

Probabilistic Algorithms for Information and Technology Flows in
the Networks

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Liu, Zhenming. 2012. Probabilistic Algorithms for Information
and Technology Flows in the Networks. Doctoral dissertation,
Harvard University.

Accessed April 17, 2018 3:49:20 PM EDT

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:9754141

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH

https://core.ac.uk/display/28940532?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/9754141&title=Probabilistic+Algorithms+for+Information+and+Technology+Flows+in+the+Networks&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=null&department=Engineering+and+Applied+Sciences
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

c©2012 - Zhenming Liu

All rights reserved.

Thesis advisor Author

Michael Mitzenmacher Zhenming Liu

Probabilistic Algorithms for Information and

Technology Flows in the Networks

Abstract

This thesis studies several probabilistic algorithms for information and technology

flow in the networks. Information flow refers to the circulation of information in

social or communication networks for the purpose of disseminating or aggregating

knowledge. Technology flow refers to the process in the network in which nodes

incrementally adopt a certain type of technological product such as networking pro-

tocols. In this thesis, we study the following problems.

First, we consider the scenario where information flow acts as media to dissemi-

nate messages. The information flow here is considered as a mechanism of replicating

a piece of information from one node to another in a network with a goal to “broad-

cast” the knowledge to everyone. Our studies focus on a broadcasting algorithm

called the flooding algorithm. We give a tight characterization on the completion

time of the flooding algorithm when we make natural stochastic assumptions on the

evolution of the network.

Second, we consider the problem that information flow acts as a device to aggre-

gate statistics. We interpret information flow here as artifacts produced by algorithmic

procedures that serve as statistical estimators for the networks. The goal is to main-

tain accurate estimators with minimal information flow overhead. We study these two

iii

Abstract iv

problems: first, we consider the continual count tracking problem in a distributed en-

vironment where the input is an aggregate stream originating from k distinct sites

and the updates are allowed to be non-monotonic. We develop an optimal algorithm

in communication cost that can continually track the count for a family of stochastic

streams. Second, we study the effectiveness of using random walks to estimate the

statistical properties of networks. Specifically, we give the first deviation bounds for

random walks over finite state Markov chains based on mixing time properties of the

chain.

Finally, we study the problem where technology flow acts as a key to unlock

innovative technology diffusion. Here, the technology flow shall be interpreted as a

way to specify the circumstance, in which a node in the network will decide to adopt

a new technology. Our studies focus on finding the most cost effective way to deploy

networking protocols such as SecureBGP or IPv6 in the Internet. Our result is a near

optimal strategy that leverages the patterns of technology flows to facilitate the new

technology deployments.

Contents

Title Page . i
Abstract . iii
Table of Contents . v
Bibliographic Note . viii
Acknowledgments . ix
Dedication . xii

1 Introduction 1
1.1 Summary and outline . 9

2 Information dissemination in k-dimensional spaces 11
2.1 Background . 11

2.1.1 Our models and results . 13
2.2 Preliminary results for random walks 16
2.3 Lower bound . 33

2.3.1 Local diffusion problem . 35
2.3.2 From local to global process 53

2.4 Upper bound . 57
2.4.1 Leveraging local analysis . 75

2.5 The case when the number of agents is sparse 90
2.6 Random walks properties . 97

2.6.1 Mixing time in graphs . 104
2.7 Existing techniques . 105

2.7.1 Lower bound . 105
2.7.2 Upper bound . 108

3 Continuous distributed counting for non-monotonic streams 113
3.1 Background . 113

3.1.1 Problem Definition . 115
3.1.2 Our Contributions . 118
3.1.3 Related Work . 122

v

Contents vi

3.2 Algorithms and Notations . 123
3.2.1 Building Blocks . 124
3.2.2 Algorithm Overview . 126

3.3 Upper Bounds . 127
3.3.1 I.I.D. Input with Zero Drift 128
3.3.2 I.I.D. Input with Unknown Drift 138
3.3.3 Randomly Ordered Data Streams 151
3.3.4 Fractional Brownian Motion 162

3.4 Lower Bounds . 171
3.5 Applications . 180

3.5.1 Tracking the Second Frequency Moment 180
3.5.2 Bayesian Linear Regression 181

3.6 Geometric Progression Search for µ 183

4 Revisiting Chernoff-Hoeffding Bounds for Markov Chains 185
4.1 Background . 185
4.2 Preliminaries . 188
4.3 Chernoff-Hoeffding Bounds for Discrete Time Markov Chains 190

4.3.1 Mixing Time v.s. Spectral Expansion 196
4.3.2 Bounding the Moment Generating Function 199
4.3.3 Continuous Time Case . 210

4.4 Construction of Mixing Markov Chain with No Spectral Expansion . 211
4.5 The Bound When the Sum Is Less Than Mean 213

5 Technology diffusion in communication networks 218
5.1 Introduction . 218

5.1.1 Our results. 220
5.2 Linearization & formulating the IP 224
5.3 Rounding algorithm. 230

5.3.1 Resolving inconsistencies using rejection-sampling 234
5.3.2 Strengthened IP and coupled sampling 239

5.4 Proof of Corollary 5.1.3 . 254
5.5 Lower bounds . 255

5.5.1 Computational barrier . 255
5.5.2 Information theoretic bound 259
5.5.3 Integrality gap . 261
5.5.4 Remark on the role of flow constraints in reducing the integral-

ity gap . 275
5.6 Our problem is neither submodular nor supermodular 276

5.6.1 Fixed threshold case . 277
5.6.2 Randomized threshold case . 280

5.7 Experiments with the IP of Figure 5.1 284

Contents vii

5.8 Expository examples and figures . 287

Bibliography 290

A Probability review 299
A.1 Concentration bounds . 299

Bibliographic Note

All of the work in this thesis is in the process of being reviewed or published in
traditional academic formats and venues. Specifically, the material in Chapter 2
appears in

Henry Lam, Zhenming Liu, Michael Mitzenmacher, Yajun Wang, Xi-
aorui Sun, “Information dissemination via random walks in d-dimensional
spaces.”, in ACM-SIAM Symposium on Discrete Algorithms (SODA),
2012.

The material in Chapter 3 appears in

Zhenming Liu, Božidar Radunović and Milan Vojnović, “Continuous dis-
tributed counting for non-monotonic streams”, in ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems (PODS), 2012.

The material in Chapter 4 appears in

Kai-Min Chung, Henry Lam, Zhenming Liu, Michael Mitzenmacher “Chernoff-
Hoeffding bounds for Markov chains: generalized and simplified”, in Sym-
posium on Theoretical Aspects of Computer Science (STACS), 2012.

The material in Chapter 5 appears in

Sharon Goldberg, Zhenming Liu, “Technology diffusion in communication
networks.”, Boston University technical report, Nov. 2011.

viii

Acknowledgments

Over the years, my advisor Michael Mitzenmacher has been patiently waiting

me to grow, helping me to build up my research skills, and finding me intriguing

theoretical computer science questions, specifically in the areas of information theory,

streaming algorithms, and stochastic processes. As a theoretician, he demonstrated

to me how one can continuously extend his research horizon inside and outside the-

oretical computer science sheerly driven by intellectual curiosity. I could not have

achieved my research goals without his help and effort.

Salil Vadhan was my advisor when I was in the Master’s program at Harvard. I

learned tremendous amounts about pseudorandomness and computational complexity

from him, all of which has proven extremely useful throughout my time in the PhD

program. I am also grateful to Leslie Valiant, Patrick Wolfe, and Yiling Chen at

Harvard for serving on my qualifying exam and dissertation committee.

Kai-Min Chung was the senior graduate student I would approach when the

faculty members were busy. I managed to trick him to work on several algorithmic

problems outside his own research area. I also forced him to help me develop technical

skills needed for the theory of computation research. I probably would not have been

able to complete many of the research projects I have done without his generous help.

Outside Harvard I was fortunate to work closely with Sharon Goldberg. She gave

me a very interesting algorithmic problem in communication networks when she was

visiting Harvard. We worked on the problem for nearly two years and our research

result was very pleasant (the result will be presented in Chapter 5 in this thesis).

In this collaboration, she offered me enormous advice on tackling applied algorithm

problems and making clear technical presentations.

ix

Acknowledgments x

I am also thankful to Henry Lam, who spent countless hours with me on different

research projects in probability theory and optimization. He also gave me many

wonderful (private) lectures in operations research and queuing theory while I was

working at Boston University. I always find it very stimulating to discuss research

problems with him.

I spent nearly a year as a research intern in two different labs (the theory lab in

Beijing and the network and system lab in Cambridge, UK) in Microsoft Research.

There, I worked with outstanding researchers over many exciting network algorithm

problems. I am indebted to my supervisors at Microsoft. In particular, I worked with

Wei Chen and Yajun Wang in Beijing on several network optimization problems.

They shared me their priceless insight in bridging theoretical computer science with

practical network problems we face in real world, which was an important experience

in my growth and development. Boz̆idar Radunović and Milan Vojnović supervised

me on a distributed streaming project (our result will be presented in Chapter 3).

They taught me many powerful optimization techniques that proved to be effective

in our project.

I thank faculty members in the theory group of the Hong Kong University of

Science and Technology (HKUST), for introducing me theoretical computer science

and giving me opportunities to conduct theory research in my undergraduate days.

Special thanks go to Mordecai Golin, who had been my mentor since I took his

“Analysis of Algorithms” course in year one’s summer in HKUST, for offering me

many independent study courses in theory, preparing me for the graduate school

training, and hosting me for doing research in the summers of 2003, 2004, 2008, and

Acknowledgments xi

2009.

I also thank all my wonderful collaborators and coauthors, Feizhou Zhou, Xiaom-

ing Sun, Yitong Yin, Xiaorui Sun, Hilary Finucane, Flavio Chierichetti, Vladimier

Braverman, Rafail Ostrovsky, William Yuen, Christopher Thorpe, Paul Syverson,

Tao Sun, Min Zhang, Chin-Yew Lin, Alex Collins, Rachel Cummings, Te Ke, David

Rincon, Wei Wei, Yifei Yuan, Varun Kanade, Yanhua Li, Giorgos Zervas, Lirong Xia,

Shaili Jain, and Tengyu Ma. It was amazing to work with them and hear their advice.

Working and studying in the theory lab in Maxwell Dworkin was the most mem-

orable experience for me in graduate school. I would probably not be able to survive

without these friends and colleagues, who used or frequently visited the office over the

years: Adam Kirsch, Shaili Jain, Kai-Min Chung, Loizos Michael, Flavio Chierichetti,

Lambert Yeung, Colin Jia Zheng, Anna Huang, Stephan Holzer, Justin Thaler, Jon

Ullman, Varun Kanade, Thomas Steinke, Jiayang Jiang, James Zuo, SueYeon Chung,

Scott Linderman, Alice Gao, Elaine Angelino, Elena Agapie, and Brendan Juba.

Outside Harvard, I thank Jie Wang, Xin Yuan, Kenny Huang, Pinyan Lu, Yang

Yang, Yuan Zhou, Liang Li, Zeyuan Zhu for their friendships and inspiring conversa-

tions.

Finally, I would like to thank my parents Hong Liu and Yuzhong Zhou and my

girlfriend Ya-Wen Shen for their unconditional love and support.

The thesis work was supported by NSF Grants CCF-0634923, CNS-0721491, and

CCF-0915922.

Dedicated to my father Hong Liu,

my mother Xiaoting Deng,

my late mother Yuzhong Zhou,

my brother Wei Liu,

and Jennifer Shen.

xii

Chapter 1

Introduction

This thesis studies several probabilistic algorithms for information and tech-

nology flow in large scale networks. Information flow refers to the circulation of

information in social or communication networks for the purpose of disseminating

or aggregating knowledge. Technology flow refers to the process in the network in

which nodes incrementally adopt a certain type of technological product such as IPv6

networking protocol. While the meaning of information and technology flow can be

different under different contexts, in this thesis we restrict our studies to the following

scenarios.

First, we study the problem that information flow acts as media to disseminate

messages. The information flow here is considered as a mechanism of replicating a

piece of information from one node to another in a network with a goal to “broadcast”

the information to everyone. Our studies focus on a simple broadcasting algorithm

that is often seen in mobile ad-hoc networks (MANET), namely the flooding algorithm.

A MANET is a self-configuring infrastructureless network of mobile devices connected

1

Chapter 1: Introduction 2

by wireless links. The availability of the communication links between devices in such

network is highly volatile because the devices are expected to be moving all the time.

Roughly speaking, the flooding algorithm we are interested in works as follows. In

the beginning, a message needs to be broadcast to every node in the network. Upon

receiving the message, each node in the network forwards the message to all of its

neighbors whenever possible. This process continues until everyone becomes aware of

the message. Here, the specific problem we study is to characterize the completion

time of the flooding algorithm when we make natural stochastic assumptions over the

evolution of the MANET.

Second, we study a pair of problems, where the information flow acts as a device

to aggregate statistics. Here, the information flow here shall be interpreted as artifacts

produced by algorithmic procedures, from which statistical estimators of the networks

can be constructed. Specifically, we study the following problems with a common goal

to build suitable estimators that have minimal information flow overhead. In the first

problem, we study how we can continuously monitor distributed data streams in

networks such as sensor networks and data centers. In a sensor network, for example,

different data streams continuously arrive to different sensors. A computation task

we often see is to continuously maintain statistics over the union of the data streams

the sensors collect using the provably minimal amount of communication.

In the second problem, we study the effectiveness of using random walks to

estimate statistical properties of the network. For example, consider a web graph

G = (V,E), where each v ∈ V represents a webpage. Let S be an arbitrary subset

of V . We would like to know the sum of PageRank score [90] of all the webpages

Chapter 1: Introduction 3

in S. A natural approach to answer this question is to carry out a (PageRank-type)

random walk of length ` over G and use the portion of random walk that hits S as the

sum estimator. Our question here is to derive a deviation bound on random walks to

understand the relationship between ` and the accuracy of the estimator.

Finally, we study the problem where technology flow acts as a key to unlock

innovative technology diffusion. Here, the technology flow shall be interpreted as a

way to specify under what circumstance a node in the network will decide to adopt a

new technology. Take the deployment of networking protocols such as SecureBGP and

IPv6 as an example. From Internet Service Provider’s point of view, such deployment

usually comes at non-negligible cost. The new networking protocols usually will

be of little value unless they are deployed to a substantial number of nodes in the

networks. Thus, the Internet Service Provider will consider the adoption of the new

technology only if the value of deploying the new technology is sufficiently large.

