculation was performed, and the 100 structures of lowest energy were documented. This procedure was performed at least three times with three different starting conformers, generating a total of 300 conformers for each macrocyclic enolate. A subset of these conformers was then further optimized via DFT.

Density Functional Theory. All DFT calculations were performed using Gaussian 09 (Revision A.02)¹⁴⁴ on the Odyssey Cluster at Harvard University. Each starting structure, already a local minimum with respect to the MM PES, was re-optimized with the B3LYP hybrid functional¹⁴⁵ with the 6-31G* (for H, C, O, and N) and MDF10 (for Cu) basis sets. Both restricted and unrestricted B3LYP calculations were performed with macrocycle **2.3**, however no major discrepancies were observed between the energy values. For

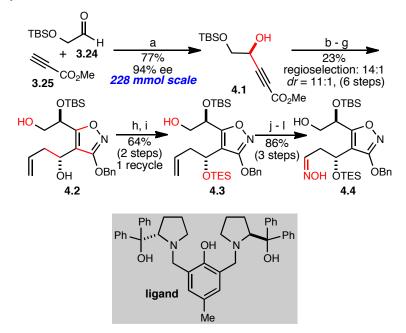
⁴⁴ Gaussian 09, Revision A.02: Frisch, M. J.; Trucks. G. W.; Schlegel, H. B.; Scuseria G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian Inc., Wallingford, CT, **2009**.

this reason, RB3LYP was used preferentially. The SMD implicit solvation model¹⁴⁶ was used in all cases with methanol as the specified solvent.

Enolate Chlorination. Enolate chlorination utilized the optimized enolate and chlorine geometries listed in Appendix 4. Starting with a C12a-Cl₂ distance of 3.5 Å on either side of the enolate, the distance was iteratively contracted at a pace of 0.1 Å until a C12a-Cl₂ distance of 2.1 Å was achieved. During this scan, the Cl-Cl bond distance increased as is expected during a bond-forming/bond-breaking event. Scans were conducted using B3LYP/6-31g(d). All energy values are reported as electronic energy [E(RB+HF-LYP)].

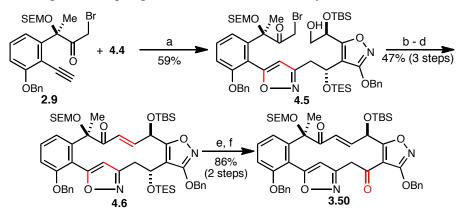
 ¹⁴⁵ (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652. (b) Stephens, P. J.; Devlin, F. J.; Chablowski, C. F.; Frisch, M. J. J. Chem. Phys. 1994, 98, 11623-11627.

¹⁴⁶ Marenich, A. V.; Cramer. C. J.; Truhlar, D. G. J. Phys. Chem. B. 2009, 113, 6378-6396.


Chapter 4

Execution of a Transannular Cascade

I. Synthesis of a New Macrocyclic Diastereomer


With the synthesis plan now modified to incorporate a new macrocyclic diastereomer, we embarked upon the construction of the requisite eastern fragment **4.4** (Scheme 4.1). Simply switching enantiomers of the bis-prophenol ligand used in the initial asymmetric zinc acetylide addition allowed us to synthesize **4.1** in an analogous manner to that discussed in Scheme 3.5. Notably, this reaction was scaled to 228 mmol of starting aldehyde in a single batch without a decrease in ee or yield. Subsequent elaboration to **4.4** was performed in a similarly analogous manner to the previous fragment. However, the protecting group manipulation required to convert **4.2** to **4.3** was improved significantly via the implementation of improved conditions for selective silyl deprotection. Under optimized conditions employing a THF/AcOH/H₂O solvent system, the efficiency of primary TES deprotection was improved to a yield of 76% with one recycle. Subsequent elaboration to oxime **4.4** was uneventful.

Scheme 4.1 Synthesis of oxime 4.4.

Reagents and conditions: (a) Me₂Zn, 9 mol % **ligand**, PhMe, -10 °C; 77%, 94% ee; (b) TBSCI, imidazole, DMF, 0 °C; (c) NCS, KHCO₃, BnOCHNOH, EtOAc, 48 °C; (d) DIBAI-H, toluene, -78 °C; (e) SO₃•pyr., DIPEA, CH₂Cl₂, DMSO, 0 °C; (f) (+)-IPC₂BallyI, Et₂O, pentane, -110 °C $\rightarrow -78$ °C; (g) HF•pyr., pyr., THF, rt; 23% (6 steps), 14:1 regioselection, *dr* = 11:1; (h) TESCI, imidazole, DMF, 0 °C; 84%; (i) AcOH, H₂O, THF, rt; 76% (1 recycle); (j) OSO₄, NMO, THF, acetone, pH 7 buffer, rt; NaIO₄, THF, pH 7 buffer, rt; H₂NOH•HCI, pyr., EtOH, 0 °C; 86% (3 steps).

Fragment coupling of **2.9** and **4.4** proceeded in good yield to produce bromoketone **4.5** (Scheme 4.2). This compound was immediately subjected to a two-step oxidation/Reformatsky sequence producing **4.6** after dehydration. Lastly, the remaining TES silyl ether was cleaved under acidic conditions, and the resulting alcohol was oxidized to produce elaborated macrocycle **3.50**. For completeness, a spectral comparison of macrocycles **2.3**, **3.21**, and **3.50** can be found in Figure 4.1.

Scheme 4.2 Fragment coupling and elaboration to macrocycle 3.50.

Reagents and conditions: (a) 1.20 equiv. **2.9**, 1.00 equiv. **4.4**, NCS, pyr.; DIPEA, CHCl₃, 40 °C to 50 °C; 59%; (b) DMP, CH₂Cl₂, rt; (c) Sml₂, THF, -78 °C; (d) Martin sulfurane, CH₂Cl₂, -78 °C to -20 °C; 69% (2 steps); (e) CSA, MeOH, CH₂Cl₂, 0 °C; (f) DMP, CH₂Cl₂, rt; 62% (3 steps).

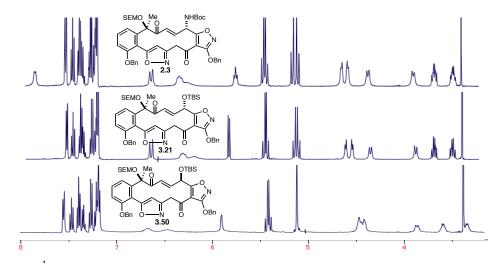
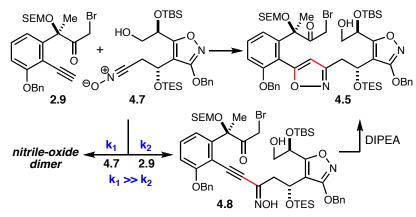



Figure 4.1 ¹H NMR spectral comparison of macrocycle 2.3 (upper), 3.21 (middle), and 3.50 (lower) in d_6 -DMSO.

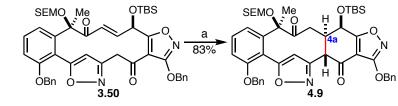
The intermolecular [3+2] cycloaddition that was used to couple fragments **2.9** and **4.4** deserves special mention, as this reaction is an improved procedure to that of the coupling of fragments **2.9** and **3.23** in the previous route. Upon study of the reaction, it be-

came apparent that the cycloaddition occurs via a stepwise process in our system.¹⁴⁷ Specifically, nitrile-oxide **4.7** is coupled with alkyne **2.9** to yield an isolable oxime intermediate (**4.8**, Scheme 4.3). However, this coupling process is slow compared to the rate of nitrile-oxide dimerization, which is a known decomposition pathway.¹⁴⁸ In order to keep the concentration of nitrile-oxide low enough such that the coupling of **2.9** and **4.7** could outcompete dimerization, we realized that heating the reaction to 40 °C while slowly generating **4.7** via syringe-pump addition of DIPEA was necessary. Extended heating of **4.8** in the presence of DIPEA then completed the cyclization process.¹⁴⁹

Scheme 4.3 Mechanistic proposal for the intramolecular [3+2] cycloaddition used to couple fragments 2.9 and 4.7.

II. Macrocyclic Stereocontrol

With the synthesis of macrocycle **3.50** complete, the transannular Michael reaction was executed using the established conditions. This macrocycle furnished the desired C4a-

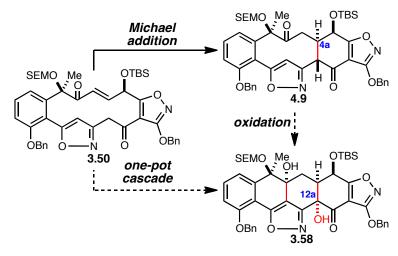

¹⁴⁷ This observation has been reported previously: Morrocchi, S.; Ricca, A.; Zanarotti, A. *Tet. Lett.* **1969**, *39*, 3329-3332.

 ¹⁴⁸ (a) Bode, J. W.; Carreira, E. M. J. Org. Chem. 2001, 66, 6410-6420. (b) Brinkmann, Y.; Madhushaw, R. J.; Jazzar, R.; Bernardinelli, G.; Kündig, E. P. Tetrahdron 2007, 63, 8413-8419. (c) Grecian, S.; Fokin, V. V. Angew. Chem. 2008, 120, 8409-8411.

¹⁴⁹ This conversion was monitored via TLC.

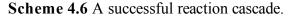
diastereomer **4.9** in excellent yield and as a sole detectable isomer (Scheme 4.4).^{150,151} The successful execution of this reaction not only validated our stereochemical hypothesis that was developed as a result of our computational and experimental data (*vide supra*), but more importantly it allowed us to proceed with the remainder of our synthesis plan toward tetracycline.

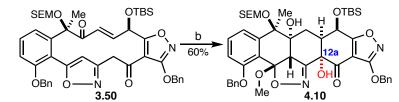
Scheme 4.4 Transannular Michael addition.



Reagents and conditions: (a) Cu(OAc)₂•H₂O, MeOH, rt; 83%.

With the first of two important stereochemical relationships now validated (C4-C4a), we decided to test whether the C4-C12a relationship would allow hydroxylation to proceed as planned. While the outright hydroxylation of Michael product **4.9** would have been completely reasonable at this juncture, we were captivated by the fact that it may be possible to produce the tetracycline core in a single reaction via a one-pot cascade (Scheme 4.5). Thus, we considered a variation of the cascade reported in Chapter 2, with the exception being the use of an alternative cerium source (other than CeCl₃•7H₂O) such that C12a-chlorination is avoided.


¹⁵⁰ The improved yield is most likely due to the decreased reaction time necessary for complete conversion (approximately 2 h vs. > 24 h).


¹⁵¹ The stereochemical assignment was based upon nOe and coupling constant data. Please see the supporting information for details.

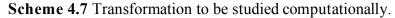
Scheme 4.5 Possible pathways towards the synthesis of 3.58 involve a two-step procedure or a potential reaction cascade.

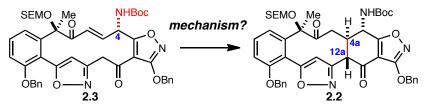
Employing optimized conditions aimed at the execution of a transannular cascade, we subjected macrocycle **3.50** to both $Cu(OAc)_2 \cdot H_2O$ and $Ce(OAc)_3 \cdot (H_2O)_n$ in methanol as solvent. In the marquee reaction of the synthesis, we were able to effect the formation of **4.10**, which represents the product of a cascade to produce two transannular bonds and 5 stereogenic centers as a sole detectable diasteromer.¹⁵² Further, we were able to reduce the loading of $Cu(OAc)_2 \cdot H_2O$ to 5 mol %, demonstrating the facile nature of the Michael addition. It was at this juncture that we experimentally established the solution to stereochemical interplay at C4, C4a, and C12a.

Reagents and conditions: 5 mol % Cu(OAc)₂•H₂O, 4 equiv. Ce(OAc)₃•(H₂O)_n, O₂, MeOH, rt; 60%.

¹⁵² A small amount of the des-methanol adduct was also obtained; however this was inconsequential since in a subsequent step the methanol is intentionally removed via treatment with acid.

III. Proposed Mechanism of the Michael Reaction

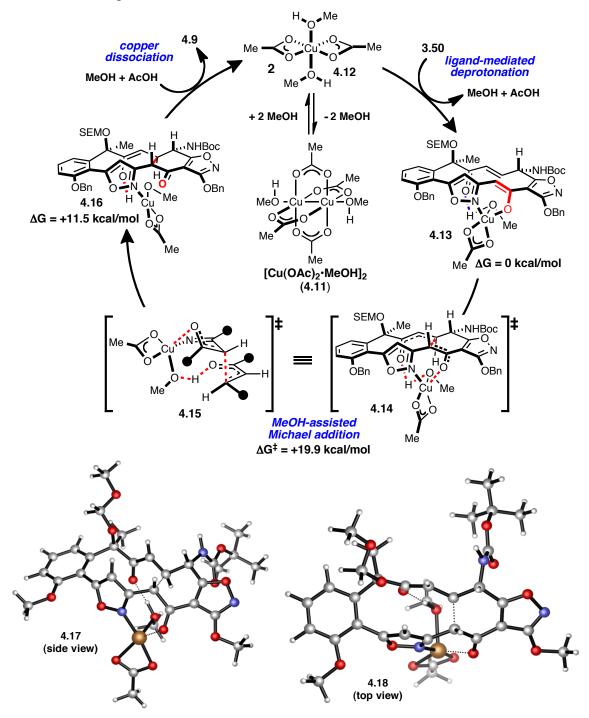

The success of the Michael reaction to produce **4.9** can be attributed to both an understanding of the conformational profile of macrocycle **3.50** and the unique aptitude for Cu(OAc)₂•H₂O to mediate the reaction. While we had thoroughly studied the former, we still did not understand the mechanism of the Michael reaction to a satisfactory degree. While Michael reactions employing copper enolates have been studied in related systems,^{153,154} we were intrigued by several unique features of the Michael reaction at hand. First, the Michael reaction required methanol as solvent. This is in contrast to literature precedent, which reports the use of benzene,^{153b,c} dichloromethane or toluene.^{153d} Second, exceptionally high selectivity for a *trans* ring fusion was observed in all of the Michael reactions conducted, regardless of the stereochemical outcome.


With these two interesting features in mind, we looked to assemble a more transparent mechanistic picture by extrapolating our previous computational results into a transition state study. To minimize computational cost, we chose to use the first generation macrocycle containing a C4-NHBoc substituent, **2.3** (Scheme 4.7).¹⁵⁵ Further, both the SEM and benzyl protecting groups were truncated for this analysis. Since the conformational profile of this macrocycle has already been computed (*vide supra*), the low energy conformer was used as the starting point for the transition state study.

 ¹⁵³ (a) Saegusa, T.; Ito, Y.; Tomita, S.; Kinoshita, H. Bull. Chem. Soc. Jpn. 1972, 45, 496-499. (b) Howells, P. N.; Kenney, J. W.; Nelson, J. H.; Henry, R. A. Inorg. Chem. 1976, 15, 124-129. (c) Eckberg, R. P.; Henry, R. A.; Cary, L. W.; Nelson, J. H. Inorg. Chem. 1977, 16, 2977-2979. (d) Pérez, E.; Moreno-Mañas, M.; Sebastián, R. M.; Vallribera, A.; Jutand, A. Eur. J. Inorg. Chem. 2010, 1013-1019.

 ¹⁵⁴ For examples of lithium enolates participating in Michael reactions, see: (a) Heathcock, C. H.; Henderson, M. A. J. Org. Chem. 1985, 50, 3019-3022. (b) Oare, D. A.; Heathcock, C. H. J. Org. Chem. 1990, 55, 157-172. (c) Kwan, E. E.; Evans, D. A. Org. Lett. 2010, 12, 5124-5127.

¹⁵⁵ This decision was due to the increased computational cost associated with silyl-based protecting groups.



The beginning of our proposed catalytic cycle involves the *in situ* formation of a copper(II) species competent for catalysis (Scheme 4.8). The reagent required to facilitate the Michael reaction, $Cu(OAc)_2 \cdot H_2O$, exists as a dimeric species with a characteristic "paddle-wheel" configuration of four bridging acetate ligands, two apical water ligands, and a metal-metal bond.¹⁵⁶ Exchange of the water ligands with methanol from solvent produces **4.11**, which may be driven to the monomer **4.12** in protic media.¹⁵⁷

Copper complex **4.12** is proposed to undergo reversible dissociation of a methanol ligand with subsequent complexation of macrocycle **3.50**. This is immediately followed by an acetate-mediated deprotonation of the macrocycle to form **4.13**. Enolate **4.13**, which was originally studied in the context of our ground-state conformational analysis of macrocyclic enolates, is considered the most likely structure to proceed through the major transition state.¹⁵⁸ Not only is the structure readily formed following enolization (implying that it is "on-cycle"), but the bridging methanol ligand confers stabilization by acting as a hydrogen bond donor to the forming enolate as the Michael reaction proceeds.

¹⁵⁶ van Niekerk, J. N.; Schoening, F. R. L. *Nature* **1953**, *171*, 36-37.

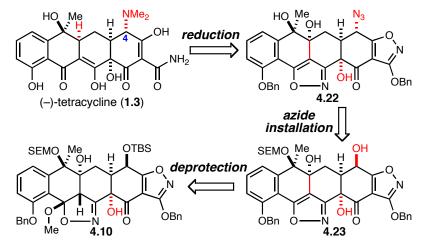
¹⁵⁷ Sharrock, P.; Melník, M. Can. J. Chem. 1985, 63, 52-56.

Scheme 4.8 Proposed mechanism for the Michael reaction.

Figure 4.2 Two views of the computed low energy transition state structure.

¹⁵⁸ It is possible that a second methanol ligand occupies the vacant apical site in **4.13**, however the presence or absence of this ligand is considered inconsequential.

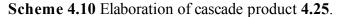
We next turned our attention to the key transition state through which the C4a-C12a carbon-carbon bond forming event occurs. The computed low energy enolate conformer **4.13** proceeds to intermediate **4.16** via an intriguing collection of atomic movements (Figure 4.2).¹⁵⁹ Specifically, as the forming C-C bond compresses the interatomic distance of C4a and C12a, this in turn imparts significant distortion to the C1carbonyl oxygen bound to copper. To alleviate this forming strain and allow the reacting partners to approach, disassociation of the carbonyl oxygen must also occur in the transition state. Collectively, these movements can be described as a "twist" involving rotation around the nitrogen-copper bond, the breaking of the oxygen-copper bond, and protonation of the forming enolate. The completed operation results in the formation of intermediate **4.16**, which represents the copper-bound enol tautomer of the Michael product. Upon the formation of **4.16**, dissociation of copper may occur with subsequent methanol and acetic acid incorporation. This re-establishes the initial copper species **4.12** and liberates the Michael product.

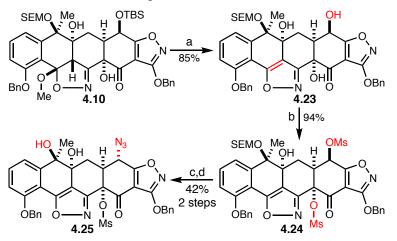

While this putative mechanism stands to chemical intuition, there are other scenarios that cannot be ruled out in the absence of experimental mechanistic data. For example, a bimetallic mechanism is conceivable since a bimetallic copper complex could enolize the C12a-position while simultaneously activating the enone acceptor. Another possibility is that a second copper complex may activate the enone independent of the copper enolate. However, these two scenarios are unlikely since methanol promotes dissociation of the initial dimeric copper(II) species **4.11**, and the reaction proceeds with

¹⁵⁹ The B3LYP hybrid functional with the 6-31G* (for H, C, O, and N) and MDF10 (for Cu) basis sets were used on truncated derivatives of the macrocycles under scrutiny. M. J. Frisch.; *et al.* Gaussian, Inc.,

only 5 mol % of $Cu(OAc)_2 \cdot H_2O$, making the probability of such reactant aggregation low. A third possibility is that the forming enolate simply deprotonates unactivated methanol from the solvent medium.

IV. Elaboration of the Cascade Product


With newfound understanding of the Michael addition, we turned our attention back to the elaboration of the cascade product **4.10** (Scheme 4.9). The most daunting task at this juncture was the installation of nitrogen at C4, which required deprotection of the C4-hydroxyl function and elaboration such that a stereospecific displacement with a nucleo-philic nitrogen source may occur. In particular, we worried that elimination of the activated carbinol would outcompete any attempt to displace the leaving group. Once nitrogen is installed and elaborated to the requisite dimethylamine, hydrogenation should yield tetracycline.



Scheme 4.9 Transformations required to elaborate 4.10 to tetracycline.

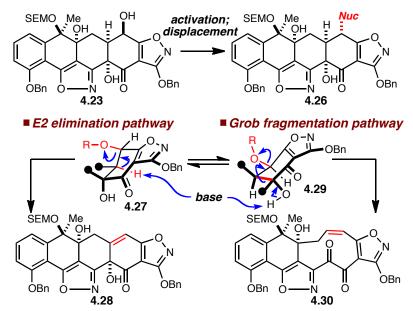
Pittsburgh, PA, 2006. Energy values correspond to computed energies obtained on model system employing truncated protecting groups. See the supporting information for complete details.

Deprotection of the TBS group immediately proved problematic. We were aware that acidic conditions would induce cyclization of the C4-hydroxyl onto the C5a position, which we used to our advantage earlier to determine the presence of a cis ring fusion (*vide supra*), however it was anticipated that judicious selection of an acid with appropriate pK_a value would suppress this undesired reaction. Unfortunately, under a wide variety of conditions, cyclization was facile. Ultimately it was determined that a variant of conditions often used in the context of selective primary TBS group deprotections, HF•pyridine at elevated temperature,¹⁶⁰ facilitated deprotection of the C4-hydroxyl without subsequent cyclization (Scheme 4.10).

Reagents and conditions: (a) 5:2:3 THF:pyr.:HF•pyr., 35 °C; 85%; (b) MsCl, pyr., CH₂Cl₂, 35 °C; 94%; (c) NaN₃, 2:1 DMF:H₂O, rt; (d) 4 *N* HCl, THF, rt; 42% (2 steps).

With secondary carbinol **4.23** in hand, we next looked to functionalize the C4hydroxyl. Due to the placement of this group on the concave face with respect to the A/B-ring *cis*-decalin, we anticipated that the reactivity might be tempered. Despite this

¹⁶⁰ Hu, T.; Takenaka, N.; Panek, J. S. J. Am. Chem. Soc. 2002, 124, 12806-12815.

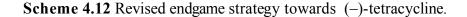

decreased reactivity, we hoped that the two tertiary carbinols at C12a and C5a would still be significantly less reactive. Unfortunately, treatment of **4.23** with diphenyl phosphorazidate under Mitsunobu¹⁶¹ or more strongly basic¹⁶² conditions yielded only trace quantities of desired azide due to elimination of the C4-hydroxyl function. Accordingly, a two-step strategy that involved pre-activation of the alcohol, followed by displacement with azide was considered.¹⁶³ Yet, treatment of **4.23** with MsCl and pyridine at elevated temperature yielded the bis-mesylated substrate **4.24**. Since mesylation of both alcohols occurs at a similar rate, attempts to differentiate one hydroxyl from another were unsuccessful. Despite this unfortunate lack of selectivity, we attempted azide displacement of mesylate **4.24**, which successfully produced **4.25** after SEM cleavage. Importantly, azide displacement only occurred when a mixed solvent system of DMF and water was employed.

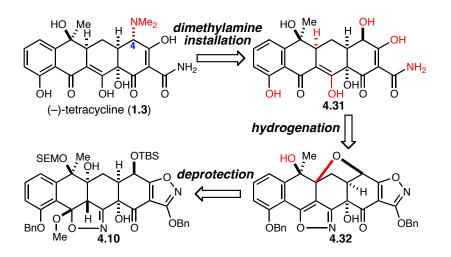
Conformational analysis of the A-ring provided an explanation for the large amount of decomposition observed with both methods used to install the C4-azide (Scheme 4.11). In conformer **4.27**, the C4a-hydrogen atom and C4-substituent are placed in ideal relative positions for an E2-elimination pathway to exist, producing **4.28** (diphenyl phosphorazidate conditions). Accessing conformer **4.29** via ring-flip places the C12a-C4a carbon-carbon bond and the C4a-substituent in ideal alignment for a Grob

¹⁶¹ (a) Murai, K.; Morishita, M.; Nakatani, R.; Kubo, O.; Fujioka, H.; Kita, Y. J. Org. Chem. 2007, 72, 8947-8949. (b) Sze But, T. Y.; Toy, P. H. Chem. Asian. J. 2007, 2, 1340-1355. (c) Ren, G.-B. Org. Lett. 2009, 11, 5638-5641. (d) Borisova, S. A.; Guppi, S. R.; Kim, H. J.; Wu, B.; Penn, J. H.; Liu, H.-W.; O'Doherty, G. A. Org. Lett. 2010, 12, 5150-5153. (e) Wohlfahrt, M.; Harms, K.; Koert, U. Angew. Chem. Int. Ed. 2011, 50, 8404-8406.

 ¹⁶² (a) Thompson, A. S.; Humphrey, G. R.; DeMarco, A. M.; Mathre, D. J.; Grabowski, E. J. J. J. Org. Chem. 1993, 58, 5886-5888. (b) Borodkin, V. S.; van Aalten, D. M. F. Tetrahedon 2010, 66, 7838-7849.

fragmentation to take place, producing 10-membered macrocycle **4.30** (mesylate displacement conditions). It should be noted that attempted displacement of a C4-mesylate with aqueous dimethylamine resulted in the exclusive formation of the Grob fragmentation product, highlighting the sensitivity of intermediates with activation at this position.

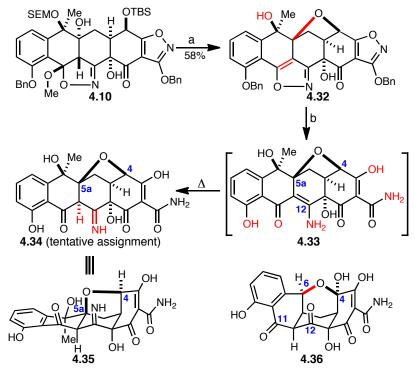

Scheme 4.11 Different conformers present different decomposition pathways.


V. Delayed Installation of the Dimethylamine

In light of the difficulties associated with dimethylamine installation prior to hydrogenation, we reconsidered the sequence of events necessary to complete the synthesis (Scheme 4.12). Specifically, we envisioned that the requisite dimethylamine could be installed last, since similar transformations have been achieved within the context of the tetracy-

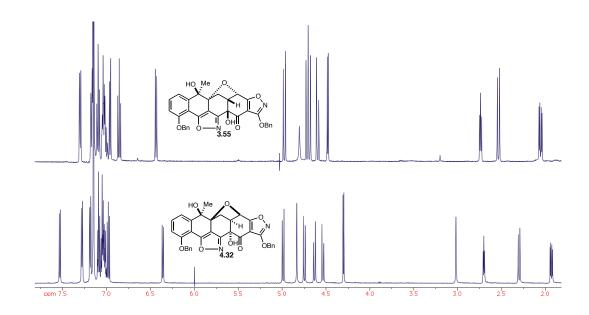
¹⁶³ (a) Nie, L.-D.; Shi, X.-X.; Ko, K. H.; Lu, W.-D. J. Org. Chem. 2009, 74, 3970-3973. (b) Hanessian, S.; Vakiti, R. R.; Dorich, S.; Banerjee, S.; Lecomte, F.; DelValle, J. R.; Zhang, J.; Deschênes-Simard, B. Angew. Chem. Int. Ed. 2011, 50, 3497-3500.

clines when the C4-position is at a ketone oxidation state.¹⁶⁴ Thus, deprotection of the cascade product **4.10** followed by hydrogenation should yield **4.31**, the highly functionalized 4-hydroxy-4-dedimethylaminotetracycline. Of course, this revised synthesis plan relies heavily upon the successful hydrogenation cascade, something that has not been validated in any form to this point. This strategy was particularly appealing at this juncture since intermediate **4.31** is a putative degradation product of tetracycline.¹⁶⁵ Therefore, structural confirmation could be achieved in the event that the final dimethylamine installation is fraught with difficulty. This safeguard, coupled with our knowledge regarding the difficulty of C4-hydroxyl functionalization, justified the implementation of this revised strategy.

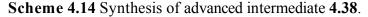


¹⁶⁴ (a) Blackwood, R. K.; Stephens, C. R. J. Am. Chem. Soc. 1964, 86, 2736-2737. (b) Gurevich, A. I.; Karapetyan, M. G.; Kolosov, M. N. Khim. Prir. Soedin. 1970, 6, 247-251.

 ¹⁶⁵ (a) Blackwood, R. K.; Stephens, C. R. Can. J. Chem. 1965, 43, 1382-1388. (b) Blackwood, R. K.; Ferry, G.; Stephens, C. R. 4-Dedimethylaminatetracycline and 5a,6-Anhydro derivatives thereof. U. S. Patent 3,159,675, Nov. 23, 1971. (c) Gu, J.; Cai, P.; Gong, Y.; Ruppen, M. E.; Storz, T. J. Antibiot. 2010, 63, 693-698.


Elaboration of **4.10** commenced via an initial deprotection reaction under strong acid conditions similar to those established previously in the synthesis of **3.55** (Scheme 4.13). These conditions furnished the polycyclic structure **4.32** in good yield for the overall transformation. Spectral comparison of both **3.55** and **4.32** reveals expected homology between the two diastereomeric compounds (Figure 4.3). Unfortunately, hydrogenation of **4.32** did not produce **4.31** as was anticipated, due to the inability of the reduced isoxazole to eject the C5a-oxygen atom. Thus, **4.33** was produced as the immediate product of the reaction, which is postulated to slowly tautomerize to imine **4.34** upon warming. Conformational analysis of this polycyclic intermediate revealed that the three dimensional structure is remarkably similar to "tetracycloxide" derivatives containing a C11-C12-diketone.¹⁶⁶ One such tetracycloxide, **4.36**, is depicted in Scheme 4.13. Unfortunately, attempts to hydrolyze the enaminone present within **4.33** under acidic conditions (HCl, AcOH, or PTSA) failed to produce the desired C12-oxygenated compound. Further, both **4.33** and **4.34** decomposed rapidly upon isolation, rendering them unuseful as intermediates for the synthesis.

¹⁶⁶ Esse, R. C.; Lowery, J. A.; Tamorria, C. R.; Sieger, G. M. J. Am. Chem. Soc. 1964, 86, 3874-3875.


Scheme 4.13 Elaboration of cascade product 4.10 via polycycle 4.32.

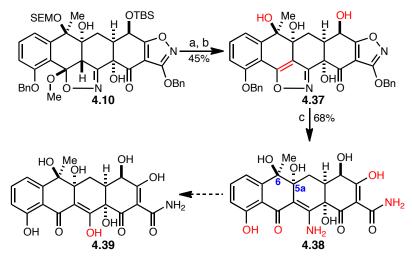
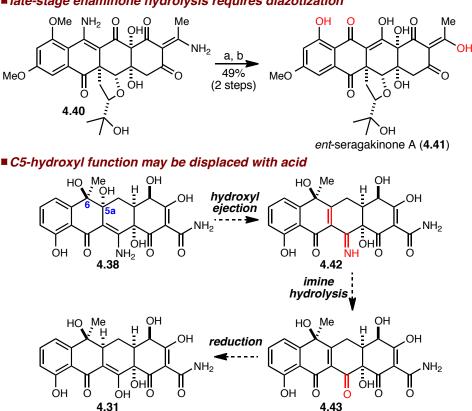

Reagents and conditions: (a) 4 N HCl, THF, 35 °C; 58%; (b) H₂, Pd(black), 4:1 dioxane:H₂O, rt.

Figure 4.3 ¹H NMR spectral comparison of polycycle **3.55** (upper) and **4.32** (lower) in d_6 -DMSO.

While the deprotection/cyclization cascade used to transform **4.10** to **4.32** was viewed initially as an ideal way to deprotect the C4- and C6-hydroxyl functions, the tetrahydrofuran formed during the reaction proved to be counter-productive in the subsequent hydrogenation step. Thus, we revisited cascade product **4.10** in an attempt to ascertain whether this compound could be deprotected without C4-C5a cyclization (Scheme 4.14). Indeed, less forcing conditions involving exposure of **4.10** to 6 *N* HCl at room temperature rather than 35 °C facilitated the selective deprotection of the C6-hydroxyl function. Subsequent cleavage of the TBS protecting group with HF•pyr. at elevated temperature afforded **4.37** in good yield for the two steps. Gratifyingly, this compound underwent efficient hydrogenation, which enabled the cleavage of both isoxazoles and the remaining benzyl ether to yield **4.38** in 68% yield. Similar to the hydrogenation using polycycle **4.32** as substrate, C5a-reduction was not observed in the present case.

Reagents and conditions: (a) 6 N HCl, THF, rt; (b) 5:2:6 THF:pyr.:HF•pyr., 30 °C; 45% (2 steps); (c) H₂, Pd(black), 4:1 dioxane:H₂O, rt; 68%.

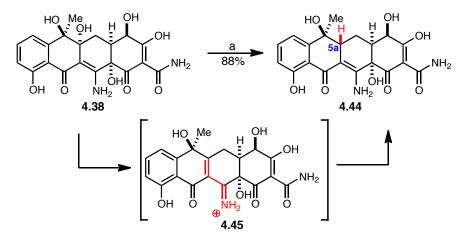

Unfortunately the enaminone function present in both **4.38** was exceedingly resistant to acid hydrolysis. It was anticiated that a substrate with a reduced C5a-position would not be an ideal substrate for several reasons. First, reduction of this position im-

parts significant acid sensitivity to the molecule since the C-ring may now aromatize via elimination of the C6-hydroxyl function. Secondly, precedent by Suzuki and co-workers in the context of the synthesis of *ent*-seragakinone A (**4.41**) demonstrated the acid hydrolysis was not feasible in their system, forcing implementation of diazotization to effect this transformation (Scheme 4.15).^{167,168} Yet, **4.38** was considered a substrate with a very different reactivity profile, since acid-mediated ejection of the C5a-hydroxyl function is entirely reasonable.¹⁶⁹ Since ionization of **4.38** is considered a facile process, it was hypothesized that molecule may extrude water to produce imine **4.42** *in situ*. Due to this reactivity, hydrolysis was presumed to be feasible, however no exchange was observed under a variety of conditions (AcOH/H₂O, PTSA/CH₃CN/H₂O, 1 *N* HCl/THF, 0.1 M pH 2 glycine•HCl buffer, AmberlystTM 15 resin/CH₃CN/H₂O).

¹⁶⁷ Takada, A.; Hashimoto, Y.; Takikawa, H.; Hikita, K.; Suzuki, K. Angew. Chem. Int. Ed. **2011**, 50, 2297-2301.

¹⁶⁸ While these conditions could be applied to our system, it is unlikely that we could activate the enaminone without also diazotizing the amide at C2. This was not a problem in the seragakinone A synthesis since both enaminones needed to be hydrolyzed.

¹⁶⁹ ESI of **4.38** results in a major ion that represents loss of water. This compound is the first in the synthesis to show this behavior during ionization, implying that the C5a-hydroxyl function is easily extruded.



Scheme 4.15 Hydrolysis of the enaminone function in both the context of *ent*-seragakinone A and proposed hydolysis of substrate 4.38.

■ late-stage enaminone hydrolysis requires diazotization

Reagents and conditions: (a) *t*-BuONO, CF₃CO₂H, DMSO, rt; 1 M NaOH, rt; (b) NaI, CeCl₃•7H₂O, CH₃CN, reflux; 49% (2 steps).

To this point in the synthesis, our structural determinations were made on the basis of both coupling constant and nOe data. However, due to the lack of reactivity associated with enaminone hydrolysis, it was felt that more rigorous structural evidence was needed in order to be certain that our problematic hydrolysis was a manifestation of substrate stability rather than structural inconsistency. Fortuitously, validation of both our gross carbocyclic structure and relative stereochemistry obtained from the Cu(II)/Ce(III) cascade arose during attempts to effect a reduction of the C5a-position (Scheme 4.16). During these studies, we found that **4.38** is cleanly reduced to **4.44** in the presence of NaBH₃CN and acetic acid, presumably via intermediate **4.45**. Unfortunately, while the reduction was stereoselective, the wrong stereocenter was produced at the C5a-position. Scheme 4.16 Reduction of the C5a-position.

Reagents and conditions: (a) NaBH₃CN, AcOH, CH₃CN, 30 °C; 88%.

Despite this unfortunate stereochemical outcome, the production of **4.44** was welcomed due to the crystallinity of the compound. Specifically, a saturated solution of **4.44** in diethylether produced crystals of appropriate uniformity and size for X-ray diffraction. The X-ray crystal structure of **4.44** is depicted in Figure 4.4. While this compound reveals the nature of the C5a-stereogenic center, it also reveals the relative stereochemistry of the remaining stereocenters as well. Gratifyingly, each of the stereocenters implicated in the reaction cascade are of the expected orientation, thus validating not only the intermediate structures themselves, but also the logic used to justify decisions made at critical junctures within the synthesis.

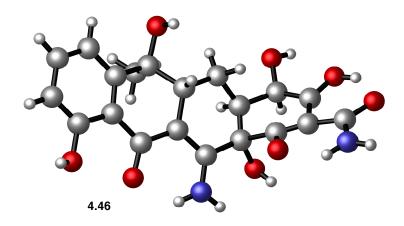
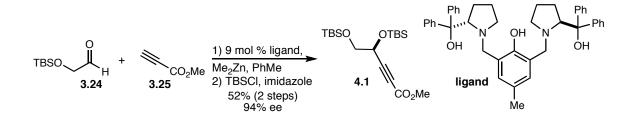


Figure 4.4 X-ray crystal structure of 4.44.

VI. Conclusion

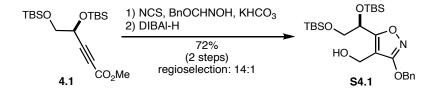

The results detailed in this chapter describe the successful execution of a transannular cascade to produce both the carbocyclic framework of (–)-tetracycline and the correct stereochemistry at the C4a- and C12a-positions. This cascade represents the end result of critical analysis of the stereochemical interplay between the five stereogenic centers that comprise tetracycline. Further, a mechanism for the Michael reaction was proposed that explains the unique ability for copper(II) to facilitate the key Michael addition. Unfortunately, complete elaboration of the cascade product to (–)-tetracycline was not achieved, ultimately leaving the project unfinished. Despite this unfortunate outcome, we hope that the coupling of computational and experimental chemistry, as described in this thesis, will serve as a guide for others who wish to utilize macrocyclic stereocontrol in synthesis endeavors. Indeed, without computational insight into otherwise puzzling experimental outcomes, the path forward would have been less clear. Further, we hope that the potential for facile transmission of stereochemical information from one position to another within a macrocyclic setting has been demonstrated. Thus, with rationally designed mac-

rocycles adorned with appropriate functionality, a wide array of polycyclic structures can be targeted.

Chapter 4

VII. Experimental Section

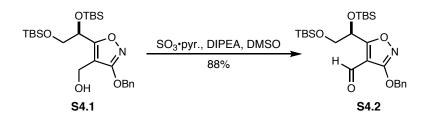
A. Experimental Procedures



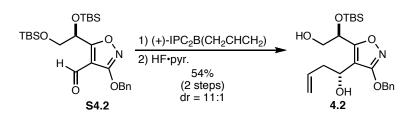
(*S*)-methyl 5-(*tert*-butyldimethylsilyloxy)-4-hydroxypent-2-ynoate (4.1). To a flamedried 5 L 3-necked flask under an atmosphere of argon, ligand¹⁷⁰ (13.1 g, 20.5 mmol, 9 mol %) was added, followed by toluene (1.14 L, 0.20 M wrt to **3.24**). Next, methyl propiolate **3.25** (60.9 mL, 0.684 mol, 3.00 equiv.) was added rapidly via syringe. This slightly yellow solution was then cooled to -15 °C, and dimethylzinc (0.570 L of a 1.2 M solution in toluene, 0.684 mmol, 3.00 equiv.) was added via cannula to the solution (caution, gas evolution). Next, aldehyde **3.24** (39.7 g, 228 mmol, 1.00 equiv.) in toluene (18

 ¹⁷⁰ (a) Trost, B. M.; Weiss, A. H.; von Wangelin, A. J. J. Am. Chem. Soc. 2006, 128, 8-9. (b) Trost, B. M.; Weiss, A. H. Org. Lett. 2006, 8, 4461-4464.

mL, 13 M) at room temperature was added directly to the cooled reaction via syringe pump over 36 h. During this addition, the internal temperature of the reaction was held between -11 and -10.5 °C. The reaction was then allowed to stir an additional 8 h, upon which time it was quenched carefully via addition of sat. NH₄Cl (caution, gas evolution) and extracted three times with Et₂O. The combined organic extracts were washed once with water, dried with Na₂SO₄ and concentrate *in vacuo*. The crude material was purified via flash chromatography on silica gel (pure hexanes $\rightarrow 8:1 \rightarrow 6:1$ hexanes:EtOAc) affording the intermediate propargylic alcohol (45.2 g, 77% yield, 94% ee) as a slightly yellow liquid that was ca. 95% pure via NMR.


To a solution of the intermediate propargylic alcohol (45.2 g, 178 mmol, 1.00 equiv.) in DMF (350 mL, 0.50 M) at 0 °C under an atmosphere of nitrogen, imidazole (18.2 g, 0.267 mol, 1.5 equiv.) was added in a single portion, followed TBSCI (28.2 g, 187 mmol, 1.05 equiv.) also in a single portion. The reaction was stirred for 3.5 h, upon which time it was quenched with water and extracted three times with hexanes. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. The crude residue was purified via flash chromatography (19:1 hexanes:EtOAc) affording **4.1** (44.0 g, 66%) as a colorless liquid. Overall yield for the two steps: 52%. The spectroscopic information matched that of **3.26** reported previously with the exception of optical rotation, which was opposite to that reported previously (*vide supra*).

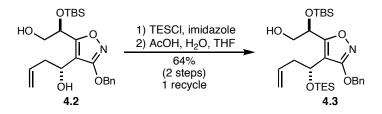
(R)-(3-(benzyloxy)-5-(2,2,3,3,8,8,9,9-octamethyl-4,7-dioxa-3,8-disiladecan-5-yl)isoxazol-4-yl)methanol (S4.1). To a solution of 4.1 (44.0 g, 118 mmol, 1.00 equiv.) in EtOAc (590 mL, 0.20 M) at room temperature exposed to air, BnOCHNOH (17.8 g, 118 mmol, 1.00 equiv.) was added, followed by the addition of KHCO₃ (118 g, 1.18 mol, 10.0 equiv.) and NCS (15.8 g, 118 mmol, 1.00 equiv.). The flask was fitted with a reflux condensor, and the suspension was heated to 48 °C under an atmosphere of nitrogen for 12 h. The reaction was treated with an additional 1.00 equiv. of oxime and NCS every 12 h for a total 9 additions or 9 equiv. of each. The resulting cloudy and slightly yellow mixture was passed through filter paper and concentrated *in vacuo*. The resulting crude residue was suspended in hexanes, poured into a separatory funnel, and washed with water. The resulting emulsion was treated with methanol, inducing a yellow liquid to fall to the bottom of the funnel. This material was removed discarded, and the procedure repeated two more times. The resulting pale yellow organic layer was dried with Na₂SO₄ and concentrated in vacuo. This crude material was purified via flash chromatography on silica gel (pure hexanes \rightarrow 8:1 hexanes:EtOAc) affording the intermediate isoxazole (58.6 g, 95%) yield, 14:1 regioselectivity) as a slightly yellow liquid.


To a solution of the intermediate isoxazole (29.8 g, 57.1 mmol, 1.00 equiv.) in toluene (190 mL, 0.30 M) at -78 °C under an atmosphere of nitrogen, DIBAl-H (117 mL of a 1.0 M solution in toluene, 171 mmol, 3.00 equiv.) at -78 °C was added against the side of the flask over 10 minutes via cannula. The resulting slightly yellow solution was

stirred at -78 °C for 2 h, upon which time it was carefully quenched with a 20% w/v solution of Rochelle's salt. The reaction was then warmed to room temperature while stirring vigorously for 3 h. The biphasic mixture was extracted three times with EtOAc, the combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. The crude residue was purified via flash chromatography on silica gel (10:1 hexanes:EtOAc) affording **S4.1** (21.3 g, 76%) as a clear liquid. The spectroscopic information matched that of **S3.2** reported previously with the exception of optical rotation, which was opposite to that reported previously (*vide supra*). Yield for the two steps: 72%.

(*R*)-3-(benzyloxy)-5-(2,2,3,3,8,8,9,9-octamethyl-4,7-dioxa-3,8-disiladecan-5-yl)isoxazole-4-carbaldehyde (S4.2). To a solution of S4.1 (20.5 g, 41.5 mmol, 1.00 equiv.) in CH_2Cl_2 (100 mL, 0.40 M) at 0 °C under an atmosphere of nitrogen, DMSO (24 mL, 1.7 M) was added followed by DIPEA (21.3 mL, 125 mmol, 3.00 equiv.). To a second flask, DMSO (42 mL, 2.0 M wrt SO₃•pyr.) was added, followed by SO₃•pyr. (13.2 g, 83.0 mmol, 2.00 equiv.). This mixture was stirred for 5 minutes upon which time most solid had dissolved. Next, the SO₃•pyr. solution was added to the solution containing S4.1 rapidly via syringe. The resulting clear and slightly brown mixture was stirred for one hour at 0 °C, upon which time the reaction was placed under reduced pressure, and the CH_2Cl_2 was removed *in vacuo* on a rotovap with the bath temperature set to 29 °C. The

remaining solution was poured directly onto a silica gel column and purified via flash chromatography (15:1 hexanes:EtOAc) affording **S4.2** (17.9 g, 88%) as a clear liquid. The spectroscopic information matched that of **S3.3** reported previously with the exception of optical rotation, which was opposite to that reported previously (*vide supra*).



3-(benzyloxy)-5-((*R***)-8,8-diethyl-2,2,3,3-tetramethyl-4,7-dioxa-3,8-disiladecan-5yl)-4-((***S***)-1-(triethyl-silyloxy)but-3-enyl)isoxazole (4.2). To a solution of (+)-IPC_2B(CH_2CHCH_2)^{171} (66.6 mL of a 1.0 M solution in pentane, 66.6 mmol, 1.30 equiv.) in diethylether (128 mL, 0.52 M wrt reagent) at -110 °C under an atmosphere of nitrogen, S4.2** (25.2 g, 51.2 mmol) in Et₂O (128 mL, 0.40 M) at -78 °C was added along the side of the flask via cannula over ten minutes. The resulting solution was slowly warmed to -78 °C over 5 minutes, during which time the slightly yellow solution became mostly clear. The reaction was stirred at -78 °C for one hour, upon which time it was warmed directly to 0 °C, and a premixed solution of 2:1 2 *N* NaOH : 30% aq. H₂O₂ (256 mL) at room temperature was added portionwise. The reaction was then stirred vigorously for 15 minutes at 0 °C, upon which time the cooling bath was removed, and the cloudy mix-

 ¹⁷¹ (a) Brown, H. C.; Bhat, K. S.; Randad, R. S. J. Org. Chem. 1987, 52, 320-322. (b) Brown, H. C.; Bhat, K. S.; Randad, R. S. J. Org. Chem. 1989, 54, 1570-1576.

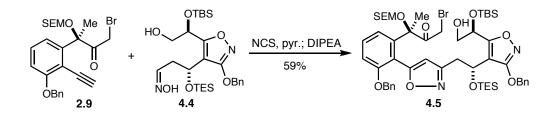
ture was stirred for an additional 2 h. The resulting solution was extracted three times with hexanes, the combined organic extracts were then dried with Na_2SO_4 and concentrated *in vacuo*. The crude liquid was purified via flash chromatography on silica gel (15:1 hexanes:EtOAc) affording the intermediate homoallylic alcohol (29.9 g, 11:1 dr) as a colorless liquid that was ca. 85% pure by NMR.

To a solution of 5:2:1 THF:pyr.:HF•pyr. (154 mL, 3 ml solution/mmol sm) at 0 °C in a plastic bottle exposed to air, the intermediate alcohol (29.9 g, ca. 51.2 mmol) in THF (171 mL, 0.30 M) was added rapidly. The flask was washed three times with 5 mL THF, and these washings were also added to the reaction mixture. The reaction was stirred for 10 minutes at 0 °C, upon which time the cooling bath was removed. After 2.5 h of stirring at room temperature, the solution was quenched with sat. NaHCO₃ (caution, gas evolution). The resulting mixture was extracted three times with CH₂Cl₂. The combined organic extracts were washed once with brine, dried with Na₂SO₄, and concentrated *in vacuo*. The crude liquid was purified via flash chromatography on silica gel (10:1 \rightarrow $4:1 \rightarrow 2:1$ hexanes: EtOAc) affording 4.2 (11.5 g) as a slightly pink liquid. Yield for the two steps: 54%. This compound was characterized as a 5.7:1 ratio of diastereoisomers. $R_f = 0.52$ (2:1 hexanes: EtOAc); $[\alpha]_D = +39$ (c 0.85, CHCl₃); IR (neat) 3387, 2930, 2857, 1639, 1509, 1462, 1363, 1256, 1111, 1058, 985, 838, 780; ¹H NMR (500 MHz, C₆D₆) δ 7.23 (d, 2H), 7.08 (t, J = 7.6, 6.3, 1.6 Hz, 2H), 7.05 – 7.00 (m, 1H), 5.77 (ddt, J = 17.3, 10.2, 7.1 Hz, 1H), 5.19 (s, 2H), 5.05 - 4.96 (m, 3H), 4.74 (dt, J = 7.8, 6.0 Hz, 1H), 3.74(td, J = 6.0, 3.6 Hz, 2H), 3.22 (d, J = 5.9 Hz, 1H), 2.79 - 2.62 (m, 3H), 0.89 (s, 9H), 0.03(d, J = 6.3 Hz, 6H); ¹³C NMR (126 MHz, C_6D_6) δ 169.82, 168.57, 136.36, 134.73,

(*R*)-2-(3-(benzyloxy)-4-((*R*)-1-(triethylsilyloxy)but-3-enyl)isoxazol-5-yl)-2-(*tert*-butyldimethylsilyloxy)ethanol (4.3). To a solution of 4.2 (11.5 g, 27.4 mmol, 1.00 equiv.) in DMF (137 mL) at 0 °C under an atmosphere of nitrogen, imidazole (5.60 g, 82.2 mmol, 3.00 equiv.) was added, followed by TESCl (9.63 mL, 57.5 mmol, 2.10 equiv.) over 1 minute. The resulting clear solution was stirred at room temperature for 20 minutes, upon which time it was quenched with H_2O , and extracted three times with hexanes. The combined organic extracts were dried with Na_2SO_4 and concentrated *in vacuo*. The residue was purified via flash chromatography on silica gel (20:1 hexanes:EtOAc) affording the intermediate tris-silylether (15.0 g, 84%) as a colorless liquid.

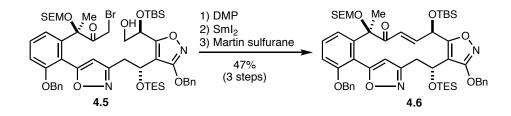
To the tris-silylether (14.8 g, 22.8 mmol, 1.00 equiv.) at room temperature exposed to air, a 3:3:10 mixture of AcOH:H₂O:THF (76 mL, 0.30 M) was added rapidly. The turbid mixture was allowed to stir at room temperature for 9 h, upon which time it was quenched with sat. NaHCO₃ and extracted three times with CH₂Cl₂. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. The resulting liquid was purified via flash chromatography on silica gel (20:1 \rightarrow 8:1 hexanes:EtOAc) affording

4.3 (4.67 g, 38%) and starting material **4.2** (7.39 g, 50%), both as colorless liquids. The starting material was resubjected to the above conditions, yielding a total of 4.62 g of **4.3** (76%) as a colorless liquid. Overall yield for the two steps: 64%. This compound was characterized as a 4.7:1 ratio of diastereoisomers (obtained from a previously unoptimized procedure). $R_f = 0.24$ (10:1 hexanes:EtOAc); $[\alpha]_D = +23$ (*c* 0.35, CHCl₃); **IR** (neat) 3437, 2954, 2878, 1639, 1509, 1461, 1360, 1255, 1082, 1005, 951, 914, 837, 779; ¹H NMR (500 MHz, C₆D₆) δ 7.32 – 7.20 (m, 2H), 7.14 – 7.05 (m, 2H), 7.05 – 6.99 (m, 1H), 5.81 – 5.70 (m, 1H), 5.20 (s, 2H), 5.14 (t, *J* = 6.1 Hz, 1H), 5.09 – 4.94 (m, 1H), 4.85 (t, *J* = 6.8 Hz, 1H), 3.88 (t, *J* = 6.4 Hz, 1H), 2.82 – 2.54 (m, 2H), 2.17 (t, *J* = 6.6 Hz, 1H), 1.05 – 0.84 (m, 18H), 0.67 – 0.49 (m, 6H), 0.08 (d, *J* = 3.9 Hz, 6H); ¹³C NMR (126 MHz, C₆D₆) δ 169.74, 168.60, 136.44, 134.57, 128.65, 128.61, 128.52, 117.91, 109.23, 71.89, 69.69, 65.87, 65.58, 43.36, 25.98, 18.44, 7.05, 5.15, -4.53, -4.85; HRMS: Exact mass calcd for [(M+H⁺)]: 534.3066; found: 534.3071 (ESI).


(*S*)-3-(3-(benzyloxy)-5-((*R*)-1-(*tert*-butyldimethylsilyloxy)-2-hydroxyethyl)isoxazol-4-yl)-3-(triethylsilyloxy)propanal oxime (4.4). To a solution of 4.3 (4.42 mg, 8.28 mmol, 1.00 equiv.) in 1:1:1 acetone:pH 7 phosphate buffer:THF (28 mL total, 0.30 M) at room temperature exposed to air, NMO (1.46 g, 12.4 mmol, 1.50 equiv.) was added, followed by OsO₄ (2.07 mL of a 2.5 wt% solution in water, 0.025 equiv.). The reaction was

stirred for 5.5 h at room temperature, upon which time it was cooled to 0 °C and a sat. NaHCO₃ solution (20 mL) containing 2 g NaHSO₃ was added. The reaction quickly turned brown after this addition. The cooling bath was removed, and the reaction was stirred for 7 minutes. The resulting mixture was diluted with H₂O (10 mL) and extracted three times with EtOAc. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo* to afford a brown foam.

The intermediate diol was immediately dissolved in a 3:1 mixture of THF:pH 7 phosphate buffer (33 mL total, 0.25 M) at room temperature exposed to air, and NaIO₄ (7.08 g, 58.6 mmol, 4.00 equiv.) was added in a single portion. The reaction soon became cloudy upon this addition. After stirring for 12 minutes at room temperature, the reaction was diluted with H₂O and extracted three times with CH₂Cl₂. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo* affording a brown foam.


The intermediate aldehyde was dissolved in absolute ethanol (28 mL, 0.30 M) and cooled to 0 °C under an atmosphere of nitrogen. Next, pyridine (8.3 mL, 1.0 M wrt **4.3**) was added followed by hydroxylamine hydrochloride (2.29 g, 33.1 mmol, 4.00 equiv.). The resulting solution was stirred for 2.5 h, upon which time the reaction was quenched at 0 °C with sat. NH₄Cl. The resulting mixture was then diluted with H₂O, and extracted three times with Et₂O. The combined organic extracts were then dried with Na₂SO₄ and concentrated *in vacuo*. The crude residue was purified via MPLC (10% \rightarrow 50% EtOAc and hexanes) affording **4.4** (3.92 g, 86%) as a white foam and a ca. 1:1 mixture of *E* and *Z* oxime isomers. Yield for the three steps: 86%. $R_f = 0.59$ (2:1 hexanes:EtOAc); $[\alpha]_D = +24$ (*c* 3.2, CHCl₃); **IR** (neat) 3329, 2956, 2879, 1638, 1509, 1459, 1359, 1256, 1098, 1005,

949, 837.8, 745, 696; ¹H NMR (500 MHz, C₆D₆) δ 9.14 (s, 1H), 8.71 (s, 1H), 7.44 – 7.35 (m, 1H), 7.34 – 7.25 (m, 4H), 7.19 – 7.08 (m, 6H), 7.05 (td, *J* = 7.3, 1.5 Hz, 2H), 6.80 (t, *J* = 5.4 Hz, 1H), 5.31 – 5.17 (m, 4H), 5.09 (t, *J* = 6.8 Hz, 1H), 4.99 (t, *J* = 6.6 Hz, 1H), 3.99 – 3.86 (m, 4H), 3.16 (ddd, *J* = 15.1, 6.8, 5.4 Hz, 1H), 2.97 (dddd, *J* = 15.1, 6.7, 5.5, 1.2 Hz, 1H), 2.85 – 2.64 (m, 2H), 1.02 – 0.84 (m, 36H), 0.65 – 0.48 (m, 12H), 0.10 (d, *J* = 6.6 Hz, 12H); ¹³C NMR (126 MHz, C₆D₆) δ 169.71, 169.60, 168.79, 168.76, 148.24, 148.19, 136.38, 128.74, 128.70, 128.65, 128.57, 128.55, 128.49, 109.11, 108.87, 72.09, 72.03, 69.75, 69.67, 65.87, 65.82, 63.92, 62.95, 38.89, 34.59, 26.12, 26.02, 18.49, 7.01, 5.11, 5.04, 5.03, -4.51, -4.54, -4.79; HRMS: Exact mass calcd for [(M+H⁺)]: 551.2967; found: 551.2961(ESI).

(*R*)-3-(3-(benzyloxy)-2-(3-((*R*)-2-(3-(benzyloxy)-5-((*R*)-1-(*tert*-butyldimethylsilyloxy)-2-hydroxyethyl)-isoxazol-4-yl)-2-(triethylsilyloxy)ethyl)isoxazol-5-yl)phenyl)-1-bromo-3-((2-(trimethylsilyl)ethoxy)me-thoxy)butan-2-one (4.5). To a solution of 2.9 (3.28 g, 6.51 mmol, 1.20 equiv.) and 4.4 (3.04 g, 5.52 mmol, 1.00 equiv.) in CHCl₃ (110 mL, 0.050 M) at room temperature under an atmosphere of nitrogen, pyridine (0.089 mL, 1.1 mmol, 0.20 equiv.) was added, followed by NCS (774 mg, 5.80 mmol, 1.05 equiv.). The reaction was stirred at room temperature for 20 minutes, upon which time a reflux condensor was fitted to the flask, and the reaction was heated to 40 °C.

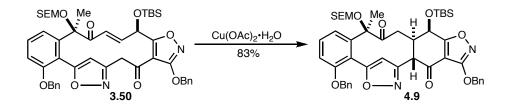
Next, DIPEA (3.78 mL, 22.1 mmol, 4.00 equiv.) in chloroform (21 mL) was added directly to the solution over 25 h via syringe pump. The resulting orange/yellow solution was then heated to 50 °C for an additional 19 h. The reaction was then diluted with water and extracted three times with hexanes. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. The crude residue was purified via MPLC (5% \rightarrow 40% EtOAc and hexanes) affording 4.5 (3.40 g, 59% yield) as a slightly yellow foam that was ca. 95% pure by NMR. $R_f = 0.52$ (4:1 hexanes:EtOAc); $[\alpha]_D = +12$ (*c* 1.2, CHCl₃); **IR** (neat) 3432, 2954, 2879, 1740, 1612, 1577, 1510, 1454, 1361, 1250, 1067, 1005, 837, 744, 696; ¹**H** NMR (600 MHz, C_6D_6) δ 7.34 – 7.28 (m, 2H), 7.13 – 6.99 (m, 8H), 6.97 – $6.88 \text{ (m, 2H)}, 6.51 \text{ (dd, } J = 8.1, 1.1 \text{ Hz}, 1\text{H}), 6.17 \text{ (s, 1H)}, 5.38 \text{ (t, } J = 7.0 \text{ Hz}, 1\text{H}), 5.20 \text{ (dd, } J = 8.1, 1.1 \text{ Hz}, 1\text{H}), 5.20 \text{ (dd, } J = 8.1, 1.1 \text{ Hz}, 1\text{H}), 5.20 \text{ (dd, } J = 8.1, 1.1 \text{ Hz}, 1\text{H}), 5.20 \text{ (dd, } J = 8.1, 1.1 \text{ Hz}, 1\text{H}), 5.20 \text{ (dd, } J = 8.1, 1.1 \text{ Hz}, 1\text{Hz}, 1\text{Hz}), 5.20 \text{ (dd, } J = 8.1, 1.1 \text{ Hz}, 1\text{Hz}), 5.20 \text{ (dd, } J = 8.1, 1.1 \text{ Hz}, 1\text{Hz}), 5.20 \text{ (dd, } J = 8.1, 1.1 \text{ Hz}, 1\text{Hz}), 5.20 \text{ (dd, } J = 8.1, 1.1 \text{ Hz}), 5.20 \text{$ (dd, J = 7.4, 4.8 Hz, 2H), 4.71 - 4.59 (m, 2H), 4.41 (m, 2H), 4.34 - 4.19 (m, 2H), 4.01 -3.87 (m, 2H), 3.63 (td, J = 9.4, 6.7 Hz, 1H), 3.49 (d, J = 7.1 Hz, 1H), 3.30 (td, J = 9.5, 7.0 Hz, 1H), 2.40 (dd, J = 7.1, 6.2 Hz, 1H), 1.70 (s, 3H), 0.93 (m, 18H), 0.80 (ddd, J =9.1, 6.6, 3.4 Hz, 2H), 0.61 (qd, J = 7.9, 2.7 Hz, 6H), 0.12 (d, J = 9.6 Hz, 6H), -0.03 (d, J= 1.4 Hz, 9H); ¹³C NMR (126 MHz, C_6D_6) δ 201.68, 169.88, 169.08, 166.93, 160.45, 158.30, 158.25, 142.96, 142.92, 136.98, 136.43, 131.18, 131.13, 128.86, 128.69, 128.58, 128.47, 128.35, 126.80, 121.10, 117.23, 113.55, 109.13, 107.24, 91.05, 86.17, 71.94, 70.60, 69.74, 66.01, 65.82, 64.09, 35.90, 34.24, 26.05, 26.03, 24.29, 18.48, 18.23, 7.15, 7.10, 5.31, 5.15, 5.12, -1.26, -4.45, -4.81; **HRMS**: Exact mass calcd for $[(M+Na^+)]$: 1051.3986; found: 1051.3944 (ESI).


Macrocyclic-enone (4.6). To a solution of **4.5** (2.58 g, 2.45 mmol, 1.00 equiv.) in wet CH_2Cl_2 (12 mL, 0.20 M) at room temperature exposed to air, DMP (4.16 g, 9.80 mmol, 4.00 equiv.) was added in a single portion. The reaction was stirred for 3 h upon which time the cloudy mixture was poured into an Erlenmeyer flask containing pH 7 phosphate buffer (0.1 M buffer, 30 mL) and $Na_2S_2O_3$ (2 g). The reaction flask was washed three times with 10 mL portions of hexanes and this was poured into the vigorously stirring mixture within the Erlenmeyer flask. After 20 minutes of vigorous mixing, the reaction was extracted 3 times with hexanes. The combined organic extracts were dried with Na_2SO_4 and concentrated *in vacuo* to yield crude aldehdye, which was immediately subjected to Reformatsky macrocyclization (*vide infra*).

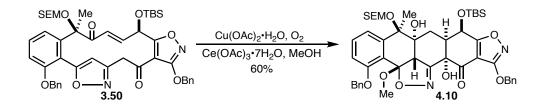
A solution of intermediate aldehyde (2.45 mmol, crude from the reaction above) in degassed THF (61 mL, 0.040 M) at -78 °C under an atmosphere of argon was added to a solution of SmI₂ (98 mL of a 0.10 M solution in THF, 4.00 equiv.) at -78 °C via cannula directly into the solution over 10 minutes. THF (10 mL) was then used to wash the flask, and this too was added to the SmI₂ solution. The resulting dark blue solution was stirred at -78 °C for 30 minutes, upon which time air was bubbled through a glass pipet directly into the solution at -78 °C until the blue color disappeared and a yellow color persisted. A solution of sat. NaHCO₃ (20 mL) also containing Na₂S₂O₃ (1 g) was added and the reaction was allowed to warm to room temperature. The mixture was then ex-

tracted three times with CH_2Cl_2 , the combined organic extracts were dried with Na_2SO_4 , and concentrated *in vacuo*. The resulting residue was purified via MPLC (10% \rightarrow 30% EtOAc and hexanes) affording the intermediate macrocyclic alcohol (1.64 g, 69%) as a mixture of secondary carbinol diastereomers that were dehydrated in the next step.

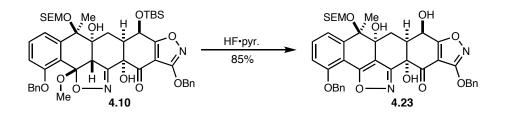
To a solution of the intermediate macrocyclic alcohol (1.64 mg, 1.69 mmol, 1.00 equiv.) in CH₂Cl₂ (24 mL, 0.070 M) at -45 °C under an atmosphere of nitrogen, the Martin sulfurane (24 mL of a 0.17 M solution in CH₂Cl₂, 2.4 equiv.) at room temperature was added along the side of the flask over 30 seconds. The reaction was allowed to warm to -10 °C over 1 hour, and held at this temperature for 3 h. The reaction was quenched via the addition of sat. NaHCO₃ (20 mL) and warmed to room temperature while stirring vigorously. The biphasic mixture was extracted three times with CH₂Cl₂ and the combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. The resulting residue was purified via MPLC (5% \rightarrow 35% EtOAc and hexanes) affording 4.6 (1.17 g, 73%) as a white foam and starting material (267 mg, 16%). Yield for the three steps: 47%. $R_f = 0.29$ (4:1 hexanes: EtOAc); $[\alpha]_D = -120$ (c 0.95, CHCl₃); **IR** (neat) 2955, 2877, 1699, 1633, 1578, 1510, 1454, 1362, 1251, 1121, 1251, 1121, 1080, 1014, 745, 696; ¹H NMR (500 MHz, *d*₆-DMSO) δ 7.59 – 7.47 (m, 3H), 7.44 – 7.34 (m, 3H), 7.34 – 7.16 (m, 8H), 7.03 (d, J = 15.3 Hz, 1H), 6.53 - 6.33 (m, 2H), 5.57 (s, 1H), 5.36 (s, 2H), 5.23 - 4.97 (m, 2H), 5.27 (m, 2H),4.76 - 4.50 (m, 2H), 3.72 (d, J = 8.7 Hz, 1H), 3.51 - 3.32 (m, 2H), 2.95 (d, J = 13.3 Hz, 1H), 1.66 (s, 3H), 1.02 – 0.86 (m, 18H), 0.87 – 0.77 (m, 2H), 0.72 – 0.55 (m, 6H), 0.08 (d, J = 27.3 Hz, 6H), -0.02 (s, 9H); ¹³C NMR (126 MHz, d_6 -DMSO) δ 199.58, 170.19, 166.64, 165.43, 158.17, 157.62, 144.50, 141.90, 136.69, 136.09, 130.85, 128.30, 128.26, 128.07, 127.59, 127.48, 126.72, 120.85, 120.20, 117.36, 113.72, 109.20, 108.20, 90.04,


84.14, 70.89, 69.48, 67.85, 65.02, 63.57, 33.69, 25.75, 22.83, 18.21, 17.53, 6.61, 4.67, -1.39, -5.08, -5.28; **HRMS**: Exact mass calcd for [(M+H⁺)]: 953.4618; found: 953.4574 (ESI).

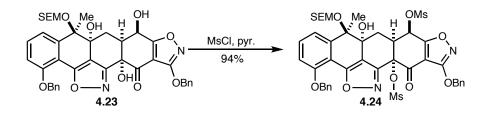
Elaborated macrocycle (3.50). To a solution of **4.6** (1.17 g, 1.23 mmol, 1.00 equiv.) in methanol (12 mL, 0.10 M) and CH₂Cl₂ (3.0 mL, 0.41 M) at 0 °C under an atmosphere of nitrogen, CSA (29 mg, 0.12 mmol, 0.10 equiv.) was added in a single portion. The resulting solution was stirred for 1.5 h, upon which time the reaction was quenched with sat. NaHCO₃, warmed to room temperature, and extracted three times with CH₂Cl₂. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. The crude residue was purified via MPLC (5% \rightarrow 30% EtOAc and hexanes) affording the intermediate secondary carbinol (999 mg, 97%) as a colorless foam.


To a solution of the intermediate secondary carbinol (999 mg, 1.19 mmol, 1.00 equiv.) in wet CH_2Cl_2 (12 mL, 0.10 M) at room temperature exposed to air, DMP (2.02 g, 4.76 mmol, 4.00 equiv.) was added in a single portion. The reaction was stirred for 2 h, upon which time the reaction was poured into an Erlenmeyer flask containing sat. Na-HCO₃ (20 mL) and Na₂S₂O₃ (2 g). The original reaction flask was washed liberally with hexanes and these washings were poured into the vigorously mixing solution. After 10

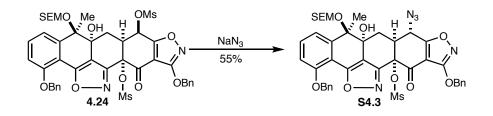
minutes, the mixture was poured into a separatory funnel, the organic layer was removed, and the remaining aqueous layer was extracted two times more with hexanes. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. The crude residue was purified via MPLC (5% \rightarrow 20% EtOAc and hexanes) affording 3.50 (882 mg, 89%) as a white foam. Yield for the two steps: 86%. $R_f = 0.56$ (4:1 hexanes:EtOAc); $[\alpha]_{\rm D} = -75$ (c 2.1, CHCl₃); **IR** (neat) 2952, 2930, 1686, 1617, 1591, 1506, 1452, 1438, 1251, 1120, 1082, 1055, 1011, 837, 749, 696, 870; ¹H NMR (500 MHz, d₆-DMSO) δ 7.60 (d, J = 7.3 Hz, 2H), 7.52 (t, J = 8.1 Hz, 1H), 7.49 – 7.42 (m, 2H), 7.40 (dd, J = 6.9, 1.7 Hz, 1H), 7.31 (dd, J = 7.9, 6.4 Hz, 2H), 7.29 – 7.19 (m, 5H), 6.84 – 6.39 (m, 2H), 6.10 - 5.84 (m, 1H), 5.61 - 5.31 (m, 2H), 5.11 (s, 2H), 4.65 - 4.31 (m, 2H), 3.83 (d, J =13.3 Hz, 1H), 3.64 - 3.49 (m, 1H), 3.33 (s, 1H), 1.62 (s, 3H), 0.91 (s, 9H), 0.75 (ddd, J =9.7, 6.5, 3.2 Hz, 2H), 0.09 (d, J = 12.5 Hz, 6H), -0.03 (s, 9H); ¹³C NMR (126 MHz, d_{6} -DMSO) § 199.96, 188.85, 174.85, 168.08, 166.47, 157.53, 155.98, 142.66, 141.76, 136.63, 135.37, 131.23, 128.65, 128.58, 128.55, 128.50, 128.46, 128.42, 128.33, 128.28, 128.22, 128.16, 128.10, 128.01, 127.96, 127.76, 127.65, 127.57, 126.78, 126.68, 123.15, 121.07, 116.08, 113.57, 108.07, 89.83, 84.38, 72.01, 69.51, 67.51, 64.91, 25.45, 22.74, 17.84, 17.52, -1.38, -1.42, -1.45, -5.16, -5.35; **HRMS**: Exact mass calcd for [(M+H⁺)]: 837.3597; found: 837.3556 (ESI).


Transannular Michael product 4.9. To 3.50 (36 mg, 0.043 mmol, 1.0 equiv.) in degassed methanol (4.3 mL, 0.010 M) at room temperature under an argon atmosphere, Cu(OAc)₂•H₂O (86 mg, 0.43 mmol, 10 equiv.) was added in a single portion. The reaction was immediately sealed, and allowed to stir at room temperature for 1.5 h. The blue/green solution was quenched with sat. NaHCO₃, diluted with water, and extracted three times with CH_2Cl_2 . The combined organic extracts were dried with Na_2SO_4 and concentrated in vacuo. The crude residue was purified via flash chromatography on silica gel (3:1 hexanes: EtOAc) affording 4.9 (30 mg, 83%) as a colorless oil. $R_f = 0.24$ (3:1 hexanes: EtOAc); $[\alpha]_D = -111$ (c 1.5, CHCl₃); **IR** (neat) 2941, 2837, 1707, 1509, 1473, 1363, 1264, 1119, 1060, 998, 836, 751, 696; ¹H NMR (600 MHz, d6-Acetone) δ 7.56 (ddt, J = 7.5, 1.3, 0.7 Hz, 2H), 7.51 (t, J = 8.2 Hz, 1H), 7.49 – 7.41 (m, 4H), 7.40 – 7.33 (m, 4H), 7.33 - 7.27 (m, 2H), 7.18 (s, 1H), 5.41 (d, J = 2.6 Hz, 2H), 5.34 - 5.21 (m, 2H), 5.06 (d, J = 2.8 Hz, 1H), 4.77 (d, J = 7.4 Hz, 1H), 4.67 (d, J = 7.4 Hz, 1H), 4.33 (d, J = 10.8 Hz, 1H), 3.98 (dd, J = 16.9, 10.9 Hz, 1H), 3.79 (td, J = 9.6, 6.3 Hz, 1H), 3.50 (td, J = 9.6, 6.5 Hz, 1H), 2.94 (tdd, J = 10.8, 2.8, 1.3 Hz, 1H), 2.25 (m, 1H), 1.69 (s, 3H), 0.97 (s, 9H), 0.86 (td, J = 9.7, 6.3 Hz, 2H), 0.34 (s, 3H), 0.18 (s, 3H), 0.01 (s, 9H); ¹³C NMR (126) MHz, d6-Acetone) δ 203.48, 186.20, 181.73, 171.04, 168.74, 160.92, 158.38, 145.73, 137.95, 136.69, 132.06, 129.48, 129.47, 129.42, 129.39, 128.81, 128.28, 123.07, 118.41, 114.54, 112.26, 107.43, 91.15, 85.80, 73.04, 71.30, 66.69, 66.38, 50.19, 49.64, 38.45,

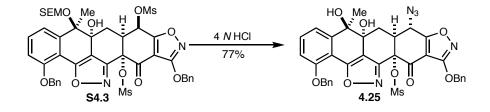
26.32, 24.72, 19.02, 18.71, -1.00, -4.44; **HRMS**: Exact mass calcd for [(M+H⁺)]: 837.3597; found: 837.3534 (ESI).


Cascade product 4.10. To 3.50 (390 mg, 0.466 mmol, 1.00 equiv.) at room temperature in methanol (7.8 mL, 0.060 M) exposed to air, Cu(OAc)₂•H₂O (4.7 mg, 0.023 mmol, 0.050 equiv.) was added in a single portion, followed by Ce(OAc)₃•H₂O (591 mg, 1.86 mmol, 4.00 equiv.) also in a single portion. The reaction was immediately fitted with a rubber septum, and O_2 from a balloon was bubbled through the solution for 5 minutes upon which time the needle was withdrawn from direct contact with the solution and the outlet needle was removed. The reaction was stirred under a balloon of O2 for 44 h, upon which time the reaction was diluted with CH_2Cl_2 and filtered through celite. The resulting mixture was concentrated in vacuo and purified via MPLC (10% \rightarrow 35% EtOAc and hexanes) affording 4.10 (239 mg, 60%) as a white foam. $R_f = 0.51$ (3:1 hexanes:EtOAc); $[\alpha]_{D} = -71 (c \ 0.75, \text{CHCl}_{3}); \text{ IR (neat) } 3300, 2951, 2858, 1702, 1613, 1580, 1514, 1363,$ 1251, 1128, 1087, 1013, 859, 838, 744, 696; ¹**H NMR** (500 MHz, C₆D₆) δ 7.67 – 7.56 (m, 2H), 7.32 - 7.20 (m, 4H), 7.12 - 7.07 (m, 1H), 7.07 - 6.99 (m, 4H), 6.94 (t, J = 8.0Hz, 1H), 6.62 (dd, J = 8.4, 1.0 Hz, 1H), 5.61 (d, J = 6.1 Hz, 1H), 5.18 – 5.00 (m, 2H), 4.98 - 4.78 (m, 2H), 4.48 (d, J = 7.4 Hz, 1H), 4.30 (d, J = 7.3 Hz, 1H), 4.28 - 4.13 (m, 2H), 3.79 (s, 3H), 3.64 (ddd, J = 13.1, 6.2, 4.1 Hz, 1H), 3.44 (td, J = 9.9, 6.0 Hz, 1H),

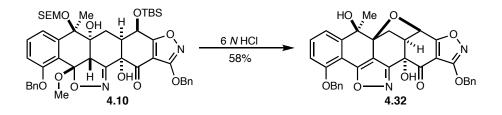
3.09 (td, *J* = 9.9, 6.2 Hz, 1H), 2.66 (dd, *J* = 13.9, 4.1 Hz, 1H), 1.95 (td, *J* = 13.6, 2.6 Hz, 1H), 1.73 (s, 3H), 0.95 (s, 9H), 0.85 – 0.61 (m, 2H), 0.11 (s, 3H), 0.02 (s, 3H), -0.10 (s, 9H); ¹³C NMR (126 MHz, C₆D₆) δ 186.29, 180.64, 168.68, 159.79, 159.38, 137.86, 137.02, 135.57, 130.25, 128.73, 128.65, 128.55, 128.35, 127.72, 127.07, 123.15, 120.82, 114.98, 107.45, 104.35, 90.70, 80.74, 78.47, 76.84, 72.47, 70.64, 65.21, 64.82, 57.11, 51.56, 50.89, 28.83, 25.82, 18.42, 18.12, 17.70, -1.35, -5.02, -5.15; **HRMS**: Exact mass calcd for [(M-MeOH+H⁺)]: 853.3546; found: 853.3593 (ESI).


Secondary carbinol 4.23. To a solution of 5:2:3 THF:pyr.:HF•pyr. (2.1 mL, 25 ml solution/mmol sm) at room temperature exposed to air, 4.10 (72 mg, 0.084 mmol, 1.0 equiv.) in THF (2.1 mL, 0.040 M) was added rapidly. The plastic tube was sealed and heated to 35 °C for 23 h, upon which time the reaction was quenched with sat. NaHCO₃ (careful, gas evolution) and extracted three times with EtOAc. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. The crude residue was purified via flash chromatography on silica gel (3:2 hexanes:EtOAc) affording 4.23 (53 mg, 85%) as a colorless oil. $R_f = 0.32$ (2:1 EtOAc:hexanes); $[\alpha]_D = -110$ (*c* 0.95, CHCl₃); IR (neat) 3379, 2950, 2893, 1707, 1613, 1573, 1513, 1450, 1370, 1247, 1069, 1016, 837, 740, 698; ¹H NMR (500 MHz, C₆D₆) δ 7.43 (d, *J* = 7.5 Hz, 2H), 7.36 – 7.23 (m, 4H), 7.16 – 6.99 (m, 5H), 6.90 (t, *J* = 8.1 Hz, 1H), 6.59 (d, *J* = 8.4 Hz, 1H), 5.93 – 5.48 (m, 2H), 5.16 (d, *J* =

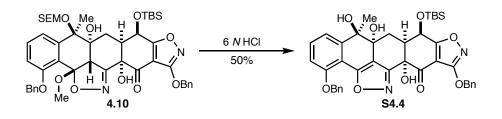
11.7 Hz, 1H), 4.95 (d, J = 11.8 Hz, 1H), 4.78 (q, J = 12.4 Hz, 2H), 4.06 (m, 2H), 3.89 (s, 1H), 3.59 (s, 1H), 3.17 (q, J = 8.6 Hz, 1H), 2.93 (q, J = 8.5 Hz, 1H), 2.78 (d, J = 13.6 Hz, 1H), 2.26 (t, J = 13.4 Hz, 1H), 1.70 (s, 3H), 0.63 (t, J = 8.1 Hz, 2H), -0.06 (s, 9H); ¹³C NMR (126 MHz, C₆D₆) δ 185.11, 180.85, 168.65, 163.84, 159.15, 155.17, 141.30, 136.83, 135.64, 130.92, 128.94, 128.66, 128.54, 128.51, 127.41, 122.46, 117.78, 114.96, 114.41, 104.26, 89.82, 81.02, 72.45, 70.98, 70.13, 65.09, 63.75, 47.83, 18.02, 16.43, -1.21; HRMS: Exact mass calcd for [(M+H⁺)]: 739.2681; found: 739.2641 (ESI).


Bis-mesylate 4.24. To a solution of **4.23** (23 mg, 0.031 mmol, 1.0 equiv.) in CH₂Cl₂ at room temperature under an atmosphere of nitrogen, pyridine (88 μ L, 1.1 mmol, 35 equiv.) was added rapidly, followed by MsCl (60 μ L, 0.78 mmol, 25 equiv.). The flask was immediately sealed and heated to 35 °C for 5.5 h, upon which time the reaction was quenched with sat. NaHCO₃ and extracted three times with CH₂Cl₂. The combined organic extracts were then dried with Na₂SO₄ and concentrated *in vacuo*. The crude residue was purified via flash chromatography on silica gel (3:2 hexanes:EtOAc) affording **4.24** (25 mg, 94%) as a colorless oil. $R_f = 0.52$ (1:1 hexanes:EtOAc); $[\alpha]_D = -65$ (*c* 0.075, CHCl₃); **IR** (neat) 2922, 2854, 1723, 1653, 1521, 1478, 1368, 1182, 1007, 944, 836; ¹**H NMR** (500 MHz, C₆D₆) δ 7.48 (d, *J* = 7.6 Hz, 2H), 7.20 (q, *J* = 7.8, 7.3 Hz, 3H), 7.12 – 6.95 (m, 4H), 6.88 (m, 3H), 6.60 (d, *J* = 8.1 Hz, 1H), 5.02 (d, *J* = 12.2 Hz, 1H), 4.95 –

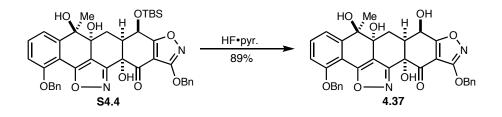
4.77 (m, 5H), 4.09 – 3.93 (m, 2H), 3.11 (q, J = 8.7 Hz, 1H), 2.95 (q, J = 8.6 Hz, 1H), 2.68 – 2.56 (m, 4H), 2.36 (d, J = 16.8 Hz, 4H), 1.45 (s, 3H), 0.63 (t, J = 8.2 Hz, 2H), – 0.04 (s, 9H); ¹³C NMR (126 MHz, C₆D₆) δ 176.16, 174.55, 168.48, 164.51, 155.48, 154.89, 140.21, 136.83, 135.23, 131.20, 128.96, 128.69, 128.66, 127.21, 122.24, 118.08, 114.84, 114.07, 106.39, 89.76, 87.45, 80.59, 72.66, 70.78, 70.38, 69.17, 65.11, 46.25, 40.56, 38.04, 29.24, 18.09, 16.24, -1.26; **HRMS**: Exact mass calcd for [(M+H⁺)]: 895.2232; found: 895.2190 (ESI).


Azide S4.3. To a solution of **4.24** (24 mg, 0.028 mmol, 1.0 equiv.) in 2:1 DMF:water (3.0 mL, 0.010 M) at room temperature exposed to air, NaN₃ (55 mg, 0.84 mmol, 30 equiv.) was added in a single portion. The reaction was stirred at room temperature for 18 h, upon which time it was diluted with water and extracted three times with EtOAc. The combined organic extracts were washed with brine, dried with Na₂SO₄ and concentrated *in vacuo*. The crude residue was purified via HPLC (5% *i*-PrOH and hexanes) affording **S4.3** (13 mg, 55%) as a colorless oil. $R_f = 0.42$ (1:1 hexanes:EtOAc); $[\alpha]_D = +20$ (*c* 0.55, CHCl₃); **IR** (neat) 3504, 2951, 2110, 1717, 1573, 1515, 1370, 1248, 1178, 1018, 926, 859, 816, 696; ¹H NMR (500 MHz, C₆D₆) δ 7.58 – 7.48 (m, 2H), 7.40 – 7.32 (m, 2H), 7.26 – 7.09 (m, 3H), 7.10 – 7.02 (m, 2H), 7.01 – 6.92 (m, 3H), 6.64 (d, *J* = 8.2 Hz, 1H), 5.35 (d, *J* = 4.5 Hz, 1H), 5.14 (m, 2H), 4.87 (m, 2H), 4.20 (m, 2H), 3.57 – 3.37 (m, 1H),

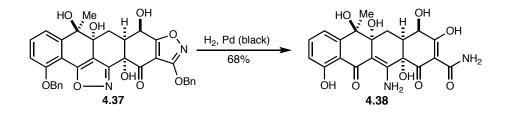
3.30 – 3.02 (m, 3H), 2.28 (s, 3H), 2.22 (dd, J = 13.7, 2.0 Hz, 1H), 1.74 (s, 3H), 1.41 (s, 1H), 0.76 (ddd, J = 9.5, 6.5, 4.3 Hz, 2H), -0.02 (s, 9H); ¹³C NMR (126 MHz, C₆D₆) δ 179.92, 173.44, 168.65, 164.42, 155.52, 155.06, 140.56, 136.69, 135.29, 131.12, 129.00, 128.86, 128.82, 128.60, 128.56, 127.01, 122.21, 116.97, 114.90, 114.13, 107.74, 90.04, 80.71, 72.78, 70.77, 69.62, 69.09, 65.31, 65.29, 41.85, 38.29, 29.84, 18.18, 16.21, -1.25; HRMS: Exact mass calcd for [(M+H⁺)]: 842.2522; found: 842.2551 (ESI).


Deprotected Azide 4.25. To a solution of **S4.3** (11 mg, 0.0131 mmol, 1.0 equiv.) in THF (1.5 mL, 0.0087 M) at room temperature exposed to air, 4 *N* HCl (1.5 mL, 0.0087 M) was added rapidly. The reaction was stirred at room temperature for 2.5 h, upon which time it was quenched with sat. NaHCO₃ and extracted three times with CH₂Cl₂. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. The crude residue was purified via flash chromatography on silica gel (1:1 hexanes:EtOAc) affording **4.25** (7.1 mg, 77%) as a white solid. $R_f = 0.21$ (1:1 hexanes:EtOAc); $[\alpha]_D = +48$ (*c* 0.26, CHCl₃); **IR** (neat) 3508, 3027, 2937, 2853, 2110, 1714, 1650, 1572, 1515, 1476, 1367, 1270, 1227, 1177, 1086, 1028, 959, 924; ¹H NMR (500 MHz, C₆D₆) δ 7.56 – 7.47 (m, 2H), 7.39 – 7.31 (m, 2H), 7.23 – 7.10 (m, 4H), 7.10 – 7.02 (m, 2H), 6.93 (t, *J* = 8.0 Hz, 1H), 6.85 (d, *J* = 7.7 Hz, 1H), 6.59 (d, *J* = 8.3 Hz, 1H), 5.35 (d, *J* = 4.0 Hz, 1H), 5.21 – 5.05 (m, 2H), 4.96 – 4.79 (m, 2H), 3.13 – 2.95 (m, 2H), 2.23 (s, 3H), 2.15 (d, 1H), 1.52

(s, 4H); ¹³C NMR (126 MHz, C₆D₆) δ 179.93, 173.53, 168.62, 164.04, 155.42, 155.33, 143.91, 136.69, 135.29, 131.89, 129.03, 128.85, 128.83, 128.61, 128.57, 127.06, 119.88, 116.07, 113.97, 113.75, 107.67, 75.48, 72.78, 70.72, 69.81, 68.51, 65.20, 41.61, 38.13, 29.47, 19.23; **HRMS**: Exact mass calcd for [(M+H⁺)]: 712.1708; found: 712.1717 (ESI).

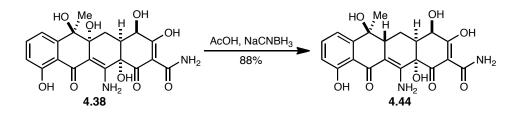

Polycycle 4.32. To a solution of **4.10** (60 mg, 0.070 mmol, 1.0 equiv.) in THF (4.7 mL, 0.015 M) at room temperature exposed to air, 6 *N* HCl (2.3 mL, 0.030 M) was added rapidly. The reaction was then sealed and heated to 35 °C for 7 h. The resulting slightly yellow solution was cooled to room temperature quenched with sat. NaHCO₃ (caution, gas evolution) and extracted three times with CH₂Cl₂. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. The crude residue was purified via MPLC (30% → 70% EtOAc and hexanes) affording **4.10** (24 mg, 58%) as a white solid. *R*_f = 0.33 (1:1 hexanes:EtOAc); [α]_D = +217 (*c* 1.0, CH2Cl2); **IR** (neat) 3417, 2925, 1714, 1680, 1514, 1454, 1360, 1286, 1264, 1233, 1080, 1013, 873, 736; ¹H NMR (600 MHz, Benzene-d6) δ 7.53 (dd, *J* = 7.8, 0.9 Hz, 1H), 7.37 – 7.24 (m, 2H), 7.24 – 7.16 (m, 2H), 7.12 – 6.94 (m, 7H), 6.36 (dd, *J* = 8.4, 0.9 Hz, 1H), 4.99 (d, *J* = 12.0 Hz, 1H), 4.83 (s, 1H), 4.75 (d, *J* = 12.0 Hz, 1H), 4.63 (d, *J* = 12.3 Hz, 1H), 4.54 (d, *J* = 12.4 Hz, 1H), 4.30 (d, *J* = 5.9 Hz, 1H), 3.09 – 2.97 (m, 1H), 2.79 – 2.63 (m, 1H), 2.30 (d, *J* = 11.9 Hz, 1H), 1.93 (dd, *J* = 12.0, 4.9 Hz, 1H), 1.11 (s, 3H); ¹³C NMR (126 MHz, C₆D₆) δ 186.95,

176.18, 167.54, 162.71, 159.47, 154.80, 148.13, 136.83, 135.36, 132.22, 128.74, 128.69, 128.64, 128.57, 126.88, 119.18, 115.28, 112.64, 112.43, 105.96, 81.96, 74.48, 73.50, 72.59, 70.42, 68.64, 49.28, 32.52, 28.91; **HRMS**: Exact mass calcd for [(M+Na⁺)]: 613.1581; found: 613.1604 (ESI).


Triol S4.4. To a solution of **4.10** (239 mg, 0.279 mmol, 1.00 equiv.) in THF (8.0 mL, 0.030 M) at room temperature exposed to air, 6 *N* HCl (4.0 mL, 0.060 M) was added rapidly. The reaction was then sealed stirred at room temperature for 6 h. The resulting slightly yellow solution was quenched with sat. NaHCO₃ (caution, gas evolution) and extracted three times with CH₂Cl₂. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. The crude residue was purified via MPLC (15% \rightarrow 40% EtOAc and hexanes) affording **S4.4** (100 mg, 50%) as a white solid. **R**_f = 0.40 (2:1 hexanes:EtOAc); **[\alpha]**_D = -140 (*c* 0.85, CHCl₃); **IR** (neat) 3423, 2929, 2857, 1707, 1513, 1481, 1452, 1365, 1263, 1079, 1045, 840, 784, 736; ¹H NMR (500 MHz, C₆D₆) δ 7.59 – 7.48 (m, 2H), 7.34 – 7.27 (m, 2H), 7.24 (t, *J* = 7.7 Hz, 2H), 7.13 – 7.02 (m, 3H), 7.00 (d, *J* = 7.4 Hz, 1H), 6.86 (d, *J* = 7.0 Hz, 2H), 6.56 (dd, *J* = 6.8, 2.5 Hz, 1H), 5.82 (d, *J* = 5.8 Hz, 1H), 5.08 (q, 1H), 4.95 – 4.83 (m, 3H), 3.48 (ddd, *J* = 13.2, 5.9, 2.2 Hz, 1H), 2.54 (dd, *J* = 13.9, 2.3 Hz, 1H), 2.07 (t, *J* = 13.5 Hz, 1H), 1.49 (s, 3H), 1.29 (s, 1H), 1.25 – 1.19 (m, 1H), 1.01 (s, 9H), 0.19 (d, *J* = 19.1 Hz, 6H); ¹³C NMR (126 MHz, C₆D₆) δ

184.46, 180.12, 168.84, 163.25, 159.03, 155.18, 144.53, 137.11, 135.80, 131.74, 128.99, 128.63, 128.48, 128.46, 127.10, 120.09, 117.12, 113.84, 113.39, 104.33, 103.30, 78.38, 75.76, 72.28, 70.51, 69.72, 64.65, 48.21, 36.84, 26.82, 25.94, 25.03, 18.67, 18.55, -4.85, -4.90; **HRMS**: Exact mass calcd for [(M+H⁺)]: 723.2732; found: 723.2749 (ESI).

Tetraol 4.37. To a solution of 5:2:6 THF:pyr.:(HF•pyr. (3.5 mL, 25 ml solution/mmol sm) at room temperature exposed to air, S4.4 (100 mg, 0.138 mmol, 1.00 equiv.) in THF (4.6 mL, 0.030 M) was added rapidly. The plastic tube was sealed and heated to 30 °C for 14 h, upon which time the reaction was quenched with sat. NaHCO₃ (careful, gas evolution) and extracted three times with CH₂Cl₂. The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. The resulting residue was purified via purified via MPLC (40% → 80% EtOAc and hexanes) affording 4.37 (75 mg, 89%) as a white solid. $R_f = 0.53$ (2:1 EtOAc:hexanes); $[\alpha]_D = -48$ (*c* 0.80, CH₂Cl₂); **IR** (neat) 3390, 1698, 1652, 1614, 1574, 1515, 1486, 1455, 1372, 1270, 1077, 1042, 799, 736, 697; ¹H NMR (600 MHz, CD3CN) δ 7.67 (d, *J* = 7.7 Hz, 2H), 7.58 – 7.52 (m, 2H), 7.52 – 7.40 (m, 5H), 7.34 (d, *J* = 7.9 Hz, 0H), 7.24 (d, *J* = 8.5 Hz, 2H), 5.75 (d, *J* = 5.8 Hz, 1H), 5.46 – 5.27 (m, 4H), 5.00 (s, 1H), 4.53 (s, 1H), 3.47 (ddd, *J* = 13.0, 5.8, 2.3 Hz, 1H), 3.40 (s, 1H), 3.17 (s, 1H), 2.33 (dd, *J* = 13.9, 2.3 Hz, 1H), 1.83 (t, *J* = 13.5 Hz, 1H), 1.66 (s, 3H); ¹³C NMR (126 MHz, CD₃CN) δ 185.12, 181.53, 169.24, 164.12, 159.44, 155.73,


145.66, 138.03, 136.40, 132.61, 129.64, 129.57, 129.54, 129.51, 128.86, 128.30, 120.73, 117.75, 114.53, 114.27, 104.35, 78.87, 76.36, 73.28, 71.21, 70.14, 63.39, 48.39, 27.29, 19.38; **HRMS**: Exact mass calcd for [(M+Na⁺)]: 631.1687; found: 631.1675 (ESI).

(4R,4aS,5aR,6R,12aS)-12-amino-3,4,5a,6,10,12a-hexahydroxy-6-methyl-1,11-dioxo-

1,4,4a,5,5a,6,11,12a-octahydrotetracene-2-carboxamide (4.38). To a solution of **4.38** (25 mg, 0.041 mmol, 1.0 equiv.) in degassed 4:1 dioxane:water (4.0 mL, 0.010 M) at room temperature, Pd black (12 mg, 0.11 mmol, 2.8 equiv.) was added. A balloon of H₂ was then fitted to the flask with a needle, and H₂ was bubbled through the solution for 5 minutes. The resulting slightly yellow suspension was stirred for 24 h, upon which time Ar was bubbled through the solution for 5 minutes to purge the remaining hydrogen. The reaction was then filtered while washing with methanol. The filtrate was then concentrated *in vacuo*. The resulting residue was purified via reverse phase MPLC (0% \rightarrow 100% CHC₃CN and water) affording **4.38** (12 mg, 68%) as a slightly yellow solid. [α]_D = +371.9 (*c* 0.36, THF); **IR** (neat) 3410, 2979, 1607, 1461, 1352, 1262, 1240, 1037, 995; ¹H NMR (600 MHz, CD₃OD) δ 7.41 (t, *J* = 8.0 Hz, 1H), 7.22 (dd, *J* = 7.6, 1.1 Hz, 1H), 6.76 (dd, *J* = 8.3, 1.1 Hz, 1H), 4.59 (d, *J* = 6.0 Hz, 1H), 3.11 – 2.96 (m, 1H), 2.47 (dd, *J* = 11.3, 5.0 Hz, 1H), 2.38 (d, *J* = 11.4 Hz, 1H), 1.39 (s, 3H); ¹³C NMR (126 MHz, CD₃OD) δ 195.15, 193.00, 188.98, 174.23, 162.76, 162.26, 149.87, 135.61, 116.91, 116.33,

115.27, 104.12, 98.40, 87.19, 76.91, 76.00, 72.03, 43.31, 32.51, 30.17; **HRMS**: Exact mass calcd for [(M–H₂O+H⁺)]: 415.1136; found: 415.1154 (ESI).

C12-amino-4-hydroxy-tetracycline (4.44). To a solution of **4.38** (6.5 mg, 0.015 mmol, 1.0 equiv.) in CH₃CN (2.0 mL, 0.0075 M) at room temperature exposed to air, NaCNBH₃ (3.0 mg, 0.048 mmol, 3.2 equiv.) was added, followed by AcOH (10 μ L, 0.17 mmol, 12 equiv.). The resulting yellow solution was sealed and stirred at 30 °C for 14 h, during which time the product slowly precipitated from the reaction mixture. The resulting suspension was diluted with methanol and concentrated *in vacuo*. The crude residue was purified via reverse phase MPLC (10% \rightarrow 60% CH₃CN and water) affording **4.44** (5.5 mg, 88%) as a yellow solid. [α]_D = -130 (*c* 0.28, MeOH); **IR** (neat) 3366, 2918, 2864, 2371, 2255, 1606, 1573, 1460, 1362, 1255, 1120, 1025, 872, 824; ¹H NMR (600 MHz, *d*₆-DMSO) δ 13.53 (s, 1H), 10.38 (s, 1H), 9.47 – 8.79 (m, 2H), 7.72 (s, 1H), 7.36 (t, *J* = 7.9 Hz, 1H), 7.18 – 6.96 (m, 1H), 6.87 – 6.57 (m, 2H), 5.79 (s, 1H), 2.76 (dd, *J* = 9.5, 2.4 Hz, 1H), 2.57 (dt, *J* = 12.9, 5.3 Hz, 1H), 2.47 (d, *J* = 16.2 Hz, 1H), 1.26 (ddd, *J* = 15.0, 12.5, 9.8 Hz, 1H), 1.11 (s, 3H); ¹³C NMR (126 MHz, CD₃OD) δ 197.55, 191.96, 190.80, 175.21, 164.55, 162.56, 152.09, 135.19, 116.97, 116.68, 114.88, 99.53, 97.23, 77.22, 75.36, 70.94, 43.64, 41.18, 24.19, 19.31; **HRMS**: Exact mass calcd for [(M+Na⁺)]: 439.1112; found: 439.1133 (ESI).

B. Computational Methods

Molecular Mechanics. All molecular mechanics calculations were performed using Spartan 2008, v. 1.1.2 (Wavefunction, Inc., Irvine, CA, USA), using the molecular mechanics MM2 force field. To generate an initial subset of reasonable conformers, a conformer distribution calculation was performed, and the 100 structures of lowest energy were documented. This procedure was performed at least three times with three different starting conformers, generating a total of 300 conformers for each macrocyclic enolate. A subset of these conformers was then further optimized via DFT.

Density Functional Theory. All DFT calculations were performed using Gaussian 09 (Revision A.02)¹⁷² on the Odyssey Cluster at Harvard University. Each starting structure, already a local minimum with respect to the MM PES, was re-optimized with the B3LYP hybrid functional¹⁷³ with the 6-31G* (for H, C, O, and N) and MDF10 (for Cu) basis sets. Structures marked as transition states were found to have exactly one negative frequency. The SMD implicit solvation model¹⁷⁴ was used in all cases with methanol as the specified solvent.

¹⁷² Gaussian 09, Revision A.02: Frisch, M. J.; Trucks. G. W.; Schlegel, H. B.; Scuseria G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann. R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian Inc., Wallingford, CT, **2009**.

 ¹⁷³ (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652. (b) Stephens, P. J.; Devlin, F. J.; Chablowski, C. F.; Frisch, M. J. J. Chem. Phys. 1994, 98, 11623-11627.

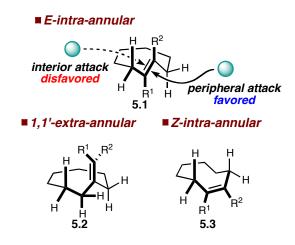
¹⁷⁴ Marenich, A. V.; Cramer. C. J.; Truhlar, D. G. J. Phys. Chem. B. **2009**, 113, 6378-6396.

Chapter 5

Analysis of the Peripheral Attack Model¹⁷⁵

I. Introduction

Conformational analysis is an indispensable tool when attempting to assess the reactivity of organic molecules.¹⁷⁶ The coupling of both conformational analysis and reactivity was first demonstrated in the context cyclic alkanes in pioneering work conducted by Barton.¹⁷⁷ In those studies, the primary focus was to understand the affect of substituent positioning on reactivity, mainly within cyclohexane or fixed-ring steroidal systems. In the late 1970's and early 1980's, Still and co-workers began to look at medium rings (8-12 membered rings) as molecular entities with defined conformations, initially articulating this point via racemic synthesis of the sex excitant pheromone periplanone.¹⁷⁸ Within this disclosure the potential generality of the approach was discussed by means of the follow-ing statement:


¹⁷⁵ All material within this chapter was generated in collaboration with Dr. Eugene Kwan. Both Dr. Kwan and I contributed equally to this work.

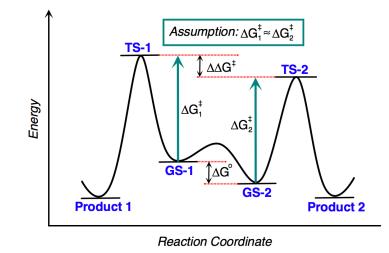
¹⁷⁶ For an excellent review of conformational analysis concepts, see: *Stereochemistry of Organic Compounds;* Eliel, E. L.; Wilen, S. H. John Wiley & Sons, Inc.: New York, 1994.

¹⁷⁷ (a) Barton, D. H. R. *Experentia*, **1950**, *6*, 316-320. (b) Barton, D. H. R.; *Science*. **1970**, *169*, 539-544.

"This principle of peripheral attack appears to be a general strategy for stereochemical control in the synthesis and modification of germacranes and related medium-ring compounds. It does, however, require knowledge of the conformation of the starting olefin."¹⁷⁸

"Peripheral attack", as used above, refers to the propensity for reagents (nucleophiles or electrophiles) to approach macrocyclic π -bonds from the exterior rather than interior. Three types of π -bond orientations with respect to the macrocycle exist (Figure 5.1), with the 1,1'-extra-annular case (5.2) applicable for both an exocyclic olefin and a carbonyl function. Thus, with the discovery that a medium ring system can be used to ones advantage in synthesis as demonstrated by Still and co-workers, many new opportunities were created for organic chemists.

Figure 5.1 Peripheral attack as it applies to different π -bond orientations. Example **5.2** is also relevant for carbonyl additions. The green sphere represents a generic nucleophile, however electrophiles are valid as well.


¹⁷⁸ Still, W. C. J. Am. Chem. Soc. **1979**, 101, 2493-2495.

The concept of peripheral attack is a component of the larger 'peripheral attack model'.¹⁷⁹ This model represents a ground state approach to selectivity prediction within the context of medium and large rings (> 7 membered), and is only relevant for intermolecular reactions.¹⁸⁰ More specifically, the ground state conformational bias of a given substrate may be directly translated to a stereochemical prediction based upon the difference in energy between the favored conformer and the lowest energy conformer leading to the opposite diastereochemical outcome (E_{rel}). Implicit within this analysis is that all other factors such as reaction type, nature of the reagent, and the development of any stereoelectronic or electrostatic interactions in the transition state are ignored. In essence, the model assumes that the π -facial bias from a given substrate conformation is significantly large such that all other interactions are negligible.

While Still did not invoke the Curtin-Hammett principle¹³³ in his discussion, the peripheral attack model also assumes a specific Curtin-Hammett condition (Figure 5.2) where the activation energies of the reactions from each ground state conformer (**GS-1**, **GS-2**) are similar ($\Delta G_1^{\ddagger} \sim \Delta G_2^{\ddagger}$ or $\Delta G^0 \sim \Delta \Delta G^{\ddagger}$). This places restrictions on both the types of reactions and structure of substrate that can be studied. Since reactions that proceed with a very low transition state barrier may compete with conformational mobility, and conformationally immobile systems may have barriers of interconversion that compete with reaction, the model needs to be applied judiciously.

¹⁷⁹ Still, W. C.; Galynker, I. *Tetrahedron*. **1981**, *37*, 3981-3996.

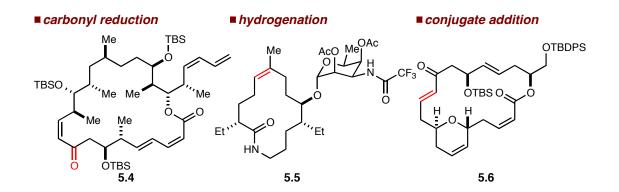
¹⁸⁰ The model is only relevant for intermolecular reactions since intramolecular reactions rely upon attack from the interior of the ring.

Figure 5.2 The Curtin-Hammett system and ground state assumption implicit to the peripheral attack model.^{133, 181}

Following the periplanone synthesis in 1979, perhaps the only remaining obstacle between this initially proposed model and widespread adoption was the development of a reliable method of semi-quantitative conformational prediction. This obstacle was overcome in 1981 when Still and co-workers further delineated the concept of peripheral attack within 8-12 membered ring systems by incorporating computations into the study of substrate conformational profiles.¹⁷⁹ In contrast to the periplanone synthesis, this work primarily sought to correlate the computed conformational profile of a given ring with the diastereoselectivity achieved from a given reaction using the ring as substrate. Importantly, this work achieved a "semi-quantitative prediction of product distributions in every case", and ultimately bridged the gap between conformational analysis and stereoselective synthesis by demonstrating the utility of computational chemistry within the con-

It is assumed that $\Delta G^0 \ll \Delta G_1^{\ddagger}$ and $\Delta G^0 \ll \Delta G_2^{\ddagger}$, where **GS-1** and **GS-2** represent the two lowest energy conformers that lead to the two possible diastereometric products of the reaction. Alternatively, if

text of macrocycles. Now the peripheral attack model could be applied to macrocyclic systems in a straightforward manner, effectively beginning an era of intermolecular macro-cyclic stereocontrol.

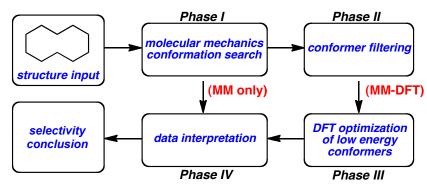

II. The Peripheral Attack Model in Modern Organic Synthesis

Since the initial study of macrocyclic conformation and reactivity, organic chemists have used macrocycles as stereocontrol elements widely.¹⁸² Alarmingly, there are a significant number of instances where the peripheral attack model is used outside the context of the 10-12 membered rings in which it was initially established (select examples can be found in Figure 5.3). At times, literature disclosures describe the successful utilization of conformational analysis, yet one wonders if examples tend to go unreported in the cases of macrocyclic stereocontrol that defy prediction. Further, the utility and accuracy of the

conformational interconversion is slow relative to reaction, then the ground state bias can still be recovered in the observed selectivity as long as the system is allowed to come to equilibrium before reaction.

¹⁸² (a) Ref. [179]. (b) Kim, H.; Lee, H.; Kim, J.; Kim, S.; Kim, D. J. Am. Chem. Soc., 2006, 128, 15851-15855. (c) Wang, B.; Ramirez, A. P. Slade, J. J.; Morken, J. P. J. Am. Chem. Soc. 2010, 132, 16380-16382. (d) Ref. [178]. (e) Ushakov, D. B.; Navickas, V.; Ströbele, M.; Maichle-Mössmer, C.; Sasse, F.; Maier, M. E. Org. Lett. 2011, 13, 2090-2093. (f) Vedejs, E.; Duncan, S. M. J. Org. Chem. 2000, 65, 6073-6081. (g) Still, W. C.; Macpherson, L. J.; Harada, T.; Callahan, J. F. Tetrahedron. 1984, 40, 2275-2281. (h) Tu, W.; Floreancig, P. E. Angew. Chem. Int. Ed. 2009, 48, 4567-4571. (i) Evans, D. A.; Ratz, A. M.; Huff, B. E.; Shepard, G. S. J. Am. Chem. Soc., 1995, 117, 3448-3467. (j) Nicolaou, K. C.; Adsool, V. A.; Hale, C. R. H. Angew. Chem. Int. Ed., 2011, 50, 5149-5152. (k) Urle, S. B.; Blume, T.; Mengel, A.; Parchmann, C.; Skuballa, W.; Bäsler, S. B.; Schäfer, M.; Sülzle, D.; Wrona-Metzinger, H.-P. Angew. Chem. Int. Ed. 2003, 42, 3961-3964. (1) Xu, Z.; Johannes, C. W.; Houri, A. F.; La, D. S.; Cogan, D. A.; Hofilena, G. E.; Hoveyda, A. H. J. Am. Chem. Soc. 1997, 119, 10302-10316. (m) Llácer, E.; Urpí, F.; Vilarrasa, J. Org. Lett. 2009, 11, 3198-3201. (n) Hu, T.; Takenaka, N.; Panek, J. S. J. Am. Chem. Soc. 2002, 124, 12806-12815. (o) Paterson, I.; Norcross, R. D.; Ward, R. A.; Romea, P. Lister, M. A. J. Am. Chem. Soc. 1994, 116, 11287-11314. (p) Li, G.; Yang, X.; Zhai, H. J. Org. Chem. 2009, 74, 1356-1359. (q) Mulzer, J.; Kristein, H. M.; Buschmann, J.; Lehmann, C.; Luger, P. J. Am. Chem. Soc. 1991, 113, 910-923. (r) Stachel, S. J.; Danishefsky, S. J.; Tet. Lett. 2001, 42, 6785-6787. (s) Still, W. C.; Novack, V. J. J. Am. Chem. Soc. 1984, 106, 1148-1149. (t) Oibin, S.; Beeler, A. B.; Lobkovsky, E.; Porco Jr., J. A.; Panek, J. S. Org. Lett. 2003, 5, 2149-2152. (u) Layton, M. E.; Morales, C. A.; Shair, M. D. J. Am. Chem. Soc. 2002, 124, 773-775. (v) Kende, A. S.; Liu, K.; Kaldor, I.; Dorey, G.; Koch, K. J. Am. Chem. Soc. 1995, 117, 8258-8270. (w) Nicolaou, K. C.; Jiang, X.; Lindsay-Scott, P. J.; Corbu, A.; Yamashiro, S.; Bacconi, A.; Fowler, V. M. Angew. Chem. Int. Ed.

peripheral attack model itself has not been re-evaluated since the initial disclosure by Still and co-workers despite widespread adoption. Unfortunately, simple data mining of relevant literature examples is not possible due to either the lack of disclosure or lack of consistency within the computational details of conformational analysis. For these reasons, we believe that the peripheral attack concept should be uniformly re-evaluated in order to compare the predictions of conformational analysis to experimental observations. In doing so, this will enable both the systematization of the analysis for potential future use and an unbiased assessment of its utility and accuracy. Over thirty years ago the peripheral attack hypothesis was proposed; it is now our intent to identify whether the field of organic synthesis should continue to embrace or leave behind this longstanding model.


Figure 5.3 Select literature examples that demonstrate the use of the peripheral attack model in the context of large macrocycles (>12 membered rings).¹⁸³

²⁰¹¹, *123*, 1171-1176. (x) Paterson, I.; Britton, R.; Delgado, O.; Meyer, A.; Poullennec, K. G. Angew. Chem. Int. Ed. **2004**, *116*, 4729-4733.

¹⁸³ Left example: ref. [182(x)]; middle example: ref. [182(l)]; right example: Patterson, I.; Savi, C. D.; Tudge, M. Org. Lett. **2001**, *3*, 213-216.

Two types of computational procedures were examined for implementing the peripheral attack model (Scheme 5.17): one involving only molecular mechanics ("MM") and one involving both molecular mechanics and DFT ("MM-DFT"). Both methods commenced with a relatively fast Monte Carlo conformational search for a given macrocycle bearing a reactive π -bond using molecular mechanics. With the MM method, the resulting geometries and energies were examined directly. With the MM-DFT method, the MM structures were further optimized in a slower process to local minima with DFT. In many cases, the initial set of MM conformers was very large; therefore, relevant conformers were selected by a clustering analysis. The lowest energy structures were examined in order to determine which face of the reactive π -bond was exposed to the periphery. Structures that exposed the π -face to the periphery leading to the observed product were labeled "correct" while structures that exposed the opposite π -face were labeled "incorrect." Structures that exposed both faces to the periphery were labeled "ambiguous."¹⁸⁴ The energy gap between the best correct and best incorrect structure (" E_{rel} ") was calculated and compared to the experimentally observed stereoselectivity. The MM method was faster, requiring about a day, while the MM-DFT method was slower, requiring about a week.¹⁸⁵

¹⁸⁴ To limit bias during the visual inspection of a macrocycle and to assess ambiguity more rigorously, we suggest analyzing the angle formed by the C–H bond of a reacting endocyclic olefin for example or the C– O bond of a carbonyl function and an atom directly across the macrocycle. If this angle exceeds 140°, the conformer is considered ambiguous.

Scheme 5.17 Overview of the conformational analysis procedures developed in this study.

IV. Examples Included in the Study

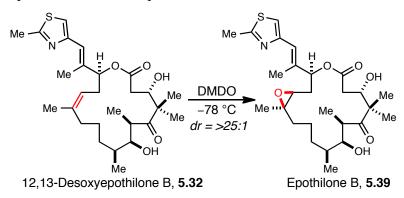
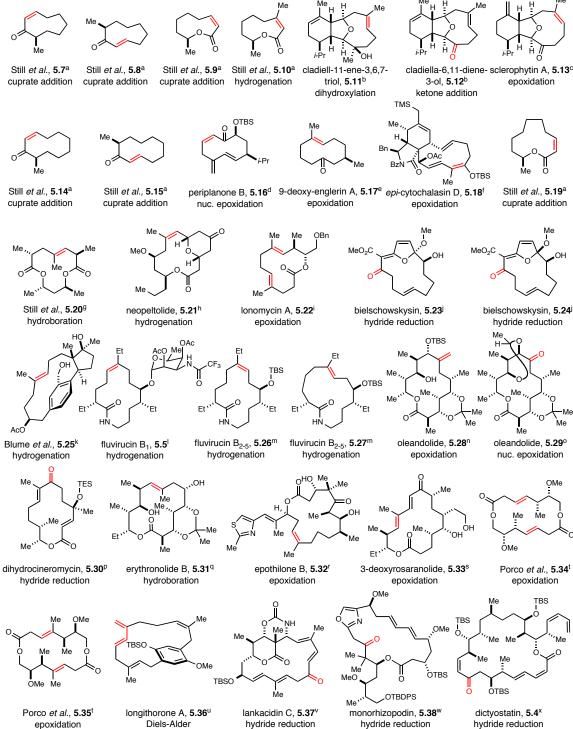
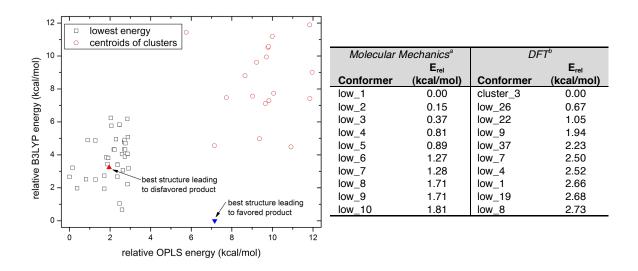
We examined four different implementations of the approach: MM (OPLS 2005, gas phase), MM-DFT (B3LYP/6-31g(d), gas phase), MM-DFT (B3LYP/6-31g(d), SMD), and MM-DFT (M06-2X/6-31g(d), SMD). Each was carried out on a dataset of 34 examples of intermolecular reactions on chiral macrocycles (Chart 5.1), spanning a wide range of ring sizes (9–22 membered) and reaction types, including electrophilic olefin epoxidations (9 cases), organocuprate additions (6 cases), hydrogenations (6 cases), and 1,2-additions to ketones (7 cases). For continuity, eight cases are medium-sized rings originally considered by Still and co-workers (5.7–5.10, 5.14, 5.15, 5.19).¹⁷⁹ Only reactions whose products were definitively characterized by NMR spectroscopy, X-ray diffraction, or comparison to authentic material were considered. In 28 cases, one predominant stereoisomer was observed; in 6 others, the reactions were unselective. Reactions that were reported to give "one predominant product" or greater than 8:1 diastereoselectivity were arbitrarily defined as "highly selective."

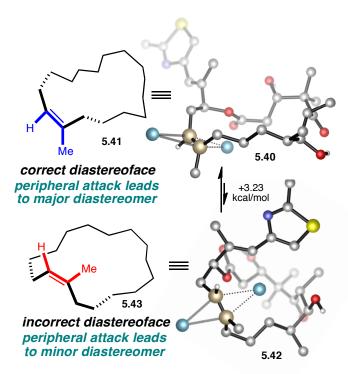
⁸⁵ Calculations were performed using Macromodel 9.8 or Gaussian 09. For complete details, please see the supporting information.

V. Analysis Procedure

Prior to analysis of the complete dataset, it is instructive to describe the procedure of analysis for a single example initially. Let us consider the results for the case of epothilone B (Scheme 5.18). Here, epoxidation of **5.32** was highly selective (>25:1) for **5.39**. A large set of starting material conformers were generated with molecular mechanics, and then refined with DFT. There was a poor correlation between the MM and DFT energies (Figure 5.4, left panel). As a result, the rank-ordering of the energies of the candidate structures underwent substantial changes. Importantly, the DFT global minimum was found from a high MM energy clustered structure, demonstrating the importance of the conformer filtering process (Figure 5.4, right panel). The lowest energy structures that present the correct and incorrect faces of the trisubstituted olefin (with respect to the olefin carbon bearing the methyl group) to the periphery are shown in Figure 5.5 (**5.40** and **5.42**). According to MM-DFT (B3LYP/6-31g(d), gas phase), the best correct structure is favored over the best incorrect structure by 3.2 kcal/mol. Therefore, the reaction was predicted to be selective for diastereomer **5.39**, in agreement with experiment.

Scheme 5.18 Epoxidation to form epothilone B.^{182(r)}


Chart 5.1 Macrocycles considered in this study. Superscripts refer to the sub-references in [182]. Names are provided to identify the associated target of the macrocycle. Cases in which a natural product was not involved are labeled using the corresponding author involved with the listed publication.

hydride reduction

Figure 5.4 Results for epothilone B precursor (**5.32**). "low_1" represents the lowest energy structure found by MM; "low_2" represents the second lowest energy structure; etc. "cluster_3" denotes the third lowest energy structure of the clustered set. Poor correlation is observed between the MM and DFT energies (left panel). Substantial shuffling of the energy rank-ordering from MM to DFT (right panel). ^aMM calculations were performed using the OPLS force field. ^bDFT calculations were performed using the B3LYP/6-31G(d) density functional with implicit solvation (SMD).

Figure 5.5 Starting material conformations for 12,13-desoxyepothilone B (**5.32**). Gold spheres represent the reacting olefin.

VI. Bulk Dataset Analysis

The same analysis procedure described above was carried out for every member of the dataset. The results shown in Table 5.1 include all the cases that fit the criteria for inclusion, regardless of whether the predictions were correct. The dataset was then scrutinized to determine whether the peripheral attack model is useful in the prediction of diastereochemical outcomes in a binary- and magnitude-based capacity. The former refers to whether an E_{rel} value, regardless of magnitude, predicts the predominant product while the latter is a more stringent test that looks for the prediction of the actual level of selectivity observed in a given reaction.

We began our dataset analysis by looking at the binary diastereochemical outcome prediction to determine whether the model is useful for the prediction of the predominant diastereomer. Ignoring the ambiguous cases, MM (OPLS) makes the correct prediction 79% of the time (Table 5.2). MM-DFT (B3LYP/6-31g(d), gas phase) is slightly worse at 73%, which improves to 81% with implicit solvation. Dispersion corrections (M06-2X/6-31g(d), SMD) perform worse at 70%. Recent findings that ground state MM (OPLS) energies and geometries compare favorably to those from high-level DFT calculations may offer an explanation for why the use of the more expensive MM-DFT methods gives little improvement.¹⁸⁶ Regardless, the accuracies of these predictions are well above 50% (i.e., random guessing), but distant from a range that would invoke a feeling of confidence (>90%), especially given the high-risk associated with these often late-stage transformations.

¹⁸⁶ Paton, R. S.; Goodman, J. M. J. Chem. Inf. Model. 2009, 49, 944-955.

	-	Townot/		Contract	Permonal O	MMa		gas phase) ^b	se) ^b	SMD solvation) ^b	ation) ^b	SMD solvation)	ation)°
Structure	Size	Researchers	Reaction	System	Selectivity	Prediction	E _{rel} d	Prediction	E _{rel} d	Prediction	E _{rel} d	Prediction	E _{rel} d
5.7	6	Still et al.	cuprate addition	Et ₂ O	24:1	Correct	0.86	Correct	2.37	Correct	2.39	Correct	1.81
5.8	6	Still et al.	cuprate addition	Et ₂ O	99:1	Incorrect	-2.40	Incorrect	-2.98	Incorrect	-3.01	Incorrect	-2.86
5.9	6	Still et al.	cuprate addition	Et₂O	99:1	Correct	3.76	Correct	2.14	Correct	2.03	Correct	1.17
5.10	6	Still et al.	hydrogenation	MeOH	16:1	Correct	3.57	Correct	1.50	Correct	1.60	Correct	1.36
5.11	6	cladiellene	dihydroxylation	THF/H ₂ O	highe	Correct	4.91	Correct	1.94	Correct	1.08	Correct	3.09
5.12	6	cladiellene	ketone addition	THF	highe	Correct	7.56	Correct	6.75	Correct	5.91	Correct	5.08
5.13	6	sclerophytin A	epoxidation	CHCI ₃	1.8:1	Correct	1.66	Correct	1.90	Correct	0.95	Correct	1.88
5.14	10	Still et al.	cuprate addition	Et ₂ O	32:1	Correct	1.60	Correct	0.56	Correct	0.28	Incorrect	-0.34
5.15	10	Still et al.	cuprate addition	Et ₂ O	16:1	Incorrect	-0.36	Correct	0.38	Incorrect	-0.01	Incorrect	-0.79
5.16	10	periplanone B	nuc. epoxidation	THF	4:1	Correct	1.93	Incorrect	-1.07	Correct	0.62	Incorrect	-1.10
5.17	10	deoxyenglerin A	epoxidation	CH ₂ Cl ₂	highe	Correct	1.83	Correct	4.62	Correct	4.65	Correct	3.55
5.18	ŧ	cytochalasin D	epoxidation	CHCI ₃	>20:1	Correct	2.90	Correct	3.14	Correct	4.01	Correct	3.42
5.19	ŧ	Still et al.	cuprate addition	Et ₂ O	24:1	Correct	2.38	Correct	1.79	Correct	1.60	Correct	1.58
5.20	12	Still et al.	hydroboration	THF	>9:1	Correct	4.10	Correct	4.16	Correct	4.05	Correct	3.49
5.21	12	neopeltolide	hydrogenation	EtOH	>9:1	Correct	1.63	Correct	0.54	Correct	0.80	Correct	1.43
5.22	12	lonomycin A	epoxidation	CH ₂ Cl ₂	9:1	Correct	2.45	Correct	2.24	Correct	2.34	Correct	2.15
5.23	13	bielschowskysin	hydride reduction	THF/H₂O	highe	Incorrect	-1.57	Incorrect	-2.19	Incorrect	-1.15	Incorrect	-2.26
5.24	13	bielschowskysin	hydride reduction	THF/H₂O	highe	Incorrect	-1.23	Incorrect	-2.77	Incorrect	-2.41	Incorrect	-1.43
5.25	14	blume <i>et al.</i>	hydrogenation	MeOH	8:1	Correct	3.20	Correct	2.19	Correct	3.21	Correct	1.77
5.5	14	fluvirucin B ₁	hydrogenation	EtOH	×49:1	Correct	0.38	Correct	1.04	Incorrect	ambig.	Incorrect	ambig.
5.26	14	fluvirucin B ₂₋₅	hydrogenation	toluene	9:1	Incorrect	1.18	Incorrect	-5.13	Incorrect	-1.48	Incorrect	ambig.
5.27	14	fluvirucin B ₂₋₅	hydrogenation	toluene	7:1	Correct	0.72	Correct	0.89	Correct	0.84	Correct	0.48
5.28	14	oleandolide	epoxidation	CH ₂ Cl ₂	highe	Incorrect	-3.27	Incorrect	-3.38	Incorrect	-5.01	Incorrect	-2.89
5.29	14	oleandolide	nuc. epoxidation	THF/DMSO	>32:1	Correct	3.05	Incorrect	-0.15	Correct	1.89	Correct	2.20
5.30	14	dihydrocineromycin	hydride reduction	MeOH/CH ₂ Cl ₂	high	Incorrect	-0.08	Incorrect	ambig.	Correct	1.82	Correct	1.21
5.31	14	erythronolide B	hydroboration	THF	9:1	Correct	0.93	Correct	6.91	Correct	6.05	Correct	6.98
5.32	16	epothilone B	epoxidation	CH ₂ Cl ₂	>25:1	Correct	1.87	Correct	0.82	Correct	3.23	Incorrect	-1.36
5.33	16	deoxyrosaranolide	epoxidation	CH ₂ Cl ₂	>15:1	Correct	1.38	Correct	4.61	Correct	4.78	Correct	0.87
5.34	16	Porco et al.	epoxidation	CCI4	2.5:1	Correct	1.89	Correct	3.59	Correct	4.13	Correct	2.96
5.35	16	Porco et al.	epoxidation	CH ₂ Cl ₂	highe	Correct	2.77	Correct	1.23	Correct	2.09	Correct	1.86
5.36	16	longithorone A	Diels-Alder	CH ₂ Cl ₂	1.4:1	Correct	ambig.	Correct	ambig.	Correct	ambig.	Correct	ambig.
5.37	17	lankacidin C	hydride reduction	MeOH	unselec.	Correct	ambig.	Correct	ambig.	Correct	0.29	Correct	ambig.
5.38	19	monorhizopodin	hydride reduction	MeOH	highe	Correct	0.10	Incorrect	-1.36	Correct	0.07	Correct	3.12′
5.4	22	dictyostatin	5.4 22 dictyostatin hydride reduction EtOH high ^e Correct 0.41 Incorrect ambig.	EtOH	highe	Correct	0.41	Incorrect	ambig.	Incorrect	ambig.	Incorrect	-0.29

 Table 5.1 Conformational analysis of the entire dataset.

	% correct	% correct
Method	(all E _{rel})	(IE _{rel} l > 1 kcal/mol)
MM only (gas phase)	79	78
B3LYP (gas phase)	73	71
B3LYP (SMD solvation)	81	78
M06-2X (SMD solvation)	70	76

Table 5.2 Accuracy of predicting the major product (regardless of E_{rel}).

Given the lackluster accuracy from the binary test for selectivity, it was expected that a more stringent test for the prediction of magnitude would be similarly mediocre. Indeed, Table 5.3 indicates that E_{rel} values are not well correlated with the observed selectivities. Even when the analysis is restricted to substrates with $|E_{rel}|$ values of greater than 1.0 kcal/mol (a screen for high selectivity), successful prediction is achieved 67% and 74% of the time for MM and MM-DFT respectively. One can also ask whether macrocycles with small biases ($|E_{rel}| < 1.0$ kcal/mol) or ambiguous global minima tend to give unselective reactions. The data clearly reveal that neither finding is meaningful. A rationalization for this particularly poor correlation is that unbiased substrates can still give high levels of stereoselectivity through transition state effects, which are not accessible via the ground state-based peripheral attack model.

(a)	MM only IE _{rel} l (kcal/mol)		
observed dr	ambig.	0.0 - 1.0	> 1.0
> 8 : 1	0	6	16
<1:8	0	1	5
8:1-1:8	2	1	3
total	2	8	24
accuracy ^a	100 %	13 %	67 %
(b)	solv. B3LYP IE _{rel} I (kcal/mol)		
observed dr	ambig.	0.0 - 1.0	4.0
		0.0 1.0	> 1.0
> 8 : 1	2	3	> 1.0 17
> 8 : 1 < 1 : 8	2 0		
	-		17
<1:8	-	3 1	17

 Table 5.3 Accuracy of predicting the level of selectivity.

 \overline{a} the number of compounds with the correct sense of selectivity divided by the total in the specified range.

VII. Subsets of the Complete Dataset

The poor correlation between observed and predicted selectivity clearly indicate that the peripheral attack model cannot be universally applied with confidence. This is a startling conclusion given its widespread adoption, however, it is quite possible that particular systems are better suited for the model than others. With this possibility in mind, we attempted to break up the dataset into subsets, which include macrocycle size, olefin orientation, and reaction type.

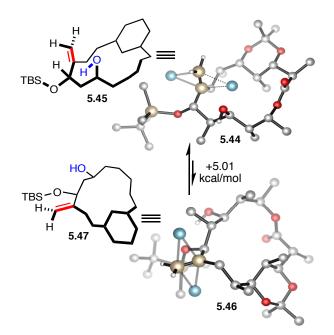
Macrocycle Type and Olefin Orientation. A key goal of this study was to determine whether the peripheral attack model is applicable to large macrocycles (>10-12 membered), given that they potentially are more flexible than the smaller rings for which the model was originally proposed. Table 5.4 shows that large macrocycles perform well (88% binary accuracy) when compared to the 11-14 membered ring subset and roughly equivalent when compared to the 9 and 10 membered ring subset. The ground state biases of both E and Z intra-annular olefins appear to translate to observed stereoselectivity in an equal fashion (Table 5.5), however in each of these cases the observed accuracies are below a high confidence threshold. Overall, data from both Table 5.4 and Table 5.5 do not reveal any particular scenario in which the peripheral attack model is more reliable, further raising concerns regarding its utility.

# of cases	accuracy ^a (major product)	accuracy [∞] (high selectivity)
11	9 of 11 (82%)	6 of 7 (86%)
15	10 of 15 (67%)	8 of 12 (67%)
8	7 of 8 (88%)	3 of 4 (75%)
	cases 11 15	cases (major product) 11 9 of 11 (82%) 15 10 of 15 (67%)

Table 5.4 Accuracy of the peripheral attack model by ring size.

^{*a*} MM-DFT (B3LYP/6-31g(d), SMD) ^{*b*} $|E_{rel}| > 1.0$ kcal only

olefin type	# of cases	accuracy ^a (major product)	accuracy ^b (high selectivity)		
E-intra-annular	14	11 of 14 (79%)	9 of 11 (82%)		
Z-intra-annular	11	9 of 11 (82%)	6 of 7 (86%)		
1,1'-extra-ann.	1	0 of 1 (0%)	0 of 1 (0%)		
^a MM-DFT (B3L	^{<i>a</i>} MM-DFT (B3LYP/6-31g(d), SMD) ^{<i>b</i>} $ E_{rel} > 1.0$ kcal only				


Table 5.5 Accuracy of the peripheral attack model by olefin orientation.

Reaction Subsets. Implicit to the peripheral attack mode is the lack of reaction or reagent consideration, suggesting that the accuracy of its predictions might vary with reaction type (Table 5.6). When the bulk dataset is categorized by reaction type, the first hint of a useful model emerges. In particular, epoxidation reactions stand out as reliably predicted reactions in both a binary and magnitude-based manner in all but one case. This one outlying case, **5.28**, likely proceeds via a hydroxyl-directed mechanism thus accessing an otherwise inaccessible face of the olefin (Figure 5.6).¹⁸²⁽ⁿ⁾ It is therefore suggested that if DMDO were used for this epoxidation, peripheral attack would have constituted the major reaction pathway.

Table 5.6 Accuracy of the peripheral attack model by reaction type.

reaction type	# of cases	accuracy ^a (major product)	accuracy ^b (high selectivity)
epoxidation	9	8 of 9 (89%)	7 of 8 (88%)
cuprate add.	6	4 of 6 (67%)	3 of 4 (75%)
hydrogenation	6	4 of 6 (67%)	1 of 2 (50%)
1,2-addition	6	4 of 6 (67%)	2 of 4 (50%)

^{*a*} MM-DFT (B3LYP/6-31g(d), SMD) ^{*b*} $|E_{rel}| > 1.0$ kcal only

Figure 5.6 Conformational analysis of the oleandolide precursor **5.28** reveals the possibility for a hydroxyl-directed reaction with m-CPBA.¹⁸²⁽ⁿ⁾

The conjugate addition of cuprate reagents represents a higher level of transition state complexity compared with olefin epoxidations. Assuming that the initial addition of the reagent is both irreversible and selectivity determining, then the corresponding stereoelectronic requirement should be that the carbonyl group and the olefin of the enone be in conjugation. However, no such constraint is applied in the peripheral attack model. Therefore, the ground state macrocyclic conformations may not necessarily be relevant to the transition states for cuprate addition. Indeed, it is noteworthy that Still and coworkers considered developing strain in the product to be responsible for failures of the model.¹⁷⁹ Furthermore, recent studies suggest that it is a subsequent reductive elimination step, rather than the initial addition, that may be both rate and selectivity determining.¹⁸⁷

Although the hydrogenation of macrocyclic olefins might appear to be mechanistically simpler than cuprate additions, the performance of the peripheral attack model is similarly poor. This highlights another deficiency of the peripheral attack model, which involves the assumption that the structure of the starting material is fixed. Since intermediate catalyst-substrate complexes may significantly perturb conformational biases, ground state conformations may be irrelevent.

The 1,2-addition of organometallic reagents to macrocyclic ketones is yet another challenging case for the peripheral attack model. Although previous studies¹⁸⁸ have suggested that these reactions occur through relatively early transition states, the work of Tomoda and co-workers¹⁸⁹ now suggests that sodium borohydride reductions may actually proceed via very late transition states such that interior attack becomes quite plausible. Further, stereoelectronic effects are ignored by the peripheral attack model in a similar fashion to cuprate additions. Specifically, the Felkin-Anh model¹⁹⁰ assumes that the transition state for addition involves an antiperiplanar alignment between the forming bond and the best hyperconjugative acceptor adjacent to the carbonyl group, regardless of which rotamer is dominant in the ground state. In contrast, the peripheral attack model

 ¹⁸⁷ (a) Luibrand, R. T.; Taigounov, I. R.; Taigounov, A. A. J. Org. Chem. 2001, 66, 7254-7262. (b) Mori, S.; Nakamura, E. Chem. Eur. J. 1999, 5, 1534-1543. (c) Kireev, A. S.; Manpadi, M.; Kornienko, A. J. Org. Chem. 2006, 71, 2630-2640.

 ¹⁸⁸ (a) Chérest, M.; Felkin, H. Tet. Lett. 1968, 18, 2205-2208. (b) Ashby, E. C.; Noding, S. A.; J. Am. Chem. Soc. 1976, 98, 2010-2011.

¹⁸⁹ Yasumitsu, S.; Kaneno, D.; Tomoda, S. J. Phys. Chem. A. 2009, 113, 2578-2583.

assumes that the ground state conformations are also the reactive ones. As a result, the accuracy for 1,2-additions suffers.

Another explanation for the low predictability of 1,2-additions is that the model does not consider the metal ion or the size of the nucleophile. With chelating metals, it is possible that the conformations of relatively polar macrocycles might be perturbed. For example, in the case of monorhizopodin intermediate **5.38**, a significant turnover in selectivity was observed when Ce(III) was introduced to the reaction. With respect to reagent size, it is conceivable that small reagents may be able to access the interior face of large macrocycles, leaving a core assumption of the peripheral attack model intrinsically flawed.

VIII. Conclusions

The work described in this chapter reveals a two-part project aimed at the analysis of the peripheral attack model. The first part was the development of a computational protocol and tool for application of the peripheral attack model. This has been completed in very thorough fashion by comparing parallel protocols that utilize MM or both MM and DFT with various additional parameters. Using this computational tool, we turned to the second aspect of the project, which is the evaluation of the accuracy and utility of the model.

In light of the poor predictability associated with conjugate additions, hydrogenations, and 1,2-additions, we conclude that the peripheral attack model should no longer be used outside of epoxidations. Since stereocontrol in the context of a macrocyclic sub-

¹⁹⁰ (a) Anh, N. T.; Eisenstein, O. Nouv. J. Chim. **1977**, 1, 61. (b) Anh, N. T.; Eisenstein, O.; Lefour, J-M.; Dau, M-E. J. Am. Chem. Soc. **1973**, 95, 6146-6147.

strate is intrinsically late-stage and high risk, full transition state analysis should be performed if risk-reduction is considered necessary. Parameterization of the model by distinguishing each case in terms of reaction type, reagent size, macrocycle size or olefin orientation could further improve the accuracy of the model, but fundamentally the peripheral attack model is an old model fraught with too many compromising assumptions. Computational chemistry has advanced tremendously since the initial periplanone synthesis, and we must now step fully into the transition state era for semi-quantitative stereochemical prediction.

Chapter 5

IX. Supporting Information

A. Computational Methods

General Overview. Our study examined two types of computational procedures for implementing the peripheral attack model: one involving only molecular mechanics ("MM") and one involving molecular mechanics followed by further optimization using DFT ("MM-DFT"). In both cases, the conformational space of an arbitrary macrocycle bearing a reactive π -bond was first searched. Then, the structures were optimized to local minima. The lowest energy structures were examined to determine which face of the reactive π -bond was exposed to the periphery. Finally, the energy gap between the best structure that preferentially exposed one face and the best structure that exposed the opposite face ("E_{rel}") was calculated and compared to the experimentally observed stereose-lectivity.

Requirements. The MM method was faster, requiring about a day, while the MM-DFT method was slower, requiring about a week. These estimated times are based on using one core of a standard desktop computer (Intel Core i5 processor; Model 650, Dual Core,

3.20 GHz) for MM calculations and eight 8-core nodes simultaneously for DFT calculations (Intel Xeon E5520 processors; 2.26 GHz with 24 GB RAM).

Phase I: Molecular Mechanics. 120,000 candidate geometries were generated and optimized for the reactant macrocycle (only structures within 12 kcal/mol of the global minimum were kept). Then, the structures were superimposed and any redundant conformers were removed (all heavy atoms were considered at a discard criterion of 0.5 Å RMSD).

Phase II: Conformer Filtering. (MM-DFT only.) Because refinement of all the structures produced by Phase I with DFT methods would have been prohibitively timeconsuming, the lowest energy conformers and some representative higher energy conformers were selected for optimization. If the number of remaining conformers was less than or equal to 60, then all of the conformers were subjected to further DFT optimization. If the remaining number of conformers exceeded 60, then the 40 lowest energy structures (MM energies) were selected for further DFT optimization. Then, the following filtering process was used to select a further set of representative geometries. First, a more restrictive redundant conformer elimination was performed (macrocycle heavy atoms only at a discard criterion of 0.5 Å RMSD). RMSD-based clustering was then performed (macrocycle atoms only) on the resulting subset creating up to 20 clusters (based on choosing the minimum in the Kelley penalty function). The structures nearest the centroid of each cluster (in RMSD space) were also selected for further optimization.

Phase III: Density Functional Theory. (MM-DFT only.) Each structure was minimized with DFT methods (details below). The resulting geometries were verified to be true local minima by standard frequency analysis.

Phase IV: Interpretation. The resulting structures were ranked by energy. Structures that exposed the π -face to the periphery that would lead to the observed product were labeled "correct" while structures that exposed the opposite π -face were labeled "incorrect." Structures that exposed both faces to the periphery were labeled as "ambiguous." The energy difference between the best correct and best incorrect structure, E_{rel} , was computed. Positive values of E_{rel} were defined to mean that the best correct structure was lower in energy than the best incorrect structure (i.e., agreement between theory and experiment). No E_{rel} values were assigned to macrocycles with ambiguous global minima. Some structures had a correct or incorrect global minimum, followed by a series of similarly disposed structures leading up to an ambiguous structure. In those cases, E_{rel} was defined as the energy of the ambiguous structure relative to that of the global minimum with the same sign convention as above.

Molecular Mechanics. All calculations were performed using Macromodel (Version 9.8) interfaced to the Maestro program (Version 9.1).¹⁹¹ All conformational searches were performed with the Monte Carlo Multiple Minimum (MCMM) method.¹⁹² Since it has been suggested that low-mode-based searching is a potentially superior search method,¹⁹³ some of the conformational searches were repeated with a tandem molecular dynamics-large scale low-mode-based method.¹⁹⁴ However, in our hands, this did not give superior

¹⁹¹ Mohamadi, F.; Richards, N. G.; Guida, W. C.; Liskamp, R.; Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W. C. J. Comput. Chem. 1990, 11, 440-467.

¹⁹² Chang, G.; Guida, W. C.; Still, W. C. J. Am. Chem. Soc. **1989**, 111, 4379-4386.

¹⁹³ (a) Parish, C.; Lombardi, R.; Sinclair, K.; Smith, E.; Goldberg, A.; Rappleye, M.; Dure, M. J. Mol. Graphics and Modelling. 2002, 21, 129-150. (b) Labute, P. J. Chem. Inf. Model. 2010, 50, 792-800. (c) Kolossváry, I.; Keseru, G. M. J. Comp. Chem. 2001, 22, 21.

¹⁹⁴ Schrodinger monthly newsletter, January 2011. https://www.schrodinger.com/upload/Schrodinger_Newsletter_Jan2011.pdf (accessed August 5, 2011).

results and was not used further. The OPLS-2005 force field, which is an improved version of the authentic¹⁹⁵ OPLS force field, was chosen for MM energies. This force field was attractive because it is specifically parameterized for organic liquids¹⁹⁶ and has high quality torsional parameters for most commonly occurring organic functional groups. Although OPLS-type forcefields also give superior GB/SA solvation energies,¹⁹⁷ it was ultimately found that solvation at the MM stage did not improve the quality of the results, but did increase the computational cost by a factor of three to four times. Therefore, no solvation was applied at the MM stage for any protocol (a constant dielectric of 1.0 was applied).

All reasonable torsion angles were varied, including those of amide, ester, and silyl bonds. Optimizations were performed using the TNCG algorithm¹⁹⁸ (convergence criterion set to 0.05 kJ/mol). Redundant conformer eliminations were performed in Maestro (based on geometries only; energies were ignored). Conformer clustering (for the MM-DFT protocol only) was performed using the Conformer Cluster script in Maestro. This script first generated a matrix that related all of the structures by RMSD. Then, an algorithm sorted the structures into clusters such that intracluster distances (in RMSD space) were minimized while intercluster distances were maximized. The structures nearest the centroid of each cluster were selected for further DFT refinement. In general, these clustered structures were higher in energy and did not duplicate any of the 40 structures already selected for further refinement.

¹⁹⁵ Jorgenson, W.L.; Tirado-Rives, J. J. Am. Chem. Soc. **1988**, 110, 1657-1666.

¹⁹⁶ Jorgenson, W. L.; Maxwell, D. S.; Tirado-Rives, J. J. Am. Chem. Soc. 1996, 118, 11225-11236.

¹⁹⁷ Reddy, M. R.; Erion, M. D.; Agarwal, A.; Viswanadhan, V. N.; McDonald, D. Q.; Still, W. C. J. Comp. Chem. **1998**, 19, 769-780.

Density Functional Theory. All calculations were performed using Gaussian 09 (Revision A.02)¹⁹⁹ on the Odyssey Cluster at Harvard University. Each starting structure, already a local minimum with respect to the MM PES, was re-optimized at B3LYP/6-31g(d),²⁰⁰ which is relatively inexpensive compared to more modern functionals. However, the performance of B3LYP has recently been called into question, particularly for large organic molecules.²⁰¹ These errors seem to be related to the fact that B3LYP treats dispersion interactions as purely repulsive, a problem that is pronounced in branched alkanes.²⁰² Given that many macrocycles contain branched alkanes, the MM structures were also optimized at M06-2X/6-31g(d).²⁰³ (Larger structures were optimized at M06-2X/6-31g(d). The semi-local M06-L functional is designed to reproduce main-group thermochemistry and non-covalent interactions while allowing substantial performance enhancements with the use of density fitting basis sets.²⁰⁴)

¹⁹⁸ Ponder, J. W.; Richards, F. M. J. Comp. Chem. **1987**, *8*, 1016-1024.

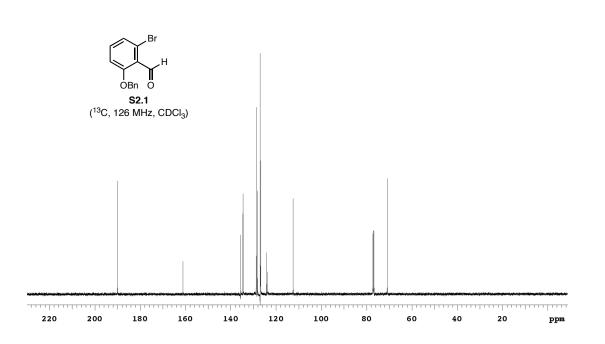
¹⁹⁹ Gaussian 09, Revision A.02: Frisch, M. J.; Trucks. G. W.; Schlegel, H. B.; Scuseria G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian Inc., Wallingford, CT, **2009**.

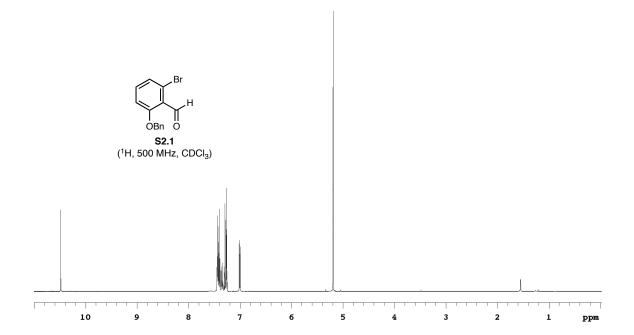
 ²⁰⁰ (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652. (b) Stephens, P. J.; Devlin, F. J.; Chablowski, C. F.; Frisch, M. J. J. Chem. Phys. 1994, 98, 11623-11627.

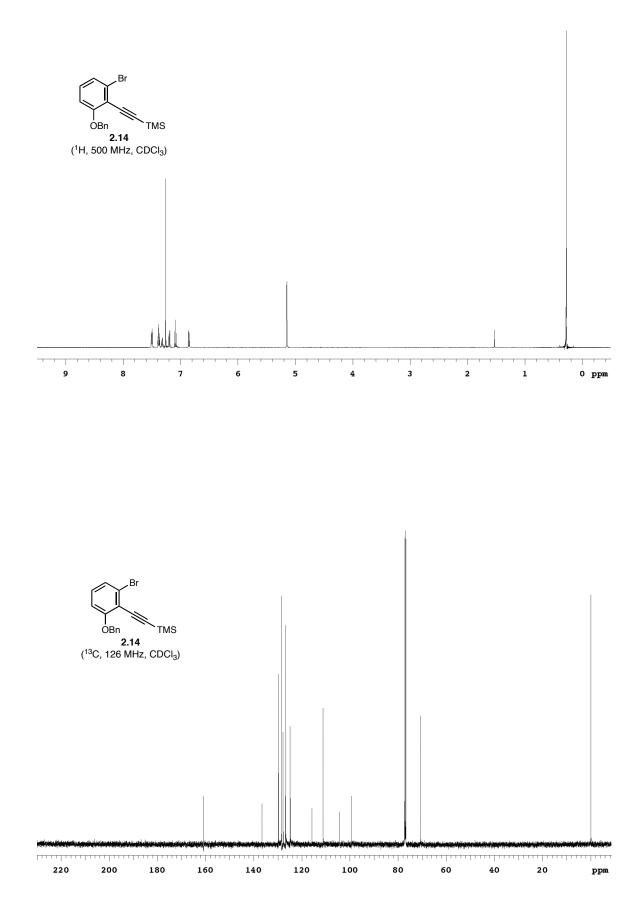
²⁰¹ (a) Wodrich, M. D.; Corminboeuf, C.; Schleyer, P. von. R. Org. Lett. 2006, 8, 3631-3634. (b) Wodrich, M. D.; Corminboeuf, C.; Schreiner, P. R.; Fokin, A. A.; Schleyer, P. von R. Org. Lett. 2007, 9, 1851-1854. (c) Tirado-Rives, J.; Jorgensen, W. L. J. Chem. Theory Comput. 2008, 4, 297-306.

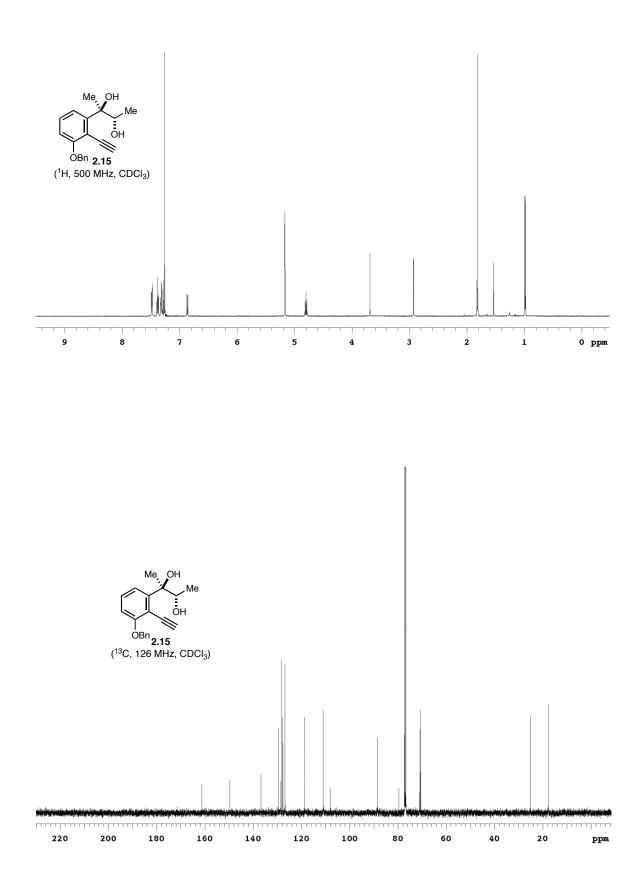
 ²⁰² (a) Wodrich, M.D.; Jana, D.F.; Schleyer, P. von. R.; Corminboeuf, C. J. Phys. Chem. A. 2008, 112, 11495-11500. (b) Gonthier, J. F.; Wodrich. M. D.; Steinmann, S. N.; Corminboeuf, C. Org. Lett. 2010, 12, 3070-3073.

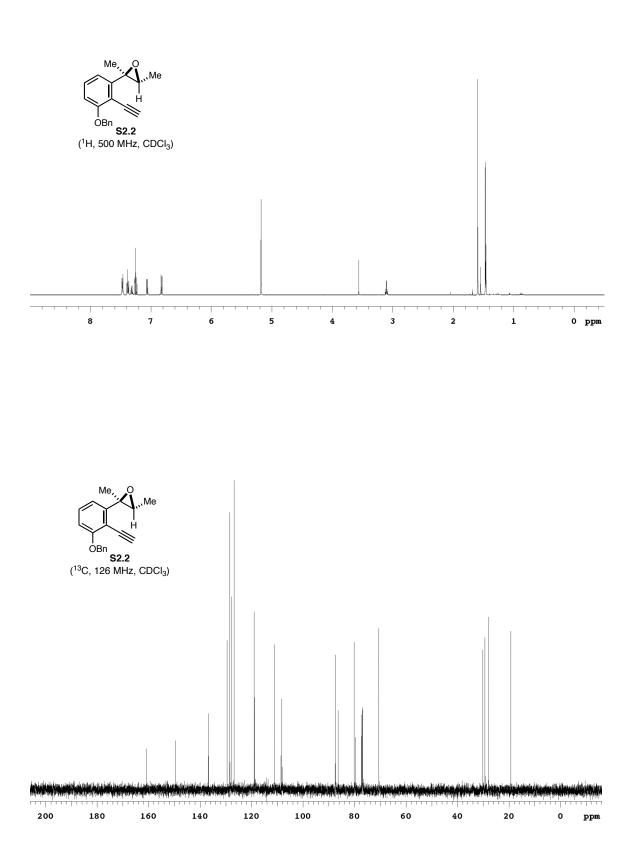
²⁰³ Zhao, Y.; Truhlar, D. G. *Theor. Chem. Acc.* **2008**, *120*, 215-241.

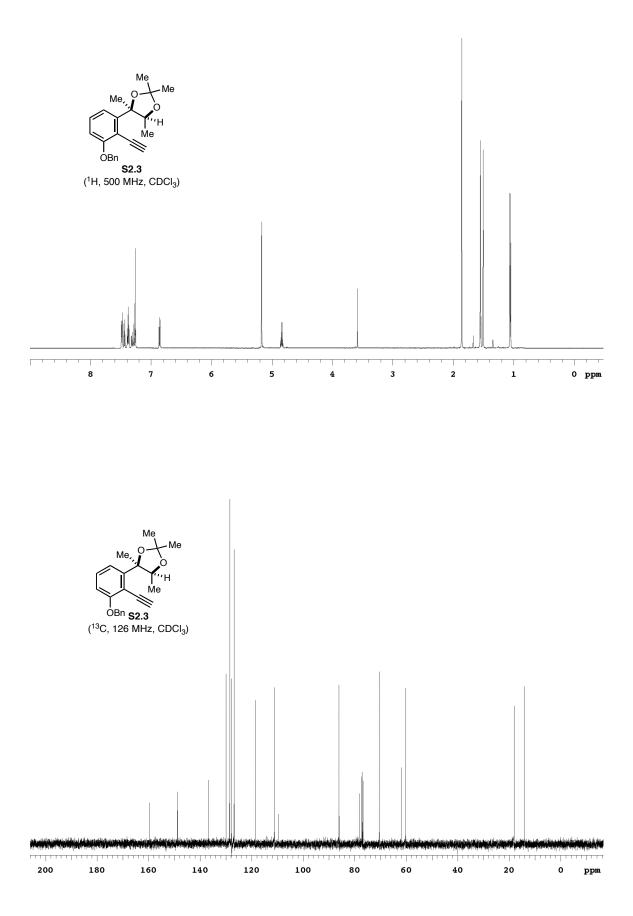

²⁰⁴ Zhao, Y.; Truhar, D. G. J. Chem. Phys. **2006**, 125, 194101-194118.

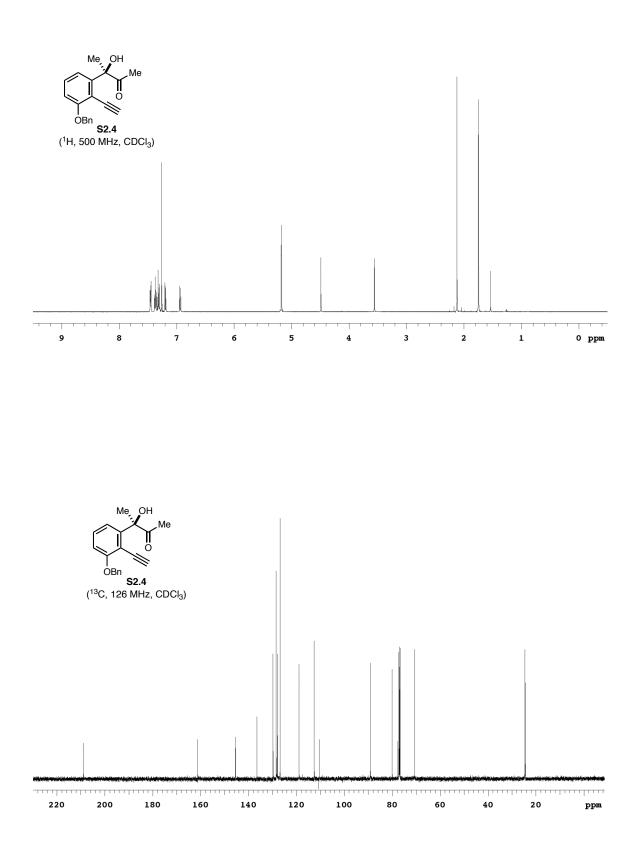

 E_{rel} values were calculated from free energies at 298.15 K for B3LYP/6-31g(d) and M06-2X/6-31g(d) calculations. Free energy corrections from M06-L were added to single point M06-2X/6-31g(d)//M06-L/6-31g(d) electronic energies for some calculations. The SMD implicit solvation model²⁰⁵ was used where applicable. In cases where mixed solvent systems were used, calculations were repeated for each component; E_{rel} values did not vary significantly between solvents.

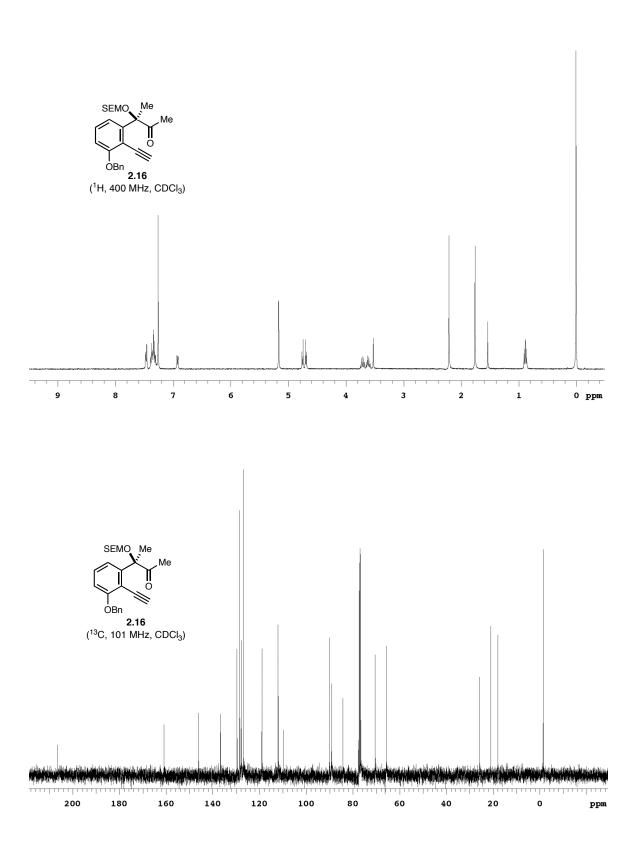

²⁰⁵ Marenich, A. V.; Cramer. C. J.; Truhlar, D. G. J. Phys. Chem. B. **2009**, 113, 6378-6396.