It has been known that the lack of local incentive is a major obstacle for the new

protocol deployment. Our question here is how we should subsidize a portion of the

deployment cost so that a small set of early adopters will incentivize the deployment

for all other nodes in the network.

This thesis’ goal. The goal of this thesis is to develop several probabilistic and al-

gorithmic techniques for such information and technology flow problems. The general

approach we take is to first encapsulate the characteristics of the flows into a statis-

tical or economic model and then leverage the model to design optimal algorithmic

solutions. For example, to understand the performance of the flooding algorithm, we

will first describe the evolution of the communication network as a natural stochastic

Chapter 1: Introduction 4

process. Then we will utilize the stochastic process structure to analyze the algo-

rithm. Here, the statistical or economic models serve as a proxy to understand the

average behavior of the flows in the networks, and hence usually allow us to design

average case algorithms. The central contribution of this thesis is the development of

quite a few techniques that fit with natural flow models.

This thesis also responds to the broader “big data” challenges we face in recent

years. The past decade has witnessed extensive advances in digital sensors, commu-

nications, computation, and storage, which create huge collection of data, capturing

information of value to business, science, government, and society. As suggested by

Bryant et. al [17], making sense of these data require a new computation paradigm:

the most appropriate strategies usually combine statistical and economic analysis,

and artificial intelligence to construct models from large data sets and to infer how

the system should respond to new updates. It is also argued that the key to tack-

ling these problems boils down to building up a unified framework from computer

science and statistics that gives the right tradeoff between descriptive flexibility and

algorithmic tractability [81]. Descriptive flexibility refers to the expressiveness of the

model to describe the data. Algorithmic tractability refers to the requirement that

our solutions need to be scalable to deal with massive data sets. While unrealistic

simple models with limited descriptive flexibility would be undesirable, a statistical

model with good descriptive complexity could result in a solution that is not com-

putationally trackable. Thus, the key step to deliver an effective solution is to find

the right tradeoff between the model and computation limits. The results presented

in this thesis emphasize the algorithmic tractability of the flow problems with the

Chapter 1: Introduction 5

presence of statistical or economic models. By studying fundamental flow models

that exist in computer networks, we aim to explore what algorithms can and cannot

do in the new computation paradigm.

Below, we walk through the problems studied in the thesis. Along the way, we

will articulate the mathematical model and briefly describe the problems’ motivations

and our results.

Information diffusion via random walks in high dimensional space We first

study the question where information flow acts as media to disseminate information.

We study a natural information dissemination problem for multiple mobile agents in

a bounded Euclidean space. Here, only when two agents in the network are suffi-

ciently close, they are able to establish communication links and exchange messages.

Because the nodes (agents) are expected to move all the time, the availability of the

communication links between nodes is highly volatile.

We model the problem as follows. The mobile agents are placed uniformly at

random in the d-dimensional space {−n, ..., n}d at time zero, and one of the agents

holds a piece of information to be disseminated. All the agents then perform inde-

pendent random walks over the space, and the information is transmitted from one

agent to another if the two agents are sufficiently close. Our goal is to bound the

total time before all agents receive the information (with high probability). Our work

extends Pettarin et al.’s work [92], which solved the problem for d ≤ 2. We present

tight bounds up to polylogarithmic factors for the case d ≥ 3.

Optimal distributed counters Next, we move to study the problem of network

monitoring that uses minimum communication overhead. Our studies are motivated

Chapter 1: Introduction 6

by the new algorithmic challenges of processing massive scale data in distributed

computing environment: the current state-of-the-art amounts to daily processing of

Terabytes or Petabytes of data in large data centres of major online service providers

and the demand for large-scale processing seems ever increasing. It is estimated that

in year 2015, the global data will reach 7,910 Exabytes of data of various types, in-

cluding videos, images and data. In practice, these data are usually processed in a

distributed manner via computer networks such as data centers. The major bottle-

neck in such systems is the communication channel, whose throughput is substantially

smaller than the throughput of CPUs. Thus, it is critical to design distributed algo-

rithms with minimum communication overhead.

In our studies, we consider the continual count tracking problem in a distributed

environment where the input is an aggregate stream originating from k distinct sites

and the updates are allowed to be non-monotonic, i.e. both increments and decre-

ments are allowed. The goal is to continually track the count within a prescribed

relative accuracy ε at the lowest possible communication cost.

Specifically, we consider an adversarial setting where the input values are se-

lected and assigned to sites by an adversary but the order is according to a random

permutation or is a random i.i.d. process. The input stream of values is allowed to

be non-monotonic with an unknown drift −1 ≤ µ ≤ 1, where the case µ = 1 corre-

sponds to the special case of a monotonic stream of only non-negative updates. We

design a randomized algorithm guaranteed to track the count accurately with high

probability, where the total amount of communication is sublinear to the total size of

the stream and is provably optimal. Our results are substantially more positive than

Chapter 1: Introduction 7

the communication complexity of Ω(n) under fully adversarial input. The distributed

counter can also be plugged in to other existing centralized streaming algorithms,

resulting in distributed streaming algorithms with sub-linear communication cost for

problems such as the tracking the second frequency moment and carrying out online

Bayesian regression.

Generalized and simplified Chernoff bound for Markov chains We then con-

tinue to study the effectiveness of using random walks to estimate statistical properties

of the network. Here, we study deviation bounds for random walks over possibly ir-

reversible finite state Markov chains based on mixing time properties of the chain in

both discrete and continuous time settings. Our studies confirm that using random

walk is effective in aggregating network statistics even when the walk is irreversible

so long as it has rapid mixing time. Such bounds would also be quite applicable to a

wide range of algorithmic problems in networks. For instance, these bounds have also

been applied to various online learning problem [103], testing properties of a given

graph [49], analyzing the structure of the social networks [9, 85], understanding the

performance of data structures [45], and computational complexity [55].

In particular, we prove the first Chernoff-Hoeffding bounds for general (irre-

versible) finite-state Markov chains based on the standard L1 (variation distance)

mixing time of the chain. Specifically, consider an ergodic Markov chain M and a

weight function f : [n]→ [0, 1] on the state space [n] ofM with mean µ , Ev←π[f(v)],

where π is the stationary distribution of M . A t-step random walk (v1, ..., vt) on M

starting from the stationary distribution π has expected total weight E[X] = µt, where

X ,
∑t

i=1 f(vi). Let T be the L1 mixing time ofM . We show that the probability of

Chapter 1: Introduction 8

X deviating from its mean by a multiplicative factor of δ, i.e. Pr[|X − µt| ≥ δµt], is

at most exp(−Ω(δ2µt/T)) for 0 ≤ δ ≤ 1, and exp(−Ω(δµt/T)) for δ > 1. The bounds

hold even if the weight function fi’s for i ∈ [t] are distinct, provided that all of them

have the same mean µ.

Technology diffusion in communication networks Finally, we move to study

using cascade effects to deploy new technology over communication networks. Cas-

cade effects provide a simple and effective way to drive global diffusion of a new

technology in a network: after a few well chosen seed nodes are convinced to adopt

the technology, more and more nodes make local decisions to adopt the technology

until eventually everyone in the network has adopted it. Given the complexity and

expenses involved in pursuading a large, dispersed network of nodes to adopt a new

technology, a particularly important algorithmic problem is to determine the smallest

possible seedset of early adopter nodes, and thus also the “cheapest” way to drive a

cascade that leads to global adoption.

Diffusion models are predicated on a model of node utility ; namely, the benefit

an individual node obatins when it decides to adopt the technology. In the rich

literature on cascade effects in social networks [37,69,86,97], the model of node utility

is highly local – it depends on only a node’s “friends” or immediate neighbors in social

network. Here, we consider a model where a node’s utility is non-local to reflect the

nature of communication network. In this case,a node’s utility depends not only on

its immediate neighbors, but also on the number of (possibly distant) nodes that

can communicate with using the new technology. Specifically, we consider a network

G(V,E) and consider a progressive technology diffusion process: a node starts out

Chapter 1: Introduction 9

as inactive (using an older version of the technology) and activates (adopts its new,

improved version) once it obtains sufficient utility from the new technology. Once

a node is active, it can never become inactive. We assume that a node u activates

when its utility exceeds θ(u), i.e. if the connected component containing node u in

the subgraph induced by {v : v ∈ V,Node v is active} ∪ {u} has size at least θ(u).

Our goal is to find the smallest seedset S that is feasible, i.e. when the nodes in S

are activated, every other node in the graph eventually activates as well.

1.1 Summary and outline

While these four problems are studied in very different contexts, leveraging sta-

tistical or economic properties of the problems is the key ingredient in our solutions.

In the information dissemination problem, our analysis critically relies on the as-

sumptions that the agents are performing independent random walks. In the technol-

ogy diffusion problem, our strategy of deploying new technology over communication

network can only be implemented if we understand each autonomous agent’s utility

structure. In the problem of designing distributed streaming algorithms for monotonic

counters, our solution relies on the input stream being randomly ordered. Finally, in

our large deviation bound studies, we can only get concentration bound when walks

are stochastic on graphs/networks. These extra insights on the problems’ structure

enable us to give solutions that are substantially better than solutions for the worst

case scenarios.

We also remark that while sometimes the assumption we make may not be com-

pletely realistic, nevertheless they provide insight into what we can do in these net-

Chapter 1: Introduction 10

working problems, where a worst-case solution is not the primary interest.

We organize this thesis in the following way. In Chapter 2, we study the infor-

mation dissemination problem. In Chapter 3, we study the problem of continuously

tracking non-monotonic counter in distributed streams, and in Chapter 4, we study

the large deviation bounds for finite state Markov chains. In Chapter 5, we study the

technology diffusion problem.

Chapter 2

Information dissemination in

k-dimensional spaces

2.1 Background

We study the following information diffusion problem: let a1, a2, ..., am be m

agents initially starting at locations chosen uniformly at random in Vd = {−n, ,−(n−

1), . . . , n}d and performing independent random walks over this space. One of the

agents initially has a message, and the message is transmitted from one agent to

another when they are sufficiently close. We are interested in the time needed to flood

the message, that is, the time when all agents obtain the message. In other settings,

this problem has been described as a virus diffusion problem, where the message is

replaced by a virus that spreads according to proximity. We use information diffusion

and virus spreading interchangeably, depending on which is more useful in context.

This is a natural model that has been extensively studied. For example, Alves et al.

11

Chapter 2: Information dissemination in k-dimensional spaces 12

and Kesten et al. coined the name “frog model” for this problem in the virus setting,

and studied the shape formed by the infected contour in the limiting case [4, 5, 71].

In the flooding time setting, early works used a heuristic approximation based on

simplifying assumptions to characterize the dynamics of the spread of the message [7,

72, 107]. More recent works provide fully rigorous treatments under this or similar

random walk models [25, 26, 91, 92, 101].

The most relevant recent works are those of Pettarin et al. [92] and Peres et al. [91,

101]. The work of Pettarin et al. examines the same model as ours, but their analysis

is only for one- and two-dimensional grids. The work of Sinclair and Stauffer [101]

considers a similar model they call mobile geometric graphs, and their work extends

to higher dimensions. However, their focus and model both have strong differences

from ours. For example, they assume a Poisson point process of constant intensity,

leading to a number of agents linear in the size of the space. In contrast, our results

allow a sublinear number of agents, a scenario not directly relevant to their model.

Also, they focus on structural aspects on the mobile graphs, such as percolation,

while we are primarily interested in the diffusion time. There are additional smaller

differences, but the main point is that for our problem we require and introduce new

techniques and analysis.

This chapter presents matching lower bounds and upper bounds (up to polylog-

arithmic factors) for the flooding problems in d-dimensional space for an arbitrary

constant d. For ease of exposition, in this chapter we focus on the specific case where

d = 3, which provides the main ideas. Two- and three- dimensional random walks

have quite different behaviors – specifically, two-dimensional random walks are recur-

Chapter 2: Information dissemination in k-dimensional spaces 13

rent while three-dimensional random walks are transient – so it is not surprising that

previous results for two dimensions fail to generalize immediately to three-dimensional

space. Our technical contributions include new techniques and tools for tackling the

flooding problem by building sharper approximations on the effect of agent interac-

tions.

Although the information diffusion problem in three or more dimensions appears

less practically relevant than the two-dimensional case, we expect the model will

still prove valuable. For instance, particles in a high dimensional space may provide

a latent-space representation of the agents in a dynamic social network [58, 96], so

understanding information diffusion process may be helpful for designing appropriate

latent space models in the future. Also, the problem is mathematically interesting in

its own right.

2.1.1 Our models and results

We follow the model developed in [92]. Let Vd = {−n,−(n − 1), ..., 0, ..., (n −

1), n}d be a d-dimensional grid. Let A = {a1, a2, ..., am} be a set of moving agents

on Vd. At t = 0, the agents spread over the space according to some distribution D.

Throughout this chapter, we focus on the case where D is uniform. Agents move in

discrete time steps. Every agent performs a symmetric random walk defined in the

natural way. Specifically, at each time step an agent not at a boundary moves to one

of its 2d neighbors, each with probability 1/(2d). If an agent is at a boundary, so there

is no edge in one or more directions, we treat each missing edge as a self-loop. Let

Ξ1(t), ...,Ξm(t) ∈ {0, 1} each be a random variable, where Ξi(t) represents whether

Chapter 2: Information dissemination in k-dimensional spaces 14

the agent ai is infected at time step t. We assume Ξ1(0) = 1 and Ξi(0) = 0 for all

i 6= 1. The value Ξi(t) will change from 0 to 1 if at time t it is within distance 1 to

another infected agent aj. (We use distance 1 instead of distance 0 to avoid parity

issues.) Once a value Ξj(t) becomes 1, it stays 1.

Definition 2.1.1. (Information diffusion problem). Let A1, A2, . . . , Am ∈ Vd be the

initial positions of the agents a1, . . . , am and let S1
t (A1), S

2
t (A2), . . . , S

m
t (Am) be m

independent random walks starting at A1, . . . , Am respectively, so that Si
t(P) is the

position of agent ai at time t given that at t = 0 its position was P ∈ Vd. The

infectious state of each agent at time step t is a binary random variable Ξi(t) such

that

• Ξ1(0) = 1, Ξi(0) = 0 for all other i, and

• for all t > 0, Ξi(t) = 1 if and only if

(Ξi(t− 1) = 1) or
(
∃j : Ξj(t− 1) = 1 ∧

∥
∥Si

t(Ai)− Sj
t (Aj)

∥
∥
1
≤ 1
)
.

We define the finishing time of the diffusion process, or the diffusion time, as T =

inf{t ≥ 0 : |{Ξi(t) = 1}| = m}.

The following results for the diffusion time for 1 and 2 dimensional spaces are

proved in [92].

Theorem 2.1.2. Consider the information diffusion problem for d = 1, 2 dimensions,

and assume the agents are initially uniformly distributed over Vd. Then, with high

probability,

T = Θ̃(n2 ·m−1/d). (2.1)

Chapter 2: Information dissemination in k-dimensional spaces 15

It is natural to ask whether Equation 2.1 also holds for d ≥ 3. Our results show

this is not the case.

Theorem 2.1.3. (Diffusion time for d ≥ 3) Consider the information diffusion prob-

lem for d ≥ 3 with initially uniformly distributed agents over Vd. Then there exists a

constant c such that

if cnd−2 log2 n < m < nd : T = Θ̃(nd/2+1 ·m−1/2) with high probability;

if m < cnd−2 log−2 n : T ≤ Θ̃(nd/m) with high prob.

and T ≥ Θ̃(nd/m) almost surely.

(2.2)

Notice that Theorems 2.1.3 and 2.1.2 yield the same result for d = 2, as well as

when d = 1 and m = Θ(n). Here when we say with high probability, we mean the

statement holds with probability 1 − n−γ for any constant γ and suitably large n.

When we say almost surely, we mean with probability 1 − o(1). When m ≥ nd, the

result is implicit in [71] and the diffusion time in this case is Θ̃(n). Finally, there are

some technical challenges regarding the case cnd−2 log−2 n ≤ m ≤ cnd−2 log2 n that

we expect to address in the future

An interesting point of our result is that when the number of agents m is greater

than nd−2, the finishing time is less than the mixing time of each individual random

walk, and therefore the analysis requires techniques that do not directly utilize the

mixing time. The rest of this chapter focuses on deriving both the lower and upper

bounds for this interesting case; the case where m < cnd−2 log−2 n, which harnesses

similar ideas and a mixing time argument, is only briefly described at the end. Finally,

as previously mentioned, we provide only the analysis for the three dimensional case,

and note that the results can be generalized to higher dimensions.

Chapter 2: Information dissemination in k-dimensional spaces 16

Theorem 2.1.3 can also be expressed in the terms of the density of agents. Let

λ = m/nd be the density. We can express the diffusion time as T = Θ̃(n/
√
λ) w.h.p.

for cn−2 log2 n < λ < 1, whereas for λ < cn−2 log−2 n we have T ≤ Θ̃(1/λ) w.h.p.

and T ≥ Θ̃(1/λ) almost surely.

We remark that all theorems/propositions/lemmas in this chapter are assumed

to hold for sufficiently large n, but for conciseness we may not restate this condition

in every instance.

2.2 Preliminary results for random walks

In this section we lay out some preliminary results on random walks that will be

useful in the subsequent analysis (For completeness, Chapter 2.6 also presents other

known properties of random walks that we will use throughout this Chapter). These

results focus on probabilistic estimates for the meeting time/position of multiple

random walks. Along the way, we will also illustrate the limitations of some of

these estimates, hence leading to the need of more sophisticated techniques in our

subsequent analysis.

Let Z be the set of integers, and Z3 be the set of integral lattice points in R3.

For two points A,B ∈ Z3, we write A−B as the 3-dimensional vector pointing from

B to A. For a vector ~x ∈ R3, denote the ith coordinate of ~x as xi. Define the Lp

norm of a vector as ‖~x‖p =
(∑

i≤3 |xi|p
)1/p

, and also the infinite-norm in the standard

manner ‖~x‖∞ = maxi≤3 |xi|. We moderately overload x in this chapter, i.e. x is a

scalar and ~x is a vector.

Let S1 and S2 be two random walks in either V3 (bounded walks) or Z3 (un-

Chapter 2: Information dissemination in k-dimensional spaces 17

bounded walks). We say two walks S1 and S2 meet at time t if their L1-distance is

within 1 at that time and two walks S1 and S2 collide at t if they are exactly at the

same position at time t.

Definition 2.2.1 (Passage probability). Let S be a random walk in Z3 starting at

the origin O. Let B be a point with B−O = ~x (which is a three dimensional vector).

Define the probability that S is at B at time t as p(t, ~x). Define the probability that

S visits B within time t as q(t, ~x).

We want to characterize the chance that two or more random walks in either V3

or Z3 meet. More specifically, consider the following question. Let A1, ..., Aj, and

B be j + 1 points over the 3-dimensional space Z3 such that for all i ∈ [j], the L1

distance between Ai and B is ‖Ai − B‖1 ≥ x. Let S1(A1), ..., S
j(Aj), S

j+1(B) be

independent random walks that start with these points respectively. Our goal is to

understand the probability that all the walks S1, ..., Sj will meet or collide with the

random walk Sj+1 within x2 time steps. We note that if the agents starting at B was

stationary instead of following its own random walk then the analysis of the situation

would be straightforward. In particular, the probability that all the walks would

intersect B is Θ̃(1/xk). This follows from standard results, including Theorem 2.6.6

and Lemma 2.6.7 provided in Chapter 2.6. We need to consider a more challenging

situation when the agent starting at B is also moving.

To begin, we shall consider the case where j = 1, so that we have just two moving

agents.

Definition 2.2.2. Let A and B be two points over Z3 such that A − B = ~x. where

‖~x‖1 is an even number. Let S1 and S2 be two independent unbounded random walks

Chapter 2: Information dissemination in k-dimensional spaces 18

that start at A and B respectively. Define Q(t, ~x) as the probability that S1 and S2

collide before time t.

We can use a simple coupling argument to relate Q(t, ~x) with q(t, ~x). The result

is described as follows.

Lemma 2.2.3. Let A and B be two points over Z3 such that A−B = ~x, where ‖~x‖1

is an even number. Consider Q(t, ~x) and q(t, ~x) defined above. We have Q(t, ~x) =

q(2t, ~x). Furthermore, for t ≥ ‖~x‖22, Q(t, ~x) = Θ(1/‖~x‖2).

Proof of Lemma 2.2.3. Let us consider the following two processes P1 and P2 in the

same probability space (we slightly abuse the terminology “process” to mean the

expression of the random tosses that drive all random walks of interest).

1. The process P1: consider the random walk S(A). We are interested in the

event that St(A) visits B within time 2t, which occurs with probability q(2t, ~x).

Notice that S(A) is unable to visit B at odd steps.

2. The process P2: consider the random walks S1(A) and S2(B). We are inter-

ested in the event that the two walks collide by the time t, which occurs with

probability Q(t, ~x).

We couple the two random processes as follows. We first construct the single

random walk in P1 from the two walks in P2. Note that one time step in P2 involves

simultaneous moves of the walks S1(A) and S2(B). Corresponding to this step, the

single walk in P1 will be set to move first in the same direction as S1(A), and then

in the reverse direction from S2(B). This way the moves at time t > 0 in P2 are

translated into the moves at time 2t−1 and 2t in P1. The construction can naturally

Chapter 2: Information dissemination in k-dimensional spaces 19

be reversed to map a walk in P1 to two walks in P2. This coupling ensures the L1

distance between S1 and S2 at time t in P2 is the same as the distance between S

and B at time 2t in P1. Note that collision in P2 can only occur at even steps, and

hence the hitting event in P1 is well-defined. Therefore S
1 and S2 collide at or before

t if and only if S visits B at or before 2t.

Using the bound given in Lemma 2.6.7, we have for t ≥ ‖~x‖22,

Q(t, ~x) = Θ

(
1

‖~x‖2

)

Next, let us move to the case of j random walks in Z3, in which j > 1.

Lemma 2.2.4. Let A1, A2, . . . , Aj, and B be points in Z3 such that ‖Ai − B‖1 are

even and ‖Ai − B‖1 ≥ x for all i ≤ j. Let S1(A1), . . . , S
j(Aj), S

j+1(B) be j + 1

independent random walks that start at A1, . . . , Aj, B respectively. Let t = x2. Then

the probability that all the walks S1, . . . , Sj collide with St+1 within time t is at most

(
ζj
x

)j
, where ζ is a sufficiently large constant.

Proof of Lemma 2.2.4. Let Ψ
t1,...,tj
C1,...,Cj

be the event that Si and Sj+1 collide at Ci at

time step ti (not necessarily for the first time) for all i ∈ [j]. Our goal is to bound

the following quantity

Pr
[

∃t1, ..., tj , C1, ..., Cj : Ψ
t1,...,tj
C1,...,Cj

= 1
]

≤ j! Pr
[

∃t1 ≤ ... ≤ tj , C1, ..., Cj : Ψ
t1,...,tj
C1,...,Cj

= 1
]

.

≤ j!
∑

t1≤t2≤...≤tj

∑

C1,...,Cj

Pr[Ψ
t1,...,tj
C1,...,Cj

= 1].

Chapter 2: Information dissemination in k-dimensional spaces 20

We cut the time interval into j frames [0, t1], [t1, t2], ..., [tj−1, tj], so that the

random walks with different frames are independent. Define Di−1 be the position of

Si at time ti−1. For notational convenience, we let D0 = A1, C0 = B, and t0 = 0.

The event Ψ
t1,...,tj
C1,...,Cj

= 1 implies that in the i-th time interval [ti−1, ti] we have

1. Si moves from Ai at time 0 to Di−1 at time ti−1.

2. at time ti−1, the walk Sj+1 is at Ci−1.

3. at time ti, the walk Sj+1 and the walk Si are both at Ci.

By standard results regarding high dimensional random walks (e.g. see Theorem 2.6.5),

the probability that the first event happens is at most

3

t1.5i−1

(
1.5

2π

)1.5

exp

{−3‖Ai −Di−1‖22
2ti−1

}

(2.3)

and the probability that both the second and the third events happen is at most

3

(ti − ti−1)3
(
1.5

2π

)1.5

exp

{−3(‖Di−1 − Ci‖22 + ‖Ci−1 − Ci‖22)
2(ti − ti−1)

}

. (2.4)

The error term in Theorem 2.6.5 is swallowed by the larger leading constants 3 in

Equations 2.3 and 2.4.

As Si’s walk before time ti−1 is independent to the walks of Si and Sj+1 between

ti−1 and ti, the probability that the three subevents above happen can be bounded

by taking the product of Equation 2.3 and 2.4 above.

Let

fi =
3

(ti − ti−1)3
(
1.5

2π

)1.5

exp

{−3[‖Di−1 − Ci‖22 + ‖Ci−1 − Ci‖22]
2(ti − ti−1)

}

for 1 ≤ i ≤ j,

(2.5)

Chapter 2: Information dissemination in k-dimensional spaces 21

gi =
3

t1.5i−1

(
1.5

2π

)1.5

exp

{−3‖Ai −Di−1‖22
2ti−1

}

for 2 ≤ i ≤ j, (2.6)

We also let g1 = 1 and g =
∏

i≤j gi. We have

Pr[∃t1 ≤ ... ≤ tj , C1, ..., Cj : Ψ
t1,...,tj
C1,...,Cj

= 1] ≤
∑

t1,...,tj

∑

C1,...,Cj

∑

D1,...,Dj−1

(f1g1)(f2g2)...(fjgj)

We now carefully bound this sum. Observe that in Equation 2.5, when ti−ti−1 is

fixed and ‖Di−1−Ci‖22+‖Ci−1−Ci‖22 is sufficiently large, the quantity fi asymptotically

becomes

exp(−Θ(max{‖Di−1 − Ci‖22, ‖Ci−1 − Ci‖22})).

This motivates us to group the triples {Ci−1, Ci, Di−1} together, where the triples are

covered by balls with approximately the same size under the L∞ norm . Specifically,

we let Dr be the set of triples (A,B,C) where A,B,C ∈ Z3 and max{‖A−B‖1, ‖A−

C‖1, ‖B−C‖1} ≤ r. Also, we say {A,B,C} ∈ ∂Dr if {A,B,C} ∈ Dr −Dr−1. Notice

by telescoping, we have Dr =
⋃

i≤r ∂Di. We may thus group the variables Ci and Di

by parameterizing the radii of the balls,

Pr[∃t1 ≤ ... ≤ tj, C1, ..., Cj : Ψ
t1,...,tj
C1,...,Cj

= 1]

≤
∑

t1,...,tj

∑

C1,...,Cj

∑

D1,...,Dj−1

(f1g1)(f2g2)...(fjgj)

=
∑

C1∈V3

∑

r1≥0

∑

r2≥0
. . .

∑

rj−1≥0

∑

{C1,C2,D1}
∈∂Dr1

∑

C3,D2:
{C2,C3,D2}
∈∂Dr2

· · ·
∑

Cj ,Dj−1:
{Cj−1,Cj ,Dj−1}
∈∂Drj−1

∑

t1<...<tj

f1 · f2 · . . . · fj · g

First observe that by the triangle inequality ‖A−C1‖1+‖B−C1‖1 ≥ ‖A−B‖1 = x,

and for any vector ~v ∈ R3,

1√
3
‖~v‖1 ≤ ‖~v‖2 ≤ ‖~v‖1. (2.7)

Chapter 2: Information dissemination in k-dimensional spaces 22

We have

‖D0−C1‖22+‖C0−C1‖22 = ‖A−C1‖22+‖B−C1‖22 ≥
1

3
(‖A−C1‖21+‖B−C1‖21) ≥

x2

6
.

(2.8)

Next, by the triangle inequality again, ‖Di − Ci+1‖1 + ‖Ci − Ci+1‖1 ≥ ‖Di − Ci‖1.

Meanwhile, we have

max{‖Di − Ci+1‖1, ‖Ci − Ci+1‖1, ‖Di − Ci‖1} = ri.

Together with the relationship between the L1 and L2 norms in Equation 2.7, we

obtain

‖Di − Ci+1‖22 + ‖Ci − Ci+1‖22 ≥ r2i /6 for 1 ≤ i < j.

Next, for i ≥ 2 we define

f̂i =
1

(ti − ti−1)3
exp

{ −r2i−1
4(ti − ti−1)

}

,

and define

ĝ =
1

(t1 . . . tj−1)1.5
.

It is clear that fi ≤ f̂i for all i ≥ 2 and g ≤ ĝ. For notational convenience, we

let f̂1 = f1.