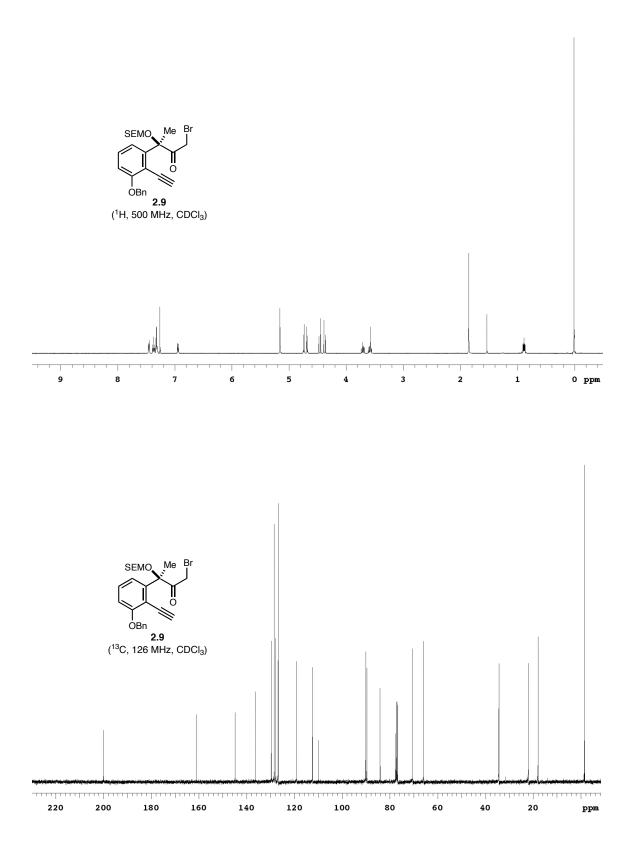


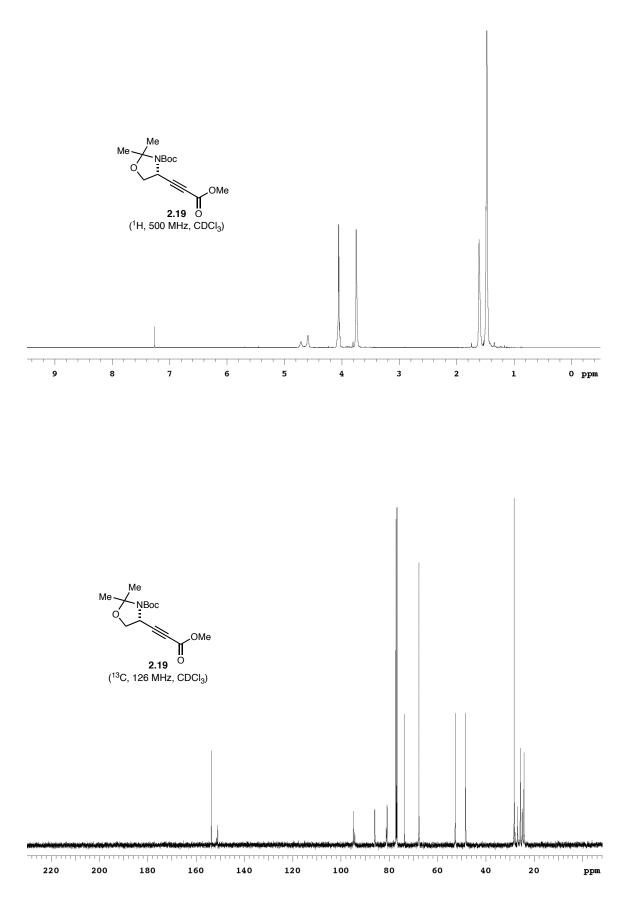

Catalog of Spectra

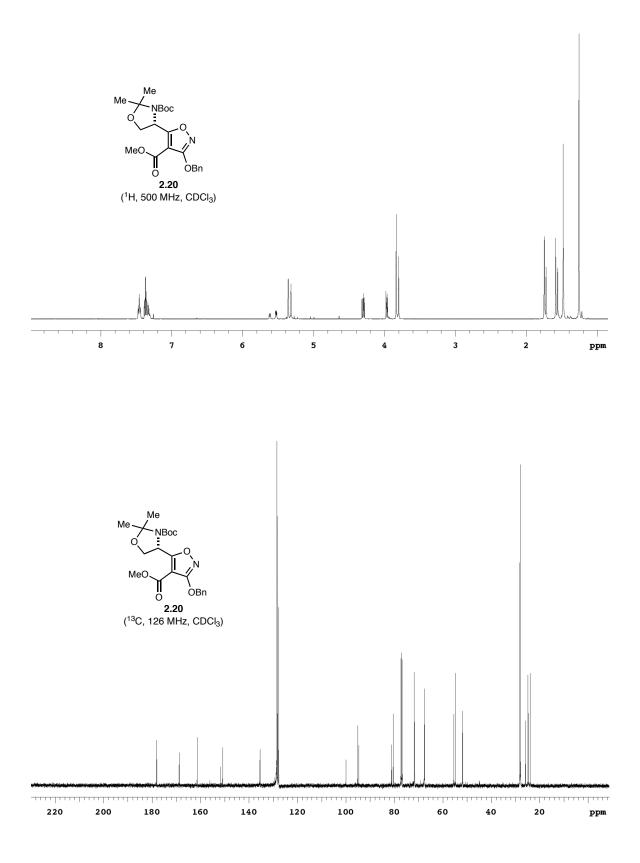


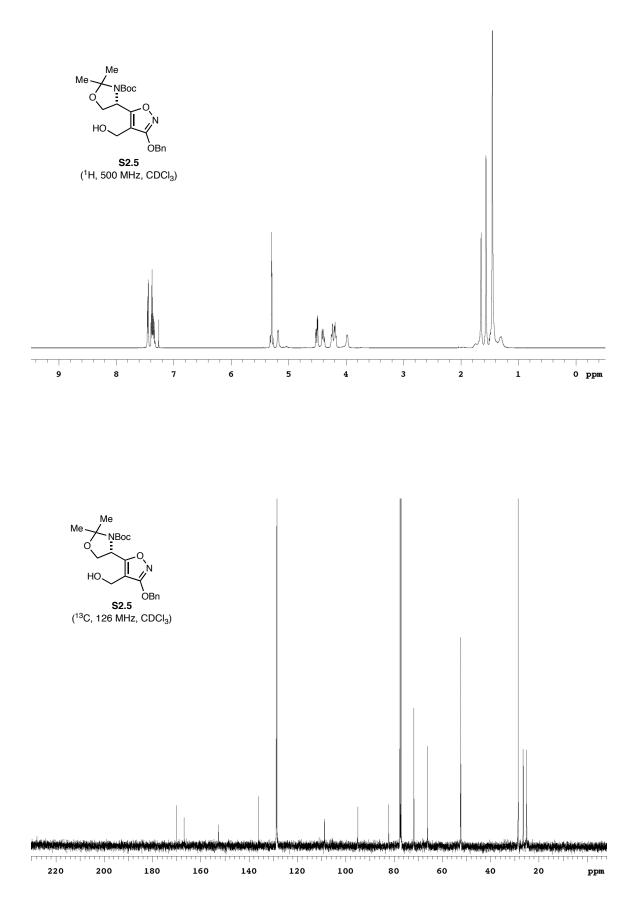


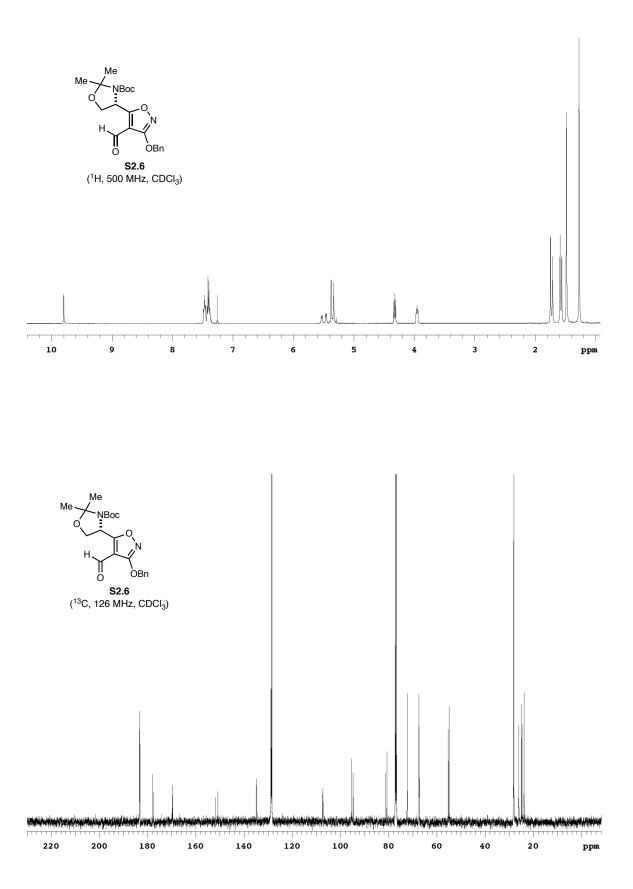


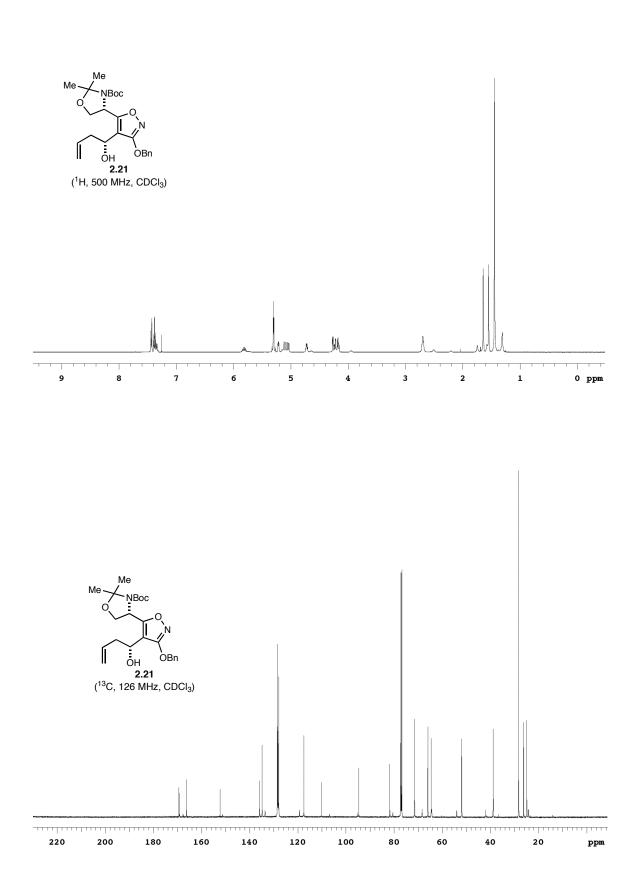


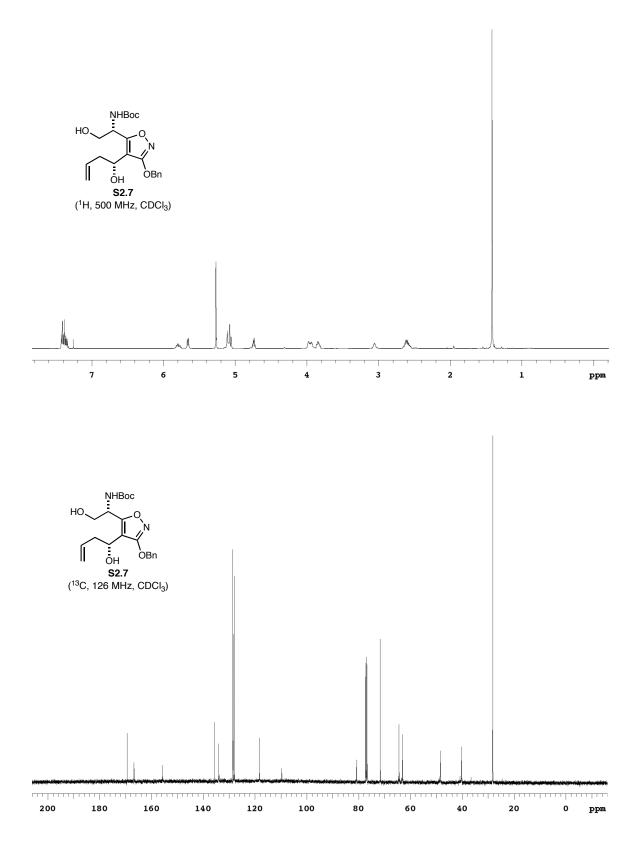


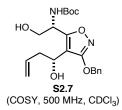


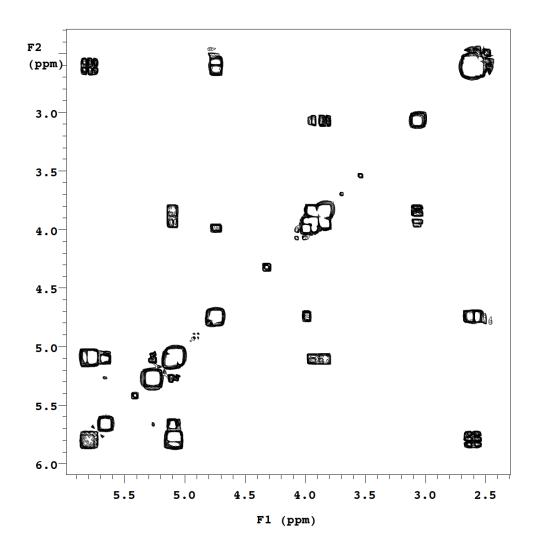


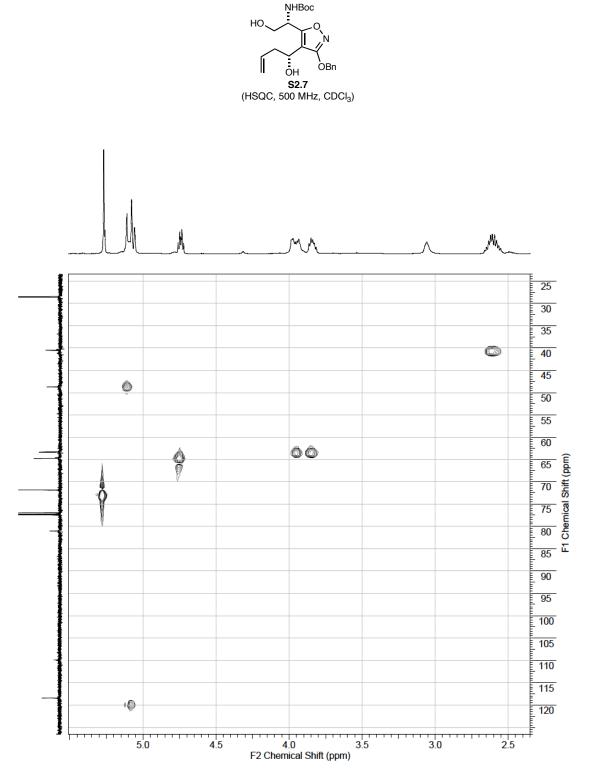


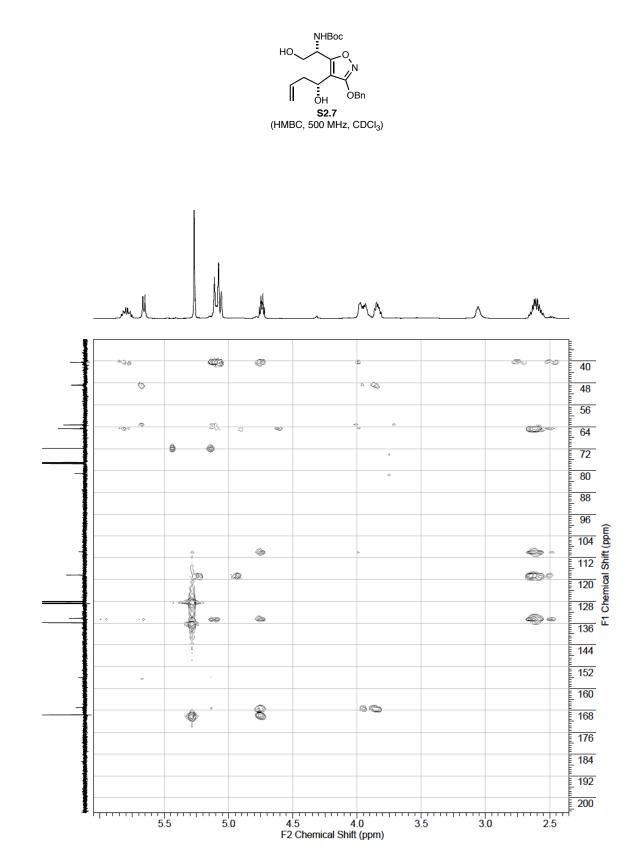


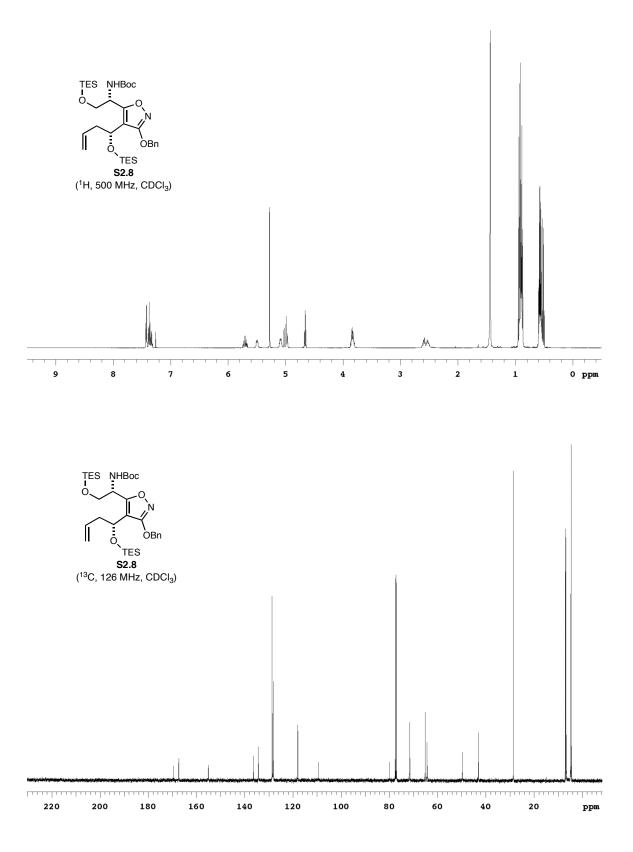


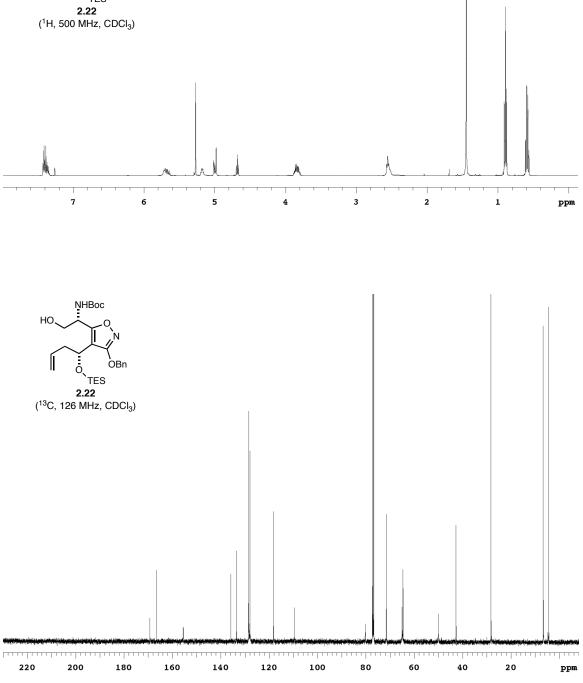


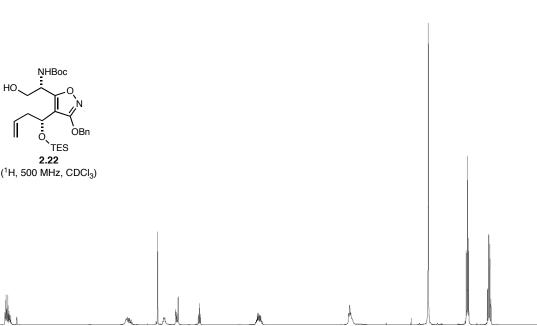


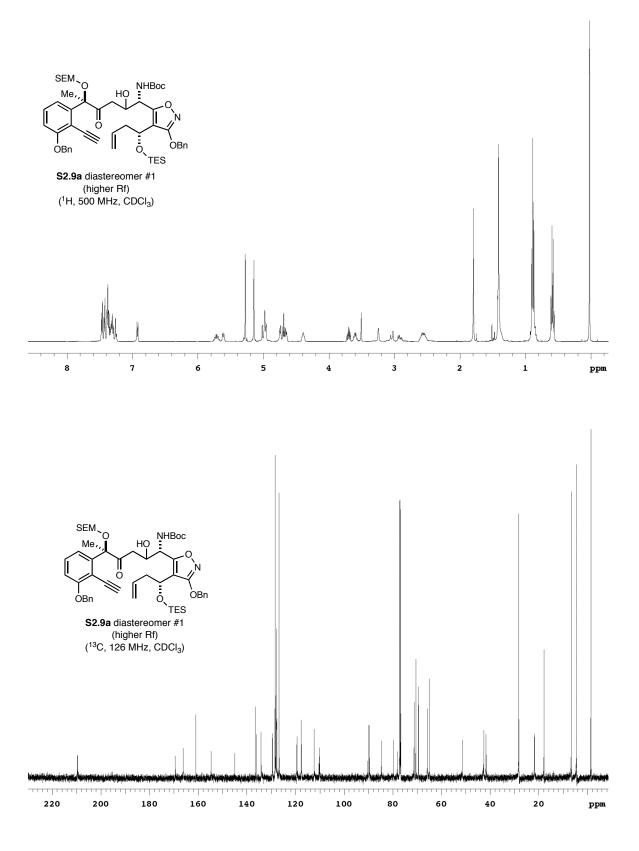


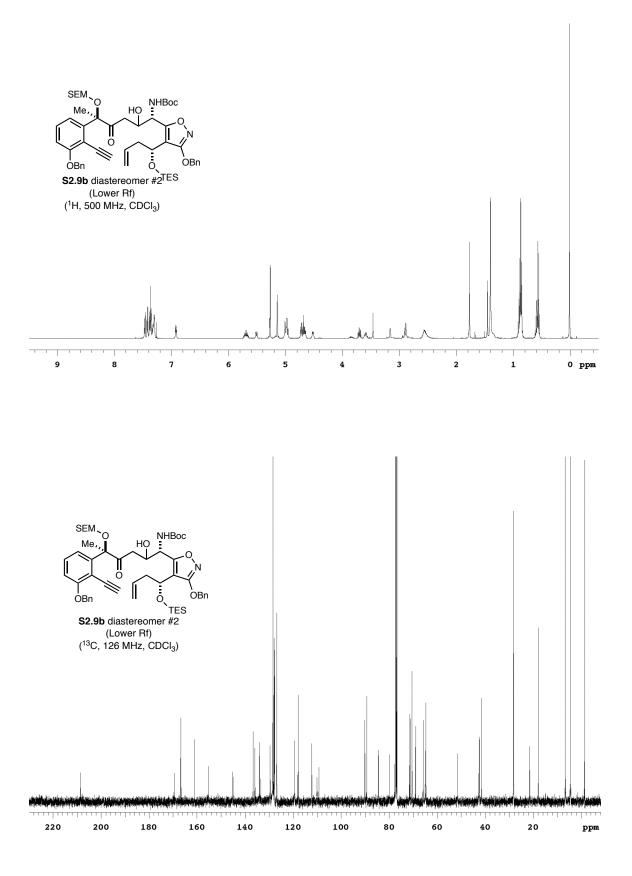


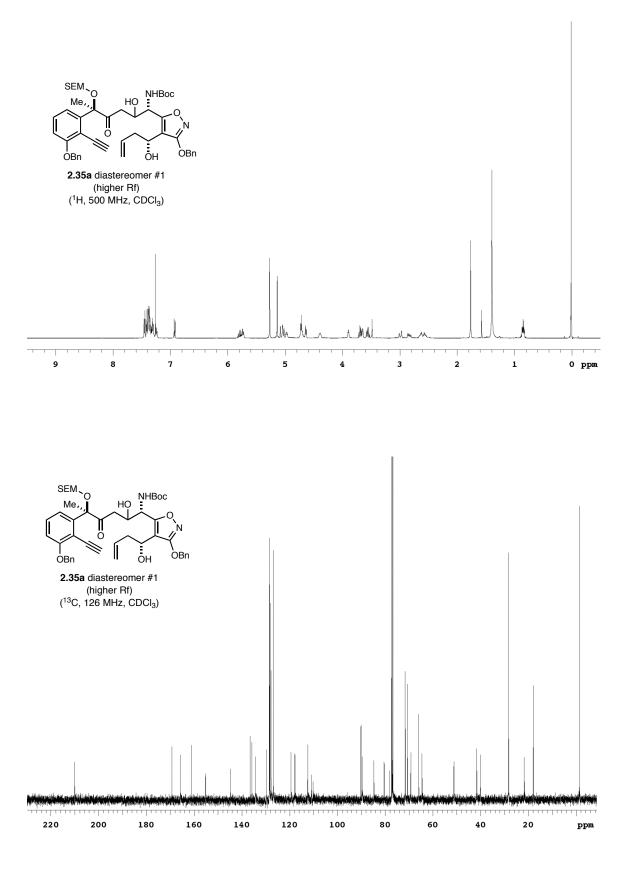


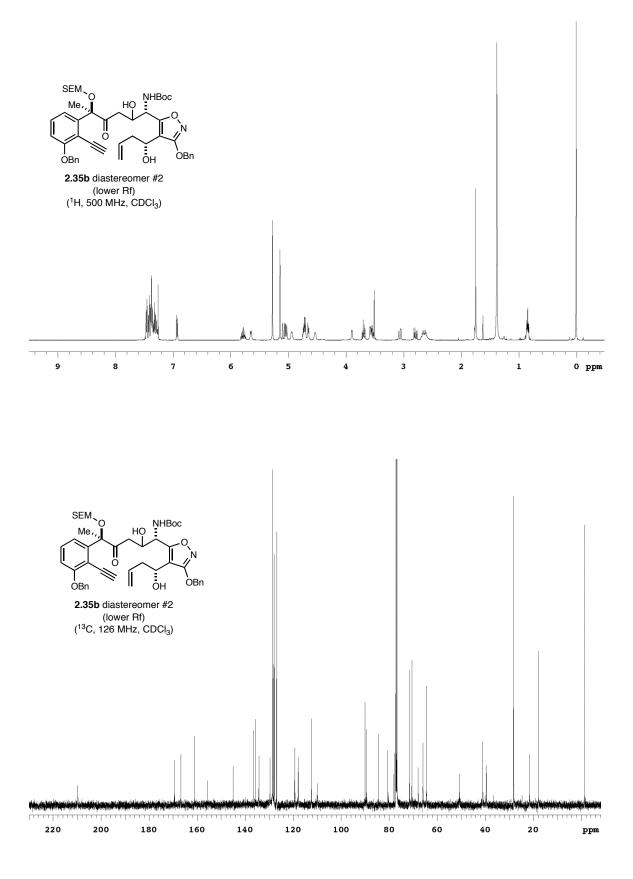


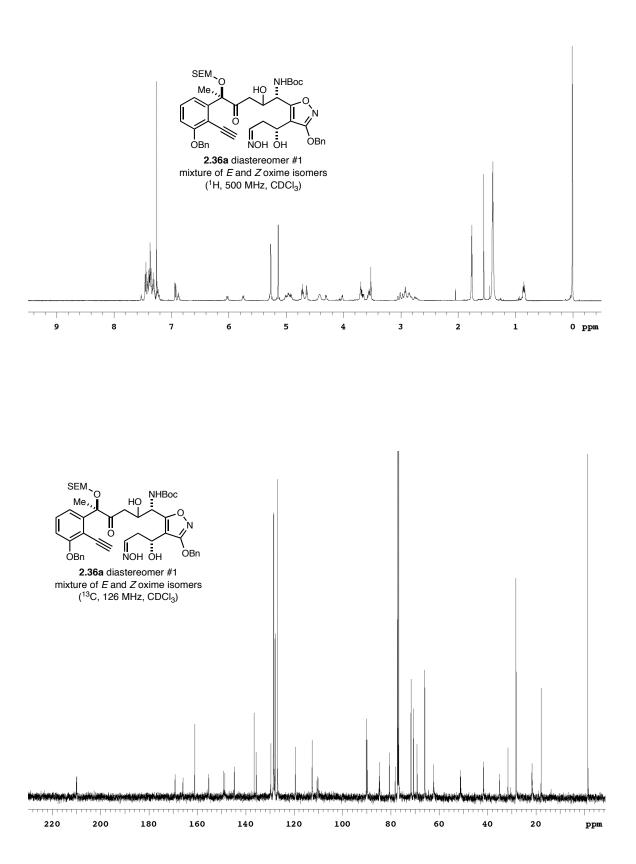


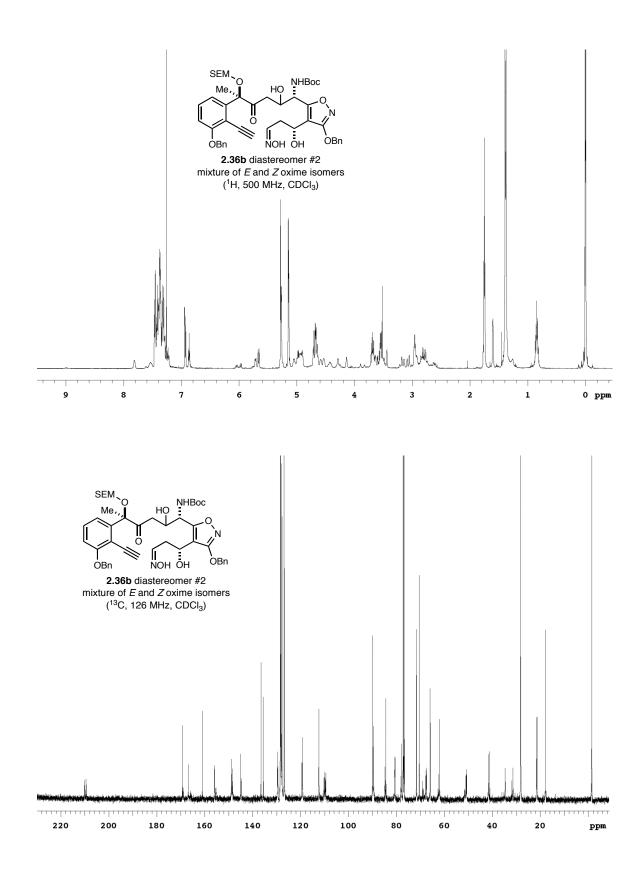


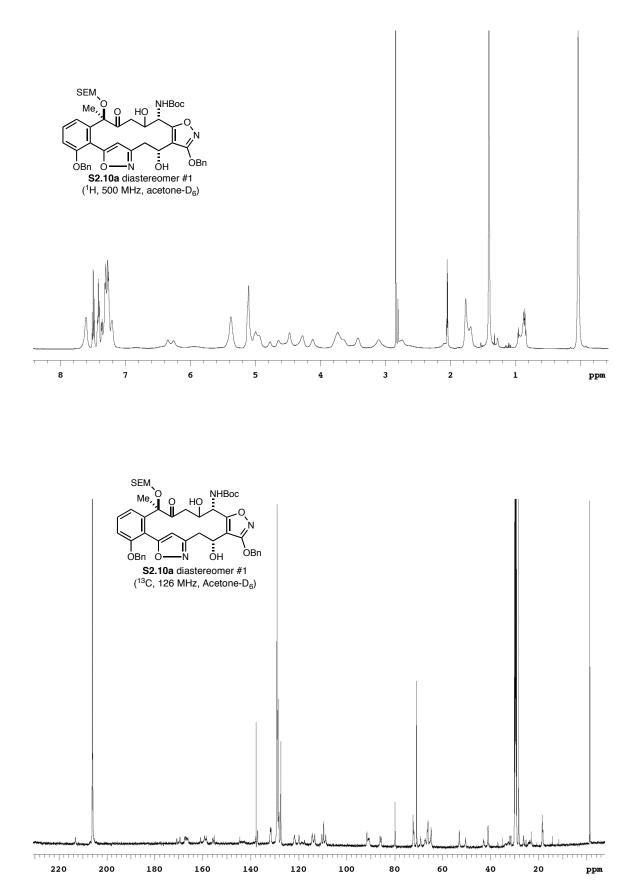


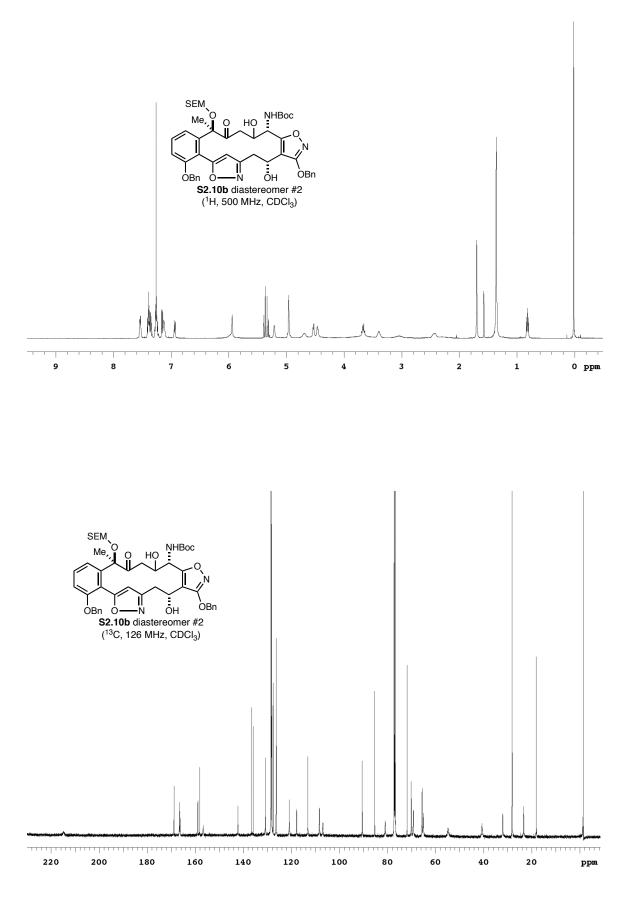


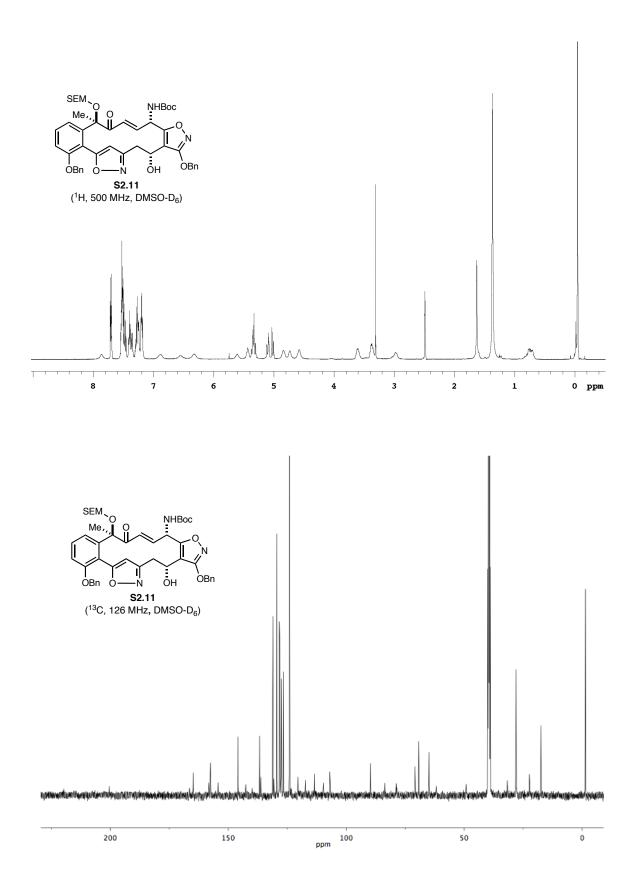


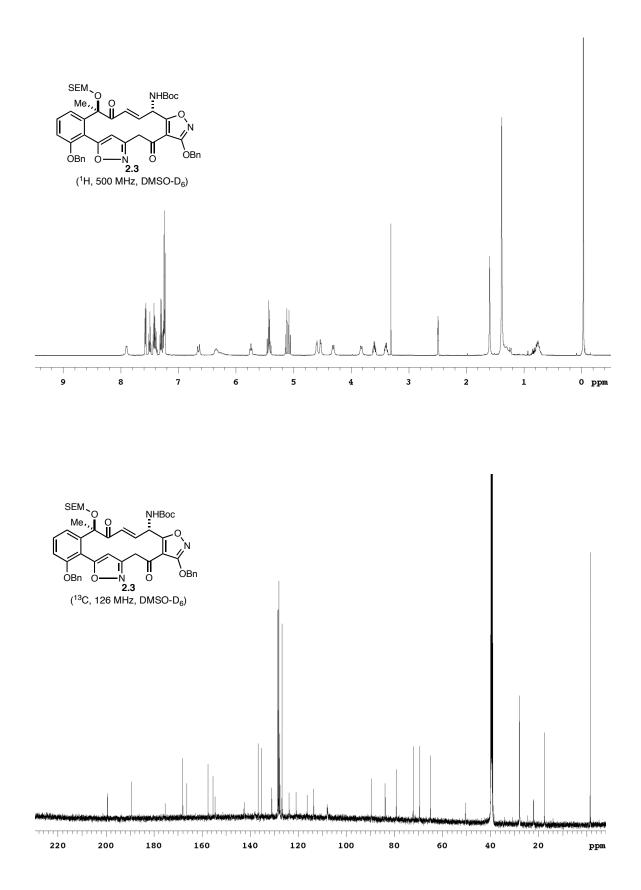


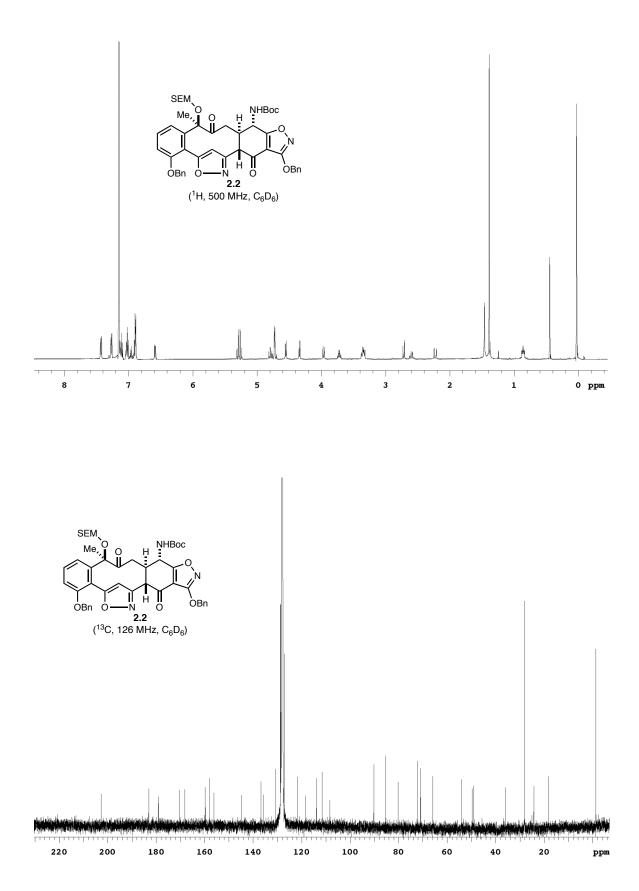


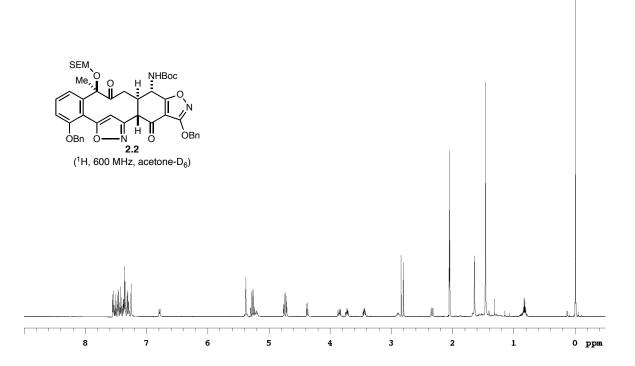


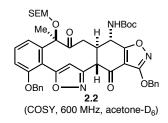


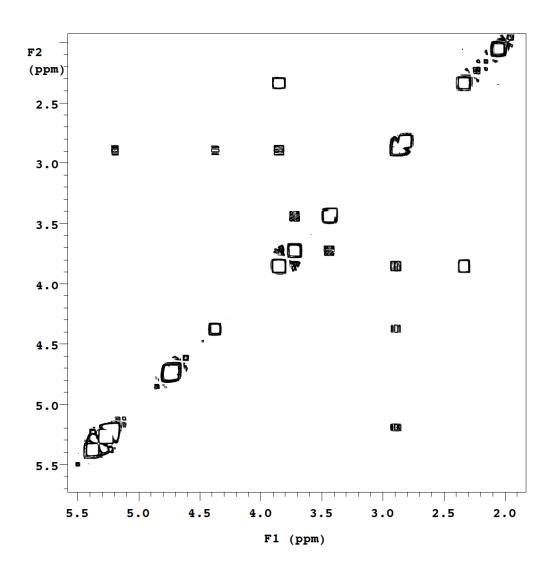


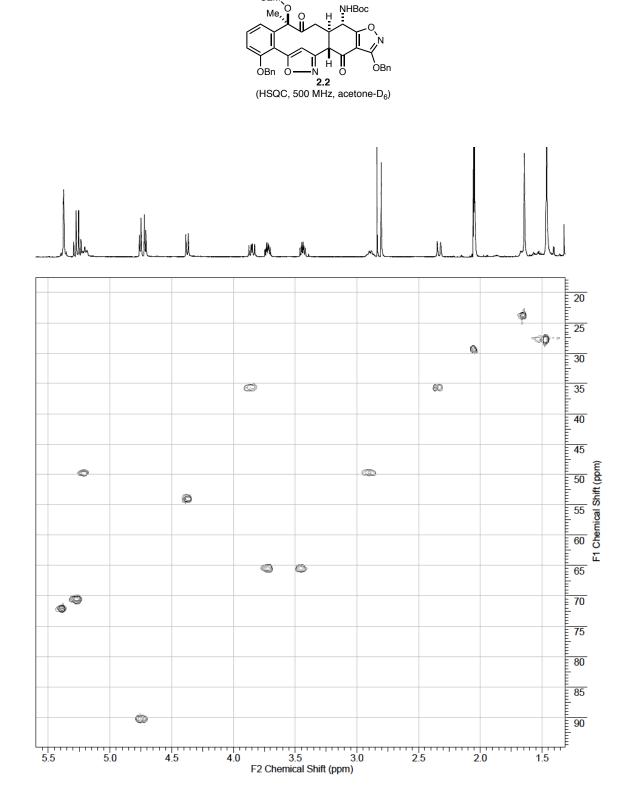


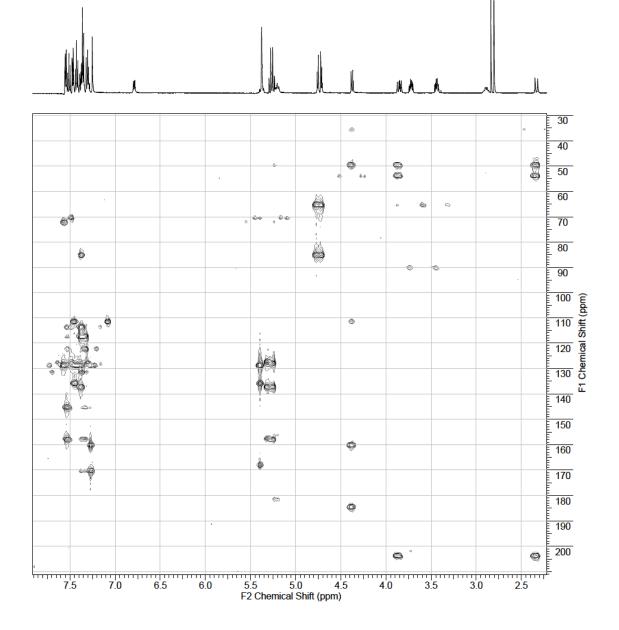


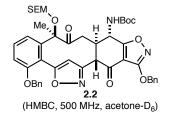


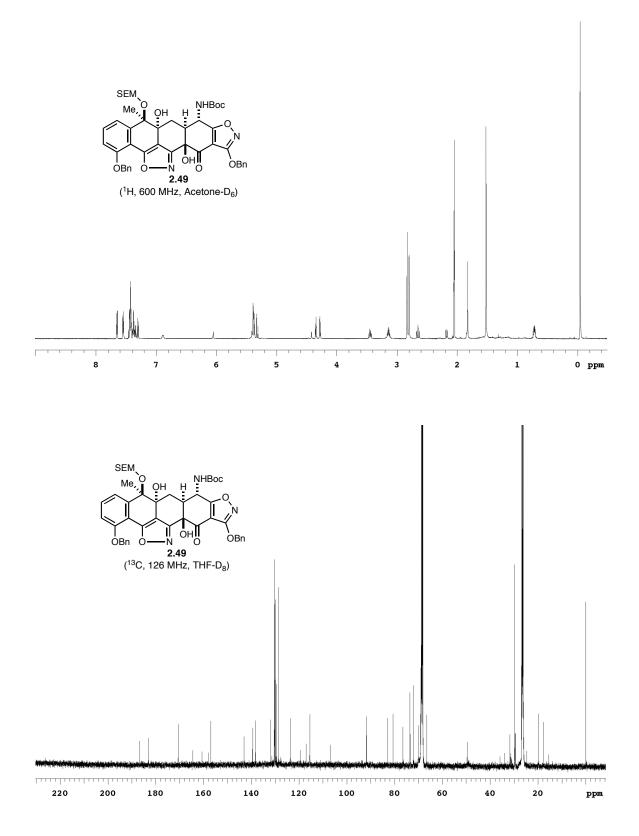


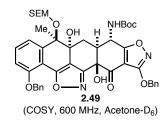


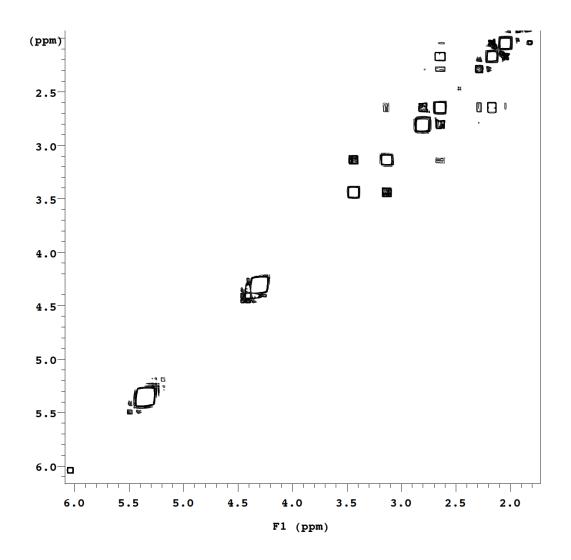


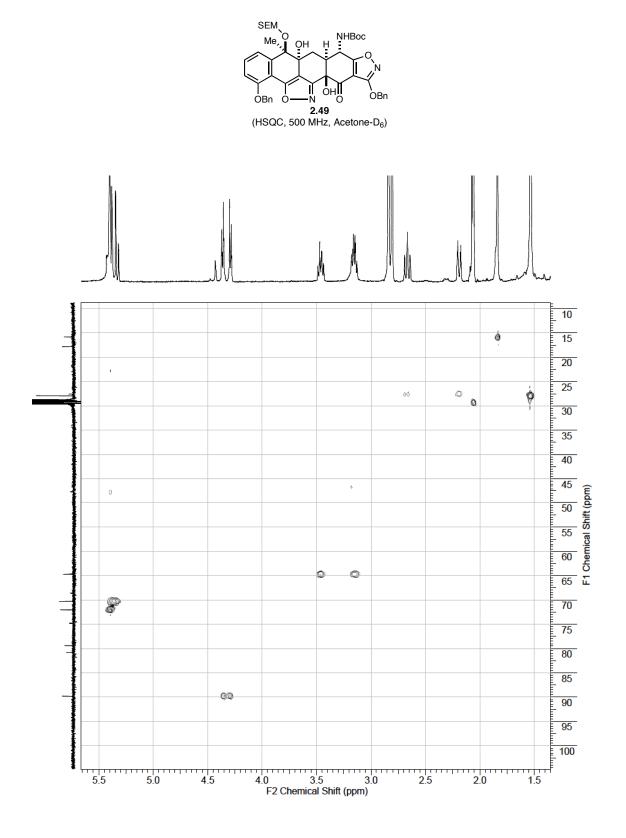




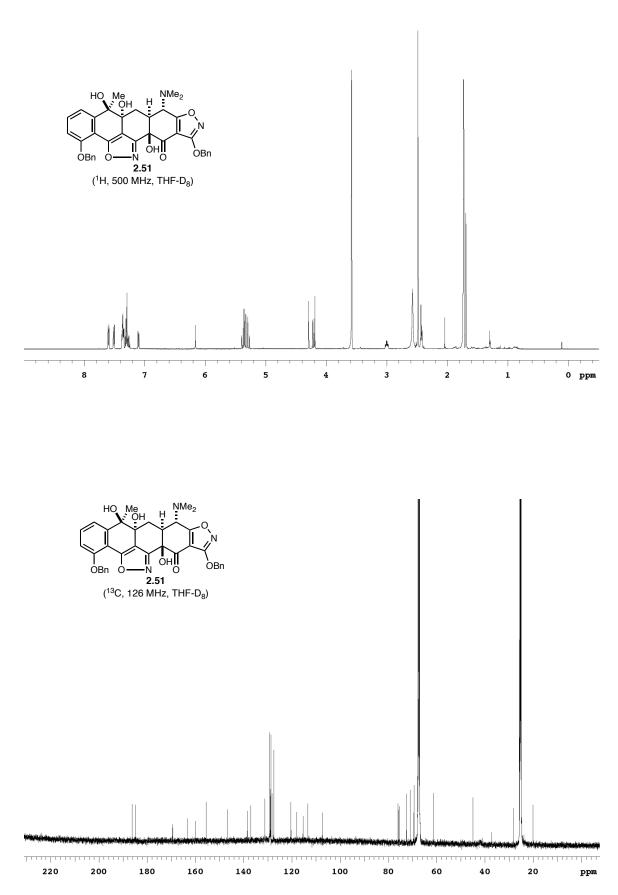


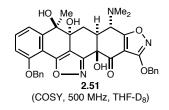


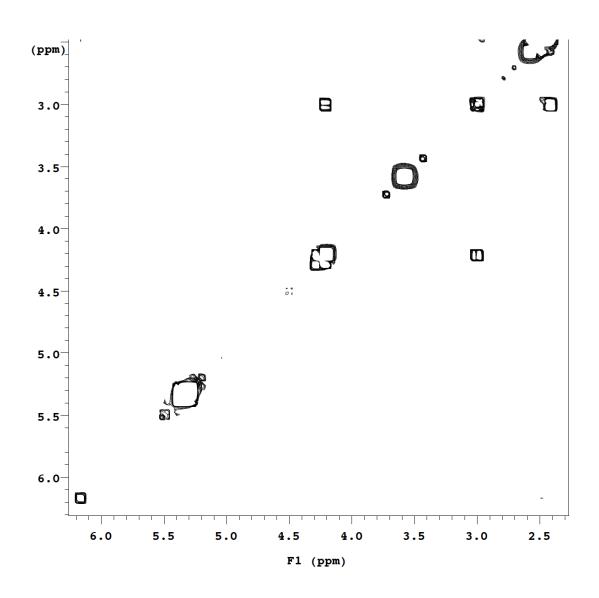

SEM

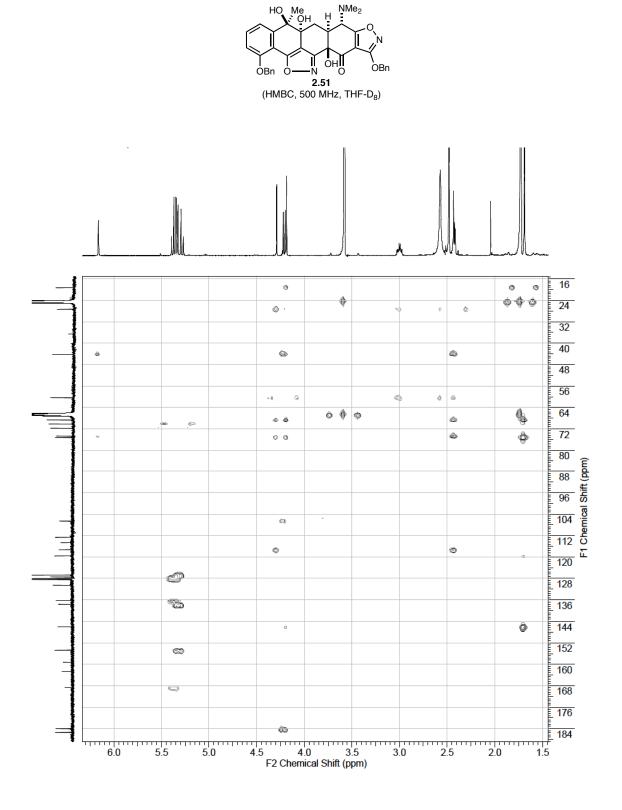


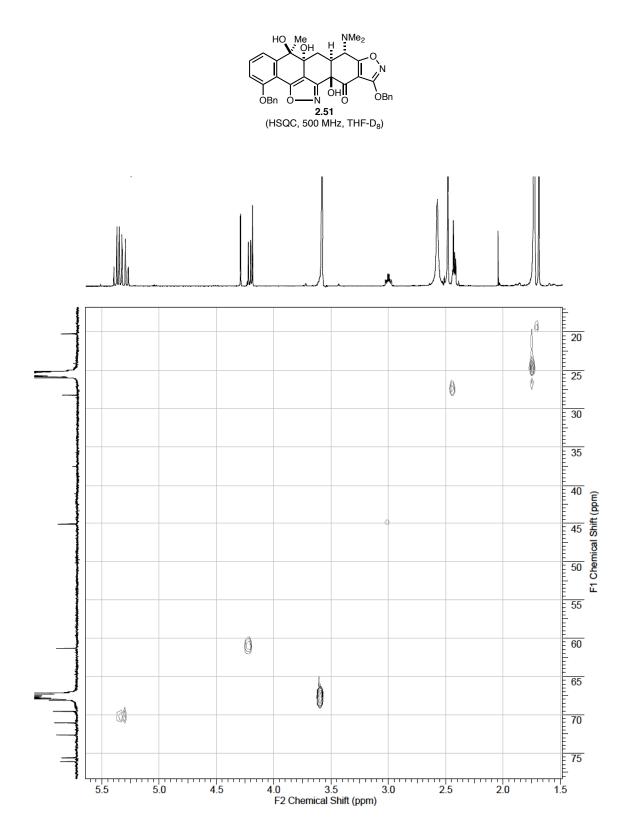


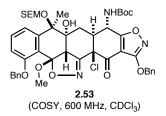


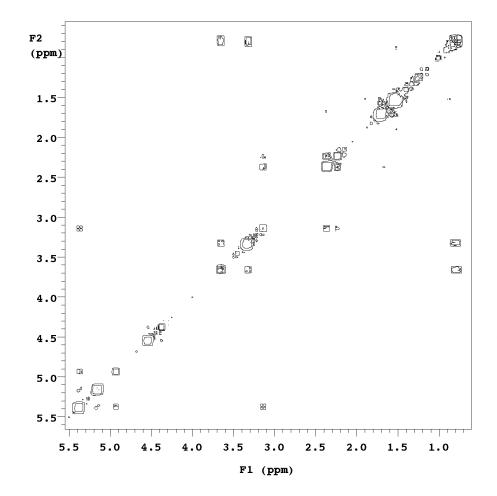


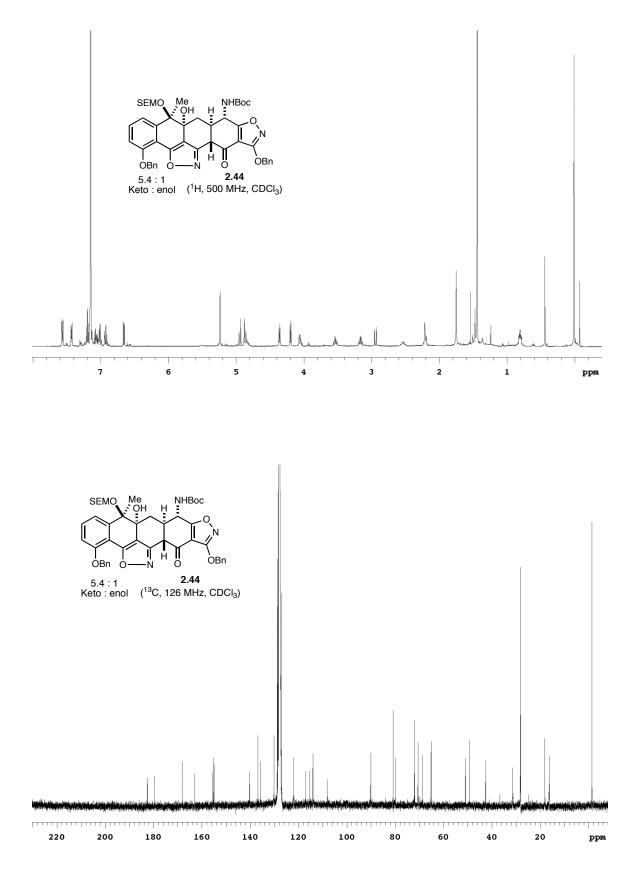


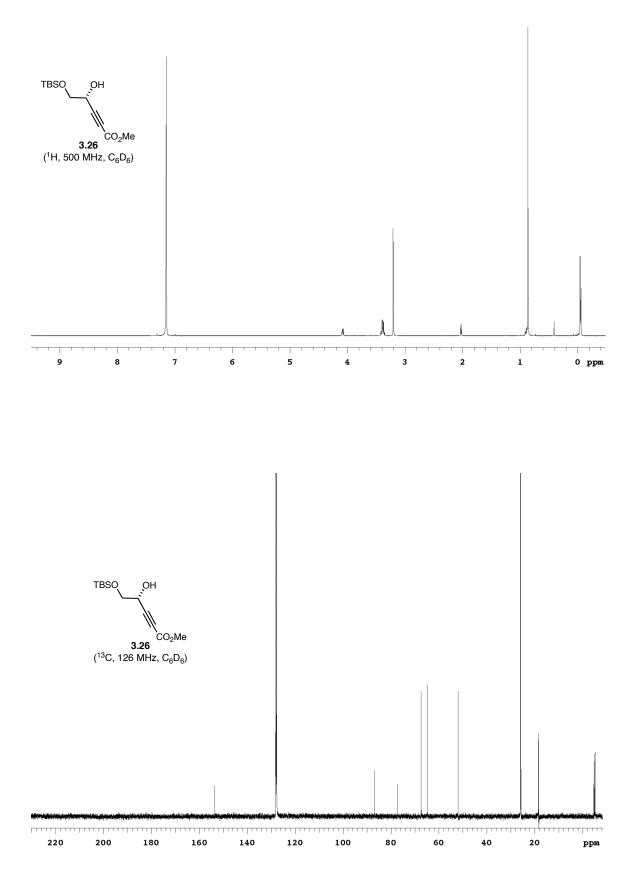


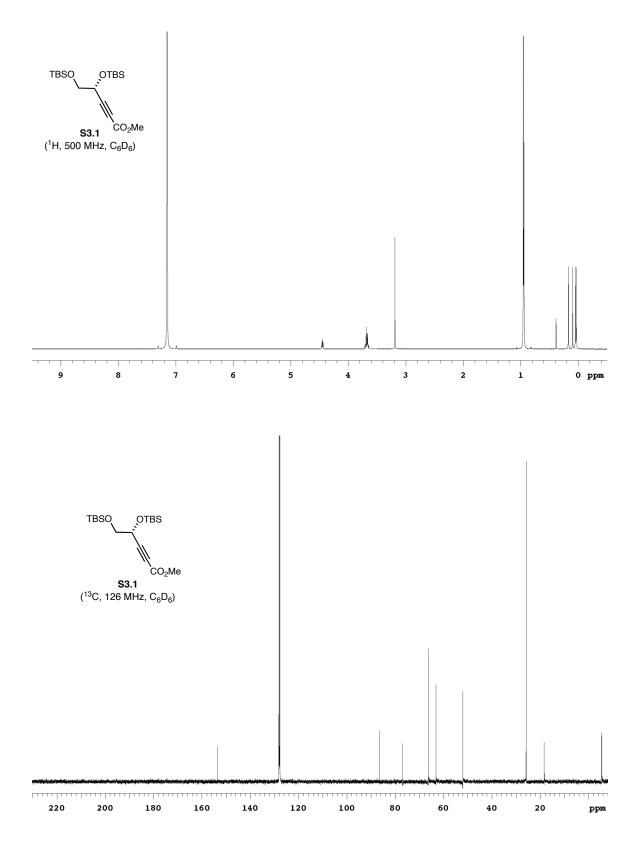


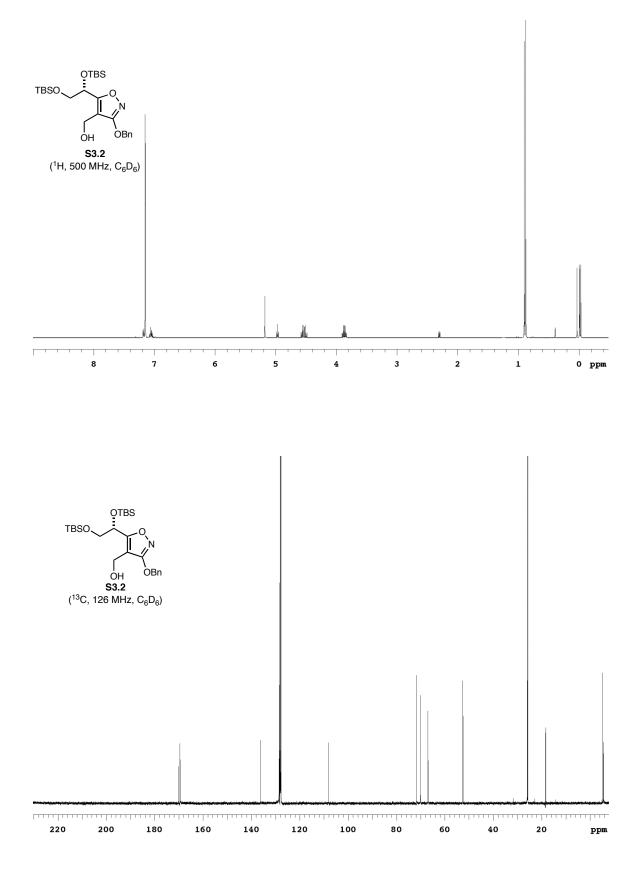


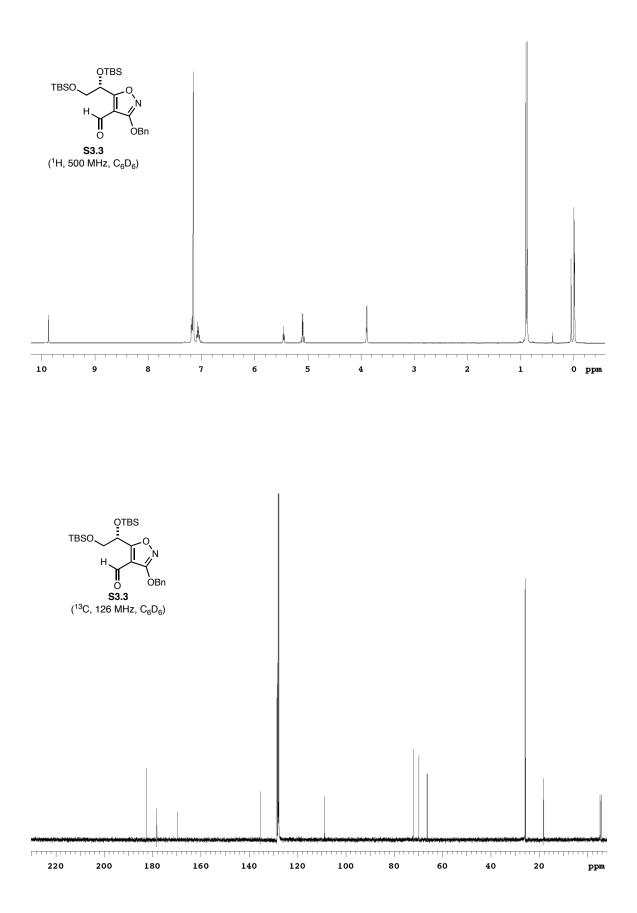


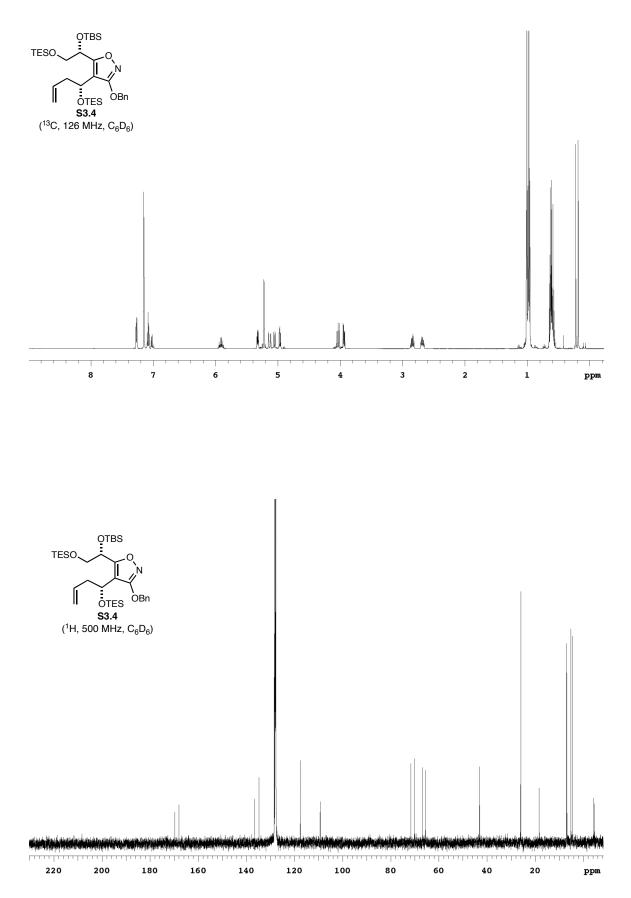


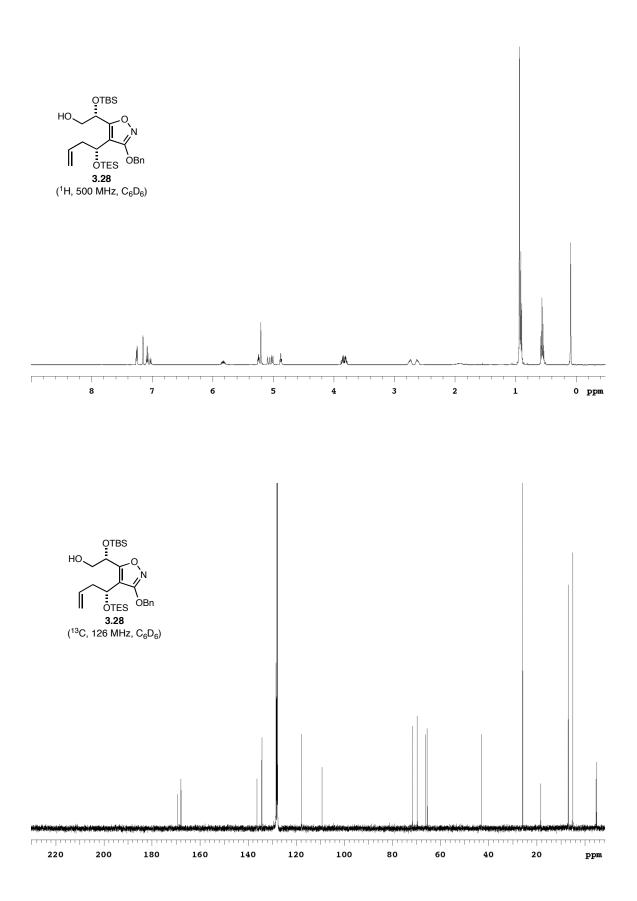


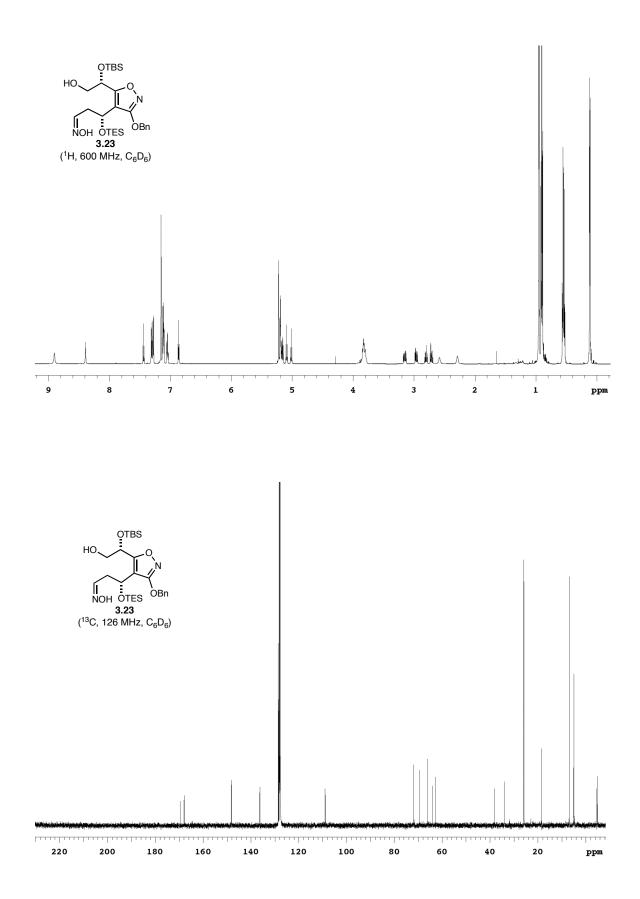


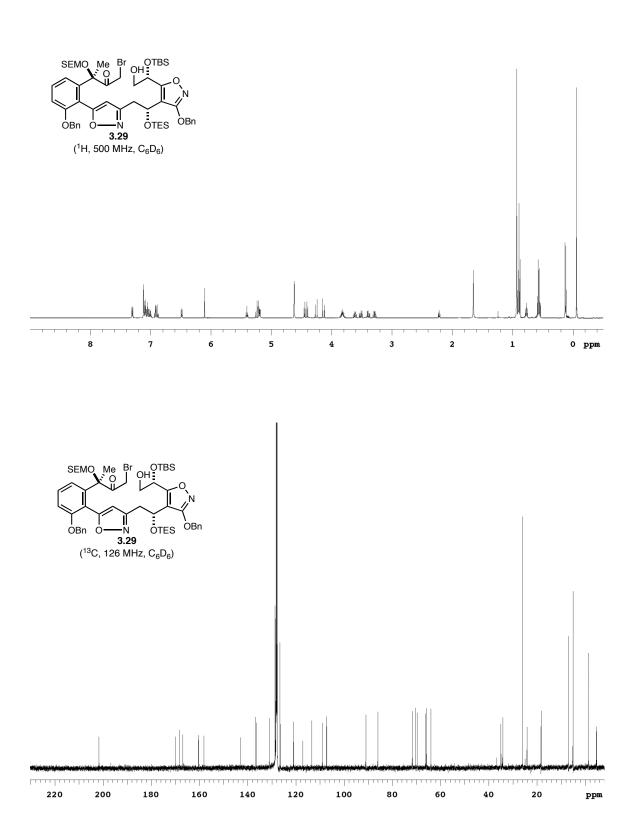


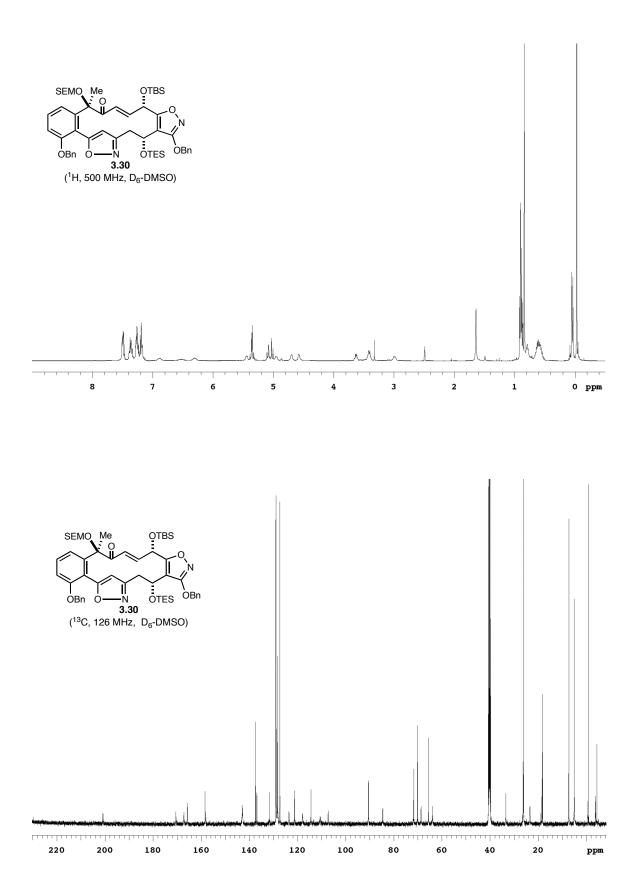


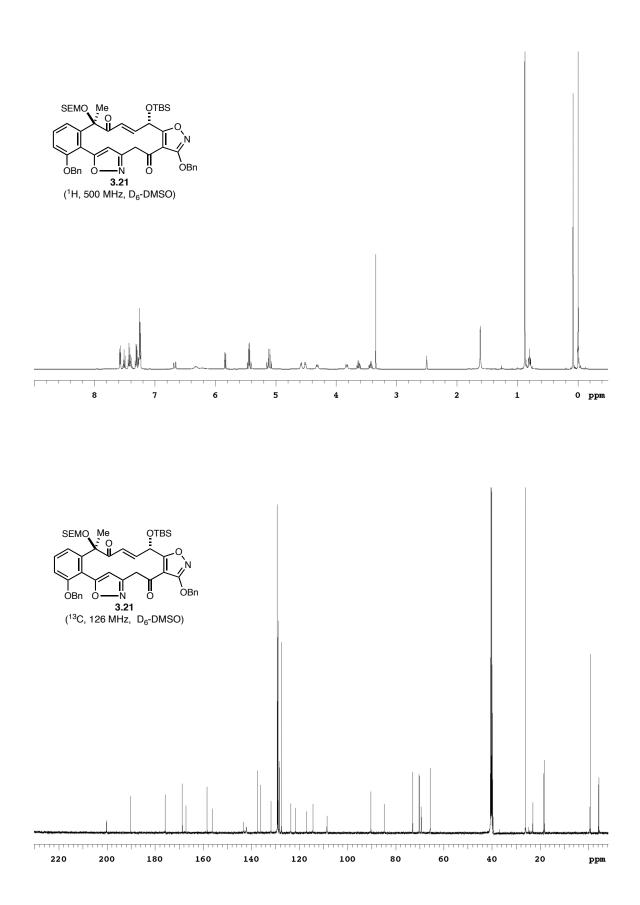


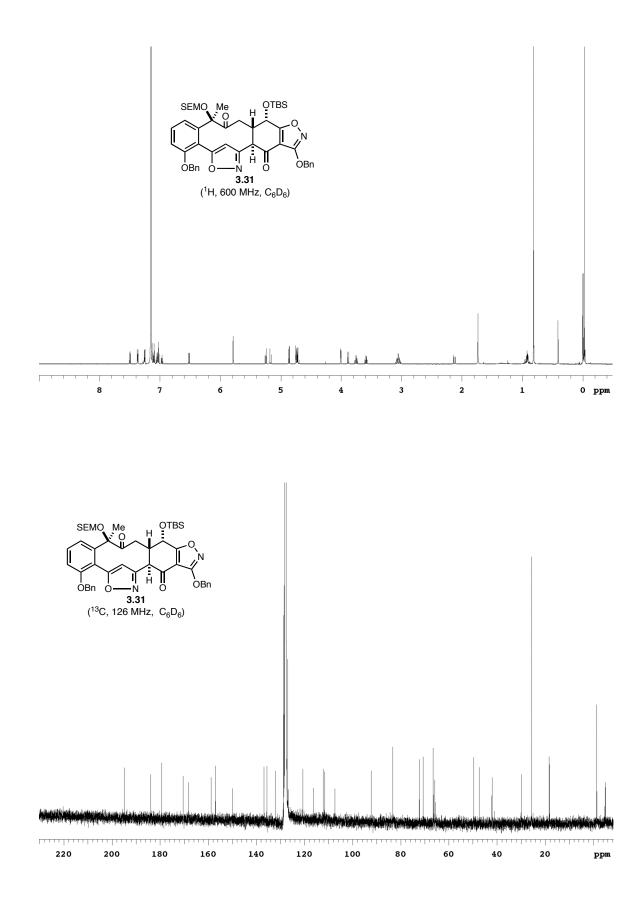


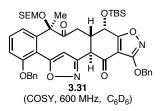


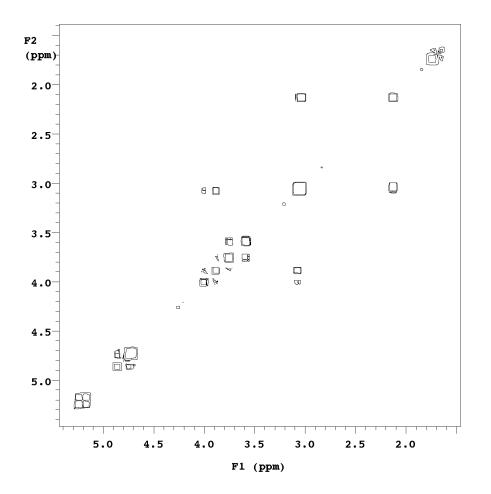


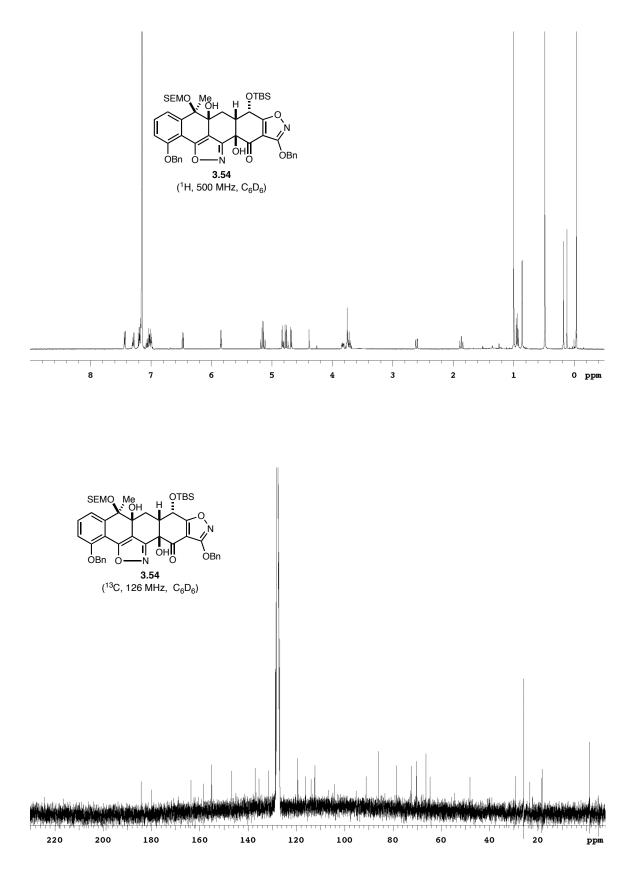


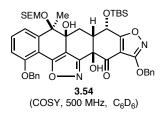


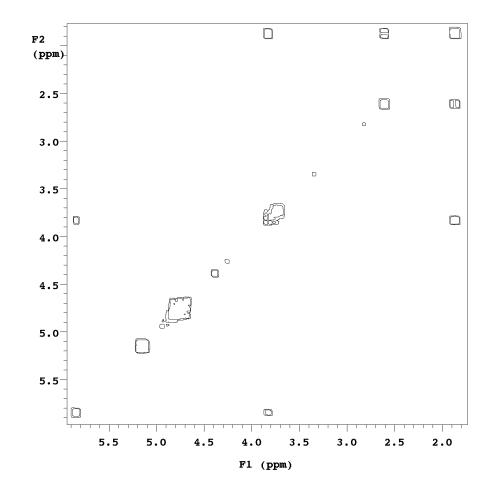


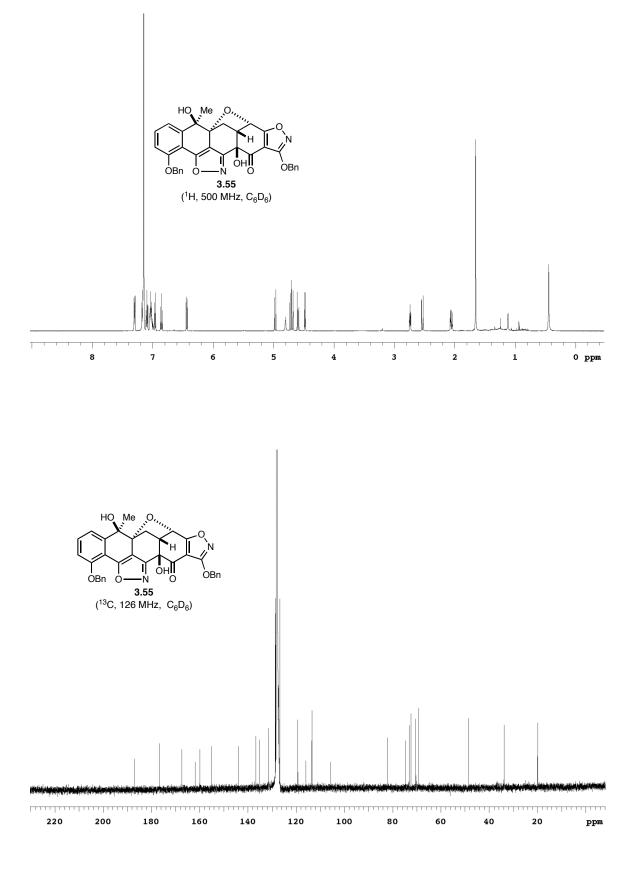


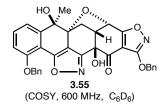


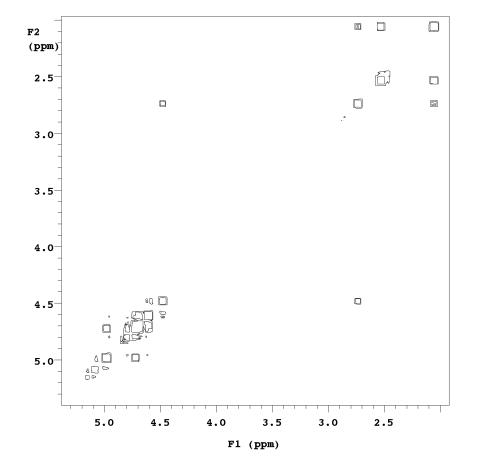


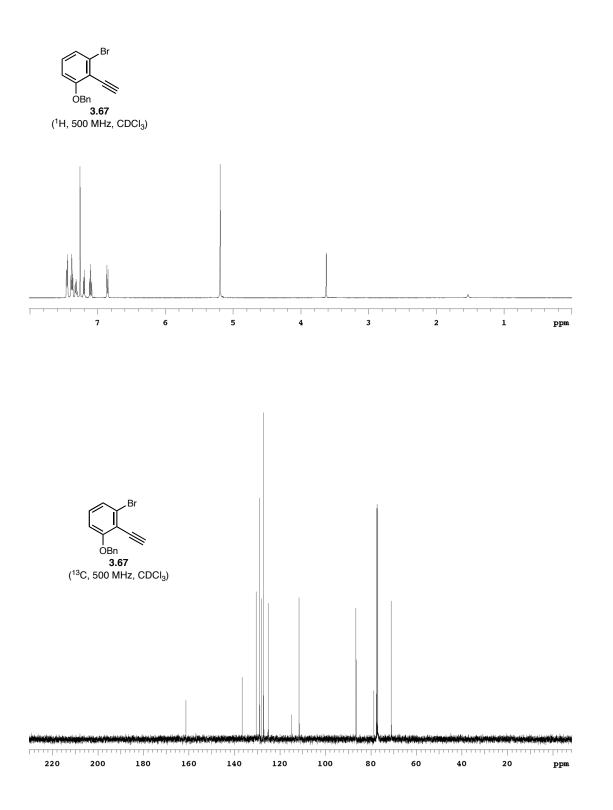


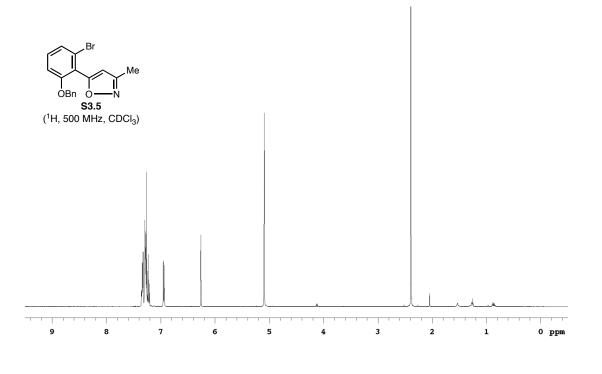


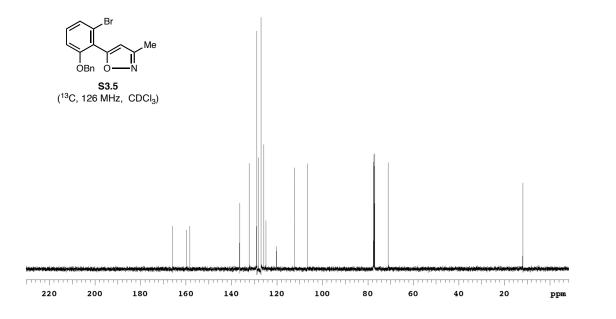


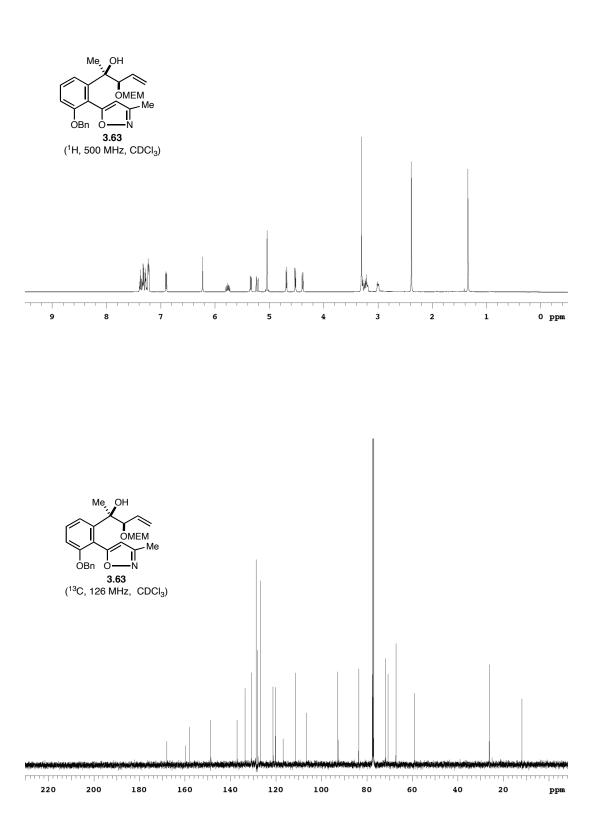


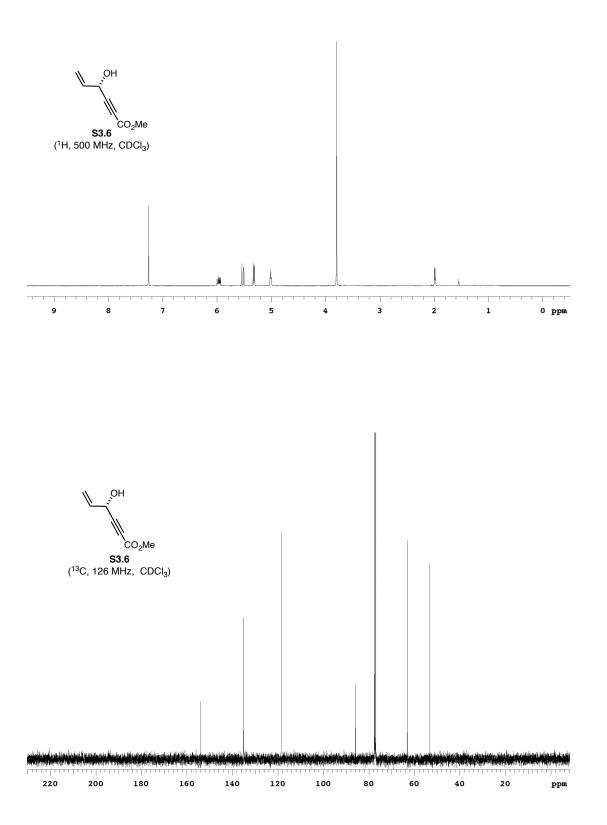


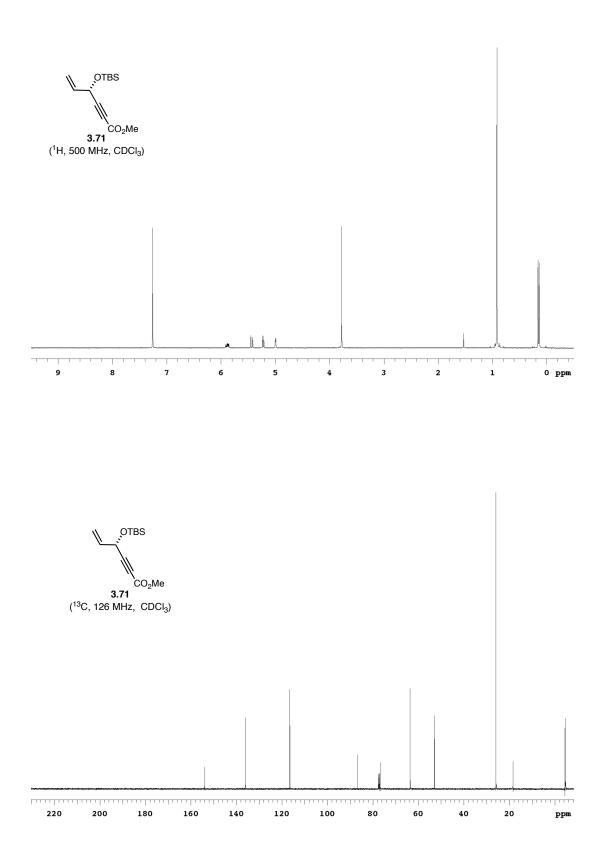


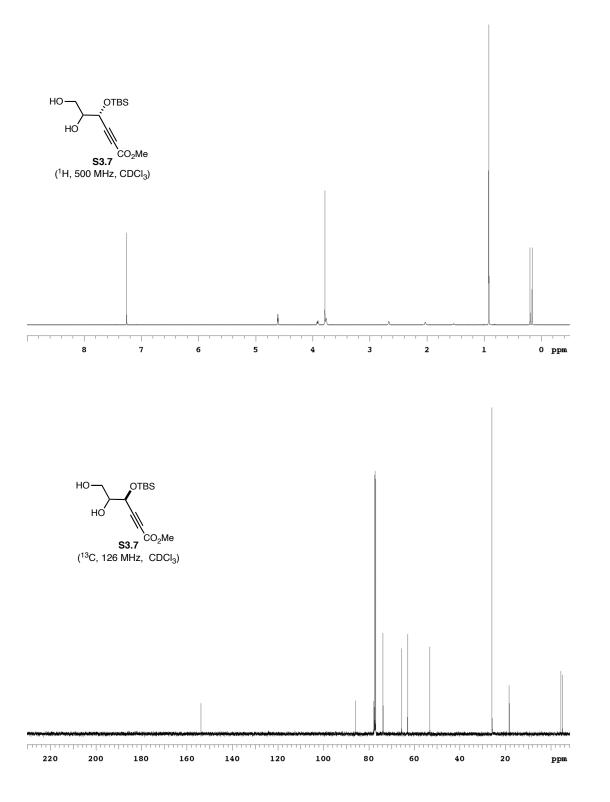


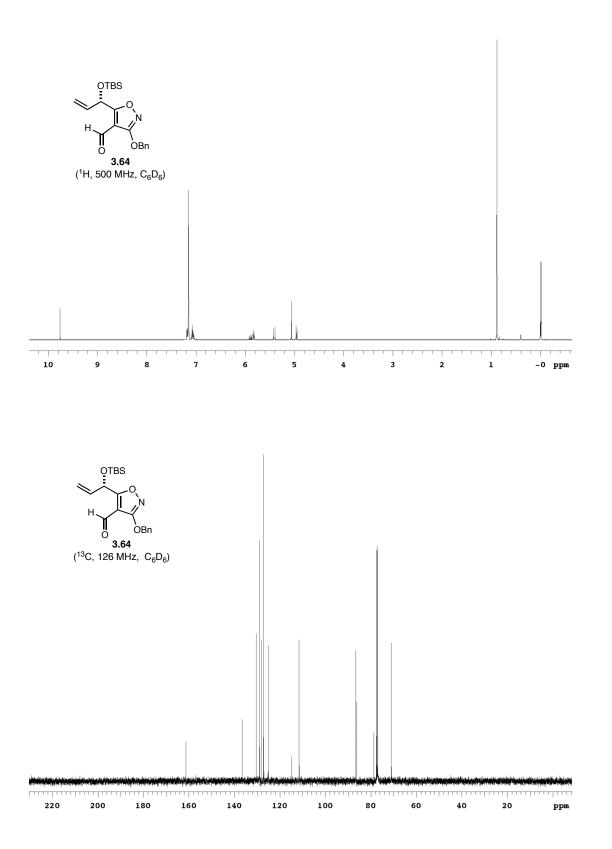


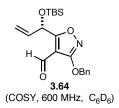


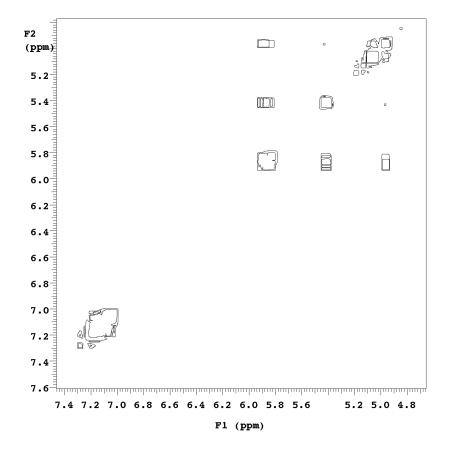




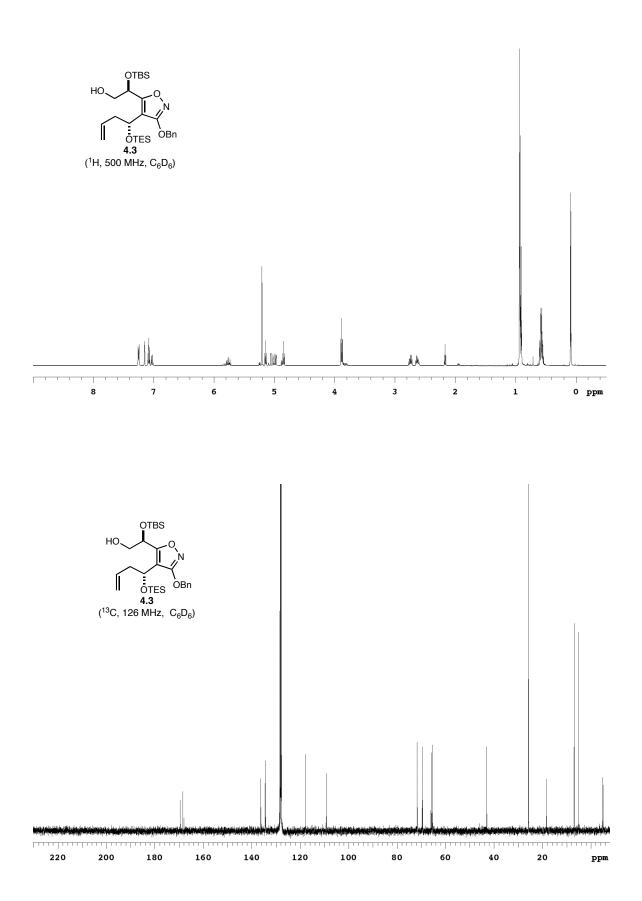


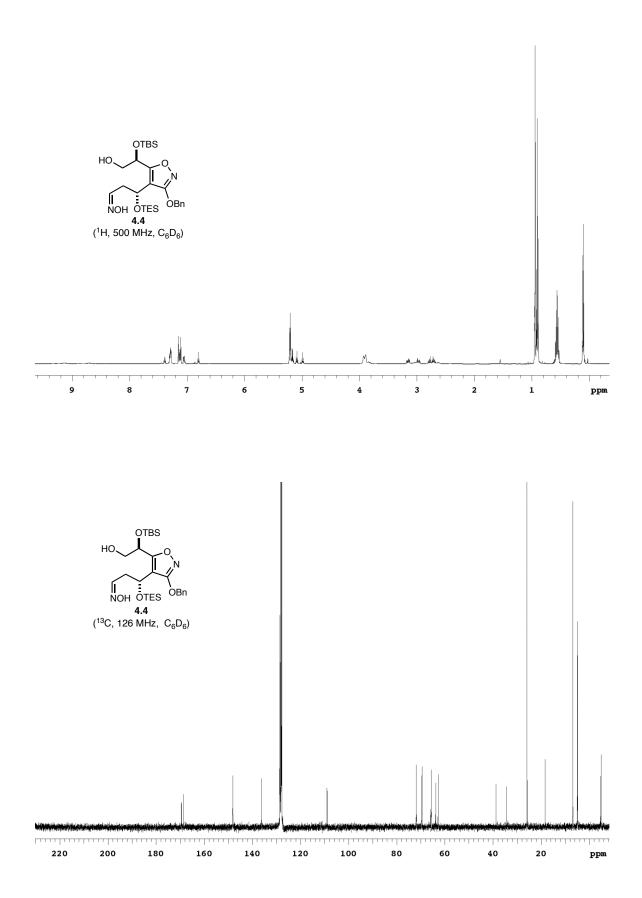


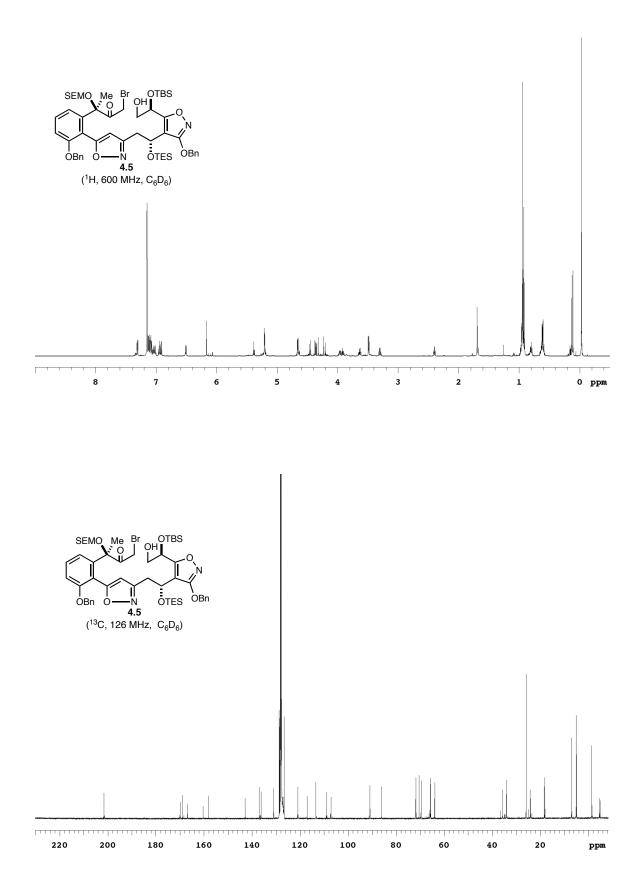


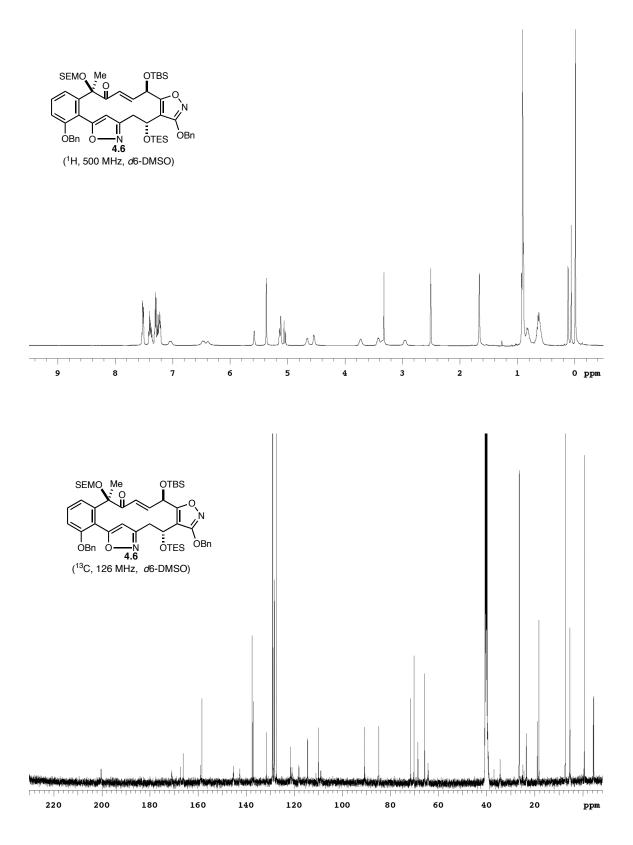


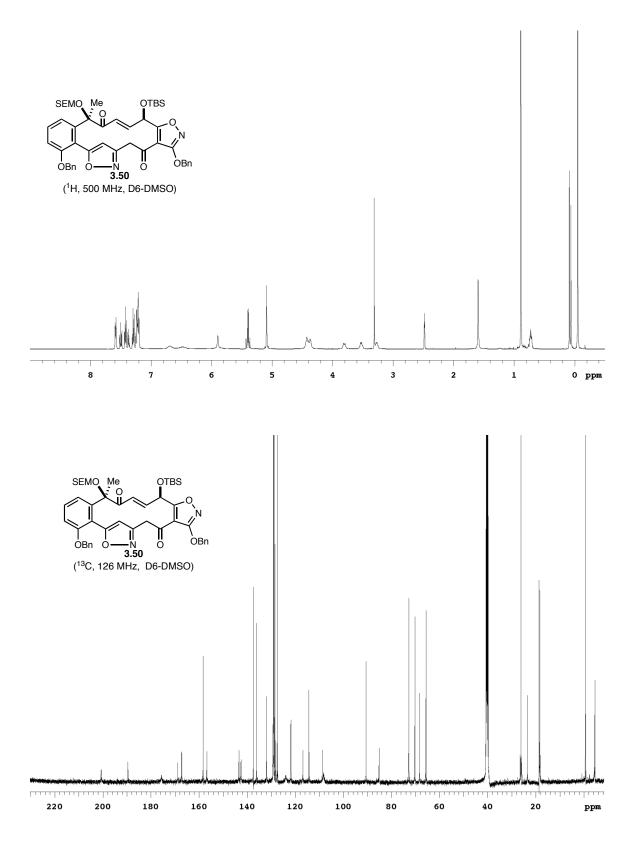


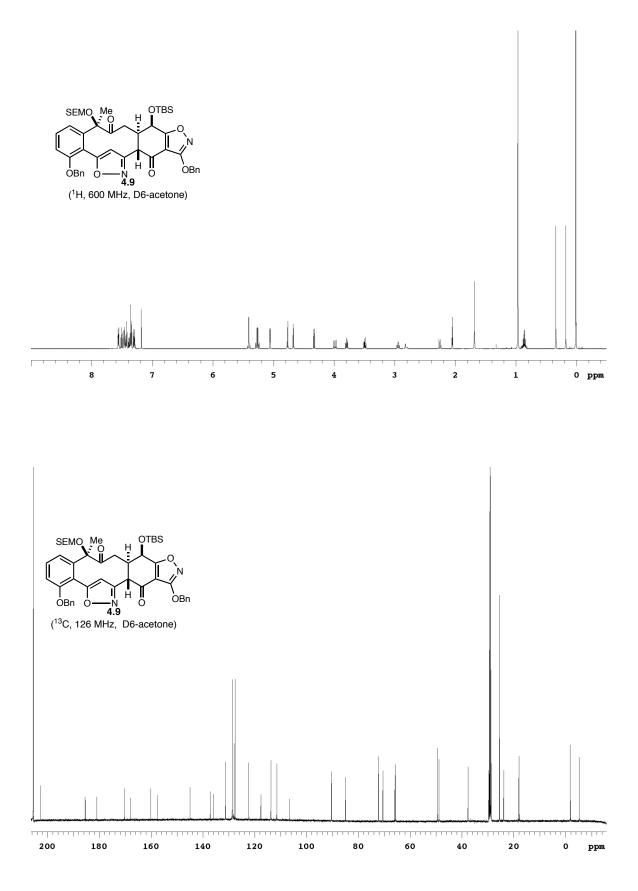


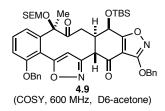


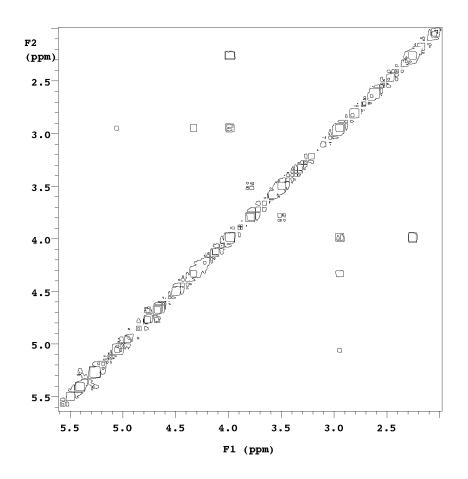


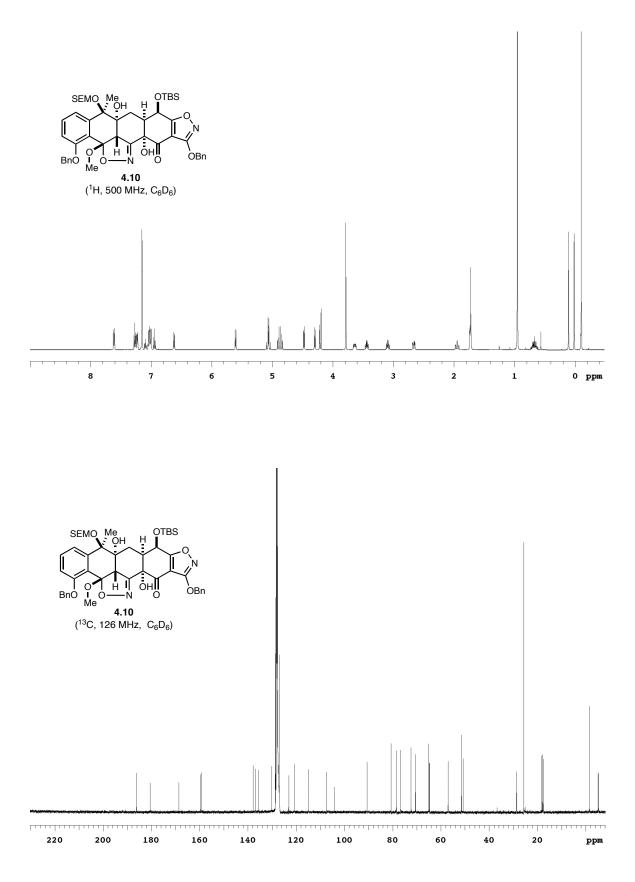


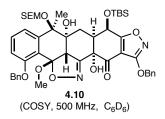


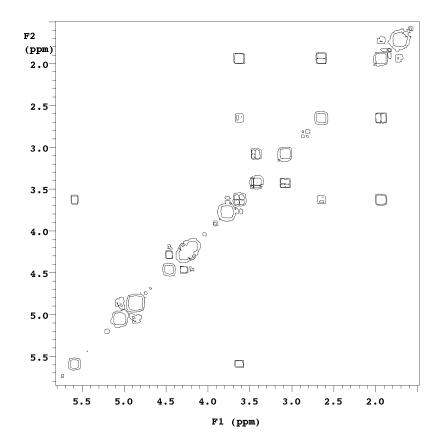


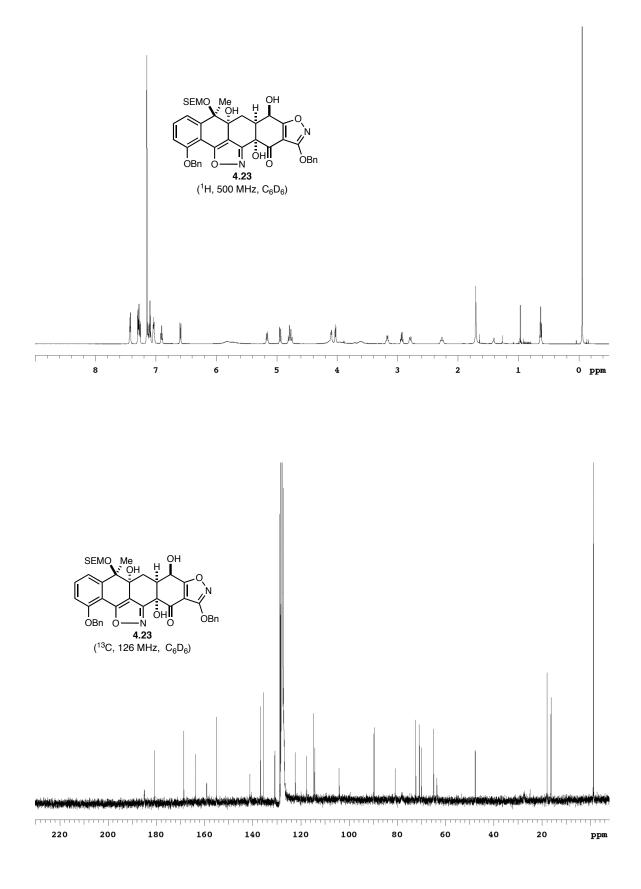


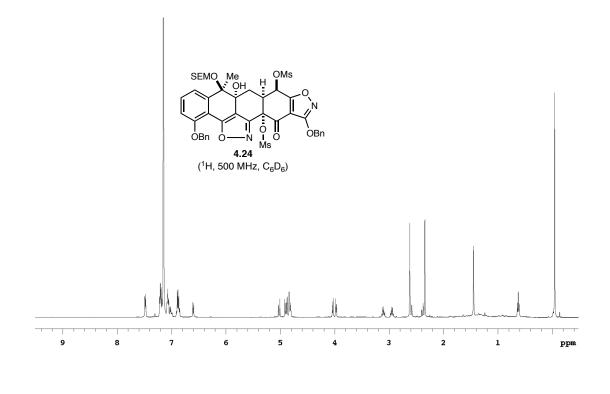


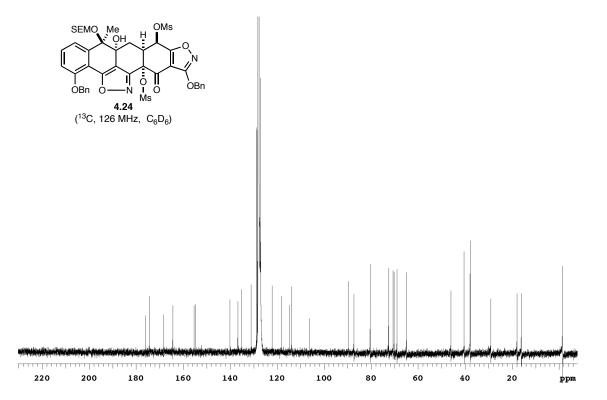


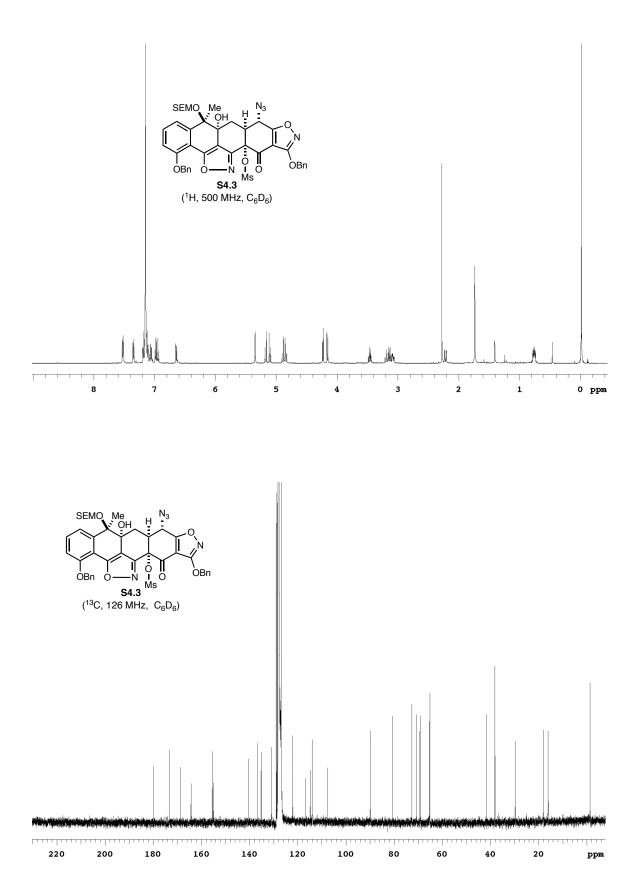


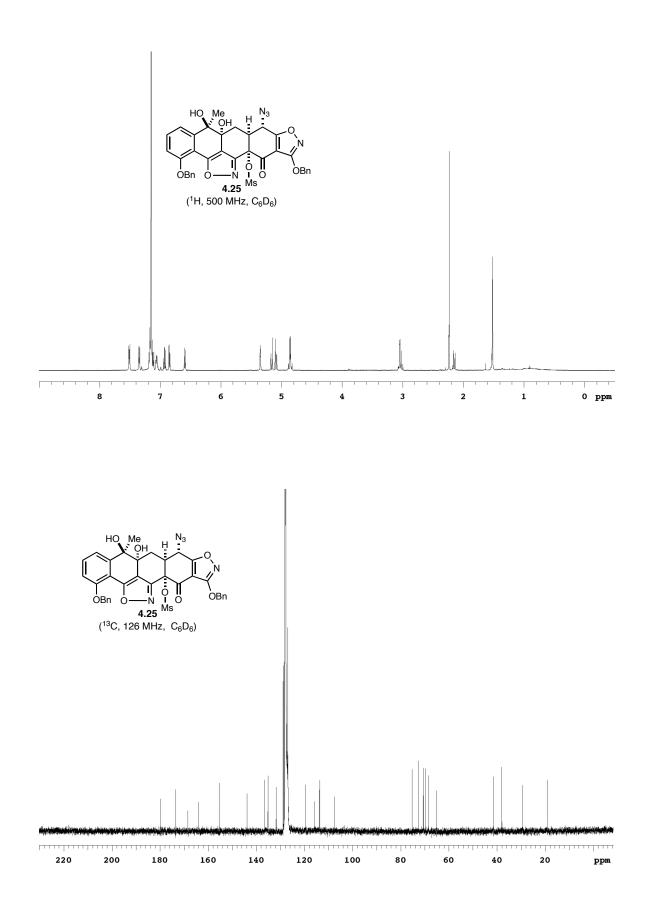


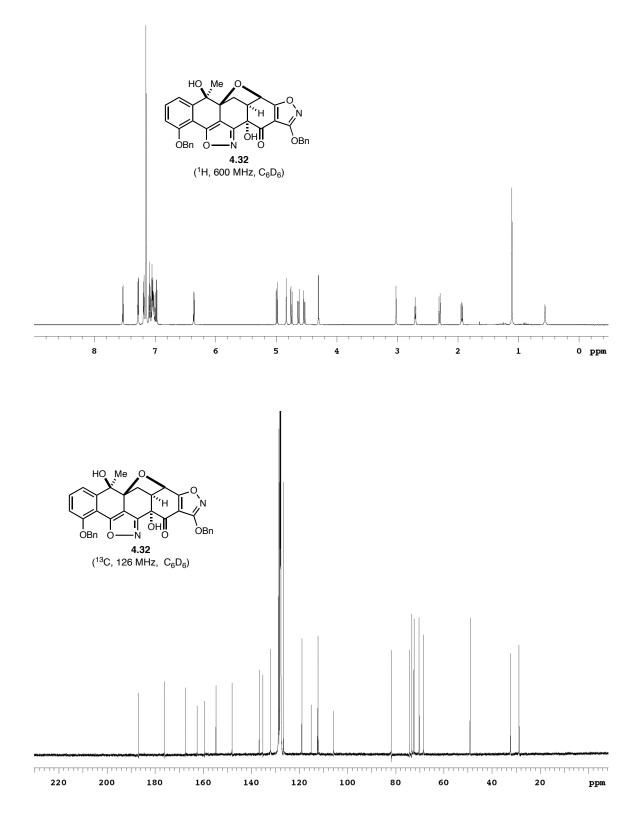


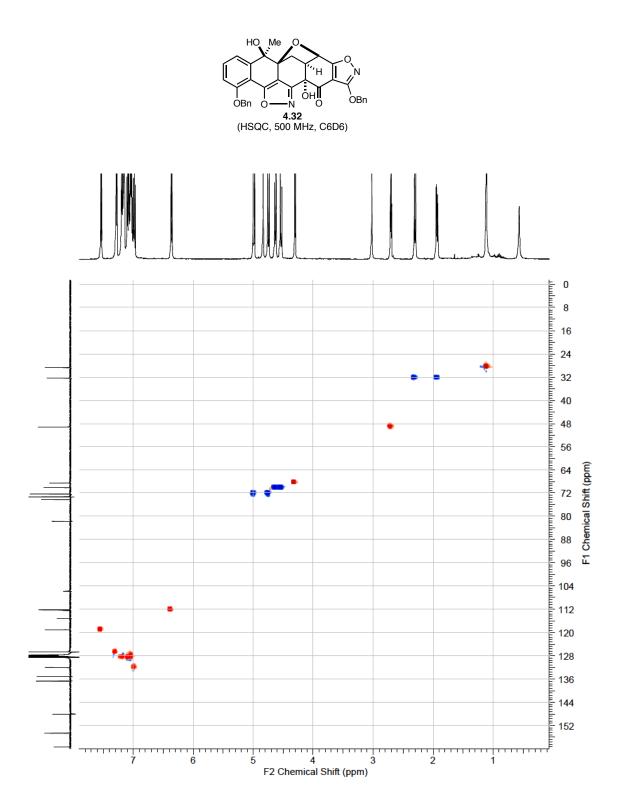


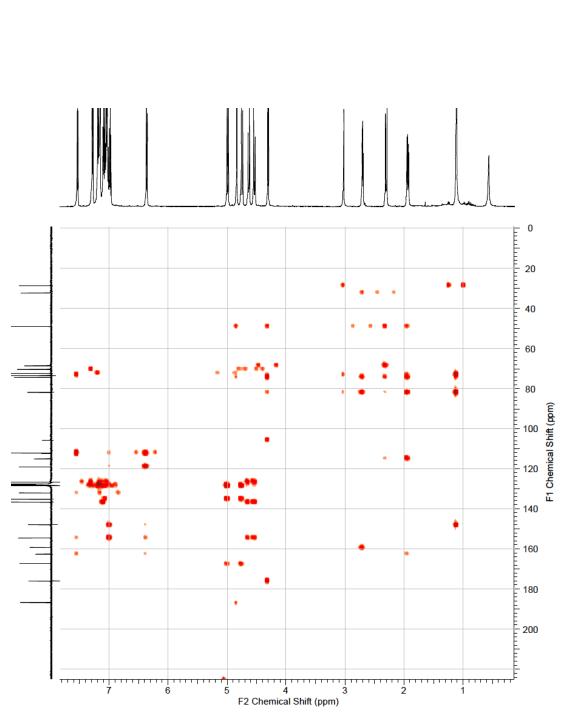


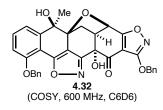


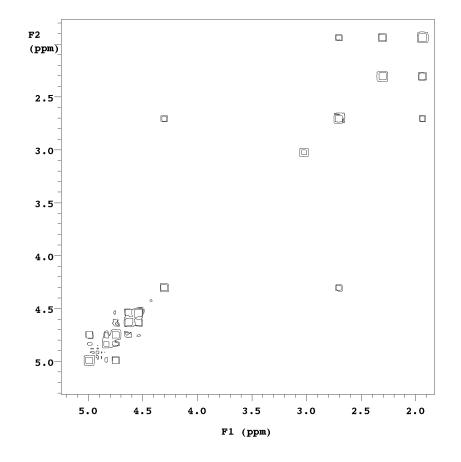


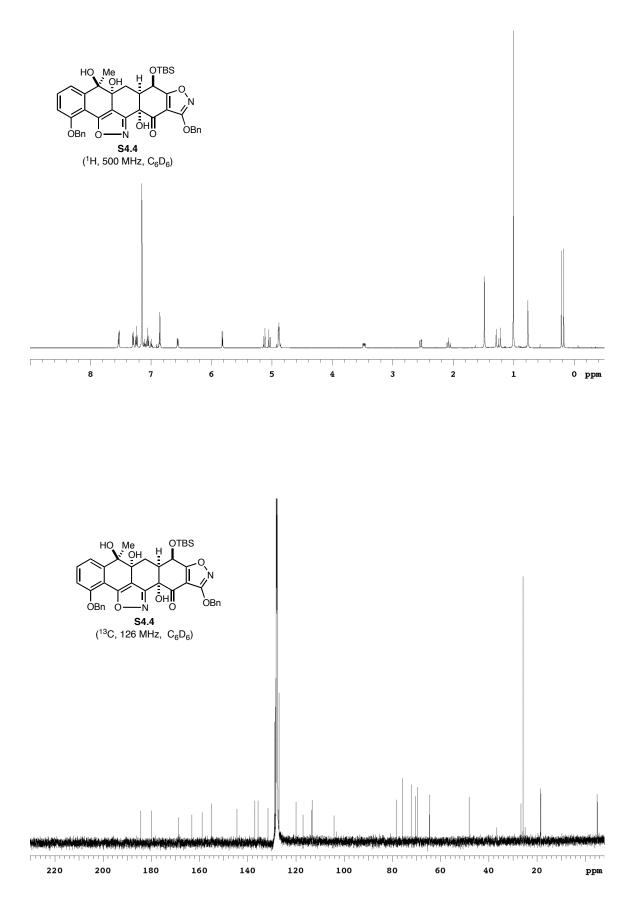


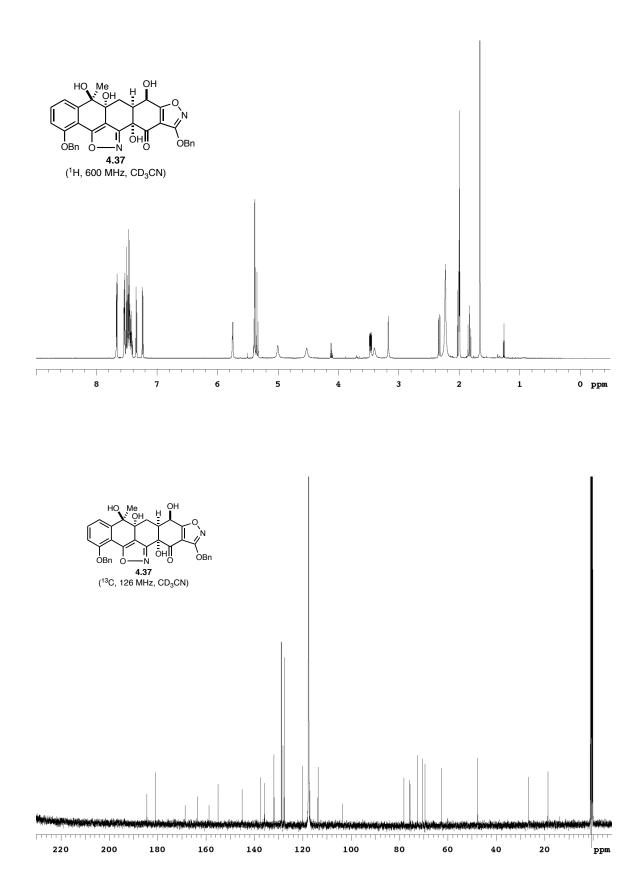


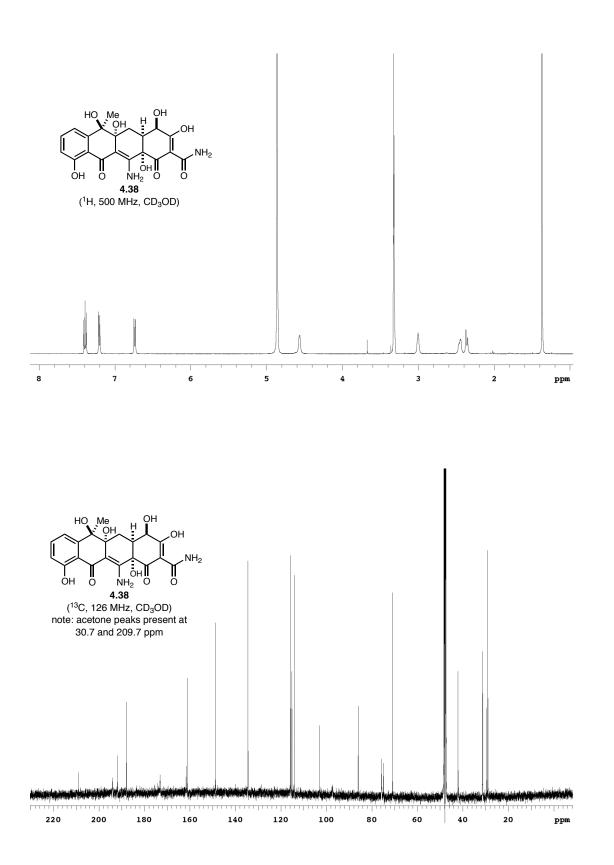


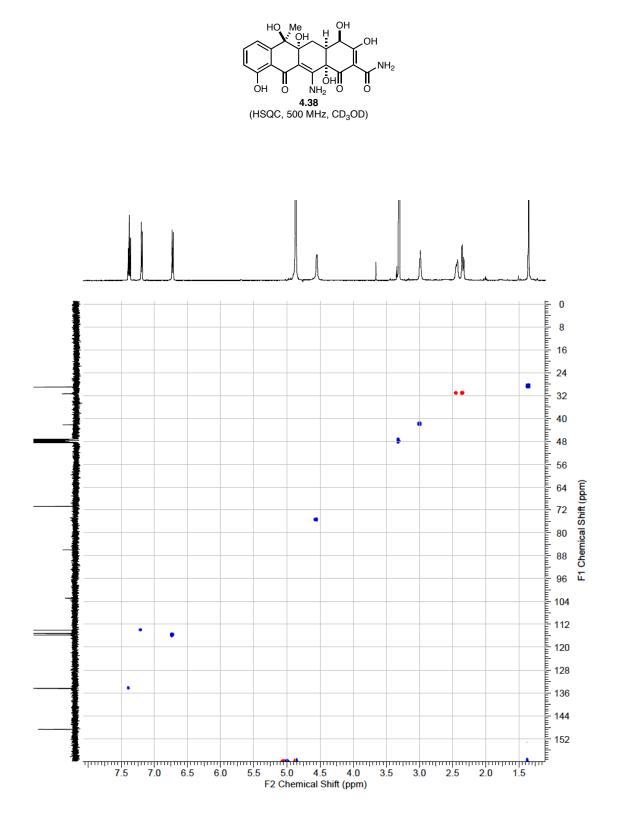


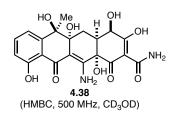


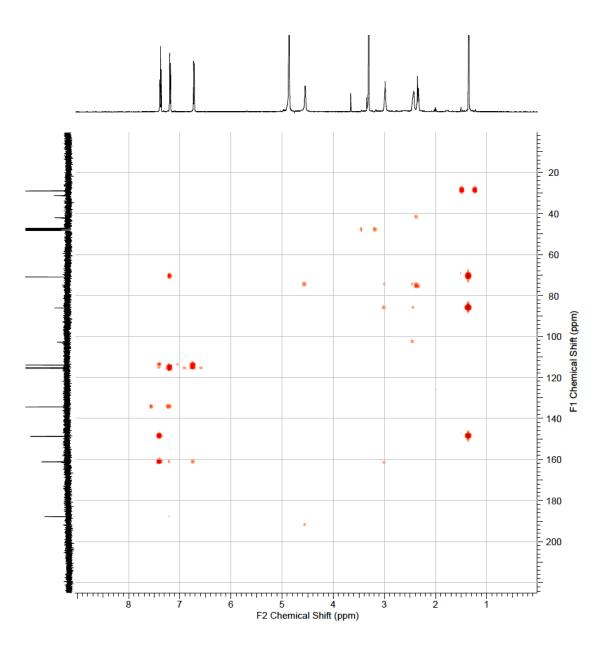


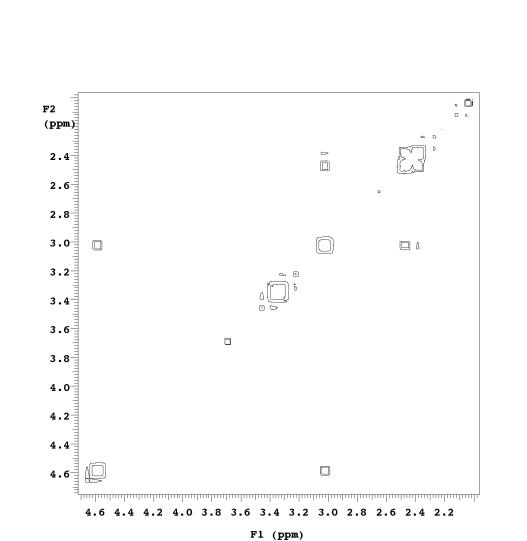


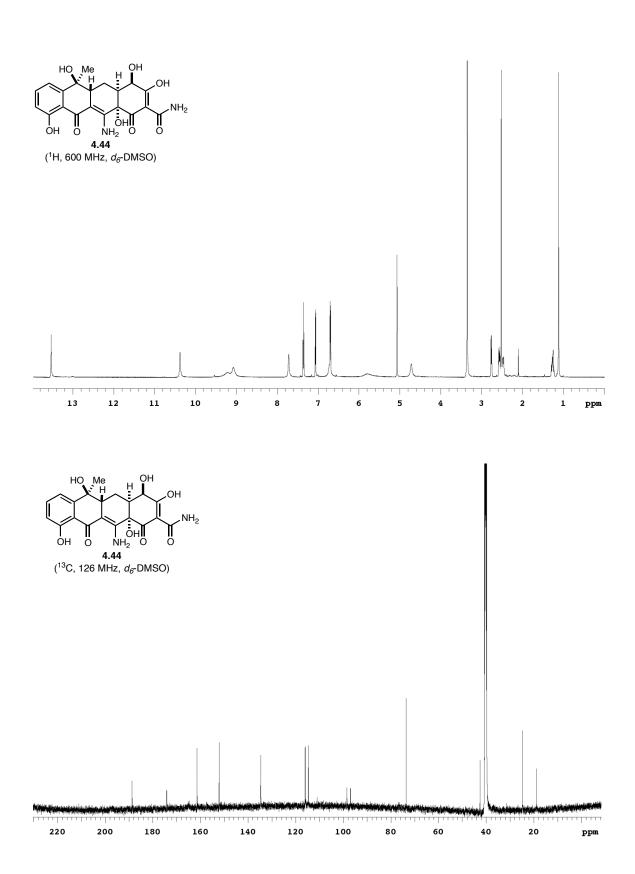

HO Me O , HO Me O , HO N ,

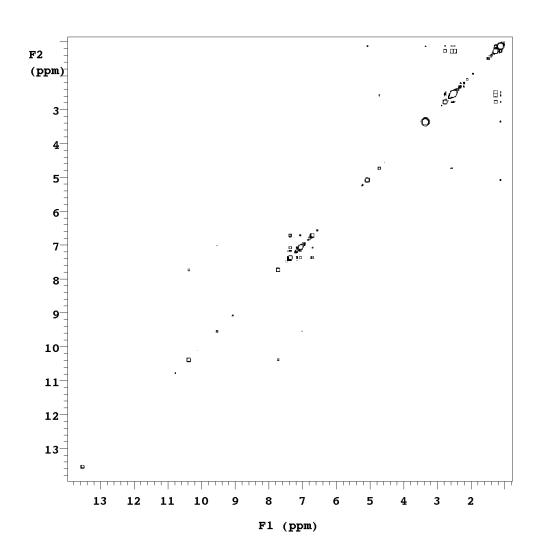


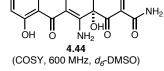




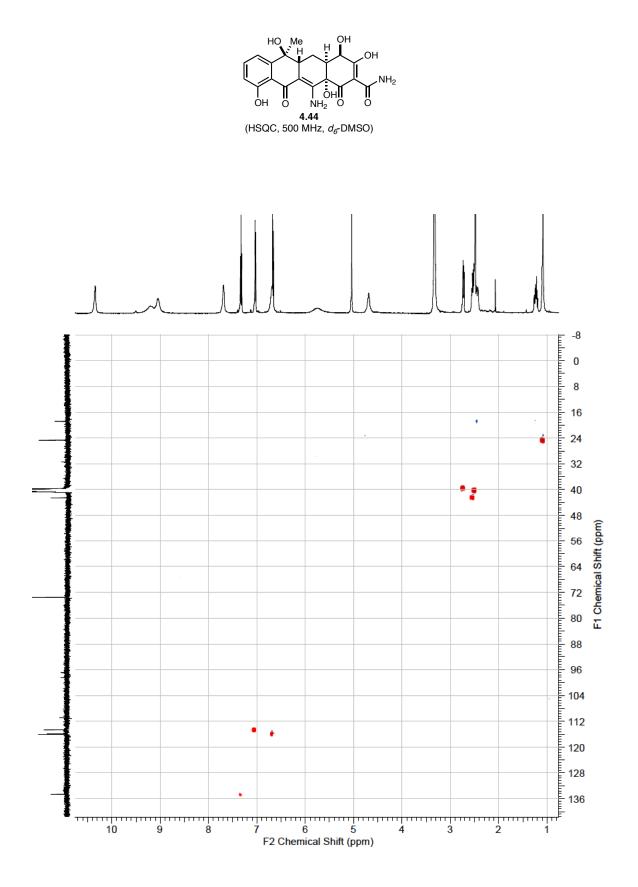


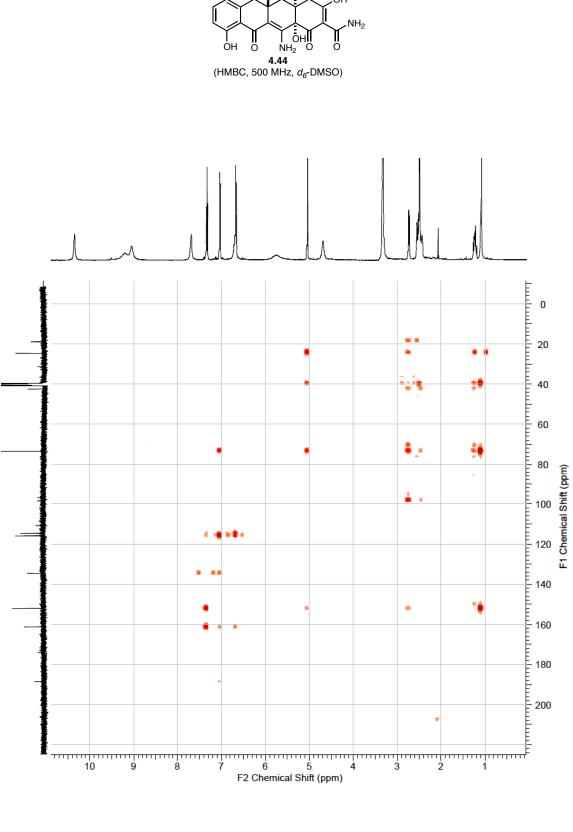




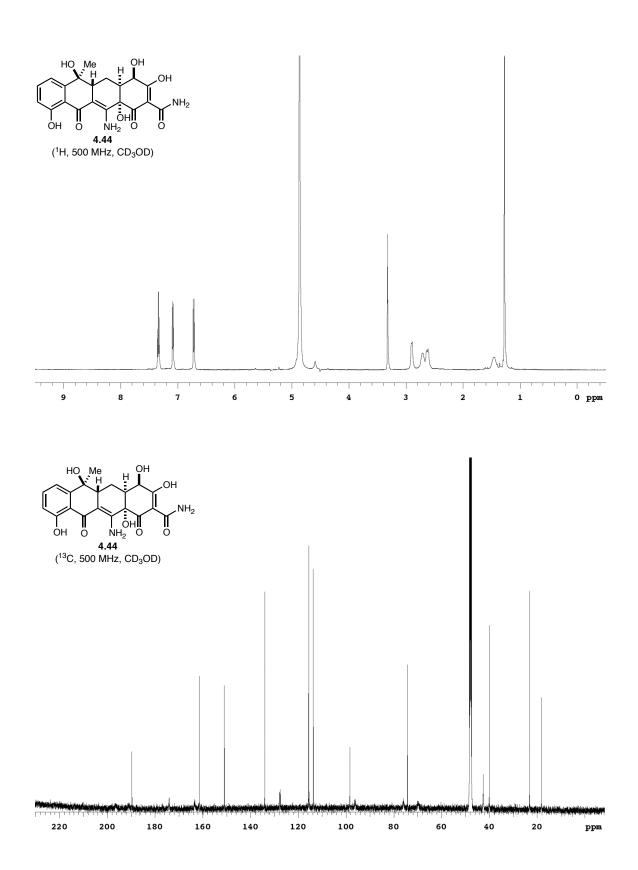


HO Me OH OH OH NH2 OH OH NH2 (COSY, 600 MHz, CD₃OD)

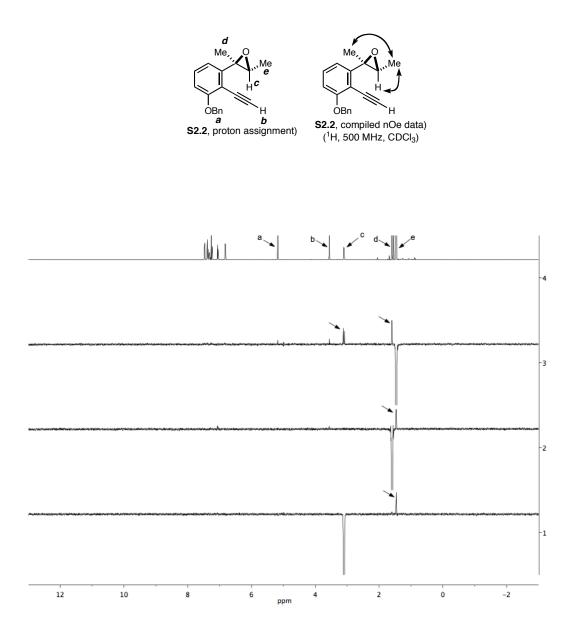


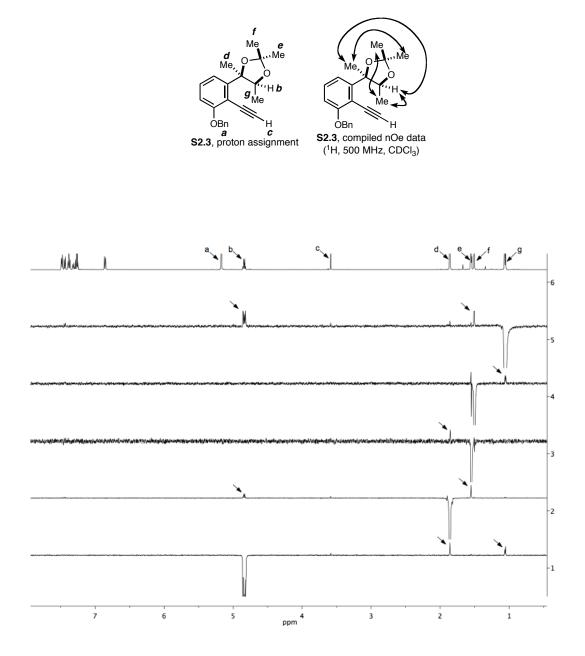

HO Me

ОH

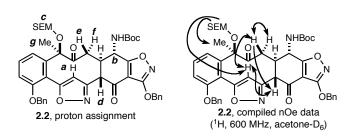

.OH

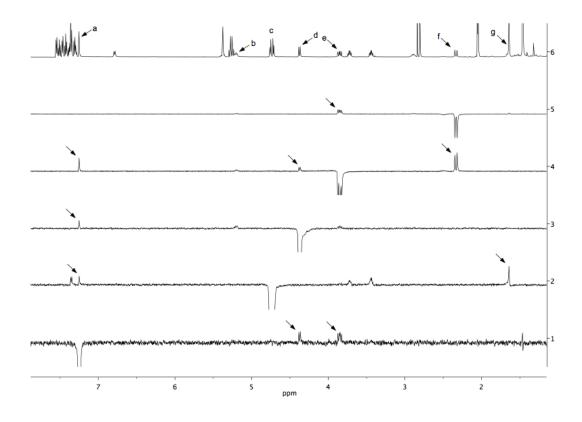
Ĥ


HO Me ОН Ĥ OH

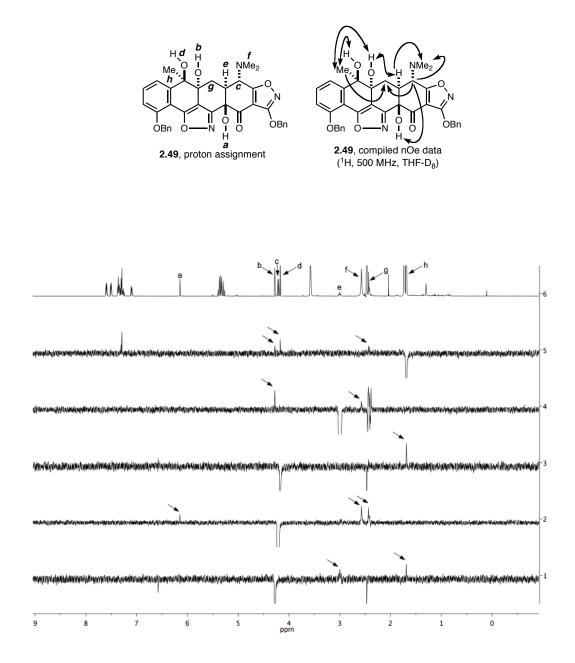


Stereochemical Proofs

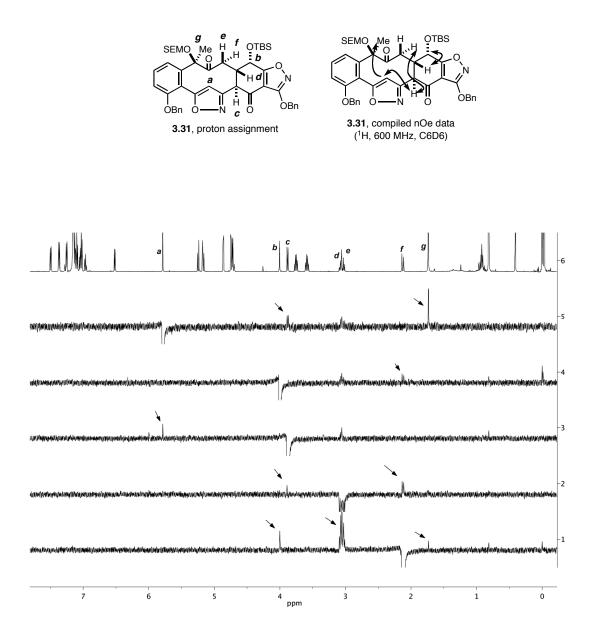

Epoxide S2.2: 1D-nOe Data

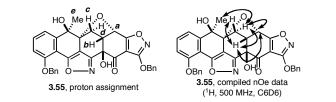


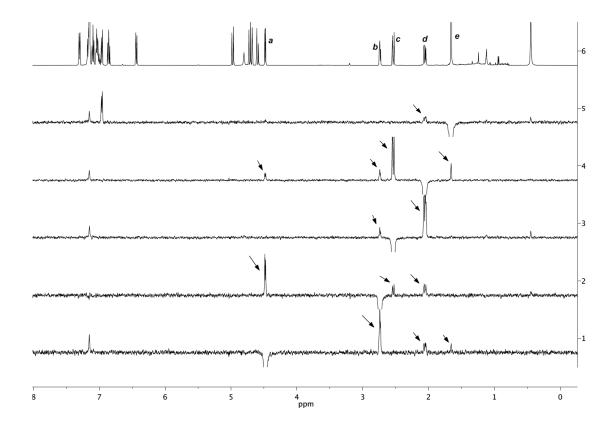
Acetonide S2.3: 1D-nOe Data



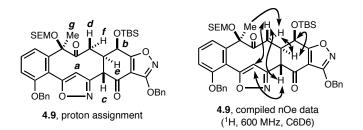
Michael product 2.2: 1D-nOe Data

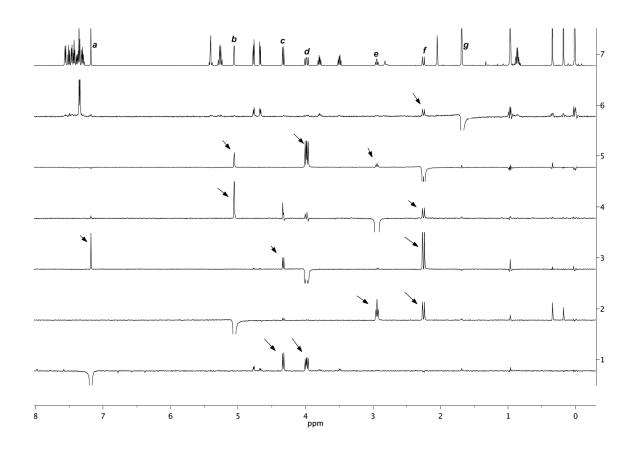


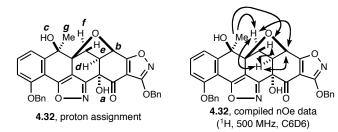

Dimethylamine 2.49: 1D-nOe Data

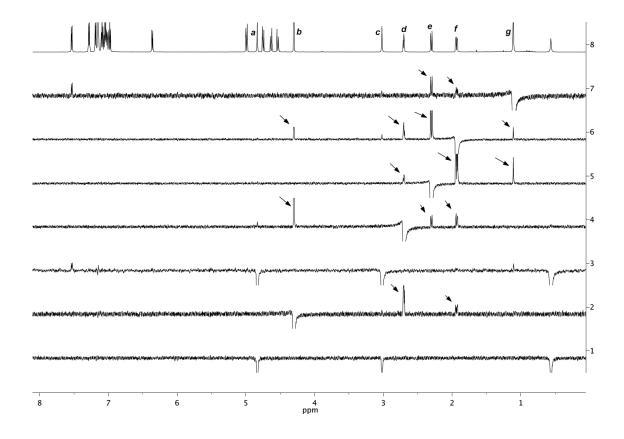


3.31: 1D-nOe Data




3.55: 1D-nOe Data




4.9: 1D-nOe Data

4.32: 1D-nOe Data

Appendix 3

Crystal Structure Data

I. X-Ray Crystallography

A crystal mounted on a diffractometer was collected data at 100 K. The intensities of the reflections were collected by means of a Bruker APEX II DUO CCD diffractometer (Cu_{K°} radiation, λ =1.54178 Å), and equipped with an Oxford Cryosystems nitrogen flow apparatus. The collection method involved 1.0° scans in ω at 30°, 55°, 80° and 105° in 2 θ . Data integration down to 0.84 Å resolution was carried out using SAINT V7.46 A (Bruker diffractometer, 2009) with reflection spot size optimisation. Absorption corrections were made with the program SADABS (Bruker diffractometer, 2009). The structure was solved by the direct methods procedure and refined by least-squares methods

again F^2 using SHELXS-97 and SHELXL-97 (Sheldrick, 2008). Non-hydrogen atoms were refined anisotropically, and hydrogen atoms were allowed to ride on the respective atoms. Crystal data as well as details of data collection and refinement are summarized in Table 1, and geometric parameters are shown in Table 2, and hydrogen-bond parameters are list in Table 3. The Ortep plots produced with SHELXL-97 program, and the other drawings were produced with Accelrys DS Visualizer 2.0 (Accelrys, 2007).

1011/ 1000
JSW-1232
$C_{38}H_{40}O_6$
592.70
Triclinic, P1
100
6.9527 (1), 8.9852 (2), 12.9087 (3)
96.556 (1), 99.310 (1), 92.846 (1)
788.69 (3)
1
Cu Kα
0.67
$0.24 \times 0.20 \times 0.16$
Bruker D8 goniometer with CCD area detector diffractometer
Multi-scan SADABS
0.856, 0.901
19531, 4718, 4696
0.028
0.025, 0.067, 1.06
4718
426
3

II. Experimental details

H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	0.18, -0.14
Absolute structure	Flack H D (1983), Acta Cryst. A39, 876-881
Flack parameter	0.00 (10)

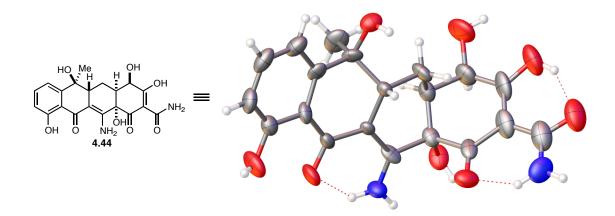
Computer programs: *APEX2* v2009.3.0 (Bruker-AXS, 2009), *SAINT* 7.46A (Bruker-AXS, 2009), *SHELXS97* (Sheldrick, 2008), *SHELXL97* (Sheldrick, 2008), Bruker *SHELXTL*.

III. Selected geometric parameters (Å, °)

1.3681 (16)	O4—C21	1.3714 (17)
1.4364 (16)	O4—C27	1.4406 (17)
1.4365 (15)	O5—C34	1.4471 (15)
0.89 (2)	O5—H5	0.88 (2)
1.4451 (17)	O6—C35	1.4401 (16)
0.90 (2)	O6—H6	0.89 (2)
1.3919 (19)	C21—C22	1.386 (2)
1.4107 (19)	C21—C26	1.4156 (19)
1.387 (2)	C22—C23	1.381 (2)
0.9500	С22—Н22	0.9500
1.383 (2)	C23—C24	1.384 (2)
0.9500	С23—Н23	0.9500
1.3962 (19)	C24—C25	1.3953 (19)
0.9500	C24—H24	0.9500
1.4140 (18)	C25—C26	1.4088 (19)
1.5352 (19)	C25—C34	1.5314 (19)
1.4379 (19)	C26—C38	1.4433 (19)
1.5006 (19)	C27—C28	1.4985 (19)
0.9900	С27—Н27А	0.9900
0.9900	С27—Н27В	0.9900
1.388 (2)	C28—C29	1.388 (2)
1.395 (2)	C28—C33	1.389 (2)
1.381 (2)	C29—C30	1.383 (2)
0.9500	С29—Н29	0.9500
1.385 (2)	C30—C31	1.369 (3)
0.9500	С30—Н30	0.9500
1.389 (2)	C31—C32	1.388 (3)
0.9500	С31—Н31	0.9500
	1.4364(16) $1.4365(15)$ $0.89(2)$ $1.4451(17)$ $0.90(2)$ $1.3919(19)$ $1.4107(19)$ $1.387(2)$ 0.9500 $1.383(2)$ 0.9500 $1.3962(19)$ 0.9500 $1.4140(18)$ $1.5352(19)$ $1.4379(19)$ $1.5006(19)$ 0.9900 0.9900 $1.388(2)$ $1.388(2)$ $1.385(2)$ 0.9500 $1.385(2)$ 0.9500 $1.385(2)$ 0.9500 $1.389(2)$	1.4364 (16) 04C27 1.4365 (15) 05C34 0.89 (2) 05H5 1.4451 (17) 06C35 0.90 (2) 06H6 1.3919 (19) C21C22 1.4107 (19) C21C26 1.387 (2) C22C23 0.9500 C22H22 1.383 (2) C23C24 0.9500 C23H23 1.3962 (19) C24C25 0.9500 C24H24 1.4140 (18) C25C26 1.5352 (19) C25C28 0.9900 C27H27A 0.9900 C27H27A 0.9900 C27H27A 0.9900 C27H27A 0.9900 C27H27A 0.9900 C27H27B 1.388 (2) C28C33 1.381 (2) C29C30 0.9500 C29H29 1.385 (2) C30C31 0.9500 C30H30 1.389 (2) C31C32

C12—C13	1.382 (2)	C32—C33	1.390 (2)
C12—H12	0.9500	C32—H32	0.9500
C13—H13	0.9500	С33—Н33	0.9500
C14—C17	1.534 (2)	C34—C37	1.5253 (19)
C14—C15	1.5451 (18)	C34—C35	1.5583 (19)
C15—C16	1.517 (2)	C35—C36	1.511 (2)
С15—Н15	1.0000	С35—Н35	1.0000
C16—H16A	0.9800	С36—Н36А	0.9800
C16—H16B	0.9800	С36—Н36В	0.9800
C16—H16C	0.9800	С36—Н36С	0.9800
С17—Н17А	0.9800	С37—Н37А	0.9800
С17—Н17В	0.9800	С37—Н37В	0.9800
С17—Н17С	0.9800	С37—Н37С	0.9800
C18—C19	1.189 (2)	C38—C39	1.185 (2)
С19—Н19	0.970 (19)	С39—Н39	0.90 (2)
C1—O1—C7	116.41 (10)	C21—O4—C27	115.60 (10)
С14—О2—Н2	108.9 (12)	С34—О5—Н5	103.5 (14)
С15—О3—Н3	105.2 (14)	С35—О6—Н6	109.7 (13)
O1—C1—C2	123.90 (12)	O4—C21—C22	123.80 (13)
O1—C1—C6	114.98 (11)	O4—C21—C26	115.21 (12)
C2—C1—C6	121.12 (12)	C22—C21—C26	120.98 (13)
C3—C2—C1	118.68 (13)	C23—C22—C21	118.94 (13)
C3—C2—H2A	120.7	С23—С22—Н22	120.5
C1—C2—H2A	120.7	C21—C22—H22	120.5
C4—C3—C2	121.27 (12)	C22—C23—C24	121.13 (13)
С4—С3—НЗА	119.4	С22—С23—Н23	119.4
С2—С3—НЗА	119.4	С24—С23—Н23	119.4
C3—C4—C5	120.95 (12)	C23—C24—C25	121.00 (12)
С3—С4—Н4	119.5	С23—С24—Н24	119.5
С5—С4—Н4	119.5	С25—С24—Н24	119.5
C4—C5—C6	118.68 (13)	C24—C25—C26	118.65 (13)
C4—C5—C14	119.39 (11)	C24—C25—C34	119.70 (12)
C6—C5—C14	121.86 (11)	C26—C25—C34	121.44 (12)
C1—C6—C5	119.23 (12)	C25—C26—C21	119.17 (12)
C1—C6—C18	117.10 (12)	C25—C26—C38	123.40 (12)
C5—C6—C18	123.64 (12)	C21—C26—C38	117.43 (12)
O1—C7—C8	108.80 (10)	O4—C27—C28	108.83 (11)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	01—C7—H7A	109.9	O4—C27—H27A	109.9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
C9-C8-C13 118.97 (13) C29-C28-C33 119.29 (14) C9-C8-C7 121.14 (12) C29-C28-C27 120.56 (14) C13-C8-C7 119.75 (12) C33-C28-C27 120.14 (13) C10-C9-C8 120.46 (13) C30-C29-C28 120.19 (15) C10-C9-H9 119.8 C30-C29-H29 119.9 C8-C9-H9 119.8 C31-C30-C29 120.41 (15) C9-C10-C11 120.37 (13) C31-C30-H30 119.8 C11-C10-H10 119.8 C30-C31-C32 120.31 (14) C10-C11-C12 119.64 (14) C30-C31-C32 120.31 (14) C10-C11-H11 120.2 C30-C31-H31 119.8 C12-C11-H11 120.2 C30-C31-H31 119.8 C12-C11-H11 120.2 C32-C31-H31 119.8 C13-C12-C11 119.99 (14) C31-C32-H32 120.3 C12-C13-H12 120.0 C33-C32-H32 120.3 C12-C13-H13 119.7 C28-C33-H33 119.9 C8-C13-H13 119.7 C28-C33-H33 119.9 <tr< td=""><td></td><td></td><td></td><td></td></tr<>				
C9-C8-C7 121.14 (12) C29-C28-C27 120.56 (14) C13-C8-C7 119.75 (12) C33-C28-C27 120.14 (13) C10-C9-C8 120.46 (13) C30-C29-C28 120.19 (15) C10-C9-H9 119.8 C30-C29-H29 119.9 C8-C9-H9 119.8 C31-C30-C29 120.41 (15) C9-C10-C11 120.37 (13) C31-C30-H30 119.8 C11-C10-H10 119.8 C29-C30-H30 119.8 C10-C11-C12 119.64 (14) C30-C31-C32 120.31 (14) C10-C11-H11 120.2 C32-C31-H31 119.8 C12-C11-H11 120.2 C32-C33 119.50 (15) C13-C12-H12 120.0 C31-C32-H32 120.3 C11-C12-H12 120.0 C33-C32-H32 120.3 C11-C12-H12 120.0 C33-C32-H32 120.3 C12-C13-C8 120.55 (13) C28-C33-G32 120.29 (14) C12-C13-H13 119.7 C28-C33-H33 119.9 C28-C13-H13 119.7 C32-C34-C37 107.82 (10)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				· · · ·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
C9-C10-H10119.8C31-C30-H30119.8C11-C10-H10119.8C29-C30-H30119.8C10-C11-C12119.64 (14)C30-C31-C32120.31 (14)C10-C11-H11120.2C30-C31-H31119.8C12-C11-H11120.2C32-C31-H31119.8C13-C12-C11119.99 (14)C31-C32-C33119.50 (15)C13-C12-H12120.0C31-C32-H32120.3C11-C12-H12120.0C33-C32-H32120.3C12-C13-C8120.55 (13)C28-C33-C32120.29 (14)C12-C13-H13119.7C28-C33-H33119.9C8-C13-H13119.7C32-C33-H33119.9C8-C13-H13119.7C32-C33-H33119.9O2-C14-C17109.30 (11)O5-C34-C25106.82 (11)C17-C14-C5110.39 (10)O5-C34-C25106.82 (11)C17-C14-C5109.64 (11)C37-C34-C35111.02 (11)C5-C14-C15113.31 (11)C25-C34-C35114.69 (11)O3-C15-C16110.34 (11)O6-C35-C34107.70 (10)C16-C15-C14113.02 (11)C36-C35-C34114.74 (11)O3-C15-C14107.41 (11)O6-C35-C34109.2C16-C15-H15108.7C36-C35-H35109.2C16-C15-H15108.7C36-C35-H35109.2C16-C15-H15108.7C36-C35-H35109.2C15-C16-H16A109.5C35-C36-H36A109.5C15-C16-H16A109.5C35-C36-H36B109.5				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		× ,		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				119.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C11—C10—H10	119.8	С29—С30—Н30	119.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C10—C11—C12	119.64 (14)	C30—C31—C32	120.31 (14)
C13-C12-C11119.99 (14)C31-C32-C33119.50 (15)C13-C12-H12120.0C31-C32-H32120.3C11-C12-H12120.0C33-C32-H32120.3C12-C13-C8120.55 (13)C28-C33-C32120.29 (14)C12-C13-H13119.7C28-C33-H33119.9C8-C13-H13119.7C32-C33-H33119.9C8-C14-C17109.30 (11)O5-C34-C37107.82 (10)O2-C14-C5110.39 (10)O5-C34-C25106.82 (11)C17-C14-C5109.64 (11)C37-C34-C25109.95 (11)O2-C14-C15102.37 (10)O5-C34-C35110.61 (11)C17-C14-C15111.60 (11)C37-C34-C35111.02 (11)C5-C14-C15113.31 (11)C25-C34-C35114.69 (11)O3-C15-C16110.34 (11)O6-C35-C36106.53 (11)O3-C15-C14107.41 (11)O6-C35-C34107.70 (10)C16-C15-H15108.7C36-C35-H35109.2C16-C15-H15108.7C36-C35-H35109.2C14-C15-H15108.7C36-C35-H35109.2C14-C15-H15108.7C36-C35-H35109.2C15-C16-H16A109.5C35-C36-H36A109.5C15-C16-H16B109.5C35-C36-H36B109.5	C10-C11-H11	120.2	С30—С31—Н31	119.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C12—C11—H11	120.2	С32—С31—Н31	119.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C13—C12—C11	119.99 (14)	C31—C32—C33	119.50 (15)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	С13—С12—Н12	120.0	С31—С32—Н32	120.3
C12—C13—H13 119.7 C28—C33—H33 119.9 C8—C13—H13 119.7 C32—C33—H33 119.9 O2—C14—C17 109.30 (11) O5—C34—C37 107.82 (10) O2—C14—C5 110.39 (10) O5—C34—C25 106.82 (11) C17—C14—C5 109.64 (11) C37—C34—C25 109.95 (11) O2—C14—C5 109.64 (11) C37—C34—C35 116.17 (11) C17—C14—C15 111.60 (11) C37—C34—C35 111.02 (11) C5—C14—C15 113.31 (11) C25—C34—C35 114.69 (11) O3—C15—C16 110.34 (11) O6—C35—C36 106.53 (11) O3—C15—C14 107.41 (11) O6—C35—C34 114.74 (11) O3—C15—C14 107.41 (11) C36—C35—C34 114.74 (11) O3—C15—H15 108.7 C36—C35—H35 109.2 C16—C15—H15 108.7 C36—C35—H35 109.2 C16—C15—H15 108.7 C34—C	C11—C12—H12	120.0	С33—С32—Н32	120.3
C8—C13—H13 119.7 C32—C33—H33 119.9 O2—C14—C17 109.30 (11) O5—C34—C37 107.82 (10) O2—C14—C5 110.39 (10) O5—C34—C25 106.82 (11) C17—C14—C5 109.64 (11) C37—C34—C25 109.95 (11) O2—C14—C15 102.37 (10) O5—C34—C25 106.17 (11) O2—C14—C15 102.37 (10) O5—C34—C35 106.17 (11) C17—C14—C15 111.60 (11) C37—C34—C35 111.02 (11) C5—C14—C15 113.31 (11) C25—C34—C35 114.69 (11) O3—C15—C16 110.34 (11) O6—C35—C36 106.53 (11) O3—C15—C14 107.41 (11) O6—C35—C34 107.70 (10) C16—C15—C14 113.02 (11) C36—C35—C34 114.74 (11) O3—C15—H15 108.7 C36—C35—H35 109.2 C16—C15—H15 108.7 C36—C35—H35 109.2 C14—C15—H15 108.7 C36—C35—H35 109.2 C14—C15—H15 108.7 C36—C35—H35 109.2 C15—C16—H16A 109.5 C35—C36—H36A	C12—C13—C8	120.55 (13)	C28—C33—C32	120.29 (14)
O2—C14—C17 109.30 (11) O5—C34—C37 107.82 (10) O2—C14—C5 110.39 (10) O5—C34—C25 106.82 (11) C17—C14—C5 109.64 (11) C37—C34—C25 109.95 (11) O2—C14—C15 102.37 (10) O5—C34—C25 106.17 (11) C17—C14—C15 102.37 (10) O5—C34—C35 106.17 (11) C17—C14—C15 111.60 (11) C37—C34—C35 111.02 (11) C5—C14—C15 113.31 (11) C25—C34—C35 114.69 (11) O3—C15—C16 110.34 (11) O6—C35—C36 106.53 (11) O3—C15—C14 107.41 (11) O6—C35—C34 107.70 (10) C16—C15—C14 113.02 (11) C36—C35—C34 114.74 (11) O3—C15—H15 108.7 O6—C35—H35 109.2 C16—C15—H15 108.7 C36—C35—H35 109.2 C14—C15—H15 108.7 C34—C35—H35 109.2 C14—C15—H15 108.7 C34—C35—H35 109.2 C14—C15—H15 108.7 C34—C35—H35 109.2 C15—C16—H16A 109.5 C35—C36—H36A	С12—С13—Н13	119.7	С28—С33—Н33	119.9
O2—C14—C5 110.39 (10) O5—C34—C25 106.82 (11) C17—C14—C5 109.64 (11) C37—C34—C25 109.95 (11) O2—C14—C15 102.37 (10) O5—C34—C35 106.17 (11) C17—C14—C15 102.37 (10) O5—C34—C35 106.17 (11) C17—C14—C15 111.60 (11) C37—C34—C35 111.02 (11) C5—C14—C15 113.31 (11) C25—C34—C35 114.69 (11) O3—C15—C16 110.34 (11) O6—C35—C36 106.53 (11) O3—C15—C14 107.41 (11) O6—C35—C34 107.70 (10) C16—C15—C14 113.02 (11) C36—C35—C34 114.74 (11) O3—C15—H15 108.7 C36—C35—H35 109.2 C16—C15—H15 108.7 C36—C35—H35 109.2 C14—C15—H15 108.7 C34—C35—H35 109.2 C14—C15—H15 108.7 C34—C35—H35 109.2 C14—C15—H15 108.7 C34—C35—H35 109.2 C14—C15—H16A 109.5 C35—C36—H36A 109.5 C15—C16—H16A 109.5 C35—C36—H36B <t< td=""><td>С8—С13—Н13</td><td>119.7</td><td>С32—С33—Н33</td><td>119.9</td></t<>	С8—С13—Н13	119.7	С32—С33—Н33	119.9
C17—C14—C5 109.64 (11) C37—C34—C25 109.95 (11) O2—C14—C15 102.37 (10) O5—C34—C35 106.17 (11) C17—C14—C15 111.60 (11) C37—C34—C35 111.02 (11) C5—C14—C15 113.31 (11) C25—C34—C35 114.69 (11) O3—C15—C16 110.34 (11) O6—C35—C36 106.53 (11) O3—C15—C14 107.41 (11) O6—C35—C34 107.70 (10) C16—C15—C14 113.02 (11) C36—C35—C34 114.74 (11) O3—C15—C14 108.7 O6—C35—C34 109.2 C16—C15—H15 108.7 C36—C35—H35 109.2 C14—C15—H15 108.7 C34—C35—H35 109.2 C14—C15—H15 108.7 C36—C35—H35 109.2 C14—C15—H15 108.7 C34—C35—H35 109.2 C14—C15—H15 108.7 C35—C36—H35 109.2 C15—C16—H16A 109.5 C35—C36—H36A 109.5 C15—C16—H16B 109.5 C35—C36—H36B 109.5	O2—C14—C17	109.30 (11)	O5—C34—C37	107.82 (10)
O2—C14—C15 102.37 (10) O5—C34—C35 106.17 (11) C17—C14—C15 111.60 (11) C37—C34—C35 111.02 (11) C5—C14—C15 113.31 (11) C25—C34—C35 114.69 (11) O3—C15—C16 110.34 (11) O6—C35—C36 106.53 (11) O3—C15—C14 107.41 (11) O6—C35—C34 107.70 (10) C16—C15—C14 113.02 (11) C36—C35—C34 114.74 (11) O3—C15—H15 108.7 O6—C35—H35 109.2 C16—C15—H15 108.7 C36—C35—H35 109.2 C14—C15—H15 108.7 C34—C35—H35 109.2 C14—C15—H15 108.7 C34—C35—H35 109.2 C14—C15—H15 108.7 C34—C35—H35 109.2 C14—C15—H15 108.7 C34—C35—H35 109.2 C14—C15—H16A 109.5 C35—C36—H36A 109.5 C15—C16—H16A 109.5 C35—C36—H36B 109.5	O2—C14—C5	110.39 (10)	O5—C34—C25	106.82 (11)
C17—C14—C15 111.60 (11) C37—C34—C35 111.02 (11) C5—C14—C15 113.31 (11) C25—C34—C35 114.69 (11) O3—C15—C16 110.34 (11) O6—C35—C36 106.53 (11) O3—C15—C14 107.41 (11) O6—C35—C34 107.70 (10) C16—C15—C14 113.02 (11) C36—C35—C34 107.70 (10) C16—C15—C14 108.7 O6—C35—H35 109.2 C16—C15—H15 108.7 C36—C35—H35 109.2 C14—C15—H15 108.7 C34—C35—H35 109.2 C14—C15—H15 108.7 C36—C35—H35 109.2 C14—C15—H15 108.7 C34—C35—H35 109.2 C15—C16—H16A 109.5 C35—C36—H36A 109.5 C15—C16—H16A 109.5 C35—C36—H36B 109.5	C17—C14—C5	109.64 (11)	C37—C34—C25	109.95 (11)
C5—C14—C15 113.31 (11) C25—C34—C35 114.69 (11) O3—C15—C16 110.34 (11) O6—C35—C36 106.53 (11) O3—C15—C14 107.41 (11) O6—C35—C34 107.70 (10) C16—C15—C14 113.02 (11) C36—C35—C34 114.74 (11) O3—C15—H15 108.7 O6—C35—H35 109.2 C16—C15—H15 108.7 C36—C35—H35 109.2 C14—C15—H15 108.7 C34—C35—H35 109.2 C14—C15—H15 108.7 C34—C35—H35 109.2 C15—C16—H16A 109.5 C35—C36—H36A 109.5 C15—C16—H16B 109.5 C35—C36—H36B 109.5	O2—C14—C15	102.37 (10)	O5—C34—C35	106.17 (11)
O3-C15-C16 110.34 (11) O6-C35-C36 106.53 (11) O3-C15-C14 107.41 (11) O6-C35-C34 107.70 (10) C16-C15-C14 113.02 (11) C36-C35-C34 114.74 (11) O3-C15-H15 108.7 O6-C35-H35 109.2 C16-C15-H15 108.7 C36-C35-H35 109.2 C14-C15-H15 108.7 C34-C35-H35 109.2 C14-C15-H15 108.7 C34-C35-H35 109.2 C15-C16-H16A 109.5 C35-C36-H36A 109.5 C15-C16-H16B 109.5 C35-C36-H36B 109.5	C17—C14—C15	111.60 (11)	C37—C34—C35	111.02 (11)
O3-C15-C14 107.41 (11) O6-C35-C34 107.70 (10) C16-C15-C14 113.02 (11) C36-C35-C34 114.74 (11) O3-C15-H15 108.7 O6-C35-H35 109.2 C16-C15-H15 108.7 C36-C35-H35 109.2 C14-C15-H15 108.7 C34-C35-H35 109.2 C14-C15-H15 108.7 C34-C35-H35 109.2 C15-C16-H16A 109.5 C35-C36-H36A 109.5 C15-C16-H16B 109.5 C35-C36-H36B 109.5	C5—C14—C15	113.31 (11)	C25—C34—C35	114.69 (11)
C16—C15—C14 113.02 (11) C36—C35—C34 114.74 (11) O3—C15—H15 108.7 O6—C35—H35 109.2 C16—C15—H15 108.7 C36—C35—H35 109.2 C14—C15—H15 108.7 C34—C35—H35 109.2 C14—C15—H15 108.7 C34—C35—H35 109.2 C15—C16—H16A 109.5 C35—C36—H36A 109.5 C15—C16—H16B 109.5 C35—C36—H36B 109.5	O3—C15—C16	110.34 (11)	O6—C35—C36	106.53 (11)
O3-C15-H15 108.7 O6-C35-H35 109.2 C16-C15-H15 108.7 C36-C35-H35 109.2 C14-C15-H15 108.7 C34-C35-H35 109.2 C15-C16-H16A 109.5 C35-C36-H36A 109.5 C15-C16-H16B 109.5 C35-C36-H36B 109.5	O3—C15—C14	107.41 (11)	O6—C35—C34	107.70 (10)
C16—C15—H15 108.7 C36—C35—H35 109.2 C14—C15—H15 108.7 C34—C35—H35 109.2 C15—C16—H16A 109.5 C35—C36—H36A 109.5 C15—C16—H16B 109.5 C35—C36—H36B 109.5	C16—C15—C14	113.02 (11)	C36—C35—C34	114.74 (11)
C14—C15—H15108.7C34—C35—H35109.2C15—C16—H16A109.5C35—C36—H36A109.5C15—C16—H16B109.5C35—C36—H36B109.5	O3—C15—H15	108.7	O6—C35—H35	109.2
C15—C16—H16A 109.5 C35—C36—H36A 109.5 C15—C16—H16B 109.5 C35—C36—H36B 109.5	С16—С15—Н15	108.7	С36—С35—Н35	109.2
C15—C16—H16B 109.5 C35—C36—H36B 109.5	C14—C15—H15	108.7	С34—С35—Н35	109.2
C15—C16—H16B 109.5 C35—C36—H36B 109.5	C15—C16—H16A	109.5	С35—С36—Н36А	109.5
H16A—C16—H16B 109.5 H36A—C36—H36B 109.5	C15—C16—H16B	109.5	С35—С36—Н36В	109.5
	H16A—C16—H16B	109.5	H36A—C36—H36B	109.5


	T	T	1
C15—C16—H16C	109.5	С35—С36—Н36С	109.5
H16A—C16—H16C	109.5	H36A—C36—H36C	109.5
H16B—C16—H16C	109.5	H36B—C36—H36C	109.5
C14—C17—H17A	109.5	С34—С37—Н37А	109.5
C14—C17—H17B	109.5	С34—С37—Н37В	109.5
H17A—C17—H17B	109.5	H37A—C37—H37B	109.5
C14—C17—H17C	109.5	С34—С37—Н37С	109.5
H17A—C17—H17C	109.5	H37A—C37—H37C	109.5
H17B—C17—H17C	109.5	H37B—C37—H37C	109.5
C19—C18—C6	177.23 (15)	C39—C38—C26	178.24 (16)
С18—С19—Н19	179.2 (11)	С38—С39—Н39	177.5 (14)
C7—O1—C1—C2	-3.42 (18)	C27—O4—C21—C22	11.80 (19)
C7—O1—C1—C6	176.49 (11)	C27—O4—C21—C26	-167.17 (11)
O1—C1—C2—C3	177.03 (12)	O4—C21—C22—C23	-175.58 (12)
C6—C1—C2—C3	-2.87 (19)	C26—C21—C22—C23	3.3 (2)
C1—C2—C3—C4	2.0 (2)	C21—C22—C23—C24	-0.6 (2)
C2—C3—C4—C5	0.5 (2)	C22—C23—C24—C25	-2.3 (2)
C3—C4—C5—C6	-2.18 (18)	C23—C24—C25—C26	2.3 (2)
C3—C4—C5—C14	174.91 (12)	C23—C24—C25—C34	177.18 (13)
O1—C1—C6—C5	-178.68 (11)	C24—C25—C26—C21	0.44 (19)
C2—C1—C6—C5	1.23 (18)	C34—C25—C26—C21	-174.35 (12)
O1—C1—C6—C18	-0.41 (17)	C24—C25—C26—C38	179.90 (12)
C2—C1—C6—C18	179.50 (13)	C34—C25—C26—C38	5.12 (19)
C4—C5—C6—C1	1.29 (17)	O4—C21—C26—C25	175.72 (11)
C14—C5—C6—C1	-175.72 (12)	C22—C21—C26—C25	-3.28 (19)
C4—C5—C6—C18	-176.85 (13)	O4—C21—C26—C38	-3.78 (17)
C14—C5—C6—C18	6.13 (19)	C22—C21—C26—C38	177.22 (12)
C1—O1—C7—C8	-167.88 (11)	C21—O4—C27—C28	161.08 (11)
O1—C7—C8—C9	-113.01 (14)	O4—C27—C28—C29	99.27 (15)
O1—C7—C8—C13	71.35 (15)	O4—C27—C28—C33	-81.49 (16)
C13—C8—C9—C10	0.2 (2)	C33—C28—C29—C30	0.3 (2)
C7—C8—C9—C10	-175.52 (12)	C27—C28—C29—C30	179.57 (13)
C8—C9—C10—C11	-0.6 (2)	C28—C29—C30—C31	-0.8 (2)
C9—C10—C11—C12	0.1 (2)	C29—C30—C31—C32	0.6 (2)
C10—C11—C12—C13	0.9 (2)	C30—C31—C32—C33	0.1 (2)
C11—C12—C13—C8	-1.4 (2)	C29—C28—C33—C32	0.3 (2)
C9—C8—C13—C12	0.9 (2)	C27—C28—C33—C32	-178.96 (13)

C7—C8—C13—C12	176.60 (13)	C31—C32—C33—C28	-0.5 (2)
C4—C5—C14—O2	9.43 (16)	C24—C25—C34—O5	8.22 (16)
C6—C5—C14—O2	-173.57 (11)	C26—C25—C34—O5	-177.05 (11)
C4—C5—C14—C17	-111.03 (13)	C24—C25—C34—C37	-108.51 (14)
C6—C5—C14—C17	65.97 (15)	C26—C25—C34—C37	66.22 (15)
C4—C5—C14—C15	123.57 (12)	C24—C25—C34—C35	125.55 (13)
C6—C5—C14—C15	-59.44 (15)	C26—C25—C34—C35	-59.72 (16)
O2—C14—C15—O3	-51.13 (12)	O5—C34—C35—O6	-40.00 (13)
C17—C14—C15—O3	65.65 (14)	C37—C34—C35—O6	76.92 (13)
C5—C14—C15—O3	-170.00 (10)	C25—C34—C35—O6	-157.71 (11)
O2—C14—C15—C16	70.81 (14)	O5—C34—C35—C36	78.41 (13)
C17—C14—C15—C16	-172.41 (12)	C37—C34—C35—C36	-164.67 (12)
C5—C14—C15—C16	-48.06 (15)	C25—C34—C35—C36	-39.29 (16)

IV. Hydrogen-bond parameters

<i>D</i> —H… <i>A</i>	<i>D</i> —Н (Å)	H…A (Å)	<i>D</i> … <i>A</i> (Å)	D—H··· A (°)
O2—H2···O5 ⁱ	0.89 (2)	1.87 (2)	2.7466 (14)	169.0 (18)
O6—H6…O3 ⁱⁱ	0.89 (2)	1.87 (2)	2.7372 (14)	165.3 (19)
O3—H3…O2	0.90 (2)	2.02 (2)	2.5814 (14)	119.8 (18)
О5—Н5…О6	0.88 (2)	1.99 (2)	2.5784 (14)	123.4 (17)

Symmetry code(s): (i) *x*+1, *y*+1, *z*+1; (ii) *x*-1, *y*, *z*-1.

V. X-Ray Crystallography

A crystal mounted on a diffractometer was collected data at 180 K. The intensities of the reflections were collected by means of a Bruker APEX II DUO CCD diffractometer (Cu_K, radiation, λ =1.54178 Å), and equipped with an Oxford Cryosystems nitrogen flow apparatus. The collection method involved 1.0° scans in ω at 30°, 55°, 80° and 115° in 2 θ . Data integration down to 0.84 Å resolution was carried out using SAINT V7.46 A (Bruker diffractometer, 2009) with reflection spot size optimisation. Absorption corrections were made with the program SADABS (Bruker diffractometer, 2009). The structure was solved by the direct methods procedure and refined by least-squares methods again F^2 using SHELXS-97 and SHELXL-97 (Sheldrick, 2008). Non-hydrogen atoms were refined anisotropically, and hydrogen atoms were allowed to ride on the respective atoms. Crystal data as well as details of data collection and refinement are summarized in Table 1, geometric parameters are shown in Table 2, and hydrogen-bond parameters are listed in Table 3. The Ortep plots produced with SHELXL-97 program, and the other drawings were produced with Accelrys DS Visualizer 2.0 (Accelrys, 2007).

VI. Experimental Details

	JSW-1547
Crystal data	
Chemical formula	$C_{20}H_{20}N_2O_8$
M _r	416.38
Crystal system, space group	Orthorhombic, <i>P</i> 2 ₁ 2 ₁ 2 ₁
Temperature (K)	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	7.1664 (2), 9.7435 (3), 25.4422 (6)
$V(\text{\AA}^3)$	1776.52 (8)
Ζ	4
Radiation type	Cu Ka
$\mu (mm^{-1})$	1.03
Crystal size (mm)	$0.20\times0.14\times0.12$
Data collection	
Diffractometer	Bruker D8 goniometer with CCD area detector diffractometer
Absorption correction	Multi-scan SADABS
T_{\min}, T_{\max}	0.820, 0.886
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	21791, 3082, 2960
R _{int}	0.061
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.592
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.102, 0.244, 1.07
No. of reflections	3082
No. of parameters	359
No. of restraints	93
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	0.54, -0.34
Absolute structure	Flack H D (1983), Acta Cryst. A39, 876-881
Flack parameter	-0.8 (7)

Computer programs: *APEX2* v2009.3.0 (Bruker-AXS, 2009), *SAINT* 7.46A (Bruker-AXS, 2009), *SHELXS97* (Sheldrick, 2008), *SHELXL97* (Sheldrick, 2008), Bruker *SHELXTL* (Sheldrick, 2008).

C1—01	1.440 (12)	O8—H8	0.8400
C1—C2	1.469 (15)	C1A—O1A	1.43 (2)
C1—C18	1.530 (9)	C1A—C2A	1.46 (2)
С1—Н1	1.0000	C1A—C18A	1.517 (18)
C2—O2	1.282 (10)	C1A—H1AA	1.0000
C2—C3	1.442 (17)	C2A—O2A	1.308 (19)
C3—C19	1.407 (16)	С2А—С3А	1.44 (2)
C3—C4	1.444 (12)	C3A—C19A	1.41 (2)
C4—O4	1.219 (11)	C3A—C4A	1.43 (2)
C4—C5	1.557 (11)	C4A—O4A	1.20 (2)
C5—O5	1.445 (11)	C4A—C5A	1.555 (19)
C5—C18	1.502 (10)	C5A—C18A	1.485 (18)
C5—C6	1.546 (9)	C5A—C6A	1.536 (17)
C6—N2	1.325 (10)	C6A—N2A	1.324 (19)
C6—C7	1.381 (10)	С6А—С7А	1.380 (19)
С7—С8	1.454 (8)	C7A—C8A	1.446 (16)
C7—C16	1.514 (9)	C7A—C16A	1.502 (17)
C8—O6	1.264 (9)	C8A—O6A	1.256 (19)
С8—С9	1.479 (11)	C8A—C9A	1.47 (2)
C9—C14	1.409 (11)	C9A—C14A	1.41 (2)
C9—C10	1.415 (9)	C9A—C10A	1.414 (18)
C10-C11	1.367 (13)	C10A—C11A	1.37 (2)
С10—О7	1.371 (11)	C10A—07A	1.38 (2)
C11—C12	1.405 (14)	C11A—C12A	1.41 (2)
С11—Н11	0.9500	C11A—H11A	0.9500
C12—C13	1.358 (12)	C12A—C13A	1.36 (2)
С12—Н12	0.9500	C12A—H12A	0.9500
C13—C14	1.411 (11)	C13A—C14A	1.421 (19)
С13—Н13	0.9500	C13A—H13A	0.9500
C14—C15	1.511 (10)	C14A—C15A	1.522 (18)
C15—O8	1.440 (9)	C15A—O8A	1.441 (19)
C15—C16	1.521 (9)	C15A—C16A	1.514 (19)
C15—C20	1.528 (10)	C15A—C20A	1.53 (2)
C16—C17	1.540 (8)	C16A—C17A	1.537 (17)
С16—Н16	1.0000	C16A—H16A	1.0000
C17—C18	1.531 (9)	C17A—C18A	1.516 (18)
С17—Н17А	0.9900	C17A—H17C	0.9900

VII. Geometric parameters (Å, °)

C17—H17B	0.9900	C17A—H17D	0.9900
C18—H18	1.0000	C18A—H18A	1.0000
O1—H1A	0.8400	O1A—H1AB	0.8400
O2—H2	0.8400	O2A—H2AA	0.8400
C19—O3	1.287 (12)	C19A—O3A	1.29 (2)
C19—N1	1.315 (17)	C19A—N1A	1.29 (3)
N1—H1B	0.8800	N1A—H1AC	0.8800
N1—H1C	0.8800	N1A—H1AD	0.8800
О5—Н5	0.8400	N2A—H2AB	0.8800
N2—H2A	0.8800	N2A—H2AC	0.8800
N2—H2B	0.8800	O7A—H7A	0.8400
07—Н7	0.8400	C20A—H20D	0.9800
C20—H20A	0.9800	C20A—H20E	0.9800
С20—Н20В	0.9800	C20A—H20F	0.9800
С20—Н20С	0.9800	O8A—H8A	0.8400
O1—C1—C2	112.2 (8)	H20B—C20—H20C	109.5
O1—C1—C18	108.0 (8)	С15—О8—Н8	109.5
C2—C1—C18	112.5 (8)	O1A—C1A—C2A	121 (3)
O1—C1—H1	108.0	O1A—C1A—C18A	111 (2)
С2—С1—Н1	108.0	C2A—C1A—C18A	114.6 (18)
C18—C1—H1	108.0	O1A—C1A—H1AA	102.7
O2—C2—C3	124.4 (11)	C2A—C1A—H1AA	102.7
O2—C2—C1	115.0 (11)	C18A—C1A—H1AA	102.7
C3—C2—C1	120.6 (7)	O2A—C2A—C3A	140 (3)
C19—C3—C2	120.5 (10)	O2A—C2A—C1A	100 (3)
C19—C3—C4	117.9 (11)	C3A—C2A—C1A	120.4 (16)
C2—C3—C4	121.5 (9)	C19A—C3A—C4A	134 (3)
O4—C4—C3	125.9 (9)	C19A—C3A—C2A	103 (2)
O4—C4—C5	118.4 (7)	C4A—C3A—C2A	121.8 (19)
C3—C4—C5	115.6 (9)	O4A—C4A—C3A	120 (2)
O5—C5—C18	111.9 (7)	O4A—C4A—C5A	123 (2)
O5—C5—C6	109.6 (6)	C3A—C4A—C5A	115.2 (18)
C18—C5—C6	109.0 (7)	C18A—C5A—C6A	110.7 (18)
O5—C5—C4	102.9 (6)	C18A—C5A—C4A	112.8 (19)
C18—C5—C4	112.2 (7)	C6A—C5A—C4A	110 (2)
C6—C5—C4	111.1 (8)	N2A—C6A—C7A	125 (4)
N2—C6—C7	123.0 (8)	N2A—C6A—C5A	103 (3)

C7—C6—C5 118 C6—C7—C8 12 C6—C7—C16 122 C8—C7—C16 112 O6—C8—C7 122 O6—C8—C9 119 C7—C8—C9 119 C14—C9—C10 110 C14—C9—C8 12	8.6 (7) 1.4 (7) 2.1 (6) 5.8 (6) 2.5 (7) 9.1 (6) 8.4 (7) 6.6 (7) 1.2 (6)	C7A—C6A—C5A C6A—C7A—C8A C6A—C7A—C16A C8A—C7A—C16A O6A—C8A—C7A O6A—C8A—C9A C7A—C8A—C9A C14A—C9A—C10A C14A—C9A—C8A	118 (2) 116.5 (19) 123.4 (18) 117.5 (16) 117 (2) 123 (2) 119.8 (17) 117.8 (19)
C6—C7—C8 12 C6—C7—C16 122 C8—C7—C16 112 O6—C8—C7 122 O6—C8—C9 119 C7—C8—C9 119 C14—C9—C10 110 C14—C9—C8 12	1.4 (7) 2.1 (6) 5.8 (6) 2.5 (7) 9.1 (6) 8.4 (7) 6.6 (7) 1.2 (6)	C6A—C7A—C16A C8A—C7A—C16A O6A—C8A—C7A O6A—C8A—C9A C7A—C8A—C9A C14A—C9A—C10A C14A—C9A—C8A	123.4 (18) 117.5 (16) 117 (2) 123 (2) 119.8 (17) 117.8 (19)
C6—C7—C16 122 C8—C7—C16 112 O6—C8—C7 122 O6—C8—C9 119 C7—C8—C9 119 C14—C9—C10 110 C14—C9—C8 12	2.1 (6) 5.8 (6) 2.5 (7) 9.1 (6) 8.4 (7) 6.6 (7) 1.2 (6)	C8A—C7A—C16A O6A—C8A—C7A O6A—C8A—C9A C7A—C8A—C9A C14A—C9A—C10A C14A—C9A—C8A	117.5 (16) 117 (2) 123 (2) 119.8 (17) 117.8 (19)
C8—C7—C16 111 O6—C8—C7 122 O6—C8—C9 119 C7—C8—C9 119 C14—C9—C10 110 C14—C9—C8 12	5.8 (6) 2.5 (7) 9.1 (6) 8.4 (7) 6.6 (7) 1.2 (6)	06A—C8A—C7A 06A—C8A—C9A C7A—C8A—C9A C14A—C9A—C10A C14A—C9A—C8A	117 (2) 123 (2) 119.8 (17) 117.8 (19)
O6—C8—C7 122 O6—C8—C9 119 C7—C8—C9 119 C14—C9—C10 110 C14—C9—C8 12	2.5 (7) 9.1 (6) 8.4 (7) 6.6 (7) 1.2 (6)	06A—C8A—C9A C7A—C8A—C9A C14A—C9A—C10A C14A—C9A—C8A	123 (2) 119.8 (17) 117.8 (19)
06—C8—C9 119 C7—C8—C9 118 C14—C9—C10 116 C14—C9—C8 12	9.1 (6) 8.4 (7) 6.6 (7) 1.2 (6)	C7A—C8A—C9A C14A—C9A—C10A C14A—C9A—C8A	119.8 (17) 117.8 (19)
C7—C8—C9 113 C14—C9—C10 110 C14—C9—C8 12	8.4 (7) 6.6 (7) 1.2 (6)	C14A—C9A—C10A C14A—C9A—C8A	117.8 (19)
C14—C9—C10 110 C14—C9—C8 12	6.6 (7) 1.2 (6)	C14A—C9A—C8A	
C14—C9—C8 12	1.2 (6)		1100(17)
	. ,		119.9 (17)
С10—С9—С8 12	1.9 (8)	C10A—C9A—C8A	117 (2)
	- (-)	C11A—C10A—O7A	123 (2)
C11—C10—O7 113	8.0 (8)	C11A—C10A—C9A	121 (2)
C11—C10—C9 122	2.7 (9)	O7A—C10A—C9A	116 (2)
O7—C10—C9 119	9.3 (8)	C10A—C11A—C12A	119 (2)
C10—C11—C12 119	9.1 (8)	C10A—C11A—H11A	120.6
С10—С11—Н11 120	0.5	C12A—C11A—H11A	120.6
C12—C11—H11 120	0.5	C13A—C12A—C11A	121 (2)
C13—C12—C11 120	0.2 (8)	C13A—C12A—H12A	119.6
C13—C12—H12 119	9.9	C11A—C12A—H12A	119.6
C11—C12—H12 119	9.9	C12A—C13A—C14A	120 (2)
C12—C13—C14 12	1.0 (9)	C12A—C13A—H13A	119.9
С12—С13—Н13 119	9.5	C14A—C13A—H13A	119.9
C14—C13—H13 119	9.5	C9A—C14A—C13A	118.3 (18)
C9—C14—C13 119	9.9 (7)	C9A—C14A—C15A	118.0 (18)
C9—C14—C15 118	8.7 (7)	C13A—C14A—C15A	122 (2)
C13—C14—C15 12	1.4 (8)	08A—C15A—C16A	117 (3)
08—C15—C14 10'	7.5 (8)	08A—C15A—C14A	111 (3)
08—C15—C16 100	6.9 (8)	C16A—C15A—C14A	110.1 (18)
C14—C15—C16 109	9.1 (6)	08A—C15A—C20A	98 (4)
08—C15—C20 11	1.3 (9)	C16A—C15A—C20A	114 (4)
C14—C15—C20 109	9.8 (8)	C14A—C15A—C20A	105 (3)
C16—C15—C20 112	2.2 (9)	C7A—C16A—C15A	113 (2)
C7—C16—C15 112	2.7 (6)	C7A—C16A—C17A	113.8 (16)
C7—C16—C17 113	3.2 (6)	C15A—C16A—C17A	117 (2)
C15—C16—C17 109	9.7 (6)	C7A—C16A—H16A	103.9
С7—С16—Н16 10	6.9	C15A—C16A—H16A	103.9
C15—C16—H16 100	6.9	C17A—C16A—H16A	103.9
C17—C16—H16 100	6.9	C18A—C17A—C16A	117.1 (19)

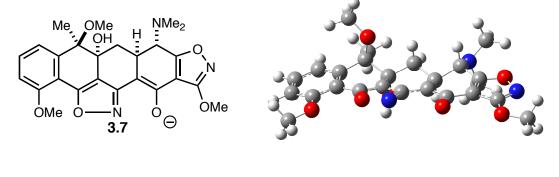
	1	1	
C18—C17—C16	113.3 (7)	C18A—C17A—H17C	108.0
С18—С17—Н17А	108.9	C16A—C17A—H17C	108.0
С16—С17—Н17А	108.9	C18A—C17A—H17D	108.0
С18—С17—Н17В	108.9	C16A—C17A—H17D	108.0
С16—С17—Н17В	108.9	H17C—C17A—H17D	107.3
H17A—C17—H17B	107.7	C5A—C18A—C17A	113.1 (19)
C5—C18—C1	109.3 (7)	C5A—C18A—C1A	109.8 (17)
C5—C18—C17	108.2 (7)	C17A—C18A—C1A	114 (2)
C1—C18—C17	109.3 (7)	C5A—C18A—H18A	106.5
C5—C18—H18	110.0	C17A—C18A—H18A	106.5
C1—C18—H18	110.0	C1A—C18A—H18A	106.5
C17—C18—H18	110.0	C1A—O1A—H1AB	109.5
C1—O1—H1A	109.5	С2А—О2А—Н2АА	109.5
С2—О2—Н2	109.5	O3A—C19A—N1A	122 (3)
O3—C19—N1	118.9 (11)	O3A—C19A—C3A	127 (3)
O3—C19—C3	123.5 (14)	N1A—C19A—C3A	110 (3)
N1—C19—C3	117.6 (10)	C19A—N1A—H1AC	120.0
C19—N1—H1B	120.0	C19A—N1A—H1AD	120.0
C19—N1—H1C	120.0	H1AC—N1A—H1AD	120.0
H1B—N1—H1C	120.0	C6A—N2A—H2AB	120.0
С5—О5—Н5	109.5	C6A—N2A—H2AC	120.0
C6—N2—H2A	120.0	H2AB—N2A—H2AC	120.0
C6—N2—H2B	120.0	С10А—О7А—Н7А	109.5
H2A—N2—H2B	120.0	C15A—C20A—H20D	109.5
С10—О7—Н7	109.5	С15А—С20А—Н20Е	109.5
С15—С20—Н20А	109.5	H20D—C20A—H20E	109.5
С15—С20—Н20В	109.5	C15A—C20A—H20F	109.5
H20A—C20—H20B	109.5	H20D—C20A—H20F	109.5
С15—С20—Н20С	109.5	H20E—C20A—H20F	109.5
H20A—C20—H20C	109.5	С15А—О8А—Н8А	109.5
O1—C1—C2—O2	-27.6 (12)	C4—C3—C19—O3	-177.8 (9)
C18—C1—C2—O2	-149.7 (8)	C2—C3—C19—N1	177.4 (9)
O1—C1—C2—C3	152.1 (8)	C4—C3—C19—N1	1.4 (14)
C18—C1—C2—C3	30.0 (12)	O1A—C1A—C2A—O2A	-30 (4)
O2—C2—C3—C19	-3.8 (15)	C18A—C1A—C2A—O2A	-166 (3)
C1—C2—C3—C19	176.5 (9)	O1A—C1A—C2A—C3A	151 (3)
O2—C2—C3—C4	172.0 (9)	C18A—C1A—C2A—C3A	15 (4)
•	•	•	

$\begin{array}{c} C1 = C2 = C4 = -Q4 & 5.4 \ (14) & C1A = C2A = C3A = C17A & 0.05 \\ C19 = C3 = C4 = -Q4 & 170.5 \ (8) & Q2A = C2A = C3A = C19A & 175 \ (3) \\ C2 = C3 = C4 = -Q5 & 173.8 \ (8) & C1A = C2A = C3A = C4A & 11 \ (5) \\ C2 = C3 = C4 = C5 & 10.3 \ (12) & C19A = C3A = C4A & -Q4A & 23 \ (6) \\ Q4 = C4 = C5 = O5 & 84.2 \ (8) & C19A = C3A = C4A = -Q4A & 166 \ (3) \\ C3 = C4 = C5 = O5 & 84.2 \ (8) & C19A = C3A = C4A = -Q5A & -173 \ (4) \\ Q4 = C4 = C5 = C18 & 144 \ (8) & C2A = C3A = C4A = -C5A & -173 \ (4) \\ Q4 = C4 = C5 = C18 & 144 \ (4) & C1A = C4A = C5A = -C18A & 130 \ (3) \\ Q4 = C4 = C5 = C6 & 22.1 \ (11) & C3A = C4A = C5A = C18A & 33 \ (3) \\ C3 = C4 = C5 = C6 & 158.7 \ (7) & Q4A = C4A = C5A = C6A & 6 \ (4) \\ Q5 = C5 = C6 = N2 & 171.1 \ (14) & C3A = C4A = C5A = C6A & -157 \ (3) \\ C18 = C5 = C6 = N2 & 139.9 \ (13) & C18A = C5A = C6A = N2A & -174 \ (4) \\ C4 = C5 = C6 = N2 & 139.9 \ (13) & C18A = C5A = C6A = N2A & -174 \ (4) \\ C4 = C5 = C6 = C7 & 26.3 \ (12) & C4A = C5A = C6A = N2A & -174 \ (4) \\ C4 = C5 = C6 = C7 & 97.8 \ (11) & N2A = C6A = C7A & 44 \ (4) \\ C18 = C5 = C6 = C7 & 97.8 \ (11) & N2A = C6A = C7A = C8A & -174 \ (3) \\ C5 = C6 = C7 = C16 & 172.7 \ (8) & N2A = C6A = C7A = C6A & 29 \ (5) \\ C6 = C7 = C8 & 172.7 \ (8) & N2A = C6A = C7A = C6A & -158 \ (4) \\ N2 = C6 = C7 = C6 & -172 \ (13) & C16A = C7A = C8A & -174 \ (3) \\ C5 = C6 = C7 = C6 & -172 \ (13) & C16A = C7A = C8A & -174 \ (4) \\ C6 = C7 = C8 & 0 \ (13) & C16A = C7A = C8A & -174 \ (4) \\ C6 = C7 = C8 = 0 \ (15.1 \ (11) & O6A = C8A = C9A = C14A & 177 \ (4) \\ C6 = C7 = C8 = 0 \ (15.1 \ (11) & C6A = C7A = C16A & 156 \ (3) \\ C16 = C7 = C8 = 0 \ (15.1 \ (11) & C6A = C7A = C8A & -174 \ (14) \ (26 = C7 = C8 - 0 \ (13) \ (26 = C7A = C9A = C14A & -176 \ (27 = C8A = C9A = C14A & -176 \ (27 = C8A = C9A = C14A & -176 \ (27 = C8A = C9A = C14A & -176 \ (27 = C8A = C9A = C14A & -176 \ (27 = C8 = C9 = C10 \ (27 = C14 = C15 \ (27 = C16 = C11 - 77.8 \ (28 = C9A = C10A - C11A & -176 \ (27 = C16 = C11 - 77.4 \ (27 = C16 = C11 - C12 \ (27 \ (37 \ (37 \ (37 \ (37 \ (37 \ (37 \ (37 \ $	C1—C2—C3—C4	-7.6 (13)	O2A—C2A—C3A—C19A	6 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		· · ·		. ,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		· · ·		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{ccccccc} 0.4 & -C4 - C5 - O5 & 95.1 (8) & C2A - C3A - C4A - O4A & -166 (3) \\ C3 - C4 - C5 - O5 & 84.2 (8) & C19A - C3A - C4A - C5A & -173 (4) \\ 0.4 - C4 - C5 - C18 & 144.4 (8) & C2A - C3A - C4A - C5A & -2 (4) \\ C3 - C4 - C5 - C18 & -36.3 (10) & 04A - C4A - C5A - C18A & 130 (3) \\ 0.4 - C4 - C5 - C6 & 22.1 (11) & C3A - C4A - C5A - C18A & -33 (3) \\ C3 - C4 - C5 - C6 & -158.7 (7) & 04A - C4A - C5A - C18A & -33 (3) \\ C3 - C4 - C5 - C6 & 158.7 (7) & 04A - C4A - C5A - C6A & -157 (3) \\ c18 - C5 - C6 - N2 & 139.9 (13) & C18A - C5A - C6A & -157 (3) \\ c18 - C5 - C6 - N2 & 139.9 (13) & C18A - C5A - C6A - N2A & -174 (4) \\ c4 - C5 - C6 - N2 & -95.9 (13) & C18A - C5A - C6A - N2A & -174 (4) \\ c18 - C5 - C6 - C7 & -149.2 (10) & C18A - C5A - C6A - C7A & 44 (4) \\ c18 - C5 - C6 - C7 & -149.2 (10) & C18A - C5A - C6A - C7A & 44 (4) \\ c18 - C5 - C6 - C7 & -26.3 (12) & C4A - C5A - C6A - C7A & 44 (4) \\ c18 - C5 - C6 - C7 & 97.8 (11) & N2A - C6A - C7A - C8A & -174 (3) \\ c5 - C6 - C7 - C8 & 7.4 (19) & C5A - C6A - C7A - C8A & -174 (3) \\ c5 - C6 - C7 - C16 & 176.9 (12) & C5A - C6A - C7A - C16A & 158 (4) \\ N2 - C6 - C7 - C16 & 176.9 (12) & C5A - C6A - C7A - C16A & 25 (6) \\ c5 - C6 - C7 - C16 & -172.2 (8) & C6A - C7A - C8A - 06A & -168 (3) \\ c16 - C7 - C8 - O6 & -2.0 (13) & C16A - C7A - C8A - O6A & -168 (3) \\ c16 - C7 - C8 - O6 & -172.2 (8) & C6A - C7A - C8A - O6A & -168 (3) \\ c16 - C7 - C8 - C9 & 175.3 (10) & C16A - C7A - C8A - O6A & -168 (3) \\ c16 - C7 - C8 - C9 & 175.3 (10) & C16A - C7A - C8A - O6A & -168 (3) \\ c16 - C7 - C8 - O9 & 175.3 (10) & C16A - C7A - C8A - O7A - C10A & -16 (3) \\ c7 - C8 - C9 - C10 & 15.9 (14) & O6A - C8A - C9A - C10A & -16 (3) \\ c7 - C8 - C9 - C10 & 16.9 (48) & C14A - C9A - C10A - C11A & 177 (4) \\ c6 - C7 - C8 - O9 - C10 & 16.9 (48) & C14A - C9A - C10A - C11A & -176 (4) \\ c14 - C9 - C10 - C11 & 177.3 (9) & C14A - C9A - C10A - C11A & 160 \\ c8 - C9 - C10 - C11 & 177.3 (9) & C14A - C9A - C10A - C11A & 160 \\ c9 - C10 - C11 - C12 & 3.7 (13) & C11A - C12A - C13A & -116 (6) \\ c9 - C10 - C11 - C12 - C13 & 0.7 (13) & C1$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				、 <i>、 、 、</i>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		<u>``</u>		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		· · ·		174 (4)
C18—C5—C6—C7:26.3 (12)C4A—C5A—C6A—C7A82 (4)C4—C5—C6—C797.8 (11)N2A—C6A—C7A—C8A:41 (6)N2—C6—C7—C87.4 (19)C5A—C6A—C7A—C8A:174 (3)C5—C6—C7—C8172.7 (8)N2A—C6A—C7A—C16A158 (4)N2—C6—C7—C16176.9 (12)C5A—C6A—C7A—C16A25 (6)C5—C6—C7—C16176.9 (12)C5A—C6A—C7A—C16A29 (5)C6—C7—C8—O6:2.0 (13)C16A—C7A—C8A—O6A:29 (5)C6—C7—C8—O6:2.0 (13)C16A—C7A—C8A—O6A:168 (3)C16—C7—C8—O6:172.2 (8)C6A—C7A—C8A—C9A:147 (4)C6—C7—C8—O6:172.2 (8)C6A—C7A—C8A—C9A:15 (5)C16—C7—C8—O9:1.11)O6A—C8A—C9A—C14A:17 (4)O6—C8—C9—C14:166.6 (9)C7A—C8A—C9A—C14A:7 (6)C7—C8—C9:1.11)O6A—C8A—C9A—C10A:23 (6)O6—C8—C9—C108.1 (14)C7A—C8A—C9A—C10A:161 (3)C7—C8—C9—C10:169.4 (8)C14A—C9A—C10A—C11A:170 (3)C8—C9—C10—C11:77.3 (9)C14A—C9A—C10A—C11A:170 (4)C14—C9—C10—O7:0.4 (14)O7A—C10A—C11A—C12A:175 (4)O7—C10—C11—C12:178.5 (8)C9A—C10A—C11A—C12A:11 (6)C9—C10—C11—C12:3.7 (13)C11A—C12A—C13A—C14A:11 (7)C11—C12—C13—C14:0.7 (14)C10A—C9A—C14A—C13A:17 (6)	C4—C5—C6—N2	-95.9 (13)		-61 (4)
C4—C5—C6—C797.8 (11)N2A—C6A—C7A—C8A-41 (6)N2—C6—C7—C87.4 (19)C5A—C6A—C7A—C8A-174 (3)C5—C6—C7—C8172.7 (8)N2A—C6A—C7A—C16A158 (4)N2—C6—C7—C16176.9 (12)C5A—C6A—C7A—C16A25 (6)C5—C6—C7—C16-17.7 (15)C6A—C7A—C8A—O6A29 (5)C6—C7—C8—O6-2.0 (13)C16A—C7A—C8A—O6A-168 (3)C16—C7—C8—O6-172.2 (8)C6A—C7A—C8A—C9A-147 (4)C6—C7—C8—C9175.3 (10)C16A—C7A—C8A—C9A15 (5)C16—C7—C8—C95.1 (11)O6A—C8A—C9A—C14A177 (4)O6—C8—C9—C14-166.6 (9)C7A—C8A—C9A—C14A-7 (6)C7—C8—C9—C1415.9 (14)O6A—C8A—C9A—C10A23 (6)O6—C8—C9—C108.1 (14)C7A—C8A—C9A—C10A-161 (3)C7—C8—C9—C10-169.4 (8)C14A—C9A—C10A—C11A15 (6)C14—C9—C10—C11-77.8 (14)C8A—C9A—C10A—C11A170 (4)C14—C9—C10—C11177.3 (9)C14A—C9A—C10A—C11A175 (4)O7—C10—C11—C12-178.5 (8)C9A—C10A—C11A—C12A-11 (6)C9—C10—C11—C12-178.5 (8)C9A—C10A—C11A—C12A-11 (6)C9—C10—C11—C123.7 (13)C10A—C11A—C12A—C13A9 (7)C10—C11—C12—C130.7 (13)C11A—C12A—C13A-17 (6)	O5—C5—C6—C7	-149.2 (10)	C18A—C5A—C6A—C7A	-44 (4)
N2-C6-C7-C87.4 (19)C5A-C6A-C7A-C8A $.174 (3)$ C5-C6-C7-C8172.7 (8)N2A-C6A-C7A-C16A158 (4)N2-C6-C7-C16176.9 (12)C5A-C6A-C7A-C16A25 (6)C5-C6-C7-C16 $.177. (15)$ C6A-C7A-C8A-O6A29 (5)C6-C7-C8-O6 $-2.0 (13)$ C16A-C7A-C8A-O6A168 (3)C16-C7-C8-O6 $-172. 2 (8)$ C6A-C7A-C8A-C9A $-147 (4)$ C6-C7-C8-C9175.3 (10)C16A-C7A-C8A-C9A $-147 (4)$ C6-C7-C8-C9175.3 (10)C16A-C7A-C8A-C9A $15 (5)$ C16-C7-C8-C95.1 (11)O6A-C8A-C9A-C14A177 (4)O6-C8-C9-C14 $-166.6 (9)$ C7A-C8A-C9A-C14A $-7 (6)$ C7-C8-C9-C14 $15.9 (14)$ O6A-C8A-C9A-C10A23 (6)O6-C8-C9-C10 $8.1 (14)$ C7A-C8A-C9A-C10A23 (6)C14-C9-C10-C11 $-7.8 (14)$ C8A-C9A-C10A-C11A15 (5)C14-C9-C10-C11 $177.3 (9)$ C14A-C9A-C10A-C11A170 (3)C8-C9-C10-O7 $0.4 (14)$ O7A-C10A-C11A-C12A $-116 (5)$ C8-C9-C10-C11-C12 $-178.5 (8)$ C9A-C10A-C11A-C12A $-11 (6)$ C9-C10-C11-C12 $3.7 (13)$ C10A-C11A-C12A-C13A9 (7)C10-C11-C12-C13 $0.7 (13)$ C11A-C12A-C13A $-17 (6)$	C18—C5—C6—C7	-26.3 (12)	C4A—C5A—C6A—C7A	82 (4)
C5-C6-C7-C8172.7 (8)N2A-C6A-C7A-C16A158 (4)N2-C6-C7-C16176.9 (12)C5A-C6A-C7A-C16A25 (6)C5-C6-C7-C16-17.7 (15)C6A-C7A-C8A-O6A29 (5)C6-C7-C8-O6-2.0 (13)C16A-C7A-C8A-O6A-168 (3)C16-C7-C8-O6-172.2 (8)C6A-C7A-C8A-O6A-168 (3)C16-C7-C8-C9175.3 (10)C16A-C7A-C8A-C9A-147 (4)C6-C7-C8-C95.1 (11)O6A-C8A-C9A-C14A177 (4)O6-C8-C9-C14-166.6 (9)C7A-C8A-C9A-C14A-7 (6)C7-C8-C9-C1415.9 (14)O6A-C8A-C9A-C10A23 (6)O6-C8-C9-C108.1 (14)C7A-C8A-C9A-C10A23 (6)O6-C8-C9-C10-C11-169.4 (8)C14A-C9A-C10A-C11A15 (6)C14-C9-C10-C11-7.8 (14)C8A-C9A-C10A-O7A-16 (5)C8-C9-C10-O7174.5 (9)C8A-C9A-C10A-O7A-16 (5)C8-C9-C10-O7-0.4 (14)O7A-C10A-C11A-C12A175 (4)O7-C10-C11-C12-178.5 (8)C9A-C10A-C11A-C12A-11 (6)C9-C10-C11-C12-C130.7 (13)C11A-C12A-C13A-C14A-11 (7)C11-C12-C13-C14-0.7 (14)C10A-C9A-C14A-C13A-17 (6)	C4—C5—C6—C7	97.8 (11)	N2A—C6A—C7A—C8A	-41 (6)
N2-C6-C7-C16176.9 (12)C5A-C6A-C7A-C16A25 (6)C5-C6-C7-C16-17.7 (15)C6A-C7A-C8A-O6A29 (5)C6-C7-C8-O6-2.0 (13)C16A-C7A-C8A-O6A-168 (3)C16-C7-C8-O6-172.2 (8)C6A-C7A-C8A-C9A-147 (4)C6-C7-C8-C9175.3 (10)C16A-C7A-C8A-C9A15 (5)C16-C7-C8-C95.1 (11)O6A-C8A-C9A-C14A177 (4)O6-C8-C9-C14-166.6 (9)C7A-C8A-C9A-C14A-7 (6)C7-C8-C95.1 (11)O6A-C8A-C9A-C10A23 (6)O6-C8-C9-C1415.9 (14)O6A-C8A-C9A-C10A23 (6)O6-C8-C9-C108.1 (14)C7A-C8A-C9A-C10A-161 (3)C7-C8-C9-C10-169.4 (8)C14A-C9A-C10A-C11A15 (6)C14-C9-C10-C11-7.8 (14)C8A-C9A-C10A-O7A-170 (4)C14-C9-C10-O7174.5 (9)C8A-C9A-C10A-O7A-16 (5)C8-C9-C10-O7-0.4 (14)O7A-C10A-C11A-C12A175 (4)O7-C10-C11-C12-178.5 (8)C9A-C10A-C11A-C12A-11 (6)C9-C10-C11-C120.7 (13)C11A-C12A-C13A-C14A-11 (7)C11-C12-C13-C14-0.7 (14)C10A-C9A-C14A-C13A-17 (6)	N2—C6—C7—C8	7.4 (19)	C5A—C6A—C7A—C8A	-174 (3)
C5—C6—C7—C16 $-17.7 (15)$ C6A—C7A—C8A—O6A29 (5)C6—C7—C8—O6 $-2.0 (13)$ C16A—C7A—C8A—O6A $-168 (3)$ C16—C7—C8—O6 $-172.2 (8)$ C6A—C7A—C8A—O9A $-147 (4)$ C6—C7—C8—C9175.3 (10)C16A—C7A—C8A—C9A $15 (5)$ C16—C7—C8—C9175.3 (10)C16A—C7A—C8A—C9A $15 (5)$ C16—C7—C8—C95.1 (11)O6A—C8A—C9A—C14A $177 (4)$ O6—C8—C9—C14 $-166.6 (9)$ C7A—C8A—C9A—C14A $-7 (6)$ C7—C8—C9—C14 $15.9 (14)$ O6A—C8A—C9A—C10A $23 (6)$ O6—C8—C9—C108.1 (14)C7A—C8A—C9A—C10A $-161 (3)$ C7—C8—C9—C10 $-169.4 (8)$ C14A—C9A—C10A—C11A $15 (6)$ C14—C9—C10—C11 $-7.8 (14)$ C8A—C9A—C10A—C11A $170 (3)$ C8—C9—C10—C11 $177.3 (9)$ C14A—C9A—C10A—O7A $-16 (5)$ C8—C9—C10—O7 $-0.4 (14)$ O7A—C10A—C11A—C12A $175 (4)$ O7—C10—C11—C12 $-178.5 (8)$ C9A—C10A—C11A—C12A $-11 (6)$ C9—C10—C11—C12 $3.7 (13)$ C10A—C11A—C12A—C13A $9 (7)$ C10—C11—C12—C13 $0.7 (14)$ C10A—C9A—C14A—C13A $-17 (6)$	C5—C6—C7—C8	172.7 (8)	N2A—C6A—C7A—C16A	158 (4)
C6-C7-C8-O6 $-2.0 (13)$ $C16A-C7A-C8A-O6A$ $-168 (3)$ $C16-C7-C8-O6$ $-172.2 (8)$ $C6A-C7A-C8A-C9A$ $-147 (4)$ $C6-C7-C8-C9$ $175.3 (10)$ $C16A-C7A-C8A-C9A$ $15 (5)$ $C16-C7-C8-C9$ $175.3 (10)$ $C16A-C7A-C8A-C9A$ $15 (5)$ $C16-C7-C8-C9$ $5.1 (11)$ $06A-C8A-C9A-C14A$ $177 (4)$ $O6-C8-C9-C14$ $-166.6 (9)$ $C7A-C8A-C9A-C14A$ $-7 (6)$ $C7-C8-C9-C14$ $15.9 (14)$ $06A-C8A-C9A-C10A$ $23 (6)$ $O6-C8-C9-C10$ $8.1 (14)$ $C7A-C8A-C9A-C10A$ $-161 (3)$ $C7-C8-C9-C10$ $8.1 (14)$ $C7A-C8A-C9A-C10A$ $-161 (3)$ $C7-C8-C9-C10$ $-169.4 (8)$ $C14A-C9A-C10A-C11A$ $15 (6)$ $C14-C9-C10-C11$ $-7.8 (14)$ $C8A-C9A-C10A-C11A$ $170 (4)$ $C14-C9-C10-O7$ $174.5 (9)$ $C8A-C9A-C10A-O7A$ $-16 (5)$ $C8-C9-C10-O7$ $-0.4 (14)$ $07A-C10A-C11A-C12A$ $175 (4)$ $O7-C10-C11-C12$ $-178.5 (8)$ $C9A-C10A-C11A-C12A$ $-11 (6)$ $C9-C10-C11-C12$ $3.7 (13)$ $C10A-C11A-C12A-C13A$ $9 (7)$ $C10-C11-C12-C13$ $0.7 (13)$ $C11A-C12A-C13A$ $-17 (6)$	N2—C6—C7—C16	176.9 (12)	C5A—C6A—C7A—C16A	25 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C6—C7—C16	-17.7 (15)	C6A—C7A—C8A—O6A	29 (5)
C6-C7-C8-C9 $175.3 (10)$ $C16A-C7A-C8A-C9A$ $15 (5)$ $C16-C7-C8-C9$ $5.1 (11)$ $06A-C8A-C9A-C14A$ $177 (4)$ $06-C8-C9-C14$ $-166.6 (9)$ $C7A-C8A-C9A-C14A$ $-7 (6)$ $C7-C8-C9-C14$ $15.9 (14)$ $06A-C8A-C9A-C10A$ $23 (6)$ $06-C8-C9-C10$ $8.1 (14)$ $C7A-C8A-C9A-C10A$ $23 (6)$ $06-C8-C9-C10$ $8.1 (14)$ $C7A-C8A-C9A-C10A$ $-161 (3)$ $C7-C8-C9-C10$ $-169.4 (8)$ $C14A-C9A-C10A-C11A$ $15 (6)$ $C14-C9-C10-C11$ $-7.8 (14)$ $C8A-C9A-C10A-C11A$ $170 (3)$ $C8-C9-C10-C11$ $177.3 (9)$ $C14A-C9A-C10A-O7A$ $-170 (4)$ $C14-C9-C10-O7$ $174.5 (9)$ $C8A-C9A-C10A-O7A$ $-16 (5)$ $C8-C9-C10-O7$ $-0.4 (14)$ $07A-C10A-C11A-C12A$ $175 (4)$ $07-C10-C11-C12$ $-178.5 (8)$ $C9A-C10A-C11A-C12A$ $-11 (6)$ $C9-C10-C11-C12$ $3.7 (13)$ $C11A-C12A-C13A-C14A$ $-11 (7)$ $C11-C12-C13-C14$ $-0.7 (14)$ $C10A-C9A-C14A-C13A$ $-17 (6)$	C6—C7—C8—O6	-2.0 (13)	C16A—C7A—C8A—O6A	-168 (3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C16—C7—C8—O6	-172.2 (8)	С6А—С7А—С8А—С9А	-147 (4)
06-C8-C9-C14 -166.6 (9) $C7A-C8A-C9A-C14A$ -7 (6) $C7-C8-C9-C14$ 15.9 (14) $06A-C8A-C9A-C10A$ 23 (6) $06-C8-C9-C10$ 8.1 (14) $C7A-C8A-C9A-C10A$ -161 (3) $C7-C8-C9-C10$ -169.4 (8) $C14A-C9A-C10A-C11A$ 15 (6) $C14-C9-C10-C11$ -7.8 (14) $C8A-C9A-C10A-C11A$ 170 (3) $C8-C9-C10-C11$ 177.3 (9) $C14A-C9A-C10A-O7A$ -170 (4) $C14-C9-C10-C11$ 177.3 (9) $C14A-C9A-C10A-O7A$ -16 (5) $C8-C9-C10-O7$ 174.5 (9) $C8A-C9A-C10A-O7A$ -16 (5) $C8-C9-C10-O7$ -0.4 (14) $07A-C10A-C11A-C12A$ 175 (4) $07-C10-C11-C12$ -178.5 (8) $C9A-C10A-C11A-C12A$ -11 (6) $C9-C10-C11-C12$ 3.7 (13) $C10A-C11A-C12A-C13A$ 9 (7) $C10-C11-C12-C13$ 0.7 (13) $C11A-C12A-C13A-C14A$ -11 (7) $C11-C12-C13-C14$ -0.7 (14) $C10A-C9A-C14A-C13A$ -17 (6)	С6—С7—С8—С9	175.3 (10)	C16A—C7A—C8A—C9A	15 (5)
C7—C8—C9—C14 15.9 (14) O6A—C8A—C9A—C10A 23 (6) O6—C8—C9—C10 8.1 (14) C7A—C8A—C9A—C10A -161 (3) C7—C8—C9—C10 -169.4 (8) C14A—C9A—C10A—C11A 15 (6) C14—C9—C10—C11 -7.8 (14) C8A—C9A—C10A—C11A 170 (3) C8—C9—C10—C11 177.3 (9) C14A—C9A—C10A—O7A -170 (4) C14—C9—C10—O7 174.5 (9) C8A—C9A—C10A—O7A -16 (5) C8—C9—C10—O7 -0.4 (14) O7A—C10A—C11A—C12A 175 (4) O7—C10—C11—C12 -178.5 (8) C9A—C10A—C11A—C12A -11 (6) C9—C10—C11—C12 3.7 (13) C10A—C11A—C12A—C13A 9 (7) C10—C11—C12—C13 0.7 (13) C11A—C12A—C13A—C14A -11 (7) C11—C12—C13—C14 -0.7 (14) C10A—C9A—C14A—C13A -17 (6)	С16—С7—С8—С9	5.1 (11)	O6A—C8A—C9A—C14A	177 (4)
06—C8—C9—C10 8.1 (14) C7A—C8A—C9A—C10A -161 (3) C7—C8—C9—C10 -169.4 (8) C14A—C9A—C10A—C11A 15 (6) C14—C9—C10—C11 -7.8 (14) C8A—C9A—C10A—C11A 170 (3) C8—C9—C10—C11 177.3 (9) C14A—C9A—C10A—O7A -170 (4) C14—C9—C10—O7 174.5 (9) C8A—C9A—C10A—O7A -16 (5) C8—C9—C10—O7 -0.4 (14) O7A—C10A—C11A—C12A 175 (4) O7—C10—C11—C12 -178.5 (8) C9A—C10A—C11A—C12A -11 (6) C9—C10—C11—C12 3.7 (13) C10A—C11A—C12A—C13A 9 (7) C10—C11—C12—C13 0.7 (13) C11A—C12A—C13A—C14A -11 (7) C11—C12—C13—C14 -0.7 (14) C10A—C9A—C14A—C13A -17 (6)	O6—C8—C9—C14	-166.6 (9)	C7A—C8A—C9A—C14A	-7 (6)
C7-C8-C9-C10 -169.4 (8) C14A-C9A-C10A-C11A 15 (6) C14-C9-C10-C11 -7.8 (14) C8A-C9A-C10A-C11A 170 (3) C8-C9-C10-C11 177.3 (9) C14A-C9A-C10A-O7A -170 (4) C14-C9-C10-O7 174.5 (9) C8A-C9A-C10A-O7A -16 (5) C8-C9-C10-O7 174.5 (9) C8A-C9A-C10A-O7A -16 (5) C8-C9-C10-O7 -0.4 (14) O7A-C10A-C11A-C12A 175 (4) O7-C10-C11-C12 -178.5 (8) C9A-C10A-C11A-C12A -11 (6) C9-C10-C11-C12 3.7 (13) C10A-C11A-C12A-C13A 9 (7) C10-C11-C12-C13 0.7 (13) C11A-C12A-C13A-C14A -11 (7) C11-C12-C13-C14 -0.7 (14) C10A-C9A-C14A-C13A -17 (6)	C7—C8—C9—C14	15.9 (14)	O6A—C8A—C9A—C10A	23 (6)
C14—C9—C10—C11 -7.8 (14) C8A—C9A—C10A—C11A 170 (3) C8—C9—C10—C11 177.3 (9) C14A—C9A—C10A—O7A -170 (4) C14—C9—C10—O7 174.5 (9) C8A—C9A—C10A—O7A -16 (5) C8—C9—C10—O7 -0.4 (14) O7A—C10A—C11A—C12A 175 (4) O7—C10—C11—C12 -178.5 (8) C9A—C10A—C11A—C12A -11 (6) C9—C10—C11—C12 3.7 (13) C10A—C11A—C12A—C13A 9 (7) C10—C11—C12—C13 0.7 (13) C11A—C12A—C13A—C14A -11 (7) C11—C12—C13—C14 -0.7 (14) C10A—C9A—C14A—C13A -17 (6)	O6—C8—C9—C10	8.1 (14)	C7A—C8A—C9A—C10A	-161 (3)
C8-C9-C10-C11 177.3 (9) C14A-C9A-C10A-O7A -170 (4) C14-C9-C10-O7 174.5 (9) C8A-C9A-C10A-O7A -16 (5) C8-C9-C10-O7 -0.4 (14) O7A-C10A-C11A-C12A 175 (4) O7-C10-C11-C12 -178.5 (8) C9A-C10A-C11A-C12A -11 (6) C9-C10-C11-C12 3.7 (13) C10A-C11A-C12A-C13A 9 (7) C10-C11-C12-C13 0.7 (13) C11A-C12A-C13A-C14A -11 (7) C11-C12-C13-C14 -0.7 (14) C10A-C9A-C14A-C13A -17 (6)	C7—C8—C9—C10	-169.4 (8)	C14A—C9A—C10A—C11A	15 (6)
C14—C9—C10—O7 174.5 (9) C8A—C9A—C10A—O7A -16 (5) C8—C9—C10—O7 -0.4 (14) O7A—C10A—C11A—C12A 175 (4) O7—C10—C11—C12 -178.5 (8) C9A—C10A—C11A—C12A -11 (6) C9—C10—C11—C12 3.7 (13) C10A—C11A—C12A—C13A 9 (7) C10—C11—C12—C13 0.7 (13) C11A—C12A—C13A—C14A -11 (7) C11—C12—C13—C14 -0.7 (14) C10A—C9A—C14A—C13A -17 (6)	C14—C9—C10—C11	-7.8 (14)	C8A—C9A—C10A—C11A	170 (3)
C8—C9—C10—O7 -0.4 (14) O7A—C10A—C11A—C12A 175 (4) O7—C10—C11—C12 -178.5 (8) C9A—C10A—C11A—C12A -11 (6) C9—C10—C11—C12 3.7 (13) C10A—C11A—C12A—C13A 9 (7) C10—C11—C12—C13 0.7 (13) C11A—C12A—C13A—C14A -11 (7) C11—C12—C13—C14 -0.7 (14) C10A—C9A—C14A—C13A -17 (6)	C8-C9-C10-C11	177.3 (9)	C14A—C9A—C10A—O7A	-170 (4)
07C10C11C12 -178.5 (8) C9AC10AC11AC12A -11 (6) C9C10C11C12 3.7 (13) C10AC11AC12AC13A 9 (7) C10C11C12C13 0.7 (13) C11AC12AC13AC14A -11 (7) C11C12C13C14 -0.7 (14) C10AC9AC14AC13A -17 (6)	C14—C9—C10—O7	174.5 (9)	C8A—C9A—C10A—O7A	-16 (5)
C9—C10—C11—C12 3.7 (13) C10A—C11A—C12A—C13A 9 (7) C10—C11—C12—C13 0.7 (13) C11A—C12A—C13A—C14A -11 (7) C11—C12—C13—C14 -0.7 (14) C10A—C9A—C14A—C13A -17 (6)	C8—C9—C10—O7	-0.4 (14)	O7A—C10A—C11A—C12A	175 (4)
C10—C11—C12—C13 0.7 (13) C11A—C12A—C13A—C14A -11 (7) C11—C12—C13—C14 -0.7 (14) C10A—C9A—C14A—C13A -17 (6)	O7—C10—C11—C12	-178.5 (8)	C9A—C10A—C11A—C12A	-11 (6)
C10—C11—C12—C13 0.7 (13) C11A—C12A—C13A—C14A -11 (7) C11—C12—C13—C14 -0.7 (14) C10A—C9A—C14A—C13A -17 (6)	C9—C10—C11—C12	3.7 (13)	C10A—C11A—C12A—C13A	9 (7)
C11—C12—C13—C14 -0.7 (14) C10A—C9A—C14A—C13A -17 (6)	C10—C11—C12—C13	0.7 (13)	C11A—C12A—C13A—C14A	-11 (7)
C10—C9—C14—C13 7.5 (15) C8A—C9A—C14A—C13A -171 (3)	C11—C12—C13—C14	-0.7 (14)	C10A—C9A—C14A—C13A	-17 (6)
	C10—C9—C14—C13	7.5 (15)	C8A—C9A—C14A—C13A	-171 (3)

	1		
C8—C9—C14—C13	-177.5 (9)	C10A—C9A—C14A—C15A	176 (3)
C10—C9—C14—C15	-173.6 (8)	C8A—C9A—C14A—C15A	22 (6)
C8—C9—C14—C15	1.3 (15)	C12A—C13A—C14A—C9A	15 (6)
C12—C13—C14—C9	-3.6 (15)	C12A—C13A—C14A—C15A	-178 (4)
C12—C13—C14—C15	177.6 (9)	C9A—C14A—C15A—O8A	-176 (4)
C9—C14—C15—O8	-152.2 (10)	C13A—C14A—C15A—O8A	18 (5)
C13—C14—C15—O8	26.6 (12)	C9A—C14A—C15A—C16A	-45 (5)
C9—C14—C15—C16	-36.7 (12)	C13A—C14A—C15A—C16A	149 (4)
C13—C14—C15—C16	142.1 (9)	C9A—C14A—C15A—C20A	79 (5)
C9—C14—C15—C20	86.7 (11)	C13A—C14A—C15A—C20A	-87 (5)
C13—C14—C15—C20	-94.5 (12)	C6A—C7A—C16A—C15A	122 (4)
C6—C7—C16—C15	148.2 (10)	C8A—C7A—C16A—C15A	-39 (4)
C8—C7—C16—C15	-41.7 (10)	C6A—C7A—C16A—C17A	-14 (5)
C6—C7—C16—C17	22.9 (13)	C8A—C7A—C16A—C17A	-175 (3)
C8—C7—C16—C17	-167.0 (7)	O8A—C15A—C16A—C7A	179 (3)
O8—C15—C16—C7	172.2 (8)	C14A—C15A—C16A—C7A	52 (4)
C14—C15—C16—C7	56.3 (10)	C20A—C15A—C16A—C7A	-66 (3)
C20—C15—C16—C7	-65.6 (9)	O8A—C15A—C16A—C17A	-46 (4)
08—C15—C16—C17	-60.6 (10)	C14A—C15A—C16A—C17A	-174 (3)
C14—C15—C16—C17	-176.5 (8)	C20A—C15A—C16A—C17A	68 (4)
C20—C15—C16—C17	61.6 (10)	C7A—C16A—C17A—C18A	23 (5)
C7—C16—C17—C18	15.8 (11)	C15A—C16A—C17A—C18A	-111 (3)
C15—C16—C17—C18	-111.1 (9)	C6A—C5A—C18A—C17A	53 (3)
O5—C5—C18—C1	-57.0 (9)	C4A—C5A—C18A—C17A	-71 (3)
C6—C5—C18—C1	-178.4 (8)	C6A—C5A—C18A—C1A	-179 (3)
C4—C5—C18—C1	58.0 (9)	C4A—C5A—C18A—C1A	57 (3)
O5—C5—C18—C17	-175.9 (6)	C16A—C17A—C18A—C5A	-45 (4)
C6—C5—C18—C17	62.6 (9)	C16A—C17A—C18A—C1A	-171 (3)
C4—C5—C18—C17	-60.9 (9)	O1A—C1A—C18A—C5A	171 (3)
O1—C1—C18—C5	-179.2 (8)	C2A—C1A—C18A—C5A	-48 (3)
C2—C1—C18—C5	-54.8 (10)	O1A—C1A—C18A—C17A	-61 (4)
O1—C1—C18—C17	-61.0 (11)	C2A—C1A—C18A—C17A	79 (3)
C2—C1—C18—C17	63.4 (11)	C4A—C3A—C19A—O3A	164 (4)
C16—C17—C18—C5	-58.2 (10)	C2A—C3A—C19A—O3A	-8 (6)
C16—C17—C18—C1	-177.1 (8)	C4A—C3A—C19A—N1A	-7 (6)
C2—C3—C19—O3	-1.8 (16)	C2A—C3A—C19A—N1A	-180 (3)

D—H···A	<i>D</i> —Н (Å)	H…A (Å)	$D \cdots A$ (Å)	D—H··· A (°)
O2—H2⋯O3	0.84	1.94	2.666 (14)	144.5
N1—H1C…O4	0.88	1.75	2.472 (12)	137.2
N1—H1C···O4A	0.88	2.10	2.90 (3)	152.2
O5—H5···O3A ⁱ	0.84	2.36	2.92 (3)	124.7
N2—H2A…O6	0.88	1.98	2.633 (12)	130.3
N2—H2A…O6A	0.88	1.62	2.28 (3)	129.8
O8—H8…O5 ⁱⁱ	0.84	1.88	2.693 (10)	162.8
O8—H8···O5A ⁱⁱ	0.84	1.88	2.693 (10)	162.8

VIII. Hydrogen-bond parameters

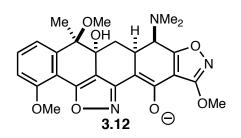

Computed Geometries and Energies

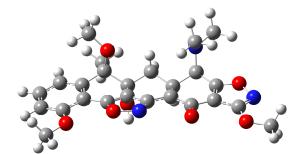
I. Geometries and Energies Relevant to Chapter 3

DFT structures were verified to be true local minima by standard frequency analyses.