Our goal is now to bound the term

η ≡
∑

r1,...,rj−1

∑

all triples

{Ci,Ci+1,Di}

∑

t1≤...≤tj

(
∏

i≤j
f̂i

)

· ĝ

=
∑

r1,...,rj−1

∑

all i<j:
{Ci,Ci+1,Di}

∑

t1

f̂1
1

t1.51
︸︷︷︸

from ĝ

∑

t2

f̂2
1

t1.52
︸︷︷︸

from ĝ

...
∑

tj−1

f̂j−1
1

t1.5j−1
︸︷︷︸

from ĝ

∑

tj

f̂j .

Next, let us rearrange the indices and decompose the quantity into different parts (in

terms of Υi defined below) and express η as in (2.9).

C
h
a
p
ter

2
:
In
fo
rm

a
tio

n
d
issem

in
a
tio

n
in
k
-d
im

en
sio

n
a
l
spa

ces
23

∑

t1≥0

∑

C1∈V3

f̂1
t1.51

∑

r1≥0
t2≥t1

∑

C2,D1

{C1,C2,D1}
∈∂Dr1

f̂2
t1.52

∑

r2≥0
t3≥t2

∑

C3,D2

{C2,C3,D2}
∈∂Dr2

f̂3
t1.53

...

∑

rj−2≥0
tj−1≥tj−2

∑

Cj−1,Dj−2:
{Cj−1,Cj−2,

Dj−2}∈
∂Drj−2

f̂j−1

t1.5j−1

∑

rj−1≥0
tj≥tj−1

∑

Cj ,Dj−1:
{Cj ,Cj−1,
Dj−1}∈
∂Drj−1

f̂j

︸ ︷︷ ︸

Υj

︸ ︷︷ ︸

Υj−1

︸ ︷︷ ︸

Υ3

︸ ︷︷ ︸

Υ2

︸ ︷︷ ︸

Υ1

(2.9)

Chapter 2: Information dissemination in k-dimensional spaces 24

Let us briefly interpret the meaning of Υi: this term describes an upper bound

for the following two groups of events:

• the collisions between Sj+1 and Si, Si+1, ..., and Sj at time ti, ti+1, ..., tj

respectively.

• the fact that at time ti′ the walk S
i′+1 is atDi′ for all i ≤ i′ ≤ j (i.e., Si′+1

ti′
= Di′).

which is conditioned on knowing the values for

= = {t1, ..., ti−1, r1, ..., ri−1, C1, ..., Ci−1, D1, ..., Di−2}.

When Ci−1 is known, this information imposes a constraint over the way to enu-

merate Ci and Di−1 because we require {Ci−1, Ci, Di−1} ∈ ∂Dri−1
for a specific ri−1.

Therefore, the computation of Υi depends on the value of Ci−1. A second constraint

imposed from knowing = is that we need ti−1 ≤ ti ≤ ... ≤ tj . Υi does not depend on

other values in =. In what follows, we write Υi as a function of Ci−1 and ti−1.

Specifically, let us define the function Υi in a forward recursive manner (the

summations of ri and ti are over integers):

Υi =

∑

rj−1≥0
∑

Cj ,Dj−1:
{Cj−1,Cj ,Dj−1}
∈∂Drj−1

∑

tj−1≤tj≤x2 f̂j if i = j (base case)

∑

ri−1≥0
∑

Ci,Di−1:
{Ci−1,Ci,Di−1}
∈∂Dri−1

∑

ti≥ti−1

(

f̂i
1

t1.5i
Υi+1

)

if 1 < i < j

∑

t1,C1

f̂1
t1.51

Υ2 if i = 1.

(2.10)

The variable Υ1 is the quantity we desire to bound. Let ∆ti = ti − ti−1 for all i

(and we shall let t0 = 0). Let us start with bounding

Υj =
∑

rj−1

∑

Cj ,Dj−1

∑

∆tj>0

3

∆t3j
exp

(−r2j−1
4∆tj

)

Chapter 2: Information dissemination in k-dimensional spaces 25

We shall first find the total number of {Cj, Dj−1} pairs so that {Cj , Cj−1, Dj−1} ∈

∂Drj−1
. Notice that when rj−1 and Cj−1 are fixed, at least one of ‖Cj−1 − Cj‖1,

‖Cj−1 − Dj−1‖1, and ‖Cj − Dj−1‖1 is exactly rj−1. When ‖Cj−1 − Dj−1‖1 = rj−1,

the number of possible Dj−1 is 4rj−1(rj−1 − 1) ≤ 4r2j−1. An upper bound on the

number of possible Cj is 4r
3
j−1. Therefore, when ‖Cj−1 −Dj−1‖1 = rj−1, the number

of {Cj, Dj−1} pairs is at most 16r5j−1. We may similarly analyze the other two cases

to find that the total number of {Cj, Dj−1} pairs is at most 48r5j−1. Thus, we have

Υj =
∑

rj−1

∑

Cj ,Dj−1

∑

∆t3j

3

∆t3j
exp

(−r2j−1
4∆tj

)

=
∑

∆tj

1

∆t3j

∑

rj−1

3× 48r5j−1 exp

(−r2j−1
4∆tj

)

≤
∑

∆tj

1

∆t3j

(

2 ·
∫ ∞

0

144r5j−1 exp

(−r2j−1
4∆tj

)

drj−1

)

=
∑

∆tj

1

∆t3j
18432∆t3j

= 18432x2 ≤ ζ0x
2,

where ζ0 = 18432. The last equality holds because we are considering a time frame

of length x2 and therefore ∆tj ≤ x2. Let us explain the derivation in greater detail

because similar techniques will be used again in the rest of the analysis. Define

h(x) = x5 exp
(

− x2

4∆tj

)

. The function h(x) is a unimodal function with a unique

Chapter 2: Information dissemination in k-dimensional spaces 26

global maximal value. Let x0 = arg infx≥0 h(x). Then we have

∑

x∈N
h(x) ≤

bx0c∑

x=1

h(x) +

+∞∑

x=dx0e
h(x)

≤
∫ x0+1

1

h(x)dx+

∫ ∞

bx0c
h(x)dx

≤ 2

∫ ∞

0

h(x)dx.

While this bound is quite rough, it suffices for our purpose; the same approach

is used to bound the summation of unimodal functions elsewhere. The third equality

holds because of the following fact,

∫ ∞

0

x5 exp

(

−x
2

4`

)

dx = 64`3 (2.11)

for any `. (This can be verified through standard software packages such as Mathe-

matica).

We can prove the following hypothesis for Υi:

for all 1 ≤` ≤ j − 2 : Υj−`(Cj−`−1, tj−`−1) ≤ x2ζ`+1
0 · 4` · 1

`!
· t−`/2j−`−1.

We shall show this by induction (with the base case, in which ` = 0, being proven

above).

Υj−`−1(Cj−`−2, tj−`−2)

≤ x2ζ`+1
0 · 4`−1 · (`!)−1

∑

rj−`−2

∑

Cj−`−1,Dj−`−1

∑

∆tj−`−1

3

∆t3j
exp

(

−r2j−`−2

4∆tj−`−1

)

1

t
1.5+`/2
j−1

≤ x2ζ`+1
0 · 4`−1(`!)−1

∑

∆tj−`−1

1

∆t3j−`−1 · t
1.5+`/2
j−`−1

(

2

∫ ∞

0

144r5j−`−2 exp

(

−r2j−`−2

4∆tj−`−1

)

drj−`−2

)

= x2ζ`+2
0 4`(`!)−1

∑

∆tj−`−1

1

t
1.5+`/2
j−`−1

≤ x2ζ`+2
0 4`+1((` + 1)!)−1 1

t
(`+1)/2
j−`−2

.

Chapter 2: Information dissemination in k-dimensional spaces 27

The last inequality holds because

∑

∆tj−`−1

1

t
1.5+`/2
j−`−1

≤ 2

∫ ∞

tj−`−2

1

t1.5+`/2
dt ≤ 4(`+ 1)−1

1

t
(`+1)/2
j−`−2

.

This completes the induction. Finally, we have

Υ1 =
∑

C1

∑

t1

f1
1

t1.51

Υ2(C1, t1)

≤ x2ζj−10 4j−2((j − 2)!)−1
∑

C1,t1

1

t
j/2+3.5
1

· exp
(−3‖B − C1‖22 + ‖A1 − C1‖22

2t1

)

.

Next, let ‖B−C1‖1 = r0. By Equation 2.7, ‖B−C1‖22 ≥ r20/3. By Equation 2.8,

we have ‖B−C1‖22+‖A1−C1‖22 ≥ x2/6. Therefore, we have ‖B−C1‖22+‖A1−C1‖22 ≥
1
6
(r20 + x2/2). We have

∑

C1,t1

1

t
j/2+3.5
1

exp

(−3(‖B − C1‖2 + ‖A1 − C1‖2)
2ti

)

≤
∑

t1

1

t
j/2+3.5
1

∑

‖B−C1‖1=r0

∑

C1

exp

(−3r20
12t1

)

· exp
(−3x2

24t1

)

≤
∑

t1

1

t
j/2+3.5
1

(

2

∫ ∞

0

4r20 exp

(−r20
4t1

)

dr0

)

· exp
(−3x2

24t1

)

≤
∑

t1

1

t
j/2+3.5
1

16
√
πt1.51 exp

(−x2
8t1

)

≤ 30
∑

t1

1

t
j/2+2
1

exp

(−x2
8t1

)

≤ 60
Γ(j/2 + 1)

(x2/8)j/2+1
.

The third inequality holds because

∫ ∞

0

r20 exp

(

− r20
4t1

)

dr0 = 2
√
πt1.51

The last inequality holds because

∫ ∞

0

y−c exp(
−x2
8y

)dy =
8c−1

x2(c−1)
Γ(c− 1)

Chapter 2: Information dissemination in k-dimensional spaces 28

for any constant c and real number x.

We thus conclude that

Υ1 ≤
x2ζj−10 4j−2

(j − 2)!
· 60 · Γ(

j
2
+ 1)

x2(j/2+1)
8j/2+1 ≤ 30(8

√
2)jζj−10 Γ(j

2
+ 1)

(j − 2)!xj
.

When the permutation is considered, we have

Pr[∃t1, ..., tj, C1, ..., CjΨ
t1,...,tj
C1,...,Cj

= 1]

≤ j!
30(8
√
2)jζj−10 Γ(j

2
+ 1)

(j − 2)!xj

≤ 30j(j − 1)(8
√
2)jζj−10 Γ(j

2
+ 1)

xj

≤ (8
√
2ζ0)

jjj

xj

≤
(

8
√
2ζ0j

x

)j

By setting ζ = 8
√
2ζ0 < 210000, our lemma follows.

Lemma 2.2.4 also helps us to analyze the scenario in which agents need to meet

rather than to collide. This is summarized by the following corollary:

Corollary 2.2.5. Let A1, A2, ..., Aj, and B be points in Z3 such that ‖Ai−B‖1 ≥ x

for all i ≤ j. Let S1(A1), ..., S
j(Aj), S

j+1(B) be j+1 independent random walks that

start at A1, ..., Aj, B respectively. Let t = x2. Then the probability that all the walks

S1, ..., Sj meet with Sj+1 within time t is at most
(

ζ′j
x

)j

, where ζ ′ is a sufficiently

large constant.

Proof of Corollary 2.2.5. Notice first that if Sj+1(B) and Si(Ai) meet at a time step

t0, then there exists a point A′i with ‖A′i − Ai‖1 = 1 such that the walk Si′(A′i) that

mimics the moves of Si at each step collides with Sj+1 at time t0.

Chapter 2: Information dissemination in k-dimensional spaces 29

Therefore, a necessary condition for Sj+1 to meet the rest of agents is that there

exist S1′(A′1), S
2′(A′2), ..., S

j′

A′
j
such that

• ‖A′i − Ai‖1 = 1 for all i ≤ j.

• Si′ mimics the moves of Si at all steps for all i ≤ j.

• Sj+1 collides with all of S1′ , ..., Sj′ before time t.

For any A′1, ..., A
′
j , the collision probability is at most

(
ζj
x

)j
by Lemma 2.2.4. The

total number of possible j-tuples A′1, ..., A′j is 7j. By using a union bound, the

probability there exists a j-tuple such that all j walks collide with Sj+1 is at most

7j
(
ζj
x

)j
. The corollary follows.

We note that both Lemma 2.2.4 and Corollary 2.2.5 are useful only when x is

large enough. This forms a barrier for analysis of close agents in our model. But as

we will see, we can get around this issue by looking at a coupled diffusion process

that possesses a different diffusion rule specifically designed for handling close agents.

Another important issue is the analysis on walks that are close to the boundary.

For this, we show that the random walks will not behave significantly different (in

terms of the desired bounds) when boundaries are added. We notice that similar

results are presented in [92], but their results do not immediately translate to the

building blocks we need here. The following is the major building block we need for

our analysis:

Lemma 2.2.6. Let A and B be two points in V3 such that A−B = ~x and the distance

between A and any boundary is at least 40‖~x‖1. Consider two random walks S1(A)

Chapter 2: Information dissemination in k-dimensional spaces 30

and S2(B) that start at A and B respectively. Let ẽt be the event that S1(A) and

S2(B) will meet before time t = ‖~x‖21 and before either of them visits a boundary.

Then Pr[ẽ‖~x‖21] = Ω(1/‖~x‖1).

We next move to prove Lemma 2.2.6. Since we need to frequently compare

bounded random walks with their unbounded counterparts, we use S to represent

unbounded walks and S to represent bounded walks in the rest of this section.

Our analysis consists of two steps. We first tackle a simpler problem, in which

we need to understand the probability for a random walk starting from a point near

the boundary to visit another point in V3 within a short time frame. We then utilize

results from this scenario to prove Lemma 2.2.6.

Lemma 2.2.7. Let V3 = {−n, ..., n}3. Let A and B be two points in V3 such that

A−B = ~x and the distance under L∞ norm between A and any boundary is at least

20‖~x‖1. Consider a random walk S(A) that starts at A. Let e1t be the event that S(A)

is at B at time t. Let e2t be the event that S(A) hits a boundary at or before t. When

t = Θ(‖~x‖21), we have Pr[e1t ∧ ¬e2t] ≥ c0p(t, ~x) for some constant c0.

Proof. First, let us couple the random walk S(A) with a standard unbounded random

walk S(A) in the natural way. Let ê1t be the event that S(A) is at B at time t and

let ê2t be the event that S(A) ever visits a boundary at or before time t. When ¬e2t
occurs, S(A) and S(A) coincide and Pr[e1t ∧ ¬e2t] = Pr[ê1t ∧ ¬ê2t].

On the other hand, we have

p(t, ~x) = Pr[ê1t ∧ ê2t] + Pr[ê1t ∧ ¬ê2t].

Notice that in the event ê1t ∧ ê2t , S(A) has to travel from the boundary to B within

Chapter 2: Information dissemination in k-dimensional spaces 31

a time interval shorter than t. The distance between the boundary and B is at least

19‖~x‖1. Together with the analytic form of p(·, ·) in Lemma 2.6.5, we have Pr[ê1t∧ê2t =

1] ≤ max‖~y‖1≥19‖~x‖1 p(t, ~y). Therefore, Pr[ê1t ∧ ¬ê2t] ≥ p(t, ~x) − max‖~y‖1≥19‖~x‖1 p(t, ~y).

Finally, we have

Pr[e1t ∧ ¬e2t] = Pr[ê1t ∧ ¬ê2t] ≥ p(t, ~x)− max
‖~y‖1≥19‖~x‖1

p(t, ~y) ≥ 1

2
p(t, ~x).

We may use the analytic form of the function p(·, ·) (Lemma 2.6.5) for t = Θ(‖~x‖21)

to verify the last inequality.

Proof of Lemma 2.2.6. Let X be the number of collisions between S1 and S2 that are

before time t and before either of them visits a boundary. Also let ê(St) be the event

that the random walk S ever visits a boundary at or before time t. We have

E[X]

=
∑

t≤‖~x‖21

Pr[(S1
t = S2

t) ∧ (¬ê(S1
t) ∧ ¬ê(S2

t))]

=
∑

t≤‖~x‖21

∑

C∈V
Pr[(S1

t = C) ∧ ¬ê(S1
t)] Pr[(S

2
t = C) ∧ ¬ê(S2

t)] (two walks are independent)

≥
∑

t≤‖~x‖21

∑

C:‖C−A‖1≤‖~x‖1
Pr[(S1

t = C) ∧ ¬ê(S1
t)] Pr[(S

2
t = C) ∧ ¬ê(S2

t)]

The last inequality holds because we only focus on a subset of V3. Since ‖C−A‖1 ≤

‖~x‖1 and ‖A−B‖1 ≤ ‖~x‖1, we have ‖C − B‖1 ≤ 2‖~x‖1.

By Lemma 2.2.7,

Pr[(S1
t = C) ∧ ¬ê(S1

t)] ≥
1

2
p(t, A− C) and Pr[(S2

t = C) ∧ ¬ê(S2
t)] ≥

1

2
p(t, B − C)

Chapter 2: Information dissemination in k-dimensional spaces 32

We now have

∑

t≤‖~x‖21

∑

C:‖C−A‖1≤‖~x‖1

Pr[(S1
t = C) ∧ ¬ê(S1

t)] Pr[(S
2
t = C) ∧ ¬ê(S2

t)]

≥
∑

1≤t≤‖~x‖21

∑

C:‖C−A‖1≤‖~x‖1

1

2
p(t, A− C)1

2
p(t, B − C) (by Lemma 2.2.7)

= Ω

∑

1≤t≤‖~x‖21

‖~x‖31 min
C:‖C−A‖1≤‖~x‖1

{p(t, C − A)p(t, B − C)}

= Ω(1/‖~x‖1).

The last equality can be shown by using the analytic form of p(·, ·) again (Lemma 2.6.5)

and the fact that ‖A− C‖2 and ‖B − C‖2 are in O(‖~x‖2).

Next, let us compute E[X|X ≥ 1], i.e., the expected number of collisions when

they collide at least once. Upon the first time S1 and S2 collide (before either of them

visit the boundary), we couple S1 and S2 with two unbounded random walks S1 and

S2 in the natural way respectively. The expected number of collisions between S1 and

S2 for t steps (when they start at the same point) is an upper bound on E[X|X ≥ 1].

On the other hand, we may couple S1 and S2 with a single random walk S in the way

described in Lemma 2.2.7 so that the expected number of collisions between S1 and

S2 is the expected number of times S returns to the point where it starts at.

Finally, the expected number of return for an unbounded random walk is a

constant (which can be derived from
∑

t≥0 p(t,
~0), where p(·, ·)’s analytic form is in

Theorem 2.6.5). Therefore, E[X | X ≥ 1] = O(1). Now since E[X] = E[X | X ≥

1] Pr[X ≥ 1]. Therefore, Pr[ẽ‖~x‖21] = Pr[X ≥ 1] = Ω(1/‖~x‖1).

Chapter 2: Information dissemination in k-dimensional spaces 33

2.3 Lower bound

Let us first state our lower bound result more precisely as follows.

Theorem 2.3.1. Let a1, ..., am be placed uniformly at random on V3 such that 1600n

log2 n ≤ m ≤ n3. Let `2 =
√

n3/m. For sufficiently large n, the diffusion time T

satisfies the following inequality

Pr[T ≤ 1

81
`2n log

−29 n] ≤ exp (− log n log logn) .

We use a local analysis to prove our lower bound. The key idea is that under

uniform distribution of agents, the extent any particular infected agent can spread

the virus within a small time increment is confined to a small neighborhood with high

probability. By gluing together these local estimates, we can approximate the total

diffusion time.

To explain our local analysis, assume we start with an arbitrary infected agent,

say a1. Let us also assume, for simplicity, that all the other uniformly distributed

agents are uninfected. Consider the scenario within a small time increment, say

∆t. During this time increment the agent a1 infects whoever it meets in the small

neighborhood that contains its extent of movement. The newly infected agents then

continue to move and infect others. The size of the final region that contains all

the infected agents at ∆t then depends on the rate of transmission and the extent

of movement of all of the infected agents. In particular, if ∆t is small enough, the

expected number of transmissions performed by a1 is less than one; even if it infects

another agent, the number of infections it causes within the same ∆t is also less than

one, and so on. The net effect is an eventual dying-out of this “branching process”

Chapter 2: Information dissemination in k-dimensional spaces 34

(which we later model by what we call a diffusion tree), which localizes the positions

of all infected agents at time ∆t to a small neighborhood around the initial position

of a1.

As it may not be clear as we go through our proofs, we briefly review the main

methodologies in obtaining lower bound results in related work, and point out their

relation to our analysis and difficulties in directly applying them to higher dimen-

sions. (Some readers may wish to skip these next paragraphs all together; for others,

who would like a more thorough discussion that unavoidably requires more techni-

cal details, we devote Chapter 2.7 to more details.) Two potential existing methods

arise in [5, 71] and [92]. The former analyzes the growth rate of the size of the total

infected region; an upper bound on this growth rate translates to a lower bound for

the diffusion time. The latter work, focusing on d = 1, 2, uses an “island diffusion

rule”, which essentially speeds up infection by allowing infections to occur immedi-

ately on connected components in an underlying graph where edges are based on the

distance between agents. This approach avoids handling the issue of the meeting time

of random walks when they are very close, a regime where asymptotic results such

as Lemma 2.2.3 and 2.2.4 may not apply, while still providing a way to bound the

diffusion time by arguing about the low probability of interaction among different

“islands”.

The results in [5,71] are not directly applicable in our setting because the growth

rate they obtain is linear in time, as a result of their assumption of constant agent

density in an infinite space, in contrast to our use of a size parameter n that scales

with the agent density. It is fairly simple to see that blindly applying a linear growth

Chapter 2: Information dissemination in k-dimensional spaces 35

rate to our setting of o(1) density is too crude. On the other hand, analyzing how

agent density affects the growth rate is a potentially feasible approach but certainly

not straightforward.

Our approach more closely follows [92]. The main limitation of [92], when ap-

plied to higher dimension, is how to control the interaction among islands. If islands

interact too often, because they are too close together, the argument, which is based

on a low probability of interaction, breaks down. However, if one parametrizes is-

lands to prevent such interaction, then the bound that can be obtained are too weak.

In Chapter 2.7.1 we provide further details arguing that for d > 2 this constraint

ultimately limits the analysis for the case of o(1) density. We attempt to remedy the

problem by using islands as an intermediate step to obtain local estimates of the influ-

ence of each initially infected agent over small periods of time. This analysis involves

looking at a branching process representing the spread of the infection, significantly

extending the approach of [92].

2.3.1 Local diffusion problem

This subsection focuses on the local analysis as discussed above. In Chapter 2.3.2,

we will proceed to discuss how to utilize this analysis to get the lower bound in

Theorem 2.3.1. As discussed in the last section, the two main difficulties in our

analysis are: 1) our probabilistic estimates for the meeting time/position of multiple

random walks are only useful asymptotically; 2) walks near the boundary introduce

further analytical complication. To begin with, the following definition serves to

handle the second issue:

Chapter 2: Information dissemination in k-dimensional spaces 36

Definition 2.3.2 (Interior region). The interior region V(r) parameterized by r is

the set of lattice points in V3 that have at least L∞-distance r to the boundary.

For any point P ∈ V3, define B(P, x) = {Q ∈ V3 : ‖Q− P‖∞ ≤ x} as the x-ball

of neighborhood of P under L∞-norm. The following proposition is our major result

in this subsection.

Proposition 2.3.3. Consider a diffusion following Definition 2.1.1. Let S0 be the

initial position of the only infected agent a1 at time 0, andW be an arbitrary subset of

lattice points in V(20`2 logn), where `2 =
√

n3/m. Denote ∆t = `22 log
−28 n. Define

the binary random variable b(W) as follows:

• If S0 ∈ W: b(W) is set as 1 if and only if all the infected agents at time ∆t can

be covered by the ball B(S0, 9`2 logn).

• If S0 /∈ W: b(W) = 1.

We have

Pr[b(W) = 1] ≥ 1− exp(−5 logn log log n) (2.12)

The proposition yields that with high probability, all the infected agents lie within

a neighborhood of distance Õ(`2) at time Õ(`22). The variable `2 is chosen such that

the expected number of infections spanned by an initially infected agent a1 within

Õ(`22) units of time and a neighborhood of Õ(`2) distance is O(1). This can be seen by

solving m(`2/n)
3 × (1/`2) = Õ(1), where m(`2/n)

3 is the expected number of agents

in a cube of size `2×`2×`2, and Õ(1/`2) is the meeting probability within time Õ(`22)

between any pair of random walks with initial distance `2 (see Lemma 2.2.3). This

choice of `2 appears to be the right threshold for our analysis. Indeed, a larger scale

Chapter 2: Information dissemination in k-dimensional spaces 37

than `2 would induce a large number of infections made by a1, and also subsequent

infections made by newly infected agents, with an exploding affected region as an end

result. On the other hand, a smaller scale than `2 would degrade our lower bound.

This is because the diffusion time is approximately of order n/`2, the number of

spatial steps to cover V3, times `22, the time taken for each step, equaling n`2. Hence

a decrease in `2 weakens the bound1.

Secondly, we introduce W in Proposition 2.3.3 to avoid the case when S0 is close

to the boundary. As we have mentioned, such boundary conditions often complicate

random walk analysis. Although the impact of the boundary’s presence has been

addressed (e.g., [26, 92]), existing results are not fully satisfactory. For example,

when two simple random walks S1 and S2 start near the boundary, only a lower

bound for the probability that two walks meet within a specific number of time steps

is available ([92]); we do not know of an upper bound counterpart. We arrange our

proof so that it is sufficient to analyze the diffusion pattern of a virus when it starts

far from the boundary. Finally, we note that no effort has been made to optimize the

exponent 28 in ∆t’s definition.

We briefly explain how our global lower bound can be readily obtained from

Proposition 2.3.3, which is a strong characterization of the local growth rate of in-

fection region size. Imagine the following evolution. Starting with a single infected

agent, with high probability the infection spreads to a ball of radius at most 9`2 log n

in ∆t time units. At this time point, the newly infected agents inside the ball con-

1In the case of general d-dimensional space, `2 is chosen such that m(`2/n)
d × (1/`d−2

2) = Õ(1),

giving `2 =
√

nd/m. Throughout the chapter such d-dimensional analog can be carried out in similar
fashion, but for ease of exposition we shall not bring up these generalizations and will focus on the
3-dimensional case.

Chapter 2: Information dissemination in k-dimensional spaces 38

tinue to spread the virus to neighborhoods of size at most 9`2 logn, again with high

probability. This gives an enlarged area of infection with radius at most 18`2 log n.

Continuing in this way, the lower bound in Theorem 2.1.3 is then the time for the

infection to spread over V3. This observation will be made rigorous in the next

subsection.

The rest of this subsection is devoted to the proof of Proposition 2.3.3. It consists

of two main steps. First, we need to estimate the expected number of infections done

by a single initially infected agent within distance 9`2 log n and time increment ∆t.

Second, we iterate to consider each newly infected agent. The analysis requires the

condition that the global configuration behaves “normally”, a scenario that occurs

with suitably high probability, as we show. We call this condition “good behavior”,

which is introduced through the several definitions below:

Definition 2.3.4. (Island, [92]) Let A = {a1, ..., am} be the set of agents in V3. For

any positive integer γ > 0, let Gt(γ) be the graph with vertex set A such that there is

an edge between two vertices if and only if the corresponding agents are within distance

γ (under L1-norm) at time t. The island with parameter γ of an agent ai ∈ A at time

step t, denoted by Isdt(ai, γ) is the connected component of Gt(γ) containing ai.

Definition 2.3.5 (Good behavior). Let `1 = nm−1/3. For 1 ≤ i ≤ (`2/`1) log
−3 n,

define Bi(P) = B
(
P, i`1 log

−1 n
)
and let ∂Bi(P) = Bi(P)−Bi−1(P). For any P ∈ V3,

define mi(P) =
(log5 n)|∂Bi(P)|m

(2n+1)3
. Let us define the following binary random variables:

• Good density. Let {Dt : t ≥ 0} be a sequence of 0, 1 random variables such

that Dt = 1 if and only if for all P ∈ V3 and all i ≤ (`2/`1) log
−3 n, the number

Chapter 2: Information dissemination in k-dimensional spaces 39

of agents in ∂Bi(P) is at most mi(P), for all time steps up to t. We say the

diffusion process has the good density property at time t if Dt = 1.

• Small islands. Let {Et : t ≥ 0} be a sequence of 0, 1 random variables such

that Et = 1 if and only if |Isds(aj, `1 log
−1 n)| ≤ 3 logn for all aj ∈ A and

0 ≤ s ≤ t. We say that the diffusion process has the small islands property at

time t if Et = 1.