Free energies are given at 298.15 K in all cases.

Equatorial dimethylamine **3.7** Free energy: -1040779.92 kcal

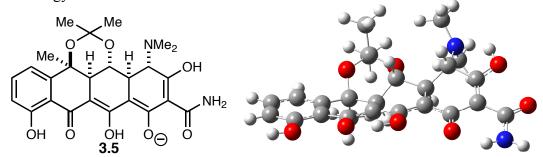



Н	4.96399300	-2.54305000	-0.46163100
С	4.89327900	-1.46279100	-0.40463300
С	4.77635700	1.32251000	-0.28196600
С	3.66266900	-0.85475100	-0.13742500
С	6.04635900	-0.70327900	-0.60093200
С	5.99779100	0.68754400	-0.53154300

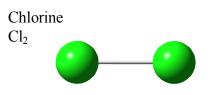
C	2 50002000	0 5 (5) 0 7 0 0	0.00402000
C	3.59992800	0.56538700	-0.08402900
Н	6.99353400	-1.19704500	-0.80504300
H	6.90126000	1.26752100	-0.68279800
C	2.40669800	-1.70313300	0.21123200
0	2.20840700	-1.66812500	1.64297900
C	3.24850500	-2.13056500	2.47451800
Н	4.18030600	-1.56414700	2.34039400
Н	3.46911600	-3.20030800	2.33078800
H	2.89594400	-1.98829100	3.50075900
С	2.50155600	-3.15548500	-0.27350100
Н	3.34756300	-3.69202200	0.16707600
Η	2.59267800	-3.18638800	-1.36106400
Н	1.58927400	-3.68631600	0.01223300
С	1.10789600	-1.03385500	-0.36996300
С	-0.21940400	-1.57538400	0.18252400
С	-1.42109600	-0.69920200	-0.25796600
С	-2.72135200	-1.38751500	0.26052800
Н	-2.57961000	-1.55407300	1.34031000
Ν	-2.93568300	-2.72319800	-0.32370300
С	-3.76056600	-3.59957500	0.49594500
Η	-3.37776000	-3.60948600	1.52288600
Н	-3.69631500	-4.62376300	0.10387400
Н	-4.82699500	-3.31461800	0.52954000
С	-3.85476200	-0.41015900	0.11196800
С	-3.73227400	0.94168200	0.11643400
С	-5.09537500	1.37083700	0.04231800
0	-5.50302500	2.65138100	0.00797000
С	-6.91074300	2.84621000	-0.07199600
Н	-7.32201200	2.39770700	-0.98438500
Н	-7.05883700	3.92833400	-0.08293400
Н	-7.42129100	2.40235700	0.79102000
Ν	-5.95773400	0.37024100	-0.00632200
0	-5.15351500	-0.79513800	0.05047100
Ċ	-2.41707100	1.65194500	0.26490300
Ċ	0.04337700	1.28327000	0.21071000
N	0.50294300	2.51738700	0.48581200
0	1.96318500	2.41197400	0.40232100
Č	2.27484400	1.14613800	0.08962500
C	1.14897800	0.41008400	-0.05653200
C C	-1.29587600	0.78166200	0.16647900
0	4.62931400	2.67807000	-0.22638400
C	5.76400900	3.49268600	-0.42691100
Н	6.53641300	3.31486500	0.33556000
H	5.40812700	4.52159100	-0.34383300
п Н	6.20715900	3.34193600	-0.34383300
н 0	1.13637700		
0	1.1303//00	-1.26035200	-1.80841100

Н	1.21877100	-0.38184500	-2.20986000
0	-2.40735000	2.88205600	0.47613300
Н	-1.45501000	-0.76366000	-1.36107800
Н	-0.16192900	-1.58665100	1.27639700
Н	-0.38883200	-2.59876000	-0.16525000
С	-3.35930700	-2.74251600	-1.71860100
Н	-4.39733900	-2.39822900	-1.87131400
Н	-3.28182500	-3.77012700	-2.09698900
Н	-2.69675200	-2.11592600	-2.32073700

Axial dimethylamine **3.12** Free energy: -1040779.72 kcal



Н	5.04231800	-2.30828400	-1.02911500
С	4.93167500	-1.27005000	-0.73778000
С	4.71352500	1.41414600	-0.00748000
С	3.67231300	-0.76982300	-0.39287400
С	6.06322900	-0.45510900	-0.71572600
С	5.96395300	0.88363100	-0.34271800
С	3.55824700	0.60111700	-0.03102600
Н	7.03316500	-0.86554900	-0.98654600
Н	6.85094000	1.50683400	-0.32618700
С	2.43677900	-1.70887400	-0.28716700
0	2.19470300	-1.99497000	1.10894400
С	3.21988700	-2.61136000	1.85463100
Н	4.14163900	-2.01382700	1.88111500
Н	3.47024700	-3.61937400	1.48763900
Н	2.83250100	-2.70439700	2.87385000
С	2.59855900	-3.01534100	-1.07515500
Н	3.45510800	-3.60690000	-0.73776600
Н	2.71479500	-2.80249400	-2.13980000
Н	1.70219000	-3.62652100	-0.93824200
С	1.13212300	-0.96637000	-0.75281300
С	-0.18986400	-1.65751800	-0.37961300
С	-1.41007300	-0.74003700	-0.65122000


С	-2.72184400	-1.55288700	-0.39460400
С	-3.85244600	-0.57137000	-0.48243900
С	-3.77486400	0.75522500	-0.19667300
С	-5.13633000	1.17573200	-0.34046000
0	-5.58090200	2.43265300	-0.16798100
С	-6.97781600	2.62244000	-0.36490000
Н	-7.27348500	2.35905000	-1.38759800
Н	-7.16057000	3.68329900	-0.17990500
Н	-7.56243000	2.00975100	0.33172400
Ν	-5.95398100	0.19444900	-0.67903000
0	-5.12433700	-0.94969100	-0.76605500
Ν	0.37994100	2.30975500	0.80153200
0	1.84311400	2.25969900	0.76286800
С	2.20903400	1.09311600	0.21181500
С	1.11474100	0.37374300	-0.12801600
Ο	4.51799200	2.71811200	0.34420200
С	5.62992700	3.58634900	0.37867200
Н	6.38347900	3.25867300	1.10966800
Η	5.23647300	4.55918500	0.68033200
Η	6.10906200	3.67951600	-0.60690300
0	1.22366000	-0.86866800	-2.20330800
Η	1.14503900	0.07523200	-2.40889800
Н	-1.42843700	-0.58684000	-1.74803300
Η	-0.16078000	-1.93990800	0.67409700
Η	-0.30367400	-2.57803400	-0.96595300
С	-0.02737700	1.14778300	0.26139400
Ν	-2.72854700	-2.36415400	0.84207200
Η	-2.81071100	-2.28227600	-1.21023600
С	-3.73501000	-3.41444300	0.82757600
Η	-3.57709100	-4.07275700	1.69206300
Η	-4.77566600	-3.04240100	0.86991200
Η	-3.63129200	-4.01886200	-0.08178100
С	-2.76386800	-1.61027000	2.09305300
Η	-2.02248100	-0.80970200	2.06102100
Н	-3.74832900	-1.15367800	2.30445100
Η	-2.52323600	-2.29184200	2.91974200
С	-1.34646300	0.63741600	0.04465700
С	-2.50374100	1.45400300	0.19847900
0	-2.55503700	2.62839700	0.61778900

Muxfeldt case **3.12** Free energy: -1054091.48 kcal

Н	4.73656343	1.91962934	0.80149823
C	4.77894068	0.86656904	0.54679244
C C	4.85391865	-1.82585080	-0.17331840
C C	3.58670369	0.13442476	0.45942934
C C	6.00147194	0.26290944	0.28307848
C C	6.03535056	-1.08391498	-0.06035536
C C	3.58854386	-1.21924904	0.06489445
Н	6.92566054	0.83242251	0.34868658
H	6.98754854	-1.57834796	-0.25608816
C	2.30217073	0.88175912	0.83956081
0	2.34066959	2.04423968	-0.02974232
C	1.22442768	2.91662238	-0.13119485
C	2.40408114	1.29658872	2.32480989
С Н	3.24994127	1.96814550	2.52480989
Н	2.54157181	0.40172519	2.94219570
п Н	1.48167633	1.78701457	2.94219570
п С	0.98220593	0.08583946	0.64463005
C C	-0.05341929	0.08383940	-0.17677821
C C	-1.44321931	0.87748478	0.12305104
C C	-2.61276551	0.28222031	-0.75086140
С Н	-2.38559815	0.80331098	-0.73080140
н С	-2.38339813 -3.91976252	0.06871642	-1./934/134 -0.36382615
C C	-3.91976252		
C C		-1.20921400	0.10382931
C C	-2.64172556	-1.98698657	0.06985382
С Н	-1.40264727	-1.25029316	-0.03565209
	-1.67713164	0.55566425	1.16612271
Н	0.17528093	0.77500180	-1.24679529
0	4.93954788	-3.14574098	-0.51597116
Н	5.88310073	-3.34563165	-0.62925384
0	-0.00234391	2.27051612	0.19320274
Н	0.53304668	-0.00865564	1.64650712
C	2.30170088	-1.96177431	-0.17112070
C	1.09147902	-1.28187827	0.04267234
С	-0.16978544	-1.92045138	-0.21165725

0	-0.15101168	-3.18758696	-0.62454434
Н	0.83464051	-3.43155141	-0.68196512
0	2.36008288	-3.16269019	-0.59739881
0	-2.68499422	-3.23790397	0.13097723
С	1.34001992	4.11144793	0.82509305
Η	2.27048242	4.65426113	0.62912801
Η	0.49623185	4.79403855	0.67634764
Η	1.33656582	3.78260593	1.86557472
С	1.27147450	3.39792824	-1.59146781
Η	0.56386874	4.21474358	-1.76259427
Η	2.28073966	3.75631289	-1.81636795
Η	1.04564241	2.57614245	-2.27639597
С	-5.24376689	-1.84036892	0.50471866
0	-6.32647630	-1.25217653	0.46201799
Ν	-5.14773140	-3.12087084	0.98119275
Η	-6.03198390	-3.59984397	1.08109051
Н	-4.28621823	-3.62011414	0.73701190
0	-5.01279439	0.81161737	-0.56898450
Η	-4.61540824	1.68491770	-0.85046560
Ν	-2.96442504	2.24591416	-0.74887971
С	-2.39762254	3.06705709	-1.80709019
Η	-2.96900931	4.00241128	-1.87855876
Н	-1.34520739	3.31811862	-1.64121657
Η	-2.48865154	2.54357008	-2.76492793
С	-2.99458033	2.90627870	0.55851197
Н	-1.99417899	3.10232318	0.95991682
Η	-3.53359502	3.85733011	0.45787984
Η	-3.54782455	2.28119452	1.26620754

Free energy: -577540.81 kcal

Cl	0.00000000	0.00000000	1.02118500
Cl	0.00000000	0.00000000	-1.02118500

Intermediate Enolate Chlorination Energies

1

Equatorial dimethylamine **3.7** *trans addition*

trans_EqMe2N			
C-CI Distance (Å)	Energy (kcal)	Rel. energy (kcal)	
3.5	-1618592.40	34.83	
3.4	-1618593.46	33.77	
3.3	-1618594.63	32.60	
3.2	-1618595.96	31.27	
3.1	-1618597.47	29.76	
3.0	-1618599.11	28.13	
2.9	-1618600.89	26.35	
2.8	-1618602.78	24.46	
2.7	-1618604.77	22.46	
2.6	-1618606.85	20.38	
2.5	-1618608.96	18.27	
2.4	-1618611.07	16.16	
2.3	-1618613.13	14.10	
2.2	-1618615.06	12.18	
2.1	-1618616.71	10.52	

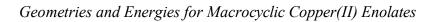
cis addition

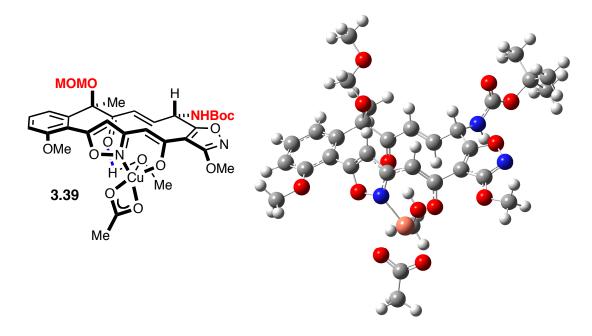
Cis_EqMe2N			
C-CI Distance	Energy	Rel. energy	
(Å)	(kcal)	(kcal)	
3.5	-1618591.78	35.46	
3.4	-1618592.69	34.54	
3.3	-1618593.80	33.43	
3.2	-1618595.01	32.22	
3.1	-1618596.35	30.88	
3.0	-1618597.84	29.39	
2.9	-1618599.42	27.82	
2.8	-1618601.07	26.16	
2.7	-1618602.77	24.47	
2.6	-1618604.47	22.76	
2.5	-1618606.13	21.10	
2.4	-1618607.70	19.53	
2.3	-1618609.11	18.12	
2.2	-1618610.50	16.74	
2.1	-1618611.86	15.37	

Axial dimethylamine **3.7** *trans addition*

	trans_AxMe2N	
C-CI Distance (Å)	Energy (kcal)	Rel. energy (kcal)
3.5	-1618586.06	26.37
3.4	-1618586.91	25.52
3.3	-1618587.89	24.54
3.2	-1618589.04	23.39
3.1	-1618590.40	22.03
3.0	-1618591.98	20.45
2.9	-1618593.66	18.77
2.8	-1618595.54	16.89
2.7	-1618597.54	14.89
2.6	-1618599.64	12.79
2.5	-1618601.83	10.60
2.4	-1618604.05	8.38
2.3	-1618606.24	6.19
2.2	-1618608.35	4.08
2.1	-1618610.26	2.17

cis addition

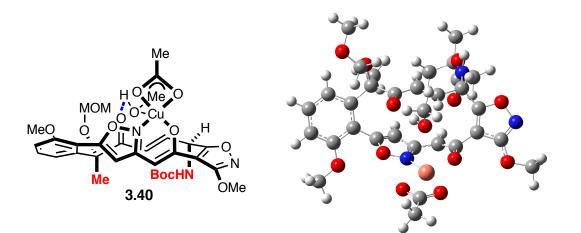

cis_AxMe2N			
C-CI Distance (Å)	Energy (kcal)	Rel. energy (kcal)	
3.5	-1618591.80	20.63	
3.4	-1618592.86	19.57	
3.3	-1618594.03	18.40	
3.2	-1618595.31	17.12	
3.1	-1618596.70	15.73	
3.0	-1618598.21	14.22	
2.9	-1618599.81	12.62	
2.8	-1618601.49	10.94	
2.7	-1618603.23	9.20	
2.6	-1618604.98	7.45	
2.5	-1618606.69	5.74	
2.4	-1618608.28	4.15	
2.3	-1618609.69	2.74	
2.2	-1618610.85	1.58	
2.1	-1618611.68	0.75	


Muxfeldt case **3.12** *trans addition*

cis_Muxfeldt			
C-CI Distance (Å)	Energy (kcal)	Rel. energy (kcal)	
3.5	-1631908.38	21.62	
3.4	-1631909.16	20.84	
3.3	-1631910.07	19.93	
3.2	-1631911.12	18.88	
3.1	-1631912.79	17.21	
3.0	-1631914.13	15.87	
2.9	-1631915.59	14.41	
2.8	-1631917.08	12.92	
2.7	-1631918.63	11.37	
2.6	-1631920.23	9.77	
2.5	-1631921.85	8.15	
2.4	-1631923.44	6.56	
2.3	-1631924.94	5.06	
2.2	-1631926.38	3.62	
2.1	-1631927.67	2.33	

cis addition

trans_Muxfeldt				
C-CI Distance (Å)				
	(kcal)	(kcal)		
3.5	-1631907.00	23.00		
3.4	-1631907.79	22.21		
3.3	-1631908.72	21.28		
3.2	-1631909.76	20.24		
3.1	-1631910.91	19.09		
3.0	-1631912.18	17.82		
2.9	-1631913.55	16.45		
2.8	-1631915.00	15.00		
2.7	-1631916.53	13.47		
2.6	-1631918.10	11.90		
2.5	-1631919.67	10.33		
2.4	-1631921.22	8.78		
2.3	-1631922.69	7.31		
2.2	-1631924.01	5.99		
2.1	-1631925.09	4.91		

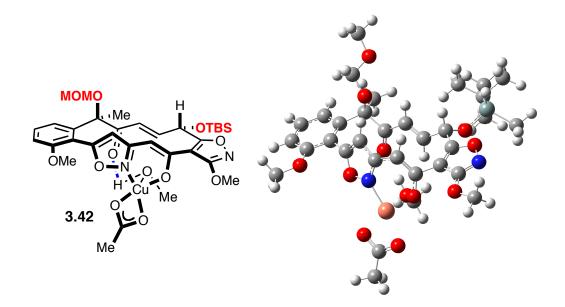


Enolate **3.39** Free energy: -1620070.025 kcal

Н	3.43746500	4.61752800	1.53126900
С	3.88682900	3.79507800	0.98949400
С	5.13805300	1.69864800	-0.36088800
С	3.08307500	2.83074500	0.36846500
С	5.27904800	3.71697900	0.93349800
С	5.91729500	2.68176200	0.25751100
С	3.72759500	1.76655900	-0.31229200
Н	5.87696700	4.48010000	1.42411000
Н	6.99928000	2.64151500	0.22084800
С	1.54836000	3.00727000	0.35319100
Ο	1.14673800	3.38888700	-0.98571600
С	1.38329100	4.70174900	-1.41514300
Н	1.52295600	4.64747500	-2.50386100
Н	2.28773800	5.12995500	-0.95898400
С	1.03065300	4.00257300	1.41326900
Η	-0.06192200	4.04486900	1.37831600
Η	1.33583400	3.67264700	2.41051500
Н	1.40732300	5.01342900	1.24605800
С	0.76465100	1.70482600	0.68497400
С	-0.54898600	1.51039100	0.02942700
С	-1.30985300	0.42212300	0.23715100
С	-2.67653900	0.23336000	-0.39584800
Н	-2.82415500	0.98379000	-1.17886500

С	-2.88514500	-1.14477600	-1.00712700
C C	-2.06270100	-2.14683100	-1.44031800
C C	-2.97924900	-3.17713500	-1.83026300
0	-2.58928700	-4.36088000	-2.30838900
C	-3.63562500	-5.27331600	-2.70029700
Н	-4.27133100	-5.51747800	-1.84367800
H	-3.12301400	-6.16735900	-3.05603700
N	-4.23860900	-2.82367100	-1.68688600
0	-4.17801700	-1.51918900	-1.15063900
C C	-0.58137000	-2.18295000	-1.38701600
C C	1.40060500	-0.74850600	-1.62410500
N N	2.17661500	-1.43677800	-0.78379900
0	3.15434300	-0.56192900	-0.29380500
C	2.95873000	0.65187300	-0.88485900
C C	1.93242700	0.03187500	-1.77370400
0	5.64933300	0.64026100	-1.04663400
C	7.07092300	0.51295500	-1.15436500
Н	7.23825500	-0.39159700	-1.74153800
H	7.53408100	0.39958400	-0.16775600
0	1.21379000	0.95508500	1.55571500
H	-0.99671600	-0.34607800	0.94080800
Н	-0.86451900	2.27493500	-0.67105600
C	-4.84453800	1.17389000	0.32759700
0	-5.05903400	1.73515700	-0.74437100
0	-5.66193800	1.14644700	1.39577700
С	-6.99376100	1.80084600	1.39078100
С	-7.51464400	1.48031100	2.79273600
Н	-7.57936300	0.39748700	2.94644200
Н	-6.85439900	1.90073100	3.55940400
Н	-8.51387300	1.90761600	2.92667300
С	-7.88220600	1.16111500	0.32220600
Н	-8.90230600	1.54979300	0.41799900
Н	-7.52596600	1.37960100	-0.68672000
Н	-7.91872700	0.07391700	0.45491800
С	-6.83091600	3.31036900	1.20443400
Н	-6.13850900	3.71671400	1.95050200
Н	-6.45839500	3.55824300	0.20825900
Н	-7.80170700	3.80032800	1.34010400
Ν	-3.69264000	0.49841000	0.61823100
H	-3.67480600	-0.05371300	1.46863100
C	0.10808900	-1.18335900	-2.04294600
Н	-0.44068100	-0.51450200	-2.69386200
0	0.24782600	5.48866500	-1.10856900
C	0.41968300	6.84681700	-1.49814900
H	1.26228300	7.31503500	-0.96800200
Н	-0.50238400	7.37215900	-1.23691700

0	-0.07632100	-3.10407900	-0.61606100
Н	1.52692300	1.36513200	-2.37929200
Н	0.59072400	6.93808100	-2.58097700
Н	7.50689000	1.37289300	-1.67520500
Н	-4.24016200	-4.83781000	-3.50164100
Cu	1.69421400	-3.06720000	0.21152400
0	0.81865900	-1.78788300	2.24134600
Н	0.93031400	-0.85021200	1.97943000
С	1.44309600	-1.96288700	3.51466100
Н	2.51851300	-1.74508400	3.47568700
Н	1.30548400	-3.00772600	3.80660700
Н	0.97875900	-1.32281600	4.27730700
0	3.41290600	-3.59983800	1.17041800
С	2.83864400	-4.66910300	1.57789800
0	1.63219700	-4.87009900	1.21681300
С	3.57618500	-5.64263500	2.44844400
Н	3.88049200	-5.14303900	3.37511800
Н	4.48788600	-5.96905100	1.93575700
Н	2.95523100	-6.50899900	2.68505600

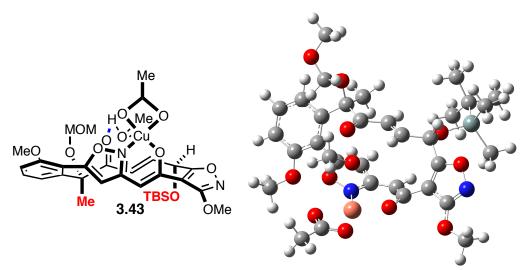


Enolate **3.40** Free energy: -1620068.671 kcal

Н	4.02847600	-4.08154800	0.43542500
С	4.08345400	-3.26573300	-0.27537600
С	4.27754200	-1.15911500	-2.09109500
С	2.99935200	-2.38203900	-0.39213200
С	5.23531700	-3.09262300	-1.03738300
С	5.34843600	-2.04304200	-1.94845900

C	2 00005100	1 22450900	1 22215200
C	3.09905100		-1.32315200
H H	6.06349400 6.25224400	-3.78663800	-0.92174700
		-1.92406400 -2.71104500	-2.53376600
C	1.74198000		0.45434300
0	2.09707200	-3.39176900	1.67907700
C	2.97326200	-2.75682100	2.62045600
H	2.36642200	-2.30925200	3.41949400
H	3.58613300	-1.99469200	2.13820400
C	0.90496000	-3.75613000	-0.29671400
H	1.55444400	-4.58161100	-0.60193300
Н	0.44344700	-3.33477100	-1.19304500
H	0.12388400	-4.16389200	0.35137700
C	0.93706500	-1.46385700	0.95337800
С	-0.53948500	-1.51594500	0.99468500
С	-1.27318200	-0.45532600	1.37866500
С	-2.78089000	-0.43057100	1.53364000
Н	-2.94584800	-0.33209300	2.61729500
С	-3.43826000	0.81012600	0.95213000
С	-3.02754700	1.86772900	0.18968100
С	-4.15915400	2.74678700	0.21579100
Ο	-4.18241400	3.92272200	-0.41436700
С	-5.40863100	4.67790700	-0.33081500
Η	-5.63400500	4.92569500	0.71097300
Η	-6.23640200	4.11003100	-0.76637200
Ν	-5.17347200	2.25883600	0.89717600
Ο	-4.70479500	1.01908900	1.38381400
С	-1.70056200	2.07121700	-0.44066100
С	0.12805600	0.82149600	-1.49489900
Ν	1.09696700	1.65441400	-1.11501400
Ο	2.29870300	0.93650200	-1.09197700
С	2.02136500	-0.33820400	-1.49093400
С	0.70802600	-0.44371100	-1.82496900
0	4.26229900	-0.10882800	-2.95728800
С	5.44125700	0.16999000	-3.71899500
Н	5.20270700	1.05293200	-4.31464500
Н	5.69039800	-0.66316200	-4.38595100
0	1.58587200	-0.51933500	1.41748900
Н	-0.77704400	0.45439100	1.70841500
Н	-1.02841400	-2.42732900	0.67379100
С	-3.71463900	-2.06643700	-0.10604100
0	-3.43573200	-1.40700800	-1.10485600
0	-4.30377700	-3.27633700	-0.08940900
Ċ	-4.69574100	-3.98320500	-1.33464600
Č	-3.45462300	-4.27202500	-2.18162700
Н	-3.72858200	-4.92605800	-3.01701400
Н	-3.02000900	-3.35730600	-2.59042500

Н	-2.69417600	-4.78717300	-1.58341600
С	-5.75230100	-3.16976300	-2.08405100
Н	-6.12517900	-3.75577800	-2.93151000
Н	-6.60019700	-2.94556100	-1.42687600
Н	-5.34641600	-2.23087100	-2.46705400
С	-5.29590000	-5.28162100	-0.79350700
Н	-6.15563400	-5.07373900	-0.14704100
Н	-5.63370200	-5.90908000	-1.62479700
Н	-4.55366200	-5.84426600	-0.21653500
Ν	-3.47751500	-1.65637000	1.17225400
Н	-3.71961400	-2.29383200	1.92013700
С	-1.25799200	1.08894000	-1.30261900
Н	-1.94756200	0.30915600	-1.59492200
0	3.84616600	-3.71415700	3.14202800
С	3.22465000	-4.64749400	4.02913900
Н	4.02327200	-5.27357400	4.43484000
Н	2.50067400	-5.28239300	3.50478800
0	-1.02870400	3.10745700	-0.01967300
Н	0.18283400	-1.31663100	-2.17969000
Н	2.71789600	-4.12641700	4.85334500
Н	6.29103400	0.38893700	-3.06274100
Н	-5.22924200	5.58675400	-0.90569400
Cu	0.87822400	3.40917100	-0.27763100
0	1.04142200	2.04161700	2.49273600
С	1.37080900	1.87994500	3.87258500
Н	0.80824600	1.05473900	4.33097300
Н	1.10425500	2.80819200	4.38649400
Н	2.44461100	1.69611000	4.01842400
0	2.77044600	4.15208200	-0.25734800
С	2.31384700	5.26580500	0.17922800
0	1.05427700	5.36218800	0.35431200
С	3.24183300	6.40340700	0.48227300
Н	3.88036100	6.60040600	-0.38534200
Н	3.89544500	6.12008600	1.31588700
Н	2.68523900	7.30438000	0.74783700
Н	1.22500600	1.18775300	2.04938100

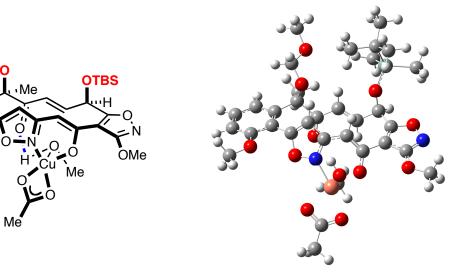


Enolate **3.42** Free energy: -1745963.143 kcal

Н	-3.26127300	-4.71514800	1.26144600
С	-3.74459300	-3.85840900	0.80973700
С	-5.07928500	-1.67507300	-0.30195300
С	-2.98095100	-2.83666900	0.23186300
С	-5.13843200	-3.79403200	0.82810400
С	-5.81804100	-2.71504700	0.27173100
С	-3.66725500	-1.72890000	-0.32839700
Н	-5.70449900	-4.60202300	1.28327800
Н	-6.90086400	-2.68610500	0.29001400
С	-1.44544500	-2.98928600	0.13948000
0	-1.08524300	-3.25789500	-1.23704500
С	-1.36835300	-4.51825900	-1.78035800
Н	-1.56779900	-4.35503800	-2.84883100
Н	-2.25214500	-4.97898500	-1.31615100
С	-0.87446000	-4.06274800	1.08989600
Н	0.21544800	-4.09019900	1.00056100
Н	-1.25124600	-5.05933100	0.85113900
Н	-1.13469000	-3.82273300	2.12473600
С	-0.67172000	-1.70206200	0.54618200
С	0.61408900	-1.42093800	-0.13326400
С	1.34556300	-0.32069000	0.12114100
С	2.70059700	-0.06319600	-0.50777200
Н	2.87217100	-0.79247300	-1.30974200
С	2.85841400	1.33034200	-1.09789700

С	2.01240500	2.33661100	-1.47343700
C C	2.90351900	3.38373800	-1.87729800
0	2.48484900	4.57421700	-2.31202600
Č	3.50714100	5.50362100	-2.72677300
H	4.17602900	5.73423100	-1.89200100
H	2.97373700	6.40081300	-3.04184300
N	4.17004200	3.03748000	-1.79601000
0	4.14052000	1.71984200	-1.28969500
Ċ	0.53388600	2.35079600	-1.38413500
Č	-1.42080400	0.88064300	-1.58922800
N	-2.16365100	1.51439100	-0.67952600
0	-3.11660500	0.60925200	-0.19838600
Ċ	-2.93495500	-0.57092400	-0.85996100
Ċ	-1.94690400	-0.43400300	-1.78418800
0	-5.63441400	-0.57282000	-0.87517800
C	-7.06033600	-0.44634100	-0.88719400
Н	-7.26402500	0.50184400	-1.38777600
Н	-7.46278300	-0.41578800	0.13156600
Ο	-1.10380200	-1.03927900	1.49259200
Н	1.02778600	0.39692600	0.87472500
Н	0.93581200	-2.13107300	-0.88664500
С	-0.15343700	1.35084400	-2.04049100
Н	0.38667200	0.70762600	-2.72347600
0	-0.23123800	-5.34547500	-1.62270400
С	-0.42096200	-6.62158900	-2.22483600
Н	-0.62731500	-6.53127300	-3.30173000
Н	0.50756200	-7.18100100	-2.08550900
0	0.02556200	3.25303100	-0.59282100
С	-0.48588000	1.37073100	3.88589800
Н	0.35479400	0.69885200	4.10789300
Н	-1.39840500	0.95343800	4.33438700
Н	-0.28649200	2.34290100	4.34604000
0	-0.63451400	1.58247400	2.48132100
Н	-0.79268400	0.70792300	2.06946800
Η	-1.56119400	-1.19082800	-2.44677300
Н	-1.24773400	-7.17287800	-1.75320500
Η	-7.52582000	-1.26398900	-1.44897200
Η	4.08088400	5.09043400	-3.56189500
С	-2.87301100	4.78792500	1.61170000
С	-3.56019500	5.74563400	2.53726500
Η	-4.64576100	5.66395400	2.43910500
Η	-3.23603200	6.77063500	2.34092700
Н	-3.28975100	5.48917500	3.56957800
0	-3.40939600	3.66858400	1.30257500
0	-1.71883100	5.04263500	1.12821500
Cu	-1.74828500	3.21337600	0.21191100

0	3.65965600	-0.22007600	0.53424200
Si	5.14709900	-1.05635100	0.50553200
С	4.99792300	-2.48408600	1.77250800
С	5.50448800	-1.68683300	-1.23478400
Н	4.75197000	-2.39371900	-1.60428000
Н	5.56483700	-0.85771100	-1.95110400
Н	6.47307600	-2.20326300	-1.25301400
С	6.45094200	0.19855500	1.02817400
Н	6.20788300	0.66209300	1.99199900
Н	7.44150400	-0.26418800	1.12335300
Н	6.53095700	1.00202600	0.28572600
С	4.66135700	-1.91654000	3.16772100
Н	5.44151800	-1.23870500	3.53620400
Н	3.71289600	-1.36498500	3.16947500
Н	4.56748500	-2.73279300	3.89980800
С	3.88093100	-3.45852100	1.34505400
Н	4.08644100	-3.92215600	0.37176100
Н	3.77964900	-4.27319600	2.07790900
Н	2.90755700	-2.95753900	1.27708100
С	6.33417900	-3.25427500	1.85079500
Н	7.16707200	-2.61166800	2.16316500
Н	6.26148100	-4.06866400	2.58710900
Н	6.60657400	-3.70954200	0.88995500



Enolate 3.43		
Free energy: -	-1745961.729	kcal

Н	3.55204200	-4.61474500	0.42932200
С	3.77716700	-3.79718800	-0.24551600
С	4.40524900	-1.69782900	-1.96963800
С	2.83600700	-2.77078200	-0.41975100

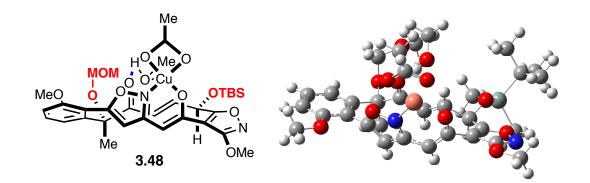
C	5.00036600	2 76864200	0.00020000
C C	5.32946700	-3.76864200 -2.72536200	-0.90930000 -1.77433700
C C	3.15454800		
Н	5.71390100	-1.71772700 -4.57286300	-1.30528200
н Н		-4.37280300	-0.75174700 -2.28398500
	6.28544700		
C	1.47544300	-2.94510900	0.30235500
0	1.62149000 2.47599500	-3.70126400	1.52373100
C		-3.22540000	2.57156100
H	1.87075300	-2.67193700	3.30255000
H	3.27013800	-2.58945300	2.17815900
C	0.58459600	-3.85109300	-0.56022100
Н	1.13967800	-4.75889500	-0.81358000
Н	0.29239600	-3.35913600	-1.49141500
H	-0.31408100	-4.14508700	-0.01032100
C	0.79499200	-1.61259200	0.76936300
C	-0.65903500	-1.43748500	0.58736500
С	-1.32272100	-0.36737100	1.06207100
С	-2.80625800	-0.13467700	0.88850000
Н	-3.26174900	-0.32678500	1.87430000
С	-3.13605100	1.31464300	0.57732100
С	-2.51804200	2.33719400	-0.08774500
С	-3.42849200	3.43279600	0.07665600
0	-3.20649800	4.65198700	-0.41577500
С	-4.24003200	5.63468500	-0.19599800
Н	-4.38908800	5.79901200	0.87550300
Н	-5.17795600	5.31106800	-0.65744700
Ν	-4.51476000	3.10025200	0.74206900
0	-4.32043100	1.74354500	1.07553400
С	-1.15318000	2.33450700	-0.65878000
С	0.53631400	0.83589500	-1.61645600
Ν	1.58698400	1.51050200	-1.14589600
0	2.66585800	0.62398500	-1.06201200
С	2.24017800	-0.58680000	-1.52022200
С	0.95237600	-0.49275300	-1.94720900
0	4.60676800	-0.63416800	-2.79501700
С	5.87223500	-0.50278100	-3.44984900
Н	5.81106500	0.42737800	-4.01760000
Н	6.05359700	-1.33791600	-4.13578700
0	1.50047000	-0.79692500	1.37474400
Н	-0.81045900	0.37456300	1.67058400
Н	-1.19101300	-2.17226400	-0.00116100
С	-0.80724000	1.30143400	-1.50747100
Н	-1.58433000	0.63916500	-1.86674500
0	3.09334300	-4.32476800	3.17304200
С	2.20686400	-5.13403300	3.95019600
Н	2.82126100	-5.89989200	4.43019700

Н	1.45053400	-5.62006200	3.32292300
0	-0.36033600	3.25644600	-0.18898800
H	0.33651900	-1.27438300	-2.36359000
H	1.70535400	-4.53466700	4.72281300
H	6.68828600	-0.43486400	-2.72159300
Н	-3.87931600	6.54665900	-0.67199300
Cu	1.57972600	3.22629400	-0.20367800
0	1.36460900	1.87113700	2.37072800
С	2.51603000	1.91963000	3.21439100
Н	2.49065900	1.13070700	3.97913100
Н	2.51332200	2.89047800	3.71854100
Н	3.44886800	1.82613200	2.64152400
0	3.54714700	3.58366600	0.11180700
С	3.24761200	4.70206100	0.66106500
0	2.01496500	5.02102900	0.71654400
С	4.32122000	5.58826800	1.21708500
Н	5.03513800	5.83710300	0.42400600
Н	4.87034200	5.04858800	1.99687600
Н	3.89754200	6.50451900	1.63296000
Н	1.34358300	0.98304000	1.95841700
0	-3.35464700	-1.01259800	-0.08087600
Si	-4.99693000	-1.47419200	-0.23439100
С	-5.81182700	-1.47199200	1.46561100
Н	-5.90264100	-0.45684700	1.87047100
Н	-6.82802100	-1.88191300	1.39620600
Η	-5.26314800	-2.07780000	2.19676300
С	-4.92834800	-3.22656100	-0.99776100
С	-4.39773100	-4.23732200	0.04119800
Η	-4.31330800	-5.23905800	-0.40598200
Η	-3.40348400	-3.96148300	0.41451400
Н	-5.06486600	-4.32342700	0.90790100
С	-6.35049100	-3.64868900	-1.42976800
Н	-6.74852500	-3.00243500	-2.22170800
Н	-6.33768200	-4.67598300	-1.82348600
Н	-7.06364200	-3.63270700	-0.59511400
С	-4.00927900	-3.24035000	-2.23746600
Н	-4.34441900	-2.53232200	-3.00620300
Н	-2.97198800	-2.99027400	-1.98507800
Н	-4.00297600	-4.24006200	-2.69672700
С	-5.87240100	-0.26092000	-1.38130800
Η	-5.81042000	0.76436700	-0.99745300
Н	-5.44539600	-0.26645700	-2.39164900
Н	-6.93761100	-0.51071800	-1.47003300

Enolate 3.47 Free energy: -1745966.642 kcal

момо

n


ŌМе

3.47

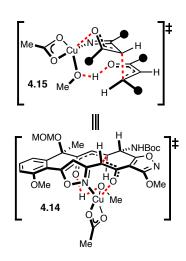
0.52532500	5.59075600	1.63402500
1.16969200	5.13445700	0.89359900
2.90049900	4.03508400	-0.99686100
0.93011500	3.82604700	0.45519600
2.24288400	5.87610200	0.39855400
3.11118300	5.34292300	-0.54872600
1.81499300	3.27358000	-0.50649900
2.40328100	6.88920200	0.75688100
3.93634500	5.93442900	-0.92641000
-0.33116400	3.07968000	0.94427700
-1.28737500	3.06338900	-0.14510200
-2.07555600	4.19337000	-0.38626100
-2.28956900	4.19675900	-1.46351200
-1.55946500	5.12659800	-0.11828300
-0.93495600	3.66357800	2.23968300
-1.29267000	4.68656500	2.10743700
-0.18043500	3.65445100	3.03115400
-1.78437000	3.05280900	2.55986600
-0.07486800	1.59211600	1.32623100
-1.14828600	0.62854300	1.02591200
-1.07842000	-0.68246300	1.31214100
-2.18793200	-1.65639600	0.97457500
-1.67706500	-2.97937900	0.44263400
-0.59144600	-3.37678400	-0.28681700
	$\begin{array}{c} 1.16969200\\ 2.90049900\\ 0.93011500\\ 2.24288400\\ 3.11118300\\ 1.81499300\\ 2.40328100\\ 3.93634500\\ -0.33116400\\ -1.28737500\\ -2.07555600\\ -2.28956900\\ -1.55946500\\ -0.93495600\\ -1.29267000\\ -0.18043500\\ -1.78437000\\ -0.07486800\\ -1.14828600\\ -1.07842000\\ -2.18793200\\ -1.67706500\end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

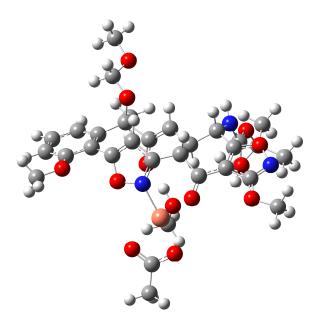
С	-0.75834900	-4.79804900	-0.37281400
0	0.10049200	-5.60154000	-1.00315800
C C	-0.23307000	-7.00499800	-1.03521700
H	-1.18282200	-7.15863600	-1.55660100
Н	-0.29562900	-7.40585700	-0.01900100
N	-1.85989300	-5.21958500	0.21225500
0	-2.44539900	-4.05194400	0.74561200
C	0.53955900	-2.53277400	-0.73250300
C C	1.08822700	-0.22175100	-1.36152300
N N	2.34518500	-0.25494500	-0.91539800
0	2.73850600	1.05736600	-0.63453800
C	1.69272400	1.87704400	-0.95013500
C C	0.67513300	1.14346700	-1.47589600
0	3.68362700	3.41303800	-1.91950700
Č	4.79939700	4.12318900	-2.46691700
H	5.52049400	4.38976700	-1.68620900
Н	4.47257800	5.02541500	-2.99621100
0	0.95638000	1.32128200	1.94958400
Ĥ	-0.22879700	-1.09741900	1.85038900
Н	-2.00217200	1.01386300	0.48809200
C	0.24267400	-1.36956500	-1.41608500
H	-0.77596800	-1.20732600	-1.74451000
0	-3.28157100	4.06276000	0.34754000
Č	-4.16631900	5.15584400	0.12199000
H	-5.06050400	4.97006700	0.72173100
Н	-3.71439200	6.10846300	0.43462000
0	1.71427900	-2.91798500	-0.31767800
Ĥ	-0.28524000	1.50089800	-1.80903100
H	-4.45186300	5.23017700	-0.93728600
Н	5.26421300	3.43398300	-3.17397300
Н	0.58001100	-7.48443100	-1.58072100
Cu	3.33541000	-1.83146200	-0.29716100
0	2.26436400	-1.11175600	2.56960500
H	1.80210000	-0.30405600	2.26205600
С	2.63871200	-0.88899600	3.92942800
Н	3.34004300	-0.04849800	4.02781000
Н	3.13294700	-1.79669000	4.28814900
Н	1.76426200	-0.69300200	4.56548300
0	5.24464100	-1.16110100	-0.08006100
С	5.62470800	-2.36022500	0.15739600
0	4.73620800	-3.27486600	0.15002500
С	7.06643300	-2.65778500	0.44029400
H	7.68726900	-2.26601600	-0.37264900
Н	7.23319800	-3.73086400	0.55236900
Н	7.36576200	-2.14226100	1.36031700
Н	-2.68680000	-1.90176000	1.92680600

0	-3.10931800	-1.11164400	0.04203200
Si	-4.75663300	-0.78742800	0.35063400
С	-5.40367300	-0.09984600	-1.31072400
С	-4.48689800	1.03190800	-1.82389800
Н	-4.38286100	1.85169900	-1.10149000
Η	-4.90086100	1.46382800	-2.74761400
Н	-3.48033400	0.66509400	-2.05756800
С	-5.45708100	-1.22157500	-2.36967600
Η	-5.80939400	-0.82242700	-3.33264500
Н	-6.14318800	-2.02755800	-2.08141700
Н	-4.47081200	-1.67012300	-2.54430500
С	-6.82562100	0.46534800	-1.09843600
Н	-6.83416100	1.30231100	-0.38898700
Н	-7.52554000	-0.29444500	-0.72686300
Η	-7.23057200	0.84028100	-2.05018800
С	-5.61122800	-2.38987200	0.86012900
Н	-6.69646800	-2.24471200	0.94242400
Η	-5.25853100	-2.73612800	1.84004800
Η	-5.43668800	-3.19792000	0.14019800
С	-4.88781600	0.47456700	1.74616900
Н	-4.32857500	0.14338700	2.63115000
Н	-5.93242500	0.60452100	2.05777900
Н	-4.49958800	1.45859600	1.45735500

Enolate **3.48** Free energy: -1745962.674 kcal

Н	3.62867500	-4.78920400	-0.17506900
С	4.08027400	-3.83768300	-0.42889800
С	5.28351100	-1.41183400	-1.09182100
С	3.25550400	-2.73575100	-0.69860300
С	5.46721700	-3.72733600	-0.48277600
С	6.08388200	-2.52137600	-0.81232400

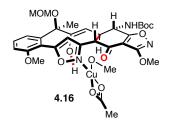

С	3.87200400	-1.51150000	-1.04521200
С Н	6.08243000	-4.59635600	-0.26550800
H	7.16449600	-4.39033000	-0.20330800
C	1.72504900	-2.43481000	-0.70042100
0	1.39001000	-4.10281300	0.16795300
C C			
	1.55675200	-3.99858100	1.57874100
Н	2.33204100	-3.27808300	1.84192500
H	1.84223900	-5.00756200	1.90368900
C	1.31790500	-3.51692500	-2.08423500
Н	1.95694600	-4.36779100	-2.33806400
Н	1.43617700	-2.75899100	-2.86200700
Н	0.28130300	-3.86526600	-2.07579400
C	0.87990600	-1.78020600	-0.18086600
С	-0.41455800	-1.46228500	-0.82322800
С	-1.22133200	-0.48179200	-0.37598900
С	-2.57046200	-0.16984500	-0.99064900
С	-2.80363000	1.31104600	-1.23522800
С	-2.00302100	2.41307600	-1.34395000
С	-2.93957200	3.48323100	-1.51822900
0	-2.57322800	4.75902400	-1.65854800
С	-3.63251800	5.71943600	-1.84608800
Н	-4.29944700	5.72730000	-0.97855500
Н	-4.20185000	5.48990600	-2.75211800
Ν	-4.18844400	3.07021700	-1.54924600
0	-4.10129100	1.67368500	-1.36034100
С	-0.52798800	2.47055100	-1.20045700
С	1.51365700	1.21721200	-1.72643900
Ν	2.21407700	1.65729500	-0.67947400
0	3.20157000	0.70576500	-0.39400000
С	3.08618000	-0.29604200	-1.31091300
С	2.10981200	0.00908000	-2.20733000
0	5.76724500	-0.18681400	-1.43630600
С	7.18425600	-0.01071400	-1.53166700
H	7.61521000	-0.67449500	-2.28989500
Н	7.67144200	-0.18362400	-0.56530800
0	1.29464000	-1.18015300	0.81461600
H	-0.97072400	0.07458100	0.52443200
Н	-0.69064100	-2.01575900	-1.71348400
C	0.22834100	1.72206800	-2.07970000
Н	-0.26216900	1.26023800	-2.92718300
0	0.38799600	-3.58810300	2.23715300
C	-0.67526900	-4.53813000	2.16641600
С Н	-1.02774000	-4.67163300	1.13717700
п Н	-0.36027400	-4.07103300	2.56567700
п 0			
	-0.09296700	3.13821900	-0.16965400
Н	1.78208100	-0.57555300	-3.05258200


Н	-1.48918700	-4.14484900	2.78031000
Н	7.33008800	1.02857600	-1.83119000
Н	-3.13505600	6.68425200	-1.94810700
Cu	1.67623200	3.00839400	0.64007900
Н	-2.66098100	-0.69057000	-1.95374900
0	-3.56584900	-0.61548300	-0.06915200
Si	-4.69416100	-1.86039200	-0.36194700
С	-5.83603100	-1.78749100	1.16849200
С	-5.02255200	-2.07140000	2.44924600
Н	-4.56324000	-3.06785000	2.43065700
Н	-5.67487500	-2.02936900	3.33437400
Н	-4.22153500	-1.33702200	2.59877200
С	-6.48352600	-0.39075700	1.27850600
Н	-7.12077500	-0.33394600	2.17382500
Н	-7.11851900	-0.16332800	0.41297400
Н	-5.73290900	0.40486200	1.35773300
С	-6.94781600	-2.84999500	1.02813200
Н	-6.54359800	-3.86870100	0.96915100
Н	-7.56629500	-2.68345000	0.13712400
Н	-7.61918700	-2.81770600	1.89920300
С	-5.61290400	-1.50361800	-1.96953000
Н	-6.14867100	-0.54786200	-1.93887600
Η	-6.34549500	-2.29332300	-2.18128900
Η	-4.92422300	-1.46994900	-2.82381800
С	-3.78910300	-3.50764200	-0.50565600
Н	-3.16762300	-3.71562500	0.37322100
Η	-3.13455700	-3.52559000	-1.38674700
Η	-4.49966100	-4.33703400	-0.61876100
0	0.41434300	0.89976400	2.51022700
Η	0.76862600	0.28063000	1.83981800
С	0.15751700	0.12944900	3.68573900
Н	1.08874800	-0.19004600	4.17524900
Н	-0.44270700	-0.76266600	3.46268500
Н	-0.40088300	0.76272100	4.38157700
0	1.47649500	4.35882500	2.17021000
С	2.63747400	4.02038900	2.58068200
0	3.27263000	3.14149500	1.90278100
С	3.23594500	4.64584100	3.80445600
Н	4.14179100	4.11859900	4.11067700
Н	2.50346800	4.64156100	4.61786800
Н	3.48295800	5.69174700	3.58538600

	free energy	(hartrees)	
Conformer			difference
Conformer	rb3lyp	ub3lyp	(kcal)
NHBoc_CuEnolate_1	-2581.7399	-2581.7400	0.04
NHBoc_CuEnolate_2	-2581.7331	-2581.7334	0.14
NHBoc_CuEnolate_3	-2581.7518	-2581.7518	0.00
NHBoc_CuEnolate_4	-2581.7483	-2581.7483	0.00
NHBoc_CuEnolate_5	-2581.7475	-2581.7475	0.00
NHBoc_CuEnolate_6	-2581.7315	-2581.7315	0.00
NHBoc_CuEnolate_7	-2581.7449	-2581.7448	-0.05
NHBoc_CuEnolate_8	-2581.7503	-2581.7503	0.00
NHBoc_CuEnolate_9	-2581.7461	-2581.7452	-0.57
NHBoc_CuEnolate_10	-2581.7453	-2581.7453	0.00
NHBoc_CuEnolate_11	-2581.7475	-2581.7475	0.00
NHBoc_CuEnolate_12	-2581.7457	-2581.7459	0.15
NHBoc_CuEnolate_13	-2581.7479	-2581.7479	0.00
NHBoc_CuEnolate_14	-2581.7329	-2581.7328	0.00
NHBoc_CuEnolate_15	-2581.7356	-2581.7356	-0.02
NHBoc_CuEnolate_16	-2581.7467	-2581.7467	0.00
NHBoc_CuEnolate_17	-2581.7390	-2581.7394	0.23
NHBoc_CuEnolate_18	-2581.7474	-2581.7471	-0.20
NHBoc_CuEnolate_19	-2581.7435	-2581.7428	-0.39
NHBoc_CuEnolate_20	-2581.7434	-2581.7434	0.00

Comparison of restricted vs. unrestricted B3LYP

transition state calculations



Transition state structure **4.14** Free energy: -1620050.093 kcal

Н	4.96541500	2.53530300	1.53533000
C	4.99862900	1.57396500	1.04010800
C	5.18992800	-0.93331600	-0.14956200
C	3.88676500	1.11092700	0.31977000
C	6.16816100	0.82062000	1.15446200
C	6.28540700	-0.43077400	0.55770700
C	4.00516500	-0.17642900	-0.27759200
Н	7.00556900	1.22012500	1.72027000
Н	7.20182500	-1.00075500	0.65405800
C	2.66600900	2.07074000	0.12469500
0	2.79758600	2.64543000	-1.21042200
Č	3.76770400	3.62502300	-1.43655200
H	4.08178000	3.51761200	-2.48513700
Н	4.64694600	3.50335900	-0.78748100
C	2.59064100	3.17011000	1.20032400
H	1.71504700	3.79399400	0.99957500
Н	2.46686200	2.70810100	2.18426500
Н	3.46609400	3.82230500	1.22917100
C	1.28101300	1.35073900	0.17921200
Ċ	0.31505300	1.63592400	-0.76377000
Ċ	-0.88389900	0.77893700	-0.94033000
C	-2.08882300	1.51503600	-1.60142600
Н	-1.74954300	1.93231300	-2.55809200
С	-3.16496000	0.50779000	-1.89001300
С	-3.03145400	-0.85718900	-1.94306600
С	-4.37688900	-1.31754200	-2.13302800
0	-4.71574700	-2.59816400	-2.22236500
С	-6.12093900	-2.88443600	-2.40761900
Н	-6.69979400	-2.48778600	-1.56865500
Н	-6.19157200	-3.97150200	-2.43803400
Ν	-5.23210400	-0.32184200	-2.23473300
0	-4.43842900	0.85554600	-2.06493900
С	-1.76346100	-1.50059600	-1.68352400
С	0.75796500	-1.07504100	-1.57423600
Ν	0.99341900	-2.01713200	-0.67845200
0	2.30037400	-1.88349700	-0.25110800
С	2.84074400	-0.80895600	-0.90938100
С	1.95526700	-0.36236300	-1.84028800
0	5.16588300	-2.15177000	-0.76016800
С	6.33776100	-2.97073600	-0.70148900
Н	6.08804500	-3.87891800	-1.25311300
Н	6.58909600	-3.22944100	0.33330400
0	1.17844200	0.52139500	1.16951600
Н	-1.21909000	0.37597300	0.01791300
Н	0.56324600	2.31706000	-1.57007900

С	-3.19578000	2.47188000	0.38630500
0	-3.56212900	1.37981500	0.81704700
0	-3.35067600	3.66209100	0.99102500
C	-4.04267900	3.79860500	2.29777200
Ċ	-3.96831000	5.30561900	2.54730000
Н	-2.92664800	5.64166800	2.59413400
Н	-4.47669200	5.85939300	1.75034800
Н	-4.45187000	5.54890900	3.49904800
С	-3.27468500	3.03362800	3.37760600
Н	-3.71752500	3.24857700	4.35667500
Н	-3.30875500	1.95449600	3.21440300
Н	-2.22678800	3.35322000	3.40141700
С	-5.49689000	3.34223300	2.16361500
Н	-5.98844000	3.86688400	1.33643500
Н	-5.57182900	2.26650100	1.99034800
Н	-6.03900400	3.58018600	3.08577300
Ν	-2.59348900	2.63950700	-0.82967800
Н	-2.18316600	3.54538700	-1.01908200
С	-0.60179700	-0.56220200	-1.89147500
Н	-0.61975600	-0.19600700	-2.92334300
0	3.18475700	4.90391000	-1.24111100
С	4.12992200	5.94912200	-1.43267700
Η	4.95397700	5.88831700	-0.70605300
Н	3.59690100	6.89274900	-1.28888600
Ο	-1.67273200	-2.66556500	-1.24762200
Η	2.08460700	0.46830800	-2.51183800
Η	4.55375000	5.92995800	-2.44799800
Η	7.19083100	-2.47602000	-1.17980200
Η	-6.47483500	-2.45224600	-3.34805800
Cu	-0.24441700	-3.11448300	0.38958000
Ο	-0.61092800	-1.34270900	1.69059700
Η	0.03357400	-0.61059500	1.42056000
С	-0.48272300	-1.53262300	3.10389300
Η	0.50788600	-1.92257100	3.37141800
Η	-1.24528700	-2.24849600	3.42068400
Η	-0.64698900	-0.58470200	3.63137700
0	0.86540400	-4.55079300	1.57446100
С	-0.27628100	-4.97425900	1.92687800
0	-1.31389100	-4.40771400	1.41478500
С	-0.44272300	-6.07774800	2.92827400
Н	-0.59878000	-5.63239100	3.91905100
Н	0.45248000	-6.70301100	2.96533600
Н	-1.32056600	-6.68392100	2.68806300

Michael product – copper complex **4.16** Free energy: -1620058.563 kcal

Н	5.36973300	1.94397900	1.39275700
С	5.24362900	0.92776000	1.04390000
С	5.01829500	-1.72509400	0.23510200
С	4.07934100	0.55402800	0.35570000
С	6.26600800	0.01478700	1.30791700
С	6.17405900	-1.31330000	0.90458200
С	3.98405800	-0.80824300	-0.04971800
Н	7.15245500	0.34871600	1.84039000
Н	6.97809900	-2.00750800	1.11794100
С	3.03734200	1.67008400	-0.00718300
0	3.23194700	1.99883900	-1.40907500
С	4.34670700	2.75301900	-1.78922600
Н	4.60100700	2.43250000	-2.80970100
Н	5.21254900	2.58060200	-1.13391700
С	3.16268400	2.92067800	0.88454600
Н	2.40027200	3.64240200	0.57951400
Н	2.98813800	2.65107800	1.93038700
Н	4.13580600	3.40889500	0.80774900
С	1.56686700	1.20952900	0.10307900
С	0.64844400	1.44915900	-0.85789900
С	-0.67407000	0.74835800	-0.99045700
С	-1.76628200	1.66208200	-1.61861100
Н	-1.40423400	2.01695500	-2.59230900
С	-2.98117600	0.82050900	-1.86489100
С	-3.02112100	-0.54066600	-2.00674500

C	4 41 5 4 6 9 0 0	0.000000000	2 22012400
C	-4.41546200	-0.80882200	-2.22012400
0	-4.91925000	-2.02477900	-2.40024900
С	-6.35090300	-2.11137300	-2.58178000
Н	-6.86761700	-1.71891900	-1.70117200
Н	-6.56126600	-3.17373300	-2.70501100
Ν	-5.14003600	0.29057800	-2.22144000
0	-4.19946100	1.34321700	-1.98916700
С	-1.84214100	-1.38406000	-1.92110700
С	0.67453700	-1.31668900	-1.40601100
Ν	0.67034400	-2.08539700	-0.33192000
0	1.97255400	-2.12851000	0.15124000
С	2.74393800	-1.32616000	-0.64752000
С	2.00089100	-0.90934500	-1.70518900
0	4.79060000	-2.99955100	-0.18945300
С	5.80020800	-3.98871100	0.03492300
Н	5.40525300	-4.91185400	-0.39285800
Н	5.98393900	-4.13203800	1.10577800
Ο	1.38751000	0.54414400	1.26688600
H	-1.03554700	0.41411600	-0.01554200
Н	0.99418000	1.99133300	-1.73124000
C	-2.63457300	2.80420400	0.39358700
0	-3.11828400	1.78263800	0.87908100
0	-2.60399900	4.02372800	0.95824600
C	-3.23892700	4.30958700	2.26885000
C C	-2.93874100	5.79810900	2.45209600
H H	-1.85831300	5.97969700	2.46427200
H	-3.38155800	6.38681400	1.64117400
H	-3.35825200	6.14878200	3.40068700
п С	-2.57086300	0.14878200 3.48080100	3.36759100
H H	-2.92600600	3.82399600	4.34590600 3.27245600
	-2.80275500	2.41807400 3.61034700	
H	-1.48302000		3.33729900
C	-4.74621000	4.06701300	2.17677200
H	-5.17579600	4.63130600	1.34137000
Н	-4.97929100	3.00831100	2.04261900
Н	-5.22520000	4.41066100	3.10046500
N	-2.06298000	2.85432800	-0.84553000
H	-1.58525000	3.70779200	-1.10503600
С	-0.53791600	-0.58361200	-1.89322900
Н	-0.34999200	-0.25742000	-2.92542500
Ο	3.99071200	4.12434300	-1.79170800
С	5.04838100	4.94446900	-2.27413200
Н	5.94818800	4.85850300	-1.64712300
Н	4.69066600	5.97680600	-2.24517800
0	-1.87867200	-2.61322700	-1.90614900
Н	2.30940500	-0.24256000	-2.49312600

Н	5.31678700	4.68669000	-3.30978600
Н	6.73492600	-3.72190600	-0.47115300
Н	-6.65427800	-1.55708200	-3.47478900
Cu	-0.73474500	-2.62302600	1.06094600
0	-0.73819700	-0.86720200	1.78475000
Н	0.48711100	0.08266500	1.39570400
С	-1.33729300	-0.62965200	3.04284000
Н	-0.91342900	-1.26265800	3.83952900
Н	-2.42519100	-0.79787600	3.02360000
Н	-1.16700100	0.41801200	3.33372600
0	-0.92989500	-4.61639100	0.56542500
С	-1.79932300	-4.74305900	1.49172600
0	-2.09125400	-3.71069800	2.18447100
С	-2.43247100	-6.07282400	1.77977800
Н	-1.75225700	-6.65644200	2.41308700
Н	-2.58908800	-6.62959600	0.85168600
Н	-3.37886400	-5.94605200	2.31067700

II. Geometries and Energies Relevant to Chapter 5

For each molecule, the geometries and energies corresponding to the lowest energy "correct" and "incorrect" diastereofaces to the periphery are given. DFT structures were verified to be true local minima by standard frequency analyses. Molecules are listed in order of their appearance in the manuscript. Numbering refers to the starting material being considered. Free energies are given at 298.15 K in all cases, regardless of the temperature at which the reaction was performed.

Comp	oound 5.7			С	1.14800	-5.36510	1.29750
This s	structure was	assigned as co	orrect.	С	2.22680	-4.33870	1.71950
		-		С	3.64650	-4.85440	1.39950
Mole	cular Mecha	nics (OPLS-	2005), gas	С	2.14080	-3.94530	3.21510
phase	÷.			Н	2.11640	-3.44830	1.11490
Energ	gy: +84.15317	75 kJ.		Η	3.06880	-3.44740	3.49910
				Н	2.10460	-4.85030	3.82400
Η	-0.25100	-0.51960	1.49190	С	0.97650	-3.01940	3.62170
С	-0.28080	-1.53450	1.89130	Η	0.02160	-3.54110	3.57860
С	-0.32950	-2.50800	0.69890	С	0.92530	-1.69160	2.83810
Н	-1.21040	-1.59290	2.45950	Н	1.10460	-2.78450	4.67940
С	-0.90620	-3.86560	1.06430	Η	1.85550	-1.52390	2.29380
С	-0.29570	-5.05000	1.28410	Н	0.87800	-0.87680	3.56210

O H H H	1.51060 4.39660 3.73530 3.90320 -0.93190	-6.50330 -4.08520 -5.14820 -5.72230 -5.89460	$\begin{array}{c} 1.00270\\ 1.58270\\ 0.35260\\ 2.00860\\ 1.50320\end{array}$	B3LYP/6-31g(c Bas phase.	, ,	
H H	-1.98360 0.61890	-3.86410 -2.57180	1.14750 0.17320	ee.	rgy: -465.9011	65894 har-
Н	-1.01080	-2.09400	-0.04580		65.694043 hartr	ee.
				I -0.40966	-0.50278	1.62629
				-0.35318	-1.54763	1.95857
	pound 5.7			-0.31164	-2.43971	0.68983
This	structure was	assigned as in	ncorrect.	I -1.28577	7 -1.74167	2.50603
				-0.85395	-3.83425	0.88579
Mole	ecular Mecha	inics (OPLS-	-2005), gas	-0.27045	5 -5.00976	1.18698
phas	e.			1.13459	-5.38539	1.49942
Ener	gy: +87.7380	75 kJ.		2.24774	-4.35251	1.69574
				2 3.61008	-4.96610	1.34213
Н	-1.17220	-1.19020	1.87380	2.24760	-3.85068	3.16505
С	-0.63940	-1.96010	2.43380	I 2.07346	-3.49666	1.03748
С	-1.11750	-3.32920	1.91860	I 3.15523	-3.24582	3.30073
Н	-0.94980	-1.83160	3.47160	I 2.36344	-4.72713	3.81668
С	-0.63940	-3.63240	0.50720	1.04066	-3.02353	3.64399
С	0.37030	-4.45140	0.15040	I 0.12265	-3.61871	3.58521
С	1.20150	-5.18500	1.11490	0.84310		2.92150
С	2.35600	-4.44110	1.81290	I 1.19774	-2.83263	4.71317
С	3.60770	-5.33670	1.89550	I 1.76190	-1.40037	2.37823
С	1.94880	-3.91110	3.21210	I 0.71636	-0.87862	3.67599
Н	2.61710	-3.59540	1.17760	1.37656	-6.57634	1.66517
Н	2.70360	-4.20890	3.94090	I 4.40593	-4.22418	1.47223
Н	1.04710	-4.40380	3.57260	I 3.63122	-5.31254	0.30331
С	1.79690	-2.37910	3.31880	I 3.82405	-5.82783	1.97986
Η	1.47090	-2.12780	4.32910	I -0.91498	-5.88561	1.24286
С	0.87260	-1.67720	2.30200	I -1.93680	-3.88686	0.75795
Η	2.79090	-1.94040	3.22070	I 0.70272	-2.44394	0.28126
Η	1.21480	-1.85010	1.28250	I -0.94049	-1.96411	-0.07344
Η	1.00540	-0.60460	2.45060			
Ο	1.00500	-6.37260	1.36660			
Η	3.87320	-5.73850	0.91690	Compound 5.7 .		
Η	3.44890	-6.18290	2.56570	his structure w	as assigned as i	ncorrect.
Η	4.46700	-4.77620	2.26360	3LYP/6-31g(d	l)	
Η	0.60470	-4.59060	-0.89380		olvation in dieth	yl ether was
Η	-1.17530	-3.11800	-0.27710	sed.		
Η	-2.20800	-3.34890	1.91030			
Н	-0.83790	-4.12430	2.60530		rgy: -465.9093	364382 har-
				ree. Free Energy: -4	65.703773 hartr	ree.

Н	-0.77392	-0.94569	1.44731	С	2.45207	-3.62687	2.39241
С	-0.45040	-1.69569	2.18218	Н	2.45808	-5.72593	2.02094
Č	-1.12374	-3.04297	1.82210	Н	2.32237	-3.34942	1.34015
H	-0.84239	-1.36126	3.15303	H	3.53374	-3.69937	2.55915
C				C			
	-0.63521	-3.61814	0.51889		1.90940	-2.51515	3.29574
C	0.25400	-4.60623	0.36914	H	2.19777	-2.73290	4.33196
С	0.92797	-5.39262	1.46472	С	0.39652	-2.25968	3.27052
С	2.12498	-4.77174	2.19911	Η	2.42726	-1.58365	3.03070
С	3.12990	-5.86570	2.58628	Η	0.19418	-1.51907	4.05314
С	1.65190	-3.96880	3.45953	Η	-0.13833	-3.16297	3.58560
Н	2.61122	-4.07381	1.50590	0	-0.50269	-5.53345	2.69546
Н	2.27101	-4.29537	4.30468	Н	1.56453	-6.51530	4.17972
Н	0.63120	-4.25633	3.73294	Н	1.21131	-4.86719	4.69287
С	1.77883	-2.43529	3.37142	Н	2.89773	-5.38367	4.48529
H	1.42144	-2.01506	4.32296	H	0.91282	-5.25788	-0.11601
C	1.08745	-1.69442	2.21234	H	-0.35679	-3.34237	-0.79768
H	2.85015	-2.19233	3.32078	H	-1.84950	-2.14467	0.60141
H	1.46437	-2.07369	1.25360	H	-1.69563	-3.30157	1.91623
				11	-1.09505	-3.30137	1.91023
Н	1.41501	-0.64706	2.26431				
0	0.55198	-6.52867	1.71180	C	1		
Н	3.48198	-6.41955	1.70818		pound 5.7	· •	
Н	2.67652	-6.58575	3.27448		structure was	assigned as c	correct.
Н	4.00213	-5.41948	3.07756		-2X/6-31g(d)		
Н	0.51663	-4.94686	-0.63366	SMD	implicit solv	ation in dieth	yl ether was
Η	-1.04493	-3.16527	-0.38512	used.			
H H	-1.04493 -2.20655	-3.16527 -2.87298	-0.38512 1.75039	used.			
				used. Elect	ronic Energy	y: -465.6950)43779 har-
Н	-2.20655	-2.87298	1.75039		ronic Energy	y: -465.6950)43779 har-
Н	-2.20655	-2.87298	1.75039	Elect tree.	ronic Energy Energy: -465.		
Н Н	-2.20655	-2.87298	1.75039	Elect tree.	0.		
H H 	-2.20655 -0.98424 	-2.87298 -3.76624	1.75039 2.63095	Elect tree.	0.		
H H Comp This	-2.20655 -0.98424 pound 5.7 structure was	-2.87298	1.75039 2.63095	Elect tree. Free	Energy: -465. 3.32103	.485226 hartr	ee. 0.65398
H H Comp This M06-	-2.20655 -0.98424 pound 5.7 structure was -2X/6-31g(d)	-2.87298 -3.76624 assigned as in	1.75039 2.63095	Elect tree. Free I H C	Energy: -465. 3.32103 2.59996	.485226 hartr 0.46131 -0.14868	ee. 0.65398 0.09512
H H Comp This M06- SMD	-2.20655 -0.98424 pound 5.7 structure was -2X/6-31g(d)	-2.87298 -3.76624	1.75039 2.63095	Elect tree. Free H C C	Energy: -465. 3.32103 2.59996 1.71400	485226 hartr 0.46131 -0.14868 -0.88865	ee. 0.65398 0.09512 1.11635
H H Comp This M06-	-2.20655 -0.98424 pound 5.7 structure was -2X/6-31g(d)	-2.87298 -3.76624 assigned as in	1.75039 2.63095	Elect tree. Free H C C H	Energy: -465. 3.32103 2.59996 1.71400 3.18209	.485226 hartr 0.46131 -0.14868 -0.88865 -0.88341	ee. 0.65398 0.09512 1.11635 -0.47453
H H Comp This M06- SMD used.	-2.20655 -0.98424 	-2.87298 -3.76624 assigned as in ation in dieth	1.75039 2.63095 ncorrect. yl ether was	Elect tree. Free H C C H C	Energy: -465. 3.32103 2.59996 1.71400 3.18209 0.86412	.485226 hartr 0.46131 -0.14868 -0.88865 -0.88341 -1.94557	ee. 0.65398 0.09512 1.11635 -0.47453 0.46737
H H Comp This M06- SMD used. Elect	-2.20655 -0.98424 	-2.87298 -3.76624 assigned as in	1.75039 2.63095 ncorrect. yl ether was	Elect tree. Free H C C H C C	Energy: -465. 3.32103 2.59996 1.71400 3.18209 0.86412 -0.27790	485226 hartr 0.46131 -0.14868 -0.88865 -0.88341 -1.94557 -1.83022	ee. 0.65398 0.09512 1.11635 -0.47453 0.46737 -0.22591
H H Comp This M06- SMD used. Elect tree.	-2.20655 -0.98424 pound 5.7 structure was -2X/6-31g(d) implicit solv ronic Energy	-2.87298 -3.76624 assigned as in ration in dieth y: -465.6919	1.75039 2.63095 ncorrect. yl ether was 70109 har-	Elect tree. Free H C C H C C C C	Energy: -465. 3.32103 2.59996 1.71400 3.18209 0.86412 -0.27790 -1.06189	485226 hartr 0.46131 -0.14868 -0.88865 -0.88341 -1.94557 -1.83022 -0.61120	ee. 0.65398 0.09512 1.11635 -0.47453 0.46737 -0.22591 -0.56725
H H Comp This M06- SMD used. Elect tree.	-2.20655 -0.98424 pound 5.7 structure was -2X/6-31g(d) implicit solv ronic Energy	-2.87298 -3.76624 assigned as in ation in dieth	1.75039 2.63095 ncorrect. yl ether was 70109 har-	Elect tree. Free H C C H C C C C C C	Energy: -465. 3.32103 2.59996 1.71400 3.18209 0.86412 -0.27790 -1.06189 -1.14976	.485226 hartr 0.46131 -0.14868 -0.88865 -0.88341 -1.94557 -1.83022 -0.61120 0.60775	ee. 0.65398 0.09512 1.11635 -0.47453 0.46737 -0.22591 -0.56725 0.35009
H H Comp This M06- SMD used. Elect tree. Free	-2.20655 -0.98424 pound 5.7 structure was -2X/6-31g(d) implicit solv ronic Energy Energy: -465.	-2.87298 -3.76624 assigned as in ation in dieth y: -465.6919 .482344 hartre	1.75039 2.63095 ncorrect. yl ether was 70109 har- ee.	Elect tree. Free H C C H C C C C C C C	Energy: -465. 3.32103 2.59996 1.71400 3.18209 0.86412 -0.27790 -1.06189 -1.14976 -2.63896	485226 hartr 0.46131 -0.14868 -0.88865 -0.88341 -1.94557 -1.83022 -0.61120 0.60775 0.89804	ee. 0.65398 0.09512 1.11635 -0.47453 0.46737 -0.22591 -0.56725 0.35009 0.57923
H H Comp This M06- SMD used. Elect tree. Free H	-2.20655 -0.98424 pound 5.7 structure was -2X/6-31g(d) implicit solv ronic Energy Energy: -465. -0.79495	-2.87298 -3.76624 assigned as in ration in dieth y: -465.6919 .482344 hartro -0.83751	1.75039 2.63095 ncorrect. yl ether was 70109 har- ee. 2.16737	Elect tree. Free H C C H C C C C C C C C	Energy: -465. 3.32103 2.59996 1.71400 3.18209 0.86412 -0.27790 -1.06189 -1.14976 -2.63896 -0.46805	485226 hartr 0.46131 -0.14868 -0.88865 -0.88341 -1.94557 -1.83022 -0.61120 0.60775 0.89804 1.83393	ee. 0.65398 0.09512 1.11635 -0.47453 0.46737 -0.22591 -0.56725 0.35009 0.57923 -0.28827
H H Comp This M06- SMD used. Elect tree. Free H C	-2.20655 -0.98424 pound 5.7 structure was -2X/6-31g(d) implicit solv ronic Energy Energy: -465. -0.79495 -0.20161	-2.87298 -3.76624 assigned as in ration in dieth y: -465.6919 .482344 hartro -0.83751 -1.73036	1.75039 2.63095 ncorrect. yl ether was 70109 har- ee. 2.16737 1.94371	Elect tree. Free H C C H C C C C C C H	Energy: -465. 3.32103 2.59996 1.71400 3.18209 0.86412 -0.27790 -1.06189 -1.14976 -2.63896 -0.46805 -0.69074	485226 hartr 0.46131 -0.14868 -0.88865 -0.88341 -1.94557 -1.83022 -0.61120 0.60775 0.89804 1.83393 0.38489	ee. 0.65398 0.09512 1.11635 -0.47453 0.46737 -0.22591 -0.56725 0.35009 0.57923 -0.28827 1.31674
H H Comp This M06- SMD used. Elect tree. Free H C C	-2.20655 -0.98424 	-2.87298 -3.76624 assigned as in ration in dieth y: -465.6919 .482344 hartro -0.83751 -1.73036 -2.71687	1.75039 2.63095 ncorrect. yl ether was 70109 har- ee. 2.16737 1.94371 1.18789	Elect tree. Free H C C H C C C C C C C H H H	Energy: -465. 3.32103 2.59996 1.71400 3.18209 0.86412 -0.27790 -1.06189 -1.14976 -2.63896 -0.46805 -0.69074 -0.88648	485226 hartr 0.46131 -0.14868 -0.88865 -0.88341 -1.94557 -1.83022 -0.61120 0.60775 0.89804 1.83393 0.38489 2.73130	ee. 0.65398 0.09512 1.11635 -0.47453 0.46737 -0.22591 -0.56725 0.35009 0.57923 -0.28827 1.31674 0.18415
H H Comp This M06- SMD used. Elect tree. Free H C C H	-2.20655 -0.98424 pound 5.7 structure was -2X/6-31g(d) implicit solv ronic Energy Energy: -465. -0.79495 -0.20161 -1.12424 0.60211	-2.87298 -3.76624 assigned as in ration in dieth y: -465.6919 .482344 hartro -0.83751 -1.73036 -2.71687 -1.39579	1.75039 2.63095 ncorrect. yl ether was 70109 har- ee. 2.16737 1.94371 1.18789 1.27370	Elect tree. Free C C C C C C C C C H H H H	Energy: -465. 3.32103 2.59996 1.71400 3.18209 0.86412 -0.27790 -1.06189 -1.14976 -2.63896 -0.46805 -0.69074 -0.88648 -0.76749	485226 hartr 0.46131 -0.14868 -0.88865 -0.88341 -1.94557 -1.83022 -0.61120 0.60775 0.89804 1.83393 0.38489 2.73130 1.86927	ee. 0.65398 0.09512 1.11635 -0.47453 0.46737 -0.22591 -0.56725 0.35009 0.57923 -0.28827 1.31674 0.18415 -1.34417
H H Comp This M06- SMD used. Elect tree. Free H C C H C	-2.20655 -0.98424 pound 5.7 structure was -2X/6-31g(d) implicit solv ronic Energy Energy: -465. -0.79495 -0.20161 -1.12424 0.60211 -0.38196	-2.87298 -3.76624 assigned as in ration in dieth y: -465.6919 .482344 hartro -0.83751 -1.73036 -2.71687 -1.39579 -3.63642	1.75039 2.63095 ncorrect. yl ether was 70109 har- ee. 2.16737 1.94371 1.18789 1.27370 0.25126	Elect tree. Free H C C C C C C C C C H H H H C	Energy: -465. 3.32103 2.59996 1.71400 3.18209 0.86412 -0.27790 -1.06189 -1.14976 -2.63896 -0.46805 -0.46805 -0.69074 -0.88648 -0.76749 1.05821	485226 hartr 0.46131 -0.14868 -0.88865 -0.88341 -1.94557 -1.83022 -0.61120 0.60775 0.89804 1.83393 0.38489 2.73130 1.86927 1.89766	ee. 0.65398 0.09512 1.11635 -0.47453 0.46737 -0.22591 -0.56725 0.35009 0.57923 -0.28827 1.31674 0.18415 -1.34417 -0.17458
H H Comp This M06- SMD used. Elect tree. Free H C C H C C H C C	-2.20655 -0.98424 pound 5.7 structure was -2X/6-31g(d) implicit solv ronic Energy Energy: -465. -0.79495 -0.20161 -1.12424 0.60211	-2.87298 -3.76624 assigned as in ration in dieth y: -465.6919 .482344 hartro -0.83751 -1.73036 -2.71687 -1.39579	1.75039 2.63095 ncorrect. yl ether was 70109 har- ee. 2.16737 1.94371 1.18789 1.27370 0.25126 0.61381	Elect tree. Free H C C H C C C C C C C C H H H H C C H H C C C H H C C C H H C C C H H C C C H H C C C H H C C C H H C C C H H C C C C H H C C C C H H C C C C H H C C C C H H C C C C H H C C C C H H C C C C H H C C C C H H C C C C H H C C C C C H H C C C C C H H C C C C C C C H H C	Energy: -465. 3.32103 2.59996 1.71400 3.18209 0.86412 -0.27790 -1.06189 -1.14976 -2.63896 -0.46805 -0.69074 -0.88648 -0.76749	485226 hartr 0.46131 -0.14868 -0.88865 -0.88341 -1.94557 -1.83022 -0.61120 0.60775 0.89804 1.83393 0.38489 2.73130 1.86927	ee. 0.65398 0.09512 1.11635 -0.47453 0.46737 -0.22591 -0.56725 0.35009 0.57923 -0.28827 1.31674 0.18415 -1.34417
H H Comp This M06- SMD used. Elect tree. Free H C C H C C H C C C	-2.20655 -0.98424 pound 5.7 structure was -2X/6-31g(d) implicit solv ronic Energy Energy: -465. -0.79495 -0.20161 -1.12424 0.60211 -0.38196	-2.87298 -3.76624 assigned as in ration in dieth y: -465.6919 .482344 hartro -0.83751 -1.73036 -2.71687 -1.39579 -3.63642	1.75039 2.63095 ncorrect. yl ether was 70109 har- ee. 2.16737 1.94371 1.18789 1.27370 0.25126	Elect tree. Free H C C C C C C C C C H H H H C	Energy: -465. 3.32103 2.59996 1.71400 3.18209 0.86412 -0.27790 -1.06189 -1.14976 -2.63896 -0.46805 -0.46805 -0.69074 -0.88648 -0.76749 1.05821	485226 hartr 0.46131 -0.14868 -0.88865 -0.88341 -1.94557 -1.83022 -0.61120 0.60775 0.89804 1.83393 0.38489 2.73130 1.86927 1.89766	ee. 0.65398 0.09512 1.11635 -0.47453 0.46737 -0.22591 -0.56725 0.35009 0.57923 -0.28827 1.31674 0.18415 -1.34417 -0.17458
H H Comp This M06- SMD used. Elect tree. Free H C C H C C H C C	-2.20655 -0.98424 	-2.87298 -3.76624 assigned as in ration in dieth y: -465.6919 .482344 hartro -0.83751 -1.73036 -2.71687 -1.39579 -3.63642 -4.71592	1.75039 2.63095 ncorrect. yl ether was 70109 har- ee. 2.16737 1.94371 1.18789 1.27370 0.25126 0.61381	Elect tree. Free H C C H C C C C C C C C H H H H C C H H C C C H H C C C H H C C C H H C C C H H C C C H H C C C H H C C C H H C C C C H H C C C C H H C C C C H H C C C C H H C C C C H H C C C C H H C C C C H H C C C C H H C C C C H H C C C C C H H C C C C C H H C C C C C C C H H C	Energy: -465. 3.32103 2.59996 1.71400 3.18209 0.86412 -0.27790 -1.06189 -1.14976 -2.63896 -0.46805 -0.69074 -0.88648 -0.76749 1.05821 1.37791	485226 hartr 0.46131 -0.14868 -0.88865 -0.88341 -1.94557 -1.83022 -0.61120 0.60775 0.89804 1.83393 0.38489 2.73130 1.86927 1.89766 2.85854	ee. 0.65398 0.09512 1.11635 -0.47453 0.46737 -0.22591 -0.56725 0.35009 0.57923 -0.28827 1.31674 0.18415 -1.34417 -0.17458 -0.59276
H H Comp This M06- SMD used. Elect tree. Free H C C H C C H C C C	-2.20655 -0.98424 	-2.87298 -3.76624 assigned as in ration in dieth y: -465.6919 .482344 hartro -0.83751 -1.73036 -2.71687 -1.39579 -3.63642 -4.71592 -5.14206	1.75039 2.63095 ncorrect. yl ether was 70109 har- ee. 2.16737 1.94371 1.18789 1.27370 0.25126 0.61381 2.04322	Elect tree. Free H C C H C C C C C C C C H H H C C C H C C C H C C C H C C C H C C C H C C C H C C C H C C C C H C	Energy: -465. 3.32103 2.59996 1.71400 3.18209 0.86412 -0.27790 -1.06189 -1.14976 -2.63896 -0.46805 -0.69074 -0.88648 -0.76749 1.05821 1.37791 1.83117	485226 hartr 0.46131 -0.14868 -0.88865 -0.88341 -1.94557 -1.83022 -0.61120 0.60775 0.89804 1.83393 0.38489 2.73130 1.86927 1.89766 2.85854 0.75635	ee. 0.65398 0.09512 1.11635 -0.47453 0.46737 -0.22591 -0.56725 0.35009 0.57923 -0.28827 1.31674 0.18415 -1.34417 -0.17458 -0.59276 -0.87054

H O H H H H H	1.15222 -1.70128 -3.15939 -3.11978 -2.75702 -0.66808 1.29230 2.36121	0.15182 -0.61406 0.02632 1.16602 1.72869 -2.71781 -2.94755 -1.37267	-1.48518 -1.60640 0.98929 -0.36587 1.28174 -0.72081 0.49841 1.85451	Com This B3L Gas Elec	pound 5.7 structure was YP/6-31g(d) phase. tronic Energy	-	
H 	1.11422	-0.15708	1.66389	tree. Free	Energy: -465.	690272 hartr	ee.
Compound 5.7 This structure was assigned as correct. B3LYP/6-31g(d) SMD implicit solvation in diethyl ether was used.					-0.68212 -0.85276 -1.36919 -1.66695 -0.52717	-1.21747 -2.13159 -3.26829 -1.89549 -3.49444	1.85740 2.44382 1.52276 3.14125 0.29218
	ronic Energy	v -465 91489)3515 har-	C C C	0.58467 1.20451	-4.24028 -4.95365	0.21222 1.36865
Electronic Energy: -465.914893515 har- tree. Free Energy: -465.707575 hartree.			C C C	2.67105 3.47690 2.74818	-4.60204 -5.84039 -3.50039	1.64021 2.05228 2.73873	
Н	-0.18113	-0.61740	2.02610	С Н	3.09397	-3.30039 -4.17572	0.72020
С	-0.48518	-1.67228	2.06984	Н	3.78711	-3.14677	2.75243
С	-0.13795	-2.31423	0.70289	Н	2.57279	-3.97488	3.71342
Н	-1.57571	-1.67527	2.20070	С	1.79139	-2.29397	2.58513
С	-0.70187	-3.70092	0.55067	Н	2.28245	-1.41627	3.02235
С	-0.24637	-4.88784	0.99763	С	0.40490	-2.47361	3.27401
С	0.96065	-5.23535	1.79269	Н	1.66454	-2.05692	1.52284
С	2.24839	-4.39978	1.78556	Η	0.39107	-1.84200	4.17119
С	3.43410	-5.34971	1.53028	Η	0.30336	-3.50144	3.64142
С	2.44881	-3.64275	3.12681	0	0.58315	-5.70773	2.10335
Н	2.21589	-3.67788	0.96494	Н	3.53313	-6.57101	1.23748
Η	3.52480	-3.45189	3.23603	Η	3.00102	-6.32795	2.90828
Η	2.17606	-4.32056	3.94680	Н	4.50007	-5.56272	2.33003
С	1.72109	-2.29666	3.29569	Н	1.16910	-4.22701	-0.70739
Η	2.06479	-1.86911	4.24619	Н	-0.81664	-2.93098	-0.59608
С	0.17112	-2.33209	3.29272	Η	-2.38808	-3.01745	1.20247
H	2.07531	-1.60225	2.52029	Η	-1.43284	-4.19244	2.10387
Н	-0.20398	-1.81086	4.18271				
Н	-0.18742	-3.36434	3.39139	~	1		
0	0.92580	-6.27133	2.45315		pound 5.8		
Н	3.30570	-5.91053	0.59690	This	structure was	assigned as in	ncorrect.
Н	3.53453	-6.07305	2.34512	N 7 1		· (ODL 0	2005)
Н	4.36591	-4.77789	1.45483		ecular Mechan	nics (OPLS-	-2005), gas
Н	-0.89226	-5.75478	0.86302	phas		45 1-I	
Н ц	-1.67890	-3.73368	0.06641	Enei	gy: +106.4441	43 KJ.	
H H	-0.55837 0.94708	-1.68304 -2.29713	-0.08881 0.56695	Н	1.69720	0.91770	6.38210

C C H C C	1.27200 1.69220 1.73090 0.84880 -0.20230	0.00500 -1.17320 -0.09980 -2.37580 -2.74850	6.80200 5.89690 7.78610 6.22530 5.47820	H C H C H	-2.23810 -1.08750 -1.61420 0.43380 -1.48260	-2.05710 -0.69410 -0.38300 -0.38990 -0.02590	9.19180 7.99750 7.09750 7.88600 8.76440
С	-1.29210	-3.51610	6.07900	Н	1.03620	-1.25860	8.15350
С	-1.73600	-3.13060	7.51230	Н	0.67510	0.35600	8.64490
С	-2.91430	-4.00710	7.98650	0	-1.25460	-4.99090	6.10230
С	-2.08180	-1.61380	7.65480	Н	-3.68670	-3.30220	5.88450
Н	-0.90530	-3.36120	8.17810	Н	-2.99010	-1.69280	5.91760
Н	-2.84980	-1.52220	8.42400	Н	-4.05690	-2.21710	7.21400
Η	-2.56760	-1.24230	6.75110	Н	1.10190	-3.46180	6.42970
С	-0.92150	-0.66920	8.08110	Н	-0.89920	-1.54260	5.11160
Η	-1.33190	0.03190	8.80980	Н	1.27790	-0.45050	4.45490
С	-0.26270	0.18950	6.96330	Н	2.12380	-1.40300	5.65880
Н	-0.17230	-1.22180	8.64850				
Η	-0.44100	1.23710	7.21080				
Η	-0.76240	0.04740	6.00450				
Ο	-1.87080	-4.40920	5.46300		pound 5.8		
Η	-2.67920	-5.06930	7.90230		structure was	assigned as in	ncorrect.
Η	-3.81160	-3.82050	7.39490		-2X/6-31g(d)		
Η	-3.15570	-3.81410	9.03160	SMD	implicit solv	ation in dieth	yl ether was
Η	-0.39370	-2.29890	4.51580	used.			
Η	0.98700	-2.77700	7.21910				
Η	1.55520	-0.90560	4.84800	Elect	ronic Energy	y: -465.6854	97313 har-
						,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Н	2.74860	-1.41000	6.02930	tree.	0,		
Н	2.74860			tree.	Energy: -465.		
H 	2.74860			tree. Free	Energy: -465.	476518 hartro	ee.
				tree. Free H	Energy: -465. 1.68258	476518 hartro 0.93618	ee. 6.33655
Com	 pound 5.8	-1.41000	6.02930	tree. Free H C	Energy: -465. 1.68258 1.26077	476518 hartro 0.93618 0.02846	ee. 6.33655 6.78195
Com		-1.41000	6.02930	tree. Free H C C	Energy: -465. 1.68258 1.26077 1.72101	476518 hartro 0.93618 0.02846 -1.18280	ee. 6.33655 6.78195 5.92460
Com This	pound 5.8 structure was	-1.41000 assigned as c	6.02930 orrect.	tree. Free H C C H	Energy: -465. 1.68258 1.26077 1.72101 1.69467	476518 hartro 0.93618 0.02846 -1.18280 -0.05661	ee. 6.33655 6.78195 5.92460 7.78604
Com This Mole	 pound 5.8 structure was ecular Mecha	-1.41000 assigned as c	6.02930 orrect.	tree. Free H C C H C	Energy: -465. 1.68258 1.26077 1.72101 1.69467 0.83644	476518 hartro 0.93618 0.02846 -1.18280 -0.05661 -2.32430	ee. 6.33655 6.78195 5.92460 7.78604 6.29098
Com This Mole phase	pound 5.8 structure was cular Mecha	-1.41000 assigned as c nics (OPLS-	6.02930 orrect.	tree. Free H C C H C C	Energy: -465. 1.68258 1.26077 1.72101 1.69467 0.83644 -0.19322	476518 hartro 0.93618 0.02846 -1.18280 -0.05661 -2.32430 -2.72665	ee. 6.33655 6.78195 5.92460 7.78604 6.29098 5.54095
Com This Mole phase	 pound 5.8 structure was ecular Mecha	-1.41000 assigned as c nics (OPLS-	6.02930 orrect.	tree. Free H C C H C C C C	Energy: -465. 1.68258 1.26077 1.72101 1.69467 0.83644 -0.19322 -1.36653	476518 hartro 0.93618 0.02846 -1.18280 -0.05661 -2.32430 -2.72665 -3.45372	ee. 6.33655 6.78195 5.92460 7.78604 6.29098 5.54095 6.08530
Com This Mole phase Energ	pound 5.8 structure was ccular Mecha e. gy: +117.0066	-1.41000 assigned as c nics (OPLS- 538 kJ.	6.02930 orrect. -2005), gas	tree. Free H C C H C C C C C	Energy: -465. 1.68258 1.26077 1.72101 1.69467 0.83644 -0.19322 -1.36653 -1.72781	476518 hartro 0.93618 0.02846 -1.18280 -0.05661 -2.32430 -2.72665 -3.45372 -3.16034	ee. 6.33655 6.78195 5.92460 7.78604 6.29098 5.54095 6.08530 7.53938
Com This Mole phase Energ H	pound 5.8 structure was cular Mecha e. gy: +117.0066 0.15530	-1.41000 assigned as c nics (OPLS- 538 kJ. 0.88240	6.02930 orrect. -2005), gas 6.14330	tree. Free H C C H C C C C C C C	Energy: -465. 1.68258 1.26077 1.72101 1.69467 0.83644 -0.19322 -1.36653 -1.72781 -2.90268	476518 hartro 0.93618 0.02846 -1.18280 -0.05661 -2.32430 -2.72665 -3.45372 -3.16034 -4.03024	ee. 6.33655 6.78195 5.92460 7.78604 6.29098 5.54095 6.08530 7.53938 7.97254
Com This Mole phase Ener H C	pound 5.8 structure was ccular Mecha e. gy: +117.0066 0.15530 0.89520	-1.41000 assigned as c nics (OPLS- 538 kJ. 0.88240 0.17160	6.02930 orrect. -2005), gas 6.14330 6.51420	tree. Free H C C H C C C C C C C C	Energy: -465. 1.68258 1.26077 1.72101 1.69467 0.83644 -0.19322 -1.36653 -1.72781 -2.90268 -2.06106	476518 hartro 0.93618 0.02846 -1.18280 -0.05661 -2.32430 -2.72665 -3.45372 -3.16034 -4.03024 -1.64556	ee. 6.33655 6.78195 5.92460 7.78604 6.29098 5.54095 6.08530 7.53938 7.97254 7.71352
Com This Mole phase Energ H C C	pound 5.8 structure was ecular Mecha e. gy: +117.0066 0.15530 0.89520 1.17890	-1.41000 assigned as c nics (OPLS- 538 kJ. 0.88240 0.17160 -0.90200	6.02930 orrect. -2005), gas 6.14330 6.51420 5.44280	tree. Free H C C H C C C C C C C H	Energy: -465. 1.68258 1.26077 1.72101 1.69467 0.83644 -0.19322 -1.36653 -1.72781 -2.90268 -2.06106 -0.85855	476518 hartro 0.93618 0.02846 -1.18280 -0.05661 -2.32430 -2.72665 -3.45372 -3.16034 -4.03024 -1.64556 -3.38828	ee. 6.33655 6.78195 5.92460 7.78604 6.29098 5.54095 6.08530 7.53938 7.97254 7.71352 8.17090
Com This Mole phase Energ H C C H	 pound 5.8 structure was ccular Mecha e. gy: +117.0066 0.15530 0.89520 1.17890 1.80760	-1.41000 assigned as c nics (OPLS- 538 kJ. 0.88240 0.17160 -0.90200 0.75230	6.02930 orrect. -2005), gas 6.14330 6.51420 5.44280 6.65700	tree. Free H C C H C C C C C C H H H	Energy: -465. 1.68258 1.26077 1.72101 1.69467 0.83644 -0.19322 -1.36653 -1.72781 -2.90268 -2.06106 -0.85855 -2.78459	476518 hartro 0.93618 0.02846 -1.18280 -0.05661 -2.32430 -2.72665 -3.45372 -3.16034 -4.03024 -1.64556 -3.38828 -1.59847	ee. 6.33655 6.78195 5.92460 7.78604 6.29098 5.54095 6.08530 7.53938 7.97254 7.71352 8.17090 8.53559
Com This Mole phase Energ H C C H C H	 pound 5.8 structure was ccular Mecha e. gy: +117.0066 0.15530 0.89520 1.17890 1.80760 0.06230	-1.41000 assigned as c nics (OPLS- 538 kJ. 0.88240 0.17160 -0.90200 0.75230 -1.91260	6.02930 orrect. -2005), gas 6.14330 6.51420 5.44280 6.65700 5.43510	tree. Free H C C H C C C C C C H H H H	Energy: -465. 1.68258 1.26077 1.72101 1.69467 0.83644 -0.19322 -1.36653 -1.72781 -2.90268 -2.06106 -0.85855 -2.78459 -2.60337	476518 hartro 0.93618 0.02846 -1.18280 -0.05661 -2.32430 -2.72665 -3.45372 -3.16034 -4.03024 -1.64556 -3.38828 -1.59847 -1.29159	ee. 6.33655 6.78195 5.92460 7.78604 6.29098 5.54095 6.08530 7.53938 7.97254 7.71352 8.17090 8.53559 6.82577
Com This Mole phase Ener H C C H C H C C H C C	pound 5.8 structure was ecular Mecha e. gy: +117.0066 0.15530 0.89520 1.17890 1.80760 0.06230 0.16180	-1.41000 assigned as c nics (OPLS- 538 kJ. 0.88240 0.17160 -0.90200 0.75230 -1.91260 -3.10820	6.02930 orrect. -2005), gas 6.14330 6.51420 5.44280 6.65700 5.43510 6.03520	tree. Free H C C H C C C C C C C H H H H C	Energy: -465. 1.68258 1.26077 1.72101 1.69467 0.83644 -0.19322 -1.36653 -1.72781 -2.90268 -2.06106 -0.85855 -2.78459 -2.60337 -0.90912	476518 hartro 0.93618 0.02846 -1.18280 -0.05661 -2.32430 -2.72665 -3.45372 -3.16034 -4.03024 -1.64556 -3.38828 -1.59847 -1.29159 -0.66963	ee. 6.33655 6.78195 5.92460 7.78604 6.29098 5.54095 6.08530 7.53938 7.97254 7.71352 8.17090 8.53559 6.82577 8.05593
Com This Mole phase Energ H C C H C C H C C C	pound 5.8 structure was ecular Mecha e. gy: +117.0066 0.15530 0.89520 1.17890 1.80760 0.06230 0.16180 -1.04410	-1.41000 assigned as c nics (OPLS- 538 kJ. 0.88240 0.17160 -0.90200 0.75230 -1.91260 -3.10820 -3.82850	6.02930 orrect. -2005), gas 6.14330 6.51420 5.44280 6.65700 5.43510 6.03520 6.43800	tree. Free H C C H C C C C C C C C H H H H C H C	Energy: -465. 1.68258 1.26077 1.72101 1.69467 0.83644 -0.19322 -1.36653 -1.72781 -2.90268 -2.06106 -0.85855 -2.78459 -2.60337 -0.90912 -1.30562	476518 hartro 0.93618 0.02846 -1.18280 -0.05661 -2.32430 -2.72665 -3.45372 -3.16034 -4.03024 -1.64556 -3.38828 -1.59847 -1.29159 -0.66963 0.04171	ee. 6.33655 6.78195 5.92460 7.78604 6.29098 5.54095 6.08530 7.53938 7.97254 7.71352 8.17090 8.53559 6.82577 8.05593 8.78905
Com This Mole phase Energ H C C H C C C C C C	pound 5.8 structure was ccular Mecha e. gy: +117.0066 0.15530 0.89520 1.17890 1.80760 0.06230 0.16180 -1.04410 -2.07190	-1.41000 assigned as c nics (OPLS- 538 kJ. 0.88240 0.17160 -0.90200 0.75230 -1.91260 -3.10820 -3.82850 -3.10970	6.02930 orrect. -2005), gas 6.14330 6.51420 5.44280 6.65700 5.43510 6.03520 6.43800 7.33700	tree. Free H C C H C C C C C C C H H H C H C	Energy: -465. 1.68258 1.26077 1.72101 1.69467 0.83644 -0.19322 -1.36653 -1.72781 -2.90268 -2.06106 -0.85855 -2.78459 -2.60337 -0.90912 -1.30562 -0.26906	476518 hartro 0.93618 0.02846 -1.18280 -0.05661 -2.32430 -2.72665 -3.45372 -3.16034 -4.03024 -1.64556 -3.38828 -1.59847 -1.29159 -0.66963 0.04171 0.16246	ee. 6.33655 6.78195 5.92460 7.78604 6.29098 5.54095 6.08530 7.53938 7.97254 7.71352 8.17090 8.53559 6.82577 8.05593 8.78905 6.90805
Com This Mole phase Ener H C C H C C C C C C C	pound 5.8 structure was ecular Mecha e. gy: +117.0066 0.15530 0.89520 1.17890 1.80760 0.06230 0.16180 -1.04410 -2.07190 -3.26270	-1.41000 assigned as c nics (OPLS- 538 kJ. 0.88240 0.17160 -0.90200 0.75230 -1.91260 -3.10820 -3.82850 -3.10970 -2.54150	6.02930 orrect. -2005), gas 6.14330 6.51420 5.44280 6.65700 5.43510 6.03520 6.43800 7.33700 6.54170	tree. Free H C C H C C C C C C C C C H H H C H C	Energy: -465. 1.68258 1.26077 1.72101 1.69467 0.83644 -0.19322 -1.36653 -1.72781 -2.90268 -2.06106 -0.85855 -2.78459 -2.60337 -0.90912 -1.30562 -0.26906 -0.12943	476518 hartro 0.93618 0.02846 -1.18280 -0.05661 -2.32430 -2.72665 -3.45372 -3.16034 -4.03024 -1.64556 -3.38828 -1.59847 -1.29159 -0.66963 0.04171 0.16246 -1.22084	ee. 6.33655 6.78195 5.92460 7.78604 6.29098 5.54095 6.08530 7.53938 7.97254 7.71352 8.17090 8.53559 6.82577 8.05593 8.78905 6.90805 8.59580
Com This Mole phase Energ H C C H C C C C C C C C	pound 5.8 structure was ecular Mecha e. gy: +117.0066 0.15530 0.89520 1.17890 1.80760 0.06230 0.16180 -1.04410 -2.07190 -3.26270 -1.47970	-1.41000 assigned as c nics (OPLS- 538 kJ. 0.88240 0.17160 -0.90200 0.75230 -1.91260 -3.10820 -3.10820 -3.10970 -2.54150 -2.14320	6.02930 orrect. -2005), gas 6.14330 6.51420 5.44280 6.65700 5.43510 6.03520 6.43800 7.33700 6.54170 8.41250	tree. Free H C C H C C C C C C C C C H H H C H C	Energy: -465. 1.68258 1.26077 1.72101 1.69467 0.83644 -0.19322 -1.36653 -1.72781 -2.90268 -2.06106 -0.85855 -2.78459 -2.60337 -0.90912 -1.30562 -0.26906 -0.12943 -0.50167	476518 hartro 0.93618 0.02846 -1.18280 -0.05661 -2.32430 -2.72665 -3.45372 -3.16034 -4.03024 -1.64556 -3.38828 -1.59847 -1.29159 -0.66963 0.04171 0.16246 -1.22084 1.21897	ee. 6.33655 6.78195 5.92460 7.78604 6.29098 5.54095 6.08530 7.53938 7.97254 7.71352 8.17090 8.53559 6.82577 8.05593 8.78905 6.90805 8.59580 7.07846
Com This Mole phase Ener H C C H C C C C C C C	pound 5.8 structure was ecular Mecha e. gy: +117.0066 0.15530 0.89520 1.17890 1.80760 0.06230 0.16180 -1.04410 -2.07190 -3.26270	-1.41000 assigned as c nics (OPLS- 538 kJ. 0.88240 0.17160 -0.90200 0.75230 -1.91260 -3.10820 -3.82850 -3.10970 -2.54150	6.02930 orrect. -2005), gas 6.14330 6.51420 5.44280 6.65700 5.43510 6.03520 6.43800 7.33700 6.54170	tree. Free H C C H C C C C C C C C C H H H C H C	Energy: -465. 1.68258 1.26077 1.72101 1.69467 0.83644 -0.19322 -1.36653 -1.72781 -2.90268 -2.06106 -0.85855 -2.78459 -2.60337 -0.90912 -1.30562 -0.26906 -0.12943	476518 hartro 0.93618 0.02846 -1.18280 -0.05661 -2.32430 -2.72665 -3.45372 -3.16034 -4.03024 -1.64556 -3.38828 -1.59847 -1.29159 -0.66963 0.04171 0.16246 -1.22084	ee. 6.33655 6.78195 5.92460 7.78604 6.29098 5.54095 6.08530 7.53938 7.97254 7.71352 8.17090 8.53559 6.82577 8.05593 8.78905 6.90805 8.59580

H H H H H H	-2.69631 -3.80220 -3.11366 -0.27934 0.93144 1.60013 2.78086	-5.09046 -3.77421 -3.88324 -2.40926 -2.69168 -0.94594 -1.38419	7.80174 7.40376 9.03622 4.50204 7.31220 4.86168 6.11333	Compound 5.8 This structure was assigned as incorrect. B3LYP/6-31g(d) Gas phase. Electronic Energy: -465.890341214 har- tree. Free Energy: -465.683818 hartree.
This s B3LY	/P/6-31g(d)	assigned as in ation in diethy		H1.687310.934236.31607C1.268800.027886.77131C1.73857-1.195315.91925H1.71235-0.042997.77345C0.85079-2.338626.27831C0.17(10)-2.757085.52580
Electronic Energy: -465.904049460 har- tree. Free Energy: -465.697776 hartree.				C-0.17619-2.757985.52580C-1.37624-3.444296.06248C-1.73355-3.161937.53061C-2.90346-4.049267.96953C-2.07269-1.643727.74172
H C C H C C C C C C C C C C H H H H C H C C H C C H C C H C C C H C C C H C C C H C C C C H C	$\begin{array}{c} 1.68695\\ 1.26732\\ 1.74011\\ 1.70933\\ 0.84913\\ -0.17547\\ -1.37933\\ -1.73373\\ -2.89515\\ -2.07756\\ -0.85705\\ -2.77193\\ -2.65845\\ -0.93324\\ -1.35906\\ -0.26741\\ -0.16295\end{array}$	0.92763 0.02428 -1.20119 -0.04357 -2.33995 -2.75847 -3.43563 -3.16017 -4.05162 -1.64206 -3.38882 -1.61953 -1.27853 -0.64258 0.08614 0.17494 -1.16700	6.31168 6.77197 5.92413 7.77475 6.28387 5.52500 6.05611 7.52304 7.97442 7.73555 8.14430 8.58474 6.87647 8.06534 8.76682 6.90997 8.64494	C -2.07269 -1.04372 7.74172 H -0.86141 -3.39608 8.15791 H -2.76842 -1.61724 8.58954 H -2.65178 -1.28123 6.88121 C -0.92744 -0.64385 8.06980 H -1.34901 0.08396 8.77444 C -0.26655 0.17464 6.91181 H -0.15432 -1.16760 8.64662 H -0.47810 1.23676 7.08509 H -0.74575 -0.06837 5.95558 O -2.13062 -4.06701 5.32850 H -2.68163 -5.10763 7.80207 H -3.80594 -3.81442 7.39651 H -0.24319 -2.47699 4.47500 H 0.92838 -2.68498 7.30761 H 1.63838 -0.96221 4.85249 H 2.79915 -1.39111 6.12163
н Н О Н Н Н Н Н Н	-0.10293 -0.47453 -0.74628 -2.13971 -2.67689 -3.81415 -3.08671 -0.23519 0.92719 1.64648 2.79820	-1.10700 1.23762 -0.06231 -4.04991 -5.11044 -3.81232 -3.91492 -2.47160 -2.68903 -0.96973 -1.39884	$\begin{array}{c} 8.04494\\ 7.08649\\ 5.95187\\ 5.31466\\ 7.79860\\ 7.42854\\ 9.04495\\ 4.47499\\ 7.31198\\ 4.85656\\ 6.13670\end{array}$	Compound 5.8 This structure was assigned as correct. M06-2X/6-31g(d) SMD implicit solvation in diethyl ether was used. Electronic Energy: -465.680080100 har- tree. Free Energy: -465.471966 hartree.

Η	2.05361	0.55391	7.02653	Н	-1.59469	-3.44565	8.28735
С	1.38589	-0.31317	6.97150	Η	-3.06677	-1.32058	8.09217
С	1.62187	-0.99764	5.61194	Н	-2.40157	-1.10745	6.49217
Η	1.69824	-0.98081	7.78389	С	-0.99019	-0.72481	8.12638
С	0.59371	-2.06847	5.35975	Н	-1.44116	-0.04278	8.85726
С	0.16724	-2.88916	6.32126	С	-0.07550	0.15099	7.20630
С	-1.18498	-3.48698	6.22073	Н	-0.37026	-1.40183	8.72793
С	-2.07813	-3.07172	7.38730	Н	-0.02330	1.14511	7.66572
С	-3.46619	-3.68446	7.24996	Н	-0.57306	0.30655	6.23997
С	-2.14751	-1.51798	7.44427	0	-1.62796	-4.05557	5.19849
Η	-1.60366	-3.42472	8.31465	Н	-3.40612	-4.79253	7.14486
Η	-3.06695	-1.27924	7.99066	Н	-4.00051	-3.32548	6.37223
Η	-2.30390	-1.14288	6.42338	Н	-4.07607	-3.48121	8.14127
С	-0.97304	-0.75251	8.11506	Н	0.57770	-2.84566	7.29822
Η	-1.41645	-0.10262	8.87687	Н	0.17094	-2.12990	4.35443
С	-0.07406	0.14430	7.21508	Н	1.60525	-0.27377	4.80425
Η	-0.34515	-1.45427	8.67698	Н	2.68474	-1.40647	5.59356
Η	-0.03113	1.13396	7.68162				
Н	-0.56849	0.29873	6.24680				
0	-1.59915	-4.09437	5.25353	Com	pound 5.8		
Н	-3.41163	-4.77208	7.15113		structure was	assigned as c	orrect.
Н	-3.97149	-3.29739	6.35930		YP/6-31g(d)	e	
Н	-4.07903	-3.44515	8.12429) implicit solv	ation in dieth	yl ether was
Н	0.61998	-2.86493	7.30968	used			-
Н	0.06936	-2.07524	4.40439				
Η	1.55302	-0.24879	4.81534	Elec	tronic Energy	y: -465.8983	61168 har-
Н	2.64073	-1.40429	5.56692	tree.	0.		
					Energy: -465.	692986 hartro	ee.
					Energy: -465.	692986 hartro	ee.
Com					Energy: -465. 2.03859	692986 hartro 0.59086	ee. 6.84612
	pound 5.8 structure was	assigned as c	orrect.	Free			
This	structure was	assigned as c	orrect.	Free H	2.03859	0.59086	6.84612
This B3L		assigned as c	orrect.	Free H C	2.03859 1.38819	0.59086 -0.29321	6.84612 6.84520
This B3L	structure was YP/6-31g(d)	assigned as c	orrect.	Free H C C	2.03859 1.38819 1.49549	0.59086 -0.29321 -0.93751	6.84612 6.84520 5.44164
This B3LY Gas p	structure was YP/6-31g(d) bhase.	assigned as c y: -465.8848		Free H C C H	2.03859 1.38819 1.49549 1.81303	0.59086 -0.29321 -0.93751 -0.96978	6.84612 6.84520 5.44164 7.59780
This B3LY Gas p	structure was YP/6-31g(d) bhase.			Free H C C H C	2.03859 1.38819 1.49549 1.81303 0.47814	0.59086 -0.29321 -0.93751 -0.96978 -2.03198	6.84612 6.84520 5.44164 7.59780 5.24351
This B3LY Gas p Elect tree.	structure was YP/6-31g(d) bhase. ronic Energ		52890 har-	Free H C C H C C	2.03859 1.38819 1.49549 1.81303 0.47814 0.12928	0.59086 -0.29321 -0.93751 -0.96978 -2.03198 -2.87664	6.84612 6.84520 5.44164 7.59780 5.24351 6.22254
This B3LY Gas p Elect tree.	structure was YP/6-31g(d) bhase. ronic Energ	y: -465.8848	52890 har-	Free H C H C C C C C	2.03859 1.38819 1.49549 1.81303 0.47814 0.12928 -1.22050	0.59086 -0.29321 -0.93751 -0.96978 -2.03198 -2.87664 -3.48289	6.84612 6.84520 5.44164 7.59780 5.24351 6.22254 6.24797
This B3LY Gas p Elect tree.	structure was YP/6-31g(d) bhase. ronic Energ	y: -465.8848	52890 har-	Free H C C H C C C C C	2.03859 1.38819 1.49549 1.81303 0.47814 0.12928 -1.22050 -1.96458	0.59086 -0.29321 -0.93751 -0.96978 -2.03198 -2.87664 -3.48289 -3.14635	6.84612 6.84520 5.44164 7.59780 5.24351 6.22254 6.24797 7.54749
This B3LY Gas p Elect tree. Free	structure was YP/6-31g(d) phase. ronic Energ Energy: -465	y: -465.8848 .679071 hartre	52890 har- ee.	Free H C C H C C C C C C C	2.03859 1.38819 1.49549 1.81303 0.47814 0.12928 -1.22050 -1.96458 -3.34707	0.59086 -0.29321 -0.93751 -0.96978 -2.03198 -2.87664 -3.48289 -3.14635 -3.80250	6.84612 6.84520 5.44164 7.59780 5.24351 6.22254 6.24797 7.54749 7.58224
This B3LY Gas p Elect tree. Free H	structure was YP/6-31g(d) phase. ronic Energ Energy: -465 2.05449	y: -465.8848 .679071 hartro 0.56437	52890 har- ee. 7.01174	Free H C H C C C C C C C C C	2.03859 1.38819 1.49549 1.81303 0.47814 0.12928 -1.22050 -1.96458 -3.34707 -2.06737	0.59086 -0.29321 -0.93751 -0.96978 -2.03198 -2.87664 -3.48289 -3.14635 -3.80250 -1.59347	6.84612 6.84520 5.44164 7.59780 5.24351 6.22254 6.24797 7.54749 7.58224 7.72623
This B3LY Gas p Elect tree. Free H C	structure was YP/6-31g(d) phase. ronic Energ Energy: -465 2.05449 1.39270	y: -465.8848 .679071 hartro 0.56437 -0.30974	52890 har- ee. 7.01174 6.96463	Free H C C H C C C C C C C H	2.03859 1.38819 1.49549 1.81303 0.47814 0.12928 -1.22050 -1.96458 -3.34707 -2.06737 -1.35962	0.59086 -0.29321 -0.93751 -0.96978 -2.03198 -2.87664 -3.48289 -3.14635 -3.80250 -1.59347 -3.53463	6.84612 6.84520 5.44164 7.59780 5.24351 6.22254 6.24797 7.54749 7.58224 7.72623 8.38117
This B3LY Gas p Elect tree. Free H C C H	structure was YP/6-31g(d) phase. ronic Energ Energy: -465 2.05449 1.39270 1.65680	y: -465.8848 .679071 hartro 0.56437 -0.30974 -1.01510	52890 har- ee. 7.01174 6.96463 5.61147	Free H C C H C C C C C C C H H H	2.03859 1.38819 1.49549 1.81303 0.47814 0.12928 -1.22050 -1.96458 -3.34707 -2.06737 -1.35962 -2.88979	0.59086 - 0.29321 - 0.93751 - 0.96978 - 2.03198 - 2.87664 - 3.48289 - 3.14635 - 3.80250 - 1.59347 - 3.53463 - 1.43692	6.84612 6.84520 5.44164 7.59780 5.24351 6.22254 6.24797 7.54749 7.58224 7.72623 8.38117 8.43498
This B3LY Gas p Elect tree. Free H C C H C C H C C	structure was YP/6-31g(d) phase. ronic Energy Energy: -465 2.05449 1.39270 1.65680 1.71057	y: -465.8848 .679071 hartro 0.56437 -0.30974 -1.01510 -0.95910	52890 har- ee. 7.01174 6.96463 5.61147 7.79059	Free H C C H C C C C C C C H H H H	2.03859 1.38819 1.49549 1.81303 0.47814 0.12928 -1.22050 -1.96458 -3.34707 -2.06737 -1.35962 -2.88979 -2.41018	0.59086 - 0.29321 - 0.93751 - 0.96978 - 2.03198 - 2.87664 - 3.48289 - 3.14635 - 3.80250 - 1.59347 - 3.53463 - 1.43692 - 1.15291	6.84612 6.84520 5.44164 7.59780 5.24351 6.22254 6.24797 7.54749 7.58224 7.72623 8.38117 8.43498 6.77994
This B3LY Gas p Elect tree. Free H C C H C C C C	structure was YP/6-31g(d) ohase. ronic Energy Energy: -465 2.05449 1.39270 1.65680 1.71057 0.64566	y: -465.8848 .679071 hartro 0.56437 -0.30974 -1.01510 -0.95910 -2.09944	52890 har- ee. 7.01174 6.96463 5.61147 7.79059 5.33445	Free H C C H C C C C C C C C H H H H C C	2.03859 1.38819 1.49549 1.81303 0.47814 0.12928 -1.22050 -1.96458 -3.34707 -2.06737 -1.35962 -2.88979 -2.41018 -0.83125	0.59086 - 0.29321 - 0.93751 - 0.96978 - 2.03198 - 2.87664 - 3.48289 - 3.14635 - 3.80250 - 1.59347 - 3.53463 - 1.43692 - 1.15291 - 0.80370	6.84612 6.84520 5.44164 7.59780 5.24351 6.22254 6.24797 7.54749 7.58224 7.72623 8.38117 8.43498 6.77994 8.26213
This B3LY Gas p Elect tree. Free H C C H C C C C C	structure was YP/6-31g(d) ohase. ronic Energ Energy: -465 2.05449 1.39270 1.65680 1.71057 0.64566 0.16124	y: -465.8848 .679071 hartro 0.56437 -0.30974 -1.01510 -0.95910 -2.09944 -2.89445	52890 har- ee. 7.01174 6.96463 5.61147 7.79059 5.33445 6.29566	Free H C C H C C C C C C C C H H H H C C H C C H C C H C C C H C C C H C C C H C C C C H C C C C H C	2.03859 1.38819 1.49549 1.81303 0.47814 0.12928 -1.22050 -1.96458 -3.34707 -2.06737 -1.35962 -2.88979 -2.41018 -0.83125 -1.20742	0.59086 - 0.29321 - 0.93751 - 0.96978 - 2.03198 - 2.87664 - 3.48289 - 3.14635 - 3.80250 - 1.59347 - 3.53463 - 1.43692 - 1.15291 - 0.80370 - 0.16390	6.84612 6.84520 5.44164 7.59780 5.24351 6.22254 6.24797 7.54749 7.58224 7.72623 8.38117 8.43498 6.77994 8.26213 9.06979
This B3LY Gas p Elect tree. Free H C C H C C C C C C	structure was YP/6-31g(d) ohase. ronic Energy Energy: -465 2.05449 1.39270 1.65680 1.71057 0.64566 0.16124 -1.19796	y: -465.8848 .679071 hartro 0.56437 -0.30974 -1.01510 -0.95910 -2.09944 -2.89445 -3.47403	52890 har- ee. 7.01174 6.96463 5.61147 7.79059 5.33445 6.29566 6.18014	Free H C C H C C C C C C C C H H H C C H C C C H C C C H C C C H C C C H C C C C H C C C C H C	2.03859 1.38819 1.49549 1.81303 0.47814 0.12928 -1.22050 -1.96458 -3.34707 -2.06737 -1.35962 -2.88979 -2.41018 -0.83125 -1.20742 -0.04394	0.59086 - 0.29321 - 0.93751 - 0.96978 - 2.03198 - 2.87664 - 3.48289 - 3.14635 - 3.80250 - 1.59347 - 3.53463 - 1.43692 - 1.15291 - 0.80370 - 0.16390 0.13093	6.84612 6.84520 5.44164 7.59780 5.24351 6.22254 6.24797 7.54749 7.58224 7.72623 8.38117 8.43498 6.77994 8.26213 9.06979 7.28486
This B3LY Gas p Elect tree. Free H C C H C C C C C	structure was YP/6-31g(d) ohase. ronic Energy Energy: -465 2.05449 1.39270 1.65680 1.71057 0.64566 0.16124 -1.19796 -2.08377	y: -465.8848 .679071 hartro 0.56437 -0.30974 -1.01510 -0.95910 -2.09944 -2.89445 -3.47403 -3.07611	52890 har- ee. 7.01174 6.96463 5.61147 7.79059 5.33445 6.29566 6.18014 7.37213	Free H C C H C C C C C C C C C H H H H C H C C H C C H C C C H C C C H C C C H C C C C H C C C C C H C	2.03859 1.38819 1.49549 1.81303 0.47814 0.12928 -1.22050 -1.96458 -3.34707 -2.06737 -1.35962 -2.88979 -2.41018 -0.83125 -1.20742 -0.04394 -0.13442	0.59086 - 0.29321 - 0.93751 - 0.96978 - 2.03198 - 2.87664 - 3.48289 - 3.14635 - 3.80250 - 1.59347 - 3.53463 - 1.43692 - 1.15291 - 0.80370 - 0.16390 0.13093 - 1.49303	6.84612 6.84520 5.44164 7.59780 5.24351 6.22254 6.24797 7.54749 7.58224 7.72623 8.38117 8.43498 6.77994 8.26213 9.06979 7.28486 8.75540

O H H	-1.74963 -3.27728 -3.99611	-4.05096 -4.88396 -3.39969	5.30325 7.42618 6.79689	phase.	lar Mecha : +72.45644	nics (OPLS	-2005), gas
H	-3.83123	-3.62600	8.54944	Lifergy	. 12.43044	г т КЈ.	
H	0.66093	-2.85533	7.16977	Н	-1.37550	-2.14140	-0.44490
H	-0.10958	-2.02951	4.32584		-0.48630	-2.34920	0.15250
Н	1.33321	-0.16768	4.67703		-0.83510	-2.49470	1.64910
Н	2.51964	-1.30730	5.28359		-0.12580	-3.31570	-0.20270
	2.51901	1.50750	5.20557		-2.32720	-2.42500	1.95980
					-3.03910	-1.30410	2.21280
Com	pound 5.9				-2.47040	0.04070	2.04610
	structure was	assigned as c	orrect		-1.89480	0.16220	0.84140
1 1115	structure was	ussigned us e	011001.		-0.68350	0.87150	0.66770
Mole	- 	nics (OPLS	-2005) gas		-0.09290	0.84360	1.58540
Molecular Mechanics (OPLS-2005), gas phase.					-0.99050	2.33080	0.29900
-	e. gy: +56.72922	29 k I		C	0.08570	0.14160	-0.45450
Liiti	6y. • 50.72722	27 KJ.			-0.53550	0.10070	-1.35040
Н	0.17030	-2.74910	-0.68700	C	0.59930	-1.28120	-0.12440
C	-0.13390	-2.49870	0.33020	H	0.95000	0.74880	-0.72590
Č	-1.67590	-2.52690	0.39230	Н	1.31690	-1.24220	0.69600
H	0.25920	-3.30150	0.95560	Н	1.17590	-1.61630	-0.98750
C	-2.25220	-2.43280	1.80230		-2.44800	0.89670	2.92830
Č	-2.52880	-1.34440	2.55910		-2.82650	-3.37860	2.04770
Č	-2.28420	0.07140	2.21520		-0.45160	-3.44240	2.02950
Õ	-1.97530	0.26370	0.92990		-0.32350	-1.73240	2.23800
Č	-0.82730	1.01680	0.58600		-1.54390	2.82750	1.09650
Ĥ	-0.34550	1.41950	1.47930		-1.58970	2.39240	-0.60970
C	-1.25550	2.18670	-0.30750		-0.07280	2.89580	0.13650
Č	0.15820	0.05910	-0.11720		-4.07410	-1.36690	2.51220
H	-0.24530	-0.26270	-1.07800				
C	0.55530	-1.17320	0.73040				
H	1.06070	0.62410	-0.35320				
Н	0.40970	-0.97240	1.79220	Compo	und 5.9		
Н	1.63000	-1.32370	0.62130			assigned as c	orrect.
0	-2.27030	0.96740	3.05720		X/6-31g(d)	8	
Ĥ	-2.45110	-3.39360	2.25390			ation in dieth	vl ether was
Η	-2.11330	-1.78560	-0.27430	used.	p		<i>j</i> = = = = =
Η	-2.01820	-3.47850	-0.01630				
Н	-1.95320	2.83850	0.21920	Electro	nic Energy	v: -501.6178	40620 har-
Н	-1.74830	1.83390	-1.21380	tree.			
Н	-0.39720	2.79000	-0.60280		nergy: -501.	431647 hartr	ee.
Н	-2.92320	-1.50860	3.55060		25		
	· -			Н	0.17527	-2.67821	-0.64541
					-0.16043	-2.43893	0.37179
					-1.70415	-2.47722	0.36085
Com	Compound 5.9				0.20783	-3.24661	1.01645
	This structure was assigned as ambiguous.				-2.33102	-2.44158	1.73265
		<u> </u>	<u> </u>		-2.53648	-1.39664	2.54738

С	-2.05848	-0.02022	2.28816	Ο	-1.90428	0.81694	3.15318
0	-1.93141	0.24791	0.97431	Η	-2.61355	-3.41858	2.18778
С	-0.81108	1.05459	0.55556	Н	-2.11602	-1.72089	-0.24153
H	-0.37555	1.51245	1.44918	Н	-2.00344	-3.46861	-0.06063
C	-1.31736	2.12483	-0.38903	Н	-2.01189	2.80776	0.14307
С	0.18896	0.09388	-0.08511	Н	-1.81537	1.71876	-1.24782
Η	-0.21202	-0.23915	-1.05291	Η	-0.46948	2.75728	-0.73417
С	0.51209	-1.12749	0.79975	Н	-2.99218	-1.52808	3.54371
Н	1.10017	0.66233	-0.30368				
Н	0.27338	-0.90639	1.84904				
Н	1.59278	-1.30673	0.78194	Corr	pound 5.9		
0	-1.77295	0.76232	3.16595		structure was	assigned as c	orrect
H	-2.62769	-3.41279	2.12864		YP/6-31g(d)	ussigned us t	
Н	-2.08523	-1.66328	-0.25803		- · · /		
				Gas	phase.		
Н	-2.00356	-3.41646	-0.11548				
Η	-2.01242	2.79565	0.12342	Elec	tronic Energy	y: -501.8285	84718 har-
Η	-1.83425	1.66902	-1.23990	tree.			
Η	-0.47978	2.71731	-0.76991	Free	Energy: -501.	644604 hartr	ee.
Н	-2.95190	-1.54919	3.53900		0,		
				Н	0.13804	-2.69347	-0.67536
				С	-0.16265	-2.45208	0.35396
Com	pound 5.9			C	-1.71412	-2.50955	0.38983
		againmod ag a	amaat				
	structure was	assigned as c	orrect.	Н	0.23398	-3.26174	0.98153
	YP/6-31g(d)			С	-2.33654	-2.45230	1.76649
SMD) implicit solv	ation in dieth	yl ether was	С	-2.56662	-1.38561	2.55362
used.				С	-2.11065	-0.00539	2.28073
				Ο	-1.93130	0.22895	0.95282
Elect	tronic Energy	y: -501.8413	39151 har-	С	-0.80860	1.05604	0.55343
tree.		,		Η	-0.39415	1.50538	1.46124
	Energy: -501.	657571 hartr	ee	C	-1.31317	2.14607	-0.38056
1100	Lifergy501.	.0 <i>57571</i> Harti		C	0.21818	0.11016	-0.08714
TT	0 12052	0 (00(0	0 (7222				
H	0.13853	-2.69963	-0.67333	Н	-0.14390	-0.19629	-1.07877
С	-0.15988	-2.45464	0.35548	С	0.54319	-1.14269	0.76537
С	-1.71135	-2.51291	0.39119	Н	1.13342	0.69060	-0.26252
Η	0.23690	-3.26189	0.98599	Η	0.35726	-0.93160	1.82625
С	-2.33364	-2.45247	1.76622	Η	1.62028	-1.34138	0.69646
С	-2.56824	-1.38517	2.55330	0	-1.86938	0.80706	3.15082
Č	-2.12126	-0.00411	2.27981	Ĥ	-2.61833	-3.41900	2.18590
0 0	-1.93593	0.23314	0.95772	Н	-2.11957	-1.71378	-0.23715
C							
	-0.80583	1.05672	0.55361	Н	-2.00715	-3.46285	-0.06734
Н	-0.38520	1.50315	1.45969	Н	-2.02571	2.79579	0.13666
С	-1.30814	2.14896	-0.37656	Η	-1.81215	1.70921	-1.25286
С	0.21406	0.10781	-0.09050	Η	-0.47792	2.76109	-0.73439
Η	-0.15259	-0.19812	-1.08042	Η	-2.98776	-1.52322	3.54557
С	0.54549	-1.14356	0.76046				
Ĥ	1.12728	0.69018	-0.26863				
Н	0.36828	-0.93196	1.82323	Corr	pound 5.9		
H	1.62244	-1.34069			1	assigned as a	mhiquous
11	1.02244	-1.34009	0.68373	1 1115	structure was	assigned as a	morguous.

1.000					0 1 4 5 5 0	1 50100	1 00702	
	-2X/6-31g(d)		1 .1	Н	-0.14550	-1.50189	1.99793	
) implicit solv	ation in dieth	yl ether was	C	-2.53371	-2.47097	1.73603	
used				C	-2.88528	-1.35617	2.40362	
				С	-2.22291	-0.04537	2.20448	
	tronic Energy	y: -501.6158	94007 har-	0	-1.88263	0.12770	0.90931	
tree.				С	-0.71081	0.92001	0.55695	
Free	Energy: -501.	429785 hartr	ee.	Η	-0.10502	1.04321	1.46134	
				С	-1.15233	2.28442	0.04577	
Η	0.55769	-2.85883	1.39070	С	0.01069	0.06989	-0.49310	
С	-0.07878	-2.02074	1.08530	Η	-0.72413	-0.16914	-1.27302	
С	-1.46151	-2.57521	0.65586	С	0.68734	-1.22124	0.02349	
Η	-0.18225	-1.40249	1.98417	Η	0.77690	0.68879	-0.97798	
С	-2.52903	-2.46662	1.72422	Η	1.65260	-0.95294	0.47480	
С	-2.88493	-1.36045	2.39246	Η	0.92894	-1.84361	-0.84910	
С	-2.20832	-0.05612	2.18236	0	-1.98383	0.75466	3.09106	
Ο	-1.88161	0.11103	0.89176	Η	-3.03870	-3.39221	2.02617	
С	-0.71160	0.88733	0.55412	Н	-1.82621	-2.06698	-0.23599	
Н	-0.09464	0.97940	1.45636	Н	-1.40237	-3.65550	0.37058	
С	-1.13874	2.26168	0.07597	Н	-1.71614	2.81830	0.81722	
С	-0.00979	0.05262	-0.51247	Н	-1.78625	2.18325	-0.84283	
Н	-0.76475	-0.19813	-1.26850	Н	-0.27905	2.89049	-0.22175	
C	0.67804	-1.21921	0.01574	Н	-3.59769	-1.40357	3.22289	
H	0.73844	0.67481	-1.01752					
Н	1.64629	-0.93677	0.44774					
Н	0.90328	-1.87095	-0.83764	Com	pound 5.9			
0	-1.94330	0.73682	3.05731		structure was	assigned as a	mhiguous	
H	-3.03679	-3.39015	1.99842		YP/6-31g(d)	ussigned us u	inteligueus.	
Н	-1.80940	-2.04306	-0.23595		phase.			
Н	-1.36024	-3.62608	0.37073	Ous	piluse.			
Н	-1.70132	2.77624	0.85989	Flec	tronic Energy	v: -501.8250	93737 har-	
H	-1.77133	2.17680	-0.81376	tree.	tronne Energy	501.0250	//////////////////////////////////////	
H	-0.26217	2.86581	-0.17702		Energy: -501.	6/118/ hartr	<u>00</u>	
H	-3.60794	-1.39912	3.20123	1100	Energy501.	041104 11411		
11	-5.00794	-1.39912	5.20125	Н	0.56751	-2.93251	1.30927	
				C	-0.06823	-2.93231	1.06103	
Com	pound 5.9			C C	-1.48062	-2.59860	0.65487	
	-	assigned as a	mbiguous	Н	-0.14410	-1.50140	1.99124	
	structure was $VD/(-21 c(d))$	assigned as a	morguous.					
	YP/6-31g(d)	ation in diath	- 1 oth on	C	-2.52897	-2.46825	1.74484	
) implicit solv	ation in dieth	yi ether was	C	-2.88487	-1.35114	2.40449	
used	•			C	-2.23668	-0.03416	2.19176	
T 1	· ·	501 0277	45500 1	0	-1.87315	0.11205	0.89491	
	tronic Energy	y: -501.83//	45509 har-	C	-0.70935	0.91241	0.55695	
tree.	E 501	(540001)		Н	-0.10915	1.03234	1.46620	
Free	Energy: -501.	.654338 hartr	ee.	C	-1.15563	2.28080	0.05695	
				С	0.02088	0.07173	-0.49563	
	0.5.010	0 000 10	1 0 1 0 7 4	тт	0 71000	0 1 (0 4 4	1 00000	
Н	0.56812	-2.93049	1.31274	H	-0.71022	-0.16044	-1.28099	
H C C	0.56812 -0.06878 -1.47793	-2.93049 -2.07141 -2.60060	1.31274 1.06595 0.65493	H C H	-0.71022 0.69034 0.79146	-0.16044 -1.22615 0.69160	-1.28099 0.01647 -0.97254	

ττ	1 (50(7	0.0(52(0 46556				
Н	1.65867	-0.96536	0.46556				
Н	0.92709	-1.84869	-0.85727	a	1 = 40		
0	-2.01628	0.78475	3.06117		pound 5.10		
Н	-3.02256	-3.39153	2.04768	This	structure was	assigned as i	ncorrect.
Η	-1.83340	-2.06074	-0.23110				
Η	-1.40805	-3.65315	0.36693	Mole	ecular Mecha	nics (OPLS	-2005), gas
Η	-1.71945	2.79930	0.83759	phas	e.		
Η	-1.79280	2.18058	-0.82898	Ener	gy: +87.67964	49 kJ.	
Н	-0.28688	2.89367	-0.20916		0)		
Н	-3.59024	-1.39558	3.22927	Н	-0.37520	0.57120	12.93770
				С	-0.73820	0.50650	13.96460
				C	-1.63330	-0.73950	14.16630
Com	pound 5.10			H	0.16130	0.35720	14.56360
	-	assigned as a	orraat	C	-1.86230	-1.54120	12.88200
11115	structure was	assigned as c	onect.	C C			
N 7 1	1 1 1	· (ODL 0	2005)		-2.51010	-1.09940	11.77580
	ecular Mecha	inics (OPLS-	-2005), gas	C	-3.15630	0.21750	11.62050
phas				0	-3.67210	0.68110	12.77770
Ener	gy: +72.76789	99 kJ.		С	-3.65620	2.05440	13.15260
				Η	-4.10740	2.07420	14.14490
Η	-0.25030	0.97760	14.98740	С	-4.54490	2.94550	12.26630
С	-1.04660	0.32280	14.63130	С	-2.21080	2.57690	13.31230
С	-0.67290	-0.15990	13.21260	Η	-1.68780	2.57000	12.35500
Η	-1.04040	-0.53290	15.30780	С	-1.36820	1.85350	14.38920
С	-1.54960	-1.29580	12.67680	Н	-2.27330	3.62820	13.59560
С	-2.73310	-1.18540	12.02030	Н	-1.93790	1.74020	15.31230
C	-3.50020	0.04100	11.70900	Н	-0.54430	2.52190	14.64280
0	-2.82000	1.17200	11.90710	0	-3.14870	0.83700	10.55840
Č	-3.39040	2.21060	12.68140	Č	-1.22770	-2.92040	12.89890
H	-4.40890	1.95650	12.98200	H	-1.15950	-1.39030	14.90270
C	-3.43510	3.48830	11.83530	Н	-2.58870	-0.48420	14.62410
C C	-2.52540	2.36530	13.95010	H	-5.54650	2.52560	12.17310
С Н	-1.53660	2.30530	13.69150	H	-4.13760	3.06580	11.26270
п С		1.06980		п Н	-4.64420		
	-2.39200		14.78570			3.94220	12.69570
Н	-2.98220	3.13540	14.57280	Н	-2.54970	-1.73320	10.90310
Н	-3.22790	0.39740	14.59050	Н	-1.40510	-3.46090	11.96860
Н	-2.49140	1.33790	15.83820	Н	-1.63650	-3.51610	13.71570
0	-4.68780	0.01610	11.38970	Н	-0.14950	-2.83810	13.03990
С	-0.97570	-2.67290	12.96540				
Н	-0.60710	0.67200	12.51460				
Η	0.35300	-0.52900	13.24450				
Η	-4.05010	3.34080	10.94700	Com	pound 5.10		
Η	-2.43800	3.78100	11.50560	This	structure was	assigned as c	correct.
Η	-3.86140	4.31790	12.39920		-2X/6-31g(d)	-	
Н	-3.23050	-2.09580	11.72190		D implicit sol	vation in m	ethanol was
Н	-1.62620	-3.47110	12.60600	used	-		
Н	-0.84150	-2.80940	14.03880				
Н	-0.00570	-2.79050	12.48150	Elec	tronic Energy	v: -540.9182	.32296 har-
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		tree.	0.	, 2.0.9102	

Free	Energy: -540	705854 hartr	ee	С	-3.55450	-0.02352	11.94560
1100	Energy: 510	.,		õ	-2.84684	1.12712	11.97482
Н	-0.36549	0.96932	14.99957	Č	-3.40059	2.27969	12.68201
C	-1.15638	0.31496	14.61164	Ĥ	-4.44821	2.05535	12.90224
Č	-0.71733	-0.13451	13.20161	C	-3.30707	3.49061	11.76935
H	-1.17710	-0.56393	15.26894	č	-2.59968	2.41044	13.98305
C	-1.52189	-1.29515	12.65521	Н	-1.60577	2.81960	13.75468
C	-2.74658	-1.23288	12.09726	C	-2.45797	1.08962	14.77785
C	-3.58076	-0.02577	12.00871	Н	-3.10945	3.16383	14.59702
0 0	-2.87944	1.11802	11.96973	Н	-3.30144	0.42291	14.55378
Č	-3.39701	2.27147	12.67527	Н	-2.55110	1.31679	15.84758
H	-4.44978	2.08034	12.90314	0	-4.77757	-0.05219	11.84372
C	-3.26217	3.47461	11.76633	Č	-0.89703	-2.68366	12.84041
C	-2.58572	2.38198	13.96421	Н	-0.68714	0.65969	12.50955
H	-1.57681	2.73979	13.71533	Н	0.33637	-0.52642	13.30788
C	-2.49331	1.05770	14.74757	Н	-3.90655	3.34414	10.86425
H	-3.05231	3.16105	14.57763	Н	-2.26825	3.67805	11.47345
Н	-3.32758	0.39614	14.47616	Н	-3.68138	4.38046	12.28809
Н	-2.62857	1.26416	15.81493	Н	-3.24579	-2.14044	11.75854
0	-4.79929	-0.05883	11.99507	H	-1.54196	-3.49345	12.48641
Č	-0.86789	-2.63538	12.83700	Н	-0.66423	-2.85923	13.89991
H	-0.73358	0.71504	12.51722	H	0.05984	-2.73727	12.30284
Н	0.32335	-0.46891	13.27903			2.13121	12.30201
Н							
Н	-2.21536	3.61859	11.47870	Com	pound 5.10		
Н	-3.60557	4.37477	12.28516		structure was	assigned as c	orrect.
Н	-3.25666	-2.14759	11.80745		YP/6-31g(d)	0	
Η	-1.50519	-3.46070	12.51092		phase.		
Н	-0.60902	-2.78285	13.89328		1		
Н	0.07436	-2.67140	12.27682	Elec	tronic Energy	r: -541.1484	56149 har-
				tree.	0,		
				Free	Energy: -540.	938224 hartr	ee.
Com	pound 5.10						
This	structure was	assigned as c	correct.	Н	-0.31465	1.00157	14.96340
B3L	YP/6-31g(d)			С	-1.11887	0.33748	14.61644
SMD	B3LYP/6-31g(d)						12 21 107
SMD implicit solvation in methanol was				С	-0.69945	-0.17196	13.21107
used.	-	vation in mo	ethanol was	C H	-0.69945 -1.12434	-0.17196 -0.51343	13.21107 15.31190
used.	-	vation in m	ethanol was				
	-			Н	-1.12434	-0.51343	15.31190
				H C	-1.12434 -1.52120	-0.51343 -1.32572	15.31190 12.65915
Elect tree.		y: -541.1620	958754 har-	H C C	-1.12434 -1.52120 -2.72892	-0.51343 -1.32572 -1.22977	15.31190 12.65915 12.06283
Elect tree.	tronic Energ	y: -541.1620	958754 har-	H C C C	-1.12434 -1.52120 -2.72892 -3.56024	-0.51343 -1.32572 -1.22977 -0.01680	15.31190 12.65915 12.06283 11.94684
Elect tree. Free H	tronic Energ	y: -541.1620	958754 har-	H C C C O	-1.12434 -1.52120 -2.72892 -3.56024 -2.83210	-0.51343 -1.32572 -1.22977 -0.01680 1.13437	15.31190 12.65915 12.06283 11.94684 11.97570
Elect tree. Free H C	tronic Energy Energy: -540	y: -541.1620 .952895 hartr	958754 har- ee. 14.96269 14.61753	H C C C O C H C	-1.12434 -1.52120 -2.72892 -3.56024 -2.83210 -3.39399 -4.44178 -3.30893	-0.51343 -1.32572 -1.22977 -0.01680 1.13437 2.27251	15.31190 12.65915 12.06283 11.94684 11.97570 12.67500 12.88942 11.76863
Elect tree. Free H C C	tronic Energy Energy: -540 -0.31591 -1.12231 -0.69805	y: -541.1620 .952895 hartr 0.99693 0.33530 -0.17409	058754 har- ee. 14.96269 14.61753 13.21331	H C C C O C H	-1.12434 -1.52120 -2.72892 -3.56024 -2.83210 -3.39399 -4.44178 -3.30893 -2.60111	-0.51343 -1.32572 -1.22977 -0.01680 1.13437 2.27251 2.04035 3.49182 2.41105	15.31190 12.65915 12.06283 11.94684 11.97570 12.67500 12.88942 11.76863 13.98331
Elect tree. Free H C C H	Energy: -540 -0.31591 -1.12231 -0.69805 -1.12912	y: -541.1620 .952895 hartr 0.99693 0.33530 -0.17409 -0.51695	058754 har- ee. 14.96269 14.61753 13.21331 15.31074	H C C C C C C H C C H C H	-1.12434 -1.52120 -2.72892 -3.56024 -2.83210 -3.39399 -4.44178 -3.30893 -2.60111 -1.60641	-0.51343 -1.32572 -1.22977 -0.01680 1.13437 2.27251 2.04035 3.49182 2.41105 2.82236	15.31190 12.65915 12.06283 11.94684 11.97570 12.67500 12.88942 11.76863 13.98331 13.76005
Elect tree. Free H C C	tronic Energy Energy: -540 -0.31591 -1.12231 -0.69805	y: -541.1620 .952895 hartr 0.99693 0.33530 -0.17409	058754 har- ee. 14.96269 14.61753 13.21331	H C C C O C H C C	-1.12434 -1.52120 -2.72892 -3.56024 -2.83210 -3.39399 -4.44178 -3.30893 -2.60111	-0.51343 -1.32572 -1.22977 -0.01680 1.13437 2.27251 2.04035 3.49182 2.41105	15.31190 12.65915 12.06283 11.94684 11.97570 12.67500 12.88942 11.76863 13.98331

H H O C H	-3.29644 -2.55719 -4.77351 -0.89834 -0.69950	0.41971 1.31057 -0.04157 -2.68763 0.65997	14.54292 15.84640 11.87553 12.84446 12.50600	Н Н Н Н	-3.15630 -3.11712 -1.30259 -0.59482 0.24482	4.39769 -2.13946 -3.46051 -2.99294 -2.58313	12.32770 11.50025 12.06651 13.63321 12.14490
H H H H H	0.33861 -3.90423 -2.27126 -3.68874 -3.24548 -1.54252	-0.51778 3.33968 3.68395 4.37951 -2.13399 -3.49480	13.30049 10.86318 11.47329 12.28722 11.75177 12.48435	This B3L	pound 5.10 structure was YP/6-31g(d) phase.	assigned as a	
Н Н 	-0.67638 0.06184	-2.87010 -2.74674	13.90508 12.31377	tree.	tronic Energy Energy: -540.		
	pound 5.10	· 1	1.		0.070(0	0.000/2	15 452 45
	structure was $VD/(c_2) = c_2(d)$	assigned as a	mbiguous.	H C	-0.87060	0.08063 0.27951	15.45345
	YP/6-31g(d)	votion in m	othen al war	C C	-1.52058 -0.77111	-0.22448	14.59284 13.31289
used.	implicit sol	vation in me	ethanoi was	С Н	-0.77111	-0.22448	13.31289
uscu.				C	-1.46554	-1.35249	12.55964
Flect	ronic Energy	r 5/11 1588	31266 har	C C	-2.65375	-1.24975	12.33904
	Tome Energy	y341.1300	54200 Hai-	C C	-2.03373	-0.05197	11.92802
tree.	Enormy 540	050251 hortr	22	0	-2.78801	1.09397	11.91102
гтее	Energy: -540.	930331 haru	ee.	C		2.26662	12.56135
Н	-0.86137	0.08482	15.44469	С Н	-3.41891 -4.47408	2.20002	12.30133
п С	-1.51923	0.08482	13.44409	п С	-2.72403	2.23803 3.47690	12.27300
C C	-0.76997	-0.22059	13.30836	C C	-2.72403	2.16316	14.09015
H H	-0.70997 -2.41289	-0.22039	13.30830	С Н	-3.60668	3.13098	14.09013
п С	-1.46357	-0.33291	14.76023	п С	-1.91634	1.77776	14.51209
C C	-2.65855	-1.25228	12.33712	С Н	-4.04129	1.43126	14.03312
C C	-2.03833	-0.06030	11.92930	п Н	-1.92256	2.06486	14.44447
$\overset{\mathrm{C}}{\mathrm{O}}$	-2.81054	1.08658	11.91304	п Н	-1.12919	2.00480	13.71239
	-3.42582	2.27480	12.56432	0	-4.72857	-0.08110	11.84894
C H	-4.48016	2.28981	12.30432	C	-0.75432	-2.68153	12.59382
C	-2.71090	3.46961	12.27433	С Н	-0.60430	0.61295	12.59382
C C	-3.30726	2.15925	14.08940	H	0.21995	-0.58522	13.61148
Н	-3.61307	3.12689	14.50906	H	-2.81624	3.45734	10.86013
C	-1.92134	1.77584	14.65322	H	-1.65824	3.49985	12.20135
Н	-4.04524	1.42569	14.03322	H	-3.18401	4.40028	12.20133
H	-1.93633	2.05568	15.71458	H	-3.11459	-2.13144	11.49155
H	-1.13532	2.39265	14.19748	H	-1.30110	-3.46190	12.05670
0	-4.73923	-0.09896	11.84330	H	-0.60398	-3.01387	13.63040
C	-0.75422	-2.67389	12.59372	H	0.24704	-2.59260	12.15039
Н	-0.59658	0.61790	12.62964	11	0.24704	-2.57200	12.13037
H	0.21918	-0.58484	13.60526				
H	-2.80992	3.45968	10.86200	Com	pound 5.10		
H	-1.64434	3.47598	12.20212		structure was	assigned as a	mhiguous
11	1.07777	5.7/5/0	12.20212	1 1113	Structure was	assistica as a	inoi5uous.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M06	-2X/6-31g(d)			С	-2.40550	2.92420	-12.21860
used. C -2.45010 2.91720 -10.87720 C -5.02800 3.14710 -10.96980 Electronic Energy: -540.916732539 har- H -3.71690 3.95550 -12.19800 tree. H -3.71690 3.95550 -13.49120 Free Energy: -540.703686 hartree. H -5.19110 4.21560 -11.10630 C -1.84099 -0.40618 15.53155 C -6.17520 2.68180 -13.28560 C -1.99050 0.14844 14.58231 -7.05890 2.41100 -12.71230 C -0.95478 -0.34694 13.55751 C -6.17820 2.68180 -13.72620 C -3.44036 -0.14991 18.8021 C -6.40800 4.12300 -13.76260 C -3.28676 2.20937 12.80015 -7.38270 4.22310 -14.42930 C -3.8194 3.29107 11.81461 C -4.04740 16.64			vation in m	ethanol was				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-		culturior was				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	useu	•						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Flect	tronic Energy	v· -540 9167	732539 har-	-			
Free Energy: -540.703686 hartree. H -5.19110 4.21560 -11.10630 H -1.84099 -0.40618 15.53155 C -6.17520 2.29230 -13.28560 C -1.99050 0.14844 14.59823 H -7.05890 2.41100 -12.71230 C -0.95478 -0.34694 13.55751 C -6.17080 1.71890 -14.48510 H -3.00577 -0.10953 14.27647 H -5.37130 1.94840 -15.18930 C -1.49437 -1.38408 12.58555 H -7.11160 1.77440 -15.03370 C -3.44036 -0.01469 11.88021 C -6.44800 0.68500 -14.2220 C -3.28676 2.20937 12.80015 H -7.38270 4.22310 -14.24210 H -4.16917 1.84583 13.33999 H -5.66390 4.44290 -14.24210 H -2.18035 2.62314 13.76306 H -3.59850 0.81030		tronic Liferg.	y540.7107	52557 Hai-				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Energy: -540	703686 hartr	·ee				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1100	Lifergy540	.705000 narti					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	н	-1 84099	-0.40618	15 53155				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Η							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Н	0.30868	-2.48527	12.25602		-5.72610	1.97300	-6.75980
Compound 5.11H-5.970600.97960-7.11160This structure was assigned as incorrect.H-7.583602.37050-5.82060C-1.181202.91450-10.04610Molecular Mechanics (OPLS-2005), gasH-1.069501.96650-9.52110phase.H-1.203803.72030-9.31180Energy: +213.728119 kJ.H-0.296803.05320-10.66870H-3.709303.78020-9.41970C-7.959904.27130C-3.767002.94080-10.10660H-8.694103.58160-10.45970					С	-6.94480	2.83380	-6.57260
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							3.82780	-6.20030
C-1.181202.91450-10.04610Molecular Mechanics (OPLS-2005), gasH-1.069501.96650-9.52110phase.H-1.203803.72030-9.31180Energy: +213.728119 kJ.H-0.296803.05320-10.66870H-1.451902.94070-12.72650H-3.709303.78020-9.41970C-7.959904.27130C-3.767002.94080-10.10660H-8.694103.58160-10.45970	Com	pound 5.11			Н	-5.97060	0.97960	-7.11160
Molecular Mechanics (OPLS-2005), gas H phase1.06950 H1.96650 -9.52110 3.72030 -9.31180Energy: +213.728119 kJ.H H-0.29680 H3.05320 -10.66870 H-1.45190 -12.72650H-3.70930 C3.78020 -9.41970 C-9.41970 -7.95990-7.95990 4.27130 -10.04270 -10.45970	This	structure was	assigned as i	ncorrect.	Η	-7.58360	2.37050	-5.82060
phase.H-1.203803.72030-9.31180Energy: +213.728119 kJ.H-0.296803.05320-10.66870H-3.709303.78020-9.41970C-7.959904.27130-10.04270C-3.767002.94080-10.10660H-8.694103.58160-10.45970					С	-1.18120	2.91450	-10.04610
Energy: +213.728119 kJ.H-0.296803.05320-10.66870H-3.709303.78020-9.41970C-7.959904.27130-10.04270C-3.767002.94080-10.10660H-8.694103.58160-10.45970	Mole	ecular Mecha	inics (OPLS	-2005), gas	Η	-1.06950	1.96650	-9.52110
H-1.451902.94070-12.72650H-3.709303.78020-9.41970C-7.959904.27130-10.04270C-3.767002.94080-10.10660H-8.694103.58160-10.45970	phas	e.			Η	-1.20380	3.72030	-9.31180
H-3.709303.78020-9.41970C-7.959904.27130-10.04270C-3.767002.94080-10.10660H-8.694103.58160-10.45970	Ener	gy: +213.728	119 kJ.		Н	-0.29680	3.05320	-10.66870
C -3.76700 2.94080 -10.10660 H -8.69410 3.58160 -10.45970					Н	-1.45190	2.94070	-12.72650
	Н	-3.70930	3.78020	-9.41970	С	-7.95990	4.27130	-10.04270
С -4.91760 2.49220 -12.38000 Н -7.47750 4.77900 -10.87650		-3.76700	2.94080	-10.10660	Н	-8.69410	3.58160	-10.45970
	С	-4.91760	2.49220	-12.38000	Н	-7.47750	4.77900	-10.87650

	0.50400	5 0 0 0 0 0	0.40000	G	0.00720	• • • • • • • •	10 11 500
Н	-8.50490	5.03230	-9.48290	C	-0.98730	2.46880	-10.11500
0	-6.10830	4.56050	-8.67280	Η	-1.01230	1.51080	-9.59600
Н	-5.50390	4.14310	-8.07290	Н	-0.81520	3.25650	-9.38120
54				Н	-0.13620	2.45400	-10.79650
Mole	ecule Name			Н	-1.39930	2.78690	-12.76000
Η	-3.33860	3.70830	-9.36030	С	-8.00660	2.56360	-8.37630
С	-3.54370	2.85510	-9.99610	Η	-7.55320	1.97380	-7.58250
С	-4.84780	2.68020	-12.23190	Н	-8.49340	1.86040	-9.05210
С	-2.31590	2.84710	-12.19070	Η	-8.78270	3.18040	-7.92190
С	-3.57170	3.12160	-12.98090	0	-7.69300	4.08840	-10.10330
С	-2.28920	2.71170	-10.85590	Н	-8.00880	3.44390	-10.71780
С	-4.84550	3.18130	-10.75410				
Н	-4.80330	1.59070	-12.17360				
Н	-3.58630	4.18710	-13.20700				
Н	-4.98020	4.26200	-10.75960	Con	npound 5.11		
Н	-3.48820	2.59330	-13.93020		s structure was	assigned as o	correct
C	-6.13870	3.03610	-13.03340				
H	-6.99910	2.70280	-12.45750	Mol	ecular Mecha	nics (OPLS	5-2005), gas
C	-6.23070	2.26450	-14.36110	phas		(0122	2000), Bus
Ĥ	-5.47680	2.59200	-15.07680	1	rgy: +193.1844	194 k I	
Н	-7.20430	2.41030	-14.83020	Line	lgj: 199.1011		
Н	-6.10260	1.19260	-14.20680	Н	-3.70930	3.78020	-9.41970
C	-6.34380	4.54390	-13.27340	C	-3.76700	2.94080	-10.10660
Н	-6.33650	5.11170	-12.34340	C C	-4.91760	2.49220	-12.38000
H	-7.30770	4.73130	-13.74730	C C	-2.40550	2.92420	-12.21860
H	-5.58050	4.96390	-13.92750	C	-3.62750	2.92420	-12.21800
C	-3.86390	1.61100	-9.14020	C C	-2.45010	2.94070	-10.87720
H	-3.50570	0.72150	-9.14020	C	-5.02800	3.14710	-10.87720
C	-5.93420	2.50790	-9.88370	н Н	-4.81640	1.42050	-12.19800
С Н	-5.93420 -6.54610	1.88050	-10.52990	H	-3.71690	3.95550	-12.19800
				п Н			
$\begin{array}{c} 0\\ C\end{array}$	-5.28940	1.52210	-9.08810		-5.19110	4.21560	-11.10630
C	-3.30590	1.62590	-7.68250	H	-3.43250	2.29230	-13.96060
Н	-3.10960	0.60760	-7.34620	C	-6.17520	2.68180	-13.28560
H	-2.35560	2.15680	-7.62960	H	-7.05890	2.41100	-12.71230
C	-6.95470	3.42110	-9.10000	C	-6.17080	1.71890	-14.48510
C	-6.44020	4.58280	-8.18330	Н	-5.37130	1.94840	-15.18930
Н	-5.70000	5.17340	-8.72350	Н	-7.11160	1.77440	-15.03370
Н	-7.27290	5.27000	-8.02360	H	-6.04490	0.68500	-14.16220
C	-4.32000	2.26530	-6.75290	C	-6.40800	4.12830	-13.76260
С	-5.23240	1.29340	-6.01980	Η	-6.38590	4.84180	-12.94060
Н	-4.63260	0.58470	-5.44900	Η	-7.38270	4.22310	-14.24210
Η	-5.84000	0.72220	-6.72050	Η	-5.66390	4.44290	-14.49390
Н	-5.89050	1.79510	-5.31230	С	-4.04740	1.64600	-9.32360
С	-4.56560	3.57550	-6.91270	Н	-3.59850	0.81030	-9.86270
С	-5.90410	4.24400	-6.76750	С	-6.12790	2.52700	-10.06980
Н	-5.75880	5.16400	-6.20110	Η	-6.87390	2.00620	-10.66480
Н	-3.86160	4.17840	-7.45920	0	-5.46400	1.45800	-9.39960
Н	-6.62050	3.64730	-6.20710	С	-3.56470	1.59510	-7.83900

$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Н	-3.59890	0.55900	-7.49970	Η	1.01555	-0.36841	-1.33290
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Н	-2.52760	1.91050	-7.73510	Η	3.98771	1.48216	0.28169
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-6.93980	3.53240	-9.15640	С	3.14690	-1.22789	0.36877
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-7.70180	2.91920	-7.93020	Н	2.48079	-2.01788	0.73960
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Н	-8.59790	3.50950	-7.73530	С	4.31764	-1.14725	1.36392
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-8.07300						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	п	-3.30390	4.14310	-8.07290				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Com	nound 5 11						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	1	and and an	a anna at				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			assigned as o	correct.				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gas f	phase.						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E1 4			162614 have				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ronic Energy	/: -931./96	163614 nar-				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		E 021	2542671					
H-0.613771.24568-1.07685C-0.12779-3.03322-0.96449C0.113781.28793-0.25706H0.14377-3.72390-0.15856C2.319390.091950.35050H0.79048-2.67870-1.44154C2.274302.50148-0.47442H-0.70511-3.58259-1.71410C3.091171.25103-0.30873O-1.38529-1.16230-1.61047C0.937692.54527-0.44350H-1.96876-0.44566-1.32022C0.91416-0.04789-0.29199H2.156830.370261.40291	Free	Energy: -931.	35426 / harti	ree.				
C0.113781.28793-0.25706H0.14377-3.72390-0.15856C2.319390.091950.35050H0.79048-2.67870-1.44154C2.274302.50148-0.47442H-0.70511-3.58259-1.71410C3.091171.25103-0.30873O-1.38529-1.16230-1.61047C0.937692.54527-0.44350H-1.96876-0.44566-1.32022C0.91416-0.04789-0.29199H2.156830.370261.40291	TT	0 (1277	1 245(9	1.07(05				
C2.319390.091950.35050H0.79048-2.67870-1.44154C2.274302.50148-0.47442H-0.70511-3.58259-1.71410C3.091171.25103-0.30873O-1.38529-1.16230-1.61047C0.937692.54527-0.44350H-1.96876-0.44566-1.32022C0.91416-0.04789-0.29199H2.156830.370261.40291								
C2.274302.50148-0.47442H-0.70511-3.58259-1.71410C3.091171.25103-0.30873O-1.38529-1.16230-1.61047C0.937692.54527-0.44350H-1.96876-0.44566-1.32022C0.91416-0.04789-0.29199H2.156830.370261.40291								
C3.091171.25103-0.30873O-1.38529-1.16230-1.61047C0.937692.54527-0.44350H-1.96876-0.44566-1.32022C0.91416-0.04789-0.291990.44566-1.32022H2.156830.370261.40291								
C0.937692.54527-0.44350H-1.96876-0.44566-1.32022C0.91416-0.04789-0.29199H2.156830.370261.40291								
C 0.91416 -0.04789 -0.29199 H 2.15683 0.37026 1.40291								
Н 2.15683 0.37026 1.40291					Н	-1.96876	-0.44566	-1.32022
H 3.4658/ 0.94465 -1.29/2/ Compound 5.11					C	1		
	Н	3.46587	0.94465	-1.29727	Con	npound 5.11		

This	structure was	assigned as c	correct.	Н	-3.87430	-1.55324	-0.79803	
	YP/6-31g(d)	0		Н	-2.94918	-0.44430	1.92862	
) implicit solv	ation in THF	was used.	Н	-4.31722	-2.23182	0.76888	
	1			С	0.21129	3.85261	-0.61728	
Elect	tronic Energy	v: -931.8119	72396 har-	Н	-0.33652	4.14091	0.29015	
tree.	0.			Н	-0.53225	3.78964	-1.42423	
Free	Energy: -931	.369876 hartr	ee.	Н	0.90128	4.66910	-0.85714	
	27			Н	2.84620	3.41644	-0.65783	
Н	-0.60402	1.26118	-1.08405	С	-0.12687	-3.03068	-0.95758	
С	0.11880	1.29407	-0.26015	Н	0.13750	-3.72128	-0.14923	
С	2.32197	0.08993	0.34835	Η	0.79710	-2.67915	-1.42716	
С	2.28771	2.49611	-0.48136	Η	-0.69708	-3.58487	-1.71041	
С	3.09702	1.23935	-0.32323	Ο	-1.39078	-1.16297	-1.61476	
С	0.95025	2.54855	-0.44184	Η	-1.96418	-0.43767	-1.32389	
С	0.91503	-0.04568	-0.29226					
Н	2.16475	0.37846	1.39876					
Η	3.45709	0.92518	-1.31492	Con	npound 5.11			
Η	1.02046	-0.37002	-1.33133		s structure was	assigned as i	ncorrect.	
Η	4.00253	1.46515	0.25522	B3L	.YP/6-31g(d)	-		
С	3.14287	-1.23381	0.37547	Gas phase.				
Н	2.47494	-2.01730	0.75638		-			
С	4.31760	-1.14918	1.36442	Elec	ctronic Energy	y: -931.7925	591775 har-	
Н	5.06779	-0.41507	1.04574	tree				
Н	4.82613	-2.11800	1.44824	Free	e Energy: -931.	351184 hartr	ee.	
Н	3.97717	-0.86488	2.36821					
С	3.64447	-1.70304	-1.00156	Η	-0.51384	1.36298	-1.21652	
Н	2.85253	-1.70354	-1.75911	С	0.13718	1.38871	-0.33490	
Η	4.03352	-2.72658	-0.93341	С	2.28262	0.11755	0.36325	
Η	4.46017	-1.07316	-1.37645	С	2.35910	2.49597	-0.51775	
С	-0.66514	1.23188	1.08194	С	3.10633	1.20300	-0.35424	
Η	-0.10639	1.78363	1.85066	С	1.02668	2.60600	-0.48222	
С	-0.02831	-0.99361	0.48785	С	0.86685	0.01556	-0.26884	
Η	0.53142	-1.72212	1.08385	Η	2.14170	0.46382	1.39954	
Ο	-0.65805	-0.14956	1.46741	Н	3.43186	0.84439	-1.34315	
С	-2.13112	1.78743	1.09591	Н	0.96694	-0.39094	-1.28005	
Η	-2.43121	1.85342	2.14943	Н	4.03061	1.39414	0.20494	
Η	-2.13023	2.80982	0.70251	С	3.04963	-1.23545	0.45722	
С	-0.97718	-1.86531	-0.42958	Η	2.40071	-1.93002	1.00963	
С	-2.22426	-2.47404	0.29644	С	4.33340	-1.09909	1.29557	
Η	-2.43076	-3.44844	-0.16436	Η	5.09958	-0.51008	0.77816	
Η	-1.96744	-2.67301	1.34451	Η	4.76635	-2.08603	1.49738	
С	-3.06966	0.87172	0.33818	Η	4.13478	-0.61709	2.26079	
С	-3.56786	1.30987	-1.02032	С	3.35674	-1.89798	-0.89688	
Η	-2.76391	1.63110	-1.69757	Н	2.44368	-2.11813	-1.45690	
Н	-4.22302	2.18571	-0.90593	Н	3.88155	-2.84796	-0.73673	
Η	-4.15457	0.53559	-1.52594	Н	4.00813	-1.27439	-1.52013	
С	-3.28314	-0.33352	0.89910	С	-0.78329	1.41198	0.91679	
С	-3.54641	-1.65273	0.24228	Η	-0.28966	1.97195	1.72387	

С	-0.10465	-0.85155	0.56622	С	-0.85931	0.01201	0.26257
Н	0.46880	-1.42850	1.30694	Н	-2.11402	0.47124	-1.41015
Ο	-0.89870	0.04727	1.34570	Н	-3.41234	0.82304	1.32962
С	-2.21835	2.00913	0.68624	Н	-0.96442	-0.41033	1.26786
Н	-2.57921	2.46191	1.61728	Н	-4.01036	1.38387	-0.21814
Н	-2.15779	2.81019	-0.05809	C	-3.01094	-1.22964	-0.46171
C	-0.91348	-1.97817	-0.18642	H	-2.38389	-1.91380	-1.04979
Č	-1.68737	-1.67129	-1.50220	C	-4.32988	-1.08566	-1.22616
Ĥ	-1.04748	-1.06595	-2.15663	Ĥ	-5.07533	-0.53464	-0.64180
Н	-1.77484	-2.64735	-1.99512	Н	-4.75427	-2.07131	-1.44639
C	-3.12352	0.88278	0.23615	Н	-4.18944	-0.55927	-2.17751
Č	-3.96885	0.25347	1.31243	C	-3.26211	-1.89924	0.89239
H	-4.69756	0.98857	1.68355	Ĥ	-2.33095	-2.10632	1.42655
Н	-3.35517	-0.04800	2.16911	Н	-3.77427	-2.85680	0.74225
H	-4.53258	-0.61441	0.95946	Н	-3.90618	-1.28679	1.53315
C	-2.95470	0.39482	-1.00148	C	0.78371	1.41139	-0.90129
C	-3.10217	-1.02891	-1.44478	H	0.28651	1.98085	-1.69958
H	-3.52959	-1.10178	-2.45446	C	0.10479	-0.83946	-0.58164
Н	-2.38124	1.00269	-1.70275	H	-0.46842	-1.40801	-1.32998
Н	-3.75564	-1.60720	-0.78413	0	0.90416	0.05872	-1.34001
C	0.34597	3.94314	-0.64936	Č	2.20536	2.00854	-0.65230
H	-0.21987	4.23168	0.24675	H	2.57933	2.47366	-1.57083
Н	-0.37237	3.92815	-1.48125	Н	2.13316	2.79081	0.11035
Н	1.07542 4.73491 -0.84833				0.89640	-1.95952	0.16759
Н	2.95847	3.39179	-0.68167	C C	1.63355	-1.65730	1.49489
C	-1.80203	-2.71920	0.81956	H	0.99407	-1.02684	2.12670
H	-2.55628	-2.06297	1.25639	Н	1.69247	-2.63088	1.99627
Н	-1.19418	-3.11287	1.64524	C	3.09244	0.86956	-0.21152
Н	-2.29953	-3.56539	0.33330	C	3.91256	0.23301	-1.29724
0	0.10322	-2.89228	-0.66687	H	4.65376	0.95598	-1.66324
H	0.57562	-3.24076	0.10678	Н	3.28086	-0.03698	-2.15034
	0.57502	5.21070	0.10070	Н	4.45505	-0.65401	-0.96068
				C	2.91605	0.37587	1.01822
Com	pound 5.11			C	3.05411	-1.05076	1.44731
	structure was	assigned as i	ncorrect	H	3.48235	-1.13627	2.45343
	-2X/6-31g(d)	ussigned us i		Н	2.35339	0.98584	1.72601
	D implicit solv	vation in THF	was used	Н	3.69217	-1.63230	0.77468
SIVIL		ution in TTH	was used.	C	-0.31851	3.91373	0.61716
Elec	tronic Energy	v [.] -931 4048	826513 har-	H	0.23282	4.17416	-0.29564
tree.	0.	<i>y</i> . <i>yyi</i> . To re	20010 Hui	Н	0.41398	3.89548	1.43443
	Energy: -930	957994 hartr	ee	Н	-1.03501	4.71636	0.81520
1100	Energy. 950			Н	-2.93940	3.38461	0.66046
Н	0.51663	1.34560	1.22931	C	1.81842	-2.66146	-0.82288
C	-0.12956	1.37147	0.34485	H	2.56133	-1.97271	-1.22974
C	-2.25997	0.12062	-0.37467	Н	1.23415	-3.05760	-1.66298
C	-2.34492	2.48320	0.51089	Н	2.33165	-3.49833	-0.33731
C	-3.08971	1.19023	0.34414	0	-0.11744	-2.88120	0.60210
Č	-1.01480	2.58637	0.48000	H	-0.61525	-3.16630	-0.18239
~							

				H	-4.54160	-0.61231	0.95967
			C	-2.95416	0.39665	-0.99619	
Compound 5.11			С	-3.10617	-1.02481	-1.44529	
This structure was assigned as incorrect.			Н	-3.53145	-1.09204	-2.45663	
B3LYP/6-31g(d)			Н	-2.37130	1.00208	-1.69153	
SMD implicit solvation in THF was used.			Н	-3.75973	-1.60643	-0.78753	
1			С	0.34147	3.94034	-0.65673	
Elect	tronic Energy	y: -931.8084	09013 har-	Η	-0.21709	4.23467	0.24236
tree.			Н	-0.38416	3.92042	-1.48206	
Free	Energy: -931.	.368150 hartr	ee.	Η	1.06917	4.73209	-0.86616
				Н	2.95626	3.39262	-0.68857
Н	-0.51650	1.36026	-1.21463	С	-1.80621	-2.71668	0.81424
С	0.13630	1.38582	-0.33512	Н	-2.56091	-2.06007	1.25113
С	2.28439	0.11751	0.36331	Η	-1.19747	-3.11388	1.63761
С	2.35787	2.49625	-0.52080	Η	-2.30929	-3.56175	0.33053
С	3.10775	1.20521	-0.35130	0	0.09446	-2.90109	-0.67343
С	1.02400	2.60487	-0.48617	Н	0.59429	-3.21374	0.10039
С	0.86910	0.01397	-0.27114				
Н	2.14168	0.46070	1.40029				
Н	3.43985	0.84657	-1.33801	Com	pound 5.11		
Н	0.97070	-0.38841	-1.28378		structure was	assigned as c	orrect.
Н	4.02895	1.40102	0.21172		-2X/6-31g(d)	0	
С	3.05329	-1.23453	0.45698) implicit solv	ation in THF	was used.
Н	2.40125	-1.93529	0.99656		P		
C	4 32858	-1 10185	1 30761	Elec	tronic Energy	· -931 4079	27631 har-
C H	4.32858 5.09975	-1.10185 -0.50595	$1.30761 \\ 0.80474$		tronic Energy	7: -931.4079	27631 har-
Н	5.09975	-0.50595	0.80474	tree.			
H H	5.09975 4.76222	-0.50595 -2.08990	0.80474 1.50642	tree.	tronic Energy Energy: -930.		
H H H	5.09975 4.76222 4.11985	-0.50595 -2.08990 -0.62923	0.80474 1.50642 2.27602	tree. Free	Energy: -930.	962926 hartr	ee.
H H H C	5.09975 4.76222 4.11985 3.37719	-0.50595 -2.08990 -0.62923 -1.88579	0.80474 1.50642 2.27602 -0.89781	tree. Free H	Energy: -930. -1.36594	962926 hartr 1.38787	ee. 1.09067
H H C H	5.09975 4.76222 4.11985 3.37719 2.47228	-0.50595 -2.08990 -0.62923 -1.88579 -2.08272	0.80474 1.50642 2.27602 -0.89781 -1.48038	tree. Free H C	Energy: -930. -1.36594 -1.08041	962926 hartr 1.38787 1.12433	ee. 1.09067 0.06314
H H C H H	5.09975 4.76222 4.11985 3.37719 2.47228 3.88008	-0.50595 -2.08990 -0.62923 -1.88579 -2.08272 -2.84858	0.80474 1.50642 2.27602 -0.89781 -1.48038 -0.73992	tree. Free H C C	Energy: -930. -1.36594 -1.08041 -1.42115	962926 hartr 1.38787 1.12433 -1.45842	ee. 1.09067 0.06314 -0.20045
H H C H H	5.09975 4.76222 4.11985 3.37719 2.47228 3.88008 4.05075	-0.50595 -2.08990 -0.62923 -1.88579 -2.08272 -2.84858 -1.26792	0.80474 1.50642 2.27602 -0.89781 -1.48038 -0.73992 -1.50377	tree. Free H C C C	Energy: -930. -1.36594 -1.08041 -1.42115 -2.87096	962926 hartr 1.38787 1.12433 -1.45842 0.23896	ee. 1.09067 0.06314 -0.20045 -1.43558
H H C H H H C	5.09975 4.76222 4.11985 3.37719 2.47228 3.88008 4.05075 -0.78034	-0.50595 -2.08990 -0.62923 -1.88579 -2.08272 -2.84858 -1.26792 1.40875	0.80474 1.50642 2.27602 -0.89781 -1.48038 -0.73992 -1.50377 0.91911	tree. Free H C C C C C	Energy: -930. -1.36594 -1.08041 -1.42115 -2.87096 -2.39240	962926 hartr 1.38787 1.12433 -1.45842 0.23896 -1.18392	ee. 1.09067 0.06314 -0.20045 -1.43558 -1.36048
H H C H H H C H	5.09975 4.76222 4.11985 3.37719 2.47228 3.88008 4.05075 -0.78034 -0.28657	-0.50595 -2.08990 -0.62923 -1.88579 -2.08272 -2.84858 -1.26792 1.40875 1.97025	0.80474 1.50642 2.27602 -0.89781 -1.48038 -0.73992 -1.50377 0.91911 1.72467	tree. Free H C C C C C C	Energy: -930. -1.36594 -1.08041 -1.42115 -2.87096 -2.39240 -2.30673	962926 hartr 1.38787 1.12433 -1.45842 0.23896 -1.18392 1.27832	ee. 1.09067 0.06314 -0.20045 -1.43558 -1.36048 -0.81284
H H C H H H C H C H C	5.09975 4.76222 4.11985 3.37719 2.47228 3.88008 4.05075 -0.78034 -0.28657 -0.10102	-0.50595 -2.08990 -0.62923 -1.88579 -2.08272 -2.84858 -1.26792 1.40875 1.97025 -0.85708	0.80474 1.50642 2.27602 -0.89781 -1.48038 -0.73992 -1.50377 0.91911 1.72467 0.56122	tree. Free H C C C C C C C C	Energy: -930. -1.36594 -1.08041 -1.42115 -2.87096 -2.39240 -2.30673 -0.44988	962926 hartr 1.38787 1.12433 -1.45842 0.23896 -1.18392 1.27832 -0.28066	ee. 1.09067 0.06314 -0.20045 -1.43558 -1.36048 -0.81284 -0.00576
H H C H H C H C H C H	5.09975 4.76222 4.11985 3.37719 2.47228 3.88008 4.05075 -0.78034 -0.28657 -0.10102 0.47201	-0.50595 -2.08990 -0.62923 -1.88579 -2.08272 -2.84858 -1.26792 1.40875 1.97025 -0.85708 -1.43929	0.80474 1.50642 2.27602 -0.89781 -1.48038 -0.73992 -1.50377 0.91911 1.72467 0.56122 1.29711	tree. Free H C C C C C C C H	Energy: -930. -1.36594 -1.08041 -1.42115 -2.87096 -2.39240 -2.30673 -0.44988 -0.79753	962926 hartr 1.38787 1.12433 -1.45842 0.23896 -1.18392 1.27832 -0.28066 -2.31282	ee. 1.09067 0.06314 -0.20045 -1.43558 -1.36048 -0.81284 -0.00576 -0.48795
H H C H H C H C H C H O	5.09975 4.76222 4.11985 3.37719 2.47228 3.88008 4.05075 -0.78034 -0.28657 -0.10102 0.47201 -0.89005	-0.50595 -2.08990 -0.62923 -1.88579 -2.08272 -2.84858 -1.26792 1.40875 1.97025 -0.85708 -1.43929 0.04199	0.80474 1.50642 2.27602 -0.89781 -1.48038 -0.73992 -1.50377 0.91911 1.72467 0.56122 1.29711 1.35054	tree. Free H C C C C C C C H H H	Energy: -930. -1.36594 -1.08041 -1.42115 -2.87096 -2.39240 -2.30673 -0.44988 -0.79753 -3.26184	962926 hartr 1.38787 1.12433 -1.45842 0.23896 -1.18392 1.27832 -0.28066 -2.31282 -1.84974	ee. 1.09067 0.06314 -0.20045 -1.43558 -1.36048 -0.81284 -0.00576 -0.48795 -1.27131
H H C H H H C H C H C H O C	5.09975 4.76222 4.11985 3.37719 2.47228 3.88008 4.05075 -0.78034 -0.28657 -0.10102 0.47201 -0.89005 -2.21580	-0.50595 -2.08990 -0.62923 -1.88579 -2.08272 -2.84858 -1.26792 1.40875 1.97025 -0.85708 -1.43929 0.04199 2.00531	0.80474 1.50642 2.27602 -0.89781 -1.48038 -0.73992 -1.50377 0.91911 1.72467 0.56122 1.29711 1.35054 0.69628	tree. Free H C C C C C C H H H H	Energy: -930. -1.36594 -1.08041 -1.42115 -2.87096 -2.39240 -2.30673 -0.44988 -0.79753 -3.26184 0.10815	962926 hartr 1.38787 1.12433 -1.45842 0.23896 -1.18392 1.27832 -0.28066 -2.31282 -1.84974 -0.43880	ee. 1.09067 0.06314 -0.20045 -1.43558 -1.36048 -0.81284 -0.00576 -0.48795 -1.27131 0.91806
H H H C H H H C H C H O C H	5.09975 4.76222 4.11985 3.37719 2.47228 3.88008 4.05075 -0.78034 -0.28657 -0.10102 0.47201 -0.89005 -2.21580 -2.57297	-0.50595 -2.08990 -0.62923 -1.88579 -2.08272 -2.84858 -1.26792 1.40875 1.97025 -0.85708 -1.43929 0.04199 2.00531 2.45302	$\begin{array}{c} 0.80474\\ 1.50642\\ 2.27602\\ -0.89781\\ -1.48038\\ -0.73992\\ -1.50377\\ 0.91911\\ 1.72467\\ 0.56122\\ 1.29711\\ 1.35054\\ 0.69628\\ 1.63116\end{array}$	tree. Free H C C C C C C C H H H H	Energy: -930. -1.36594 -1.08041 -1.42115 -2.87096 -2.39240 -2.30673 -0.44988 -0.79753 -3.26184 0.10815 -1.92281	962926 hartr 1.38787 1.12433 -1.45842 0.23896 -1.18392 1.27832 -0.28066 -2.31282 -1.84974 -0.43880 -1.45455	ee. 1.09067 0.06314 -0.20045 -1.43558 -1.36048 -0.81284 -0.00576 -0.48795 -1.27131 0.91806 -2.31777
H H H C H H H C H C H O C H H H	5.09975 4.76222 4.11985 3.37719 2.47228 3.88008 4.05075 -0.78034 -0.28657 -0.10102 0.47201 -0.89005 -2.21580 -2.57297 -2.15482	-0.50595 -2.08990 -0.62923 -1.88579 -2.08272 -2.84858 -1.26792 1.40875 1.97025 -0.85708 -1.43929 0.04199 2.00531 2.45302 2.81020	$\begin{array}{c} 0.80474\\ 1.50642\\ 2.27602\\ -0.89781\\ -1.48038\\ -0.73992\\ -1.50377\\ 0.91911\\ 1.72467\\ 0.56122\\ 1.29711\\ 1.35054\\ 0.69628\\ 1.63116\\ -0.04358 \end{array}$	tree. Free H C C C C C C C H H H H H C	Energy: -930. -1.36594 -1.08041 -1.42115 -2.87096 -2.39240 -2.30673 -0.44988 -0.79753 -3.26184 0.10815 -1.92281 -2.15602	962926 hartr 1.38787 1.12433 -1.45842 0.23896 -1.18392 1.27832 -0.28066 -2.31282 -1.84974 -0.43880 -1.45455 -1.91804	ee. 1.09067 0.06314 -0.20045 -1.43558 -1.36048 -0.81284 -0.00576 -0.48795 -1.27131 0.91806 -2.31777 1.08067
H H H C H H H C H C H O C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H C H H C H H C H C H C H C H C H C H H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H H C C H C C H C C H C C H C C H C C H C C C H C C H C C H C C C C C H C C C C C C H C	5.09975 4.76222 4.11985 3.37719 2.47228 3.88008 4.05075 -0.78034 -0.28657 -0.10102 0.47201 -0.89005 -2.21580 -2.57297 -2.15482 -0.91745	-0.50595 -2.08990 -0.62923 -1.88579 -2.08272 -2.84858 -1.26792 1.40875 1.97025 -0.85708 -1.43929 0.04199 2.00531 2.45302 2.81020 -1.97866	$\begin{array}{c} 0.80474\\ 1.50642\\ 2.27602\\ -0.89781\\ -1.48038\\ -0.73992\\ -1.50377\\ 0.91911\\ 1.72467\\ 0.56122\\ 1.29711\\ 1.35054\\ 0.69628\\ 1.63116\\ -0.04358\\ -0.19272\end{array}$	tree. Free H C C C C C C C H H H H H C H	Energy: -930. -1.36594 -1.08041 -1.42115 -2.87096 -2.39240 -2.30673 -0.44988 -0.79753 -3.26184 0.10815 -1.92281 -2.15602 -2.70144	962926 hartr 1.38787 1.12433 -1.45842 0.23896 -1.18392 1.27832 -0.28066 -2.31282 -1.84974 -0.43880 -1.45455 -1.91804 -2.82570	ee. 1.09067 0.06314 -0.20045 -1.43558 -1.36048 -0.81284 -0.00576 -0.48795 -1.27131 0.91806 -2.31777 1.08067 0.78217
H H H C H H H C H C H C C H H C C H H C C H H C C H H C H H C H H C H H C H H C H C H H C H C H C H C H C H C H C H C C H C C H C C H C C C C C H C	5.09975 4.76222 4.11985 3.37719 2.47228 3.88008 4.05075 -0.78034 -0.28657 -0.10102 0.47201 -0.89005 -2.21580 -2.57297 -2.15482 -0.91745 -1.69132	$\begin{array}{c} -0.50595\\ -2.08990\\ -0.62923\\ -1.88579\\ -2.08272\\ -2.84858\\ -1.26792\\ 1.40875\\ 1.97025\\ -0.85708\\ -1.43929\\ 0.04199\\ 2.00531\\ 2.45302\\ 2.81020\\ -1.97866\\ -1.66593\end{array}$	0.80474 1.50642 2.27602 -0.89781 -1.48038 -0.73992 -1.50377 0.91911 1.72467 0.56122 1.29711 1.35054 0.69628 1.63116 -0.04358 -0.19272 -1.50658	tree. Free H C C C C C C C C H H H H C H C C C C	Energy: -930. -1.36594 -1.08041 -1.42115 -2.87096 -2.39240 -2.30673 -0.44988 -0.79753 -3.26184 0.10815 -1.92281 -2.15602 -2.70144 -3.19380	962926 hartr 1.38787 1.12433 -1.45842 0.23896 -1.18392 1.27832 -0.28066 -2.31282 -1.84974 -0.43880 -1.45455 -1.91804 -2.82570 -0.94129	ee. 1.09067 0.06314 -0.20045 -1.43558 -1.36048 -0.81284 -0.00576 -0.48795 -1.27131 0.91806 -2.31777 1.08067 0.78217 1.63558
H H H C H H H C H H H C H O C H H C C H	5.09975 4.76222 4.11985 3.37719 2.47228 3.88008 4.05075 -0.78034 -0.28657 -0.10102 0.47201 -0.89005 -2.21580 -2.57297 -2.15482 -0.91745 -1.69132 -1.05317	-0.50595 -2.08990 -0.62923 -1.88579 -2.08272 -2.84858 -1.26792 1.40875 1.97025 -0.85708 -1.43929 0.04199 2.00531 2.45302 2.81020 -1.97866 -1.66593 -1.05663	0.80474 1.50642 2.27602 -0.89781 -1.48038 -0.73992 -1.50377 0.91911 1.72467 0.56122 1.29711 1.35054 0.69628 1.63116 -0.04358 -0.19272 -1.50658 -2.15904	tree. Free H C C C C C C C C H H H H C H C H H C	Energy: -930. -1.36594 -1.08041 -1.42115 -2.87096 -2.39240 -2.30673 -0.44988 -0.79753 -3.26184 0.10815 -1.92281 -2.15602 -2.70144 -3.19380 -2.72736	962926 hartr 1.38787 1.12433 -1.45842 0.23896 -1.18392 1.27832 -0.28066 -2.31282 -1.84974 -0.43880 -1.45455 -1.91804 -2.82570 -0.94129 -0.01835	ee. 1.09067 0.06314 -0.20045 -1.43558 -1.36048 -0.81284 -0.00576 -0.48795 -1.27131 0.91806 -2.31777 1.08067 0.78217 1.63558 1.99875
H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H H C C H H H C C H H	5.09975 4.76222 4.11985 3.37719 2.47228 3.88008 4.05075 -0.78034 -0.28657 -0.10102 0.47201 -0.89005 -2.21580 -2.57297 -2.15482 -0.91745 -1.69132 -1.05317 -1.78479	$\begin{array}{r} -0.50595 \\ -2.08990 \\ -0.62923 \\ -1.88579 \\ -2.08272 \\ -2.84858 \\ -1.26792 \\ 1.40875 \\ 1.97025 \\ -0.85708 \\ -1.43929 \\ 0.04199 \\ 2.00531 \\ 2.45302 \\ 2.81020 \\ -1.97866 \\ -1.66593 \\ -1.05663 \\ -2.63966 \end{array}$	0.80474 1.50642 2.27602 -0.89781 -1.48038 -0.73992 -1.50377 0.91911 1.72467 0.56122 1.29711 1.35054 0.69628 1.63116 -0.04358 -0.19272 -1.50658 -2.15904 -2.00376	tree. Free H C C C C C C C C H H H H C H H H H H	Energy: -930. -1.36594 -1.08041 -1.42115 -2.87096 -2.39240 -2.30673 -0.44988 -0.79753 -3.26184 0.10815 -1.92281 -2.15602 -2.70144 -3.19380 -2.72736 -3.71747	962926 hartr 1.38787 1.12433 -1.45842 0.23896 -1.18392 1.27832 -0.28066 -2.31282 -1.84974 -0.43880 -1.45455 -1.91804 -2.82570 -0.94129 -0.01835 -1.39641	ee. 1.09067 0.06314 -0.20045 -1.43558 -1.36048 -0.81284 -0.00576 -0.48795 -1.27131 0.91806 -2.31777 1.08067 0.78217 1.63558 1.99875 2.48434
H H H C H H H C H H C H H C C C H H C C H C H H C C H H C C H H C C H H C C H H C C H C H H C C H C H H C C H C H H C C H	5.09975 4.76222 4.11985 3.37719 2.47228 3.88008 4.05075 -0.78034 -0.28657 -0.10102 0.47201 -0.89005 -2.21580 -2.57297 -2.15482 -0.91745 -1.69132 -1.05317 -1.78479 -3.12512	$\begin{array}{c} -0.50595\\ -2.08990\\ -0.62923\\ -1.88579\\ -2.08272\\ -2.84858\\ -1.26792\\ 1.40875\\ 1.97025\\ -0.85708\\ -1.43929\\ 0.04199\\ 2.00531\\ 2.45302\\ 2.81020\\ -1.97866\\ -1.66593\\ -1.05663\\ -2.63966\\ 0.88308\end{array}$	0.80474 1.50642 2.27602 -0.89781 -1.48038 -0.73992 -1.50377 0.91911 1.72467 0.56122 1.29711 1.35054 0.69628 1.63116 -0.04358 -0.19272 -1.50658 -2.15904 -2.00376 0.24281	tree. Free H C C C C C C C C C H H H H C H H H H	Energy: -930. -1.36594 -1.08041 -1.42115 -2.87096 -2.39240 -2.30673 -0.44988 -0.79753 -3.26184 0.10815 -1.92281 -2.15602 -2.70144 -3.19380 -2.72736 -3.71747 -3.94322	962926 hartr 1.38787 1.12433 -1.45842 0.23896 -1.18392 1.27832 -0.28066 -2.31282 -1.84974 -0.43880 -1.45455 -1.91804 -2.82570 -0.94129 -0.01835 -1.39641 -0.66988	ee. 1.09067 0.06314 -0.20045 -1.43558 -1.36048 -0.81284 -0.00576 -0.48795 -1.27131 0.91806 -2.31777 1.08067 0.78217 1.63558 1.99875 2.48434 0.88630
H H H C H H H C H C H H C C H H C C H H C C C H H C C	5.09975 4.76222 4.11985 3.37719 2.47228 3.88008 4.05075 -0.78034 -0.28657 -0.10102 0.47201 -0.89005 -2.21580 -2.57297 -2.15482 -0.91745 -1.69132 -1.05317 -1.78479 -3.12512 -3.97788	$\begin{array}{c} -0.50595\\ -2.08990\\ -0.62923\\ -1.88579\\ -2.08272\\ -2.84858\\ -1.26792\\ 1.40875\\ 1.97025\\ -0.85708\\ -1.43929\\ 0.04199\\ 2.00531\\ 2.45302\\ 2.81020\\ -1.97866\\ -1.66593\\ -1.05663\\ -2.63966\\ 0.88308\\ 0.25555\end{array}$	0.80474 1.50642 2.27602 -0.89781 -1.48038 -0.73992 -1.50377 0.91911 1.72467 0.56122 1.29711 1.35054 0.69628 1.63116 -0.04358 -0.19272 -1.50658 -2.15904 -2.00376 0.24281 1.31373	tree. Free H C C C C C C C C C C C C C C C C C C	Energy: -930. -1.36594 -1.08041 -1.42115 -2.87096 -2.39240 -2.30673 -0.44988 -0.79753 -3.26184 0.10815 -1.92281 -2.15602 -2.70144 -3.19380 -2.72736 -3.71747 -3.94322 -1.17497	962926 hartr 1.38787 1.12433 -1.45842 0.23896 -1.18392 1.27832 -0.28066 -2.31282 -1.84974 -0.43880 -1.45455 -1.91804 -2.82570 -0.94129 -0.01835 -1.39641 -0.66988 -2.33060	ee. 1.09067 0.06314 -0.20045 -1.43558 -1.36048 -0.81284 -0.00576 -0.48795 -1.27131 0.91806 -2.31777 1.08067 0.78217 1.63558 1.99875 2.48434 0.88630 2.18052
H H H C H H H C H H C H H C C C H H C C H C H H C C H H C C H H C C H H C C H H C C H C H H C C H C H H C C H C H H C C H	5.09975 4.76222 4.11985 3.37719 2.47228 3.88008 4.05075 -0.78034 -0.28657 -0.10102 0.47201 -0.89005 -2.21580 -2.57297 -2.15482 -0.91745 -1.69132 -1.05317 -1.78479 -3.12512	$\begin{array}{c} -0.50595\\ -2.08990\\ -0.62923\\ -1.88579\\ -2.08272\\ -2.84858\\ -1.26792\\ 1.40875\\ 1.97025\\ -0.85708\\ -1.43929\\ 0.04199\\ 2.00531\\ 2.45302\\ 2.81020\\ -1.97866\\ -1.66593\\ -1.05663\\ -2.63966\\ 0.88308\end{array}$	0.80474 1.50642 2.27602 -0.89781 -1.48038 -0.73992 -1.50377 0.91911 1.72467 0.56122 1.29711 1.35054 0.69628 1.63116 -0.04358 -0.19272 -1.50658 -2.15904 -2.00376 0.24281	tree. Free H C C C C C C C C C H H H H C H H H H	Energy: -930. -1.36594 -1.08041 -1.42115 -2.87096 -2.39240 -2.30673 -0.44988 -0.79753 -3.26184 0.10815 -1.92281 -2.15602 -2.70144 -3.19380 -2.72736 -3.71747 -3.94322	962926 hartr 1.38787 1.12433 -1.45842 0.23896 -1.18392 1.27832 -0.28066 -2.31282 -1.84974 -0.43880 -1.45455 -1.91804 -2.82570 -0.94129 -0.01835 -1.39641 -0.66988	ee. 1.09067 0.06314 -0.20045 -1.43558 -1.36048 -0.81284 -0.00576 -0.48795 -1.27131 0.91806 -2.31777 1.08067 0.78217 1.63558 1.99875 2.48434 0.88630