• Short travel distance. Let {Lt : t ≥ 0} be a sequence of 0, 1 random variables

such that Lt = 1 if and only if for all i ∈ [m] and all t1 < t2 ≤ t with t2 − t1 ≤

`22 log
−12 n, we have ‖Si

t1
−Si

t2
‖1 ≤ 3`2 log

−4 n. We say the process has the short

travel distance property at time t if Lt = 1.

Finally, let Gt = Dt × Et × Lt, and say the diffusion process behaves well at time t

if Gt = 1. We also focus on t ≤ n2.5 and define the random variable G = Gn2.5.

The value n2.5 in the definition is chosen such that it lies well beyond our lower

bound for the case m < n3, but is small enough for our forthcoming union bound.

By using properties of random walks and techniques derived in [92], we have

Lemma 2.3.6. Let A = {a1, ..., am} be agents that are distributed uniformly in V3 at

t = 0. For sufficiently large n, we have Pr[G = 1] ≥ 1− exp(−6 logn log log n).

Proof of Lemma 2.3.6. We first show the good density property holds with high prob-

ability. For any specific time t ≤ n2.5, all the agents are uniformly distributed due

to stationarity. For an arbitrary P ∈ V3, and i ≤ (`2/`1) log
−3 n, define Y (t, P, i)

as the number of agents that are in ∂Bi(P) at time t. Notice that E[Y (t, P, i)] =

Chapter 2: Information dissemination in k-dimensional spaces 40

|∂Bi(P)|m/(2n+ 1)3 and mi(P) ≥ 6E[Y (t, P, i)]. By Chernoff bounds (e.g., the sec-

ond part of Theorem A.1.1),

Pr[Y (t, P, i) ≥ mi] ≤ 2−mi

≤ exp(−0.65mi)

≤ exp

(

0.65
`31 log

−3 n

n3
m log5 n

)

≤ exp(−0.65 log2 n)

for sufficiently large n. Next, by a union bound,

Pr[Dt = 0] ≤
∑

t,P,i

Pr[Y (t, P, i) ≥ mi]

≤
(
n2.5(2n+ 1)3(log−3 n)`2/`1

)
exp(−0.65 log2 n)

≤ exp(−1
2
log2 n).

Therefore, we have Pr[Dt = 1] ≥ 1− exp(−1
2
log2 n).

To show the diffusion process has the small islands property with high probability,

we mimic the proof of Lemma 6 in [92]. Let Bk be the event that there exists an

island with parameter γ = `1 log
−1 n that has at least k agents. The quantity Pr[Bk]

is upper bounded by the probability that Gt(γ) contains a tree of k vertices of A as a

subgraph. Since kk−2 is the number of unrooted labeled trees on k nodes, and γ3/n3

is an upper bound to the probability that a given agent lie within distance γ from

another given agent, we have that

Pr[Bk] ≤
(
m

k

)

kk−2
(
γ3

n3

)k−1
≤
(em

k

)k

· kk−2
(

1

m log3 n

)k−1
=
ekm

k2
· (logn)−3(k−1).

By setting k = 3 logn + 1, we have Pr[Bk] ≤ exp{−7 logn · log log n}. Finally, we

apply a union bound across all agents and all time steps. Hence Pr[Et = 1] >

1− n2.5m exp(−7 logn log log n).

Chapter 2: Information dissemination in k-dimensional spaces 41

Finally, consider the short travel distance property. For any fixed i ∈ [m] and

t1 ≤ t2 ≤ n2.5 such that t2 − t1 ≤ `22 log
−12 n, we have Pr[‖Si

t1
− Si

t2
‖∞ ≥ `2 log

−4 n] ≤

exp(− log2 n) by Lemma 2.6.2. There is a factor of 3 lost when we translate the metric

from L∞-norm to L1-norm. The total number of possible i, t1, and t2 are mn
5. Next

we may apply a union bound across all these possible i, t1, and t2 triples. We have

Pr[Lt = 0] ≤ mn5 exp(− log2 n). The lemma follows by combing the three results

together with one more union bound.

With this global “good behavior”, we have the following estimate:

Lemma 2.3.7. Let A = {a1, . . . , am} be agents that are distributed in V3 in such a

way that D0 = 1. Let S1, S2, . . . , Sm be their corresponding random walks. Consider

an arbitrary agent aj with Sj
0 ∈ V(2`2 log

−4 n). Let {ai1 , . . . , aik} be the set of agents

outside B1(Sj
0) at time 0. Define Xj,` as the indicator random variable that represents

whether the agents aj and ai` meet within time [0,∆t]. We have

E

[
∑

`≤k
Xj,`

∣
∣
∣
∣
∣
D0 = 1, Sj

0 ∈ V(2`2 log
−4 n)

]

< log−3 n.

Proof. First, notice that the number of lattice points in ∂Bi(P) satisfies

|∂Bi| = |Bi| − |Bi−1| ≤ (2i`1 log
−1 n)3 − (2(i− 1)`1 log

−1 n)3 ≤ 24i2`31 log
−3 n.

We may also similarly show that

|∂Bi| ≥ i2`31 log
−3 n.

Let q = (`2/`1) log
−3 n. For each i ∈ [q], write Bi = B(Sj

0), ∂Bi = ∂Bi(Sj
0), and

mi = mi(S
j
0). We want to estimate the meeting probability and hence the expected

number of infections for each i ∈ [q].

Chapter 2: Information dissemination in k-dimensional spaces 42

First, let us consider the agents outside the ball Bq. The probability that any

specific agent initially outside Bq ever travels into the ball B(Sj
0, `2 log

−4 n) within

time `22 log
−12 n is at most exp(−Ω(log3 n)) (by, e.g., Lemma 2.6.2 in Chapter 2.6).

On the other hand, the probability that Sj ever travels out of B(Sj
0, `2 log

−4 n) is also

exp(−Ω(log3 n)). For these two agents to meet, at least one of these events has to

occur. Therefore, with probability exp(−Ω(log3 n)) Sj will meet an agent initially

outside Bq. This leads to

E

[
∑

ik′ :S
ik′
0 /∈Bq

Xj,k′

︸ ︷︷ ︸

the set of agents initially
outside Bq

∣
∣
∣
∣
∣
D0 = 1, Sj

0 ∈ V(2`2 log
−4 n)

]

≤ m exp(−Ω(log3 n)).

Let us next focus on agents inside Bq. Fix an arbitrary ai` ∈ ∂Bi. Let ej and

e` represents the events that Sj and Si` ever visit a boundary before time `22 log
−12 n

respectively. Again by Lemma 2.6.2, Pr[ej ∨ e`|D0 = 1, Sj
0 ∈ V(2`2 log

−4 n)] =

exp(−Ω(log3 n)). We now have

E[Xj,`|D0 = 1, Sj
0 ∈ V(2`2 log

−4 n)]

= Pr[Xj,` = 1;¬ej ∧ ¬e`|D0 = 1, Sj
0 ∈ V(2`2 log

−4 n)]

+Pr[Xj,` = 1; ej ∨ e`|D0 = 1, Sj
0 ∈ V(2`2 log

−4 n)]

≤ Pr[Xj,` = 1;¬ej ∧ ¬e`|D0 = 1, Sj
0 ∈ V(2`2 log

−4 n)] + exp(−Ω(log3 n)).

To compute

Pr[Xj,`;¬ej ∧ ¬e`|D0 = 1, Sj
0 ∈ V(2`2 log

−4 n)]

= Pr

[{

∃t0 ≤
`22

log12 n
: ‖Sj

t0 − Si`
t0‖1 ≤ 1

}
∧(

¬ej ∧ ¬e`
)
∣
∣
∣
∣
∣
D0 = 1, Sj

0 ∈ V(2`2 log
−4 n)

]

,

we couple Sj and Si` with unbounded walks Sj and Si` starting at the same positions

at t = 0 in the natural way. Before the pair of bounded walks visit the boundary,

Chapter 2: Information dissemination in k-dimensional spaces 43

they coincide with their unbounded counterparts. Therefore, we have

Pr

[{

∃t0 ≤
`22

log12 n
: ‖Sj

t0 − Si`
t0‖1 ≤ 1

}
∧(

¬ej ∧ ¬e`
)
∣
∣
∣
∣
∣
D0 = 1, Sj

0 ∈ V(2`2 log
−4 n)

]

≤ Pr

[

∃t0 ≤
`22

log12 n
: ‖Sj

t0 − S
i`
t0‖1 ≤ 1

∣
∣
∣
∣
∣
D0 = 1, Sj

0 ∈ V(2`2 log
−4 n)

]

= O(
1

(i− 1)`1
) (Corollary 2.2.5)

We thus have E[Xj,`|D0 = 1, Sj
0 ∈ V(2`2 log

−4 n)] ≤ C0

(i−i)`1 for some constant C0.

Next, we estimate Ei ≡ E[
∑

`:S
i`
0 ∈∂Bi

Xj,` | D0 = 1, Sj
0 ∈ V(2`2 log

−4 n)] as

Ei ≤
C0mi

(i− 1)`1
=

C0

(i− 1)`1
· |∂Bi|m log5 n

8n3
=

C0(3i
2`31 log

−3 n)m log5 n

(i− 1)`1n3
≤ 6C0im`21 log

2 n

n3
.

The first inequality holds because D0 = 1 and mi is an upper bound for the number

of agents in ∂Bi (for all i).

E[
∑

`≤k
Xj,` | D0 = 1, Sj

0 ∈ V(2`2 log
−4 n)]

≤
∑

i≤q
Ei + m× exp(−Ω(log3 n))

︸ ︷︷ ︸

upper bound for those outside Bq

≤
(
∑

2≤i≤q
i

)

6C0m`
2
1 log

2 n

n3
+ exp(−Ω(log2 n))

<
6C0q

2m`21 log
2 n

n3
+ exp(−Ω(log2 n))

= 6C0 log
−4 n+ exp(−Ω(log2 n))

< log−3 n

for sufficiently large n as m < n3.

Lemma 2.3.7 says that if the initial distribution of agents possesses good behavior,

then one can ensure that the expected number of direct infections on far-away agents

Chapter 2: Information dissemination in k-dimensional spaces 44

is small. For agents close to the initially infected agents, we instead utilize the concept

of islands, which is also deeply related to the subsequent virus spreading behavior.

Now we formally introduce a new diffusion process with a modified “island diffusion”

rule. It is easy to see that this new diffusion process can be naturally coupled with the

original diffusion process (evolving with Definition 2.1.1) by using the same random

walks in the same probability space.

Definition 2.3.8 (Diffusion process with island diffusion rule). Consider a diffusion

process in which m agents are performing random walks on V3. An uninfected agent

aj becomes infected at time t if one of the following conditions holds:

1. it meets a previously infected agent at time t. For convenience, we say aj is

directly infected if it is infected in this way.

2. it is inside Isdt(ai, `1 log
−1 n) where ai is directly infected at time t.

This coupled process is different from the diffusion models introduced in [91,

92,101]. In our formulation, an island is infected only if meeting occurs between one

uninfected and one previously infected agent. In [91,92,101] (using our notations), an

island is infected once it contains a previously infected agent. As a result, infections

occur less frequently in our model than the models in [91,92,101]. This difference is

the key to getting a tight lower bound for dimensions higher than 2. More precisely,

our infection rule allows us to build a terminating branching process, or what we

call “diffusion tree” in the following definition, whose generations are defined via the

infection paths from the source. The termination of this branching process constrains

the region of infection to a small neighborhood around the source with a probability

Chapter 2: Information dissemination in k-dimensional spaces 45

of larger order than obtained in [92]. This in turn leads to a tighter global lower

bound.

Definition 2.3.9 (Diffusion tree). Let W ⊆ V(2`2 log n) be a subset of lattice points.

Consider a diffusion, following the island diffusion rule, that starts with an initially

infected island Isd0(a1, `1 log
−1 n). Recall that S1

0 denotes a1’s position at t = 0. The

diffusion tree Tr with respect to W has the following components:

1. If S1
0 /∈ W, Tr = ∅.

2. If S1
0 ∈ W,

• The root of Tr is a dummy node r.

• The children of r are all the agents in Isd0(a1, `1 log
−1 n).

• a`′ is a child of a` (a`′ ∈ child(a`)) if a`′ is infected by a` before time ∆t.

• a`′ is a direct child of a` (a`′ ∈ dchild(a`)) if a`′ ∈ child(a`) and it is

directly infected by a`.

For technical reasons, if a`′ is not in Tr, we let child(a`) = ∅ and dchild(a`) = ∅.

Notice that the diffusion tree Tr stops growing after ∆t steps.

We refer the root of the tree as the 0th level of the tree and count levels in the

standard way. The height of the tree is the number of levels in the tree. Note that

diffusion tree defined in this way can readily be interpreted as a branching process

(See, e.g., Chapter 0 in [109]), in which the jth generation of the process corresponds

with the jth level nodes in Tr.

Chapter 2: Information dissemination in k-dimensional spaces 46

Next we incorporate the good behavior variable Gt with diffusion tree. The

motivation is that, roughly speaking, consistently good behavior guarantees a small

number of infections, or creation of children, at each level. This can be seen through

Lemma 2.3.7.

Definition 2.3.10 (Stopped diffusion tree). Consider a diffusion process with island

diffusion rule, and let T (`) be the time that a` becomes infected in the process. The

stopped diffusion tree Tr′ (with respect to ai and W) is a subtree of Tr induced by the

set of vertices {a` : a` ∈ Tr ∧ GT (`) = 1}. We write a` ∈ child′(a`′) if a` ∈ child(a`′)

and a` ∈ Tr′. Similarly, a` ∈ dchild′(a`′) if a` ∈ dchild(a`′) and a` ∈ Tr′.

Note that the definition of stopped diffusion tree involves global behavior of the

whole diffusion process due to the introduction of Gt. On the other hand, Tr = Tr′

with overwhelming probability, so we can translate the properties of Tr′ back to Tr

easily.

We next show two properties of the (stopped) diffusion trees, one on the physical

propagation of children relative to their parents and one on the tree height. These

are our main ingredients for proving Proposition 2.3.3. The properties are in brief:

1. If a` is a child of a`′ in the stopped diffusion tree Tr′, ‖S`
T (`)−S`′

T (`′)‖∞ is Õ(`2).

2. The height of the stopped diffusion tree Tr′ is Õ(1) with high probability.

Proving the first item requires the following notion:

Definition 2.3.11 (Generation distance). Consider the diffusion tree Tr with respect

to W. Let a` be an arbitrary agent and let a`′ be its parent on Tr. The generation

Chapter 2: Information dissemination in k-dimensional spaces 47

distance of a` with respect to Tr is

d` =

‖S`
T (`) − S`′

T (`′)‖1 if a` is in Tr and is at the 2nd or deeper level

0 otherwise.

(2.13)

In other words, the generation distance between a` and a`′ is the distance between

where a` and a`′ were infected. The generation distance of a` with respect to Tr′ is d′`,

which is set to be d` if a` is in Tr′ and 0 otherwise.

With this notion, we can derive the following lemma:

Lemma 2.3.12. Consider the stopped diffusion tree with respect to W that starts

with an infected island Isd0(ai, `1 log
−1 n). For an agent a` in Tr′, d′` ≤ 4`2.

Proof. We focus on the non-trivial case that Si
0 ∈ W and that a` is at the 2nd level

of Tr′ or deeper. Suppose that the diffusion process behaves well up to time T (`) i.e.

GT (`) = 1. Let a`′ be the parent of a` on Tr′. By the construction of Tr′, there exists

an a`′′ ∈ dchild′(a`′) (possibly a` itself) such that

• a` ∈ IsdT (`′′)(a`′′, `1 log
−1 n).

• T (`) = T (`′′) i.e., a` and a`′′ get infected at the same time due to the island

diffusion rule.

• ‖S`′

T (`) − S`′′

T (`)‖1 ≤ 1 i.e., a`′′ gets infected because it meets an infected agent.

By the triangle inequality,

d
′
` = ‖S`′

T (`′) − S`
T (`)‖1 ≤ ‖S`′

T (`′) − S`′′

T (`′′)‖1 + ‖S`′′

T (`′′) − S`
T (`)‖1.

Chapter 2: Information dissemination in k-dimensional spaces 48

Note that ‖S`′

T (`′) − S`′′

T (`′′)‖1 ≤ 3`2 log
−4 n + 1 ≤ `2 (short travel distance property)

and ‖S`′′

T (`′′) − S`
T (`)‖1 ≤ (`1 log

−1 n)(3 logn) = 3`1 ≤ 3`2 (small island property) since

GT (`) = 1. Finally, the case when GT (`) = 0 is trivial, and the lemma follows.

Next we show that with high probability the height of the stopped diffusion

tree is Õ(1). Using standard notation, we let {Ft}t≥0 be the σ-algebra, or filtration,

generated up to time t, i.e., Ft encodes all the information regarding the diffusion

process up to t. The special instance F0 is used to describe the initial positions of

the agents.

The main property of stopped diffusion tree that we need is the following:

Lemma 2.3.13. Consider a diffusion process with the island diffusion rule. Let a`

be an arbitrary agent with infection time T (`). We have

E
[

|dchild′(a`)|
∣
∣
∣FT (`), S

`
T (`) ∈ V(2`2 log

−4 n)
]

≤ log−3 n, (2.14)

where dchild′(·) is defined for a stopped diffusion tree with respect to an arbitrary set

W ⊆ V(20`2 logn).

We regard the conditional expectation in Equation 2.14 as a random variable.

The interpretation is that the expected number of a`’s direct children is less than

log−3 n, regardless of the global configuration at the infection time of a`, as long as it

lies in V(2`2 log
−4 n) at that time.

Proof. We focus on the case when S1
0 ∈ W; otherwise Tr′ is empty and the lemma

trivially holds. First observe that all aj ∈ IsdT (`)(S
`
T (`), `1 log

−1 n) are infected at or

before the time a` is infected. Therefore they cannot be direct children of a` by Defini-

tion 2.3.9 and 2.3.10. On the other hand, an agent aj is outside IsdT (`)(S
`
T (`), `1 log

−1 n)

Chapter 2: Information dissemination in k-dimensional spaces 49

only if it is outside the ball B(S`
T (`), `1 log

−1 n). Hence dchild′(a`) is bounded by the

number of agents initially outside B(S`
T (`), `1 log

−1 n) that meet a` before time ∆t.

We consider two cases:

Case 1. DT (`) = 1. By Lemma 2.3.7, we have

E
[

|dchild′(a`)|
∣
∣
∣FT (`), DT (`) = 1, S`

T (`) ∈ V(2`2 log
−4 n)

]

≤ log−3 n.

Case 2. DT (`) = 0. By Definition 2.3.10, we have

E
[

|dchild′(a`)|
∣
∣
∣FT (`), DT (`) = 0, S`

T (`) ∈ V(2`2 log
−4 n)

]

= 0 ≤ log−3 n.

Therefore,

E
[

|dchild′(a`)|
∣
∣
∣FT (`), S

`
T (`) ∈ V(2`2 log

−4 n)
]

= EFT (`)

[

E
[

|dchild′(a`)|
∣
∣
∣FT (`), S

`
T (`) ∈ V(2`2 log

−4 n),DT (`)

]]

≤ log−3 n.

Recursive utilization of Lemma 2.3.13 on successive tree levels leads to the fol-

lowing lemma:

Lemma 2.3.14. Consider a diffusion process with the island diffusion rule starting

with an infected island Isd0(a1, `1 log
−1 n). For the stopped diffusion tree Tr′ with

respect to any W ⊆ V(20`2 log n), let Height(Tr
′) be its height. Then we have

Pr[Height(Tr′) > 2 logn] ≤ exp(−3 log n log log n). (2.15)

Chapter 2: Information dissemination in k-dimensional spaces 50

Let us denote the set of agents at the kth level as Fk. It is worth pointing

out that, despite a similar analysis to that of standard branching process, there is a

technical complication on the conditioning argument since the creation of each child

within the same level can be performed at different times in the diffusion process.

This implies that there is no single filtration that we can condition on each level to

analyze the expected size of the next one. Nevertheless, conditioning can be tailored

to each agent at the same level.

Proof. We focus on the case when Tr′ is non-trivial i.e. S1
0 ∈ W. Let I(A) = 1 if A

occurs and 0 otherwise. We have, for any k < 2 logn,

E[|F′k+1||F0, S
1
0 ∈ W]

= E

∑

a`∈F′
k

∑

a`′∈dchild′(a`)

|IsdT (`′)(a`′, `1 log
−1 n)|I(GT (`′) = 1)

∣
∣
∣
∣
∣
F0, S

1
0 ∈ W

≤ (3 logn)E

∑

a`∈F′
k

|dchild′(a`)|
∣
∣
∣
∣
∣
F0, S

1
0 ∈ W

The equality holds by the stopping rule and the inequality holds by the small islands

Chapter 2: Information dissemination in k-dimensional spaces 51

property. Next we have

E

∑

a`∈F′
k

|dchild′(a`)|
∣
∣
∣
∣
∣
F0, S

1
0 ∈ W

= E

∑

`∈[m]

I(a` ∈ F′k)|dchild′(a`)|
∣
∣
∣
∣
∣
F0, S

1
0 ∈ W

=
∑

`∈[m]

E

[

I(a` ∈ F′k)|dchild′(a`)|
∣
∣
∣
∣
∣
F0, S

1
0 ∈ W

]

=
∑

`∈[m]

E

[

E

[

I(a` ∈ F′k)|dchild′(a`)|
∣
∣
∣
∣
∣
FT (`), S

1
0 ∈ W

] ∣
∣
∣
∣
∣
F1, S

1
0 ∈ W

]

=
∑

`∈[m]

E

[

I(a` ∈ F′k)E

[

|dchild′(a`)|
∣
∣
∣
∣
∣
FT (`), S

1
0 ∈ W

] ∣
∣
∣
∣
∣
F0, S

1
0 ∈ W

]

The last equality holds because I(a` ∈ F′k) is FT (`)-measurable. Note that S1
0 ∈ W ⊆

V(20`2 log n) implies S`
T (`) ∈ (20`2 log n − 4k`2) ⊂ V(2`2 log

−4 n) if GT (`) = 1, by

using Lemma 2.3.12. Therefore, by Lemma 2.3.13

E

[

|dchild′(a`)|
∣
∣
∣
∣
∣
FT (`), S

1
0 ∈ W, GT (`) = 1

]

= E

[

|dchild′(a`)|
∣
∣
∣
∣
∣
FT (`), S

`
T (`) ∈ V(2`2 log

−4 n), GT (`) = 1

]

≤ log−3 n

On the other hand,

E

[

|dchild′(a`)|
∣
∣
∣
∣
∣
FT (`), S

1
0 ∈ W, GT (`) = 0

]

= 0

by the stopping rule. This leads to

E

[

|dchild′(a`)|
∣
∣
∣
∣
∣
FT (`), S

1
0 ∈ W

]

≤ log−3 n

which implies

∑

`∈[m]

E

[

I(a` ∈ F′k)E

[

|dchild′(a`)|
∣
∣
∣
∣
∣
FT (`), S

1
0 ∈ W

] ∣
∣
∣
∣
∣
F0, S

1
0 ∈ W

]

≤ log−3 nE[|F′k||F0, S
1
0 ∈ W]

Chapter 2: Information dissemination in k-dimensional spaces 52

Therefore,

E[|F′k+1| | F0, S
1
0 ∈ W]

≤ 3 log−2 nE[|F′k| | F0, S
1
0 ∈ W]

≤ (3 log−2 n)kE[|F′1| | F0, S
1
0 ∈ W]

≤ log n(3 log−2 n)k

and hence

Pr[|F′2 logn| > 0] ≤ E[|F′2 logn|] ≤ exp(−3 logn log logn).

by combining with the case a1 /∈ W.

We now prove Proposition 2.3.3.

Proof of Proposition 2.3.3. First note that the set of infected agents in a diffusion

process with island diffusion rule, namely Definition 2.3.8, is always a superset of the

coupled original diffusion process using Definition 2.1.1, at any time from 0 to ∆t.

Next we have

Pr[Height(Tr) > 2 logn]

= Pr[(Height(Tr) > 2 logn) ∧ (Height(Tr) = Height(Tr′))]

+Pr[(Height(Tr) > 2 logn) ∧ (Height(Tr) 6= Height(Tr′))]

≤ Pr[Height(Tr′) > 2 logn] + Pr[Tr′ 6= Tr]

≤ exp(−3 log n log log n) + Pr[G = 1]

≤ 2 exp(−3 logn log logn)

Therefore, we have

Pr[(Height(Tr) ≤ 2 logn) ∧ (G = 1)] ≥ 1− 3 exp(−3 logn log logn).

Chapter 2: Information dissemination in k-dimensional spaces 53

We will show that the viruses can be covered by the ball B(S1
0 , 9`2 log n) when

(Height(Tr) ≤ 2 logn) ∧ (G = 1) ∧ (S1
0 ∈ W).

Fix arbitrary infected a` ∈ Fk with k ≤ 2 logn . By Lemma 2.3.12, we have ‖S1
0 −

S`
T (`)‖1 ≤ 8`2 logn. Moreover, G = 1 implies that for all 0 ≤ t′ ≤ ∆t, ‖S`

T (`)−S`
t′‖1 ≤

3`2 log
−4 n ≤ `2 log n. This suggests ‖S`

t′ − S1
0‖∞ ≤ 9`2 log n for all t′ ∈ [0,∆t].

Therefore, the virus does not escape the ball B(S1
0 , 9`2 log n) within time [0,∆t].

2.3.2 From local to global process

This section will be devoted to proving Theorem 2.3.1 via Proposition 2.3.3, or in

other words, to turn our local probabilistic bound into a global result on the diffusion

time.

We note that Proposition 2.3.3 deals with the case when there is only one initially

infected agent. As discussed briefly in the discussion following the proposition, we

want to iterate this estimate so that at every time increment ∆t, the infected region

is constrained within a certain radius from the initial positions of all the agents that

are already infected at the start of the increment. Our argument is aided by noting

which agents infect other agents. To ease the notation for this purpose, we introduce

an artificial concept of virus type, denoted by νi,t. We say an agent gets a virus of

type νi,t if the meeting events of this agent can be traced upstream to the agent ai,

where ai is already infected at time t. In other words, assume that ai is infected at

time t, and imagine that we remove the viruses in all infected agents except ai but

we keep the same dynamics of all the random walks. We say a particular agent gets

νi,t if it eventually gets infected under this imaginary scenario. Note that under this

Chapter 2: Information dissemination in k-dimensional spaces 54

artificial framework of virus types it is obvious that an agent can get many different

types of virus, in terms of both i and t.

In parallel to Proposition 2.3.3, we introduce the family of binary random vari-

ables bi,t to represent whether a virus of type νi,t can be constrained in a ball with

radius 9`2 log n:

Definition 2.3.15 (bi,t and virus of type νi,t). Let B = B(P, n
4
) where P = (n/2,

n/2, n/2). Let a1, ..., am be agents that are uniformly distributed on V3 at t = 0 and

diffuse according to Definition 2.1.1. Let t be an arbitrary time step and i ∈ [m]. At

time t, a virus of type νi,t emerges on agent ai and diffuses. Define the binary random

variable bi,t as follows:

• If Si
t ∈ B: bi,t is set as 1 if and only if all the agents infected by the virus of

type νi,t at time t +∆t can be covered by the ball B(Si
t , 9`2 logn).

• If Si
t /∈ B: bi,t = 1.

Let us start with showing bi,t = 1 for all i and t with high probability:

Corollary 2.3.16. Consider the family of random variables {bi,t : i ∈ [m], t ≤ n2.5}

defined above. We have

Pr

∧

i∈[m],t≤n2.5

(bi,t = 1)

 ≥ 1− exp(−4 logn log logn).

Proof. We first bound Pr[bi,t = 1] for any specific i and t. Since the agents are placed

according to stationary distribution at t = 0, each agent is still distributed uniformly

at time t. Next, at time t, we may relabel the agents so that ai is regarded as the

Chapter 2: Information dissemination in k-dimensional spaces 55

single initially infected agent in Proposition 2.3.3, whereW is set as B. We therefore

have Pr[bi,t = 1] ≥ 1− exp(−5 logn log log n).

Next, we may apply a union bound across all i and t to get the desired result.

Lemma 2.3.17. Let B = B(P, n/8). Let Bt be the indicator variable that there is at

least one agent in B at time t. Let B =
∏

t≤n2.5 Bt, the indicator variable that there

is at least one agent in B at all times in [0, n2.5]. We have

Pr[B = 0] ≤ exp(− log2 n)

for sufficiently large n.