H -0.67912 -1.46233 2.63085 C 4.77050 -0.37640 0.87020 C 0.08369 2.03883 -0.37991 C 6.34280 -1.27310 2.70370 H 0.28584 2.88742 -0.96555 H 6.31650 0.79480 3.24360 C 0.56461 -0.13562 -1.15547 H 7.81120 0.21440 0.65110 H 0.06660 -0.40321 -2.10509 H 6.99100 -1.94810 2.14460 O 0.88413 1.25019 -1.25513 H 7.24490 1.76110 1.24810 C 0.93668 2.62694 0.77936 C 8.37620 0.22970 3.38680 H 0.162836 3.16055 1.46669 C 8.92000 1.66850 4.43040 H 0.8331 -1.6256 0.96072 H 8.17760 2.35866 3.83720 C 1.73094 1.53866 1.45589 H 9.12560 -1.77210 2.89020 C 1.70649 0.326433 3.65401 C <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Η	-0.67912	-1.46233	2.63085	С	4.77050	-0.37640	0.87020
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	0.08369	2.03883	-0.37991	С	6.34280	-1.27310	2.70370
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Н	-0.28584	2.88742	-0.96555	Н	6.31650	0.79480	3.24360
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	С	0.56461	-0.13562	-1.15547	Н	7.81120	0.21440	0.65110
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Н	0.06660	-0.40321	-2.10509	Н	6.99100	-1.94810	2.14460
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.88413	1.25019					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	п	0.95172	-2.20810	-2.40120				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			· 1	4				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	This structure was assigned as correct.							
phase. H 2.63270 -0.17890 0.67500 Energy: +227.808655 kJ. H 3.31680 -1.56680 -0.18600 H 3.50520 0.06260 -0.83390 H 4.77210 -2.31400 1.71730 H 5.57920 1.10900 -0.37960 C 4.94190 -1.30090 2.07240 C 5.72110 0.49840 0.50070	$\mathbf{M} = 1 + \mathbf{M} = 1 + $							
Energy: +227.808655 kJ. H 3.31680 -1.56680 -0.18600 H 3.50520 0.06260 -0.83390 H 4.77210 -2.31400 1.71730 H 5.57920 1.10900 -0.37960 C 4.94190 -1.30090 2.07240								
H 3.50520 0.06260 -0.83390 H 4.77210 -2.31400 1.71730 H 5.57920 1.10900 -0.37960 C 4.94190 -1.30090 2.07240 C 6.98850 0.14240 2.68240 C 5.72110 0.49840 0.50070	1							
H4.77210-2.314001.71730H5.579201.10900-0.37960C4.94190-1.300902.072402.07240C6.988500.142402.68240C5.721100.498400.50070	Energy: +227.808655 kJ.							
C4.94190-1.300902.07240C6.988500.142402.68240C5.721100.498400.50070		4 550 1 0	2 21 400	1 51 52 0				
C 6.98850 0.14240 2.68240 C 5.72110 0.49840 0.50070					Н	5.57920	1.10900	-0.37960
C 5.72110 0.49840 0.50070								
C /.02820 0.69300 1.23820 Compound 5.12					C	1 = 10		
	C	/.02820	0.69300	1.23820	Com	pound 5.12		

This structure was assigned as incorrect.				Н	3.14910	-3.49130	4.79560
Mole	oular Mach	anics (OPLS	2005) and	H C	4.60560 3.79640	-4.93760 1.02700	5.97160 0.60270
phase		ands (OFLS	-2003), gas	H H	2.81990	1.02700	1.08240
-	c. gy: +259.412	415 kI		H	3.73170	0.34030	-0.24160
LICI	gy. +257.412	τ1 <i>3</i> KJ.		H	4.01620	2.01890	0.20640
Н	4.95940	-1.47590	1.08670	Н	5.81260	2.44810	1.65600
C	4.83070	-0.89910	2.00100	11	5.01200	2.44010	1.05000
C	7.23780	-0.48070	2.97430				
C	5.83470	1.41790	1.98170				
C	6.99450	1.04210	2.88090	Com	pound 5.12		
Č	4.87210	0.57090	1.57390		structure was	assigned as c	orrect
Č	5.90550	-1.27300	3.03350		YP/6-31g(d)	ussigned us e	
H	7.72620	-0.62750	3.93940		phase.		
Н	7.89260	1.55390	2.53360	Gub			
Н	6.12930	-2.31830	2.87520	Elec	tronic Energy	v [.] -891 2894	73685 har-
Н	6.78140	1.45060	3.86940	tree.			
C	8.28060	-1.00030	1.94140		Energy: -890.	900478 hartr	ee.
H	9.14180	-0.33400	2.01610		8)		
C	7.82730	-0.95230	0.47280	Н	4.71735	-2.25249	1.67108
Η	7.03550	-1.67100	0.26850	С	4.89760	-1.23762	2.04588
Н	8.65540	-1.19330	-0.19430	С	6.99261	0.14338	2.68195
Н	7.47050	0.03760	0.19050	C	5.73492	0.53239	0.51010
С	8.81520	-2.39990	2.29510	C	7.04776	0.66187	1.23260
Η	9.15970	-2.44640	3.32870	С	4.74578	-0.29271	0.87238
Н	9.66380	-2.66110	1.66190	С	6.30000	-1.23929	2.71655
Н	8.06320	-3.17640	2.15710	Н	6.35197	0.84023	3.24409
С	3.51410	-1.31780	2.69550	Н	7.82775	0.13043	0.66471
Н	2.71460	-0.61370	2.47370	Н	6.93206	-1.98104	2.22236
С	5.16990	-1.12860	4.37900	Н	7.35260	1.71577	1.22934
Η	5.31410	-0.11200	4.74410	С	8.38362	0.16238	3.38279
0	3.76920	-1.23450	4.10020	Н	8.21508	-0.13345	4.42797
С	2.97660	-2.73530	2.32180	С	8.97712	1.58090	3.43282
Η	1.97850	-2.85160	2.74650	Η	9.28875	1.92869	2.44099
Η	2.85730	-2.83700	1.24270	Η	9.86288	1.60469	4.07835
С	5.59560	-2.08600	5.53060	Н	8.25451	2.30413	3.83030
Ο	5.53610	-1.69990	6.69650	С	9.40649	-0.82838	2.79963
С	6.10080	-3.52370	5.24380	Η	9.05165	-1.86401	2.83648
Η	6.78380	-3.50330	4.39840	Н	10.34243	-0.78238	3.36908
Η	6.71690	-3.82840	6.08970	Н	9.65170	-0.59587	1.75649
С	3.85160	-3.84960	2.86860	С	3.90569	-0.97379	3.21942
С	4.80790	-4.50240	1.88050	Н	3.58457	0.07582	3.20324
Η	4.23400	-5.02710	1.11640	С	5.95112	-1.70851	4.13533
Η	5.46360	-5.23300	2.35060	Η	6.63471	-1.31079	4.89761
Η	5.43090	-3.76980	1.37130	0	4.67087	-1.13704	4.43004
С	3.86420	-4.04380	4.19970	С	2.61953	-1.86126	3.25283
С	5.00580	-4.60410	5.01340	Н	1.94898	-1.42470	4.00308
Н	5.43360	-5.48560	4.53820	Η	2.11268	-1.77742	2.28382

С	5.98782	-3.25489	4.31074	С	9.27845	-0.86094	3.04607		
Õ	6.43089	-3.97537	3.43369	Ĥ	8.90831	-1.85695	3.31276		
č	5.51766	-3.86573	5.63755	Н	10.23471	-0.71751	3.56130		
H	6.28394	-4.58095	5.96070	Н	9.48167	-0.85713	1.96843		
Н	5.41900	-3.08886	6.40370	C	3.97692	-0.94313	3.26835		
C	2.93865	-3.29571	3.61985	H	3.70609	0.12107	3.25370		
C	3.07055	-4.32318	2.51859	C	6.01038	-1.74685	4.11271		
Н	3.98864	-4.20640	1.92870	Н	6.73402	-1.41185	4.86778		
Н	2.22754	-4.23951	1.82051	0	4.76090	-1.15044	4.45345		
Н	3.07171	-5.34281	2.91428	C	2.66961	-1.77378	3.32689		
C	3.22866	-3.52864	4.91093	Н	2.00761	-1.34842	4.12273		
C	4.15037	-4.58560	5.44844	H	2.13089	-1.64319	2.38155		
H	4.13037 4.28329	-5.42083	4.75435	C	5.97707	-3.28974	4.21445		
Н	3.04130	-2.71745	5.61328	0	6.31718	-3.98712	3.28007		
Н	3.82150	-4.99406	6.41221	C C	5.55429	-3.98712	5.53127		
п С				С Н			5.80985		
	3.45073 2.59343	-0.35975 -0.04670	0.10044	н Н	6.32481	-4.66270			
Н			0.71212		5.48375	-3.17914	6.31977		
Н	3.23734	-1.38384	-0.23644	C	2.97435	-3.22209	3.62606		
Н	3.47989	0.28794	-0.78171	C	3.11222	-4.20632	2.48712		
Н	5.60041	1.15925	-0.37174	Н	4.14022	-4.27851	2.11197		
				Н	2.47384	-3.91377	1.64665		
C	1 = 10			H	2.81392	-5.21295	2.79631		
	pound 5.12	· 1		C	3.27700	-3.51699	4.89646		
	structure was	•	correct.	C	4.18245	-4.62519	5.34522		
	-2X/6-31g(d)			H	4.27586	-5.41057	4.58890		
SML) implicit solv	ation in THF	was used.	Н	3.12099	-2.73781	5.64242		
				Н	3.87078	-5.08540	6.28844		
	tronic Energ	y: -890.9217	799599 har-	С	3.43822	-0.43044	0.15616		
tree.				Η	2.61495	-0.06031	0.78086		
Free	Energy: -890	.526294 hartr	ee.	Η	3.19443	-1.46697	-0.11007		
				Η	3.45635	0.16678	-0.76031		
Н	4.70941	-2.28723	1.74471	Н	5.58957	1.06710	-0.40042		
С	4.91666	-1.26230	2.07865						
С	6.94425	0.15904	2.68486						
С	5.73428	0.46365	0.49587		pound 5.12				
С	7.03611	0.63392	1.23032	This structure was assigned as correct.					
С	4.75060	-0.35102	0.88756	B3LYP/6-31g(d)					
С	6.32322	-1.24538	2.70669	SMD	implicit solv	ation in THF	was used.		
Н	6.24647	0.83880	3.19915						
Η	7.83895	0.09562	0.70298	Elect	tronic Energy	y: -891.3063	314088 har-		
Н	6.97483	-1.94622	2.17770	tree.					
Н	7.31679	1.69287	1.20029	Free	Energy: -890.	917099 hartr	ee.		
С	8.29302	0.24344	3.43711						
Н	8.07257	0.12083	4.50586	Н	4.73572	-2.28477	1.70975		
С	8.94435	1.61917	3.27909	С	4.92166	-1.26246	2.05861		
Н	9.33180	1.76592	2.26453	С	6.99849	0.14035	2.68287		
Н	9.78765	1.72539	3.96987	С	5.75466	0.48391	0.49456		
Н	8.23330	2.42673	3.48939	С	7.05852	0.64364	1.22827		

С	4.76799	-0.34333	0.86419	B3L	YP/6-31g(d)		
Č	6.32926	-1.25431	2.71776		phase.		
Н	6.33756	0.82982	3.22980		P		
Н	7.85355	0.11967	0.67440	Elec	tronic Energy	v: -891.2793	37099 har-
Н	6.96941	-1.98166	2.21239	tree.	0,		
Н	7.34407	1.70300	1.21413		Energy: -890.	889731 hartro	ee.
C	8.37913	0.19988	3.40123		8)		
H	8.20289	-0.08295	4.44822	Н	4.56853	-2.38443	2.10453
С	8.94184	1.63080	3.43571	С	4.83416	-1.33539	2.27964
H	9.26462	1.97128	2.44449	Ċ	7.06250	-0.05112	2.60758
Н	9.81581	1.68386	4.09676	C	5.79153	0.00319	0.41081
Н	8.19918	2.34668	3.81046	Ċ	7.13097	0.13546	1.08069
C	9.43149	-0.77519	2.84698	Ċ	4.74000	-0.62861	0.94381
Н	9.10368	-1.81929	2.90306	Ċ	6.23869	-1.31955	2.95300
Н	10.36083	-0.69549	3.42479	Ĥ	6.50035	0.80630	3.00798
Н	9.68208	-0.55963	1.80103	Н	7.83180	-0.58966	0.63765
C	3.94424	-0.96973	3.23748	Н	6.80626	-2.19899	2.62766
Ĥ	3.65523	0.08904	3.22347	Н	7.54951	1.12263	0.84929
C	5.99139	-1.74070	4.13238	C	8.46737	-0.00834	3.27995
H	6.68780	-1.36503	4.89364	H	8.30676	-0.11590	4.36107
0	4.71745	-1.15831	4.44340	C	9.14806	1.35757	3.08387
Č	2.62846	-1.81156	3.28670	H	9.44614	1.52160	2.04166
H	1.99021	-1.35901	4.05576	Н	10.05512	1.42579	3.69562
Н	2.10611	-1.69595	2.32982	Н	8.48493	2.18021	3.37723
C	6.01886	-3.28904	4.29200	C	9.41745	-1.14262	2.85722
Õ	6.48160	-4.00222	3.41642	H	8.99197	-2.13620	3.03803
Č	5.53048	-3.91149	5.60427	Н	10.35154	-1.08248	3.42775
H	6.28069	-4.64748	5.91838	Н	9.68272	-1.08152	1.79528
Н	5.44946	-3.14609	6.38341	C	3.86511	-0.78142	3.36700
C	2.90587	-3.26169	3.62687	Н	3.60373	0.25917	3.13376
Č	2.92541	-4.27482	2.50874	C	5.89064	-1.40158	4.45044
Н	3.64647	-4.02915	1.71924	H	6.58143	-0.81927	5.06731
Н	1.93980	-4.30931	2.02216	0	4.62135	-0.74535	4.58833
Н	3.15184	-5.28428	2.86403	Ċ	2.54235	-1.59490	3.57217
С	3.24145	-3.51944	4.90306	Н	1.79009	-0.93710	4.02332
C	4.14863	-4.60236	5.41100	Н	2.15907	-1.89866	2.59078
Н	4.25567	-5.43091	4.70449	С	5.86801	-2.78977	5.17790
Н	3.10626	-2.70719	5.61606	0	5.90239	-2.76109	6.39448
Н	3.82366	-5.01869	6.37280	C	5.80081	-4.15857	4.48080
С	3.48014	-0.43531	0.08326	Η	6.04468	-4.08992	3.41535
Н	2.61655	-0.11008	0.67952	Н	6.55204	-4.79699	4.96173
Н	3.27230	-1.46821	-0.22935	С	2.82270	-2.78758	4.46400
Н	3.51470	0.19026	-0.81543	С	2.55646	-2.58365	5.93479
Н	5.62292	1.09174	-0.40154	Н	1.49206	-2.35130	6.08089
				Н	3.13187	-1.73773	6.32369
				Н	2.79020	-3.46489	6.53661
Com	Compound 5.12				3.43485	-3.86065	3.93507
	structure was	assigned as i	ncorrect.	C C	4.38307	-4.78484	4.64878
		-					

Н	4.38450	-5.79522	4.22200	С	5.82760	-2.84239	5.08572	
Н	3.49635	-3.92312	2.84753	0	5.77487	-2.87383	6.29837	
Н	4.16723	-4.87325	5.71716	С	5.78589	-4.16556	4.32074	
C	3.41967	-0.71882	0.21834	H	5.99284	-4.02899	3.25512	
H	2.61158	-0.22739	0.77709	Н	6.56396	-4.81194	4.74292	
Н	3.11011	-1.76397	0.07605	C	2.88784	-2.76279	4.44692	
Н	3.47541	-0.24602	-0.76739	C	2.71559	-2.59116	5.93197	
H	5.69087	0.45381	-0.57667	H	1.65501	-2.40602	6.14860	
		0.45501	-0.37007	H	3.28085	-1.72555	6.28777	
				H	3.02951	-3.46824	6.50152	
Com	nound 5 13							
	pound 5.12			C	3.43268	-3.83653	3.85785	
		assigned as in	ncorrect.	C	4.38576	-4.80361	4.50306	
	-2X/6-31g(d)	· · ·		Н	4.36649	-5.78859	4.02689	
SMD	implicit solv	ation in THF	was used.	Н	3.42912	-3.87469	2.76803	
				H	4.19773	-4.93798	5.57164	
	ronic Energ	y: -890.9133	47876 har-	С	3.41716	-0.74740	0.27440	
tree.				Η	2.63583	-0.22577	0.84260	
Free	Energy: -890	.518202 hartr	ee.	Η	3.09384	-1.79221	0.17910	
				Н	3.45619	-0.30579	-0.72571	
Н	4.57503	-2.38478	2.15192	Н	5.69340	0.39370	-0.57837	
С	4.85173	-1.33641	2.30808					
С	7.01281	-0.01068	2.62447					
С	5.79802	-0.03572	0.41794	Com	pound 5.12			
С	7.12553	0.13562	1.10308	This	structure was	assigned as in	ncorrect.	
С	4.74895	-0.65217	0.96779		YP/6-31g(d)	U		
С	6.25386	-1.31085	2.94944) implicit solv	ation in THF	was used.	
Η	6.39247	0.82756	2.97957		r			
Н	7.85483	-0.58630	0.70353	Elec	tronic Energy	v [.] -891 2977	92814 har-	
Н	6.84595	-2.16085	2.59219	tree.). 0,1,,,	, <u> </u>	
Н	7.51985	1.12693	0.85411		Energy: -890	907684 hartr	ee	
C	8.37892	0.10204	3.34341	1100	Energy: 090	.90700111010		
Н	8.17121	0.24911	4.41087	Н	4.56896	-2.37680	2.09753	
C	9.16172	1.33339	2.88126	C	4.82827	-1.32830	2.09733	
Н	9.10172	1.20772	1.86377	C C	7.06349	-0.04633	2.28088	
Н	9.54809	1.50846	3.53920	C C	5.78573	0.04033	0.41604	
			2.89733				1.08307	
Н	8.53797	2.23494		C	7.12718	0.14574		
C	9.24310	-1.15520	3.21577	C	4.73266	-0.61411	0.94805	
Н	8.78744	-2.02143	3.70853	C	6.23260	-1.31023	2.95536	
Н	10.22063	-0.99178	3.68248	Н	6.51216	0.81575	3.01514	
H	9.41954	-1.41925	2.16590	Н	7.82568	-0.57844	0.63503	
С	3.91728	-0.75235	3.39718	Η	6.79814	-2.19164	2.63532	
Η	3.67584	0.29201	3.15946	Η	7.54627	1.13331	0.85395	
С	5.92444	-1.43303	4.43681	С	8.47237	-0.02000	3.27491	
Н	6.65438	-0.91447	5.06668	Η	8.31520	-0.12499	4.35676	
0	4.69198	-0.73159	4.60363	С	9.16968	1.33590	3.07337	
С	2.59215	-1.53834	3.61322	Н	9.46971	1.49490	2.03052	
Н	1.86632	-0.88792	4.11385	Н	10.07874	1.39488	3.68462	
Н	2.18259	-1.80138	2.63100	Н	8.51880	2.16972	3.36533	

С	9.40545	-1.16663	2.84973	Н	5.20230	3.30710	-1.71410
Η	8.97009	-2.15433	3.04115	Н	2.67020	3.45410	-1.54630
Н	10.34582	-1.11403	3.41229	Н	3.72790	2.53710	-4.26110
Н	9.66303	-1.11684	1.78485	Н	5.25340	0.56440	-3.01670
С	3.85129	-0.78764	3.36634	Η	1.70980	3.13890	-2.97170
Н	3.58212	0.25215	3.14032	Н	3.85790	4.15300	-3.61020
С	5.88717	-1.38691	4.45291	С	1.48150	0.62230	-2.33990
Н	6.57233	-0.78794	5.06039	Н	0.60830	1.04190	-2.81750
Ο	4.60362	-0.75436	4.59467	Н	1.45610	-0.43040	-2.10430
Ċ	2.53377	-1.61073	3.56041	С	6.41870	3.05200	-3.45780
Н	1.77152	-0.95922	4.00414	Η	7.28840	2.67490	-2.92170
Н	2.16494	-1.91620	2.57457	C	6.63940	4.57050	-3.56840
C	5.89233	-2.76909	5.18892	Ĥ	5.87170	5.05290	-4.17290
Õ	5.96078	-2.73042	6.40711	Н	7.60110	4.79160	-4.03240
č	5.82159	-4.13852	4.50109	Н	6.63810	5.04440	-2.58630
H	6.06560	-4.07076	3.43654	C	6.45730	2.39960	-4.85260
Н	6.57318	-4.77638	4.98251	H	6.36920	1.31500	-4.80120
C	2.81442	-2.80171	4.45473	Н	7.40150	2.61550	-5.35350
C	2.51741	-2.60539	5.92021	Н	5.66120	2.77000	-5.49820
Н	1.44477	-2.40156	6.05159	C	4.08480	1.25620	0.02000
Н	3.05882	-1.74098	6.31887	Н	3.72280	2.27560	0.15410
Н	2.76365	-3.47993	6.52824	C	6.15140	0.92980	-1.04360
C	3.45770	-3.86263	3.93734	Н	7.06020	1.51350	-1.17540
C C	4.40718	-4.77377	4.66491	0	5.50290	1.35620	0.15260
Н	4.42513	-5.78441	4.23928	C	3.46860	0.39200	1.14850
Н	3.54657	-3.91791	2.85175	Н	3.84940	0.73090	2.11210
Н	4.18040	-4.86436	5.73126	Н	2.39660	0.58880	1.18330
C	3.41203	-0.69920	0.22283	C	6.59150	-0.54550	-0.92120
Н	2.60532	-0.20441	0.22283	0	6.51590	-1.32020	-1.87490
Н	3.09746	-0.20441	0.78092	C C	7.16870	-1.03600	0.41490
		-0.22594	-0.76346	С Н		-2.03190	0.41490 0.24270
Н	3.46977				7.57650 8.01300		
Н	5.68410	0.47277	-0.57023	H		-0.39990	0.67900
				C	3.67090	-1.11930	1.03810
C				C	2.42120	-1.91010	0.69900
	pound 5.13	againmad agai	a compost	Н	2.00450	-1.58050	-0.25030
Inis	structure was	assigned as I	ncorrect.	Н	1.66450	-1.77170	1.47150
N 7 1		· (ODI 0	2005)	Н	2.62780	-2.97790	0.61950
	ecular Mecha	inics (OPLS	-2005), gas	C	4.84660	-1.74780	1.23900
phas		47111		Н	4.88960	-2.82160	1.12130
Ener	gy: +193.560	4/1 KJ.		C	6.17140	-1.09570	1.59340
	2 75740	0.07040	1 47000	Н	6.61460	-1.67150	2.40570
Н	3.75740	-0.27840	-1.47000	Η	6.01480	-0.10180	2.00890
C	3.82190	0.80940	-1.43220				
C	5.15260	2.70110	-2.62080				
C	2.61960	2.84290	-2.44770	G	1 - 40		
C	3.84140	3.09940	-3.33380		pound 5.13		
C	2.55720	1.37860	-2.06560	This	structure was	assigned as i	ncorrect.
С	5.11520	1.21310	-2.15230				

Mole phase		unics (OPLS	-2005), gas	C 5.12450 -1.38510 1.99560 H 5.47400 -1.36820 3.01820
1	gy: +200.529	083 kJ.		C 6.05320 -2.10060 1.02180 H 5.48070 -2.70720 0.31960
Н	3.76730	-0.42690	-2.21880	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
C	3.75640	0.62060	-1.91330	
С	5.10650	2.75530	-2.55970	
С	2.57390	2.76730	-2.68420	
С	3.87070	3.20880	-3.36600	Compound 5.13
С	2.54110	1.25890	-2.57190	This structure was assigned as correct.
С	5.11340	1.21180	-2.33140	B3LYP/6-31g(d)
Н	5.00160	3.20830	-1.57180	Gas phase.
Η	2.50260	3.20370	-1.68720	
H	3.90000	2.79630	-4.37500	Electronic Energy: -891.297516289 har-
Н	5.45170	0.71450	-3.24000	tree.
Н	1.71160	3.12700	-3.24710	Free Energy: -890.906975 hartree.
Н	3.85890	4.29280	-3.47350	
С	1.53060	0.52840	-3.07200	Н 3.72087 -0.25845 -1.44874
Н	0.68630	0.99520	-3.55790	C 3.78180 0.83503 -1.42465
Н	1.53070	-0.54990	-3.00560	C 5.15888 2.70614 -2.62633
C	6.44190	3.29150	-3.15510	C 2.62287 2.86653 -2.45113
H	7.26040	2.84830	-2.58920	C 3.85301 3.08805 -3.34939
С	6.59190	4.81090	-2.96670	C 2.53331 1.41315 -2.05134
Н	5.86960	5.37010	-3.56100	C 5.11180 1.23691 -2.13087
Н	7.58530	5.14490	-3.26770	Н 5.22408 3.34435 -1.73056
H	6.45760	5.09650	-1.92290	Н 2.71579 3.50755 -1.56098
C	6.67720	2.90620	-4.62780	H 3.73338 2.48381 -4.25798
Н	6.62790	1.82920	-4.78370	H 5.30628 0.55239 -2.96066
Н	7.66490	3.22890	-4.95830	Н 1.70649 3.17397 -2.96753
Н	5.94970	3.37320	-5.29170	H 3.89058 4.13693 -3.66749
C	3.76840	0.69190	-0.37200	C 1.44921 0.67040 -2.29737
Н	3.10710	1.47670	-0.00260	H 0.55997 1.09555 -2.75693
C	5.98210	0.82890	-1.11460	H 1.41009 -0.38956 -2.05880
Н	6.85860	1.46700	-1.01850	C 6.43420 3.00215 -3.47118
0	5.10250	1.07650	-0.02630	H 7.28326 2.55598 -2.93303
C	3.40610	-0.65210	0.29780	C 6.71899 4.51076 -3.56122
Н	3.77770	-1.48520	-0.29470	H 5.93777 5.04031 -4.11974
H	2.32360	-0.78150	0.31610	H 7.66848 4.69544 -4.07727
C	6.47740	-0.63170	-1.06380	H 6.78499 4.96578 -2.56557
0	6.44360	-1.36570	-2.05140	C 6.41808 2.37389 -4.87508
C	7.01950	-1.15650	0.27130	H 6.22237 1.29647 -4.84646
Н	7.93820	-1.69620	0.04260	H 7.38886 2.51708 -5.36373
H	7.30360	-0.31590	0.90450	H 5.65936 2.83720 -5.51636
C	3.96280	-0.76330	1.70750	C 4.01868 1.26897 0.04819
C	3.15510	-0.05350	2.77690	H 3.60721 2.27261 0.22199
Н ц	3.10640	1.01490	2.56510	C 6.10955 0.97925 -0.99281
Н ц	3.59630	-0.18080	3.76580	H 7.01106 1.60394 -1.07513
Н	2.13800	-0.44470	2.80830	O 5.44646 1.38573 0.20648

С	3.41999	0.34894	1.13421	С	6.73209	4.46711	-3.48173
Η	3.78639	0.72375	2.09871	Н	5.92919	5.03491	-3.96594
Η	2.33637	0.52280	1.13430	Η	7.65331	4.66035	-4.04225
С	6.61493	-0.47808	-0.91911	Η	6.86316	4.86442	-2.46927
0	6.63886	-1.16923	-1.92182	С	6.32888	2.42716	-4.88490
С	7.17367	-0.99397	0.40420	Η	6.04022	1.37079	-4.91178
Η	7.57678	-1.98867	0.18811	Н	7.29873	2.51791	-5.38548
Н	8.01493	-0.34954	0.69961	Н	5.60025	2.99126	-5.47806
С	3.67819	-1.14790	1.01247	С	4.04822	1.27970	0.02312
Ċ	2.46566	-1.98800	0.68170	H	3.64520	2.29125	0.16467
Ĥ	1.98978	-1.66160	-0.25205	C	6.11734	0.94697	-1.01404
Н	1.70042	-1.89134	1.46519	H	7.03829	1.53913	-1.11323
Н	2.71701	-3.04875	0.58349	0	5.46997	1.38242	0.17446
C	4.87064	-1.73165	1.21646	Č	3.44827	0.39168	1.12231
H	4.92679	-2.81444	1.09235	H	3.82494	0.76904	2.08075
C	6.16681	-1.06148	1.58496	Н	2.36579	0.56997	1.12253
H	6.65286	-1.63323	2.38802	C	6.55554	-0.51749	-0.88441
H	5.98967	-0.05337	1.95988	0	6.45373	-1.28429	-1.82028
11	5.76707	-0.03337	1.75700	C	7.17059	-0.95413	0.43356
				Н	7.60065	-1.94435	0.25604
Com	pound 5.13			H	7.98421	-0.26491	0.69256
-		aggionad ag	orraat	п С	3.69860	-0.20491	0.09230
	structure was $2X/(21x)$	assigned as c	offect.	C C			
	2X/6-31g(d)	·· · 11	C		2.49210	-1.91579	0.60619
	implicit solv	ation in chic	brotorm was	Н	2.02944	-1.52563	-0.30795
used.				Н	1.72435	-1.85809	1.38874
D1	· -	000 000	(0004 1	Н	2.74206	-2.96845	0.44733
Elect	ronic Energy	y: -890.9283	68894 har-	C	4.88110	-1.68973	1.20843
tree.	E 000	5220051		Н	4.94436	-2.76912	1.05930
Free	Energy: -890.	532995 hartr	ee.	C	6.16318	-1.01595	1.60609
**				Н	6.63932	-1.58280	2.41539
Н	3.74812	-0.29252	-1.42726	Η	5.97152	-0.00754	1.97286
С	3.80523	0.80290	-1.42734				
С	5.15821	2.66966	-2.60894				
С	2.63702	2.82969	-2.43329		pound 5.13		
С	3.85989	3.04845	-3.33160		structure was	assigned as c	correct.
С	2.55721	1.37370	-2.05128		YP/6-31g(d)		
С	5.12024	1.20101	-2.14277	SMD	implicit solv	ration in chlo	proform was
Η	5.21855	3.29360	-1.70164	used.			
Η	2.73672	3.46095	-1.53903				
Η	3.74329	2.43237	-4.23269	Elect	ronic Energy	r: -891.3157	731614 har-
Η	5.30942	0.52959	-2.98568	tree.			
Н	1.71806	3.13388	-2.94456	Free	Energy: -890.	924881 hartr	ee.
Н	3.90014	4.09411	-3.65811				
С	1.48834	0.62285	-2.32044	Н	3.69387	-0.25051	-1.45405
Η	0.60070	1.04771	-2.78344	С	3.76658	0.84184	-1.42129
Н	1.46657	-0.44233	-2.10407	C	5.15822	2.70640	-2.62772
C	6.41807	2.97026	-3.45602	Č	2.62530	2.88945	-2.43739
Ĥ	7.26713	2.47057	-2.96929	Č	3.85226	3.10336	-3.34160
-							

C	2.52244	1.43524	-2.04497		YP/6-31g(d)		
C	5.10071	1.23941	-2.12376	Gas	phase.		
Н	5.23730	3.34817	-1.73609	T 1	· ·	001 004/	270(0 1
Н	2.73188	3.52173	-1.54276		tronic Energy	y: -891.2943	537869 har-
Н	3.72161	2.50730	-4.25414	tree.	F 000	0000461	
Н	5.29522	0.55384	-2.95257	Free	Energy: -890.	903946 harti	ree.
Н	1.70916	3.20978	-2.94668	тт	2 707(4	0.0007	0.01570
Н	3.89826	4.15431	-3.65158	Н	3.70764	-0.20907	-2.01572
C	1.43054	0.70240	-2.29192	C	3.76380	0.84526	-1.72698
Н	0.54454	1.13790	-2.75005	C	5.21308	2.89744	-2.51489
H	1.38060	-0.35788	-2.05352	C	2.68096	3.04547	-2.45801
C	6.43223	2.97999	-3.48322	C	3.95302	3.37641	-3.25678
H	7.27669	2.51574	-2.95360	C	2.55535	1.55090	-2.30078
C	6.74634	4.48208	-3.57566	C	5.15551	1.37780	-2.19883
Н	5.97250	5.03034	-4.12711	Н	5.21737	3.41803	-1.54432
H H	7.69610	4.64712 4.93628	-4.09937	H H	2.74762	3.53105	-1.47150
п С	6.83213 6.39224	4.93628	-2.58052	п Н	3.88178 5.48301	2.89896 0.79697	-4.24261 -3.06596
С Н	6.17504	1.28158	-4.88782 -4.86138	н Н	1.79179	0.79097 3.45148	-2.95342
п Н	7.36318	2.47910	-4.80138	п Н	4.00916	4.45792	-2.93342
н Н	5.63928	2.47910 2.83419	-5.52533	п С	1.46637	4.43792 0.87527	-2.68204
п С	4.00009	1.26327	0.05607	С Н	0.59325	1.38215	-2.08204
H H	3.57986	2.26042	0.03007	H	1.40634	-0.20814	-2.60589
п С	6.09829	0.98852	-0.98258	п С	6.53866	3.28594	-3.23408
С Н	6.99639	1.61762	-0.98238	С Н	7.35013	2.75924	-2.71005
0	5.42930	1.39425	0.21430	C	6.83796	4.78921	-3.10621
C	3.40929	0.32710	1.13231	С Н	6.09278	4.78921 5.39731	-3.63308
H H	3.40929	0.32710	2.10163	H	7.81680	5.02883	-3.53814
H	2.32368	0.48696	1.12684	H	6.84774	5.10712	-2.05671
C	6.62480	-0.45808	-0.89824	C	6.60328	2.85068	-4.70811
0 0	6.67636	-1.15162	-1.90203	н Н	6.37978	1.78600	-4.83829
C	7.18172	-0.96139	0.42819	H	7.60716	3.02658	-5.11179
H	7.60713	-1.94886	0.42017	Н	5.89905	3.41828	-5.32739
Н	8.00703	-0.29820	0.72610	C	3.85250	0.90460	-0.16485
C	3.68689	-1.16603	1.00368	Н	3.18840	1.66928	0.25303
C	2.49103	-2.01738	0.64473	C	6.01917	1.04738	-0.97239
H	2.03803	-1.69695	-0.30273	H	6.90115	1.69484	-0.88055
Н	1.70311	-1.92726	1.40665	0	5.18765	1.33644	0.15149
Н	2.75366	-3.07686	0.55462	C	3.53323	-0.46815	0.48049
C	4.88490	-1.73654	1.21827	H	3.97545	-1.25714	-0.13710
H	4.95830	-2.81793	1.08817	Н	2.44405	-0.60898	0.42871
C	6.16787	-1.04948	1.60119	C	6.50250	-0.41299	-0.88101
H	6.65883	-1.61823	2.40326	Õ	6.40730	-1.18438	-1.81959
H	5.97244	-0.04644	1.98093	Č	7.09415	-0.86730	0.45198
			2.70070	H	8.01487	-1.40533	0.19619
				Н	7.35402	-0.00981	1.07924
Com	Compound 5.13			C	4.02599	-0.59118	1.90259
	structure was	assigned as i	ncorrect.	Č	3.17028	0.04312	2.97069
9		<u> </u>		-			

Н	3.04412	1.12042	2.79363	С	6.02623	1.01899	-0.99692
Н	3.60636	-0.08195	3.96680	Н	6.92925	1.63709	-0.91261
Н	2.16126	-0.39240	2.98212	0	5.19914	1.33574	0.11372
С	5.19171	-1.18565	2.19900	C	3.57241	-0.47278	0.44715
Ĥ	5.50008	-1.19203	3.24503	H	4.04764	-1.25909	-0.14895
C	6.16383	-1.84282	1.24239	H	2.48767	-0.63352	0.37644
H	5.65084	-2.48257	0.51334	C	6.43916	-0.45025	-0.86743
Н	6.80962	-2.51079	1.82283	0	6.25615	-1.25419	-1.75908
	0.00702	2.01079	1.02205	C	7.06259	-0.86821	0.45396
				Н	7.98694	-1.39477	0.19051
Con	npound 5.13			Н	7.32074	0.00919	1.05276
	s structure was	assigned as i	noorroot	C	4.04001	-0.55066	1.87551
	6-2X/6-31g(d)	assigned as I	neoneet.	C	3.18065	0.14594	2.89464
	• • • •	untion in abl	anoforma una	Н	3.06759	1.20975	2.64847
	D implicit solv	vation in chie	bioionni was	п Н			
used	1.				3.60644	0.07616	3.89961
F1	· · -	000 00 47		Н	2.17030	-0.28127	2.91603
	etronic Energy	y: -890.9247	765491 har-	C	5.19381	-1.14135	2.20604
tree.				Н	5.49606	-1.11176	3.25328
Free	e Energy: -890	.529996 hartr	ee.	C	6.16082	-1.83021	1.27074
				Η	5.64421	-2.49286	0.56562
Н	3.73503	-0.24710	-2.03101	Η	6.81449	-2.47197	1.86803
С	3.79079	0.81041	-1.75235				
С	5.21763	2.86526	-2.49806				
С	2.70135	3.00947	-2.43484	Com	pound 5.13		
С	3.96401	3.34852	-3.23320	This	structure was	assigned as i	ncorrect.
С	2.58268	1.51449	-2.31548	B3L	YP/6-31g(d)		
С	5.17037	1.34806	-2.22042	SMI) implicit solv	vation in chlo	proform was
Н	5.21825	3.36350	-1.51531	used			
Н	2.78256	3.46290	-1.43548				
Н	3.89392	2.86979	-4.21843	Elec	tronic Energy	v: -891.3132	252696 har-
Н	5.50674	0.79010	-3.10052	tree.	0.	, ,	
Н	1.80726	3.42363	-2.91181	Free	Energy: -890.	923367 hartr	ee.
Н	4.02340	4.43023	-3.40161		0,1		
C	1.50144	0.83754	-2.70399	Н	3.70921	-0.21212	-2.00566
Ĥ	0.62290	1.34514	-3.09527	С	3.76538	0.84399	-1.72337
H	1.45790	-0.24776	-2.64274	Č	5.21099	2.89878	-2.50965
C	6.52843	3.26175	-3.21723	Č	2.67667	3.03862	-2.46721
H	7.34000	2.67406	-2.76490	C	3.95298	3.37296	-3.25798
C	6.86231	4.73813	-2.99780	C	2.55553	1.54455	-2.30228
H	6.08896	5.38926	-3.42231	C	5.15585	1.37774	-2.19834
H	7.81087	4.99920	-3.47975	Н	5.20758	3.41804	-1.53863
п Н	6.95047		-1.93119	п Н	2.73434	3.52819	-1.48235
		4.97229					
C	6.51437	2.94104	-4.71416	Н	3.89046	2.89763	-4.24567
Н	6.21643	1.90585	-4.91484	Н	5.47906	0.80451	-3.07176
Н	7.51107	3.08794	-5.14378	Н	1.78938	3.43800	-2.97185
H	5.82414	3.59987	-5.25289	H	4.00551	4.45503	-3.42751
C	3.87477	0.89312	-0.19919	C	1.46836	0.86290	-2.68167
Η	3.19755	1.65301	0.20744	Η	0.59380	1.36534	-3.09059

Н	1.40927	-0.22066	-2.59625	С	1.46060	-5.89430	1.47880	
С	6.53906	3.29837	-3.21890	С	1.04840	-4.48070	1.43060	
Н	7.35277	2.79691	-2.67480	С	1.88790	-3.49600	-1.66180	
С	6.80766	4.80890	-3.11441	Н	2.53360	-3.61190	-2.53330	
Н	6.06838	5.39513	-3.67408	С	0.66000	-4.40950	-1.84970	
Н	7.79489	5.05770	-3.52305	Н	-0.03720	-4.24220	-1.03250	
Н	6.78404	5.14949	-2.07160	С	1.00150	-5.90590	-2.01210	
С	6.63275	2.84120	-4.68415	Н	0.11120	-4.08690	-2.73540	
Н	6.43627	1.76923	-4.80222	Н	1.92170	-6.15750	-1.48970	
Н	7.63878	3.03273	-5.07728	Η	1.21960	-6.10060	-3.06290	
Н	5.92605	3.38201	-5.32496	0	-0.07850	-4.11260	1.76270	
С	3.85378	0.90989	-0.16164	Н	-0.98960	-5.86990	0.17920	
Η	3.20187	1.68663	0.25252	Н	-1.11560	-7.59020	0.23920	
С	6.02461	1.03762	-0.97840	Н	2.35600	-6.11810	2.03780	
Н	6.91058	1.67939	-0.88880	С	2.74390	-3.72360	-0.38680	
Ο	5.19804	1.32321	0.15138	С	2.09730	-3.43660	0.99700	
С	3.51505	-0.45391	0.49211	Н	3.61890	-3.07810	-0.47000	
Н	3.93437	-1.25411	-0.12754	Н	3.16160	-4.72950	-0.39300	
Н	2.42295	-0.57169	0.45500	С	1.57640	-1.98900	1.10560	
С	6.51737	-0.41876	-0.89852	Η	2.89470	-3.53140	1.73420	
Ο	6.46003	-1.17264	-1.85761	Н	1.20880	-7.89100	0.93520	
С	7.09130	-0.89142	0.43333	Η	1.55810	-2.45710	-1.69040	
Н	8.00221	-1.44673	0.17987	Н	1.24310	-1.76700	2.12030	
Н	7.36946	-0.04143	1.06289	Н	0.72800	-1.81750	0.44220	
С	4.02278	-0.58239	1.90902	Η	2.35330	-1.26840	0.85150	
С	3.18582	0.05808	2.98772					
Η	3.05571	1.13448	2.80566					
Η	3.63820	-0.06023	3.97812					
Η	2.17583	-0.37495	3.01943	Con	100000 100000 100000 100000 100000 100000 1000000			
С	5.18921	-1.18552	2.19015	This	s structure was	assigned as c	correct.	
Н	5.51177	-1.19633	3.23225					
С	6.14226	-1.85224	1.22113	Mol	ecular Mecha	inics (OPLS	-2005), gas	
Н	5.61029	-2.47663	0.49206	phas	se.			
		0 50 550	1 500 40			- 1 T		

H 6.77941 -2.53578 1.79248 Energy: +83.382271 kJ.

				Η	-0.91680	-7.29350	-1.78410
Com	pound 5.14			С	0.10300	-7.05090	-1.48250
This	structure was	assigned as in	ncorrect.	С	0.19820	-7.13930	0.05570
				Η	0.73480	-7.82120	-1.92680
Mole	cular Mecha	nics (OPLS	-2005), gas	С	-0.55790	-6.02120	0.76340
phase.					-0.04400	-4.90280	1.31930
Energ	gy: +81.85464	45 kJ.		С	1.39640	-4.59130	1.36270
				С	2.15210	-3.72300	-1.77140
Η	-1.01710	-6.68820	-2.11310	Η	3.22280	-3.52900	-1.69420
С	-0.10790	-6.86650	-1.53730	С	1.93350	-5.24850	-1.82490
С	-0.43450	-6.78260	-0.03120	Η	2.55140	-5.66660	-2.62060
Η	0.19670	-7.88720	-1.77250	С	0.47150	-5.67490	-2.07430
С	0.80170	-6.89400	0.85360	Η	2.33320	-5.69740	-0.91910

Η	0.29060	-5.68590	-3.14980	Η	2.45147	-6.08330	1.85194
Η	-0.22510	-4.93520	-1.68620	С	2.77384	-3.75506	-0.35410
0	2.22500	-5.35050	1.86140	С	2.08149	-3.42706	0.99023
Н	-0.21570	-8.09050	0.39200	Н	3.66640	-3.12100	-0.41874
Н	1.24170	-7.16600	0.36510	Η	3.13877	-4.78856	-0.32645
Н	-0.71060	-4.17070	1.74770	С	1.50280	-2.01836	1.03424
С	1.42700	-2.94620	-0.64260	Η	2.86601	-3.51580	1.75854
С	1.87920	-3.23900	0.81280	Н	1.26219	-7.87701	0.82466
Н	0.34650	-3.05110	-0.73220	Η	1.65143	-2.46872	-1.67316
Н	1.60890	-1.88810	-0.83470	Н	1.14905	-1.77054	2.03838
С	1.47280	-2.10380	1.76970	Η	0.64957	-1.92066	0.35638
Н	2.96900	-3.28300	0.81600	Н	2.26142	-1.28446	0.74277
Η	-1.63190	-6.13390	0.76480				
Η	1.84970	-3.30070	-2.73070				
Н	1.74440	-2.33750	2.80040	Con	1.14 npound 5.14		
Η	0.39920	-1.91570	1.74050	This	structure was	assigned as c	correct.
Η	1.97900	-1.17480	1.50700	B3L	YP/6-31g(d)	C	
					D implicit solv	ation in dieth	yl ether was
					*		-

used.

Compound 5.14

This structure was assigned as incorrect. M06-2X/6-31g(d) SMD implicit solvation in diethyl ether was used Electronic Energy: -505.229970215 hartree.

Free Energy: -504.994763 hartree.

SMD	implicit solva	ation in dieth	yl ether was					
used.					-1.02562	-6.73602	-2.09702	
				С	-0.09698	-6.89192	-1.53113	
Electr	onic Energy	r: -504.9944	04145 har-	С	-0.43964	-6.79200	-0.01873	
tree.				Η	0.23381	-7.91513	-1.75574	
Free E	Energy: -504.	756416 hartre	ee.	С	0.78462	-6.88470	0.85011	
				С	1.43275	-5.86519	1.43886	
Η	-1.04236	-6.64093	-2.08263	С	1.00749	-4.43293	1.37932	
С	-0.11946	-6.84059	-1.52388	С	1.88773	-3.50361	-1.64824	
С	-0.43895	-6.75108	-0.01456	Η	2.55339	-3.63159	-2.51446	
Η	0.17863	-7.86822	-1.76671	С	0.65756	-4.41589	-1.82712	
С	0.81021	-6.88388	0.80797	Η	-0.01675	-4.27343	-0.97749	
С	1.48012	-5.88761	1.39918	С	0.98993	-5.91309	-2.01089	
С	1.03226	-4.46163	1.38702	Η	0.09303	-4.06619	-2.70227	
С	1.93799	-3.52608	-1.62212	Η	1.91900	-6.15460	-1.48200	
Η	2.58636	-3.70701	-2.49028	Η	1.19401	-6.10837	-3.07243	
С	0.68211	-4.39704	-1.74850	0	-0.14314	-4.08488	1.61767	
Η	0.06215	-4.26098	-0.85604	Н	-0.97601	-5.86480	0.18855	
С	0.98881	-5.88493	-1.97789	Η	-1.12345	-7.61440	0.23073	
Η	0.07301	-4.02752	-2.58286	Н	2.38747	-6.05709	1.92855	
Η	1.91325	-6.15710	-1.45570	С	2.74327	-3.72370	-0.38209	
Η	1.18697	-6.04680	-3.04454	С	2.09346	-3.41941	1.00162	
0	-0.10453	-4.14047	1.68270	Η	3.62634	-3.07593	-0.46235	
Η	-0.94499	-5.81255	0.21671	Η	3.12876	-4.74992	-0.37034	
Н	-1.13343	-7.55902	0.24362	С	1.59308	-1.97880	1.13219	

H H H H H	2.90136 1.24116 1.55669 1.26202 0.74364 2.39361	-3.57569 -7.87385 -2.45737 -1.76781 -1.78259 -1.27310	1.73473 0.92004 -1.68047 2.15419 0.47120 0.88121	Compound 5.14 This structure was assigned as correct. M06-2X/6-31g(d) SMD implicit solvation in diethyl ether was used.				
0	1			Electronic Energy: -504.992489739 har-				
	pound 5.14 structure was	assigned as c	orrect	tree. Free Energy: -504.755155 hartree.				
	YP/6-31g(d)	dssigned as c		The Energy304.755155 nature.				
	phase.			Н -0.93306 -7.28086 -1.76034				
Gub				C 0.09727 -7.04254 -1.46813				
Elect	tronic Energy	v [.] -505 2167	97159 har-	C 0.21765 -7.12791 0.07057				
tree.		,. 000.2107		Н 0.73681 -7.81930 -1.90593				
	Energy: -504.	981174 hartr	ee	C -0.53874 -6.01080 0.72861				
			•••	C -0.01838 -4.88909 1.24114				
Н	-1.02711	-6.72947	-2.09249	C 1.44827 -4.60548 1.30838				
С	-0.09930	-6.88922	-1.52648	C 2.11549 -3.71578 -1.76757				
С	-0.44137	-6.79243	-0.01310	Н 3.19101 -3.49989 -1.72537				
Н	0.22809	-7.91279	-1.75550	C 1.91264 -5.23521 -1.74600				
С	0.78439	-6.88790	0.85412	Н 2.57985 -5.69442 -2.48623				
С	1.43458	-5.86696	1.43668	C 0.47003 -5.67011 -2.03896				
С	1.00831	-4.43476	1.36421	Н 2.24570 -5.62369 -0.77834				
С	1.88644	-3.50020	-1.64842	Н 0.31233 -5.67691 -3.12451				
Н	2.54999	-3.62324	-2.51670	Н -0.22906 -4.92791 -1.63698				
С	0.65693	-4.41421	-1.82712	O 2.23808 -5.40709 1.77422				
Η	-0.02117	-4.26671	-0.98202	Н -0.19113 -8.09003 0.40025				
С	0.99074	-5.91223	-2.00370	Н 1.26511 -7.10735 0.37622				
Н	0.09774	-4.06860	-2.70710	Н -0.68559 -4.09037 1.56197				
Η	1.91636	-6.15261	-1.46830	C 1.42545 -2.93611 -0.63953				
Η	1.20184	-6.11153	-3.06291	C 1.91962 -3.25260 0.78367				
0	-0.14737	-4.08744	1.56284	Н 0.33725 -3.07601 -0.68024				
Н	-0.97531	-5.86602	0.20189	Н 1.59689 -1.86639 -0.81423				
Н	-1.12584	-7.61442	0.23559	C 1.47427 -2.15819 1.76618				
Н	2.38845	-6.05780	1.92831	Н 3.01535 -3.30474 0.78800				
С	2.74725	-3.72019	-0.38507	Н -1.62649 -6.08216 0.67651				
С	2.10021	-3.42018	1.00075	Н 1.75910 -3.32090 -2.72868				
Н	3.62903	-3.07080	-0.46821	Н 1.76527 -2.39842 2.79391				
Н	3.13452	-4.74601	-0.37619	Н 0.38827 -2.01709 1.74026				
C	1.59442	-1.98153	1.13660	Н 1.93863 -1.20486 1.49558				
Н	2.90834	-3.57888	1.73364					
Н	1.23843	-7.87808	0.92777					
Н	1.55234	-2.45511	-1.67643	Compound 5.14				
Н	1.25497	-1.78145	2.15729	This structure was assigned as incorrect.				
Н	0.74484	-1.79244	0.47476	B3LYP/6-31g(d)				
Η	2.39187	-1.27079	0.89152	SMD implicit solvation in diethyl ether was				
				used.				

				С	0.19432	-7.14174	0.07779
Elect	ronic Energy	y: -505.2292	36689 har-	Η	0.69370	-7.83829	-1.90641
tree.				С	-0.53924	-6.02818	0.77420
Free	Energy: -504	.994783 hartr	ee.	С	-0.00013	-4.91075	1.28971
				С	1.46522	-4.60929	1.31009
Н	-0.95392	-7.27278	-1.76681	С	2.15733	-3.72470	-1.76390
С	0.08079	-7.04939	-1.47302	Н	3.23808	-3.53670	-1.69755
С	0.19843	-7.14260	0.07391	С	1.93004	-5.24947	-1.79588
Н	0.70409	-7.84343	-1.90674	Н	2.57183	-5.67561	-2.57885
С	-0.54177	-6.02950	0.76296	С	0.46983	-5.67650	-2.05732
С	-0.01208	-4.90877	1.28251	Н	2.29592	-5.68116	-0.86020
С	1.45062	-4.60240	1.32910	Н	0.28599	-5.69195	-3.14000
С	2.14286	-3.71922	-1.76687	Н	-0.21490	-4.92284	-1.65178
Н	3.22258	-3.52135	-1.70937	0	2.29123	-5.42896	1.68681
С	1.92758	-5.24506	-1.79577	Н	-0.22589	-8.10606	0.39321
Η	2.57769	-5.67116	-2.57214	Н	1.24187	-7.14267	0.38244
С	0.47215	-5.68264	-2.06392	Н	-0.66342	-4.12283	1.64349
Η	2.28990	-5.67140	-0.85532	С	1.45763	-2.92914	-0.64079
Н	0.29608	-5.70400	-3.14800	С	1.90919	-3.22682	0.81141
Н	-0.21880	-4.93060	-1.66604	Н	0.36843	-3.04856	-0.70905
Ο	2.26638	-5.40675	1.76502	Н	1.64855	-1.86304	-0.82647
Н	-0.21899	-8.10756	0.39091	С	1.42153	-2.12247	1.77231
Н	1.24732	-7.13997	0.37587	Н	3.00537	-3.25508	0.84786
Н	-0.68221	-4.12003	1.62183	Н	-1.62884	-6.09729	0.76131
С	1.44495	-2.93130	-0.63796	Н	1.83549	-3.29555	-2.72390
С	1.90776	-3.23333	0.80935	Н	1.70773	-2.33726	2.80796
Н	0.35619	-3.05482	-0.70146	Н	0.33231	-2.00273	1.73742
Н	1.63222	-1.86417	-0.81950	Н	1.86578	-1.16029	1.49367
С	1.44731	-2.12123	1.77566				
Η	3.00401	-3.27284	0.83422				
Η	-1.63085	-6.10036	0.73638	Com	pound 5.15		
Η	1.80910	-3.29407	-2.72484	This	structure was	assigned as c	correct.
Η	1.74229	-2.34027	2.80859			-	
Η	0.35988	-1.98379	1.75429	Mole	cular Mecha	nics (OPLS	-2005), gas
Η	1.90635	-1.16735	1.49156	phase	e.		
				Ener	gy: +83.49733	30 kJ.	
Com	pound 5.14			Н	5.18570	-5.45000	-8.42320
	structure was	assigned as in	ncorrect	C	5.11570	-5.00000	-9.41450
	YP/6-31g(d)	dssigned ds in	neorreet.	C	6.36490	-5.43460	-10.21190
	ohase.			H	4.22150	-5.43470	-9.86360
Ous I	Jildse.			C	6.33300	-4.88820	-11.61930
Fleet	ronic Energy	v· _505 2157	20598 har	C C	7.28120	-4.09680	-12.15010
Electronic Energy: -505.215720598 har-					7.02310	-3.30600	-13.36210
tree. Free Energy: -504.980562 hartree.				C C	5.44850	-1.72630	-11.07490
1100	Liner 6y504.	.>00202 Harti	~~.	H	5.32960	-0.77040	-10.56290
Н	-0.96125	-7.26285	-1.76399	C	4.41230	-2.71090	-10.48780
C	0.07421	-7.04342	-1.46916	Н	3.51770	-2.14330	-10.22720
J	0.07121	,.01012	1.10/10		2.21770		10.22/20

С	4.91320	-3.47380	-9.23480	Н	6.03780	-0.90290	-12.28860
Н	4.06840	-3.41810	-11.24050	Η	4.53840	-0.69750	-13.12530
Н	4.16560	-3.33860	-8.45180	С	6.11230	-1.62890	-15.03590
Η	5.82040	-3.02060	-8.83320	Η	4.75010	-2.99330	-14.12690
0	7.90700	-3.09300	-14.18980	Η	3.59120	-1.39200	-11.19870
Η	8.19230	-3.88280	-11.61230	Η	6.44370	-2.29520	-15.83360
С	5.33870	-1.48260	-12.60100	Η	6.95130	-0.98020	-14.78020
С	5.61780	-2.68210	-13.55420	Η	5.31880	-1.00280	-15.44350
Η	6.02360	-0.67400	-12.86220	Н	7.10100	-6.31280	-9.83150
Н	4.34170	-1.09380	-12.81090	Η	5.50630	-6.23050	-10.54480
С	5.38510	-2.26230	-15.01910	Η	7.91200	-4.43180	-11.23000
Н	4.88310	-3.45670	-13.34740				
Η	6.46190	-2.03150	-10.82130				
Η	5.57960	-3.08920	-15.70350				
Η	6.03910	-1.43770	-15.30650	Con	pound 5.15		
Н	4.35570	-1.94200	-15.17860	This	structure was	assigned as o	correct.
Η	7.27280	-5.10810	-9.70270	M06	5-2X/6-31g(d)		
Н	6.40770	-6.52330	-10.26430	SMI	D implicit solv	ation in dieth	yl ether was
Н	5.41610	-5.08030	-12.15610	used	l.		

Compound 5.15

This structure was assigned as incorrect.

Electronic Energy: -504.988213075 hartree. Free Energy: -504.750368 hartree.

This structure was assigned as incorrect.									
				Η	5.22659	-5.42988	-8.37460		
Molec	ular Mecha	nics (OPLS	-2005), gas	С	5.12271	-4.99475	-9.37517		
phase.				С	6.25193	-5.57560	-10.25835		
Energy	y: +90.19842	25 kJ.		Н	4.15063	-5.32961	-9.76087		
0.				С	6.22983	-4.91813	-11.60045		
Н	6.73530	-4.10920	-8.68440	С	7.15547	-4.05860	-12.03898		
С	5.88470	-4.66440	-9.08260	С	6.98438	-3.14025	-13.19609		
С	6.34570	-5.62120	-10.20660	С	5.38098	-1.65594	-11.14261		
Н	5.52500	-5.27810	-8.25540	Н	5.18656	-0.68923	-10.66289		
С	6.92710	-4.85680	-11.37390	С	4.49273	-2.73583	-10.49595		
С	6.20050	-4.50870	-12.44800	Н	3.54564	-2.27601	-10.18980		
С	6.67170	-3.45680	-13.35180	С	5.13147	-3.45930	-9.28242		
С	4.37700	-2.08470	-11.50400	Н	4.21283	-3.47718	-11.25090		
Н	3.84310	-2.96040	-11.87260	Н	4.61167	-3.16446	-8.36472		
С	5.21970	-2.41840	-10.24880	Н	6.17088	-3.12555	-9.15844		
Н	6.27100	-2.50400	-10.51650	0	7.95641	-2.65062	-13.74494		
С	4.75320	-3.68490	-9.48480	Н	8.08638	-3.92531	-11.48780		
Н	5.20140	-1.56360	-9.57130	С	5.19025	-1.48392	-12.65595		
Н	4.00040	-4.23470	-10.05010	С	5.57101	-2.69030	-13.55553		
Н	4.23890	-3.35770	-8.58010	Н	5.79310	-0.62894	-12.98869		
0	7.84720	-3.35280	-13.70250	Н	4.14307	-1.23296	-12.87045		
Н	5.18090	-4.84520	-12.55400	С	5.48146	-2.29735	-15.02663		
С	5.17840	-1.45560	-12.67210	Н	4.86883	-3.50583	-13.35598		
С	5.62300	-2.42320	-13.80870	Н	6.43541	-1.87503	-10.93837		

427

H	5.68645	-3.15070	-15.68071							
Н	6.21191	-1.51661	-15.25613	Compound 5.15						
H H	4.48175 7.21967	-1.91894 -5.39736	-15.26301 -9.77520	This structure was assigned as correct.						
H	6.11346	-6.65991	-10.34589	B3LYP/6-31g(d)						
H	5.32956	-5.08761	-12.19020	Gas phase.						
11	5.52750	-5.00701	-12.17020	ous phuse.						
				Electronic Energy: -505.211736240 har-						
	pound 5.15			tree.						
	structure was YP/6-31g(d)	assigned as o	correct.	Free	Energy: -504.	977314 harti	ree.			
	implicit solv	ration in dieth	vl ether was	Н	5.24632	-5.44264	-8.36869			
used.				C	5.13335	-5.00058	-9.36720			
				Ċ	6.30346	-5.52790	-10.24362			
Elect	ronic Energy	v: -505.226	118557 har-	Н	4.18573	-5.39039	-9.76585			
tree.	0.	, ,		С	6.26568	-4.90102	-11.60223			
Free	Energy: -504.	.991722 hartı	ee.	С	7.20337	-4.08999	-12.11437			
	0,			С	7.01297	-3.17546	-13.27126			
Н	5.25271	-5.44101	-8.37132	С	5.39996	-1.68933	-11.12549			
С	5.13412	-4.99870	-9.36917	Н	5.25801	-0.71179	-10.64575			
С	6.30645	-5.52116	-10.24563	С	4.44330	-2.71439	-10.46818			
Η	4.18912	-5.39431	-9.76791	Н	3.52454	-2.19131	-10.17365			
С	6.26488	-4.89640	-11.60374	С	5.02499	-3.46435	-9.23107			
С	7.20726	-4.09098	-12.11976	Н	4.11707	-3.44888	-11.21147			
С	7.01717	-3.18026	-13.27557	Н	4.39459	-3.25979	-8.35703			
С	5.40590	-1.69226	-11.12226	Н	6.01434	-3.05717	-8.98132			
Н	5.26563	-0.71414	-10.64252	0	7.98027	-2.70578	-13.85583			
С	4.44204	-2.71329	-10.46948	Н	8.17056	-3.98793	-11.62228			
Н	3.52482	-2.18433	-10.17970	С	5.23463	-1.49322	-12.64693			
С	5.01348	-3.46411	-9.22858	С	5.58853	-2.69250	-13.58229			
Η	4.11598	-3.44756	-11.21322	Н	5.86624	-0.64856	-12.95310			
Н	4.36752	-3.27022	-8.36308	Н	4.19885	-1.20042	-12.86903			
Н	5.99536	-3.04944	-8.96088	С	5.45544	-2.28037	-15.05266			
Ο	7.98765	-2.71876	-13.86911	Η	4.88056	-3.50391	-13.37754			
Н	8.17396	-3.99301	-11.62524	Н	6.43713	-1.96808	-10.91200			
C	5.24616	-1.49223	-12.64359	Н	5.62136	-3.13343	-15.71974			
C	5.59556	-2.69226	-13.58109	Н	6.19666	-1.51647	-15.30378			
Н	5.87998	-0.64718	-12.94572	Н	4.45506	-1.88040	-15.25319			
Н	4.21164	-1.19698	-12.86786	Н	7.26150	-5.30833	-9.75603			
C	5.44885	-2.28247	-15.05004	Н	6.21423	-6.62196	-10.30856			
Н	4.88858	-3.50184	-13.37046	Н	5.33431	-5.04533	-12.14757			
Н	6.44148	-1.97459	-10.90509							
H 5.62157 -3.13307 -15.71981				C						
H 6.17079 -1.50297 -15.31253					pound 5.15					
Н	4.44006	-1.89985	-15.24426		structure was $2X/(21-(4))$	assigned as 1	ncorrect.			
Н	7.26459	-5.30094	-9.75881		-2X/6-31g(d)	ation in 1: 41				
Н	6.21580	-6.61497	-10.31266		implicit solv	ation in dieth	iyi etner was			
Н	5.33389	-5.04242	-12.14864	used.						

				С	5.88467	-4.67752	-9.07447
Electr	onic Energy	y: -504.9878	354592 har-	С	6.28530	-5.63103	-10.23644
tree.				Н	5.52915	-5.30768	-8.24846
Free E	Energy: -504.	750911 hartr	ee.	С	6.87769	-4.86962	-11.38031
				С	6.21558	-4.51330	-12.49174
Н	6.35680	-3.88669	-8.96410	С	6.70577	-3.38246	-13.32026
С	5.58146	-4.58716	-9.30334	С	4.38993	-2.12807	-11.51064
С	6.22726	-5.60160	-10.27891	Н	3.91909	-3.05729	-11.85468
Н	5.25328	-5.13112	-8.41124	С	5.25776	-2.41554	-10.25918
С	6.96415	-4.83010	-11.32470	Н	6.29855	-2.55445	-10.56247
С	6.46945	-4.46057	-12.50934	С	4.79326	-3.63963	-9.41688
С	7.08540	-3.27954	-13.17683	Н	5.26471	-1.51910	-9.62514
С	5.51922	-1.76847	-11.06750	Н	3.97511	-4.15805	-9.93635
Н	5.67811	-0.69453	-10.91472	Н	4.36020	-3.28729	-8.47222
С	4.54903	-2.28330	-9.99366	0	7.89829	-3.15133	-13.48715
Н	4.86682	-1.90995	-9.01138	Н	5.20030	-4.86545	-12.66314
С	4.38942	-3.81100	-9.90886	С	5.12708	-1.47186	-12.70565
Н	3.56123	-1.84091	-10.18286	С	5.62235	-2.42839	-13.83816
Н	4.16792	-4.21088	-10.90632	Н	5.98086	-0.88097	-12.34589
Н	3.49731	-4.01763	-9.30735	Н	4.45104	-0.75786	-13.19262
0	8.28929	-3.14424	-13.28101	С	6.12403	-1.62494	-15.04232
Η	5.50125	-4.82002	-12.85360	Η	4.75908	-3.03727	-14.14252
С	5.00584	-2.01213	-12.49850	Н	3.55594	-1.47916	-11.21344
C	6.10653	-2.17083	-13.57061	Н	6.45185	-2.28505	-15.85338
Η	4.35593	-1.17994	-12.79642	Н	6.97547	-0.99479	-14.76619
Н	4.36934	-2.90260	-12.51368	Н	5.32839	-0.97894	-15.43108
С	6.85357	-0.87022	-13.84426	Н	7.00827	-6.36083	-9.84733
Н	5.61541	-2.50728	-14.49682	Н	5.39841	-6.18751	-10.56579
Н	6.50044	-2.23825	-10.92269	Н	7.86801	-4.44099	-11.22078
Н	7.61127	-1.00472	-14.61981				
Н	7.36535	-0.51838	-12.94219				
Н	6.15487	-0.09284	-14.16906	Comp	ound 5.15		
Н	6.91134	-6.25501	-9.72669		tructure was	assigned as i	ncorrect.
Н	5.44628	-6.22723	-10.72640		P/6-31g(d)	U	
Н	7.90443	-4.37507	-11.00776	Gas pl			
				1			
				Electr	onic Energy	r: -505.2105	561202 har-
Comp	ound 5.15			tree.	0,		
		assigned as i	ncorrect.	Free E	Energy: -504.	976414 hartı	ee.
	P/6-31g(d)	e			0,		
	• • •	ation in dieth	yl ether was	Н	6.78329	-4.14837	-8.71056
used.	1		5	С	5.89198	-4.67581	-9.07782
				С	6.30072	-5.63857	-10.23006
Electr	onic Energy	y: -505.2244	189649 har-	Н	5.54031	-5.29771	-8.24422
tree.	0.	, ,		С	6.88285	-4.88016	-11.38180
	Energy: -504.	.991282 hartr	ee.	C	6.20716	-4.51508	-12.48088
				С	6.69568	-3.37654	-13.30370
Η	6.78096	-4.16194	-8.70248	С	4.38159	-2.10771	-11.50830

				~			
H	3.88930	-3.02649	-11.85149	C	-1.97170	-8.72740	3.40720
С	5.25826	-2.41792	-10.26743	Н	-1.53980	-9.53450	2.83360
H	6.29468	-2.55837	-10.58282	Н	-2.49560	-8.99020	4.31500
С	4.79319	-3.65131	-9.43905	С	-1.05220	-7.09580	1.76500
Η	5.27616	-1.53150	-9.61998	Н	-1.58620	-6.37790	1.14300
Η	3.99522	-4.17998	-9.97901	Η	-0.90890	-7.97500	1.13560
Н	4.33200	-3.30888	-8.50431	С	-4.52940	-3.50140	4.12740
0	7.88514	-3.12961	-13.44560	Н	-4.80220	-3.30020	3.08970
Η	5.18974	-4.86619	-12.64319	С	-5.48410	-4.59300	4.64740
С	5.11823	-1.46114	-12.70900	Η	-6.51960	-4.25180	4.63030
С	5.61212	-2.42643	-13.83327	Н	-5.24510	-4.87310	5.67370
Η	5.97427	-0.87045	-12.35485	Н	-5.44070	-5.49610	4.03820
Η	4.44247	-0.74901	-13.19916	С	-4.76000	-2.20310	4.92170
С	6.12787	-1.63332	-15.03934	Н	-5.81740	-1.93750	4.94210
Н	4.74687	-3.03370	-14.13804	Н	-4.23670	-1.35640	4.47820
Н	3.56265	-1.44522	-11.20023	Н	-4.42510	-2.30310	5.95470
Н	6.43104	-2.30183	-15.85205	0	-0.71690	-3.80260	1.14590
Н	7.00304	-1.03862	-14.76216	0	0.31200	-2.22350	3.65220
Н	5.35109	-0.96053	-15.41967	Si	0.63720	-0.96980	2.55400
Н	7.02723	-6.36179	-9.83565	Ĉ	1.92820	-1.56230	1.31120
Н	5.41675	-6.20395	-10.55259	H	1.52560	-2.32530	0.64640
Н	7.87620	-4.45209	-11.24096	Н	2.79740	-1.98480	1.81240
		1.10209	11.21090	Н	2.27690	-0.74410	0.68340
				C	-0.93250	-0.39040	1.68290
Com	oound 5.16			Н	-1.34060	-1.16940	1.04000
	structure was	assigned as a	orrect	Н	-1.70520	-0.10860	2.39620
1 1115	structure was	ussigned us v		Н	-0.73850	0.47510	1.05190
Mole	cular Mecha	nics (OPIS	-2005), gas	C	1.36340	0.46420	3.58530
phase			-2003), gas	C	2.63520	-0.02610	4.29830
1	gy: -126.4816	28 k I		Н	3.40020	-0.33350	3.58460
LINCIE	3y120.4810	020 KJ.		H	2.42270	-0.88380	4.93830
С	0.31640	-6.55660	2.17300	H	3.06700	0.75390	4.93830
С Н	1.05880	-7.31940	2.35590	п С	1.70530	1.64830	2.66440
				-			
C	0.68080	-5.27120	2.37880	Н	2.43880	1.36780	1.90800
H C	1.68390	-5.04350	2.70590	Н	2.12220	2.48230	3.22960
C	-0.23130	-4.12840	2.22930	H C	0.82160	2.01740	2.14310
C	-0.57590	-3.32910	3.50530	C	0.32180	0.89970	4.63020
H	-0.36270	-3.98120	4.35220	Н	0.04310	0.06810	5.27940
C	-2.06250	-2.88240	3.62650	Н	-0.59110	1.26270	4.15700
Н	-2.42150	-2.51580	2.66510	Η	0.70280	1.70000	5.26490
Н	-2.08890	-2.02590	4.29900				
С	-3.04840	-3.96310	4.15620				
Н	-2.78120	-4.17740	5.19240	~			
C	-2.85520	-5.23720	3.35850		100000 1000000000000000000000000000000		
H	-2.98650	-5.12580	2.29130	This	s structure was	assigned as in	ncorrect.
С	-2.39150	-6.39680	3.85430				
Н	-2.22790	-6.47350	4.91990		ecular Mecha	nics (OPLS-	-2005), gas
С	-1.86720	-7.45060	3.00490	phas	se.		

Ener	Energy: -118.390511 kJ.			Н	-0.26450	0.46730	1.26630		
~				H 1.39950 0.47670 0.69920					
С	-0.62850	-5.75930	1.11590	Н	0.62870	1.98160	1.18210		
Н	-0.89430	-5.85450	0.07360	С	0.21540	1.36360	3.84590		
С	-0.41410	-4.50760	1.58710	Н	-0.77860	0.92230	3.75800		
Н	-0.50720	-3.66700	0.91620	Н	0.11840	2.43360	3.66050		
С	-0.09720	-4.17720	2.99090	Н	0.53700	1.23800	4.88020		
С	-0.77490	-2.95050	3.63410	С	2.60120	1.32600	3.04140		
Н	-0.47320	-2.93250	4.68180	Η	3.32450	0.87790	2.35960		
С	-2.32840	-2.90260	3.58280	Η	2.97530	1.18350	4.05580		
Н	-2.65340	-2.80970	2.54590	Н	2.58890	2.39850	2.84560		
Η	-2.62290	-1.96590	4.05670						
С	-3.09660	-4.06080	4.27890						
Н	-2.56540	-4.29030	5.20460						
С	-3.05720	-5.29120	3.39400	Com	pound 5.16				
Н	-3.51490	-5.19310	2.41990		structure was	assigned as in	ncorrect.		
С	-2.30120	-6.36940	3.64690		YP/6-31g(d)	U			
Н	-1.76600	-6.43790	4.58380		phase.				
С	-1.95680	-7.29480	2.59380	1	L				
C	-2.81920	-8.25270	2.21810	Elect	tronic Energy	y: -1222.555	16756 har-		
Н	-2.58780	-8.93330	1.41200	tree.					
Н	-3.77230	-8.37210	2.71320		Energy: -1222	2 112793 hart	ree		
C	-0.62730	-7.08180	1.88390						
H	-0.41670	-7.89900	1.19310	С	-1.63830	-2.68493	-0.97515		
Н	0.17490	-7.09320	2.62240	H	-1.69453	-3.07930	-1.98986		
C	-4.54390	-3.67370	4.67520	C	-0.63502	-1.82985	-0.70377		
Н	-4.47710	-2.78360	5.30320	H	0.06098	-1.55835	-1.49393		
C	-5.43920	-3.30950	3.47600	C	-0.44215	-1.12638	0.59118		
H	-6.42110	-2.97610	3.81310	C	0.16866	0.29219	0.54562		
Н	-5.59740	-4.16000	2.81280	H	0.29887	0.57913	1.59819		
Н	-5.01340	-2.49850	2.88530	C	-0.69814	1.35637	-0.15640		
C	-5.20770	-4.76110	5.53660	Н	-0.70367	1.13468	-1.23042		
Н	-6.18760	-4.43920	5.89040	H	-0.16376	2.30855	-0.03988		
H	-4.60430	-4.99200	6.41500	C	-2.15351	1.49948	0.37460		
H	-5.34780	-4.99200	4.97880	С Н	-2.13331	1.37833	1.46760		
п 0	0.72310	-4.80450	3.65960	п С	-2.98243	0.37559	-0.19983		
0	-0.28760	-4.80430 -1.76980	3.03900		-2.98243	0.37339			
				H C			-1.28586		
Si	1.27810	-1.16360	3.22430	C	-3.43786	-0.67828	0.48832		
C	1.83670	-1.47760	4.99700	H	-3.27426	-0.71931	1.56614		
Н	1.90840	-2.54460	5.20750	C	-3.87133	-1.93945	-0.15596		
Н	1.14220	-1.04520	5.71570	C	-5.02835	-2.10495	-0.80451		
Н	2.81730	-1.04360	5.18670	Н	-5.27833	-3.04151	-1.29792		
C	2.42840	-2.01140	1.99350	H	-5.76942	-1.31191	-0.85045		
Н	2.54390	-3.07170	2.21570	C	-2.80341	-3.04284	-0.07741		
Н	3.42330	-1.56950	2.01290	Н	-3.23731	-3.99563	-0.39818		
Н	2.05230	-1.92670	0.97520	Н	-2.46077	-3.14711	0.95525		
C	1.20310	0.70900	2.86520	С	-2.73259	2.91853	0.10007		
С	0.71520	0.92160	1.42210	Н	-2.02296	3.62864	0.55112		

С	-2.84171	3.26415	-1.39385	С	-0.31570	0.09509	-0.15616
Η	-3.18083	4.29878	-1.52126	Η	-0.68548	0.40969	-1.14228
Н	-3.56706	2.61932	-1.90421	С	0.51933	1.22701	0.45369
Н	-1.88119	3.16773	-1.91220	Н	0.73854	0.95828	1.49486
С	-4.08548	3.10256	0.80195	Η	-0.13486	2.10869	0.48780
Н	-4.46420	4.12180	0.66205	С	1.82548	1.56585	-0.29645
Н	-4.00329	2.91986	1.88019	Н	1.64019	1.46925	-1.37672
Н	-4.83391	2.40688	0.40461	С	2.86202	0.54463	0.09150
Ο	-0.72377	-1.61572	1.67830	Н	3.11050	0.48821	1.15343
0	1.42407	0.24127	-0.13279	С	3.34417	-0.39677	-0.72223
Si	2.92021	-0.03656	0.60772	Η	3.03831	-0.40770	-1.76942
C	3.17500	1.22026	1.99819	С	4.01811	-1.61148	-0.21343
H	2.44110	1.08292	2.80137	Č	5.24360	-1.63730	0.31103
Н	3.08654	2.25160	1.63855	Ĥ	5.66448	-2.55090	0.72446
Н	4.16808	1.10850	2.45032	Н	5.86627	-0.74679	0.33142
C	2.97445	-1.77839	1.33652	C	3.10213	-2.83614	-0.23307
H	2.15618	-1.92530	2.05107	Н	3.68923	-3.73844	-0.04101
Н	3.91616	-1.95882	1.86915	Н	2.62863	-2.92292	-1.21336
Н	2.87401	-2.54880	0.56364	C	2.26862	3.02323	-0.03770
C	4.18705	0.19639	-0.80535	Н	1.43546	3.66172	-0.36390
C C	4.11438	1.64098	-1.34496	C	2.53131	3.31470	1.44077
H	4.37150	2.37901	-0.57533	Н	2.77676	4.37291	1.58178
Н	3.11314	1.88108	-1.71977	Н	3.37952	2.72993	1.81516
H	4.82339	1.77520	-2.17495	Н	1.66133	3.09133	2.06737
C	5.61234	-0.07757	-0.27743	C	3.49615	3.37150	-0.87780
Н	5.89050	0.60645	0.53409	Н	3.75582	4.43027	-0.77134
H	6.34944	0.00045	-1.08209	H	3.32143	3.17054	-1.94092
H	5.72269	-1.10309	0.09574	H	4.36432	2.77971	-0.56459
C	3.87880	-0.78281	-1.95862	0	4.30432 0.66617	-1.57274	-1.55348
С Н		-0.78281	-2.37030	0	-1.38027	-0.17658	0.74064
	2.87708						
Н	3.94165	-1.82996	-1.63796	Si	-2.89745	-0.71668	0.24270
Η	4.60237	-0.64881	-2.77601	C	-2.70819	-1.90820	-1.19538
				Н	-2.06904	-2.75497	-0.91965
C	1510			Н	-2.27189	-1.44089	-2.08519
	pound 5.16		,	Н	-3.68630	-2.31533	-1.47803
		assigned as i	ncorrect.	C	-3.59929	-1.59332	1.73857
	-2X/6-31g(d)		1	Н	-3.04796	-2.52042	1.93250
SML	o implicit solv	vation in THF	was used.	Н	-4.65339	-1.85809	1.59720
D1	· F	1000 100		H C	-3.52631	-0.96916	2.63571
Electronic Energy: -1222.10250866 har-					-3.96810	0.77414	-0.24075
tree.	-			C	-3.21698	1.67625	-1.22800
Free	Energy: -122	1.658263 har	tree.	Н	-2.92414	1.13646	-2.13737
c			0.0405.	Н	-2.31161	2.10376	-0.77974
C	2.05990	-2.67245	0.84834	Н	-3.85587	2.51596	-1.53741
Н	2.32102	-3.11107	1.81099	C	-5.26240	0.27890	-0.89916
C	0.93279	-1.94689	0.79112	Н	-5.06307	-0.25111	-1.83815
Н	0.33797	-1.81301	1.69161	Н	-5.91974	1.12806	-1.13419
С	0.46773	-1.20295	-0.40992	Н	-5.82620	-0.39784	-0.24442

a	4 9 1 1 9 5	1 501 45	1 01010	0	0.00405	0.0550(1 0
С	-4.31135	1.58147	1.01813	0	-0.63467	-0.87786	-1.97567
Н	-3.40802	1.91097	1.54646	0	1.51836	0.24984	-0.28296
Н	-4.91819	0.99758	1.72040	Si	2.86728	-0.57192	0.31371
Н	-4.88676	2.47982	0.75295	С	2.65900	-0.90372	2.16224
				Η	1.87200	-1.64113	2.36402
				Η	2.41213	0.00613	2.72258
Com	pound 5.16			Н	3.58792	-1.30678	2.58626
	structure was	assigned as c	orrect	C	3.08555	-2.20982	-0.60047
	YP/6-31g(d)	ussigned us t		H	2.22342	-2.87142	-0.45035
		ation in THE	was used	Н	3.97315	-2.74809	-0.24436
SIVID	SMD implicit solvation in THF was used.				3.19829	-2.05924	-1.68079
Electronic Energy: -1222.56872397 har-				H C	4.33758	0.60540	-0.02662
	Tome Energy	y1222.308	12397 Hai-	C C			
tree. Free Energy: -1222.129125 hartree.					4.21536	1.87101	0.84774
Free	Energy: -1222	2.129125 har	tree.	Н	4.24653	1.63411	1.91881
				Η	3.28368	2.41619	0.65332
С	-1.98533	-2.94653	-0.12538	Н	5.04781	2.56067	0.64225
Н	-2.09853	-3.84570	0.48036	С	5.66515	-0.10754	0.30939
С	-0.80115	-2.31407	-0.07860	Н	5.70953	-0.42959	1.35784
Н	-0.02542	-2.70448	0.58048	Η	6.51551	0.57062	0.14388
С	-0.46886	-1.03729	-0.77462	Н	5.82940	-0.99170	-0.31865
С	0.14677	0.10141	0.08700	С	4.34959	1.01786	-1.51348
Н	0.06545	-0.16549	1.14977	Н	3.42716	1.53601	-1.79908
С	-0.54503	1.45174	-0.17122	Н	4.46436	0.15278	-2.17904
H	-0.55414	1.60638	-1.25591	Н	5.19033	1.69825	-1.71671
Н	0.09866	2.22590	0.26272			1.09025	1.71071
C	-1.97398	1.60759	0.41334				
H	-1.89155	1.54712	1.50824	Com	pound 5.16		
C	-2.82737	0.45575	-0.05034		structure was	assigned as i	noorroot
Н	-2.82737	0.43373	-1.12244			assigned as i	neomeet.
					YP/6-31g(d)	ation in THE	
C	-3.48605	-0.40321	0.74455	SIVIL) implicit solv	ation in THF	was used.
Н	-3.54316	-0.19575	1.81424				
C	-4.06039				· ·	1000 570	0.502.42 1
С		-1.69078	0.29648		tronic Energy	r: -1222.570)50343 har-
	-5.12987	-2.24004	0.89354	tree.			
Н	-5.12987 -5.51428	-2.24004 -3.21314	0.89354 0.59689	tree.	tronic Energy Energy: -1222		
Н	-5.12987 -5.51428 -5.66255	-2.24004 -3.21314 -1.72698	0.89354 0.59689 1.69183	tree. Free	Energy: -1222	2.128149 hart	tree.
H C	-5.12987 -5.51428 -5.66255 -3.26330	-2.24004 -3.21314 -1.72698 -2.45044	0.89354 0.59689 1.69183 -0.76755	tree. Free C	Energy: -1222 -1.76820	2.128149 hart -2.62672	tree. -1.07903
Н	-5.12987 -5.51428 -5.66255	-2.24004 -3.21314 -1.72698	0.89354 0.59689 1.69183	tree. Free C H	Energy: -1222	2.128149 hart	tree.
H C	-5.12987 -5.51428 -5.66255 -3.26330	-2.24004 -3.21314 -1.72698 -2.45044	0.89354 0.59689 1.69183 -0.76755	tree. Free C	Energy: -1222 -1.76820	2.128149 hart -2.62672	tree. -1.07903
H C H	-5.12987 -5.51428 -5.66255 -3.26330 -3.04220	-2.24004 -3.21314 -1.72698 -2.45044 -1.81115	0.89354 0.59689 1.69183 -0.76755 -1.62552	tree. Free C H	Energy: -1222 -1.76820 -1.87515	2.128149 hart -2.62672 -2.97249	tree. -1.07903 -2.10708
H C H H	-5.12987 -5.51428 -5.66255 -3.26330 -3.04220 -3.85055	-2.24004 -3.21314 -1.72698 -2.45044 -1.81115 -3.30162	0.89354 0.59689 1.69183 -0.76755 -1.62552 -1.12785	tree. Free C H C	Energy: -1222 -1.76820 -1.87515 -0.72706	2.128149 hart -2.62672 -2.97249 -1.81629	tree. -1.07903 -2.10708 -0.80940
H C H H C H	-5.12987 -5.51428 -5.66255 -3.26330 -3.04220 -3.85055 -2.56689	-2.24004 -3.21314 -1.72698 -2.45044 -1.81115 -3.30162 3.01470	0.89354 0.59689 1.69183 -0.76755 -1.62552 -1.12785 0.08761	tree. Free C H C H C	Energy: -1222 -1.76820 -1.87515 -0.72706 -0.05869	2.128149 hart -2.62672 -2.97249 -1.81629 -1.53038	tree. -1.07903 -2.10708 -0.80940 -1.61856
H C H C H C	-5.12987 -5.51428 -5.66255 -3.26330 -3.04220 -3.85055 -2.56689 -1.77580 -2.94901	-2.24004 -3.21314 -1.72698 -2.45044 -1.81115 -3.30162 3.01470 3.74234 3.20155	0.89354 0.59689 1.69183 -0.76755 -1.62552 -1.12785 0.08761 0.32253 -1.38881	tree. Free C H C H C C	Energy: -1222 -1.76820 -1.87515 -0.72706 -0.05869 -0.45812 0.17192	2.128149 hart -2.62672 -2.97249 -1.81629 -1.53038 -1.18048 0.23078	tree. -1.07903 -2.10708 -0.80940 -1.61856 0.50698 0.51048
H C H C H C H	-5.12987 -5.51428 -5.66255 -3.26330 -3.04220 -3.85055 -2.56689 -1.77580 -2.94901 -3.26174	-2.24004 -3.21314 -1.72698 -2.45044 -1.81115 -3.30162 3.01470 3.74234 3.20155 4.23680	0.89354 0.59689 1.69183 -0.76755 -1.62552 -1.12785 0.08761 0.32253 -1.38881 -1.57190	tree. Free C H C H C C H	Energy: -1222 -1.76820 -1.87515 -0.72706 -0.05869 -0.45812 0.17192 0.31672	2.128149 hart -2.62672 -2.97249 -1.81629 -1.53038 -1.18048 0.23078 0.47774	tree. -1.07903 -2.10708 -0.80940 -1.61856 0.50698 0.51048 1.56998
H C H C H C H H H	-5.12987 -5.51428 -5.66255 -3.26330 -3.04220 -3.85055 -2.56689 -1.77580 -2.94901 -3.26174 -3.78704	-2.24004 -3.21314 -1.72698 -2.45044 -1.81115 -3.30162 3.01470 3.74234 3.20155 4.23680 2.55214	0.89354 0.59689 1.69183 -0.76755 -1.62552 -1.12785 0.08761 0.32253 -1.38881 -1.57190 -1.67091	tree. Free C H C H C C H C C H C	Energy: -1222 -1.76820 -1.87515 -0.72706 -0.05869 -0.45812 0.17192 0.31672 -0.66926	2.128149 hart -2.62672 -2.97249 -1.81629 -1.53038 -1.18048 0.23078 0.47774 1.34083	tree. -1.07903 -2.10708 -0.80940 -1.61856 0.50698 0.51048 1.56998 -0.14786
H C H C H C H H H H	-5.12987 -5.51428 -5.66255 -3.26330 -3.04220 -3.85055 -2.56689 -1.77580 -2.94901 -3.26174 -3.78704 -2.11507	-2.24004 -3.21314 -1.72698 -2.45044 -1.81115 -3.30162 3.01470 3.74234 3.20155 4.23680 2.55214 2.98741	0.89354 0.59689 1.69183 -0.76755 -1.62552 -1.12785 0.08761 0.32253 -1.38881 -1.57190 -1.67091 -2.06677	tree. Free C H C H C H C H C H C H	Energy: -1222 -1.76820 -1.87515 -0.72706 -0.05869 -0.45812 0.17192 0.31672 -0.66926 -0.70944	2.128149 hart -2.62672 -2.97249 -1.81629 -1.53038 -1.18048 0.23078 0.47774 1.34083 1.15226	tree. -1.07903 -2.10708 -0.80940 -1.61856 0.50698 0.51048 1.56998 -0.14786 -1.22746
H C H C H C H H H C	-5.12987 -5.51428 -5.66255 -3.26330 -3.04220 -3.85055 -2.56689 -1.77580 -2.94901 -3.26174 -3.78704 -2.11507 -3.76650	-2.24004 -3.21314 -1.72698 -2.45044 -1.81115 -3.30162 3.01470 3.74234 3.20155 4.23680 2.55214 2.98741 3.32348	0.89354 0.59689 1.69183 -0.76755 -1.62552 -1.12785 0.08761 0.32253 -1.38881 -1.57190 -1.67091 -2.06677 0.99386	tree. Free C H C H C C H C H C H C H C H C H C H	Energy: -1222 -1.76820 -1.87515 -0.72706 -0.05869 -0.45812 0.17192 0.31672 -0.66926 -0.70944 -0.10094	2.128149 hart -2.62672 -2.97249 -1.81629 -1.53038 -1.18048 0.23078 0.47774 1.34083 1.15226 2.27024	tree. -1.07903 -2.10708 -0.80940 -1.61856 0.50698 0.51048 1.56998 -0.14786 -1.22746 -0.01246
H C H C H C H H H C H	-5.12987 -5.51428 -5.66255 -3.26330 -3.04220 -3.85055 -2.56689 -1.77580 -2.94901 -3.26174 -3.78704 -2.11507 -3.76650 -4.15715	-2.24004 -3.21314 -1.72698 -2.45044 -1.81115 -3.30162 3.01470 3.74234 3.20155 4.23680 2.55214 2.98741 3.32348 4.32956	0.89354 0.59689 1.69183 -0.76755 -1.62552 -1.12785 0.08761 0.32253 -1.38881 -1.57190 -1.67091 -2.06677 0.99386 0.79732	tree. Free C H C H C H C H C H C H C H C H C C H C C H C C H C C H C C H C C H C C H C C C C H C C C H C C C C C H C	Energy: -1222 -1.76820 -1.87515 -0.72706 -0.05869 -0.45812 0.17192 0.31672 -0.66926 -0.70944 -0.10094 -2.10498	2.128149 hart -2.62672 -2.97249 -1.81629 -1.53038 -1.18048 0.23078 0.47774 1.34083 1.15226 2.27024 1.52195	tree. -1.07903 -2.10708 -0.80940 -1.61856 0.50698 0.51048 1.56998 -0.14786 -1.22746 -0.01246 0.42255
H C H C H C H H H C	-5.12987 -5.51428 -5.66255 -3.26330 -3.04220 -3.85055 -2.56689 -1.77580 -2.94901 -3.26174 -3.78704 -2.11507 -3.76650	-2.24004 -3.21314 -1.72698 -2.45044 -1.81115 -3.30162 3.01470 3.74234 3.20155 4.23680 2.55214 2.98741 3.32348	0.89354 0.59689 1.69183 -0.76755 -1.62552 -1.12785 0.08761 0.32253 -1.38881 -1.57190 -1.67091 -2.06677 0.99386	tree. Free C H C H C C H C H C H C H C H C H C H	Energy: -1222 -1.76820 -1.87515 -0.72706 -0.05869 -0.45812 0.17192 0.31672 -0.66926 -0.70944 -0.10094	2.128149 hart -2.62672 -2.97249 -1.81629 -1.53038 -1.18048 0.23078 0.47774 1.34083 1.15226 2.27024	tree. -1.07903 -2.10708 -0.80940 -1.61856 0.50698 0.51048 1.56998 -0.14786 -1.22746 -0.01246

Н	-3.11319	0.45680	-1.23474	B3I	YP/6-31g(d)		
C	-3.44896	-0.62365	0.51989		phase.		
H	-3.25866	-0.70173	1.59164		F		
C	-3.94591	-1.84777	-0.15156	Elec	tronic Energy	v: -1222.552	.82476 har-
Ċ	-5.12994	-1.95278	-0.76484	tree.	υ.)	
Ĥ	-5.42564	-2.86188	-1.28502		Energy: -122	2 111088 har	tree
Н	-5.84854	-1.13654	-0.75652				
C	-2.91291	-2.98645	-0.15692	С	-2.00546	-3.07257	-0.14613
Ĥ	-3.38780	-3.90966	-0.50348	Ĥ	-2.08741	-3.97089	0.46569
Н	-2.54458	-3.14598	0.85975	C	-0.81556	-2.45528	-0.19165
C	-2.64422	2.96327	0.18178	H	0.01334	-2.85183	0.39426
Ĥ	-1.89709	3.64287	0.61804	C	-0.55870	-1.16498	-0.89604
C	-2.78929	3.33253	-1.30283	Č	0.06061	-0.02176	-0.04610
H	-3.09703	4.38035	-1.40531	H	-0.10214	-0.24608	1.01908
Н	-3.55106	2.72040	-1.80109	C	-0.54081	1.34926	-0.39079
Н	-1.84877	3.21366	-1.85307	H	-0.52384	1.44654	-1.48297
C	-3.96657	3.18563	0.92791	Н	0.13627	2.10696	0.01564
Ĥ	-4.30897	4.22203	0.81851	C	-1.98187	1.59768	0.14390
Н	-3.86088	2.98075	2.00071	H	-1.93083	1.69526	1.24010
Н	-4.75781	2.53057	0.54227	C	-2.83194	0.39743	-0.18597
0	-0.67488	-1.73520	1.57992	H	-2.88279	0.15748	-1.24632
Õ	1.42704	0.17974	-0.17091	C	-3.41634	-0.42473	0.69988
Si	2.90648	-0.31150	0.49511	H	-3.40660	-0.15111	1.75623
C	3.05278	0.33150	2.26468	C	-4.01832	-1.73585	0.37243
Ĥ	2.36165	-0.18565	2.94165	Č	-5.03737	-2.24142	1.08379
Н	2.84598	1.40610	2.33439	H	-5.45143	-3.22412	0.87367
Н	4.06553	0.16518	2.65434	Н	-5.49948	-1.68087	1.89283
С	3.01462	-2.19662	0.50509	С	-3.31580	-2.55864	-0.70908
Н	2.20499	-2.63317	1.10268	Н	-3.13408	-1.96389	-1.60731
Н	3.96068	-2.53787	0.94446	Н	-3.94981	-3.40407	-0.99705
Н	2.94354	-2.61968	-0.50428	С	-2.58472	2.91754	-0.42078
С	4.22428	0.45953	-0.65833	Η	-2.67898	2.78903	-1.51022
C	3.93744	0.07150	-2.12413	С	-3.98831	3.17385	0.14934
Н	2.95674	0.43089	-2.45649	Н	-4.42861	4.07482	-0.29341
Н	3.96212	-1.01545	-2.27424	Н	-3.94659	3.32608	1.23630
Н	4.69499	0.50789	-2.79253	Н	-4.66435	2.33494	-0.04286
С	4.20151	1.99690	-0.52910	С	-1.68356	4.13641	-0.16590
H	3.22101	2.41377	-0.78930	H	-2.17176	5.05220	-0.51895
Н	4.94137	2.45098	-1.20526	Η	-0.72013	4.06017	-0.67920
Н	4.44644	2.32667	0.48840	Н	-1.48607	4.26191	0.90724
С	5.62507	-0.05894	-0.26801	0	-0.79912	-0.99622	-2.07946
Н	5.70658	-1.14742	-0.37722	0	1.45387	-0.03306	-0.36038
Н	5.88842	0.19312	0.76735	Si	2.74075	-0.08380	0.72499
Н	6.39267	0.39067	-0.91533	C	2.66418	1.40323	1.89305
				H	1.73766	1.39676	2.48071
			Н	2.70267	2.35272	1.34746	
Compound 5.16			Н	3.49768	1.39315	2.60602	
	structure was	assigned as c	correct.	С	2.64781	-1.66341	1.76388
		•					

Н	1.71565	-1.70663	2.34103	Н	-3.23108	-1.88712	-1.55242
Н	3.47294	-1.71227	2.48487	Н	-3.98597	-3.34636	-0.89894
Н	2.69609	-2.56446	1.14182	С	-2.53541	2.91295	-0.39555
C	4.28765	-0.05027	-0.39436	H	-2.72752	2.78281	-1.47120
Ċ	5.56760	-0.11539	0.46704	C	-3.86997	3.15792	0.30848
H	5.62102	-1.03743	1.05933	H	-4.33962	4.07796	-0.05520
Н	5.64375	0.73286	1.15900	Н	-3.71896	3.26395	1.39050
H	6.45977	-0.09055	-0.17495	H	-4.57156	2.33336	0.14816
C	4.25781	-0.07033	-1.35660	C	-1.61620	4.12078	-0.21379
H	4.28305	-2.21320	-0.81784	H H	-2.12729	5.04029	-0.51877
п Н							
	5.13362	-1.23649	-2.02138	H	-0.70040	4.04037	-0.80667
H	3.36076	-1.24907	-1.98490	Н	-1.32925	4.23324	0.83988
C	4.30051	1.25035	-1.22664	0	-0.95383	-0.91405	-2.25563
Н	4.35910	2.14307	-0.59164	0	1.43357	-0.11103	-0.57580
Η	3.40371	1.33753	-1.84953	Si	2.58761	-0.12616	0.65169
Η	5.17486	1.26673	-1.89339	С	2.29869	1.33911	1.78975
				Н	1.32508	1.26622	2.28991
				Η	2.32698	2.28992	1.24695
	ound 5.16			Η	3.06294	1.37742	2.57526
This s	structure was	assigned as c	correct.	С	2.42682	-1.71632	1.63604
M06-	2X/6-31g(d)			Η	1.40878	-1.84352	2.02349
SMD	implicit solv	ation in THF	was used.	Η	3.10098	-1.70836	2.50060
	1			Н	2.66868	-2.59767	1.03145
Electr	onic Energy	y: -1222.101	69296 har-	С	4.25225	-0.01852	-0.23213
tree.		,		C	5.37992	-0.28726	0.77375
	Energy: -122	1.656511 har	tree	Ĥ	5.32161	-1.30087	1.18834
11001		1.00000111100		Н	5.36141	0.42169	1.61125
С	-1.94848	-3.07145	-0.28824	Н	6.35808	-0.18730	0.28285
H	-1.96593	-4.00194	0.27790	C	4.31627	-1.06223	-1.35467
C	-0.77123	-2.46014	-0.45270	Н	4.19964	-2.08242	-0.96890
Н	0.12940	-2.88279	-0.00776	H	5.29020	-1.01229	-1.86204
п С			-1.11028				
C C	-0.61494	-1.12996		H	3.53727	-0.89605	-2.10635
	0.05073	-0.03295	-0.25421	C	4.42874	1.38273	-0.83193
Н	-0.12134	-0.28102	0.80628	Н	4.46424	2.15517	-0.05441
C	-0.50652	1.35792	-0.54528	Н	3.61407	1.63427	-1.52163
Н	-0.57800	1.48082	-1.63324	Н	5.37075	1.43937	-1.39548
Н	0.21983	2.08859	-0.17485				
С	-1.88242	1.61065	0.11363				
Η	-1.72742	1.70786	1.20008		pound 5.17		
С	-2.75626	0.41229	-0.13292	This	structure was	assigned as c	correct.
Н	-2.97049	0.20883	-1.18294				
С	-3.17956	-0.44187	0.80565	Mole	cular Mecha	nics (OPLS	-2005), gas
Η	-2.99633	-0.20514	1.85507	phase	e.	•	
С	-3.83788	-1.73959	0.52680	1	gy: +50.99705	51 kJ.	
C	-4.74145	-2.26005	1.36287				
H	-5.19209	-3.23264	1.18281	С	-3.45000	4.44760	-8.45570
Н	-5.06326	-1.72193	2.25147	Č	-2.05780	4.47950	-9.09930
C	-3.30608	-2.52200	-0.66589	Č	-3.77290	7.29810	-6.67960
\sim	2.20000	2.02200	0.00000	-	5.11270		0.07200

С	-4.40440	5.89650	-6.54340	Н	-3.89230	7.15290	-6.44560
С	-3.46390	4.72470	-6.92650	Н	-1.76950	4.97090	-6.07480
Н	-4.08110	5.16740	-8.97440	Н	-3.13630	5.11650	-5.03600
Н	-3.88670	3.47140	-8.66540	Н	-3.35570	3.36630	-6.77330
Н	-2.98220	7.40280	-5.94030	С	-2.31850	7.75970	-8.65430
Н	-4.51330	8.05910	-6.43150	C	-1.61190	5.19370	-10.31920
Н	-4.70950	5.78560	-5.50170	C	-0.66140	6.39750	-10.09030
Н	-5.32850	5.83930	-7.12030	C	-1.35430	7.76110	-9.83040
Н	-2.46040	5.00060	-6.59480	Η	-0.60500	8.53570	-9.66170
С	-1.98500	7.67010	-8.48470	Н	-1.89160	8.05620	-10.73290
С	-1.92600	5.16020	-10.46600	Н	-2.51340	5.51030	-10.84340
С	-0.99870	6.39890	-10.47530	Н	-1.11640	4.47360	-10.97050
С	-1.63950	7.70950	-9.96360	Н	0.04270	6.16820	-9.28900
Н	-0.95590	8.54260	-10.13260	Н	-0.03920	6.50630	-10.97890
Н	-2.53050	7.93370	-10.55170	С	-3.69440	8.32720	-8.96320
Н	-2.91160	5.41950	-10.85130	Н	-4.22060	7.68760	-9.67170
Н	-1.51920	4.41100	-11.14520	Н	-4.31920	8.44630	-8.08080
Н	-0.08450	6.18420	-9.91930	Н	-3.59260	9.31480	-9.41370
Н	-0.67320	6.56350	-11.50260	С	-1.96860	7.19110	-7.48390
С	-0.78520	7.61050	-7.55160	Н	-0.95740	6.82450	-7.37860
Н	0.00320	8.27290	-7.90920	0	-1.16370	3.72590	-8.46330
Н	-1.01780	7.92300	-6.53610	С	-5.14680	4.49640	-6.67720
Н	-0.38220	6.59810	-7.51320	Н	-5.72680	3.77550	-7.25420
С	-3.26900	7.57140	-8.08500	Н	-5.33700	4.29380	-5.62270
Η	-4.04390	7.58700	-8.83790	Н	-5.53900	5.48870	-6.90090
Ο	-1.08330	3.96340	-8.55520				
С	-3.82450	3.44440	-6.15540				
Η	-3.13450	2.63540	-6.39950				
Η	-3.76800	3.60210	-5.07780	Con	1.17 npound 5.17		
Η	-4.83400	3.10600	-6.39070	This	structure was a	assigned as o	correct.
				M06	5-2X/6-31g(d)	-	
				SMI	D implicit solva	tion in dich	loromethane
				was	used.		
Com	pound 5.17						
This	structure was	assigned as i	incorrect.	Elec	tronic Energy	: -544.2972	266402 har-
				tree.			
Mole	cular Mecha	nics (OPLS	-2005), gas	Free	Energy: -544.0)35506 hartı	ee.
phase	.						
Energ	gy: +58.67673	85 kJ.		С	-3.30671	4.32372	-8.31515
				С	-1.97481	4.84028	-8.83614
С	-3.42940	4.57700	-8.53220	С	-3.43976	7.10731	-6.65308
С	-1.98910	4.42950	-9.04270	С	-4.25461	5.81931	-6.46124
С	-2.86430	6.82290	-6.31820	С	-3.54899	4.49741	-6.80699
С	-2.81000	5.30030	-6.06060	Н	-4.13145	4.75420	-8.89390
C	2 64770	4 20220	7 00500	ΤT	2 20249	2 25004	0 56011

-3.64770

-3.81010

-4.02870

-2.48120

С

Н

Η

Η

4.39220

5.54790

3.84090

7.34740

-7.00590

-8.84040

-9.06730

-5.44240

Η

Η

Η

Η

-3.29248

-2.51620

-4.01968

-4.56029

1.055500 Hart	iee.
4.32372	-8.31515
4.84028	-8.83614
7.10731	-6.65308
5.81931	-6.46124
4.49741	-6.80699
	4.32372 4.84028 7.10731 5.81931

3.25004

7.03045

7.93482

5.77246

-8.56211

-6.06912

-6.21981

-5.40845

Н	-5.18332	5.88378	-7.04804	С	-1.97260	5.25498	-10.35388
Н	-2.56993	4.47996	-6.31000	Č	-1.04782	6.45749	-10.59890
C	-1.92933	7.74240	-8.59476	Č	-1.62303	7.78309	-10.04293
Č	-1.91133	5.25492	-10.30087	Н	-0.91983	8.59331	-10.28054
C	-1.02975	6.47802	-10.56097	Н	-2.55919	8.00380	-10.57202
C	-1.70648	7.77787	-10.08611	Н	-2.99057	5.47477	-10.69445
H	-1.07865	8.63374	-10.36280	Н	-1.61977	4.40118	-10.95205
Н	-2.66464	7.88532	-10.60971	Н	-0.06976	6.24807	-10.15135
Н	-2.92238	5.42572	-10.68651	Н	-0.88506	6.57111	-11.67790
Н	-1.50725	4.38578	-10.83846	C	-0.65543	7.87070	-7.67965
Н	-0.06943	6.34115	-10.05017	Н	-0.13938	8.81443	-7.90421
H	-0.81807	6.55128	-11.63310	H	-0.88368	7.86280	-6.61104
п С	-0.69349	7.91836	-7.74940	п Н	0.06009	7.06117	-7.87303
H	-0.09349	8.62827		C	-3.11614	7.45722	-8.09377
			-8.21886	С Н			
Н	-0.92105	8.28530	-6.74578		-3.91773	7.39912	-8.83401
H	-0.16486	6.96178	-7.64763	0	-0.95112	4.65415	-8.26937
C	-3.12582	7.40751	-8.09260	C	-4.29237	3.34063	-6.19274
Н	-3.96057	7.29434	-8.78933	Н	-3.74640	2.40142	-6.34461
0	-0.96746	4.79841	-8.15396	Н	-4.42617	3.48026	-5.11300
C	-4.38604	3.32873	-6.28160	Н	-5.28981	3.22044	-6.63717
Н	-3.88779	2.37063	-6.46449				
Н	-4.56460	3.41904	-5.20478				
Η	-5.36295	3.29770	-6.78089		1.17 npound 5.1 7		
				This	structure was	assigned as	correct.
						0	
				B3L	YP/6-31g(d)	e	
	pound 5.17			B3L		U	
	pound 5.17 structure was	assigned as	correct.	B3L	YP/6-31g(d)	U	
This B3L	structure was YP/6-31g(d)	C		B3L Gas	YP/6-31g(d)	-	
This B3L	structure was	C		B3L Gas	YP/6-31g(d) phase. etronic Energy	-	
This B3L SME	structure was YP/6-31g(d)	C		B3L Gas Elec tree.	YP/6-31g(d) phase. etronic Energy	v: -544.538	780175 har-
This B3L SME	structure was YP/6-31g(d) D implicit solv	C		B3L Gas Elec tree.	YP/6-31g(d) phase. tronic Energy	v: -544.538	780175 har-
This B3L SME was	structure was YP/6-31g(d)) implicit solv used.	ation in dich		B3L Gas Elec tree.	YP/6-31g(d) phase. tronic Energy	v: -544.538	780175 har-
This B3L SME was	structure was YP/6-31g(d)) implicit solv used.	ation in dich	loromethane	B3L Gas Elec tree. Free	YP/6-31g(d) phase. etronic Energy Energy: -544.	7: -544.538 278509 harts	780175 har- ree.
This B3L SME was Elect tree.	structure was YP/6-31g(d)) implicit solv used.	vation in dich	lloromethane 848256 har-	B3L Gas Elec tree. Free C	YP/6-31g(d) phase. etronic Energy Energy: -544. -3.32109	7: -544.538 278509 harti 4.28229	780175 har- ree. -8.33766
This B3L SME was Elect tree.	structure was YP/6-31g(d) D implicit solv used. tronic Energy	vation in dich	lloromethane 848256 har-	B3L Gas Elec tree. Free C C	YP/6-31g(d) phase. etronic Energy Energy: -544. -3.32109 -1.99076	7: -544.538 278509 harts 4.28229 4.77824	780175 har- ree. -8.33766 -8.90698
This B3L SME was Elect tree.	structure was YP/6-31g(d) D implicit solv used. tronic Energy	vation in dich	lloromethane 848256 har-	B3L Gas Elec tree. Free C C C	YP/6-31g(d) phase. etronic Energy Energy: -544. -3.32109 -1.99076 -3.56134	 -544.538 278509 harts 4.28229 4.77824 7.17634 	780175 har- ree. -8.33766 -8.90698 -6.68505
This B3L SME was Elect tree. Free	structure was YP/6-31g(d) D implicit solv used. tronic Energy Energy: -544.	eation in dich y: -544.5528 293818 harti	lloromethane 848256 har- ree.	B3L Gas Elec tree. Free C C C C C	YP/6-31g(d) phase. etronic Energy Energy: -544. -3.32109 -1.99076 -3.56134 -4.31475	 -544.538' 278509 harts 4.28229 4.77824 7.17634 5.83597 	780175 har- ree. -8.33766 -8.90698 -6.68505 -6.52231
This B3L SME was Elect tree. Free C	structure was YP/6-31g(d) D implicit solv used. tronic Energy Energy: -544. -3.31800	eation in dich y: -544.5528 293818 harti 4.27377	lloromethane 848256 har- ree. -8.33163	B3L Gas Elec tree. Free C C C C C C	YP/6-31g(d) phase. etronic Energy Energy: -544. -3.32109 -1.99076 -3.56134 -4.31475 -3.53488	 -544.538 278509 harts 4.28229 4.77824 7.17634 5.83597 4.53376 	780175 har- ree. -8.33766 -8.90698 -6.68505 -6.52231 -6.82379
This B3L SME was Elect tree. Free C C	structure was YP/6-31g(d) D implicit solv used. tronic Energy Energy: -544. -3.31800 -1.99129	eation in dich y: -544.5528 293818 harti 4.27377 4.76734	lloromethane 848256 har- ree. -8.33163 -8.90435	B3L Gas Elecc tree. Free C C C C C C H	YP/6-31g(d) phase. etronic Energy Energy: -544. -3.32109 -1.99076 -3.56134 -4.31475 -3.53488 -4.16078	 7: -544.538 278509 harts 4.28229 4.77824 7.17634 5.83597 4.53376 4.67353 	780175 har- ree. -8.33766 -8.90698 -6.68505 -6.52231 -6.82379 -8.92310
This B3L SME was Elect tree. Free C C C	structure was YP/6-31g(d) D implicit solv used. tronic Energy Energy: -544. -3.31800 -1.99129 -3.55409	ation in dich y: -544.5528 293818 harti 4.27377 4.76734 7.17167 5.83521	lloromethane 848256 har- ree. -8.33163 -8.90435 -6.68331 -6.52287	B3L Gas Elec tree. Free C C C C C C H H	YP/6-31g(d) phase. etronic Energy Energy: -544. -3.32109 -1.99076 -3.56134 -4.31475 -3.53488 -4.16078 -3.30846	 -544.538 278509 harts 4.28229 4.77824 7.17634 5.83597 4.53376 4.67353 3.19587 7.18419 	780175 har- ree. -8.33766 -8.90698 -6.68505 -6.52231 -6.82379 -8.92310 -8.52100 -6.00365
This B3L SME was Elect tree. Free C C C C C C	structure was YP/6-31g(d) D implicit solv used. tronic Energy Energy: -544. -3.31800 -1.99129 -3.55409 -4.31485 -3.54156	ration in dich y: -544.5528 293818 harti 4.27377 4.76734 7.17167 5.83521 4.52783	lloromethane 848256 har- ree. -8.33163 -8.90435 -6.68331	B3L Gas Elecc tree. Free C C C C C C C H H H H	YP/6-31g(d) phase. etronic Energy e Energy: -544. -3.32109 -1.99076 -3.56134 -4.31475 -3.53488 -4.16078 -3.30846 -2.70421 -4.23883	 -544.538 278509 harts 4.28229 4.77824 7.17634 5.83597 4.53376 4.67353 3.19587 7.18419 7.97245 	780175 har- ree. -8.33766 -8.90698 -6.68505 -6.52231 -6.82379 -8.92310 -8.52100 -6.00365 -6.33849
This B3L SME was Elect tree. Free C C C C C C H	structure was YP/6-31g(d) D implicit solv used. tronic Energy Energy: -544. -3.31800 -1.99129 -3.55409 -4.31485 -3.54156 -4.15699	ration in dich y: -544.5528 293818 harti 4.27377 4.76734 7.17167 5.83521 4.52783 4.65901	lloromethane 848256 har- ree. -8.33163 -8.90435 -6.68331 -6.52287 -6.81911 -8.92062	B3L Gas Elec tree. Free C C C C C C C H H H H H	YP/6-31g(d) phase. etronic Energy Energy: -544. -3.32109 -1.99076 -3.56134 -4.31475 -3.53488 -4.16078 -3.30846 -2.70421 -4.23883 -4.66245	 -544.538 278509 harts 4.28229 4.77824 7.17634 5.83597 4.53376 4.67353 3.19587 7.18419 7.97245 5.78845 	780175 har- ree. -8.33766 -8.90698 -6.68505 -6.52231 -6.82379 -8.92310 -8.52100 -6.00365 -6.33849 -5.48141
This B3L SME was Elect tree. Free C C C C C C H H	structure was YP/6-31g(d) D implicit solv used. tronic Energy Energy: -544. -3.31800 -1.99129 -3.55409 -4.31485 -3.54156	ation in dich -544.5528 293818 harti 4.27377 4.76734 7.17167 5.83521 4.52783 4.65901 3.18672	lloromethane 848256 har- ree. -8.33163 -8.90435 -6.68331 -6.52287 -6.81911 -8.92062 -8.51187	B3L Gas Elecc tree. Free C C C C C C C H H H H	YP/6-31g(d) phase. etronic Energy e Energy: -544. -3.32109 -1.99076 -3.56134 -4.31475 -3.53488 -4.16078 -3.30846 -2.70421 -4.23883	 -544.538 278509 harts 4.28229 4.77824 7.17634 5.83597 4.53376 4.67353 3.19587 7.18419 7.97245 5.78845 5.85316 	780175 har- ree. -8.33766 -8.90698 -6.68505 -6.52231 -6.82379 -8.92310 -8.52100 -6.00365 -6.33849 -5.48141 -7.13992
This B3L SME was Elect tree. Free C C C C C C H H H	structure was YP/6-31g(d) D implicit solv used. tronic Energy Energy: -544. -3.31800 -1.99129 -3.55409 -4.31485 -3.54156 -4.15699 -3.29812 -2.70210	ration in dich y: -544.5528 293818 hartu 4.27377 4.76734 7.17167 5.83521 4.52783 4.65901 3.18672 7.18133	lloromethane 848256 har- ree. -8.33163 -8.90435 -6.68331 -6.52287 -6.81911 -8.92062 -8.51187 -5.99497	B3L Gas Elect tree. Free C C C C C C C H H H H H H H H	YP/6-31g(d) phase. etronic Energy Energy: -544. -3.32109 -1.99076 -3.56134 -4.31475 -3.53488 -4.16078 -3.30846 -2.70421 -4.23883 -4.66245 -5.22616 -2.53894	 -544.538 278509 harts 4.28229 4.77824 7.17634 5.83597 4.53376 4.67353 3.19587 7.18419 7.97245 5.78845 5.85316 4.60042 	780175 har- ree. -8.33766 -8.90698 -6.68505 -6.52231 -6.82379 -8.92310 -8.52100 -6.00365 -6.33849 -5.48141 -7.13992 -6.36678
This B3L SME was Elect tree. Free C C C C C C H H H H	structure was YP/6-31g(d) D implicit solv used. tronic Energy Energy: -544. -3.31800 -1.99129 -3.55409 -4.31485 -3.54156 -4.15699 -3.29812 -2.70210 -4.23322	ration in dich y: -544.5528 293818 harti 4.27377 4.76734 7.17167 5.83521 4.52783 4.65901 3.18672 7.18133 7.96967	lloromethane 848256 har- ree. -8.33163 -8.90435 -6.68331 -6.52287 -6.81911 -8.92062 -8.51187 -5.99497 -6.34393	B3L Gas Elec tree. Free C C C C C C C C C H H H H H H H H C	YP/6-31g(d) phase. etronic Energy Energy: -544. -3.32109 -1.99076 -3.56134 -4.31475 -3.53488 -4.16078 -3.30846 -2.70421 -4.23883 -4.66245 -5.22616 -2.53894 -1.88915	 7: -544.538 278509 harts 4.28229 4.77824 7.17634 5.83597 4.53376 4.67353 3.19587 7.18419 7.97245 5.78845 5.85316 4.60042 7.72077 	780175 har- ree. -8.33766 -8.90698 -6.68505 -6.52231 -6.82379 -8.92310 -8.52100 -6.00365 -6.33849 -5.48141 -7.13992 -6.36678 -8.55050
This B3L SME was Elect tree. Free C C C C C C H H H H H	structure was YP/6-31g(d) D implicit solv used. tronic Energy Energy: -544. -3.31800 -1.99129 -3.55409 -4.31485 -3.54156 -4.15699 -3.29812 -2.70210 -4.23322 -4.66693	ration in dich y: -544.5528 293818 hartr 4.27377 4.76734 7.17167 5.83521 4.52783 4.65901 3.18672 7.18133 7.96967 5.79080	lloromethane 848256 har- ree. -8.33163 -8.90435 -6.68331 -6.52287 -6.81911 -8.92062 -8.51187 -5.99497 -6.34393 -5.48329	B3L Gas Elec tree. Free C C C C C C C C H H H H H H H H C C	YP/6-31g(d) phase. etronic Energy Energy: -544. -3.32109 -1.99076 -3.56134 -4.31475 -3.53488 -4.16078 -3.30846 -2.70421 -4.23883 -4.66245 -5.22616 -2.53894 -1.88915 -1.96517	 -544.538 278509 harts 4.28229 4.77824 7.17634 5.83597 4.53376 4.67353 3.19587 7.18419 7.97245 5.78845 5.85316 4.60042 7.72077 5.25896 	780175 har- ree. -8.33766 -8.90698 -6.68505 -6.52231 -6.82379 -8.92310 -8.52100 -6.00365 -6.33849 -5.48141 -7.13992 -6.36678 -8.55050 -10.36187
This B3L SME was Elect tree. Free C C C C C C C H H H H H H	structure was YP/6-31g(d) D implicit solv used. tronic Energy Energy: -544. -3.31800 -1.99129 -3.55409 -4.31485 -3.54156 -4.15699 -3.29812 -2.70210 -4.23322 -4.66693 -5.22132	ration in dich y: -544.5528 293818 hartu 4.27377 4.76734 7.17167 5.83521 4.52783 4.65901 3.18672 7.18133 7.96967 5.79080 5.85696	lloromethane 848256 har- ree. -8.33163 -8.90435 -6.68331 -6.52287 -6.81911 -8.92062 -8.51187 -5.99497 -6.34393 -5.48329 -7.14673	B3L Gas Elec tree. Free C C C C C C C C H H H H H H H H H C C C C C	YP/6-31g(d) phase. tronic Energy Energy: -544. -3.32109 -1.99076 -3.56134 -4.31475 -3.53488 -4.16078 -3.30846 -2.70421 -4.23883 -4.66245 -5.22616 -2.53894 -1.88915 -1.96517 -1.04360	 -544.538 278509 harts 4.28229 4.77824 7.17634 5.83597 4.53376 4.67353 3.19587 7.18419 7.97245 5.78845 5.85316 4.60042 7.72077 5.25896 6.46595 	780175 har- ree. -8.33766 -8.90698 -6.68505 -6.52231 -6.82379 -8.92310 -8.52100 -6.00365 -6.33849 -5.48141 -7.13992 -6.36678 -8.55050 -10.36187 -10.59748
This B3L SME was Elect tree. Free C C C C C C H H H H H	structure was YP/6-31g(d) D implicit solv used. tronic Energy Energy: -544. -3.31800 -1.99129 -3.55409 -4.31485 -3.54156 -4.15699 -3.29812 -2.70210 -4.23322 -4.66693	ration in dich y: -544.5528 293818 hartr 4.27377 4.76734 7.17167 5.83521 4.52783 4.65901 3.18672 7.18133 7.96967 5.79080	lloromethane 848256 har- ree. -8.33163 -8.90435 -6.68331 -6.52287 -6.81911 -8.92062 -8.51187 -5.99497 -6.34393 -5.48329	B3L Gas Elec tree. Free C C C C C C C C H H H H H H H H C C	YP/6-31g(d) phase. etronic Energy Energy: -544. -3.32109 -1.99076 -3.56134 -4.31475 -3.53488 -4.16078 -3.30846 -2.70421 -4.23883 -4.66245 -5.22616 -2.53894 -1.88915 -1.96517	 -544.538 278509 harts 4.28229 4.77824 7.17634 5.83597 4.53376 4.67353 3.19587 7.18419 7.97245 5.78845 5.85316 4.60042 7.72077 5.25896 	780175 har- ree. -8.33766 -8.90698 -6.68505 -6.52231 -6.82379 -8.92310 -8.52100 -6.00365 -6.33849 -5.48141 -7.13992 -6.36678 -8.55050 -10.36187

4	3	8	

-8.48431

-8.95591

Н	-2.57109	7.99923	-10.57217	Н	0.06058	6.06211	-9.40104
Η	-2.98154	5.47429	-10.71220	Η	-0.09699	6.48603	-11.09778
Η	-1.60247	4.40716	-10.95646	С	-3.63659	8.20680	-9.07290
Н	-0.07208	6.25673	-10.13661	Н	-4.01123	7.65792	-9.94800
Н	-0.86789	6.58241	-11.67421	Н	-4.37577	8.12171	-8.27339
С	-0.66475	7.83652	-7.67553	Н	-3.58412	9.26149	-9.37205
Н	-0.05113	8.69102	-7.98888	С	-1.96700	7.15402	-7.50763
Η	-0.90806	7.97167	-6.61919	Н	-0.93290	6.83181	-7.35882
Η	-0.04360	6.93561	-7.76045	0	-1.15980	4.07578	-8.35136
С	-3.12913	7.46694	-8.09594	С	-5.13494	4.42626	-6.61508
Η	-3.93457	7.42452	-8.83343	Н	-5.71970	3.74110	-7.23911
0	-0.95768	4.67979	-8.26519	Н	-5.30220	4.15353	-5.56764
С	-4.27083	3.34126	-6.18888	Н	-5.53813	5.43513	-6.76762
Н	-3.72116	2.40620	-6.34852				
Η	-4.39131	3.47929	-5.10800				
Н	-5.27325	3.21697	-6.62011	Con	npound 5.17		
				This	s structure was	assigned as i	ncorrect.

This structure was assigned as incorrect. B3LYP/6-31g(d)Gas phase.

-3.43749

-1.98854

M06-2X/6-31g(d) Elect SMD implicit solvation in dichloromethane tree. Electronic Energy: -544.531660836 har-Free Energy: -544.271141 hartree.

4.55394

4.55297

Electronic Energy: -544.292276507 har- C С tree.

This structure was assigned as incorrect.

Compound 5.17

was used.

••••	••			•	1.,000		0.70071
Fre	ee Energy: -544.	029851 hartı	ee.	С	-2.87006	6.81227	-6.35170
				С	-2.84280	5.29306	-6.04378
С	-3.47799	4.64037	-8.46628	С	-3.65637	4.35090	-6.96912
С	-2.04785	4.63879	-8.96444	Η	-3.92866	5.46826	-8.83376
С	-2.88088	6.79914	-6.36652	Η	-3.93828	3.73231	-9.02390
С	-2.82136	5.29103	-6.05075	Η	-2.49629	7.33522	-5.45863
С	-3.64760	4.36569	-6.96720	Η	-3.89925	7.15928	-6.49829
Η	-3.95210	5.58855	-8.74450	Η	-1.79859	4.96243	-6.04804
Η	-4.00929	3.86569	-9.04137	Η	-3.21128	5.13881	-5.02056
Η	-2.56200	7.34440	-5.46819	Η	-3.31147	3.33600	-6.73167
Η	-3.91263	7.10777	-6.56476	С	-2.30691	7.74834	-8.68555
Η	-1.77293	4.97484	-6.07774	С	-1.65590	5.22086	-10.29672
Η	-3.17118	5.13083	-5.02313	С	-0.65869	6.39914	-10.15785
Η	-3.29446	3.34395	-6.77787	С	-1.31818	7.75999	-9.84821
С	-2.26983	7.71058	-8.68603	Η	-0.52712	8.50509	-9.67731
С	-1.73880	5.31063	-10.29825	Η	-1.84733	8.09727	-10.74983
С	-0.65530	6.39775	-10.15984	Η	-2.56560	5.54418	-10.81732
С	-1.22646	7.77786	-9.79062	Η	-1.18610	4.44098	-10.90901
Η	-0.40116	8.44437	-9.51020	Η	0.07417	6.12984	-9.38877
Η	-1.68836	8.21707	-10.68304	Η	-0.09346	6.50129	-11.09266
Η	-2.64913	5.72091	-10.75005	С	-3.63654	8.40221	-8.97312
Η	-1.37131	4.51491	-10.95701	Н	-4.15476	7.90337	-9.80535

Η	-4.30919	8.41259	-8.11213	Η	-1.70301	7.07320	-6.78711
Η	-3.48634	9.44426	-9.28845	0	-3.24629	5.41023	-10.32491
С	-1.99216	7.14301	-7.53047	С	-3.60541	3.42853	-5.86861
Η	-0.98258	6.74080	-7.43778	Н	-2.97236	2.56143	-6.09340
0	-1.10641	3.99712	-8.32267	Η	-3.49071	3.66025	-4.80259
С	-5.16151	4.41585	-6.66199	Н	-4.64959	3.13162	-6.03310
Η	-5.72642	3.70423	-7.27672				
Η	-5.35829	4.17796	-5.61009				
Η	-5.57099	5.41496	-6.85853	Con	npound 5.17		

This structure was assigned as correct.

Compound 5.17

This structure was assigned as incorrect. B3LYP/6-31g(d) SMD implicit solvation in dichloromethane

Molecular Mechanics (OPLS-2005), gas phase.

Energy: -52.023094 kJ.

was used.				С	-3.94260	-0.60290	-6.69070
				С	-3.22710	0.56710	-7.45000
Elect	ronic Energy:	-544.5463	51411 har-	С	-4.03670	1.19420	-8.63900
tree.				С	-1.85750	0.17060	-8.05360
Free	Energy: -544.2	86407 hartr	ee.	Н	-3.05140	1.32790	-6.69010
				Н	-1.58110	-0.83110	-7.73600
С	-3.42506	4.27169	-8.23538	С	-0.70430	1.12610	-7.64420
С	-2.65719	5.02368	-9.32328	С	-5.53030	0.67220	-8.63400
С	-3.88645	7.19567	-7.04650	С	-3.23150	0.67550	-9.85520
С	-4.02534	5.87244	-6.25243	С	-3.95370	2.76430	-8.57490
С	-3.22859	4.63776	-6.74242	Н	-6.00170	1.04250	-7.72290
Η	-4.48655	4.31269	-8.50693	С	-5.57370	-0.83770	-8.51000
Η	-3.11090	3.22242	-8.35941	С	-6.43420	1.11630	-9.78090
Η	-4.26603	8.00754	-6.40702	С	-4.79840	-1.47000	-7.61630
Η	-4.54142	7.16781	-7.92429	0	-4.65410	3.23120	-7.41910
Η	-3.71342	6.05415	-5.21452	0	-3.69430	0.73370	-10.99450
Η	-5.09162	5.60958	-6.20587	Ν	-2.04320	0.14190	-9.50610
Η	-2.16190	4.83273	-6.57708	Η	-0.95200	2.16360	-7.86860
С	-2.03758	7.88371	-8.67509	С	-7.54320	1.85710	-9.61110
С	-1.12896	5.09045	-9.24867	С	-8.38970	2.43080	-10.73180
С	-0.50556	6.32015	-9.93059	Η	-7.84450	2.13290	-8.61060
С	-0.60677	7.62232	-9.08907	С	-8.43100	3.97660	-10.71230
Η	0.02553	7.51192	-8.19859	Н	-9.39950	2.04210	-10.59670
Η	-0.19641	8.45264	-9.67981	Η	-8.04650	2.06650	-11.70150
Η	-0.78119	4.18185	-9.76510	Η	-9.41660	4.29940	-11.02860
Η	-0.78575	4.99937	-8.21311	С	-7.33440	4.64020	-11.55930
Η	0.55377	6.11943	-10.13302	Η	-8.36580	4.34600	-9.68870
Η	-0.99192	6.46116	-10.90216	С	-6.02840	4.73160	-11.21840
С	-2.93391	8.49292	-9.72263	0	-7.70320	5.16730	-12.77430
Η	-3.00115	7.85052	-10.60915	С	-5.56240	4.19520	-9.95400
Н	-3.94955	8.67121	-9.35901	С	-4.42180	3.49300	-9.83340
Η	-2.52434	9.45841	-10.05119	Η	-6.18900	4.31600	-9.08350
С	-2.46418	7.43265	-7.48175	Н	-3.81070	3.35010	-10.71310

~ •							
Si	-9.16860	5.21030	-13.62970	Η	-6.84510	4.87660	-15.46460
С	-9.88260	3.46940	-13.81170	С	-8.14090	7.31280	-15.19800
С	-10.38670	6.36340	-12.75530	Н	-7.86410	7.74110	-16.16160
С	-8.76370	5.91540	-15.36020	Н	-7.23960	7.27410	-14.58410
Н	-11.29620	6.49420	-13.33920	Н	-8.83220	8.00600	-14.71800
Н	-9.94930	7.34980	-12.60760	С	-10.04960	6.01280	-16.19990
Η	-10.68150	5.99180	-11.77650	Η	-9.84420	6.41370	-17.19290
Η	-10.71890	3.45360	-14.50840	Η	-10.78520	6.66660	-15.73060
Н	-10.24470	3.07410	-12.86530	Н	-10.51580	5.03630	-16.33330
Н	-9.12980	2.77800	-14.18800	С	-0.33010	0.99600	-6.17940
С	-4.06700	4.06970	-6.55080	С	0.35600	0.72630	-3.45530
0	-2.91690	4.49770	-6.62270	С	-0.65490	2.01740	-5.26200
С	-4.98650	4.45320	-5.40350	С	0.34970	-0.15570	-5.72950
Н	-5.26770	3.56780	-4.83430	С	0.68960	-0.29140	-4.36970
Н	-5.89020	4.92590	-5.78720	С	-0.31440	1.88120	-3.90240
Н	-4.48510	5.15260	-4.73480	Н	-1.16440	2.91030	-5.59340
Н	-6.12780	0.85990	-10.78510	Н	0.60780	-0.94110	-6.42650
С	-3.07100	-1.35320	-5.66330	Н	1.20770	-1.17610	-4.02910
Η	-4.68860	-0.10820	-6.06540	Н	-0.56530	2.66570	-3.20330
C	-4.87180	-2.98030	-7.43330	Н	0.61850	0.62320	-2.41240
H	-6.24430	-1.38540	-9.15810	С	-1.14300	-0.49000	-10.31100
Н	-2.38920	-2.06600	-6.12220	Õ	-0.24950	-1.19720	-9.84050
Н	-3.68490	-1.90140	-4.94900	Č	-1.17810	-0.33580	-11.80910
Н	-2.47370	-0.65340	-5.07840	Č	-1.14940	-0.08970	-14.62550
Si	-3.79070	-3.97660	-8.63980	C	-1.08950	0.93970	-12.41440
Н	-5.90980	-3.26790	-7.60190	C	-1.21720	-1.48640	-12.62670
Н	-4.68390	-3.26930	-6.40160	C	-1.21110	-1.36430	-14.03020
C	-4.39010	-5.76520	-8.62850	C	-1.08490	1.06200	-13.81800
C	-3.96610	-3.30070	-10.39460	H	-1.03380	1.82850	-11.80310
C	-1.97250	-3.97410	-8.14100	Н	-1.25390	-2.46680	-12.17250
H	-5.43460	-5.83970	-8.92970	Н	-1.25060	-2.24860	-14.64970
Н	-4.30490	-6.20870	-7.63680	Н	-1.03100	2.03930	-14.27550
H	-3.81020	-6.38490	-9.31190	H	-1.14580	0.00420	-15.70180
H	-4.99700	-3.35650	-10.74260	11	-1.14500	0.00420	-13.70100
H	-3.35490	-3.86000	-11.10210				
H	-3.66410	-2.25750	-10.46080				
H	-1.52030	-2.23750	-8.24760	Con	npound 5.18		
H					1	accienced as a	mhiguoug
п Н	-1.39010	-4.65330	-8.76280	1 1113	s structure was	assigned as a	inorguous.
п Н	-1.83760	-4.28790	-7.10660	Mal	ecular Mecha	niag (ODI S	2005) and
	-2.89840	3.02360	-8.49230			mes (OFLS	-2003), gas
C	-5.04650	5.41650	-12.15470	phas		0.1-1	
Н	-5.44980	6.36610	-12.50790	Ene	rgy: -39.91886	9 KJ.	
Н	-4.85370	4.78360	-13.02100	C	4 (2050	0 74170	(20200
Н	-4.09830	5.62470	-11.65940	C	-4.63950	-0.74170	-6.38300
H	0.19890	0.90870	-8.21600	C	-3.67860	0.17320	-7.19850
C	-7.75730	4.98150	-16.05430	C	-4.30030	0.84790	-8.47180
Н	-7.47250	5.35930	-17.03650	C	-2.40960	-0.57550	-7.66520
Η	-8.17020	3.98200	-16.19450	Η	-3.36550	0.95630	-6.51120

Н	-2.59320	-1.64360	-7.56640	Н	-6.46750	-1.81370	-9.11820
C	-1.14920	-0.22510	-6.81580	Η	-3.25150	-2.13810	-5.39500
Č	-5.75100	0.27820	-8.77210	Н	-4.72170	-1.82250	-4.47950
Č	-3.26700	0.46140	-9.56120	Н	-3.46720	-0.61420	-4.54940
Č	-4.32830	2.41100	-8.28290	Si	-4.39400	-4.40370	-7.69430
H	-6.44920	0.77260	-8.09610	Н	-6.60840	-3.41670	-7.26710
C	-5.89290	-1.19500	-8.44240	Н	-5.66790	-3.27710	-5.84140
C C	-6.28280	0.53340	-10.17320	C	-5.22010	-6.09960	-7.69120
C C	-5.37420	-1.70460	-7.31500	C	-4.01840	-3.92620	-9.48190
0	-5.12560	2.71600	-7.13300	C C	-2.78530	-4.54890	-6.71470
0	-3.41830	0.81600	-10.73110	С Н	-4.57540	-6.85810	-8.13480
N N	-2.26430	-0.31050	-9.09740	п Н	-6.15050	-6.09330	-8.25820
H	-2.20430				-5.45760	-6.42720	
		-0.15150	-5.75820	H			-6.67940
C	-7.25610	1.40900	-10.46560	Н	-3.57230	-2.93610	-9.54560
C	-7.54410	1.86420	-11.87520	Н	-4.92000	-3.91570	-10.09330
H	-7.74860	1.95550	-9.67420	Н	-3.31880	-4.62320	-9.94260
C	-6.45620	2.84150	-12.37190	Н	-2.13960	-3.68240	-6.83950
Н	-8.54170	2.29730	-11.93420	Н	-2.20650	-5.41260	-7.04080
Н	-7.54760	0.98380	-12.51900	Н	-2.97320	-4.67180	-5.64870
Н	-5.46350	2.47400	-12.11140	Η	-3.29880	2.72130	-8.09910
С	-6.59920	4.28900	-11.90000	С	-6.44940	6.30940	-10.47730
Н	-6.45770	2.84300	-13.46150	Η	-7.48690	6.61570	-10.60930
С	-6.30670	4.81320	-10.68440	Η	-5.83650	6.85100	-11.19860
0	-6.96350	5.14590	-12.90130	Η	-6.13050	6.60330	-9.47710
С	-5.86980	4.02460	-9.54330	Η	-0.44610	-1.05790	-6.87080
С	-4.77150	3.24510	-9.49260	С	-9.93540	7.02000	-15.27740
Η	-6.50810	4.06240	-8.67380	Η	-10.00720	7.95470	-15.83420
Η	-4.12640	3.20520	-10.35830	Η	-10.73610	7.01860	-14.53720
Si	-8.48200	5.22190	-13.64720	Η	-10.13410	6.20780	-15.97720
С	-8.70660	3.77570	-14.84280	С	-7.45640	6.86630	-15.69070
С	-9.82540	5.19690	-12.31910	Η	-7.44180	7.80250	-16.24930
С	-8.55520	6.86890	-14.61420	Η	-7.60150	6.05850	-16.40860
Н	-10.82050	5.24480	-12.75820	Н	-6.46890	6.73280	-15.24580
Н	-9.72370	6.04380	-11.64260	С	-8.31670	8.03350	-13.63750
Н	-9.77360	4.29370	-11.71460	Н	-8.32400	8.99450	-14.15230
Н	-9.62230	3.87800	-15.42250	Н	-7.35250	7.93660	-13.13610
Н	-8.75860	2.82250	-14.32120	Н	-9.08350	8.07080	-12.86330
Н	-7.87770	3.71850	-15.54700	C	-0.40660	1.03680	-7.23800
C	-4.69780	3.58260	-6.20000	Č	0.95260	3.37670	-8.05270
Õ	-3.62190	4.17630	-6.19840	Č	-0.86010	2.30600	-6.82230
Č	-5.70630	3.76750	-5.07860	C	0.75560	0.94580	-8.03490
H	-5.30700	4.43790	-4.31770	C	1.42970	2.11190	-8.44560
Н	-5.93400	2.80880	-4.61370	C	-0.19010	3.47240	-7.23610
H	-6.62870	4.19580	-5.46980	H	-1.72140	2.40150	-6.17950
H	-5.76300	0.04980	-10.98880	H	1.13140	-0.01950	-8.34550
C	-3.98110	-1.37260	-5.14020	Н	2.31240	2.03470	-9.06410
			-5.98540		-0.55400	4.44020	
H C	-5.42050	-0.09040		Н Ц			-6.92030 8 36820
С	-5.60750	-3.15790	-6.92080	Н	1.46800	4.27230	-8.36820

С	-1.32330	-0.96300	-9.83380	Η	-3.50645	-1.88188	-1.28584
Ο	-0.75700	-1.96870	-9.39680	Η	-5.00249	-2.66380	0.81710
С	-0.90730	-0.46930	-11.19650	С	-4.40526	-0.61739	0.88259
Č	-0.02580	0.40130	-13.73940	Ĥ	-3.53426	-2.40732	1.72446
C	-0.51480	0.87510	-11.39720	C	-3.56192	0.36583	1.29127
C C	-0.82110	-1.37910	-12.27330	0	-5.61534	-0.25477	0.34919
C C				C		0.02255	
	-0.38980	-0.94450	-13.54230		-2.20193		1.69918
C	-0.08480	1.31040	-12.66590	C	-1.12334	0.80678	1.55510
Н	-0.55110	1.57920	-10.57770	Н	-2.03292	-0.98555	2.06066
Н	-1.08760	-2.41590	-12.12250	Н	-1.21938	1.80844	1.14586
Н	-0.33460	-1.64490	-14.36320	Si	-7.14149	-0.95610	0.16718
Η	0.20030	2.34200	-12.81400	С	-7.10890	-2.24845	-1.21321
Η	0.30410	0.73520	-14.71250	С	-7.69034	-1.75682	1.79052
				С	-8.27294	0.51270	-0.30784
				Η	-8.73821	-2.07627	1.73319
				Н	-7.60048	-1.05929	2.63072
Com	oound 5.18			Н	-7.09331	-2.64384	2.03139
	structure was	assigned as o	correct	Н	-8.11080	-2.65897	-1.38883
	$\frac{P}{6-31g(d)}$	ussigned us (Н	-6.45013	-3.08983	-0.97099
	hase.			Н	-6.75695	-1.81631	-2.15678
Ous p	mase.			C	0.88000	-0.66849	3.85251
Elect	ronio Enorm		21054 hor	$\stackrel{\rm C}{\rm O}$		0.33895	
	ronic Energ	y2/01.4/2	221934 Hai-		1.42822		4.24535
tree.	D 07 (0 (01(0(1		C	0.70536	-1.93231	4.66104
Free	Energy: -276	0.601636 har	tree.	Н	-0.35481	-2.06915	4.90125
_				Η	1.27993	-1.85624	5.58477
С	3.26295	-1.46153	0.15851	Н	1.02653	-2.80508	4.08474
С	2.59288	-0.16944	0.73386	Η	-1.28284	-0.70459	-1.29825
С	1.05953	-0.06960	0.42483	С	4.77812	-1.49303	0.39535
С	3.21544	1.15840	0.21533	Η	2.84792	-2.27748	0.77250
Η	2.74150	-0.21079	1.81623	С	3.74366	-2.01292	-2.40279
Н	4.05851	0.97055	-0.45090	Η	0.99433	-1.83137	-2.40920
С	3.68098	2.13321	1.32884	Н	5.31805	-0.72870	-0.17167
Č	0.54813	-1.40636	-0.24973	Н	5.19110	-2.46635	0.11454
Č	0.94984	1.08736	-0.58463	Н	5.00232	-1.32651	1.45380
C	0.29517	0.34105	1.74216	Si	4.00441	-3.87209	-2.80499
H	0.71808	-2.18228	0.51135	Н	4.72297	-1.55114	-2.23231
C	1.45467		-1.43554	Н	3.35845	-1.56844	-3.33106
		-1.67891					
C	-0.91397	-1.47876	-0.63017	C	4.55114	-4.86655	-1.28592
C	2.78850	-1.71215	-1.27267	C	2.38335	-4.59822	-3.46079
0	0.33302	-0.81566	2.62074	С	5.34276	-3.98914	-4.14325
Ο	-0.01935	1.34347	-1.27214	Н	5.53832	-4.55751	-0.92269
Ν	2.15600	1.79651	-0.59291	Η	4.61412	-5.93394	-1.53223
Η	2.86781	2.26957	2.05096	Η	3.84154	-4.76357	-0.45643
С	-1.73929	-2.42726	-0.18039	Η	1.57630	-4.50281	-2.72562
С	-3.22291	-2.51007	-0.43383	Н	2.49797	-5.66391	-3.69425
Н	-1.34863	-3.17538	0.51510	Н	2.05698	-4.09290	-4.37802
С	-4.06732	-2.09599	0.81870	Н	5.05891	-3.43143	-5.04396
Η	-3.49002	-3.54364	-0.69619	Н	5.51605	-5.03033	-4.44170
				-			

Н	6.29915	-3.58339	-3.79140	Gas	phase.		
H	0.87723	1.13038	2.22562	F 1	· ·	07(1.4()	0.7102 1
C	-3.92883	1.82542	1.17478		0.7	r: -2761.469	967103 har-
Н	-5.00743	1.95947	1.08180	tree.		0.5001(0.1	
Н	-3.46185	2.28219	0.29068	Free	Energy: -2760	0.598160 har	tree.
Н	-3.57741	2.38401	2.05026	C	1 5 4 4 9 4	2 27027	0 (1107
H	3.86326	3.10512	0.85735	C	-1.54484	-2.27927	0.61187
C	-8.37883	1.50812	0.86733	C	-1.61501	-1.13897	-0.46275
Н	-9.02023	2.35750	0.59080	C	-0.68058	0.07226	-0.13036
Н	-7.40018	1.91292	1.14821	C	-3.04553	-0.54165	-0.64005
H	-8.81884	1.04521	1.75896	Н	-1.31104	-1.58726	-1.41348
C	-9.68631	-0.01008	-0.64832	H	-3.74652	-1.01963	0.04548
Н	-10.34729	0.82813	-0.91091	C	-3.62540	-0.63686	-2.07480
Н	-10.15016	-0.53322	0.19755	C	0.20336	-0.25534	1.13966
Н	-9.67757	-0.69622	-1.50353	C	-1.64399	1.22034	0.20179
C	-7.69525	1.24531	-1.53786	C	0.20345	0.57394	-1.32594
H	-8.34303	2.08878	-1.81807	Н	0.79593	-1.12935	0.82675
Н	-7.62403	0.58699	-2.41248	C	-0.71329	-0.70913	2.25439
Н	-6.69502	1.64382	-1.33801	C	1.22039	0.78271	1.56897
C	4.93787	1.68861	2.04445	C	-1.57992	-1.71312	2.03378
C	7.29286	0.84398	3.33186	0	-0.61235	0.57445	-2.54722
С	4.88658	1.11931	3.32407	0	-1.33480	2.26181	0.74748
С	6.18732	1.83758	1.42366	Ν	-2.92702	0.87758	-0.23325
С	7.35525	1.41797	2.05946	Н	-2.85701	-0.30584	-2.77687
С	6.05649	0.69870	3.96233	С	2.51024	0.45080	1.69317
Н	3.92713	1.01037	3.82478	С	3.68710	1.35591	1.93303
Н	6.23932	2.29159	0.43603	Н	2.78336	-0.58606	1.49465
Н	8.31508	1.54418	1.56494	С	4.48867	1.65320	0.61840
Η	5.99971	0.26313	4.95678	Н	4.36625	0.89265	2.66121
Η	8.20280	0.51988	3.83019	Н	3.36889	2.31758	2.35360
С	2.54789	2.78632	-1.52607	Н	3.91045	2.36814	0.02667
Ο	3.73527	2.90047	-1.79990	С	4.82571	0.43886	-0.23321
С	1.53746	3.71957	-2.10454	Н	5.41399	2.17176	0.89043
С	-0.15084	5.65229	-3.21778	С	3.97045	-0.13756	-1.12415
С	0.43660	4.19520	-1.38017	0	6.02082	-0.17629	0.01997
С	1.79780	4.23530	-3.38207	С	2.63392	0.42795	-1.26775
С	0.94715	5.18441	-3.94330	С	1.47260	-0.18566	-1.56580
С	-0.39740	5.16434	-1.93236	Н	2.53982	1.47488	-0.99809
Η	0.24088	3.81996	-0.38215	Н	1.41266	-1.23901	-1.83280
Η	2.67165	3.88287	-3.92020	Si	7.57243	0.32349	0.47905
Η	1.14543	5.56610	-4.94103	С	8.06947	1.86475	-0.49423
Η	-1.24294	5.53652	-1.36068	С	7.61721	0.67722	2.33518
Н	-0.81024	6.40011	-3.65043	С	8.68258	-1.17231	0.04353
				Н	8.63091	0.94636	2.65559
				Н	7.30654	-0.19803	2.91704
Com	pound 5.18			Н	6.95815	1.50830	2.61012
	structure was	assigned as i	ncorrect.	Н	9.12464	2.11062	-0.32261
	YP/6-31g(d)	-		Н	7.48048	2.74170	-0.20286

Η	7.93294	1.71774	-1.57134	С	-4.12202	-2.01340	-2.45801
С	-0.67126	1.72848	-3.25967	С	-5.06608	-4.57378	-3.15468
Ο	-0.20865	2.78641	-2.89079	С	-5.33634	-2.49498	-1.94546
С	-1.41344	1.52679	-4.56139	С	-3.39670	-2.83216	-3.33308
Η	-1.11008	0.59349	-5.04328	С	-3.86191	-4.10322	-3.67924
Η	-1.22008	2.37573	-5.21868	С	-5.80380	-3.76338	-2.28781
Н	-2.49062	1.46838	-4.36835	Η	-5.91787	-1.86328	-1.27742
Н	0.87094	1.79882	1.73832	Н	-2.46184	-2.46737	-3.75351
С	-2.50535	-3.43852	0.31933	Η	-3.28546	-4.72203	-4.36231
Η	-0.53311	-2.70140	0.48657	Н	-6.74828	-4.11778	-1.88285
С	-2.41600	-2.31468	3.14197	Н	-5.43175	-5.56103	-3.42436
H	-0.60065	-0.25319	3.23522	C	-4.11337	1.60790	0.00410
Н	-3.55637	-3.17503	0.46876	Ō	-5.16834	0.99427	0.12471
Н	-2.28260	-4.29263	0.96773	Č	-4.09366	3.09971	0.02535
Н	-2.39676	-3.77488	-0.71630	Č	-4.33218	5.88759	-0.00586
Si	-4.05013	-1.47586	3.70978	Č	-3.20348	3.87409	-0.73290
Н	-1.80662	-2.33396	4.05677	C	-5.11271	3.73323	0.75304
H	-2.65210	-3.36409	2.92897	C	-5.22198	5.12092	0.75028
C	-3.74372	0.35375	4.08498	C	-3.33162	5.26124	-0.75226
C	-5.46473	-1.66566	2.46549	Н	-2.41392	3.40838	-1.31083
C	-4.54143	-2.37252	5.30999	Н	-5.81149	3.12093	1.31324
H	-4.67314	0.84999	4.39019	H	-6.00393	5.60352	1.33013
Н	-3.35112	0.88953	3.21363	H	-2.64280	5.85287	-1.34846
Н	-3.02049	0.88933	4.90023	H	-4.42014	6.97094	-0.01607
п Н	-5.53910	-2.69293	2.08767	п	-4.42014	0.97094	-0.01007
п Н	-5.37202	-2.09293	1.61121				
				Com	mound 5 10		
H	-6.41839	-1.43132	2.95608		npound 5.18	aggiornadiagi	naarraat
H	-4.72527	-3.43968	5.13339		s structure was $VD/(c_2) = c(d)$	assigned as I	ncorrect.
Н	-5.45993	-1.94783	5.73342		XP/6-31g(d)		C
Н	-3.75904	-2.29402	6.07475		D implicit solv	ation in chic	brotorm was
H	0.45497	1.61422	-1.11591	usec	1.		
C	4.29303	-1.42453	-1.84149	F 1	· ·	07(1 511	11467 1
Н	4.07180	-1.34048	-2.91257		•••	7: -2/61.511	11467 har-
H	3.68429	-2.25490	-1.45571	tree.		(205201	
H	5.34152	-1.69921	-1.72029	Free	e Energy: -2760	0.638520 har	tree.
Н	-4.46311	0.06536	-2.13862	a	1 5 4 7 4 9	0 00010	0.51007
C	10.11752	-0.92240	0.55982	C	-1.54762	-2.28012	0.51927
Н	10.76756	-1.76814	0.29412	C	-1.62443	-1.08553	-0.49741
Н	10.15176	-0.81832	1.65092	C	-0.71743	0.12522	-0.08960
Н	10.56598	-0.02160	0.12183	С	-3.06447	-0.50968	-0.66446
C	8.73183	-1.37327	-1.48654	Н	-1.29725	-1.47974	-1.46373
Η	9.35379	-2.24503	-1.73602	Η	-3.76906	-1.05135	-0.03259
Η	9.16539	-0.50691	-2.00054	С	-3.61157	-0.49828	-2.11576
H	7.73575	-1.54816	-1.90834	C	0.15185	-0.26034	1.17557
С	8.12671	-2.45318	0.70253	С	-1.70573	1.23848	0.27738
Η	8.76478	-3.31468	0.45793	С	0.18366	0.70592	-1.23230
Η	7.11259	-2.67909	0.35629	Н	0.74798	-1.11437	0.81981
Η	8.09639	-2.37183	1.79610	С	-0.77196	-0.78243	2.25454

С	1.16925	0.74946	1.66730	С	-3.87553	0.05814	4.17576
С	-1.61142	-1.79472	1.97017	С	-5.50391	-1.89563	2.40459
0	-0.65716	0.83141	-2.42935	С	-4.55423	-2.77656	5.18802
0	-1.41510	2.27449	0.84971	Η	-4.82540	0.47134	4.54051
Ν	-2.98369	0.87966	-0.15215	Η	-3.54171	0.69166	3.34576
Η	-2.84774	-0.06654	-2.76577	Η	-3.14269	0.16223	4.98612
С	2.45896	0.40425	1.76589	Н	-5.57703	-2.90639	1.98340
С	3.64864	1.27463	2.06141	Н	-5.40954	-1.18253	1.57811
Н	2.71873	-0.62203	1.50432	Н	-6.46217	-1.68369	2.89877
С	4.46687	1.63075	0.77152	Н	-4.70026	-3.83523	4.93586
Н	4.31341	0.75745	2.76619	Н	-5.48787	-2.41863	5.64155
Н	3.34631	2.21810	2.53175	Н	-3.77588	-2.72811	5.96057
Η	3.90673	2.38739	0.21565	Н	0.45610	1.71883	-0.93260
С	4.79504	0.46126	-0.14356	С	4.25846	-1.30176	-1.86194
Η	5.39625	2.11630	1.08499	Н	3.92361	-1.20402	-2.90185
С	3.94172	-0.05325	-1.07618	Н	3.74726	-2.18204	-1.44478
Ō	5.97633	-0.18669	0.08586	Н	5.32903	-1.51621	-1.86229
Č	2.61043	0.52973	-1.18645	Н	-4.47911	0.17012	-2.13454
Ċ	1.44280	-0.05262	-1.52571	С	10.08113	-0.96137	0.54414
Ĥ	2.52655	1.55915	-0.85438	Ĥ	10.73405	-1.78808	0.22793
Η	1.36827	-1.08785	-1.85365	Н	10.11972	-0.91989	1.63939
Si	7.54582	0.29725	0.52846	Н	10.52613	-0.03496	0.15836
C	8.00900	1.86474	-0.41316	C	8.69034	-1.31541	-1.51614
C	7.62762	0.59187	2.39089	H	9.30691	-2.17820	-1.80888
Č	8.64502	-1.18548	0.02091	Н	9.12722	-0.42822	-1.99116
H	8.65584	0.81330	2.70419	Н	7.69307	-1.46626	-1.94650
Н	7.29100	-0.28462	2.95759	C	8.08939	-2.49306	0.62365
Н	7.00846	1.44326	2.69725	Ĥ	8.72828	-3.34479	0.34636
Н	9.07941	2.08352	-0.30758	Н	7.07683	-2.70952	0.26514
Н	7.46305	2.74089	-0.04318	Н	8.05441	-2.45890	1.72004
Н	7.79454	1.77106	-1.48434	C	-4.03921	-1.85153	-2.64168
C	-0.39201	1.87005	-3.26116	C	-4.86025	-4.36602	-3.61725
õ	0.42945	2.73267	-3.02779	C	-5.25103	-2.42463	-2.22497
č	-1.25299	1.80876	-4.49793	C	-3.25206	-2.55718	-3.56256
Н	-1.11703	0.84909	-5.00796	C	-3.65679	-3.80441	-4.04739
Н	-0.98384	2.62536	-5.16983	C	-5.65811	-3.67003	-2.70453
Н	-2.31154	1.89332	-4.22881	Н	-5.88212	-1.88336	-1.52348
Н	0.82785	1.75577	1.90226	Н	-2.31757	-2.12174	-3.91016
C	-2.48276	-3.43693	0.14877	H	-3.03342	-4.33326	-4.76422
Н	-0.52819	-2.67851	0.38614	H	-6.60182	-4.09434	-2.37073
C	-2.43521	-2.48474	3.03627	Н	-5.17866	-5.33450	-3.99434
Н	-0.67869	-0.37827	3.26045	C	-4.17751	1.58054	0.11024
Н	-3.54176	-3.20072	0.29033	0	-5.22903	0.95553	0.20741
H	-2.25829	-4.32200	0.29033	C	-4.17071	3.07090	0.18512
п Н	-2.23829	-4.32200	-0.90002	C C	-4.41161	5.85776	0.18312 0.23446
п Si	-2.34227	-1.74917	3.66011	C C	-3.35094	3.86361	-0.63148
H	-4.09338 -1.82734	-1.74917 -2.54609	3.95060	C C	-5.12357	3.68379	1.01226
п Н	-1.82734 -2.63860	-3.52585	2.75754	C C	-5.23149	5.07245	1.01220
11	-2.03800	-3.32303	2.13134	U	-3.23149	5.07245	1.04712

С	-3.47949	5.25076	-0.61187	С	-0.77593	-0.24708	1.60925
Н	-2.62452	3.39927	-1.28989	Н	-1.65128	0.43999	-0.14725
Н	-5.76960	3.06277	1.62478	Н	-0.90614	-0.69146	2.59555
Н	-5.95886	5.54106	1.70633	Si	-6.80985	-0.74206	-0.30332
Н	-2.84898	5.85856	-1.25488	C	-7.01094	1.12108	-0.26041
Н	-4.50104	6.94071	0.25573	C	-7.02807	-1.41453	-2.04445
11	-4.50104	0.74071	0.23373	C	-8.01659	-1.61171	0.86504
				С Н	-8.09404	-1.45072	-2.30182
Com	a ound 5 10			Н	-6.63685	-2.43486	-2.12390
-	pound 5.18	aggiornadiagi	naarraat	п Н		-2.43480	
		assigned as i	ncorrect.		-6.53399		-2.80695
	2X/6-31g(d)		.	Н	-7.95290	1.42610	-0.73022
	implicit solv	vation in chlo	brotorm was	Н	-6.19778	1.62271	-0.79795
used.				Н	-7.00671	1.49942	0.76805
T 1	·	0.0.0.0.0.0		C	1.93798	-0.85926	3.07751
	ronic Energy	y: -2760.515	06818 har-	O õ	1.74149	0.15973	3.70001
tree.				С	2.78234	-2.01312	3.53799
Free	Energy: -275	9.629532 har	tree.	Н	3.04313	-1.87705	4.58739
				Н	3.69666	-2.04754	2.93515
С	3.16456	-0.35452	-1.74859	Н	2.24991	-2.95662	3.39563
С	2.59792	0.14126	-0.40586	Η	-0.54733	-0.76806	-2.70585
С	1.06177	-0.08482	-0.28291	С	2.67015	0.41770	-2.98365
С	2.81945	1.66127	-0.25029	Η	4.25467	-0.22622	-1.68691
Η	3.11578	-0.40381	0.38876	С	3.91103	-2.69915	-2.51610
Н	3.51733	2.00905	-1.01873	Н	1.38704	-3.31554	-1.70467
С	3.36811	2.15165	1.09866	Н	2.91287	1.48557	-2.94601
С	0.56282	-1.45057	-0.88610	Н	1.58669	0.31246	-3.11047
C	0.55987	1.23212	-0.90502	Н	3.13979	0.00739	-3.88395
Ċ	0.67305	-0.02524	1.23420	Si	5.09474	-3.35035	-1.17482
Ĥ	0.23062	-2.04059	-0.02280	Н	4.49071	-2.15734	-3.27628
C	1.64943	-2.26933	-1.54344	Н	3.46769	-3.57401	-3.00968
C	-0.64997	-1.34719	-1.78906	C	5.97339	-1.93576	-0.29238
C	2.84583	-1.82013	-1.93023	Č	4.09553	-4.33556	0.07943
0	1.43659	-1.08630	1.85107	C	6.37114	-4.45425	-2.01055
0	-0.42690	1.44431	-1.57320	Н	6.67583	-2.33565	0.44937
N	1.49633	2.21658	-0.56830	Н	5.27670	-1.27631	0.24084
H	2.71512	1.86140	1.92730	H	6.55225	-1.31975	-0.99021
C	-1.83077	-1.86773	-1.45429	H	4.74651	-4.75324	0.85648
C	-3.13686	-1.52111	-2.11211	Н	3.34940	-3.69990	0.57069
H	-1.90172	-2.42225	-0.51789	Н	3.56289	-5.16961	-0.39233
C	-3.75303	-0.29103	-1.39122	Н	5.89287	-5.29455	-2.52674
H	-3.84329	-2.35846	-2.07168	Н	7.07951	-4.86950	-1.28451
Н	-2.98522	-1.25792	-3.16487	Н	6.94942	-3.89461	-2.75475
Н	-3.05960	0.54778	-1.49514	H	1.02610	0.91834	1.65742
C	-4.07114	-0.54635	0.06589	C	-3.61008	-0.73559	2.51068
Н	-4.67153	0.00154	-1.91022	Η	-3.31476	-1.76335	2.76006
С	-3.21884	-0.37012	1.10425	Η	-4.69042	-0.66063	2.64933
Ο	-5.28146	-1.13118	0.31113	Η	-3.12145	-0.07154	3.23132
С	-1.83309	0.00717	0.82557	Η	3.39097	3.24754	1.06722

С	-7.59837	-1.39831	2.32484	С	-2.57766	-0.89801	0.11785
Н	-8.34411	-1.83967	3.00116	С	-1.04896	-0.58328	-0.03665
Н	-7.51572	-0.33394	2.57929	С	-3.22261	-0.46878	-1.22991
Н	-6.63358	-1.87206	2.53382	Н	-2.71671	-1.97662	0.23029
С	-8.04077	-3.11722	0.56553	Н	-4.16303	0.06565	-1.08526
Н	-8.70716	-3.63355	1.27086	С	-3.48968	-1.65367	-2.19838
Н	-7.04569	-3.56831	0.66253	С	-0.53547	0.24983	1.21572
Н	-8.40913	-3.32540	-0.44598	С	-0.96661	0.31398	-1.28550
С	-9.42124	-1.02892	0.65001	С	-0.25483	-1.92257	-0.27696
H	-9.75146	-1.11391	-0.39325	Η	-0.64580	-0.44242	2.06300
Н	-9.46898	0.02972	0.93161	С	-1.48107	1.41813	1.42410
Н	-10.15364	-1.56733	1.26752	С	0.91151	0.68863	1.19353
С	4.75997	1.61767	1.35049	С	-2.80692	1.21091	1.51387
С	7.34092	0.60864	1.81060	0	-0.27690	-2.63772	0.98872
C	5.81241	1.92239	0.47904	0	0.04446	0.80004	-1.75425
C	5.02285	0.80586	2.45758	N	-2.25673	0.49240	-1.79573
Ċ	6.30357	0.30475	2.68831	Н	-2.58954	-2.27487	-2.27110
Ċ	7.09180	1.42225	0.70590	С	1.77026	0.40814	2.17694
Η	5.63223	2.57291	-0.37435	C	3.24765	0.70475	2.18605
Н	4.21883	0.58661	3.15700	H	1.41540	-0.17969	3.02810
Н	6.49014	-0.31935	3.55803	С	4.11124	-0.58293	1.96152
Н	7.89798	1.67251	0.02215	H	3.52614	1.13582	3.15824
Н	8.33904	0.21852	1.98691	Н	3.49955	1.44939	1.42254
С	1.36448	3.58386	-0.85189	Н	5.04810	-0.48204	2.51735
Õ	2.35334	4.24058	-1.11877	C	4.44184	-0.86956	0.50749
Č	0.01579	4.20375	-0.70552	H	3.59332	-1.43875	2.41044
Ċ	-2.41443	5.51724	-0.36525	С	3.59658	-1.43120	-0.39498
C	-0.92369	3.70971	0.20442	0	5.64711	-0.39159	0.05888
Ċ	-0.25561	5.36611	-1.42898	C	2.24277	-1.79837	0.01606
С	-1.47516	6.01557	-1.26661	С	1.15843	-1.77661	-0.77323
Ċ	-2.13503	4.36834	0.37480	H	2.08603	-2.01369	1.06737
Η	-0.70640	2.81926	0.78873	Н	1.24073	-1.50969	-1.82198
Н	0.49245	5.74800	-2.11699	Si	7.16950	-0.07468	0.71763
Н	-1.69193	6.91209	-1.83917	С	7.13503	1.54106	1.69835
Н	-2.86041	3.98442	1.08548	С	7.72425	-1.49952	1.83157
Н	-3.36454	6.02684	-0.23456	C	8.30544	0.08579	-0.81246
				Η	8.78592	-1.39759	2.08846
				Н	7.59505	-2.46800	1.33554
Com	pound 5.18			Н	7.16483	-1.53276	2.77331
	structure was	assigned as c	orrect.	Н	8.12878	1.77191	2.10060
	YP/6-31g(d)	0		Н	6.44349	1.49263	2.54680
	phase.			Η	6.82661	2.38394	1.06962
1				С	-0.71749	-3.92028	0.99060
Elect	ronic Energy	<i>z</i> : -2761.471	70573 har-	0	-1.18904	-4.48628	0.02837
tree.	- 6)			Ċ	-0.52999	-4.54194	2.35452
	Energy: -2760).603167 hart	ree.	Н	0.53770	-4.71265	2.53258
	0,			Η	-1.05905	-5.49465	2.39579
С	-3.23519	-0.24962	1.38004	Н	-0.89136	-3.87108	3.13930

Η	1.24537	1.24163	0.31834	Н	-3.50238	-4.12441	-0.97527	
С	-4.74027	-0.53892	1.45876	Н	-5.46382	-5.45389	-0.26744	
Н	-2.78248	-0.78707	2.22929	Н	-8.08680	-2.40686	-1.79832	
С	-3.79650	2.32164	1.76967	Н	-7.76700	-4.60101	-0.66790	
Η	-1.05314	2.41505	1.51117	С	-2.67685	1.36918	-2.81312	
Н	-5.31657	-0.03914	0.67383	Ō	-3.74170	1.15548	-3.37968	
Н	-5.14770	-0.21794	2.42215	Ċ	-1.88063	2.59316	-3.13463	
Н	-4.92472	-1.61377	1.35880	Č	-0.63819	4.99873	-3.83795	
Si	-4.00133	2.85418	3.60367	Č	-1.25711	3.37623	-2.15441	
Н	-4.78537	2.07450	1.36707	č	-1.89756	3.03547	-4.46451	
Н	-3.47359	3.22899	1.24051	č	-1.26321	4.22427	-4.81762	
C	-5.43511	4.09164	3.68703	C C	-0.64665	4.57800	-2.50602	
C	-4.37613	1.38247	4.73734	Н	-1.26231	3.05498	-1.11844	
C	-2.40404	3.69093	4.18190	Н	-2.41398	2.43869	-5.20933	
Н	-6.37845	3.63680	3.36105	Н	-1.26494	4.55112	-5.85380	
Н	-5.25142	4.96415	3.04829	Н	-0.17361	5.18589	-1.73965	
H	-5.58270	4.45840	4.71025	H	-0.15063	5.93112	-4.11032	
H	-5.33491	0.90943	4.49495		-0.13003	5.95112	-4.11032	
H	-4.42999	1.71102	5.78280					
п Н	-4.42999	0.61331	4.67618	Com	pound 5.18			
п Н		3.01842			1	aggioradaga	orreat	
	-1.54352		4.09058	This structure was assigned as correct.				
Н	-2.47834	3.99616	5.23284	M06-2X/6-31g(d) SMD implicit solvation in chloroform was				
Н	-2.18722	4.58999	3.59210		1	ation in chic	brotorm was	
H	-0.82619 3.95512	-2.52123	-0.99072	used				
С	4 4 5 5 1 /							
		-1.53757	-1.85760	F 1	· · -	07(0 510	00077 1	
Н	5.03083	-1.44258	-2.01195		0.	y: -2760.518	320977 har-	
H H	5.03083 3.46485	-1.44258 -0.74779	-2.01195 -2.44385	tree.	0.			
H H H	5.03083 3.46485 3.62199	-1.44258 -0.74779 -2.49741	-2.01195 -2.44385 -2.26953	tree.	0.			
H H H H	5.03083 3.46485 3.62199 -3.67716	-1.44258 -0.74779 -2.49741 -1.22870	-2.01195 -2.44385 -2.26953 -3.18738	tree. Free	Energy: -275	9.634975 hart	tree.	
H H H C	5.03083 3.46485 3.62199 -3.67716 8.43261	-1.44258 -0.74779 -2.49741 -1.22870 -1.27774	-2.01195 -2.44385 -2.26953 -3.18738 -1.52589	tree. Free C	Energy: -2759	9.634975 hart -1.15322	tree. 1.68049	
H H H C H	5.03083 3.46485 3.62199 -3.67716 8.43261 9.06680	-1.44258 -0.74779 -2.49741 -1.22870 -1.27774 -1.18170	-2.01195 -2.44385 -2.26953 -3.18738 -1.52589 -2.41896	tree. Free C C	Energy: -2759 -3.08287 -2.48409	9.634975 hart -1.15322 -1.10259	tree. 1.68049 0.24810	
H H H C H H	5.03083 3.46485 3.62199 -3.67716 8.43261 9.06680 7.45923	-1.44258 -0.74779 -2.49741 -1.22870 -1.27774 -1.18170 -1.66017	-2.01195 -2.44385 -2.26953 -3.18738 -1.52589 -2.41896 -1.85292	tree. Free C C C	Energy: -275 -3.08287 -2.48409 -0.95039	9.634975 hart -1.15322 -1.10259 -0.83376	tree. 1.68049 0.24810 0.23122	
H H H C H	5.03083 3.46485 3.62199 -3.67716 8.43261 9.06680	-1.44258 -0.74779 -2.49741 -1.22870 -1.27774 -1.18170	-2.01195 -2.44385 -2.26953 -3.18738 -1.52589 -2.41896	tree. Free C C	Energy: -2759 -3.08287 -2.48409	9.634975 hart -1.15322 -1.10259	tree. 1.68049 0.24810 0.23122 -0.65728	
H H H C H H H C	5.03083 3.46485 3.62199 -3.67716 8.43261 9.06680 7.45923 8.89169 9.71255	-1.44258 -0.74779 -2.49741 -1.22870 -1.27774 -1.18170 -1.66017 -2.03688 0.55251	-2.01195 -2.44385 -2.26953 -3.18738 -1.52589 -2.41896 -1.85292 -0.88104 -0.37622	tree. Free C C C C H	-3.08287 -2.48409 -0.95039 -3.10488 -2.68822	9.634975 hart -1.15322 -1.10259 -0.83376 -0.01129 -2.07742	tree. 1.68049 0.24810 0.23122 -0.65728 -0.20980	
H H H C H H H C H	5.03083 3.46485 3.62199 -3.67716 8.43261 9.06680 7.45923 8.89169 9.71255 10.37593	-1.44258 -0.74779 -2.49741 -1.22870 -1.27774 -1.18170 -1.66017 -2.03688 0.55251 0.62044	-2.01195 -2.44385 -2.26953 -3.18738 -1.52589 -2.41896 -1.85292 -0.88104	tree. Free C C C C H H	-3.08287 -2.48409 -0.95039 -3.10488	9.634975 hart -1.15322 -1.10259 -0.83376 -0.01129 -2.07742 0.52196	tree. 1.68049 0.24810 0.23122 -0.65728 -0.20980 -0.12968	
H H H C H H H C	5.03083 3.46485 3.62199 -3.67716 8.43261 9.06680 7.45923 8.89169 9.71255	-1.44258 -0.74779 -2.49741 -1.22870 -1.27774 -1.18170 -1.66017 -2.03688 0.55251	-2.01195 -2.44385 -2.26953 -3.18738 -1.52589 -2.41896 -1.85292 -0.88104 -0.37622	tree. Free C C C C H	-3.08287 -2.48409 -0.95039 -3.10488 -2.68822	9.634975 hart -1.15322 -1.10259 -0.83376 -0.01129 -2.07742 0.52196 -0.54541	tree. 1.68049 0.24810 0.23122 -0.65728 -0.20980	
H H H C H H H C H	5.03083 3.46485 3.62199 -3.67716 8.43261 9.06680 7.45923 8.89169 9.71255 10.37593	-1.44258 -0.74779 -2.49741 -1.22870 -1.27774 -1.18170 -1.66017 -2.03688 0.55251 0.62044	-2.01195 -2.44385 -2.26953 -3.18738 -1.52589 -2.41896 -1.85292 -0.88104 -0.37622 -1.25029	tree. Free C C C C H H	-3.08287 -2.48409 -0.95039 -3.10488 -2.68822 -3.89901	9.634975 hart -1.15322 -1.10259 -0.83376 -0.01129 -2.07742 0.52196	tree. 1.68049 0.24810 0.23122 -0.65728 -0.20980 -0.12968	
H H H C H H H C H H H	5.03083 3.46485 3.62199 -3.67716 8.43261 9.06680 7.45923 8.89169 9.71255 10.37593 10.18187	-1.44258 -0.74779 -2.49741 -1.22870 -1.27774 -1.18170 -1.66017 -2.03688 0.55251 0.62044 -0.14406	-2.01195 -2.44385 -2.26953 -3.18738 -1.52589 -2.41896 -1.85292 -0.88104 -0.37622 -1.25029 0.33026	tree. Free C C C C H H C	-3.08287 -2.48409 -0.95039 -3.10488 -2.68822 -3.89901 -3.67326	9.634975 hart -1.15322 -1.10259 -0.83376 -0.01129 -2.07742 0.52196 -0.54541	tree. 1.68049 0.24810 0.23122 -0.65728 -0.20980 -0.12968 -1.98406	
H H H C H H H C H H H H H	5.03083 3.46485 3.62199 -3.67716 8.43261 9.06680 7.45923 8.89169 9.71255 10.37593 10.18187 9.69327	-1.44258 -0.74779 -2.49741 -1.22870 -1.27774 -1.18170 -1.66017 -2.03688 0.55251 0.62044 -0.14406 1.54398	-2.01195 -2.44385 -2.26953 -3.18738 -1.52589 -2.41896 -1.85292 -0.88104 -0.37622 -1.25029 0.33026 0.09237	tree. Free C C C C C H H C C	-3.08287 -2.48409 -0.95039 -3.10488 -2.68822 -3.89901 -3.67326 -0.35521	9.634975 hart -1.15322 -1.10259 -0.83376 -0.01129 -2.07742 0.52196 -0.54541 -0.95158	tree. 1.68049 0.24810 0.23122 -0.65728 -0.20980 -0.12968 -1.98406 1.67230	
H H H C H H H C H H H C H H H C	5.03083 3.46485 3.62199 -3.67716 8.43261 9.06680 7.45923 8.89169 9.71255 10.37593 10.18187 9.69327 7.71850	-1.44258 -0.74779 -2.49741 -1.22870 -1.27774 -1.18170 -1.66017 -2.03688 0.55251 0.62044 -0.14406 1.54398 1.11727	-2.01195 -2.44385 -2.26953 -3.18738 -1.52589 -2.41896 -1.85292 -0.88104 -0.37622 -1.25029 0.33026 0.09237 -1.80068	tree. Free C C C C C H H C C C C C	-3.08287 -2.48409 -0.95039 -3.10488 -2.68822 -3.89901 -3.67326 -0.35521 -0.82873	9.634975 hart -1.15322 -1.10259 -0.83376 -0.01129 -2.07742 0.52196 -0.54541 -0.95158 0.60503	tree. 1.68049 0.24810 0.23122 -0.65728 -0.20980 -0.12968 -1.98406 1.67230 -0.26583	
H H H C H H H C H H H C H H H C H	5.03083 3.46485 3.62199 -3.67716 8.43261 9.06680 7.45923 8.89169 9.71255 10.37593 10.18187 9.69327 7.71850 8.36253	$\begin{array}{c} -1.44258\\ -0.74779\\ -2.49741\\ -1.22870\\ -1.27774\\ -1.18170\\ -1.66017\\ -2.03688\\ 0.55251\\ 0.62044\\ -0.14406\\ 1.54398\\ 1.11727\\ 1.20311\end{array}$	-2.01195 -2.44385 -2.26953 -3.18738 -1.52589 -2.41896 -1.85292 -0.88104 -0.37622 -1.25029 0.33026 0.09237 -1.80068 -2.68788	tree. Free C C C C C H H C C C C C C C C C C C C	-3.08287 -2.48409 -0.95039 -3.10488 -2.68822 -3.89901 -3.67326 -0.35521 -0.82873 -0.29132	9.634975 hart -1.15322 -1.10259 -0.83376 -0.01129 -2.07742 0.52196 -0.54541 -0.95158 0.60503 -1.76302	tree. 1.68049 0.24810 0.23122 -0.65728 -0.20980 -0.12968 -1.98406 1.67230 -0.26583 -0.83659	
H H H C H H H C H H H H H H H H H H	5.03083 3.46485 3.62199 -3.67716 8.43261 9.06680 7.45923 8.89169 9.71255 10.37593 10.18187 9.69327 7.71850 8.36253 7.64583	$\begin{array}{c} -1.44258\\ -0.74779\\ -2.49741\\ -1.22870\\ -1.27774\\ -1.18170\\ -1.66017\\ -2.03688\\ 0.55251\\ 0.62044\\ -0.14406\\ 1.54398\\ 1.11727\\ 1.20311\\ 2.11715\end{array}$	-2.01195 -2.44385 -2.26953 -3.18738 -1.52589 -2.41896 -1.85292 -0.88104 -0.37622 -1.25029 0.33026 0.09237 -1.80068 -2.68788 -1.35500	tree. Free C C C C C H H C C C C H H H C C C C H	-3.08287 -2.48409 -0.95039 -3.10488 -2.68822 -3.89901 -3.67326 -0.35521 -0.82873 -0.29132 -0.57074	9.634975 hart -1.15322 -1.10259 -0.83376 -0.01129 -2.07742 0.52196 -0.54541 -0.95158 0.60503 -1.76302 -1.98526	tree. 1.68049 0.24810 0.23122 -0.65728 -0.20980 -0.12968 -1.98406 1.67230 -0.26583 -0.83659 1.98313	
H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H H C C H H H H C C H H H H C C H H H H C C H H H C C H H H H C C H H H H C C H H H H C C H H H H C C H H H C C H H H H C C H H H H C C H H H H C C H H H H C C H H H H C C H H H H C C H H H C C H H H C C H H H H C C H H H H H C C H H H H H C C H H H H C C H H H H H C C H H H H H C C H H H H H H C C H H H H H H C C H H H H H H C C H H H H H C C H H H H H C C H H H H H C C H H H H H C C H H H H H C C H H H H H C C H	5.03083 3.46485 3.62199 -3.67716 8.43261 9.06680 7.45923 8.89169 9.71255 10.37593 10.18187 9.69327 7.71850 8.36253 7.64583 6.71781	$\begin{array}{c} -1.44258\\ -0.74779\\ -2.49741\\ -1.22870\\ -1.27774\\ -1.18170\\ -1.66017\\ -2.03688\\ 0.55251\\ 0.62044\\ -0.14406\\ 1.54398\\ 1.11727\\ 1.20311\\ 2.11715\\ 0.82924\end{array}$	-2.01195 -2.44385 -2.26953 -3.18738 -1.52589 -2.41896 -1.85292 -0.88104 -0.37622 -1.25029 0.33026 0.09237 -1.80068 -2.68788 -1.35500 -2.13899	tree. Free C C C C C H H C C C C H H C C C C H H C C C C C C C C C C H H ee S T E S S S S S S S S S S S S S S S S S	-3.08287 -2.48409 -0.95039 -3.10488 -2.68822 -3.89901 -3.67326 -0.35521 -0.82873 -0.29132 -0.57074 -1.14522	9.634975 hart -1.15322 -1.10259 -0.83376 -0.01129 -2.07742 0.52196 -0.54541 -0.95158 0.60503 -1.76302 -1.98526 -0.00104	tree. 1.68049 0.24810 0.23122 -0.65728 -0.20980 -0.12968 -1.98406 1.67230 -0.26583 -0.83659 1.98313 2.54712	
H H H H C H H H C H H H C H H H C H H H C H H H C C H H H C C H H H C C H H H C C H H C C H H C C H H C C H H C C H H C C H C C H C	5.03083 3.46485 3.62199 -3.67716 8.43261 9.06680 7.45923 8.89169 9.71255 10.37593 10.18187 9.69327 7.71850 8.36253 7.64583 6.71781 -4.67318	-1.44258 -0.74779 -2.49741 -1.22870 -1.27774 -1.18170 -1.66017 -2.03688 0.55251 0.62044 -0.14406 1.54398 1.11727 1.20311 2.11715 0.82924 -2.49853	-2.01195 -2.44385 -2.26953 -3.18738 -1.52589 -2.41896 -1.85292 -0.88104 -0.37622 -1.25029 0.33026 0.09237 -1.80068 -2.68788 -1.35500 -2.13899 -1.77785	tree. Free C C C C C H H C C C C H H C C C C C C	-3.08287 -2.48409 -0.95039 -3.10488 -2.68822 -3.89901 -3.67326 -0.35521 -0.82873 -0.29132 -0.57074 -1.14522 1.13106	9.634975 hart -1.15322 -1.10259 -0.83376 -0.01129 -2.07742 0.52196 -0.54541 -0.95158 0.60503 -1.76302 -1.98526 -0.00104 -0.74645	tree. 1.68049 0.24810 0.23122 -0.65728 -0.20980 -0.12968 -1.98406 1.67230 -0.26583 -0.83659 1.98313 2.54712 1.82569	
H H H H C H H H C H H H C H H H C C C C	5.03083 3.46485 3.62199 -3.67716 8.43261 9.06680 7.45923 8.89169 9.71255 10.37593 10.18187 9.69327 7.71850 8.36253 7.64583 6.71781 -4.67318 -6.90517	$\begin{array}{c} -1.44258\\ -0.74779\\ -2.49741\\ -1.22870\\ -1.27774\\ -1.18170\\ -1.66017\\ -2.03688\\ 0.55251\\ 0.62044\\ -0.14406\\ 1.54398\\ 1.11727\\ 1.20311\\ 2.11715\\ 0.82924\\ -2.49853\\ -4.01426\end{array}$	-2.01195 -2.44385 -2.26953 -3.18738 -1.52589 -2.41896 -1.85292 -0.88104 -0.37622 -1.25029 0.33026 0.09237 -1.80068 -2.68788 -1.35500 -2.13899 -1.77785 -0.97519	tree. Free C C C C C H H C C C C H C C C C C C C	-3.08287 -2.48409 -0.95039 -3.10488 -2.68822 -3.89901 -3.67326 -0.35521 -0.82873 -0.29132 -0.57074 -1.14522 1.13106 -2.48466	9.634975 hart -1.15322 -1.10259 -0.83376 -0.01129 -2.07742 0.52196 -0.54541 -0.95158 0.60503 -1.76302 -1.98526 -0.00104 -0.74645 -0.06184	tree. 1.68049 0.24810 0.23122 -0.65728 -0.20980 -0.12968 -1.98406 1.67230 -0.26583 -0.83659 1.98313 2.54712 1.82569 2.55787	
H H H C H H H C H H H C C C C C	5.03083 3.46485 3.62199 -3.67716 8.43261 9.06680 7.45923 8.89169 9.71255 10.37593 10.18187 9.69327 7.71850 8.36253 7.64583 6.71781 -4.67318 -6.90517 -5.97734	$\begin{array}{c} -1.44258\\ -0.74779\\ -2.49741\\ -1.22870\\ -1.27774\\ -1.18170\\ -1.66017\\ -2.03688\\ 0.55251\\ 0.62044\\ -0.14406\\ 1.54398\\ 1.11727\\ 1.20311\\ 2.11715\\ 0.82924\\ -2.49853\\ -4.01426\\ -2.03283\end{array}$	-2.01195 -2.44385 -2.26953 -3.18738 -1.52589 -2.41896 -1.85292 -0.88104 -0.37622 -1.25029 0.33026 0.09237 -1.80068 -2.68788 -1.35500 -2.13899 -1.77785 -0.97519 -2.00678 -1.14844	tree. Free C C C C C H H C C C C H H C C C C C C	-3.08287 -2.48409 -0.95039 -3.10488 -2.68822 -3.89901 -3.67326 -0.35521 -0.82873 -0.29132 -0.57074 -1.14522 1.13106 -2.48466 -0.31627 0.12480	9.634975 hart -1.15322 -1.10259 -0.83376 -0.01129 -2.07742 0.52196 -0.54541 -0.95158 0.60503 -1.76302 -1.98526 -0.00104 -0.74645 -0.06184 -3.08756	tree. 1.68049 0.24810 0.23122 -0.65728 -0.20980 -0.12968 -1.98406 1.67230 -0.26583 -0.83659 1.98313 2.54712 1.82569 2.55787 -0.28698 -0.12131	
H H H C H H H C H H H C C C C C C C	5.03083 3.46485 3.62199 -3.67716 8.43261 9.06680 7.45923 8.89169 9.71255 10.37593 10.18187 9.69327 7.71850 8.36253 7.64583 6.71781 -4.67318 -6.90517 -5.97734 -4.50472	$\begin{array}{r} -1.44258\\ -0.74779\\ -2.49741\\ -1.22870\\ -1.27774\\ -1.18170\\ -1.66017\\ -2.03688\\ 0.55251\\ 0.62044\\ -0.14406\\ 1.54398\\ 1.11727\\ 1.20311\\ 2.11715\\ 0.82924\\ -2.49853\\ -4.01426\\ -2.03283\\ -3.73953\end{array}$	-2.01195 -2.44385 -2.26953 -3.18738 -1.52589 -2.41896 -1.85292 -0.88104 -0.37622 -1.25029 0.33026 0.09237 -1.80068 -2.68788 -1.35500 -2.13899 -1.77785 -0.97519 -2.00678 -1.14844 -0.74951	tree. Free C C C C C C H H C C C C H H C C C C C	-3.08287 -2.48409 -0.95039 -3.10488 -2.68822 -3.89901 -3.67326 -0.35521 -0.82873 -0.29132 -0.57074 -1.14522 1.13106 -2.48466 -0.31627	9.634975 hart -1.15322 -1.10259 -0.83376 -0.01129 -2.07742 0.52196 -0.54541 -0.95158 0.60503 -1.76302 -1.98526 -0.00104 -0.74645 -0.06184 -3.08756 1.33695	tree. 1.68049 0.24810 0.23122 -0.65728 -0.20980 -0.12968 -1.98406 1.67230 -0.26583 -0.83659 1.98313 2.54712 1.82569 2.55787 -0.28698 -0.12131 -0.90691	
H H H C H H H C H H H C C C C C	5.03083 3.46485 3.62199 -3.67716 8.43261 9.06680 7.45923 8.89169 9.71255 10.37593 10.18187 9.69327 7.71850 8.36253 7.64583 6.71781 -4.67318 -6.90517 -5.97734 -4.50472 -5.61345	$\begin{array}{c} -1.44258\\ -0.74779\\ -2.49741\\ -1.22870\\ -1.27774\\ -1.18170\\ -1.66017\\ -2.03688\\ 0.55251\\ 0.62044\\ -0.14406\\ 1.54398\\ 1.11727\\ 1.20311\\ 2.11715\\ 0.82924\\ -2.49853\\ -4.01426\\ -2.03283\\ -3.73953\\ -4.49106\end{array}$	-2.01195 -2.44385 -2.26953 -3.18738 -1.52589 -2.41896 -1.85292 -0.88104 -0.37622 -1.25029 0.33026 0.09237 -1.80068 -2.68788 -1.35500 -2.13899 -1.77785 -0.97519 -2.00678 -1.14844	tree. Free C C C C C H H C C C C H H C C C C N N	-3.08287 -2.48409 -0.95039 -3.10488 -2.68822 -3.89901 -3.67326 -0.35521 -0.82873 -0.29132 -0.57074 -1.14522 1.13106 -2.48466 -0.31627 0.12480 -2.01884	9.634975 hart -1.15322 -1.10259 -0.83376 -0.01129 -2.07742 0.52196 -0.54541 -0.95158 0.60503 -1.76302 -1.98526 -0.00104 -0.74645 -0.06184 -3.08756 1.33695 0.94695	tree. 1.68049 0.24810 0.23122 -0.65728 -0.20980 -0.12968 -1.98406 1.67230 -0.26583 -0.83659 1.98313 2.54712 1.82569 2.55787 -0.28698 -0.12131	

~							
С	3.44667	-1.54759	2.41927	Η	-2.62024	4.28322	1.40039
Η	1.54511	-2.66181	2.55946	Η	-1.81837	2.71110	1.20809
С	4.22424	-2.40381	1.38047	Η	-5.00165	2.09511	0.50808
Н	3.75892	-1.86563	3.42212	Η	-5.68009	3.47326	1.36257
Н	3.73017	-0.49329	2.31535	Η	-6.09361	1.83935	1.89255
Н	5.20366	-2.67037	1.78968	Η	-0.93163	-1.75090	-1.72354
С	4.47659	-1.69429	0.06611	С	3.86817	-0.61263	-2.10403
Η	3.68618	-3.34580	1.22024	Η	4.94137	-0.44832	-2.21663
С	3.56780	-1.47368	-0.90690	Η	3.38195	0.36801	-2.01197
0	5.75814	-1.22669	-0.07825	Η	3.48678	-1.07510	-3.02122
С	2.20068	-1.96828	-0.73278	Η	-3.88255	0.30827	-2.63799
С	1.10836	-1.37904	-1.22381	С	9.07138	-0.55539	0.08942
Н	2.06042	-2.82391	-0.07809	Н	9.99491	-0.38922	-0.48318
Н	1.18389	-0.48880	-1.84458	Η	8.73500	-1.57858	-0.11775
Si	6.40300	0.15977	0.63936	Н	9.32994	-0.49396	1.15324
С	5,18484	1.57051	0.43313	С	8.51955	1.88724	0.05647
Ċ	6.76926	-0.16356	2.45342	H	9.48235	2.08015	-0.43716
Ċ	8.01162	0.48321	-0.30141	Н	8.67855	2.00676	1.13570
H	7.43505	0.61115	2.85363	Н	7.82095	2.66740	-0.26898
Н	7.26860	-1.12963	2.58758	C	7.76186	0.40425	-1.81259
Н	5.86604	-0.16176	3.07245	H	8.68328	0.63975	-2.36394
Н	5.43993	2.40820	1.09243	Н	6.99468	1.11825	-2.13778
Н	4.16390	1.25604	0.68098	Н	7.43908	-0.59862	-2.11286
Н	5.17178	1.94576	-0.59632	C	-4.93893	-1.33027	-1.75037
C	-1.01634	-4.03739	-0.94030	C	-7.27885	-2.75423	-1.15233
0 0	-1.65187	-3.83095	-1.94751	C	-6.12246	-0.65492	-1.43319
C	-0.90169	-5.35727	-0.23475	C	-4.94434	-2.72671	-1.77654
H	-1.47056	-6.11323	-0.77476	C	-6.10886	-3.43535	-1.47950
H	0.14966	-5.65147	-0.17368	C	-7.28415	-1.35938	-1.13308
H	-1.28201	-5.25969	0.78620	H	-6.12470	0.43393	-1.41662
H	1.52610	0.22463	1.52999	H	-4.02880	-3.25998	-2.02545
C	-4.60768	-1.24755	1.68470	Н	-6.10024	-4.52143	-1.50447
H	-2.71590	-2.10624	2.09268	H	-8.19495	-0.82095	-0.88719
C	-3.32771	0.84184	3.41540	H	-8.19495	-3.30611	-0.91928
H H	-0.60105	0.71833	3.15749	C	-2.34572	2.21208	-1.41666
п Н	-5.09019	-0.31315				2.21208	
			1.37992		-3.50872		-1.42470
Н	-4.97194	-1.49728	2.68609	C	-1.26710	3.05093	-2.01159
H	-4.94551	-2.03517	1.00205	C	0.59368	4.70205	-3.25535
Si	-3.83297	2.53997	2.70573	C	-0.22518	2.48998	-2.75366
Н	-2.75781	1.09250	4.32063	C	-1.38937	4.43732	-1.91097
Н	-4.23634	0.33347	3.76030	C	-0.44891	5.26205	-2.51989
C	-4.40079	3.56476	4.18549	C	0.69878	3.31671	-3.38101
C	-2.33225	3.36334	1.92257	Н	-0.15015	1.41073	-2.85295
C	-5.27981	2.46079	1.50052	Н	-2.22087	4.85779	-1.35335
Н	-4.72802	4.56280	3.87157	Н	-0.53368	6.34037	-2.42688
Н	-3.59768	3.69430	4.92000	Н	1.50275	2.88113	-3.96645
Н	-5.24477	3.08744	4.69751	Η	1.32365	5.34601	-3.73698
Η	-1.59872	3.63628	2.69104				

Compound 5.19				С	-5.13730	-8.72240	-1.94800
This	structure was	assigned as c	orrect.	С	-4.43710	-7.92690	-3.04020
				С	-3.29330	-7.20420	-3.01680
Mole	cular Mecha	anics (OPLS-	-2005), gas	С	-2.31800	-7.01670	-1.91920
phase	.			С	-1.03000	-9.32190	0.09670
Energ	gy: +46.5939	71 kJ.		Н	-0.10100	-9.35850	0.66650
				С	-1.91890	-10.49390	0.57990
С	-4.15890	-9.33960	-2.74790	Н	-1.41660	-11.43250	0.34370
С	-4.34230	-7.87470	-3.10950	С	-3.35600	-10.54320	0.02850
Ċ	-3.57540	-6.81650	-2.75760	Н	-1.97450	-10.46100	1.66860
С	-2.41870	-6.80690	-1.83270	Н	-3.89370	-9.66990	0.38880
Ċ	-1.16360	-9.48140	0.34030	Н	-3.87840	-11.39040	0.47430
Ĥ	-0.49360	-9.53520	1.19920	0	-1.30660	-6.33300	-2.07330
C	-2.43580	-10.30870	0.65230	H	-3.01340	-6.71400	-3.93730
H	-2.22370	-10.95260	1.50670	C	-1.60420	-7.88930	0.21490
C	-2.91240	-11.21150	-0.50890	Õ	-2.60040	-7.68940	-0.78580
H	-3.24080	-9.66090	0.99550	H	-0.77310	-7.20190	0.05110
H	-2.71550	-12.24850	-0.23360	C	-2.17400	-7.54540	1.59890
Н	-2.30700	-11.05450	-1.39990	H	-0.72780	-9.49480	-0.93660
0	-1.62280	-5.86990	-1.78540	C	-3.46720	-10.64980	-1.50490
H	-3.83760	-5.85060	-3.16250	Н	-2.71160	-10.04370	-2.00170
C	-1.40040	-7.98890	0.01800	Н	-3.25560	-11.67790	-1.80080
0	-2.35460	-7.88720	-1.03010	Н	-2.48760	-6.50200	1.63470
Н	-0.45040	-7.57380	-0.32320	Н	-1.42360	-7.69090	2.37580
C	-1.86260	-7.18630	1.24870	H	-3.03970	-8.15530	1.85200
Н	-0.60400	-9.94120	-0.47460	C	-4.85680	-10.23850	-2.02460
C	-4.41070	-11.08700	-0.86170	H	-5.61800	-10.77490	-1.45630
Н	-4.66600	-11.85720	-1.59060	H	-4.97100	-10.57210	-3.05690
Н	-5.00390	-11.31220	0.02550	H	-4.95900	-7.95440	-3.98550
Н	-1.93030	-6.12280	1.01820	H	-6.20620	-8.56210	-2.09330
H	-1.15780	-7.29330	2.07310	H	-4.93810	-8.31260	-0.96080
H	-2.84240	-7.50670	1.60070	11	-4.95810	-0.31200	-0.90080
C	-2.84240	-9.71580	-1.41940				
H H	-4.65500	-8.94790	-0.66950				
H	-5.92240	-9.71350	-0.00930	Com	mound 5 10		
H	-5.18200	-7.68050	-3.76040		structure was	assigned as in	noorroot
						assigned as n	icontect.
Н	-3.09140	-9.54700	-2.72740		YP/6-31g(d)		
Н	-4.55250	-9.95410	-3.55820	Gas	phase.		
					tronic Energy	y: -580.4441	26299 har-
a	1 - 10			tree.			
-	pound 5.19			Free	Energy: -580.	.206896 hartro	ee.
This	structure was	assigned as a	mbiguous.	~		o 	
		• /		C	-4.91455	-8.77468	-1.85156
		anics (OPLS-	-2005), gas	С	-4.11509	-8.15471	-2.96562
phase				С	-3.18612	-7.19774	-2.84825
Energ	gy: +56.5580	06 kJ.		C	-2.81867	-6.51016	-1.56351
				С	-1.31838	-9.27132	0.28136

Н	-0.93672	-8.69062	1.13148	Н	-3.87130	-9.58498	0.33372	
С	-2.67398	-9.88978	0.67183	Н	-3.84858	-11.33271	0.42671	
H	-2.59310	-10.19895	1.72237	0	-1.10381	-6.99758	-2.20435	
C	-3.11991	-11.13953	-0.11630	Ĥ	-2.96212	-6.81728	-3.90557	
Н	-3.44523	-9.11264	0.65927	C	-1.62792	-7.85105	0.27053	
H	-3.95256	-11.60091	0.03727	0	-2.66997	-7.63704	-0.71678	
H				H H				
	-2.29839	-11.86967	-0.07085		-0.84388	-7.11584	0.07339	
0	-3.14178	-5.36485	-1.34908	C	-2.23732	-7.58464	1.63329	
Н	-2.74289	-6.75720	-3.73907	Н	-0.75863	-9.35789	-0.96535	
C	-1.30144	-8.34339	-0.93580	C	-3.43339	-10.56289	-1.53473	
0	-2.13715	-7.19933	-0.60969	Н	-2.70555	-9.89952	-2.01796	
Η	-1.71796	-8.84187	-1.81281	Η	-3.17544	-11.58017	-1.85499	
С	0.10211	-7.83398	-1.25879	Н	-2.58609	-6.55011	1.69910	
Н	-0.58784	-10.07287	0.10214	Н	-1.47815	-7.74011	2.40677	
С	-3.55721	-11.01718	-1.59143	Η	-3.08148	-8.24626	1.84585	
Η	-2.77113	-10.55123	-2.19895	С	-4.83947	-10.21175	-2.02964	
Η	-3.64432	-12.04349	-1.97347	Η	-5.57727	-10.77671	-1.44539	
Н	0.08393	-7.15328	-2.11700	Н	-4.96213	-10.52341	-3.07417	
Н	0.76648	-8.67066	-1.50298	Н	-5.05230	-7.84641	-3.92296	
Н	0.52071	-7.29327	-0.40341	Н	-6.25462	-8.57915	-2.02950	
С	-4.90595	-10.31891	-1.85675	Н	-4.90384	-8.33805	-0.92124	
Ĥ	-5.64243	-10.67355	-1.12243			0.000000	0.02121	
Н	-5.27766	-10.65043	-2.83677					
Н	-4.36788	-8.49526	-3.97132	Corr	pound 5.19			
H	-5.95918	-8.45022	-1.97456			assigned as c	orrect	
H	-4.58942	-8.37963	-0.88555	This structure was assigned as correct. B3LYP/6-31g(d)				
11	-4.30942	-0.37903	-0.885555			ation in diath	ul other was	
				used	O implicit solv		yi etilei was	
Com	nound 5 10			useu	l.			
	pound 5.19	· 1		T 1	· · F	500 4725	20060 1	
		assigned as c	orrect.	Electronic Energy: -580.473529068 har- tree.				
	-2X/6-31g(d)		1 .1					
		vation in dieth	yl ether was	Free	Energy: -580	.234494 hartro	ee.	
used.				a	- 1 - 1 10	0.50504	1.0.40.5.6	
				C	-5.17442	-8.72504	-1.94856	
	ronic Energ	y: -580.2128	61749 har-	С	-4.48489	-7.90575	-3.00438	
tree.				С	-3.31308	-7.24391	-2.98297	
Free	Energy: -579	.970017 hartr	ee.	С	-2.27506	-7.16683	-1.92959	
				С	-1.03368	-9.27918	0.11433	
С	-5.17335	-8.70734	-1.91204	Η	-0.09752	-9.31846	0.68842	
С	-4.49650	-7.90627	-2.98641	С	-1.91701	-10.46061	0.56510	
С	-3.29957	-7.30493	-2.99547	Н	-1.37853	-11.38511	0.31183	
С	-2.25251	-7.29081	-1.94598	С	-3.34554	-10.52804	-0.00411	
С	-1.03364	-9.24945	0.09035	Н	-1.99001	-10.45229	1.66118	
H	-0.09049	-9.27586	0.65036	Η	-3.89946	-9.64921	0.34138	
C	-1.90249	-10.42802	0.54933	Η	-3.85252	-11.39384	0.44576	
H	-1.37793	-11.35454	0.28071	0	-1.16268	-6.72269	-2.16780	
C	-3.32730	-10.47085	-0.01046	H	-2.99368	-6.73119	-3.88677	
-			0.01010				2.00077	
Η	-1.96163	-10.42190	1.64531	С	-1.59275	-7.85576	0.27196	

О Н С Н Н Н Н Н Н Н Н Н Н Н Н	-2.64983 -0.79368 -2.17868 -0.74026 -3.46248 -2.71345 -3.23884 -2.50736 -1.41282 -3.03323 -4.85773 -5.62233 -4.96926 -5.01753 -6.25551 -4.92488	-7.64110 -7.14893 -7.52452 -9.40140 -10.63315 -10.00141 -11.66285 -6.48022 -7.66229 -8.15984 -10.24306 -10.78858 -10.56088 -7.86410 -8.59315 -8.36012	-0.71998 0.03819 1.63663 -0.93542 -1.53488 -2.02583 -1.84639 1.66902 2.40876 1.88855 -2.05238 -1.48193 -3.09770 -3.95602 -2.08317 -0.95084	Con This M06	-3.24412 -2.52295 -1.40899 -3.02322 -4.86167 -5.62562 -4.97846 -5.00422 -6.25176 -4.91687 		
Compound 5.19 This structure was assigned as correct. B3LYP/6-31g(d) Gas phase.				Electronic Energy: -580.209167372 har- tree. Free Energy: -579.967500 hartree.			
Electronic Energy: -580.460119784 har- tree. Free Energy: -580.220781 hartree.			C C C C C C	-4.24179 -4.67141 -3.95869 -2.59475 -1.96719	-9.17150 -7.80072 -6.96768 -7.32396 -9.21200	-3.34039 -2.89599 -2.13550 -1.64082 1.17533	
C C C C C C C C H C H C H C H C H C H C	-5.17061 -4.47717 -3.30953 -2.28030 -1.03137 -0.09570 -1.91543 -1.38074 -3.34601 -1.98516 -3.89569 -3.85599 -1.17914 -2.98210 -1.59518 -2.65327	-8.72234 -7.90988 -7.24314 -7.15125 -9.28327 -9.32283 -10.46570 -11.39080 -10.52787 -10.46261 -9.64601 -11.39060 -6.68025 -6.73176 -7.86074 -7.65998	-1.95061 -3.01059 -2.98478 -1.92216 0.11455 0.68967 0.56312 0.30512 -0.00217 1.65943 0.34218 0.44973 -2.14269 -3.88593 0.26724 -0.72060	H C H C H H H O H C O H C H C H C H	-2.97534 -1.95065 -0.90410 -2.61633 -2.41753 -2.45965 -2.08431 -1.61569 -4.38044 -1.47369 -2.62337 -0.72527 -0.93238 -1.33581 -4.11760 -4.62203	-8.98108 -10.53619 -10.83987 -10.52897 -11.30839 -11.51525 -9.81895 -7.50199 -6.03594 -7.99331 -7.45674 -8.27931 -6.88822 -9.32973 -10.23217 -10.97766	$\begin{array}{c} 1.54114\\ 0.39832\\ 0.26603\\ -0.98212\\ 1.02366\\ -1.44036\\ -1.62568\\ -2.32968\\ -1.76759\\ 0.39272\\ -0.30809\\ -0.35227\\ 1.28211\\ 2.06422\\ -0.98094\\ -0.35147\end{array}$
H C H C H	-0.79976 -2.17855 -0.73530 -3.46578 -2.71806	-7.15280 -7.52519 -9.40267 -10.63493 -10.00425	$\begin{array}{r} -0.72000\\ 0.02395\\ 1.63351\\ -0.93463\\ -1.53261\\ -2.02565\end{array}$	H H H H C	-4.31157 -0.66642 -0.03694 -1.68029 -4.74405	-9.25627 -6.01093 -7.23226 -6.59263 -10.27180	-0.51970 0.68485 1.80827 2.02544 -2.38065

Н	-5.83475	-10.19167	-2.29218							
Η	-4.53752	-11.24677	-2.84069							
Η	-5.68544	-7.50210	-3.16087	Compound 5.20						
Η	-3.15253	-9.21672	-3.42773	This structure was assigned as incorrect.						
Η	-4.64975	-9.36611	-4.33836							
					ecular Mecha	nics (OPLS	-2005), gas			
C	15 10				phase. Energy: -0.229477 kJ.					
	pound 5.19			Ener	gy: -0.2294//	KJ.				
This structure was assigned as incorrect.				C	(22720	0.0(220	0.04010			
	YP/6-31g(d)		1.4	C	6.32720	0.06320	-0.84910			
		vation in dieth	yl ether was	C	5.25710	0.47030	-1.88110			
used.				C	3.98920	1.02000	-1.19430			
F1	· F	500 4703	(0771 1	H	4.93990	-0.44580	-2.37770			
	ronic Energ	y: -580.4703	62771 har-	C	5.86700	1.41850	-2.94720			
tree.	F 500	2210461		Н	5.92050	-0.62170	-0.10370			
Free	Energy: -580	.231946 hartro	ee.	Н	6.71890	0.93270	-0.31960			
C	4 27(02	0 1 (770	2 25752	Н	7.16520	-0.44160	-1.32930			
C	-4.27693	-9.16778	-3.35752	Н	6.80830	1.00450	-3.30990			
C	-4.67364	-7.78884	-2.89651	H	6.12540	2.36740	-2.47470			
C	-3.93724	-6.95611	-2.14869	0	3.93450	1.19210	0.02410			
C	-2.57076	-7.30580	-1.65637	0	2.97030	1.23860	-2.04730			
C	-1.95678	-9.18518	1.16245	C	1.67140	1.57670	-1.57200			
Н	-2.96483	-8.95439	1.52936	Н	1.48000	0.97810	-0.67960			
C	-1.94369	-10.52508	0.39541	C	0.62940	1.13940	-2.62850			
Н	-0.89590	-10.82658	0.25582	C	1.57350	3.06320	-1.17800			
C	-2.62998	-10.58443	-0.98245	Н	0.56110	3.32090	-0.86760			
Н	-2.38822	-11.28495	1.05409	Н	1.85180	3.72140	-2.00040			
Н	-2.46708	-11.59240	-1.39138	Н	2.23580	3.29230	-0.34290			
Н	-2.10604	-9.90636	-1.66435	H	0.86690	0.12940	-2.96490			
0	-1.59691	-7.52963	-2.35140	C	0.45350	2.06920	-3.85030			
Н	-4.35655	-6.02303	-1.77823	H	-0.33660	1.06200	-2.12900			
C	-1.44428	-7.94570	0.41013	C	-0.60310	1.53820	-4.82960			
0	-2.58741	-7.37830	-0.30993	0	1.68310	2.19610	-4.55310			
Н	-0.68540	-8.21199	-0.32955	Н	0.11470	3.03920	-3.48380			
C	-0.91304	-6.85664	1.33352	Н	-1.57170	1.42770	-4.34220			
Н	-1.33356	-9.31584	2.05688	Н	-0.31630	0.56720	-5.23420			
C	-4.13932	-10.29298	-0.99793	H	-0.73350	2.22300	-5.66820			
Н	-4.65353	-11.05383	-0.39311	C	2.13040	3.41150	-4.93400			
Н	-4.34383	-9.33111	-0.51388	0	1.51250	4.46960	-4.82440			
Н	-0.63009	-5.96706	0.76031	C	3.54660	3.38580	-5.51320			
Н	-0.02592	-7.21542	1.86744	C	4.50390	2.90260	-4.42360			
Н	-1.66640	-6.56578	2.07499	H	3.82840	4.42110	-5.70730			
C	-4.76587	-10.29348	-2.40609	C	3.60040	2.65270	-6.86660			
Н	-5.85785	-10.22299	-2.30851	Н	3.13160	1.66990	-6.83050			
Н	-4.56214	-11.25656	-2.89473	Н	4.62720	2.53680	-7.21300			
Н	-5.68843	-7.47440	-3.14275	H	3.06710	3.22550	-7.62580			
Н	-3.19162	-9.22680	-3.47804	C	4.98410	1.66640	-4.16430			
Н	-4.71405	-9.34744	-4.34800	Η	4.76740	3.68860	-3.73040			

	4.68860 5.14330 5.09110 3.61400	0.43060 -0.46290 0.53680 0.25740	-4.99760 -4.57130 -6.00400 -5.05530	H H C H C H	$\begin{array}{c} 2.74700\\ 4.20500\\ 2.65820\\ 5.18430\\ 4.23970\\ 5.43530\\ 6.49470\\ 5.14700\end{array}$	0.84200 1.52400 2.33470 2.35860 0.76330 3.84870 4.06810	-6.81630 -7.53560 -7.74670 -3.81540 -4.78980 -3.65100 -3.78500
	Compound 5.20 This structure was assigned as correct.			H H	5.14700 4.87560	4.16420 4.46320	-2.64780 -4.35360
phase		× ×	-2005), gas				
Energy: -17.385281 kJ.				structure was	assigned as o	correct.	
С	6.04140	-0.57950	-1.33610		-2X/6-31g(d)	_	
С	5.12150	0.32460	-2.17860	SME) implicit solv	vation in tetr	rahydrofuran
С	3.91760	0.82000	-1.35430	was	used.		
Н	4.71260	-0.29800	-2.97310				
С	5.93310	1.48420	-2.81440		tronic Energy	y: -886.6112	209454 har-
Н	5.48020	-1.39010	-0.86930	tree.			
Η	6.53160	-0.01730	-0.54000	Free	Energy: -886.	278812 hartı	ree.
Н	6.81840	-1.03230	-1.95170				
Н	6.81350	1.08890	-3.32180	С	4.81593	3.04108	-1.16912
Н	6.31480	2.11580	-2.01040	С	5.10542	1.58958	-1.53569
0	3.92950	0.82770	-0.12290	С	3.85252	0.75059	-1.74115
0	2.88940	1.22410	-2.12230	Η	5.64273	1.10580	-0.71038
С	1.67630	1.69170	-1.54430	С	5.98895	1.43228	-2.80033
Н	1.50400	1.14610	-0.61480	Η	4.25882	3.10389	-0.23024
С	0.49640	1.34470	-2.48250	Н	4.21977	3.53454	-1.94262
С	1.78290	3.18950	-1.20630	Η	5.75421	3.59195	-1.04727
Н	0.84390	3.57110	-0.80570	Η	6.13976	0.36176	-2.97090
Н	2.04450	3.78400	-2.08190	Н	6.96772	1.87787	-2.59013
Н	2.55350	3.36390	-0.45500	0	3.88781	-0.44072	-1.96307
Н	0.54310	0.28470	-2.73450	0	2.71607	1.45601	-1.68009
С	0.37640	2.18120	-3.77670	С	1.49646	0.74240	-1.99231
Н	-0.42550	1.47090	-1.91440	Η	1.70918	0.11187	-2.86019
С	-0.86660	1.80290	-4.59430	С	0.43912	1.78024	-2.34992
Ο	1.51830	1.96790	-4.59610	С	1.06983	-0.11002	-0.80962
Η	0.28430	3.23100	-3.49520	Η	0.11089	-0.59166	-1.02556
Η	-1.77870	1.95280	-4.01640	Η	0.94809	0.51585	0.08064
Η	-0.83350	0.75900	-4.90720	Η	1.80842	-0.88657	-0.60164
Н	-0.94170	2.41770	-5.49180	Н	-0.41650	1.23975	-2.77346
С	2.21960	3.01430	-5.08230	С	0.89786	2.86361	-3.31825
Ο	1.89850	4.19860	-4.99420	Н	0.08555	2.28043	-1.43974
С	3.52570	2.59710	-5.76430	С	-0.26397	3.65917	-3.88526
С	4.37190	1.83390	-4.75700	0	1.62027	2.20271	-4.38026
Н	4.05080	3.50720	-6.05090	Η	1.60443	3.53099	-2.81663
С	3.26840	1.77430	-7.03740	Η	-0.83767	4.11398	-3.07139

Н	-0.93124	3.00259	-4.45333	Н	-0.15811	2.89779	-1.92870
H	0.09726	4.45347	-4.54227	C	0.57961	2.89779	-3.77174
С	2.56008	2.92833	-5.00705	Н	1.31597	3.69105	-2.45289
0	2.67421	4.12739	-4.88635	С	0.04027	0.72458	-3.81661
С	3.52395	2.04383	-5.77717	Ο	1.81239	2.14084	-4.54863
С	4.40325	1.44633	-4.69389	Η	-0.11496	2.82604	-4.27283
Η	4.09646	2.70761	-6.43044	Η	-0.87409	0.64898	-3.21697
С	2.82549	0.96637	-6.60343	Η	0.77235	0.00911	-3.43077
Η	2.25343	0.29400	-5.95814	Η	-0.20546	0.44504	-4.84666
Η	3.56830	0.37254	-7.14427	С	2.17570	3.27888	-5.17052
Η	2.14112	1.40780	-7.33407	Ο	1.48931	4.28151	-5.22264
С	5.36728	2.08599	-4.01893	С	3.58441	3.15079	-5.76933
Η	4.12834	0.43716	-4.38456	С	4.49077	2.90087	-4.57843
С	5.86304	3.46717	-4.35432	Η	3.80325	4.15102	-6.16258
Η	6.92762	3.42023	-4.61795	С	3.57452	2.16725	-6.94999
Η	5.78608	4.13320	-3.48760	Η	3.29826	1.15585	-6.64198
Η	5.31807	3.93140	-5.17754	Η	4.55380	2.13302	-7.43734
					2.84694	2.50340	-7.69845
				С	5.23068	1.85471	-4.17769
Compound 5.20					4.40314	3.71489	-3.85653
This	structure was	assigned as i	ncorrect.	С	5.54171	0.59426	-4.95317

Η

Η

This structure was assigned as incorrect. B3LYP/6-31g(d)SMD implicit solvation in tetrahydrofuran H was used.

Electronic Energy: -886.984291069 hartree.

Free Energy: -886.658039 hartree.

Compound 5.20

5.44860

4.88376

6.56943

This structure was assigned as incorrect. B3LYP/6-31g(d)Gas nhase

0.71619

-0.23300

0.26847

-6.03152

-4.65399

-4.74429

				D5D1170 515(u)	
С	5.62966	0.91653	-0.40247	Gas phase.	
С	5.16007	0.76153	-1.86151	-	
С	3.63482	0.67211	-1.89283	Electronic Energy: -	8
Η	5.49726	-0.21285	-2.22803	tree.	
С	5.76322	1.87401	-2.75628	Free Energy: -886.639	6
Η	5.24657	0.10494	0.22694		
Η	5.29378	1.86880	0.02204	C 5.94109 0.	.8
Η	6.72427	0.88945	-0.35590	C 5.29683 0.	.7
Η	6.85294	1.72473	-2.74913	C 3.78160 0.	.6
Η	5.56609	2.84732	-2.29478	Н 5.57209 -0	.2
Ο	3.03827	-0.37736	-2.05661	C 5.81299 1.	.7
0	3.03386	1.85222	-1.64037	Н 5.62389 0	.0
С	1.59845	1.85796	-1.34521	Н 5.66259 1	.8
Η	1.25679	0.82280	-1.37444	Н 7.03316 0	.8
С	0.83281	2.71094	-2.36315	Н 6.89870 1	.6
С	1.45907	2.41061	0.07038	Н 5.67281 2	.7
Η	0.40918	2.39124	0.38323	O 3.20068 -0	.4
Η	1.81689	3.44512	0.12788	0 3.17331 1	.8
Η	2.03553	1.80514	0.77806	C 1.76568 1.	.8

886.966088041 har-

668 hartree.

5.94109	0.86502	-0.44193
5.29683	0.70471	-1.83523
3.78160	0.62994	-1.65018
5.57209	-0.28414	-2.21703
5.81299	1.79350	-2.80591
5.62389	0.06092	0.22955
5.66259	1.82413	0.00945
7.03316	0.83325	-0.52463
6.89870	1.63530	-2.89942
5.67281	2.77641	-2.34422
3.20068	-0.41103	-1.41274
3.17331	1.83409	-1.68863
1.76568	1.87942	-1.30412

Н	1.66288	1.21945	-0.43658	Н	2.31654	-0.80143	1.87455
С	0.81246	1.33047	-2.38350	Η	4.02981	-0.94177	1.43558
С	1.50385	3.32358	-0.89535	Η	2.78587	0.45911	-1.81992
Н	0.46172	3.44546	-0.57967	Η	3.94130	0.71169	-0.51095
Н	1.69691	4.01491	-1.72145	0	1.05614	-1.81175	-1.86597
Н	2.15116	3.60498	-0.05916	0	0.43284	-1.57885	0.29776
Н	1.14968	0.33017	-2.67093	С	-0.91121	-2.08177	0.00122
С	0.56543	2.17098	-3.63699	Η	-1.13292	-1.80454	-1.03076
Н	-0.15961	1.19828	-1.88833	С	-1.87067	-1.39955	0.99189
C	-0.55731	1.60955	-4.50625	Č	-0.89323	-3.60041	0.13328
Õ	1.79747	2.16721	-4.40661	H	-1.87947	-4.00842	-0.11582
H	0.33911	3.21012	-3.38542	Н	-0.64522	-3.90165	1.15774
Н	-1.50468	1.60754	-3.95560	Н	-0.16063	-4.04173	-0.54998
Н	-0.33408	0.58197	-4.81400	Н	-2.57843	-2.13992	1.38438
Н	-0.68469	2.22567	-5.40128	C	-2.70462	-0.23944	0.43063
C	2.13668	3.29549	-5.06659	Н	-1.28880	-1.04199	1.84728
0 0	1.44579	4.29115	-5.12036	C	-3.72574	-0.64633	-0.62246
C	3.52650	3.14961	-5.70599	0	-1.83853	0.74817	-0.20280
C C	4.47864	2.85700	-4.56333	Н	-3.21080	0.25371	1.26478
Н	3.75139	4.15338	-6.08595	H	-4.44704	-1.34829	-0.18942
C	3.45035	2.19559	-6.90966	Н	-3.25471	-1.12778	-1.48649
Н	3.11812	1.19646	-6.61820	H	-4.27534	0.23085	-0.97981
Н	4.42296	2.11604	-7.40503	C	-1.26427	1.68562	0.57965
Н	2.73636	2.58900	-7.64201	0	-1.44720	1.77760	1.77811
п С	5.16220	2.38900 1.76955	-4.17704	C	-0.33763	2.59255	-0.23134
				C C			
H	4.49088	3.68923	-3.85774		0.80480	1.74081	-0.74444
C	5.32592	0.46699	-4.92790	H	0.02434	3.33795	0.48193
Н	6.34868	0.08644	-4.80508	C	-1.08578	3.30546	-1.37108
Н	5.13363	0.55524	-5.99559	Н	-1.45382	2.58902	-2.11241
Н	4.65421	-0.30752	-4.53297	Н	-0.41286	4.00642	-1.87724
				Н	-1.94206	3.87305	-0.98876
a	1			C	1.95353	1.45564	-0.10835
	pound 5.20			Н	0.60778	1.25011	-1.69748
	structure was	assigned as o	correct.	C	2.35359	2.05715	1.21941
	YP/6-31g(d)			Н	2.09531	1.40249	2.06164
) implicit sol	vation in teti	rahydrofuran	Н	1.86848	3.02064	
was	used.			Η	3.43827	2.21422	1.26152
	tronic Energ	y: -886.9908	807730 har-				
	tree.				pound 5.20		
Free	Free Energy: -886.664490 hartree.				structure was	assigned as o	correct.
					YP/6-31g(d)		
С	3.01970	-1.29845	1.20270	Gas	phase.		
С	2.70125	-1.03784	-0.27344				
С	1.32079	-1.52275	-0.71257	Elec	tronic Energy	r: -886.9729	976297 har-
Η	3.39920	-1.62409	-0.88379	tree.			
С	2.90007	0.44305	-0.73035	Free	Energy: -886.	646297 hartr	ee.
Η	2.98570	-2.37145	1.42363				

C C	5.61144 5.34024	2.36732 1.04502	-0.87052 -1.59735		SMD implicit solvation in tetrahydrofuran was used.				
С	3.86363	0.66567	-1.69234						
Н	5.79582	0.22859	-1.02282	Elec	tronic Energy	y: -886.6039	934564 har-		
С	5.96529	0.95426	-3.02641	tree.					
Н	5.21791	2.33910	0.15110	Free	Energy: -886.	273252 hartr	ee.		
Н	5.14868	3.21666	-1.37758	a		0.10460	0.00.400		
Н	6.69101	2.54671	-0.80937	C	6.28587	0.10462	-0.82498		
Н	5.82661	-0.07568	-3.37134	C	5.24081	0.42857	-1.88587		
Н	7.04596	1.12157	-2.92606	C	3.97606	0.95651	-1.23374		
0	3.48118	-0.47145	-1.88517	H	4.95600	-0.48849	-2.41652		
0	3.03970	1.72821	-1.57553	C	5.80340	1.43440	-2.91983		
C	1.60271	1.47852	-1.66508	Н	5.90273	-0.61131	-0.09300		
H C	1.47340	0.62959	-2.33953	H	6.58197	1.00935 -0.32414	-0.28516		
C	0.97002	2.76005	-2.23945	Н	7.17603		-1.29483		
C	1.08696	1.11196	-0.27690	Н	6.76242	1.01794	-3.25945		
H H	0.01078	0.90795	-0.31717	H O	6.02505	2.37934	-2.40907		
п Н	1.25504	1.93302	0.42932 0.09493	0	3.87352	1.24890	-0.06244		
п Н	1.59076 0.10734	0.21518 3.05616	-1.62882	C C	2.97021 1.69778	1.04812 1.52373	-2.11295 -1.61758		
п С	0.10734 0.48674	2.66363	-1.02882	С Н	1.50166	0.99011			
С Н	1.69982	2.00303	-3.09447	п С	0.64233	1.11794	-0.68181 -2.64677		
п С	-0.69446	1.72439	-3.90485	C C	1.75637	3.01848	-2.04077		
0	1.55059	2.16645	-4.55223	С Н	0.76703	3.38092	-1.04067		
О Н	0.23165	2.10043 3.67096	-4.03675	п Н	2.07436	3.58092	-2.22672		
п Н	-1.55646	2.06887	-3.32306	п Н	2.07430	3.22480	-0.52937		
H	-0.45647	0.70076	-3.59642	H	0.86237	0.10032	-0.32937		
п Н	-0.43047	1.70068	-3.39042	п С	0.80237	2.05249	-2.99070		
C	2.48405	3.05368	-4.97058	С Н	-0.32969	1.08442	-2.14053		
0	2.46688	4.23510	-4.69322	C	-0.48599	1.52923	-2.14033 -4.87771		
C	3.57702	2.36267	-5.78641	0	1.78594	2.19692	-4.45633		
C	4.37220	1.49629	-4.82998	H	0.17128	3.04126	-3.50079		
H	4.20004	3.17798	-6.16707	H	-1.47985	1.40451	-4.43688		
C	3.00925	1.55555	-6.96582	H	-0.15217	0.56076	-5.26416		
H	2.36665	0.74461	-6.61030	Н	-0.56557	2.23244	-5.71229		
Н	3.82806	1.11694	-7.54605	C	2.13692	3.41763	-4.88755		
Н	2.41947	2.19132	-7.63537	0 0	1.41567	4.38823	-4.83566		
C	5.37443	1.91483	-4.04071	C	3.54966	3.41910	-5.45746		
H	4.02078	0.46950	-4.73308	C	4.51230	2.91833	-4.39993		
C	5.91180	3.33256	-4.08399	H	3.77345	4.47477	-5.63429		
H	5.18999	4.05556	-3.68540	C	3.52693	2.71613	-6.82343		
Н	6.13179	3.64595	-5.11185	H	3.04615	1.73759	-6.77471		
Н	6.83578	3.42695	-3.50588	Н	4.54352	2.59097	-7.20727		
		5.12075	5.20200	Н	2.96631	3.32940	-7.53600		
				C	4.91937	1.67481	-4.12195		
Com	pound 5.20			H	4.84235	3.70508	-3.72074		
	structure was	assigned as i	ncorrect	C	4.53578	0.42951	-4.88304		
	-2X/6-31g(d)			H	5.22147	-0.39221	-4.65107		
1100 2210 31 <u>B</u> (u)									

H H	4.55735 3.52463	0.57336 0.11535	-5.96335 -4.59973	H H	-13.44980 -13.78690	-8.95330 -7.96310	11.61730 13.04730
11	5.52405	0.11555	-4.37773	C	-9.52890	-10.45930	9.97360
				Н	-11.46790	-9.71890	10.53500
Cor	Compound 5.21			Н	-8.48060	-10.19000	10.10870
	s structure was	s assigned as c	orrect.	C	-9.85160	-10.57180	8.47460
				Ĥ	-9.65470	-11.44090	10.43230
Mo	lecular Mecha	anics (OPLS-	-2005), gas	Н	-10.90690	-10.81750	8.34640
pha				С	-8.99400	-11.62530	7.76290
1	ergy: +19.0616	19 kJ.		Η	-9.70390	-9.60540	7.99130
					-9.14810	-12.61640	8.19060
Η	-10.78210	-3.05770	13.25120	Η	-7.93230	-11.38810	7.83850
С	-9.90650	-3.70620	13.24190	Η	-9.24620	-11.67980	6.70340
Ο	-10.94540	-5.40500	11.90240	Η	-11.91110	-4.78120	14.65120
С	-9.56750	-3.87110	10.68380				
С	-10.01070	-5.33890	10.82540				
С	-9.05490	-3.35200	12.02560				
С	-10.32710	-5.18350	13.16620		mpound 5.20		
Η	-8.78350	-3.77330	9.93280	Thi	s structure was	assigned as a	mbiguous.
С	-10.67050	-5.89660	9.54550				
С	-11.28280	-5.57870	14.28160		lecular Mecha	unics (OPLS-	-2005), gas
Н	-9.34140	-3.51040	14.15320	pha			
Н	-10.40370	-3.24760	10.36810	Ene	ergy: +25.88490	05 kJ.	
Н	-9.13210	-5.94790	11.05020				
Н	-9.43600	-5.80560	13.25270	Η	-12.02850	-4.47340	12.56890
0	-8.03960	-2.66520	12.11530	С	-11.09640	-3.96740	12.81980
С	-11.08510	-7.36600	9.67420	0	-9.68770	-5.88300	12.37220
Н	-9.98530	-5.81260	8.70250	C	-9.95940	-4.29260	10.54550
Н	-11.55520	-5.31080	9.29610	C	-9.01940	-5.28380	11.26200
0	-12.19670	-7.74980	9.31310	C	-10.54330	-3.32180	11.55900
0	-10.12750	-8.13940	10.22780	C	-10.07990	-4.97150	13.39140
C	-11.42440	-6.81170	14.81570	Н	-9.42630	-3.73990	9.77180
C	-12.43780	-7.08690	15.91010	C	-8.49010	-6.41080	10.35020
C	-10.64390	-8.03420	14.34240	C	-10.66940	-5.66860	14.61250
Н	-11.93960	-7.46880	16.80140	Н	-11.33050	-3.19300	13.55020
Н	-13.15800	-7.83470	15.57660	Н	-10.78700	-4.81180	10.06320
H	-12.98830	-6.18800	16.18890	Н	-8.15180	-4.73750	11.63660
C H	-11.19820 -10.63790	-8.60100 -8.80500	13.01930 15.11400	H	-9.19440 -10.59160	-4.43660 -2.10950	13.74010 11.36170
п Н	-9.60090	-8.80300	13.11400	O C	-9.58600	-2.10930	9.88300
п 0	-12.32520	-9.42010	14.22170	С Н	-7.73590	-6.98940	9.88300
C	-12.32320	-9.42010 -9.44110	12.23330	п Н	-7.99900	-5.98940	9.47410
С Н	-11.48880	-7.75400	12.23330	0	-10.30050	-7.10360	8.91530
H	-9.16350	-9.05790	12.40240	0	-9.68190	-8.45670	10.66710
C	-10.42580	-9.44810	10.71070	C	-10.89490	-6.98020	14.85770
H	-10.42380	-10.45870	12.62520	C	-11.52570	-7.40570	16.17350
C	-13.52960	-8.96640	12.70490	C	-10.55440	-8.14730	13.93110
H	-14.34820	-9.63370	12.97360	Н	-10.84520	-8.05150	16.72890

Н	-12.44740	-7.95930	15.9940	С	0.19562	-2.20115	1.15937
Η	-11.76930	-6.55280	16.80730	С	-2.77800	1.32379	0.01523
С	-11.64960	-8.46950	12.88970	Η	-4.41408	-0.72562	-1.02878
Η	-10.37310	-9.02820	14.54770	Η	-2.39955	-3.01531	1.39805
Η	-9.60220	-7.96660	13.43620	Η	-0.62901	-1.81130	-0.78616
0	-12.83500	-8.80240	13.60390	Η	-1.99085	-0.17554	-1.30258
С	-11.26290	-9.67830	12.00110	0	-3.94632	-3.22029	-1.15132
Н	-11.81890	-7.58200	12.27620	С	1.26350	-1.12917	1.12034
Н	-10.49670	-10.27370	12.49850	Н	0.64333	-3.14910	0.83910
С	-10.80500	-9.32330	10.57170	Н	-0.13157	-2.30477	2.19716
Η	-12.12080	-10.34510	11.91470	0	1.78457	-0.65537	2.10807
C	-14.03160	-8.48340	12.90990	Ō	1.56819	-0.77406	-0.13163
Ĥ	-14.89110	-8.79910	13.50100	Č	-2.09290	2.38573	-0.43467
Н	-14.08490	-8.98580	11.94350	Č	-2.47752	3.78852	-0.05752
Н	-14.11460	-7.40780	12.74870	Č	-0.84291	2.24645	-1.27856
C	-10.43120	-10.59440	9.77850	Н	-2.75194	4.36339	-0.95092
H	-11.63670	-8.82240	10.07300	Н	-1.62267	4.30625	0.39623
Н	-9.56790	-11.07440	10.24130	Н	-3.31691	3.81137	0.64324
C	-10.15080	-10.34960	8.28660	C	0.34741	1.80895	-0.41637
H	-11.25250	-11.30770	9.85830	Н	-0.60221	3.19558	-1.77233
Н	-10.99210	-9.81920	7.83810	Н	-0.98897	1.49700	-2.06426
C	-9.89710	-11.64890	7.51230	0	0.75921	2.87015	0.44595
н Н	-9.28420	-9.69760	8.17470	C	1.56047	1.33642	-1.21351
H	-10.76000	-12.31390	7.55950	С Н	0.00118	0.97488	0.20022
п Н	-9.03650	-12.31390	7.91220	п Н	1.24534	0.97488	-2.11889
				п С			
Н	-9.69760	-11.44080	6.46060		2.40679	0.39325	-0.36617
Η	-10.95820	-4.97220	15.38640	H C	2.16080	2.20044	-1.52040
				C	0.37518	2.69218	1.79777
				Н	0.74403	3.55877	2.35298
C	1 5 30			Н	0.81757	1.77960	2.21944
	npound 5.20			Н	-0.71503	2.63428	1.91205
		assigned as co	orrect.	C	3.69026	-0.07331	-1.02960
M06	6-2X/6-31g(d)			Н	2.62385	0.85299	0.60306
	-	olvation in e	thanol was	Н	3.43978	-0.56917	-1.97754
usec	1.			C	4.51499	-1.00998	-0.14929
				Η	4.28030	0.81765	-1.27942
Elec	etronic Energ	y: -1078.4550	04411 har-	Η	4.74274	-0.50558	0.79865
tree				С	5.80963	-1.44405	-0.82910
Free	e Energy: -107	8.059503 harts	ree.	Η	3.91521	-1.89369	0.10234
				Н	6.43232	-0.57671	-1.07608
Н	-4.15560	-0.90349	0.72505	Η	5.60264	-1.98111	-1.76170
С	-3.68754	-1.01107	-0.26344	Η	6.39811	-2.10534	-0.18530
0	-1.48953	-0.60585	0.64455	Η	-3.63617	1.48444	0.66832
С	-2.09961	-2.92146	0.34504				
С	-0.98290	-1.87560	0.25313				
С	-3.31133	-2.46531	-0.43869	Con	100000 1000000000000000000000000000000		
С	-2.44606	-0.10794	-0.30332		structure was	assigned as c	correct.
Η	-1.77213	-3.89824	-0.02024		YP/6-31g(d)	-	
					/		

							400
SMI) implicit sc	olvation in e	ethanol was	Н	3.39677	-0.67756	-1.96621
used				С	4.57814	-1.11903	-0.19865
				Η	4.29333	0.70150	-1.33425
Elec	tronic Energy	y: -1078.911	26686 har-	Н	4.89979	-0.59724	0.71325
tree.				С	5.80590	-1.62291	-0.96220
Free Energy: -1078.520716 hartree.					3.97735	-1.97684	0.13100
				Η	6.44330	-0.79109	-1.28881
Н	-4.22878	-0.87147	0.67627	Η	5.51482	-2.18802	-1.85702
С	-3.73867	-1.01817	-0.29752	Η	6.41857	-2.28376	-0.33698
0	-1.53381	-0.58731	0.62521	Η	-3.72346	1.51766	0.48819
С	-2.16415	-2.92175	0.39844				
С	-1.02932	-1.88588	0.29469				
С	-3.37042	-2.48443	-0.41217	Con	npound 5.20		
С	-2.49071	-0.11398	-0.35276	This	s structure was	assigned as c	correct.
Н	-1.84007	-3.91252	0.06581	B3L	YP/6-31g(d)	e	
C	0 12/9/	2 18528	1 24081		nhaga		

Gas phase.

С

С

Η

Η

-2.18528

1.33245

-0.75877

-2.99231

1.24081

-0.08593

1.45021

0.13484

-2.81550

-4.45386

-2.47739

Electronic Energy: -1078.88333190 har--1.08408 tree.

11	-2.4//5/	-2.77251	1.43021	ucc			
Η	-0.65373	-1.86829	-0.73791	Free	e Energy: -1078	8.492878 har	tree.
Η	-2.02709	-0.21813	-1.34434				
0	-4.00942	-3.26715	-1.10293	Η	-4.23522	-0.83596	0.69627
С	1.21865	-1.12110	1.20593	С	-3.76098	-0.99002	-0.28397
Η	0.58033	-3.14753	0.95939	0	-1.54528	-0.57347	0.61730
Η	-0.21575	-2.26247	2.27373	С	-2.19654	-2.90282	0.41207
Ο	1.69442	-0.60542	2.20372	С	-1.05308	-1.87505	0.30135
Ο	1.58720	-0.82551	-0.05077	С	-3.39914	-2.46329	-0.41663
С	-2.08483	2.38671	-0.49661	С	-2.50428	-0.09788	-0.35078
С	-2.52256	3.79826	-0.20140	Η	-1.88763	-3.90127	0.08795
С	-0.77880	2.23360	-1.25713	С	0.11031	-2.17003	1.25238
Н	-2.73113	4.33888	-1.13588	С	-2.80746	1.35474	-0.09208
Η	-1.72701	4.35949	0.30550	Η	-4.48468	-0.72762	-1.06132
Η	-3.42405	3.83212	0.41972	Η	-2.50727	-2.95936	1.46535
С	0.42107	1.86762	-0.35109	Η	-0.66953	-1.87117	-0.73060
Η	-0.54147	3.15592	-1.80175	Н	-2.05163	-0.21138	-1.34927
Н	-0.88103	1.43926	-2.00594	0	-4.01322	-3.22942	-1.13296
Ο	0.87300	3.01039	0.39868	С	1.19285	-1.09916	1.21756
С	1.61792	1.30798	-1.13928	Н	0.55296	-3.13601	0.97867
Η	0.07143	1.10802	0.35015	Η	-0.24274	-2.23507	2.28490
Η	1.27363	0.78555	-2.03969	0	1.62778	-0.54194	2.20184
С	2.46056	0.33085	-0.31480	0	1.59560	-0.85508	-0.04969
Η	2.24996	2.14147	-1.46880	С	-2.06347	2.39527	-0.50868
С	0.52710	2.99057	1.77946	С	-2.46439	3.81593	-0.20356
Η	0.94270	3.90137	2.22274	С	-0.76338	2.21902	-1.27204
Η	0.95609	2.11867	2.29262	Н	-2.66585	4.36714	-1.13276
Η	-0.55958	2.98739	1.93772	Н	-1.64620	4.34643	0.29879
С	3.70508	-0.17720	-1.03726	Η	-3.35892	3.86852	0.42511
Н	2.72934	0.76910	0.64898	С	0.42602	1.84424	-0.35457

Η	-0.51007	3.13635	-1.81718	Η	-1.88996	-2.45845	-1.67853
Н	-0.87648	1.42427	-2.01968	Η	-3.35100	-0.64344	-1.48113
Ο	0.86489	2.98361	0.39290	0	-4.11813	-2.99744	1.15642
С	1.62704	1.28292	-1.13708	С	1.08332	-1.65782	-0.13733
Η	0.06186	1.08015	0.33446	Η	0.41622	-2.06828	-2.13603
Η	1.28961	0.76265	-2.04239	Н	0.35814	-3.45920	-1.02718
С	2.46164	0.29891	-0.31113	0	1.26297	-2.01065	1.01818
Η	2.25892	2.12052	-1.45562	0	1.62796	-0.56209	-0.68937
С	0.59106	2.92610	1.78715	С	-1.96860	2.25231	-0.88687
Η	1.03690	3.82268	2.22799	С	-2.42838	3.69373	-0.91999
Н	1.03383	2.03619	2.25307	С	-0.47340	2.06098	-1.09522
Н	-0.48825	2.92773	1.99570	Н	-2.21391	4.14743	-1.89843
С	3.71190	-0.20090	-1.03245	Н	-1.88764	4.29058	-0.17546
Н	2.72745	0.73552	0.65465	Н	-3.50262	3.79145	-0.72949
Н	3.41237	-0.67957	-1.97570	С	0.36318	1.97042	0.19379
С	4.57217	-1.16673	-0.20822	Н	-0.08929	2.91158	-1.67466
Η	4.30906	0.68010	-1.30640	Н	-0.27290	1.15959	-1.67549
Η	4.84970	-0.68650	0.73989	0	0.15497	3.18811	0.92627
C	5.83587	-1.61369	-0.95004	Ċ	1.86987	1.76435	-0.11171
Ĥ	3.97227	-2.04601	0.05724	Ĥ	-0.01196	1.13491	0.80222
Н	6.47547	-0.75791	-1.19914	Н	2.08274	2.04540	-1.15122
H	5.58620	-2.12367	-1.88874	C	2.40442	0.35705	0.15205
Н	6.42910	-2.30641	-0.34276	H	2.45047	2.44727	0.51888
Н	-3.70632	1.55481	0.31270	C	0.43649	3.08000	2.31329
		1.55 101	0.19075	Н	0.21884	4.05450	2.76088
				Н	1.49019	2.83382	2.51144
Com	pound 5.20			Н	-0.19541	2.31704	2.79296
-	structure was	assigned as a	mhiguous	C	3.88705	0.20914	-0.18937
	YP/6-31g(d)	assigned as c	inorguous.	H	2.22427	0.07314	1.19184
SMD	• • •	olvation in e	athanal was	H	4.03163	0.45560	-1.25064
used.	-		culation was	C	4.48680	-1.17110	0.11076
uscu.				Н	4.42769	0.97335	0.38574
Elect	ronic Energ	w 1078 010	07250 har	H	4.30523	-1.42786	1.16324
	Tome Energ	y1078.910	107230 Hai-				
tree.	Emorror 107	9 510127 hor	traa	C	5.98924	-1.23195 -1.93393	-0.17782
гтее	Energy: -107	8.31943 / Ilai	uee.	H H	3.97227		-0.48809
ττ	2 99402	0 27579	1 51057		6.54347	-0.51169	0.43755
H	-2.88403	-0.27578	1.51857	Н	6.20397	-1.00377	-1.22978
C	-3.40182	-0.75285	0.67468	Н	6.39274	-2.22942	0.03415
0	-1.42643	-0.66762	-0.75166	Η	-3.91962	1.59817	-0.58580
C	-1.82889	-2.74989	0.46291				
C	-1.30051	-2.08941	-0.82654	C	1 5 30		
C	-3.21708	-2.24953	0.79998	Con	npound 5.20		
C	-2.77460	-0.21793	-0.64074	T 1 ·			1.
Н	-1.84211	-3.83968	0.36693		s structure was	assigned as a	imbiguous.
C	0.18244	-2.38289	-1.11621		2YP/6-31g(d)		
C	-2.88239	1.28258	-0.70748	Gas	phase.		
Н	-4.46570	-0.50593	0.73381				
Н	-1.16536	-2.48205	1.29564				

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Elect	ronic Energy	v: -1078.883	33141 har-		4.28620	-1.51252	1.15772
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Free	Energy: -1078	3.492025 hart	ree.				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	**	• • • • • • • • •	0.04405	1 50550				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					Н	-3.88186	1.662/3	-0.57655
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					a	1		
$\begin{array}{llllllllllllllllllllllllllllllllllll$								
C 0.14582 -2.37851 -1.09796 SMD implicit solvation in ethanol was C -2.85499 1.31658 -0.70337 used. H -4.46182 -0.43585 0.77646 H -1.19783 -2.244306 -1.68126 tree. H -3.37715 -0.60187 -1.46341 Free Energy: -1078.057219 hartree. O -4.19090 -2.94681 1.10776 - C 1.03012 -1.64519 -0.10430 H -4.31099 0.29143 0.69033 H 0.39531 -2.06580 -2.11438 C -3.92636 0.00952 -0.29930 H 0.32209 -3.45436 -0.99986 O -1.68734 -0.2076 0.59115 O 1.13523 -1.94700 1.06781 C -2.97843 -2.24913 0.39739 O 1.64824 -0.59814 -0.68787 C -1.59012 -1.59319 0.32802 C -2.32811 3.71289 -0.92406 C							assigned as a	mbiguous.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						• • • •	·	
H -4.46182 -0.43585 0.77646 H -1.19783 -2.50144 1.28725 Electronic Energy: -1078.45332308 har- tree. H -3.37715 -0.60187 -1.46341 Free Energy: -1078.057219 hartree. O -4.19090 -2.94681 1.10776 C 1.03012 -1.64519 -0.10430 H -4.31099 0.29143 0.69033 H 0.39531 -2.06580 -2.11438 C -3.92636 0.00952 -0.29930 H 0.32209 -3.45436 -0.99986 0 -1.68734 -0.20076 0.59115 O 1.1552 -1.94700 1.06781 C -2.97843 -2.24913 0.39739 O 1.64824 -0.59814 -0.68787 C -1.59072 -1.59319 0.32802 C -2.32811 3.71289 -0.92406 C -2.46788 0.47257 -0.40219 C -0.42872 2.01769 -1.10176 H -2.94364 -3.29256 0.07344 H -2.10239 4.15654 -1.90425 C -0.66061						-	lvation in e	ethanol was
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					used	•		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						tronic Energy	7: -1078.453	32308 har-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					Free	Energy: -1078	8.057219 har	tree.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.39531	-2.06580			-3.92636	0.00952	-0.29930
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Η	0.32209	-3.45436	-0.99986		-1.68734	-0.20076	0.59115
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	1.13523	-1.94700	1.06781	С	-2.97843	-2.24913	0.39739
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ο	1.64824	-0.59814	-0.68787	С	-1.59072	-1.59319	0.32802
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-1.91556	2.25761	-0.89220	С	-3.99504	-1.49289	-0.42688
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-2.32811	3.71289	-0.92406	С	-2.46788	0.47257	-0.40219
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	С	-0.42872	2.01769	-1.10176	Η	-2.94364	-3.29256	0.07344
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Н	-2.10239	4.15654	-1.90425	С	-0.66061	-2.19235	1.36729
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Н	-1.75909	4.28158	-0.18084	С	-2.31797	1.95581	-0.21389
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Н	-3.39772	3.84474	-0.73105	Н	-4.54816	0.47500	-1.06877
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	0.40328	1.96475	0.19184	Н	-3.32289	-2.21457	1.44066
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Н	-0.02607	2.83637	-1.71389	Η	-1.16935	-1.73440	-0.67822
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Н	-0.25295	1.08573	-1.63866	Н	-2.08372	0.17641	-1.39059
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0.21360	3.20839	0.87422	Ο	-4.81261	-2.05602	-1.13096
H2.134442.01394-1.13595H-1.10955-2.128852.36304C2.421060.309590.15595O1.36518-1.553562.47687H2.493562.402730.53692O1.10790-0.999210.31302C0.461483.151972.26310C-1.209052.64199-0.52044H0.244844.144622.66715C-1.124164.12372-0.27220H1.509082.903002.49656C0.010941.96770-1.10235H-0.186402.412872.76025H-0.772714.64721-1.16946C3.905740.14782-0.17683H-0.401054.343960.52043H2.235360.017721.19359H-2.095414.534910.01750H4.061040.40333-1.23447C1.186741.85443-0.12864C4.48272-1.244350.11136H0.365932.52270-1.98212	С	1.90905	1.72833	-0.10019	С	0.70145	-1.54631	1.46050
C2.421060.309590.15595O1.36518-1.553562.47687H2.493562.402730.53692O1.10790-0.999210.31302C0.461483.151972.26310C-1.209052.64199-0.52044H0.244844.144622.66715C-1.124164.12372-0.27220H1.509082.903002.49656C0.010941.96770-1.10235H-0.186402.412872.76025H-0.772714.64721-1.16946C3.905740.14782-0.17683H-0.401054.343960.52043H2.235360.017721.19359H-2.095414.534910.01750H4.061040.40333-1.23447C1.186741.85443-0.12864C4.48272-1.244350.11136H0.365932.52270-1.98212	Н	0.01382	1.15211	0.82388	Η	-0.50313	-3.25523	1.14597
C2.421060.309590.15595O1.36518-1.553562.47687H2.493562.402730.53692O1.10790-0.999210.31302C0.461483.151972.26310C-1.209052.64199-0.52044H0.244844.144622.66715C-1.124164.12372-0.27220H1.509082.903002.49656C0.010941.96770-1.10235H-0.186402.412872.76025H-0.772714.64721-1.16946C3.905740.14782-0.17683H-0.401054.343960.52043H2.235360.017721.19359H-2.095414.534910.01750H4.061040.40333-1.23447C1.186741.85443-0.12864C4.48272-1.244350.11136H0.365932.52270-1.98212	Н	2.13444	2.01394	-1.13595	Н	-1.10955	-2.12885	2.36304
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	2.42106	0.30959	0.15595	Ο	1.36518		2.47687
C0.461483.151972.26310C-1.209052.64199-0.52044H0.244844.144622.66715C-1.124164.12372-0.27220H1.509082.903002.49656C0.010941.96770-1.10235H-0.186402.412872.76025H-0.772714.64721-1.16946C3.905740.14782-0.17683H-0.401054.343960.52043H2.235360.017721.19359H-2.095414.534910.01750H4.061040.40333-1.23447C1.186741.85443-0.12864C4.48272-1.244350.11136H0.365932.52270-1.98212								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.46148		2.26310		-1.20905		-0.52044
H1.509082.903002.49656C0.010941.96770-1.10235H-0.186402.412872.76025H-0.772714.64721-1.16946C3.905740.14782-0.17683H-0.401054.343960.52043H2.235360.017721.19359H-2.095414.534910.01750H4.061040.40333-1.23447C1.186741.85443-0.12864C4.48272-1.244350.11136H0.365932.52270-1.98212								
H-0.186402.412872.76025H-0.772714.64721-1.16946C3.905740.14782-0.17683H-0.401054.343960.52043H2.235360.017721.19359H-2.095414.534910.01750H4.061040.40333-1.23447C1.186741.85443-0.12864C4.48272-1.244350.11136H0.365932.52270-1.98212								
C3.905740.14782-0.17683H-0.401054.343960.52043H2.235360.017721.19359H-2.095414.534910.01750H4.061040.40333-1.23447C1.186741.85443-0.12864C4.48272-1.244350.11136H0.365932.52270-1.98212								
H2.235360.017721.19359H-2.095414.534910.01750H4.061040.40333-1.23447C1.186741.85443-0.12864C4.48272-1.244350.11136H0.365932.52270-1.98212								
H4.061040.40333-1.23447C1.186741.85443-0.12864C4.48272-1.244350.11136H0.365932.52270-1.98212								
С 4.48272 -1.24435 0.11136 Н 0.36593 2.52270 -1.98212								

~							
O	1.73643	3.15497	0.03351	Н	-2.16820	-4.48860	5.77850
С	2.25185	0.85342	-0.62791	Н	-3.32590	-5.78360	5.63180
Н	0.79930	1.51379	0.84670	С	-1.70880	-5.86700	4.22670
Н	2.00116	0.50370	-1.63577	0	-0.58870	-5.41130	3.99950
С	2.40062	-0.33261	0.30939	0	-2.16920	-7.05790	3.81500
Η	3.22188	1.35916	-0.69757	С	-1.31740	-7.94950	3.09820
С	2.53694	3.27176	1.19103	Н	-0.52180	-7.38510	2.60890
Η	1.95762	3.04300	2.09664	С	-0.66620	-8.89520	4.12690
Н	2.88703	4.30556	1.24091	Н	0.12650	-9.48400	3.66530
Н	3.41173	2.60753	1.15771	Н	-0.18950	-8.30100	4.90830
С	3.48260	-1.33763	-0.06414	0	-1.64810	-9.77620	4.66130
Н	2.57882	0.03358	1.32524	С	-1.29260	-10.33620	5.91610
Н	4.45407	-0.83611	0.03464	Н	-1.95920	-11.17620	6.11240
С	3.34727	-1.93923	-1.46235	Н	-0.27960	-10.74080	5.88080
Н	3.46643	-2.14132	0.68418	С	-1.44430	-9.34680	7.06010
Н	2.33406	-2.34051	-1.58982	Ċ	-1.74500	-7.51720	9.18830
C	4.37164	-3.04513	-1.69857	Č	-0.54870	-9.37380	8.14940
H	3.47554	-1.15726	-2.22030	Č	-2.49780	-8.40830	7.04680
Н	4.24860	-3.85474	-0.97051	C	-2.64650	-7.49270	8.10660
Н	5.39303	-2.66044	-1.59869	C	-0.69740	-8.45860	9.21030
Н	4.27190	-3.47542	-2.70010	Н	0.25620	-10.09400	8.17300
Н	-3.16911	2.48132	0.21891	Н	-3.18800	-8.38880	6.21470
11	5.10711	2.40152	0.21071	Н	-3.45240	-6.77350	8.08910
				H	-0.00780	-8.47890	10.04180
Com	pound 5.22			H	-1.85850	-6.81550	10.00220
	structure was	accionad as a	orraat	C	-2.13130	-8.65360	1.98700
11115	situcture was	assigned as c	oneer.	С Н	-2.13130		2.47740
Mala	aular Maaha	ming (ODI C	2005) 202	п С		-9.24410	
	ecular Mecha	unes (OPLS	-2005), gas		-1.27330	-9.60260	1.13440
phase		7 1_T		Н	-1.86700	-10.05180	0.33760
Ener	gy: +3.35403'	/ KJ.		Н	-0.87000	-10.42030	1.73180
	2 75 650	5 70100	0.40000	Н	-0.43670	-9.07840	0.67130
Н	-3.75650	-5.78180	-0.48280	C	-2.78200	-7.61000	1.09120
C	-4.59330	-6.30540	-0.01790	Н	-2.10840	-6.83730	0.74900
Н	-5.21700	-6.65970	-0.83940	C	-4.08530	-7.50550	0.76490
C	-5.38740	-5.32540	0.86260	C	-5.15820	-8.49330	1.19470
Н	-5.77710	-4.51940	0.24030	Н	-5.68600	-8.12260	2.07260
Н	-6.26330	-5.82180	1.27220	Η	-4.75530	-9.47750	1.42670
С	-4.52310	-4.68800	1.94220	Η	-5.88570	-8.63240	0.39500
Н	-3.76470	-4.02060	1.55850				
С	-4.58540	-4.87650	3.27750				
С	-5.57140	-5.79950	3.97730				
Η	-5.05880	-6.69400	4.33200	Con	1pound 5.22		
Н	-6.39470	-6.12130	3.34550	This	s structure was	assigned as in	correct.
Н	-6.01020	-5.29570	4.83850				
С	-3.62790	-4.15470	4.21660	Mol	ecular Mecha	inics (OPLS-	2005), gas
Н	-3.00110	-3.46390	3.65030	phas	se.		-
Н	-4.21980	-3.53280	4.88840	1	rgy: +13.6000	31 kJ.	
С	-2.72460	-5.08270	5.05390				

Η	-4.84190	-6.58900	1.03010	С	-2.96620	-8.01330	2.08140
С	-5.30600	-7.21300	1.79560	Η	-2.67950	-7.18610	1.44670
Н	-6.11290	-7.75030	1.29630	С	-4.27840	-8.20270	2.32380
С	-5.86810	-6.29870	2.90370	С	-4.83750	-9.30390	3.20940
Н	-6.41540	-5.46500	2.46640	Н	-5.14830	-8.89730	4.17130
Н	-6.59860	-6.84870	3.49770	Н	-4.11890	-10.10120	3.39250
С	-4.78470	-5.81570	3.85650	Н	-5.70770	-9.75870	2.73630
H	-4.53920	-6.52560	4.63470		0.10110	2.10010	2.75050
C	-4.06300	-4.68040	3.78860				
č	-4.24810	-3.60740	2.72800				
Н	-4.47270	-2.65000	3.19820	Corr	pound 5.22		
Н	-5.05170	-3.83190	2.02990		structure was	assigned as a	mbiguous
Н	-3.33700	-3.49180	2.14100		YP/6-31g(d)	assigned as a	inorguous.
C	-2.96010	-4.41330	4.80370		• • •	ation in diah	loromothano
С Н					D implicit solv		loromethane
	-3.20740	-3.49660	5.33920	was	used.		
Н	-2.95710	-5.20160	5.55440	г1	· · -	1002 00/	72012 1
C	-1.54120	-4.28560	4.20850		0,	<i>v</i> : -1082.086	573813 har-
Н	-1.46450	-3.34480	3.66320	tree.			
Н	-0.80820	-4.23070	5.01270	Free	Energy: -1081	1.663221 har	tree.
С	-1.12110	-5.40530	3.25240				
0	-0.79440	-5.14530	2.09530	Н	-4.55832	1.22990	0.57706
0	-1.12170	-6.63510	3.81100	С	-4.32989	1.34793	-0.48881
С	-0.65510	-7.76690	3.06730	Н	-5.05583	2.06356	-0.90207
Η	-0.23880	-7.42410	2.11920	С	-4.55258	-0.02597	-1.19212
С	0.53150	-8.39850	3.82960	Н	-5.56196	-0.37447	-0.95093
Η	1.06810	-9.05250	3.14250	Η	-4.52846	0.12717	-2.28053
Н	1.25790	-7.63990	4.12540	С	-3.49727	-1.03049	-0.81178
Ο	0.15310	-9.20980	4.93870	Н	-2.50156	-0.74332	-1.14051
С	-0.19630	-8.50000	6.12200	С	-3.60944	-2.15767	-0.09115
Н	0.36560	-8.93830	6.94700	С	-4.90860	-2.70563	0.44824
Н	0.10040	-7.45060	6.08020	Η	-5.05122	-3.74948	0.13428
C	-1.67040	-8.62260	6.46150	Н	-5.78357	-2.13749	0.12220
Č	-4.40460	-8.86000	7.12340	Н	-4.90082	-2.71236	1.54747
Č	-2.36940	-7.52100	6.99620	C	-2.39816	-3.00520	0.27383
C	-2.34060	-9.85030	6.28060	Н	-2.47724	-3.27585	1.33501
C	-3.70590	-9.96830	6.60670	Н	-2.44120	-3.95798	-0.27443
C C	-3.73540	-7.63670	7.32070	C	-1.01373	-2.37701	0.04997
Н	-1.85860	-6.58260	7.15370	Н	-0.24873	-3.12489	0.29832
H	-1.80470	-10.69900	5.88000	H	-0.84827	-2.09197	-0.99190
H	-4.21640	-10.09900		C		-1.18948	0.96332
			6.45680		-0.76551		
Н	-4.26930	-6.78750	7.72220	0	-1.06663	-1.16740	2.14196
Н	-5.45250	-8.94980	7.37130	0	-0.14044	-0.17964	0.31892
C	-1.79850	-8.75440	2.71140	C	0.17200	1.03210	1.07092
Н	-2.14200	-9.20430	3.63920	Н	-0.15343	0.87485	2.10287
C	-1.33190	-9.87990	1.77360	C	1.68641	1.18832	1.07641
Н	-2.16090	-10.53950	1.51530	Н	1.97220	1.96909	1.79725
Н	-0.56630	-10.49800	2.24250	Н	2.13757	0.24559	1.41624
Η	-0.92270	-9.48150	0.84460	0	2.13978	1.53170	-0.22564

C	2 5 5 2 7 4	1 (2705	0 22177		4.05200	2 20 27 2	0 11545
C	3.55274	1.63705	-0.33177	Н	-4.95399	-3.79575	0.11545
Н	3.72723	2.18717	-1.26520	Н	-5.70907	-2.19590	0.09631
Н	3.95796	2.25122	0.48729	Н	-4.84126	-2.75990	1.53424
C	4.27319	0.30021	-0.38459	C	-2.31697	-3.00948	0.30884
C	5.65872	-2.13685	-0.59152	Н	-2.39764	-3.25438	1.37611
C	5.59251	0.19020	0.07228	Н	-2.34918	-3.97396	-0.22045
C	3.65175	-0.82584	-0.94025	С	-0.93827	-2.37098	0.08370
С	4.33853	-2.03756	-1.03944	Η	-0.16652	-3.10852	0.34198
С	6.28444	-1.01853	-0.03481	Н	-0.77036	-2.09150	-0.95936
Н	6.08158	1.05585	0.51480	С	-0.71160	-1.17065	0.98867
Η	2.62288	-0.74722	-1.27988	0	-1.03187	-1.13384	2.15804
Η	3.84321	-2.90489	-1.46911	0	-0.08074	-0.16448	0.33497
Η	7.30858	-1.08839	0.32331	С	0.19540	1.05606	1.07908
Η	6.19371	-3.07970	-0.67108	Н	-0.13966	0.89534	2.10843
С	-0.61030	2.21226	0.44700	С	1.70597	1.24995	1.09681
Η	-0.22684	2.35576	-0.56693	Η	1.97073	2.02505	1.83407
С	-0.35926	3.50671	1.24722	Η	2.17886	0.31106	1.41639
Η	-0.93715	4.33169	0.81676	Ο	2.15375	1.63115	-0.19415
Η	0.69705	3.79681	1.23149	С	3.56537	1.67345	-0.32436
Η	-0.66721	3.39611	2.29489	Η	3.74480	2.22279	-1.25681
С	-2.08220	1.87295	0.40860	Η	4.01347	2.26381	0.49200
Η	-2.48925	1.54257	1.36682	С	4.22111	0.30444	-0.39562
С	-2.91658	1.87891	-0.64440	С	5.47576	-2.19593	-0.63162
С	-2.53618	2.31169	-2.03987	С	5.52677	0.11730	0.07081
Η	-3.24371	3.06486	-2.41398	С	3.54452	-0.77646	-0.97450
Η	-2.58024	1.47062	-2.74572	С	4.16764	-2.01949	-1.08834
Η	-1.53220	2.73919	-2.09920	С	6.15484	-1.12345	-0.05119
				Η	6.05736	0.94771	0.53306
				Η	2.52262	-0.63584	-1.31427
Com	pound 5.22			Η	3.63119	-2.85268	-1.53543
	structure was	assigned as a	mbiguous.	Η	7.16976	-1.25424	0.31534
B3LY	YP/6-31g(d)	C	C	Η	5.96062	-3.16437	-0.72218
	ohase.			С	-0.60466	2.21350	0.43833
1				Н	-0.21622	2.34753	-0.57498
Elect	ronic Energy	y: -1082.060	04317 har-	С	-0.38278	3.52525	1.21963
tree.	0.			Η	-0.97971	4.32852	0.77641
Free	Energy: -108	1.637052 har	tree.	Н	0.66719	3.83642	1.19887
	05			Н	-0.69220	3.42335	2.26757
Н	-4.53999	1.17647	0.56606	С	-2.06824	1.84226	0.39837
С	-4.31040	1.30397	-0.49799	Н	-2.45937	1.46488	1.34534
Η	-5.05343	2.00296	-0.90964	С	-2.91060	1.87003	-0.64612
С	-4.49454	-0.07436	-1.20396	C	-2.55428	2.37200	-2.02518
H	-5.50099	-0.44287	-0.98052	Н	-3.24515	3.16979	-2.33154
Н	-4.45800	0.07518	-2.29286	Н	-2.64699	1.57740	-2.77797
C	-3.42676	-1.05743	-0.80446	Н	-1.53867	2.76905	-2.08795
Ĥ	-2.43139	-0.74930	-1.11375				
C	-3.53253	-2.18206	-0.08162				
Č	-4.83174	-2.75138	0.43559				
-	, -						

Compound 5.22 This structure was assigned as ambiguous. M06-2X/6-31g(d) SMD implicit solvation in dichloromethane was used.					-2.22834 -2.67508 -6.39851 -4.76634 0.68798 0.28805	-1.12152 -2.89235 -0.98640 -2.82437 2.47559 2.49737	-0.54728 1.14135 2.12374 2.48186 0.04126 1.06209
	Electronic Energy: -1081.61359322 har- tree.				0.68641 1.33259	3.89929 4.54370	-0.53273 0.07049
Free Energy: -1081.184755 hartree.			H H	-0.31276 1.07440	4.34457 3.89863	-0.54690 -1.55793	
Н	4.46214	0.96138	-0.12986	C	2.08988	1.92484	0.04883
C	4.17428	0.92704	0.92689	Н	2.51363	1.75500	-0.94364
H	4.94488	1.45678	1.50287	C	2.83193	1.59540	1.11187
C	4.14493	-0.55285	1.38024	Č	2.38026	1.73454	2.54435
H	3.99008	-0.59082	2.46675	H	2.00321	0.77865	2.93171
Н	5.12280	-1.00149	1.18577	Н	1.59152	2.47885	2.67303
C	3.03617	-1.29482	0.68885	Н	3.22334	2.02423	3.18226
H	2.04205	-0.95407	0.97598			2.02.23	5.10220
C	3.12741	-2.22545	-0.26829				
Č	4.42021	-2.79341	-0.79157	Com	pound 5.22		
H	4.38960	-3.89017	-0.77173		structure was	assigned as c	correct.
Η	5.29465	-2.47067	-0.22333		YP/6-31g(d)		
Н	4.56828	-2.50323	-1.83932		phase.		
С	1.90166	-2.79905	-0.95056		F		
Η	2.07714			Elec	tronic Energy	r -1082 061	34085 har-
			100	uome Lnergy	y. 100 <u>4</u> .001	J 1005 mu	
Η	1.79532			tree.		y. 1002.001	5 1005 mu
H C	1.79532 0.58679	-3.85753 -2.07649	-0.67778 -0.67069	tree.			
		-3.85753	-0.67778	tree.	Energy: -108		
С	0.58679	-3.85753 -2.07649	-0.67778 -0.67069	tree.			
C H	0.58679 -0.22600	-3.85753 -2.07649 -2.58878	-0.67778 -0.67069 -1.20086	tree. Free	Energy: -108	1.639408 har	tree.
C H H	0.58679 -0.22600 0.32616	-3.85753 -2.07649 -2.58878 -2.07687	-0.67778 -0.67069 -1.20086 0.39052	tree. Free H	Energy: -108 -4.20276	1.639408 har -1.93941	tree. 1.38111
C H H C	0.58679 -0.22600 0.32616 0.61183	-3.85753 -2.07649 -2.58878 -2.07687 -0.65526	-0.67778 -0.67069 -1.20086 0.39052 -1.19354	tree. Free H C	Energy: -108 -4.20276 -3.79357	1.639408 har -1.93941 -1.13304	tree. 1.38111 2.00220
C H H C O	0.58679 -0.22600 0.32616 0.61183 1.12887	-3.85753 -2.07649 -2.58878 -2.07687 -0.65526 -0.32687	-0.67778 -0.67069 -1.20086 0.39052 -1.19354 -2.23623	tree. Free H C H	Energy: -108 -4.20276 -3.79357 -4.01840	1.639408 har -1.93941 -1.13304 -1.39339	tree. 1.38111 2.00220 3.04753
C H H C O O	0.58679 -0.22600 0.32616 0.61183 1.12887 -0.04294	-3.85753 -2.07649 -2.58878 -2.07687 -0.65526 -0.32687 0.18622	-0.67778 -0.67069 -1.20086 0.39052 -1.19354 -2.23623 -0.37687	tree. Free H C H C	Energy: -108 -4.20276 -3.79357 -4.01840 -4.54695	1.639408 har -1.93941 -1.13304 -1.39339 0.18355	tree. 1.38111 2.00220 3.04753 1.66232
C H C O O C	0.58679 -0.22600 0.32616 0.61183 1.12887 -0.04294 -0.22124	-3.85753 -2.07649 -2.58878 -2.07687 -0.65526 -0.32687 0.18622 1.55539	-0.67778 -0.67069 -1.20086 0.39052 -1.19354 -2.23623 -0.37687 -0.79310	tree. Free H C H C H	Energy: -108 -4.20276 -3.79357 -4.01840 -4.54695 -4.25662	1.639408 har -1.93941 -1.13304 -1.39339 0.18355 0.97020	tree. 1.38111 2.00220 3.04753 1.66232 2.36606
C H C O O C H	0.58679 -0.22600 0.32616 0.61183 1.12887 -0.04294 -0.22124 0.03959	-3.85753 -2.07649 -2.58878 -2.07687 -0.65526 -0.32687 0.18622 1.55539 1.63090	-0.67778 -0.67069 -1.20086 0.39052 -1.19354 -2.23623 -0.37687 -0.79310 -1.85332	tree. Free H C H C H H C H	Energy: -108 -4.20276 -3.79357 -4.01840 -4.54695 -4.25662 -5.61925	1.639408 har -1.93941 -1.13304 -1.39339 0.18355 0.97020 0.00334	tree. 1.38111 2.00220 3.04753 1.66232 2.36606 1.83063
C H C O O C H C	0.58679 -0.22600 0.32616 0.61183 1.12887 -0.04294 -0.22124 0.03959 -1.69830	-3.85753 -2.07649 -2.58878 -2.07687 -0.65526 -0.32687 0.18622 1.55539 1.63090 1.83894	-0.67778 -0.67069 -1.20086 0.39052 -1.19354 -2.23623 -0.37687 -0.79310 -1.85332 -0.60152	tree. Free H C H C H H C	Energy: -108 -4.20276 -3.79357 -4.01840 -4.54695 -4.25662 -5.61925 -4.31734	1.639408 har -1.93941 -1.13304 -1.39339 0.18355 0.97020 0.00334 0.60308	tree. 1.38111 2.00220 3.04753 1.66232 2.36606 1.83063 0.23624
C H C O O C H C H	0.58679 -0.22600 0.32616 0.61183 1.12887 -0.04294 -0.22124 0.03959 -1.69830 -1.98484	-3.85753 -2.07649 -2.58878 -2.07687 -0.65526 -0.32687 0.18622 1.55539 1.63090 1.83894 1.55079	-0.67778 -0.67069 -1.20086 0.39052 -1.19354 -2.23623 -0.37687 -0.79310 -1.85332 -0.60152 0.42046	tree. Free H C H C H H C H	Energy: -108 -4.20276 -3.79357 -4.01840 -4.54695 -4.25662 -5.61925 -4.31734 -4.56633	1.639408 har -1.93941 -1.13304 -1.39339 0.18355 0.97020 0.00334 0.60308 -0.16356	tree. 1.38111 2.00220 3.04753 1.66232 2.36606 1.83063 0.23624 -0.49932
C H C O O C H C H H	0.58679 -0.22600 0.32616 0.61183 1.12887 -0.04294 -0.22124 0.03959 -1.69830 -1.98484 -1.90974	$\begin{array}{r} -3.85753\\ -2.07649\\ -2.58878\\ -2.07687\\ -0.65526\\ -0.32687\\ 0.18622\\ 1.55539\\ 1.63090\\ 1.83894\\ 1.55079\\ 2.90908\end{array}$	$\begin{array}{r} -0.67778\\ -0.67069\\ -1.20086\\ 0.39052\\ -1.19354\\ -2.23623\\ -0.37687\\ -0.79310\\ -1.85332\\ -0.60152\\ 0.42046\\ -0.73032\end{array}$	tree. Free H C H C H H C H C H C H C	Energy: -108 -4.20276 -3.79357 -4.01840 -4.54695 -4.25662 -5.61925 -4.31734 -4.56633 -3.78895	1.639408 har -1.93941 -1.13304 -1.39339 0.18355 0.97020 0.00334 0.60308 -0.16356 1.74455	tree. 1.38111 2.00220 3.04753 1.66232 2.36606 1.83063 0.23624 -0.49932 -0.23218
C H C O O C H C H H O	0.58679 - 0.22600 0.32616 0.61183 1.12887 - 0.04294 - 0.22124 0.03959 - 1.69830 - 1.98484 - 1.90974 - 2.42006	$\begin{array}{r} -3.85753\\ -2.07649\\ -2.58878\\ -2.07687\\ -0.65526\\ -0.32687\\ 0.18622\\ 1.55539\\ 1.63090\\ 1.83894\\ 1.55079\\ 2.90908\\ 1.08834\end{array}$	-0.67778 -0.67069 -1.20086 0.39052 -1.19354 -2.23623 -0.37687 -0.79310 -1.85332 -0.60152 0.42046 -0.73032 -1.55827	tree. Free H C H C H H C H C H H C H H C H H C H C H H H C H H H C H H H C H H H C H H C H H C H H C H H H C H H H C H H H C H H H C H H H C H H C H H C H H H C H H H H C H H H H H C H H H C H H H H C H H H C H H H C H H H C H H H C H H C H H C H H C H H H C H H H C H H H C H H H C H H H C H H C H H H C H H H C H H H C H H H C H H H C H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H H C H H H C H H H H C H H H H H C H	Energy: -108 -4.20276 -3.79357 -4.01840 -4.54695 -4.25662 -5.61925 -4.31734 -4.56633 -3.78895 -3.38601	1.639408 har -1.93941 -1.13304 -1.39339 0.18355 0.97020 0.00334 0.60308 -0.16356 1.74455 2.92816	tree. 1.38111 2.00220 3.04753 1.66232 2.36606 1.83063 0.23624 -0.49932 -0.23218 0.61501
C H H C O O C H C H H O C H H H	0.58679 -0.22600 0.32616 0.61183 1.12887 -0.04294 -0.22124 0.03959 -1.69830 -1.98484 -1.90974 -2.42006 -3.79055	$\begin{array}{r} -3.85753\\ -2.07649\\ -2.58878\\ -2.07687\\ -0.65526\\ -0.32687\\ 0.18622\\ 1.55539\\ 1.63090\\ 1.83894\\ 1.55079\\ 2.90908\\ 1.08834\\ 0.96781\end{array}$	$\begin{array}{r} -0.67778\\ -0.67069\\ -1.20086\\ 0.39052\\ -1.19354\\ -2.23623\\ -0.37687\\ -0.79310\\ -1.85332\\ -0.60152\\ 0.42046\\ -0.73032\\ -1.55827\\ -1.24093\end{array}$	tree. Free H C H C H C H C C H C H	Energy: -108 -4.20276 -3.79357 -4.01840 -4.54695 -4.25662 -5.61925 -4.31734 -4.56633 -3.78895 -3.38601 -2.33027	1.639408 har -1.93941 -1.13304 -1.39339 0.18355 0.97020 0.00334 0.60308 -0.16356 1.74455 2.92816 3.18973	tree. 1.38111 2.00220 3.04753 1.66232 2.36606 1.83063 0.23624 -0.49932 -0.23218 0.61501 0.46110
C H H C O O C H C H H O C H H C C H H C O O C H H C O C C H H C O C C H H C O C C H C C O C C H C C C C	0.58679 - 0.22600 0.32616 0.61183 1.12887 - 0.04294 - 0.22124 0.03959 - 1.69830 - 1.98484 - 1.90974 - 2.42006 - 3.79055 - 4.20791	$\begin{array}{r} -3.85753\\ -2.07649\\ -2.58878\\ -2.07687\\ -0.65526\\ -0.32687\\ 0.18622\\ 1.55539\\ 1.63090\\ 1.83894\\ 1.55079\\ 2.90908\\ 1.08834\\ 0.96781\\ 1.93931 \end{array}$	$\begin{array}{r} -0.67778\\ -0.67069\\ -1.20086\\ 0.39052\\ -1.19354\\ -2.23623\\ -0.37687\\ -0.79310\\ -1.85332\\ -0.60152\\ 0.42046\\ -0.73032\\ -1.55827\\ -1.24093\\ -0.93636\\ -2.17272\\ -0.17160\end{array}$	tree. Free H C H C H H C H C H H C H H C H H C H C H H H C H H H C H H H C H H H C H H C H H C H H C H H H C H H H C H H H C H H H C H H H C H H C H H C H H H C H H H H C H H H H H C H H H C H H H H C H H H C H H H C H H H C H H H C H H C H H C H H C H H H C H H H C H H H C H H H C H H H C H H C H H H C H H H C H H H C H H H C H H H C H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H H C H H H C H H H H C H H H H H C H	Energy: -108 -4.20276 -3.79357 -4.01840 -4.54695 -4.25662 -5.61925 -4.31734 -4.56633 -3.78895 -3.38601 -2.33027 -3.53326	1.639408 har -1.93941 -1.13304 -1.39339 0.18355 0.97020 0.00334 0.60308 -0.16356 1.74455 2.92816 3.18973 2.76245 3.81664 1.89490	tree. 1.38111 2.00220 3.04753 1.66232 2.36606 1.83063 0.23624 -0.49932 -0.23218 0.61501 0.46110 1.68474 0.33374 -1.71761
C H H C O O C H C H H O C H H C C	0.58679 - 0.22600 0.32616 0.61183 1.12887 - 0.04294 - 0.22124 0.03959 - 1.69830 - 1.98484 - 1.90974 - 2.42006 - 3.79055 - 4.20791 - 4.28898	$\begin{array}{r} -3.85753\\ -2.07649\\ -2.58878\\ -2.07687\\ -0.65526\\ -0.32687\\ 0.18622\\ 1.55539\\ 1.63090\\ 1.83894\\ 1.55079\\ 2.90908\\ 1.08834\\ 0.96781\\ 1.93931\\ 0.67730\end{array}$	$\begin{array}{r} -0.67778\\ -0.67069\\ -1.20086\\ 0.39052\\ -1.19354\\ -2.23623\\ -0.37687\\ -0.79310\\ -1.85332\\ -0.60152\\ 0.42046\\ -0.73032\\ -1.55827\\ -1.24093\\ -0.93636\\ -2.17272\\ -0.17160\\ 1.73873\end{array}$	tree. Free H C H C H C H C H H C H H C H H C H C	Energy: -108 -4.20276 -3.79357 -4.01840 -4.54695 -4.25662 -5.61925 -4.31734 -4.56633 -3.78895 -3.38601 -2.33027 -3.53326 -3.96894 -3.51353 -4.14320	1.639408 har -1.93941 -1.13304 -1.39339 0.18355 0.97020 0.00334 0.60308 -0.16356 1.74455 2.92816 3.18973 2.76245 3.81664 1.89490 1.21173	tree. 1.38111 2.00220 3.04753 1.66232 2.36606 1.83063 0.23624 -0.49932 -0.23218 0.61501 0.46110 1.68474 0.33374
C H H C O O C H C H H O C H H C C C C	0.58679 - 0.22600 0.32616 0.61183 1.12887 - 0.04294 - 0.22124 0.03959 - 1.69830 - 1.98484 - 1.90974 - 2.42006 - 3.79055 - 4.20791 - 4.28898 - 4.05729 - 4.56956 - 5.22748	-3.85753 -2.07649 -2.58878 -2.07687 -0.65526 -0.32687 0.18622 1.55539 1.63090 1.83894 1.55079 2.90908 1.08834 0.96781 1.93931 0.67730 -0.07419 -2.05727 -0.03618	$\begin{array}{c} -0.67778\\ -0.67069\\ -1.20086\\ 0.39052\\ -1.19354\\ -2.23623\\ -0.37687\\ -0.79310\\ -1.85332\\ -0.60152\\ 0.42046\\ -0.73032\\ -1.55827\\ -1.24093\\ -0.93636\\ -2.17272\\ -0.17160\\ 1.73873\\ 0.58949\end{array}$	tree. Free H C H C H H C H H C H H H C H H H C H H C C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C C H C C H C C H C C H C C H C C H C	Energy: -108 -4.20276 -3.79357 -4.01840 -4.54695 -4.25662 -5.61925 -4.31734 -4.56633 -3.78895 -3.38601 -2.33027 -3.53326 -3.96894 -3.51353 -4.14320 -3.74829	1.639408 har -1.93941 -1.13304 -1.39339 0.18355 0.97020 0.00334 0.60308 -0.16356 1.74455 2.92816 3.18973 2.76245 3.81664 1.89490 1.21173 2.91585	tree. 1.38111 2.00220 3.04753 1.66232 2.36606 1.83063 0.23624 -0.49932 -0.23218 0.61501 0.46110 1.68474 0.33374 -1.71761 -2.29621 -2.04744
C H H C O O C H C H H O C H H C C C C C	0.58679 - 0.22600 0.32616 0.61183 1.12887 - 0.04294 - 0.22124 0.03959 - 1.69830 - 1.98484 - 1.90974 - 2.42006 - 3.79055 - 4.20791 - 4.28898 - 4.05729 - 4.56956 - 5.22748 - 3.14452	-3.85753 -2.07649 -2.58878 -2.07687 -0.65526 -0.32687 0.18622 1.55539 1.63090 1.83894 1.55079 2.90908 1.08834 0.96781 1.93931 0.67730 -0.07419 -2.05727 -0.03618 -1.10981	$\begin{array}{c} -0.67778\\ -0.67069\\ -1.20086\\ 0.39052\\ -1.19354\\ -2.23623\\ -0.37687\\ -0.79310\\ -1.85332\\ -0.60152\\ 0.42046\\ -0.73032\\ -1.55827\\ -1.24093\\ -0.93636\\ -2.17272\\ -0.17160\\ 1.73873\\ 0.58949\\ 0.03479\end{array}$	tree. Free H C H C H H C H H C H H H C H H C H C	Energy: -108 -4.20276 -3.79357 -4.01840 -4.54695 -4.25662 -5.61925 -4.31734 -4.56633 -3.78895 -3.38601 -2.33027 -3.53326 -3.96894 -3.51353 -4.14320 -3.74829 -2.03819	1.639408 har -1.93941 -1.13304 -1.39339 0.18355 0.97020 0.00334 0.60308 -0.16356 1.74455 2.92816 3.18973 2.76245 3.81664 1.89490 1.21173 2.91585 1.60007	tree. 1.38111 2.00220 3.04753 1.66232 2.36606 1.83063 0.23624 -0.49932 -0.23218 0.61501 0.46110 1.68474 0.33374 -1.71761 -2.29621 -2.04744 -2.07662
C H H C O O C H C H H O C H H C C C C C	0.58679 - 0.22600 0.32616 0.61183 1.12887 - 0.04294 - 0.22124 0.03959 - 1.69830 - 1.98484 - 1.90974 - 2.42006 - 3.79055 - 4.20791 - 4.28898 - 4.05729 - 4.56956 - 5.22748 - 3.14452 - 3.39668	$\begin{array}{r} -3.85753\\ -2.07649\\ -2.58878\\ -2.07687\\ -0.65526\\ -0.32687\\ 0.18622\\ 1.55539\\ 1.63090\\ 1.83894\\ 1.55079\\ 2.90908\\ 1.08834\\ 0.96781\\ 1.93931\\ 0.67730\\ -0.07419\\ -2.05727\\ -0.03618\\ -1.10981\\ -2.09485\end{array}$	$\begin{array}{c} -0.67778\\ -0.67069\\ -1.20086\\ 0.39052\\ -1.19354\\ -2.23623\\ -0.37687\\ -0.79310\\ -1.85332\\ -0.60152\\ 0.42046\\ -0.73032\\ -1.55827\\ -1.24093\\ -0.93636\\ -2.17272\\ -0.17160\\ 1.73873\\ 0.58949\\ 0.03479\\ 0.98675\end{array}$	tree. Free H C H C H H C H H C H H C H H C H H C C H C H C H C C H C C H C C H C C H C C H C C H C C C H C C C H C	Energy: -108 -4.20276 -3.79357 -4.01840 -4.54695 -4.25662 -5.61925 -4.31734 -4.56633 -3.78895 -3.38601 -2.33027 -3.53326 -3.96894 -3.51353 -4.14320 -3.74829 -2.03819 -1.86097	1.639408 hart -1.93941 -1.13304 -1.39339 0.18355 0.97020 0.00334 0.60308 -0.16356 1.74455 2.92816 3.18973 2.76245 3.81664 1.89490 1.21173 2.91585 1.60007 1.86612	tree. 1.38111 2.00220 3.04753 1.66232 2.36606 1.83063 0.23624 -0.49932 -0.23218 0.61501 0.46110 1.68474 0.33374 -1.71761 -2.29621 -2.04744 -2.07662 -3.12741
C H H C O O C H C H H O C H H C C C C C	0.58679 - 0.22600 0.32616 0.61183 1.12887 - 0.04294 - 0.22124 0.03959 - 1.69830 - 1.98484 - 1.90974 - 2.42006 - 3.79055 - 4.20791 - 4.28898 - 4.05729 - 4.56956 - 5.22748 - 3.14452	-3.85753 -2.07649 -2.58878 -2.07687 -0.65526 -0.32687 0.18622 1.55539 1.63090 1.83894 1.55079 2.90908 1.08834 0.96781 1.93931 0.67730 -0.07419 -2.05727 -0.03618 -1.10981	$\begin{array}{c} -0.67778\\ -0.67069\\ -1.20086\\ 0.39052\\ -1.19354\\ -2.23623\\ -0.37687\\ -0.79310\\ -1.85332\\ -0.60152\\ 0.42046\\ -0.73032\\ -1.55827\\ -1.24093\\ -0.93636\\ -2.17272\\ -0.17160\\ 1.73873\\ 0.58949\\ 0.03479\end{array}$	tree. Free H C H C H H C H H C H H H C H H C H C	Energy: -108 -4.20276 -3.79357 -4.01840 -4.54695 -4.25662 -5.61925 -4.31734 -4.56633 -3.78895 -3.38601 -2.33027 -3.53326 -3.96894 -3.51353 -4.14320 -3.74829 -2.03819	1.639408 har -1.93941 -1.13304 -1.39339 0.18355 0.97020 0.00334 0.60308 -0.16356 1.74455 2.92816 3.18973 2.76245 3.81664 1.89490 1.21173 2.91585 1.60007	tree. 1.38111 2.00220 3.04753 1.66232 2.36606 1.83063 0.23624 -0.49932 -0.23218 0.61501 0.46110 1.68474 0.33374 -1.71761 -2.29621 -2.04744 -2.07662

0	-2.38593	-0.76686	-2.41820	С	3.89678	1.30310	1.81486
0	-0.57091	-0.07066	-1.24122	Η	4.17927	1.71612	2.79418
Č	-0.10483	-1.43593	-1.06310	C	4.53844	-0.10899	1.69057
Ĥ	-0.72967	-2.08502	-1.68472	H	4.17261	-0.75380	2.49555
C	1.32109	-1.49054	-1.59789	Н	5.61984	0.00937	1.85394
H	1.63428	-2.54203	-1.70320	C	4.29825	-0.72188	0.33771
H				С Н			
	1.34147	-1.03936	-2.60313		4.71434	-0.14617	-0.49220
0	2.18967	-0.79775	-0.72373	C	3.60064	-1.82739	0.02596
C	3.52204	-0.72401	-1.20069	C	2.95591	-2.75292	1.03071
Н	3.96437	-1.73194	-1.27369	Н	1.86092	-2.74225	0.94166
H	3.52267	-0.30334	-2.22258	Н	3.20432	-2.50222	2.06478
С	4.34880	0.14490	-0.28129	Η	3.27125	-3.79071	0.85331
С	5.91799	1.80969	1.34508	С	3.38326	-2.20312	-1.42849
С	5.70608	-0.12949	-0.08329	Н	4.07495	-1.64988	-2.07280
С	3.78127	1.25969	0.34763	Η	3.58534	-3.27285	-1.57472
С	4.56113	2.08388	1.15885	С	1.94063	-1.93180	-1.92268
С	6.48953	0.70020	0.72057	Η	1.83227	-2.33581	-2.93690
Η	6.15410	-1.00000	-0.55830	Н	1.20216	-2.42422	-1.28571
Н	2.72481	1.46395	0.20559	С	1.64600	-0.44701	-2.00963
Н	4.10833	2.94326	1.64690	Ο	2.27816	0.32759	-2.70427
Н	7.54256	0.47363	0.86609	0	0.59777	-0.09540	-1.23641
Н	6.52425	2.45363	1.97672	С	0.16189	1.29675	-1.24305
С	-0.25610	-1.82342	0.42546	Η	0.78262	1.83850	-1.96216
H	0.32838	-1.09983	0.99979	C	-1.27217	1.31312	-1.75503
C	0.32485	-3.22853	0.68978	H	-1.57419	2.35023	-1.96714
H	0.15980	-3.50756	1.73516	Н	-1.31669	0.75912	-2.70606
Н	1.40244	-3.26048	0.49932	0	-2.13399	0.72478	-0.79625
Н	-0.16186	-3.98836	0.06475	Č	-3.47872	0.63885	-1.24303
C	-1.71181	-1.77306	0.82445	H	-3.89917	1.64494	-1.40128
Н	-2.35974	-2.40909	0.21808	Н	-3.51037	0.12489	-2.21972
C	-2.33974	-1.05644	1.79961	C	-4.30801	-0.12213	-0.23370
C	-1.55813	-0.12840	2.73770	C	-5.89255	-1.58959	1.56571
Н	-1.86346	0.91478	2.58296	C	-5.66986	0.16813	-0.08364
Н	-0.47314	-0.17218	2.62137	C	-3.74629	-1.15438	0.52905
Н	-1.79448	-0.37185	3.78283	C	-4.53273	-1.87996	1.42620
				C	-6.45976	-0.56359	0.80606
				Η	-6.11488	0.97282	-0.66536
	pound 5.22			Н	-2.68915	-1.37723	0.42242
	structure was	assigned as c	correct.	Η	-4.08226	-2.67421	2.01645
	YP/6-31g(d)			Η	-7.51518	-0.32527	0.91178
SME) implicit solv	vation in dich	loromethane	Н	-6.50410	-2.15550	2.26375
was	used.			С	0.36429	1.87756	0.17384
				Η	-0.23664	1.27335	0.85919
Elec	tronic Energy	y: -1082.088	82316 har-	С	-0.14362	3.33313	0.24432
tree.	υ.	-		Н	0.05195	3.74830	1.23871
	Energy: -108	1.666951 har	tree.	Н	-1.22211	3.39622	0.06353
	0,			Н	0.36573	3.97167	-0.48876
Η	4.34361	1.95502	1.05382	C	1.82675	1.80829	0.55024
				-			/

Η	2.49939	2.22417	-0.20297	Н	3.55353	-2.10542	0.80692
С	2.38636	1.31139	1.66617	С	4.27013	-0.24373	0.00718
Č	1.61829	0.72185	2.82466	Č	5.87740	1.13291	-1.82647
Н	1.91099	-0.32015	3.00948	C	3.70588	0.32580	-1.13494
Н	0.53561	0.74004	2.67802	C	5.64436	-0.11771	0.22480
Η	1.83945	1.27321	3.74982	С	6.44551	0.56283	-0.68766
				С	4.50694	1.01355	-2.04543
				Η	2.63761	0.23141	-1.30252
Comp	ound 5.22			Н	6.08793	-0.55492	1.11683
This s	structure was	assigned as c	orrect.	Η	7.51250	0.65481	-0.50601
	2X/6-31g(d)	U		Н	4.05717	1.45734	-2.92915
	implicit solva	ation in dichl	oromethane	Н	6.49970	1.66984	-2.53642
was u				C	-0.39749	0.54421	1.55724
wus u	sea.			Н	0.16708	0.97214	0.72193
Electr	onio Enorm	. 1001 615	21712 hor	C	0.17335	1.11174	2.86357
	onic Energy	1081.013	21713 har-				
tree.		1001001		Н	-0.02540	2.18622	2.91971
Free I	Energy: -1081	.188180 hart	ree.	Н	1.25667	0.96332	2.92037
				Η	-0.29041	0.63776	3.73707
Н	-4.37540	1.46289	1.50936	С	-1.86414	0.87006	1.41946
С	-3.90826	2.08323	0.73549	Η	-2.54034	0.18068	1.92999
Н	-4.16753	3.12834	0.95199	С	-2.40807	1.91127	0.77765
С	-4.51289	1.70340	-0.63684	С	-1.61797	2.97507	0.06072
H	-5.57605	1.97145	-0.62688	H	-2.03326	3.16968	-0.93534
Н	-4.04242	2.30794	-1.41926	Н	-0.56213	2.72081	-0.05699
C	-4.37250	0.23534	-0.92381	H	-1.67468	3.92242	0.61274
						5.92242	0.01274
Н	-5.09217	-0.40959	-0.41595				
C	-3.43602	-0.35530	-1.67658	a	1 = 00		
С	-2.33008	0.38531	-2.38524	1	bound 5.23		
Н	-2.57110	1.43638	-2.56023	This s	structure was a	assigned as i	ncorrect.
Н	-2.10940	-0.07811	-3.35446				
Η	-1.40678	0.35089	-1.79074	Mole	cular Mechai	nics (OPLS	-2005), gas
С	-3.39874	-1.86007	-1.81479	phase			
Н	-4.20078	-2.31132	-1.22228		y: +149.7223	05 kJ.	
Н	-3.56017	-2.14306	-2.86339	L L			
C	-2.05246	-2.46025	-1.37484	С	-2.17760	3.77250	1.82010
H	-2.10255	-3.55228	-1.43890	C	-1.30430	2.78440	1.65760
Н	-1.23562	-2.11691	-2.01323	0	-2.30140	3.11860	-0.37370
C	-1.76155	-2.10111	0.06256	Н	-2.34860	4.29450	2.74980
0	-2.47929	-2.39342	0.99223	H	-0.65190	2.36330	2.40770
Ο	-0.61232	-1.41616	0.17862	С	-2.85290	3.96990	0.55430
С	-0.20072	-0.97405	1.48863	С	-3.90350	4.79010	0.26740
Η	-0.82528	-1.47276	2.23695	С	-4.57370	4.75680	-1.07650
С	1.23291	-1.42391	1.68420	С	-4.53020	5.65610	1.32120
Н	1.51582	-1.29169	2.73946	Ο	-5.12530	6.76230	0.82530
Н	1.31294	-2.49624	1.44917	Õ	-4.46600	5.43950	2.53420
0	2.07476	-0.66861	0.84537	C	-5.78670	7.65670	1.70300
C	3.43005	-1.02459	0.98725	Н	-6.59070	7.15010	2.23840
Н	3.77147	-0.83064	2.01653	Н	-6.22100	8.48000	1.13620

Η	-5.09040	8.07290	2.43210	С	-4.07570	4.87470	-1.21820
0	-5.78060	4.96870	-1.22170	С	-4.52350	5.64100	1.18570
С	-3.79120	4.48690	-2.37320	0	-5.40520	6.47510	0.58980
Н	-2.72080	4.39830	-2.20110	0	-4.41350	5.58080	2.41210
Н	-3.90740	5.38810	-2.97510	С	-6.22450	7.31450	1.38680
С	-4.33770	3.29430	-3.19320	Н	-5.61710	7.98830	1.99260
Н	-4.03090	3.40450	-4.23330	Н	-6.85640	6.72370	2.05130
Η	-5.42910	3.30700	-3.20500	Н	-6.87040	7.91820	0.74940
C	-1.33640	2.30230	0.22800	0	-3.28650	5.18540	-2.11330
Õ	-0.09830	2.41230	-0.40900	Č	-5.47780	4.38390	-1.60820
Č	0.41950	3.72970	-0.55200	H	-6.07390	5.25000	-1.89540
H	-0.24910	4.36200	-1.13720	H	-5.95350	3.95840	-0.72470
Н	1.37320	3.68580	-1.07760	C	-5.49850	3.33510	-2.74250
Н	0.59820	4.20720	0.41180	H	-5.20670	3.80180	-3.68440
C	-1.78270	0.82860	0.05960	H	-6.52050	2.98150	-2.88150
Н	-1.68140	0.60450	-1.00090	C	-1.20790	2.30620	0.33400
C	-3.24330	0.59640	0.52570	0	0.10690	2.42370	-0.12210
Н	-3.85480	1.48420	0.38230	C	0.64330	3.74160	-0.13860
Н	-3.25930	0.42510	1.60280	H	0.07460	4.39720	-0.79940
C	-3.85380	1.93760	-2.71500	H	1.66680	3.70910	-0.51130
Н	-2.80220	1.74110	-2.86860	H	0.66940	4.18610	0.85660
C	-4.62050	0.98820	-2.14930	C	-1.66110	0.86610	-0.00940
Н	-4.02030	1.17990	-2.14930	H H	-1.52150	0.74880	-1.08370
		-0.04040	0.78040		-3.13840	0.74880	
0	-0.93440			C			0.37880
H	-0.05030	0.19070	0.52960	Н	-3.74590	1.49440	0.22470
C	-4.10250	-0.37780	-1.72570	H	-3.19720	0.40790	1.44990
Н	-3.14310	-0.56260	-2.20940	C	-4.58610	2.14250	-2.50540
Н	-4.77610	-1.13750	-2.12410	H	-3.53110	2.31820	-2.67180
C	-3.96340	-0.55850	-0.19730	C	-4.99300	0.92600	-2.10430
Н	-4.95850	-0.66650	0.23590	Н	-6.04110	0.74870	-1.90990
Н	-3.44400	-1.49500	0.01100	0	-0.85230	-0.07800	0.66030
				Н	0.04160	0.19620	0.50180
				С	-4.06120	-0.25260	-1.88330
				Н	-3.12260	-0.07750	-2.40900
-	pound 5.23			Η	-4.50600	-1.12650	-2.36070
This	structure was	assigned as c	orrect.	С	-3.79760	-0.55510	-0.39320
				Η	-4.74340	-0.80610	0.08810
Mole	cular Mecha	nics (OPLS-	-2005), gas	Η	-3.17270	-1.44510	-0.30440
phase							
Energ	gy: +156.2988	328 kJ.					
С	-2.23720	3.66340	1.92230	Comp	oound 5.23		
С	-1.35860	2.67380	1.79230		structure was	assigned as i	ncorrect.
Ο	-2.06710	3.19290	-0.32190		ZP/6-31g(d)	C	
Н	-2.52920	4.11470	2.85880		implicit solv	ation in THF	was used.
Н	-0.81700	2.17670	2.58280		I .		
C	-2.71930	3.98280	0.59690	Elect	ronic Energy	7: -1112.360	025527 har-
Č	-3.70400	4.84050	0.21940	tree.	8,		
-							

Free Energy: -1112.038811 hartree.

Free	Energy: -111	2.038811 har	tree.				
				Com	pound 5.23		
С	-2.24814	3.73771	1.90859	This	structure was a	ssigned as i	ncorrect.
С	-1.37473	2.72850	1.79963	B3LY	/P/6-31g(d)		
Ο	-2.07032	3.29903	-0.33890	Gas p	hase.		
Н	-2.60231	4.23237	2.80019	1			
Н	-0.85265	2.21699	2.59877	Elect	ronic Energy:	-1112.339	913821 har-
С	-2.73402	4.06271	0.56679	tree.			
Ċ	-3.75146	4.87960	0.16696		Energy: -1112.	017324 har	tree
Č	-4.19676	4.85937	-1.27841			017021100	
Č	-4.47934	5.71041	1.13806	С	-2.24548	3.74853	1.91935
Õ	-5.41729	6.45929	0.50571	Č	-1.38124	2.73083	1.81649
Ő	-4.28995	5.78065	2.34301	0 0	-2.06111	3.29440	-0.32656
C	-6.19911	7.33014	1.34188	Н	-2.60568	4.25515	2.80196
H	-5.55802	8.05406	1.85191	H	-0.86939	2.20909	2.61515
H	-6.76085	6.75589	2.08379	C	-2.72513	4.06861	0.57304
H	-6.88428	0.73389 7.84416	0.66641	C	-3.74193	4.88105	0.16838
п 0			-2.18200	C C	-4.17390	4.85381	
	-3.45784	5.21143					-1.28098
C	-5.59479	4.30618	-1.56066	C	-4.46881	5.70797	1.14445
Н	-6.24517	5.15515	-1.80840	0	-5.44031	6.43049	0.52487
Н	-6.00126	3.84340	-0.65586	0	-4.26151	5.79337	2.34361
C	-5.61991	3.29220	-2.73023	C	-6.20787	7.29084	1.37891
Н	-5.36437	3.82374	-3.65474	Н	-5.56081	8.02547	1.86536
Н	-6.65107	2.93395	-2.83504	Н	-6.72546	6.71064	2.14773
C	-1.20905	2.34283	0.35332	Н	-6.92527	7.78629	0.72396
0	0.09057	2.42251	-0.15035	0	-3.41722	5.17124	-2.17899
С	0.81182	3.63590	0.09666	С	-5.57735	4.31539	-1.57349
Н	0.27547	4.50238	-0.30437	Н	-6.21924	5.17108	-1.81962
Н	1.76259	3.52821	-0.42978	Н	-5.99338	3.85178	-0.67312
Н	1.00397	3.78427	1.16556	С	-5.58902	3.30534	-2.74570
С	-1.68361	0.91687	-0.03505	Н	-5.30874	3.83953	-3.66097
Η	-1.58938	0.89049	-1.13028	Н	-6.61838	2.94899	-2.87486
С	-3.11751	0.58987	0.38133	С	-1.21760	2.33794	0.37106
Η	-3.74007	1.48330	0.27552	0	0.09159	2.39967	-0.12348
Η	-3.10766	0.32768	1.44629	С	0.77855	3.64469	0.01956
С	-4.67864	2.12801	-2.54511	Н	0.24350	4.44693	-0.49861
Η	-3.62943	2.33303	-2.76044	Н	1.75503	3.49895	-0.44610
С	-5.01513	0.90504	-2.11825	Н	0.91370	3.91449	1.07395
Н	-6.06122	0.69249	-1.88222	С	-1.69632	0.91225	-0.00687
Ο	-0.81514	-0.04283	0.55680	Н	-1.58661	0.87533	-1.10066
Н	0.08009	0.17262	0.24288	С	-3.13907	0.60123	0.38978
С	-4.04116	-0.22749	-1.90955	Н	-3.75318	1.49765	0.26180
Н	-3.10062	0.00262	-2.42542	Н	-3.14617	0.34729	1.45636
Н	-4.43544	-1.13846	-2.38174	C	-4.65353	2.13945	-2.54304
C	-3.75518	-0.55597	-0.42345	Ĥ	-3.60031	2.34883	-2.73103
H	-4.69749	-0.83590	0.06587	C	-5.00150	0.91510	-2.13251
Н	-3.10675	-1.44019	-0.37786	H	-6.05333	0.70216	-1.92418
		1.11017	0.07700	0	-0.84598	-0.04546	0.60911
				C	0.01090	0.01010	0.00711

Н	0.05354	0.15317	0.29998	С	-3.15142	0.72392	0.36686
С	-4.03336	-0.21987	-1.90819	Н	-3.74773	1.62645	0.18796
Н	-3.08645	0.00994	-2.41252	Н	-3.14086	0.54535	1.44843
Н	-4.41889	-1.13029	-2.38845	С	-4.64529	2.14866	-2.48289
С	-3.76656	-0.54802	-0.41798	Η	-3.58011	2.35240	-2.61129
Η	-4.71541	-0.82693	0.05943	С	-5.02259	0.92501	-2.10714
Н	-3.11700	-1.43019	-0.35860	Η	-6.08470	0.71941	-1.95422
				0	-0.89297	-0.01808	0.50324
				Η	0.00907	0.15411	0.18741
Com	pound 5.23			С	-4.07025	-0.21094	-1.84717
-	structure was	assigned as in	ncorrect.	Н	-3.12331	-0.01267	-2.36202
	-2X/6-31g(d)	8		Η	-4.47338	-1.13335	-2.28226
) implicit solva	ation in THF	was used.	С	-3.80683	-0.45908	-0.35014
	1			Η	-4.75755	-0.68689	0.14670
Elect	ronic Energy	<i>v</i> : -1111.912	57512 har-	Н	-3.17120	-1.34557	-0.24086
tree.	05						
Free	Energy: -1111	1.586239 hart	ree.				
	es			Com	pound 5.23		
С	-2.21201	3.73504	1.87884		structure was	assigned as c	correct.
С	-1.34702	2.72656	1.75929		YP/6-31g(d)	U	
Ο	-2.00131	3.33888	-0.37228		implicit solva	ation in THF	was used.
Н	-2.57501	4.21931	2.77273		1		
Н	-0.83165	2.19572	2.55090	Elect	ronic Energy	<i>r</i> : -1112.357	22722 har-
С	-2.68438	4.07432	0.52984	tree.	0,		
С	-3.71091	4.86800	0.13463	Free	Energy: -1112	2.036977 har	tree.
С	-4.14891	4.82755	-1.30203		0,		
С	-4.47668	5.65168	1.11577	С	-2.21495	3.83341	1.82994
Ο	-5.44316	6.35743	0.50103	С	-1.33520	2.83107	1.71284
Ο	-4.28533	5.71248	2.31321	0	-2.21250	3.26009	-0.38939
C	6 24055	7 17220	1 25202	тт	2 50421	1 26011	2 72122

С	-1.34702	2.72656	1.75929	B3L	YP/6-31g(d)	0		
0	-2.00131	3.33888	-0.37228	SMD implicit solvation in THF was used.				
Н	-2.57501	4.21931	2.77273		1			
Η	-0.83165	2.19572	2.55090	Elec	tronic Energy	-1112.35	722722 har-	
С	-2.68438	4.07432	0.52984	tree.				
С	-3.71091	4.86800	0.13463	Free	e Energy: -1112	.036977 har	tree.	
С	-4.14891	4.82755	-1.30203					
С	-4.47668	5.65168	1.11577	С	-2.21495	3.83341	1.82994	
0	-5.44316	6.35743	0.50103	С	-1.33520	2.83107	1.71284	
0	-4.28533	5.71248	2.31321	0	-2.21250	3.26009	-0.38939	
С	-6.24955	7.17328	1.35382	Н	-2.50431	4.36844	2.72123	
Η	-5.63471	7.92094	1.85973	Н	-0.73771	2.38353	2.49711	
Н	-6.76360	6.56094	2.09814	С	-2.83385	4.05208	0.52002	
Н	-6.97261	7.65854	0.69935	С	-3.91800	4.81836	0.18680	
0	-3.38739	5.09045	-2.20886	С	-4.68266	4.66433	-1.08919	
С	-5.56214	4.33050	-1.57770	С	-4.52653	5.68307	1.23887	
Η	-6.18364	5.19547	-1.83803	0	-5.05322	6.80022	0.70053	
Н	-5.98227	3.88716	-0.66944	0	-4.52713	5.46994	2.44068	
С	-5.57493	3.30792	-2.72583	С	-5.70643	7.69030	1.62212	
Н	-5.28588	3.82034	-3.64982	Η	-6.52803	7.18216	2.13453	
Н	-6.60058	2.94528	-2.85339	Н	-6.09228	8.50874	1.01290	
С	-1.18671	2.36193	0.30684	Η	-4.99790	8.07247	2.36249	
0	0.11037	2.40773	-0.17906	0	-5.90612	4.73271	-1.04317	
С	0.82623	3.60546	0.10398	С	-3.99945	4.44711	-2.43637	
Н	0.26667	4.48402	-0.23320	Η	-2.91848	4.33945	-2.33650	
Η	1.76229	3.54072	-0.45188	Η	-4.18416	5.37809	-2.99137	
Н	1.04353	3.69629	1.17383	С	-4.61254	3.26530	-3.23092	
С	-1.71751	0.96993	-0.07858	Η	-4.40874	3.43414	-4.29701	
Н	-1.64466	0.94164	-1.17661	Н	-5.69990	3.29074	-3.10249	

С	-1.28494	2.35034	0.28789	Н	-5.02693	8.22044	2.10296
0	-0.03336	2.40261	-0.32508	0	-5.87833	4.51618	-0.94214
С	0.70922	3.62103	-0.19356	С	-3.99317	4.46217	-2.39793
Н	0.14753	4.47239	-0.59292	Η	-2.90885	4.37178	-2.30914
Η	1.61571	3.48024	-0.78616	Н	-4.19910	5.41471	-2.90850
Η	0.98465	3.81907	0.84857	С	-4.59532	3.30185	-3.22835
С	-1.78203	0.90355	0.02467	Н	-4.38297	3.49137	-4.28927
Н	-1.72558	0.79882	-1.06665	Η	-5.68255	3.32473	-3.10397
С	-3.20650	0.62506	0.50329	С	-1.29251	2.32826	0.30988
Н	-3.81216	1.52595	0.37339	Ο	-0.03076	2.36931	-0.30073
Н	-3.17161	0.41251	1.57875	С	0.69354	3.59660	-0.21218
С	-4.05297	1.92590	-2.82954	Н	0.12077	4.42319	-0.64616
Н	-3.00775	1.76134	-3.10136	Η	1.60581	3.44537	-0.79245
С	-4.69488	0.95526	-2.16873	Н	0.95605	3.84102	0.82395
Н	-5.73669	1.10749	-1.87620	С	-1.79509	0.88829	0.03545
0	-0.90017	-0.01981	0.65355	Η	-1.72598	0.78938	-1.05633
Η	-0.01959	0.14136	0.27291	С	-3.22782	0.62082	0.49413
С	-4.06102	-0.35083	-1.75818	Η	-3.82344	1.52729	0.35671
Η	-3.08134	-0.44109	-2.24410	Η	-3.20656	0.40219	1.56843
Η	-4.66515	-1.19067	-2.13118	С	-4.04028	1.95525	-2.84343
С	-3.90398	-0.53599	-0.22729	Η	-2.99708	1.78506	-3.12048
Η	-4.89806	-0.66272	0.22138	С	-4.68624	0.98750	-2.18376
Η	-3.36045	-1.47209	-0.04608	Η	-5.72430	1.15061	-1.88619
				Ο	-0.92957	-0.04217	0.67251
				Η	-0.04536	0.10945	0.29972
Com	pound 5.23			С	-4.06421	-0.32733	-1.78326
	structure was	assigned as c	correct.	Н	-3.08182	-0.41867	-2.26400
B3L	YP/6-31g(d)			H C	-4.66836	-1.15918	-2.17348
Gas phase.					-3.92005	-0.53235	-0.25309
					-4.91806	-0.66339	0.18537
Electronic Energy: -1112.33590002 har-				Н	-3.37660	-1.46864	-0.07526
tree.							
Free Energy: -1112.013929 hartree.							
				Con	anound 5 73		

	8,			Compound 5.23					
С	-2.17407	3.82823	1.86549	This structure was assigned as ambiguous.					
С	-1.32926	2.79678	1.73992	M06-2X/6-31g(d)					
0	-2.19962	3.25150	-0.35669	SMD implicit solvation in THF was used.					
Н	-2.45902	4.37268	2.75249	-					
Н	-0.75279	2.31256	2.51782	Electronic Energy: -1111.90775091 har-					
С	-2.79518	4.06570	0.55915	tree.					
С	-3.87243	4.83637	0.22520	Free Energy: -1111.582640 hartree.					
С	-4.66384	4.59635	-1.03233						
С	-4.43278	5.76680	1.24197	C -2.33723 3.72044 1.75061					
0	-5.19540	6.71736	0.66251	C -1.44301 2.73123 1.72071					
0	-4.20706	5.75289	2.44097	O -2.00864 3.23602 -0.46006					
С	-5.79451	7.65844	1.56335	Н -2.73882 4.23742 2.61030					
Н	-6.43282	7.14516	2.28736	Н -0.95281 2.25180 2.55975					
Н	-6.38728	8.32356	0.93474	C -2.73250 4.01656 0.36391					

С	-3.68877	4.87604	-0.07639	С	-5.31460	4.92020	-1.57500
С	-4.03327	5.19466	-1.48822	С	-5.44750	4.69380	-0.27140
С	-4.43664	5.63648	0.97099	0	-4.07200	6.50320	-0.47510
Ō	-5.75761	5.53285	0.80492	Н	-5.76640	4.32960	-2.35810
0	-3.93026	6.24368	1.88996	Η	-6.02140	3.90750	0.19510
Č	-6.55060	6.27604	1.73311	C	-4.47460	6.08710	-1.71970
H	-6.32336	7.34245	1.66206	Č	-4.12170	6.76960	-2.84150
Н	-6.36867	5.93390	2.75465	C	-3.29660	7.99960	-2.67990
Н	-7.58682	6.09184	1.45201	C	-4.61180	6.40740	-4.21080
0	-4.74373	6.16149	-1.71428	0	-3.99240	7.08220	-5.20500
C	-3.54024	4.35467	-2.65150	0	-5.47670	5.55980	-4.44140
H	-2.59670	3.85907	-2.43393	C	-4.33510	6.81210	-6.55440
H	-3.39673	5.04799	-3.48552	С Н	-5.39030	7.01970	-6.73670
C	-4.59725	3.30792	-3.06889	Н	-3.74390	7.43950	-7.22130
Н	-4.22227	2.78339	-3.95443	H	-4.13770	5.76870	-6.80390
H	-5.50378	3.84871	-3.36955	0	-2.24200	8.02390	-2.04160
C	-1.21598	2.29512	0.29789	C	-3.82130	9.32860	-3.24310
0	0.09297	2.32522	-0.14879	Н	-3.08850	9.69590	-3.96140
C	0.80341	3.53130	0.11460	Н	-4.74190	9.15610	-3.79950
Н	0.99993	3.64950	1.18567	С	-4.07440	10.40390	-2.16480
Η	1.74993	3.45223	-0.42122	Η	-3.14190	10.63730	-1.64780
Η	0.25124	4.40088	-0.25630	Η	-4.39200	11.32550	-2.65270
С	-1.74587	0.88887	-0.04788	С	-4.67710	5.72790	0.51690
Η	-1.79122	0.86325	-1.14857	0	-3.75730	5.17070	1.40770
С	-3.12172	0.60456	0.53417	С	-2.66530	4.48470	0.80850
Η	-3.72676	1.51829	0.49060	Н	-2.01540	4.08980	1.58910
Н	-2.98259	0.36339	1.59379	Η	-2.99560	3.64450	0.19720
С	-4.94699	2.30844	-2.00162	Η	-2.06570	5.15320	0.18900
Н	-5.49254	2.69162	-1.13573	С	-5.60020	6.67160	1.31560
С	-4.67316	1.00338	-2.06105	Н	-6.28000	7.12720	0.59570
Н	-4.12636	0.61811	-2.92537	С	-4.77020	7.76400	2.02440
Ο	-0.85479	-0.08611	0.44550	Н	-4.31140	7.34550	2.92070
H	0.01916	0.12801	0.08021	Н	-3.92850	8.06220	1.39870
C	-5.05762	0.00081	-1.00959	С	-5.13950	10.02410	-1.14820
Н	-5.56992	-0.84708	-1.48152	Н	-6.06100	9.62360	-1.54640
Н	-5.77132	0.46275	-0.31562	C	-5.01770	10.19320	0.17990
C	-3.85985	-0.52653	-0.20105	Ĥ	-4.10820	10.61950	0.57980
H	-4.22613	-1.26955	0.51455	0	-6.37520	5.95540	2.25440
Н	-3.16504	-1.05584	-0.86519	Н	-5.76300	5.41650	2.73640
	5.10504	1.05504	0.00017	C	-6.09330	9.84460	1.19470
				Н	-6.52320	10.77700	1.56240
Compound 5.24					-6.90850	9.31610	0.69980
	-	accienced as i	noorroot	H C	-5.57140	9.02640	2.39570
11115	structure was	assigned as i	ncorrect.				
Mala	aular Masha	ming (ODI 9	2005) ~~~	H H	-6.40920	8.74780	3.03660
	ecular Mecha	unes (OPLS	-4.93360	9.66930	3.00340		
phase. Energy: +143.085236 kJ.							
Ener	gy. +143.0852	230 KJ.					

	Compound 5.24 This structure was assigned as correct.				-6.90760 -5.85960 -6.79110	9.45590 8.93810 8.59870	0.77790 2.61240 3.06800
Mole	cular Mecha	nics (OPLS	-2005), gas	H H	-5.33260	9.49400	3.38870
phase		× ×					
Energ	gy: +148.2527	704 kJ.					
a				~	1		
C	-5.19390	4.97300	-1.61640		pound 5.24		
C	-5.29950	4.77350	-0.30890		structure was a	issigned as in	ncorrect.
0	-4.24500	6.78190	-0.58130		YP/6-31g(d)		
Н	-5.55900	4.29220	-2.37120	SMI	O implicit solva	tion in THF	was used.
Н	-5.75600	3.92630	0.18030	г1	· ·	1110 201	(1220 1
C	-4.54240	6.25000	-1.81550		tronic Energy:	-1112.361	61338 har-
C	-4.25350	6.86650	-3.00000	tree.		0.400(2) h = 1	
C	-3.61680	8.22840	-3.08690	Free	Energy: -1112	.040062 nari	tree.
C	-4.65000	6.23400	-4.30120	C	5 25620	4 02704	1 (0591
0 0	-3.75560 -5.65400	6.43870 5.53380	-5.29160 -4.45810	C C	-5.25629 -5.40807	4.92794 4.67823	-1.60581 -0.29894
C C	-4.01590	5.92730	-4.43810 -6.58700	0	-3.40807	4.07823 6.46046	-0.29894
С Н	-3.20390	5.92730 6.19600	-0.38700 -7.26240	H H	-5.70970	6.46046 4.42519	-0.32032
H	-4.09890	4.84000	-6.56700	H	-6.02047	3.91236	0.16004
п Н	-4.94280	4.84000 6.34030	-6.98720	п С	-4.38392	6.09624	-1.74536
0	-3.72230	8.94910	-0.98720	C C	-4.07785	6.84735	-1.74330
C	-2.78890	8.94910 8.83740	-4.08200	C C	-3.31923	8.13794	-2.68793
С Н	-2.78890	8.83740 8.11740	-1.94310	C C	-3.51925	6.41734	-2.08793
п Н	-1.82060	9.09200	-2.37400	0	-3.94177	0.41734 7.16172	-4.18380
C	-3.40970	10.12900	-1.36290	0	-5.29816	5.50184	-4.44623
Н	-2.68890	10.12900	-0.70360	C	-4.30410	6.83271	-4.44023 -6.50478
H	-3.61010	10.83930	-2.16670	Н	-5.38239	6.93424	-6.65481
C	-4.68030	5.92440	0.44470	H	-3.76692	7.54515	-7.13216
0	-3.64110	5.51280	1.28390	H	-3.99842	5.81129	-6.74744
C	-2.49720	4.96510	0.64050	0	-2.28299	8.19791	-2.04454
Н	-1.75540	4.69740	1.39270	C	-3.93237	9.41031	-3.27880
H	-2.73560	4.06190	0.07820	Н	-3.23271	9.80194	-4.02740
Н	-2.03530	5.68630	-0.03470	Н	-4.87077	9.19018	-3.79541
C	-5.70910	6.70090	1.30420	C	-4.16810	10.49211	-2.19893
H	-6.37920	7.20880	0.61020	Н	-3.21808	10.73021	-1.70788
C	-4.99680	7.72000	2.21980	Н	-4.49463	11.40183	-2.72455
H	-4.65290	7.21570	3.12350	C	-4.62720	5.68123	0.51374
Н	-4.07970	8.06580	1.74220	Õ	-3.70848	5.16012	1.41553
C	-4.70490	9.88770	-0.61210	Č	-2.79761	4.17311	0.91510
Ĥ	-5.47780	9.35120	-1.14430	Ĥ	-2.13178	3.93529	1.74721
C	-4.92200	10.25730	0.66000	Н	-3.32133	3.26370	0.59785
H	-4.15030	10.78220	1.20520	Н	-2.20680	4.56765	0.08179
0	-6.49470	5.83230	2.09610	C	-5.51587	6.67213	1.31255
H	-5.88970	5.31020	2.60300	H	-6.24262	7.07830	0.60309
С	-6.16810	9.89950	1.44550	C	-4.69135	7.80464	1.94366
Н	-6.61800	10.81640	1.82820	Н	-4.17439	7.40038	2.82325

Н	-3.91290	8.11299	1.23890	С	-2.75460	4.26606	0.87491
С	-5.19989	10.09928	-1.17230	Η	-2.14263	3.95485	1.72351
Η	-6.12052	9.66165	-1.56755	Η	-3.21319	3.38371	0.41196
С	-5.07483	10.24974	0.15113	Η	-2.12763	4.78160	0.14051
Н	-4.15577	10.69202	0.54431	С	-5.53960	6.66759	1.32287
Ο	-6.28465	5.95395	2.27270	Η	-6.27823	7.07489	0.62591
Н	-5.64510	5.56755	2.89677	С	-4.70837	7.79956	1.94572
С	-6.10480	9.84804	1.17633	Η	-4.18591	7.39416	2.82138
Н	-6.57327	10.74830	1.60318	Η	-3.93436	8.10417	1.23468
Η	-6.91300	9.29174	0.68378	С	-5.17165	10.08620	-1.16605
С	-5.51975	9.03237	2.35271	Η	-6.09312	9.66017	-1.57202
Η	-6.33853	8.72481	3.01558	С	-5.06167	10.23463	0.15759
Η	-4.87241	9.69252	2.94555	Η	-4.14174	10.66556	0.56052
				0	-6.29114	5.94010	2.28671
				Η	-5.63983	5.54191	2.88880
	pound 5.24			С	-6.10603	9.84464	1.17235
This	structure was	assigned as in	ncorrect.	Η	-6.57511	10.74864	1.59003
B3LYP/6-31g(d)					-6.91309	9.29312	0.67224
Gas	phase.			С	-5.53764	9.02618	2.35546
				Η	-6.36259	8.71582	3.00896

Electronic Energy: -1112.33967323 har- H tree.

-4.89557

9.68450

2.95631

гтее	Ellergy1112	2.01/99/ Ilali	.166.					
				Compound 5.24				
С	-5.28648	4.92833	-1.60993	This structure was assigned as incorrect.				
С	-5.44581	4.68555	-0.30255	M06-2X/6-31g(d)				
0	-3.97660	6.46251	-0.51738	SMD implicit solvation in THF was used.				
Η	-5.73490	4.43344	-2.45779					
Η	-6.07069	3.93487	0.16395	Electronic Energy: -1111.91213246 ha	ar-			
С	-4.40501	6.09135	-1.74716	tree.				
С	-4.08581	6.83452	-2.85005	Free Energy: -1111.585452 hartree.				
С	-3.30860	8.11481	-2.67788					
С	-4.53275	6.39390	-4.18311	C -5.22995 4.92647 -1.60183	3			
0	-3.98616	7.17262	-5.15481	C -5.39716 4.69913 -0.2980	7			
0	-5.26028	5.45010	-4.44630	O -3.91172 6.45438 -0.5172	0			
С	-4.33846	6.81707	-6.49941	Н -5.67481 4.41796 -2.44324	4			
Н	-5.42042	6.87696	-6.64556	Н -6.01805 3.94700 0.1730.	3			
Н	-3.82454	7.53880	-7.13517	C -4.34849 6.09529 -1.7370	7			
Н	-4.00697	5.80048	-6.72694	C -4.04474 6.84509 -2.8310.	3			
0	-2.28445	8.15568	-2.01977	C -3.31477 8.14256 -2.65579	9			
С	-3.89753	9.40011	-3.26866	C -4.50564 6.42536 -4.1652	1			
Н	-3.18474	9.78350	-4.00880	O -3.94835 7.18908 -5.1231	3			
Н	-4.83300	9.19678	-3.79790	O -5.25336 5.50403 -4.4245	7			
С	-4.12291	10.47246	-2.17844	C -4.32871 6.86493 -6.46244	4			
Н	-3.17169	10.67667	-1.67535	Н -5.41178 6.94032 -6.5832	6			
Н	-4.42437	11.39924	-2.68971	Н -3.82564 7.59315 -7.0975	3			
С	-4.65869	5.68704	0.50753	Н -4.00488 5.85298 -6.71593	3			
0	-3.74063	5.15117	1.41083	O -2.31511 8.22742 -1.9722	7			

Free Energy: -1112.017997 hartree.

С	-3.93099	9.39225	-3.27343	С	-4.56431	6.29562	-4.26111
Н	-3.23319	9.77878	-4.02450	0	-3.61266	6.47370	-5.19701
Н	-4.86618	9.15276	-3.78680	0	-5.57587	5.64848	-4.46349
С	-4.17867	10.45734	-2.19473	С	-3.92684	5.96078	-6.49971
Н	-3.23329	10.70469	-1.70093	Н	-3.07176	6.21689	-7.12583
Н	-4.53059	11.36610	-2.70052	Н	-4.06886	4.87696	-6.46540
С	-4.61587	5.71092	0.50083	Н	-4.83734	6.42739	-6.88471
Ō	-3.72643	5.19045	1.42111	0	-3.94327	8.99351	-4.05748
Ċ	-2.84250	4.19317	0.92023	Ċ	-2.84049	9.00678	-1.95809
H	-2.12901	3.98995	1.71975	H	-2.63449	8.33356	-1.12604
Н	-3.38093	3.27253	0.66978	Н	-1.88484	9.27262	-2.42921
Н	-2.30360	4.55568	0.03893	C	-3.52214	10.30851	-1.45995
C	-5.50324	6.71602	1.25463	H	-2.81648	10.86648	-0.83297
H	-6.18305	7.14625	0.51043	Н	-3.73744	10.92221	-2.34386
C	-4.66586	7.81048	1.91332	C	-4.66913	5.81428	0.45298
Н	-4.15398	7.37280	2.77889	Õ	-3.66012	5.36102	1.30503
Н	-3.88937	8.13171	1.21082	č	-2.64305	4.53893	0.73132
C	-5.19400	10.02495	-1.17078	H	-1.93740	4.33415	1.53862
Н	-6.10446	9.56097	-1.56066	Н	-3.04926	3.59342	0.35262
C	-5.06991	10.19609	0.14631	Н	-2.12460	5.06203	-0.07934
Н	-4.15747	10.65951	0.53121	C	-5.63058	6.64942	1.33441
0	-6.31767	6.02683	2.18142	Н	-6.36775	7.09028	0.65692
H	-5.71425	5.63618	2.83574	C	-4.89358	7.74137	2.12760
C	-6.09802	9.80741	1.17329	Н	-4.45147	7.27031	3.01473
Н	-6.56926	10.71256	1.58015	Н	-4.05725	8.11814	1.53238
Н	-6.89956	9.23606	0.68953	C	-4.78127	10.02129	-0.68959
C	-5.49645	9.01763	2.34759	Н	-5.55323	9.47236	-1.23357
Н	-6.30127	8.69168	3.01678	C	-4.99829	10.31976	0.59418
Н	-4.85295	9.68911	2.92911	Н	-4.22981	10.86572	1.14780
	4.05275	2.00211	2.72711	0	-6.37365	5.77761	2.18021
				Н	-5.73606	5.40139	2.80997
Com	pound 5.24			C	-6.19065	9.86210	1.39169
	structure was	assigned as a	mhiguous	Н	-6.72610	10.72036	1.82251
	YP/6-31g(d)	assigned as a	inorguous.	Н	-6.90299	9.35919	0.72494
	phase.			C	-5.78465	8.91954	2.55348
Ous I	pildse.			Н	-6.68724	8.54367	3.05207
Elect	tronic Energy	r1112 335	301/0 har-	H	-5.23728	9.50699	3.30291
tree.	forme Energy	y1112.555	57140 Ildi-	11	-3.23720).500))	5.50271
	Energy: -1112	2 013582 hart	ree				
Titte	Lifergy1112	2.013302 hart		Corr	pound 5.24		
С	-5.20335	4.99865	-1.66879		structure was	assigned as a	mhiguous
C	-5.34856	4.74591	-0.36353		YP/6-31g(d)	ussigned as a	monguous.
0	-4.11200	6.69667	-0.57653		D implicit solv	ation in THE	was used
H	-5.60147	4.45063	-0.37033	SIVII	s implicit solv		was useu.
П Ц	-3.0014/	4.43005	-2.30913	Elaa	trania Enarga		40717 har

Н

C C C -5.88816

-4.45690

-4.16784

-3.66257

3.93054

6.25261

6.93682

8.34004

0.09973

-1.81638

-2.96474

-3.06043

Electronic Energy: -1112.35748717 hartree.

Free Energy: -1112.036226 hartree.

476

С	-5.00027	4.91290	-1.56760	This	s structure was	assigned as a	mbiguous.
Ċ	-5.18114	4.64643	-0.26998		6-2X/6-31g(d)		
0	-3.91881	6.59214	-0.44219		D implicit solva	ation in THF	was used.
H	-5.34892	4.33960	-2.41536				
Н	-5.72022	3.81581	0.16680	Elec	tronic Energy	1111 906	97610 har-
C	-4.24172	6.16083	-1.68551	tree.			<i>y</i> + 0 + 0 + 10
Ċ	-3.93523	6.83053	-2.83778		e Energy: -1111	583177 hart	ree
Č	-3.15886	8.07698	-3.02326		2		
Ċ	-4.38434	6.18874	-4.12382	С	-5.16644	5.16026	-1.73937
Õ	-5.28698	6.95173	-4.76257	Č	-5.30111	4.82277	-0.45823
0	-4.00839	5.10676	-4.53463	Ō	-4.00879	6.74347	-0.55434
Č	-5.71599	6.47040	-6.05081	Ĥ	-5.57081	4.65527	-2.60665
Ĥ	-6.43230	7.20802	-6.41469	Н	-5.84201	3.98277	-0.04066
Н	-4.86634	6.40009	-6.73561	С	-4.37610	6.39849	-1.80584
Н	-6.19349	5.49090	-5.96009	Č	-4.09331	7.12295	-2.91768
0	-2.87177	8.41973	-4.17176	Č	-3.32031	8.38116	-3.03652
Č	-2.69779	8.95477	-1.86753	Č	-4.63956	6.61869	-4.22113
H	-2.58368	8.39291	-0.93973	õ	-4.09428	5.44337	-4.57262
Н	-1.71718	9.34022	-2.16694	Õ	-5.47189	7.18723	-4.88289
C	-3.64093	10.17316	-1.63450	Č	-4.59108	4.88536	-5.79382
H	-3.09171	10.91413	-1.04141	Ĥ	-4.39248	5.55971	-6.62977
Н	-3.84796	10.63320	-2.61081	Н	-4.05667	3.94572	-5.92871
C	-4.56251	5.73360	0.57228	Н	-5.66660	4.70489	-5.72358
Õ	-3.63420	5.32902	1.51832	0	-3.11888	8.83986	-4.15112
Č	-2.60468	4.43261	1.07943	Č	-2.78093	9.12885	-1.83203
H	-1.96660	4.26581	1.94958	H	-2.63101	8.48163	-0.96726
Н	-3.01842	3.47464	0.74424	Н	-1.81380	9.53120	-2.14778
Н	-2.00852	4.87690	0.27529	C	-3.70696	10.31125	-1.46201
C	-5.61727	6.59236	1.31830	Ĥ	-3.14460	11.00795	-0.83108
Ĥ	-6.31390	6.95229	0.55636	Н	-3.96107	10.84460	-2.38711
C	-4.99612	7.77114	2.08273	C	-4.61599	5.84474	0.41236
Н	-4.59429	7.38961	3.02990	Ō	-3.65555	5.35410	1.27464
Н	-4.14363	8.16036	1.51899	Č	-2.70296	4.47147	0.69044
C	-4.91500	9.80783	-0.92385	H	-1.93847	4.30077	1.44914
Η	-5.58258	9.12254	-1.44952	Н	-3.16333	3.51559	0.41752
С	-5.23740	10.20597	0.31154	Н	-2.23875	4.92026	-0.19382
Н	-4.56098	10.88577	0.83683	С	-5.60965	6.65719	1.25698
0	-6.39350	5.74909	2.16610	Н	-6.32174	7.09683	0.55062
Н	-5.78781	5.42275	2.85487	С	-4.91799	7.74353	2.07834
С	-6.41748	9.71068	1.10364	Η	-4.46865	7.27029	2.95982
Η	-7.03959	10.55398	1.43710	Н	-4.09673	8.17018	1.49398
Н	-7.05562	9.08912	0.46257	C	-4.94413	9.87323	-0.73209
C	-5.98281	8.91680	2.36205	H	-5.60466	9.17637	-1.25437
Ĥ	-6.87579	8.52450	2.86558	C	-5.24183	10.24444	0.51333
Н	-5.50777	9.61166	3.06733	Ĥ	-4.56396	10.92760	1.03193
				0	-6.36128	5.77370	2.06691
				Ĥ	-5.73465	5.38331	2.69911
Compound 5.24			С	-6.38585	9.71015	1.32520	
1							

	6 000 70	10 50000	1 70017	тт	12 00 100	5 1 40 50	05 77(40
Н	-6.98872	10.53300	1.72917	Н	-13.00400	-5.14950	25.77640
Η	-7.04966	9.12119	0.68174	Η	-11.72360	-5.87280	26.68650
С	-5.87748	8.85647	2.50484	С	-13.20010	-6.01590	28.78600
Η	-6.73347	8.42347	3.03619	С	-15.11840	-6.46140	27.18460
Η	-5.36050	9.51203	3.21612	Η	-15.79220	-6.31490	28.02640
				Η	-15.23710	-7.48590	26.83230
				Η	-15.44840	-5.78970	26.39190
Con	npound 5.25			С	-13.21230	-6.48760	31.34190
	s structure was	assigned as c	orrect	Н	-12.16010	-5.76480	28.91670
				Н	-13.88870	-6.24600	32.16240
Mol	ecular Mecha	anics (OPLS	-2005) gas	Н	-12.35730	-5.82590	31.48240
	Molecular Mechanics (OPLS-2005), gas phase.				-12.78060	-7.98170	31.53180
-	Energy: +90.034286 kJ.			C C	-13.82040	-8.91160	30.84260
LIIC	igy. + 90.0542	00 KJ.		C	-12.68150	-8.34730	33.05530
С	-9.39880	-6.33260	29.69310	С Н	-14.83190	-8.71960	31.20050
C	-10.09790	-7.46630	28.95630	Н	-13.61130	-9.96720	31.00980
C	-11.28410	-9.55220	27.46910	Н	-13.85150	-8.75610	29.76510
C	-10.95640	-8.39790	29.61020	0	-13.95040	-8.60760	33.61510
C	-9.88860	-7.56570	27.56380	С	-12.05130	-7.26840	33.96780
С	-10.53000	-8.56550	26.80970	Η	-10.90270	-10.42640	31.33410
С	-11.48060	-9.47320	28.85630	С	-11.82490	-9.62140	33.09860
С	-11.29940	-8.27700	31.10450	Н	-9.82090	-9.39620	32.24660
Η	-9.28070	-6.83070	27.05590	Н	-11.30270	-9.74610	34.04810
С	-10.47120	-8.54400	25.29240	Η	-12.44310	-10.51040	32.96820
Η	-12.08260	-10.23300	29.32870	Η	-14.42340	-9.16350	33.01470
Η	-11.75860	-10.34640	26.91090	Η	-12.65020	-6.35980	34.01650
Н	-10.12470	-5.73150	30.24120	Н	-11.04820	-6.98520	33.65160
Н	-8.92770	-5.65330	28.98160	Н	-11.96670	-7.63210	34.99240
0	-8.40530	-6.80780	30.57400	С	-14.00200	-6.06090	30.07520
Ĥ	-7.83540	-7.38210	30.08420	Ĥ	-14.89980	-6.66510	29.96350
Н	-10.71340	-7.46160	31.51530	Н	-14.36060	-5.04410	30.23820
C	-10.85490	-9.50790	31.91820		11.50000	2.01110	50.25020
C	-11.40690	-7.48850	24.63910				
Н	-10.74290	-9.53740	24.93310				
Н	-9.44220	-8.38260	24.96890	Cor	npound 5.25		
C	-9.44220	-7.26170	25.36700		1	accienced as a	mbiguous
				1 111	s structure was	assigned as a	inoiguous.
0	-11.68250	-7.88280	23.29940	М.	1 1 N (1		2005)
Н	-10.89130	-6.52650	24.62750		lecular Mecha	anics (OPLS)	-2005), gas
Н	-13.05790	-8.17190	25.88500	pha		01011	
Н	-13.54660	-7.08360	24.63580	Ene	ergy: +103.425	819 kJ.	
C	-12.73540	-6.05140	26.32740	~			
С	-10.83550	-7.55490	22.30990	С	-9.34390	-6.14280	30.08490
0	-9.77600	-6.94440	22.44000	С	-9.87880	-7.18780	29.11710
С	-11.31380	-8.03640	20.95000	С	-10.72360	-9.07240	27.18910
Η	-10.61490	-7.72830	20.17260	С	-10.65180	-8.31290	29.52470
Н	-12.29300	-7.61520	20.72460	С	-9.62930	-6.97800	27.74660
Н	-11.38870	-9.12330	20.94040	С	-10.12540	-7.86810	26.77560
С	-13.66360	-6.18320	27.52800	С	-10.97530	-9.29340	28.55530

С	-11.18470	-8.44580	30.95990	Η	-9.74310	-9.61070	32.10810
Н	-9.11640	-6.07950	27.43480	Н	-11.37350	-10.23590	33.69180
С	-10.08250	-7.47760	25.30530	Н	-12.31030	-10.98340	32.42220
Н	-11.50300	-10.19090	28.83870	Н	-14.41120	-9.82200	32.33060
Η	-11.07140	-9.78780	26.45740	Η	-13.07180	-7.02210	33.86170
Η	-8.53470	-5.58370	29.61300	Η	-11.38180	-7.44300	33.63780
Н	-8.89660	-6.62020	30.95720	Η	-12.37410	-8.33600	34.76800
0	-10.33640	-5.22730	30.48480	С	-14.05410	-6.37240	29.85450
Н	-10.81540	-4.95830	29.71430	Н	-14.91630	-7.00860	29.65590
Н	-10.74320	-7.64600	31.54560	Н	-14.46330	-5.39010	30.08520
С	-10.72880	-9.73860	31.65970				
С	-11.47680	-7.27800	24.63650				
Н	-9.48050	-8.20260	24.75640				
Η	-9.53830	-6.53670	25.22030	Cor	npound 5.25		
C	-12.64820	-6.86690	25.56680		s structure was	assigned as c	orrect
Õ	-11.88320	-8.51290	24.05370		LYP/6-31g(d)		
H	-11.38330	-6.52710	23.84990		D implicit sol	lvation in m	-thanol was
Н	-12.82870	-7.67360	26.27560	use	1	ivation in in	ethunor wus
Н	-13.56430	-6.81410	24.97740	use	u.		
C	-12.48600	-5.52390	26.31380	Ele	ctronic Energy	v: _1275.246	84975 har-
C C	-11.52660	-8.82120	22.79580	tree	0.	y. = 1275.240	
0	-10.82390	-8.13440	22.05670		e Energy: -127	1 73/310 hard	raa
C	-12.07980	-10.16340	22.03070	TTC.	c Ellergy127	4.734317 Hall	lice.
				C	0 02220	2 24270	1 94065
Н	-13.16820	-10.15850	22.39870	C	0.83229	-2.24379	-1.84965
Н	-11.70100	-10.96020	22.98570	C	0.26359	-1.65792	-0.57221
H	-11.78150	-10.37000	21.31820	C	-0.92263	-0.73345	1.78227
C	-13.38620	-5.42560	27.54110	C	1.08395	-1.08277	0.43096
Н	-12.67970	-4.69550	25.63120	C	-1.12463	-1.70681	-0.39263
Н	-11.46140	-5.38560	26.65070	C	-1.74791	-1.19823	0.75348
C	-13.23470	-6.27900	28.57680	C	0.46216	-0.69149	1.62503
С	-14.43330	-4.32750	27.47860	С	2.58037	-0.91151	0.23445
Η	-15.13200	-4.35190	28.31250	Η	-1.73759	-2.13075	-1.18641
Η	-15.01960	-4.42600	26.5647	С	-3.25086	-1.07330	0.85854
Н	-13.95220	-3.34930	27.46920	Н	1.06389	-0.32006	2.44756
С	-13.30360	-6.87020	31.12510	Η	-1.36602	-0.38028	2.71069
Η	-12.49160	-7.04260	28.46470	Η	1.44950	-1.51993	-2.39013
Н	-14.05790	-6.77910	31.90670	Н	0.00820	-2.53106	-2.51650
Η	-12.53720	-6.15130	31.40830	0	1.69408	-3.37174	-1.61841
С	-12.73420	-8.33340	31.21110	Η	1.17053	-4.03629	-1.13888
С	-13.57680	-9.27370	30.30000	Н	2.82184	-1.34324	-0.73633
С	-12.77710	-8.87000	32.68720	С	3.43777	-1.68311	1.27975
Η	-14.63720	-9.22980	30.54780	С	-3.82984	0.09552	0.02305
Н	-13.26720	-10.31510	30.37700	Н	-3.52486	-0.88870	1.90382
Н	-13.50870	-8.99940	29.24950	Н	-3.75038	-1.99728	0.54515
Ο	-14.06830	-9.31090	33.04760	С	-3.06308	1.42455	0.14276
Ċ	-12.37740	-7.85790	33.78790	Ō	-5.19291	0.34086	0.50538
Ĥ	-10.65440	-10.57360	30.96360	Ĥ	-3.91461	-0.19799	-1.02583
C	-11.80300	-10.06010	32.70460	Н	-2.48966	1.43247	1.07583
-							

TT	2 70///	0.000/7	0.00055	F1 /	· -	1074 714	100000 1
Н	-3.79666	2.23367	0.22055	Electr	onic Energy	<i>i</i> : -1274.714	199892 har-
C	-2.12950	1.67530	-1.07702	tree.	107	4 1001071	
C	-6.19462	-0.40052	-0.00014	Free I	2 nergy: -12/2	4.193197 har	tree.
0	-6.03837	-1.27142	-0.84215	C	0.01(50	2 2 40 7 6	1 00505
C	-7.51749	-0.01481	0.60495	C	-0.81659	-2.34076	1.83737
Н	-8.31904	-0.59461	0.14453	C	-0.23545	-1.72500	0.58236
Н	-7.70165	1.05514	0.46028	C	0.96349	-0.73914	-1.73009
Н	-7.49970	-0.20379	1.68423	С	-1.04683	-1.14751	-0.41779
С	-0.81133	2.36913	-0.77775	С	1.15257	-1.74305	0.42780
Η	-2.69390	2.27360	-1.80930	С	1.77804	-1.21220	-0.70170
Η	-1.91215	0.72423	-1.57288	С	-0.42074	-0.72506	-1.59454
С	0.33970	1.82262	-1.21175	С	-2.54610	-1.02439	-0.25274
С	-0.91083	3.69019	-0.05409	Η	1.76350	-2.16908	1.22355
Η	0.06186	4.16051	0.11418	С	3.27652	-1.08105	-0.79607
Η	-1.40180	3.57902	0.92232	Η	-1.02029	-0.36121	-2.42285
Η	-1.52690	4.39759	-0.62892	Н	1.41639	-0.36745	-2.64664
С	2.90495	1.36135	-1.09178	Н	-0.04871	-2.95522	2.32292
Η	0.26339	0.88256	-1.75867	Н	-1.65433	-3.00018	1.59218
Η	3.80578	1.95661	-1.29142	0	-1.33461	-1.38657	2.76273
Η	2.79834	0.68062	-1.94671	Η	-0.58372	-0.87897	3.10978
С	3.20765	0.53494	0.19326	Н	-2.79786	-1.45160	0.72024
С	2.87835	1.37968	1.43826	С	-3.33784	-1.81120	-1.33000
С	4.74990	0.14024	0.24163	С	3.82419	0.12418	-0.00621
Н	3.41394	2.33576	1.40583	Н	3.55782	-0.92319	-1.84382
Н	3.14951	0.87879	2.37416	Н	3.77828	-1.98897	-0.44607
Н	1.81232	1.61321	1.48793	С	3.00080	1.40327	-0.17511
0	5.59719	1.25557	0.56618	0	5.15908	0.40117	-0.49732
C	5.31509	-0.36807	-1.09227	Η	3.91454	-0.12505	1.05600
H	2.96587	-1.65711	2.26699	Η	2.48042	1.37558	-1.13916
C	4.81220	-0.97625	1.31330	Η	3.68675	2.25551	-0.20988
Ĥ	3.51015	-2.73799	0.99257	C	2.00310	1.57862	0.99212
Н	5.64763	-1.65782	1.12132	Č	6.15525	-0.37644	-0.05610
Н	4.99283	-0.52532	2.29609	Õ	5.99543	-1.27793	0.74230
Н	5.41382	1.51472	1.48443	Č	7.46776	0.00999	-0.67055
Н	5.27832	0.39990	-1.87081	H	8.26728	-0.59105	-0.23839
Н	4.78690	-1.25385	-1.45610	Н	7.65989	1.07269	-0.50057
Н	6.36583	-0.64364	-0.94595	Н	7.42188	-0.15457	-1.75132
C	1.73913	2.38231	-1.12626	C	0.67911	2.22798	0.65121
H	1.83468	3.08800	-0.29490	Н	2.50300	2.18306	1.76373
Н	1.91368	2.98428	-2.03362	H	1.80031	0.60844	1.45657
11	1.71500	2.70420	-2.05502	C	-0.45673	1.70491	1.13455
				C	0.76402	3.50148	-0.14706
Commound 5 25				Н	-0.20826	3.97565	-0.29858
Compound 5.25				п Н			
This structure was assigned as correct. M06-2X/6-31g(d)				п Н	1.20883 1.41634	3.32092 4.22450	-1.13366 0.36088
M06-2X/6-31g(d) SMD implicit solvation in methanol was							
	SMD implicit solvation in methanol was				-2.99219	1.23895	1.02779
used.	used.				-0.37368	0.78906	1.72005
				Η	-3.91529	1.81601	1.17656

Н	-2.90213	0.57298	1.89518	Η	-1.02668	2.37547	1.07327
С	-3.20946	0.39413	-0.24675	Н	-2.87653	-0.11568	1.44741
Ċ	-2.84975	1.23090	-1.48014	C	-3.02359	-2.22455	1.06920
Č	-4.72283	-0.03263	-0.35394	Č	3.82860	0.37183	-0.06168
Н	-3.42245	2.16564	-1.48244	H	4.01025	-0.89656	1.66570
Н	-3.05445	0.70559	-2.42006	Н	3.53700	0.75241	2.03875
Н	-1.79132	1.50671	-1.47404	C	2.76200	1.00532	-0.95073
0	-5.57411	1.05824	-0.69544	0	4.26361	-0.78958	-0.81637
С	-5.30732	-0.56670	0.95374	Н	4.69260	1.03334	0.04951
Н	-3.40155	-2.86875	-1.05537	Η	2.02203	0.23044	-1.16081
С	-4.72063	-1.13726	-1.42724	Η	3.22953	1.25153	-1.91078
Н	-2.81877	-1.76425	-2.29238	С	2.09039	2.26155	-0.37510
Н	-5.54912	-1.83548	-1.27390	С	5.47793	-1.28376	-0.54717
Н	-4.86316	-0.68159	-2.41346	Ο	6.21909	-0.81034	0.29083
Н	-5.36699	1.33109	-1.60349	Ċ	5.79636	-2.46913	-1.40938
Н	-5.30186	0.19415	1.73916	H	5.81574	-2.16070	-2.45878
Н	-4.77065	-1.44738	1.31684	Н	5.01707	-3.22812	-1.29800
H	-6.34724	-0.85826	0.77342	H	6.76483	-2.87930	-1.12447
C	-0.34724	2.26918		C	0.67010		
			1.06421			2.52493	-0.87420
Н	-1.95345	2.97421	0.23400	Н	2.70778	3.13399	-0.62131
Н	-2.01274	2.86392	1.97597	H	2.07208	2.22495	0.72182
				С	-0.20160	1.52857	-1.10557
				С	0.35404	3.98880	-1.04369
Compound 5.25				Η	-0.70237	4.18637	-1.23695
This	structure was	assigned as i	ncorrect.	Η	0.94006	4.41995	-1.86565
M06	-2X/6-31g(d)	-		Η	0.63798	4.53863	-0.13740
SMD implicit solvation in methanol was				С	-2.78859	1.03049	-1.01125
used				Η	0.13562	0.51414	-0.90326
				Н	-3.63089	1.20876	-1.69466
Flect	tronic Energy	v· _1274 712	65419 har-	Н	-2.98386	1.62625	-0.11470
tree.	frome Energ.	y12/4./12	100417 Hai-	C	-2.84435	-0.47105	-0.64914
	Energy 127	1 100260 hard	***	C C	-2.13864	-1.29946	-0.04914 -1.72895
гтее	Energy: -127	4.190309 han	liee.				
C	1 22772	1 25002	2 (502)	C	-4.34609	-0.94366	-0.56304
C	-1.22772	1.25082		Н	-2.55482	-1.06960	-2.71664
C	-0.37750	0.21646	1.96067	Н	-2.24148	-2.37820	-1.56248
С	1.37803	-1.53235	0.67565	Η	-1.06922	-1.07719	-1.77181
С	-0.90336	-0.78098	1.11887	0	-4.95999	-1.04269	-1.84563
С	1.00496	0.35652	2.08230	С	-5.25084	0.01597	0.20888
С	1.90360	-0.45765	1.39749	Η	-2.32323	-3.02980	0.82842
С	0.00002	-1.69367	0.55532	С	-4.26756	-2.30245	0.16221
С	-2.37910	-0.84221	0.79984	Н	-3.26918	-2.32638	2.13052
Н	1.39245	1.17020	2.69421	Н	-5.18910	-2.50317	0.71695
C	3.36139	-0.07483	1.34324	Н	-4.15988	-3.10229	-0.57912
H	-0.37642	-2.52186	-0.03860	Н	-4.54050	-1.77242	-2.32918
H	2.04723	-2.22081	0.16325	Н	-5.32618	0.98724	-0.28768
H	-0.63112	1.71578	3.45498	Н	-4.90740	0.98724	1.23488
Н	-2.11047	0.80765	3.13034	H C	-6.25554	-0.41694	0.25543
0	-1.70534	2.25266	1.76241	С	-1.56207	1.61078	-1.74896

Н Н	-1.48067 -1.80422	1.09889 2.65103	-2.71891 -1.98900	H H C	2.80162 2.00468 -0.16091	3.16448 2.09414 1.73054	-0.16287 0.96166 -0.94834
Compound 5.25					0.57637 -0.42424	4.15348 4.41611	-0.91713 -1.27117
	structure was	assigned as a	mbiguous.	Н	1.30238	4.53674	-1.64887
	P/6-31g(d)	untion in m	athanal was	H C	0.75884	4.71006 1.22340	0.01351
used.	implicit sol	vation in me	ethanoi was	С Н	-2.74172 0.11328	0.70042	-0.83996 -0.73902
uscu.				H	-3.61232	1.56634	-1.41449
Elect	ronic Energy	r: -1275.242	63359 har-	Н	-2.84056	1.66178	0.15805
tree.				С	-2.87487	-0.32897	-0.73925
Free	Energy: -1274	4.729206 hart	tree.	С	-2.20730	-0.99409	-1.95950
				С	-4.40967	-0.75323	-0.72058
С	-1.30551	0.58460	3.01495	Н	-2.61119	-0.58040	-2.89072
С	-0.43708	-0.18701	2.03964	Η	-2.36012	-2.07861	-1.98526
C	1.34358	-1.63564	0.43617	Н	-1.12943	-0.81825	-1.97549
C	-0.95335	-0.98752	0.99279	0	-5.03145	-0.62440	-2.01083
C	0.94995	-0.05747	2.18413	C	-5.29537	0.10435	0.19363
C C	1.86276	-0.70810	1.34843 0.27099	H C	-2.45451	-3.13572	0.25358
C C	-0.03538 -2.42784	-1.76992 -0.97152	0.27099 0.63669	С Н	-4.38445 -3.35315	-2.22228 -2.65660	-0.22356 1.68413
С Н	1.32936	0.60929	2.95689	п Н	-5.30455	-2.46734	0.31774
п С	3.32374	-0.31273	1.37437	п Н	-4.33909	-2.40734	-1.08562
С Н	-0.40001	-2.46933	-0.47430	п Н	-4.53909 -4.61754	-2.89782	-2.60983
H	2.01526	-2.21580	-0.19227	H	-5.31842	1.15145	-0.12260
H	-0.70374	0.82705	3.90167	H	-4.97316	0.06784	1.23784
Н	-2.15564	-0.01396	3.35501	H	-6.32074	-0.28049	0.14858
0	-1.88042	1.78865	2.47909	C	-1.53137	1.88492	-1.56000
Н	-1.15740	2.29622	2.07232	Н	-1.49294	1.49505	-2.58830
Н	-2.92600	-0.36394	1.39394	H	-1.78311	2.94645	-1.66424
C	-3.11871	-2.36361	0.65488			2.91013	1.00121
Č	3.84834	0.34111	0.06429				
Ĥ	3.97275	-1.16887	1.59419	Com	pound 5.25		
Н	3.47980	0.40336	2.18865		structure was	assigned as a	mbiguous.
С	2.82717	1.09600	-0.79337		YP/6-31g(d)	0	0
Ο	4.34844	-0.70856	-0.83328		ohase.		
Н	4.69984	0.97812	0.31542	1			
Н	2.08160	0.37166	-1.12751	Elect	ronic Energy	r: -1275.209	63297 har-
Η	3.34438	1.44414	-1.69594	tree.	0.		
С	2.13504	2.29488	-0.10921	Free	Energy: -1274	4.695189 hart	tree.
С	5.60786	-1.14918	-0.66410				
Ο	6.36178	-0.73178	0.20131	С	-0.70617	-0.52947	2.69772
С	5.95547	-2.21043	-1.67300	С	-0.22728	-1.09975	1.37647
Н	5.82307	-1.82059	-2.68807	С	0.83985	-2.04509	-1.02468
Н	5.28185	-3.06685	-1.55746	С	-1.10253	-1.36462	0.29453
Н	6.98801	-2.53385	-1.53206	C	1.15119	-1.27523	1.21232
С	0.76897	2.67245	-0.69920	С	1.71813	-1.66461	-0.00654

~			0.061.00	a			
С	-0.54001	-1.92533	-0.86122	С	-4.87962	-1.69765	-0.29443
С	-2.58301	-1.03488	0.36855	Η	-3.58768	-2.84668	1.08457
Н	1.80594	-1.04155	2.05028	Н	-5.70617	-2.00746	0.35303
С	3.20399	-1.55111	-0.26266	Н	-5.13250	-2.05061	-1.30221
Н	-1.18447	-2.22575	-1.68041	Н	-5.42149	0.02187	-2.13043
Н	1.23696	-2.40441	-1.97163	Н	-5.14579	1.53013	1.02742
Н	0.10885	-0.60716	3.43305	Η	-4.69080	0.04642	1.88450
Н	-1.55227	-1.09757	3.09983	Н	-6.29060	0.18888	1.13381
0	-1.15786	0.82271	2.59817	С	-1.58828	2.24720	-0.92990
Н	-0.59569	1.27419	1.94386	Н	-1.69064	2.14363	-2.01965
Н	-2.76936	-0.65546	1.37375	Н	-1.70279	3.31830	-0.73225
С	-3.51410	-2.26402	0.16000				
С	3.73606	-0.09664	-0.14005				
Н	3.41954	-1.89202	-1.28221	Con	npound 5.25		
Н	3.78829	-2.17904	0.41997		s structure was	assigned as c	correct
C	2.82840	0.99466	-0.75052		XP/6-31g(d)	ussi <u>8</u> iieu us (
õ	5.02177	-0.03336	-0.82337		phase.		
Н	3.93286	0.12391	0.91256	Ous	phuse.		
Н	2.07806	0.53615	-1.39967	Flee	tronic Energy	r1275.212	19177 har-
Н	3.44444	1.63394	-1.39142	tree	0,	71273.212	.1)1// IIdi-
C	2.14283	1.86421	0.33622		Energy: -1274	1 608678 har	tree
C C	6.11424	-0.41792	-0.12177	1100	$\frac{12}{2}$	+.070070 Hai	ucc.
0	6.08258	-0.41792	1.02189	С	-0.80275	-2.28111	1.91910
C		-0.81939		C C			
	7.36395		-0.95919	C C	-0.24707	-1.74161	0.61351
Н	8.22997	-0.59071	-0.37959		0.92394	-0.89830	-1.77524
Н	7.48843	0.77366	-1.26819	C	-1.07442	-1.20807	-0.40584
Н	7.28069	-0.87107	-1.87021	C	1.14152	-1.77751	0.43375
C	0.80656	2.52130	-0.02193	C	1.75802	-1.30684	-0.73127
Н	2.85140	2.64068	0.65160	C	-0.45907	-0.86491	-1.61659
Н	1.98223	1.24631	1.22851	C	-2.57319	-1.04713	-0.21830
С	-0.20391	1.79468	-0.53795	Н	1.76273	-2.17009	1.23843
С	0.72981	3.99280	0.31196	С	3.25782	-1.15948	-0.84332
Н	-0.25033	4.43346	0.11774	Н	-1.06756	-0.53635	-2.45147
Н	1.47307	4.55626	-0.26953	Η	1.36116	-0.58147	-2.71971
Н	0.97125	4.16584	1.36986	Η	-0.02545	-2.87806	2.41776
С	-2.79951	1.55043	-0.24336	Η	-1.65079	-2.94881	1.74055
Η	-0.00184	0.74617	-0.74117	0	-1.30873	-1.28049	2.81203
Н	-3.66949	2.15109	-0.54011	Η	-0.57165	-0.68888	3.03046
Н	-2.69707	1.65555	0.84112	Η	-2.80495	-1.40492	0.78583
С	-3.18003	0.07888	-0.58180	С	-3.41867	-1.89095	-1.21546
С	-2.91394	-0.19079	-2.07649	С	3.81605	0.07158	-0.08332
С	-4.73292	-0.15219	-0.30578	Η	3.53273	-1.03602	-1.89778
Н	-3.41922	0.56261	-2.69159	Н	3.77884	-2.04806	-0.47009
Н	-3.26411	-1.17859	-2.39947	С	3.01991	1.37454	-0.28677
Н	-1.84986	-0.13448	-2.31560	Õ	5.17342	0.30746	-0.56088
0	-5.56660	0.47214	-1.28433	Ĥ	3.89306	-0.16354	0.98184
Č	-5.23141	0.44095	1.01988	Н	2.43727	1.30963	-1.21185
Н	-3.10253	-2.94157	-0.59520	Н	3.73670	2.19050	-0.42327
11	5.10455	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.07020	11	5.15010	2.17030	0.12321

С	2.08247	1.67934	0.91603	С	18.79620	-3.67920	-9.09340
Č	6.16582	-0.40773	0.01871	Č	19.56620	-2.37650	-9.36910
Õ	5.99323	-1.22817	0.89489	Č	19.28980	-4.82440	-9.96610
Č	7.50575	-0.03777	-0.57572	H	20.55600	-2.46370	-8.92060
H	8.29295	-0.60518	-0.07820	Н	19.74810	-2.27890	-10.44140
H	7.68767	1.03561	-0.46023	C	18.51870	-5.67180	-10.67760
Н	7.51278	-0.25567	-1.64892	C	19.11610	-6.74570	-11.56410
C	0.77087	2.36755	0.58311	C	17.00130	-5.62310	-10.65260
H	2.64697	2.29476	1.63456	Н	20.20600	-6.71440	-11.55390
H	1.85176	0.74475	1.43647	Н	18.80270	-7.73370	-11.22620
C	-0.38347	1.82380	1.00297	Н	18.78360	-6.61190	-12.59380
C	0.87558	3.67717	-0.15962	Н	16.72270	-5.42840	-9.62070
Н	-0.09971	4.11768	-0.38137	Н	16.58160	-6.59960	-10.89560
H	1.41392	3.55936	-1.10937	C	16.44230	-4.53430	-11.58450
H	1.41392	4.41094	0.42975	С Н	17.05230	-3.64420	-11.45130
C	-2.92938	1.31598	0.42973	C II	14.94790	-4.18300	-11.36780
С Н		0.89003		С Н	16.60530		
п Н	-0.31668		1.55668	п С		-4.84720	-12.61550
	-3.83920	1.90955	1.11159		14.42510	-3.04960	-12.30250
H	-2.79375	0.70132	1.83400	0	14.75110	-3.75280	-10.02600
C	-3.22796	0.39030	-0.28125	H	14.34680	-5.07440	-11.55980
C	-2.93033	1.14234	-1.59167	C	15.12580	-1.67420	-12.09000
C	-4.76399	-0.03213	-0.28837	Н	13.36930	-2.92020	-12.06100
Н	-3.52759	2.05714	-1.64215	C	14.47320	-3.49100	-13.78320
Н	-3.18510	0.55348	-2.47836	Н	14.20000	-4.54450	-13.85590
Н	-1.87483	1.41565	-1.65890	Н	15.49430	-3.41940	-14.16050
0	-5.61228	0.99113	-0.82138	С	13.52860	-2.70180	-14.70390
С	-5.31815	-0.43739	1.08975	Η	13.78780	-1.64450	-14.75000
Н	-2.95488	-1.89664	-2.20704	Η	12.49420	-2.77820	-14.36800
С	-4.81520	-1.22755	-1.26523	Н	13.57240	-3.08960	-15.72200
Η	-3.46021	-2.93679	-0.89139	Н	15.07250	-1.07640	-12.99840
Η	-5.62131	-1.91858	-0.99808	Н	16.19270	-1.80640	-11.93960
Η	-5.04453	-0.84766	-2.26511	С	14.53310	-0.81440	-10.95530
Η	-5.71289	1.67614	-0.14062	С	15.51840	0.18780	-10.32560
Η	-5.30018	0.39575	1.80197	Η	14.13390	-1.44070	-10.16930
Η	-4.76879	-1.26694	1.54517	Η	13.67260	-0.27230	-11.34860
Η	-6.36051	-0.74906	0.96514	Н	15.94840	0.82830	-11.09840
С	-1.78694	2.36264	0.87701	Ν	16.56020	-0.46290	-9.52840
Η	-1.89378	2.98937	-0.01465	Η	16.32680	-0.75930	-8.58330
Η	-1.96673	3.04096	1.72733	С	17.84370	-0.57540	-9.89450
				0	18.24430	-0.23410	-11.00700
Compound 5.5			С	18.84330	-1.10870	-8.84810	
			С	19.86480	-0.01210	-8.46270	
This structure was assigned as correct.			Н	18.30230	-1.37870	-7.94060	
The structure was assigned as confect.				С	19.25490	1.19150	-7.72380
Mole	ecular Mecha	nics (OPLS	-2005), gas	H	20.38650	0.33650	-9.35580
phas		、 -	,, G	Н	20.63090	-0.44540	-7.81940
-	gy: -227.0827	'94 kJ.		Н	18.54840	1.73400	-8.35290
				Н	20.03160	1.89550	-7.42460

Н	18.72740	0.87540	-6.82320			hanics (OPLS	5-2005), gas		
Η	20.36380	-4.93340	-10.01310	phas					
Н	18.91070	-3.96160	-8.04630	Ene	Energy: -225.507904 kJ.				
Н	17.73200	-3.50510	-9.24320						
Н	14.97340	0.85430	-9.65690	С	19.85930		-11.12960		
С	14.50610	-4.18200	-7.71080	С	20.32330	-1.74940	-10.13740		
С	14.16790	-4.66350	-9.14580	С	19.69560	-4.19550	-10.46890		
С	12.00790	-3.59000	-9.09140	Η	21.14030	-2.14900	-9.53640		
С	12.20690	-3.09570	-7.64160	Η	20.76920	-0.93060	-10.70500		
С	13.71800	-2.89380	-7.42010	С	18.65180	-5.04560	-10.55480		
Н	14.58170	-5.65690	-9.31870	С	18.67810	-6.37540	-9.82270		
Н	15.57280	-3.94940	-7.68890	С	17.38590	-4.78900	-11.36270		
Η	12.35000	-2.81700	-9.77920	Η	19.62960	-6.53870	-9.31620		
Н	11.69150	-2.14010	-7.52990	Н	17.89340	-6.42130	-9.06860		
Н	14.02790	-2.15900	-8.15990	Н	18.52800	-7.19800	-10.52220		
0	12.77860	-4.77000	-9.31880	Н	17.12470	-5.70260	-11.89750		
0	14.23890	-5.19240	-6.74270	Н	17.58210	-4.04890	-12.13170		
0	11.61530	-4.05130	-6.76040	С	16.21330	-4.34870	-10.47040		
С	10.54500	-3.89180	-9.44180	Н	16.14350		-9.67250		
Н	9.91270	-3.01930	-9.27770	С	14.82600		-11.16090		
Н	10.45170	-4.17960	-10.48900	Н	16.46270		-9.97760		
Н	10.15120	-4.71130	-8.84020	С	14.70430		-12.31530		
С	11.22470	-3.71320	-5.52920	0	13.82180		-10.20800		
C	10.56430	-4.86490	-4.79070	Η	14.55620		-11.55440		
H	10.27240	-4.55550	-3.78730	C	15.43680		-12.04770		
Н	11.25450	-5.70440	-4.71020	Н	13.64040		-12.40020		
Н	9.67440	-5.19440	-5.32620	С	15.09200		-13.68700		
0	11.39140	-2.61600	-4.99860	H	14.71960		-13.75130		
Č	15.10870	-6.18730	-6.55340	Н	16.17340		-13.78880		
Ō	16.15470	-6.35740	-7.17490	С	14.52930		-14.89540		
Č	14.66570	-7.14600	-5.46100	Ĥ	14.94340		-14.97450		
Ĥ	14.62000	-6.62930	-4.50290	Н	13.44340		-14.84070		
Н	13.67980	-7.54900	-5.69060	Н	14.77010	-3.55950	-15.82340		
Н	15.36960	-7.97380	-5.37700	Н	15.42930		-12.94450		
N	14.04510	-2.30770	-6.12160	Н	16.49210		-11.86040		
Н	13.37240	-2.44890	-5.37690	C	14.83450		-10.91300		
C	15.12260	-1.55180	-5.89460	Č	15.77450		-10.39520		
Õ	15.93720	-1.27860	-6.77440	H	14.58090		-10.06730		
č	15.30410	-1.01620	-4.48310	Н	13.89790		-11.25350		
H	16.17480	-0.36150	-4.43360	Н	16.09540		-11.21730		
Н	14.42920	-0.44430	-4.17390	N	16.90150		-9.68600		
Н	15.45400	-1.83640	-3.78120	H	16.68490		-8.87100		
11	10.10400	1.02040	5.70120	C	18.18930		-10.01520		
				0	18.55740		-10.92840		
				C	19.21780		-9.21260		
Con	npound 5.5			C C	19.85040		-8.09500		
	1	assigned as in	ncorrect	H	18.70470		-8.74560		
This structure was assigned as incorrect.			C	18.89390		-6.94400			
				C	10.07570	0.0+170	0.77700		

Н	20.25450	0.60620	-8.52550						
Н	20.70370	-0.84070	-7.66970	Compound 5.5					
Н	19.41060	0.61320	-6.17260	This structure was assigned as ambiguous.					
Н	18.49390	-0.85860	-6.47740	B3LYP/6-31g(d)					
Н	18.05170	0.64360	-7.28680	SMD implicit solvation in ethanol was					
Н	20.54530	-4.49870	-9.87400	used					
Η	18.96250	-2.51060	-11.65200						
Н	20.62380	-2.95240	-11.89830	Elect	tronic Energy	: -1884.71	968063	har-	
Н	15.24190	0.73430	-9.69240	tree.					
С	14.09400	-4.28700	-7.85960	Free	Energy: -1884	.012002 ha	rtree.		
С	13.51210	-4.81220	-9.20130						
С	11.37860	-3.79120	-8.77290	С	-4.30398	-2.09291	-0.83	465	
С	11.83900	-3.19310	-7.42250	С	-5.42239	-2.08127	0.22	770	
С	13.36530	-2.98120	-7.49100	С	-3.14334	-2.97555	-0.45	393	
Н	13.91190	-5.79650	-9.45240	Н	-5.87475	-3.07978	0.28	681	
Н	15.15170	-4.07230	-8.00640	Н	-4.99695	-1.87082	1.21	721	
Н	11.56050	-3.05630	-9.55920	С	-1.84697	-2.63083	-0.35	559	
Н	11.34580	-2.22830	-7.29160	С	-0.80354	-3.64093	0.06		
Н	13.52290	-2.27290	-8.30180	С	-1.32506	-1.23372	-0.64	321	
0	12.12450	-4.97320	-9.07580	Н	-0.03268	-3.75822	-0.71		
0	13.96690	-5.25230	-6.81880	Н	-0.27374	-3.32052	0.97		
0	11.42180	-4.06930	-6.37460	Н	-1.24267	-4.62532	0.26		
C	9.88400	-4.13720	-8.81270	Н -1.98400 -0.72428 -1.35195					
Н	9.27170	-3.26570	-8.58190	Н -0.34696 -1.31294 -1.13489					
Н	9.59800	-4.49370	-9.80220	C	-1.17582	-0.37079	0.62		
Н	9.63640	-4.92210	-8.09750	Ĥ	-2.13883	-0.30849	1.14		
С	11.25350	-3.62610	-5.12630	С	-0.64453	1.05463	0.38		
Č	10.74340	-4.70600	-4.18770	H	-0.49213	-0.86550	1.32		
Ĥ	10.57750	-4.29620	-3.19150	C	-1.47149	1.92901	-0.58		
Н	11.46990	-5.51500	-4.11640	Õ	0.70364	0.97357	-0.14		
Н	9.80290	-5.11300	-4.55810	Ĥ	-0.58969	1.56239	1.36		
0	11.50420	-2.48880	-4.72870	C	-2.94161	2.01331	-0.11		
č	14.78560	-6.30370	-6.76550	H	-1.47062	1.42376	-1.55		
Õ	15.66820	-6.57160	-7.57680	C	-0.82508	3.31688	-0.81		
Č	14.50930	-7.19420	-5.56600	H	-1.44112	3.86152	-1.53		
H	13.50010	-7.60070	-5.62450	Н	0.14638	3.17169	-1.29		
Н	15.21760	-8.02180	-5.53900	C	-0.62869	4.19156	0.43		
Н	14.60560	-6.62360	-4.64300	H	0.10658	3.76047	1.12		
N	13.92420	-2.33620	-6.30380	Н	-1.56220	4.34107	0.98		
H	13.32990	-2.30950	-5.48240	Н	-0.25854	5.18336	0.14		
C	15.12430	-1.74940	-6.26450	Н	-2.99604	2.50130	0.87		
0 0	15.87900	-1.71220	-7.23570	Н	-3.31721	0.99738	0.03		
C	15.53360	-1.10930	-4.94710	C	-3.89254	2.72562	-1.08		
Н	14.72260	-0.50090	-4.54280	C C	-5.37603	2.56974	-0.70		
H	15.79240	-1.87940	-4.21850	H	-3.74271	2.34078	-2.10		
H	16.40360	-0.46520	-5.08930	Н	-3.67885	3.80128	-1.12		
11	10.40300	-0.+0320	-5.00750	H	-5.54988	2.90569	0.31		
				N	-5.87487	1.19839	-0.80		
				1 4	5.07707	1.17057	0.00	015	

тт	6 00254	0.94061	-1.73090	0	2 21526	2 45105	2 11269
H	-6.08254	0.84061 0.36049		O C	2.31536	-2.45105	-2.11368
C	-6.01676		0.24674		4.48494	-3.43044	-2.47903
O C	-5.74655	0.70044	1.41070	Н	4.30029	-4.35522	-1.92051
	-6.53728	-1.04844	-0.05986	Н	4.26296	-3.63262	-3.53199
C	-7.79631	-1.33231	0.78540	Η	5.53979	-3.16058	-2.37847
Н	-6.81096	-1.11169	-1.12215				
C	-8.97113	-0.39319	0.49774	0			
Н	-7.52633	-1.27199	1.84749		npound 5.5		
Η	-8.10219	-2.36911	0.59597		s structure was	assigned as a	ambiguous.
Η	-9.84782	-0.67234	1.09455		LYP/6-31g(d)		
Η	-9.26361	-0.42985	-0.55956	Gas	phase.		
Н	-8.72698	0.64811	0.74100				
Н	-3.41152	-4.00984	-0.22478	Eleo	ctronic Energy	r: -1884.668	385819 har-
Н	-4.74140	-2.44654	-1.78216	tree			
Η	-3.96623	-1.06830	-1.01738	Free	e Energy: -1883	960471 har 8.960471 har	tree.
Η	-5.98867	3.19161	-1.37127				
С	2.55694	-0.43411	0.38045	С	-4.24809	-2.10684	-0.81982
С	1.74585	0.81199	0.78327	С	-5.33561	-2.07467	0.27418
С	3.26080	2.28670	-0.38146	С	-3.06726	-2.96784	-0.45233
С	4.18408	1.12976	-0.79158	Н	-5.76384	-3.07999	0.38530
С	3.34958	-0.15539	-0.90408	Н	-4.88790	-1.81447	1.24054
Н	1.35495	0.69173	1.79720	С	-1.77794	-2.60071	-0.36656
Н	1.87653	-1.26898	0.22267	С	-0.70873	-3.58839	0.03927
Η	2.52855	2.40622	-1.18908	Ċ	-1.28281	-1.19544	-0.65853
Η	4.65748	1.35324	-1.75121	H	0.05134	-3.68245	-0.74798
H	2.58951	0.05304	-1.66645	Н	-0.17735	-3.25533	0.94154
0	2.56616	1.96733	0.84311	Н	-1.12835	-4.57964	0.24198
Õ	3.48407	-0.78471	1.43457	Н	-1.95661	-0.69783	-1.36267
ŏ	5.22011	1.04801	0.22797	Н	-0.30807	-1.25580	-1.15781
Č	3.98337	3.60396	-0.15561	C	-1.14652	-0.33589	0.61729
H	4.51407	3.90410	-1.06580	H	-2.11140	-0.28675	1.13495
Н	3.25885	4.38596	0.09290	C	-0.62661	1.09537	0.38386
Н	4.70642	3.52558	0.66169	H	-0.46279	-0.83008	1.31893
C	6.44586	0.60116	-0.09652	C	-1.44760	1.96017	-0.59801
C C	7.40658	0.76806	1.04614	0	0.72533	1.03972	-0.13191
H	7.01412	0.26678	1.93735	H	-0.59612	1.60729	1.35745
H	8.37688	0.20078	0.77840	C	-2.92143	2.05072	-0.14387
н Н					-2.92143	1.44344	-0.14387
	7.51576	1.83143	1.28645	H			
0	6.72245	0.11692	-1.18390	C	-0.79755	3.34522	-0.83808
C	3.04482	-1.60720	2.41285	Н	-1.41837	3.89422	-1.55763
0	1.90613	-2.03675	2.47576	Н	0.16727	3.18933	-1.33180
C	4.14352	-1.91553	3.39163	C	-0.57987	4.21563	0.40703
Н	4.54831	-0.98590	3.80585	Н	0.16864	3.77822	1.07640
Н	3.75685	-2.54300	4.19601	Н	-1.50360	4.36099	0.97923
Н	4.96207	-2.43410	2.87994	Н	-0.21664	5.20902	0.11822
Ν	4.12641	-1.29954	-1.35908	Н	-2.99394	2.58171	0.81494
H	5.13727	-1.21549	-1.36441	Н	-3.29617	1.04409	0.05516
С	3.54495	-2.35642	-1.97654	С	-3.86819	2.70850	-1.15842

С	-5.35462	2.52900	-0.80141	Н	3.60925	-2.53857	4.21798
Н	-3.68809	2.29112	-2.16067	Н	4.80824	-2.53762	2.89025
Η	-3.67200	3.78605	-1.23506	Ν	4.04360	-1.28833	-1.40838
Н	-5.54292	2.86849	0.22065	Н	5.04969	-1.19673	-1.49508
Ν	-5.82266	1.14773	-0.86749	С	3.38860	-2.32882	-1.99967
Н	-6.02276	0.75109	-1.77464	Ο	2.16161	-2.39297	-2.05194
С	-5.97706	0.35471	0.23695	С	4.27595	-3.41917	-2.57927
0	-5.72427	0.75305	1.37122	Η	4.06406	-4.35991	-2.06100
C	-6.47939	-1.07447	-0.01569	Н	4.01482	-3.56262	-3.63215
Č	-7.70739	-1.34781	0.87545	Н	5.34534	-3.20214	-2.49987
H	-6.78187	-1.18098	-1.06946			5.20211	2.19901
C	-8.91385	-0.45461	0.56900				
Н	-7.40455	-1.21196	1.92006	Corr	pound 5.5		
Н	-7.98994	-2.40184	0.75545		structure was	assigned as	mbiguous
Н	-9.76397	-0.71292	1.21038		-2X/6-31g(d)	dssigned as a	illioiguous.
Н	-9.24006	-0.56399	-0.47334		D implicit so	lystion in	athanol was
H	-8.68042	0.60208	0.74072	used			ethanoi was
п Н	-3.31473	-4.00579	-0.21939	useu			
				Elas	tuonio Enonos	1002 021	125460 har
Н	-4.70873	-2.48679	-1.74686		0.	y: -1883.931	135469 har-
Н	-3.92611	-1.08358	-1.03835	tree.		0 0 1 1 0 7 0 1	
Н	-5.97353	3.13217	-1.47700	Free	Energy: -188.	3.2113/9 har	tree.
C	2.53122	-0.42318	0.38598	C	0 51017	0 20101	0 1 (5 0 0
C	1.75352	0.83874	0.80660	C	2.51017	0.72121	2.16509
C	3.28601	2.29420	-0.32690	C	1.54896	1.74822	1.55151
С	4.17834	1.12241	-0.77522	С	1.76729	-0.32255	2.95042
С	3.30952	-0.13895	-0.90458	Н	0.85566	1.22168	0.88485
Н	1.35204	0.71261	1.81574	Н	0.94220	2.20340	2.34576
Н	1.82698	-1.23524	0.21345	С	1.76002	-1.65282	2.78482
Н	2.54932	2.45182	-1.12637	С	0.96927	-2.52119	3.73508
Η	4.64726	1.34835	-1.73893	С	2.57403	-2.40740	1.75312
Η	2.53072	0.10666	-1.63885	Η	0.59680	-1.94236	4.58460
0	2.59856	1.97087	0.88792	Η	0.10408	-2.98979	3.25223
0	3.45991	-0.82451	1.41851	Н	1.59537	-3.33648	4.12118
0	5.23039	1.00941	0.22238	Н	3.32548	-2.98803	2.30738
С	4.04652	3.58777	-0.07560	Н	3.13281	-1.72485	1.10638
Н	4.58238	3.90210	-0.97837	С	1.76816	-3.40299	0.89868
Н	3.34292	4.37716	0.20331	Н	2,42122	-4.21943	0.57373
Н	4.76559	3.45899	0.73706	С	1.08806	-2.83867	-0.35070
C	6.41428	0.47073	-0.11046	H	0.99865	-3.87972	1.51658
Č	7.40555	0.61416	1.01804	C	1.99130	-2.43273	-1.53674
Н	6.99216	0.17374	1.93081	Õ	0.31173	-1.67675	-0.02959
Н	8.33945	0.11945	0.75006	H	0.40631	-3.61430	-0.72748
Н	7.59080	1.67381	1.22265	C	2.56427	-0.99556	-1.45692
0	6.65155	-0.06411	-1.17923	н Н	1.31472	-2.44954	-2.40499
C	2.95125	-1.55477	2.43822	п С	3.07639	-2.44934 -3.47987	-1.81253
			2.43822 2.55234				
O	1.77825	-1.84192		Н	2.63483	-4.48444	-1.76165
C	4.04057	-1.95178	3.40647	H C	3.83795	-3.43145	-1.02255
Н	4.52478	-1.05689	3.81145	С	3.74232	-3.29404	-3.17329

Η	4.23679	-2.31929	-3.25075	Η	-6.25062	-0.10680	-1.42744
Η	3.00523	-3.36149	-3.98182	Ο	-3.96641	1.88935	-2.18925
Н	4.50209	-4.06284	-3.34748	С	-2.86862	-0.87746	2.75669
Η	3.66180	-1.02254	-1.40289	Ο	-1.90943	-1.08476	3.46483
Η	2.22024	-0.49185	-0.54695	С	-4.30244	-0.90482	3.18990
С	2.13021	-0.16140	-2.66504	Н	-4.36283	-1.19475	4.23833
С	2.65727	1.27113	-2.66805	Н	-4.74559	0.08579	3.05059
Η	1.03049	-0.13046	-2.69707	Н	-4.85951	-1.61159	2.56870
Н	2.45431	-0.65133	-3.59295	Ν	-1.94442	1.75288	0.14709
Н	3.75004	1.28266	-2.64633	Н	-2.72691	1.78435	0.79176
N	2.19394	2.03370	-1.52056	C	-1.56454	2.88620	-0.48054
H	1.20553	2.28108	-1.47597	Õ	-0.68666	2.89038	-1.35033
C	2.95628	2.24534	-0.43038	Č	-2.28669	4.14361	-0.07739
0	4.14623	1.91207	-0.36775	H	-2.83547	4.03044	0.85973
C	2.22959	2.87677	0.75097	H	-1.56504	4.95866	0.01047
C	3.17570	3.73086	1.59347	H	-2.99349	4.39822	-0.87421
С Н				п	-2.99549	4.39622	-0.8/421
п С	1.43258	3.52018	0.35335 0.84622				
	3.66830	4.96699		C	155		
Н	4.03418	3.12570	1.90282		pound 5.5	· 1	4
Н	2.64852	4.03155	2.50755		structure was	assigned as c	correct.
Н	4.32387	5.57676	1.47599		$\frac{YP}{6-31g(d)}$		
Н	2.82859	5.59582	0.52905	Gas	phase.		
Η	4.23422	4.68442	-0.04834				
Н	1.16314	0.07791	3.76883		tronic Energy	y: -1884.669	93152 har-
Н	3.12385	0.27094	1.37877	tree.			
Н	3.20132	1.24153	2.84276	Free	Energy: -188	3.962136 har	tree.
Н	2.33420	1.78564	-3.57869				
			0.90042	С	2.75493	1.08287	2.04173
С	-1.44010	-0.50405	0.90042				2.04175
С	-1.44010 -0.99149	-0.50405 -1.88073	0.41351	С	3.84483	1.88338	1.29681
				C C		$1.88338 \\ 0.14078$	
С	-0.99149	-1.88073	0.41351		3.84483		1.29681
C C	-0.99149 -1.86038	-1.88073 -1.53754	0.41351 -1.78087	С	3.84483 3.34045	0.14078	1.29681 3.06665
C C C	-0.99149 -1.86038 -2.27703	-1.88073 -1.53754 -0.10222	0.41351 -1.78087 -1.46343	C H	3.84483 3.34045 4.24935	0.14078 2.64728	1.29681 3.06665 1.97448
C C C C	-0.99149 -1.86038 -2.27703 -1.47125	-1.88073 -1.53754 -0.10222 0.45659	0.41351 -1.78087 -1.46343 -0.28038 1.21463	C H H	3.84483 3.34045 4.24935 4.67805	0.14078 2.64728 1.22360	1.29681 3.06665 1.97448 1.03052 3.28992
C C C H H	-0.99149 -1.86038 -2.27703 -1.47125 -1.05129 -0.74942	-1.88073 -1.53754 -0.10222 0.45659 -2.62852	0.41351 -1.78087 -1.46343 -0.28038	C H H C C	3.84483 3.34045 4.24935 4.67805 2.98435 3.69269	0.14078 2.64728 1.22360 -1.13402 -1.98524	1.29681 3.06665 1.97448 1.03052
C C C H H H	-0.99149 -1.86038 -2.27703 -1.47125 -1.05129 -0.74942 -0.84234	-1.88073 -1.53754 -0.10222 0.45659 -2.62852 -0.14718 -1.48303	0.41351 -1.78087 -1.46343 -0.28038 1.21463 1.66802 -2.18735	C H H C C C	3.84483 3.34045 4.24935 4.67805 2.98435 3.69269 1.85436	0.14078 2.64728 1.22360 -1.13402 -1.98524 -1.80473	1.29681 3.06665 1.97448 1.03052 3.28992 4.31493 2.52210
C C C H H H H	-0.99149 -1.86038 -2.27703 -1.47125 -1.05129 -0.74942 -0.84234 -2.10867	-1.88073 -1.53754 -0.10222 0.45659 -2.62852 -0.14718 -1.48303 0.52414	0.41351 -1.78087 -1.46343 -0.28038 1.21463 1.66802 -2.18735 -2.34389	C H C C H	3.84483 3.34045 4.24935 4.67805 2.98435 3.69269 1.85436 4.51336	0.14078 2.64728 1.22360 -1.13402 -1.98524 -1.80473 -1.44480	1.29681 3.06665 1.97448 1.03052 3.28992 4.31493 2.52210 4.79755
C C C H H H H H	-0.99149 -1.86038 -2.27703 -1.47125 -1.05129 -0.74942 -0.84234 -2.10867 -0.44106	-1.88073 -1.53754 -0.10222 0.45659 -2.62852 -0.14718 -1.48303 0.52414 0.57351	0.41351 -1.78087 -1.46343 -0.28038 1.21463 1.66802 -2.18735 -2.34389 -0.63272	C H C C C H H	3.84483 3.34045 4.24935 4.67805 2.98435 3.69269 1.85436 4.51336 3.00145	0.14078 2.64728 1.22360 -1.13402 -1.98524 -1.80473 -1.44480 -2.32517	$\begin{array}{c} 1.29681\\ 3.06665\\ 1.97448\\ 1.03052\\ 3.28992\\ 4.31493\\ 2.52210\\ 4.79755\\ 5.09952 \end{array}$
C C C C H H H H H O	-0.99149 -1.86038 -2.27703 -1.47125 -1.05129 -0.74942 -0.84234 -2.10867 -0.44106 -1.84608	-1.88073 -1.53754 -0.10222 0.45659 -2.62852 -0.14718 -1.48303 0.52414 0.57351 -2.35323	0.41351 -1.78087 -1.46343 -0.28038 1.21463 1.66802 -2.18735 -2.34389 -0.63272 -0.60338	C H H C C C H H H	3.84483 3.34045 4.24935 4.67805 2.98435 3.69269 1.85436 4.51336 3.00145 4.11089	0.14078 2.64728 1.22360 -1.13402 -1.98524 -1.80473 -1.44480 -2.32517 -2.89317	1.29681 3.06665 1.97448 1.03052 3.28992 4.31493 2.52210 4.79755 5.09952 3.85680
C C C C H H H H H O O	-0.99149 -1.86038 -2.27703 -1.47125 -1.05129 -0.74942 -0.84234 -2.10867 -0.44106 -1.84608 -2.76271	-1.88073 -1.53754 -0.10222 0.45659 -2.62852 -0.14718 -1.48303 0.52414 0.57351 -2.35323 -0.58222	0.41351 -1.78087 -1.46343 -0.28038 1.21463 1.66802 -2.18735 -2.34389 -0.63272 -0.60338 1.44467	C H H C C C H H H H H	3.84483 3.34045 4.24935 4.67805 2.98435 3.69269 1.85436 4.51336 3.00145 4.11089 1.01664	0.14078 2.64728 1.22360 -1.13402 -1.98524 -1.80473 -1.44480 -2.32517 -2.89317 -1.10564	$\begin{array}{c} 1.29681\\ 3.06665\\ 1.97448\\ 1.03052\\ 3.28992\\ 4.31493\\ 2.52210\\ 4.79755\\ 5.09952\\ 3.85680\\ 2.44271\end{array}$
C C C C H H H H H O O O	-0.99149 -1.86038 -2.27703 -1.47125 -1.05129 -0.74942 -0.84234 -2.10867 -0.44106 -1.84608 -2.76271 -3.67508	-1.88073 -1.53754 -0.10222 0.45659 -2.62852 -0.14718 -1.48303 0.52414 0.57351 -2.35323 -0.58222 -0.08694	$\begin{array}{c} 0.41351 \\ -1.78087 \\ -1.46343 \\ -0.28038 \\ 1.21463 \\ 1.66802 \\ -2.18735 \\ -2.34389 \\ -0.63272 \\ -0.60338 \\ 1.44467 \\ -1.14033 \end{array}$	C H H C C C H H H H H	3.84483 3.34045 4.24935 4.67805 2.98435 3.69269 1.85436 4.51336 3.00145 4.11089 1.01664 1.48476	0.14078 2.64728 1.22360 -1.13402 -1.98524 -1.80473 -1.44480 -2.32517 -2.89317 -1.10564 -2.67155	$\begin{array}{c} 1.29681\\ 3.06665\\ 1.97448\\ 1.03052\\ 3.28992\\ 4.31493\\ 2.52210\\ 4.79755\\ 5.09952\\ 3.85680\\ 2.44271\\ 3.08692 \end{array}$
C C C C H H H H H O O C	-0.99149 -1.86038 -2.27703 -1.47125 -1.05129 -0.74942 -0.84234 -2.10867 -0.44106 -1.84608 -2.76271 -3.67508 -2.77908	-1.88073 -1.53754 -0.10222 0.45659 -2.62852 -0.14718 -1.48303 0.52414 0.57351 -2.35323 -0.58222 -0.08694 -2.21324	$\begin{array}{c} 0.41351 \\ -1.78087 \\ -1.46343 \\ -0.28038 \\ 1.21463 \\ 1.66802 \\ -2.18735 \\ -2.34389 \\ -0.63272 \\ -0.60338 \\ 1.44467 \\ -1.14033 \\ -2.77741 \end{array}$	C H C C C H H H H H C	3.84483 3.34045 4.24935 4.67805 2.98435 3.69269 1.85436 4.51336 3.00145 4.11089 1.01664 1.48476 2.26101	$\begin{array}{c} 0.14078\\ 2.64728\\ 1.22360\\ -1.13402\\ -1.98524\\ -1.80473\\ -1.44480\\ -2.32517\\ -2.89317\\ -1.10564\\ -2.67155\\ -2.24581 \end{array}$	$\begin{array}{c} 1.29681\\ 3.06665\\ 1.97448\\ 1.03052\\ 3.28992\\ 4.31493\\ 2.52210\\ 4.79755\\ 5.09952\\ 3.85680\\ 2.44271\\ 3.08692\\ 1.09935 \end{array}$
C C C C H H H H H O O O C H	-0.99149 -1.86038 -2.27703 -1.47125 -1.05129 -0.74942 -0.84234 -2.10867 -0.44106 -1.84608 -2.76271 -3.67508 -2.77908 -2.83489	-1.88073 -1.53754 -0.10222 0.45659 -2.62852 -0.14718 -1.48303 0.52414 0.57351 -2.35323 -0.58222 -0.08694 -2.21324 -1.62426	0.41351 - 1.78087 - 1.46343 - 0.28038 1.21463 1.66802 - 2.18735 - 2.34389 - 0.63272 - 0.60338 1.44467 - 1.14033 - 2.77741 - 3.69795	C H C C C H H H H H H C H	3.84483 3.34045 4.24935 4.67805 2.98435 3.69269 1.85436 4.51336 3.00145 4.11089 1.01664 1.48476 2.26101 2.85917	0.14078 2.64728 1.22360 -1.13402 -1.98524 -1.80473 -1.44480 -2.32517 -2.89317 -1.10564 -2.67155 -2.24581 -1.45057	$\begin{array}{c} 1.29681\\ 3.06665\\ 1.97448\\ 1.03052\\ 3.28992\\ 4.31493\\ 2.52210\\ 4.79755\\ 5.09952\\ 3.85680\\ 2.44271\\ 3.08692\\ 1.09935\\ 0.64821 \end{array}$
C C C C H H H H H O O C H H H	-0.99149 -1.86038 -2.27703 -1.47125 -1.05129 -0.74942 -0.84234 -2.10867 -0.44106 -1.84608 -2.76271 -3.67508 -2.77908 -2.83489 -2.39492	-1.88073 -1.53754 -0.10222 0.45659 -2.62852 -0.14718 -1.48303 0.52414 0.57351 -2.35323 -0.58222 -0.08694 -2.21324 -1.62426 -3.20727	0.41351 - 1.78087 - 1.46343 - 0.28038 1.21463 1.66802 - 2.18735 - 2.34389 - 0.63272 - 0.60338 1.44467 - 1.14033 - 2.77741 - 3.69795 - 3.02226	C H H C C C H H H H H H C H C H C C C H H C C C C H H C C C C C H H H C C C C C C C C H H H C	3.84483 3.34045 4.24935 4.67805 2.98435 3.69269 1.85436 4.51336 3.00145 4.11089 1.01664 1.48476 2.26101 2.85917 1.07686	0.14078 2.64728 1.22360 -1.13402 -1.98524 -1.80473 -1.44480 -2.32517 -2.89317 -1.10564 -2.67155 -2.24581 -1.45057 -2.57119	$\begin{array}{c} 1.29681\\ 3.06665\\ 1.97448\\ 1.03052\\ 3.28992\\ 4.31493\\ 2.52210\\ 4.79755\\ 5.09952\\ 3.85680\\ 2.44271\\ 3.08692\\ 1.09935\\ 0.64821\\ 0.17469\end{array}$
C C C C H H H H H O O O C H H H H H H H	-0.99149 -1.86038 -2.27703 -1.47125 -1.05129 -0.74942 -0.84234 -2.10867 -0.44106 -1.84608 -2.76271 -3.67508 -2.77908 -2.83489 -2.39492 -3.78554	-1.88073 -1.53754 -0.10222 0.45659 -2.62852 -0.14718 -1.48303 0.52414 0.57351 -2.35323 -0.58222 -0.08694 -2.21324 -1.62426 -3.20727 -2.31637	0.41351 - 1.78087 - 1.46343 - 0.28038 1.21463 1.66802 - 2.18735 - 2.34389 - 0.63272 - 0.60338 1.44467 - 1.14033 - 2.77741 - 3.69795 - 3.02226 - 2.36330	C H H C C C H H H H H H H C H C H C H	3.84483 3.34045 4.24935 4.67805 2.98435 3.69269 1.85436 4.51336 3.00145 4.11089 1.01664 1.48476 2.26101 2.85917 1.07686 2.91391	0.14078 2.64728 1.22360 -1.13402 -1.98524 -1.80473 -1.44480 -2.32517 -2.89317 -1.10564 -2.67155 -2.24581 -1.45057 -2.57119 -3.12547	$\begin{array}{c} 1.29681\\ 3.06665\\ 1.97448\\ 1.03052\\ 3.28992\\ 4.31493\\ 2.52210\\ 4.79755\\ 5.09952\\ 3.85680\\ 2.44271\\ 3.08692\\ 1.09935\\ 0.64821\\ 0.17469\\ 1.15591\end{array}$
C C C C H H H H H O O O C H H H H C	-0.99149 -1.86038 -2.27703 -1.47125 -1.05129 -0.74942 -0.84234 -2.10867 -0.44106 -1.84608 -2.76271 -3.67508 -2.77908 -2.83489 -2.39492 -3.78554 -4.40928	$\begin{array}{c} -1.88073 \\ -1.53754 \\ -0.10222 \\ 0.45659 \\ -2.62852 \\ -0.14718 \\ -1.48303 \\ 0.52414 \\ 0.57351 \\ -2.35323 \\ -0.58222 \\ -0.08694 \\ -2.21324 \\ -1.62426 \\ -3.20727 \\ -2.31637 \\ 0.96628 \end{array}$	0.41351 - 1.78087 - 1.46343 - 0.28038 1.21463 1.66802 - 2.18735 - 2.34389 - 0.63272 - 0.60338 1.44467 - 1.14033 - 2.77741 - 3.69795 - 3.02226 - 2.36330 - 1.54090	C H H C C C H H H H H H C H C H C H C H	3.84483 3.34045 4.24935 4.67805 2.98435 3.69269 1.85436 4.51336 3.00145 4.11089 1.01664 1.48476 2.26101 2.85917 1.07686 2.91391 1.48030	0.14078 2.64728 1.22360 -1.13402 -1.98524 -1.80473 -1.44480 -2.32517 -2.89317 -1.10564 -2.67155 -2.24581 -1.45057 -2.57119 -3.12547 -2.92692	$\begin{array}{c} 1.29681\\ 3.06665\\ 1.97448\\ 1.03052\\ 3.28992\\ 4.31493\\ 2.52210\\ 4.79755\\ 5.09952\\ 3.85680\\ 2.44271\\ 3.08692\\ 1.09935\\ 0.64821\\ 0.17469\\ 1.15591\\ -1.27992\end{array}$
C C C C H H H H H O O O C H H H C C	-0.99149 -1.86038 -2.27703 -1.47125 -1.05129 -0.74942 -0.84234 -2.10867 -0.44106 -1.84608 -2.76271 -3.67508 -2.77908 -2.83489 -2.39492 -3.78554 -4.40928 -5.82606	$\begin{array}{c} -1.88073 \\ -1.53754 \\ -0.10222 \\ 0.45659 \\ -2.62852 \\ -0.14718 \\ -1.48303 \\ 0.52414 \\ 0.57351 \\ -2.35323 \\ -0.58222 \\ -0.08694 \\ -2.21324 \\ -1.62426 \\ -3.20727 \\ -2.31637 \\ 0.96628 \\ 0.83446 \end{array}$	0.41351 - 1.78087 - 1.46343 - 0.28038 1.21463 1.66802 - 2.18735 - 2.34389 - 0.63272 - 0.60338 1.44467 - 1.14033 - 2.77741 - 3.69795 - 3.02226 - 2.36330 - 1.54090 - 1.06777	C H H C C C H H H H H H C H C H C O	3.84483 3.34045 4.24935 4.67805 2.98435 3.69269 1.85436 4.51336 3.00145 4.11089 1.01664 1.48476 2.26101 2.85917 1.07686 2.91391 1.48030 0.17201	0.14078 2.64728 1.22360 -1.13402 -1.98524 -1.80473 -1.44480 -2.32517 -2.89317 -1.10564 -2.67155 -2.24581 -1.45057 -2.57119 -3.12547 -2.92692 -1.43412	$\begin{array}{c} 1.29681\\ 3.06665\\ 1.97448\\ 1.03052\\ 3.28992\\ 4.31493\\ 2.52210\\ 4.79755\\ 5.09952\\ 3.85680\\ 2.44271\\ 3.08692\\ 1.09935\\ 0.64821\\ 0.17469\\ 1.15591\\ -1.27992\\ 0.16753\end{array}$
C C C C H H H H H O O O C H H H H C	-0.99149 -1.86038 -2.27703 -1.47125 -1.05129 -0.74942 -0.84234 -2.10867 -0.44106 -1.84608 -2.76271 -3.67508 -2.77908 -2.83489 -2.39492 -3.78554 -4.40928	$\begin{array}{c} -1.88073 \\ -1.53754 \\ -0.10222 \\ 0.45659 \\ -2.62852 \\ -0.14718 \\ -1.48303 \\ 0.52414 \\ 0.57351 \\ -2.35323 \\ -0.58222 \\ -0.08694 \\ -2.21324 \\ -1.62426 \\ -3.20727 \\ -2.31637 \\ 0.96628 \end{array}$	0.41351 - 1.78087 - 1.46343 - 0.28038 1.21463 1.66802 - 2.18735 - 2.34389 - 0.63272 - 0.60338 1.44467 - 1.14033 - 2.77741 - 3.69795 - 3.02226 - 2.36330 - 1.54090	C H H C C C H H H H H H C H C H C H C H	3.84483 3.34045 4.24935 4.67805 2.98435 3.69269 1.85436 4.51336 3.00145 4.11089 1.01664 1.48476 2.26101 2.85917 1.07686 2.91391 1.48030	0.14078 2.64728 1.22360 -1.13402 -1.98524 -1.80473 -1.44480 -2.32517 -2.89317 -1.10564 -2.67155 -2.24581 -1.45057 -2.57119 -3.12547 -2.92692	$\begin{array}{c} 1.29681\\ 3.06665\\ 1.97448\\ 1.03052\\ 3.28992\\ 4.31493\\ 2.52210\\ 4.79755\\ 5.09952\\ 3.85680\\ 2.44271\\ 3.08692\\ 1.09935\\ 0.64821\\ 0.17469\\ 1.15591\\ -1.27992\end{array}$

Н	0.53275	-3.11672	-1.80686	Н	-4.31289	-2.42470	-1.40781
С	2.27930	-4.25260	-1.29488	С	-5.09551	0.55384	-1.29258
Η	1.87571	-4.93345	-0.53145	С	-6.39670	0.64855	-0.53103
Η	3.32135	-4.05595	-1.00941	Н	-7.17375	1.04087	-1.18762
С	2.25041	-4.97201	-2.64847	Н	-6.68860	-0.33937	-0.15951
Η	2.65840	-4.34790	-3.45155	Н	-6.27691	1.30509	0.33719
Н	1.22513	-5.24414	-2.92769	0	-4.93790	0.86885	-2.44989
Н	2.84302	-5.89328	-2.61577	С	-3.46199	0.32032	2.67605
Н	2.90242	-2.24764	-2.77246	0	-3.21319	1.51186	2.71214
Η	2.91146	-1.27437	-1.33790	Č	-4.56437	-0.34587	3.46297
С	1.34829	-0.76567	-2.74185	Η	-4.14650	-1.11172	4.12413
Č	2.05367	0.57093	-3.03134	Н	-5.09888	0.40179	4.04954
Ĥ	0.46307	-0.55118	-2.13750	Н	-5.25193	-0.84943	2.77582
Н	0.98677	-1.18919	-3.69041	N	-2.06443	2.01941	0.19866
Н	3.05856	0.40085	-3.42867	H	-2.65145	2.22061	1.00154
N	2.19070	1.41998	-1.85149	C	-1.28372	3.00630	-0.32288
H	1.38053	1.96707	-1.57311	Õ	-0.38306	2.79409	-1.13830
C	3.34674	1.52444	-1.14400	Č	-1.61318	4.41423	0.13882
0	4.35501	0.86384	-1.40404	Н	-2.36144	4.44682	0.93573
Č	3.35387	2.55692	-0.00237	Н	-0.69407	4.89640	0.48409
C	4.27914	3.73066	-0.39737	Н	-1.98121	4.98847	-0.71785
Н	2.33731	2.95029	0.14396		-1.90121	F.700F/	-0.71705
C	3.83719	4.49562	-1.64939				
				Com	1 5 3(
		4 4 4 / 5/1	11 5/1401				
Н Н	5.29085	3.33250	-0.54391		pound 5.26	assigned as i	ncorrect
Н	4.32972	4.42291	0.45387		structure was	assigned as i	ncorrect.
H H	4.32972 4.49467	4.42291 5.35321	0.45387 -1.83285	This	structure was	C	
H H H	4.32972 4.49467 2.81281	4.42291 5.35321 4.87470	0.45387 -1.83285 -1.54494	This Mole	structure was ecular Mecha	assigned as i nics (OPLS	
H H H H	4.32972 4.49467 2.81281 3.86566	4.42291 5.35321 4.87470 3.85968	0.45387 -1.83285 -1.54494 -2.54072	This Mole phas	structure was ecular Mecha se.	nics (OPLS	
H H H H	4.32972 4.49467 2.81281 3.86566 4.15856	4.42291 5.35321 4.87470 3.85968 0.55389	0.45387 -1.83285 -1.54494 -2.54072 3.66027	This Mole phas	structure was ecular Mecha	nics (OPLS	
H H H H H	4.32972 4.49467 2.81281 3.86566 4.15856 2.07374	4.42291 5.35321 4.87470 3.85968 0.55389 1.79769	0.45387 -1.83285 -1.54494 -2.54072 3.66027 2.53293	This Mole phas Ener	ecular Mecha se. rgy: -178.7940	nics (OPLS 52 kJ.	-2005), gas
H H H H H H	4.32972 4.49467 2.81281 3.86566 4.15856 2.07374 2.14222	4.42291 5.35321 4.87470 3.85968 0.55389 1.79769 0.53548	0.45387 -1.83285 -1.54494 -2.54072 3.66027 2.53293 1.31758	This Mole phas Ener C	ecular Mecha se. rgy: -178.7940 -2.65420	nics (OPLS 52 kJ. -2.57030	-2005), gas 7.54950
H H H H H H	4.32972 4.49467 2.81281 3.86566 4.15856 2.07374 2.14222 1.48249	4.42291 5.35321 4.87470 3.85968 0.55389 1.79769 0.53548 1.13315	0.45387 -1.83285 -1.54494 -2.54072 3.66027 2.53293 1.31758 -3.77976	This Mole phas Ener C C	ecular Mecha se. rgy: -178.7940 -2.65420 -1.41460	nics (OPLS 52 kJ. -2.57030 -2.56230	-2005), gas 7.54950 6.63500
H H H H H H H C	4.32972 4.49467 2.81281 3.86566 4.15856 2.07374 2.14222 1.48249 -1.60463	4.42291 5.35321 4.87470 3.85968 0.55389 1.79769 0.53548 1.13315 -0.24460	0.45387 -1.83285 -1.54494 -2.54072 3.66027 2.53293 1.31758 -3.77976 1.18642	This Mole phas Ener C C C	ecular Mecha ecular Mecha rgy: -178.7940 -2.65420 -1.41460 -3.67310	nics (OPLS 52 kJ. -2.57030 -2.56230 -3.64740	-2005), gas 7.54950 6.63500 7.14400
H H H H H H C C	4.32972 4.49467 2.81281 3.86566 4.15856 2.07374 2.14222 1.48249 -1.60463 -1.09770	4.42291 5.35321 4.87470 3.85968 0.55389 1.79769 0.53548 1.13315 -0.24460 -1.62754	0.45387 -1.83285 -1.54494 -2.54072 3.66027 2.53293 1.31758 -3.77976 1.18642 0.73049	This Mole phas Ener C C C C H	ecular Mecha ecular Mecha rgy: -178.7940 -2.65420 -1.41460 -3.67310 -0.86240	nics (OPLS 52 kJ. -2.57030 -2.56230 -3.64740 -3.48760	-2005), gas 7.54950 6.63500 7.14400 6.80070
H H H H H H C C C C	4.32972 4.49467 2.81281 3.86566 4.15856 2.07374 2.14222 1.48249 -1.60463 -1.09770 -2.36638	4.42291 5.35321 4.87470 3.85968 0.55389 1.79769 0.53548 1.13315 -0.24460 -1.62754 -1.49351	0.45387 -1.83285 -1.54494 -2.54072 3.66027 2.53293 1.31758 -3.77976 1.18642 0.73049 -1.32869	This Mole phas Ener C C C H H	ecular Mecha se. rgy: -178.7940 -2.65420 -1.41460 -3.67310 -0.86240 -1.73040	nics (OPLS 52 kJ. -2.57030 -2.56230 -3.64740 -3.48760 -2.59380	-2005), gas 7.54950 6.63500 7.14400 6.80070 5.59020
H H H H H H C C C C C C	4.32972 4.49467 2.81281 3.86566 4.15856 2.07374 2.14222 1.48249 -1.60463 -1.09770 -2.36638 -2.77993	4.42291 5.35321 4.87470 3.85968 0.55389 1.79769 0.53548 1.13315 -0.24460 -1.62754 -1.49351 -0.03438	0.45387 -1.83285 -1.54494 -2.54072 3.66027 2.53293 1.31758 -3.77976 1.18642 0.73049 -1.32869 -1.04654	This Mole phas Ener C C C C H H C	ecular Mecha ecular Mecha rgy: -178.7940 -2.65420 -1.41460 -3.67310 -0.86240 -1.73040 -4.90210	nics (OPLS 52 kJ. -2.57030 -2.56230 -3.64740 -3.48760 -2.59380 -3.65780	-2005), gas 7.54950 6.63500 7.14400 6.80070 5.59020 8.04360
H H H H H H C C C C C C C	4.32972 4.49467 2.81281 3.86566 4.15856 2.07374 2.14222 1.48249 -1.60463 -1.09770 -2.36638 -2.77993 -1.79326	4.42291 5.35321 4.87470 3.85968 0.55389 1.79769 0.53548 1.13315 -0.24460 -1.62754 -1.49351 -0.03438 0.61956	0.45387 -1.83285 -1.54494 -2.54072 3.66027 2.53293 1.31758 -3.77976 1.18642 0.73049 -1.32869 -1.04654 -0.06827	This Mole phas Ener C C C C H H C C	ecular Mecha se. rgy: -178.7940 -2.65420 -1.41460 -3.67310 -0.86240 -1.73040 -4.90210 -4.86070	nics (OPLS 52 kJ. -2.57030 -2.56230 -3.64740 -3.48760 -2.59380 -3.65780 -4.74380	-2005), gas 7.54950 6.63500 7.14400 6.80070 5.59020 8.04360 9.11580
H H H H H H C C C C C C H	4.32972 4.49467 2.81281 3.86566 4.15856 2.07374 2.14222 1.48249 -1.60463 -1.09770 -2.36638 -2.77993 -1.79326 -1.05308	$\begin{array}{r} 4.42291\\ 5.35321\\ 4.87470\\ 3.85968\\ 0.55389\\ 1.79769\\ 0.53548\\ 1.13315\\ -0.24460\\ -1.62754\\ -1.49351\\ -0.03438\\ 0.61956\\ -2.30503\end{array}$	0.45387 -1.83285 -1.54494 -2.54072 3.66027 2.53293 1.31758 -3.77976 1.18642 0.73049 -1.32869 -1.04654 -0.06827 1.59010	This Mole phas Ener C C C C H H C C C C	structure was ecular Mecha rgy: -178.7940 -2.65420 -1.41460 -3.67310 -0.86240 -1.73040 -4.90210 -4.86070 -5.92000	nics (OPLS 52 kJ. -2.57030 -2.56230 -3.64740 -3.48760 -2.59380 -3.65780 -4.74380 -2.77850	-2005), gas 7.54950 6.63500 7.14400 6.80070 5.59020 8.04360 9.11580 7.90610
H H H H H H C C C C C C H H	4.32972 4.49467 2.81281 3.86566 4.15856 2.07374 2.14222 1.48249 -1.60463 -1.09770 -2.36638 -2.77993 -1.79326 -1.05308 -0.89217	$\begin{array}{r} 4.42291\\ 5.35321\\ 4.87470\\ 3.85968\\ 0.55389\\ 1.79769\\ 0.53548\\ 1.13315\\ -0.24460\\ -1.62754\\ -1.49351\\ -0.03438\\ 0.61956\\ -2.30503\\ 0.22941\end{array}$	0.45387 -1.83285 -1.54494 -2.54072 3.66027 2.53293 1.31758 -3.77976 1.18642 0.73049 -1.32869 -1.04654 -0.06827 1.59010 1.86688	This Mole phas Ener C C C H H C C C H H	ecular Mecha ecular Mecha rgy: -178.7940 -2.65420 -1.41460 -3.67310 -0.86240 -1.73040 -4.90210 -4.86070 -5.92000 -3.94130	nics (OPLS 52 kJ. -2.57030 -2.56230 -3.64740 -3.48760 -2.59380 -3.65780 -4.74380 -2.77850 -4.61680	-2005), gas 7.54950 6.63500 7.14400 6.80070 5.59020 8.04360 9.11580 7.90610 9.68880
H H H H H H C C C C C C H H H H H	4.32972 4.49467 2.81281 3.86566 4.15856 2.07374 2.14222 1.48249 -1.60463 -1.09770 -2.36638 -2.77993 -1.79326 -1.05308 -0.89217 -1.47170	4.42291 5.35321 4.87470 3.85968 0.55389 1.79769 0.53548 1.13315 -0.24460 -1.62754 -1.49351 -0.03438 0.61956 -2.30503 0.22941 -1.42703	0.45387 -1.83285 -1.54494 -2.54072 3.66027 2.53293 1.31758 -3.77976 1.18642 0.73049 -1.32869 -1.04654 -0.06827 1.59010 1.86688 -1.96148	This Mole phas Ener C C C C H H C C C H H H	ecular Mecha se. rgy: -178.7940 -2.65420 -1.41460 -3.67310 -0.86240 -1.73040 -4.90210 -4.86070 -5.92000 -3.94130 -4.78110	nics (OPLS -2.57030 -2.56230 -3.64740 -3.48760 -2.59380 -3.65780 -4.74380 -2.77850 -4.61680 -5.71040	-2005), gas 7.54950 6.63500 7.14400 6.80070 5.59020 8.04360 9.11580 7.90610 9.68880 8.61680
H H H H H H C C C C C C H H H H H H H H	4.32972 4.49467 2.81281 3.86566 4.15856 2.07374 2.14222 1.48249 -1.60463 -1.09770 -2.36638 -2.77993 -1.79326 -1.05308 -0.89217 -1.47170 -2.77662	$\begin{array}{r} 4.42291\\ 5.35321\\ 4.87470\\ 3.85968\\ 0.55389\\ 1.79769\\ 0.53548\\ 1.13315\\ -0.24460\\ -1.62754\\ -1.49351\\ -0.03438\\ 0.61956\\ -2.30503\\ 0.22941\\ -1.42703\\ 0.51370\end{array}$	0.45387 -1.83285 -1.54494 -2.54072 3.66027 2.53293 1.31758 -3.77976 1.18642 0.73049 -1.32869 -1.04654 -0.06827 1.59010 1.86688 -1.96148 -1.99133	This Mole phase Ener C C C C H H C C C H H C C C H H C C C C C H H S	structure was ecular Mecha rgy: -178.7940 -2.65420 -1.41460 -3.67310 -0.86240 -1.73040 -4.90210 -4.86070 -5.92000 -3.94130 -4.78110 -6.05130	nics (OPLS -2.57030 -2.56230 -3.64740 -3.48760 -2.59380 -3.65780 -4.74380 -2.77850 -4.61680 -5.71040 -4.78340	-2005), gas 7.54950 6.63500 7.14400 6.80070 5.59020 8.04360 9.11580 7.90610 9.68880 8.61680 10.08660
H H H H H H C C C C C H H H H H H H H H	4.32972 4.49467 2.81281 3.86566 4.15856 2.07374 2.14222 1.48249 -1.60463 -1.09770 -2.36638 -2.77993 -1.79326 -1.05308 -0.89217 -1.47170 -2.77662 -0.81681	$\begin{array}{r} 4.42291\\ 5.35321\\ 4.87470\\ 3.85968\\ 0.55389\\ 1.79769\\ 0.53548\\ 1.13315\\ -0.24460\\ -1.62754\\ -1.49351\\ -0.03438\\ 0.61956\\ -2.30503\\ 0.22941\\ -1.42703\\ 0.51370\\ 0.60132\end{array}$	0.45387 -1.83285 -1.54494 -2.54072 3.66027 2.53293 1.31758 -3.77976 1.18642 0.73049 -1.32869 -1.04654 -0.06827 1.59010 1.86688 -1.96148 -1.99133 -0.56297	This Mole phas Ener C C C C H H C C C H H C C C H H C	structure was ecular Mecha rgy: -178.7940 -2.65420 -1.41460 -3.67310 -0.86240 -1.73040 -4.90210 -4.86070 -5.92000 -3.94130 -4.78110 -6.05130 -6.00310	nics (OPLS 52 kJ. -2.57030 -2.56230 -3.64740 -3.48760 -2.59380 -3.65780 -4.74380 -2.77850 -4.61680 -5.71040 -4.78340 -1.63820	-2005), gas 7.54950 6.63500 7.14400 6.80070 5.59020 8.04360 9.11580 7.90610 9.68880 8.61680 10.08660 6.90170
H H H H H H C C C C C C H H H H H H H H	4.32972 4.49467 2.81281 3.86566 4.15856 2.07374 2.14222 1.48249 -1.60463 -1.09770 -2.36638 -2.77993 -1.79326 -1.05308 -0.89217 -1.47170 -2.77662 -0.81681 -2.03025	4.42291 5.35321 4.87470 3.85968 0.55389 1.79769 0.53548 1.13315 -0.24460 -1.62754 -1.49351 -0.03438 0.61956 -2.30503 0.22941 -1.42703 0.51370 0.60132 -2.23045	0.45387 -1.83285 -1.54494 -2.54072 3.66027 2.53293 1.31758 -3.77976 1.18642 0.73049 -1.32869 -1.04654 -0.06827 1.59010 1.86688 -1.96148 -1.99133 -0.56297 -0.14027	This Mole phas Ener C C C C H H C C C H H C C C H H C C C H H C C C H H S H S	ecular Mecha se. rgy: -178.7940 -2.65420 -1.41460 -3.67310 -0.86240 -1.73040 -4.90210 -4.86070 -5.92000 -3.94130 -4.78110 -6.05130 -6.00310 -5.14460	nics (OPLS -2.57030 -2.56230 -3.64740 -3.48760 -2.59380 -3.65780 -4.74380 -2.77850 -4.61680 -5.71040 -4.78340 -1.63820 -1.65090	-2005), gas 7.54950 6.63500 7.14400 6.80070 5.59020 8.04360 9.11580 7.90610 9.68880 8.61680 10.08660 6.90170 6.23720
H H H H H H H C C C C C C H H H H H H H	4.32972 4.49467 2.81281 3.86566 4.15856 2.07374 2.14222 1.48249 -1.60463 -1.09770 -2.36638 -2.77993 -1.79326 -1.05308 -0.89217 -1.47170 -2.77662 -0.81681 -2.03025 -2.80527	4.42291 5.35321 4.87470 3.85968 0.55389 1.79769 0.53548 1.13315 -0.24460 -1.62754 -1.49351 -0.03438 0.61956 -2.30503 0.22941 -1.42703 0.51370 0.60132 -2.23045 -0.58256	0.45387 - 1.83285 - 1.54494 - 2.54072 3.66027 2.53293 1.31758 - 3.77976 1.18642 0.73049 - 1.32869 - 1.04654 - 0.06827 1.59010 1.86688 - 1.96148 - 1.99133 - 0.56297 - 0.14027 1.93272	This Mole phase Ener C C C C H H C C C H H C C C H H C C C H H C C C C H H S S S H S S S S H S	ecular Mecha rgy: -178.7940 -2.65420 -1.41460 -3.67310 -0.86240 -1.73040 -4.90210 -4.86070 -5.92000 -3.94130 -4.78110 -6.05130 -6.00310 -5.14460 -6.13670	nics (OPLS -2.57030 -2.56230 -3.64740 -3.48760 -2.59380 -3.65780 -4.74380 -2.77850 -4.61680 -5.71040 -4.78340 -1.63820 -1.65090 -0.26050	-2005), gas 7.54950 6.63500 7.14400 6.80070 5.59020 8.04360 9.11580 7.90610 9.68880 8.61680 10.08660 6.90170 6.23720 7.58940
H H H H H H H C C C C C C H H H H H H H	4.32972 4.49467 2.81281 3.86566 4.15856 2.07374 2.14222 1.48249 -1.60463 -1.09770 -2.36638 -2.77993 -1.79326 -1.05308 -0.89217 -1.47170 -2.77662 -0.81681 -2.03025 -2.80527 -4.11402	4.42291 5.35321 4.87470 3.85968 0.55389 1.79769 0.53548 1.13315 -0.24460 -1.62754 -1.49351 -0.03438 0.61956 -2.30503 0.22941 -1.42703 0.51370 0.60132 -2.23045 -0.58256 0.05785	0.45387 -1.83285 -1.54494 -2.54072 3.66027 2.53293 1.31758 -3.77976 1.18642 0.73049 -1.32869 -1.04654 -0.06827 1.59010 1.86688 -1.96148 -1.99133 -0.56297 -0.14027 1.93272 -0.49077	This Mole phas Ener C C C C H H C C C H H C C H H C C H H C C H H C C C H H H S H C C C H H H S H H S H S	ecular Mecha rgy: -178.7940 -2.65420 -1.41460 -3.67310 -0.86240 -1.73040 -4.90210 -4.86070 -5.92000 -3.94130 -4.78110 -6.05130 -6.00310 -5.14460 -6.13670 -6.86840	nics (OPLS 52 kJ. -2.57030 -2.56230 -3.64740 -3.48760 -2.59380 -3.65780 -4.74380 -2.77850 -4.61680 -5.71040 -4.78340 -1.63820 -1.65090 -0.26050 -1.81730	-2005), gas 7.54950 6.63500 7.14400 6.80070 5.59020 8.04360 9.11580 7.90610 9.68880 8.61680 10.08660 6.90170 6.23720 7.58940 6.26370
H H H H H H H C C C C C C H H H H H H H	4.32972 4.49467 2.81281 3.86566 4.15856 2.07374 2.14222 1.48249 -1.60463 -1.09770 -2.36638 -2.77993 -1.79326 -1.05308 -0.89217 -1.47170 -2.77662 -0.81681 -2.03025 -2.80527 -4.11402 -3.43552	4.42291 5.35321 4.87470 3.85968 0.55389 1.79769 0.53548 1.13315 -0.24460 -1.62754 -1.49351 -0.03438 0.61956 -2.30503 0.22941 -1.42703 0.51370 0.60132 -2.23045 -0.58256 0.05785 -2.30119	0.45387 -1.83285 -1.54494 -2.54072 3.66027 2.53293 1.31758 -3.77976 1.18642 0.73049 -1.32869 -1.04654 -0.06827 1.59010 1.86688 -1.96148 -1.99133 -0.56297 -0.14027 1.93272 -0.49077 -2.04915	This Mole phas Ener C C C C H H C C C H H C C C H H C C C H H C C C H C C C H H S S Ener	ecular Mecha ecular Mecha rgy: -178.7940 -2.65420 -1.41460 -3.67310 -0.86240 -1.73040 -4.90210 -4.86070 -5.92000 -3.94130 -4.78110 -6.05130 -6.00310 -5.14460 -6.13670 -6.86840 -5.95740	nics (OPLS 52 kJ. -2.57030 -2.56230 -3.64740 -3.48760 -2.59380 -3.65780 -4.74380 -2.77850 -4.61680 -5.71040 -4.78340 -1.63820 -1.65090 -0.26050 -1.81730 0.96080	-2005), gas 7.54950 6.63500 7.14400 6.80070 5.59020 8.04360 9.11580 7.90610 9.68880 8.61680 10.08660 6.90170 6.23720 7.58940 6.26370 6.64610
H H H H H H H C C C C C C H H H H H H H	4.32972 4.49467 2.81281 3.86566 4.15856 2.07374 2.14222 1.48249 -1.60463 -1.09770 -2.36638 -2.77993 -1.79326 -1.05308 -0.89217 -1.47170 -2.77662 -0.81681 -2.03025 -2.80527 -4.11402	4.42291 5.35321 4.87470 3.85968 0.55389 1.79769 0.53548 1.13315 -0.24460 -1.62754 -1.49351 -0.03438 0.61956 -2.30503 0.22941 -1.42703 0.51370 0.60132 -2.23045 -0.58256 0.05785	0.45387 -1.83285 -1.54494 -2.54072 3.66027 2.53293 1.31758 -3.77976 1.18642 0.73049 -1.32869 -1.04654 -0.06827 1.59010 1.86688 -1.96148 -1.99133 -0.56297 -0.14027 1.93272 -0.49077	This Mole phas Ener C C C C H H C C C H H C C H H C C H H C C H H C C C H H H C C C H	ecular Mecha rgy: -178.7940 -2.65420 -1.41460 -3.67310 -0.86240 -1.73040 -4.90210 -4.86070 -5.92000 -3.94130 -4.78110 -6.05130 -6.00310 -5.14460 -6.13670 -6.86840	nics (OPLS 52 kJ. -2.57030 -2.56230 -3.64740 -3.48760 -2.59380 -3.65780 -4.74380 -2.77850 -4.61680 -5.71040 -4.78340 -1.63820 -1.65090 -0.26050 -1.81730	-2005), gas 7.54950 6.63500 7.14400 6.80070 5.59020 8.04360 9.11580 7.90610 9.68880 8.61680 10.08660 6.90170 6.23720 7.58940 6.26370

Si	-5.52070	0.32230	10.21940	С	-4.15090	0.49200	12.68460
С	-4.49440	1.13840	6.15680	С	-2.73850	0.46700	10.59630
Н	-6.21650	1.84330	7.23190	С	-3.86810	-1.63750	11.37200
С	-6.96420	0.91430	5.47610	Η	-1.83530	0.23860	11.16250
Н	-7.93250	0.57620	5.84740	Н	-2.80080	1.55090	10.49410
Н	-6.64760	0.17220	4.74180	Н	-2.61730	0.04850	9.59660
С	-7.17520	2.26950	4.78260	Н	-5.04640	0.11420	13.17940
Н	-6.25950	2.64160	4.32400	Н	-4.23050	1.57900	12.64850
Н	-7.52540	3.02390	5.48760	Н	-3.29830	0.24770	13.31890
Н	-7.92230	2.18550	3.99300	Н	-4.72440	-2.07730	11.88370
Н	-4.47140	1.51130	5.13380	Н	-2.97220	-1.93570	11.91670
Н	-3.99720	0.17300	6.10450	Н	-3.81820	-2.08820	10.38050
C	-3.66210	2.10010	7.02620		0.01020	2.00020	10.0000
Č	-2.16610	2.11950	6.67140				
H	-3.76720	1.83960	8.07680				
Н	-4.06820	3.10700	6.92390	Com	pound 5.26		
Н	-2.02920	2.33360	5.60930		structure was	assigned as a	mhiguous
N	-1.51490	0.87210	7.06020	1 1115	structure was	ussigned us u	inoiguous.
H	-1.67500	2.93090	7.20890	Mole	ecular Mecha	nics (OPLS	-2005) gas
Н	-1.40970	0.69270	8.04580	phase			2005), gus
C	-1.10110	-0.08260	6.21870	1	e. gy: -176.3850	25 kI	
0	-1.20240	0.01700	4.99750	Liiti	gy. 170.5050	20 KJ.	
C	-0.48320	-1.34570	6.84720	С	-2.56880	-3.36890	6.83540
C	0.92480	-1.62550	6.26930	C C	-1.06010	-3.05400	6.92180
Н	-0.37060	-1.19190	7.92130	C C	-3.35450	-2.95880	8.09250
C	1.98030	-0.56300	6.61950	н Н	-0.63950	-3.63380	7.74390
Н	0.86380	-1.72910	5.18430	H	-0.57310	-3.43140	6.02080
H	1.28020	-2.58770	6.63870	C	-4.81940	-3.36610	8.04040
H	2.95630	-0.84490	6.22340	C C	-5.10000	-4.73610	8.65160
п Н	2.93030	-0.84490	0.22340 7.69850	C C	-5.77680		7.52260
п Н		-0.44330 0.40980		С Н	-4.73990	-2.56610 -4.73050	
	1.72760		6.19620				9.68110
Н	-3.14190	-1.59590	7.52910	H	-4.49880	-5.47450	8.11980 8.64560
Н	-2.34160	-2.72740	8.58210	C	-6.56970	-5.18640	
Н	-3.20190	-4.63080	7.16200	C	-5.55710	-1.21790	6.85850
Н	-3.98280	-3.50080	6.10920	H	-4.52310	-1.13160	6.53690
Н	-6.76520	-2.82840	8.57380	C	-5.93500	-0.03340	7.76470
Н	-5.93110	-5.59430	10.80540	Н	-6.15820	-1.21040	5.94990
Н	-6.99200	-4.95150	9.56150	C	-5.95380	1.36300	7.08360
Н	-6.13230	-3.85750	10.65460	0	-4.99890	0.01220	8.82730
C	-5.82850	2.18340	10.22180	H H	-6.92920	-0.22310	8.17480
C	-7.04860	-0.57720	10.86360	Si	-5.40090	0.06150	10.46710
C	-3.99170	-0.10770	11.27740	C	-4.56190	1.84660	6.59850
Н	-7.94350	-0.30160	10.30850	Н	-6.22750	2.04890	7.88660
Н	-7.22950	-0.34560	11.91220	C	-7.07390	1.50090	6.02840
Н	-6.93220	-1.65580	10.78450	Н	-8.00110	1.10260	6.44230
Н	-4.95140	2.73480	9.88880	Н	-6.85700	0.89050	5.15200
Н	-6.07570	2.54100	11.22020	C	-7.33300	2.94910	5.58730
Н	-6.65460	2.45130	9.56530	Η	-6.46510	3.37950	5.08830

Н	-7.58010	3.58440	6.43810	Н	-3.21930	0.64790	13.53830
H	-8.16740	2.99630	4.88720	H	-3.15960	-1.68350	11.42440
H	-3.83100	1.61460	7.37190	H	-1.84840	-0.54500	11.70650
H	-4.56050	2.93620	6.55850	Η	-2.51960	-0.72970	10.09350
C	-4.08890	1.32430	5.22080				
C	-2.56580	1.14610	5.11210				
H	-4.56080	0.37910	4.96470	a	1		
Η	-4.42410	2.01580	4.44700		pound 5.26		
Η	-2.31350	0.82290	4.09990		structure was	assigned as a	mbiguous.
Ν	-2.07880	0.18850	6.10110		-2X/6-31g(d)		
Н	-2.05910	2.09910	5.26830	SMD) implicit so	lvation in t	oluene was
Η	-2.50310	0.21630	7.01640	used			
С	-1.11370	-0.71570	5.89560				
Ο	-0.56450	-0.86780	4.80640	Elect	tronic Energy	r: -1476.387	72573 har-
С	-0.68380	-1.56200	7.10770	tree.	0.		
С	0.83280	-1.41850	7.37810	Free	Energy: -1475	5.740673 har	tree.
Η	-1.19340	-1.18650	7.99430		6,		
С	1.26760	-0.01370	7.82950	С	-1.95038	-2.02093	0.69531
Ĥ	1.39560	-1.70160	6.48660	Č	-3.42322	-2.00222	1.10615
Н	1.12840	-2.12760	8.15180	C	-1.70913	-2.50110	-0.74228
Н	2.33540	0.00720	8.04890	H	-3.85694	-3.00167	0.96980
Н	0.73840	0.29470	8.73160	H	-3.49698	-1.75853	2.17180
H	1.08030	0.29470	7.05690	C	-0.23312	-2.64866	-1.05026
Н	-3.00000	-2.89230	5.95420	C	0.29968	-4.05542	-0.88169
Н	-2.68770	-4.44110	6.67510	C	0.54626	-1.61384	-1.38535
Н	-3.30030	-1.88190	8.23350	Н	-0.33161	-4.72779	-1.47956
Н	-2.89470	-3.38780	8.98350	Н	0.13451	-4.36308	0.16245
Η	-6.80910	-2.87800	7.54450	С	1.75768	-4.28535	-1.25858
Η	-7.19860	-4.50300	9.21740	С	0.09871	-0.19536	-1.59339
Н	-6.66910	-6.17380	9.09700	Н	0.35173	0.10579	-2.62162
Н	-6.96360	-5.25180	7.63080	С	0.74617	0.82931	-0.64335
С	-6.65510	1.44350	10.74060	Η	-0.98754	-0.11626	-1.48905
С	-6.14190	-1.59940	10.96100	С	0.55092	2.26950	-1.15719
С	-3.79820	0.41010	11.44420	Ο	2.13871	0.56334	-0.54083
Н	-5.43210	-2.40860	10.79630	Н	0.27549	0.72682	0.34939
Н	-7.03290	-1.82760	10.37860	Si	2.89371	0.08892	0.87681
Н	-6.41950	-1.61630	12.01360	С	-0.93332	2.62512	-1.34204
Н	-6.25650	2.40570	10.42220	H	1.02653	2.29276	-2.15043
Н	-6.92270	1.53320	11.79240	C	1.28107	3.29187	-0.27816
Н	-7.57310	1.26810	10.18220	H	0.89922	3.23580	0.75093
C	-4.11440	0.44650	12.94910	H	2.33804	3.01056	-0.23379
C C	-3.22590	1.76560	10.99510	C	1.16910	4.72769	-0.78691
C C							
	-2.77460	-0.70010	11.15250	Н	0.14416	5.10877	-0.72618
Н	-3.91860	2.58140	11.20400	Н	1.48938	4.79944	-1.83303
Н	-3.02740	1.77390	9.92220	Н	1.80238	5.39905	-0.19860
H	-2.28950	1.99240	11.50550	Н	-1.41815	1.85736	-1.95623
Н	-4.52510	-0.50360	13.29270	H	-1.00636	3.55251	-1.92378
Η	-4.84270	1.22310	13.18530	С	-1.71764	2.80260	-0.03758

C H H H	-3.22343 -1.41023 -1.52233 -3.76582	2.63352 2.07486 3.79474 2.99797	-0.24061 0.72297 0.38754 0.63638	This	pound 5.26 structure was YP/6-31g(d)	assigned as	ambiguo	ous.
N	-3.58861	1.23648	-0.43566	SMI	• • •	lvation in	toluene	was
Н	-3.56322	3.19818	-1.11482	used				
Н	-3.84911	0.90457	-1.35314					
С	-3.76754	0.41987	0.63669	Elec	tronic Energy	<i>r</i> : - 1476.98	214928	har-
0	-3.55505	0.79943	1.78180	tree.				
С	-4.28086	-0.98537	0.34572	Free	Energy: -1476	5.341768 ha	rtree.	
С	-5.75162	-1.06672	0.78456					
Н	-4.22761	-1.17767	-0.73488	С	-2.35687	2.12781	-0.75	368
С	-6.66582	-0.09126	0.04885	С	-3.84974	1.77177	-0.84	
Н	-5.79529	-0.87467	1.86333	С	-1.88133	2.51372	0.665	556
Н	-6.10079	-2.09415	0.62731	Н	-4.13764	1.73490	-1.90	
Η	-7.71025	-0.23947	0.33942	Н	-4.44571	2.56953	-0.38	478
Η	-6.60186	-0.22875	-1.03724	С	-0.40138	2.84430	0.722	285
Η	-6.40634	0.94925	0.27226	С	-0.01488	4.24366	0.274	438
Η	-1.39614	-2.67386	1.38170	С	0.54766	1.98127	1.129	913
Η	-1.51857	-1.01709	0.81730	Η	-0.53948	4.49341	-0.65	890
Η	-2.20707	-3.47078	-0.87771	Н	1.05727	4.27118	0.044	133
Η	-2.18360	-1.81175	-1.45007	С	-0.32406	5.33181	1.31′	793
Η	1.60801	-1.78583	-1.55241	С	0.36007	0.58183	1.653	318
Н	1.94325	-4.01130	-2.30229	Η	0.99372	0.44855	2.539	940
Н	2.02042	-5.34028	-1.13506	С	0.70039	-0.54775	0.649	940
Н	2.44090	-3.69945	-0.63589	Η	-0.67499	0.43210	1.98	020
С	2.82102	1.43617	2.18699	С	0.20872	-1.93224	1.15	156
С	2.07259	-1.42358	1.63539	0	2.11168	-0.57603	0.41	852
С	4.67632	-0.25665	0.34690	Н	0.17693	-0.31608	-0.28	735
Η	2.54687	-1.66423	2.59501	Si	3.02255	-0.28280	-0.962	225
Η	2.12336	-2.31158	0.99888	С	0.15778	-2.98598	0.023	345
Н	1.01245	-1.23097	1.83992	Η	-0.81654	-1.76944	1.51	561
Н	3.34255	2.35471	1.90016	С	1.04227	-2.45174	2.340	667
Η	3.27206	1.07095	3.11792	Η	1.27871	-1.61882	3.01	915
Н	1.78305	1.70043	2.42116	Н	2.00692	-2.81847	1.974	496
С	5.53995	-0.55512	1.57871	С	0.35443	-3.54779	3.169	965
С	5.23730	0.97007	-0.38497	Н	0.14512	-4.44804	2.58	034
С	4.70618	-1.46387	-0.59941	Η	-0.59872	-3.19550	3.58	600
Н	5.24259	1.86177	0.25430	Н	0.98543	-3.85443	4.012	260
Η	4.65230	1.20379	-1.28095	Η	-0.07174	-3.96328	0.46	880
Н	6.27541	0.78647	-0.69720	Η	1.16772	-3.08234	-0.39	387
Η	5.16453	-1.41777	2.14357	С	-0.82952	-2.76555	-1.13	811
Н	5.58443	0.30108	2.26233	С	-2.32907	-2.85332	-0.79	485
Η	6.57112	-0.78701	1.27684	Н	-0.64937	-1.81241	-1.64	964
Η	4.37316	-2.37959	-0.09592	Н	-0.62939	-3.54655	-1.88	463
Η	5.72890	-1.64324	-0.96094	Н	-2.89021	-3.05884	-1.70	995
Н	4.06691	-1.30473	-1.47620	Ν	-2.91575	-1.64184	-0.22	479
				Н	-2.51053	-3.68097	-0.09	788

H C	-2.91558 -3.59414	-1.52665 -0.72996	0.77865 -0.98215	Elec tree.	tronic Energy	y: -1476.960	062108 har-
0	-3.69142	-0.72996	-0.98213		Energy: -147	6 320350 har	tree
C	-4.25617	0.42419	-0.21676	TICC	Energy147	0.520559 Hai	ucc.
C	-5.79211	0.42419	-0.25164	С	2.65926	-1.37993	-1.73359
H H	-3.93478	0.24770	0.83405	C	3.84016	-1.61032	-0.77600
C	-6.30781	-1.00398	0.83403	C C	1.29217	-1.86545	-1.20504
H	-6.11133	0.23095	-1.30109	С Н	3.93553	-2.68555	-0.56863
H	-6.24654	1.13804	0.20265	H	4.76189	-1.29895	-1.28127
H	-5.93487	-1.92414	-0.00003	C	0.17284	-1.71997	-2.22460
H	-7.40308	-1.04328	0.43633	C C	-0.12214	-2.93925	-3.07781
H	-6.00640	-1.04528	1.52037	C	-0.49854	-0.57207	-2.41231
H	-1.75371	1.28996	-1.12640	H	0.82351	-3.33001	-3.48347
H	-2.15664	2.96520	-1.43440	Н	-0.72815	-2.64302	-3.94285
H	-2.46655	3.38266	0.99861	C	-0.84008	-4.07750	-2.33053
H	-2.11959	1.70343	1.36271	C C	-0.25372	0.73528	-1.70694
H	1.58152	2.32485	1.09465	H	0.61060	0.65216	-1.04555
H	-1.39033	5.36534	1.57069	C	-1.43802	1.26988	-0.88170
Н	-0.04409	6.32272	0.94031	Н	0.00058	1.49334	-2.46272
H	0.23295	5.15387	2.24520	C	-1.22367	2.69487	-0.29608
C	3.19082	-1.85472	-2.00312	0 0	-1.67526	0.36015	0.20103
C	2.23107	1.03872	-2.05683	Н	-2.32447	1.30077	-1.53256
C C	4.74287	0.26491	-0.31227	Si	-3.15918	-0.27290	0.67208
H	2.21132	2.02946	-1.59101	C	0.01025	2.77729	0.64224
Н	2.78050	1.12477	-3.00328	H	-2.10126	2.85089	0.34710
Н	1.19612	0.78184	-2.31504	C	-1.25349	3.82459	-1.34828
Н	3.57813	-2.70269	-1.42625	H	-0.44434	3.69483	-2.07840
Н	3.87201	-1.69357	-2.84912	Н	-1.03377	4.76792	-0.82926
Н	2.22635	-2.15774	-2.42918	C	-2.58638	3.98201	-2.09252
C	4.60294	1.49446	0.60849	H	-3.42063	4.10526	-1.39040
C	5.65799	0.63294	-1.49958	Н	-2.81375	3.12012	-2.72968
C	5.39391	-0.88251	0.48896	Н	-2.56625	4.86602	-2.73994
H	5.25823	1.47136	-2.08369	Н	0.08203	1.81188	1.15779
H	5.80952	-0.20988	-2.18565	H	-0.20183	3.51610	1.42780
Н	6.65180	0.93606	-1.13774	C	1.37017	3.14582	0.01398
H	3.97165	1.27985	1.47803	Č	2.56512	2.77003	0.90537
Н	4.17231	2.35604	0.08250	Ĥ	1.51837	2.65934	-0.95472
Н	5.58865	1.80730	0.98490	Н	1.40992	4.22645	-0.17559
H	4.77835	-1.18146	1.34562	H	3.49065	3.16485	0.48065
H	5.56196	-1.77333	-0.12896	N	2.76142	1.32830	1.02518
Н	6.37399	-0.57040	0.88041	Н	2.44335	3.19408	1.91100
		0.27010	0.00011	Н	2.12175	0.79786	1.59847
				C	3.73680	0.64983	0.34362
Com	pound 5.26			Õ	4.54540	1.21212	-0.38948
	structure was	assigned as a	mbiguous.	Č	3.78084	-0.86655	0.57572
	YP/6-31g(d)			Č	5.01797	-1.21695	1.43477
	phase.			H	2.88235	-1.18032	1.12714
2.340	L			C	4.97685	-0.66901	2.86511
				-			

Н	5.90769	-0.83784	0.91717	С	-3.01429	-1.21541	-2.26276
Н	5.11199	-2.31050	1.46721	Н	-4.10214	-2.00665	0.97671
Н	5.86844	-0.97414	3.42431	Η	-2.60797	-2.38544	0.16031
Η	4.10100	-1.04307	3.41107	С	-2.04210	-0.06299	-2.47502
Н	4.93683	0.42585	2.87891	С	-2.56595	1.15853	-3.21369
Η	2.59701	-0.31461	-1.98707	С	-0.73632	-0.13118	-2.16478
Η	2.87756	-1.89812	-2.67720	Η	-2.95038	0.83627	-4.19429
Η	1.03257	-1.32127	-0.29045	Η	-1.72484	1.83106	-3.42254
Η	1.38612	-2.92038	-0.91312	С	-3.67147	1.96175	-2.50704
Η	-1.27349	-0.55105	-3.18185	С	-0.00647	-1.28454	-1.51184
Η	-0.27076	-4.41496	-1.45715	Η	-0.55271	-1.63808	-0.63330
Η	-0.98337	-4.94343	-2.98735	С	1.43354	-0.93136	-1.10463
Η	-1.82582	-3.75282	-1.97893	Η	0.03931	-2.13947	-2.20276
С	-4.33233	1.10708	1.22906	С	2.23955	-2.11170	-0.49256
С	-3.97291	-1.18178	-0.77337	0	1.39500	0.20547	-0.21633
С	-2.74364	-1.45345	2.12089	Η	1.96572	-0.63436	-2.02067
Н	-3.29740	-1.92419	-1.21083	Si	2.41763	1.55367	-0.30295
Н	-4.25505	-0.48424	-1.57158	С	1.64950	-2.72229	0.80270
Н	-4.88903	-1.69583	-0.45784	Η	3.22783	-1.69614	-0.24435
Η	-3.93838	1.66830	2.08403	С	2.46722	-3.20503	-1.56618
Η	-5.31112	0.70371	1.51683	Н	2.58047	-2.73076	-2.55142
Η	-4.50530	1.82312	0.41640	Н	1.57468	-3.84148	-1.63790
С	-1.85610	-2.61319	1.62191	С	3.69809	-4.08359	-1.31018
С	-4.04569	-2.03432	2.71486	Η	3.63710	-4.60805	-0.34995
С	-1.98702	-0.68492	3.22537	Н	4.61576	-3.48270	-1.30139
Η	-4.61605	-2.61095	1.97588	Н	3.80573	-4.84397	-2.09194
Η	-4.70388	-1.25076	3.10929	Н	2.11658	-3.70264	0.95110
Η	-3.81461	-2.71448	3.54740	Н	0.58476	-2.93251	0.64699
Н	-0.92252	-2.24667	1.18107	С	1.83015	-1.88962	2.10005
Η	-2.36510	-3.22147	0.86471	С	0.52764	-1.63465	2.86863
Η	-1.59432	-3.28130	2.45591	Н	2.29360	-0.92710	1.86591
Η	-1.04511	-0.26836	2.85149	Н	2.52144	-2.40090	2.78139
Η	-1.74815	-1.35594	4.06363	Н	0.05598	-2.57260	3.17968
Н	-2.58060	0.14360	3.63084	Ν	-0.43649	-0.91825	2.04110
				Н	0.74360	-1.07144	3.78765
				Η	-0.07074	-0.35641	1.27935
	pound 5.26			С	-1.78397	-1.06795	2.19782
This	structure was	assigned as in	ncorrect.	0	-2.27303	-1.72473	3.11483
	YP/6-31g(d)			С	-2.66039	-0.42422	1.11657
SMD) implicit so	lvation in t	oluene was	С	-3.70476	0.50201	1.76916
used.				Η	-2.03362	0.16393	0.43422
				С	-3.10017	1.73412	2.45013
Elect	ronic Energy	y: -1476.974	02529 har-	Η	-4.26007	-0.08988	2.50658
tree.				H H	-4.42662	0.82449	1.00771
Free Energy: -1476.328544 hartree.					-3.88180	2.35958	2.89638
~				Н	-2.54361	2.35514	1.73693
C	-3.96248	-1.20260	-1.03219	Н	-2.41063	1.44504	3.25153
С	-3.33322	-1.57657	0.32399	Η	-4.74669	-1.94140	-1.24516

Η	-4.47791	-0.23925	-0.95633	Η	-0.28752	3.41937	-2.09866
Η	-3.65283	-1.26436	-3.15701	Η	1.45048	3.68077	-2.00304
Η	-2.45989	-2.16292	-2.24364	С	0.28596	5.09395	-0.86267
Η	-0.11512	0.72542	-2.42323	С	-0.51951	0.69337	0.93893
Η	-3.91661	2.85970	-3.08628	Η	0.45197	0.43149	1.36840
Η	-3.35214	2.28185	-1.50879	С	-1.23732	-0.59953	0.47780
Н	-4.59415	1.38318	-2.39746	Η	-1.11261	1.09569	1.77334
С	4.09178	1.17188	0.49550	С	-0.49777	-1.38592	-0.63598
С	2.73232	2.02627	-2.10967	Ο	-2.55052	-0.26636	0.00456
С	1.52008	2.96672	0.62843	Η	-1.32342	-1.25204	1.35995
Н	1.80715	2.22976	-2.65997	Si	-3.98564	-0.14693	0.87078
Н	3.27611	1.24414	-2.65203	С	0.91534	-1.81804	-0.18017
Н	3.34996	2.93140	-2.15551	Н	-0.37745	-0.68708	-1.47761
Н	3.99356	0.86740	1.54334	С	-1.33580	-2.57610	-1.16200
Н	4.74573	2.05212	0.46521	Н	-0.87189	-2.94765	-2.08491
Н	4.61149	0.36504	-0.03517	Н	-2.31988	-2.19665	-1.45244
С	2.39545	4.24050	0.59199	С	-1.51689	-3.75450	-0.19584
C	1.27260	2.58267	2.10332	Н	-1.98037	-3.45000	0.74952
C	0.16747	3.27270	-0.04967	Н	-0.56667	-4.24339	0.04943
H	0.77609	3.40919	2.63191	Н	-2.16620	-4.51729	-0.64294
Н	2.20898	2.37448	2.63539	Н	0.84309	-2.45460	0.71294
Н	0.62853	1.70229	2.19988	Н	1.48138	-0.93578	0.13132
Н	2.58821	4.58402	-0.43168	С	1.73298	-2.55605	-1.25209
Н	3.36380	4.09139	1.08498	Č	3.20665	-2.77542	-0.86804
Н	1.88712	5.06102	1.11799	Ĥ	1.29586	-3.54136	-1.45685
Н	0.29671	3.60419	-1.08741	Н	1.69267	-2.00076	-2.20132
Н	-0.35424	4.07853	0.48675	Н	3.28645	-3.20769	0.13258
Н	-0.49129	2.39762	-0.06065	N	3.99458	-1.54798	-0.85234
	0.17125	2.39102	0.00002	H	3.66926	-3.47652	-1.57416
				Н	4.16088	-1.08575	-1.73631
Com	pound 5.26			C	4.45168	-0.94628	0.28355
	structure was	assigned as i	incorrect	õ	4.27473	-1.41928	1.40613
	YP/6-31g(d)	ussigned us i		C	5.17871	0.39313	0.08451
SME		lvation in	toluene was	C	6.53897	0.37077	0.80672
used	-	ivation in	toruene wus	Н	5.35515	0.55810	-0.98908
useu	•			C	7.53158	-0.64677	0.23721
Elect	tronic Energy	v· -1476 984	161226 har-	H	6.36113	0.15777	1.86738
tree.	Little Ellerg.	y. 11/0.90	101220 Hui	Н	6.97532	1.37675	0.75087
	Energy: -147	6 344128 har	tree	Н	8.48874	-0.59873	0.76967
1100	Energy: 117	0.5 TT20 Hu		Н	7.73505	-0.45904	-0.82517
С	2.99779	1.73115	-0.22321	Н	7.15606	-1.67259	0.33064
C C	4.26821	1.52644	0.61531	Н	2.55533	0.75775	-0.45960
C	1.91477	2.58314	0.47086	Н	3.26371	2.18284	-1.18955
Н	4.84520	2.46012	0.65466	Н	1.74060	2.17913	1.47457
H	3.99596	1.27959	1.64962	Н	2.29366	3.60394	0.61631
C	0.62067	2.61573	-0.32395	Н	-1.27098	1.85462	-0.76536
C	0.52519	3.67506	-1.40775	Н	-0.66240	5.14739	-0.31521
C	-0.39525	1.75811	-0.12385	Н	0.24676	5.82418	-1.68030
C	-0.57545	1./3011	-0.12303	11	0.270/0	J.02710	-1.00030

Η	1.08306	5.40879	-0.17875	С	-2.77020	-11.64240	-3.47840
С	-4.31077	-1.73733	1.84321	Η	-4.78720	-12.29320	-3.76930
С	-3.93209	1.28265	2.11184	С	-4.91640	-10.28680	-3.09810
С	-5.33435	0.15449	-0.45953	Н	-5.83110	-9.96870	-3.60000
Η	-3.63531	2.23041	1.64793	Н	-4.28390	-9.40110	-3.03320
Н	-3.22636	1.07851	2.92694	C	-5.29470	-10.74680	-1.68140
Н	-4.91429	1.43644	2.57808	H	-5.81230	-9.95190	-1.14370
Н	-4.42720	-2.61300	1.19463	Н	-4.41980	-11.02050	-1.09220
Н	-5.22553	-1.64607	2.44303	Н	-5.96010	-11.61010	-1.71040
H	-3.49561	-1.95280	2.54576	H	-2.62310	-11.31180	-2.45110
C	-5.31956	-0.97990	-1.50435	Н	-2.08920	-11.02520	-4.05880
C	-5.07919	1.49619	-1.17804	C	-2.37340	-13.13220	-3.55040
C	-6.72435	0.20027	0.21133	C C	-0.85730	-13.35760	-3.60270
С Н				С Н			
	-4.10067	1.51288	-1.67191		-2.79120	-13.65500	-2.68930
Н	-5.12049	2.34766	-0.48746	Н	-2.82340	-13.60590	-4.42180
H	-5.84142	1.67039	-1.95251	Н	-0.37510	-12.92130	-2.72590
Н	-5.48529	-1.96511	-1.05046	N	-0.31110	-12.76620	-4.81360
Η	-4.36842	-1.01822	-2.04667	Η	-0.63180	-14.42530	-3.59320
Н	-6.11683	-0.82974	-2.24813	Η	-0.96510	-12.32970	-5.44740
Н	-6.97851	-0.74670	0.70379	С	0.99170	-12.69800	-5.09840
Η	-7.50576	0.39361	-0.53852	0	1.85550	-13.18360	-4.37080
Η	-6.79724	0.99655	0.96274	С	1.37830	-11.95080	-6.38590
				С	2.32620	-12.79620	-7.26820
				Η	0.47300	-11.77730	-6.96780
Com	pound 5.27			С	1.68530	-14.07130	-7.84280
		s assigned as c	orrect.	Н	3.21860	-13.06480	-6.70000
		e		Н	2.67750	-12.18790	-8.10190
Mole	ecular Mecha	anics (OPLS-	-2005), gas	Н	2.38710	-14.59850	-8.48940
phas			, <u> </u>	Н	0.80050	-13.83830	-8.43500
1	gy: -167.631	134 kJ		Н	1.38800	-14.76310	-7.05380
21101	BJ: 107.001	19 T R0.		Н	0.52850	-10.01610	-4.55940
С	1.03870	-9.56160	-5.40960	Н	1.61270	-8.73770	-4.98340
C	2.01250	-10.57890	-6.04280	Н	0.00730	-9.57120	-7.32530
C	0.02060	-8.97940	-6.40990	Н	0.33690	-7.98450	-6.72440
H	2.45300	-10.13560	-6.93630	Н	-2.63640	-6.39770	-5.92310
H	2.84680	-10.74020	-5.35740	Н	-1.94100	-5.76780	-4.43270
C II				Н			
	-1.39220	-8.90270	-5.85010		-0.89800	-6.13010	-5.80240
C	-1.60190	-7.89530	-4.72780	C	-5.55980	-14.32860	-6.22680
C	-2.36600	-9.68680	-6.35440	C	-5.53510	-12.17490	-8.45760
Н	-0.75090	-7.93440	-4.04760	C	-3.14460	-14.16210	-8.20960
Н	-2.46050	-8.17130	-4.11870	Н	-6.31420	-11.61870	-7.93910
С	-1.77820	-6.46600	-5.25400	Η	-6.02390	-12.81510	-9.19060
С	-3.83890	-9.71690	-5.97610	Η	-4.92850	-11.45490	-9.00510
С	-4.33810	-11.09100	-5.46740	Η	-4.96490	-14.87100	-5.49320
С	-4.22030	-11.37690	-3.94310	Η	-6.06580	-15.06620	-6.84820
Ο	-3.69660	-12.11280	-6.21420	Η	-6.32300	-13.77520	-5.68220
Н	-5.40620	-11.12710	-5.69130	С	-2.23070	-13.17270	-8.95210
Si	-4.48090	-13.18100	-7.26030	С	-3.82390	-15.10430	-9.21780

С	-2.30870	-14.98410	-7.21480	Η	-0.15440	-12.37750	-9.06000
Н	-3.08920	-15.68760	-9.77360	Η	-0.96660	-13.92220	-7.66620
Н	-4.41800	-14.55040	-9.94520	Н	-2.58150	-14.18590	-7.13240
Η	-4.49020	-15.80850	-8.71840	С	-1.10320	-14.33650	-5.56050
Н	-1.73280	-12.49700	-8.25610	C	0.43170	-14.45800	-5.50690
Н	-2.79320	-12.56000	-9.65710	Н	-1.51400	-15.34390	-5.48260
H	-1.45630	-13.69250	-9.51650	Н	-1.45920	-13.81450	-4.67260
п Н							
	-1.81970	-14.34110	-6.48470	H	0.72900	-14.96770	-4.58790
Н	-1.52780	-15.55160	-7.72180	N	1.11070	-13.16980	-5.59600
Н	-2.92490	-15.69460	-6.66330	Η	0.78190	-15.08680	-6.32580
Η	-4.11120	-8.91160	-5.29830	Н	1.46650	-12.89300	-6.49710
Η	-4.37300	-9.49030	-6.89920	С	1.32560	-12.34720	-4.56170
Η	-2.10820	-10.37510	-7.14550	Ο	0.90980	-12.58900	-3.43040
				С	2.15090	-11.07710	-4.84400
				С	3.26860	-10.84990	-3.79840
				Н	2.64560	-11.22310	-5.80520
Com	pound 5.27			C	4.38710	-11.90450	-3.82920
		assigned as in	ncorrect	H	2.83900	-10.81920	-2.79570
1 1115	structure was	ussigned us n		Н	3.71580	-9.86890	-3.96070
Molo	oular Maah	anics (OPLS-	2005) and	Н	5.15890	-11.66890	-3.09600
		alles (OPLS-	-2005), gas				
phase		0.041 T		Н	4.86410	-11.95050	-4.80830
Energ	gy: -164.6190	J34 KJ.		Н	4.00630	-12.89860	-3.59170
				Η	0.08510	-10.13500	-3.17920
С	0.55420	-9.31970	-3.72790	Н	1.31260	-8.92470	-3.05140
С	1.24500	-9.83430	-5.01090	Н	-0.86630	-7.81880	-3.06440
С	-0.47510	-8.20620	-4.00580	Η	0.04210	-7.37060	-4.47840
Н	0.49020	-10.06240	-5.76310	Η	-1.23750	-8.48350	-7.63350
Η	1.83270	-9.02250	-5.44030	Η	-1.57300	-6.76470	-7.81370
С	-1.66170	-8.62490	-4.87070	Н	-0.19050	-7.29680	-6.86290
Ċ	-2.11570	-7.56510	-5.86470	С	-4.88550	-14.83650	-5.31930
Č	-2.25870	-9.82840	-4.73450	Č	-6.45440	-12.24560	-4.69310
Н	-2.10300	-6.59390	-5.36860	C	-6.78160	-13.62090	-7.47530
Н	-3.15360	-7.71830	-6.15570	H	-6.80510	-11.28850	-5.07680
					-5.78770		
C	-1.22620	-7.52540	-7.11420	H		-12.03930	-3.85730
C	-3.40990	-10.38800	-5.55370	Н	-7.31900	-12.77840	-4.30050
C	-3.19580	-11.86800	-5.93490	Н	-5.67370	-15.45930	-4.89920
С	-1.91780	-12.16820	-6.76700	Η	-4.16690	-14.63760	-4.52600
Ο	-4.32040	-12.31340	-6.67020	Η	-4.37770	-15.42480	-6.08160
Η	-3.14890	-12.42770	-5.00060	С	-7.95040	-14.47810	-6.96030
Si	-5.58560	-13.23880	-6.03920	С	-6.01470	-14.38190	-8.57010
С	-1.65150	-13.69160	-6.85220	С	-7.31410	-12.29530	-8.04500
Η	-1.07680	-11.71470	-6.24740	Η	-6.65050	-14.59340	-9.43000
С	-1.98010	-11.53720	-8.17780	Н	-5.63230	-15.33440	-8.20230
Ĥ	-2.40660	-10.53800	-8.12180	Н	-5.16000	-13.80370	-8.92540
Н	-2.66480	-12.10810	-8.80660	Н	-8.50790	-13.96270	-6.17760
C	-0.61150	-11.40830	-8.86560	Н	-7.59910	-15.42280	-6.54450
Н	-0.71340	-10.90060	-9.82500	Н	-8.65220	-14.71370	-7.76060
H	0.07960	-10.82390	-8.25770	Н	-7.87150	-11.73320	-7.29510
11	0.07900	-10.62370	-0.23770	11	-7.07130	-11./3320	-1.29510

Η	-7.97980	-12.46270	-8.89190	Η	0.33774	-3.38025	-0.65108
Н	-6.49710	-11.65840	-8.38790	Η	-0.40569	-1.86811	-1.16121
Н	-4.31030	-10.30060	-4.94680	Н	-2.09437	-3.61435	-0.73140
Н	-3.59520	-9.79610	-6.44620	N	-2.58517	-2.07478	0.52805
Н	-1.90000	-10.50450	-3.97270	H	-1.50808	-3.80428	0.92996
п	-1.90000	-10.30430	-3.97270				
				Н	-2.53160	-1.70906	1.46963
				С	-3.58625	-1.63992	-0.28412
				0	-3.71978	-2.04241	-1.43301
Com	pound 5.27			С	-4.50988	-0.58594	0.32825
This	structure was	assigned as i	ncorrect.	С	-5.89471	-0.66085	-0.31552
M06	-2X/6-31g(d)	-		Η	-4.61001	-0.80458	1.40137
) implicit so	lvation in t	oluene was	С	-6.63927	-1.94261	0.04453
used				Ĥ	-5.78082	-0.60353	-1.40222
uscu	•			Н	-6.47663	0.21381	0.00181
Elast	mania Enance	1476 205	15225 har				-0.42533
	tronic Energy	y: -14/0.385	15555 nar-	Н	-7.62725	-1.97177	
tree.				Н	-6.78166	-2.02871	1.12797
Free	Energy: -147	5.739584 har	tree.	Н	-6.08240	-2.82074	-0.29777
				Н	-2.98567	0.49574	-1.74654
С	-3.59404	1.25307	-1.23621	Η	-4.54108	1.31763	-1.78546
С	-3.85631	0.80451	0.20044	Η	-2.70785	2.84907	-2.37778
С	-2.86924	2.60694	-1.32150	Н	-3.51628	3.39364	-0.91096
H	-2.90499	0.79510	0.75013	Н	-2.02644	5.23759	0.00096
Н	-4.50334	1.53619	0.70421	Н	-1.34595	5.25961	1.63587
C	-1.54593	2.59443	-0.57947	Н	-0.29585	4.96348	0.23525
C	-1.53385	3.26119	0.77767	C	3.34870	-2.06958	-1.40061
C	-0.47596	2.00923	-1.13048	C	3.93788	0.78501	-2.28573
Н	-0.77536	2.81633	1.43057	С	5.31396	-0.33264	0.28556
Η	-2.50288	3.09754	1.26639	Н	4.09498	1.83045	-1.99924
С	-1.28632	4.76910	0.65914	Η	3.04510	0.74317	-2.92155
С	0.88419	1.83068	-0.51891	Η	4.78743	0.48072	-2.90927
С	1.19294	0.35579	-0.21743	Η	2.35066	-2.10999	-1.85409
С	0.28013	-0.27514	0.84463	Н	3.38107	-2.81968	-0.60251
0	2.54259	0.23335	0.21231	Н	4.06221	-2.37660	-2.17465
H	1.04569	-0.20277	-1.15876	C	5.00084	-0.98493	1.63815
Si	3.75603	-0.33768	-0.78889	C	5.77424	1.11292	0.51303
C		-1.80306		C C	6.42940		
	0.45528		0.84244			-1.11996	-0.41421
Н	-0.75358	-0.03742	0.55180	Н	6.64883	1.13801	1.17840
С	0.54166	0.29299	2.24677	Η	4.98705	1.71922	0.97677
Η	0.78912	1.35923	2.19143	Н	6.06388	1.59743	-0.42722
Η	1.42809	-0.19797	2.66695	Η	4.66025	-2.02165	1.52227
С	-0.65220	0.11308	3.18168	Η	4.22092	-0.43545	2.17574
Н	-0.43735	0.49336	4.18539	Η	5.89968	-1.00541	2.27069
Н	-0.92962	-0.94259	3.28938	Н	6.15840	-2.17331	-0.55423
Н	-1.52871	0.65463	2.80335	Н	7.35036	-1.09475	0.18514
Н	0.10810	-2.21523	1.80046	Н	6.67255	-0.70246	-1.39958
Н	1.53326	-2.00721	0.81170	Н	1.65231	2.18110	-1.22088
C	-0.26673	-2.53520	-0.29965	Н	1.00513	2.42432	0.39195
С	-1.63268	-3.08949	0.10774	Η	-0.59512	1.57627	-2.12726

				C	-3.71505	-1.54496	-0.35743
C	1 5 27			0	-3.75431	-1.87691	-1.54263
	pound 5.27		,	C	-4.66148	-0.48883	0.23726
	structure was	assigned as i	ncorrect.	C	-6.02659	-0.52162	-0.47011
	P/6-31g(d)	1 <i>.</i>	1	Н	-4.82135	-0.73746	1.29725
	implicit so	Ivation in 1	toluene was	C H	-6.82919	-1.79742	-0.19868
used.					-5.86978	-0.41720	-1.54841
				Η	-6.60618	0.35160	-0.14098
	ronic Energy	y: -1476.981	21826 har-	Η	-7.80322	-1.76235	-0.70090
tree.				Η	-7.01570	-1.93572	0.87452
Free 1	Energy: -147	6.340518 har	tree.	Η	-6.30079	-2.68348	-0.56752
				Η	-3.02594	0.69605	-1.71416
С	-3.61756	1.44758	-1.17926	Н	-4.52354	1.60572	-1.77865
С	-3.99545	0.91324	0.20921	Н	-2.65465	3.10573	-2.16159
С	-2.82774	2.77359	-1.12933	Н	-3.45644	3.54520	-0.66585
Н	-3.09278	0.87698	0.83234	Н	-2.02270	5.42573	-0.06199
Н	-4.68041	1.62000	0.69925	Η	-1.17214	5.62707	1.47745
С	-1.49818	2.68589	-0.38027	Η	-0.26746	5.21195	0.00927
С	-1.38545	3.54058	0.86585	С	3.63161	-2.18231	-1.47915
С	-0.51863	1.89372	-0.84831	С	3.77117	0.72371	-2.39360
Н	-0.55564	3.20918	1.49858	С	5.40864	-0.15166	0.14408
Н	-2.30071	3.41784	1.46279	Н	3.92865	1.78113	-2.15161
С	-1.20272	5.03702	0.55350	Η	2.81415	0.64525	-2.92531
С	0.85343	1.64080	-0.28166	Н	4.55130	0.43007	-3.10803
С	1.16971	0.13704	-0.10301	Н	2.69104	-2.32652	-2.02619
С	0.32958	-0.55612	0.99847	Н	3.65065	-2.91103	-0.66021
0	2.56193	-0.02021	0.19655	Н	4.44224	-2.44274	-2.17201
Н	0.94014	-0.35724	-1.06022	С	5.42954	-1.10818	1.35480
Si	3.80391	-0.39907	-0.87055	С	5.48670	1.30149	0.65770
С	0.39215	-2.09583	0.85272	С	6.63903	-0.44013	-0.74331
Н	-0.70702	-0.23331	0.83368	Н	6.40262	1.45106	1.24890
С	0.74914	-0.11995	2.42042	Н	4.63416	1.55031	1.29978
Н	1.02437	0.94134	2.42318	Н	5.50962	2.02969	-0.16310
Н	1.65757	-0.66330	2.70802	Н	5.41424	-2.16183	1.04879
С	-0.33862	-0.33851	3.47825	Н	4.57473	-0.94060	2.01991
Н	0.01567	-0.04536	4.47403	Н	6.34417	-0.95592	1.94719
Н	-0.64902	-1.38891	3.54425	Н	6.64516	-1.47049	-1.12155
Н	-1.23228	0.26115	3.26070	Н	7.56687	-0.30333	-0.16821
Н	0.11244	-2.56645	1.80547	Н	6.69485	0.23294	-1.60834
Н	1.44307	-2.36693	0.69317	Н	1.60537	2.03836	-0.97745
C	-0.47199	-2.71066	-0.26924	Н	1.01216	2.16412	0.66599
Č	-1.88860	-3.14711	0.14129	Н	-0.72122	1.34942	-1.77460
H	0.02489	-3.61393	-0.64936			1.5 17 12	1.,,,100
Н	-0.54995	-2.02665	-1.12363				
H	-2.35426	-3.67627	-0.69448	Corr	pound 5.27		
N	-2.80918	-2.07689	0.51516		structure was	assigned as o	correct
H	-1.82760	-3.84350	0.98720		YP/6-31g(d)	abbiglied us (
H	-2.84136	-1.78355	1.48179		11/0 J16(u)		
11	2.0 1150	1.70555	1.101//				

SME used	1	olvation in t	toluene was	C H	-6.29034 -5.96911	-1.53457 -0.53291	0.29630 -1.59432
uscu				Н	-6.22880	0.55670	-0.23451
Flect	tronic Energ	y: -1476.981	17992 har-	Н	-7.37720	-1.61596	0.17733
tree.	forme Energ	y. 1470.701	117972 Hui	Н	-6.08548	-1.39803	1.36628
	Energy: -147	6.341856 har	tree	Н	-5.85448	-2.49418	-0.00675
1100	Lifergy. 147	0.541050 hdi		Н	-3.78536	3.24004	-1.03739
С	-3.96476	2.40334	-0.35034	Н	-5.02225	2.47943	-0.06444
C	-3.70919	1.09455	-1.11431	Н	-3.37122	3.57937	1.35003
Č	-3.10727	2.60004	0.92500	Н	-3.39644	1.85744	1.67909
H	-4.18164	1.14459	-2.10262	Н	-1.75622	5.32655	1.02403
Н	-2.63130	1.00662	-1.29867	Н	-0.38677	5.72111	-0.02351
C	-1.60449	2.52490	0.70627	Н	-0.12412	4.81551	1.47849
Ċ	-0.99218	3.62681	-0.13971	C	2.95177	-0.73326	-2.40110
Ċ	-0.89149	1.53672	1.27842	Č	3.20627	2.10945	-1.31982
Н	-1.63006	3.81781	-1.01219	С	5.17339	-0.09683	-0.25548
Н	-0.02273	3.31325	-0.53923	Н	3.44775	2.78115	-0.48764
С	-0.80603	4.94726	0.63057	Н	2.18066	2.33227	-1.64093
С	0.59043	1.27681	1.18979	Н	3.86116	2.37566	-2.15968
С	0.97504	-0.05498	0.49303	Н	1.92722	-0.52256	-2.73301
С	0.43705	-1.32882	1.19354	Н	3.02449	-1.81298	-2.22674
Ο	2.40312	-0.13902	0.41970	Н	3.61169	-0.48948	-3.24370
Н	0.55239	-0.02348	-0.52221	С	5.33298	-1.60543	0.02720
Si	3.39858	0.28121	-0.86868	С	5.46028	0.68779	1.04230
С	0.60766	-2.58286	0.30155	С	6.19686	0.32096	-1.33330
Н	-0.63434	-1.15444	1.35583	Η	6.47756	0.47471	1.40336
С	1.08815	-1.56024	2.57755	Н	4.76124	0.41868	1.84212
Η	1.24017	-0.60050	3.08479	Η	5.39219	1.77271	0.89138
Η	2.09013	-1.98263	2.43414	Η	5.17412	-2.21368	-0.87227
С	0.27346	-2.46638	3.50818	Η	4.63127	-1.95297	0.79407
Η	-0.71486	-2.03651	3.71887	Η	6.34927	-1.82314	0.38866
Η	0.78394	-2.59763	4.46985	Η	6.04851	-0.21792	-2.27790
Η	0.11582	-3.46634	3.08680	Η	7.22047	0.10114	-0.99553
Н	0.47060	-3.48064	0.91959	Η	6.15420	1.39531	-1.55176
Η	1.65473	-2.60803	-0.02528	Н	1.09610	2.08049	0.64820
С	-0.29636	-2.73003	-0.93829	Η	1.02519	1.27449	2.19846
С	-1.75967	-3.13733	-0.67831	Н	-1.44304	0.83358	1.90455
Η	0.14000	-3.51589	-1.57033				
Н	-0.29310	-1.81775	-1.54787				
Н	-2.20320	-3.50212	-1.60793		100000 100000 100000 100000 100000 100000 1000000		
Ν	-2.62842	-2.05969	-0.22001		s structure was	assigned as c	correct.
Н	-1.79902	-3.95397	0.05436		XP/6-31g(d)		
Н	-2.56853	-1.76554	0.74380	Gas	phase.		
С	-3.48090	-1.38431	-1.04550				
0	-3.63870	-1.68111	-2.22926		ctronic Energy	r: -1476.959	916371 har-
C	-4.20772	-0.19426	-0.41109	tree.			
C	-5.73321	-0.37511	-0.53491	Free	e Energy: -1476	5.321313 har	tree.
Η	-3.94647	-0.14275	0.65507				

С	-3.89524	2.43214	-0.42930	Н	-4.95889	2.55580	-0.18753
С	-3.65711	1.08856	-1.13645	Н	-3.33492	3.63612	1.26604
С	-3.07685	2.64324	0.86930	Н	-3.40201	1.92195	1.62910
Н	-4.09599	1.11325	-2.14091	Н	-1.54395	5.29244	1.22995
Н	-2.57676	0.96120	-1.27883	Н	-0.19375	5.70690	0.16355
C	-1.57173	2.53968	0.69336	Н	0.07379	4.66782	1.57705
Ċ	-0.91345	3.65937	-0.09277	С	2.96084	-0.88030	-2.39037
Č	-0.89470	1.52130	1.25356	Č	3.08808	2.02788	-1.44475
Ĥ	-1.56245	3.95216	-0.92793	Č	5.14680	-0.04881	-0.28103
Н	0.02330	3.31897	-0.54576	Н	3.29555	2.73702	-0.63556
C	-0.62832	4.90389	0.76993	Н	2.05370	2.18920	-1.77304
C	0.58509	1.24335	1.19458	Н	3.73641	2.28873	-2.29033
C	0.96548	-0.08855	0.49785	Н	1.91152	-0.77531	-2.69159
C	0.45194	-1.36145	1.21712	Н	3.13566	-1.93952	-2.17066
0	2.39017	-0.16636	0.40017	Н	3.57369	-0.61405	-3.26017
Н	0.52224	-0.06461	-0.50906	C	5.33064	-1.52046	0.14754
Si	3.36239	0.23073	-0.91180	C	5.42142	0.86256	0.93466
C	0.59430	-2.61667	0.32250	C	6.15764	0.28138	-1.40075
Н	-0.61304	-1.18934	1.42269	Н	6.44070	0.28138	1.31373
C	1.15555	-1.59064	2.57540	H	4.72292	0.66062	1.75410
н Н	1.32905	-0.62981	3.07333	H	5.33884	1.92566	0.67675
H	2.15076	-2.01250	2.39066	H	5.17238	-2.21381	-0.68766
C	0.37424	-2.49487	3.53724	H	4.63669	-1.79590	0.94937
С Н	-0.60383		3.78310	п Н	4.03009	-1.68569	0.94937 0.51870
		-2.06120		п Н			
H H	0.92016	-2.62803	4.47819		6.01832	-0.35475	-2.28376
	0.19721	-3.49303	3.12041	Н	7.18604	0.12233	-1.04545
Н	0.45079	-3.51196	0.94277	Н	6.08598	1.32660	-1.72612
H	1.63849	-2.65466	-0.01256	Н	1.10978	2.04324	0.66567
C	-0.32279	-2.75289	-0.90912	Н	1.00249	1.23224	2.21054
C	-1.79346	-3.12227	-0.63534	Н	-1.47632	0.80961	1.84189
Н	0.09156	-3.55463	-1.53591				
Н	-0.30206	-1.84793	-1.52931	a	1 5 35		
Н	-2.25594	-3.48048	-1.55812		pound 5.27	· •	
N	-2.63534	-2.02066	-0.18657		structure was	assigned as	correct.
Н	-1.84474	-3.93465	0.10235		5-2X/6-31g(d)		
H	-2.51533	-1.66594	0.74995		D implicit so	lvation in	toluene was
C	-3.53350	-1.39086	-1.00550	usec	l.		
0	-3.75419	-1.75544	-2.15675				
С	-4.21824	-0.15833	-0.40540		tronic Energy	r: -1476.38.	318435 har-
С	-5.74675	-0.28119	-0.54449	tree.			
Η	-3.96507	-0.09039	0.66270	Free	Energy: -1475	5.740345 har	tree.
С	-6.35536	-1.40382	0.30231				
Η	-5.97080	-0.45409	-1.60365	С	3.15491	0.23549	-1.79503
Η	-6.21052	0.67466	-0.26975	С	2.55278	-1.05962	-1.24897
Н	-7.44272	-1.44727	0.17399	С	2.14867	1.01847	-2.65698
Н	-6.15372	-1.25509	1.37101	Η	1.56347	-0.84291	-0.82333
Н	-5.95001	-2.38134	0.01697	Η	2.38985	-1.75938	-2.07992
Н	-3.65907	3.23688	-1.13754	С	1.14633	1.80922	-1.84488

С	1.65061	3.13523	-1.31763	С	-4.44471	-0.59250	1.35901
С	-0.10329	1.36792	-1.65663	С	-4.47446	0.00205	-1.64873
Η	2.71937	3.04712	-1.08484	С	-3.05397	-2.57933	-0.60946
Η	1.15249	3.39754	-0.37780	Н	-3.95464	-0.08762	-2.60920
С	1.44921	4.26469	-2.33360	Н	-4.64388	1.06976	-1.46360
С	-1.23269	2.09518	-0.97696	Н	-5.46141	-0.46286	-1.75519
C	-1.87349	1.36098	0.21429	Н	-3.86936	-0.96875	2.21184
Č	-1.14205	1.47529	1.56166	Н	-5.39458	-1.13938	1.32982
Õ	-2.00779	-0.01752	-0.11083	Н	-4.68580	0.45820	1.56140
Ĥ	-2.87230	1.80198	0.36071	C	-2.00881	-2.63227	-1.73158
Si	-3.49129	-0.77545	-0.24997	Č	-4.30596	-3.35222	-1.04357
C	0.23484	0.79671	1.55846	C	-2.46676	-3.22376	0.65325
H	-1.78364	0.91666	2.26408	Н	-4.06272	-4.41011	-1.21574
C	-1.05018	2.91756	2.07750	Н	-4.72241	-2.95655	-1.97756
H	-0.38782	3.49948	1.42281	H	-5.09591	-3.32009	-0.28238
Н	-0.55418	2.89540	3.05575	H	-1.08598	-2.11825	-1.44078
C	-2.39213	3.63390	2.21807	H	-2.37578	-2.16676	-2.65480
С Н	-2.39213	4.59066	2.73553	п Н	-2.37378	-3.67576	-2.03480
н Н	-2.27213	3.02931		п Н			
			2.79588	п Н	-1.60021	-2.66239	1.02535
Н	-2.84916	3.84605	1.24578		-2.13360	-4.24926	0.43997
Н	1.00604	1.50528	1.22129	Н	-3.20505	-3.28002	1.46178
Н	0.22717	-0.01946	0.82933	Н	-0.93610	3.10303	-0.66654
C	0.60815	0.23557	2.93229	Н	-2.02567	2.22846	-1.72740
C	2.06204	-0.22613	3.02189	Η	-0.38239	0.40849	-2.09357
Н	-0.06222	-0.60432	3.16566				
Н	0.44378	0.98492	3.71705				
Н	2.74407	0.62272	2.92956		pound 5.27		
Ν	2.40261	-1.13444	1.94128		structure was a	assigned as i	ncorrect.
Н	2.25141	-0.70121	3.99220	B3L	YP/6-31g(d)		
Н	1.73172	-1.85221	1.69768	Gas	phase.		
С	3.42449	-0.89803	1.07502				
0	4.26006	-0.02096	1.25803	Elec	tronic Energy	: -1476.958	385877 har-
С	3.41328	-1.76719	-0.17935	tree.			
С	4.83820	-2.05408	-0.65014	Free	Energy: -1476	.319891 har	tree.
Η	2.92273	-2.72020	0.06549				
С	5.61551	-2.92469	0.33213	С	-3.74778	1.50249	-1.20026
Η	5.36048	-1.10143	-0.78284	С	-3.99989	0.89287	0.18811
Н	4.79275	-2.54188	-1.63239	С	-3.00627	2.84834	-1.12091
Н	6.62800	-3.12568	-0.03139	Н	-3.06840	0.93024	0.76680
Н	5.11888	-3.88934	0.48792	Н	-4.72056	1.52341	0.72869
Н	5.70408	-2.42656	1.30319	С	-1.55864	2.82140	-0.63997
Н	3.50434	0.86101	-0.96425	Ċ	-1.10454	4.08524	0.06759
Н	4.03821	-0.00112	-2.39962	Č	-0.75019	1.77430	-0.86446
Н	1.62625	0.32059	-3.32354	H	-1.52487	4.95365	-0.46013
Н	2.70153	1.71471	-3.30216	Н	-0.01655	4.19324	0.00848
Н	0.38414	4.41877	-2.53676	C	-1.53847	4.14747	1.54387
Н				C	0.70162	1.62945	-0.47586
	1 86712	5 /0 / 56					
Н	1.86712 1.93645	5.20756 4.03029	-1.96659 -3.28621	C	1.09318	0.16948	-0.16764

С	0.30780	-0.46322	1.00727	Н	2.55195	-2.04973	-2.25749
0	2.49359	0.10026	0.11500	Η	3.41556	-2.78560	-0.90169
Н	0.87113	-0.42018	-1.07140	С	6.56460	-0.56913	-0.66003
Si	3.74793	-0.28761	-0.93162	С	5.17647	-1.23661	1.32886
С	0.45144	-2.00321	0.99024	С	5.46961	1.19303	0.76478
Η	-0.74838	-0.21488	0.83920	Н	6.05921	-1.18999	1.98364
С	0.72362	0.12712	2.37207	Н	5.09765	-2.26835	0.96432
Н	0.89266	1.20617	2.27285	Н	4.29382	-1.02929	1.94370
Н	1.69016	-0.29879	2.66780	Н	6.71812	0.13516	-1.48698
С	-0.30844	-0.09750	3.48453	Н	6.51196	-1.57906	-1.08556
Н	0.03341	0.33553	4.43173	Н	7.46437	-0.52944	-0.02907
Η	-1.26775	0.37345	3.23343	Н	5.60892	1.94978	-0.01700
Η	-0.49777	-1.16249	3.66593	Η	6.35074	1.23694	1.42176
Η	0.16657	-2.41125	1.96993	Н	4.59461	1.48042	1.35797
Η	1.51838	-2.23288	0.87787	Н	1.34546	1.96379	-1.30266
С	-0.35255	-2.73875	-0.10329	Н	0.96207	2.26001	0.38019
С	-1.75734	-3.21124	0.30446	Η	-1.15837	0.91978	-1.40529
Η	0.19486	-3.64019	-0.41086				
Н	-0.44947	-2.12323	-1.00505				
Н	-2.18654	-3.78959	-0.52002	Con	npound 5.28		
Ν	-2.71932	-2.16131	0.63496		s structure was	assigned as i	ncorrect.
Н	-1.68744	-3.87134	1.17749			U	
Н	-2.90354	-1.96124	1.60699	Mol	ecular Mecha	inics (OPLS	-2005), gas
С	-3.48066	-1.54277	-0.31721	phas		× ×	<i>,, C</i>
0	-3.31758	-1.75941	-1.51705	-	rgy: -198.8634	34 kJ.	
С	-4.53756	-0.56153	0.21101		0,		
С	-5.85445	-0.72960	-0.56760	0	-1.41810	-5.11170	15.46650
Н	-4.73431	-0.80602	1.26634	С	-1.70960	-4.28980	14.35160
С	-6.53262	-2.08442	-0.33974	С	-3.05840	-3.60070	14.57180
Η	-5.64645	-0.60393	-1.63501	С	-1.63110	-5.18730	13.08890
Η	-6.53657	0.07917	-0.27190	Η	-0.93670	-3.52330	14.26800
Н	-7.47860	-2.14652	-0.88923	Si	-0.53730	-4.62040	16.81970
Н	-6.75427					1.02010	10.01770
тт	-0./542/	-2.24930	0.72262	Η	-2.35460	-5.98220	13.25650
Н	-5.89564	-2.24930 -2.90611	0.72262 -0.68529	H C			
н Н					-2.35460	-5.98220	13.25650
	-5.89564	-2.90611	-0.68529	С	-2.35460 -0.24870	-5.98220 -5.86840	13.25650 12.98280
Н	-5.89564 -3.20233	-2.90611 0.79171	-0.68529 -1.82926	C C	-2.35460 -0.24870 -3.13730	-5.98220 -5.86840 -2.25770	13.25650 12.98280 14.57910
H H	-5.89564 -3.20233 -4.70654	-2.90611 0.79171 1.67109	-0.68529 -1.82926 -1.70658	C C C	-2.35460 -0.24870 -3.13730 -4.23150	-5.98220 -5.86840 -2.25770 -4.53900	13.25650 12.98280 14.57910 14.87320
H H H	-5.89564 -3.20233 -4.70654 -3.03181	-2.90611 0.79171 1.67109 3.33051	-0.68529 -1.82926 -1.70658 -2.11071	C C C C	-2.35460 -0.24870 -3.13730 -4.23150 -0.51040	-5.98220 -5.86840 -2.25770 -4.53900 -6.08900	13.25650 12.98280 14.57910 14.87320 18.03640
H H H H	-5.89564 -3.20233 -4.70654 -3.03181 -3.57829	-2.90611 0.79171 1.67109 3.33051 3.52119	-0.68529 -1.82926 -1.70658 -2.11071 -0.46500	C C C C C	-2.35460 -0.24870 -3.13730 -4.23150 -0.51040 1.21030	-5.98220 -5.86840 -2.25770 -4.53900 -6.08900 -4.18430	13.25650 12.98280 14.57910 14.87320 18.03640 16.26200
H H H H	-5.89564 -3.20233 -4.70654 -3.03181 -3.57829 -1.08009	-2.90611 0.79171 1.67109 3.33051 3.52119 3.33589	-0.68529 -1.82926 -1.70658 -2.11071 -0.46500 2.12018	C C C C C C C	-2.35460 -0.24870 -3.13730 -4.23150 -0.51040 1.21030 -1.37780	-5.98220 -5.86840 -2.25770 -4.53900 -6.08900 -4.18430 -3.12510	13.25650 12.98280 14.57910 14.87320 18.03640 16.26200 17.60110
H H H H H	-5.89564 -3.20233 -4.70654 -3.03181 -3.57829 -1.08009 -1.24024	-2.90611 0.79171 1.67109 3.33051 3.52119 3.33589 5.09852	-0.68529 -1.82926 -1.70658 -2.11071 -0.46500 2.12018 2.00015	C C C C C C H	-2.35460 -0.24870 -3.13730 -4.23150 -0.51040 1.21030 -1.37780 1.84190	-5.98220 -5.86840 -2.25770 -4.53900 -6.08900 -4.18430 -3.12510 -3.91680	13.25650 12.98280 14.57910 14.87320 18.03640 16.26200 17.60110 17.10780
H H H H H H	-5.89564 -3.20233 -4.70654 -3.03181 -3.57829 -1.08009 -1.24024 -2.62576	-2.90611 0.79171 1.67109 3.33051 3.52119 3.33589 5.09852 4.05474	-0.68529 -1.82926 -1.70658 -2.11071 -0.46500 2.12018 2.00015 1.64787	C C C C C C H H	-2.35460 -0.24870 -3.13730 -4.23150 -0.51040 1.21030 -1.37780 1.84190 1.68060	-5.98220 -5.86840 -2.25770 -4.53900 -6.08900 -4.18430 -3.12510 -3.91680 -5.02490	$\begin{array}{c} 13.25650\\ 12.98280\\ 14.57910\\ 14.87320\\ 18.03640\\ 16.26200\\ 17.60110\\ 17.10780\\ 15.75400 \end{array}$
H H H H H H C	-5.89564 -3.20233 -4.70654 -3.03181 -3.57829 -1.08009 -1.24024 -2.62576 3.47897	-2.90611 0.79171 1.67109 3.33051 3.52119 3.33589 5.09852 4.05474 -2.00936	-0.68529 -1.82926 -1.70658 -2.11071 -0.46500 2.12018 2.00015 1.64787 -1.67247	C C C C C C H H H	-2.35460 -0.24870 -3.13730 -4.23150 -0.51040 1.21030 -1.37780 1.84190 1.68060 1.21140	-5.98220 -5.86840 -2.25770 -4.53900 -6.08900 -4.18430 -3.12510 -3.91680 -5.02490 -3.34240	$\begin{array}{c} 13.25650\\ 12.98280\\ 14.57910\\ 14.87320\\ 18.03640\\ 16.26200\\ 17.60110\\ 17.10780\\ 15.75400\\ 15.57170\end{array}$
H H H H H C C	-5.89564 -3.20233 -4.70654 -3.03181 -3.57829 -1.08009 -1.24024 -2.62576 3.47897 3.85588	-2.90611 0.79171 1.67109 3.33051 3.52119 3.33589 5.09852 4.05474 -2.00936 0.94936	-0.68529 -1.82926 -1.70658 -2.11071 -0.46500 2.12018 2.00015 1.64787 -1.67247 -2.36153	C C C C C C H H H H	-2.35460 -0.24870 -3.13730 -4.23150 -0.51040 1.21030 -1.37780 1.84190 1.68060 1.21140 -1.35390	-5.98220 -5.86840 -2.25770 -4.53900 -6.08900 -4.18430 -3.12510 -3.91680 -5.02490 -3.34240 -2.26250	$\begin{array}{c} 13.25650\\ 12.98280\\ 14.57910\\ 14.87320\\ 18.03640\\ 16.26200\\ 17.60110\\ 17.10780\\ 15.75400\\ 15.57170\\ 16.93770\end{array}$
H H H H H C C C C	-5.89564 -3.20233 -4.70654 -3.03181 -3.57829 -1.08009 -1.24024 -2.62576 3.47897 3.85588 5.31063	-2.90611 0.79171 1.67109 3.33051 3.52119 3.33589 5.09852 4.05474 -2.00936 0.94936 -0.22369	-0.68529 -1.82926 -1.70658 -2.11071 -0.46500 2.12018 2.00015 1.64787 -1.67247 -2.36153 0.17193	C C C C C C H H H H H H	-2.35460 -0.24870 -3.13730 -4.23150 -0.51040 1.21030 -1.37780 1.84190 1.68060 1.21140 -1.35390 -0.89440	$\begin{array}{r} -5.98220\\ -5.86840\\ -2.25770\\ -4.53900\\ -6.08900\\ -4.18430\\ -3.12510\\ -3.91680\\ -5.02490\\ -3.34240\\ -2.26250\\ -2.83660\end{array}$	$\begin{array}{c} 13.25650\\ 12.98280\\ 14.57910\\ 14.87320\\ 18.03640\\ 16.26200\\ 17.60110\\ 17.10780\\ 15.75400\\ 15.57170\\ 16.93770\\ 18.53310\end{array}$
H H H H H H C C C H	-5.89564 -3.20233 -4.70654 -3.03181 -3.57829 -1.08009 -1.24024 -2.62576 3.47897 3.85588 5.31063 3.98013	-2.90611 0.79171 1.67109 3.33051 3.52119 3.33589 5.09852 4.05474 -2.00936 0.94936 -0.22369 1.97912	-0.68529 -1.82926 -1.70658 -2.11071 -0.46500 2.12018 2.00015 1.64787 -1.67247 -2.36153 0.17193 -2.00821	C C C C C C H H H H H H H	-2.35460 -0.24870 -3.13730 -4.23150 -0.51040 1.21030 -1.37780 1.84190 1.68060 1.21140 -1.35390 -0.89440 -2.42300	$\begin{array}{r} -5.98220\\ -5.86840\\ -2.25770\\ -4.53900\\ -6.08900\\ -4.18430\\ -3.12510\\ -3.91680\\ -5.02490\\ -3.34240\\ -2.26250\\ -2.83660\\ -3.33630\end{array}$	$\begin{array}{c} 13.25650\\ 12.98280\\ 14.57910\\ 14.87320\\ 18.03640\\ 16.26200\\ 17.60110\\ 17.10780\\ 15.75400\\ 15.57170\\ 16.93770\\ 18.53310\\ 17.82340\end{array}$
H H H H H H C C C H H H	-5.89564 -3.20233 -4.70654 -3.03181 -3.57829 -1.08009 -1.24024 -2.62576 3.47897 3.85588 5.31063 3.98013 2.94888	-2.90611 0.79171 1.67109 3.33051 3.52119 3.33589 5.09852 4.05474 -2.00936 0.94936 -0.22369 1.97912 0.91738	-0.68529 -1.82926 -1.70658 -2.11071 -0.46500 2.12018 2.00015 1.64787 -1.67247 -2.36153 0.17193 -2.00821 -2.97752	C C C C C C H H H H H H H H	-2.35460 -0.24870 -3.13730 -4.23150 -0.51040 1.21030 -1.37780 1.84190 1.68060 1.21140 -1.35390 -0.89440 -2.42300 -4.04580	$\begin{array}{r} -5.98220\\ -5.86840\\ -2.25770\\ -4.53900\\ -6.08900\\ -4.18430\\ -3.12510\\ -3.91680\\ -5.02490\\ -3.34240\\ -2.26250\\ -2.83660\\ -3.33630\\ -1.72250\end{array}$	$\begin{array}{c} 13.25650\\ 12.98280\\ 14.57910\\ 14.87320\\ 18.03640\\ 16.26200\\ 17.60110\\ 17.10780\\ 15.75400\\ 15.57170\\ 16.93770\\ 18.53310\\ 17.82340\\ 14.79700\end{array}$

Η	-3.95820	-5.07170	15.78480	Η	-2.91010	-3.85300	11.95910
Н	-4.28150	-5.30360	14.10160	Н	-3.98310	-6.43140	11.37300
Н	-5.55100	-3.14400	15.82610	Н	-2.46010	-7.31340	11.45830
С	-6.58240	-4.96510	15.72160	Н	-3.30390	-7.18750	9.94000
С	-6.27030	-3.24320	13.81320	Н	-0.16750	-3.98920	11.43080
Õ	-7.66450	-3.03610	14.02180	Н	-0.17330	-6.49660	12.09610
Č	-6.08140	-3.90750	12.43090	Н	0.56080	-5.13930	12.95370
Н	-5.81320	-2.25910	13.74930	Н	-0.06730	-6.51260	13.84360
H	-7.54510	-4.52570	15.98390	C	0.29450	-5.70720	19.29050
п Н	-7.34310 -6.15480	-4.32370	16.64650	С Н	0.29430	-6.52970	20.00540
H	-6.77910	-5.81710	15.07540	Н	1.32400	-5.44860	19.04030
C	-6.68610	-5.32240	12.32220	Н	-0.14450	-4.84900	19.80040
Н	-5.01680	-3.98820	12.24570	C	0.14090	-7.29780	17.34310
С	-6.68190	-2.92270	11.40110	Η	1.17260	-7.08790	17.05940
0	-8.06510	-2.80290	11.72710	Н	0.15060	-8.17330	17.99270
С	-6.52880	-3.28890	9.90110	Н	-0.39860	-7.56770	16.43390
Η	-6.20470	-1.94960	11.52160	С	-1.95750	-6.43490	18.42660
Η	-6.17960	-6.02580	12.97860	Η	-2.44750	-5.59860	18.92630
Η	-6.58880	-5.72740	11.31670	Η	-2.55410	-6.68210	17.54690
Н	-7.74550	-5.32270	12.57980	Н	-1.99630	-7.28960	19.10220
Н	-6.89090	-4.30230	9.73800				
С	-5.05750	-3.25270	9.44880				
C	-7.38460	-2.35890	9.01580				
Ċ	-8.36040	-2.35280	13.01890	Corr	pound 5.28		
		-/. 7)/.00	1 2 0 1 6 9 0		1110111101.1.20		
					1	assigned as a	mbiguous
С	-9.83990	-2.66780	13.24470		structure was	assigned as a	mbiguous.
C C	-9.83990 -8.11490	-2.66780 -0.83510	13.24470 13.13450	This	structure was	C	C
C C H	-9.83990 -8.11490 -7.06680	-2.66780 -0.83510 -0.57590	13.24470 13.13450 13.00370	This Mol	structure was ecular Mecha	C	C
C C H H	-9.83990 -8.11490 -7.06680 -8.43030	-2.66780 -0.83510 -0.57590 -0.48720	13.24470 13.13450 13.00370 14.11820	This Mol phas	ecular Mecha	nics (OPLS	C
C C H H H	-9.83990 -8.11490 -7.06680 -8.43030 -8.69590	-2.66780 -0.83510 -0.57590 -0.48720 -0.31090	13.24470 13.13450 13.00370 14.11820 12.37560	This Mol phas	structure was ecular Mecha	nics (OPLS	C
C C H H H	-9.83990 -8.11490 -7.06680 -8.43030 -8.69590 -10.00200	-2.66780 -0.83510 -0.57590 -0.48720 -0.31090 -3.74270	13.24470 13.13450 13.00370 14.11820 12.37560 13.16220	This Mol phas Ener	ecular Mecha se. rgy: -185.2192	nics (OPLS 20 kJ.	-2005), gas
C C H H H H	-9.83990 -8.11490 -7.06680 -8.43030 -8.69590 -10.00200 -10.45000	-2.66780 -0.83510 -0.57590 -0.48720 -0.31090 -3.74270 -2.16160	13.24470 13.13450 13.00370 14.11820 12.37560 13.16220 12.49660	This Mol- phas Ener O	structure was ecular Mecha ge. rgy: -185.2192 -1.94690	nics (OPLS 20 kJ. -5.11110	-2005), gas 14.97560
C C H H H H H H	-9.83990 -8.11490 -7.06680 -8.43030 -8.69590 -10.00200 -10.45000 -10.14630	-2.66780 -0.83510 -0.57590 -0.48720 -0.31090 -3.74270 -2.16160 -2.34150	13.24470 13.13450 13.00370 14.11820 12.37560 13.16220 12.49660 14.23860	This Mol- phas Ener O C	structure was ecular Mecha se. rgy: -185.2192 -1.94690 -3.10640	nics (OPLS 20 kJ. -5.11110 -5.52210	-2005), gas 14.97560 14.26990
C C H H H H H H H	-9.83990 -8.11490 -7.06680 -8.43030 -8.69590 -10.00200 -10.45000 -10.14630 -8.44730	-2.66780 -0.83510 -0.57590 -0.48720 -0.31090 -3.74270 -2.16160 -2.34150 -2.50080	13.24470 13.13450 13.00370 14.11820 12.37560 13.16220 12.49660 14.23860 9.21180	This Mol- phas Ener O C C	ecular Mecha ecular Mecha rgy: -185.2192 -1.94690 -3.10640 -4.09880	nics (OPLS 20 kJ. -5.11110 -5.52210 -6.27340	-2005), gas 14.97560 14.26990 15.15360
C C H H H H H H H H	-9.83990 -8.11490 -7.06680 -8.43030 -8.69590 -10.00200 -10.45000 -10.14630 -8.44730 -7.22110	$\begin{array}{r} -2.66780 \\ -0.83510 \\ -0.57590 \\ -0.48720 \\ -0.31090 \\ -3.74270 \\ -2.16160 \\ -2.34150 \\ -2.50080 \\ -2.55560 \end{array}$	13.24470 13.13450 13.00370 14.11820 12.37560 13.16220 12.49660 14.23860 9.21180 7.95570	This Mol- phas Ener O C C C C	structure was ecular Mecha rgy: -185.2192 -1.94690 -3.10640 -4.09880 -2.67830	nics (OPLS 20 kJ. -5.11110 -5.52210 -6.27340 -6.31360	-2005), gas 14.97560 14.26990 15.15360 13.00870
C C H H H H H H H H H H	-9.83990 -8.11490 -7.06680 -8.43030 -8.69590 -10.00200 -10.45000 -10.14630 -8.44730 -7.22110 -7.15090	$\begin{array}{r} -2.66780 \\ -0.83510 \\ -0.57590 \\ -0.48720 \\ -0.31090 \\ -3.74270 \\ -2.16160 \\ -2.34150 \\ -2.50080 \\ -2.55560 \\ -1.30970 \end{array}$	13.24470 13.13450 13.00370 14.11820 12.37560 13.16220 12.49660 14.23860 9.21180 7.95570 9.20020	This Mole phas Ener O C C C C H	structure was ecular Mecha se. rgy: -185.2192 -1.94690 -3.10640 -4.09880 -2.67830 -3.61560	nics (OPLS 20 kJ. -5.11110 -5.52210 -6.27340 -6.31360 -4.61470	-2005), gas 14.97560 14.26990 15.15360 13.00870 13.96250
C C H H H H H H H H H O	-9.83990 -8.11490 -7.06680 -8.43030 -8.69590 -10.00200 -10.45000 -10.14630 -8.44730 -7.22110 -7.15090 -4.57890	$\begin{array}{r} -2.66780\\ -0.83510\\ -0.57590\\ -0.48720\\ -0.31090\\ -3.74270\\ -2.16160\\ -2.34150\\ -2.50080\\ -2.55560\\ -1.30970\\ -2.27520\end{array}$	13.24470 13.13450 13.00370 14.11820 12.37560 13.16220 12.49660 14.23860 9.21180 7.95570 9.20020 8.87230	This Mol- phas Ener O C C C H Si	structure was ecular Mecha rgy: -185.2192 -1.94690 -3.10640 -4.09880 -2.67830 -3.61560 -1.74400	nics (OPLS 20 kJ. -5.11110 -5.52210 -6.27340 -6.31360 -4.61470 -3.56970	-2005), gas 14.97560 14.26990 15.15360 13.00870 13.96250 15.64300
C C H H H H H H H H H O O	-9.83990 -8.11490 -7.06680 -8.43030 -8.69590 -10.00200 -10.45000 -10.14630 -8.44730 -7.22110 -7.15090 -4.57890 -4.38610	$\begin{array}{r} -2.66780\\ -0.83510\\ -0.57590\\ -0.48720\\ -0.31090\\ -3.74270\\ -2.16160\\ -2.34150\\ -2.50080\\ -2.55560\\ -1.30970\\ -2.27520\\ -4.37960\end{array}$	13.24470 13.13450 13.00370 14.11820 12.37560 13.16220 12.49660 14.23860 9.21180 7.95570 9.20020 8.87230 9.74980	This Mol- phas Ener O C C C C H Si H	structure was ecular Mecha rgy: -185.2192 -1.94690 -3.10640 -4.09880 -2.67830 -3.61560 -1.74400 -3.59890	nics (OPLS 20 kJ. -5.11110 -5.52210 -6.27340 -6.31360 -4.61470 -3.56970 -6.69870	-2005), gas 14.97560 14.26990 15.15360 13.00870 13.96250 15.64300 12.58650
C C H H H H H H H H H O C C	-9.83990 -8.11490 -7.06680 -8.43030 -8.69590 -10.00200 -10.45000 -10.14630 -8.44730 -7.22110 -7.15090 -4.57890 -4.38610 -3.00490	$\begin{array}{r} -2.66780\\ -0.83510\\ -0.57590\\ -0.48720\\ -0.31090\\ -3.74270\\ -2.16160\\ -2.34150\\ -2.50080\\ -2.55560\\ -1.30970\\ -2.27520\\ -4.37960\\ -4.51860\end{array}$	13.24470 13.13450 13.00370 14.11820 12.37560 13.16220 12.49660 14.23860 9.21180 7.95570 9.20020 8.87230 9.74980 9.41710	This Mol- phas Ener O C C C C H Si H C	structure was ecular Mecha rgy: -185.2192 -1.94690 -3.10640 -4.09880 -2.67830 -3.61560 -1.74400 -3.59890 -1.80330	nics (OPLS 20 kJ. -5.11110 -5.52210 -6.27340 -6.31360 -4.61470 -3.56970 -6.69870 -7.53910	-2005), gas 14.97560 14.26990 15.15360 13.00870 13.96250 15.64300 12.58650 13.34330
C C H H H H H H H H H O C C C	-9.83990 -8.11490 -7.06680 -8.43030 -8.69590 -10.00200 -10.45000 -10.14630 -8.44730 -7.22110 -7.15090 -4.57890 -4.38610 -3.00490 -2.88260	$\begin{array}{r} -2.66780\\ -0.83510\\ -0.57590\\ -0.48720\\ -0.31090\\ -3.74270\\ -2.16160\\ -2.34150\\ -2.50080\\ -2.55560\\ -1.30970\\ -2.27520\\ -4.37960\\ -4.51860\\ -5.15020\end{array}$	13.24470 13.13450 13.00370 14.11820 12.37560 13.16220 12.49660 14.23860 9.21180 7.95570 9.20020 8.87230 9.74980 9.41710 8.01840	This Mole phas Ener O C C C C H Si H C C	structure was ecular Mecha rgy: -185.2192 -1.94690 -3.10640 -4.09880 -2.67830 -3.61560 -1.74400 -3.59890 -1.80330 -3.75960	nics (OPLS 20 kJ. -5.11110 -5.52210 -6.27340 -6.31360 -4.61470 -3.56970 -6.69870 -7.53910 -6.72540	-2005), gas 14.97560 14.26990 15.15360 13.00870 13.96250 15.64300 12.58650 13.34330 16.37340
C C H H H H H H H H H O C C C C C	$\begin{array}{r} -9.83990\\ -8.11490\\ -7.06680\\ -8.43030\\ -8.69590\\ -10.00200\\ -10.45000\\ -10.45000\\ -10.14630\\ -8.44730\\ -7.22110\\ -7.15090\\ -4.57890\\ -4.38610\\ -3.00490\\ -2.88260\\ -2.28470\end{array}$	$\begin{array}{r} -2.66780\\ -0.83510\\ -0.57590\\ -0.48720\\ -0.31090\\ -3.74270\\ -2.16160\\ -2.34150\\ -2.50080\\ -2.55560\\ -1.30970\\ -2.27520\\ -4.37960\\ -4.51860\\ -5.15020\\ -5.33150\end{array}$	13.24470 13.13450 13.00370 14.11820 12.37560 13.16220 12.49660 14.23860 9.21180 7.95570 9.20020 8.87230 9.74980 9.41710 8.01840 10.52730	This Mol- phas Ener O C C C C H Si H C C C C	ecular Mecha ecular Mecha rgy: -185.2192 -1.94690 -3.10640 -4.09880 -2.67830 -3.61560 -1.74400 -3.59890 -1.80330 -3.75960 -5.50240	nics (OPLS 20 kJ. -5.11110 -5.52210 -6.27340 -6.31360 -4.61470 -3.56970 -6.69870 -7.53910 -6.72540 -6.50550	-2005), gas 14.97560 14.26990 15.15360 13.00870 13.96250 15.64300 12.58650 13.34330 16.37340 14.59300
C C H H H H H H H H H H O C C C H H H H	-9.83990 -8.11490 -7.06680 -8.43030 -8.69590 -10.00200 -10.45000 -10.14630 -8.44730 -7.22110 -7.15090 -4.57890 -4.38610 -3.00490 -2.88260	$\begin{array}{r} -2.66780\\ -0.83510\\ -0.57590\\ -0.48720\\ -0.31090\\ -3.74270\\ -2.16160\\ -2.34150\\ -2.50080\\ -2.55560\\ -1.30970\\ -2.27520\\ -4.37960\\ -4.51860\\ -5.15020\end{array}$	13.24470 13.13450 13.00370 14.11820 12.37560 13.16220 12.49660 14.23860 9.21180 7.95570 9.20020 8.87230 9.74980 9.41710 8.01840 10.52730 9.37300	This Mole phas Ener O C C C C H Si H C C	structure was ecular Mecha rgy: -185.2192 -1.94690 -3.10640 -4.09880 -2.67830 -3.61560 -1.74400 -3.59890 -1.80330 -3.75960	nics (OPLS 20 kJ. -5.11110 -5.52210 -6.27340 -6.31360 -4.61470 -3.56970 -6.69870 -7.53910 -6.72540	-2005), gas 14.97560 14.26990 15.15360 13.00870 13.96250 15.64300 12.58650 13.34330 16.37340
C C H H H H H H H H H O C C C H C H C H	$\begin{array}{r} -9.83990\\ -8.11490\\ -7.06680\\ -8.43030\\ -8.69590\\ -10.00200\\ -10.45000\\ -10.45000\\ -10.14630\\ -8.44730\\ -7.22110\\ -7.15090\\ -4.57890\\ -4.38610\\ -3.00490\\ -2.88260\\ -2.28470\end{array}$	$\begin{array}{r} -2.66780\\ -0.83510\\ -0.57590\\ -0.48720\\ -0.31090\\ -3.74270\\ -2.16160\\ -2.34150\\ -2.50080\\ -2.55560\\ -1.30970\\ -2.27520\\ -4.37960\\ -4.51860\\ -5.15020\\ -5.33150\end{array}$	13.24470 13.13450 13.00370 14.11820 12.37560 13.16220 12.49660 14.23860 9.21180 7.95570 9.20020 8.87230 9.74980 9.41710 8.01840 10.52730 9.37300 11.77860	This Mol- phas Ener O C C C C H Si H C C C C	ecular Mecha ecular Mecha rgy: -185.2192 -1.94690 -3.10640 -4.09880 -2.67830 -3.61560 -1.74400 -3.59890 -1.80330 -3.75960 -5.50240	nics (OPLS 20 kJ. -5.11110 -5.52210 -6.27340 -6.31360 -4.61470 -3.56970 -6.69870 -7.53910 -6.72540 -6.50550	-2005), gas 14.97560 14.26990 15.15360 13.00870 13.96250 15.64300 12.58650 13.34330 16.37340 14.59300 16.42160 14.25750
C C H H H H H H H H H H H O O C C C C H C H	$\begin{array}{r} -9.83990\\ -8.11490\\ -7.06680\\ -8.43030\\ -8.69590\\ -10.00200\\ -10.45000\\ -10.14630\\ -8.44730\\ -7.22110\\ -7.15090\\ -4.57890\\ -4.57890\\ -4.38610\\ -3.00490\\ -2.88260\\ -2.28470\\ -2.53230\end{array}$	$\begin{array}{r} -2.66780\\ -0.83510\\ -0.57590\\ -0.48720\\ -0.31090\\ -3.74270\\ -2.16160\\ -2.34150\\ -2.550080\\ -2.55560\\ -1.30970\\ -2.27520\\ -4.37960\\ -4.51860\\ -5.15020\\ -5.33150\\ -3.53560\end{array}$	13.24470 13.13450 13.00370 14.11820 12.37560 13.16220 12.49660 14.23860 9.21180 7.95570 9.20020 8.87230 9.74980 9.41710 8.01840 10.52730 9.37300	This Moliphas Ener O C C C C H Si H C C C C C C C C	structure was ecular Mecha rgy: -185.2192 -1.94690 -3.10640 -4.09880 -2.67830 -3.61560 -1.74400 -3.59890 -1.80330 -3.75960 -5.50240 -0.00560	nics (OPLS 20 kJ. -5.11110 -5.52210 -6.27340 -6.31360 -4.61470 -3.56970 -6.69870 -7.53910 -6.72540 -6.50550 -3.51830	-2005), gas 14.97560 14.26990 15.15360 13.00870 13.96250 15.64300 12.58650 13.34330 16.37340 14.59300 16.42160
C C H H H H H H H H H O C C C H C H C H	$\begin{array}{r} -9.83990\\ -8.11490\\ -7.06680\\ -8.43030\\ -8.69590\\ -10.00200\\ -10.45000\\ -10.45000\\ -10.45000\\ -10.14630\\ -8.44730\\ -7.22110\\ -7.15090\\ -4.57890\\ -4.57890\\ -4.38610\\ -3.00490\\ -2.88260\\ -2.28470\\ -2.53230\\ -2.01620\end{array}$	$\begin{array}{r} -2.66780\\ -0.83510\\ -0.57590\\ -0.48720\\ -0.31090\\ -3.74270\\ -2.16160\\ -2.34150\\ -2.50080\\ -2.55560\\ -1.30970\\ -2.27520\\ -4.37960\\ -4.51860\\ -5.15020\\ -5.33150\\ -3.53560\\ -4.44280\end{array}$	13.24470 13.13450 13.00370 14.11820 12.37560 13.16220 12.49660 14.23860 9.21180 7.95570 9.20020 8.87230 9.74980 9.41710 8.01840 10.52730 9.37300 11.77860	This Mole phas Ener O C C C C H Si H C C C C C C C C C C C C C C C C C C	structure was ecular Mecha rgy: -185.2192 -1.94690 -3.10640 -4.09880 -2.67830 -3.61560 -1.74400 -3.59890 -1.80330 -3.75960 -5.50240 -0.00560 -1.89890	nics (OPLS 20 kJ. -5.11110 -5.52210 -6.27340 -6.31360 -4.61470 -3.56970 -6.69870 -7.53910 -6.72540 -6.50550 -3.51830 -2.30140	-2005), gas 14.97560 14.26990 15.15360 13.00870 13.96250 15.64300 12.58650 13.34330 16.37340 14.59300 16.42160 14.25750
C C H H H H H H H H H H H O O C C C C H C H	$\begin{array}{r} -9.83990\\ -8.11490\\ -7.06680\\ -8.43030\\ -8.69590\\ -10.00200\\ -10.45000\\ -10.45000\\ -10.14630\\ -8.44730\\ -7.22110\\ -7.15090\\ -4.57890\\ -4.38610\\ -3.00490\\ -2.88260\\ -2.28470\\ -2.53230\\ -2.01620\\ -1.31470\end{array}$	$\begin{array}{r} -2.66780\\ -0.83510\\ -0.57590\\ -0.48720\\ -0.31090\\ -3.74270\\ -2.16160\\ -2.34150\\ -2.50080\\ -2.55560\\ -1.30970\\ -2.27520\\ -4.37960\\ -4.51860\\ -5.15020\\ -5.33150\\ -3.53560\\ -4.44280\\ -5.63440\end{array}$	13.24470 13.13450 13.00370 14.11820 12.37560 13.16220 12.49660 14.23860 9.21180 7.95570 9.20020 8.87230 9.74980 9.41710 8.01840 10.52730 9.37300 11.77860 10.13110	This Mole phas Ener O C C C C H Si H C C C C C C C C C C C C C C C C C C	ecular Mecha ecular Mecha rgy: -185.2192 -1.94690 -3.10640 -4.09880 -2.67830 -3.61560 -1.74400 -3.59890 -1.80330 -3.75960 -5.50240 -0.00560 -1.89890 -3.07870	nics (OPLS 20 kJ. -5.11110 -5.52210 -6.27340 -6.31360 -4.61470 -3.56970 -6.69870 -7.53910 -6.72540 -6.50550 -3.51830 -2.30140 -3.28320	-2005), gas 14.97560 14.26990 15.15360 13.00870 13.96250 15.64300 12.58650 13.34330 16.37340 14.59300 16.42160 14.25750 16.94260
C C H H H H H H H H H H H O O C C C C H C H	$\begin{array}{r} -9.83990\\ -8.11490\\ -7.06680\\ -8.43030\\ -8.69590\\ -10.00200\\ -10.45000\\ -10.14630\\ -8.44730\\ -7.22110\\ -7.15090\\ -4.57890\\ -4.57890\\ -4.38610\\ -3.00490\\ -2.88260\\ -2.28470\\ -2.53230\\ -2.01620\\ -1.31470\\ -3.05180\end{array}$	$\begin{array}{r} -2.66780\\ -0.83510\\ -0.57590\\ -0.48720\\ -0.31090\\ -3.74270\\ -2.16160\\ -2.34150\\ -2.50080\\ -2.55560\\ -1.30970\\ -2.27520\\ -4.37960\\ -4.51860\\ -5.15020\\ -5.33150\\ -3.53560\\ -4.44280\\ -5.63440\\ -6.63560\end{array}$	13.24470 13.13450 13.00370 14.11820 12.37560 13.16220 12.49660 14.23860 9.21180 7.95570 9.20020 8.87230 9.74980 9.41710 8.01840 10.52730 9.37300 11.77860 10.13110 10.84400	This Mole Ener O C C C C H Si H C C C C C C C C H	structure was ecular Mecha rgy: -185.2192 -1.94690 -3.10640 -4.09880 -2.67830 -3.61560 -1.74400 -3.59890 -1.80330 -3.75960 -5.50240 -0.00560 -1.89890 -3.07870 -1.19870	nics (OPLS 20 kJ. -5.11110 -5.52210 -6.27340 -6.27340 -6.31360 -4.61470 -3.56970 -6.69870 -7.53910 -6.72540 -6.50550 -3.51830 -2.30140 -3.28320 -2.50670	-2005), gas 14.97560 14.26990 15.15360 13.00870 13.96250 15.64300 12.58650 13.34330 16.37340 14.59300 16.42160 14.25750 16.94260 13.44760
C C H H H H H H H H H H H H C O C C C C	$\begin{array}{r} -9.83990\\ -8.11490\\ -7.06680\\ -8.43030\\ -8.69590\\ -10.00200\\ -10.45000\\ -10.14630\\ -8.44730\\ -7.22110\\ -7.15090\\ -4.57890\\ -4.57890\\ -4.57890\\ -4.38610\\ -3.00490\\ -2.88260\\ -2.28470\\ -2.53230\\ -2.01620\\ -1.31470\\ -3.05180\\ -1.83810\end{array}$	$\begin{array}{r} -2.66780\\ -0.83510\\ -0.57590\\ -0.48720\\ -0.31090\\ -3.74270\\ -2.16160\\ -2.34150\\ -2.55560\\ -1.30970\\ -2.55560\\ -1.30970\\ -2.27520\\ -4.37960\\ -4.51860\\ -5.15020\\ -5.33150\\ -3.53560\\ -4.44280\\ -5.63440\\ -6.63560\\ -5.30340\end{array}$	$\begin{array}{c} 13.24470\\ 13.13450\\ 13.00370\\ 14.11820\\ 12.37560\\ 13.16220\\ 12.49660\\ 14.23860\\ 9.21180\\ 7.95570\\ 9.20020\\ 8.87230\\ 9.74980\\ 9.41710\\ 8.01840\\ 10.52730\\ 9.37300\\ 11.77860\\ 10.13110\\ 10.84400\\ 7.74750\end{array}$	This Mole phase Ener O C C C C C C C C C C C C C C C C C C	structure was ecular Mecha rgy: -185.2192 -1.94690 -3.10640 -4.09880 -2.67830 -3.61560 -1.74400 -3.59890 -1.80330 -3.75960 -5.50240 -0.00560 -1.89890 -3.07870 -1.19870 -1.68890	nics (OPLS 20 kJ. -5.11110 -5.52210 -6.27340 -6.31360 -4.61470 -3.56970 -6.69870 -7.53910 -6.72540 -6.50550 -3.51830 -2.30140 -3.28320 -2.50670 -1.29440	-2005), gas 14.97560 14.26990 15.15360 13.00870 13.96250 15.64300 12.58650 13.34330 16.37340 14.59300 16.42160 14.25750 16.94260 13.44760 14.61490
C C H H H H H H H H H H H H H H H H H H	$\begin{array}{r} -9.83990\\ -8.11490\\ -7.06680\\ -8.43030\\ -8.69590\\ -10.00200\\ -10.45000\\ -10.45000\\ -10.45000\\ -10.14630\\ -8.44730\\ -7.22110\\ -7.15090\\ -4.57890\\ -4.38610\\ -3.00490\\ -2.88260\\ -2.28470\\ -2.53230\\ -2.01620\\ -1.31470\\ -3.05180\\ -1.83810\\ -3.32000\end{array}$	$\begin{array}{r} -2.66780\\ -0.83510\\ -0.57590\\ -0.48720\\ -0.31090\\ -3.74270\\ -2.16160\\ -2.34150\\ -2.50080\\ -2.55560\\ -1.30970\\ -2.27520\\ -4.37960\\ -4.51860\\ -5.15020\\ -5.33150\\ -3.53560\\ -4.44280\\ -5.63440\\ -6.63560\\ -5.30340\\ -4.49720\end{array}$	13.24470 13.13450 13.00370 14.11820 12.37560 13.16220 12.49660 14.23860 9.21180 7.95570 9.20020 8.87230 9.74980 9.41710 8.01840 10.52730 9.37300 11.77860 10.13110 10.84400 7.74750 7.26260	This Mole phas Ener O C C C C H Si H C C C C C C C H H H H H	ecular Mecha ecular Mecha rgy: -185.2192 -1.94690 -3.10640 -4.09880 -2.67830 -3.61560 -1.74400 -3.59890 -1.80330 -3.75960 -5.50240 -0.00560 -1.89890 -3.07870 -1.19870 -1.68890 -2.89590	nics (OPLS 20 kJ. -5.11110 -5.52210 -6.27340 -6.31360 -4.61470 -3.56970 -6.69870 -7.53910 -6.72540 -6.50550 -3.51830 -2.30140 -3.28320 -2.50670 -1.29440 -2.28750	-2005), gas 14.97560 14.26990 15.15360 13.00870 13.96250 15.64300 12.58650 13.34330 16.37340 14.59300 16.42160 14.25750 16.94260 13.44760 14.61490 13.82260

Н	-3.02070	-4.02630	17.73650	Н	-1.22230	-5.14220	7.85890
Н	-4.46580	-7.25670	16.99370	Η	-2.24910	-3.75160	7.53940
Н	-2.76660	-6.57460	16.77160	Н	-2.96110	-5.35300	7.64010
С	-6.52310	-5.36740	14.83600	Ο	-0.70140	-5.15800	12.27240
Н	-5.87720	-7.40440	15.08420	Η	-2.53570	-4.40320	12.07240
Н	-5.47850	-6.77180	13.53950	Н	-4.25150	-6.50470	10.36670
Н	-6.41170	-5.07900	15.88280	Η	-3.05150	-7.77030	10.64370
С	-7.96380	-5.92040	14.74820	Η	-3.24570	-7.09450	9.05320
С	-6.30670	-4.05160	14.02370	Н	-0.65310	-5.13340	13.22120
0	-7.45770	-3.23480	14.21890	Η	-2.34420	-8.24850	13.96910
С	-6.00140	-4.11840	12.49900	Η	-0.89920	-7.25580	13.88240
Н	-5.47090	-3.54410	14.50290	Η	-1.49430	-8.06360	12.43960
Н	-8.70450	-5.16590	15.01350	С	0.24470	-2.12700	17.02750
Н	-8.10610	-6.74670	15.44480	Н	1.23190	-2.06590	17.48640
Н	-8.21640	-6.29150	13.75840	Н	0.18860	-1.34580	16.26860
С	-7.07670	-4.85970	11.68150	Н	-0.48970	-1.88920	17.79790
Н	-5.06710	-4.64920	12.33660	С	1.03780	-3.81080	15.32960
С	-5.80880	-2.65140	12.03750	Н	0.99530	-3.07380	14.52660
0	-7.03780	-1.98100	12.29880	Н	2.05090	-3.79750	15.73220
С	-5.38320	-2.41540	10.56120	Н	0.87750	-4.79170	14.88000
Н	-5.03140	-2.19420	12.64910	С	0.08080	-4.59240	17.51910
Н	-7.09980	-5.91840	11.92990	Н	-0.64050	-4.40920	18.31600
Н	-6.88440	-4.80990	10.61170	Н	-0.12380	-5.58560	17.11600
Н	-8.06890	-4.44420	11.86060	Н	1.07150	-4.61940	17.97360
Н	-5.97610	-3.04040	9.89660				
С	-3.90380	-2.76850	10.34830				
С	-5.62300	-0.95220	10.13550				
С	-7.45870	-1.96910	13.63100	Cor	npound 5.28		
С	-8.91980	-1.51810	13.60430		s structure was	assigned as a	mbiguous.
С	-6.61210	-0.98860	14.46850		LYP/6-31g(d)	U	U
Н	-5.57480	-1.30450	14.55410		D implicit solv	ation in dich	loromethane
Н	-7.02510	-0.91700	15.47470		used.		
Н	-6.63590	0.00040	14.01050				
Н	-9.50880	-2.21920	13.01270	Eleo	ctronic Energy	r: -1878.532	205755 har-
Н	-8.99860	-0.52720	13.15680	tree			
Н	-9.32270	-1.48770	14.61670		e Energy: -1877	7.803332 har	tree.
Н	-6.68820	-0.72320	10.10530		65		
Н	-5.22050	-0.75350	9.14160	0	-2.63681	-0.23670	0.48888
Н	-5.15430	-0.25470	10.83080	Č	-1.35933	-0.20129	1.14095
0	-3.00890	-2.00250	10.70610	C	-1.17728	-1.30427	2.17720
0	-3.71580	-3.98100	9.79080	С	-1.14703	1.21930	1.75074
C	-2.39540	-4.49150	9.57740	Н	-0.57718	-0.33271	0.38169
C	-2.19820	-4.70370	8.06790	Si	-3.01118	-1.03486	-0.96218
Č	-2.18170	-5.76590	10.43760	Н	-0.23653	1.15149	2.35318
Ĥ	-1.64050	-3.76700	9.88780	C	-2.29864	1.65060	2.66604
C	-2.05780	-5.37160	11.94390	Č	-2.20693	-2.04027	2.61132
Ĥ	-1.22580	-6.20310	10.14380	Č	0.22024	-1.51274	2.75323
C	-3.24560	-6.83960	10.11180	Č	-4.89281	-0.75466	-1.18817
			-				

С	-2.01491	-0.24360	-2.36030	С	0.77714	3.93100	-0.25353
С	-2.59212	-2.87417	-0.89192	С	1.33197	5.34776	-0.22945
Н	-2.06525	0.85145	-2.34492	С	-0.07571	3.52213	0.97022
Н	-2.37602	-0.57961	-3.34078	Н	0.18842	3.78068	-1.15994
Н	-0.95472	-0.51985	-2.30215	С	-0.84310	2.21872	0.61041
Н	-1.54020	-3.03836	-0.62918	H	-0.83905	4.30262	1.08581
Н	-2.75026	-3.33186	-1.87723	C	0.75465	3.47463	2.26150
Н	-3.20301	-3.42267	-0.16647	H	0.50912	6.06842	-0.16180
Н	-2.07201	-2.80822	3.37042	Н	1.88674	5.55260	-1.15164
Н	-3.21151	-1.90280	2.22505	Н	2.00628	5.51180	0.61709
C	1.22300	-2.42486	1.98445	0	-2.03603	2.63469	-0.06977
Н	0.08877	-1.97443	3.73825	H	-0.21686	1.66555	-0.10333
H	0.70554	-0.54806	2.94291	H	1.53315	2.70605	2.22437
H	0.67146	-3.32224	1.67151	H	0.12378	3.27995	3.13362
C	2.30808	-2.90673	2.96631	H	1.25045	4.43599	2.43343
C C	1.78043	-2.90073	0.65931	н Н		4.43399	
					-2.57177 -2.44526		-0.18220
0	2.80770	-2.73803	0.22060	Н		0.92734	3.47568
C	2.32695	-0.37976	0.61366	Н	-3.23908	1.73436	2.11561
Н	0.95047	-1.86647	-0.06316	H	-2.09280	2.62616	3.12009
Н	3.07071	-3.49604	2.45185	C	-5.37492	-1.54516	-2.42504
Н	1.85000	-3.53968	3.73594	Н	-6.45065	-1.38075	-2.58564
Н	2.80669	-2.07814	3.47894	Н	-4.86110	-1.23299	-3.34326
С	3.45365	-0.09011	1.61505	Н	-5.22529	-2.62568	-2.30939
Н	1.49118	0.29921	0.81571	С	-5.19865	0.74248	-1.40633
С	2.75480	-0.16995	-0.86119	Η	-4.68530	1.14635	-2.28781
0	3.78869	-1.10857	-1.17357	Н	-6.27756	0.89246	-1.56136
С	3.25030	1.25015	-1.24769	Н	-4.91112	1.35169	-0.54056
Η	1.88547	-0.37141	-1.50330	С	-5.66551	-1.24488	0.05449
Η	3.08208	-0.11648	2.64336	Н	-5.50659	-2.31364	0.24610
Η	3.88128	0.90580	1.45882	Η	-5.37409	-0.69436	0.95645
Η	4.26322	-0.81954	1.52595	Η	-6.74697	-1.09834	-0.08648
Н	3.91070	1.64386	-0.47162				
С	2.03007	2.16324	-1.35966				
С	3.99413	1.25254	-2.59366	Con	npound 5.28		
С	3.39613	-2.47971	-1.05450		s structure was	assigned as a	mbiguous.
С	4.69149	-3.28145	-1.08390		YP/6-31g(d)	C	e
С	2.45849	-2.89825	-2.19685		phase.		
Η	1.50663	-2.36116	-2.18656		I		
Н	2.24091	-3.96819	-2.11776	Elec	tronic Energy	-1878 505	549055 har-
Н	2.94189	-2.71080	-3.16106	tree.		. 10,00000	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Н	5.34755	-2.95763	-0.27046		Energy: -1877	775902 har	tree
Н	5.20892	-3.13237	-2.03666	1100	Ellergy. 1077	.775962 Hui	
Н	4.47860	-4.34793	-0.96328	0	-2.59460	-0.32193	0.49417
H	4.89677	0.64159	-2.52905	C	-1.32307	-0.26056	1.15000
H	4.89077 4.28456	2.27373	-2.86556	C	-1.10823	-1.38829	2.15213
H	3.36028	0.85564	-3.39279	C C	-1.16006	-1.38829	1.78950
н 0							
	1.23780	2.10673	-2.28309	H Si	-0.53423	-0.34547	0.38829
0	1.93086	3.01794	-0.32454	Si	-2.90755	-1.03862	-1.01286

Η	-0.21606	1.12221	2.34309	Η	4.72044	0.76939	-2.64769
С	-2.28461	1.48836	2.77700	Η	4.08489	2.40478	-2.93574
С	-2.10720	-2.19278	2.52875	Н	3.14325	0.99039	-3.43795
С	0.28378	-1.54608	2.75617	0	1.00846	2.03972	-2.22106
С	-4.81299	-0.94644	-1.17282	0	1.76419	3.07760	-0.34780
С	-2.04489	-0.03495	-2.36168	С	0.57379	3.93832	-0.25739
С	-2.27752	-2.81929	-1.06730	С	1.07061	5.37827	-0.26166
Н	-2.30568	1.02823	-2.31608	C	-0.23273	3.51553	0.99251
Н	-2.31094	-0.40506	-3.35932	Н	-0.03219	3.75023	-1.14577
Н	-0.95288	-0.08775	-2.28017	C	-0.98327	2.19375	0.65860
Н	-1.19621	-2.86131	-0.89034	Η	-1.01653	4.27242	1.12439
Н	-2.46268	-3.26255	-2.05343	С	0.63569	3.49997	2.25997
Н	-2.75460	-3.45361	-0.31353	Ĥ	0.22201	6.06546	-0.17300
Н	-1.95216	-2.97970	3.26317	Н	1.59028	5.59783	-1.19991
Н	-3.10495	-2.09063	2.11730	Н	1.76312	5.57377	0.56285
C	1.34005	-2.39949	1.99446	0	-2.23606	2.58811	0.09450
H	0.15385	-2.02975	3.73097	H	-0.39851	1.68661	-0.12144
H	0.72235	-0.56491	2.97672	Н	1.44197	2.76293	2.19566
Н	0.84151	-3.32885	1.68647	Н	0.03786	3.27949	3.14899
C	2.45716	-2.81110	2.97281	Н	1.10103	4.47812	2.41976
C	1.85749	-1.78538	0.66334	Н	-2.73726	1.76488	-0.03455
0 0	2.92375	-2.63887	0.22490	Н	-2.33080	0.74722	3.58119
C	2.32893	-0.30837	0.60038	Н	-3.25685	1.50784	2.27979
Н	1.02249	-1.86733	-0.05235	Н	-2.12561	2.47360	3.22792
Н	3.24768	-3.35557	2.45322	C	-5.25013	-1.55660	-2.52318
Н	2.04144	-3.46373	3.74940	Н	-6.34381	-1.50774	-2.62547
Н	2.90986	-1.95156	3.47660	Н	-4.82114	-1.01890	-3.37766
C	3.45693	0.04698	1.57909	H	-4.96359	-2.61183	-2.61224
С Н	1.46727	0.33459	0.81072	C	-5.27963	0.52432	-1.11183
C	2.72364	-0.09252	-0.88282	Н	-4.84622	1.12956	-1.91714
0	3.80284	-0.09232	-0.88282	H	-4.84022	0.58246	-1.21438
C C	3.12750	-0.97330 1.34807	-1.28999	Н	-5.01813	0.38240	-0.15614
С Н	1.85623	-0.34609	-1.28999	п С	-5.48451	-1.72868	-0.13014
Н	3.11185	-0.01049	2.61497	Н	-5.20561	-2.78962	-0.02934
Н	3.81143	1.07013	1.41953 1.46376	H	-5.21706	-1.31384 -1.67937	0.95443
Н	4.30731	-0.62930		Η	-6.57921	-1.0/93/	-0.11719
H	3.79611	1.77886	-0.54084				
C	1.85102	2.18663	-1.35724	C			
C	3.81474	1.37786	-2.66622		npound 5.28	:	
C	3.49374	-2.36117	-1.05385		s structure was	assigned as a	imbiguous.
C	4.83504	-3.08410	-1.07401		6-2X/6-31g(d)		1 (1
C	2.57663	-2.85241	-2.18535		D implicit solv	ation in dich	loromethane
Н	1.59384	-2.37422	-2.17400	was	used.		
H	2.42445	-3.93151	-2.08802				00115 1
Н	3.04066	-2.64618	-3.15454		ctronic Energy	7: -1877.816	520115 har-
Н	5.46824	-2.69943	-0.27038	tree			
Н	5.33796	-2.92035	-2.03146	Free	e Energy: -187	/.07/6409 har	tree.
Η	4.68620	-4.15754	-0.92711				

6		0.00100	0.0000		1.0.4.4.4		1 0000
0	-2.56163	-0.22198	0.59432	Н	1.06441	-2.39205	-1.92204
C	-1.30047	-0.15799	1.24924	Н	1.83374	-3.98175	-1.95693
C	-1.13057	-1.22699	2.30814	Н	2.37413	-2.70602	-3.07339
C	-1.09792	1.26745	1.80314	Н	5.09294	-2.98705	-0.48033
H	-0.50901	-0.31145	0.50010	Н	4.74435	-3.23000	-2.21048
Si	-2.70678	-1.04790	-0.87371	Н	4.11432	-4.37987	-1.00523
H	-0.17367	1.24093	2.38794	Н	4.50985	0.48725	-2.78393
С	-2.24541	1.70942	2.70586	Η	3.85032	2.08817	-3.17837
С	-2.15278	-1.98990	2.69746	Н	2.88424	0.63209	-3.48216
С	0.25427	-1.38622	2.90782	0	0.94308	2.02611	-2.29128
С	-4.53838	-0.87717	-1.30265	0	1.79507	3.01486	-0.45002
С	-1.59365	-0.18873	-2.11902	С	0.66923	3.93039	-0.33364
С	-2.18201	-2.84150	-0.70640	С	1.24042	5.33534	-0.33339
Н	-1.68266	0.90263	-2.06779	С	-0.11316	3.53592	0.92953
Н	-1.82767	-0.49957	-3.14434	Η	0.02594	3.78413	-1.20482
Н	-0.53847	-0.43277	-1.94238	С	-0.85423	2.21842	0.62258
Н	-1.20888	-2.92866	-0.20810	Η	-0.88414	4.30221	1.08129
Н	-2.08267	-3.29600	-1.69983	С	0.79222	3.49957	2.16111
Н	-2.89769	-3.43762	-0.12990	Η	0.43731	6.06400	-0.18688
Н	-2.02884	-2.74676	3.46861	Η	1.72424	5.54477	-1.29193
Н	-3.13873	-1.88054	2.25434	Н	1.98196	5.46731	0.45937
С	1.24119	-2.29405	2.14324	0	-2.06773	2.57948	-0.02730
Н	0.13654	-1.82230	3.90614	Η	-0.23302	1.65439	-0.09186
Н	0.73252	-0.40930	3.05742	Н	1.56589	2.72898	2.07104
Н	0.71541	-3.23293	1.91883	Н	0.21716	3.30302	3.07038
С	2.41060	-2.65379	3.06849	Н	1.29431	4.46211	2.29690
С	1.66642	-1.76207	0.75823	Η	-2.58734	1.76066	-0.09768
0	2.64704	-2.68189	0.28134	Н	-2.33548	1.04884	3.57406
С	2.20839	-0.32147	0.60444	Н	-3.19616	1.69325	2.16633
Н	0.77637	-1.83089	0.11219	Н	-2.08325	2.73035	3.06788
Н	3.20158	-3.17245	2.52276	С	-4.84610	-1.68430	-2.57108
Н	2.05201	-3.31651	3.86326	Н	-5.90987	-1.59068	-2.83087
Н	2.84276	-1.77258	3.55076	Н	-4.26626	-1.33371	-3.43363
С	3.41958	-0.02885	1.48765	Н	-4.63480	-2.75202	-2.43414
Н	1.40999	0.39156	0.84857	С	-4.88279	0.59998	-1.53632
С	2.51774	-0.18473	-0.90077	Н	-4.29000	1.04037	-2.34752
0	3.50190	-1.14576	-1.24939	Н	-5.94277	0.70474	-1.80795
С	3.00813	1.19248	-1.39016	Η	-4.72250	1.19862	-0.63042
Н	1.59513	-0.39214	-1.46690	С	-5.38885	-1.40997	-0.14168
Н	3.12610	0.02883	2.53905	Н	-5.18647	-2.46869	0.06080
Η	3.88010	0.93022	1.23202	Η	-5.20486	-0.84702	0.78060
Н	4.17826	-0.81006	1.38300	Н	-6.45776	-1.31998	-0.38209
Η	3.74566	1.60817	-0.70013				
С	1.80269	2.11671	-1.44234				
С	3.60274	1.09269	-2.79738	Con	npound 5.28		
С	3.08942	-2.48851	-1.04981	This	s structure was	assigned as i	ncorrect.
С	4.34288	-3.32891	-1.19849	B3L	.YP/6-31g(d)		
С	2.01851	-2.90859	-2.05893	Gas	phase.		

				С	-3.77566	1.94421	0.40415
Elect	ronic Energ	y: -1878.509	57688 har-	С	-5.93428	0.67288	0.38818
tree.				С	-3.98640	-2.93455	0.26419
Free 1	Energy: -187	7.781281 hart	tree.	C C	-4.83034	-3.98629	-0.44577
					-4.04439	-3.10751	1.79067
Ο	3.27090	0.11863	-0.07800	Η	-3.43798	-2.37102	2.32417
С	2.07406	0.57354	0.57053	Н	-3.67807	-4.10290	2.05942
С	1.09897	-0.59372	0.74816	Η	-5.07799	-3.00577	2.13485
С	1.52575	1.76780	-0.25656	Н	-4.77343	-3.82978	-1.52607
Η	2.31824	0.95623	1.56949	Н	-5.87457	-3.90899	-0.12974
Si	4.55538	-0.70970	0.63588	Н	-4.45835	-4.98778	-0.21148
Η	1.33287	1.39505	-1.26921	Н	-6.46863	-0.17953	-0.03436
С	2.58110	2.88023	-0.35751	Н	-6.48440	1.59004	0.15378
С	0.73308	-0.93946	1.98842	Н	-5.90845	0.57124	1.47695
С	0.69229	-1.32976	-0.51663	0	-4.01739	2.42722	1.48991
С	6.01786	-0.48244	-0.58114	0	-2.80066	2.39715	-0.42009
С	4.93467	0.03171	2.33527	С	-1.99073	3.52315	0.04766
С	4.14343	-2.54294	0.84786	С	-2.67738	4.82315	-0.35917
Н	5.84294	-0.41385	2.75926	С	-0.56973	3.32987	-0.52582
Н	5.08839	1.11564	2.28693	Н	-1.94392	3.46407	1.13664
Н	4.12193	-0.15773	3.04639	С	0.18746	2.27525	0.32773
Н	3.23259	-2.66385	1.44407	Н	-0.05692	4.29280	-0.37446
Η	4.95212	-3.07482	1.36346	С	-0.58057	3.03456	-2.03509
Η	3.97950	-3.04032	-0.11508	Н	-2.08657	5.68274	-0.02251
Η	0.07950	-1.78012	2.19818	Н	-3.66302	4.88593	0.11094
Н	1.08110	-0.37963	2.85282	Η	-2.80489	4.89497	-1.44425
С	-0.34195	-2.47674	-0.43818	Ο	0.35441	2.75618	1.66868
Η	1.61278	-1.74050	-0.95284	Η	-0.47041	1.41200	0.45202
Η	0.35028	-0.59619	-1.25953	Η	-0.97472	2.03586	-2.24537
Η	-0.01841	-3.17022	0.35105	Η	0.42332	3.10399	-2.46393
С	-0.31549	-3.28517	-1.74927	Η	-1.21162	3.75305	-2.56822
С	-1.75906	-2.01245	-0.00358	Η	0.91243	3.54941	1.62563
0	-2.65722	-3.10963	-0.22442	Η	2.22217	3.72598	-0.95494
С	-2.36290	-0.72886	-0.61494	Η	2.86137	3.26062	0.63384
Η	-1.69986	-1.82058	1.07635	Н	3.49029	2.49897	-0.82565
Η	-1.08157	-4.06297	-1.74062	С	7.21350	-1.35041	-0.12925
Η	0.66336	-3.76505	-1.86577	Н	8.06204	-1.21607	-0.81571
Η	-0.47941	-2.65748	-2.63084	Η	7.56555	-1.07948	0.87444
С	-2.53261	-0.76097	-2.13980	Η	6.96890	-2.41927	-0.12147
Η	-1.71209	0.10585	-0.34500	С	6.46490	0.99405	-0.62180
С	-3.70066	-0.54198	0.13734	Η	6.81120	1.34507	0.35801
0	-4.53291	-1.67288	-0.13425	Η	7.29908	1.12152	-1.32728
С	-4.51273	0.73986	-0.18569	Η	5.65480	1.65582	-0.94829
Η	-3.48362	-0.50180	1.21713	С	5.58753	-0.91495	-1.99946
Η	-1.56297	-0.79790	-2.64418	Η	5.28778	-1.96977	-2.03271
Η	-3.04285	0.13784	-2.49952	Н	4.74492	-0.31717	-2.36342
Η	-3.11250	-1.63202	-2.45431	Н	6.42005	-0.79043	-2.70748
Н	-4.56298	0.86829	-1.27122				

				С	4.51097	0.76353	0.19799
Com	pound 5.28			Ĥ	3.47042	-0.46986	-1.20295
	structure was	assigned as i	ncorrect	Н	3.15020	0.04418	2.54038
	YP/6-31g(d)	ussi <u>b</u> iicu us i		Н	3.14653	-1.72191	2.45365
	• • •	vation in dich	loromethane	Н	1.63451	-0.83322	2.68790
SMD implicit solvation in dichloromethane was used.				Н	4.56923	0.89240	1.28265
was used.					3.74463	1.95259	-0.38366
Flect	tronic Energy	v1878 537	40493 har-	C C	5.92891	0.72519	-0.38672
tree.	Tome Liferg.	y1070.337	-0	C	4.02300	-2.91197	-0.33246
	Energy: -187	7 811310 har	tree	C	4.89554	-3.97721	0.31957
Titte	Free Energy: -1877.811310 hartree.				4.04583	-3.03668	-1.86347
0	-3.25738	0.04100	0.05613	C H	3.41976	-2.29196	-2.36192
C	-2.05895	0.52056	-0.58147	Н	3.68593	-4.02871	-2.15527
C	-1.08178	-0.64712	-0.74826	Н	5.07079	-2.91623	-2.22887
C	-1.52873	1.72039	0.25095	п Н	4.86839	-2.91023	1.40758
С Н							
п Si	-2.29531	0.89829	-1.58383	Н	5.93111	-3.87968	-0.02059
	-4.67576	-0.43530	-0.72330	Н	4.53279	-4.97579	0.05733
H C	-1.35616	1.35278	1.26902	Н	6.49767	-0.09470	0.05713
C	-2.58351	2.83561	0.32289	Н	6.45428	1.66417	-0.18078
C	-0.72603	-1.01262	-1.98630	H	5.90521	0.58379	-1.47190
C	-0.66244	-1.36676	0.52264	0	3.94291	2.40977	-1.49378
C	-5.91592	-0.78315	0.69624	0	2.80563	2.41962	0.46363
C	-5.29383	0.94787	-1.85514	C	1.96614	3.53760	0.01384
C	-4.39120	-1.97952	-1.77655	C	2.62020	4.83995	0.45952
Н	-5.60460	1.84026	-1.29904	С	0.54237	3.30148	0.56227
Η	-6.15400	0.60911	-2.44676	Η	1.93328	3.50142	-1.07587
Η	-4.51888	1.25575	-2.56865	С	-0.17587	2.22753	-0.30121
Н	-3.89734	-2.78091	-1.21456	Η	0.00906	4.25070	0.40145
Н	-3.76366	-1.75505	-2.64751	С	0.53216	3.00529	2.07055
Η	-5.34225	-2.37608	-2.15598	Η	2.01661	5.69337	0.12983
Η	-0.07471	-1.85717	-2.19084	Η	3.61437	4.93755	0.01095
Н	-1.08822	-0.47199	-2.85813	Н	2.72761	4.89337	1.54784
С	0.38518	-2.50258	0.44827	0	-0.30637	2.69100	-1.65504
Н	-1.57576	-1.78882	0.96354	Н	0.49085	1.36659	-0.39174
Н	-0.32547	-0.62389	1.25758	Н	0.94590	2.01651	2.29281
Η	0.07111	-3.20190	-0.33939	Н	-0.48247	3.04833	2.47710
С	0.36645	-3.30389	1.76304	Η	1.13107	3.74183	2.61709
С	1.79156	-2.01646	0.00847	Η	-0.84777	3.49951	-1.63418
Ο	2.70722	-3.11302	0.18601	Η	-3.50364	2.46682	0.78194
С	2.39709	-0.74704	0.64609	Н	-2.84228	3.21409	-0.67451
Н	1.71504	-1.79915	-1.06372	Н	-2.23049	3.68290	0.92131
Н	1.14898	-4.06708	1.76849	С	-5.46599	-2.01136	1.51487
Н	-0.60103	-3.80850	1.87418	Η	-6.17631	-2.20800	2.33209
Н	0.50539	-2.66836	2.64367	Η	-5.41685	-2.91983	0.90182
С	2.59551	-0.82236	2.16590	Η	-4.47906	-1.86088	1.96921
Н	1.73451	0.08948	0.41419	С	-7.31200	-1.06273	0.09878
С	3.71399	-0.52727	-0.13133	Н	-7.30712	-1.92232	-0.58337
0	4.56736	-1.65545	0.09453	Η	-8.03207	-1.28915	0.89919

тт	7 70204	0 20012	0 45517	тт	0 (2447	2 (0022	1.00(45
Н	-7.70284	-0.20012	-0.45517	Н	-0.63447	-3.69932	1.90645
C	-6.00726	0.43720	1.63567	Н	0.55242	-2.60093	2.61302
Η	-5.04194	0.65946	2.10445	С	2.50384	-0.73320	2.05453
Η	-6.33923	1.33994	1.10715	Н	1.68599	0.10770	0.24649
Η	-6.73169	0.24837	2.44255	С	3.67429	-0.55106	-0.20024
				Ο	4.49447	-1.67687	0.08574
				С	4.49962	0.70690	0.13222
Com	pound 5.28			Η	3.46945	-0.50952	-1.28313
This	structure was	assigned as i	ncorrect.	Η	1.53428	-0.74776	2.55930
	-2X/6-31g(d)	C		Η	3.02942	0.16152	2.40176
	implicit solv	vation in dich	loromethane	Н	3.07028	-1.61266	2.37574
was ı				Н	4.59723	0.80344	1.21778
				С	3.75222	1.92524	-0.38631
Elect	ronic Energy	v [.] -1877 816	63037 har-	Ċ	5.88193	0.63837	-0.51168
tree.	Tome Energ.	<i>y</i> . 1077.010	105057 Hui	Č	3.94481	-2.92706	-0.30976
	Energy: -187	7 081012 har	tree	C	4.79594	-3.98106	0.37184
1100	Lifergy107	7.001012 Hai	ucc.	C	3.97675	-3.08978	-1.82997
0	-3.23596	0.08084	0.13645	H	3.34248	-2.36964	-2.35189
C	-2.06843	0.08084	-0.51738	Н	3.63427	-4.09490	-2.09185
C C	-2.00843	-0.57941	-0.71764	п Н	5.00278	-2.96213	-2.18681
C	-1.51346	1.73258	0.32925	Н	4.76529	-3.82739	1.45384
H	-2.32303	0.97836	-1.50945	Н	5.83117	-3.90838	0.02818
Si	-4.64315	-0.28121	-0.70338	Н	4.41247	-4.97825	0.14071
Н	-1.31568	1.33081	1.32985	Η	6.45772	-0.17993	-0.07706
С	-2.55322	2.84548	0.45678	Η	6.42570	1.57435	-0.35581
С	-0.74294	-0.93093	-1.95621	Н	5.79720	0.47098	-1.58989
С	-0.65604	-1.28756	0.54468	Ο	4.00204	2.47764	-1.43376
С	-5.81991	-0.96212	0.61232	Ο	2.76849	2.31093	0.43936
С	-5.32925	1.27713	-1.49883	С	1.97443	3.45817	0.03821
С	-4.30813	-1.55106	-2.04752	С	2.67232	4.72255	0.50662
Η	-5.65144	2.01580	-0.75631	С	0.57017	3.25119	0.61936
Η	-4.58106	1.75433	-2.14299	Η	1.90903	3.45427	-1.05269
Η	-6.19199	1.03802	-2.13209	С	-0.19129	2.24262	-0.26036
Н	-3.72997	-1.11635	-2.87108	Н	0.05875	4.22165	0.53305
Н	-5.25073	-1.91865	-2.47190	С	0.61037	2.84279	2.09290
Н	-3.75029	-2.41325	-1.66616	Η	2.09140	5.60078	0.20865
Н	-0.09058	-1.77284	-2.16868	Н	3.66343	4.79809	0.05022
Н	-1.11728	-0.38211	-2.81770	Н	2.78868	4.73416	1.59449
C	0.33777	-2.45358	0.43327	0	-0.38620	2.76764	-1.57034
Н	-1.56741	-1.65832	1.03390	Н	0.46559	1.38040	-0.41765
Н	-0.24804	-0.54258	1.24335	Н	0.93660	1.80173	2.20175
H	-0.02951	-3.14259	-0.34045	H	-0.37424	2.94272	2.20173
C	0.34762	-3.24056	1.74949	Н	1.30740	3.46895	2.65864
C	1.73884	-2.01136	-0.04191	Н	-0.90023	3.58735	-1.48110
0	2.63440	-3.09498	0.20197	Н	-2.17931	3.67416	1.06846
C	2.33678	-0.72020	0.53716	Н	-2.83146	3.24598	-0.52624
Н	1.67152	-1.84758	-1.12574	Н	-3.46398	2.46552	0.92656
Н	1.09758	-4.03373	1.72751	С	-7.24004	-1.05100	0.03705

Η	-7.92357	-1.49078	0.77696	С	-2.36580	8.43400	-9.75600
Н	-7.63370	-0.06211	-0.22721	С	-2.66050	6.03590	-9.02190
Η	-7.28320	-1.68022	-0.86102	С	-2.04970	7.00010	-5.02910
С	-5.82683	-0.03325	1.83344	С	-1.31210	5.90280	-4.26030
Н	-6.13915	0.98487	1.56926	С	-3.56100	6.93410	-4.73150
Н	-6.53096	-0.40653	2.59078	Н	-4.11660	7.71680	-5.24330
Н	-4.83596	0.02869	2.29617	Н	-3.72850	7.04600	-3.66020
C	-5.35835	-2.36060	1.04291	Н	-3.95610	5.96890	-5.04830
Ĥ	-5.39518	-3.07418	0.21089	Н	-1.46120	6.03040	-3.18800
Н	-4.33169	-2.34737	1.42896	Н	-0.24500	5.95840	-4.47590
Н	-6.00807	-2.74848	1.84039	Н	-1.68120	4.92180	-4.55960
	0.00007	2.71010	1.01057	Н	-3.71690	6.12080	-8.76410
				Н	-2.24090	5.22190	-8.43090
Com	oound 5.29			Н	-2.59560	5.74510	-10.07080
		assigned as c	orrect	0	-3.53940	8.52370	-10.11660
11115	structure was	assigned as c	oncer.	0	-1.36520	9.24580	-10.15550
Mala	oular Maaha	nics (OPLS-	2005) and	C	-1.60490	9.24380	-11.07880
		incs (OPLS-	-2005), gas	C C	-1.00490 -1.07940	9.89370	
phase		2 1.1					-12.46140
Energ	gy: -92.56355	3 KJ.		C	-0.97280	11.62240	-10.53760
C	0 10500	12 55050	7.21((0)	Н	-2.67560	10.49460	-11.18630
C	-2.18580	13.55050	-7.31660	C	-1.83040	12.16980	-9.36910
C	-2.31580	12.39650	-6.28660	H	-1.00560	12.36680	-11.33430
С	-1.20850	13.27190	-8.48270	С	0.51180	11.41320	-10.16010
Н	-0.26410	12.92200	-8.07180	Н	-1.62640	9.02620	-12.83140
С	-0.90110	14.56410	-9.26680	Η	-0.02360	9.62660	-12.43680
С	-1.02610	11.87510	-5.62930	Н	-1.20930	10.69520	-13.18870
С	-1.17530	10.63700	-4.70410	0	-3.05750	12.69500	-9.85160
Η	-0.60970	12.70240	-5.05510	Η	-2.08120	11.31700	-8.75160
Η	-0.29740	11.64490	-6.40250	Η	1.07760	10.97730	-10.98210
Н	-1.90790	10.90410	-3.94010	Η	0.61650	10.74970	-9.30140
С	0.13260	10.39020	-3.92380	Η	1.00520	12.35270	-9.91610
С	-1.74070	9.35710	-5.39370	Η	-1.80660	14.98980	-9.70130
Ο	-1.51620	8.21320	-4.57480	Η	-0.20120	14.38730	-10.08240
С	-1.25060	9.01430	-6.81810	Н	-0.46360	15.32210	-8.61740
Н	-2.81810	9.50980	-5.44860	Н	-1.83900	14.41990	-6.75810
Н	0.96000	10.09940	-4.56640	0	-3.44760	13.89190	-7.90550
Н	0.00640	9.60230	-3.18050	Ċ	-3.96420	12.96860	-8.82460
Н	0.43900	11.28540	-3.38270	H	-4.25500	12.03780	-8.33270
C	0.26560	8.75220	-6.92260	0	-3.41240	11.92720	-5.98420
H	-1.47780	9.85190	-7.45870	C	-5.19150	13.61000	-9.46600
C	-2.10260	7.81560	-7.28550	Н	-5.62880	12.92540	-10.19280
0	-1.80290	6.75010	-6.38630	Н	-5.93250	13.83580	-8.69910
C C			-8.75530	п Н	-3.93230	13.83380	-9.97070
	-1.90940	7.35570		п	-4.90090	14.33320	-9.9/0/0
H	-3.15820	8.07220	-7.18910				
Н	0.55410	8.44140	-7.92510				
Н	0.58280	7.97190	-6.23020	C	1 = 20		
Н	0.84140	9.64920	-6.70760		npound 5.29		
Η	-0.85350	7.16470	-8.93880	1 his	s structure was	assigned as 1	ncorrect.

		. (0.0.1.0		0	-1.31580	9.30260	-10.42640
		inics (OPLS-	2005), gas	C	-1.61250	10.37720	-11.32740
phase		417		C	-1.14250	9.96310	-12.73060
Energ	gy: - 79.78693	4 kJ.		С	-1.02040	11.73030	-10.83160
a				Н	-2.69190	10.51560	-11.40600
C	-1.92140	13.50440	-7.41410	C	-1.63950	12.11410	-9.46790
C	-1.32850	12.53440	-6.36100	Н	-1.30770	12.49330	-11.55540
С	-1.22370	13.44180	-8.80010	С	0.52030	11.69670	-10.76610
H	-0.14480	13.44590	-8.64360	Н	-1.69640	9.09000	-13.07630
С	-1.56310	14.67530	-9.65790	Η	-0.08470	9.70240	-12.74680
C	-2.23530	12.01590	-5.22630	Н	-1.30760	10.76330	-13.45210
С	-1.85790	10.67630	-4.51730	0	-3.05480	12.16130	-9.57460
Н	-3.25660	11.94070	-5.59550	Н	-1.34770	11.31080	-8.80640
Η	-2.25930	12.80590	-4.47630	Η	0.96160	11.45420	-11.73170
Н	-2.58040	10.62200	-3.70170	Н	0.86950	10.95710	-10.04460
С	-0.51170	10.69080	-3.76160	Н	0.93080	12.66300	-10.47670
С	-2.16730	9.37960	-5.32400	Η	-2.63160	14.72990	-9.86980
Ο	-1.94850	8.22100	-4.52440	Η	-1.03510	14.65590	-10.61070
С	-1.47640	9.12980	-6.67750	Η	-1.28130	15.59590	-9.14720
Η	-3.23850	9.44510	-5.51720	Η	-1.78230	14.50270	-6.99960
Η	0.35340	10.82360	-4.40410	0	-3.32940	13.31610	-7.59270
Η	-0.36370	9.76230	-3.20950	С	-3.69140	12.18930	-8.33830
Η	-0.48890	11.50250	-3.03490	Η	-3.47390	11.26890	-7.79560
С	0.05260	8.92040	-6.59810	0	-0.14380	12.21620	-6.42560
Η	-1.67440	9.98250	-7.30280	С	-5.19080	12.27990	-8.60310
С	-2.19040	7.91290	-7.29700	Η	-5.51280	11.41540	-9.18470
0	-1.91470	6.82070	-6.42220	Η	-5.73530	12.29720	-7.65920
С	-1.80970	7.59760	-8.77000	Η	-5.41460	13.18830	-9.16260
Η	-3.26710	8.08550	-7.29430				
Η	0.48170	8.68690	-7.57010				
Η	0.31230	8.10800	-5.91950				
Η	0.57380	9.80840	-6.25850		npound 5.29		
Η	-0.72780	7.52840	-8.86520		s structure was		correct.
С	-2.30330	8.71000	-9.71210	B3L	.YP/6-31g(d)		
С	-2.39530	6.24800	-9.22270	Gas	phase.		
С	-2.31800	6.98740	-5.08630				
С	-1.56930	5.92030	-4.28630	Elec	ctronic Energy	y: -1465.222	.89144 har-
С	-3.83970	6.77990	-4.95560	tree.			
Η	-4.40550	7.53660	-5.49440	Free	e Energy: -1464	4.656251 har	tree.
Н	-4.12670	6.82490	-3.90490				
Η	-4.11180	5.80090	-5.35050	С	2.22647	-2.40135	0.11230
Н	-1.83880	5.98260	-3.23190	С	0.69264	-2.49950	0.35032
Η	-0.49480	6.07630	-4.38380	С	2.68289	-1.35242	-0.94318
Н	-1.81590	4.92710	-4.66190	Η	2.03302	-1.42279	-1.82184
Н	-3.47870	6.22430	-9.09980	С	4.13165	-1.63050	-1.37014
Н	-1.97790	5.42820	-8.63800	С	-0.20275	-2.76851	-0.85904
Н	-2.17220	6.04960	-10.27140	C	-1.72464	-2.67653	-0.61389
0	-3.49680	9.01090	-9.75720	Η	0.03943	-3.78402	-1.21070

Η	0.08869	-2.11185	-1.68687	Н	2.59103	2.11978	-3.12008
Η	-1.96906	-3.39967	0.17449	Н	1.29231	1.02324	-2.65122
С	-2.48961	-3.11402	-1.87443	Η	2.87928	0.38295	-3.11641
С	-2.14969	-1.29817	-0.03756	Η	4.79659	-1.61102	-0.50384
0	-3.57479	-1.18227	-0.15962	Η	4.48896	-0.88756	-2.09063
С	-1.49983	-0.01416	-0.59835	Η	4.21183	-2.61627	-1.84299
Η	-1.88004	-1.33500	1.02428	Н	2.53006	-3.39889	-0.23810
Η	-2.23986	-2.50649	-2.75018	Ο	2.93137	-2.20574	1.32784
Н	-3.56673	-3.03976	-1.71178	С	2.84606	-0.88147	1.85120
Η	-2.24838	-4.15663	-2.11496	Н	1.80179	-0.66402	2.11034
С	-1.75033	0.23777	-2.09167	Ο	0.24064	-2.43322	1.47753
Η	-0.42209	-0.08057	-0.42010	С	3.74954	-0.81021	3.06092
С	-2.05138	1.11045	0.30641	Н	3.70601	0.19164	3.49699
0	-3.47056	1.16223	0.14836	Н	3.42698	-1.54125	3.80709
С	-1.47300	2.52396	0.06470	Н	4.78030	-1.03015	2.76736
Н	-1.80300	0.86010	1.34832				
Н	-1.33370	1.19970	-2.40688				
Н	-2.82039	0.24042	-2.31209	Com	pound 5.29		
Н	-1.28038	-0.53222	-2.71111		structure was	assigned as i	ncorrect.
Н	-1.55557	2.78579	-0.99313		YP/6-31g(d)	U	
С	0.00401	2.47982	0.45455		phase.		
С	-2.19804	3.58042	0.91496		1		
С	-4.15556	-0.05024	0.49036	Elec	tronic Energy	v: -1465.222	.92043 har-
C	-5.55338	0.09245	-0.09888	tree.		,	
С	-4.20562	-0.24852	2.01348		Energy: -1464	4.656498 har	tree.
H	-3.21540	-0.36952	2.45964		8)		
Н	-4.78886	-1.14466	2.24564	С	2.16126	-2.47196	0.09159
Н	-4.68419	0.61657	2.48230	С	0.73914	-2.61393	-0.53077
Н	-6.13952	-0.80889	0.10154	C	3.02749	-1.43322	-0.66829
Н	-5.48073	0.23592	-1.18009	Н	2.77313	-1.53719	-1.72667
Н	-6.06186	0.95526	0.34075	С	4.52449	-1.69010	-0.45958
Н	-2.06885	3.36710	1.98041	C	-0.41708	-3.03930	0.36857
Н	-3.26435	3.57716	0.68047	Ċ	-1.87244	-2.69899	-0.04989
Н	-1.79660	4.58022	0.71659	H	-0.22208	-2.69466	1.38883
0	0.38906	2.34823	1.59835	Н	-0.33010	-4.13677	0.42511
0	0.82293	2.57305	-0.61962	Н	-2.49191	-3.21406	0.69882
С	2.27257	2.53030	-0.39971	С	-2.30729	-3.27920	-1.40609
Ċ	2.84096	3.86027	-0.87940	Ċ	-2.21429	-1.20806	0.20000
Č	2.83737	1.28367	-1.12152	Õ	-3.60750	-1.03885	-0.08644
Ĥ	2.43789	2.41773	0.67257	Č	-1.42422	-0.07983	-0.49656
С	2.49547	0.03212	-0.28970	H	-2.05145	-1.06347	1.28255
H	3.93060	1.38743	-1.10325	Н	-1.69872	-2.92674	-2.23676
C	2.37138	1.19181	-2.58303	Н	-3.35325	-3.02299	-1.59498
Ĥ	2.41450	4.68434	-0.29866	Н	-2.22632	-4.37309	-1.37817
Н	2.62126	4.04148	-1.93627	C	-1.51012	-0.07537	-2.02898
Н	3.92794	3.87519	-0.74287	Н	-0.37763	-0.17345	-0.18924
0	3.28632	0.07777	0.90187	C	-1.97924	1.21319	0.14205
Н	1.43818	0.11433	0.00535	0	-3.36488	1.31944	-0.19173

C	1 26155	2 52115	0.25022	τī	2 25056	1 00227	2 50741
C	-1.26155	2.52115	-0.25932	Н	3.25856	-1.08237	3.59741
Н	-1.86789	1.13687	1.23384				
Н	-1.04779	0.82543	-2.44555	C	1 5 30		
Н	-2.55079	-0.10375	-2.35985		npound 5.29		
Н	-0.98256	-0.93200	-2.44952		s structure was	assigned as 1	ncorrect.
Н	-1.18947	2.59573	-1.34678		6-2X/6-31g(d)		
С	0.14640	2.46710	0.33326		D implicit solv	vation in dim	ethylsulfox-
С	-1.99440	3.75859	0.28911	idev	was used.		
С	-4.17303	0.22844	0.26357				
С	-5.47518	0.32749	-0.52090	Elec	tronic Energy	y: -1464.644	93902 har-
С	-4.41900	0.31781	1.77811	tree.			
Η	-3.49789	0.23358	2.36066	Free	Energy: -146	4.070959 har	tree.
Η	-5.08939	-0.48919	2.08874				
Η	-4.88439	1.27786	2.02090	С	2.06901	-2.48972	0.09714
Η	-6.14243	-0.49476	-0.24742	С	0.65369	-2.57393	-0.52098
Н	-5.26023	0.26983	-1.59098	С	2.96363	-1.47335	-0.63825
Н	-5.97280	1.27827	-0.30907	Н	2.74880	-1.57228	-1.70553
Н	-2.02413	3.73254	1.38291	С	4.44010	-1.74185	-0.36825
Н	-3.01773	3.78127	-0.09105	C	-0.50287	-2.98344	0.36982
Н	-1.48473	4.67861	-0.01747	Č	-1.93829	-2.64132	-0.07552
0	0.35895	2.40423	1.52800	Ĥ	-0.32807	-2.61073	1.38447
ŏ	1.11259	2.48714	-0.61411	Н	-0.40824	-4.07803	0.44658
Č	2.51301	2.45884	-0.17383	Н	-2.57857	-3.17169	0.64298
C C	3.13796	3.79143	-0.56854	C	-2.34111	-3.17193	-1.45305
C C	3.20049	1.21078	-0.77820	C C	-2.25639	-1.16099	0.18811
н Н	2.50645	2.35493	0.91092	0	-3.62263	-0.93552	-0.15177
C	2.56885	-0.05092	-0.16970	C	-1.40856	-0.95552	-0.47480
С Н	4.24660	1.26061	-0.10970	С Н	-2.12633	-1.03025	1.27550
п С							
	3.16142	1.18058	-2.31353	Н	-1.77104	-2.73042	-2.26769
Н	2.64917	4.60981	-0.03018	Н	-3.40429	-2.97953	-1.62303
Н	3.04145	3.98556	-1.64105	Н	-2.18455	-4.25633	-1.48734
Н	4.20230	3.80187	-0.30750	C	-1.48221	-0.03817	-2.00006
0	2.77167	-0.00609	1.25103	Н	-0.37466	-0.20764	-0.14903
Н	1.49040	0.02048	-0.36774	C	-1.92776	1.23170	0.15514
Н	3.59603	2.09092	-2.73742	0	-3.28777	1.39611	-0.22127
Н	2.13343	1.09682	-2.68124	С	-1.14812	2.49690	-0.21623
Н	3.73200	0.33485	-2.70902	Н	-1.85054	1.14181	1.24912
Н	4.79092	-1.61508	0.59832	Н	-1.04864	0.88434	-2.39968
Н	5.13308	-0.96784	-1.01511	Н	-2.52207	-0.09317	-2.33474
Η	4.79828	-2.69106	-0.81265	Η	-0.92669	-0.86966	-2.43446
Н	2.61007	-3.46756	-0.03775	Н	-1.09863	2.62218	-1.30008
Ο	2.17767	-2.26391	1.50400	С	0.25915	2.33144	0.33700
С	1.93658	-0.91967	1.91830	С	-1.78234	3.73933	0.41645
Н	0.88778	-0.65827	1.69404	С	-4.13897	0.33899	0.21147
0	0.63353	-2.50496	-1.74054	C	-5.42689	0.50192	-0.57096
Ċ	2.21050	-0.83675	3.40346	Ċ	-4.39098	0.42023	1.71659
Ĥ	2.00478	0.17722	3.75656	Ĥ	-3.48307	0.28518	2.30893
Н	1.57444	-1.54326	3.94430	Н	-5.10419	-0.35667	2.00584
		1.0 10 -0	2.2 1120		2.1.0.11/	0.00000	=

Н	-4.81693	1.39754	1.96133	С	2.24507	-2.44756	0.06741
Η	-6.13193	-0.28866	-0.30173	С	0.82605	-2.63062	-0.54472
Η	-5.21228	0.44104	-1.64133	С	3.07532	-1.36531	-0.67195
Η	-5.88018	1.47240	-0.35253	Η	2.82690	-1.45312	-1.73297
Η	-1.83582	3.62672	1.50407	С	4.57930	-1.58247	-0.47681
Η	-2.79405	3.87674	0.02933	С	-0.32231	-3.03869	0.36698
Η	-1.19641	4.63514	0.18879	С	-1.78564	-2.73149	-0.04684
Ο	0.47862	2.10954	1.50780	Η	-0.13682	-2.66280	1.37684
0	1.20996	2.47582	-0.59697	Η	-0.21812	-4.13292	0.45028
С	2.60214	2.40875	-0.17748	Η	-2.38445	-3.26578	0.70453
С	3.26069	3.69489	-0.64051	С	-2.21352	-3.32553	-1.39834
С	3.24214	1.12874	-0.74203	С	-2.16910	-1.25045	0.20794
Η	2.61290	2.34570	0.91103	0	-3.57079	-1.12355	-0.08595
С	2.52700	-0.08524	-0.15725	С	-1.40893	-0.09808	-0.48350
Η	4.27868	1.12794	-0.37830	Η	-2.01729	-1.10498	1.28915
С	3.23941	1.08088	-2.26841	Η	-1.65214	-2.92848	-2.24282
Н	2.83683	4.54899	-0.10413	Η	-3.27888	-3.13938	-1.56570
Н	3.11266	3.85729	-1.71160	Η	-2.06190	-4.41259	-1.38408
Н	4.33578	3.65964	-0.43769	С	-1.46718	-0.11105	-2.01623
Ο	2.67029	-0.04373	1.26066	Н	-0.36726	-0.15622	-0.15553
Н	1.46091	0.02798	-0.41034	С	-2.01276	1.18518	0.13146
Н	3.71522	1.96903	-2.69319	0	-3.40486	1.23617	-0.20326
Н	2.21594	1.02272	-2.65712	С	-1.35339	2.51817	-0.30000
Н	3.79089	0.20969	-2.63432	Н	-1.90383	1.12901	1.22400
Н	4.66119	-1.63923	0.69844	Н	-1.02097	0.79524	-2.43940
Н	5.07579	-1.04051	-0.91931	Н	-2.49940	-0.17164	-2.37171
Н	4.71254	-2.75567	-0.67959	Н	-0.90945	-0.95868	-2.41742
Η	2.48403	-3.49823	-0.03988	Η	-1.26379	2.55613	-1.38800
Ο	2.07340	-2.28032	1.50097	С	0.04595	2.57744	0.31348
Č	1.79569	-0.94346	1.88133	Ċ	-2.16054	3.73496	0.18124
Ĥ	0.76308	-0.68901	1.58319	Č	-4.17268	0.12320	0.27439
0	0.54816	-2.44259	-1.72502	Ċ	-5.49236	0.17968	-0.48355
Č	1.97012	-0.84535	3.37378	Č	-4.39503	0.21104	1.79099
H	1.74789	0.17222	3.70302	H	-3.46367	0.15580	2.36083
Н	1.29266	-1.53970	3.87711	Н	-5.03754	-0.61366	2.11618
Н	3.00140	-1.09442	3.63947	Н	-4.88906	1.15557	2.04088
		1.07		Н	-6.12887	-0.66383	-0.19938
				Н	-5.30420	0.13295	-1.56038
Com	oound 5.29			Н	-6.02297	1.10987	-0.25796
	structure was	assigned as i	ncorrect	Н	-2.26531	3.72959	1.27102
	$\frac{P}{6-31g(d)}$	ussigned us i		Н	-3.15835	3.72362	-0.26300
	implicit solv	vation in dim	ethylsulfox-	Н	-1.66217	4.66683	-0.10934
	as used.	allon in ann	ieury isuriox	0	0.24182	2.72198	1.50630
ide w	us usea.			ŏ	1.02451	2.45665	-0.60732
Elect	ronic Energy	v· -1465 243	47050 har-	C	2.42228	2.49855	-0.14731
tree.	Linerg.	<i>y</i> . 110 <i>3</i> .2 1 3		C	2.99431	3.85728	-0.52531
	Energy: -146	4 676517 har	tree	C C	3.17006	1.28260	-0.74124
1100	Line 6y140	1.070517 Hal		H	2.40300	2.39460	0.93683
				11	2.70300	2.57400	0.75005

С	2.57668	-0.00608	-0.15055	С	-1.45297	0.00766	-0.55203
Н	4.20637	1.37746	-0.39030	Н	-1.92762	-1.34857	1.01105
С	3.17016	1.25660	-2.27599	Н	-2.18610	-2.28713	-2.81301
H	2.45489	4.65333	-0.00013	Н	-3.54117	-2.89891	-1.85350
Н	2.92282	4.04951	-1.60047	Н	-2.20434	-3.97552	-2.29501
Н	4.04935	3.91395	-0.23386	C	-1.65797	0.30471	-2.03546
0	2.77493	0.02208	1.27650	H	-0.38451	-0.09555	-0.34316
Н	1.49759	0.03537	-0.34558	C	-1.99982	1.11532	0.35534
Н	3.57115	2.18910	-2.68574	0	-3.40259	1.21555	0.15649
H	2.15914	1.12172	-2.67656	C	-1.37616	2.50100	0.15049
H	3.79452	0.44200	-2.65591	H	-1.78698	0.83805	1.39957
H	4.85287	-1.53489	0.58178	H	-1.25764	1.28773	-2.30246
H	5.16298	-0.82433	-1.01129	H	-2.72210	0.28731	-2.28874
п Н				п Н			
	4.88047	-2.56400	-0.86198		-1.14488	-0.42911	-2.66306
Н	2.72391	-3.42480	-0.08566	H	-1.50511	2.82700	-0.88424
0	2.26831	-2.26245	1.48568	C	0.10789	2.36006	0.45070
C	1.96425	-0.93675	1.91780	C	-1.99620	3.52558	1.10132
Н	0.91128	-0.71497	1.67957	C	-4.11826	0.01744	0.44649
0	0.72469	-2.57891	-1.76161	C	-5.50072	0.21003	-0.14435
C	2.20950	-0.87073	3.40822	С	-4.19138	-0.22636	1.95371
Н	1.96695	0.12892	3.78121	Н	-3.21042	-0.36661	2.41321
Н	1.58054	-1.60053	3.92703	Н	-4.78817	-1.12232	2.14612
Н	3.26000	-1.08811	3.62704	Н	-4.67398	0.62771	2.43722
				Η	-6.10719	-0.68275	0.02870
				Η	-5.41642	0.38269	-1.22061
Com	pound 5.29			Η	-5.99296	1.06873	0.31950
This	structure was	assigned as c	correct.	Н	-1.86726	3.20692	2.14040
M06-	-2X/6-31g(d)	-		Η	-3.06447	3.62260	0.89668
SMD	implicit sol	vation in dim	ethylsulfox-	Η	-1.52727	4.50664	0.97910
ide w	vas used.		2	0	0.53524	2.08480	1.55061
				0	0.87443	2.55287	-0.63094
Elect	ronic Energ	y: -1464.647	709580 har-	С	2.32085	2.48408	-0.48624
tree.		J		С	2.88197	3.76046	-1.08325
	Energy: -146	4.074465 har	tree.	С	2.82542	1.19715	-1.15850
	0,1			Н	2.54902	2.43353	0.58012
С	2.16481	-2.40547	0.16707	C	2.45095	0.00079	-0.28556
Č	0.63148	-2.48566	0.33879	Ĥ	3.92112	1.26799	-1.18436
Č	2.66315	-1.39398	-0.88621	C	2.28734	1.03619	-2.58007
H	2.06137	-1.49472	-1.79356	H	2.51368	4.62978	-0.53073
C	4.12929	-1.65681	-1.22181	Н	2.59656	3.87726	-2.13253
C	-0.21212	-2.66922	-0.90956	Н	3.97422	3.75024	-1.01877
C	-1.72977	-2.60858	-0.69076	0	3.18120	0.08096	0.93404
H	0.06384	-3.64615	-1.33381	Н	1.38375	0.10276	-0.03746
H	0.00384	-1.93413	-1.66485	Н	2.43726	1.94740	-3.16619
п Н	-1.99220	-3.37994	0.04453	п Н	1.21334	0.81752	-2.56767
п С	-1.99220	-2.95448	-1.99053	п Н	2.79391	0.81732	-2.30707
C C	-2.43903	-2.93448	-0.05943	п Н	4.74566	-1.57963	
							-0.32207
0	-3.56061	-1.09907	-0.23094	Η	4.50488	-0.93751	-1.95711

Н	4.25425	-2.66026	-1.64148	Н	-1.27894	-0.51578	-2.75617
Η	2.46998	-3.41539	-0.14167	Η	-1.63713	2.75534	-1.05750
0	2.80534	-2.17065	1.40760	С	-0.10323	2.59086	0.43266
С	2.67325	-0.83849	1.87081	С	-2.37717	3.56887	0.80033
H	1.60806	-0.61484	2.03185	Ċ	-4.11722	-0.16849	0.54257
0	0.14155	-2.48405	1.44935	C	-5.54602	-0.09000	0.02075
C	3.46740	-0.71788	3.14437	C	-4.09265	-0.36595	2.06555
Н	3.38148	0.29639	3.54179	Н	-3.08110	-0.46497	2.46812
Η	3.08965	-1.42448	3.88714	Η	-4.64524	-1.27472	2.32564
Η	4.51978	-0.93711	2.94280	Н	-4.57208	0.48555	2.55924
				Н	-6.08295	-1.01716	0.24315
				Η	-5.53895	0.06334	-1.06260
Com	pound 5.29			Η	-6.07693	0.74311	0.49163
	structure was	assigned as c	correct.	Н	-2.33893	3.36174	1.87458
	YP/6-31g(d)	0		Н	-3.42185	3.55746	0.48171
) implicit solv	vation in dim	ethylsulfox-	Н	-1.97537	4.57475	0.63364
	vas used.	valion in ann	loury isuitox	0	0.25754	2.66415	1.59276
iue v	vas usea.			Ő	0.73590	2.54023	-0.62141
Floor	tronic Energy	w 1465 245		C	2.18547	2.55637	-0.37467
	uome Energ	y1403.243	90/141 IIai-	C		3.90718	
tree.	Г 146	4 (7052(1			2.71851		-0.83025
Free	Energy: -146	4.6/9536 har	tree.	C	2.80544	1.33492	-1.09099
				Н	2.33247	2.44615	0.69993
С	2.31104	-2.37968	0.09821	С	2.49292	0.06565	-0.27538
С	0.78237	-2.55501	0.31674	Η	3.89276	1.48375	-1.05683
С	2.75122	-1.30397	-0.93166	С	2.37104	1.23229	-2.56065
Η	2.12707	-1.39159	-1.82501	Η	2.24542	4.71401	-0.25972
С	4.21629	-1.52524	-1.33164	Н	2.53097	4.08589	-1.89406
С	-0.09948	-2.73473	-0.91186	Н	3.79932	3.95770	-0.65631
Ċ	-1.62211	-2.68575	-0.66948	0	3.25095	0.13316	0.94604
H	0.16436	-3.71904	-1.32988	Ĥ	1.42660	0.10253	-0.00625
Н	0.18528	-2.01607	-1.68629	Н	2.54980	2.17765	-3.08376
H	-1.85435		0.10517	Н	1.30524	1.00036	
		-3.42778					-2.65389
C	-2.36884	-3.12309	-1.93992	Н	2.93443	0.45908	-3.09103
C	-2.07692	-1.32766	-0.07050	Н	4.87105	-1.50173	-0.45616
0	-3.51383	-1.27422	-0.13246	Н	4.56225	-0.75928	-2.03373
С	-1.50231	-0.01426	-0.64514	Н	4.33554	-2.49990	-1.81969
Η	-1.76881	-1.35738	0.98154	Н	2.65442	-3.36102	-0.25837
Η	-2.10773	-2.51709	-2.81343	0	2.98985	-2.17178	1.33579
Η	-3.45061	-3.05985	-1.79514	С	2.82812	-0.85954	1.86603
Η	-2.11882	-4.16482	-2.17616	Η	1.76521	-0.69373	2.09266
С	-1.79570	0.21972	-2.13271	0	0.33418	-2.64121	1.44820
Н	-0.41924	-0.03361	-0.49708	С	3.67577	-0.75696	3.11298
C	-2.07579	1.08685	0.27380	H	3.56898	0.23725	3.55786
0 0	-3.50385	1.07333	0.16695	Н	3.35556	-1.50450	3.84511
C	-1.57144	2.52807	0.00930	Н	4.72977	-0.92662	2.86951
С Н	-1.78832	0.85046	1.30875	11	<i>ч.14)11</i>	-0.72002	2.00751
H	-1.45393	1.20793	-2.45787	Carr	nound 5 20		
Η	-2.86681	0.15057	-2.34281	Con	pound 5.30		

This	structure was	assigned as in	ncorrect.	Н	4.46740	-6.36120	6.53670
				Н	1.15370	-4.19090	5.24420
	cular Mecha	inics (OPLS-	-2005), gas	Н	2.80340	-3.96860	5.77210
phase				Н	4.79040	-4.63610	4.72010
Energ	gy: -169.9506	523 kJ.		Н	5.76620	-4.58580	3.26700
				Н	5.56240	-6.10060	4.12150
С	2.08140	-4.26250	1.39770	Н	3.84420	-3.45250	2.27410
С	0.87640	-5.17480	1.65900	Н	2.60020	-3.73980	3.43150
0	0.23150	-4.99620	2.69260	Η	1.69370	-3.26600	1.18880
С	0.51280	-6.22290	0.67080	Η	2.61250	-4.57700	0.50300
С	0.81960	-6.07640	-0.63870	Н	-1.24820	-7.20160	1.43880
С	-0.19920	-7.43430	1.25530	Н	0.25340	-7.71440	2.20670
Η	1.32350	-5.18460	-0.97840	Н	-0.14180	-8.30800	0.60890
С	0.53250	-7.06770	-1.75590	Н	4.63670	-5.60620	0.90570
Н	-0.32860	-7.68290	-1.49610	С	4.37070	-8.35440	5.73460
С	1.74340	-7.97130	-2.04780	Н	3.68540	-9.19690	5.67310
Н	0.23840	-6.51760	-2.65040	Н	5.22290	-8.67490	6.33390
Н	2.02550	-8.45120	-1.11210	Н	4.73120	-8.15540	4.72560
С	2.95270	-7.24430	-2.69460	С	0.96400	-8.85320	4.82280
Н	1.43180	-8.79840	-2.68730	Н	0.00550	-9.34330	4.65200
С	2.83910	-7.31810	-4.22870	Н	1.49980	-9.44410	5.56390
C	4.30820	-7.78110	-2.15670	Н	1.52680	-8.88520	3.88880
Н	2.91200	-6.18730	-2.43020	С	1.47210	-4.62260	7.33190
Н	1.85630	-6.98740	-4.56570	H	0.57220	-5.22530	7.45930
Н	2.98720	-8.33680	-4.58900	Н	1.24150	-3.61170	7.66840
H	3.57190	-6.67830	-4.72010	Н	2.24100	-5.02510	7.99220
0	4.42870	-7.34550	-0.80650			0102010	,.,,,==0
Č	5.54330	-7.23390	-2.88930				
Ĥ	4.31960	-8.86950	-2.23460				
Н	5.55080	-6.14380	-2.89780	Com	pound 5.30		
H	5.58530	-7.58320	-3.92060		structure was	assigned as c	orrect
Н	6.45920	-7.56970	-2.40220	1 1110			
C	4.38480	-8.22020	0.22220	Mole	ecular Mecha	nics (OPLS	-2005), gas
Õ	4.47340	-9.44060	0.10200	phas		(0125	2000), Bu s
Ċ	4.12770	-7.56080	1.50940	1	gy: -169.6352	08 kJ	
Č	4.26160	-6.23330	1.70200	2	8). 103.00002		
H	3.75070	-8.18790	2.30350	С	1.04730	-4.85520	2.45690
C	3.80900	-5.50390	2.95610	Č	0.90860	-4.83550	0.93000
Õ	2.89210	-6.35620	3.64240	Õ	1.08150	-3.75150	0.37110
Č	3.08910	-4.18250	2.56710	Č	0.59130	-6.07750	0.17380
Č	5.04570	-5.19070	3.81850	Č	0.69810	-6.04690	-1.17360
Si	2.34380	-6.36670	5.25390	Č	0.19560	-7.31230	0.97500
C	1.93720	-4.62040	5.86990	Н	1.01580	-5.13100	-1.65450
C C	0.75990	-7.41120	5.30390	C	0.48580	-7.20280	-2.13700
C	3.70360	-7.11540	6.35200	H	-0.36230	-7.80570	-1.81330
Н	0.33690	-7.41660	6.30750	C	1.74180	-8.08250	-2.26010
H	0.01590	-6.92900	4.66880	Н	0.20660	-6.79840	-3.11050
H	3.29360	-7.36880	7.32930	H	1.94680	-8.49710	-1.27450
11	5.27500	1.50000	1.52750	11	1.7-1000	0.77/10	1.4770

С	2.98800	-7.34680	-2.82210	С	0.14170	-7.79210	5.31020
Η	1.51730	-8.95480	-2.87530	Н	0.25490	-7.70990	4.22870
C	3.06860	-7.55090	-4.34590	Η	-0.55390	-8.60740	5.50970
C	4.28520	-7.76630	-2.08280	Н	-0.31400	-6.86940	5.67070
Н	2.87750	-6.27480	-2.65810	C	1.76470	-5.12550	7.85980
Η	2.12230	-7.29680	-4.82440	Н	1.02160	-5.89470	8.07310
Н	3.30000	-8.58670	-4.59650	Η	1.38480	-4.18240	8.25320
Н	3.83060	-6.91720	-4.79930	Н	2.67150	-5.37380	8.41250
Ο	4.18600	-7.31100	-0.73490				
С	5.56580	-7.13730	-2.65410				
Н	4.38450	-8.85150	-2.13750				
Н	5.49380	-6.04990	-2.68620	Con	npound 5.30		
Н	5.77380	-7.49480	-3.66200		s structure was	assigned as c	orrect
Н	6.42870	-7.39600	-2.04000		5-2X/6-31g(d)	ussigned us e	
C	4.19380	-8.18000	0.29990			uction in m	othenol was
					D implicit sol	vation in m	ethalioi was
0	4.37430	-9.39110	0.18690	used	1.		
C	3.92350	-7.54210	1.59710				
С	3.80550	-6.21100	1.77810	Elec	tronic Energy	-1490.440)11321 har-
Н	3.80650	-8.20850	2.43820	tree.			
С	3.47460	-5.56470	3.11410	Free	e Energy: -1489	9.900606 har	tree.
Ο	2.89290	-6.55890	3.95790				
С	2.44660	-4.42010	2.94730	С	0.51194	2.26494	-0.21561
С	4.78050	-5.00830	3.70900	С	-0.91358	2.33765	-0.74651
Si	2.71920	-6.64280	5.64670	Õ	-1.10218	2.62716	-1.92302
C	2.04060	-5.02070	6.35430	Č	-2.10572	2.15245	0.13545
C C	1.49550	-8.04630	5.98520	C C	-2.00992	1.49765	1.30562
C C				C C			
	4.39030	-7.07130	6.42830		-3.39042	2.65846	-0.46532
Н	1.90710	-8.98680	5.61990	Н	-1.03666	1.12056	1.61606
Η	1.35590	-8.17210	7.05840	С	-3.12358	1.12882	2.24204
Н	4.26520	-7.24690	7.49640	Η	-2.78683	1.31400	3.26876
Н	5.07400	-6.22810	6.34190	С	-3.47682	-0.36255	2.09090
Η	1.12090	-4.74810	5.83720	Η	-4.01639	1.74022	2.07711
Η	2.74580	-4.20950	6.17850	Η	-2.54641	-0.94225	2.11451
Η	4.61800	-4.49140	4.65390	С	-4.26285	-0.65284	0.79719
Н	5.24460	-4.29090	3.03110	Н	-4.07054	-0.68545	2.95514
Н	5.50590	-5.80380	3.88230	C	-5.76783	-0.58283	1.05175
Н	2.31930	-3.90420	3.89600	C	-3.85859	-2.00472	0.20080
Н	2.85730	-3.65690	2.28350	H	-4.00859	0.10814	0.04874
Н	0.31220	-4.14460	2.83320	Н	-6.01817	0.34870	1.57198
Н	0.77560	-5.81500	2.88830	Н	-6.09621	-1.41643	1.68501
Н	-0.04940	-8.16260	0.34220	Η	-6.34405	-0.60900	0.12221
Η	-0.67760	-7.10300	1.59340	0	-2.42531	-1.98126	-0.05809
Η	1.01300	-7.62590	1.62480	С	-4.66632	-2.45971	-1.00595
Н	3.92330	-5.53400	0.94310	Η	-3.93120	-2.77203	0.97992
С	5.01800	-8.30960	5.77490	Н	-4.83434	-1.65293	-1.72196
Η	4.38470	-9.18820	5.90110	Н	-5.63669	-2.83488	-0.66759
Н	5.98960	-8.53520	6.21480	H	-4.15019	-3.28045	-1.51364
H	5.16420	-8.15890	4.70450	C	-1.91720	-1.15846	-0.98173
11	5.10420	-0.13090	т./0430	U	-1.71/20	-1.13040	-0.701/5

0	-2.57277	-0.59912	-1.84360	Elect	tronic Energy	7: -1490.988	31636 har-
С	-0.46485	-0.96811	-0.77993	tree.			
С	0.23669	-0.23593	-1.64638	Free	Energy: -149).457482 har	tree.
Н	-0.03215	-1.35256	0.13780				
С	1.63056	0.27302	-1.40197	С	0.25646	2.26127	-0.07595
Ο	2.08838	-0.27942	-0.17802	С	-1.13026	2.65035	-0.61068
С	1.52658	1.81246	-1.26747	Ο	-1.20922	3.16643	-1.72018
С	2.54316	-0.08614	-2.57561	С	-2.38271	2.48001	0.19261
Si	3.65157	-0.47542	0.41912	С	-2.45085	1.57332	1.18813
С	4.52323	-1.88412	-0.47743	С	-3.54430	3.30391	-0.31139
С	4.64577	1.12121	0.32671	Η	-1.54908	1.01666	1.43363
С	3.35487	-0.94258	2.21443	С	-3.65201	1.13667	1.97957
Н	4.83766	1.38460	-0.72182	Η	-3.42606	1.25792	3.04921
Н	4.04526	1.94065	0.74375	С	-3.99719	-0.35173	1.72700
Н	4.32041	-1.17735	2.68292	Н	-4.52634	1.76225	1.77207
Н	2.77123	-1.87227	2.24605	Н	-3.09896	-0.95383	1.89988
Н	5.44090	-2.12278	0.07827	С	-4.58513	-0.63474	0.31547
Н	4.85012	-1.55455	-1.47175	Н	-4.71821	-0.67384	2.48942
Н	2.65790	-1.17127	-2.66015	С	-6.11302	-0.78873	0.38815
Н	2.11999	0.29044	-3.51178	С	-3.90170	-1.84797	-0.34727
Н	3.53117	0.36974	-2.44573	Н	-4.35987	0.22273	-0.33354
Н	1.26006	2.23862	-2.23986	Н	-6.55325	0.05991	0.92460
Н	2.52349	2.18531	-1.01180	Н	-6.39532	-1.70081	0.92993
Н	0.58989	1.64528	0.68012	Н	-6.57643	-0.82544	-0.60280
Н	0.74335	3.29107	0.10234	0	-2.51691	-1.45894	-0.57884
Н	-3.64062	2.08160	-1.36284	Č	-4.47291	-2.25640	-1.70082
Н	-3.28729	3.70301	-0.77822	Ĥ	-3.89669	-2.70347	0.33440
Н	-4.22746	2.58682	0.23086	Н	-4.48953	-1.40757	-2.39427
Н	-0.24776	0.12772	-2.55199	Н	-5.49243	-2.64002	-1.59685
C	2.63241	0.15062	3.00935	Н	-3.85763	-3.04710	-2.14133
H	3.20653	1.08467	3.02039	C	-1.53226	-2.09348	0.10439
Н	2.46604	-0.14416	4.05154	Õ	-1.71558	-3.03438	0.85506
Н	1.65252	0.37240	2.57049	Č	-0.20469	-1.47433	-0.10779
C	5.97622	1.01549	1.08632	C	0.05955	-0.52080	-1.00901
H	6.54905	1.94700	1.02238	Н	0.56764	-1.83350	0.56297
Н	6.60761	0.21526	0.68330	C	1.39460	0.17596	-1.16659
Н	5.81330	0.80319	2.14916	Õ	2.20895	-0.17770	-0.05128
C	3.64981	-3.14001	-0.59195	C	1.18373	1.71560	-1.18169
H	3.38018	-3.52652	0.39760	C	2.02599	-0.26606	-2.50283
Н	4.16305	-3.94509	-1.12916	Si	3.85669	-0.31992	0.25150
Н	2.71352	-2.93052	-1.12217	C	4.81846	1.21745	-0.32422
11	2.71332	-2.75052	-1.1221/	C C	3.94683	-0.49406	2.13426
				C C	4.58969	-0.49400	-0.57492
Com	pound 5.30			С Н	3.38630	-1.39500	2.41951
	structure was	assigned as a	mbiguous	п Н	4.99146	-0.69672	2.41931 2.41274
	YP/6-31g(d)	assigned as a	unorguous.	H	5.63882	-1.94181	-0.25196
	phase.			п Н	4.63190	-1.70572	-1.66134
Jas	pilase.			п Н	4.03190	2.10989	0.10263
				11	4.33704	2.10709	0.10203

H	4.72151	1.32238	-1.41400	С	4.40439	0.15357	-0.39760
Е	2.94785	0.29261	-2.70098	Н	4.12790	1.48325	-2.06994
H	1.33903	-0.07894	-3.33482	С	5.86645	0.59900	-0.40831
Е	2.25572	-1.33522	-2.48196	С	4.25801	-1.27385	-0.93964
Н	2.17732	2.16701	-1.10314	Н	4.05945	0.14328	0.64561
H		2.02407	-2.14963	Н	5.94314	1.65304	-0.11966
Н		3.20258	0.31499	Н	6.29646	0.49720	-1.41250
H		1.57891	0.77488	Н	6.47952	0.01859	0.28757
H		3.02763	-1.34160	0	2.85477	-1.65108	-0.85033
E		4.36647	-0.33822	Č	5.19133	-2.31315	-0.33617
Н		3.18997	0.30762	H	4.41423	-1.25188	-2.02391
H		-0.18737	-1.68402	Н	5.27057	-2.22127	0.74847
C		-3.18835	-0.27190	Н	6.18813	-2.19716	-0.77175
H		-3.41030	0.80165	Н	4.83471	-3.31851	-0.58023
E		-4.03605	-0.77945	C	2.27119	-1.76074	0.34984
H		-3.15530	-0.59582	Õ	2.87552	-1.95324	1.39002
C		0.71270	2.92915	Č	0.81410	-1.53326	0.25132
Ē		0.91624	2.68399	Č	0.06568	-1.52629	1.35536
H		0.54247	4.01102	Ĥ	0.42082	-1.24630	-0.71807
H		1.62271	2.70948	C	-1.35734	-1.03994	1.42621
C		1.21017	0.05281	Õ	-1.70299	-0.53337	0.14768
Ē		2.11991	-0.29301	Č	-1.41486	0.08827	2.48311
E		0.35734	-0.39222	Č	-2.27180	-2.18610	1.86781
E		1.15209	1.13838	Si	-3.18047	-0.44174	-0.65681
		1.10209	1.12020	C	-4.42005	0.58559	0.31892
				Ċ	-2.70865	0.37560	-2.28331
C	ompound 5.30			C	-3.89262	-2.14566	-1.03636
	his structure was	s assigned as i	incorrect.	Н	-2.14884	-0.35985	-2.87732
	106-2X/6-31g(d)	•		Н	-3.62534	0.58028	-2.85338
	MD implicit so		ethanol was	Н	-4.74352	-1.99223	-1.71585
	sed.			Н	-4.31398	-2.59501	-0.12850
				Н	-3.95556	1.54285	0.58735
E	lectronic Energ	y: -1490.435	579573 har-	Н	-4.64236	0.07826	1.26785
	ee.			Н	-2.28256	-2.98418	1.12041
F	ree Energy: -148	89.898682 har	tree.	Н	-1.91843	-2.60568	2.81438
	65			Н	-3.29389	-1.82090	2.02084
C	-0.31593	1.14897	2.37252	Н	-1.33644	-0.37600	3.47208
C		2.12622	1.22683	Н	-2.40247	0.55906	2.42155
C		2.57822	1.01484	Н	-0.35828	1.78173	3.26990
C		2.62964	0.42967	Н	0.67082	0.68580	2.38091
C	1.84209	1.98269	0.42765	Н	1.23597	4.55301	-0.37499
C	0.39320	3.85793	-0.40834	Н	-0.49442	4.37964	-0.04601
H	1.96842	1.09381	1.04437	Н	0.21577	3.59974	-1.45922
C	3.03173	2.34122	-0.41409	Н	0.51636	-1.81245	2.30618
H	2.78469	3.15787	-1.09692	С	-2.88735	-3.10046	-1.69293
C	3.53655	1.12790	-1.21656	Η	-2.57274	-2.72913	-2.67446
H	3.83887	2.70410	0.23990	Η	-3.31432	-4.09822	-1.84312
H	2.66752	0.60591	-1.63395	Η	-1.98061	-3.21690	-1.08750

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
used.H 3.77117 -1.73571 2.20663 H 5.63699 -1.95425 -0.73872 Electronic Energy: -1491.01203561 har-H 4.43799 -1.76328 -1.99778 tree.H 2.53354 -0.12879 -2.71627 Free Energy: -1490.481787 hartree.H 0.84712 -0.42338 -3.16377 H 1.80201 -1.73092 -2.43969 C 0.56863 1.94594 0.35408 H 1.76831 1.83901 -1.45888 C -0.35864 3.14868 0.22119 H 0.06674 1.51084 -1.73180 O 0.13968 4.26882 0.06170 H 0.14455 1.18958 1.01712 C -1.84329 3.00440 0.22904 H 1.48776 2.30714 0.82335 C -2.40831 1.79402 0.43521 H -2.33607 4.71716 -0.98708 C -2.60898 4.28087 -0.01833 H -2.37172 5.03550 0.74148 H -1.74631 0.94975 0.59489 H -3.68903 4.11826 -0.01115 C -3.85485 1.39641 0.42433 H -0.93925 -0.65675 -1.41379 H -4.03781 0.78984 1.32129 C 3.61351 0.33013 2.84090 C -4.18268 0.55980 -0.85576 H 4.00477 1.32413 2.59090 H -4.52026 2.26103 0.49221 H </td
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
tree.H 2.53354 -0.12879 -2.71627 Free Energy: -1490.481787 hartree.H 0.84712 -0.42338 -3.16377 H 1.80201 -1.73092 -2.43969 C 0.56863 1.94594 0.35408 H 1.76831 1.83901 -1.45888 C -0.35864 3.14868 0.22119 H 0.06674 1.51084 -1.73180 O 0.13968 4.26882 0.06170 H 0.14455 1.18958 1.01712 C -1.84329 3.00440 0.22904 H 1.48776 2.30714 0.82335 C -2.40831 1.79402 0.43521 H -2.33607 4.71716 -0.98708 C -2.60898 4.28087 -0.01833 H -2.37172 5.03550 0.74148 H -1.74631 0.94975 0.59489 H -3.68903 4.11826 -0.01115 C -3.85485 1.39641 0.42433 H -0.93925 -0.65675 -1.41379 H -4.03781 0.78984 1.32129 C 3.61351 0.33013 2.84090 C -4.18268 0.55980 -0.85576 H 4.00477 1.32413 2.59090 H -4.52026 2.26103 0.49221 H 3.88094 0.12914 3.88682 H -4.79455 1.17656 -1.52497 H 2.51972 0.38381 2.79009 C -4.92615 -0.77793 -0.64218 C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
O0.139684.268820.06170H0.144551.189581.01712C-1.843293.004400.22904H1.487762.307140.82335C-2.408311.794020.43521H-2.336074.71716-0.98708C-2.608984.28087-0.01833H-2.371725.035500.74148H-1.746310.949750.59489H-3.689034.11826-0.01115C-3.854851.396410.42433H-0.93925-0.65675-1.41379H-4.037810.789841.32129C3.613510.330132.84090C-4.182680.55980-0.85576H4.004771.324132.59090H-4.520262.261030.49221H3.880940.129143.88682H-4.794551.17656-1.52497H2.519720.383812.79009C-4.92615-0.77793-0.64218C6.027301.27381-0.45749
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
C-3.854851.396410.42433H-0.93925-0.65675-1.41379H-4.037810.789841.32129C3.613510.330132.84090C-4.182680.55980-0.85576H4.004771.324132.59090H-4.520262.261030.49221H3.880940.129143.88682H-4.794551.17656-1.52497H2.519720.383812.79009C-4.92615-0.77793-0.64218C6.027301.27381-0.45749
H-4.037810.789841.32129C3.613510.330132.84090C-4.182680.55980-0.85576H4.004771.324132.59090H-4.520262.261030.49221H3.880940.129143.88682H-4.794551.17656-1.52497H2.519720.383812.79009C-4.92615-0.77793-0.64218C6.027301.27381-0.45749
C-4.182680.55980-0.85576H4.004771.324132.59090H-4.520262.261030.49221H3.880940.129143.88682H-4.794551.17656-1.52497H2.519720.383812.79009C-4.92615-0.77793-0.64218C6.027301.27381-0.45749
H-4.520262.261030.49221H3.880940.129143.88682H-4.794551.17656-1.52497H2.519720.383812.79009C-4.92615-0.77793-0.64218C6.027301.27381-0.45749
H-4.794551.17656-1.52497H2.519720.383812.79009C-4.92615-0.77793-0.64218C6.027301.27381-0.45749
C -4.92615 -0.77793 -0.64218 C 6.02730 1.27381 -0.45749
C -4.92615 -0.77793 -0.64218 C 6.02730 1.27381 -0.45749
Н -3.25822 0.35776 -1.40486 Н 6.56037 0.49995 -1.02331
С -6.32379 -0.55500 -0.04257 Н 6.36510 2.24597 -0.83976
C -4.14652 -1.81163 0.20221 H 6.35873 1.20384 0.58579
H -5.05414 -1.21342 -1.64390 C 3.99157 -3.35674 -0.59098
Н -6.90466 0.12519 -0.67656 Н 2.91157 -3.41430 -0.77358
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
H -4.20896 -1.55703 1.26473 Compound 5.30
H -4.46395 -3.53580 -1.06865 This structure was assigned as correct.
H -5.66974 -3.35710 0.22242 B3LYP/6-31g(d)
H -4.04423 -3.93821 0.61321 SMD implicit solvation in methanol was
C -1.80147 -2.04389 0.73764 used.
O -2.06111 -2.60156 1.79909

	tronic Energy	y: -1491.015	66264 har-		-4.66620	-0.97357	-1.71278
tree.	F 140	0 40 4 60 2 1		Н	-2.85805	0.49303	-2.72105
Free	Energy: -149	0.484682 nart	ree.	Н	-1.19589	0.84062	-3.21883
C	0 52502	2 221/2	0 502(2	Н	-2.02441	1.94460	-2.10594
C	-0.52502	-2.32163	-0.59363	Н	-2.30296	-1.77540	-1.71238
C	0.96539	-2.43859	-0.90532	Н	-0.79410	-1.49578	-2.56921
O C	1.32663 1.95585	-2.50307	-2.08376 0.21587	H H	-0.92148 -0.69721	-3.34552	-0.66216
C C		-2.46342 -2.17060				-1.99627	0.43451 2.29774
C C	3.23194 1.47172	-2.17060	-0.11653 1.62498	H H	2.30334	-2.93538	
С Н	3.42347	-2.00290	-1.17451	п Н	0.77252 0.94851	-3.55239 -1.83536	1.66814 2.03511
п С	4.39421	-2.00290	0.80437	н Н	0.94831	0.44806	-1.60125
Н	4.29067	-2.51908	1.72898	C	-3.83972	3.27587	0.20775
C	4.29007	-0.44162	1.17565	С Н	-3.90466	3.31205	1.30221
Н	5.31665	-0.44102	0.31325	H	-4.29209	4.20011	-0.17534
H	3.59240	-0.12659	1.64537	H	-4.29209	4.20011 3.29971	-0.05503
п С	4.87978	0.49037	-0.01804	п С	-2.77323	-1.06960	2.75816
Н	5.30646	-0.34542	1.94659	H H	-2.50993	-1.27026	2.56652
C	6.38569	0.79139	-0.05070	H	-2.30993	-1.04840	3.84753
C	4.03235	1.77348	0.02281	H	-4.14020	-1.92618	2.37635
Н	4.61982	-0.01488	-0.95745	C	-6.32500	-1.07483	-0.32327
H	6.95524	-0.14455	-0.00402	H	-6.52442	-1.19010	0.74923
H	6.68917	1.40575	0.80702	H	-6.82073	-1.90932	-0.83633
H	6.68557	1.31221	-0.96613	H	-6.82075	-0.15314	-0.65192
0	2.64598	1.31221	-0.20013	11	-0.82033	-0.13314	-0.03192
C	4.34686	2.81543	-1.04188				
Н	4.08113	2.22599	1.01625	Con	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		
H	4.30948	2.22399	-2.04745		s structure was	assigned as c	orrect
Н	5.34181	3.24357	-0.88451	1 1112	structure was	assigned as c	
Н	3.61852	3.63220	-0.99023	Mol	ecular Mecha	nics (OPI S	-2005) gas
C	1.67575	1.76945	0.62410	phas			-2005), gas
0	1.86996	2.51592	1.57831	-	rgy: -24.86817	2 k I	
C	0.33550	1.24208	0.29764	Line	igy24.00017	2 NJ.	
C	0.01397	0.60498	-0.83695	С	0.48980	2.67100	-0.85800
Н	-0.40874	1.43507	1.06304	H	0.21290	2.24660	-1.81250
C	-1.36358	0.07901	-1.18378	C	-0.51150	2.96420	0.00100
0	-2.19633	0.21700	-0.02915	C	-0.31180	3.60530	1.36710
C	-1.27600	-1.41966	-1.58935	H	-0.98020	4.45870	1.48180
C C	-1.89692	0.89278	-2.37900	Н	0.69670	3.97030	1.53920
Si	-3.86468	0.35594	0.22670	Н	-0.54650	2.89360	2.15800
C	-4.81480	-1.04910	-0.62616	C	1.99330	2.90720	-0.72410
C	-4.01928	0.25061	2.11000	Н	2.23030	3.42130	0.20270
C	-4.54070	2.02918	-0.35891	C	2.76730	1.55280	-0.75890
H	-3.44647	1.08302	2.54372	H	2.19140	0.84800	-1.35900
Н	-5.06899	0.45397	2.36951	C	2.40340	3.88790	-1.84380
Н	-5.60503	2.05434	-0.07945	H	2.27590	3.45050	-2.83450
Н	-4.52860	2.06087	-1.45694	Н	3.44150	4.20690	-1.74010
Н	-4.36515	-2.00728	-0.33067	Н	1.79660	4.79340	-1.80480
		2.00/20	0.22007		1., 2000		1.00100

0	4.00480	1.72600	-1.42380	С	-4.30210	1.94530	-0.20000
Η	3.83150	2.08270	-2.28220	Η	-4.42790	1.84000	-1.27780
С	3.13280	0.90320	0.61200	Η	-4.61490	2.95480	0.06950
Η	4.08740	1.33780	0.91480	Η	-5.00750	1.26350	0.27610
С	2.17880	1.22380	1.78000	0	-2.85370	1.79370	1.62050
Η	2.40110	0.62370	2.66100	Η	-3.22690	0.98680	1.95020
Н	1.14450	1.03660	1.51150	С	-1.97020	2.78790	-0.42850
Н	2.26120	2.26360	2.09080	Н	-2.44730	3.75470	-0.26250
С	3.36130	-0.62560	0.45540	Н	-2.00010	2.65180	-1.51030
Н	3.83790	-0.80030	-0.51090				
С	4.30610	-1.21430	1.52240				
Н	3.86330	-1.12800	2.51440				
Н	5.22680	-0.63010	1.54580	Cor	npound 5.31		
С	4.67080	-2.68150	1.25510		s structure was	assigned as i	ncorrect.
Ĥ	5.13410	-2.79850	0.27490				
Н	3.78910	-3.32210	1.28630	Mo	lecular Mecha	nics (OPLS	-2005), gas
Н	5.37380	-3.05020	2.00220	pha		(0120	2000), 800
0	2.12020	-1.32480	0.54150		ergy: -20.97062	3 kJ.	
Č	1.53820	-1.86030	-0.54460	2			
Õ	1.94120	-1.75780	-1.70360	С	0.71980	2.16800	0.04480
Č	0.25170	-2.62380	-0.20230	H	1.07830	1.51110	0.81810
Ĥ	0.30260	-2.87870	0.85560	C	-0.48960	2.74800	0.20470
C	0.19670	-3.95010	-0.98550	C	-1.09240	3.70730	-0.81020
H	0.06230	-3.77700	-2.05380	H	-1.70360	3.16670	-1.53170
Н	-0.63100	-4.57120	-0.64340	Н	-0.33550	4.25540	-1.36780
Н	1.11320	-4.52630	-0.85450	Н	-1.71670	4.44910	-0.31120
C	-1.02130	-1.77440	-0.44820	C	1.66740	2.31420	-1.13480
H	-1.07550	-1.59750	-1.52310	H	1.63660	3.36450	-1.42230
0	-2.14940	-2.54810	-0.04200	C	3.15260	2.02620	-0.78410
C	-1.11910	-0.41720	0.29000	H	3.70980	2.49840	-1.59550
H	-0.29920	0.21200	-0.04370	C	1.17110	1.51640	-2.35240
C	-2.44830	0.21200	-0.18900	H	1.09180	0.45250	-2.13440
H	-2.44830	0.21910	-1.27840	H	1.84540	1.63300	-3.20130
C	-2.42020	-0.59970	1.82330	H	0.18540	1.85410	-2.67200
H	-0.10200	-1.12570	2.10650	0	3.53290	2.74930	0.37010
H	-1.85270	-1.12370	2.10030	H	3.26110	2.74930 3.64940	0.26880
H	-0.97390	0.35400	2.22100	C	3.66960	0.54940	-0.74640
	-0.97390 -3.49550		0.21420				
O C		-0.65920		H C	3.36580 5.21000	$0.09080 \\ 0.54540$	-1.68680
C C	-3.40880	-1.97730 -2.06840	-0.24160				-0.81850
	-3.81370		-1.72640	Н	5.60220	-0.46970	-0.88450
Н	-3.13330	-1.52200	-2.37540	Н	5.65340	1.01770	0.05820
Н	-4.81670	-1.66240	-1.85930	H	5.56820	1.08470	-1.69530
H	-3.81580	-3.11220	-2.04100	C	3.20060	-0.42880	0.38080
C	-4.37930	-2.78470	0.62170	H	3.84890	-1.30310	0.29820
Н	-4.36610	-3.83260	0.32160	C	3.39430	0.05940	1.83240
Н	-5.39170	-2.39450	0.51530	Н	2.73410	0.89470	2.05550
H	-4.08390	-2.71640	1.66890	H	4.40670	0.44420	1.95280
С	-2.84170	1.67230	0.22030	С	3.16690	-1.04700	2.87260

Н	3.83220	-1.89340	2.70000	B 3I	.YP/6-31g(d)		
Н	2.14070	-1.41460	2.84320		phase.		
Н	3.35480	-0.67560	3.88010	0	Price .		
0	1.86700	-0.91770	0.23130	Elec	tronic Energy	v [.] -1391 174	180260 har-
Č	1.61180	-1.97590	-0.56770	tree	0.	,. 10,111,	100200 Hui
Õ	2.41070	-2.42580	-1.39110		e Energy: -1390	0 592707 har	tree
Č	0.22920	-2.63460	-0.33550	1100	Ellergy. 159	0.092707 Hui	
Н	0.25960	-3.05400	0.66740	С	0.53140	2.95065	0.57333
C	0.03490	-3.83150	-1.29370	Н	0.33398	3.01103	1.64469
Н	-0.07650	-3.49760	-2.32570	C	-0.56169	2.87080	-0.20927
Н	-0.85350	-4.40610	-1.03210	C	-0.54300	2.82269	-1.71988
H	0.87830	-4.52190	-1.25390	Н	-0.93797	3.76084	-2.13642
C	-0.96520	-1.64390	-0.43930	H	-1.18796	2.02372	-2.10593
Н	-0.79880	-1.04370	-1.34980	H	0.45761	2.65070	-2.11603
0	-2.20200	-2.35130	-0.56470	C	2.02400	2.83834	0.25592
C C	-1.17540	-0.68580	0.75320	С Н	2.02400	3.00115	1.21789
С Н	-0.28070	-0.10610	0.73320	п С	2.31920	1.37506	-0.18129
п С		0.27360	0.91420	С Н		0.77384	0.18129
	-2.29830				1.51292		
H	-2.01680	0.67250	-0.67780	C	2.59554	3.90742	-0.69315
C	-1.45240	-1.43440	2.07790	Н	2.17603	3.84039	-1.69743
Н	-0.65760	-2.13600	2.32240	Н	3.68323	3.80134	-0.78348
Н	-2.38650	-1.99470	2.03950	Н	2.38510	4.90671	-0.29640
Н	-1.50650	-0.74860	2.92160	0	2.38275	1.32149	-1.60531
0	-3.47800	-0.50260	0.12020	Н	2.05964	0.43958	-1.87052
C	-3.35820	-1.58250	-0.76470	C	3.62012	0.70665	0.41749
С	-3.43060	-1.09250	-2.22470	H	4.50108	1.19460	-0.02394
Н	-2.60240	-0.43630	-2.48230	С	3.69585	0.81110	1.94929
Η	-4.36150	-0.54790	-2.38330	Н	4.57088	0.28415	2.34159
Н	-3.40810	-1.94870	-2.89920	Η	2.80716	0.37722	2.42206
С	-4.53670	-2.50820	-0.45940	Η	3.77939	1.84994	2.27891
Н	-4.51270	-3.37610	-1.11880	С	3.67680	-0.76726	-0.06336
Н	-5.47860	-1.97770	-0.60010	Н	3.63452	-0.78228	-1.15371
Н	-4.47670	-2.85140	0.57350	С	4.89043	-1.56986	0.40351
С	-2.61050	1.53390	1.14670	Н	4.84325	-1.71177	1.48897
С	-3.77850	2.33750	0.54250	Η	5.78391	-0.96403	0.20235
Η	-3.58720	2.63360	-0.48590	С	5.02050	-2.93108	-0.28814
Η	-3.97950	3.24140	1.11810	Н	5.10251	-2.81963	-1.37584
Н	-4.69910	1.75300	0.52720	Η	4.15159	-3.56410	-0.07919
Ο	-3.09340	1.10740	2.39690	Η	5.91174	-3.46234	0.06274
Η	-3.62430	0.34080	2.21930	0	2.48293	-1.48258	0.43034
С	-1.35970	2.41910	1.42080	С	1.45234	-1.68146	-0.40595
Η	-0.73200	1.91330	2.15640	0	1.44358	-1.33926	-1.58036
Η	-1.65680	3.35070	1.90370	С	0.27494	-2.39756	0.24676
				Η	0.42134	-2.40346	1.32984
				С	0.23613	-3.85280	-0.26270
				Н	0.13512	-3.87720	-1.35276
Com	Compound 5.31			Η	-0.61594	-4.37350	0.17833
	structure was	assigned as in	ncorrect.	Η	1.15419	-4.38392	0.01119
		-					

С	-1.01416	-1.62817	-0.12393	Η	0.88185	2.13314	-2.18417
Η	-0.98737	-1.50939	-1.21583	С	1.94214	2.78604	0.26794
0	-2.13990	-2.43209	0.24195	Н	2.30558	2.92562	1.28969
С	-1.17350	-0.22893	0.51358	С	2.32659	1.34202	-0.16150
Н	-0.34962	0.39725	0.16633	Н	1.41045	0.75142	-0.06588
С	-2.45472	0.34588	-0.11774	С	2.63388	3.85569	-0.58689
Η	-2.29774	0.36036	-1.20594	Η	2.27688	3.83334	-1.61943
C	-1.17347	-0.26159	2.04850	Η	3.71868	3.70385	-0.60328
H	-0.18589	-0.54058	2.43359	Н	2.43406	4.84987	-0.17442
Η	-1.89917	-0.98828	2.42398	0	2.75996	1.33428	-1.51729
Η	-1.43581	0.71386	2.46175	H	2.45848	0.48757	-1.89199
0	-3.55613	-0.54040	0.17941	С	3.38687	0.61866	0.69719
Č	-3.39963	-1.91584	-0.18637	H	4.35812	1.09484	0.50128
C	-3.59599	-2.10053	-1.69894	С	3.09451	0.65994	2.19729
H	-2.86248	-1.54684	-2.29034	H	3.80085	0.03925	2.75585
Н	-4.59228	-1.75085	-1.98545	Н	2.08359	0.30042	2.41645
Η	-3.50654	-3.16045	-1.95565	Η	3.18306	1.67329	2.59587
С	-4.45058	-2.67784	0.61129	С	3.51662	-0.82732	0.17754
Η	-4.38380	-3.74764	0.39393	Η	3.71090	-0.80489	-0.89791
Н	-5.45252	-2.32320	0.35319	С	4.58811	-1.67303	0.85003
Н	-4.28058	-2.52280	1.68000	Η	4.30587	-1.86124	1.89113
С	-2.98118	1.76506	0.28134	Н	5.51605	-1.08920	0.86596
C	-4.03588	2.18246	-0.76419	С	4.80969	-2.99793	0.12649
Н	-3.57886	2.40162	-1.73655	Н	5.13003	-2.83236	-0.90797
Н	-4.55085	3.08217	-0.41389	Н	3.88913	-3.59049	0.10494
Н	-4.77738	1.38931	-0.90384	Н	5.57913	-3.59388	0.62589
0	-3.62002	1.67742	1.56239	0	2.25763	-1.53484	0.38710
Н	-4.13617	0.85230	1.53577	С	1.38793	-1.66738	-0.61529
С	-1.92382	2.91244	0.46984	0	1.54678	-1.20637	-1.73153
Н	-1.77142	2.99012	1.54922	С	0.16120	-2.46906	-0.22500
Н	-2.43507	3.83957	0.17078	Н	0.23093	-2.72343	0.83544
					0.11090	-3.75175	-1.06057
				Н	0.10815	-3.51128	-2.12807
Com	pound 5.31			Η	-0.80023	-4.30546	-0.82160
	structure was	assigned as i	ncorrect.	Н	0.97206	-4.39370	-0.85167
	-2X/6-31g(d)	C		С	-1.11573	-1.63445	-0.44182
	implicit solv	ation in THF	was used.	Н	-1.29345	-1.57173	-1.52769
	1			0	-2.15495	-2.37593	0.18513
Electronic Energy: -1390.61679444 har-					-1.07494	-0.20746	0.12731
tree.				Η	-0.34892	0.34504	-0.46924
Free Energy: -1390.026496 hartree.			С	-2.46417	0.39461	-0.14430	
				Η	-2.63710	0.37811	-1.23208
С	0.43094	2.99031	0.34329	С	-0.65688	-0.20227	1.59811
Η	0.05785	3.34253	1.30625	Н	0.28796	-0.73570	1.73196
С	-0.48732	2.76349	-0.60684	Η	-1.41027	-0.70260	2.21596
С	-0.17428	2.34684	-2.02236	Η	-0.52977	0.81726	1.96477
Η	-0.47654	3.14805	-2.71049	0	-3.42609	-0.43833	0.51007
Н	-0.75626	1.46174	-2.31466	С	-3.44639	-1.79520	0.09427

С	-4.01487	-1.93430	-1.31732	С	3.74657	0.84827	1.91626
Η	-3.39778	-1.44787	-2.07640	Η	4.62319	0.31379	2.29488
Η	-5.01504	-1.49332	-1.35462	Η	2.86346	0.44094	2.42327
Η	-4.08721	-2.99540	-1.57208	Η	3.85781	1.89188	2.22376
С	-4.30167	-2.52622	1.10991	С	3.68480	-0.76265	-0.07313
Н	-4.33631	-3.59209	0.87131	Н	3.64250	-0.79393	-1.16276
Н	-5.31853	-2.12541	1.10323	С	4.89952	-1.55858	0.39999
Н	-3.87083	-2.39698	2.10624	H	4.85456	-1.69311	1.48655
С	-2.78855	1.83103	0.33003	Н	5.78977	-0.95059	0.19226
Č	-4.26929	2.11771	0.04117	C	5.03701	-2.92199	-0.28337
Н	-4.51164	1.93880	-1.01220	Ĥ	5.11600	-2.81713	-1.37247
Н	-4.48782	3.16437	0.27588	Н	4.17711	-3.56634	-0.06868
Н	-4.91220	1.48192	0.65395	Н	5.93540	-3.44167	0.06870
0	-2.57298	1.95074	1.73278	0	2.48769	-1.47315	0.42997
H	-2.97634	1.16181	2.13319	č	1.45998	-1.68948	-0.40097
C	-1.96781	2.95982	-0.34126	0	1.45297	-1.36692	-1.58351
H	-2.12344	3.82730	0.31097	C	0.28229	-2.39998	0.25920
Н	-2.45764	3.19233	-1.29491	Н	0.43452	-2.40230	1.34137
11	-2.43704	5.17255	-1.2/4/1	C	0.24324	-3.85730	-0.24294
				С Н	0.10872	-3.893730	-0.24294
C	mnound 5 21			Н	-0.58732	-4.38906	0.22642
	ompound 5.31	aggioradag	naarraat	п Н	-0.38732		0.22642
This structure was assigned as incorrect. B3LYP/6-31g(d)						-4.37945	
e ()				C	-1.00933	-1.63234	-0.11200
SMD implicit solvation in THF was used.				Н	-0.98439	-1.51268	-1.20284
г1	· · -	1201 104	1(220 1	O	-2.13692	-2.43745	0.25136
Electronic Energy: -1391.19516329 har-					-1.17450	-0.23270	0.52366
tree.			Н	-0.35033	0.39364	0.17782	
Free Energy: -1390.615376 hartree.				C	-2.45404	0.33944	-0.11443
~				Н	-2.28881	0.35729	-1.20007
С	0.52453	2.93926	0.58070	C	-1.17495	-0.26167	2.05750
Η	0.33870	2.95436	1.65607	Η	-0.19088	-0.54989	2.44458
С	-0.57816	2.88685	-0.19199	Η	-1.90775	-0.97818	2.44029
С	-0.57965	2.88585	-1.70235	Н	-1.42332	0.71841	2.47022
Η	-0.98571	3.83270	-2.08835	Ο	-3.55659	-0.54979	0.17491
Η	-1.22315	2.09298	-2.10292	С	-3.39490	-1.92639	-0.19385
Η	0.41760	2.73369	-2.11538	С	-3.57479	-2.10929	-1.70727
С	2.01583	2.83865	0.25134	Η	-2.83922	-1.55411	-2.29530
Η	2.51600	3.00355	1.20975	Η	-4.57080	-1.76539	-2.00390
С	2.34328	1.37540	-0.18236	Η	-3.48223	-3.16939	-1.96433
Η	1.52015	0.77221	0.21226	С	-4.45370	-2.69192	0.58862
С	2.57730	3.91032	-0.69940	Η	-4.38232	-3.76220	0.37207
Η	2.15809	3.84549	-1.70491	Η	-5.45459	-2.34499	0.31465
Η	3.66680	3.81595	-0.78840	Η	-4.30602	-2.53833	1.66165
Η	2.36228	4.91006	-0.30387	С	-2.98705	1.75670	0.28404
0	2.33703	1.30945	-1.61003	С	-4.01871	2.18521	-0.77766
Н	2.04237	0.40996	-1.84953	Н	-3.54342	2.41043	-1.73942
С	3.63170	0.71792	0.38981	Н	-4.54059	3.08445	-0.43393
Η	4.50308	1.19775	-0.07778	Н	-4.76067	1.39587	-0.93942
			-				

0	2 ((017	1 (5700	1 55104	0	2 4 4 7 5 0	1 45406	0 450(4
0	-3.66017	1.65789	1.55194	0	2.44750	-1.45406	0.45264
Н	-4.14731	0.81486	1.50923	C	1.49433	-1.76263	-0.44392
C	-1.93182	2.89787	0.50680	0	1.57069	-1.53413	-1.64262
Н	-1.76008	2.93333	1.58574	С	0.29086	-2.45367	0.18231
Н	-2.45105	3.83388	0.25086	Η	0.38652	-2.41339	1.26981
				С	0.27635	-3.92888	-0.26646
				Н	0.23264	-3.99835	-1.35841
Comp	ound 5.31			Η	-0.59698	-4.43113	0.15437
This s	structure was	assigned as c	correct.	Н	1.17803	-4.44864	0.07536
	/P/6-31g(d)	C		С	-1.00862	-1.72630	-0.24507
Gas p	• • •			Н	-1.06437	-1.79186	-1.34188
1				0	-2.08624	-2.46200	0.34538
Electr	onic Energy	r -1391 186	571036 har-	C	-1.11860	-0.23754	0.16742
tree.	8,			H	-0.36479	0.31859	-0.39326
	Enerov: -139() 603720 har	tree	C	-2.49213	0.24092	-0.35074
Free Energy: -1390.603720 hartree.			Н	-2.49810	0.09332	-1.44202	
С	0.42554	2.79414	-0.68472	C	-0.88918	-0.04457	1.67379
Н	0.30383	2.41537	-1.70060	Н	0.14303	-0.29409	1.94182
C	-0.68792	3.06988		H	-1.55128	-0.69466	2.25348
C			0.01593	п Н			
	-0.70375	3.71376	1.38362		-1.07734	0.98443	1.97479
Н	-1.08561	4.74197	1.29872	0	-3.51205	-0.58612	0.24810
Н	0.28922	3.77119	1.83740	C	-3.39568	-1.99373	0.02918
Н	-1.38070	3.19263	2.06532	С	-3.78618	-2.36129	-1.41064
С	1.86786	2.76147	-0.22095	Н	-3.12743	-1.90779	-2.15551
Η	1.90308	2.94884	0.85656	Н	-4.80751	-2.02562	-1.61360
С	2.32405	1.29683	-0.46507	Н	-3.73932	-3.44705	-1.53738
Η	1.48365	0.69210	-0.11193	С	-4.32409	-2.64844	1.04462
С	2.76046	3.79301	-0.93041	Н	-4.26707	-3.73713	0.95840
Н	2.76154	3.62483	-2.01077	Η	-5.35656	-2.33037	0.87385
Η	3.79823	3.73079	-0.57903	Н	-4.02279	-2.35750	2.05440
Н	2.39934	4.80902	-0.73749	С	-2.98854	1.70391	-0.10824
0	2.48888	1.12188	-1.87044	С	-4.33365	1.87048	-0.85286
Н	2.20366	0.21393	-2.08416	Н	-4.20800	1.79088	-1.93945
С	3.56018	0.75304	0.29418	Н	-4.75235	2.85483	-0.62341
H	4.45760	1.20240	-0.15392	Н	-5.04609	1.10526	-0.53496
C	3.53622	1.07327	1.79646	0	-3.21783	1.91475	1.28811
H	4.40064	0.64504	2.31350	H	-3.69272	1.12210	1.59352
Н	2.63223	0.68205	2.27753	C	-2.04598	2.83283	-0.62774
H	3.56540	2.15346	1.96635	Н	-2.63886	3.75445	-0.53775
C	3.67394		0.00051	H	-1.90752		
		-0.76722 -0.90481		п	-1.90/32	2.65925	-1.70206
H	3.73784		-1.08065				
C	4.84344	-1.48281	0.67396	C	1 5 21		
Н	4.68950	-1.49491	1.75886		npound 5.31	· 1	,
H	5.74616	-0.88539	0.48949		s structure was	assigned as c	correct.
C	5.05603	-2.91328	0.16764		6-2X/6-31g(d)		1
Н	5.24352	-2.93045	-0.91259	SM	D implicit solv	ation in THF	was used.
Н	4.17793	-3.53657	0.36703				
Н	5.91451	-3.37857	0.66396				

	ronic Energy	y: -1390.626	55856 har-	C	-1.08357	-0.23980	0.00645
tree.	E 100	0.005(151		Н	-0.38681	0.27075	-0.66618
Free	Energy: -139	0.03/61/har	tree.	C	-2.49989	0.19325	-0.40506
~		• • • • • • •		H	-2.60262	0.00888	-1.48574
С	0.37675	2.75646	-0.67925	С	-0.73180	0.05575	1.46368
Η	0.29662	2.34636	-1.68768	Η	0.30506	-0.22745	1.67743
С	-0.76076	3.05008	-0.03633	Н	-1.38072	-0.51482	2.13673
С	-0.82345	3.73780	1.30366	Н	-0.84637	1.11393	1.69695
Η	-1.30205	4.71893	1.18198	0	-3.44413	-0.61013	0.31147
Η	0.16627	3.90530	1.73581	С	-3.33285	-2.01224	0.13344
Η	-1.43832	3.17998	2.01420	С	-3.77579	-2.42828	-1.26824
С	1.78604	2.72689	-0.13714	Н	-3.14503	-2.01055	-2.05594
Η	1.75452	2.85110	0.94976	Н	-4.80297	-2.09395	-1.43974
С	2.27257	1.29539	-0.43057	Η	-3.74137	-3.51831	-1.34953
Н	1.44524	0.65781	-0.09760	С	-4.20951	-2.63710	1.20055
С	2.70355	3.78951	-0.74216	Н	-4.14231	-3.72676	1.14862
Н	2.74950	3.68297	-1.82985	Н	-5.25040	-2.33664	1.05569
Н	3.72335	3.70219	-0.34822	Н	-3.87299	-2.30476	2.18616
Н	2.33573	4.79405	-0.50950	С	-2.99295	1.64521	-0.15062
0	2.44425	1.17692	-1.83475	Č	-4.36270	1.78532	-0.83351
Ĥ	2.21270	0.26262	-2.07240	Ĥ	-4.27128	1.73264	-1.92393
C	3.51906	0.77797	0.30477	Н	-4.80035	2.75162	-0.56683
H	4.40337	1.25691	-0.13755	Н	-5.03909	0.99214	-0.50386
C	3.47905	1.06872	1.80410	0	-3.15746	1.84938	1.24691
Н	4.34622	0.64512	2.31878	H	-3.58150	1.03807	1.57566
H	2.57441	0.65555	2.26632	C	-2.08728	2.76659	-0.71219
H	3.48944	2.14625	1.99111	H	-2.69934	3.67926	-0.68079
C	3.65770	-0.72660	-0.00671	H	-1.91484	2.53838	-1.77137
С Н	3.73959	-0.72000	-1.08944	п	-1.91404	2.33636	-1.//13/
п С	4.82267		0.66945				
		-1.43210		Com	maxmd 5 21		
Н	4.65505	-1.45444	1.75152		pound 5.31		4
H	5.72509	-0.83437	0.49267		structure was	assigned as c	correct.
C	5.01640	-2.85145	0.14436		YP/6-31g(d)	· · • •	1
Н	5.22549	-2.84835	-0.93092	SMI	O implicit solva	ation in THF	was used.
Н	4.11839	-3.45481	0.31331			1201 20/	50015 1
Н	5.85100	-3.34703	0.64874		tronic Energy	: -1391.206	52215 har-
0	2.45101	-1.42304	0.42921	tree.			
С	1.50724	-1.72212	-0.46447	Free	Energy: -1390).625017 har	tree.
0	1.58147	-1.47404	-1.65499	_			
С	0.31855	-2.43540	0.14222	С	0.42968	2.79719	-0.68996
Н	0.39871	-2.39695	1.23127	Н	0.29288	2.41604	-1.70314
С	0.33981	-3.89806	-0.31910	С	-0.67861	3.07407	0.02020
Η	0.29413	-3.95381	-1.41130	С	-0.67956	3.71064	1.39084
Η	-0.52199	-4.42434	0.09641	Η	-1.06766	4.73823	1.31978
Η	1.25078	-4.40293	0.01624	Н	0.31780	3.76889	1.83592
С	-0.99016	-1.75093	-0.29140	Н	-1.34499	3.18163	2.07862
Η	-1.10275	-1.90440	-1.37573	С	1.87681	2.76147	-0.23961
0	-2.01385	-2.44523	0.41130	Н	1.92564	2.96009	0.83477

С	2.32649	1.29302	-0.47094	Н	-3.73550	-3.42284	-1.56493
Н	1.48529	0.69632	-0.10744	С	-4.34515	-2.65031	1.01696
С	2.76551	3.78462	-0.96504	Н	-4.29039	-3.73890	0.92165
Н	2.74478	3.62670	-2.04783	Н	-5.37639	-2.33352	0.83415
Н	3.80973	3.71199	-0.63476	Н	-4.06362	-2.37104	2.03655
Н	2.42203	4.80575	-0.76226	С	-2.98575	1.70997	-0.09581
0	2.47684	1.09865	-1.88000	Č	-4.32764	1.88127	-0.84306
H	2.21140	0.17754	-2.06396	Н	-4.20163	1.79083	-1.92871
C	3.56429	0.75131	0.28619	Н	-4.74197	2.87116	-0.62603
H	4.46400	1.19139	-0.16581	Н	-5.04831	1.12538	-0.51973
C	3.54727	1.08728	1.78451	0	-3.22261	1.91701	1.30360
H	4.41303	0.66029	2.30082	Н	-3.68024	1.11159	1.60453
Н	2.64396	0.70767	2.27711	C	-2.04293	2.84018	-0.61260
Н	3.58449	2.16935	1.94349	Н	-2.63236	3.76331	-0.51395
C	3.67480	-0.77246	0.00628	H	-1.91327	2.66986	-1.68814
н Н	3.74964	-0.92302	-1.07203	11	-1.91327	2.00980	-1.00014
п С	4.83501	-0.92302	0.69483				
С Н	4.83301 4.67015			Con	mound 5 22		
		-1.49932	1.77820		npound 5.32	and an in	• • • • • • • •
H	5.73947	-0.89102	0.51829	Ins	s structure was	assigned as in	icorrect.
C	5.05369	-2.91665	0.18951	N 7 1		· (ODL C	2005)
Н	5.26690	-2.93115	-0.88651		lecular Mecha	nics (OPLS-	-2005), gas
Н	4.17173	-3.54233	0.36700	phas		0.1.7	
Н	5.90055	-3.38469	0.70435	Ene	rgy: +27.53008	38 kJ.	
0	2.43805	-1.45113	0.45318				
С	1.49223	-1.76975	-0.44284	Η	5.31330	9.18300	6.16460
0	1.57807	-1.55496	-1.64604	С	6.05540	8.95950	5.39550
С	0.28505	-2.45710	0.18169	0	7.33590	8.97320	6.02250
Н	0.38488	-2.42153	1.26888	С	7.49350	8.46850	7.25810
С	0.26882	-3.93087	-0.26941	0	6.59610	8.02230	7.97390
Η	0.20258	-4.00467	-1.36029	С	8.95530	8.45370	7.70760
Η	-0.59188	-4.44193	0.16791	Η	9.12750	9.30100	8.37160
Η	1.17881	-4.44782	0.05477	Η	9.57770	8.62930	6.83280
С	-1.01459	-1.72531	-0.24100	С	9.37010	7.13220	8.40180
Η	-1.07617	-1.78536	-1.33692	Н	8.86900	6.29540	7.91230
0	-2.09554	-2.45984	0.34772	0	8.87260	7.15540	9.73320
С	-1.12092	-0.23735	0.17677	Η	7.92640	7.23540	9.70020
Н	-0.36510	0.31692	-0.38293	С	10.91080	6.86390	8.42470
С	-2.49252	0.24690	-0.34167	С	11.63390	8.07930	9.06460
Н	-2.49622	0.10230	-1.43163	Н	11.20530	8.33790	10.03320
С	-0.88776	-0.04714	1.68196	Н	11.57690	8.96700	8.43420
Н	0.14175	-0.30663	1.95130	Н	12.69230	7.87430	9.23230
Н	-1.55529	-0.68721	2.26713	С	11.23140	5.63240	9.30880
Н	-1.06296	0.98441	1.98478	Ĥ	12.25650	5.28540	9.16910
0	-3.51523	-0.58010	0.25493	Н	11.12050	5.86990	10.36740
C	-3.40366	-1.98741	0.02048	Н	10.56630	4.79380	9.11410
C	-3.78009	-2.33798	-1.42569	C	11.52170	6.61480	7.00950
н Н	-3.11627	-1.87738	-2.16198	0	12.70450	6.89700	6.81010
H	-4.80088	-2.00200	-1.63369	C	10.68980	5.95040	5.87660
11		-2.00200	-1.05509	U	10.00200	5.75040	5.07000

TT	0 71700	(12(00	5 0 4 0 4 0	TT	5 0 5 4 0 0	0.00400	0.00410
H	9.71790	6.43600	5.84040	Н	5.85490	9.29420	2.32410
C	10.44790	4.45750	6.19510	Н	6.47900	10.99940	4.76090
Н	9.87220	4.31860	7.10670	Н	8.90720	8.82630	1.04420
Н	11.39070	3.91900	6.30120				
Н	9.87600	3.96170	5.41090				
С	11.36060	6.11700	4.47370				
Н	12.36590	5.69560	4.54230		pound 5.32		
0	10.70000	5.33620	3.48720	This	structure was	assigned as c	orrect.
Η	9.76470	5.51350	3.48790				
С	11.49810	7.57190	3.93450	Mol	ecular Mechai	nics (OPLS-	-2005), gas
Η	12.07400	8.14320	4.66300	phas	e.		
С	12.33210	7.58360	2.63780	Ener	gy: +35.35438	85 kJ.	
Н	11.78690	7.13150	1.80860		0,		
Н	13.25850	7.02260	2.76430	Н	5.83600	7.51930	5.15110
Н	12.61340	8.59380	2.34330	С	6.63890	6.95270	4.67640
С	10.14370	8.29730	3.75600	Ō	7.58120	6.49900	5.64000
Ĥ	9.60520	8.28040	4.69770	Č	7.48740	6.86350	6.93130
H	9.52710	7.74940	3.04330	õ	6.61010	7.57650	7.41770
C	10.26840	9.77180	3.31900	C	8.62150	6.29240	7.78610
H	10.68210	9.82720	2.31220	Н	8.44900	6.51940	8.83740
Н	10.00210	10.27430	3.96170	Н	8.54290	5.20890	7.69600
C	8.94750	10.27430	3.36620	C	10.03360	6.75010	7.33800
С Н	9.13000	11.58020	3.00420	Н	10.03300	6.89660	6.25770
H	8.64490	10.67380	4.40620	0	10.88360	5.63580	7.55560
C	7.81990	9.96930	2.53050	H	11.50310	5.60970	6.82110
C	6.57050	9.75530	2.99000	C	10.60050	8.05390	8.01120
C	6.00490	10.10340	4.36080	C	9.49950	9.14430	8.09540
C	5.71160	7.58970	4.80380	Н	9.88540	10.08080	8.50130
С	6.69220	6.73300	4.44190	Н	8.67750	8.85170	8.74780
Н	7.70330	7.08930	4.54120	Н	9.08320	9.36820	7.11270
С	4.22290	7.30580	4.70310	С	11.06480	7.77600	9.46120
Η	3.85180	6.88710	5.63900	Н	10.24050	7.41770	10.07750
Η	3.99150	6.62600	3.88520	Η	11.45580	8.67810	9.93330
Η	3.67330	8.22610	4.50420	Η	11.84830	7.02020	9.51360
С	6.64260	5.35670	3.94340	С	11.79520	8.64660	7.20200
С	5.59920	4.46930	4.01110	0	11.78030	9.81690	6.81020
С	7.62090	3.59160	2.91490	С	13.05000	7.78740	6.93590
Η	4.62620	4.59460	4.45820	Η	13.01530	6.94720	7.62690
C	8.69180	2.81600	2.23090	C	14.31360	8.58220	7.32470
Ĥ	9.51610	2.63310	2.92040	H	14.21960	9.00910	8.32410
Н	9.07160	3.37710	1.37700	Н	14.50060	9.40520	6.63410
Н	8.30540	1.85940	1.88040	Н	15.19580	7.94230	7.32890
S	6.02380	2.94330	3.28180	C	13.18660	7.20090	5.49530
S N	7.78250	4.85310	3.32040	С Н	14.22100	6.85900	5.43140
		4.83310 9.63440		п 0	14.22100		
C	8.17780		1.09250			6.02020	5.32890
Н	8.60220	10.50770	0.59680	H	12.59730	5.68700	4.45780
Н	7.30330	9.31990	0.52240	C	12.94420	8.15410	4.28710
Η	4.96400	10.38390	4.19940	Н	13.29540	9.14310	4.58630

C	13.81180	7.72660	3.08770				
Н	14.86640	7.67340	3.36020			/: -1882.641	37213 har-
H	13.51720	6.74940	2.70490	tree.			
Н	13.73890	8.43810	2.26580	Free	Energy: -1882	2.063230 har	tree.
C	11.45750	8.28410	3.86010		1.05225	1 0 4 4 2 4	1 40101
Н	10.82290	8.34200	4.73820	Н	-1.95325	1.84434	1.40101
Н	11.13370	7.38600	3.33310	C	-1.61139	1.55801	0.40449
C	11.16650	9.52680	2.99870	0	-0.39832	0.75038	0.56311
H	11.70330	9.45090	2.05350	C	-0.33115	-0.07334	1.62980
Н	11.56200	10.41540	3.49160	0	-1.15424	-0.10338	2.52244
C	9.67140	9.73050	2.68810	C	0.90294	-0.95696	1.57945
Н	9.30170	8.88370	2.11280	Н	0.88859	-1.57304	2.48240
Н	9.56290	10.59070	2.02640	Н	1.79904	-0.32589	1.61635
C	8.80630	9.99150	3.91890	C	0.91992	-1.82656	0.30862
C	7.80050	9.19010	4.32370	Н	1.04712	-1.17205	-0.55749
C	7.35230	7.88830	3.68070	0	-0.35988	-2.42800	0.10529
C	5.99630	5.76320	3.97490	Н	-0.60479	-2.90569	0.91770
С	4.65640	5.72280	3.80930	C	2.05706	-2.91612	0.27450
H	4.08910	6.57610	4.15290	С	1.84756	-3.97124	1.37486
С	6.96070	4.67000	3.53060	Η	0.88118	-4.47094	1.24617
Н	6.57000	4.08970	2.69650	Η	1.89183	-3.54676	2.38082
Н	7.18050	3.99960	4.36180	Η	2.62359	-4.74058	1.31374
Н	7.90370	5.09810	3.19240	С	1.99072	-3.61227	-1.10494
С	3.81770	4.65400	3.24820	Н	2.72796	-4.41876	-1.17528
С	4.09900	3.31120	3.23450	Н	0.99575	-4.04739	-1.23490
С	1.98090	3.91750	2.14480	Н	2.15827	-2.91517	-1.93220
Η	4.94770	2.79610	3.65590	С	3.42976	-2.23837	0.47204
С	0.67460	3.99560	1.43570	0	4.07568	-2.45930	1.49410
Η	-0.08880	4.39040	2.10620	С	4.03139	-1.31590	-0.59916
Η	0.36740	3.00660	1.09570	Н	3.23607	-0.96569	-1.26592
Η	0.75950	4.65420	0.57120	С	5.03754	-2.16298	-1.41711
S	2.84100	2.40750	2.43660	Η	4.59156	-3.10478	-1.74907
Ν	2.61700	4.98970	2.62260	Η	5.91460	-2.39742	-0.80816
С	9.12650	11.26960	4.67190	Η	5.37036	-1.62599	-2.30704
Η	10.12010	11.21670	5.11700	С	4.67741	-0.08474	0.11546
Η	8.41690	11.45090	5.47960	Н	3.93733	0.25953	0.85501
Η	8.20220	7.37570	3.23330	0	5.86607	-0.46592	0.80930
Н	7.22200	9.48980	5.18690	Η	5.59346	-1.22667	1.35905
Η	6.66680	8.14050	2.87110	С	5.03099	1.15893	-0.73293
Η	9.09590	12.12720	3.99970	Η	5.51291	1.82260	0.00087
				С	6.06202	0.92270	-1.84764
				Н	6.89502	0.30479	-1.49850
				Н	6.47408	1.88347	-2.18029
Com	pound 5.32			Н	5.61980	0.44224	-2.72803
	structure was	assigned as c	orrect.	С	3.80077	1.91627	-1.27654
	YP/6-31g(d)	-		Н	3.22002	1.26575	-1.94706
) implicit solv	ation in dichl	oromethane	Н	4.17469	2.73439	-1.90860
	used.			С	2.87753	2.51736	-0.20482

Η	3.49228	3.03246	0.54541	Ο	0.36056	-0.28767	3.52427
Η	2.33407	1.72731	0.32711	С	2.12388	0.18874	1.94945
С	1.84412	3.50331	-0.79071	Η	2.17847	0.72308	1.00047
Η	1.26487	2.98724	-1.56397	Η	2.84201	0.65519	2.63411
Η	2.38635	4.31565	-1.29756	С	2.48375	-1.30729	1.80833
С	0.93039	4.10281	0.25996	Η	1.62018	-1.83990	1.38555
С	-0.36324	3.77559	0.41975	0	2.76347	-1.85095	3.09762
С	-1.19744	2.81362	-0.38593	Н	1.98612	-1.62179	3.64221
С	-2.68018	0.72844	-0.28238	С	3.70296	-1.55623	0.88534
С	-3.90312	0.68215	0.28470	С	4.91902	-0.71774	1.33051
Н	-4.05988	1.24105	1.20551	Н	5.11990	-0.89687	2.39121
С	-2.29515	0.03139	-1.56204	Н	4.75687	0.35563	1.18520
Η	-2.02847	-1.01639	-1.37268	Н	5.80535	-0.99665	0.75548
Н	-1.42322	0.50002	-2.02827	С	4.09873	-3.05539	0.96012
Н	-3.11461	0.04441	-2.28940	Η	4.87264	-3.27917	0.21848
С	-5.11372	-0.00411	-0.16764	Н	4.49583	-3.27858	1.95397
Č	-5.25064	-1.03389	-1.06887	Н	3.24820	-3.72093	0.78428
Č	-7.33753	-0.26214	-0.02652	C	3.40337	-1.23662	-0.61229
Ĥ	-4.48754	-1.56860	-1.61435	Õ	4.34936	-1.02155	-1.35635
C	-8.75333	-0.03367	0.40187	Č	1.98064	-1.29551	-1.19459
Ĥ	-8.76918	0.74585	1.16818	Ĥ	1.25984	-0.91353	-0.46649
Н	-9.19982	-0.94460	0.81686	C	1.63120	-2.78086	-1.46296
Н	-9.37849	0.28894	-0.43908	Н	2.38043	-3.24559	-2.11493
S	-6.91388	-1.50110	-1.21276	Н	0.66010	-2.84379	-1.95791
Ň	-6.31432	0.40731	0.41165	Н	1.57988	-3.35609	-0.53488
C	1.57269	5.12538	1.17035	C	1.85213	-0.46875	-2.49549
Н	2.41844	4.69960	1.72667	Н	2.58583	-0.87104	-3.20790
Н	0.86015	5.52597	1.89919	0	0.52618	-0.72774	-2.99226
Н	-0.69666	2.50916	-1.30910	H	0.45176	-0.30479	-3.86385
Н	-0.90790	4.26416	1.23032	C	2.10994	1.05827	-2.37295
Н	-2.13027	3.31378	-0.67978	Н	3.07654	1.17532	-1.86565
Н	1.97719	5.96794	0.59142	C	2.26020	1.66840	-3.77881
	1.77717	5.70774	0.37142	Н	2.56369	2.71910	-3.73130
				Н	1.31688	1.63155	-4.34176
Com	pound 5.32			Н	3.02014	1.13333	-4.36149
	structure was	assigned as i	ncorrect	C	1.02965	1.78440	-1.54322
		dssigned as i		Н	0.05681	1.64227	-2.02922
B3LYP/6-31g(d)					0.94361	1.30704	-0.56197
SMD implicit solvation in dichloromethane was used.					1.29011	3.28624	-1.33305
wast	1500.			C H	1.13856	3.82706	-2.27506
Elect	ronic Enerm	r 1882 636	74505 har	Н	2.34509	3.43973	-1.06414
Electronic Energy: -1882.63674595 har-				C	0.43275	3.94065	-0.22144
tree.	Energy: 188°	2 058075 hor	raa	H			
Free Energy: -1882.058075 hartree.				п Н	0.67350	5.01591 3.54115	-0.21466 0.74631
Н	-1.29282	1.46150	3.47960	п С	0.74850	3.78314	-0.38090
п С				C C	-1.06741 -1.89476		-0.38090 0.59436
	-1.32707	1.55355	2.38998	C C		3.36476	
O C	$0.00902 \\ 0.74841$	1.24992	1.89446 2.55249	C C	-1.57566	3.04094 0.59069	2.03682
U	0.74041	0.34384	2.33249	U	-2.37295	0.39009	1.84825

С	-2.15793	-0.04052	0.67615	С	-3.32353	-2.68275	-2.02313
Н	-1.21414	0.16146	0.17680	Н	-3.63458	-2.44782	-3.04730
С	-3.60241	0.49697	2.71298	Н	-4.21096	-2.94436	-1.44378
Н	-3.33783	0.11739	3.71019	Н	-2.65847	-3.55169	-2.05974
Н	-4.04771	1.49021	2.86697	С	-1.37728	-1.13555	-2.28235
Н	-4.35672	-0.15835	2.27900	Н	-0.75480	-2.01977	-2.44544
С	-2.99507	-0.96827	-0.08333	Н	-1.70936	-0.77874	-3.26275
C	-2.61135	-1.44446	-1.31583	Н	-0.73699	-0.36561	-1.84426
C	-4.78452	-2.24504	-0.50395	С	-2.26179	-1.82520	0.04153
H	-1.70465	-1.21800	-1.86565	Ō	-3.18055	-1.97584	0.83635
С	-6.11088	-2.91134	-0.31217	C	-0.83193	-2.08415	0.46501
H	-6.01107	-4.00303	-0.29569	Ĥ	-0.18107	-1.35745	-0.03486
Н	-6.80835	-2.65472	-1.11789	C	-0.44256	-3.49161	-0.03409
Н	-6.53808	-2.58447	0.63950	H	-0.48728	-3.58167	-1.12169
S	-3.81636	-2.50691	-1.96089	Н	-1.11229	-4.24222	0.40035
Ň	-4.22958	-1.43933	0.35141	Н	0.57818	-3.71216	0.28869
C	-1.63383	4.18309	-1.72510	C	-0.58399	-2.00954	1.98612
Ĥ	-2.72593	4.10555	-1.74141	Ĥ	-1.07972	-2.87575	2.44494
Н	-1.24055	3.56265	-2.54049	0	0.80802	-2.18988	2.22012
Н	-2.42300	3.36665	2.65297	Ĥ	1.30149	-1.65997	1.56067
Н	-2.95324	3.29068	0.34272	C	-1.09551	-0.75685	2.72332
Н	-0.70468	3.59938	2.39635	Ĥ	-2.18543	-0.73073	2.60185
Н	-1.36532	5.22145	-1.96873	C	-0.78522	-0.90441	4.21513
		0.22110	1.90075	H	-1.28649	-0.13361	4.80788
				Н	0.29293	-0.83221	4.39435
Com	pound 5.32			Н	-1.12176	-1.87852	4.58831
	structure was	assigned as i	ncorrect	C	-0.51911	0.54110	2.14954
	-2X/6-31g(d)	ussigned us i		H	0.58037	0.48515	2.15510
	D implicit solv	vation in dich	loromethane	Н	-0.81454	0.63861	1.09800
	used.			C	-0.97389	1.79687	2.89888
				Ĥ	-0.53393	1.80814	3.90323
Elec	tronic Energy	v [.] -1881 986	668443 har-	Н	-2.06246	1.75627	3.04268
tree.). 1001.900		C	-0.63154	3.11275	2.17936
	Energy: -188	1.396331 har	tree.	Ĥ	-0.93129	3.94434	2.83373
	8,			Н	-1.22530	3.18621	1.26438
Н	-0.17751	3.10239	-2.46244	C	0.83848	3.25241	1.85858
C	0.18829	2.72627	-1.50355	Ċ	1.31886	3.57716	0.65103
0	-0.89055	2.01847	-0.86555	Ċ	0.54524	3.92150	-0.59779
Ċ	-1.97996	1.71420	-1.59623	Ċ	1.37077	1.81030	-1.73697
0	-2.10718	1.98203	-2.76777	C	1.53113	0.73033	-0.95760
С	-3.03679	1.01866	-0.77123	Н	0.78433	0.54660	-0.19251
H	-2.67723	0.82252	0.24364	C	2.34369	2.26633	-2.78856
Н	-3.87758	1.71725	-0.69613	Н	2.03661	3.22209	-3.22291
C	-3.58812	-0.26057	-1.43073	Η	2.41211	1.53897	-3.60702
Ĥ	-3.78851	-0.03185	-2.48453	Н	3.35067	2.39143	-2.37239
0	-4.83330	-0.58498	-0.85189	C	2.60179	-0.26382	-0.96388
Ĥ	-4.63247	-1.04439	-0.01585	Č	3.67428	-0.39443	-1.80393
C	-2.59939	-1.46504	-1.41943	Ċ	3.50846	-2.10401	-0.06511

Н	3.96107	0.21590	-2.64697	С	2.95487	1.88960	0.78786
С	3.69606	-3.27156	0.85001	Η	2.95621	2.61076	-0.03141
H	2.87946	-3.29022	1.57558	C	3.92391	2.39255	1.87381
Н	4.64766	-3.19959	1.38523	Н	4.02662	1.66606	2.68434
H	3.69450	-4.21086	0.28860	H	3.57198	3.34194	2.29392
S	4.61429	-1.77152	-1.36962	Н	4.92203	2.56403	1.45504
N	2.53391	-1.25008	0.01849	C	1.47856	1.87196	1.27557
С	1.78016	3.02221	3.01403	Н	1.29092	2.90720	1.60873
Н	2.81632	3.23244	2.73441	0	0.70252	1.62004	0.10682
Η	1.73016	1.98893	3.37855	Н	-0.24264	1.84599	0.24077
Η	1.14902	4.60943	-1.20063	С	1.14723	0.92843	2.48378
Η	2.40319	3.62509	0.54519	Н	2.09603	0.64211	2.95097
Н	-0.39060	4.44292	-0.36941	С	0.31481	1.69318	3.52830
Н	1.51556	3.66739	3.86203	Н	0.85775	2.56452	3.91457
				Н	-0.62610	2.05361	3.08988
				Н	0.05804	1.06081	4.38562
Com	pound 5.32			C	0.43544	-0.36905	2.04815
	structure was	assigned as i	ncorrect	Н	0.85297	-0.71778	1.10305
	YP/6-31g(d)	assigned as I	neoneet.	H	-0.61930	-0.14640	1.83966
	• • •			C			
Gas	phase.				0.52526	-1.51771	3.06180
T 1		1000 (05	01546 1	Н	1.58009	-1.79006	3.19795
	tronic Energy	y: -1882.607	701546 har-	Н	0.16470	-1.19497	4.04725
tree.				С	-0.24656	-2.78778	2.62438
Free	Energy: -1882	2.026070 har	tree.	Н	-0.10256	-3.55190	3.40470
				Н	0.20825	-3.17913	1.70953
Η	-1.47993	-3.28659	-2.03949	С	-1.73499	-2.58022	2.42393
С	-1.49767	-2.69273	-1.11826	С	-2.41840	-2.91505	1.31660
Ο	-0.13123	-2.31605	-0.82743	С	-1.93618	-3.60630	0.06138
С	0.68157	-2.00706	-1.86081	С	-2.40568	-1.49339	-1.32508
0	0.31933	-1.97889	-3.02432	C	-2.02234	-0.27168	-0.91331
Č	2.07983	-1.67736	-1.39924	Ĥ	-1.04013	-0.17572	-0.46634
H	2.76228	-2.40906	-1.84621	C	-3.73824	-1.81528	-1.95587
Н	2.15498	-1.75550	-0.31543	Н	-3.80927	-1.39572	-2.96864
C	2.47733	-0.27275	-1.91388	H	-4.57230	-1.40846	-1.37068
	1.66084	0.42724	-1.69019	H			
Н					-3.89258	-2.89514	-2.04736
0	2.70186	-0.32660	-3.31856	C	-2.75023	0.99352	-0.94688
Н	1.91562	-0.76516	-3.69431	C	-3.93816	1.32384	-1.55557
C	3.76756	0.29434	-1.23909	С	-2.86629	3.15240	-0.32419
С	4.93527	-0.70603	-1.35350	Η	-4.57761	0.71053	-2.16985
Η	5.87211	-0.23844	-1.02881	С	-2.48496	4.44663	0.32777
Η	5.05020	-1.01637	-2.39608	Н	-3.20609	4.73153	1.10262
Η	4.77489	-1.58649	-0.72824	Η	-2.43783	5.26416	-0.39996
С	4.15139	1.60091	-1.96662	Η	-1.50211	4.33524	0.79179
Н	4.51409	1.36317	-2.96908	S	-4.34080	2.98383	-1.26413
Н	4.94759	2.13145	-1.43038	Ν	-2.16607	2.05872	-0.25623
Н	3.29841	2.27651	-2.08248	C	-2.47206	-1.97150	3.59655
C	3.44821	0.52689	0.26772	H	-2.28726	-2.54512	4.51577
0 0	3.61297	-0.38235	1.06749	Н	-3.55265	-1.94581	3.42506
0	5.01277	-0.56255	1.00/4/	11	-5.55205	-1.74301	J.=2300

Н	-2.75163	-4.24135	-0.30809	С	4.35706	0.00438	-0.69708
H	-3.48592	-2.69153	1.31681	н Н	4.11384	-0.14616	0.36220
H	-1.09578	-4.27890	0.26235	C	5.83206	-0.14010 0.44144	-0.75718
п Н	-2.14028	-0.94503	0.20233 3.79841	С Н	6.16262	0.60570	-0.73718
п	-2.14028	-0.94303	5./9641				
				Н	6.48825	-0.31233	-0.30628
C	1 5 22			H	5.99463	1.38213	-0.22162
	pound 5.32	· 1		C	3.42039	1.08902	-1.27116
	structure was	assigned as c	correct.	Н	2.42924	0.65870	-1.46449
	YP/6-31g(d)			Н	3.79607	1.41377	-2.25061
Gas p	phase.			C	3.22138	2.30143	-0.34888
				Н	4.18453	2.76966	-0.11026
	ronic Energy	y: -1882.603	79978 har-	Н	2.80350	1.95443	0.60393
tree.				С	2.25961	3.35292	-0.95734
Free	Energy: -1882	2.027371 har	tree.	Н	2.82609	4.00669	-1.63727
				Η	1.52675	2.82879	-1.57710
Η	-1.66028	2.40926	1.43194	С	1.55638	4.19194	0.08908
С	-1.29936	2.07866	0.45522	С	0.23904	4.12444	0.34355
0	-0.12406	1.23407	0.70187	С	-0.79506	3.28337	-0.35974
С	-0.14908	0.47011	1.82164	С	-2.38710	1.28419	-0.24979
0	-1.09891	0.39335	2.57205	С	-3.50326	0.99953	0.45256
С	1.16604	-0.24909	2.05869	Н	-3.52509	1.32794	1.48929
Η	1.89291	0.01850	1.28853	С	-2.11889	0.88846	-1.68052
Η	1.54106	0.12618	3.01682	Н	-2.23390	1.74737	-2.35652
С	1.03351	-1.78995	2.24060	Н	-1.08748	0.53330	-1.79489
Н	0.02982	-1.98583	2.63508	Н	-2.80799	0.11547	-2.01729
Ο	1.92996	-2.25062	3.23346	С	-4.71528	0.28326	0.06229
Н	2.79522	-2.35629	2.79108	С	-5.74426	0.05159	0.94583
С	1.16616	-2.59731	0.89783	С	-6.08679	-0.81893	-1.31341
С	1.02275	-4.10466	1.22876	Н	-5.79996	0.33919	1.98669
Н	0.04283	-4.28438	1.68560	С	-6.60194	-1.45973	-2.56641
Н	1.79067	-4.42610	1.93408	Н	-5.85430	-1.33728	-3.35350
Н	1.09048	-4.71903	0.32441	Н	-7.53977	-0.99900	-2.89738
С	0.03840	-2.18050	-0.06153	Н	-6.79024	-2.52995	-2.42290
Н	0.02638	-2.79791	-0.96539	S	-7.02853	-0.81853	0.18258
Н	-0.93073	-2.31011	0.43327	N	-4.93954	-0.22109	-1.21272
Н	0.10970	-1.13405	-0.36933	С	2.44469	5.12413	0.87925
C	2.59197	-2.38512	0.32562	Н	3.23311	4.57487	1.41111
Õ	3.55661	-2.52549	1.07448	Н	1.87754	5.69783	1.61909
č	2.83500	-2.08409	-1.15343	Н	-0.42501	2.92684	-1.32414
H	2.02644	-1.45692	-1.54033	Н	-0.15156	4.75156	1.14708
C	2.79754	-3.42808	-1.92626	Н	-1.67875	3.90034	-0.57628
H	1.82990	-3.92916	-1.82912	Н	2.95554	5.83615	0.21550
Н	3.57258	-4.10553	-1.54993		2.95551	5.05015	0.21550
H	2.98759	-3.23728	-2.98381				
C	4.18664	-1.37233	-1.39113	Corr	pound 5.32		
H	4.97106	-2.03861	-1.00302		structure was	assigned as	orrect
0	4.37100	-1.25185	-2.81442		5-2X/6-31g(d)	assigned as C	
H	5.21653	-0.96492	-3.00561	IVIUC	-210-31g(u)		
11	5.21055	-0.20492	-3.00301				

SMD implicit solvation in dichloromethane was used.					-2.13985 -3.00349	2.04648 3.09463	1.41992 -0.25451
				Н	-3.22296	3.98719	0.34238
Elect	ronic Energy	y: -1881.979	935541 har-	Н	-3.84712	2.96974	-0.94624
tree.	0.			С	-1.71662	3.35444	-1.05067
Free	Energy: -188	1.394165 har	tree.	Η	-0.88300	3.49666	-0.35464
				Н	-1.83429	4.30458	-1.59156
Η	1.85873	-0.02620	-2.06832	С	-1.39403	2.28647	-2.07030
С	1.64328	0.39945	-1.08535	С	-0.21927	1.65011	-2.15706
Ο	0.66775	-0.45086	-0.43426	С	0.97839	1.76401	-1.25281
С	0.65693	-1.75070	-0.77727	С	2.90071	0.42820	-0.24653
Ο	1.35602	-2.22266	-1.64423	С	4.03132	-0.04393	-0.79534
С	-0.27065	-2.55758	0.09911	Η	3.97030	-0.46108	-1.79929
Η	-0.41781	-3.53123	-0.37531	С	2.74750	0.99728	1.13928
Η	0.28209	-2.72815	1.03106	Η	3.44476	0.54362	1.84330
С	-1.59603	-1.89987	0.51049	Η	1.72510	0.83750	1.49643
Η	-1.39880	-0.83757	0.69954	Η	2.93689	2.07818	1.14552
Ο	-1.99417	-2.52962	1.71730	С	5.37967	-0.07999	-0.22646
Η	-2.29225	-1.81579	2.30951	С	6.41674	-0.73709	-0.83000
С	-2.70152	-2.00207	-0.58422	С	6.97000	0.40296	1.24986
С	-2.13055	-1.64076	-1.95628	Η	6.39701	-1.30424	-1.75115
Н	-2.92711	-1.61556	-2.70396	С	7.63547	0.97037	2.46222
Η	-1.38969	-2.38030	-2.27599	Н	8.48353	1.60527	2.18928
Η	-1.65785	-0.65158	-1.93999	Н	8.00613	0.17434	3.11536
С	-3.29437	-3.42162	-0.62447	Н	6.90719	1.56831	3.01346
Н	-2.51310	-4.14953	-0.86945	S	7.85702	-0.56187	0.09084
Н	-4.06592	-3.48762	-1.39944	Ν	5.71900	0.56607	0.95278
Η	-3.73111	-3.70830	0.33485	С	-2.49816	1.96819	-3.04719
С	-3.87432	-1.05080	-0.28485	Η	-3.30119	1.40486	-2.55515
Ο	-4.31771	-0.32180	-1.15363	Η	-2.12861	1.36082	-3.87900
С	-4.58563	-1.07507	1.07207	Η	0.70745	2.16329	-0.27012
Η	-4.29331	-1.97490	1.61840	Η	-0.09521	0.94017	-2.97852
С	-6.09739	-1.11688	0.82679	Η	1.73325	2.43811	-1.68118
Η	-6.36151	-1.97877	0.20601	Η	-2.94310	2.88400	-3.45654
Η	-6.43791	-0.21623	0.30912				
Η	-6.63366	-1.20364	1.77662				
С	-4.23266	0.12029	1.98646	Con	100000 100000 100000 100000 100000 100000 1000000		
Η	-5.00040	0.11192	2.77499	This	s structure was	assigned as c	correct.
Ο	-2.97082	-0.16324	2.59591				
Η	-2.74423	0.55484	3.20947	Mol	ecular Mecha	nics (OPLS	-2005), gas
С	-4.24091	1.51568	1.32899	phas	se.		
Η	-5.01743	1.50287	0.55326	Ene	rgy: -21.59791	8 kJ.	
С	-4.62278	2.57051	2.37295				
Η	-5.60478	2.35613	2.80751	С	-1.77130	2.60010	-0.35170
Н	-3.89183	2.59755	3.19254	0	-1.82730	3.08430	-1.48060
Н	-4.66433	3.57349	1.93914	С	-3.07960	2.19700	0.34340
С	-2.90583	1.86743	0.65191	Н	-3.87550	2.37390	-0.37990
Н	-2.54266	1.02195	0.05559	С	-3.10710	0.69760	0.73520

Н	-2.30620	0.50780	1.44810	Н	6.41980	1.74670	-0.30870
Н	-4.01730	0.49410	1.29890	Н	5.26390	3.04600	-0.50840
С	-3.36540	3.10860	1.54970	С	2.96500	1.64570	-0.44910
Η	-4.37310	2.94150	1.93050	Η	2.79530	1.59830	-1.51640
Н	-3.29310	4.16230	1.27580	С	1.94630	2.01840	0.35250
Н	-2.67010	2.92800	2.36990	С	2.11430	2.08390	1.86480
С	-2.99520	-0.31430	-0.44090	Н	1.32160	2.65130	2.34950
Н	-2.11350	-0.04690	-1.01760	Н	3.04510	2.58540	2.12970
С	-4.13740	-0.18290	-1.48670	Н	2.12880	1.07870	2.28740
Η	-4.00540	-0.93440	-2.26630	С	0.67420	2.32710	-0.28260
Н	-4.00300	0.76880	-2.00260	Η	0.67240	2.52470	-1.34720
C	-5.59350	-0.22610	-0.98270	C	-0.50750	2.35830	0.36190
Ĥ	-5.76300	0.48100	-0.17030	Ĥ	-0.57490	2.13850	1.41500
Н	-6.25870	0.07390	-1.79400		0.07 19 0	2.12.02.0	1111000
0	-5.95910	-1.53180	-0.58270				
H	-6.89480	-1.55290	-0.42700				
C	-2.75850	-1.78110	0.02600	Con	pound 5.33		
H	-2.85260	-2.44040	-0.83900		structure was	assigned as a	mhiguous
	-3.79780	-2.10800	0.91910	1 1113	structure was	dssigned as d	inorguous.
H	-4.61860	-1.98850	0.43200	Mol	ecular Mecha	nics (OPI S	-2005) are
C	-1.39280	-2.09480	0.71260	phas			-2005), gas
С Н	-1.31100	-1.48820	1.61440	-	rgy: -15.80561	1 1/1	
C	-1.34060	-3.57280	1.15940	LIC	lgy15.80501	I KJ.	
С Н		-3.79840		C	1 60070	2 68020	0 62120
	-0.43640		1.72260	C	-1.60070	2.68930	0.62120
Н	-1.38320	-4.24680	0.30380	\mathbf{O}	-2.14800	3.61730	0.02790
H	-2.17470	-3.82440	1.81490	C	-2.44190	1.82910	1.57690
C	-0.18040	-1.76740	-0.19490	H	-3.47430	2.14770	1.42910
Н	-0.18940	-0.70940	-0.45210	C	-2.38050	0.30300	1.29320
Н	-0.27480	-2.30930	-1.13730	Н	-1.41030	-0.06890	1.61920
C	1.20100	-2.06120	0.42920	Н	-3.10320	-0.18440	1.94940
Н	1.34400	-3.13250	0.56440	C	-2.08840	2.14510	3.04030
H	1.27010	-1.59900	1.41390	Н	-2.79110	1.66430	3.72130
C	2.34950	-1.54170	-0.43580	Н	-2.13140	3.21790	3.23490
0	2.28840	-1.55190	-1.66550	Н	-1.08700	1.79940	3.29880
0	3.37010	-1.05650	0.29840	С	-2.65720	-0.17400	-0.16210
С	4.46140	-0.37940	-0.32620	Η	-1.84410	0.18480	-0.79350
Н	4.44120	-0.51680	-1.40870	С	-3.96620	0.46640	-0.71310
С	5.75860	-1.01590	0.21220	Н	-3.82810	1.54590	-0.76010
Н	5.80880	-0.89550	1.29500	Н	-4.78690	0.31760	-0.00920
Н	6.62330	-0.49370	-0.19520	С	-4.40860	0.03010	-2.12020
С	5.89590	-2.50230	-0.14830	Η	-5.08980	0.77510	-2.53480
Η	5.09980	-3.09650	0.30100	Η	-3.55810	-0.03740	-2.80050
Η	6.84570	-2.90300	0.20600	0	-5.09870	-1.20370	-2.05320
Н	5.85300	-2.65020	-1.22790	Н	-5.45650	-1.40190	-2.90860
С	4.33530	1.13700	-0.01630	С	-2.65550	-1.73000	-0.27700
Н	4.44770	1.25910	1.05950	Η	-2.69290	-1.99730	-1.33410
С	5.42750	1.98330	-0.69110	0	-3.85440	-2.18670	0.30780
Η	5.43860	1.83090	-1.77090	Η	-4.54780	-1.92490	-0.29700

C H	-1.45990 -1.45280	-2.51230 -2.33450	0.34110 1.41710		D implicit solv used.	ation in dich	loromethane
C	-1.65450	-4.03260	0.14310	was	useu.		
Н	-0.89280	-4.61460	0.65940	Elec	tronic Energy	<i>v</i> -1274 905	594171 har-
Н	-1.62890	-4.30270	-0.91260	tree.		. 12/1.900	
Н	-2.61060	-4.37090	0.54310		Energy: -1274	4 376785 har	tree
C	-0.09480	-2.06230	-0.23490	1100	, Energy: 12,	1.5 / 6 / 60 1141	
H	0.03160	-0.99430	-0.06240	С	-1.57731	2.72780	0.28310
Н	-0.09300	-2.19490	-1.31780	Õ	-1.96949	3.74144	-0.27398
C	1.11800	-2.80520	0.36910	Č	-2.50713	1.93961	1.19443
H	1.08650	-3.86400	0.11470	H	-3.51930	2.25905	0.92171
Н	1.09720	-2.73840	1.45680	C	-2.39743	0.41001	1.09025
C	2.45510	-2.25390	-0.11790	H	-1.47312	0.08371	1.58647
0	3.19170	-2.90730	-0.85390	Н	-3.21925	-0.01463	1.67890
Ō	2.69200	-1.01740	0.34140	С	-2.22751	2.39133	2.63629
Ċ	3.87430	-0.30240	-0.01470	H	-2.90006	1.87545	3.32943
H	4.66250	-0.98800	-0.33110	Н	-2.37860	3.46930	2.74790
C	4.37050	0.41250	1.25630	Η	-1.19709	2.15588	2.92703
Η	3.59320	1.07560	1.63800	С	-2.43182	-0.18342	-0.32937
Н	5.21810	1.05010	1.00300	Η	-1.46317	0.02064	-0.80651
С	4.80690	-0.55860	2.36220	С	-3.47204	0.48558	-1.25373
H	3.97470	-1.17770	2.69850	H	-3.40563	0.03140	-2.25108
Н	5.18650	-0.01690	3.22860	Н	-3.17562	1.53427	-1.37945
Н	5.59710	-1.22370	2.01240	С	-4.94627	0.46034	-0.84041
C	3.57790	0.69210	-1.16840	H	-5.05040	0.67319	0.23565
H	4.36790	1.44270	-1.17950	Н	-5.47089	1.25974	-1.37449
С	3.61520	0.00890	-2.54390	0	-5.60919	-0.74057	-1.18157
H	2.83430	-0.74540	-2.64260	Ĥ	-5.16270	-1.42242	-0.64710
Н	4.57230	-0.48650	-2.71010	С	-2.55793	-1.71531	-0.28083
Н	3.47670	0.73430	-3.34600	Η	-2.60898	-2.08054	-1.32048
С	2.23500	1.37340	-0.96120	0	-3.79515	-2.01194	0.38186
Η	1.39120	0.70660	-1.06590	Η	-3.91756	-2.97445	0.39054
С	1.99460	2.65850	-0.63720	С	-1.41073	-2.46801	0.42813
C	3.11080	3.66700	-0.45440	Η	-1.46184	-2.21514	1.49658
Н	3.67570	3.78460	-1.37960	С	-1.61219	-3.98155	0.28381
Η	3.79360	3.34830	0.33330	Н	-0.88355	-4.53845	0.87823
Η	2.71150	4.64350	-0.17810	Н	-1.50231	-4.28908	-0.76356
С	0.62110	3.04850	-0.38710	Н	-2.59533	-4.31526	0.63254
Н	0.21580	3.88690	-0.93830	С	-0.03249	-2.04454	-0.10333
С	-0.17980	2.35820	0.44810	Н	0.15339	-0.99674	0.15634
Η	0.20630	1.51160	0.99580	Н	-0.02735	-2.11106	-1.20138
				С	1.11925	-2.89202	0.45789
				Н	1.05745	-3.92915	0.12516
				Н	1.08029	-2.88128	1.55530
Con	pound 5.33			С	2.48000	-2.38538	0.03882
	structure was	assigned as a	mbiguous.	0	3.32210	-3.04714	-0.52320
	-2X/6-31g(d)	č	C	0	2.64001	-1.09829	0.38182
				С	3.85838	-0.40958	0.02041

Η	4.62554	-1.16078	-0.19314	Н	-2.02883	-0.02192	-0.97322
С	4.26175	0.42311	1.22814	С	-4.05329	-0.14071	-1.51079
Н	3.46322	1.14268	1.44647	Н	-3.88879	-0.88917	-2.29765
Н	5.15141	1.00143	0.95171	Н	-3.92075	0.83547	-1.99322
С	4.55298	-0.43613	2.45430	С	-5.51672	-0.22824	-1.08935
H	3.66634	-1.00449	2.75183	H	-5.72585	0.43660	-0.23919
Н	4.85740	0.18181	3.30413	Н	-6.14771	0.09716	-1.92853
Н	5.35893	-1.14982	2.24993	0	-5.84687	-1.58775	-0.75274
C	3.58571	0.42827	-1.24604	H	-6.76726	-1.61267	-0.44891
H	4.43274	1.11582	-1.34920	C	-2.75479	-1.76286	0.04619
C	3.50828	-0.45373	-2.49614	Н	-2.81101	-2.40358	-0.85341
H	2.65976	-1.14484	-2.43845	0	-3.77085	-2.13926	0.96983
Н	4.41959	-1.04814	-2.61527	Н	-4.61505	-2.10944	0.47506
Н	3.37561	0.16151	-3.39164	C	-1.39719	-2.08075	0.72787
C	2.30043	1.18563	-1.06578	H	-1.35075	-1.49572	1.65843
H	1.40871	0.56358	-1.15001	C	-1.35913	-3.56980	1.11319
C	2.10964	2.48675	-0.79405	С Н	-0.48784	-3.80485	1.73448
C	3.18725	3.53477	-0.69663	п Н	-0.48784	-4.20239	0.21610
С Н		3.15943		п Н			
	4.16629 3.26993		-1.00138		-2.25920	-3.83846	1.66916
Н		3.91016	0.33009	C	-0.19821	-1.68658	-0.15742
H	2.93792	4.39455	-1.32959	Н	-0.23031	-0.61422	-0.37267
C	0.73085	2.95164	-0.56127	Н	-0.26459	-2.19488	-1.12773
Н	0.43687	3.91854	-0.97303	C	1.17913	-1.98578	0.45862
C	-0.17548	2.25891	0.14681	Н	1.34212	-3.06772	0.54824
Η	0.10796	1.33186	0.64148	H	1.26829	-1.57132	1.46857
				С	2.29668	-1.43124	-0.40496
				0	2.27520	-1.38930	-1.61652
	pound 5.33			0	3.33436	-0.98862	0.35341
	structure was	assigned as c	correct.	С	4.45006	-0.35267	-0.32642
B3L	YP/6-31g(d)			Η	4.34849	-0.56002	-1.39607
Gas	phase.			С	5.72800	-0.98911	0.22511
				Η	5.78264	-0.79176	1.30428
Elect	tronic Energy	y: -1275.439	978235 har-	Η	6.59052	-0.48995	-0.23137
tree.				С	5.81883	-2.49626	-0.03607
Free	Energy: -127	4.916193 har	tree.	Η	4.99460	-3.03001	0.44678
				Η	6.75830	-2.90135	0.35553
С	-1.79036	2.53203	-0.34952	Η	5.78026	-2.71645	-1.10950
Ο	-1.81896	2.82849	-1.53965	С	4.35337	1.18209	-0.08444
С	-3.08231	2.18542	0.39835	Η	4.53870	1.34909	0.98282
Η	-3.88730	2.40693	-0.31122	С	5.42097	1.94706	-0.89285
С	-3.10288	0.67734	0.75522	Н	5.31463	1.75348	-1.96731
Н	-2.30157	0.48322	1.47927	Н	6.43671	1.66801	-0.59679
Н	-4.03117	0.45334	1.29355	Н	5.31350	3.02542	-0.73689
С	-3.29836	3.05291	1.65172	С	2.97940	1.67566	-0.45208
H	-4.28025	2.84044	2.09046	H	2.78123	1.69808	-1.52452
Н	-3.26241	4.12160	1.41172	C	1.95773	2.00889	0.37049
Н	-2.54793	2.85442	2.42555	Č	2.04048	2.01370	1.87909
C	-2.94356	-0.29448	-0.43445	H	1.65095	2.95541	2.28387
-		/					00 0 /

Η	3.06107	1.88708	2.24352	Н	-2.11303	-3.89879	1.52743
Η	1.43574	1.20489	2.30848	С	-0.14141	-1.56911	-0.14147
С	0.66690	2.30499	-0.24487	Н	-0.16420	-0.47699	-0.22189
Н	0.64431	2.38615	-1.33105	Н	-0.23871	-1.95991	-1.16307
С	-0.51689	2.40199	0.39920	С	1.23494	-1.96035	0.40192
H	-0.57272	2.28896	1.47768	Н	1.38705	-3.04553	0.34868
11	-0.37272	2.20070	1.47700	Н	1.35745	-1.66820	1.44954
				C			
C	1 5 22				2.32230	-1.32072	-0.42916
-	pound 5.33			0	2.26096	-1.17994	-1.62967
	structure was	assigned as c	orrect.	0	3.37155	-0.94007	0.31931
	-2X/6-31g(d)			С	4.44784	-0.23436	-0.33298
SMD	implicit solva	ation in dich	loromethane	Η	4.34043	-0.37008	-1.41382
was ı	ised.			С	5.74734	-0.86575	0.14753
				Н	5.84631	-0.69891	1.22778
Elect	ronic Energy	: -1274.916	40766 har-	Н	6.58194	-0.34994	-0.33807
tree.				С	5.81297	-2.35733	-0.16892
	Energy: -1274	386582 har	ree	Ĥ	5.01288	-2.90250	0.34037
1100	Energy: 1271	.500502 hui		Н	6.76886	-2.78226	0.15114
С	-1.87213	2.49103	-0.30631	Н	5.70927	-2.53260	-1.24569
0	-1.88223	2.91828	-1.45046	C	4.30490	1.26295	0.01262
C	-3.15916	2.10558	0.40818	Н	4.44342	1.20293	1.09538
Н	-3.96805	2.30621	-0.30356	C	5.37528	2.09526	-0.70065
C	-3.13077	0.60690	0.75696	Н	5.33975	1.92699	-1.78343
Η	-2.35119	0.43622	1.51068	Η	6.37995	1.84764	-0.34794
Η	-4.07483	0.33983	1.24596	Η	5.20988	3.16147	-0.51934
С	-3.37965	2.95958	1.66094	С	2.93169	1.73638	-0.37558
Η	-4.34376	2.70925	2.11573	Η	2.81100	1.99126	-1.43061
Η	-3.38493	4.02773	1.42155	С	1.84419	1.82024	0.41541
Η	-2.60264	2.78133	2.41220	С	1.82100	1.46436	1.87840
С	-2.88543	-0.31883	-0.44195	Н	1.50105	2.32139	2.48256
Н	-1.95223	-0.00919	-0.92894	Н	2.79166	1.12752	2.24186
С	-3.95330	-0.16031	-1.54734	Н	1.09978	0.65780	2.05987
H	-3.78485	-0.92255	-2.31916	C	0.57628	2.21669	-0.19956
Н	-3.79767	0.81007	-2.03490	Ĥ	0.59353	2.44912	-1.26475
C	-5.41558	-0.21463	-1.14110	C	-0.60949	2.24734	0.43456
H	-5.62980	0.50348	-0.33814	Н	-0.68415	2.00014	1.48986
Н	-6.03658	0.05740	-2.00372			2.00014	1.40700
0							
	-5.74309	-1.54151	-0.72336	Carr			
H	-6.66466	-1.54891	-0.41844		1pound 5.33	· 1	,
C	-2.67263	-1.77910	0.01777		structure was	assigned as c	correct.
Н	-2.69738	-2.41384	-0.88808		YP/6-31g(d)		
0	-3.67884	-2.19263	0.92528		D implicit solv	ation in dich	loromethane
Η	-4.53198	-2.08155	0.45904	was	used.		
С	-1.32140	-2.05379	0.70889				
Η	-1.31659	-1.50647	1.66308	Elec	tronic Energy	<i>r</i> : -1275.471	89643 har-
С	-1.21305	-3.54944	1.01696	tree.			
Н	-0.35082	-3.77064	1.65376	Free	Energy: -1274	4.948736 har	tree.
Н	-1.10119	-4.12372	0.08759				

С	-1.78005	2.56060	-0.38766	Н	5.68770	-2.66707	-1.26339
Ο	-1.78279	2.90319	-1.57027	С	4.34848	1.20261	-0.02046
С	-3.08760	2.19437	0.31911	Н	4.51415	1.31681	1.05629
Η	-3.87563	2.38417	-0.41761	С	5.44133	1.98700	-0.77321
С	-3.10053	0.69641	0.71618	Н	5.36751	1.82956	-1.85652
Н	-2.30597	0.52951	1.45398	Η	6.44590	1.69291	-0.45392
Н	-4.03777	0.48918	1.24518	Н	5.33454	3.06061	-0.58327
С	-3.35354	3.09189	1.54198	С	2.98775	1.72471	-0.39841
Н	-4.34595	2.87509	1.95483	Н	2.81391	1.78671	-1.47424
Н	-3.32871	4.15433	1.27195	С	1.95157	2.04623	0.41312
Н	-2.62180	2.92835	2.34151	C	2.00133	2.01311	1.92188
C	-2.92639	-0.30726	-0.44561	H	1.61736	2.95072	2.34224
H	-2.00535	-0.04706	-0.98049	Н	3.01329	1.86495	2.30339
С	-4.03069	-0.19010	-1.53371	Н	1.37456	1.20525	2.32089
H	-3.85704	-0.96111	-2.29710	C	0.67624	2.35495	-0.22678
Н	-3.90360	0.77155	-2.04576	Ĥ	0.68938	2.46346	-1.31099
C	-5.49603	-0.26518	-1.11785	C	-0.52704	2.42299	0.38785
H	-5.71815	0.43549	-0.30216	H	-0.61145	2.27756	1.46044
Н	-6.12389	0.01585	-1.97455			2.27700	1.10011
0	-5.82504	-1.61085	-0.71929				
Н	-6.74039	-1.61013	-0.38963	Corr	100000 100000 100000000000000000000000		
C	-2.73914	-1.76509	0.07059		s structure was	assigned as a	mhiguous
H	-2.79722	-2.42625	-0.81356		YP/6-31g(d)	ussigned us t	inorguous.
0	-3.76475	-2.12011			• • •		
			0.99827	Uas	phase.		
Η	-4.61072	-2.05086	0.50380		-	r1275.432	011775 har-
H C	-4.61072 -1.38253	-2.05086 -2.07148	0.50380 0.75957	Elec	tronic Energy	<i>r</i> : -1275.432	211775 har-
H C H	-4.61072 -1.38253 -1.30230	-2.05086 -2.07148 -1.42533	0.50380 0.75957 1.64616	Elec tree.	etronic Energy		
H C H C	-4.61072 -1.38253 -1.30230 -1.36506	-2.05086 -2.07148 -1.42533 -3.53093	0.50380 0.75957 1.64616 1.24471	Elec tree.	tronic Energy		
H C H C H	-4.61072 -1.38253 -1.30230 -1.36506 -0.46834	-2.05086 -2.07148 -1.42533 -3.53093 -3.74783	0.50380 0.75957 1.64616 1.24471 1.83580	Elec tree. Free	etronic Energy Energy: -1274	4.908856 har	tree.
H C H C H H	-4.61072 -1.38253 -1.30230 -1.36506 -0.46834 -1.38027	-2.05086 -2.07148 -1.42533 -3.53093 -3.74783 -4.22767	$\begin{array}{c} 0.50380 \\ 0.75957 \\ 1.64616 \\ 1.24471 \\ 1.83580 \\ 0.39480 \end{array}$	Elec tree. Free C	etronic Energy Energy: -1274 -1.38245	4.908856 har 2.87982	tree. 0.47752
H C H C H H H	-4.61072 -1.38253 -1.30230 -1.36506 -0.46834 -1.38027 -2.23882	-2.05086 -2.07148 -1.42533 -3.53093 -3.74783 -4.22767 -3.74082	$\begin{array}{c} 0.50380\\ 0.75957\\ 1.64616\\ 1.24471\\ 1.83580\\ 0.39480\\ 1.86585\end{array}$	Elec tree. Free C O	etronic Energy Energy: -1274 -1.38245 -1.82777	4.908856 har 2.87982 3.83358	tree. 0.47752 -0.15289
H C H C H H H C	-4.61072 -1.38253 -1.30230 -1.36506 -0.46834 -1.38027 -2.23882 -0.18502	-2.05086 -2.07148 -1.42533 -3.53093 -3.74783 -4.22767 -3.74082 -1.77004	0.50380 0.75957 1.64616 1.24471 1.83580 0.39480 1.86585 -0.16465	Elec tree. Free C O C	etronic Energy Energy: -1274 -1.38245 -1.82777 -2.25925	4.908856 har 2.87982 3.83358 2.14322	tree. 0.47752 -0.15289 1.49676
H C H C H H C H	-4.61072 -1.38253 -1.30230 -1.36506 -0.46834 -1.38027 -2.23882 -0.18502 -0.21217	-2.05086 -2.07148 -1.42533 -3.53093 -3.74783 -4.22767 -3.74082 -1.77004 -0.72083	0.50380 0.75957 1.64616 1.24471 1.83580 0.39480 1.86585 -0.16465 -0.47412	Elec tree. Free C O C H	etronic Energy Energy: -1274 -1.38245 -1.82777 -2.25925 -3.26600	4.908856 har 2.87982 3.83358 2.14322 2.54547	tree. 0.47752 -0.15289 1.49676 1.34506
H C H C H H H C H H H	-4.61072 -1.38253 -1.30230 -1.36506 -0.46834 -1.38027 -2.23882 -0.18502 -0.21217 -0.26554	-2.05086 -2.07148 -1.42533 -3.53093 -3.74783 -4.22767 -3.74082 -1.77004 -0.72083 -2.36420	0.50380 0.75957 1.64616 1.24471 1.83580 0.39480 1.86585 -0.16465 -0.47412 -1.08409	Elec tree. Free C O C H C	etronic Energy Energy: -1274 -1.38245 -1.82777 -2.25925 -3.26600 -2.28779	4.908856 har 2.87982 3.83358 2.14322 2.54547 0.60360	tree. 0.47752 -0.15289 1.49676 1.34506 1.33469
H C H C H H H C H H C H H C	-4.61072 -1.38253 -1.30230 -1.36506 -0.46834 -1.38027 -2.23882 -0.18502 -0.21217 -0.26554 1.19068	-2.05086 -2.07148 -1.42533 -3.53093 -3.74783 -4.22767 -3.74082 -1.77004 -0.72083 -2.36420 -2.02755	0.50380 0.75957 1.64616 1.24471 1.83580 0.39480 1.86585 -0.16465 -0.47412 -1.08409 0.47728	Elec tree. Free C O C H C H C H	etronic Energy Energy: -1274 -1.38245 -1.82777 -2.25925 -3.26600 -2.28779 -1.32960	4.908856 har 2.87982 3.83358 2.14322 2.54547 0.60360 0.19675	tree. 0.47752 -0.15289 1.49676 1.34506 1.33469 1.68252
H C H C H H H C H H C H H C H	-4.61072 -1.38253 -1.30230 -1.36506 -0.46834 -1.38027 -2.23882 -0.18502 -0.21217 -0.26554 1.19068 1.36406	-2.05086 -2.07148 -1.42533 -3.53093 -3.74783 -4.22767 -3.74082 -1.77004 -0.72083 -2.36420 -2.02755 -3.10281	$\begin{array}{c} 0.50380\\ 0.75957\\ 1.64616\\ 1.24471\\ 1.83580\\ 0.39480\\ 1.86585\\ -0.16465\\ -0.47412\\ -1.08409\\ 0.47728\\ 0.61418 \end{array}$	Elec tree. Free C O C H C H H H	etronic Energy Energy: -1274 -1.38245 -1.82777 -2.25925 -3.26600 -2.28779 -1.32960 -3.04722	4.908856 har 2.87982 3.83358 2.14322 2.54547 0.60360 0.19675 0.21415	tree. 0.47752 -0.15289 1.49676 1.34506 1.33469 1.68252 2.02491
H C H C H H H C H H C H H C H H C H	-4.61072 -1.38253 -1.30230 -1.36506 -0.46834 -1.38027 -2.23882 -0.18502 -0.21217 -0.26554 1.19068 1.36406 1.26038	-2.05086 -2.07148 -1.42533 -3.53093 -3.74783 -4.22767 -3.74082 -1.77004 -0.72083 -2.36420 -2.02755 -3.10281 -1.56579	$\begin{array}{c} 0.50380\\ 0.75957\\ 1.64616\\ 1.24471\\ 1.83580\\ 0.39480\\ 1.86585\\ -0.16465\\ -0.47412\\ -1.08409\\ 0.47728\\ 0.61418\\ 1.46740\\ \end{array}$	Elec tree. Free C O C H C H H C	etronic Energy Energy: -1274 -1.38245 -1.82777 -2.25925 -3.26600 -2.28779 -1.32960 -3.04722 -1.81028	4.908856 har 2.87982 3.83358 2.14322 2.54547 0.60360 0.19675 0.21415 2.52087	tree. 0.47752 -0.15289 1.49676 1.34506 1.33469 1.68252 2.02491 2.92400
H C H C H H H C H H C H H C H H C H C H	-4.61072 -1.38253 -1.30230 -1.36506 -0.46834 -1.38027 -2.23882 -0.18502 -0.21217 -0.26554 1.19068 1.36406 1.26038 2.31366	-2.05086 -2.07148 -1.42533 -3.53093 -3.74783 -4.22767 -3.74082 -1.77004 -0.72083 -2.36420 -2.02755 -3.10281 -1.56579 -1.50327	$\begin{array}{c} 0.50380\\ 0.75957\\ 1.64616\\ 1.24471\\ 1.83580\\ 0.39480\\ 1.86585\\ -0.16465\\ -0.47412\\ -1.08409\\ 0.47728\\ 0.61418\\ 1.46740\\ -0.39589 \end{array}$	Elec tree. Free C O C H C H H C H	etronic Energy -1.38245 -1.82777 -2.25925 -3.26600 -2.28779 -1.32960 -3.04722 -1.81028 -2.46546	4.908856 har 2.87982 3.83358 2.14322 2.54547 0.60360 0.19675 0.21415 2.52087 2.04710	tree. 0.47752 -0.15289 1.49676 1.34506 1.33469 1.68252 2.02491 2.92400 3.66412
H C H C H H H C H H C H H C H H C H C H	-4.61072 -1.38253 -1.30230 -1.36506 -0.46834 -1.38027 -2.23882 -0.18502 -0.21217 -0.26554 1.19068 1.36406 1.26038 2.31366 2.32583	-2.05086 -2.07148 -1.42533 -3.53093 -3.74783 -4.22767 -3.74082 -1.77004 -0.72083 -2.36420 -2.02755 -3.10281 -1.56579 -1.50327 -1.57004	0.50380 0.75957 1.64616 1.24471 1.83580 0.39480 1.86585 -0.16465 -0.47412 -1.08409 0.47728 0.61418 1.46740 -0.39589 -1.61064	Elec tree. Free C O C H C H H C H H H	etronic Energy Energy: -1274 -1.38245 -1.82777 -2.25925 -3.26600 -2.28779 -1.32960 -3.04722 -1.81028 -2.46546 -1.85121	4.908856 har 2.87982 3.83358 2.14322 2.54547 0.60360 0.19675 0.21415 2.52087 2.04710 3.60464	tree. 0.47752 -0.15289 1.49676 1.34506 1.33469 1.68252 2.02491 2.92400 3.66412 3.07704
H C H C H H C H H C H H C H H C O O	-4.61072 -1.38253 -1.30230 -1.36506 -0.46834 -1.38027 -2.23882 -0.18502 -0.21217 -0.26554 1.19068 1.36406 1.26038 2.31366 2.32583 3.30429	$\begin{array}{r} -2.05086\\ -2.07148\\ -1.42533\\ -3.53093\\ -3.74783\\ -4.22767\\ -3.74082\\ -1.77004\\ -0.72083\\ -2.36420\\ -2.02755\\ -3.10281\\ -1.56579\\ -1.50327\\ -1.57004\\ -0.95847\end{array}$	0.50380 0.75957 1.64616 1.24471 1.83580 0.39480 1.86585 -0.16465 -0.47412 -1.08409 0.47728 0.61418 1.46740 -0.39589 -1.61064 0.34546	Elec tree. Free C O C H C H H H H H H	etronic Energy = Energy: -1274 -1.38245 -1.82777 -2.25925 -3.26600 -2.28779 -1.32960 -3.04722 -1.81028 -2.46546 -1.85121 -0.78508	4.908856 har 2.87982 3.83358 2.14322 2.54547 0.60360 0.19675 0.21415 2.52087 2.04710 3.60464 2.18758	tree. 0.47752 -0.15289 1.49676 1.34506 1.33469 1.68252 2.02491 2.92400 3.66412 3.07704 3.12522
H C H C H H C H H C H H C H H C C H C H	$\begin{array}{r} -4.61072 \\ -1.38253 \\ -1.30230 \\ -1.36506 \\ -0.46834 \\ -1.38027 \\ -2.23882 \\ -0.18502 \\ -0.21217 \\ -0.26554 \\ 1.19068 \\ 1.36406 \\ 1.26038 \\ 2.31366 \\ 2.32583 \\ 3.30429 \\ 4.42405 \end{array}$	$\begin{array}{r} -2.05086\\ -2.07148\\ -1.42533\\ -3.53093\\ -3.74783\\ -4.22767\\ -3.74082\\ -1.77004\\ -0.72083\\ -2.36420\\ -2.02755\\ -3.10281\\ -1.56579\\ -1.50327\\ -1.57004\\ -0.95847\\ -0.31769\end{array}$	0.50380 0.75957 1.64616 1.24471 1.83580 0.39480 1.86585 -0.16465 -0.47412 -1.08409 0.47728 0.61418 1.46740 -0.39589 -1.61064 0.34546 -0.33658	Elec tree. Free C O C H C H H C H H H C	etronic Energy -1.38245 -1.82777 -2.25925 -3.26600 -2.28779 -1.32960 -3.04722 -1.81028 -2.46546 -1.85121 -0.78508 -2.59830	4.908856 har 2.87982 3.83358 2.14322 2.54547 0.60360 0.19675 0.21415 2.52087 2.04710 3.60464 2.18758 0.04414	tree. 0.47752 -0.15289 1.49676 1.34506 1.33469 1.68252 2.02491 2.92400 3.66412 3.07704 3.12522 -0.07252
H C H C H H H C H H C H H C O O C H	$\begin{array}{r} -4.61072 \\ -1.38253 \\ -1.30230 \\ -1.36506 \\ -0.46834 \\ -1.38027 \\ -2.23882 \\ -0.18502 \\ -0.21217 \\ -0.26554 \\ 1.19068 \\ 1.36406 \\ 1.26038 \\ 2.31366 \\ 2.32583 \\ 3.30429 \\ 4.42405 \\ 4.29282 \end{array}$	$\begin{array}{r} -2.05086\\ -2.07148\\ -1.42533\\ -3.53093\\ -3.74783\\ -4.22767\\ -3.74082\\ -1.77004\\ -0.72083\\ -2.36420\\ -2.02755\\ -3.10281\\ -1.56579\\ -1.50327\\ -1.57004\\ -0.95847\\ -0.31769\\ -0.47608\end{array}$	0.50380 0.75957 1.64616 1.24471 1.83580 0.39480 1.86585 -0.16465 -0.47412 -1.08409 0.47728 0.61418 1.46740 -0.39589 -1.61064 0.34546 -0.33658 -1.41035	Elec tree. Free C O C H C H H C H H H C H	etronic Energy = Energy: -1274 -1.38245 -1.82777 -2.25925 -3.26600 -2.28779 -1.32960 -3.04722 -1.81028 -2.46546 -1.85121 -0.78508 -2.59830 -1.74729	4.908856 har 2.87982 3.83358 2.14322 2.54547 0.60360 0.19675 0.21415 2.52087 2.04710 3.60464 2.18758 0.04414 0.25622	tree. 0.47752 -0.15289 1.49676 1.34506 1.33469 1.68252 2.02491 2.92400 3.66412 3.07704 3.12522 -0.07252 -0.73731
H C H C H H C H H C H H C H H C O C C H C H	$\begin{array}{r} -4.61072 \\ -1.38253 \\ -1.30230 \\ -1.36506 \\ -0.46834 \\ -1.38027 \\ -2.23882 \\ -0.18502 \\ -0.21217 \\ -0.26554 \\ 1.19068 \\ 1.36406 \\ 1.26038 \\ 2.31366 \\ 2.32583 \\ 3.30429 \\ 4.42405 \\ 4.29282 \\ 5.70253 \end{array}$	$\begin{array}{r} -2.05086\\ -2.07148\\ -1.42533\\ -3.53093\\ -3.74783\\ -4.22767\\ -3.74082\\ -1.77004\\ -0.72083\\ -2.36420\\ -2.02755\\ -3.10281\\ -1.56579\\ -1.50327\\ -1.57004\\ -0.95847\\ -0.31769\\ -0.47608\\ -1.00226\end{array}$	0.50380 0.75957 1.64616 1.24471 1.83580 0.39480 1.86585 -0.16465 -0.47412 -1.08409 0.47728 0.61418 1.46740 -0.39589 -1.61064 0.34546 -0.33658 -1.41035 0.15011	Elec tree. Free C O C H C H H H C H H C H C H C H C H C	etronic Energy = Energy: -1274 -1.38245 -1.82777 -2.25925 -3.26600 -2.28779 -1.32960 -3.04722 -1.81028 -2.46546 -1.85121 -0.78508 -2.59830 -1.74729 -3.83290	4.908856 har 2.87982 3.83358 2.14322 2.54547 0.60360 0.19675 0.21415 2.52087 2.04710 3.60464 2.18758 0.04414 0.25622 0.76413	tree. 0.47752 -0.15289 1.49676 1.34506 1.33469 1.68252 2.02491 2.92400 3.66412 3.07704 3.12522 -0.07252 -0.73731 -0.67571
H C H C H H C H H C H H C H H C H H C H C H H C H C H H C H C H H C H C H H C H C H H H C H H H C H H C H H C H H C H H H C H H H C H H H H C H H H C H H C H H C H H C H H C H H H C H H H H C H H H C H H C H H C H H H C H H H C H H H C H H H C H H C H H C H H H C H H H C H H H C H H C H H H C H H C H H C H H C H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H C H H C H H C H H C H H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H H C H H H C H H H H H C H H H H H H H H C H	$\begin{array}{r} -4.61072 \\ -1.38253 \\ -1.30230 \\ -1.36506 \\ -0.46834 \\ -1.38027 \\ -2.23882 \\ -0.18502 \\ -0.21217 \\ -0.26554 \\ 1.19068 \\ 1.36406 \\ 1.26038 \\ 2.31366 \\ 2.32583 \\ 3.30429 \\ 4.42405 \\ 4.29282 \\ 5.70253 \\ 5.79298 \end{array}$	$\begin{array}{r} -2.05086\\ -2.07148\\ -1.42533\\ -3.53093\\ -3.74783\\ -4.22767\\ -3.74082\\ -1.77004\\ -0.72083\\ -2.36420\\ -2.02755\\ -3.10281\\ -1.56579\\ -1.50327\\ -1.57004\\ -0.95847\\ -0.31769\\ -0.47608\\ -1.00226\\ -0.85430\end{array}$	0.50380 0.75957 1.64616 1.24471 1.83580 0.39480 1.86585 -0.16465 -0.47412 -1.08409 0.47728 0.61418 1.46740 -0.39589 -1.61064 0.34546 -0.33658 -1.41035 0.15011 1.23469	Elec tree. Free C O C H C H H C H H H C H C H C H C H C	etronic Energy -1.38245 -1.82777 -2.25925 -3.26600 -2.28779 -1.32960 -3.04722 -1.81028 -2.46546 -1.85121 -0.78508 -2.59830 -1.74729 -3.83290 -3.57299	4.908856 har 2.87982 3.83358 2.14322 2.54547 0.60360 0.19675 0.21415 2.52087 2.04710 3.60464 2.18758 0.04414 0.25622 0.76413 1.81436	tree. 0.47752 -0.15289 1.49676 1.34506 1.33469 1.68252 2.02491 2.92400 3.66412 3.07704 3.12522 -0.07252 -0.73731 -0.67571 -0.84638
H C H C H H C H H C H H C O O C H C H H H C H H C H H C O O C H C H	$\begin{array}{c} -4.61072 \\ -1.38253 \\ -1.30230 \\ -1.36506 \\ -0.46834 \\ -1.38027 \\ -2.23882 \\ -0.18502 \\ -0.21217 \\ -0.26554 \\ 1.19068 \\ 1.36406 \\ 1.26038 \\ 2.31366 \\ 2.32583 \\ 3.30429 \\ 4.42405 \\ 4.29282 \\ 5.70253 \\ 5.79298 \\ 6.56008 \end{array}$	$\begin{array}{r} -2.05086\\ -2.07148\\ -1.42533\\ -3.53093\\ -3.74783\\ -4.22767\\ -3.74082\\ -1.77004\\ -0.72083\\ -2.36420\\ -2.02755\\ -3.10281\\ -1.56579\\ -1.50327\\ -1.57004\\ -0.95847\\ -0.31769\\ -0.47608\\ -1.00226\\ -0.85430\\ -0.49980\end{array}$	0.50380 0.75957 1.64616 1.24471 1.83580 0.39480 1.86585 -0.16465 -0.47412 -1.08409 0.47728 0.61418 1.46740 -0.39589 -1.61064 0.34546 -0.33658 -1.41035 0.15011 1.23469 -0.31105	Elec tree. Free C O C H C H H C H H C H H C H H C H H C H H C C H C C H C C H C H C H C H C H C H C H C H C H C H C H C H C C H C C H C C H C C H C C H C C H C	etronic Energy = Energy: -1274 -1.38245 -1.82777 -2.25925 -3.26600 -2.28779 -1.32960 -3.04722 -1.81028 -2.46546 -1.85121 -0.78508 -2.59830 -1.74729 -3.83290 -3.57299 -4.65562	4.908856 har 2.87982 3.83358 2.14322 2.54547 0.60360 0.19675 0.21415 2.52087 2.04710 3.60464 2.18758 0.04414 0.25622 0.76413 1.81436 0.76312	tree. 0.47752 -0.15289 1.49676 1.34506 1.33469 1.68252 2.02491 2.92400 3.66412 3.07704 3.12522 -0.07252 -0.73731 -0.67571 -0.84638 0.05094
H C H C H H C H H C H H C O O C H C H H C H H C O O C H C H	$\begin{array}{c} -4.61072\\ -1.38253\\ -1.30230\\ -1.36506\\ -0.46834\\ -1.38027\\ -2.23882\\ -0.18502\\ -0.21217\\ -0.26554\\ 1.19068\\ 1.36406\\ 1.26038\\ 2.31366\\ 2.32583\\ 3.30429\\ 4.42405\\ 4.29282\\ 5.70253\\ 5.79298\\ 6.56008\\ 5.75666\end{array}$	$\begin{array}{r} -2.05086\\ -2.07148\\ -1.42533\\ -3.53093\\ -3.74783\\ -4.22767\\ -3.74082\\ -1.77004\\ -0.72083\\ -2.36420\\ -2.02755\\ -3.10281\\ -1.56579\\ -1.50327\\ -1.57004\\ -0.95847\\ -0.31769\\ -0.47608\\ -1.00226\\ -0.85430\\ -0.49980\\ -2.49660\end{array}$	0.50380 0.75957 1.64616 1.24471 1.83580 0.39480 1.86585 -0.16465 -0.47412 -1.08409 0.47728 0.61418 1.46740 -0.39589 -1.61064 0.34546 -0.33658 -1.41035 0.15011 1.23469 -0.31105 -0.18197	Elec tree. Free C O C H C H H C H H C H H C H H C H C H	etronic Energy = Energy: -1274 -1.38245 -1.82777 -2.25925 -3.26600 -2.28779 -1.32960 -3.04722 -1.81028 -2.46546 -1.85121 -0.78508 -2.59830 -1.74729 -3.83290 -3.57299 -4.65562 -4.38425	4.908856 har 2.87982 3.83358 2.14322 2.54547 0.60360 0.19675 0.21415 2.52087 2.04710 3.60464 2.18758 0.04414 0.25622 0.76413 1.81436 0.76312 0.21481	tree. 0.47752 -0.15289 1.49676 1.34506 1.33469 1.68252 2.02491 2.92400 3.66412 3.07704 3.12522 -0.07252 -0.73731 -0.67571 -0.84638 0.05094 -1.98890
H C H C H H C H H C H H C O O C H C H H H C H H C H H C O O C H C H	$\begin{array}{c} -4.61072 \\ -1.38253 \\ -1.30230 \\ -1.36506 \\ -0.46834 \\ -1.38027 \\ -2.23882 \\ -0.18502 \\ -0.21217 \\ -0.26554 \\ 1.19068 \\ 1.36406 \\ 1.26038 \\ 2.31366 \\ 2.32583 \\ 3.30429 \\ 4.42405 \\ 4.29282 \\ 5.70253 \\ 5.79298 \\ 6.56008 \end{array}$	$\begin{array}{r} -2.05086\\ -2.07148\\ -1.42533\\ -3.53093\\ -3.74783\\ -4.22767\\ -3.74082\\ -1.77004\\ -0.72083\\ -2.36420\\ -2.02755\\ -3.10281\\ -1.56579\\ -1.50327\\ -1.57004\\ -0.95847\\ -0.31769\\ -0.47608\\ -1.00226\\ -0.85430\\ -0.49980\end{array}$	0.50380 0.75957 1.64616 1.24471 1.83580 0.39480 1.86585 -0.16465 -0.47412 -1.08409 0.47728 0.61418 1.46740 -0.39589 -1.61064 0.34546 -0.33658 -1.41035 0.15011 1.23469 -0.31105	Elec tree. Free C O C H C H H C H H C H H C H H C H H C H H C C H C C H C C H C H C H C H C H C H C H C H C H C H C C H C C H C C H C C H C C H C C H C C H C	etronic Energy = Energy: -1274 -1.38245 -1.82777 -2.25925 -3.26600 -2.28779 -1.32960 -3.04722 -1.81028 -2.46546 -1.85121 -0.78508 -2.59830 -1.74729 -3.83290 -3.57299 -4.65562	4.908856 har 2.87982 3.83358 2.14322 2.54547 0.60360 0.19675 0.21415 2.52087 2.04710 3.60464 2.18758 0.04414 0.25622 0.76413 1.81436 0.76312	tree. 0.47752 -0.15289 1.49676 1.34506 1.33469 1.68252 2.02491 2.92400 3.66412 3.07704 3.12522 -0.07252 -0.73731 -0.67571 -0.84638 0.05094

O H C H O	-5.20636 -5.43462 -2.79278 -2.87346 -3.99937	-0.93102 -1.36747 -1.50117 -1.83819 -1.82288	-1.70769 -2.54182 -0.04171 -1.08845 0.64706	Compound 5.33 This structure was assigned as ambiguous. B3LYP/6-31g(d) SMD implicit solvation in dichloromethane				
Η	-4.71183	-1.66784	-0.00112		used.			
C H	-1.65993 -1.60545	-2.34146 -2.06975	0.59983 1.66362	Elec	etronic Energy:	-1275.462	282788 har-	
С	-2.02675	-3.83321	0.51793	tree.				
Η	-1.33829	-4.45339	1.10110		e Energy: -1274.	941120 har	tree.	
Н	-1.99605	-4.18689	-0.52201		CJ			
Н	-3.03677	-3.99011	0.90075	С	-1.39113	2.90664	0.47712	
С	-0.28808	-2.05159	-0.04531	0	-1.81649	3.89897	-0.11449	
Н	-0.04288	-0.99105	0.06677	С	-2.28754	2.15421	1.46508	
Н	-0.34521	-2.25159	-1.12555	Н	-3.29520	2.54526	1.29156	
С	0.87177	-2.87923	0.55367	С	-2.29736	0.61321	1.31186	
Н	0.73842	-3.94491	0.35875	Н	-1.33646	0.22036	1.66594	
Н	0.89793	-2.72850	1.64068	Н	-3.05523	0.22886	2.00690	
С	2.22692	-2.49778	-0.01493	С	-1.87636	2.54030	2.90199	
0	2.91489	-3.20447	-0.71915	Н	-2.55134	2.06800	3.62563	
0	2.56716	-1.24137	0.36979	Н	-1.92606	3.62507	3.05093	
С	3.83169	-0.67008	-0.07222	Н	-0.85565	2.21218	3.13254	
Н	4.46478	-1.49495	-0.41336	С	-2.60113	0.03475	-0.08928	
С	4.45552	0.01395	1.14552	Н	-1.75001	0.24285	-0.75372	
Η	3.79289	0.82333	1.47712	С	-3.83930	0.73783	-0.70809	
Η	5.38934	0.48806	0.81497	Η	-3.57313	1.77887	-0.92150	
С	4.74719	-0.93978	2.30762	Н	-4.65463	0.77535	0.02670	
Η	3.82714	-1.40183	2.67891	С	-4.41018	0.14600	-1.99453	
Н	5.21457	-0.40459	3.14131	Н	-5.00911	0.90649	-2.51494	
Н	5.42805	-1.74351	2.00229	Н	-3.60797	-0.16902	-2.67661	
С	3.58025	0.30686	-1.25883	0	-5.25852	-0.97159	-1.66474	
Н	4.47422	0.93917	-1.32284	Н	-5.41602	-1.48899	-2.47213	
С	3.43132	-0.44469	-2.59774	С	-2.78104	-1.51175	-0.04531	
Η	2.55514	-1.10090	-2.59341	Η	-2.85097	-1.85640	-1.08965	
Η	4.30889	-1.06963	-2.79615	0	-3.99906	-1.83899	0.63120	
Η	3.31758	0.26579	-3.42343	Η	-4.69739	-1.66886	-0.03304	
С	2.35904	1.14343	-0.99016	С	-1.64712	-2.34030	0.61014	
Η	1.45042	0.55416	-0.90470	Η	-1.59300	-2.05930	1.67160	
С	2.21668	2.47870	-0.86056	С	-2.00249	-3.83521	0.53991	
С	3.31092	3.50376	-1.04927	Η	-1.31400	-4.44507	1.13431	
Η	4.25275	3.05752	-1.37803	Η	-1.96347	-4.20038	-0.49595	
Н	3.50336	4.05395	-0.11927	Н	-3.01391	-4.00205	0.91790	
Η	3.01189	4.24857	-1.79850	С	-0.27497	-2.04992	-0.03532	
С	0.87492	2.99937	-0.55054	Η	-0.03362	-0.98859	0.07530	
Η	0.55351	3.92231	-1.03557	Н	-0.33082	-2.25332	-1.11464	
С	0.01091	2.40666	0.29869	С	0.88490	-2.87512	0.56793	
Η	0.32965	1.53564	0.86499	Η	0.74781	-3.94238	0.38303	
				Η	0.91727	-2.71676	1.65375	

С	2.23923	-2.50138	-0.00479	С	-10.22430	4.71990	7.32580
Ο	2.93446	-3.23071	-0.68576	Н	-11.11760	4.14900	7.07290
Ο	2.57611	-1.24188	0.34717	Н	-10.53470	5.56570	7.94070
С	3.84266	-0.66319	-0.09268	Н	-9.80250	5.10310	6.39680
Н	4.47412	-1.48028	-0.45273	С	-8.67790	3.61430	10.73150
С	4.47635	-0.00744	1.13457	С	-6.35070	4.55180	10.24460
Н	3.80830	0.77994	1.50643	Н	-7.22080	2.82970	9.38560
Н	5.39617	0.48995	0.80121	Н	-9.10520	4.56420	11.05430
С	4.80479	-0.99327	2.25855	Н	-8.30420	3.08870	11.61050
Η	3.90183	-1.48722	2.63388	Н	-9.49360	3.00980	10.33390
Н	5.27682	-0.47595	3.10175	С	-6.21350	5.03240	11.49480
Н	5.49716	-1.77242	1.91573	Η	-5.53530	4.69910	9.55050
C	3.57940	0.33246	-1.25944	Н	-7.01070	4.93340	12.21630
Η	4.47163	0.96550	-1.32164	С	-5.01220	5.81370	11.98690
С	3.41742	-0.40084	-2.60599	C	-5.37910	7.28980	12.09330
Н	2.53857	-1.05535	-2.60531	Н	-4.17640	5.70380	11.29610
Н	4.29689	-1.01818	-2.82290	Н	-4.69400	5.43720	12.95900
Н	3.29672	0.31994	-3.42243	0	-5.46920	7.85260	13.18320
С	2.35808	1.16370	-0.97321	0	-5.61380	7.84140	10.89570
Η	1.44923	0.57353	-0.89056	C	-5.95890	9.21440	10.79230
С	2.21921	2.50001	-0.83596	C	-4.71660	10.09640	10.51250
C	3.31549	3.52344	-1.01651	Η	-6.65250	9.30430	9.95640
Η	4.25917	3.07569	-1.33828	Н	-6.51230	9.55780	11.66630
Н	3.50143	4.07250	-0.08402	Н	-5.06580	11.09630	10.24860
Н	3.02150	4.26992	-1.76637	C	-3.83120	9.57750	9.35530
C	0.87954	3.02524	-0.52656	Ō	-3.88070	10.19350	11.66090
Η	0.58843	3.97051	-0.98696	C	-4.37530	11.03090	12.69560
C	-0.00717	2.41892	0.29199	H	-3.64560	11.07070	13.50420
H	0.28530	1.52343	0.83252	Н	-5.30820	10.65810	13.11740
				Н	-4.53280	12.04960	12.33980
				С	-4.63760	9.26290	8.10750
Com	pound 5.34			Η	-3.36390	8.64930	9.68850
	structure was	assigned as o	correct.	С	-2.70290	10.56490	9.01610
				H	-2.06800	10.74800	9.88380
Mole	ecular Mecha	anics (OPLS	-2005), gas	Н	-3.09770	11.52630	8.68690
phas		(, 8	Н	-2.06450	10.17550	8.22270
	rgy: -44.72612	28 kJ.		С	-4.73130	8.03840	7.56270
2	8), 2012			H	-5.15330	10.09430	7.64800
0	-6.23400	5.56130	7.11160	C	-5.53050	7.71190	6.31790
Č	-6.66570	6.73720	6.62250	Ĥ	-4.22090	7.20640	8.02770
Õ	-7.83550	7.02490	6.37590	Н	-5.94860	8.62360	5.89080
č	-7.13040	4.46080	7.20960	Н	-4.87260	7.27210	5.56870
H	-6.55160	3.53870	7.25620		,		2.20070
H	-7.68940	4.39990	6.27520				
C	-8.10470	4.53370	8.41270				
Õ	-9.31110	3.88410	8.02430	Con	pound 5.34		
Ĥ	-8.32900	5.57060	8.67110		structure was	assigned as in	ncorrect.
C	-7.56630	3.82170	9.67920	.~		0	

	ecular Mecha	nics (OPLS-	-2005), gas	H H	-4.90070	11.99070	9.86320
phas	e. gy: -36.79928	7 1/1		п С	-4.33100 -5.62790	12.03100 8.96110	8.19550 7.39670
L'IICI	gy30.79928.	2 KJ.		Н	-6.34350	9.72600	9.21490
Ο	-6.57130	6.31680	7.99680	C	-6.94170	8.40870	6.88060
C	-6.89910	6.88320	6.82350	Н	-4.76560	8.79230	6.76720
0 0	-7.16980	6.27770	5.78810	Н	-7.76220	8.71610	7.52860
C	-6.50090	4.90040	8.10780	Н	-7.13990	8.80650	5.88520
H	-5.82420	4.63710	8.92080	11	7.15770	0.00050	5.00520
Н	-6.04620	4.49310	7.20430				
C	-7.89900	4.27990	8.35400				
0 0	-7.95200	2.98540	7.76550	Com	pound 5.34		
H	-8.67020	4.90370	7.89760		structure was	assigned as i	ncorrect
C	-8.23460	4.11580	9.85400		YP/6-31g(d)	ussigned us i	
C	-8.22350	2.99050	6.37020		phase.		
H	-9.18950	3.45000	6.15720	Ous	phase.		
Н	-8.25730	1.96450	6.00410	Elec	tronic Energy	<i>v</i> -1154 076	70090 har-
Н	-7.45650	3.51810	5.80340	tree.		. 1101.070	rooyo nu
C	-9.65950	3.57730	10.05950		Energy: -1153	3 686264 har	tree
Č	-8.05890	5.41790	10.61410	1100	Energy: 110.		
H	-7.53950	3.38770	10.27510	0	-2.56429	-1.41305	-0.85228
Н	-10.40630	4.25590	9.64650	Č	-1.69864	-2.32158	-0.34480
Н	-9.88020	3.44110	11.11850	0	-1.86145	-2.92096	0.69635
Н	-9.78780	2.60970	9.57310	Č	-3.74555	-1.11781	-0.07956
C	-7.25690	5.57330	11.68040	Н	-3.92685	-1.94375	0.61079
H	-8.60620	6.26790	10.23110	Н	-4.56743	-1.07036	-0.79887
Н	-6.69020	4.73240	12.05450	C	-3.63994	0.20739	0.68934
C	-7.02880	6.89290	12.39050	0	-2.58229	0.21278	1.62767
C	-5.59440	7.37490	12.18360	H	-4.60778	0.29855	1.21958
H	-7.22420	6.77330	13.45620	C	-3.48630	1.49450	-0.16502
Н	-7.71490	7.65010	12.01180	C	-2.80587	-0.55295	2.80106
0	-4.87620	7.66310	13.13910	Н	-1.98496	-0.31674	3.48336
Ŏ	-5.24510	7.46270	10.88940	Н	-2.79566	-1.63062	2.59944
Č	-3.94200	7.90810	10.53290	Н	-3.75793	-0.27689	3.28274
C	-3.85430	9.45480	10.52090	C	-4.63866	1.65066	-1.17535
H	-3.21630	7.48090	11.22550	C	-2.14746	1.62083	-0.85057
Н	-3.68180	7.50900	9.55250	Н	-3.56042	2.31111	0.56485
Н	-4.55950	9.87460	11.24110	Н	-5.61665	1.52133	-0.69493
C	-4.15550	10.06900	9.13470	Н	-4.56371	0.92370	-1.99250
õ	-2.53840	9.85660	10.88380	Н	-4.61365	2.64889	-1.62387
Č	-2.30050	9.87530	12.28500	C	-1.21350	2.51301	-0.51650
H	-2.42060	8.89050	12.73630	Н	-1.96214	0.93848	-1.67953
Н	-2.97030	10.57220	12.79030	Н	-1.39100	3.18774	0.32159
Н	-1.27830	10.20270	12.47450	C	0.11559	2.66245	-1.21288
C	-5.48100	9.57960	8.58000	C	1.30827	2.32580	-0.32414
H	-3.36900	9.75000	8.44880	Н	0.27291	3.68889	-1.56076
C	-4.14220	11.60530	9.18140	Н	0.15196	1.99794	-2.08544
H	-3.17480	11.97980	9.51790	0	2.23052	3.07680	-0.08360
	2.17.100			~		2.07000	

С	1.20831	1.06674	0.15432	Н	6.44572	-1.54601	-0.41088	
Č		0.60303	1.00252	C	4.08987	1.95836	-1.82235	
Ċ		-0.04673	0.19203	Ċ	2.02683	2.07410	-0.40188	
Ē		1.44386	1.57802	Ĥ	2.57328	0.43297	-1.64709	
H		-0.12123	1.67666	Н	4.59685	2.71078	-1.20391	
H		0.55429	-0.71687	Н	3.58758	2.48438	-2.64085	
C		-1.51180	-0.21133	Н	4.84881	1.29395	-2.24290	
C		-0.05178	0.99166	C	0.71914	2.01298	-0.66567	
C		1.13287	0.88329	Н	2.39579	2.85131	0.27268	
E		2.03688	1.08658	H	0.34165	1.24231	-1.33611	
E		1.22832	-0.12058	C	-0.32071	2.93141	-0.07054	
E		1.05297	1.62021	C	-1.23981	2.17781	0.88225	
C		-1.64751	-0.92779	Н	-0.93763	3.36865	-0.86694	
E		-2.08683	0.72417	H	0.14472	3.74021	0.49783	
C		-2.06832	-1.06869	0	-1.28447	2.33843	2.08150	
E		-1.94462	-0.55059	0	-1.99280	1.27597	0.21280	
E		-1.54543	-2.03218	C	-2.84171	0.43800	1.02245	
E		-3.13228	-1.27662	C	-3.78837	-0.33865	0.10856	
C		-2.41567	-0.53031	H	-2.21587	-0.24648	1.60336	
E		-1.07004	-1.84906	H	-3.39415	1.06558	1.72676	
C		-2.53772	-1.27164	H	-4.34389	-1.03807	0.76074	
E		-2.33772	0.38724	п С	-4.34389	-1.15736	-0.99150	
Е				0	-3.07024 -4.70609	0.52781	-0.54908	
		-1.84495	-2.11535					
E	-0.62492	-3.55819	-1.66906	C	-5.80049	0.94999	0.23987	
				H H	-5.49464	1.57452	1.09251	
C					-6.37545	0.09307	0.62545	
	Compound 5.34	• 1		H	-6.44571	1.54600	-0.41090	
	This structure was	s assigned as o	correct.	C	-2.02683	-2.07412	-0.40187	
	3LYP/6-31g(d)			Н	-2.57328	-0.43300	-1.64709	
C	las phase.			C	-4.08987	-1.95838	-1.82234	
-		1154.000	00500 1	Н	-4.84881	-1.29397	-2.24289	
	lectronic Energ	y: -1154.080	002502 har-	Н	-4.59685	-2.71079	-1.20389	
	ee.	a (010((1		Н	-3.58759	-2.48440	-2.64084	
F	ree Energy: -115	3.691966 har	tree.	C	-0.71914	-2.01300	-0.66566	
-	1			H	-2.39579	-2.85132	0.27270	
C		-1.27600	0.21280	C	0.32071	-2.93141	-0.07053	
C		-2.17779	0.88227	Н	-0.34165	-1.24233	-1.33611	
C		-2.33835	2.08153	Η	-0.14471	-3.74021	0.49785	
C		-0.43800	1.02246	Η	0.93765	-3.36866	-0.86691	
H		-1.06557	1.72677					
H		0.24647	1.60336					
C		0.33864	0.10856		npound 5.34			
C		-0.52781	-0.54907		s structure was	assigned as c	correct.	
H		1.03807	0.76074		XP/6-31g(d)			
C		1.15735	-0.99151		D implicit solv	ation in carb	ontetrachlo-	
C		-0.94997	0.23988	ride	was used.			
H		-1.57446	1.09255					
E	I 6.37549	-0.09303	0.62541					

Electi	ronic Energy	y: -1154.099	80850 har-	Н	-4.60712	-2.68141	-1.21238
tree.				Н	-3.58771	-2.45901	-2.64285
Free l	Energy: -115	3.711165 har	tree.	С	-0.73377	-2.00956	-0.67193
				Н	-2.41343	-2.80465	0.29889
0	2.01992	-1.32322	0.21475	С	0.29919	-2.92901	-0.06431
С	1.20874	-2.16527	0.88811	Н	-0.35193	-1.25969	-1.36344
0	1.19628	-2.27027	2.09624	Н	-0.17538	-3.73020	0.50730
С	2.86317	-0.47284	1.02115	Н	0.91917	-3.37564	-0.85249
Н	3.42879	-1.09355	1.72180				
Н	2.23363	0.20452	1.60590				
С	3.80116	0.31093	0.10521	Com	pound 5.34		
0	4.72409	-0.55609	-0.54880	This	structure was	assigned as i	ncorrect.
Н	4.35176	1.01244	0.75739		YP/6-31g(d)	C	
С	3.07792	1.12875	-0.99280		phase.		
С	5.85471	-0.90844	0.22582		L		
Н	5.59302	-1.47876	1.13001	Elec	tronic Energy	y: -1154.076	599877 har-
Н	6.43138	-0.02053	0.53002	tree.	0.		
Н	6.48719	-1.53893	-0.40625		Energy: -1153	3.686029 har	tree.
С	4.09333	1.93060	-1.82721		- 0,		
Č	2.04004	2.04704	-0.39489	0	1.56799	-0.92096	0.14450
H	2.57598	0.40819	-1.64892	Č	1.62300	-2.24915	-0.09889
Н	4.60718	2.68143	-1.21231	Õ	2.29640	-3.04066	0.52440
Н	3.58777	2.45909	-2.64278	Č	2.36875	-0.38716	1.21244
Н	4.84912	1.26751	-2.25701	H	2.69477	-1.20299	1.86007
C	0.73379	2.00956	-0.67192	H	1.71187	0.28129	1.77467
H	2.41344	2.80467	0.29890	C	3.55900	0.40069	0.65699
Н	0.35197	1.25968	-1.36343	Õ	4.50763	-0.43547	0.01215
C	-0.29919	2.92901	-0.06433	H	4.03206	0.90303	1.52268
C	-1.20874	2.16529	0.88809	C	3.15304	1.46369	-0.39354
Н	-0.91915	3.37562	-0.85253	C	5.26157	-1.28028	0.86616
Н	0.17537	3.73021	0.50727	H	5.71525	-0.71253	1.69411
0	-1.19630	2.27031	2.09622	Н	6.05964	-1.70685	0.25261
0	-2.01992	1.32322	0.21474	Н	4.65718	-2.10026	1.27341
C	-2.86318	0.47286	1.02114	C	4.35796	2.35141	-0.75441
C C	-3.80115	-0.31093	0.10520	C	1.97692	2.30021	0.04707
Н	-2.23364	-0.20449	1.60590	H	2.85566	0.89853	-1.28447
Н	-3.42879	1.09358	1.72178	Н	4.10505	3.03101	-1.57498
H	-4.35171	-1.01248	0.75739	H	5.20791	1.73463	-1.05800
C	-4.33171	-1.12872	-0.99281	H	4.66689	2.96384	0.10297
0	-4.72414	0.55603	-0.54879	C	4.00089 0.78779	2.30165	-0.56100
C	-4.72414	0.33003	0.22585	С Н	2.14089	2.95841	0.90457
С Н	-5.59309				0.62269		
		1.47878	1.12997	H C		1.64720 3.17750	-1.41434
Н	-6.43131	0.02040	0.53016	C	-0.37079		-0.16719
H C	-6.48734	1.53869	-0.40626	C	-1.70495	2.47100	0.03238
C	-2.04002	-2.04702	-0.39491	Н	-0.55470	3.92110	-0.96030
H	-2.57595	-0.40814	-1.64890	H	-0.16370	3.73631	0.74931
C	-4.09329	-1.93055	-1.82726	0	-2.50557	2.76539	0.89374
Н	-4.84908	-1.26746	-2.25704	0	-1.92794	1.52879	-0.91492

С	-3.25219	0.94673	-0.93828	Н	4.73626	-2.06341	1.28364
С	-3.45183	-0.24468	0.02645	С	4.34293	2.36416	-0.76862
Н	-3.97678	1.72320	-0.68877	С	1.97354	2.28802	0.06080
Н	-3.40194	0.63906	-1.97647	Н	2.84852	0.90163	-1.29042
Н	-2.83649	-0.08601	0.92432	Н	4.07722	3.04340	-1.58618
С	-3.11070	-1.62664	-0.58898	Η	5.19803	1.75946	-1.08431
Ο	-4.83451	-0.27919	0.37241	Н	4.65599	2.97871	0.08582
С	-5.16889	0.50129	1.51166	С	0.78639	2.30925	-0.55187
Н	-4.84608	1.54495	1.41009	Н	2.13522	2.92168	0.93679
Η	-4.71267	0.08586	2.42293	Н	0.62462	1.68232	-1.42654
Н	-6.25717	0.46333	1.60854	С	-0.37053	3.17706	-0.13620
С	-1.67854	-1.68126	-1.07441	С	-1.70854	2.47537	0.04787
Н	-3.76365	-1.71653	-1.47369	Η	-0.55376	3.94103	-0.91004
С	-3.47952	-2.75739	0.37893	Н	-0.15944	3.71353	0.79284
Н	-4.53045	-2.67760	0.66192	0	-2.51758	2.78103	0.89927
Η	-2.87390 -2.71226 1.29265				-1.92685	1.53000	-0.89429
Н	-3.31730	-3.73647	-0.08382	С	-3.25376	0.95129	-0.93452
С	-0.76473	-2.59153	-0.72571	С	-3.46696	-0.24525	0.01999
Н	-1.38376	-0.90239	-1.77790	Η	-3.97826	1.72961	-0.69006
С	0.66142	-2.60539	-1.22571	Η	-3.39551	0.65265	-1.97664
Н	-1.01482	-3.38041	-0.01952	Н	-2.86925	-0.09204	0.93034
Η	0.94138	-3.60084	-1.58482	С	-3.11666	-1.62525	-0.59585
Η	0.78629	-1.88395	-2.03971	Ο	-4.85773	-0.28089	0.34022
				С	-5.21190	0.48990	1.47988
				Η	-4.88189	1.53355	1.39926
Com	pound 5.34			Η	-4.78415	0.06198	2.39954
This	structure was	assigned as i	ncorrect.	Н	-6.30330	0.46322	1.55192
B3L	YP/6-31g(d)	-		С	-1.67969	-1.67852	-1.06762
SME) implicit solv	vation in carb	ontetrachlo-	Η	-3.75849	-1.71094	-1.48861
ride	was used.			С	-3.49648	-2.76023	0.36222
				Η	-4.55347	-2.68954	0.62701
Elect	tronic Energy	y: -1154.095	609993 har-	Н	-2.91042	-2.71797	1.28890
tree.				Н	-3.32371	-3.73791	-0.10061
Free	Energy: -115	3.704590 hart	tree.	С	-0.76583	-2.58452	-0.70649
				Н	-1.38281	-0.90491	-1.77611
0	1 50172	0.02467	0 1 (5 (5	0	0 ((1 = 4	0 (0 170	1 20277

0	1.59173	-0.93467	0.16565
С	1.62323	-2.26163	-0.07394
0	2.28077	-3.06484	0.55404
С	2.41086	-0.39886	1.22067
Н	2.75779	-1.21316	1.85926
Н	1.76111	0.25840	1.80420
С	3.58135	0.39976	0.64242
0	4.52186	-0.43485	-0.02230
Н	4.06830	0.90206	1.49904
С	3.15104	1.46301	-0.39873
С	5.31492	-1.25294	0.82188
Н	5.80571	-0.66367	1.61270
Н	6.08668	-1.69930	0.18765

Compound	5.34
----------	------

0.66154

-1.01799

0.93257

0.79419

С

Η

Н

Н

This structure was assigned as correct.

M06-2X/6-31g(d)

SMD implicit solvation in carbontetrachloride was used.

-2.60473

-3.36913

-3.60122

-1.88176

-1.20377

0.00389

-1.56757

-2.01505

Elect	ronic Energy	r: -1153.610	073369 har-	Н -4.55476 -2.64010 -1.28756
tree.	D 1160	01(7051		H -3.51464 -2.39192 -2.69855
Free	Energy: -1153	3.216/05 har	tree.	C -0.70699 -1.94454 -0.63953
0	2 00220	1 0 5 0 4 1	0 00 1 70	H -2.40241 -2.80421 0.23958
0	2.00329	-1.25341	0.23172	C 0.30741 -2.86911 -0.01873
C	1.21220	-2.09444	0.91621	Н -0.31186 -1.16677 -1.29241
0	1.21871	-2.18844	2.11879	H -0.18114 -3.65330 0.56266
C	2.86032	-0.42478	1.02335	Н 0.92961 -3.32898 -0.79536
H	3.42737	-1.05368	1.71637	
Н	2.25052	0.26528	1.61506	
C	3.78883	0.32917	0.08333	Compound 5.34
0	4.68746	-0.55474	-0.55693	This structure was assigned as incorrect.
Н	4.35279	1.05328	0.69950	M06-2X/6-31g(d)
С	3.04247	1.09805	-1.01859	SMD implicit solvation in carbontetrachlo-
С	5.81015	-0.89367	0.22066	ride was used.
Н	5.53979	-1.42856	1.14169	
Н	6.39110	-0.00057	0.49349	Electronic Energy: -1153.60986926 har-
Н	6.43623	-1.54938	-0.38856	tree.
С	4.03467	1.88014	-1.88349	Free Energy: -1153.211088 hartree.
С	2.01750	2.01963	-0.41756	
Н	2.53071	0.35198	-1.63810	O -1.96728 1.24220 0.16605
Н	4.55461	2.64031	-1.28729	C -1.24758 2.16045 0.83064
Η	3.51459	2.39207	-2.69835	O -1.35135 2.36159 2.01524
Н	4.78283	1.20846	-2.31045	C -2.87029 0.46529 0.95879
С	0.70698	1.94478	-0.63960	Н -3.47701 1.13475 1.57556
Н	2.40228	2.80399	0.24015	Н -2.29624 -0.18289 1.62877
Н	0.31191	1.16727	-1.29285	C -3.74170 -0.35181 0.01659
С	-0.30747	2.86923	-0.01871	O -4.61012 0.48539 -0.72092
С	-1.21215	2.09440	0.91620	Н -4.33276 -1.04489 0.64256
Н	-0.92972	3.32913	-0.79528	C -2.93232 -1.17358 -0.99850
Н	0.18105	3.65340	0.56274	C -5.77678 0.85421 -0.02582
0	-1.21836	2.18805	2.11880	Н -6.37218 -0.02803 0.25101
0	-2.00338	1.25353	0.23166	Н -6.36677 1.48231 -0.69699
С	-2.86025	0.42471	1.02329	Н -5.56019 1.42890 0.88536
С	-3.78883	-0.32919	0.08330	C -3.87254 -2.02863 -1.85279
Н	-2.25032	-0.26538	1.61482	C -1.91945 -2.03419 -0.29558
Н	-3.42724	1.05349	1.71647	Н -2.40836 -0.45696 -1.64200
Н	-4.35260	-1.05345	0.69948	Н -3.31404 -2.56201 -2.62749
C	-3.04252	-1.09796	-1.01876	Н -4.62789 -1.40142 -2.33197
Ō	-4.68763	0.55464	-0.55676	Н -4.38698 -2.77490 -1.23484
Ċ	-5.81018	0.89356	0.22106	C -0.60199 -1.95477 -0.46961
Ĥ	-5.53963	1.42864	1.14191	Н -2.31964 -2.77938 0.39721
Н	-6.39095	0.00043	0.49417	Н -0.18958 -1.21743 -1.15760
H	-6.43647	1.54909	-0.38813	C 0.39499 -2.82313 0.25238
C	-2.01756	-2.01961	-0.41782	C 1.26244 -1.97796 1.16069
H	-2.53075	-0.35185	-1.63821	Н 1.04621 -3.33504 -0.46587
C	-4.03472	-1.87996	-1.88372	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
H	-4.78282	-1.20822	-2.31072	O 1.21419 -1.97123 2.36500
11	1.70202	1.20022	2.51072	· · · · · · · · · · · · · · · · · · ·

Ο	2.09512	-1.19949	0.44661	0	-0.72360	6.05710	-6.07630
С	2.93446	-0.32515	1.21514	С	-0.61240	6.55500	-7.39890
С	3.85098	0.45910	0.28401	С	-0.05090	7.99510	-7.38150
Н	3.53049	-0.91645	1.91746	Н	0.05720	5.88410	-7.93660
Н	2.29860	0.35561	1.78906	Н	-1.57360	6.52800	-7.91440
Н	4.26189	1.27775	0.89103	С	0.63880	8.37870	-8.71580
С	3.10483	1.09434	-0.90790	С	1.79100	7.43810	-9.05810
Ο	4.99829	-0.26974	-0.11054	С	2.88210	7.34560	-8.27000
С	4.76108	-1.45098	-0.84587	С	4.04810	6.38870	-8.43640
Н	4.11466	-1.28108	-1.71658	Η	2.92760	7.94610	-7.37310
Η	4.31295	-2.23905	-0.22793	Н	4.21950	6.14610	-9.48380
Η	5.73632	-1.79537	-1.19833	Н	4.96070	6.84930	-8.05930
С	2.05320	2.03900	-0.39365	Н	0.21610	2.96540	-4.13480
Н	2.59979	0.30424	-1.47552	С	1.58700	6.61280	-10.31920
С	4.09495	1.82109	-1.82132	Н	1.52360	7.26880	-11.18780
Н	4.84262	1.13061	-2.22088	Н	0.65690	6.04760	-10.25560
Н	4.62798	2.60504	-1.27008	Н	2.38550	5.89580	-10.50100
Н	3.57097	2.29286	-2.65767	С	0.87520	6.27220	-3.18910
С	0.74779	1.92187	-0.62777	Η	-0.09340	6.66600	-3.48890
H	2.41408	2.87766	0.20835	Н	1.62550	6.83030	-3.74770
С	-0.29178	2.87578	-0.10080	Н	0.99720	6.50070	-2.13070
Ĥ	0.37755	1.09007	-1.22642	Н	2.29000	3.07590	-3.21930
Н	0.17174	3.69158	0.45704	C	2.70590	4.37830	-1.59410
Н	-0.87649	3.29447	-0.92893	Ĥ	1.87600	4.07910	-0.95350
	0.07015	5.29117	0.92095	Н	2.93780	5.42210	-1.38290
				Н	3.57340	3.78900	-1.29550
Compound 5.35					3.59970	5.72290	-3.90400
	structure was	assigned as a	correct	H O	4.71220	4.02030	-3.57480
1 1115	structure was	ussigned us v		C	5.89970	4.62990	-4.05970
Mole	ecular Mecha	nics (OPI S	-2005), gas	Н	6.76560	4.12730	-3.62860
phase			2003), gus	Н	5.95040	5.68200	-3.77640
-	c. gy: -63.61668	80 F I		Н	5.98200	4.55420	-5.14410
Liner	gy05.01008	00 KJ.		Н	-0.10910	8.28820	-9.50540
Ο	3.69180	5.32190	-6.33590	C	1.11900	9.84250	-8.72160
C	3.74810	5.11420	-7.65650	Н	1.61490	10.08880	-9.66090
0 0	3.54980	4.04310	-8.22580	Н	1.81880	10.03380	-7.91050
C	3.25460	4.27060	-5.49200	Н	0.28160	10.53160	-8.60840
Н	3.75100	3.33000	-5.73650	Н	0.28100	8.09810	-6.57800
H	2.19220	4.12210	-5.68410	0	-1.11360	8.92700	-7.19890
C	3.50790	4.64130	-4.01400	C	-1.58220	9.04850	-5.86410
C C	2.37170	4.15530	-3.08130	Н	-2.08270	9.04850 8.14260	-5.52380
C C	1.01740	4.13330	-3.43850	H	-2.30800	9.85980	-5.81100
C C	0.02830			H	-0.77040		
C C		4.01420	-3.95390	п	-0.77040	9.28350	-5.17460
C C	-1.34770	4.47870	-4.39810				
	-1.31480	4.87510	-5.87070				
H H	-1.69380	5.32090	-3.80170	Com	nound E 2E		
н 0	-2.06590	3.67200	-4.25250		pound 5.35	actioned as	noorroot
0	-1.78740	4.14750	-6.74140	1 1115	structure was	assigned as I	ncorrect.

phas	ecular Mecha e. gy: -52.00363		-2005), gas	C H H H	6.01230 6.91650 6.01120 6.07380 -0.26450	4.54440 4.02790 4.56310 5.56760 6.20310	-3.72580 -4.04760 -2.63530 -4.09570 -8.89480	
0	3.16470	5.54720	-5.90400	C	-0.28800	7.64300	-10.45340	
Č	4.03650	6.09140	-6.76630	Н	-0.01770	8.67870	-10.65830	
0 0	5.00480	6.78970	-6.46960	Н	-1.36650	7.55570	-10.58930	
Č	3.32130	5.73090	-4.50420	Н	0.18800	7.01460	-11.20650	
H	2.38890	6.14460	-4.12020	Н	-0.34090	9.13810	-8.17610	
Н	4.08450	6.47010	-4.26160	0	-1.95710	7.87940	-8.04010	
C	3.61880	4.37990	-3.81170	Č	-2.75800	8.85540	-7.38970	
Č	2.55240	3.29080	-4.09180	Ĥ	-2.61790	8.84790	-6.30900	
Ċ	1.12090	3.80380	-3.93110	Н	-3.80960	8.64280	-7.58210	
Č	0.32570	3.95570	-5.00970	Н	-2.54800	9.85740	-7.76550	
Ċ	-1.08230	4.52560	-5.04020					
Č	-1.03690	6.04230	-5.22070					
Ĥ	-1.61880	4.28610	-4.12320					
Н	-1.64030	4.07840	-5.86230	Con	pound 5.35			
Ο	-1.70870	6.78880	-4.51030		structure was	assigned as i	ncorrect.	
Ō	-0.20350	6.42650	-6.19930	B3LYP/6-31g(d)				
Ċ	-0.04300	7.80230	-6.51430		phase.			
С	-0.55080	8.09220	-7.94660		1			
Η	-0.52630	8.45720	-5.78970	Elec	tronic Energy	v: -1232.704	472893 har-	
Н	1.01980	8.03380	-6.44600	tree.	U.	,		
С	0.12100	7.21470	-9.03300	Free Energy: -1232.263513 hartree.				
	0.12100							
С	1.64100		-8.88330	1100	8,			
C C		7.14070 5.99210		0		2.14989	-0.00504	
	1.64100	7.14070	-8.88330		-1.03628 -0.16912			
С	1.64100 2.23350	7.14070 5.99210	-8.88330 -8.49780	0	-1.03628	2.14989	-0.00504	
C C	1.64100 2.23350 3.71100	7.14070 5.99210 5.76790	-8.88330 -8.49780 -8.22390	O C	-1.03628 -0.16912	2.14989 2.65344	-0.00504 0.90468	
C C H	1.64100 2.23350 3.71100 1.61100	7.14070 5.99210 5.76790 5.13770	-8.88330 -8.49780 -8.22390 -8.27360	0 C O	-1.03628 -0.16912 -0.32627	2.14989 2.65344 2.56966	-0.00504 0.90468 2.10286	
C C H H	$\begin{array}{c} 1.64100\\ 2.23350\\ 3.71100\\ 1.61100\\ 3.96810\end{array}$	7.14070 5.99210 5.76790 5.13770 4.72960	-8.88330 -8.49780 -8.22390 -8.27360 -8.43180	0 C 0 C	-1.03628 -0.16912 -0.32627 -2.14404	2.14989 2.65344 2.56966 1.39015	-0.00504 0.90468 2.10286 0.53474	
C C H H H	$\begin{array}{c} 1.64100\\ 2.23350\\ 3.71100\\ 1.61100\\ 3.96810\\ 4.32530\end{array}$	7.14070 5.99210 5.76790 5.13770 4.72960 6.38550	-8.88330 -8.49780 -8.22390 -8.27360 -8.43180 -8.87760	O C O C H	-1.03628 -0.16912 -0.32627 -2.14404 -2.79664	2.14989 2.65344 2.56966 1.39015 2.05453	-0.00504 0.90468 2.10286 0.53474 1.10969	
C C H H H	$\begin{array}{c} 1.64100\\ 2.23350\\ 3.71100\\ 1.61100\\ 3.96810\\ 4.32530\\ 0.72940\end{array}$	7.14070 5.99210 5.76790 5.13770 4.72960 6.38550 3.73170	-8.88330 -8.49780 -8.22390 -8.27360 -8.43180 -8.87760 -5.98680	O C O C H H	-1.03628 -0.16912 -0.32627 -2.14404 -2.79664 -1.73903	2.14989 2.65344 2.56966 1.39015 2.05453 0.63074	-0.00504 0.90468 2.10286 0.53474 1.10969 1.20756	
C C H H H C	$\begin{array}{c} 1.64100\\ 2.23350\\ 3.71100\\ 1.61100\\ 3.96810\\ 4.32530\\ 0.72940\\ 2.40980\end{array}$	$\begin{array}{c} 7.14070\\ 5.99210\\ 5.76790\\ 5.13770\\ 4.72960\\ 6.38550\\ 3.73170\\ 8.42470\end{array}$	-8.88330 -8.49780 -8.22390 -8.27360 -8.43180 -8.87760 -5.98680 -9.16690	O C O C H H C	-1.03628 -0.16912 -0.32627 -2.14404 -2.79664 -1.73903 -2.92097	2.14989 2.65344 2.56966 1.39015 2.05453 0.63074 0.76528	-0.00504 0.90468 2.10286 0.53474 1.10969 1.20756 -0.62566	
C C H H H C H	$\begin{array}{c} 1.64100\\ 2.23350\\ 3.71100\\ 1.61100\\ 3.96810\\ 4.32530\\ 0.72940\\ 2.40980\\ 3.46550\end{array}$	$\begin{array}{c} 7.14070\\ 5.99210\\ 5.76790\\ 5.13770\\ 4.72960\\ 6.38550\\ 3.73170\\ 8.42470\\ 8.35130\end{array}$	-8.88330 -8.49780 -8.22390 -8.27360 -8.43180 -8.87760 -5.98680 -9.16690 -8.91090	O C O C H H C C	-1.03628 -0.16912 -0.32627 -2.14404 -2.79664 -1.73903 -2.92097 -3.78089	2.14989 2.65344 2.56966 1.39015 2.05453 0.63074 0.76528 -0.43137	-0.00504 0.90468 2.10286 0.53474 1.10969 1.20756 -0.62566 -0.14417	
C C H H H C H H	$\begin{array}{c} 1.64100\\ 2.23350\\ 3.71100\\ 1.61100\\ 3.96810\\ 4.32530\\ 0.72940\\ 2.40980\\ 3.46550\\ 2.00140\end{array}$	$\begin{array}{c} 7.14070\\ 5.99210\\ 5.76790\\ 5.13770\\ 4.72960\\ 6.38550\\ 3.73170\\ 8.42470\\ 8.35130\\ 9.25490\end{array}$	-8.88330 -8.49780 -8.22390 -8.27360 -8.43180 -8.87760 -5.98680 -9.16690 -8.91090 -8.59190	O C O C H H C C C	-1.03628 -0.16912 -0.32627 -2.14404 -2.79664 -1.73903 -2.92097 -3.78089 -2.92647	2.14989 2.65344 2.56966 1.39015 2.05453 0.63074 0.76528 -0.43137 -1.54527	-0.00504 0.90468 2.10286 0.53474 1.10969 1.20756 -0.62566 -0.14417 0.47226	
С С Н Н Н Н С Н Н Н	$\begin{array}{c} 1.64100\\ 2.23350\\ 3.71100\\ 1.61100\\ 3.96810\\ 4.32530\\ 0.72940\\ 2.40980\\ 3.46550\\ 2.00140\\ 2.34670\end{array}$	$\begin{array}{c} 7.14070\\ 5.99210\\ 5.76790\\ 5.13770\\ 4.72960\\ 6.38550\\ 3.73170\\ 8.42470\\ 8.35130\\ 9.25490\\ 8.68050\end{array}$	-8.88330 -8.49780 -8.22390 -8.27360 -8.43180 -8.87760 -5.98680 -9.16690 -8.91090 -8.59190 -10.22440	O C O C H H C C C C C	-1.03628 -0.16912 -0.32627 -2.14404 -2.79664 -1.73903 -2.92097 -3.78089 -2.92647 -1.97591	2.14989 2.65344 2.56966 1.39015 2.05453 0.63074 0.76528 -0.43137 -1.54527 -2.15776	-0.00504 0.90468 2.10286 0.53474 1.10969 1.20756 -0.62566 -0.14417 0.47226 -0.25109	
C C H H H C H H H C C	$\begin{array}{c} 1.64100\\ 2.23350\\ 3.71100\\ 1.61100\\ 3.96810\\ 4.32530\\ 0.72940\\ 2.40980\\ 3.46550\\ 2.00140\\ 2.34670\\ 0.68210\\ \end{array}$	$\begin{array}{c} 7.14070\\ 5.99210\\ 5.76790\\ 5.13770\\ 4.72960\\ 6.38550\\ 3.73170\\ 8.42470\\ 8.35130\\ 9.25490\\ 8.68050\\ 4.14450\end{array}$	-8.88330 -8.49780 -8.22390 -8.27360 -8.43180 -8.87760 -5.98680 -9.16690 -8.91090 -8.59190 -10.22440 -2.51290	O C O C H H C C C C C C C	-1.03628 -0.16912 -0.32627 -2.14404 -2.79664 -1.73903 -2.92097 -3.78089 -2.92647 -1.97591 -1.04783	2.14989 2.65344 2.56966 1.39015 2.05453 0.63074 0.76528 -0.43137 -1.54527 -2.15776 -3.26053	-0.00504 0.90468 2.10286 0.53474 1.10969 1.20756 -0.62566 -0.14417 0.47226 -0.25109 0.22221	
С С Н Н Н С Н Н Н С Н Н	$\begin{array}{c} 1.64100\\ 2.23350\\ 3.71100\\ 1.61100\\ 3.96810\\ 4.32530\\ 0.72940\\ 2.40980\\ 3.46550\\ 2.00140\\ 2.34670\\ 0.68210\\ -0.28970\end{array}$	$\begin{array}{c} 7.14070\\ 5.99210\\ 5.76790\\ 5.13770\\ 4.72960\\ 6.38550\\ 3.73170\\ 8.42470\\ 8.35130\\ 9.25490\\ 8.68050\\ 4.14450\\ 4.63430\end{array}$	-8.88330 -8.49780 -8.22390 -8.27360 -8.43180 -8.87760 -5.98680 -9.16690 -8.91090 -8.59190 -10.22440 -2.51290 -2.47660	O C O C H H C C C C C C C C	-1.03628 -0.16912 -0.32627 -2.14404 -2.79664 -1.73903 -2.92097 -3.78089 -2.92647 -1.97591 -1.04783 0.16913	2.14989 2.65344 2.56966 1.39015 2.05453 0.63074 0.76528 -0.43137 -1.54527 -2.15776 -3.26053 -2.65348	$\begin{array}{c} -0.00504\\ 0.90468\\ 2.10286\\ 0.53474\\ 1.10969\\ 1.20756\\ -0.62566\\ -0.14417\\ 0.47226\\ -0.25109\\ 0.22221\\ 0.90468\end{array}$	
С С Н Н Н Н С Н Н Н С Н Н Н Н Н Н Н Н Н	$\begin{array}{c} 1.64100\\ 2.23350\\ 3.71100\\ 1.61100\\ 3.96810\\ 4.32530\\ 0.72940\\ 2.40980\\ 3.46550\\ 2.00140\\ 2.34670\\ 0.68210\\ -0.28970\\ 1.39440\\ \end{array}$	$\begin{array}{c} 7.14070\\ 5.99210\\ 5.76790\\ 5.13770\\ 4.72960\\ 6.38550\\ 3.73170\\ 8.42470\\ 8.35130\\ 9.25490\\ 8.68050\\ 4.14450\\ 4.63430\\ 4.81900 \end{array}$	-8.88330 -8.49780 -8.22390 -8.27360 -8.43180 -8.87760 -5.98680 -9.16690 -8.91090 -8.59190 -10.22440 -2.51290 -2.47660 -2.03920	O C O C H H C C C C C C H	-1.03628 -0.16912 -0.32627 -2.14404 -2.79664 -1.73903 -2.92097 -3.78089 -2.92647 -1.97591 -1.04783 0.16913 -0.72045	2.14989 2.65344 2.56966 1.39015 2.05453 0.63074 0.76528 -0.43137 -1.54527 -2.15776 -3.26053 -2.65348 -3.85768	$\begin{array}{c} -0.00504\\ 0.90468\\ 2.10286\\ 0.53474\\ 1.10969\\ 1.20756\\ -0.62566\\ -0.14417\\ 0.47226\\ -0.25109\\ 0.22221\\ 0.90468\\ -0.63510\\ 0.94206\\ 2.10286\end{array}$	
С С Н Н Н Н С Н Н Н Н С Н Н Н Н С Н Н Н С Н Н Н С	$\begin{array}{c} 1.64100\\ 2.23350\\ 3.71100\\ 1.61100\\ 3.96810\\ 4.32530\\ 0.72940\\ 2.40980\\ 3.46550\\ 2.00140\\ 2.34670\\ 0.68210\\ -0.28970\\ 1.39440\\ 0.61580\\ 2.67390\\ 2.79540\end{array}$	7.14070 5.99210 5.76790 5.13770 4.72960 6.38550 3.73170 8.42470 8.35130 9.25490 8.68050 4.14450 4.63430 4.81900 3.24070 3.00120 2.01900	-8.88330 -8.49780 -8.22390 -8.27360 -8.43180 -8.87760 -5.98680 -9.16690 -8.91090 -8.59190 -10.22440 -2.51290 -2.47660 -2.03920 -1.90740 -5.13700 -3.26010	O C O C H H C C C C C C H H O O	$\begin{array}{c} -1.03628\\ -0.16912\\ -0.32627\\ -2.14404\\ -2.79664\\ -1.73903\\ -2.92097\\ -3.78089\\ -2.92647\\ -1.97591\\ -1.04783\\ 0.16913\\ -0.72045\\ -1.52921\\ 0.32631\\ 1.03627\end{array}$	2.14989 2.65344 2.56966 1.39015 2.05453 0.63074 0.76528 -0.43137 -1.54527 -2.15776 -3.26053 -2.65348 -3.85768 -3.92519 -2.56974 -2.14990	$\begin{array}{c} -0.00504\\ 0.90468\\ 2.10286\\ 0.53474\\ 1.10969\\ 1.20756\\ -0.62566\\ -0.14417\\ 0.47226\\ -0.25109\\ 0.22221\\ 0.90468\\ -0.63510\\ 0.94206\\ 2.10286\\ -0.00504\end{array}$	
С С Н Н Н Н Н С Н Н Н Н С Н Н Н Н С Н Н Н Н С Н Н Н Н С Н Н Н Н С Н Н Н Н Н С Н Н Н Н С С Н Н Н Н С Н С Н Н С Н С С Н С Н Н С С Н С С Н С С Н С С Н С С С С Н С	$\begin{array}{c} 1.64100\\ 2.23350\\ 3.71100\\ 1.61100\\ 3.96810\\ 4.32530\\ 0.72940\\ 2.40980\\ 3.46550\\ 2.00140\\ 2.34670\\ 0.68210\\ -0.28970\\ 1.39440\\ 0.61580\\ 2.67390\\ 2.79540\\ 2.04120\\ \end{array}$	7.14070 5.99210 5.76790 5.13770 4.72960 6.38550 3.73170 8.42470 8.35130 9.25490 8.68050 4.14450 4.63430 4.81900 3.24070 3.00120 2.01900 1.26050	-8.88330 -8.49780 -8.22390 -8.27360 -8.43180 -8.87760 -5.98680 -9.16690 -8.91090 -8.59190 -10.22440 -2.51290 -2.47660 -2.03920 -1.90740 -5.13700 -3.26010 -3.47100	O C O C H H C C C C C C H H O O C	-1.03628 -0.16912 -0.32627 -2.14404 -2.79664 -1.73903 -2.92097 -3.78089 -2.92647 -1.97591 -1.04783 0.16913 -0.72045 -1.52921 0.32631 1.03627 2.14406	2.14989 2.65344 2.56966 1.39015 2.05453 0.63074 0.76528 -0.43137 -1.54527 -2.15776 -3.26053 -2.65348 -3.85768 -3.92519 -2.56974 -2.14990 -1.39022	$\begin{array}{c} -0.00504\\ 0.90468\\ 2.10286\\ 0.53474\\ 1.10969\\ 1.20756\\ -0.62566\\ -0.14417\\ 0.47226\\ -0.25109\\ 0.22221\\ 0.90468\\ -0.63510\\ 0.94206\\ 2.10286\\ -0.00504\\ 0.53475\end{array}$	
С С Н Н Н Н С Н Н Н С Н Н Н Н С Н Н	$\begin{array}{c} 1.64100\\ 2.23350\\ 3.71100\\ 1.61100\\ 3.96810\\ 4.32530\\ 0.72940\\ 2.40980\\ 3.46550\\ 2.00140\\ 2.34670\\ 0.68210\\ -0.28970\\ 1.39440\\ 0.61580\\ 2.67390\\ 2.79540\end{array}$	7.14070 5.99210 5.76790 5.13770 4.72960 6.38550 3.73170 8.42470 8.35130 9.25490 8.68050 4.14450 4.63430 4.81900 3.24070 3.00120 2.01900 1.26050 2.22460	-8.88330 -8.49780 -8.22390 -8.27360 -8.43180 -8.87760 -5.98680 -9.16690 -8.91090 -8.59190 -10.22440 -2.51290 -2.47660 -2.03920 -1.90740 -5.13700 -3.26010 -3.47100 -2.18990	O C O C H H C C C C C C H H O O C C	-1.03628 -0.16912 -0.32627 -2.14404 -2.79664 -1.73903 -2.92097 -3.78089 -2.92647 -1.97591 -1.04783 0.16913 -0.72045 -1.52921 0.32631 1.03627 2.14406 2.92094	2.14989 2.65344 2.56966 1.39015 2.05453 0.63074 0.76528 -0.43137 -1.54527 -2.15776 -3.26053 -2.65348 -3.92519 -2.56974 -2.14990 -1.39022 -0.76526	$\begin{array}{c} -0.00504\\ 0.90468\\ 2.10286\\ 0.53474\\ 1.10969\\ 1.20756\\ -0.62566\\ -0.14417\\ 0.47226\\ -0.25109\\ 0.22221\\ 0.90468\\ -0.63510\\ 0.94206\\ 2.10286\\ -0.00504\\ 0.53475\\ -0.62564\end{array}$	
C C H H H H C H H H C H H H H C H H H H	1.64100 2.23350 3.71100 1.61100 3.96810 4.32530 0.72940 2.40980 3.46550 2.00140 2.34670 0.68210 -0.28970 1.39440 0.61580 2.67390 2.79540 2.04120 2.77710 3.76880	7.14070 5.99210 5.76790 5.13770 4.72960 6.38550 3.73170 8.42470 8.35130 9.25490 8.68050 4.14450 4.63430 4.81900 3.24070 3.00120 2.01900 1.26050 2.22460 1.58490	-8.88330 -8.49780 -8.22390 -8.27360 -8.43180 -8.87760 -5.98680 -9.16690 -8.91090 -8.59190 -10.22440 -2.51290 -2.47660 -2.03920 -1.90740 -5.13700 -3.26010 -3.47100 -2.18990 -3.49070	O C O C H H C C C C C C H H O O C C H	-1.03628 -0.16912 -0.32627 -2.14404 -2.79664 -1.73903 -2.92097 -3.78089 -2.92647 -1.97591 -1.04783 0.16913 -0.72045 -1.52921 0.32631 1.03627 2.14406 2.92094 1.73908	2.14989 2.65344 2.56966 1.39015 2.05453 0.63074 0.76528 -0.43137 -1.54527 -2.15776 -3.26053 -2.65348 -3.92519 -2.56974 -2.14990 -1.39022 -0.76526 -0.63085	$\begin{array}{c} -0.00504\\ 0.90468\\ 2.10286\\ 0.53474\\ 1.10969\\ 1.20756\\ -0.62566\\ -0.14417\\ 0.47226\\ -0.25109\\ 0.22221\\ 0.90468\\ -0.63510\\ 0.94206\\ 2.10286\\ -0.00504\\ 0.53475\\ -0.62564\\ 1.20764\end{array}$	
С С Н Н Н Н С Н Н Н С Н Н Н Н С Н Н	$\begin{array}{c} 1.64100\\ 2.23350\\ 3.71100\\ 1.61100\\ 3.96810\\ 4.32530\\ 0.72940\\ 2.40980\\ 3.46550\\ 2.00140\\ 2.34670\\ 0.68210\\ -0.28970\\ 1.39440\\ 0.61580\\ 2.67390\\ 2.79540\\ 2.04120\\ 2.77710\end{array}$	7.14070 5.99210 5.76790 5.13770 4.72960 6.38550 3.73170 8.42470 8.35130 9.25490 8.68050 4.14450 4.63430 4.81900 3.24070 3.00120 2.01900 1.26050 2.22460	-8.88330 -8.49780 -8.22390 -8.27360 -8.43180 -8.87760 -5.98680 -9.16690 -8.91090 -8.59190 -10.22440 -2.51290 -2.47660 -2.03920 -1.90740 -5.13700 -3.26010 -3.47100 -2.18990	O C O C H H C C C C C C H H O O C C	-1.03628 -0.16912 -0.32627 -2.14404 -2.79664 -1.73903 -2.92097 -3.78089 -2.92647 -1.97591 -1.04783 0.16913 -0.72045 -1.52921 0.32631 1.03627 2.14406 2.92094	2.14989 2.65344 2.56966 1.39015 2.05453 0.63074 0.76528 -0.43137 -1.54527 -2.15776 -3.26053 -2.65348 -3.92519 -2.56974 -2.14990 -1.39022 -0.76526	$\begin{array}{c} -0.00504\\ 0.90468\\ 2.10286\\ 0.53474\\ 1.10969\\ 1.20756\\ -0.62566\\ -0.14417\\ 0.47226\\ -0.25109\\ 0.22221\\ 0.90468\\ -0.63510\\ 0.94206\\ 2.10286\\ -0.00504\\ 0.53475\\ -0.62564\end{array}$	

С	2.92649	1.54530	0.47226				
C C	1.97594	2.15778	-0.25110	0	-1.29439	2.05710	0.01672
C C		3.26052		C		2.62571	
	1.04782		0.22220		-0.37291		0.82164
Н	1.80200	1.82871	-1.27394	0	-0.38412	2.52495	2.03276
Н	1.52918	3.92519	0.94205	C	-2.24348	1.16579	0.65746
Н	0.72042	3.85767	-0.63510	Н	-2.84394	1.72150	1.38394
Н	-1.80198	-1.82871	-1.27394	Н	-1.67624	0.39944	1.18924
C	3.24959	1.89109	1.90508	C	-3.14997	0.55504	-0.41701
Н	4.29586	2.21461	1.99755	C	-3.57106	-0.89434	-0.03831
Н	3.14236	1.00566	2.54618	C	-2.37942	-1.85035	-0.10337
Н	2.60470	2.66813	2.31972	C	-1.84753	-2.32967	1.03404
C	-3.24962	-1.89107	1.90506	C	-0.66223	-3.26552	1.17159
Η	-2.60475	-2.66811	2.31972	С	0.57250	-2.46295	1.55273
Н	-4.29589	-2.21460	1.99749	Η	-0.46976	-3.82216	0.25202
Н	-3.14242	-1.00565	2.54617	Н	-0.84643	-3.98050	1.97938
Η	-4.44335	-0.04255	0.64185	0	0.92787	-2.22666	2.69030
С	-4.67848	-0.96406	-1.27621	Ο	1.20391	-1.98554	0.45941
Η	-5.29026	-1.79876	-0.91686	С	2.30695	-1.07376	0.69858
Н	-4.07665	-1.33135	-2.11575	С	2.84314	-0.59593	-0.65268
Н	-5.33896	-0.17682	-1.64645	Н	1.93171	-0.24311	1.30063
Н	-2.19799	0.40926	-1.37655	Η	3.09269	-1.58958	1.25880
0	-3.80523	1.70428	-1.22582	С	3.64494	0.72393	-0.51005
С	-3.21803	2.59241	-2.16132	С	2.80534	1.85037	0.10568
Н	-4.04201	3.13081	-2.63801	С	1.67835	2.26835	-0.49394
Н	-2.65492	2.04630	-2.93422	С	0.71078	3.32067	0.01351
Н	-2.54252	3.31443	-1.68639	Н	1.36566	1.78069	-1.41568
Н	4.44330	0.04251	0.64192	Н	1.19317	4.05450	0.66142
C	4.67854	0.96399	-1.27614	Н	0.25402	3.84501	-0.83223
H	4.07676	1.33134	-2.11569	Н	-2.27304	-2.00392	1.98288
Н	5.33895	0.17669	-1.64639	C	3.35016	2.41844	1.39158
Н	5.29039	1.79862	-0.91677	H	2.75458	3.24145	1.79293
Н	2.19794	-0.40919	-1.37649	Н	4.37921	2.77646	1.24734
0	3.80520	-1.70419	-1.22590	H	3.40057	1.63832	2.16381
C	3.21800	-2.59228	-2.16143	C	-1.87945	-2.22859	-1.47975
H	2.54254	-3.31436	-1.68653	H	-1.82931	-1.35691	-2.14282
H	4.04198	-3.13061	-2.63821	Н	-2.55640	-2.94692	-1.96149
Н	2.65482	-2.04614	-2.93427	Н	-0.88264	-2.67327	-1.45252
11	2.03402	-2.04014	-2.75+27	Н	-3.92130	-0.86408	1.00241
				C	-4.73963	-1.38399	-0.91342
Comr	ound 5 35			С Н	-4.99723	-2.41866	-0.91342
	bound 5.35	aggiorad ag i	naarraat	п Н	-4.49167		
		assigned as i	ncorrect.			-1.34896	-1.98052
	P/6-31g(d)		1 41	Н	-5.62327	-0.76118	-0.75756
		vation in dich	loromethane	Н	-2.59603	0.53725	-1.36807
was u	isea.			$\begin{array}{c} 0 \\ C \end{array}$	-4.34073	1.31841	-0.59047
F1	· ъ	1000 707	0(170 1	C	-4.15432	2.56773	-1.23681
	ronic Energy	y: -1232.727	861/2 har-	Н	-5.15143	2.98506	-1.40785
tree.		0 00 6 5 4 7 1		Н	-3.64530	2.44953	-2.20601
Free I	Energy: -123	2.286547 har	tree.	Η	-3.57766	3.27645	-0.62663

Н	4.47202	0.51152	0.18090	Н	0.65339	-4.16608	-0.76666
С	4.26276	1.14656	-1.85489	Н	-0.75468	1.37284	-2.06269
Н	3.48563	1.33007	-2.60657	С	2.64381	-2.78724	0.51310
Н	4.93094	0.37045	-2.23755	Ĥ	3.08091	-2.21557	1.33633
Н	4.83834	2.07195	-1.73738	H	3.43841	-3.44632	0.13586
Н	1.98932	-0.42934	-1.32728	Н	1.84411	-3.41273	0.91554
0	3.72587	-1.55208	-1.23510	C	-2.64397	2.78726	0.51302
C	3.10853	-2.67495	-1.84624	H H	-1.84438	3.41299	0.91530
Н	2.68783	-3.37520	-1.11330	Н	-3.08084	2.21560	1.33636
Н	3.88937	-3.18937	-2.41549	H	-3.43877	3.44611	0.13580
Н	2.30857	-2.37106	-2.53833	Н	-2.48764	0.08769	-1.69497
				C	-4.41740	0.90982	-1.21837
				Н	-4.44336	1.58141	-2.08321
	pound 5.35			Н	-4.94911	1.38593	-0.39098
This	structure was	assigned as c	orrect.	Н	-4.96901	0.00163	-1.48611
B3LY	7P/6-31g(d)			Η	-1.84151	-0.39212	0.73708
Gas p	ohase.			O C	-3.80137	-0.09159	1.34593
1					-3.39884	-0.48085	2.65142
Electronic Energy: -1232.70827713 har-					-4.23459	-0.25491	3.31870
tree.					-2.51305	0.08387	2.97842
Free Energy: -1232.265477 hartree.					-3.16746	-1.55256	2.71557
				H H	2.48766	-0.08772	-1.69499
Ο	-2.02901	-2.35780	-0.93395	С	4.41737	-0.90994	-1.21835
Č	-1.02484	-2.97277	-0.25831	H	4.94903	-1.38611	-0.39096
Õ	-1.04359	-3.18766	0.93509	H	4.96905	-0.00178	-1.48605
Č	-3.13071	-1.86748	-0.14009	H	4.44331	-1.58151	-2.08320
H	-3.27612	-2.52565	0.71756	H	1.84156	0.39215	0.73708
Н	-4.00532	-1.91843	-0.79163	0	3.80143	0.09163	1.34588
C	-2.86200	-0.42545	0.32729	C	3.39896	0.48096	2.65136
C C	-2.95727	0.59228	-0.84054	H	3.16756	1.55267	2.71546
C C	-2.93727	1.85665	-0.84034	H	4.23474	0.25507	
C C							3.31862
	-1.05213	2.10014	-1.30842	Н	2.51319	-0.08376	2.97843
C	-0.13417	3.30107	-1.18378				
C	1.02484	2.97272	-0.25833	C	1 = 2 =		
Н	-0.65339	4.16606	-0.76662	1	bound 5.35	· 1	
Н	0.25774	3.56998	-2.17001		structure was	assigned as c	orrect.
Ο	1.04368	3.18774	0.93504		2X/6-31g(d)		
Ο	2.02898	2.35775	-0.93401		implicit solv	ation in dich	loromethane
С	3.13073	1.86747	-0.14019	was u	sed.		
С	2.86203	0.42546	0.32726				
Н	4.00530	1.91839	-0.79178	Electi	ronic Energy	<i>i</i> : -1232.210	08119 har-
Н	3.27619	2.52567	0.71743	tree.			
С	2.95725	-0.59232	-0.84054	Free l	Energy: -123	1.759613 hart	tree.
С	2.14854	-1.85664	-0.57285				
С	1.05210	-2.10015	-1.30845	Ο	-2.24586	-1.55289	-0.19638
С	0.13415	-3.30109	-1.18380	С	-0.98113	-1.46274	-0.64314
Н	0.75470	-1.37289	-2.06278	0	-0.68205	-1.09644	-1.75329
Н	-0.25778	-3.57000	-2.17002	Č	-3.28171	-1.04042	-1.04247
				-			

H H C C C	-3.76492 -2.85290 -4.29206 -3.82957 -2.45258	-1.88531 -0.38040 -0.28706 1.13035 1.14770	-1.54367 -1.80089 -0.18126 0.19741 0.83549	H O C H H	4.49848 5.46271 6.37867 5.92648 7.19872	0.72991 0.20525 1.24037 2.23581 1.15148	0.83369 -0.92229 -0.63670 -0.74265 -1.35316
C C	-1.42001 -0.00522	1.68617 1.79157	0.17563 0.66803	Н 	6.77957	1.14396	0.38191
С	1.00480	1.67589	-0.45178				
Η	0.24613	1.03316	1.41609	Con	npound 5.35		
Н	0.17813	2.76351	1.15079		s structure was	assigned as i	ncorrect.
0	0.77172	1.77614	-1.63155		6-2X/6-31g(d)		
0	2.23389	1.46899	0.04772		D implicit solv	ation in dich	loromethane
C	3.25847	1.10948	-0.88361	was	used.		
C	4.28267	0.25904	-0.13903	г1	· ·	1000 005	
Н	2.82190	0.55072	-1.71719		ctronic Energy	-1232.207	64604 har-
H C	3.72272 3.82596	2.01927 -1.19577	-1.27913 0.07552	tree	e Energy: -1231	756612 hor	traa
C C	2.44968	-1.29778	0.07332	FIC	Energy125	1.730043 Hai	uce.
C C	1.41895	-1.74402	-0.01816	0	-1.79055	1.48827	0.00813
C	-0.00613	-1.90309	0.42688	Č	-0.79459	2.31126	-0.34524
Ĥ	1.60375	-2.02630	-1.05368	Õ	-0.46123	2.50272	-1.49352
Н	-0.24257	-2.95203	0.65645	C	-2.33020	0.68119	-1.04836
Н	-0.24237	-1.33749	1.33391	Н	-1.53351	0.03143	-1.42157
Η	-1.59033	2.10027	-0.81684	Η	-2.66233	1.32654	-1.86701
С	2.35302	-0.89163	2.15698	С	-3.50012	-0.12878	-0.50357
Η	2.81354	0.08937	2.31971	С	-3.29317	-0.65608	0.92369
Н	2.88376	-1.60732	2.79654	С	-1.93073	-1.28245	1.18083
Н	1.32140	-0.84252	2.51345	С	-1.38959	-2.14441	0.31369
С	-2.35503	0.55936	2.21995	С	-0.06078	-2.84308	0.43407
Н	-1.32170	0.40155	2.53900	C	0.95999	-2.29861	-0.54706
Н	-2.87536	-0.40345	2.27358	Н	-0.15891	-3.91112	0.22224
Н	-2.82462	1.22135	2.95795	Н	0.36482	-2.73535	1.43620
H	-3.76988	1.68384	-0.74952	0	1.57142	-2.96826 -0.96730	-1.34632
C	-4.88465 -4.58205	1.79632	1.08632	$\begin{array}{c} 0 \\ C \end{array}$	1.08364	-0.96730	-0.42336
H H	-4.38203	2.81330 1.23012	1.35636 2.01224	C C	2.05768 3.35182	-0.31832	-1.24805 -0.46645
Н	-5.84102	1.84694	0.55966	H	2.22920	-0.91509	-2.14606
Н	-4.49425	-0.87142	0.73066	H	1.62097	0.64201	-1.53186
0	-5.48456	-0.14414	-0.93512	C	3.17245	0.70114	0.82813
č	-6.40189	-1.19867	-0.73936	Č	2.26284	1.89264	0.60238
H	-6.77155	-1.21363	0.29537	Ċ	1.03724	1.88076	1.13783
Н	-7.24211	-1.02713	-1.41618	С	-0.07247	2.86926	0.86124
Н	-5.96083	-2.17887	-0.96704	Η	0.74989	1.02010	1.73805
Н	3.76404	-1.63422	-0.92945	Н	-0.75664	2.93581	1.71031
С	4.89114	-1.95433	0.87419	Η	0.30006	3.86519	0.61743
Η	5.06614	-1.48366	1.84845	Н	-1.93447	-2.36924	-0.60457
Н	5.83762	-1.95925	0.32762	C	2.79267	2.99009	-0.28325
Η	4.58530	-2.99120	1.04823	Η	2.01806	3.69691	-0.58470

Н	3.23115	2.57432	-1.19881	С	-2.46732	1.44120	0.76349
Н	3.59165	3.54651	0.22192	С	-1.50423	2.03945	0.04313
С	-1.31595	-0.87054	2.48945	С	-0.10054	2.37880	0.47774
Н	-0.34171	-1.32351	2.68357	С	0.92152	1.96601	-0.56924
Н	-1.98543	-1.12893	3.32042	Н	0.17002	1.94347	1.44058
Н	-1.19965	0.21970	2.50894	Н	0.00525	3.47104	0.58225
Н	-3.37355	0.22835	1.56753	0	0.77645	2.09090	-1.76955
C	-4.42179	-1.62133	1.30005	Ō	2.03506	1.46155	-0.00313
H	-4.32610	-1.94737	2.34112	Ċ	3.08128	1.04040	-0.90987
Н	-4.39274	-2.51381	0.66452	Č	4.15518	0.29096	-0.11237
Н	-5.39572	-1.13891	1.17843	Н	2.65282	0.40943	-1.69317
Н	-3.65925	-0.97128	-1.19667	Н	3.50946	1.92982	-1.38170
0	-4.67743	0.66412	-0.45638	C	3.83302	-1.20730	0.12322
Č	-5.38786	0.69007	-1.67346	Č	2.46743	-1.44139	0.76348
H	-6.25145	1.34374	-1.52999	Č	1.50415	-2.03941	0.04319
Н	-5.74023	-0.31409	-1.94975	Č	0.10044	-2.37860	0.47789
Н	-4.78323	1.08608	-2.50129	Н	1.72873	-2.32775	-0.98248
Н	2.67626	0.02639	1.53659	Н	-0.00545	-3.47080	0.58273
C	4.54278	1.08413	1.39126	Н	-0.17013	-1.94296	1.44058
H	5.09508	1.72317	0.69293	Н	-1.72904	2.32797	-0.98244
Н	5.13811	0.18374	1.56679	C	2.31124	-1.01368	2.20424
Н	4.44140	1.62297	2.33870	Н	2.69572	0.00057	2.36195
Н	4.06047	0.39886	-1.13539	Н	2.87746	-1.67401	2.87474
0	3.89322	-1.36363	-0.06638	Н	1.27082	-1.02796	2.53854
C	4.59588	-2.04152	-1.08549	C	-2.31077	1.01336	2.20420
H	3.95680	-2.27333	-1.94539	Н	-1.27008	1.02610	2.53773
Н	4.95021	-2.98180	-0.65620	Н	-2.69662	-0.00029	2.36230
Н	5.46183	-1.45488	-1.42381	Н	-2.87551	1.67462	2.87504
		1.10 100	1.12501	Н	-3.81026	1.65875	-0.87714
				C	-4.96868	1.88061	0.91710
Com	pound 5.35			Н	-4.76464	2.94881	1.05447
	structure was	assigned as o	correct	Н	-5.09461	1.43194	1.90967
	YP/6-31g(d)	ussigned us t		Н	-5.91628	1.77874	0.38074
SML	D implicit solv	vation in dich	loromethane	Н	-4.30733	-0.80185	0.84993
	used.		ioi oini c uitane	0	-5.36533	-0.32849	-0.87333
ii us	abea.			Č	-6.17874	-1.46591	-0.63046
Elect	tronic Energy	v [.] -1232.731	04646 har-	Н	-7.05463	-1.37133	-1.27932
tree.		,. 1202.701		Н	-6.51350	-1.50578	0.41699
	Energy: -1232	2 289881 har	tree	Н	-5.66744	-2.40996	-0.86961
1100	2110189. 125	2.2 09001 Il u i		Н	3.80996	-1.65859	-0.87755
0	-2.03517	-1.46158	-0.00317	C	4.96883	-1.88100	0.91633
Č	-0.92158	-1.96596	-0.56919	H	5.09528	-1.43239	1.90886
Õ	-0.77641	-2.09081	-1.76950	Н	5.91624	-1.77932	0.37959
C	-3.08135	-1.04042	-0.90992	Н	4.76460	-2.94915	1.05374
H	-3.50956	-1.92982	-1.38176	Н	4.30706	0.80162	0.85014
Н	-2.65286	-0.40944	-1.69321	0	5.36541	0.32865	-0.87298
C	-4.15525	-0.29099	-0.11244	č	6.17842	1.46638	-0.63027
Č	-3.83304	1.20718	0.12352	H	5.66699	2.41020	-0.87000
-							

ττ	7 05150	1.37176	-1.27875	τī	0 22200	0 46720	11 05550	
H H	7.05458 6.51278	1.57176	0.41729	H H	9.33200 8.91080	0.46720 -0.85700	11.95550 13.03470	
П	0.31278	1.30070	0.41729	п Н	8.95350	0.79230	13.64050	
				п С	6.87140			
Comm	aug d 5 2(С Н		-0.51950	11.18300	
1	Compound 5.36 This structure was assigned as ambiguous.				7.48520	-0.24280	10.32550	
I his s	structure was	assigned as a	imbiguous.	Н	5.82740	-0.41580	10.88540	
N 7 1		· (ODL 0	2005)	H	7.04810	-1.57680	11.38700	
		unics (OPLS	-2005), gas	C H	4.29040	-0.12100	13.41030	
phase.					4.04160	-0.83100	12.62290	
Energy: -64.906975 kJ.					4.03420	0.87290	13.04780	
G	2 00020	0.00040	00 10 50 0	Н	3.64610	-0.32820	14.26380	
C	3.80820	0.39840	20.13520	C	6.44260	0.88210	15.37100	
Н	4.44560	0.52690	20.99790	Н	5.97180	1.85570	15.24640	
H	2.79190	0.75600	20.21220	Н	7.50620	1.05600	15.51930	
С	4.25130	-0.19440	19.01290	Н	6.05080	0.44230	16.28590	
С	5.62640	-0.64830	18.91050	С	3.33310	-0.34070	17.81290	
Н	5.77350	-1.61920	18.45880	Н	3.94840	-0.38370	16.91330	
С	6.69750	0.06180	19.32550	Н	2.71330	0.55150	17.71450	
Η	6.53170	1.03300	19.76900	С	2.45600	-1.60020	17.88160	
С	8.16610	-0.33960	19.20390	Н	3.07160	-2.46970	18.10800	
Η	8.62720	-0.36420	20.19180	Н	1.74310	-1.51200	18.70180	
Η	8.67940	0.44060	18.64020	С	2.58340	-4.11260	16.03390	
С	8.35220	-1.67000	18.49300	Н	2.23610	-4.52250	16.98190	
С	8.31300	-1.72900	17.14690	Н	2.36550	-4.87800	15.28850	
Η	8.19640	-0.80560	16.60420	С	1.73710	-2.87080	15.76650	
С	8.42900	-2.87800	19.41190	С	1.68230	-1.80210	16.58870	
Н	7.46530	-3.04230	19.89460	Н	1.03970	-0.97660	16.31860	
Н	9.17340	-2.71040	20.19030	С	0.91390	-2.92290	14.49350	
Н	8.71130	-3.79050	18.89180	Н	0.34230	-2.00660	14.34340	
С	8.19660	-2.96850	16.28350	Н	0.21260	-3.75690	14.53060	
Η	8.76430	-3.79750	16.70360	Н	1.56400	-3.05970	13.62900	
Н	8.64590	-2.76930	15.31000	0	4.21410	-5.39520	17.93430	
С	6.73100	-3.34760	16.12730	С	4.98360	-5.93850	18.99630	
С	4.09640	-3.88940	16.04510	Н	5.77520	-6.58860	18.62170	
С	5.98370	-2.70240	15.12000	Н	5.42170	-5.15270	19.61350	
С	6.23390	-4.27170	17.06560	Н	4.33870	-6.53980	19.63670	
С	4.84400	-4.54900	17.04620					
С	4.61100	-3.02550	15.05780					
Η	6.89430	-4.71220	17.79430					
Н	3.97090	-2.60190	14.30170	Comp	ound 5.36			
0	6.56360	-1.83170	14.23420			assigned as u	inreactive	
Si	6.11820	-0.23140	13.88180	This structure was assigned as unreactive. $M06-2X/6-31g(d)$				
C	7.19650	0.34620	12.41230	SMD implicit solvation in dichloromethane				
C	6.89980	1.82420	12.10310	was used.				
H	7.50500	2.18460	11.27080	wub u	Jou.			
Н	7.11230	2.46180	12.96200	Electr	onic Energy	v: -1531.643	33270 har-	
Н	5.85370	1.97460	11.83470	tree.		. 1551.045	<i>552</i> ,0 Ilai-	
C	8.68110	0.17920	12.78130		nerov _1521	1.067836 hart	ree	
U	0.00110	0.17720	12.70130			1.007050 Hall		

					2 000 ((1.05400	1.0.000	
G	5 1 0 0 4 5	• • • • • •	1	Н	3.09066	-1.95490	1.86699	
C	-5.12045	2.20002	-1.70567	C	3.53035	-2.26741	-1.45977	
Н	-5.69818	2.84174	-1.04422	Н	4.52525	-2.71332	-1.57851	
Н	-5.67575	1.61956	-2.43793	Н	3.17341	-1.97305	-2.45262	
C	-3.78351	2.13486	-1.62816	H	2.86348	-3.04918	-1.07856	
С	-3.07098	2.95230	-0.62889	С	-2.98595	1.22170	-2.53120	
Н	-3.70430	3.52830	0.04853	Η	-2.16102	1.78559	-2.98273	
С	-1.74107	3.03959	-0.49763	Η	-3.62630	0.88240	-3.35328	
Н	-1.08987	2.46268	-1.15456	С	-2.40909	-0.00429	-1.79717	
С	-1.02412	3.80220	0.58778	Η	-1.63986	-0.46836	-2.42839	
Н	-1.70225	4.52646	1.05405	Н	-1.88714	0.33429	-0.89218	
Н	-0.17745	4.34974	0.15852	С	-1.85569	-2.89809	-0.92646	
С	-0.52916	2.79259	1.61195	Н	-1.96100	-3.90919	-0.51469	
С	0.66397	2.20800	1.45493	Н	-1.39004	-3.00579	-1.91478	
Н	1.29407	2.54078	0.62958	С	-3.24957	-2.29239	-1.07217	
С	-1.54521	2.40103	2.64821	С	-3.46236	-1.02343	-1.44093	
Η	-2.39860	1.90073	2.17079	Η	-4.49658	-0.67688	-1.49226	
Η	-1.93970	3.29159	3.15238	С	-4.38945	-3.22303	-0.76171	
Η	-1.14250	1.72903	3.40905	Η	-5.35939	-2.73312	-0.88844	
С	1.15080	0.97299	2.18528	Η	-4.31102	-3.58460	0.27066	
Η	0.85764	0.98125	3.23936	Η	-4.36526	-4.10711	-1.41217	
Η	2.24336	0.92316	2.14293	0	-2.44588	-2.41080	1.70938	
С	0.53084	-0.22345	1.49169	С	-2.94865	-2.04814	2.98061	
С	-0.93844	-2.07665	-0.04986	Н	-3.21283	-0.98449	3.01463	
С	0.97773	-0.60659	0.22514	Н	-3.84677	-2.64829	3.13416	
С	-0.60877	-0.84394	2.01555	Н	-2.22643	-2.26924	3.77546	
С	-1.32695	-1.77292	1.26516					
С	0.24080	-1.51973	-0.53172					
Н	-0.94199	-0.56136	3.00853	Con	pound 5.36			
Н	0.56434	-1.73798	-1.54739		structure was	assigned as a	mbiguous.	
Ο	2.09854	-0.01023	-0.30364	B3LYP/6-31g(d)				
Si	3.59223	-0.80872	-0.28224	SMD implicit solvation in dichloromethane				
С	4.83080	0.50261	-0.83985		used.			
С	4.62361	1.78823	-0.02866					
Н	5.35696	2.54961	-0.33038	Elec	tronic Energy	r: -1532.241	60425 har-	
Н	4.75371	1.61803	1.04759	tree.	0,			
Н	3.62312	2.20627	-0.18591	Free	Energy: -1531	.673941 har	tree.	
С	6.25568	-0.01916	-0.60741		25			
Н	6.99123	0.71517	-0.96440	С	-2.98496	2.74522	-3.29394	
Н	6.44406	-0.95741	-1.14459	H	-2.37726	3.58643	-3.61905	
Η	6.45485	-0.19506	0.45663	Η	-3.73506	2.38854	-3.99651	
C	4.63524	0.80542	-2.33106	С	-2.82025	2.16381	-2.09298	
H	5.32198	1.60183	-2.65123	Č	-1.84594	2.63324	-1.08455	
H	3.61375	1.14190	-2.54597	H	-1.53167	1.88237	-0.36090	
Н	4.83964	-0.07440	-2.95272	C	-1.36432	3.88002	-0.95432	
C	3.95414	-1.42029	1.45385	H	-1.70013	4.65522	-1.64465	
H	4.20623	-0.60635	2.14222	C	-0.34504	4.33637	0.07557	
Н	4.79654	-2.12189	1.44032	H	-0.62902	5.34285	0.41617	
11	1.77027	2.12107	1.17032	11	0.02702	5.5 f205	0.1101/	

Η	0.62281	4.46000	-0.43387	С	-2.03150	-3.04555	-0.26903
С	-0.19128	3.40685	1.26619	Н	-2.19591	-3.86668	0.44104
С	0.77459	2.47428	1.26278	Н	-1.41251	-3.47067	-1.07108
Η	1.44618	2.45048	0.40490	С	-3.40085	-2.67973	-0.85282
С	-1.23061	3.57565	2.34719	Ċ	-3.71462	-1.59043	-1.57491
Ĥ	-2.23990	3.41223	1.94556	Ĥ	-4.74365	-1.53892	-1.94001
Н	-1.21592	4.60246	2.73890	C	-4.44906	-3.74164	-0.60623
Н	-1.09120	2.89348	3.18964	H	-5.40122	-3.50265	-1.09175
C	0.96501	1.32733	2.23545	Н	-4.63265	-3.86115	0.47085
H	0.54736	1.56140	3.21922	H	-4.11784	-4.72341	-0.97522
H	2.03496	1.13465	2.37110	0	-2.93644	-1.75721	2.03500
C	0.27450	0.09015	1.67978	C	-3.50591	-1.10921	3.16618
C C	-1.22544	-1.97008	0.43047	H	-4.46045	-1.60782	3.34860
C C	0.81118	-0.61721	0.43047	H		-1.21233	
C C					-2.87031		4.05528
C C	-0.98317	-0.29246	2.17119	Н	-3.68788	-0.04413	2.97273
	-1.72124	-1.32032	1.57755				
C	0.04831	-1.61990	-0.02217	C	1520		
Н	-1.38396	0.24257	3.02547		pound 5.36	· •	
Н	0.44069	-2.12064	-0.90241		structure was	assigned as i	inreactive.
0	2.05065	-0.25544	0.11994		YP/6-31g(d)		
Si	3.31450	-1.22377	-0.48558) implicit solv	ation in dich	loromethane
С	4.85116	-0.08292	-0.44899	was u	used.		
С	4.66678	1.08812	-1.43755				
Η	5.54630	1.74909	-1.41740	Elect	ronic Energy	y: -1532.242	226611 har-
				LICCI	Tome Energy	y1332.242	20011 Hai-
Н	3.79212	1.70155	-1.18932	tree.	0.		
H H	3.79212 4.54678	1.70155 0.73937		tree.	Energy: -153		
H H C	3.79212	1.70155	-1.18932	tree. Free	0.		
H H	3.79212 4.54678	1.70155 0.73937	-1.18932 -2.47076	tree.	0.	1.675534 har -0.90238	
H H C	3.79212 4.54678 5.08017	1.70155 0.73937 0.48201	-1.18932 -2.47076 0.96766	tree. Free	Energy: -153	1.675534 har	tree.
H H C H	3.79212 4.54678 5.08017 5.97957	1.70155 0.73937 0.48201 1.11564	-1.18932 -2.47076 0.96766 0.98583	tree. Free C	Energy: -153 5.18253	1.675534 har -0.90238	tree. -2.81406
H H C H H	3.79212 4.54678 5.08017 5.97957 5.22956	1.70155 0.73937 0.48201 1.11564 -0.31345	-1.18932 -2.47076 0.96766 0.98583 1.70852	tree. Free C H	Energy: -153 5.18253 5.79702	1.675534 har -0.90238 -1.79511	tree. -2.81406 -2.71579
H H C H H H	3.79212 4.54678 5.08017 5.97957 5.22956 4.23758	1.70155 0.73937 0.48201 1.11564 -0.31345 1.09685	-1.18932 -2.47076 0.96766 0.98583 1.70852 1.30328	tree. Free C H H C	Energy: -153 5.18253 5.79702 5.66928 3.88613	1.675534 har -0.90238 -1.79511 -0.01967 -0.89278	tree. -2.81406 -2.71579 -3.22267 -2.44751
H H C H H H C	3.79212 4.54678 5.08017 5.97957 5.22956 4.23758 6.09393	1.70155 0.73937 0.48201 1.11564 -0.31345 1.09685 -0.90179	-1.18932 -2.47076 0.96766 0.98583 1.70852 1.30328 -0.86361	tree. Free C H H	Energy: -153 5.18253 5.79702 5.66928	1.675534 har -0.90238 -1.79511 -0.01967	tree. -2.81406 -2.71579 -3.22267 -2.44751 -1.92419
H H C H H H C H H H	3.79212 4.54678 5.08017 5.97957 5.22956 4.23758 6.09393 6.98664	1.70155 0.73937 0.48201 1.11564 -0.31345 1.09685 -0.90179 -0.25924	-1.18932 -2.47076 0.96766 0.98583 1.70852 1.30328 -0.86361 -0.87231	tree. Free C H H C C	Energy: -153 5.18253 5.79702 5.66928 3.88613 3.28366	1.675534 har -0.90238 -1.79511 -0.01967 -0.89278 -2.12987	tree. -2.81406 -2.71579 -3.22267 -2.44751
H H C H H C H H H H	3.79212 4.54678 5.08017 5.97957 5.22956 4.23758 6.09393 6.98664 5.99536 6.29424	1.70155 0.73937 0.48201 1.11564 -0.31345 1.09685 -0.90179 -0.25924 -1.33035 -1.72541	-1.18932 -2.47076 0.96766 0.98583 1.70852 1.30328 -0.86361 -0.87231 -1.86880 -0.16702	tree. Free C H H C C H C H C	Energy: -153 5.18253 5.79702 5.66928 3.88613 3.28366 3.97598 1.99454	1.675534 har -0.90238 -1.79511 -0.01967 -0.89278 -2.12987 -2.96784 -2.32643	tree. -2.81406 -2.71579 -3.22267 -2.44751 -1.92419 -1.82276 -1.59793
H H C H H C H H H C	3.79212 4.54678 5.08017 5.97957 5.22956 4.23758 6.09393 6.98664 5.99536 6.29424 3.51628	1.70155 0.73937 0.48201 1.11564 -0.31345 1.09685 -0.90179 -0.25924 -1.33035 -1.72541 -2.73361	-1.18932 -2.47076 0.96766 0.98583 1.70852 1.30328 -0.86361 -0.87231 -1.86880 -0.16702 0.62658	tree. Free C H H C C H C H C H	Energy: -153 5.18253 5.79702 5.66928 3.88613 3.28366 3.97598 1.99454 1.28243	1.675534 har -0.90238 -1.79511 -0.01967 -0.89278 -2.12987 -2.96784 -2.32643 -1.50714	tree. -2.81406 -2.71579 -3.22267 -2.44751 -1.92419 -1.82276 -1.59793 -1.68595
H H H H H C H H H C H	3.79212 4.54678 5.08017 5.97957 5.22956 4.23758 6.09393 6.98664 5.99536 6.29424 3.51628 3.82393	$\begin{array}{c} 1.70155\\ 0.73937\\ 0.48201\\ 1.11564\\ -0.31345\\ 1.09685\\ -0.90179\\ -0.25924\\ -1.33035\\ -1.72541\\ -2.73361\\ -2.46099\end{array}$	-1.18932 -2.47076 0.96766 0.98583 1.70852 1.30328 -0.86361 -0.87231 -1.86880 -0.16702 0.62658 1.64321	tree. Free C H H C C H C H C H C	Energy: -153 5.18253 5.79702 5.66928 3.88613 3.28366 3.97598 1.99454 1.28243 1.40720	1.675534 har -0.90238 -1.79511 -0.01967 -0.89278 -2.12987 -2.96784 -2.32643 -1.50714 -3.60758	tree. -2.81406 -2.71579 -3.22267 -2.44751 -1.92419 -1.82276 -1.59793 -1.68595 -1.04797
H H H H H C H H H C H H H H H	3.79212 4.54678 5.08017 5.97957 5.22956 4.23758 6.09393 6.98664 5.99536 6.29424 3.51628 3.82393 4.26824	$\begin{array}{c} 1.70155\\ 0.73937\\ 0.48201\\ 1.11564\\ -0.31345\\ 1.09685\\ -0.90179\\ -0.25924\\ -1.33035\\ -1.72541\\ -2.73361\\ -2.46099\\ -3.42267\end{array}$	-1.18932 -2.47076 0.96766 0.98583 1.70852 1.30328 -0.86361 -0.87231 -1.86880 -0.16702 0.62658 1.64321 0.22199	tree. Free C H H C C H C H C H C H	Energy: -153 5.18253 5.79702 5.66928 3.88613 3.28366 3.97598 1.99454 1.28243 1.40720 2.15087	1.675534 har -0.90238 -1.79511 -0.01967 -0.89278 -2.12987 -2.96784 -2.32643 -1.50714 -3.60758 -4.41337	tree. -2.81406 -2.71579 -3.22267 -2.44751 -1.92419 -1.82276 -1.59793 -1.68595 -1.04797 -1.08513
H H H H H H H H H H H H H H	3.79212 4.54678 5.08017 5.97957 5.22956 4.23758 6.09393 6.98664 5.99536 6.29424 3.51628 3.82393 4.26824 2.57516	$\begin{array}{c} 1.70155\\ 0.73937\\ 0.48201\\ 1.11564\\ -0.31345\\ 1.09685\\ -0.90179\\ -0.25924\\ -1.33035\\ -1.72541\\ -2.73361\\ -2.46099\\ -3.42267\\ -3.29102 \end{array}$	$\begin{array}{c} -1.18932\\ -2.47076\\ 0.96766\\ 0.98583\\ 1.70852\\ 1.30328\\ -0.86361\\ -0.87231\\ -1.86880\\ -0.16702\\ 0.62658\\ 1.64321\\ 0.22199\\ 0.70647\end{array}$	tree. Free H C H C H C H C H C H H C	Energy: -153 5.18253 5.79702 5.66928 3.88613 3.28366 3.97598 1.99454 1.28243 1.40720 2.15087 0.55703	1.675534 har -0.90238 -1.79511 -0.01967 -0.89278 -2.12987 -2.96784 -2.32643 -1.50714 -3.60758 -4.41337 -3.91003	tree. -2.81406 -2.71579 -3.22267 -2.44751 -1.92419 -1.82276 -1.59793 -1.68595 -1.04797 -1.08513 -1.67466
H H H H H C H H H C H H H C	3.79212 4.54678 5.08017 5.97957 5.22956 4.23758 6.09393 6.98664 5.99536 6.29424 3.51628 3.82393 4.26824 2.57516 2.93300	$\begin{array}{c} 1.70155\\ 0.73937\\ 0.48201\\ 1.11564\\ -0.31345\\ 1.09685\\ -0.90179\\ -0.25924\\ -1.33035\\ -1.72541\\ -2.73361\\ -2.46099\\ -3.42267\\ -3.29102\\ -1.76511\end{array}$	-1.18932 -2.47076 0.96766 0.98583 1.70852 1.30328 -0.86361 -0.87231 -1.86880 -0.16702 0.62658 1.64321 0.22199 0.70647 -2.25501	tree. Free C H C H C H C H C H C H C H C H C H C	Energy: -153 5.18253 5.79702 5.66928 3.88613 3.28366 3.97598 1.99454 1.28243 1.40720 2.15087 0.55703 0.92823	1.675534 har -0.90238 -1.79511 -0.01967 -0.89278 -2.12987 -2.96784 -2.32643 -1.50714 -3.60758 -4.41337 -3.91003 -3.36530	tree. -2.81406 -2.71579 -3.22267 -2.44751 -1.92419 -1.82276 -1.59793 -1.68595 -1.04797 -1.08513 -1.67466 0.38223
H H H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H H C H H H H C H H H H C H H H H C H H H H C H H H H C H H H H C H H H H C H H H H C H H H H C H H H H H C H H H H C H H H H C H H H H C H H H H C H H H H C H H H H H C H	3.79212 4.54678 5.08017 5.97957 5.22956 4.23758 6.09393 6.98664 5.99536 6.29424 3.51628 3.82393 4.26824 2.57516 2.93300 3.84244	$\begin{array}{c} 1.70155\\ 0.73937\\ 0.48201\\ 1.11564\\ -0.31345\\ 1.09685\\ -0.90179\\ -0.25924\\ -1.33035\\ -1.72541\\ -2.73361\\ -2.46099\\ -3.42267\\ -3.29102\\ -1.76511\\ -2.11232\end{array}$	-1.18932 -2.47076 0.96766 0.98583 1.70852 1.30328 -0.86361 -0.87231 -1.86880 -0.16702 0.62658 1.64321 0.22199 0.70647 -2.25501 -2.76193	tree. Free C H H C C H C H C H C H C C C H	Energy: -153 5.18253 5.79702 5.66928 3.88613 3.28366 3.97598 1.99454 1.28243 1.40720 2.15087 0.55703 0.92823 -0.29687	1.675534 har -0.90238 -1.79511 -0.01967 -0.89278 -2.12987 -2.96784 -2.32643 -1.50714 -3.60758 -4.41337 -3.91003 -3.36530 -2.85344	tree. -2.81406 -2.71579 -3.22267 -2.44751 -1.92419 -1.82276 -1.59793 -1.68595 -1.04797 -1.08513 -1.67466 0.38223 0.58440
H H H H H H H H H H H H H H H H H H H	3.79212 4.54678 5.08017 5.97957 5.22956 4.23758 6.09393 6.98664 5.99536 6.29424 3.51628 3.82393 4.26824 2.57516 2.93300 3.84244 2.51681	$\begin{array}{c} 1.70155\\ 0.73937\\ 0.48201\\ 1.11564\\ -0.31345\\ 1.09685\\ -0.90179\\ -0.25924\\ -1.33035\\ -1.72541\\ -2.73361\\ -2.46099\\ -3.42267\\ -3.29102\\ -1.76511\\ -2.11232\\ -0.94200\end{array}$	-1.18932 -2.47076 0.96766 0.98583 1.70852 1.30328 -0.86361 -0.87231 -1.86880 -0.16702 0.62658 1.64321 0.22199 0.70647 -2.25501 -2.76193 -2.84809	tree. Free C H H C C H C H C H C C H H C C H H C C H H C C H H C C H H C C H H C H C H H C C H H C C H C H C H C H C H C C H C C H C C H C C C H C C C H C C C H C	Energy: -153 5.18253 5.79702 5.66928 3.88613 3.28366 3.97598 1.99454 1.28243 1.40720 2.15087 0.55703 0.92823 -0.29687 -0.93636	1.675534 har -0.90238 -1.79511 -0.01967 -0.89278 -2.12987 -2.96784 -2.32643 -1.50714 -3.60758 -4.41337 -3.91003 -3.36530 -2.85344 -2.72497	tree. -2.81406 -2.71579 -3.22267 -2.44751 -1.92419 -1.82276 -1.59793 -1.68595 -1.04797 -1.08513 -1.67466 0.38223 0.58440 -0.28862
H H H H H H H H H H H H H H H H H H H	3.79212 4.54678 5.08017 5.97957 5.22956 4.23758 6.09393 6.98664 5.99536 6.29424 3.51628 3.82393 4.26824 2.57516 2.93300 3.84244 2.51681 2.21295	$\begin{array}{c} 1.70155\\ 0.73937\\ 0.48201\\ 1.11564\\ -0.31345\\ 1.09685\\ -0.90179\\ -0.25924\\ -1.33035\\ -1.72541\\ -2.73361\\ -2.46099\\ -3.42267\\ -3.29102\\ -1.76511\\ -2.11232\\ -0.94200\\ -2.59170\end{array}$	-1.18932 -2.47076 0.96766 0.98583 1.70852 1.30328 -0.86361 -0.87231 -1.86880 -0.16702 0.62658 1.64321 0.22199 0.70647 -2.25501 -2.76193 -2.84809 -2.28430	tree. Free C H C H C H C H C H C H C H C C H H C C H C C H C H C H C H C C H C C H C C H C C H C C H C C H C C H C	Energy: -153 5.18253 5.79702 5.66928 3.88613 3.28366 3.97598 1.99454 1.28243 1.40720 2.15087 0.55703 0.92823 -0.29687 -0.93636 1.96894	1.675534 har -0.90238 -1.79511 -0.01967 -0.89278 -2.12987 -2.96784 -2.32643 -1.50714 -3.60758 -4.41337 -3.91003 -3.36530 -2.85344 -2.72497 -3.57631	tree. -2.81406 -2.71579 -3.22267 -2.44751 -1.92419 -1.82276 -1.59793 -1.68595 -1.04797 -1.08513 -1.67466 0.38223 0.58440 -0.28862 1.45142
H H H H H C H H H H C H H H H C H H H H C H H H H C H H H H C H H H H H C H H H H C H H H C H H H H C H H H H C H H H H H C H H H H C H H H C H H H H C H H H H C H H H H C H H H H C H H H H C H H H H C H H H H H C H H H H C H H H H C H H H H C H H H H C H H H H H H C H H H H C H H H H C H H H H C H H H H H C H H H H H C H H H H C H H H H C H H H H H C H H H H C H H H H C H H H H C H H H H C H H H H C H H H H C H H H H H C H H H H C H H H H H C H H H H H H H C H	3.79212 4.54678 5.08017 5.97957 5.22956 4.23758 6.09393 6.98664 5.99536 6.29424 3.51628 3.82393 4.26824 2.57516 2.93300 3.84244 2.51681 2.21295 -3.62254	1.70155 0.73937 0.48201 1.11564 -0.31345 1.09685 -0.90179 -0.25924 -1.33035 -1.72541 -2.73361 -2.46099 -3.42267 -3.29102 -1.76511 -2.11232 -0.94200 -2.59170 0.93134	-1.18932 -2.47076 0.96766 0.98583 1.70852 1.30328 -0.86361 -0.87231 -1.86880 -0.16702 0.62658 1.64321 0.22199 0.70647 -2.25501 -2.76193 -2.84809 -2.28430 -1.70680	tree. Free C H C H C H C H C H C H C H H C C H H H C C H H C H C H H C H C H H C H C H H C H C H H C H C H H C H C H H C H C H H C H C H H C H C H H C H C H H C H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H H C H H H H C H H H H C H H H H C H H H H C H H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H H C H H H H C H H H H C H H H H C H H H H C H H H H C H H H H C H H H H C H H H H C H H H H H C H H H H H H H C H	Energy: -153 5.18253 5.79702 5.66928 3.88613 3.28366 3.97598 1.99454 1.28243 1.40720 2.15087 0.55703 0.92823 -0.29687 -0.93636 1.96894 2.82324	1.675534 har -0.90238 -1.79511 -0.01967 -0.89278 -2.12987 -2.96784 -2.32643 -1.50714 -3.60758 -4.41337 -3.91003 -3.36530 -2.85344 -2.72497 -3.57631 -2.90112	tree. -2.81406 -2.71579 -3.22267 -2.44751 -1.92419 -1.82276 -1.59793 -1.68595 -1.04797 -1.08513 -1.67466 0.38223 0.58440 -0.28862 1.45142 1.30222
H H H H H H H H H H H H H H H H H H H	3.79212 4.54678 5.08017 5.97957 5.22956 4.23758 6.09393 6.98664 5.99536 6.29424 3.51628 3.82393 4.26824 2.57516 2.93300 3.84244 2.51681 2.21295 -3.62254 -4.56794	$\begin{array}{c} 1.70155\\ 0.73937\\ 0.48201\\ 1.11564\\ -0.31345\\ 1.09685\\ -0.90179\\ -0.25924\\ -1.33035\\ -1.72541\\ -2.73361\\ -2.46099\\ -3.42267\\ -3.29102\\ -1.76511\\ -2.11232\\ -0.94200\\ -2.59170\\ 0.93134\\ 0.92218\end{array}$	$\begin{array}{r} -1.18932\\ -2.47076\\ 0.96766\\ 0.98583\\ 1.70852\\ 1.30328\\ -0.86361\\ -0.87231\\ -1.86880\\ -0.16702\\ 0.62658\\ 1.64321\\ 0.22199\\ 0.70647\\ -2.25501\\ -2.76193\\ -2.84809\\ -2.28430\\ -1.70680\\ -2.26347\end{array}$	tree. Free C H C C H C H C H C H C H C H H C C H H H C C H H H C C H H H C C H H H C C H H C H C H H C H C H H C H C H H C H C H H C H C H H C H C H H C H C H H C H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H H C H H H C H H H C H H H C H H H H C H H H H C H H H H C H H H H C H H H H C H H H H C H H H H C H H H H H C H H H H H C H H H H C H H H H H H H C H H H H C H H H C H H H H C H H H H C H H H H C H H H H C H H H H C H H H H C H H H H C H H H H H H H H C H	Energy: -153 5.18253 5.79702 5.66928 3.88613 3.28366 3.97598 1.99454 1.28243 1.40720 2.15087 0.55703 0.92823 -0.29687 -0.93636 1.96894 2.82324 2.36785	1.675534 har -0.90238 -1.79511 -0.01967 -0.89278 -2.12987 -2.96784 -2.32643 -1.50714 -3.60758 -4.41337 -3.91003 -3.36530 -2.85344 -2.72497 -3.57631 -2.90112 -4.59926	tree. -2.81406 -2.71579 -3.22267 -2.44751 -1.92419 -1.82276 -1.59793 -1.68595 -1.04797 -1.08513 -1.67466 0.38223 0.58440 -0.28862 1.45142 1.30222 1.40392
H H H H H H H H H H H H H H H H H H H	3.79212 4.54678 5.08017 5.97957 5.22956 4.23758 6.09393 6.98664 5.99536 6.29424 3.51628 3.82393 4.26824 2.57516 2.93300 3.84244 2.51681 2.21295 -3.62254 -4.56794 -3.88039	$\begin{array}{c} 1.70155\\ 0.73937\\ 0.48201\\ 1.11564\\ -0.31345\\ 1.09685\\ -0.90179\\ -0.25924\\ -1.33035\\ -1.72541\\ -2.73361\\ -2.46099\\ -3.42267\\ -3.29102\\ -1.76511\\ -2.11232\\ -0.94200\\ -2.59170\\ 0.93134\\ 0.92218\\ 0.97808\end{array}$	$\begin{array}{c} -1.18932\\ -2.47076\\ 0.96766\\ 0.98583\\ 1.70852\\ 1.30328\\ -0.86361\\ -0.87231\\ -1.86880\\ -0.16702\\ 0.62658\\ 1.64321\\ 0.22199\\ 0.70647\\ -2.25501\\ -2.76193\\ -2.84809\\ -2.28430\\ -1.70680\\ -2.26347\\ -0.64036\end{array}$	tree. Free C H C H C H C H C H C H C H H C C H H H C C H H H C C H H H C C H H C H H C H H C H C H H C H C H H C H C H H C H C H H C H C H H C H H C H C H H C H H C H H C H H C H H C H H C H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H H C H H H H C H H H H H H H C H H H H H H H H C H H H H C H H H H C H	Energy: -153 5.18253 5.79702 5.66928 3.88613 3.28366 3.97598 1.99454 1.28243 1.40720 2.15087 0.55703 0.92823 -0.29687 -0.93636 1.96894 2.82324 2.36785 1.58367	1.675534 har -0.90238 -1.79511 -0.01967 -0.89278 -2.12987 -2.96784 -2.32643 -1.50714 -3.60758 -4.41337 -3.91003 -3.36530 -2.85344 -2.72497 -3.57631 -2.90112 -4.59926 -3.41362	tree. -2.81406 -2.71579 -3.22267 -2.44751 -1.92419 -1.82276 -1.59793 -1.68595 -1.04797 -1.08513 -1.67466 0.38223 0.58440 -0.28862 1.45142 1.30222 1.40392 2.46114
H H H H H C H H H H C H H H H C H H H H C H H H H C H H H H C H H H H C H H H H C H H H H H C H H H H C H H H H C H H H H C H H H H H C H H H H C H H H H C H H H H C H H H H C H H H H H C H H H H C H H H H H C H H H H C H H H H H C H H H H H C H H H H C H H H C H H H H C H H H C H H H H C H H H H C H H H H C H H H H H C H H H H H C H H H H H H C H H H H C H H H H H H C H H H H C H H H H H C H H H H H H C H H H H H H H H H H H H H H H H H C H	3.79212 4.54678 5.08017 5.97957 5.22956 4.23758 6.09393 6.98664 5.99536 6.29424 3.51628 3.82393 4.26824 2.57516 2.93300 3.84244 2.51681 2.21295 -3.62254 -4.56794 -3.88039 -2.87852	$\begin{array}{c} 1.70155\\ 0.73937\\ 0.48201\\ 1.11564\\ -0.31345\\ 1.09685\\ -0.90179\\ -0.25924\\ -1.33035\\ -1.72541\\ -2.73361\\ -2.46099\\ -3.42267\\ -3.29102\\ -1.76511\\ -2.11232\\ -0.94200\\ -2.59170\\ 0.93134\\ 0.92218\\ 0.97808\\ -0.40271\end{array}$	$\begin{array}{c} -1.18932\\ -2.47076\\ 0.96766\\ 0.98583\\ 1.70852\\ 1.30328\\ -0.86361\\ -0.87231\\ -1.86880\\ -0.16702\\ 0.62658\\ 1.64321\\ 0.22199\\ 0.70647\\ -2.25501\\ -2.76193\\ -2.84809\\ -2.28430\\ -1.70680\\ -2.26347\\ -0.64036\\ -1.97829\end{array}$	tree. Free C H C H C H C H C H C H C H H C C H H C C H H C C H H C C H H C C H H C C H C C H C C H C H C H C C H C C C H C H C C H C C H C C H C C C C H C	Energy: -153 5.18253 5.79702 5.66928 3.88613 3.28366 3.97598 1.99454 1.28243 1.40720 2.15087 0.55703 0.92823 -0.29687 -0.93636 1.96894 2.82324 2.36785 1.58367 -0.82448	1.675534 har -0.90238 -1.79511 -0.01967 -0.89278 -2.12987 -2.96784 -2.32643 -1.50714 -3.60758 -4.41337 -3.91003 -3.36530 -2.85344 -2.72497 -3.57631 -2.90112 -4.59926 -3.41362 -2.19158	tree. -2.81406 -2.71579 -3.22267 -2.44751 -1.92419 -1.82276 -1.59793 -1.68595 -1.04797 -1.08513 -1.67466 0.38223 0.58440 -0.28862 1.45142 1.30222 1.40392 2.46114 1.84590
H H H H H H H H H H H H H H H H H H H	3.79212 4.54678 5.08017 5.97957 5.22956 4.23758 6.09393 6.98664 5.99536 6.29424 3.51628 3.82393 4.26824 2.57516 2.93300 3.84244 2.51681 2.21295 -3.62254 -4.56794 -3.88039	$\begin{array}{c} 1.70155\\ 0.73937\\ 0.48201\\ 1.11564\\ -0.31345\\ 1.09685\\ -0.90179\\ -0.25924\\ -1.33035\\ -1.72541\\ -2.73361\\ -2.46099\\ -3.42267\\ -3.29102\\ -1.76511\\ -2.11232\\ -0.94200\\ -2.59170\\ 0.93134\\ 0.92218\\ 0.97808\end{array}$	$\begin{array}{c} -1.18932\\ -2.47076\\ 0.96766\\ 0.98583\\ 1.70852\\ 1.30328\\ -0.86361\\ -0.87231\\ -1.86880\\ -0.16702\\ 0.62658\\ 1.64321\\ 0.22199\\ 0.70647\\ -2.25501\\ -2.76193\\ -2.84809\\ -2.28430\\ -1.70680\\ -2.26347\\ -0.64036\end{array}$	tree. Free C H C H C H C H C H C H C H H C C H H H C C H H H C C H H H C C H H C H H C H H C H C H H C H C H H C H C H H C H C H H C H C H H C H H C H C H H C H H C H H C H H C H H C H H C H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H H C H H H H C H H H H H H H C H H H H H H H H C H H H H C H H H H C H	Energy: -153 5.18253 5.79702 5.66928 3.88613 3.28366 3.97598 1.99454 1.28243 1.40720 2.15087 0.55703 0.92823 -0.29687 -0.93636 1.96894 2.82324 2.36785 1.58367	1.675534 har -0.90238 -1.79511 -0.01967 -0.89278 -2.12987 -2.96784 -2.32643 -1.50714 -3.60758 -4.41337 -3.91003 -3.36530 -2.85344 -2.72497 -3.57631 -2.90112 -4.59926 -3.41362	tree. -2.81406 -2.71579 -3.22267 -2.44751 -1.92419 -1.82276 -1.59793 -1.68595 -1.04797 -1.08513 -1.67466 0.38223 0.58440 -0.28862 1.45142 1.30222 1.40392 2.46114

С	-0.35109	-0.74505	1.80471	С	3.05570	0.42338	4.02322
C C	0.96987	1.71465	1.29689	С Н	2.34445	0.42558	4.83164
C C	-0.86946	0.15902	0.86151	Н	3.39092	-0.52157	3.57665
C C	0.75944	-0.35066	2.56194	Н	3.91853	0.95091	4.43623
C C	1.40543	0.86910	2.33622	11	5.71055	0.75071	4.43023
C C	-0.18930	1.35482	0.60505				
Н	1.14310	-1.03966	3.30624	Com	pound 5.36		
H	-0.53523	1.99266	-0.20196		structure was	assigned as a	mbiquous
0	-1.98035	-0.21541	0.14383			assigned as a	unoiguous.
Si	-3.28444	0.71015	-0.43644		YP/6-31g(d)		
C	-3.28444 -4.71451	-0.55020	-0.43044	Gas	phase.		
C C	-4.71431	-0.33020		Elaa	trania Enara	1522.214	(00012 har
С Н			0.76415		tronic Energy	y1352.210	09042 hai-
	-5.96439	-1.80362	0.66003	tree.	En anory 152	1 (17((1 hom	tra a
Н	-5.56135	-0.24231	1.38688	Free	Energy: -153	1.04/001 nar	tree.
H	-4.34396	-1.52783	1.31579	C	2 12200	1 50045	2 50024
C	-5.91026	0.13519	-1.32037	C	3.42380	1.59045	3.59934
Н	-6.75080	-0.56817	-1.41378	Н	3.80778	2.60487	3.53629
Н	-5.65693	0.47343	-2.33242	H	3.85516	0.95286	4.36741
H	-6.27686	1.00395	-0.75872	C	2.47375	1.13861	2.76527
C	-4.26116	-1.75282	-1.47705	C	1.81968	1.98972	1.74943
H	-5.09176	-2.46234	-1.60921	H	1.49169	1.48231	0.84244
Н	-3.43433	-2.29852	-1.00823	C	1.53127	3.29213	1.89212
H	-3.93369	-1.44619	-2.47856	H	1.79423	3.78861	2.82727
С	-3.69799	2.06276	0.81083	С	0.79086	4.16110	0.89005
Η	-3.80625	1.66057	1.82495	Η	1.27842	5.14764	0.86306
Н	-4.64031	2.55884	0.54578	Н	-0.22082	4.34758	1.28151
Н	-2.92126	2.83559	0.84251	С	0.70493	3.58477	-0.51079
С	-2.83935	1.46923	-2.10580	С	-0.36721	2.86249	-0.86988
Н	-3.68535	2.03578	-2.51542	Н	-1.16449	2.74881	-0.13675
Н	-2.56590	0.70298	-2.84132	С	1.92000	3.81639	-1.37487
Η	-1.99463	2.16372	-2.02274	Н	2.80482	3.33759	-0.93448
С	3.07125	0.38699	-2.56085	Η	2.14537	4.88946	-1.44479
Η	2.01625	0.15755	-2.74789	Η	1.80175	3.43230	-2.39078
Η	3.42377	0.94949	-3.43424	С	-0.54552	2.02972	-2.12607
С	3.17708	1.30937	-1.32047	Η	-0.06092	2.49730	-2.98977
Η	2.85123	0.77004	-0.42460	Η	-1.61255	1.94734	-2.35942
Η	4.24205	1.54528	-1.16765	С	0.05455	0.65058	-1.90080
С	1.77883	2.95011	0.92459	С	1.40200	-1.73516	-1.16223
Η	2.80875	2.78699	1.25799	С	-0.55427	-0.27097	-1.03370
Η	1.41970	3.81262	1.50366	С	1.30054	0.32339	-2.44789
С	1.76989	3.31486	-0.55760	С	1.96623	-0.85640	-2.10509
С	2.39158	2.58769	-1.50107	С	0.13246	-1.43329	-0.66678
Н	2.34811	2.95757	-2.52798	Н	1.75980	1.02751	-3.13261
С	1.03619	4.58617	-0.91281	Н	-0.30297	-2.09791	0.07135
Н	1.05090	4.78213	-1.99052	0	-1.79184	0.04639	-0.52999
Н	1.47760	5.45529	-0.40368	Si	-3.00251	-0.90092	0.18124
Н	-0.01362	4.54363	-0.58793	С	-4.53630	0.24377	0.19714
0	2.49714	1.29641	3.04854	С	-4.25376	1.50536	1.04065

Н	-5.13260	2.16660	1.04355	Fleat	ronic Energy	r: _1531 640	288520 har
Н	-3.41017	2.07881	0.64060	tree.	Tome Energy	71551.042	.88520 Hai-
Н	-4.02778	1.26080	2.08556		Energy: -153	1 067520 har	tree
C	-4.89412	0.67260	-1.24184	1100	Energy. 155	1.007520 Hur	uce.
Н	-5.77190	1.33495	-1.23554	С	-3.05435	2.09415	-3.56261
Н	-5.13974	-0.18727	-1.87662	H	-3.33970	3.13689	-3.44962
Н	-4.07072	1.21626	-1.71789	Н	-3.49386	1.55089	-4.39611
C	-5.73719	-0.51159	0.80924	C	-2.21111	1.49517	-2.71313
H	-6.62535	0.13622	0.82423	Č	-1.54716	2.20491	-1.59796
Н	-5.54654	-0.82236	1.84386	H	-1.28747	1.59284	-0.73108
Н	-5.99994	-1.40713	0.23259	C	-1.18750	3.49330	-1.62173
C	-3.30361	-2.44912	-0.85968	H	-1.39772	4.07853	-2.51821
H	-3.58234	-2.19523	-1.88857	C	-0.44239	4.23011	-0.53086
Н	-4.11245	-3.05450	-0.43312	Ĥ	-0.93831	5.19634	-0.36407
Н	-2.41038	-3.08091	-0.90956	Н	0.56189	4.46756	-0.90813
C	-2.50136	-1.38338	1.93897	C	-0.34299	3.45825	0.76323
Ĥ	-3.32926	-1.87715	2.46248	Č	0.73757	2.71049	1.01257
Н	-2.21424	-0.50314	2.52515	H	1.54500	2.72270	0.28125
Н	-1.65065	-2.07392	1.94881	С	-1.56402	3.49905	1.64298
C	2.01882	-0.31253	2.80191	H	-2.39128	2.93990	1.18568
Н	0.95006	-0.36918	2.55923	Н	-1.91040	4.53157	1.76959
Н	2.13287	-0.70615	3.81994	Н	-1.38328	3.07703	2.63437
С	2.79758	-1.23154	1.82601	С	0.88018	1.71145	2.14171
Н	2.79048	-0.79835	0.82124	Η	0.52488	2.12604	3.09088
Н	3.84955	-1.24887	2.14964	Н	1.93726	1.45435	2.26974
С	2.17711	-2.96010	-0.69929	С	0.06914	0.47607	1.80767
Н	3.24245	-2.76414	-0.86041	C	-1.63289	-1.60014	0.91482
Н	1.94054	-3.80366	-1.36332	C	0.42930	-0.32403	0.72064
С	1.94846	-3.39506	0.74625	С	-1.12332	0.18983	2.47830
С	2.24376	-2.63310	1.81159	С	-1.96031	-0.84085	2.05142
Н	2.06688	-3.06340	2.80009	С	-0.42300	-1.33770	0.27955
С	1.40606	-4.79427	0.92102	Н	-1.39706	0.80421	3.32953
Н	1.27122	-5.05371	1.97610	Н	-0.15152	-1.89375	-0.61346
Н	2.07875	-5.53941	0.47268	0	1.59340	-0.05157	0.04410
Н	0.43747	-4.91197	0.41375	Si	2.94362	-1.06686	0.16750
Ο	3.19091	-1.21841	-2.61274	С	4.33324	-0.06648	-0.62779
С	3.84995	-0.32015	-3.48655	С	3.95454	0.26926	-2.07670
Н	4.04337	0.64775	-3.00422	Н	4.74958	0.86165	-2.55134
Н	4.80122	-0.79221	-3.74090	Н	3.02774	0.85280	-2.12623
Н	3.27382	-0.15239	-4.40680	Η	3.81493	-0.63681	-2.67913
				С	4.54756	1.23472	0.15652
				Η	5.33983	1.83508	-0.31272
Comp	ound 5.36			Η	4.85238	1.03982	1.19206
	structure was	assigned as a	mbiguous.	Н	3.63772	1.84567	0.18126
M06-2X/6-31g(d)				С	5.63244	-0.88314	-0.61354
SMD implicit solvation in dichloromethane			Н	6.44955	-0.30370	-1.06559	
was u	-			Н	5.53819	-1.81529	-1.18347
				Η	5.93961	-1.14195	0.40733

С	3.27035	-1.43591	1.97645	Η	5.80180	-2.63100	-7.08130
Η	3.45858	-0.52844	2.56026	Н	6.55670	-1.06250	-6.83700
Н	4.14433	-2.08971	2.08208	0	5.20670	1.94230	-4.11440
Н	2.41819	-1.95562	2.42954	Η	5.70880	2.08860	-6.57730
С	2.62997	-2.67204	-0.75211	С	3.02900	-2.04650	-5.01890
Н	3.54564	-3.27341	-0.79975	Н	2.07900	-1.52040	-5.12670
Н	2.28949	-2.49499	-1.77825	С	3.32120	-1.74590	-7.85940
Н	1.86947	-3.27583	-0.24399	Ο	3.06830	-1.42210	-9.01840
С	-1.91307	0.01363	-2.81756	0	2.76300	-2.84210	-7.29350
Η	-0.90919	-0.19024	-2.42345	C	3.03070	-3.26360	-5.96280
Н	-1.91918	-0.29434	-3.86961	H	4.02890	-3.70320	-5.95980
C	-2.93907	-0.84027	-2.04535	C	3.20460	-2.43870	-3.53720
Ĥ	-3.01893	-0.47506	-1.01509	Ĥ	2.38450	-3.05600	-3.17290
Н	-3.92115	-0.68761	-2.51451	Η	3.23990	-1.55600	-2.89770
C	-2.62938	-2.62592	0.40691	Н	4.13030	-2.99330	-3.38040
Ĥ	-3.62980	-2.18685	0.49769	C	2.03190	-4.39380	-5.59870
H	-2.63092	-3.49098	1.08285	Н	2.39220	-4.89840	-4.70200
C	-2.39961	-3.09807	-1.01629	Н	2.06720	-5.15390	-6.38030
C	-2.56679	-2.29659	-2.07473	C	0.55910	-3.98900	-5.36020
H	-2.38690	-2.71328	-3.06805	Н	0.50270	-3.29660	-4.51960
C	-1.95243	-4.52635	-1.16905	0	-0.15470	-5.16220	-5.02760
H	-1.78369	-4.78971	-2.21722	Si	-1.28380	-5.27500	-3.77450
Н	-2.69297	-5.22009	-0.75173	C	-2.03440	-7.02790	-3.82120
Н	-1.01861	-4.69660	-0.61633	C	-2.72240	-7.23720	-5.18080
$\overset{\Pi}{O}$	-3.13960	-1.16073	2.65694	H	-3.53430	-6.52510	-5.33180
C	-3.56335	-0.34687	3.73403	Н	-3.14430	-8.23900	-5.26560
H	-2.86063	-0.39804	4.57400	Н	-2.01740	-7.10540	-6.00330
H	-3.68189	0.69785	3.42125	C	-0.90600	-8.05870	-3.64820
H	-4.53012	-0.74108	4.05011	Н	-0.40250	-7.94330	-2.68800
11	-4.33012	-0.74100	4.03011	H	-0.15040	-7.94970	-4.42790
				H	-1.28630	-9.07920	-3.69870
Com	pound 5.37			C	-3.06110	-7.17990	-2.68570
	structure was	assigned as a	mbiguous	H	-3.87160	-6.45660	-2.78140
11115	structure was	assigned as a	unoiguous.	H	-2.60090	-7.02960	-1.70860
Mole	ecular Mecha	nice (OPI S	2005) and	Н	-3.50890	-8.17410	-2.68680
phase			-2005), gas	C	-2.61340	-3.96450	-4.03600
-	c. gy: -111.1799	1611		С Н	-2.20420	-2.95840	-3.96720
Luci	gy111.1799	10 KJ.		Н	-2.20420	-4.04870	-3.29510
С	4.82840	1.17650	-4.99100	H	-3.07120	-4.04870	-5.01960
C C	4.82840	0.56040	-7.38600	п С			
C C		-1.10590			-0.37990	-4.97500	-2.14690
	4.16540		-5.46160	H	0.04140	-3.97250	-2.09900
C	4.36900	-0.96080	-7.01050	Н Ц	0.43800	-5.68240	-2.01660
O N	4.01150	0.12800	-4.75700	H C	-1.04950	-5.09030	-1.29570
N u	5.12320	1.30250	-6.33680		-0.06930	-3.33250	-6.57110
H	5.01590	0.67310	-8.29670	H C	0.02060	-3.88740	-7.49350
H C	5.08530	-1.53470	-5.06140	С	-0.64610	-2.11820	-6.55700
C	5.74670	-1.57700	-7.35520	H C	-0.69510	-1.60460	-5.60740
Η	5.95650	-1.51210	-8.42420	С	-1.12680	-1.42130	-7.73870

С	-0.84390	-1.98690	-9.12570	Η	-2.76622	-3.98552	2.10088
Н	-1.50580	-2.82910	-9.32850	0	-4.17481	-4.68963	-1.43080
Н	0.18620	-2.34050	-9.18960	Н	-5.02363	-2.60188	-0.47613
Н	-0.96400	-1.26450	-9.92980	С	-0.71320	-2.29060	-1.23822
С	-1.73700	-0.23040	-7.55800	Η	-1.49601	-1.68344	-1.70847
Η	-1.87010	0.14340	-6.55210	С	-1.12519	-1.03111	1.36281
С	-2.16200	0.75460	-8.63800	Ο	-1.28881	-0.40409	2.39684
Н	-3.12000	1.19380	-8.35950	Ο	-0.22167	-0.57633	0.48834
Н	-2.31010	0.27200	-9.60160	С	0.33892	-1.35504	-0.62440
С	-1.11700	1.86690	-8.77690	Н	1.14067	-1.95518	-0.18103
0	-1.50190	3.03250	-8.84750	С	-0.09569	-3.21596	-2.29640
С	0.30620	1.48740	-8.80640	Н	0.25570	-2.65042	-3.16405
Н	0.55080	0.43660	-8.83740	Н	-0.83810	-3.93675	-2.65074
С	1.30430	2.38680	-8.75580	Н	0.75298	-3.77658	-1.88504
Н	1.07180	3.44280	-8.71610	С	0.93185	-0.35744	-1.61716
С	2.68850	1.96720	-8.66970	Н	0.12379	0.20062	-2.10401
С	3.06460	1.21510	-7.61340	Н	1.43598	-0.94473	-2.39180
Н	2.32730	1.00160	-6.85140	С	1.96672	0.66406	-1.07796
С	3.64010	2.30950	-9.79880	Н	2.38016	1.15166	-1.97243
Η	3.16980	2.98870	-10.51070	0	2.99914	-0.05872	-0.39555
Н	3.92980	1.40660	-10.33780	Si	4.60149	0.46440	-0.20870
Н	4.53800	2.79420	-9.41500	С	5.47012	-1.02084	0.62984
				C	4.76972	-1.35676	1.96341
				H	4.79677	-0.51528	2.66744
				Η	5.26664	-2.20691	2.45481
Comr	oound 5.37			Η	3.71841	-1.63204	1.81651
-	reaction was	unselective	so no "cor-	С	5.41856	-2.25760	-0.29092
	or "incorrect"			Ĥ	5.90589	-3.11751	0.19311
	s compound.	austripter		Н	5.93761	-2.08410	-1.24200
	P/6-31g(d)			Н	4.38806	-2.55337	-0.52334
	implicit sol	vation in m	ethanol was	C	6.94535	-0.66529	0.91287
used.	p 200			H	7.04125	0.19488	1.58752
				Н	7.49936	-0.43147	-0.00541
Electi	onic Energy	v [.] -1926 649	966603 har-	Н	7.45771	-1.51276	1.39257
tree.	2.01.0			C	4.68004	2.01269	0.86763
	Energy: -1920	6 042654 har	tree	H	4.24538	1.85329	1.86175
	5			Н	4.13915	2.84514	0.40109
С	-3.51868	-3.86871	-0.79323	Н	5.71903	2.33899	1.00690
C	-3.40807	-1.74023	0.59639	C	5.33390	0.86081	-1.90277
Č	-1.31205	-3.10079	-0.08113	Н	4.82106	1.71036	-2.37173
C	-1.97639	-2.26141	1.02677	Н	5.26812	0.01312	-2.59557
0 0	-2.21036	-4.12976	-0.56037	Н	6.39271	1.13679	-1.81483
Ň	-4.03555	-2.72876	-0.28784	C	1.34645	1.72177	-0.19762
H	-3.99503	-1.71680	1.51700	Н	1.26243	1.46925	0.85496
Н	-0.50159	-3.67926	0.37341	C	0.78637	2.84080	-0.68932
C	-2.12469	-3.12125	2.29943	H	0.87512	3.04195	-1.75859
Н	-2.56756	-2.53734	3.10954	C	-0.11265	3.73316	0.05197
H	-1.14775	-3.48903	2.63092	C	-0.22062	3.54508	1.54499
	1.11/10	5.10705	2.05072	\sim	0.22002	5.5 1500	1.0 1 177

Η	-0.85277	4.30146	2.01563	Η	0.39636	-1.18304	0.90062
Η	0.77137	3.60104	2.01112	С	1.76791	-0.98967	-1.66005
Н	-0.62908	2.55658	1.79319	0	2.31016	-0.15023	-2.36592
C	-0.87997	4.58433	-0.66843	Ō	0.43116	-1.08023	-1.70145
H	-0.71860	4.62027	-1.74598	Č	-0.29317	-2.09095	-0.90589
C	-2.12491	5.31518	-0.22045	Н	-0.18144	-3.04290	-1.43927
Н	-2.22828	6.27630	-0.73452	C	-0.41334	-3.12942	1.42047
H	-2.22828	5.47170	0.86092	С Н	-1.39318	-2.71979	
							1.68152
C	-3.25546	4.38530	-0.67499	Н	0.14766	-3.27322	2.34872
0	-3.76109	4.50016	-1.79157	H	-0.56445	-4.11402	0.96076
С	-3.56599	3.25280	0.22697	С	-1.76767	-1.70010	-0.97283
Η	-3.50429	3.43735	1.29618	Η	-2.35089	-2.54441	-0.58872
С	-3.72366	2.00513	-0.26289	Н	-2.03105	-1.58918	-2.03211
Η	-3.67487	1.86755	-1.34281	С	-2.23549	-0.43285	-0.23184
С	-3.82393	0.78620	0.54612	Η	-2.05776	-0.55358	0.84413
С	-3.47519	-0.37719	-0.05271	Ο	-3.66462	-0.38846	-0.47015
Н	-3.21181	-0.35157	-1.10874	Si	-4.81698	0.49725	0.40311
С	-4.22879	0.93912	1.99191	С	-6.44370	-0.46005	0.06950
H	-5.12962	1.55950	2.06760	Ċ	-6.33469	-1.90645	0.59405
Н	-3.44375	1.43941	2.57116	H	-5.52712	-2.46271	0.10294
Н	-4.43283	-0.01594	2.47958	Н	-7.27184	-2.45253	0.40499
11		-0.01374	2.47930	H	-6.15326	-1.94096	1.67616
				C	-7.62139	0.24045	0.78341
Carry	n and 5 27			С Н			
	pound 5.37	:			-7.48573	0.27680	1.87205
	structure was	assigned as a	imbiguous.	Н	-8.56003	-0.30328	0.59452
	YP/6-31g(d)			Н	-7.76817	1.26898	0.42944
	implicit sol	vation in m	ethanol was	С	-6.73440	-0.49273	-1.44532
used.				Η	-5.93958	-0.99733	-2.00802
				Η	-6.85061	0.51550	-1.86298
Elect	ronic Energy	y: -1926.651	80521 har-	Η	-7.67150	-1.03581	-1.64342
tree.				С	-4.94105	2.26959	-0.23676
Free	Energy: -192	6.042195 har	tree.	Η	-4.01476	2.82539	-0.04873
				Η	-5.75276	2.81426	0.26421
С	3.79699	-2.65958	1.68097	Η	-5.13520	2.30414	-1.31629
С	3.93432	-1.47154	-0.46216	С	-4.37069	0.52385	2.23583
С	1.80004	-2.67765	0.30005	Н	-3.45281	1.09620	2.41946
C	2.56259	-2.06273	-0.92081	Н	-4.22411	-0.48064	2.65065
0	2.45550	-2.40905	1.58041	Н	-5.16721	1.00739	2.81699
Ň	4.48700	-2.40362	0.54841	C	-1.55469	0.81982	-0.70939
H	4.61850	-1.50923	-1.31007	Н	-1.60803	1.00664	-1.78094
Н	1.80360	-3.76635	0.18246	C	-0.89836	1.66345	0.10703
C	2.82641	-3.17785	-1.97113	H	-0.88634	1.44924	1.17763
Н				C		2.83724	
	3.30246	-2.75662	-2.86098		-0.11526		-0.30576
Н	1.89195	-3.66400	-2.26884	C	-0.05476	3.13112	-1.78321
Н	3.48560	-3.93699	-1.53871	Н	-1.06618	3.21301	-2.20347
0	4.25880	-3.07921	2.73735	Н	0.44376	2.31176	-2.31903
Н	5.49603	-2.47716	0.61682	Н	0.47654	4.05688	-2.01493
С	0.35588	-2.19472	0.47632	С	0.55250	3.52426	0.65135

Н	0.42145	3.19179	1.68184	Н	-0.18220	-3.18560	-1.24635
С	1.55048	4.63199	0.47638	С	-0.27956	-3.04862	1.60762
H	1.36333	5.46338	1.16590	H	-1.26542	-2.65329	1.86826
Н	1.53242	5.04320	-0.54197	Н	0.32223	-3.09029	2.51919
C	2.99780	4.17502	0.71837	Н	-0.41322	-4.07473	1.24187
0	3.80380	4.90702	1.29340	C	-1.76762	-1.83177	-0.81755
C	3.35208	2.84286	0.19546	Н	-2.32546	-2.66549	-0.37679
H	2.58003	2.34280	-0.35309	H	-2.07989	-2.00349	-1.86644
				п С			
C	4.54451	2.24424	0.38730		-2.23882	-0.53862	-0.11702
Н	5.35491	2.78125	0.88185	H	-2.05220	-0.61465	0.96473
C	4.81433	0.87237	-0.08457	0	-3.65147	-0.51064	-0.35040
C	3.84335	-0.05243	0.04565	Si	-4.81044	0.48877	0.36014
H	2.92681	0.22426	0.55945	C	-6.45473	-0.44646	0.06648
С	6.17234	0.62374	-0.70756	С	-6.66429	-0.66796	-1.44723
Η	6.86625	1.43420	-0.46459	Η	-6.72950	0.28023	-1.99463
Н	6.09661	0.58268	-1.80245	Н	-7.60178	-1.21419	-1.62761
Η	6.62293	-0.31851	-0.37498	Н	-5.84754	-1.25208	-1.88536
				С	-6.41226	-1.82004	0.76984
				Η	-6.30238	-1.72174	1.85700
Com	pound 5.37			Н	-5.58289	-2.43435	0.40170
This	structure was	assigned as a	ambiguous.	Η	-7.34466	-2.37385	0.58631
	YP/6-31g(d)	C	U	С	-7.63883	0.37095	0.62683
	ohase.			Н	-7.73107	1.35012	0.14131
1				Н	-7.55025	0.54004	1.70740
Elect	ronic Energ	y: -1926.605	553141 har-	Н	-8.58462	-0.16448	0.45992
tree.		<i>j</i> . <i>1</i> /201000		C	-4.83778	2.18933	-0.46294
	Energy -192	5.997313 har	tree	H	-3.88678	2.71071	-0.31059
1100	Energy: 172	5.997515 Hui		Н	-5.63324	2.82008	-0.04701
С	3.90801	-2.49272	1.67576	Н	-5.00419	2.11231	-1.54352
C	3.94615	-1.44999	-0.54303	C	-4.44130	0.69732	2.20440
C	1.87771	-2.63481	0.37065	H	-3.51529	1.26169	2.36621
C	2.57124	-2.03481	-0.92247	H	-4.33935	-0.26562	2.71790
0	2.57723	-2.08234	1.59214	H	-5.24602	-0.20302	2.70126
N	4.54552	-2.35805	0.46079	C	-1.56331	0.70057	-0.63833
Н	4.58876	-1.49312	-1.42466	H	-1.59465	0.82957	-1.71734
Н	1.89268	-3.73143	0.31252	C	-0.93262	1.59344	0.14490
C	2.82535	-3.25884	-1.90255	Н	-0.92934	1.42551	1.22387
Н	3.23706	-2.88711	-2.84592	C	-0.16940	2.76060	-0.31216
Н	1.90355	-3.80576	-2.12724	С	-0.08214	2.99161	-1.80224
Н	3.53847	-3.95778	-1.45430	Η	0.44020	2.15920	-2.29203
Ο	4.44018	-2.76242	2.72570	Η	0.44378	3.91463	-2.05428
Н	5.55236	-2.31340	0.56438	Η	-1.08364	3.05021	-2.24574
С	0.42520	-2.17578	0.56031	С	0.47143	3.50932	0.61485
Η	0.45475	-1.13669	0.91349	Η	0.34070	3.22697	1.66039
С	1.71473	-1.08059	-1.70652	С	1.44921	4.62995	0.39390
Ο	2.19684	-0.21019	-2.39762	Н	1.25351	5.47472	1.06257
Ο	0.37547	-1.24762	-1.70157	Η	1.40279	5.01079	-0.63442
С	-0.27772	-2.18432	-0.80037	С	2.91037	4.19526	0.65084

0	3.68107	4.90968	1.27311	Η	0.98985	-3.80200	-0.86006
С	3.29400	2.87527	0.09828	С	1.92305	-1.53171	1.28868
Н	2.55939	2.35438	-0.50652	Н	2.58811	-2.31462	0.90663
C	4.48185	2.28814	0.33565	Н	2.13133	-1.43314	2.36081
Н	5.24127	2.84455	0.88642	C	2.30074	-0.20776	0.61279
C	4.80011	0.93034	-0.13781	H	2.24701	-0.31400	-0.48102
C	3.84949	-0.02097	-0.05278	0	3.64802	0.05270	1.01907
Н	2.92110	0.24707	0.44407	Si	4.82214	0.75047	0.02838
С	6.19515	0.72382	-0.68082	С	5.69942	-0.62948	-0.93282
Η	6.94270	0.97943	0.08167	С	6.51896	-1.48384	0.04270
Н	6.38202	1.38028	-1.53952	Η	7.31404	-0.90172	0.52379
Н	6.38357	-0.30508	-0.99938	Η	6.99710	-2.32055	-0.48662
				Н	5.88922	-1.91120	0.83353
				C	4.66411	-1.52137	-1.62975
Com	pound 5.37			Н	4.03195	-0.95413	-2.32535
	L .	aggioradaga	mhianana	Н	4.00933	-2.01644	
	structure was	assigned as a	unoiguous.				-0.90158
	-2X/6-31g(d)	,	.1 1	Н	5.16467	-2.31031	-2.20964
	implicit sol	vation in m	ethanol was	С	6.63257	-0.01813	-1.98562
used.				Η	7.37264	0.65779	-1.53825
				Η	6.07640	0.54752	-2.74272
Elect	ronic Energy	y: -1925.928	323689 har-	Η	7.18730	-0.81020	-2.50876
tree.	0.			С	6.00064	1.59646	1.20939
Free	Energy: -192	5 312116 har	tree	Н	5.53178	2.48022	1.65692
	211018): 1) 2			Н	6.91125	1.92768	0.69645
С	-3.37683	-2.57957	-1.70724	Н	6.30042	0.92910	2.02492
C	-3.68825	-1.60529	0.48078	C	4.06803	2.00250	-1.14750
C	-1.47862	-2.59217	-0.24682	Н	3.50450	2.76832	-0.60355
C	-2.32865	-2.14498	0.97626	Н	3.39834	1.55211	-1.88883
Ο	-2.07982	-2.23905	-1.51101	Η	4.87137	2.51174	-1.69393
Ν	-4.13173	-2.52087	-0.58209	С	1.42286	0.93749	1.03307
Η	-4.41440	-1.68923	1.29309	Η	1.32270	1.08072	2.10855
Η	-1.40992	-3.68717	-0.23035	С	0.79450	1.73955	0.16421
С	-2.57152	-3.35248	1.90392	Н	0.93447	1.56696	-0.90488
Η	-3.12014	-3.03910	2.79680	С	-0.12066	2.83335	0.52550
Н	-1.63002	-3.81426	2.21671	Č	-0.42348	3.01357	1.98803
Н	-3.16107	-4.10200	1.36766	Н	-0.86834	2.09767	2.39761
0	-3.76803	-2.89203	-2.81573	Н	-1.11002	3.83940	2.17998
H	-5.13080	-2.60871	-0.74001	H	0.49745	3.20139	2.55221
С	-0.07236	-2.00397	-0.27919	С	-0.67243	3.55615	-0.46692
Н	-0.15719	-0.95742	-0.60602	Η	-0.38876	3.30952	-1.49025
С	-1.64601	-1.10523	1.85248	С	-1.72878	4.61979	-0.34403
0	-2.27297	-0.29675	2.50774	Η	-1.50594	5.48269	-0.97845
Ο	-0.32172	-1.14976	1.98510	Н	-1.83136	4.97555	0.68786
Č	0.48611	-2.01107	1.13857	C	-3.08741	4.07307	-0.76574
Н	0.42273	-3.02558	1.55279	0	-3.81546	4.68215	-1.53602
C	0.42273	-2.79172	-1.24506	C	-3.44440	2.75211	-0.20375
Н	1.77484	-2.30578	-1.40245	H	-2.83336	2.37413	0.61266
Н	0.31260	-2.88121	-2.21587	С	-4.42263	1.99180	-0.71596

Н	-5.06041	2.39406	-1.50487	Η	-2.83660	-8.39270	-0.67230
С	-4.66897	0.61224	-0.26126	С	-2.04730	-3.40090	-3.57620
С	-3.61176	-0.17334	-0.00568	Н	-0.85550	-5.02580	-2.79150
Н	-2.61661	0.22761	-0.19451	Н	-1.63610	-4.07350	-1.56070
C	-6.10749	0.17873	-0.16611	C	-0.87010	-2.39770	-3.63160
H	-6.53443	0.06504	-1.17014	H	-2.97650	-2.88930	-3.31700
H				0			
	-6.70487	0.93412	0.35482		-2.20600	-3.95820	-4.87320
Η	-6.22551	-0.77133	0.36071	Si	-3.13050	-3.26060	-6.11350
				C	-2.29660	-3.71560	-7.76790
				С	-4.88040	-3.95130	-6.06350
Com	pound 5.38			С	-3.19010	-1.38420	-5.91020
This	structure was	assigned as c	orrect.	С	-0.84970	-3.19310	-7.75520
				С	-3.07340	-3.07560	-8.93120
Mole	ecular Mecha	nics (OPLS-	-2005), gas	С	-2.29180	-5.24620	-7.91900
phas		× ×	,, 0	Н	-1.77100	-5.72210	-7.08640
-	gy: -52.96225	7 k I		Н	-1.79490	-5.55590	-8.83870
Ener	69. 52.96225	/ 10.		Н	-3.30480	-5.64900	-7.94130
Ν	-7.63130	-0.88060	-2.28970	Н	-3.09600	-1.98870	-8.84470
C	-6.41860	-0.33370	-2.34850	Н	-4.10580	-3.42530	-8.96120
	-5.85040	-0.33370		H	-2.61850		-9.89210
0			-3.58440			-3.31780	
C	-6.75280	-1.11500	-4.32860	Н	-0.81600	-2.10760	-7.65940
C	-7.82150	-1.45290	-3.53980	Н	-0.32170	-3.45800	-8.67160
С	-9.00580	-2.33020	-3.84360	Н	-0.28760	-3.61200	-6.91880
Η	-6.49680	-1.33400	-5.35560	Н	-5.47050	-3.60970	-6.91230
С	-8.92500	-3.63770	-3.02180	Η	-4.87820	-5.03980	-6.07820
Ο	-9.05970	-2.62560	-5.23730	Η	-5.39990	-3.63010	-5.16290
Η	-9.91040	-1.78870	-3.56180	Η	-3.84650	-0.94030	-6.65430
С	-10.33030	-3.04880	-5.70760	Н	-2.21010	-0.92780	-6.03180
Н	-10.64430	-3.98900	-5.25530	Н	-3.57560	-1.10080	-4.93170
Н	-10.28010	-3.20460	-6.78520	С	-0.92740	-1.29240	-2.57860
Н	-11.09460	-2.29440	-5.51730	Ĥ	-0.84420	-1.90090	-4.59840
Н	-9.78070	-4.28510	-3.20410	Н	0.07940	-2.92600	-3.54610
H	-8.96260	-3.38570	-1.96100	0	0.04870	-1.01390	-1.88470
		-4.41150			-2.11420		
C	-7.64770		-3.29100	0		-0.65690	-2.56020
C	-6.58420	-4.41420	-2.47020	C	-2.33930	0.50200	-1.75940
Н	-7.59660	-4.91960	-4.24340	C	-3.15470	0.14290	-0.46630
Η	-6.63960	-3.85490	-1.54520	С	-2.96950	1.54710	-2.71060
С	-5.34360	-5.07550	-2.80470	Η	-1.38420	0.91450	-1.43060
С	-4.23450	-4.96480	-2.05800	С	-2.01590	2.06090	-3.81030
Η	-5.29420	-5.65940	-3.71230	Η	-3.84590	1.10160	-3.16760
Η	-4.25070	-4.37630	-1.15100	Η	-3.32220	2.41470	-2.15580
С	-2.89890	-5.58140	-2.43070	0	-1.04640	2.84920	-3.12830
С	-1.78970	-4.52120	-2.54350	С	-2.73890	2.95360	-4.85250
Ĥ	-2.98770	-6.08610	-3.39490	Ĥ	-1.55710	1.21630	-4.32890
0	-2.47840	-6.52160	-1.45060	C	0.29730	2.44900	-3.35740
C	-3.25050	-7.71330	-1.41720	H	0.55280	2.49690	-4.41630
н Н	-3.23030	-8.22320	-2.38110	Н	0.33280	1.43380	-3.00300
H	-4.28820	-8.22320	-1.14520	H	0.97340	3.11270	-2.81870
11	-4.20020	-7.31720	-1.14320	11	0.7/340	5.112/0	-2.010/0

С	-1.75000	3.73290	-5.73790	Η	-8.84800	3.66970	-7.80000
Η	-3.31840	3.68900	-4.29750	С	-6.20610	5.81860	-7.09400
С	-3.69980	2.14890	-5.75470	Н	-5.11680	5.75490	-7.07980
Н	-1.09970	3.05930	-6.29570	Н	-6.53430	6.09720	-6.09290
Н	-1.11960	4.39560	-5.14500	Н	-6.47940	6.63610	-7.76160
Н	-2.27810	4.35690	-6.45960	C	-6.42120	4.20210	-8.99990
Н	-3.13130	1.51560	-6.43570	Н	-6.85500	3.26910	-9.36210
$\overset{\Pi}{0}$	-4.51180	3.02700	-6.51520	Н	-6.74310	4.99660	-9.67360
H	-4.34130	1.47890	-5.18430	H	-5.33760	4.11170	-9.08910
Si	-6.20620	3.05850	-6.43200	C	-6.83630	4.48900	-7.54560
				C	-0.83030	4.48900	-7.34300
C	-6.75770	1.38130	-7.12170				
C	-6.57560	3.33430	-4.59000				
C	-7.12860	3.81880	-1.84890	a	1 = 20		
C	-5.93840	4.38680	-3.89840		npound 5.38		
С	-7.49480	2.52740	-3.88510	This	s structure was	assigned as ii	ncorrect.
С	-7.77610	2.76950	-2.52630				
С	-6.20510	4.62730	-2.53640		ecular Mecha	nics (OPLS-	-2005), gas
Н	-5.23380	5.01620	-4.42350	phas			
Η	-7.98640	1.70200	-4.37620	Ene	rgy: -52.56201	9 kJ.	
Η	-8.48380	2.13940	-2.00520				
Η	-5.70770	5.43850	-2.02410	Ν	-7.21680	-2.72940	0.50430
Η	-7.34410	4.00640	-0.80680	С	-7.37600	-1.69200	-0.31740
С	-7.57150	-1.12040	-8.17870	0	-7.95050	-2.02490	-1.50520
С	-5.85660	0.58120	-7.85710	С	-8.13320	-3.37780	-1.42550
С	-8.08520	0.92890	-6.96110	С	-7.69650	-3.82250	-0.20490
С	-8.48960	-0.31690	-7.47810	С	-7.66160	-5.22590	0.34350
С	-6.25520	-0.66590	-8.37710	Η	-8.56330	-3.87400	-2.28310
Η	-4.84880	0.93120	-8.02690	С	-6.27080	-5.86680	0.19530
Н	-8.80360	1.54130	-6.43620	Ō	-8.59870	-6.07980	-0.30460
Н	-9.50390	-0.65880	-7.33280	Ĥ	-7.89200	-5.20470	1.41030
Н	-5.55300	-1.27070	-8.93210	C	-9.94470	-5.86440	0.09580
Н	-7.88090	-2.07870	-8.57040	Н	-10.07410	-6.05470	1.16200
C	-4.52200	-0.52280	-0.79080	Н	-10.59850	-6.54820	-0.44550
C C	-3.37630	1.40270	0.40740	Н	-10.27640	-4.84800	-0.11840
C C	-2.31280	-0.82550	0.40600	Н	-6.29450	-6.89150	0.56600
С Н	-2.42400	1.86800	0.66530	H	-5.55950	-5.32480	0.81980
H		1.15200		C			
	-3.87470		1.34520		-5.77200	-5.87470	-1.23760
Н	-3.98050	2.16990	-0.07380	C	-4.63070	-5.29700	-1.64460
Н	-2.80090	-1.03750	1.35820	Н	-6.41480	-6.36880	-1.95290
Н	-1.32900	-0.41040	0.62760	Н	-4.01120	-4.80100	-0.91040
Н	-2.15120	-1.78840	-0.07990	C	-4.21360	-5.27970	-3.02880
0	-4.67680	-1.73640	-0.63300	С	-3.06250	-4.71930	-3.43150
С	-5.69360	0.36000	-1.24500	Η	-4.86320	-5.71720	-3.77280
Н	-5.36890	1.33810	-1.58950	Н	-2.39750	-4.27370	-2.70560
Н	-6.37590	0.50960	-0.40960	С	-2.60670	-4.63250	-4.87790
С	-8.36910	4.58490	-7.45080	С	-2.37530	-3.17210	-5.29890
Η	-8.69310	4.75350	-6.42290	Η	-3.36350	-5.06630	-5.53380
Н	-8.75460	5.40570	-8.05630	0	-1.37790	-5.32290	-5.06010

_							
С	-1.49180	-6.73730	-4.99910	Η	-0.53000	1.46840	-1.94590
Η	-2.18010	-7.11110	-5.75820	Η	0.03420	2.99090	-2.65080
Н	-1.83410	-7.07510	-4.02040	Η	0.22200	2.68920	-0.92380
Н	-0.51650	-7.18810	-5.18220	С	-1.67430	5.24610	-3.46310
С	-3.64450	-2.29250	-5.26340	Η	-3.42460	5.02080	-2.26340
Η	-1.95650	-3.14810	-6.30560	С	-3.92810	4.49730	-4.28300
Η	-1.60840	-2.74740	-4.65040	Η	-1.13480	4.73770	-4.26290
С	-3.32340	-0.79120	-5.41230	Н	-1.00020	5.34120	-2.61200
Н	-4.15340	-2.44440	-4.31150	Η	-1.90330	6.25490	-3.80620
Ο	-4.51910	-2.72300	-6.29650	Η	-4.93000	4.18210	-3.99550
Si	-6.16990	-2.35580	-6.37950	Ο	-3.41950	3.65390	-5.29970
С	-7.08510	-3.92600	-6.96500	Н	-4.03060	5.51450	-4.65590
С	-6.78520	-1.84400	-4.67020	Si	-4.06360	3.44480	-6.85380
С	-6.40250	-0.97200	-7.63600	С	-2.97900	2.07640	-7.55800
C	-6.55850	-4.32380	-8.35420	C	-5.84380	2.84500	-6.60880
Ċ	-8.59520	-3.64200	-7.03780	Ċ	-8.47830	1.86040	-6.24010
Č	-6.81550	-5.06440	-5.96730	Č	-6.18730	2.11780	-5.44920
Ĥ	-7.15300	-4.80740	-4.96280	Č	-6.83320	3.04260	-7.59700
Н	-5.74960	-5.28460	-5.90990	Č	-8.14400	2.55990	-7.41410
Н	-7.32450	-5.98250	-6.26150	C	-7.49690	1.63730	-5.25770
Н	-8.81460	-2.83030	-7.73230	Н	-5.43600	1.91920	-4.69980
Н	-8.99440	-3.35610	-6.06410	Н	-6.59190	3.56940	-8.50660
Н	-9.14850	-4.51910	-7.37420	Н	-8.89260	2.72430	-8.17570
Н	-6.75040	-3.54480	-9.09250	Н	-7.74390	1.08990	-4.35910
H	-7.02910	-5.23920	-9.09230	Н	-9.48210	1.48820	-6.09550
H	-5.48060	-4.49270	-8.33290	C	-1.32960	0.04230	-8.62710
п Н				C C			
	-6.62470	-2.63080	-3.93500		-1.64340	1.93760	-7.12560
Н	-7.85010	-1.61800	-4.67860	C	-3.47720	1.19450	-8.54000
Н	-6.27210	-0.95360	-4.30930	C	-2.65960	0.17680	-9.06910
Н	-7.45460	-0.72880	-7.77440	C	-0.82020	0.92490	-7.65560
Н	-5.99150	-1.24480	-8.60630	Н	-1.25470	2.60920	-6.37240
Н	-5.90210	-0.06110	-7.31550	Н	-4.49770	1.29380	-8.88180
C	-2.84430	-0.17260	-4.10200	Н	-3.05330	-0.50230	-9.81160
Н	-4.20740	-0.23730	-5.72340	Н	0.19810	0.82070	-7.30960
Н	-2.57370	-0.63740	-6.18610	Н	-0.70200	-0.73990	-9.02910
0	-1.64900	-0.09490	-3.82130	C	-6.05930	0.22570	-1.11820
0	-3.86960	0.21650	-3.31990	С	-4.06540	0.34550	0.45420
С	-3.65800	0.73940	-2.00590	С	-4.25980	-1.56470	-1.15340
С	-4.53280	-0.05160	-0.96790	Η	-2.97680	0.35670	0.52280
С	-3.84850	2.27960	-2.03830	Η	-4.41510	-0.35430	1.21390
Н	-2.62370	0.55750	-1.71330	Η	-4.41470	1.33740	0.74290
С	-2.62810	3.04460	-2.58920	Η	-4.61000	-2.15760	-0.30850
Η	-4.73110	2.50350	-2.62890	Η	-3.19310	-1.76510	-1.25930
Η	-4.06550	2.66940	-1.04550	Η	-4.75220	-1.95710	-2.04450
0	-1.70320	3.13290	-1.50820	Ο	-6.51450	0.85880	-2.07040
С	-2.95370	4.47830	-3.08430	С	-7.02710	-0.27010	-0.03800
Н	-2.20080	2.49380	-3.42770	Η	-7.93700	0.32810	-0.06230
С	-0.43950	2.54140	-1.77720	Η	-6.59950	-0.18470	0.95840

С	-2.48540	5.68360	-7.53930	Η	-3.34801	2.99220	2.78780
Н	-1.67750	4.99010	-7.77730	Н	-4.88850	1.58731	0.53448
Η	-2.30750	6.60050	-8.10180	С	-4.62424	0.57308	2.48445
Η	-2.39810	5.92680	-6.48010	C	-3.60353	-0.55681	2.25149
C	-3.91350	4.76050	-9.37570	Ĥ	-5.63603	0.15774	2.36456
Н	-4.86010	4.30990	-9.66920	0	-4.44836	0.96766	3.85054
Н	-3.12260	4.06660	-9.66450	C	-5.58914	1.60717	4.41129
H	-3.78430	5.66320	-9.97360	С Н	-6.45526	0.92901	4.43014
п С		5.00320 6.08940		п Н		2.51651	3.86190
	-4.96610		-7.51740		-5.86656		
Н	-4.96020	6.35480	-6.46220	Н	-5.32868	1.87866	5.43865
Н	-4.84310	7.01490	-8.08070	C	-3.64506	-1.22049	0.87279
Н	-5.95910	5.70480	-7.74620	Н	-3.78121	-1.33094	3.00952
С	-3.86100	5.07350	-7.86780	Н	-2.59706	-0.15576	2.41774
				С	-2.54669	-2.31336	0.75223
				Η	-3.48061	-0.46796	0.09058
				0	-4.93051	-1.82503	0.69655
	pound 5.38			Si	-5.75148	-2.03274	-0.77545
This	structure was	assigned as i	ncorrect.	С	-7.50756	-2.58251	-0.24584
B3L	YP/6-31g(d)			С	-5.76553	-0.41016	-1.73973
SMD	implicit sol	vation in m	ethanol was	С	-4.91666	-3.35228	-1.83829
used.	1			С	-7.42065	-3.82994	0.65914
				С	-8.33760	-2.92854	-1.50105
Elect	ronic Energy	y: -3261.367	754630 har-	С	-8.21440	-1.44884	0.52573
tree.				Н	-7.66793	-1.16651	1.43416
	Energy: -3260) 304082 har	tree	Н	-9.22154	-1.76537	0.83649
1100	Energy: 5200	5.50 1002 Hui		Н	-8.33150	-0.54610	-0.08682
Ν	-0.22603	3.70113	-0.54165	Н	-7.90015	-3.75899	-2.06890
C	-0.02238	2.86510	-1.51496	Н	-8.43469	-2.07286	-2.18163
0	-0.27526	3.39263	-2.74524	Н	-9.35576	-3.23194	-1.21462
C	-0.68551	4.68278	-2.49889	Н	-6.94298	-4.67606	0.14892
C	-0.65771	4.87930	-1.15723	Н	-8.42769	-4.15703	0.95915
C	-1.04012	6.11104	-0.37869	Н	-6.85310	-3.63179	1.57625
С Н	-0.94004			п Н			-2.69468
		5.28252	-3.35858		-6.29156	-0.54064	
C	-2.51889	6.09373	0.07491	Н	-4.74764	-0.07537	-1.97930
0	-0.88114	7.28701	-1.17424	Н	-6.26668	0.39980	-1.19677
Н	-0.39656	6.17544	0.51177	Н	-3.89387	-3.06324	-2.11081
С	0.47336	7.69706	-1.33742	Н	-5.46930	-3.49073	-2.77674
Η	0.94627	7.89957	-0.36550	Η	-4.86539	-4.32647	-1.33738
Η	0.45446	8.61957	-1.92477	С	-1.19863	-1.75029	0.36805
Η	1.07017	6.94622	-1.87195	Η	-2.84850	-3.04426	0.00212
Η	-3.15262	5.98652	-0.81359	Η	-2.43559	-2.83174	1.71138
Η	-2.71982	7.08062	0.51429	Ο	-0.50667	-1.04031	1.08267
С	-2.81248	5.01417	1.07421	Ο	-0.86142	-2.11903	-0.88004
С	-3.57364	3.93136	0.83671	С	0.45177	-1.78099	-1.42277
Η	-2.33423	5.11855	2.04982	С	0.21294	-0.86863	-2.67450
Н	-4.04303	3.81358	-0.14161	С	1.17957	-3.09603	-1.72340
С	-3.78421	2.85944	1.79748	Н	0.99322	-1.21438	-0.66369
Ċ	-4.45380	1.72638	1.52423	С	1.53688	-3.99869	-0.51901

Н	2.11160	-2.86516	-2.24735	Н	1.85175	-1.44707	-3.98948
Н	0.58163	-3.68684	-2.42498	Η	2.37136	-0.36270	-2.69289
0	0.37304	-4.52009	0.13928	0	-1.59268	0.69465	-2.29752
С	2.40134	-3.36339	0.59518	С	0.50192	1.47238	-1.45814
Η	2.10041	-4.84808	-0.93983	Н	1.51842	1.44477	-1.86079
С	-0.33323	-5.51660	-0.58584	Н	0.57300	1.17612	-0.40479
Н	-0.85810	-5.11098	-1.46120	С	7.60175	-2.09104	2.01855
Н	-1.07576	-5.93827	0.09856	Н	8.15311	-1.92531	1.08569
Н	0.33908	-6.32106	-0.91963	Н	8.34733	-2.23352	2.81510
С	2.82966	-4.43208	1.61208	Н	7.04491	-3.03075	1.92105
Н	1.78004	-2.62127	1.11347	С	7.53148	0.37871	2.46367
С	3.62078	-2.63515	0.01163	Η	8.00477	0.63594	1.50723
H	1.95885	-4.94774	2.02650	Н	6.94124	1.24312	2.78974
Н	3.38213	-3.98332	2.44252	Н	8.33804	0.24091	3.19899
Н	3.47846	-5.18393	1.14229	C	6.01677	-1.17288	3.73583
Н	4.20631	-3.32710	-0.61021	H	5.43745	-2.10402	3.73615
0	4.46519	-2.14818	1.06504	Н	5.34361	-0.36034	4.03524
Ĥ	3.30289	-1.80681	-0.63024	Н	6.78605	-1.26534	4.51672
Si	5.31295	-0.69376	1.03585	C	6.67959	-0.90420	2.36700
C	6.00474	-0.44981	-0.71305			0.90120	2.30700
Č	4.12857	0.70976	1.50199				
č	2.31636	2.75361	2.25999	Corr	pound 5.38		
C	4.50242	2.06995	1.47365		structure was	assigned as i	ncorrect
C	2.82269	0.40891	1.93568		YP/6-31g(d)	ussigned us i	neoneet.
C	1 92531	1 41375	2 30906	Gas	nhase		
C C	1.92531 3.61035	1.41375	2.30906	Gas	phase.		
С	3.61035	3.07880	1.84552		-	w -3261 314	526002 har-
C H	3.61035 5.50259	3.07880 2.35647	1.84552 1.15816	Elec	tronic Energy	y: -3261.315	526002 har-
C H H	3.61035 5.50259 2.49944	3.07880 2.35647 -0.62640	1.84552 1.15816 1.98901	Elec tree.	tronic Energy		
C H H H	3.61035 5.50259 2.49944 0.92223	3.07880 2.35647 -0.62640 1.14777	1.84552 1.15816 1.98901 2.63302	Elec tree.	tronic Energy		
C H H H	3.61035 5.50259 2.49944 0.92223 3.92617	3.07880 2.35647 -0.62640 1.14777 4.11865	1.84552 1.15816 1.98901 2.63302 1.81033	Elec tree. Free	tronic Energy	0.250253 har	tree.
C H H H H	3.61035 5.50259 2.49944 0.92223 3.92617 1.61902	3.07880 2.35647 -0.62640 1.14777 4.11865 3.53796	1.84552 1.15816 1.98901 2.63302 1.81033 2.54285	Elec tree. Free N	tronic Energy Energy: -3260 4.57263	0.250253 har -3.29071	tree. -1.17005
C H H H H C	3.61035 5.50259 2.49944 0.92223 3.92617 1.61902 7.05370	3.07880 2.35647 -0.62640 1.14777 4.11865 3.53796 -0.18601	1.84552 1.15816 1.98901 2.63302 1.81033 2.54285 -3.33268	Elec tree. Free N C	tronic Energy Energy: -326 4.57263 3.36347	0.250253 har -3.29071 -3.25091	tree. -1.17005 -1.64748
C H H H H C C	3.61035 5.50259 2.49944 0.92223 3.92617 1.61902 7.05370 6.67086	3.07880 2.35647 -0.62640 1.14777 4.11865 3.53796 -0.18601 -1.51901	1.84552 1.15816 1.98901 2.63302 1.81033 2.54285 -3.33268 -1.35002	Elec tree. Free N C O	tronic Energy Energy: -3260 4.57263 3.36347 3.18800	0.250253 har -3.29071 -3.25091 -2.32540	tree. -1.17005 -1.64748 -2.62527
C H H H H C C C C	$\begin{array}{c} 3.61035\\ 5.50259\\ 2.49944\\ 0.92223\\ 3.92617\\ 1.61902\\ 7.05370\\ 6.67086\\ 5.87042 \end{array}$	3.07880 2.35647 -0.62640 1.14777 4.11865 3.53796 -0.18601 -1.51901 0.74929	1.84552 1.15816 1.98901 2.63302 1.81033 2.54285 -3.33268 -1.35002 -1.43878	Elec tree. Free N C O C	tronic Energy Energy: -3260 4.57263 3.36347 3.18800 4.42083	0.250253 har -3.29071 -3.25091 -2.32540 -1.73513	tree. -1.17005 -1.64748 -2.62527 -2.76952
C H H H H C C C C C C	$\begin{array}{c} 3.61035\\ 5.50259\\ 2.49944\\ 0.92223\\ 3.92617\\ 1.61902\\ 7.05370\\ 6.67086\\ 5.87042\\ 6.39008 \end{array}$	3.07880 2.35647 -0.62640 1.14777 4.11865 3.53796 -0.18601 -1.51901 0.74929 0.88377	1.84552 1.15816 1.98901 2.63302 1.81033 2.54285 -3.33268 -1.35002 -1.43878 -2.72947	Elec tree. Free N C O C C	tronic Energy Energy: -326 4.57263 3.36347 3.18800 4.42083 5.26779	0.250253 har -3.29071 -3.25091 -2.32540 -1.73513 -2.31970	tree. -1.17005 -1.64748 -2.62527 -2.76952 -1.88662
C H H H H C C C C C C C	3.61035 5.50259 2.49944 0.92223 3.92617 1.61902 7.05370 6.67086 5.87042 6.39008 7.18982	3.07880 2.35647 -0.62640 1.14777 4.11865 3.53796 -0.18601 -1.51901 0.74929 0.88377 -1.39182	1.84552 1.15816 1.98901 2.63302 1.81033 2.54285 -3.33268 -1.35002 -1.43878 -2.72947 -2.63987	Elec tree. Free N C O C C C	tronic Energy Energy: -3260 4.57263 3.36347 3.18800 4.42083 5.26779 6.72767	0.250253 har -3.29071 -3.25091 -2.32540 -1.73513 -2.31970 -2.05807	tree. -1.17005 -1.64748 -2.62527 -2.76952 -1.88662 -1.65757
C H H H C C C C C C H	3.61035 5.50259 2.49944 0.92223 3.92617 1.61902 7.05370 6.67086 5.87042 6.39008 7.18982 6.78291	3.07880 2.35647 -0.62640 1.14777 4.11865 3.53796 -0.18601 -1.51901 0.74929 0.88377 -1.39182 -2.47125	1.84552 1.15816 1.98901 2.63302 1.81033 2.54285 -3.33268 -1.35002 -1.43878 -2.72947 -2.63987 -0.83782	Elec tree. Free N C O C C C C H	tronic Energy Energy: -3260 4.57263 3.36347 3.18800 4.42083 5.26779 6.72767 4.50946	0.250253 har -3.29071 -3.25091 -2.32540 -1.73513 -2.31970 -2.05807 -0.95786	tree. -1.17005 -1.64748 -2.62527 -2.76952 -1.88662 -1.65757 -3.50859
C H H H H C C C C C C H H H	3.61035 5.50259 2.49944 0.92223 3.92617 1.61902 7.05370 6.67086 5.87042 6.39008 7.18982 6.78291 5.34746	3.07880 2.35647 -0.62640 1.14777 4.11865 3.53796 -0.18601 -1.51901 0.74929 0.88377 -1.39182 -2.47125 1.59432	1.84552 1.15816 1.98901 2.63302 1.81033 2.54285 -3.33268 -1.35002 -1.43878 -2.72947 -2.63987 -0.83782 -1.00071	Elec tree. Free N C O C C C C H C	tronic Energy Energy: -3260 4.57263 3.36347 3.18800 4.42083 5.26779 6.72767 4.50946 7.04259	0.250253 har -3.29071 -3.25091 -2.32540 -1.73513 -2.31970 -2.05807 -0.95786 -1.71815	tree. -1.17005 -1.64748 -2.62527 -2.76952 -1.88662 -1.65757 -3.50859 -0.17935
C H H H H H C C C C C H H H H H H	3.61035 5.50259 2.49944 0.92223 3.92617 1.61902 7.05370 6.67086 5.87042 6.39008 7.18982 6.78291 5.34746 6.27194	3.07880 2.35647 -0.62640 1.14777 4.11865 3.53796 -0.18601 -1.51901 0.74929 0.88377 -1.39182 -2.47125 1.59432 1.82337	1.84552 1.15816 1.98901 2.63302 1.81033 2.54285 -3.33268 -1.35002 -1.43878 -2.72947 -2.63987 -0.83782 -1.00071 -3.26389	Elec tree. Free N C O C C C C H C O	tronic Energy Energy: -3260 4.57263 3.36347 3.18800 4.42083 5.26779 6.72767 4.50946 7.04259 7.09693	0.250253 har -3.29071 -3.25091 -2.32540 -1.73513 -2.31970 -2.05807 -0.95786 -1.71815 -1.00409	tree. -1.17005 -1.64748 -2.62527 -2.76952 -1.88662 -1.65757 -3.50859 -0.17935 -2.54221
C H H H C C C C C C H H H H H H H	3.61035 5.50259 2.49944 0.92223 3.92617 1.61902 7.05370 6.67086 5.87042 6.39008 7.18982 6.78291 5.34746 6.27194 7.69753	3.07880 2.35647 -0.62640 1.14777 4.11865 3.53796 -0.18601 -1.51901 0.74929 0.88377 -1.39182 -2.47125 1.59432 1.82337 -2.23363	1.84552 1.15816 1.98901 2.63302 1.81033 2.54285 -3.33268 -1.35002 -1.43878 -2.72947 -2.63987 -0.83782 -1.00071 -3.26389 -3.10451	Elec tree. Free N C O C C C C H C O H	tronic Energy Energy: -3260 4.57263 3.36347 3.18800 4.42083 5.26779 6.72767 4.50946 7.04259 7.09693 7.29061	0.250253 har -3.29071 -3.25091 -2.32540 -1.73513 -2.31970 -2.05807 -0.95786 -1.71815 -1.00409 -2.97044	tree. -1.17005 -1.64748 -2.62527 -2.76952 -1.88662 -1.65757 -3.50859 -0.17935 -2.54221 -1.91948
C H H H H C C C C C C H H H H H H H H H	3.61035 5.50259 2.49944 0.92223 3.92617 1.61902 7.05370 6.67086 5.87042 6.39008 7.18982 6.78291 5.34746 6.27194 7.69753 7.45717	3.07880 2.35647 -0.62640 1.14777 4.11865 3.53796 -0.18601 -1.51901 0.74929 0.88377 -1.39182 -2.47125 1.59432 1.82337 -2.23363 -0.08402	1.84552 1.15816 1.98901 2.63302 1.81033 2.54285 -3.33268 -1.35002 -1.43878 -2.72947 -2.63987 -0.83782 -1.00071 -3.26389 -3.10451 -4.33711	Elec tree. Free N C O C C C C H C O H C O H C C	tronic Energy Energy: -3260 4.57263 3.36347 3.18800 4.42083 5.26779 6.72767 4.50946 7.04259 7.09693 7.29061 8.46995	0.250253 har -3.29071 -3.25091 -2.32540 -1.73513 -2.31970 -2.05807 -0.95786 -1.71815 -1.00409 -2.97044 -0.97752	tree. -1.17005 -1.64748 -2.62527 -2.76952 -1.88662 -1.65757 -3.50859 -0.17935 -2.54221 -1.91948 -2.88232
C H H H H H C C C C C C H H H H H H C C	3.61035 5.50259 2.49944 0.92223 3.92617 1.61902 7.05370 6.67086 5.87042 6.39008 7.18982 6.78291 5.34746 6.27194 7.69753 7.45717 -0.40140	3.07880 2.35647 -0.62640 1.14777 4.11865 3.53796 -0.18601 -1.51901 0.74929 0.88377 -1.39182 -2.47125 1.59432 1.82337 -2.23363 -0.08402 0.45609	1.84552 1.15816 1.98901 2.63302 1.81033 2.54285 -3.33268 -1.35002 -1.43878 -2.72947 -2.63987 -0.83782 -1.00071 -3.26389 -3.10451 -4.33711 -2.16625	Elec tree. Free N C O C C C C H C C H C H	tronic Energy Energy: -3260 4.57263 3.36347 3.18800 4.42083 5.26779 6.72767 4.50946 7.04259 7.09693 7.29061 8.46995 9.11614	0.250253 har -3.29071 -3.25091 -2.32540 -1.73513 -2.31970 -2.05807 -0.95786 -1.71815 -1.00409 -2.97044 -0.97752 -0.79227	tree. -1.17005 -1.64748 -2.62527 -2.76952 -1.88662 -1.65757 -3.50859 -0.17935 -2.54221 -1.91948 -2.88232 -2.01206
C H H H H H C C C C C H H H H H C C C	3.61035 5.50259 2.49944 0.92223 3.92617 1.61902 7.05370 6.67086 5.87042 6.39008 7.18982 6.78291 5.34746 6.27194 7.69753 7.45717 -0.40140 -0.76468	3.07880 2.35647 -0.62640 1.14777 4.11865 3.53796 -0.18601 -1.51901 0.74929 0.88377 -1.39182 -2.47125 1.59432 1.82337 -2.23363 -0.08402 0.45609 -1.51320	$\begin{array}{c} 1.84552\\ 1.15816\\ 1.98901\\ 2.63302\\ 1.81033\\ 2.54285\\ -3.33268\\ -1.35002\\ -1.43878\\ -2.72947\\ -2.63987\\ -0.83782\\ -1.00071\\ -3.26389\\ -3.10451\\ -4.33711\\ -2.16625\\ -3.67382\end{array}$	Elec tree. Free N C O C C C C H C C H C O H C H H H	tronic Energy Energy: -3260 4.57263 3.36347 3.18800 4.42083 5.26779 6.72767 4.50946 7.04259 7.09693 7.29061 8.46995 9.11614 8.60117	0.250253 har -3.29071 -3.25091 -2.32540 -1.73513 -2.31970 -2.05807 -0.95786 -1.71815 -1.00409 -2.97044 -0.97752 -0.79227 -0.15871	tree. -1.17005 -1.64748 -2.62527 -2.76952 -1.88662 -1.65757 -3.50859 -0.17935 -2.54221 -1.91948 -2.88232 -2.01206 -3.59435
C H H H H H C C C C C H H H H H C C C C	3.61035 5.50259 2.49944 0.92223 3.92617 1.61902 7.05370 6.67086 5.87042 6.39008 7.18982 6.78291 5.34746 6.27194 7.69753 7.45717 -0.40140 -0.76468 1.55520	3.07880 2.35647 -0.62640 1.14777 4.11865 3.53796 -0.18601 -1.51901 0.74929 0.88377 -1.39182 -2.47125 1.59432 1.82337 -2.23363 -0.08402 0.45609 -1.51320 -0.58216	$\begin{array}{c} 1.84552\\ 1.15816\\ 1.98901\\ 2.63302\\ 1.81033\\ 2.54285\\ -3.33268\\ -1.35002\\ -1.43878\\ -2.72947\\ -2.63987\\ -0.83782\\ -1.00071\\ -3.26389\\ -3.10451\\ -4.33711\\ -2.16625\\ -3.67382\\ -3.38912\end{array}$	Elec tree. Free N C O C C C C H C O H C O H C H H H H	tronic Energy Energy: -3260 4.57263 3.36347 3.18800 4.42083 5.26779 6.72767 4.50946 7.04259 7.09693 7.29061 8.46995 9.11614 8.60117 8.78552	0.250253 har -3.29071 -3.25091 -2.32540 -1.73513 -2.31970 -2.05807 -0.95786 -1.71815 -1.00409 -2.97044 -0.97752 -0.79227 -0.15871 -1.91928	tree. -1.17005 -1.64748 -2.62527 -2.76952 -1.88662 -1.65757 -3.50859 -0.17935 -2.54221 -1.91948 -2.88232 -2.01206 -3.59435 -3.35758
C H H H H H C C C C C H H H H H C C C C	3.61035 5.50259 2.49944 0.92223 3.92617 1.61902 7.05370 6.67086 5.87042 6.39008 7.18982 6.78291 5.34746 6.27194 7.69753 7.45717 -0.40140 -0.76468 1.55520 -0.92921	3.07880 2.35647 -0.62640 1.14777 4.11865 3.53796 -0.18601 -1.51901 0.74929 0.88377 -1.39182 -2.47125 1.59432 1.82337 -2.23363 -0.08402 0.45609 -1.51320 -0.58216 -0.84046	$\begin{array}{c} 1.84552\\ 1.15816\\ 1.98901\\ 2.63302\\ 1.81033\\ 2.54285\\ -3.33268\\ -1.35002\\ -1.43878\\ -2.72947\\ -2.63987\\ -0.83782\\ -1.00071\\ -3.26389\\ -3.10451\\ -4.33711\\ -2.16625\\ -3.67382\\ -3.38912\\ -4.52257\end{array}$	Elec tree. Free N C O C C C C H C C H C O H C H H H H	tronic Energy Energy: -3260 4.57263 3.36347 3.18800 4.42083 5.26779 6.72767 4.50946 7.04259 7.09693 7.29061 8.46995 9.11614 8.60117 8.78552 8.13416	0.250253 har -3.29071 -3.25091 -2.32540 -1.73513 -2.31970 -2.05807 -0.95786 -1.71815 -1.00409 -2.97044 -0.97752 -0.79227 -0.15871 -1.91928 -1.61584	tree. -1.17005 -1.64748 -2.62527 -2.76952 -1.88662 -1.65757 -3.50859 -0.17935 -2.54221 -1.91948 -2.88232 -2.01206 -3.59435 -3.35758 -0.08583
C H H H H H C C C C C H H H H H C C C C	3.61035 5.50259 2.49944 0.92223 3.92617 1.61902 7.05370 6.67086 5.87042 6.39008 7.18982 6.78291 5.34746 6.27194 7.69753 7.45717 -0.40140 -0.76468 1.55520 -0.92921 -1.73550	3.07880 2.35647 -0.62640 1.14777 4.11865 3.53796 -0.18601 -1.51901 0.74929 0.88377 -1.39182 -2.47125 1.59432 1.82337 -2.23363 -0.08402 0.45609 -1.51320 -0.58216 -0.84046 -1.72539	1.84552 1.15816 1.98901 2.63302 1.81033 2.54285 -3.33268 -1.35002 -1.43878 -2.72947 -2.63987 -0.83782 -1.00071 -3.26389 -3.10451 -4.33711 -2.16625 -3.67382 -3.38912 -4.52257 -3.22136	Elec tree. Free N C O C C C C H C O H C O H C H H H H H	tronic Energy Energy: -3260 4.57263 3.36347 3.18800 4.42083 5.26779 6.72767 4.50946 7.04259 7.09693 7.29061 8.46995 9.11614 8.46995 9.11614 8.60117 8.78552 8.13416 6.74883	0.250253 har -3.29071 -3.25091 -2.32540 -1.73513 -2.31970 -2.05807 -0.95786 -1.71815 -1.00409 -2.97044 -0.97752 -0.79227 -0.15871 -1.91928 -1.61584 -2.57562	tree. -1.17005 -1.64748 -2.62527 -2.76952 -1.88662 -1.65757 -3.50859 -0.17935 -2.54221 -1.91948 -2.88232 -2.01206 -3.59435 -3.35758 -0.08583 0.43637
C H H H H H C C C C C H H H H H C C C C	3.61035 5.50259 2.49944 0.92223 3.92617 1.61902 7.05370 6.67086 5.87042 6.39008 7.18982 6.78291 5.34746 6.27194 7.69753 7.45717 -0.40140 -0.76468 1.55520 -0.92921	3.07880 2.35647 -0.62640 1.14777 4.11865 3.53796 -0.18601 -1.51901 0.74929 0.88377 -1.39182 -2.47125 1.59432 1.82337 -2.23363 -0.08402 0.45609 -1.51320 -0.58216 -0.84046	$\begin{array}{c} 1.84552\\ 1.15816\\ 1.98901\\ 2.63302\\ 1.81033\\ 2.54285\\ -3.33268\\ -1.35002\\ -1.43878\\ -2.72947\\ -2.63987\\ -0.83782\\ -1.00071\\ -3.26389\\ -3.10451\\ -4.33711\\ -2.16625\\ -3.67382\\ -3.38912\\ -4.52257\end{array}$	Elec tree. Free N C O C C C C H C C H C O H C H H H H	tronic Energy Energy: -3260 4.57263 3.36347 3.18800 4.42083 5.26779 6.72767 4.50946 7.04259 7.09693 7.29061 8.46995 9.11614 8.60117 8.78552 8.13416	0.250253 har -3.29071 -3.25091 -2.32540 -1.73513 -2.31970 -2.05807 -0.95786 -1.71815 -1.00409 -2.97044 -0.97752 -0.79227 -0.15871 -1.91928 -1.61584	tree. -1.17005 -1.64748 -2.62527 -2.76952 -1.88662 -1.65757 -3.50859 -0.17935 -2.54221 -1.91948 -2.88232 -2.01206 -3.59435 -3.35758 -0.08583

Η	6.51952	0.42111	-0.31800	С	0.86293	-3.37065	0.90432
Н	5.38815	-1.28115	1.97205	С	-1.75455	-3.19446	0.82486
С	4.85577	0.81828	1.77242	Н	-0.44562	-2.72702	2.46976
C	3.98932	0.89280	2.79760	С	-2.96477	-2.85899	1.71057
Ĥ	5.03086	1.70816	1.16538	Ĥ	-1.88341	-2.81882	-0.19110
Н	3.80720	0.01362	3.41880	Н	-1.70559	-4.28748	0.76413
C	3.17753	2.11049	3.15247	0	-2.78619	-3.59329	2.93034
C	1.67028	1.86360	2.98602	C	-4.30504	-3.24892	1.03650
Н	3.48071	2.95343	2.51159	H	-2.98599	-1.78386	1.92893
0	3.35183	2.93343	4.52592	C	-2.98599	-2.84393	4.12776
C					-3.97585		
	4.62785	3.00578	4.81957	Н		-2.48321	4.25737
Н	4.83033	3.91752	4.23379	Н	-2.25893	-1.98938	4.16218
Н	5.43638	2.28607	4.62551	H	-2.71143	-3.52560	4.95123
Н	4.62568	3.26201	5.88262	C	-5.48638	-3.21218	2.01663
C	1.22572	1.58346	1.54832	Н	-4.19982	-4.28472	0.67733
Н	1.13810	2.75127	3.34731	C	-4.60428	-2.39628	-0.20633
Н	1.37798	1.02732	3.63031	Н	-5.65979	-2.19751	2.39078
С	-0.24324	1.08299	1.49265	Η	-5.30626	-3.87347	2.86774
Н	1.86830	0.80642	1.11141	Н	-6.40542	-3.54444	1.51854
0	1.36825	2.78237	0.79398	Н	-3.84753	-2.55218	-0.98479
Si	1.49432	2.96719	-0.87798	Ο	-4.65555	-1.01692	0.14667
С	2.56063	4.54140	-1.12531	Η	-5.56857	-2.72033	-0.62339
С	2.30415	1.44056	-1.64904	Si	-4.91637	0.30865	-0.84983
С	-0.21796	3.21772	-1.63653	С	-4.37763	1.75785	0.23333
С	1.90081	5.73276	-0.39704	С	-3.77495	0.16915	-2.35264
С	2.67793	4.87142	-2.62992	С	-1.94372	-0.10321	-4.49433
С	3.97865	4.33214	-0.55416	С	-4.11283	0.56729	-3.65898
Η	4.50415	3.50749	-1.05209	C	-2.48359	-0.36290	-2.15386
Η	3.95354	4.11728	0.52004	Ċ	-1.58005	-0.50864	-3.20827
Η	4.58601	5.23836	-0.69540	Ċ	-3.20922	0.44055	-4.71664
Н	1.70256	5.07728	-3.08645	Ĥ	-5.09446	0.98315	-3.86630
Н	3.14769	4.05740	-3.19651	Н	-2.17122	-0.67459	-1.16029
Н	3.29937	5.76717	-2.77485	Н	-0.60727	-0.95342	-3.02032
Н	0.90086	5.95013	-0.79225	Н	-3.49831	0.76015	-5.71495
Н	2.50642	6.64259	-0.52286	Н	-1.24465	-0.21338	-5.31969
H	1.80172	5.54250	0.67731	C	-3.61503	3.94061	1.85973
H							
	1.67303	0.55025	-1.53975	C	-4.34764	1.64549	1.63582
Н	2.45360	1.59513	-2.72500	C	-4.00774	2.99295	-0.33050
Н	3.28024	1.20939	-1.20762	C	-3.63521	4.07449	0.46996
Н	-0.79113	3.97053	-1.08414	C	-3.96938	2.72172	2.44166
Н	-0.80358	2.29159	-1.63215	Н	-4.61448	0.70044	2.10066
Н	-0.14757	3.54614	-2.68072	Η	-3.99726	3.11333	-1.41185
С	-0.38164	-0.32144	2.04367	Н	-3.35588	5.01899	0.00953
Н	-0.58451	1.09292	0.45566	Н	-3.95122	2.60866	3.52286
Н	-0.88192	1.75270	2.07598	Н	-3.32159	4.77994	2.48508
0	-0.47011	-0.60074	3.22317	С	1.03474	-3.32016	-0.62453
0	-0.35177	-1.23687	1.04336	С	0.80775	-4.84357	1.39024
С	-0.43242	-2.65251	1.38041	С	2.09688	-2.68886	1.54684

Η	0.45523	-4.87498	2.42676	Н	2.25329	-5.02911	-1.64021
Η	1.79783	-5.30838	1.36572	Η	2.54029	-4.32131	-3.25721
Н	0.12921	-5.46128	0.79344	Н	-0.52181	-4.47420	-4.09011
Η	3.02461	-3.20158	1.27568	Н	-1.10571	-2.90870	-4.66291
Н	1.99872	-2.71188	2.63825	С	-1.93881	-3.49530	-2.78301
Н	2.18751	-1.64548	1.23439	С	-2.92451	-2.57879	-2.78271
0	0.30128	-2.68659	-1.35613	Н	-1.86631	-4.20580	-1.95431
C	2.20453	-4.11172	-1.26336	Н	-2.95250	-1.84859	-3.59651
Н	1.79075	-4.58237	-2.16247	С	-3.85451	-2.35899	-1.70041
Н	2.59059	-4.89054	-0.60561	Č	-4.56350	-1.22559	-1.54941
С	-7.58344	0.28745	0.03870	Η	-3.90421	-3.11859	-0.91331
H	-7.31841	1.05572	0.77462	Н	-4.51940	-0.44839	-2.32061
Н	-8.66189	0.37653	-0.15715	C	-5.39040	-0.91329	-0.34721
Н	-7.40733	-0.69044	0.49987	Ċ	-4.91910	0.32801	0.40249
C	-7.12460	1.84619	-1.86423	Ĥ	-5.37560	-1.78109	0.33779
H	-6.63268	2.03211	-2.82620	0	-6.75580	-0.64028	-0.70511
Н	-6.83729	2.65475	-1.18325	Č	-7.42660	-1.79908	-1.15731
Н	-8.20775	1.92799	-2.03629	Ĥ	-7.39331	-2.60178	-0.40171
C	-7.24494	-0.63716	-2.27084	Н	-7.00040	-2.19158	-2.09441
H	-7.10021	-1.64502	-1.86463	Н	-8.47000	-1.51938	-1.33421
Н	-8.31794	-0.52745	-2.48647	C	-3.50470	0.24671	0.96419
Н	-6.71066	-0.58731	-3.22557	Ĥ	-5.61920	0.50401	1.23179
C	-6.79036	0.45584	-1.27813	Н	-4.98840	1.20291	-0.26321
		0.10001	1.27015	C	-3.21800	1.47181	1.84699
				Н	-2.77400	0.20441	0.13539
Con	pound 5.38			0	-3.39740	-0.92389	1.76659
	structure was	assigned as i	ncorrect	Si	-1.94080	-1.72140	2.10389
	5-2X/6-31g(d)/			C	-2.30571	-2.57909	3.75649
	D implicit sol			C	-1.53971	-2.96090	0.75889
used	-	varion in in	culturior wus	C	-0.49390	-0.53000	2.23389
used	-			C	-1.05261	-3.31460	4.23819
Elec	tronic Ene	ergy (M0	6-2X): -	C	-3.44571	-3.58659	3.57999
).17481960 ha	U U (0 211).	C	-2.71210	-1.53749	4.80299
	Energy Corr		L)· 1 18098	H	-3.62910	-1.00439	4.51719
hart			L). 1.10070	Н	-1.92820	-0.78309	4.96389
marti				Н	-2.90190	-2.01649	5.77669
Ν	-0.70330	-0.52550	-3.34831	Н	-3.18181	-4.38979	2.87789
C	-0.90900	0.45580	-2.52391	Н	-4.36421	-3.11019	3.20889
Õ	-0.27190	0.31260	-1.32901	Н	-3.69311	-4.06589	4.54059
Č	0.36970	-0.89770	-1.42121	Н	-1.25111	-3.84850	5.18129
C	0.10170	-1.41500	-2.64531	Н	-0.21861	-2.62370	4.42769
Č	0.43809	-2.76700	-3.18311	Н	-0.70661	-4.06270	3.51029
Н	0.92790	-1.21080	-0.54821	Н	-2.29141	-3.75599	0.67439
C	-0.81521	-3.46710	-3.76331	Н	-0.56931	-3.44080	0.95359
Õ	1.02099	-3.48580	-2.09771	Н	-1.45711	-2.47790	-0.22411
Н	1.18149	-2.68560	-3.99821	Н	0.44800	-1.09890	2.19659
C	1.76729	-4.60830	-2.52621	Н	-0.48320	0.05080	3.16639
H	1.13029	-5.38480	-2.97701	Н	-0.46750	0.18310	1.39769

С	-2.93709	2.76121	1.13249	Н	1.86759	-4.45180	1.09229
Η	-2.32900	1.26171	2.45699	Н	2.88840	-2.22431	4.62909
Η	-4.05430	1.63321	2.53669	Н	1.91559	-4.25130	3.57139
0	-3.51039	3.81511	1.34459	С	-1.07379	2.95470	-2.57071
0	-1.90999	2.62120	0.26819	С	-1.09459	5.42340	-2.16651
С	-1.27919	3.83160	-0.24931	С	-3.20439	4.13751	-1.87041
С	-1.68079	4.07980	-1.73131	Н	-1.42048	6.21530	-1.48141
С	0.20891	3.64070	-0.01661	Н	-1.45099	5.68140	-3.17091
Н	-1.65899	4.67730	0.33729	Н	-0.00149	5.41980	-2.19611
С	0.58931	3.47670	1.44969	Н	-3.49059	4.25801	-2.92251
Н	0.56021	2.77310	-0.58991	Н	-3.59009	5.00291	-1.31871
Н	0.74651	4.51520	-0.40621	Н	-3.71289	3.24721	-1.48451
0	0.29461	4.72040	2.09889	0	-0.00289	3.08910	-3.14371
С	2.07551	3.10799	1.59909	С	-1.80760	1.62311	-2.65641
Н	-0.02619	2.68470	1.91379	Н	-2.30290	1.57791	-3.63551
С	-0.40909	4.57390	3.31579	Н	-2.59910	1.55481	-1.90011
Н	0.14311	3.96810	4.05059	С	6.72300	-1.24372	-0.04711
Н	-0.54979	5.57940	3.72669	Н	6.52750	-1.36122	-1.12191
Н	-1.39929	4.11370	3.16189	Н	7.81660	-1.22602	0.08139
С	2.61211	3.34999	3.00289	Н	6.35199	-2.14592	0.46089
Н	2.64781	3.73089	0.89039	С	6.62760	1.24208	-0.27171
С	2.29440	1.65200	1.20529	Н	6.22131	2.19078	0.10479
Н	2.09351	2.71699	3.73749	Н	6.38160	1.17599	-1.34091
Н	2.49101	4.39519	3.30819	Н	7.72440	1.30148	-0.19301
Н	3.68011	3.10619	3.05439	С	6.49970	0.18418	1.98619
Н	1.92220	0.99520	2.01089	H	6.18870	-0.68122	2.58739
0	3.68700	1.42569	1.00149	Н	7.59470	0.26158	2.07589
H	1.73160	1.38580	0.29419	Н	6.07120	1.08549	2.44609
Si	4.21110	-0.02911	0.34289	С	6.10090	0.03739	0.51509
С	3.43810	-1.41941	1.34439				
Č	3.71380	-0.09411	-1.46771				
Č	3.06470	-0.10061	-4.21611	Con	npound 5.38		
Č	3.92860	-1.23281	-2.26661		structure was	assigned as o	correct
Č	3.17420	1.04439	-2.09361		YP/6-31g(d)		
Ċ	2.85010	1.04339	-3.44951		D implicit sol	vation in m	ethanol was
Č	3.61100	-1.23771	-3.62331	used	1	valion in in	
H	4.35529	-2.13801	-1.82941	ubee	••		
Н	3.00901	1.95489	-1.51221	Elec	tronic Energy	r -3261 370)99667 har-
Н	2.43111	1.93699	-3.90971	tree.	0,	. 5201.570	//////////////////////////////////////
H	3.79299	-2.13151	-4.21991		Energy: -3260) 304187 har	tree
Н	2.80860	-0.10471	-5.27511	1100	Ellergy: 5200	5.50 1107 Hui	
C	2.33309	-3.45991	2.95019	Ν	1.72707	3.48448	-2.34562
C C	3.42600	-1.31761	2.74899	C	0.90550	2.47951	-2.28844
C C	2.85969	-2.56341	0.77159	0	0.26733	2.36610	-1.09324
C C	2.31219	-3.57401	1.56159	C	0.75212	3.40781	-0.33222
C C	2.88420	-2.32431	3.54399	C C	1.64474	4.08937	-1.09142
С Н	3.84150	-0.42921	3.23099	C C	2.53019	4.08937 5.24044	-0.71432
H	2.81999	-0.42921	-0.31361	Н	0.36142	3.49948	0.66784
11	2.01777	-2.00401	-0.51501	11	0.30142	5.77740	0.00/04

С	4.03040	4.85820	-0.85120	Η	3.10556	1.02491	2.97948
Ο	2.18227	5.60342	0.62148	Η	2.08507	0.95241	1.53237
Η	2.33740	6.09021	-1.38774	Η	-0.60596	-0.99148	2.64864
С	2.52208	6.94017	0.97132	Η	-0.10439	-2.64758	2.27687
Н	3.60680	7.11172	0.96119	Н	0.11454	-1.35853	1.08071
Н	2.15176	7.10198	1.98751	С	2.04416	-3.35700	-1.36288
Н	2.04335	7.66340	0.29537	Н	1.47272	-3.41532	0.65936
Н	4.62595	5.73831	-0.57368	Н	2.96269	-4.30258	0.30328
Н	4.22656	4.65899	-1.91066	0	2.33604	-4.22654	-2.16747
C	4.41697	3.67320	-0.01415	Ō	1.29948	-2.27404	-1.65790
Ċ	4.77259	2.47405	-0.51097	Ċ	0.66741	-2.13502	-2.96909
H	4.36202	3.80292	1.06738	Č	1.45758	-1.08956	-3.83266
Н	4.81232	2.33655	-1.59238	Č	-0.80193	-1.81357	-2.68075
C	5.07692	1.30630	0.30399	H	0.74683	-3.09226	-3.48727
C	5.33823	0.08346	-0.19356	C	-1.57796	-2.98896	-2.06156
H	5.05887	1.44746	1.38563	Н	-0.85164	-0.93828	-2.02593
H	5.35916	-0.06626	-1.27437	H	-1.30356	-1.55062	-3.61723
C	5.61519	-1.13937	0.63663	0	-1.60104	-4.03696	-3.04928
C C	4.71159	-2.32829	0.03003	C	-3.03125	-2.60980	-1.67236
H	5.50639	-0.89865	1.70380	Н	-1.05459	-3.35290	-1.16689
0	6.95994	-1.61631	0.40657	C	-1.15873	-5.31316	-2.59773
C C	0.93994 7.96491	-0.80505	0.40037	H	-1.76161	-5.68984	-2.39773
С Н							
	7.84729	-0.75667	2.09303	Н	-0.10389	-5.29341	-2.29369
Н	7.96104	0.21958	0.60321	H	-1.26747	-5.99920	-3.44385
H	8.92702	-1.27126	0.76659	C	-3.85717	-3.84500	-1.28855
C	3.22522	-2.15447	0.60580	H	-3.49691	-2.14431	-2.55381
Н	5.08036	-3.20755	0.82328	C	-3.04683	-1.57648	-0.53437
H	4.81850	-2.54312	-0.79203	Н	-3.43769	-4.34590	-0.40612
C	2.41497	-3.37753	0.10419	Н	-3.89137	-4.56619	-2.10984
Н	2.84275	-1.24613	0.12682	Н	-4.88684	-3.56026	-1.05144
0	3.08033	-2.05319	2.02891	Н	-2.57081	-2.00404	0.35909
Si	1.87493	-1.17166	2.83680	0	-4.39979	-1.21552	-0.21803
С	2.07691	-1.69386	4.66539	Н	-2.48556	-0.67887	-0.81165
С	2.13918	0.68021	2.59416	Si	-4.89319	0.27147	0.39794
С	0.16603	-1.59268	2.15168	С	-4.37775	0.38895	2.21768
С	1.80703	-3.20535	4.81949	С	-4.09593	1.63227	-0.65577
С	1.07463	-0.90999	5.53934	С	-2.94514	3.61088	-2.32782
С	3.51092	-1.38973	5.14861	С	-4.11016	1.50648	-2.06166
Η	4.26388	-1.93836	4.56971	С	-3.47336	2.77460	-0.11766
Η	3.63056	-1.68280	6.20266	С	-2.91054	3.75531	-0.93954
Η	3.75115	-0.32104	5.08103	С	-3.54438	2.47960	-2.88833
Η	0.03366	-1.09352	5.24328	Н	-4.56286	0.63284	-2.52382
Н	1.24774	0.17278	5.49529	Η	-3.41442	2.90655	0.95853
Н	1.16892	-1.21123	6.59346	Η	-2.43985	4.62817	-0.49400
Н	0.77863	-3.47115	4.54418	Н	-3.57198	2.35490	-3.96815
Н	1.95372	-3.51630	5.86490	Н	-2.50664	4.37180	-2.96867
Н	2.48366	-3.80786	4.20095	С	-3.67588	0.44746	4.96413
Н	1.35342	1.24775	3.11013	С	-3.87607	-0.75408	2.87189

С	-4.52800	1.55991	2.98965	С	-0.15590	0.64810	-2.75200
С	-4.18005	1.59205	4.34230	Ο	0.05590	0.39070	-1.43310
C	-3.52834	-0.72869	4.22569	C	0.39500	-0.93840	-1.38760
Ĥ	-3.76368	-1.68443	2.32175	Č	0.36840	-1.41050	-2.65720
Н	-4.92788	2.46499	2.54013	Č	0.58390	-2.80150	-3.14340
Н	-4.30584	2.51079	4.91005	H	0.62450	-1.34449	-0.41140
H	-3.14702	-1.62832	4.70287	C	-0.68680	-3.34080	-3.84270
	-3.40582	0.47035			0.94751		
H			6.01696	0		-3.57829	-2.00590
C	1.61988	0.21741	-3.03152	Н	1.41230	-2.81649	-3.87560
C	0.72722	-0.88004	-5.17426	C	1.61661	-4.77239	-2.36030
C	2.86941	-1.64023	-4.13240	Н	0.98061	-5.44620	-2.95560
Н	0.56632	-1.84800	-5.66267	Н	1.88711	-5.27919	-1.42890
Η	1.34141	-0.26911	-5.84483	Η	2.53481	-4.55939	-2.93240
Η	-0.24507	-0.39248	-5.07221	Н	-0.46939	-4.34410	-4.23320
Н	3.42856	-0.92415	-4.74493	Н	-0.87910	-2.69100	-4.70690
Η	2.79369	-2.57928	-4.69014	С	-1.85250	-3.34880	-2.91340
Η	3.44494	-1.82072	-3.22271	С	-2.74370	-2.34340	-2.82240
0	2.50298	0.32148	-2.19331	Η	-1.90379	-4.16610	-2.18750
С	0.68112	1.40334	-3.28992	Η	-2.66870	-1.50280	-3.52160
Η	-0.36164	1.07048	-3.27871	С	-3.73320	-2.23080	-1.77640
Н	0.88401	1.78792	-4.29615	С	-4.49050	-1.14080	-1.56200
С	-7.40044	1.56024	0.77681	Н	-3.80200	-3.06540	-1.07040
Н	-7.02727	2.43233	0.22469	Н	-4.43870	-0.29610	-2.25350
Н	-8.49523	1.55048	0.67081	С	-5.36190	-0.95320	-0.36570
H	-7.18030	1.71682	1.83943	Č	-4.94490	0.25100	0.47180
C	-7.23742	0.04903	-1.22117	H	-5.33380	-1.86810	0.25530
H	-6.84491	-0.88074	-1.65014	0	-6.72770	-0.69881	-0.73630
Н	-6.91005	0.87930	-1.85771	C	-7.32600	-1.82291	-1.34840
Н	-8.33474	0.00299	-1.28679	H	-7.29480	-2.70661	-0.68830
C	-7.36208	-0.93468	1.08447	H	-6.83800	-2.08941	-2.29930
H	-7.10056	-0.84578	2.14586	Н	-8.37110	-1.56421	-1.54670
				C II			
Н	-8.45997	-0.95859	1.01892		-3.53570	0.18170	1.04670
H	-6.99187	-1.90418	0.72957	Н	-5.66130	0.35600	1.29960
C	-6.80618	0.23800	0.24800	Н	-5.03170	1.15940	-0.14510
				C	-3.27680	1.39310	1.95830
a	1			Н	-2.79860	0.17130	0.22260
	npound 5.38			0	-3.41610	-1.00690	1.82140
	s structure was	•		Si	-1.94700	-1.78690	2.14030
	6-2X/6-31g(d)/			С	-2.25690	-2.59250	3.82920
SM	D implicit sol	vation in m	ethanol was	С	-1.59100	-3.06340	0.81720
usec	1.			С	-0.50530	-0.58120	2.17320
				С	-0.99820	-3.32970	4.29170
Elec	etronic Ene	ergy (M0	6-2X): -	С	-3.41399	-3.59070	3.72090
326	0.17787821 ha			С	-2.61590	-1.51580	4.85680
Free	e Energy Corr	ection (M06-	L): 1.07907	Н	-3.52720	-0.96870	4.57860
hart	0,	`		Н	-1.81070	-0.77710	4.98000
				Н	-2.79330	-1.96620	5.84630
Ν	0.00190	-0.38550	-3.52190	Н	-3.18419	-4.41580	3.03190

Η	-4.33930	-3.11320	3.36970	Η	4.55510	-2.05929	-1.69430
Н	-3.63159	-4.04060	4.70280	Η	4.22700	-2.08609	-4.13150
Н	-1.16480	-3.81390	5.26730	Н	2.78070	1.96271	-3.99770
Н	-0.14200	-2.64980	4.41020	Н	3.33370	-0.07989	-5.29990
Η	-0.70059	-4.11910	3.58640	С	2.30651	-3.43079	2.90570
Η	-2.38650	-3.81340	0.72220	С	3.36960	-1.26809	2.77860
Η	-0.65450	-3.59830	1.03380	С	2.86010	-2.47209	0.75990
Η	-1.46320	-2.58550	-0.16290	С	2.31201	-3.50879	1.51440
Н	0.43930	-1.14350	2.11910	С	2.82810	-2.30219	3.53790
Н	-0.46030	0.03690	3.07980	Η	3.76320	-0.38799	3.29190
Н	-0.52050	0.09480	1.30600	Η	2.83950	-2.55229	-0.32820
С	-2.98970	2.69130	1.26220	Н	1.88971	-4.38059	1.01460
Н	-2.39740	1.18240	2.58300	Н	2.81160	-2.22939	4.62510
Н	-4.12420	1.54150	2.63760	Н	1.89191	-4.24529	3.49810
0	-3.50711	3.76160	1.53060	С	-1.86660	2.39860	-2.41940
0	-2.02820	2.52530	0.33470	С	-1.35461	4.88600	-2.55200
С	-1.47070	3.69740	-0.32640	С	-3.54700	4.08510	-1.68930
С	-2.05240	3.77080	-1.76960	Н	-1.47261	5.83940	-2.02180
C	0.03610	3.57280	-0.18030	Н	-1.81281	4.99940	-3.54170
H	-1.82121	4.58850	0.20980	Н	-0.28221	4.72280	-2.69670
С	0.50550	3.57860	1.27140	Η	-3.97361	4.16770	-2.69600
H	0.39380	2.65620	-0.66220	Н	-3.70341	5.03990	-1.17380
Н	0.51669	4.41770	-0.69120	Н	-4.10700	3.31030	-1.15780
0	0.18479	4.86980	1.80230	0	-2.75550	1.56040	-2.39200
Č	2.01280	3.27221	1.36360	Č	-0.54300	2.03610	-3.08620
H	-0.04950	2.81740	1.85020	Ĥ	0.26160	2.73400	-2.82890
C	-0.38981	4.82860	3.09380	Н	-0.68730	2.11630	-4.17180
H	-0.65001	5.85870	3.35930	C	6.78670	-1.05679	0.15040
Н	-1.30661	4.21630	3.11050	Ĥ	6.65840	-1.16019	-0.93560
Н	0.30419	4.43350	3.85150	Н	7.86960	-1.00519	0.34430
C	2.64819	3.74371	2.66320	Н	6.41800	-1.98029	0.62070
H	2.51240	3.78991	0.52660	C	6.61140	1.42711	-0.04400
C	2.24550	1.77511	1.18080	H	6.15300	2.35431	0.32690
H	2.23180	3.20951	3.52890	Н	7.70020	1.52301	0.09140
Н	2.49539	4.81691	2.81980	Н	6.42130	1.37161	-1.12520
Н	3.72880	3.55811	2.65030	C	6.40750	0.32951	2.18760
Н	1.87340	1.23331	2.06880	Н	6.11290	-0.56269	2.75670
0	3.64010	1.53241	1.02270	Н	7.49150	0.46121	2.33220
H	1.68900	1.38391	0.31290	Н	5.91100	1.19861	2.64130
Si	4.21190	0.07281	0.41840	C	6.08850	0.19121	0.69650
C	3.41360	-1.33529	1.37260	<u> </u>	0.00050	0.17121	0.07050
C C	3.84450	-0.02709	-1.42070				
C C	3.47810	-0.06509	-4.22010	Cor	npound 5.38		
C	3.34920	1.09621	-2.10680		s structure was	assigned as a	orrect
C	4.15490	-1.16849	-2.18270		LYP/6-31g(d)	ussigned as (
C C	3.97460	-1.19039	-3.56450		s phase.		
C	3.16570	1.07921	-3.48830	Jas	phase.		
Н	3.11190	2.00671	-1.55050				
11	5.11170	2.00071	-1.55050				

Elect	tronic Energy	y: -3261.313	63326 har-	С	-3.56744	0.26864	5.34836
tree.				Н	-4.23343	0.96697	4.82970
Free	Energy: -326	0.248080 hart	tree.	Η	-2.60172	0.76879	5.49452
				Η	-3.99044	0.08137	6.34614
Ν	-0.22970	-1.71042	-3.56858	Η	-4.75709	-2.68621	3.93179
С	0.07162	-0.58400	-3.00286	Η	-5.51304	-1.08341	3.90580
Ο	0.43250	-0.70240	-1.69499	Η	-5.22917	-1.90985	5.44903
С	0.33163	-2.04849	-1.42751	Η	-2.86828	-2.19132	6.35346
С	-0.07154	-2.66440	-2.56530	Η	-1.47150	-1.56421	5.46932
С	-0.41473	-4.10453	-2.80069	Η	-2.35919	-2.96820	4.84916
Η	0.58018	-2.36767	-0.43038	Н	-3.40707	-2.91675	1.83929
С	-1.88994	-4.24548	-3.27590	Η	-1.68916	-2.92161	2.27528
Ο	-0.14978	-4.79723	-1.58486	Η	-2.22502	-2.11242	0.79992
Η	0.23353	-4.50505	-3.59966	Н	-0.25994	-0.52745	3.26967
С	-0.01924	-6.19741	-1.72814	Н	-1.04159	1.03587	3.55371
Н	-0.95507	-6.67849	-2.04728	Н	-0.71781	0.48167	1.89997
Н	0.25567	-6.59096	-0.74589	С	-2.62605	3.33543	0.24125
Н	0.77004	-6.45820	-2.45092	Н	-2.40453	2.32615	2.07159
Н	-2.07837	-5.30067	-3.51546	Н	-3.99844	3.04717	1.83323
Н	-1.97273	-3.68303	-4.21229	Ο	-2.88427	4.50754	0.06932
С	-2.88723	-3.73958	-2.27201	0	-1.70638	2.64484	-0.48299
C	-3.48449	-2.53742	-2.34994	C	-0.87879	3.35884	-1.44487
Н	-3.07511	-4.37220	-1.40434	C	-1.35766	3.02334	-2.90023
Н	-3.26206	-1.88699	-3.19513	Ċ	0.56772	3.00272	-1.08473
C	-4.36904	-1.99004	-1.33253	Ĥ	-1.03911	4.42955	-1.30235
Č	-4.85389	-0.73589	-1.35511	C	1.05450	3.64716	0.22592
H	-4.60579	-2.63754	-0.48663	Ĥ	0.65733	1.91521	-1.02016
Н	-4.60922	-0.08311	-2.19253	Н	1.23900	3.35118	-1.87727
C	-5.69601	-0.12176	-0.27057	0	0.99970	5.06552	0.03826
Ċ	-5.10405	1.19333	0.25572	Ċ	2.50440	3.23278	0.58718
H	-5.80246	-0.83119	0.56510	H	0.38299	3.35590	1.04818
0	-6.99861	0.23489	-0.75691	С	0.29258	5.79833	1.02908
Č	-7.83517	-0.87386	-1.01791	Ĥ	0.37230	6.85212	0.74719
Ĥ	-8.00870	-1.47260	-0.10835	Н	-0.76975	5.52285	1.05964
Н	-7.42174	-1.53582	-1.79212	Н	0.72947	5.66908	2.02881
Н	-8.79176	-0.47249	-1.36415	C	3.04274	4.02304	1.78744
C	-3.73528	1.07666	0.93048	Ĥ	3.13107	3.47619	-0.28396
H	-5.81484	1.61934	0.97379	C	2.63530	1.72146	0.83862
Н	-5.03366	1.89786	-0.58376	H	2.43835	3.83822	2.68585
C	-3.20896	2.47195	1.34242	Н	3.03587	5.09612	1.58089
H	-3.02155	0.61404	0.23787	Н	4.06894	3.71794	2.00715
0	-3.87663	0.27742	2.10750	Н	2.04511	1.43422	1.72174
Si	-2.71600	-0.71291	2.82265	0	4.00881	1.39746	1.06363
C	-3.41972	-1.05583	4.56973	H	2.25060	1.14474	-0.01050
C	-2.49301	-2.31258	1.84349	Si	4.67907	-0.12389	0.84479
C C	-1.03310	0.15650	2.89934	C	3.56976	-1.40240	1.70123
C C	-2.47260	-1.99662	5.34598	C	4.80224	-0.46903	-1.01407
C	-4.80811	-1.72079	4.45062	C	5.05100	-0.87502	-3.80684
\sim	1.00011	1.12017	1.12002	\sim	2.02100	0.07502	5.00004

C C	4.54686 5.20042	0.56767 -1.71297	-1.93208 -1.54297	This structure was assigned as correct.				
C C	5.32213	-1.91690	-2.91877	Molecular Mechanics (OPLS-2005), gas				
C	4.66647	0.37073	-3.30923	phase.				
H	4.26248	1.54947	-1.56285	Energy: -497.861664 kJ.				
Н	5.42460	-2.54206	-0.87598					
Н	5.62987	-2.88872	-3.29640	C 1.53810 8.76620 -3.57520				
H	4.46601	1.19166	-3.99368	C 1.74310 7.24880 -3.80320				
Н	5.14407	-1.03184	-4.87834	Н 1.33020 9.21180 -4.54870				
C	1.88027	-3.24404	3.03938	Н 0.62870 8.93750 -3.00200				
Ċ	3.19233	-1.21104	3.04665	Н 2.76760 7.08140 -4.12390				
Ċ	3.05610	-2.53734	1.04643	Н 1.13890 6.93040 -4.65110				
C	2.22349	-3.44836	1.70212	C 1.39110 6.35370 -2.59260				
С	2.36486	-2.11875	3.71029	O 0.04860 6.58680 -2.15280				
Н	3.54119	-0.33454	3.58654	Н 2.01540 6.66280 -1.75830				
Н	3.29104	-2.71103	0.00068	C 1.66230 4.83410 -2.78810				
Н	1.83659	-4.30874	1.16144	Si -1.44200 6.44450 -2.96700				
Н	2.09825	-1.94765	4.75038	C -1.66230 7.81360 -4.25080				
Н	1.23725	-3.95310	3.55452	C -1.61640 4.75730 -3.79750				
С	-1.32984	1.49530	-3.13043	C -2.79700 6.63870 -1.63270				
С	-0.47113	3.77204	-3.92115	Н -0.96750 4.66650 -4.66700				
С	-2.80979	3.51297	-3.07510	Н -2.63490 4.59470 -4.14660				
Н	-0.48172	4.84590	-3.70375	Н -1.37850 3.94720 -3.10930				
Н	-0.86569	3.63755	-4.93441	Н -2.64670 7.76190 -4.71320				
Н	0.57247	3.44844	-3.92379	Н -1.57320 8.80070 -3.79950				
Н	-3.14354	3.34139	-4.10379	Н -0.93140 7.75020 -5.05390				
Н	-2.87720	4.58337	-2.85923	C 1.29330 4.06670 -1.50080				
Η	-3.49691	2.98087	-2.41723	C 3.10690 4.50310 -3.27240				
Ο	-2.33597	0.82648	-3.01150	Н 1.00020 4.49190 -3.57680				
С	-0.01353	0.79564	-3.55516	Н 0.28600 4.31100 -1.16760				
Η	0.86877	1.37460	-3.27646	Н 1.98110 4.30770 -0.69070				
Η	-0.02927	0.72643	-4.64928	Н 1.31010 2.98770 -1.64430				
С	7.17160	-1.34139	1.48718	Н 3.21760 4.95220 -4.25960				
Η	7.31625	-1.62954	0.43959	C 3.42180 2.98720 -3.43460				
Η	8.16882	-1.26850	1.94455	O 4.03910 5.07460 -2.35290				
Η	6.63803	-2.15534	1.99375	Н 3.32970 2.50760 -2.46350				
С	7.22018	1.09986	0.86845	C 4.84340 2.76460 -3.93830				
Η	6.73586	2.07869	0.95643	C 2.44330 2.27280 -4.38370				
Η	8.23235	1.18784	1.28913	Н 2.42900 2.74280 -5.36780				
Η	7.32414	0.87083	-0.19831	Н 1.42440 2.27500 -3.99740				
С	6.34431	0.38743	3.11150	Н 2.72650 1.22830 -4.51980				
Η	5.85770	-0.39404	3.70582	C 5.90680 2.33530 -3.23050				
Η	7.35584	0.52410	3.52079	Н 4.99620 2.98750 -4.98510				
Н	5.79620	1.32438	3.26167	Н 6.83790 2.22930 -3.76970				
С	6.42875	0.00518	1.61857	C 5.91260 2.02570 -1.81220				
				C 7.00500 1.57780 -1.17500				
				Н 5.01880 2.16220 -1.22270				
Com	pound 5.4			Н 6.97870 1.36240 -0.11630				

Н	7.93960	1.42010	-1.69380	0	2.94880	9.95880	1.59110
С	5.06920	5.82860	-2.79190	Si	4.28970	9.94190	2.61720
0	5.27120	6.08410	-3.97860	С	5.00170	11.71140	2.61250
C	5.96250	6.34330	-1.73400	C	3.71740	9.47790	4.35100
Ċ	6.01270	6.03350	-0.41890	Ċ	5.57010	8.72060	1.97040
H	6.68240	7.06700	-2.08600	H	2.79500	9.99670	4.60880
C	5.21460	5.09190	0.34950	Н	3.53520	8.40990	4.43810
Н	6.77550	6.56150	0.13510	Н	4.46060	9.74490	5.09920
C	5.44190	4.90070	1.65860	Н	5.22160	7.69580	2.07500
Н	4.42430	4.52000	-0.10860	Н	6.50930	8.79980	2.51510
C	4.66680	3.96290	2.56440	Н	5.78280	8.89570	0.91680
Н	6.23090	5.45580	2.14750	C	3.04860	9.22630	-1.47870
C	5.58800	2.84630	3.07400	C	1.28400	10.74450	-0.44390
Н	3.88000	3.48620		С Н	1.10160	8.64240	-0.79430
	3.88000 4.01760	4.73910	1.97780		0.54830		
C			3.73460	Н		10.88250	0.34290
Н	5.04760	2.15360	3.71970	Н	0.78140	10.97820	-1.38140
Н	6.42350	3.25190	3.64520	H	2.05900	11.49520	-0.28640
Н	6.00150	2.27090	2.24530	C	2.70350	9.57470	-2.94690
C	2.92060	5.73090	3.29400	Н	3.49370	8.23300	-1.44770
0	5.03840	5.47360	4.39200	Н	3.84220	9.89440	-1.14000
Н	3.58480	4.02500	4.43850	С	3.96270	9.56590	-3.82890
Si	5.31650	5.45780	6.05830	Η	2.37370	10.61390	-2.95020
С	5.54070	3.67460	6.63070	Η	4.44480	8.59060	-3.84630
С	6.90530	6.46550	6.37530	Н	4.69940	10.28210	-3.46390
С	3.83460	6.24220	6.91880	Η	3.72810	9.83840	-4.85820
Н	3.96910	6.26230	7.99920	С	-2.62990	5.52660	-0.58360
Η	3.68250	7.26890	6.59040	Η	-1.64560	5.56720	-0.11930
Η	2.91770	5.69210	6.71130	Η	-2.73850	4.53700	-1.02940
Η	4.65500	3.07390	6.43020	Η	-3.37170	5.61200	0.21130
Н	5.73440	3.62370	7.70110	С	-2.64350	8.01610	-0.96300
Н	6.37980	3.19940	6.12520	Η	-2.80120	8.82650	-1.67550
Η	3.31120	6.38370	2.51600	Η	-1.64560	8.14740	-0.54500
Н	2.64910	6.35700	4.14220	Н	-3.36080	8.14950	-0.15260
С	1.63240	5.05940	2.80740	С	-4.18950	6.53200	-2.27910
0	1.26280	4.02660	3.36330	Η	-4.34100	7.30360	-3.03450
С	0.86090	5.60920	1.67900	Η	-4.33500	5.56560	-2.76260
С	0.75240	6.89290	1.27360	Н	-4.97990	6.64550	-1.53630
H	0.32330	4.86740	1.10940	C	7.24010	6.44140	7.87630
C	1.30300	8.18120	1.87470	Ĥ	8.14130	7.01640	8.09120
H	0.13800	7.05060	0.40070	Н	6.43080	6.86530	8.47180
C	2.35730	8.84560	0.94560	Н	7.40930	5.42410	8.23090
Н	1.80250	7.95240	2.80910	C	6.68040	7.91420	5.91300
C	0.14310	9.10320	2.27500	H	7.58230	8.51610	6.02680
Н	0.51080	10.05960	2.64860	Н	6.38860	7.95060	4.86270
H	-0.45430	8.65180	3.06750	H	5.89080	8.39570	4.80270 6.49010
H	-0.43430	9.29650	1.43920	C	8.05630	5.84010	5.56890
п С	-0.32830	9.29630 9.31970	-0.46020	С Н	8.03630 7.82580	5.82240	3.30890 4.50240
Н	3.13390	8.09300	0.79870	Η	8.24730	4.81170	5.87680

Η	8.98380	6.39860	5.69690	Η	2.98000	3.97900	-4.32830
С	3.92120	12.68070	3.12090	Н	3.62730	5.17700	-0.76840
Н	3.62150	12,44400	4.14240	С	4.84810	4.02170	-2.05260
Н	3.02510	12.63100	2.50000	0	2.65050	3.42590	-1.31430
Н	4.27250	13.71270	3.11120	Ĥ	4.72680	3.33650	-2.88850
C	6.23910	11.77840	3.52460	C	5.46950	3.28520	-0.87090
Н	5.99330	11.51560	4.55380	C	5.82360	5.12250	-2.50460
Н	6.66690	12.78120	3.53790	Н	5.89580	5.92060	-1.76500
Η	7.02010	11.09510	3.18990	Н	5.52570	5.56660	-3.45380
С	5.39230	12.08180	1.17140	Н	6.82530	4.71710	-2.65180
Η	5.77990	13.09890	1.11090	С	5.70140	1.96530	-0.74500
Η	4.53340	12.01590	0.50160	Н	5.74400	3.91710	-0.03830
Н	6.16000	11.41290	0.78120	Н	6.15560	1.64280	0.18180
				С	5.38540	0.94960	-1.73050
				Č	5.66240	-0.34880	-1.53830
				Н	4.90560	1.22460	-2.65740
Com	nound 5 1			H	5.41450	-1.08590	-2.28830
	pound 5.4	:					
1 n1s	structure was	assigned as a	imbiguous.	Н	6.13940	-0.69780	-0.63360
	1 1	· (0.01.0		C	2.06430	3.33900	-0.11500
	ecular Mecha	inics (OPLS	-2005), gas	0	1.84360	4.30070	0.61890
phas				С	1.68150	1.95410	0.20120
Ener	gy: -496.1596	98 kJ.		С	1.72970	1.42550	1.44430
				Н	1.31970	1.35210	-0.61870
С	3.16020	8.27990	-1.49080	С	2.31210	2.05130	2.62170
C	2.05440	7.31760	-1.01160	Η	1.39270	0.40540	1.55470
Ĥ	4.08080	7.72860	-1.67980	C	3.61200	2.39330	2.68710
Н	2.85000	8.68700	-2.45440	H	1.66950	2.26890	3.46290
Н	1.19230	7.90210	-0.69030	C	4.28680	3.08120	3.86100
H				H			
	2.38050	6.78720	-0.11990		4.25560	2.18130	1.84490
C	1.59110	6.30130	-2.08430	C	5.14110	2.07360	4.64180
0	0.97400	7.05040	-3.11610	Н	3.50650	3.42880	4.54000
Η	0.84660	5.64240	-1.63390	С	5.12160	4.30530	3.40450
С	2.71300	5.42950	-2.70930	Н	4.53110	1.25160	5.01700
Si	-0.69470	7.15400	-3.35820	Η	5.61980	2.54610	5.49970
С	-1.32870	5.45690	-3.88100	Η	5.92240	1.64490	4.01390
С	-1.52220	7.68690	-1.74960	С	4.29400	5.39600	2.69280
C	-0.99140	8.44030	-4.73470	0	6.11420	3.85140	2.49180
H	-1.33460	6.97410	-0.94810	H	5.60720	4.74660	4.27680
Н	-2.60110	7.77520	-1.86720	Si	7.78820	4.05440	2.65260
							1.44960
Н	-1.15090	8.65470	-1.41800	C	8.60270	2.85420	
Н	-0.83730	5.11740	-4.79150	C	8.27960	5.84790	2.19580
Η	-2.40030	5.47480	-4.07370	С	8.32280	3.65630	4.41730
Η	-1.14360	4.70930	-3.11130	Η	8.10380	2.62190	4.67640
С	2.18800	4.58160	-3.88560	Н	7.81640	4.29060	5.14330
С	3.45070	4.56140	-1.65010	Н	9.39350	3.80490	4.54820
Н	3.42410	6.12870	-3.14160	Н	9.68820	2.88120	1.53100
Н	1.78720	5.21440	-4.67750	Н	8.28460	1.83030	1.63900
Н	1.39180	3.90790	-3.56920	Н	8.34510	3.09220	0.41850
	1.57100	2.20120	5.50720		0.01010	5.07220	0.11020

Н	3.77510	4.96810	1.84060	Н	0.64000	9.71600	-4.03910
Н	4.95630	6.15380	2.28360	Η	-0.92920	10.15760	-3.38410
С	3.29470	6.14060	3.58040	С	-0.26700	7.97950	-6.01110
0	3.51870	6.27090	4.78420	Η	0.80190	7.85180	-5.83200
С	2.10860	6.69930	2.91810	Η	-0.65360	7.02440	-6.36770
С	1.74360	7.99580	2.97370	Η	-0.38200	8.70260	-6.81890
Н	1.51180	6.01710	2.33490	С	7.78940	6.81850	3.28460
С	2.42880	9.14190	3.70730	Η	8.24680	6.59780	4.24960
Н	0.86180	8.28660	2.42150	Н	6.71200	6.76600	3.42320
С	2.90300	10.26800	2.74960	Н	8.03620	7.85120	3.03740
Η	3.29150	8.77380	4.25760	С	7.66220	6.21430	0.83390
С	1.46400	9.69260	4.76790	Н	6.57650	6.13240	0.84730
Н	1.91630	10.50660	5.33460	Н	7.90940	7.23610	0.54510
Н	1.18510	8.91500	5.47980	Η	8.02230	5.55410	0.04410
Н	0.54760	10.06880	4.31290	С	9.81300	5.93930	2.10080
С	4.20550	10.02760	1.92560	Н	10.20640	5.28270	1.32410
Н	3.12810	11.12960	3.38050	Η	10.28890	5.65630	3.04040
0	1.81850	10.62860	1.91290	Η	10.13680	6.95300	1.86260
Si	1.22650	12.19570	1.68950	С	-0.15080	11.39440	-0.63750
С	-0.41570	12.05630	0.72500	Н	0.26640	10.39490	-0.51390
С	0.92860	13.00290	3.36980	Н	0.55450	11.97100	-1.23660
C	2.48580	13.19850	0.71010	Н	-1.06970	11.29680	-1.21570
Н	0.20980	12.43630	3.95940	С	-1.39370	11.18690	1.53400
Н	1.84560	13.07560	3.95200	Η	-0.97650	10.19590	1.72060
Н	0.53270	14.01110	3.25840	Н	-2.33890	11.05270	1.00740
Н	3.44680	13.24200	1.21980	Н	-1.61780	11.63270	2.50350
Н	2.14580	14.22170	0.55820	С	-1.00900	13.45980	0.51560
Н	2.65240	12.76250	-0.27320	Η	-1.94900	13.41510	-0.03530
С	4.13050	8.98140	0.78090	Н	-0.32900	14.09940	-0.04840
С	5.40010	9.72210	2.84610	Н	-1.21100	13.95380	1.46660
Н	4.44640	10.98670	1.47240				
Н	5.47470	10.44800	3.65620				
Н	6.33960	9.75570	2.29370				
Н	5.32200	8.73110	3.29180	Con	npound 5.4		
С	3.46330	9.45310	-0.53480		s structure was	assigned as in	ncorrect.
Н	3.64310	8.08870	1.15410		6-2X/6-31g(d)/		
Н	5.13970	8.65150	0.53090		D implicit so		
С	4.33730	10.48420	-1.27390	usec	1		
H	2.51570	9.93210	-0.30190				
Н	4.53820	11.36860	-0.67250	Elec	tronic Ene	rgv (M0	6-2X): -
Н	3.84780	10.83010	-2.18490		9.54805176 ha	U ,	-)-
Н	5.29890	10.05650	-1.55920		e Energy Corre): 1.227698
С	-2.50030	8.56890	-5.00380	hart	0,).
H	-2.93070	7.61910	-5.32330				
Н	-2.70250	9.30020	-5.78690	С	-1.28382	-1.40818	1.92100
Н	-3.03820	8.88870	-4.11050	Č	-2.72831	-0.96326	2.09860
C	-0.42210	9.79440	-4.27780	Ĥ	-0.65461	-0.52489	1.72190
H	-0.53220	10.55630	-5.04960	Н	-1.22353	-2.02598	1.01020

Н	-2.80580	-0.15096	2.83590	С	2.30585	2.84946	-1.87310
Н	-3.33683	-1.79185	2.49380	Η	1.49337	4.82007	-2.46440
С	-3.36171	-0.50515	0.78720	С	3.57975	3.10314	-2.67130
0	-4.67700	-0.00923	1.03390	Η	1.97303	1.81327	-2.04060
Н	-3.41432	-1.38565	0.12090	С	2.58865	2.97366	-0.35640
С	-2.56759	0.59614	0.05910	Η	4.37704	2.41273	-2.36600
Si	-6.09251	-0.88831	0.81600	Η	3.94347	4.12793	-2.51870
С	-6.08623	-1.77451	-0.83700	Η	3.41095	2.96594	-3.74600
С	-6.29643	-2.15211	2.18660	С	1.42424	2.46627	0.53030
С	-7.45169	0.43431	0.88880	Ο	2.87217	4.33345	-0.06660
Н	-5.59105	-2.98692	2.07630	Н	3.48104	2.35204	-0.14790
Н	-7.30534	-2.58759	2.18420	Si	4.12828	4.76323	0.98180
Н	-6.13283	-1.71501	3.18000	С	5.74086	4.02221	0.37900
Н	-6.98384	-2.40060	-0.93470	С	4.15490	6.65703	0.89690
Н	-6.07552	-1.08581	-1.69190	С	3.75887	4.13344	2.70690
Н	-5.22384	-2.44712	-0.94100	Н	4.56517	4.39013	3.40750
С	-2.43017	1.84623	0.92100	Н	2.82727	4.54665	3.11410
C	-3.22179	0.90065	-1.29440	Н	3.66045	3.03914	2.72240
Η	-1.56110	0.19542	-0.14550	Н	5.67755	2.93221	0.26030
Η	-1.88347	1.62773	1.84790	Н	6.54797	4.20960	1.10000
Н	-3.41306	2.25065	1.19880	Н	6.06187	4.43810	-0.58480
Η	-1.88006	2.63813	0.40020	Н	0.47054	2.57879	-0.00470
Η	-4.27948	1.15136	-1.14830	Н	1.37795	3.07998	1.43560
C	-3.10510	-0.21366	-2.34920	C	1.63732	1.03107	0.94810
Õ	-2.56087	2.06693	-1.85270	Õ	2.01421	0.77356	2.09550
Ĥ	-3.57382	-1.10595	-1.91290	Č	1.42580	0.00747	-0.09160
C	-1.67251	-0.50598	-2.68730	Č	1.99438	-1.21334	-0.15210
Č	-3.88480	0.16686	-3.60800	H	0.78751	0.31698	-0.92350
Ĥ	-3.41898	1.01785	-4.12270	C	2.98537	-1.83555	0.78130
Н	-4.91809	0.44897	-3.36600	H	1.76027	-1.82003	-1.03490
Н	-3.91781	-0.66874	-4.31700	C	2.57025	-3.28154	1.15080
C	-0.98122	-1.63359	-2.42930	H	3.02838	-1.25645	1.70680
H	-1.15029	0.29911	-3.21190	C	4.36967	-1.77857	0.13470
Н	0.06417	-1.67780	-2.75050	H	5.12267	-2.22838	0.79300
C	-1.47174	-2.81898	-1.75680	Н	4.66349	-0.73718	-0.05140
Č	-0.69976	-3.88049	-1.47200	Н	4.39257	-2.31227	-0.82340
H	-2.52574	-2.84106	-1.46600	C	1.09955	-3.36522	1.59990
Н	-1.09427	-4.76049	-0.96620	Н	3.22855	-3.61355	1.97800
Н	0.35904	-3.89891	-1.73690	0	2.75274	-4.12815	0.01290
C	-3.28325	3.17285	-2.11890	Si	3.81932	-5.43366	-0.04140
0	-4.49935	3.24756	-1.97600	C	3.58331	-6.13586	-1.79020
C	-2.47043	4.29473	-2.58650	C	5.60433	-4.92639	0.23850
C	-1.12013	4.39781	-2.66550	C	3.41820	-6.71266	1.27050
Н	-3.06812	5.16704	-2.84350	H	6.00244	-4.25440	-0.53140
C	-0.09255	3.43260	-2.36570	Н	5.74563	-4.43729	1.21130
Н	-0.74172	5.37481	-2.97970	Н	6.23841	-5.82420	0.24910
C	1.20836	3.77968	-2.27810	H	3.48190	-6.28486	2.28010
Н	-0.37626	2.39870	-2.17030	H	4.15398	-7.52837	1.23220
11	0.57020	2.57070	2.17030	11	7.15570	1.52051	1.23220

Н	2.42379	-7.16164	1.16510	Н	4.51358	-7.65847	-3.04220
С	0.81346	-2.47462	2.81490	Η	4.63058	-8.00897	-1.31220
С	0.65763	-4.79761	1.86130	Н	5.67180	-6.77229	-2.03960
Н	0.51716	-2.99251	0.74130				
Н	1.19832	-5.23292	2.71460				
Н	-0.41407	-4.84000	2.09600	Com	pound 5.4		
Н	0.82802	-5.44302	0.99200		structure was	assigned as i	ncorrect
C	-0.66453	-2.16749	3.09660		YP/6-31g(d)	assigned as I	neoncei.
	1.31438				• • • •		
Н		-1.50302	2.70100	Gas	phase.		
Н	1.26036	-2.94492	3.70720	T 1		2200 510	
C	-0.77322	-1.36259	4.38690		tronic Energy	<i>r</i> : -3280.719	56416 har-
Η	-1.21805	-3.11308	3.23280	tree.			
Н	-0.27810	-0.38490	4.27660	Free	Energy: -3279	9.499792 har	tree.
Н	-0.29143	-1.88270	5.22530				
Η	-1.81582	-1.17388	4.67210	С	-1.69173	1.38507	-1.71570
С	-7.11097	1.59591	-0.05020	С	-3.15370	0.92792	-1.83753
Η	-6.99518	1.26980	-1.09440	Н	-1.02448	0.51179	-1.73057
Н	-6.18117	2.10129	0.24290	Н	-1.55423	1.85473	-0.73238
Η	-7.91326	2.35092	-0.03650	Н	-3.30140	0.31665	-2.73358
C	-8.78780	-0.18047	0.45790	Н	-3.79612	1.80972	-1.96218
Н	-9.07272	-1.04326	1.07770	C	-3.68076	0.14091	-0.62135
H	-8.76921	-0.51697	-0.58810	0	-5.01973	-0.29405	-0.86758
H	-9.59949	0.55924	0.54490	H H	-3.67004	0.82485	0.23984
C	-7.58718	0.97121	2.31710	C .	-2.82734	-1.10187	-0.26002
Н	-7.88420	0.18542	3.02560	Si	-6.48680	0.49049	-0.64044
Η	-6.65018	1.41360	2.68440	С	-6.56407	1.24898	1.09463
Н	-8.35707	1.75802	2.36370	С	-6.71873	1.89011	-1.89614
С	4.27681	7.11363	-0.56010	С	-7.80668	-0.87327	-0.88349
Н	4.34053	8.21193	-0.61720	Η	-6.00751	2.70643	-1.72170
Η	5.17711	6.71302	-1.04790	Η	-7.72561	2.32013	-1.82742
Η	3.40961	6.80734	-1.16060	Η	-6.57509	1.54042	-2.92456
С	5.35741	7.18221	1.68820	Н	-7.51865	1.76643	1.25005
Н	5.38003	8.28321	1.67100	Н	-6.46386	0.49609	1.88443
Н	5.32671	6.87861	2.74450	Н	-5.77173	1.99429	1.23952
Н	6.31221	6.83350	1.27040	C	-2.72746	-2.08650	-1.43750
C	2.86881	7.23145	1.49880	Č	-3.37474	-1.80746	1.00317
Н	2.76281	6.97755	2.56260	H	-1.82056	-0.73558	-0.02115
H	1.97091	6.86777	0.97980	Н	-2.30680	-1.60186	-2.32361
H	2.86403	8.33065	1.42700	Н	-3.71381	-2.47938	-1.70274
C	2.20440	-6.79034	-1.92040	Н	-2.07559	-2.92722	-1.18789
Н	1.38611	-6.08432	-1.72100	H	-4.40259	-2.12174	0.82134
Η	2.08498	-7.63894	-1.23230	С	-3.33259	-0.98376	2.31468
Η	2.05449	-7.17874	-2.94060	0	-2.58080	-3.01009	1.21677
С	3.71672	-5.02566	-2.83790	Н	-3.93062	-0.08592	2.12962
Η	2.94384	-4.25285	-2.72560	С	-1.93081	-0.59164	2.71332
Н	3.61832	-5.43936	-3.85440	С	-4.01021	-1.75964	3.46402
Η	4.69433	-4.52458	-2.78850	Η	-3.43270	-2.65045	3.73262
С	4.65849	-7.19658	-2.05270	Н	-5.01533	-2.08724	3.17565

Η	-4.09082	-1.12988	4.35603	С	2.14320	3.74346	-1.18847
С	-1.42595	0.64454	2.89046	Η	2.70230	1.79907	-1.96098
Η	-1.26910	-1.43424	2.91131	С	4.44437	2.59207	-1.04583
Η	-0.38498	0.72537	3.20656	Η	4.77000	3.19323	-1.90323
С	-2.11341	1.91796	2.71588	Н	4.93654	1.61748	-1.10938
C	-1.52466	3.11222	2.88645	Н	4.77430	3.09223	-0.13165
Н	-3.16601	1.89080	2.43943	С	0.60606	3.54139	-1.31862
Н	-2.06808	4.04271	2.75378	Ĥ	2.50460	4.25681	-2.09476
Н	-0.47793	3.19610	3.17136	0	2.42914	4.54064	-0.03339
C	-3.18230	-4.21963	1.05055	Si	3.16053	6.04911	0.10932
0	-4.37814	-4.36235	0.87175	C	2.87021	6.53777	1.93921
C	-2.24794	-5.36506	1.06380	C	5.01267	5.98897	-0.28011
C	-0.90459	-5.39116	1.22904	C	2.40431	7.31363	-1.08058
Н	-0.90439	-6.29876	0.86507	H	5.56268	5.29683	0.36581
C	0.00760	-4.30674	1.54376	H	5.19435	5.68676	-1.31804
H	-0.43259	-6.36897	1.12483	Н	5.45418	6.98537	-0.15288
C	1.34633	-4.45545	1.54482	Н	2.46222	6.96679	-2.11970
Н	-0.42672	-3.34425	1.78970	Н	2.96193	8.25678	-1.02708
C	2.32194	-3.36624	1.89892	Н	1.35401	7.53258	-0.86447
Н	1.78163	-5.41769	1.27374	C	0.25387	2.77205	-2.61365
С	3.30373	-3.84395	2.98291	С	-0.15298	4.87417	-1.25469
Н	1.75470	-2.51324	2.29851	Η	0.30122	2.94305	-0.44932
С	3.08124	-2.81950	0.65722	Η	0.09038	5.50964	-2.11624
Н	4.00530	-3.04523	3.25240	Н	-1.23521	4.71011	-1.26265
Н	3.88640	-4.70007	2.62994	Η	0.08791	5.42590	-0.34420
Η	2.76667	-4.14496	3.88860	С	-1.22463	2.36319	-2.81511
С	2.11372	-2.13987	-0.36661	Η	0.84859	1.85301	-2.68021
0	3.81405	-3.87838	0.06472	Η	0.55959	3.39277	-3.46994
Η	3.78477	-2.06252	1.03854	С	-1.39091	1.76757	-4.22356
Si	5.17152	-3.79337	-0.94073	Η	-1.85613	3.26159	-2.76169
С	6.28561	-2.36801	-0.38708	Η	-0.81315	0.83963	-4.32815
С	6.03778	-5.48993	-0.73134	Н	-1.03310	2.46729	-4.98803
С	4.64359	-3.51464	-2.72996	Н	-2.43673	1.53815	-4.45183
Н	5.51254	-3.49198	-3.39913	С	-7.61548	-2.00393	0.15079
Н	3.97153	-4.30514	-3.08415	Н	-7.69762	-1.63593	1.18146
Н	4.12275	-2.55558	-2.82827	Н	-6.64598	-2.50227	0.04646
Н	5.81295	-1.39835	-0.58222	Н	-8.39245	-2.77134	0.02037
Н	7.23004	-2.38196	-0.94468	C	-9.21865	-0.27089	-0.71032
Н	6.53151	-2.41830	0.67994	H	-9.42289	0.52458	-1.43757
Н	1.10222	-2.09701	0.05403	Н	-9.36960	0.14530	0.29365
Н	2.07033	-2.74677	-1.27243	Н	-9.98277	-1.04777	-0.85643
C	2.55779	-0.72969	-0.73522	C	-7.68180	-1.46898	-2.30274
0	3.09432	-0.49132	-1.81552	H	-7.85623	-0.71562	-3.08106
C	2.32697	0.30804	0.29937	H	-6.68994	-1.90277	-2.47007
C	2.32097 2.47689	1.63888	0.29937 0.14816	п Н	-8.42436	-1.90277 -2.26696	-2.47007
С Н	1.97279	-0.05864	1.26191	п С	6.56630	-2.20090	-2.44855
п С	2.91436	-0.03864 2.39947	-1.07527	С Н	7.05978	-5.63520	0.70881
С Н							
п	2.26566	2.26415	1.01545	Η	7.30352	-4.88499	0.96638

Η	5.75771	-5.60464	1.44680	Η	-6.05010	1.31160	-2.78020
С	7.22688	-5.58822	-1.71284	Н	-7.71000	0.75280	-2.55090
Н	7.73729	-6.55524	-1.59627	Н	-6.58180	-0.19550	-3.52820
Н	6.90552	-5.51428	-2.75858	Н	-7.56090	0.63910	0.56630
Н	7.97535	-4.80530	-1.53575	Н	-6.17030	-0.08950	1.37010
C	5.04137	-6.62974	-1.03388	H			0.47770
					-5.98720	1.43160	
Н	4.65593	-6.57604	-2.05939	C	-1.76810	-1.94220	-1.53730
Н	4.18305	-6.60590	-0.35330	С	-2.90560	-2.46040	0.65340
Η	5.53205	-7.60762	-0.92022	Н	-1.55320	-0.84550	0.29780
С	1.35936	6.55866	2.25526	Η	-1.36220	-1.15070	-2.17920
Η	0.90243	5.57512	2.09854	Η	-2.52980	-2.48510	-2.11320
Η	0.81889	7.28332	1.63345	Н	-0.94840	-2.63970	-1.32710
Н	1.19226	6.84288	3.30461	Н	-3.72650	-2.98240	0.14900
C	3.55822	5.51996	2.87437	C	-3.39380	-2.00360	2.03760
H	3.16705	4.50708	2.72525	0	-1.83170	-3.42420	0.84570
Н	3.38838	5.79102	3.92673	H	-4.27620	-1.37390	1.84740
H	4.64338	5.48656	2.71894	C	-2.35060	-1.22100	2.78060
C	3.45777	7.94171	2.20332	C	-3.84810	-3.20690	2.86590
Η	3.29811	8.23031	3.25227	Η	-2.99560	-3.83250	3.15970
Н	2.98421	8.71049	1.58037	Н	-4.54440	-3.83800	2.29770
Η	4.53845	7.97934	2.01878	Н	-4.35360	-2.88080	3.78240
				С	-2.40430	0.06700	3.17620
				Η	-1.44870	-1.78760	3.03260
Co	ompound 5.4			Н	-1.54330	0.47000	3.71780
This structure was assigned as ambiguous.				C	-3.48180	1.00540	2.93670
	M06-2X/6-31g(d)//M06-L/6-31g(d)				-3.43510	2.30800	3.26050
		olvation in		C H	-4.38350	0.62430	2.45140
	ed.		culanoi was	Н	-4.26810	2.97710	3.04930
us	cu.			Н		2.74640	3.75930
г1	· ·				-2.56880		
				C	-2.00810	-4.66810	0.34950
	79.54590750 ha			0	-3.07610	-5.07780	-0.09390
	ee Energy Corre	ection (M06-	L): 1.230005	С	-0.80120	-5.49050	0.35820
ha	rtree.			С	0.48740	-5.13530	0.58730
				Н	-0.99910	-6.51620	0.05240
С	-3.52860	2.20860	-1.04800	С	1.06890	-3.87670	0.98240
С	-2.84060	0.87840	-1.33810	Η	1.22080	-5.93320	0.43960
Н	-3.55360	2.35520	0.04510	С	2.40880	-3.72410	1.03780
Н	-4.58350	2.16230	-1.36080	Н	0.41740	-3.04350	1.24690
Н	-1.77120	0.95910	-1.08780	C	3.13870	-2.49580	1.47320
Н	-2.88460	0.63520	-2.41040	Н	3.03950	-4.57700	0.76600
C	-3.41680	-0.29350	-0.54180	C	4.09060	-2.84190	2.61800
0	-4.50770	-0.91440	-1.21840	H	2.40930	-1.74900	1.82530
H	-3.77190	0.10390	0.42420	C	3.92010	-1.85000	0.30800
C	-2.35410	-1.36260	-0.25450	Н	4.64710	-1.95460	2.94650
Si	-6.14010	-0.53230	-1.09190	Η	4.81720	-3.60370	2.30590
С	-6.48260	0.45160	0.46640	Н	3.54430	-3.23620	3.48280
С	-6.66680	0.41680	-2.62060	С	3.00870	-1.27240	-0.79170
С	-7.04150	-2.20620	-1.02850	0	4.78810	-2.81910	-0.25690

Η	4.50550	-1.01280	0.73380	С	-3.09350	3.43780	-3.21790
Si	6.40840	-2.45410	-0.57730	Η	-3.36970	4.32300	-1.29790
С	7.29460	-1.99680	1.00870	Н	-2.60940	2.57760	-3.70120
С	7.08030	-4.06320	-1.31920	Η	-2.67590	4.34370	-3.67740
С	6.51260	-1.00910	-1.76670	Н	-4.16150	3.40190	-3.47160
Н	7.55700	-0.73050	-1.96270	С	-6.45230	-3.16620	-2.06650
Н	6.04340	-1.22009	-2.73610	Н	-5.40700	-3.41950	-1.83960
Н	6.02010	-0.11600	-1.35580	Н	-6.48080	-2.75190	-3.08460
Н	6.86170	-1.10319	1.47840	Η	-7.01930	-4.11080	-2.08700
Н	8.34850	-1.76160	0.80640	С	-6.89400	-2.83540	0.36010
Η	7.27730	-2.80009	1.75610	Η	-7.33710	-2.21300	1.15040
Η	2.23720	-2.01010	-1.05410	Η	-5.83930	-3.00440	0.62200
Η	3.62760	-1.08640	-1.67660	Η	-7.39560	-3.81560	0.39870
С	2.40230	0.04330	-0.35930	С	-8.53150	-2.00010	-1.32410
0	3.03270	1.09250	-0.52880	Н	-9.00020	-1.28400	-0.63300
С	1.09600	-0.01990	0.30510	Н	-8.70500	-1.63520	-2.34580
С	0.52130	0.95040	1.04730	Н	-9.07970	-2.95020	-1.22170
Н	0.58760	-0.98440	0.24120	С	6.33980	-4.39459	-2.61850
С	1.01750	2.32960	1.34160	Н	6.70150	-5.34659	-3.03830
Н	-0.43920	0.69470	1.51010	Н	5.25750	-4.49910	-2.46080
С	0.55290	3.29510	0.21370	Н	6.48980	-3.62500	-3.38840
Н	2.11370	2.32470	1.28560	С	6.88630	-5.21289	-0.32520
С	0.58570	2.77640	2.73200	Н	7.29600	-6.15079	-0.73270
Н	0.87530	3.81850	2.91850	Н	7.39660	-5.02679	0.63060
Н	1.05190	2.15530	3.50710	Н	5.82490	-5.39199	-0.10410
Н	-0.50280	2.69620	2.85820	С	8.57460	-3.90449	-1.61840
С	-0.98300	3.41650	0.07920	Н	9.16030	-3.70300	-0.71050
Н	0.94050	2.85880	-0.72530	Н	8.77170	-3.08880	-2.32850
0	1.11250	4.58390	0.40180	Н	8.97960	-4.82580	-2.06600
Si	2.63680	5.06820	-0.13060	С	2.00510	7.33170	1.42930
С	2.55920	6.95800	0.05000	Н	2.61440	6.91820	2.24630
С	4.00310	4.35450	0.93870	Н	0.97730	6.97100	1.57110
С	2.88650	4.55120	-1.91470	Н	1.99060	8.42560	1.56000
Н	3.83420	4.53390	2.00890	С	3.96230	7.55470	-0.10160
Н	4.11730	3.27210	0.79900	Н	4.63100	7.24530	0.71330
Н	4.97060	4.80760	0.68170	Н	3.91950	8.65530	-0.08480
Н	3.08590	3.47590	-2.00970	Н	4.44080	7.26660	-1.04920
Н	3.74500	5.07390	-2.35840	С	1.64950	7.54600	-1.03340
Н	2.01160	4.77860	-2.53780	Н	1.55330	8.63660	-0.91030
С	-1.37350	3.52660	-1.39940	Н	0.63390	7.12590	-0.99710
С	-1.58510	4.56440	0.88420	Н	2.04560	7.36910	-2.04310
Н	-1.40470	2.47700	0.47510				
Н	-1.33380	5.53520	0.43820				
Н	-2.68040	4.48700	0.90110	Con	npound 5.4		
Н	-1.24120	4.58350	1.92470		s structure was	assigned as a	ambiguous.
С	-2.87250	3.42950	-1.70940		.YP/6-31g(d)	C	C ·
H	-0.84710	2.73990	-1.96430		phase.		
Н	-0.98810	4.48140	-1.79630		1		
			-				

Elect	ronic Energy	y: -3280.717	'80164 har-	0	-3.35108	-4.99616	-0.14372
tree.					-1.07361	-5.53687	0.15084
Free Energy: -3279.499294 hartree.					0.23035	-5.30569	0.43045
				Η	-1.35037	-6.51073	-0.24108
С	-3.45116	2.48847	-0.42375	С	0.88367	-4.12343	0.96505
С	-2.94129	1.15754	-0.99992	Η	0.90740	-6.13513	0.22162
Η	-3.29035	2.48091	0.66334	С	2.22601	-4.03437	1.05046
Η	-4.53827	2.55830	-0.56136	Η	0.25569	-3.30345	1.29759
Η	-1.85455	1.11325	-0.86197	С	2.99599	-2.86547	1.60401
Η	-3.11994	1.10347	-2.07921	Н	2.83307	-4.86651	0.69332
С	-3.56872	-0.09977	-0.34683	С	3.92917	-3.32877	2.73878
Ο	-4.66230	-0.61021	-1.11190	Н	2.28593	-2.13792	2.01822
Η	-3.93155	0.18628	0.64984	С	3.79730	-2.12248	0.49740
С	-2.51780	-1.22752	-0.18032	Н	3.35670	-3.79842	3.54546
Si	-6.31208	-0.30100	-1.09206	Η	4.47850	-2.47917	3.16138
С	-6.89427	0.02846	0.68067	Н	4.65952	-4.05643	2.37060
С	-6.72522	1.20730	-2.15972	С	2.88234	-1.39712	-0.52931
С	-7.13499	-1.86328	-1.83619	0	4.63517	-3.05799	-0.16881
Η	-6.34617	2.13519	-1.71785	Η	4.41364	-1.35993	0.99895
Η	-7.80945	1.32372	-2.27807	Si	6.20182	-2.74843	-0.72397
Η	-6.28941	1.11671	-3.16107	С	7.30480	-2.26529	0.73517
Η	-7.97062	0.23752	0.70319	С	6.75058	-4.39938	-1.51533
Η	-6.71144	-0.82497	1.34384	С	6.19952	-1.32595	-1.96971
Η	-6.38957	0.90239	1.11088	Η	7.22221	-1.07332	-2.27580
С	-2.01468	-1.72323	-1.54685	Η	5.63384	-1.57103	-2.87601
С	-3.03667	-2.40082	0.67694	Η	5.75413	-0.42108	-1.53839
Η	-1.67615	-0.77480	0.36061	Η	6.96704	-1.33105	1.20012
Η	-1.63529	-0.89267	-2.15037	Η	8.33864	-2.10316	0.40669
Н	-2.82330	-2.20215	-2.10721	Η	7.31799	-3.03680	1.51298
Η	-1.20228	-2.44496	-1.42874	Η	2.01641	-2.02814	-0.75777
Н	-3.89852	-2.85714	0.18923	Η	3.45524	-1.25028	-1.44643
С	-3.42399	-2.05966	2.13767	С	2.46154	-0.01309	-0.04429
Ο	-1.97664	-3.40220	0.71873	Ο	3.16073	0.96135	-0.31928
Н	-4.22456	-1.31556	2.07476	С	1.23809	0.06926	0.78569
С	-2.27027	-1.50261	2.93470	С	0.82303	1.13136	1.50891
С	-4.00573	-3.29771	2.85451	Η	0.64976	-0.84339	0.84256
Η	-3.23802	-4.06327	3.00829	С	1.43539	2.50201	1.60120
Η	-4.81343	-3.74685	2.26670	Η	-0.08493	0.98171	2.09554
Η	-4.39983	-3.01761	3.83681	С	0.84717	3.41497	0.46713
С	-2.20508	-0.33390	3.60296	Η	2.49580	2.41437	1.35313
Η	-1.40902	-2.16670	3.00237	С	1.30415	3.06827	3.02323
Н	-1.29201	-0.12159	4.16098	Η	1.64174	4.10824	3.05223
С	-3.22735	0.70312	3.68154	Н	1.92042	2.49094	3.72234
С	-3.06541	1.85832	4.34615	Η	0.27079	3.03028	3.38702
Н	-4.17385	0.52209	3.17536	С	-0.68866	3.65950	0.53365
Н	-3.84826	2.60940	4.38725	Н	1.05061	2.86462	-0.46095
H	-2.14386	2.08546	4.87844	0	1.53532	4.65863	0.43689
С	-2.24651	-4.64227	0.22717	Si	2.90702	5.05941	-0.46031

С	2.91977	6.97572	-0.45433	Н	0.74319	7.17461	-0.68403
С	4.46867	4.36449	0.34812	Η	1.62502	7.20449	-2.22100
С	2.76798	4.35161	-2.20786	Н	1.65803	8.61667	-1.15627
Η	4.55009	4.65196	1.40276	С	2.92783	7.49183	1.00086
Η	4.47005	3.27020	0.29106	Η	2.04978	7.14330	1.55564
Η	5.37083	4.72063	-0.16474	Н	2.92145	8.59181	1.01817
Н	2.82289	3.25689	-2.18611	Н	3.82100	7.16316	1.54661
Н	3.59444	4.70481	-2.83681	С	4.17588	7.50007	-1.18347
Η	1.83028	4.63579	-2.69873	H	4.18273	8.59983	-1.18902
C	-1.27032	3.81044	-0.89158	Н	4.21322	7.17198	-2.22992
Č	-1.08519	4.85269	1.41932	Н	5.10261	7.17291	-0.69678
Н	-1.12396	2.75258	0.97394	11	5.10201	1.1/2/1	0.07070
H	-0.74275	5.79258	0.97613				
H				Com	nound 5 1		
	-2.17380	4.90501	1.52954		pound 5.4	:	
Н	-0.65693	4.78810	2.42183		structure was	assigned as a	imbiguous.
C	-2.81036	3.76704	-1.01980		YP/6-31g(d)		
Н	-0.84772	3.02488	-1.53323		D implicit so	Ivation in e	ethanol was
Η	-0.91539	4.76128	-1.31415	used			
С	-3.22034	3.98349	-2.48662				
Н	-3.22247	4.61077	-0.44817	Elec	tronic Energy	<i>r</i> : -3280.762	246456 har-
Η	-2.81723	3.20156	-3.14159	tree.			
Η	-2.84775	4.94516	-2.85888	Free	Energy: -3279	9.544487 har	tree.
Η	-4.31123	3.98177	-2.59947				
С	-8.66769	-1.67077	-1.87985	С	-2.65913	0.99949	1.81801
Н	-8.96273	-0.81329	-2.49677	С	-3.49463	0.71426	0.55851
Н	-9.09408	-1.52689	-0.87912	Η	-1.65762	0.56743	1.70466
Η	-9.14880	-2.56038	-2.31106	Н	-3.11576	0.47397	2.66957
C	-6.61423	-2.08880	-3.27227	Н	-3.02386	1.15105	-0.33000
Н	-7.06609	-2.99321	-3.70515	Н	-4.47208	1.19911	0.65631
Н	-5.52663	-2.22017	-3.28976	C	-3.76568	-0.78390	0.31539
H	-6.86306	-1.25100	-3.93530	0	-4.70523	-0.94801	-0.76246
C	-6.81794	-3.11419	-0.98945	H	-4.20609	-1.18466	1.23719
	-0.81794 -5.74818			п С			
Н		-3.34688	-0.97833		-2.49279	-1.60430	-0.01946
Н	-7.15303	-3.00450	0.04997	Si	-6.39049	-1.00435	-0.67852
Н	-7.33469	-3.99230	-1.40329	C	-6.94466	-2.21057	0.66461
C	8.16904	-4.24941	-2.10823	C	-7.11071	0.69748	-0.27894
Η	8.49468	-5.19727	-2.56025	С	-6.93099	-1.59326	-2.42089
Н	8.20807	-3.48523	-2.89425	Η	-6.82194	1.02532	0.72750
Н	8.91106	-3.98355	-1.34489	Η	-8.20827	0.67536	-0.30401
С	5.77128	-4.79513	-2.64181	Н	-6.78019	1.46738	-0.98659
Η	6.07150	-5.75422	-3.08835	Н	-8.03862	-2.30288	0.66897
Η	4.74830	-4.90670	-2.26605	Η	-6.53022	-3.21618	0.52812
Η	5.75336	-4.05278	-3.44916	Н	-6.65392	-1.86033	1.66321
С	6.76393	-5.51760	-0.45064	С	-1.90500	-1.22110	-1.38879
Н	5.77408	-5.66041	-0.00222	С	-2.75214	-3.12563	0.05758
Н	7.47253	-5.30644	0.35972	Н	-1.75240	-1.36469	0.75353
Η	7.06411	-6.47326	-0.90468	Н	-1.77063	-0.13842	-1.47349
C	1.66383	7.51666	-1.17004	Н	-2.55935	-1.54076	-2.20690
-							

Η	-0.92457	-1.67926	-1.54155	Η	3.47797	-1.64893	-1.83717
Η	-3.50975	-3.40941	-0.67464	Η	4.71416	-0.39164	-1.60740
С	-3.16353	-3.68556	1.44178	С	2.74084	0.16253	-0.97890
0	-1.50389	-3.78920	-0.32028	0	1.56326	-0.13223	-1.20389
Ĥ	-4.11547	-3.20993	1.69467	Č	3.18256	1.50207	-0.53423
C	-2.13974	-3.38641	2.51045	Č	2.50693	2.66584	-0.64121
C C	-3.42247	-5.20574	1.36431	Н	4.19116	1.53831	-0.12624
H	-2.49896	-5.76406	1.17351	C	1.18521	2.93644	-1.30453
Н	-4.13486	-5.44269	0.56498	H	3.02344	3.55760	-0.28500
Н	-3.83909	-5.56648	2.31107	C	0.18864	3.74638	-0.42323
C	-2.34944	-2.85315	3.73054	Н	0.69185	1.98966	-1.53139
Η	-1.11939	-3.67642	2.26120	С	1.46463	3.65606	-2.64256
Η	-1.48522	-2.73132	4.38507	Η	0.52340	3.87876	-3.15872
С	-3.62143	-2.41555	4.29500	Η	2.00790	4.59490	-2.49603
С	-3.74361	-1.87270	5.51767	Η	2.06754	3.01962	-3.30020
Η	-4.51693	-2.54463	3.68920	С	-0.33181	2.93962	0.80313
Н	-4.70857	-1.55924	5.90774	Н	-0.67363	3.94100	-1.07690
Η	-2.88181	-1.72625	6.16705	Ο	0.77489	4.99405	-0.02847
С	-1.48874	-4.63452	-1.37083	Si	0.26413	6.57580	-0.32840
0	-2.48488	-4.92058	-2.02817	С	1.81945	7.65194	-0.01243
C	-0.16985	-5.22180	-1.66164	C	-0.38164	6.77582	-2.09235
Č	1.05862	-4.84929	-1.22459	Č	-1.13130	7.07430	0.84538
Ĥ	-0.23731	-6.04946	-2.36191	H	0.39586	6.66216	-2.85582
C	1.44319	-3.74611	-0.36649	Н	-1.17666	6.05210	-2.31274
Н	1.89127	-5.44700	-1.59723	Н	-0.82182	7.77455	-2.21296
C	2.73091	-3.51300	-0.04114	Н	-2.05979	6.54087	0.60788
Н	0.66886	-3.08397	0.00507	Н	-1.34606	8.14720	0.75193
C	3.19704	-2.38583	0.83917	H	-0.89253	6.87671	1.89702
Н	3.50334	-4.18641	-0.41431	C	-1.77924	3.35063	1.15626
C	3.66074	-2.92883	2.20544	C	0.59335	3.02721	2.02682
Н	2.35216	-1.70857	1.01631	Н	-0.34864	1.89234	0.47316
С	4.30874	-1.54003	0.16531	Η	0.56236	4.02369	2.48150
Н	4.02635	-2.11392	2.84211	Η	0.29071	2.30435	2.79244
Η	4.46344	-3.66525	2.09598	Н	1.63495	2.80803	1.77170
Н	2.82821	-3.41608	2.72485	С	-2.51191	2.48976	2.20967
С	3.84185	-0.87530	-1.15446	Η	-2.37821	3.36250	0.23439
0	5.43482	-2.37272	-0.12166	Η	-1.76741	4.38660	1.52083
Η	4.59340	-0.75354	0.87824	С	-3.86309	3.13213	2.56425
Si	7.06195	-1.97879	0.14479	Η	-1.90976	2.49876	3.12903
С	7.36024	-1.69935	1.98802	Н	-4.50755	3.24774	1.68397
С	8.02609	-3.48687	-0.52910	Н	-3.71923	4.13089	2.99538
С	7.51962	-0.39525	-0.77680	Н	-4.41037	2.52932	3.30046
Н	8.57593	-0.14555	-0.61136	С	-6.37755	-0.64127	-3.50165
Н	7.36361	-0.47472	-1.85889	H	-5.28154	-0.61112	-3.49867
Н	6.93168	0.45856	-0.41638	Н	-6.73953	0.38648	-3.36971
H	6.76455	-0.85609	2.36090	Н	-6.69401	-0.97087	-4.50293
H	8.41310	-1.45313	2.30090	C	-6.40466	-3.01944	-2.68805
H	7.10941	-2.57680	2.59506	С Н	-6.79851	-3.74506	-1.96497
п	/.10941	-2.3/080	2.39300	п	-0./9831	-3./4300	-1.9049/

Н	-5.30969	-3.07181	-2.64892
Η	-6.71121	-3.36073	-3.68863
С	-8.47253	-1.60725	-2.50723
Η	-8.92365	-2.27560	-1.76256
Н	-8.90402	-0.60889	-2.36428
Η	-8.79669	-1.96098	-3.49752
С	9.54248	-3.23912	-0.37311
Н	10.10963	-4.09897	-0.75973
Η	9.87729	-2.35458	-0.92949
Н	9.83531	-3.10398	0.67598
С	7.70306	-3.69554	-2.02376
Н	8.26171	-4.55726	-2.41904
Н	6.63675	-3.89289	-2.18840
Н	7.97780	-2.82407	-2.63164
С	7.64539	-4.76419	0.24869
Н	6.57583	-4.99223	0.16587
Н	7.88867	-4.68523	1.31588
Η	8.19590	-5.63126	-0.14630
С	2.26033	7.53034	1.46185
Η	2.51453	6.49720	1.72939
Н	1.48194	7.87161	2.15573
Η	3.15349	8.14615	1.64712
С	2.98718	7.20936	-0.91838
Н	3.29322	6.17635	-0.71605
Η	3.86636	7.84961	-0.74924
Η	2.73550	7.28219	-1.98395
С	1.48913	9.12973	-0.31658
Η	2.36472	9.76491	-0.11445
Н	0.66629	9.50890	0.30232
Н	1.21411	9.28422	-1.36789