Proof. First, notice that for any specific t, the expected number of agents in B is

Ω(m). Therefore, by Chernoff bound (using the version in Theorem A.1.1) Pr[Bt =

0] ≤ exp(−Ω(m)) ≤ exp(− log3 n). Next, by a union bound, we have Pr[B = 0] ≤

n2.5 exp(− log3 n) ≤ exp(− log2 n).

We next present our major lemma for this subsection.

Lemma 2.3.18. Let a1, ..., am be placed uniformly at random on V3 such that m ≥

1600n log2 n. Let `2 =
√

n3/m. Let {bi,t : i ∈ [m], t ≤ n2.5} and B be the random

variables described above. If bi,t = 1 for all i, t and B = 1, then the diffusion time is

at least Tc =
1
81
`2n log

−29 n.

Notice that by Proposition 2.3.3 and Lemma 2.3.17,

Pr
[
∧

i≤m,t≤n2.5 (bi,t = 1)
]

≥ 1− exp(−4 logn log log n).

Pr[B = 1] ≥ 1− exp(− log2 n).

Together with Lemma 2.3.18, Theorem 2.3.1 then follows.

Chapter 2: Information dissemination in k-dimensional spaces 56

Proof. Without loss of generality, we assume the x, y, and z coordinates of S1
0 are all

negative. We can always rotate the space V3 at t = 0 correspondingly to ensure this

assumption to hold.

We shall prove by contradiction. Consider two balls B and B defined above.

Assume the diffusion time is less than Tc. First, because B = 1, a necessary condition

for the diffusion to complete is that an infected agent ever visits the smaller ball B

at a time T ′ ≤ Tc (since otherwise the agents in B would be uninfected all the time,

including at Tc). We call this agent ai′. Next, for the infection to get into B, it must

happen that there is an infected agent that enters B from outside, whose infection

trajectory eventually reaches ai′ . We denote T ′′ to be the last time that this happens,

and the responsible agent to be ai′′ . We focus on the trajectory of infection that goes

from ai′′ to ai′ that lies completely inside B (which exists since T ′′ is the last time of

entry). Note that we consider at most dTc/∆te time increments of ∆t. Now, since

bi,t = 1 for all i and t, by repeated use of triangle inequality, we get

‖Si′

T ′ − Si′′

T ′′‖∞ ≤ 9`2 log n

⌈
Tc
∆t

⌉

≤ 9`2 log n

(
(1/81)`2n log

−29 n

`22 log
−28 n

+ 1

)

≤ n

9
+ 9`2 log n

<
n

8
− 1.

On the other hand, the physical dimensions of B and B give that

‖Si′

T ′ − Si′′

T ′′‖∞ ≥
n

8
− 1

which gives a contradiction.

Chapter 2: Information dissemination in k-dimensional spaces 57

2.4 Upper bound

We now focus on an upper bound for the diffusion time. Our main result is the

following:

Theorem 2.4.1. Let a1, . . . , am be placed uniformly at random on V3, where n ≤

m ≤ n3. Let ˆ̀
2 =

√

n3/m · log n. When n is sufficiently large, the diffusion time T

satisfies

Pr[T ≥ 128nˆ̀2 log
47 n] ≤ exp(−1

2
log2 n).

Note that this theorem shows that an upper bound of Õ(n
√

n3/m) holds for the

diffusion time with high probability. Hence the upper and lower bounds “match” up

to logarithmic factors. We remark that the constant 47 in the exponent has not been

optimized.

The main goal of this section is to prove this theorem. Our proof strategy relies on

calculating the growth rate of the total infected agents evolving over time; such growth

rate turns out to be best characterized as the increase/decrease in infected/uninfected

agents relative to the size of the corresponding population. More precisely, we show

that for a well-chosen time increment, either the number of infected agents doubles

or the number of uninfected agents reduces by half with high probability. The choice

of time increment is complex, depending on the analysis of the local interactions in

small cubes and the global geometric arrangements of these cubes with respect to the

distribution of infected agents.

As with the lower bound proof, our technique for proving Theorem 2.4.1 is dif-

ferent from existing methods. Let us briefly describe them and explain the challenges

in extending to higher dimensional cases; further details are left to Chapter 2.7.2.

Chapter 2: Information dissemination in k-dimensional spaces 58

Roughly, existing methods can be decomposed into two steps (see for example [92]):

1) In the first step, consider a small ball of length r that contains the initially infected

agent. One can see that for d = 2, when number of agents in the ball is Θ̃(m(r/n)2),

within time increment r2 the number of infections to agents initially in this ball is

Ω̃(1) w.h.p.. 2) The 2nd step is to prove that for any ball that has Ω̃(1) infected

agents at time t, its surrounding adjacent balls will also have Ω̃(1) infected agents by

time t + r2. From these two steps, one can recursively estimate the time to spread

infection across the whole space V2 to be n/r × r2 = nr w.h.p.. In other words, at

time nr all the balls in V2 will have Ω̃(1) infected agents. Moreover, every agent in

V2 is infected in the same order of time units, because Ω̃(1) is also the total number

of agents in any ball under good density condition. Finally, it is then clear that a

good choice of r is then n/
√
m, which would give the optimal upper bound.

The critical difference in the analysis for d > 2 lies primarily in the magnitude

of the meeting probability of random walks. In the case of d = 2, the meeting

probability of two random walks at distance r within time r2 is Θ̃(1), whereas for

d > 2 the meeting probability is Θ(1/rd−2). For d = 2, this means that it is easy, i.e.

w.h.p., for infection to transmit from a ball with Ω̃(1) infected agents to an adjacent

uninfected ball, so that the latter also has Ω̃(1) infected agents after a time increment

of r2. In the case d > 2, however, Ω(rd−2) infected agents must be present in a ball to

transmit virus effectively to its adjacent uninfected ball within r2 time. Consequently,

arguing for transmission across adjacent balls becomes problematic (more details are

in Chapter 2.7.2). In light of this, we take an alternate approach to analyze both the

local interactions and the global distribution of infected agents. Instead of focusing on

Chapter 2: Information dissemination in k-dimensional spaces 59

transmission from one infected ball to another, we calculate the spreading rate across

the whole space. This turns out to be fruitful in obtaining a tight upper bound.

We briefly describe the forthcoming analysis. As with the lower bound, we start

with local analysis. We partition the space V3 into disjoint subcubes each of size

ˆ̀
2 × ˆ̀

2 × ˆ̀
2. Here ˆ̀

2 is just a logarithmic factor larger than `2, the size of subcubes

used for the lower bound, so that with overwhelming probability there are at least ˆ̀
2

agents in a subcube. We show that, within every subcube, over a time increment of

length Θ(ˆ̀22) the number of infections is roughly a Ω̃(1)-fraction of the minimum of

the number of infected and uninfected agents. Hence, at least locally, we have the

desired behavior described above.

We then leverage the local analysis to obtain the global result. However, this is

not straightforward. For example, consider the beginning when the number of infected

agents is small. If infected agents are distributed uniformly throughout the whole

space, it would be easy to show that new infections would roughly grow in proportion

to the number of infected agents. However, if infected agents are concentrated into

a small number of subcubes, we have to show that there are enough neighboring

subcubes on the boundary of these infected subcubes that these subcubes become

infected suitably rapidly, so that after the appropriate time increment the number of

infected agents doubles. Similar arguments arise for the case when infected agents

are dominant, with the end result being a halving of the uninfected population.

We now make the above discussion rigorous. First, let b = (2n+ 1)/ˆ̀2, so there

are in total b3 subcubes. As in the previous section, we divide the time into small

intervals. We reuse the symbol ∆t to represent the length of each interval but here we

Chapter 2: Information dissemination in k-dimensional spaces 60

set ∆t = 16ˆ̀22. Our local bound is built within each subcube (and pair of neighboring

subcubes) in the time increment ∆t:

Lemma 2.4.2. Let W ⊂ V3 be a region that can be covered by a ball of radius 2ˆ̀2

under the L∞-norm. Let Af and Au be subsets of infected and uninfected agents in

W at time t such that |Af | = m1, |Au| = m2, and max{m1, m2} = ˆ̀
2/ log

2 n. Given

any initial placement of the agents of Af and Au, let M(t) be the number of agents

in Au that become infected at time t +∆t. We have

Pr

[

M(t) ≥ τ0min{m1, m2}
log4 n

∣
∣
∣Ft

]

≥ τ0 log
−6 n.

for some constant τ0, where Ft denotes the information of the whole diffusion process

up to time t.

Proof. The high level idea of our proof is to count the total number of times the

infected agents meet the uninfected ones between time t and t + ∆t. The probabil-

ity two agents in W can meet each other within time ∆t is approximately Ω̃(1/ˆ̀2)

(Lemma 2.2.3). The expected number of meetings is thus Ω̃(1/ˆ̀2) × m1m2 = Ω̃

(min{m1, m2}). The total number of newly infected agents is the number of meet-

ings modulo possible overcounts on each originally uninfected agent. If we can show

that the number of meetings is Õ(1) for each uninfected agent, then we can conclude

that Ω̃(min{m1, m2}) more agents become infected at time t+∆t.

Two problems need to be addressed to implement this idea. First, when the

agents are close to the boundary, they may behave in a more complicated way than

suggested by Lemma 2.2.3. Second, in the (rare) case that an uninfected agent is sur-

rounded by a large number of infected agents, it can possibly meet with ω(1) infected

agents, making it difficult to give an upper bound over the number of overcounts.

Chapter 2: Information dissemination in k-dimensional spaces 61

To address both problems, we wait ˆ̀2
2 time steps before starting our analysis on

infections. This time gap is enough to guarantee that with constant probability, the

agents are “locally shuffled” so that by time t+ ˆ̀2
2,

1. all agents are reasonably far away from the boundaries,

2. the distance between any pair of agents is “appropriate” (in our case, the dis-

tance is between ˆ̀
2 and 9ˆ̀2).

Intuitively, the “local shuffling” works because central limit theorem implies that

the agents’ distribution at the end of these steps is approximately multivariate Gaus-

sian.

We now implement this idea. First, we couple the (sub)process in W with one

that has slower diffusion rule. In the coupled process, we first wait for ˆ̀2
2 time steps,

in which no agent becomes infected even if it meets an infected agent. After these

ˆ̀2
2 steps, for an arbitrary ai ∈ Af and aj ∈ Au, let Xi,j = 1 if both of the following

conditions hold,

• the L1-distance between ai and aj is between ˆ̀
2 and 9ˆ̀2.

• the L1-distance between ai and any boundary is at least 360ˆ̀2.

By Corollary 2.6.9, Pr[Xi,j = 1] ≥ τ for some constant τ . Therefore,

E[
∑

ai∈Af ,aj∈Au

Xi,j] ≥ τm1m2.

On the other hand,
∑

i,j Xi,j ≤ m1m2. It follows easily that we have Pr[
∑

i,j Xi,j ≥
1
2
τm1m2] ≥ τ/2.

Chapter 2: Information dissemination in k-dimensional spaces 62

Our slower diffusion rule then allows ai ∈ Af to transmit its virus to aj ∈ Au if

and only if

• Xi,j = 1,

• they meet during the time interval (t+ ˆ̀2
2, t+∆t],

• ai and aj have not visited any boundary after t+ ˆ̀2
2 before they meet. In other

words, an agent ai ∈ Af (aj ∈ Au resp.) loses its ability to transmit (receive

resp.) the virus when it hits a boundary after the initial waiting stage.

An added rule is that agents in Au will not have the ability to transmit the virus

even after they are infected.

Let Yi,j be the indicator random variable that is set to 1 if and only if ai transmits

its virus to aj under the slower diffusion rule. By Lemma 2.2.6, we have Pr[Yi,j = 1 |

Xi,j = 1] = Ω(1/ˆ̀2). Therefore, we have

Pr[Yi,j = 1] ≥ Pr[Yi,j = 1 | Xi,j = 1] Pr[Xi,j = 1] = Ω(1/ˆ̀2).

Hence,

E[
∑

ai∈Af ,aj∈Au

Yi,j] = Ω(m1m2/ˆ̀2) ≥ τ1m1m2/ˆ̀2

for some constant τ1.
∑

ai∈Af ,aj∈Au Yi,j is approximately the number of newly infected

agents except that the same agent in Au may be counted multiple times. Our next

task is thus to give an upper bound on the number of overcounts. Specifically, we fix

an agent aj ∈ Au and argue that the probability
∑

ai∈Af Yi,j ≥ log2 n is small.

In our slower diffusion model, once an agent in Af reaches the boundary, it is

not able to transmit the virus further. We need to bound the probability that there

Chapter 2: Information dissemination in k-dimensional spaces 63

are more than log2 n agents in Af that transmit the virus to aj before they hit any

boundary. This probability is at most the probability that more than log2 n infected

agents performing unbounded random walks meet aj , where each infected agent is at

least ˆ̀
2 away from aj initially.

By Lemma 2.2.4, there exists a constant c0 such that for all possible values of

Xi,j and sufficiently large n:

Pr[
∑

ai∈Af

Yi,j ≥ log2 n | X1,j, X2,j, ..., Xm1,j]

≤
(∑

i≤m1
Xi,j

log2 n

)(
c0 log

2 n

ˆ̀
2

)log2 n

≤
(

m1

log2 n

)(
c0 log

2 n

ˆ̀
2

)log2 n

≤
(
em1

log2 n

)log2 n(
c0 log

2 n

ˆ̀
2

)log2 n

=

(
c0em1

ˆ̀
2

)log2 n

≤ exp(− log2 n log log n).

Therefore,

Pr[
∑

ai∈Af

Yi,j ≥ log2 n] = E[Pr[
∑

ai∈Af

Yi,j ≥ log2 n | X1,j , ...,Xm1,j]] ≤ exp(− log2 n log log n).

By a union bound we have

Pr[∃j :
∑

ai∈Af

Yi,j ≥ log2 n] ≤ m · exp(− log2 n log log n) ≤ exp(−2 log2 n). (2.16)

Next, let us fix ai ∈ Af and we may argue in a similar way to obtain

Pr[∃i :
∑

aj∈Au

Yi,j ≥ log2 n] ≤ exp(−2 log2 n).

Chapter 2: Information dissemination in k-dimensional spaces 64

Define et as the event that
(

∀i, ∑aj∈Au Yi,j ≤ log2 n
)

∧
(
∀j, ∑ai∈Af Yi,j ≤ log2 n

)
.

Therefore, Pr[et] ≥ 1− 2 exp(−2 log2 n). Observe that et implies
∑

i,j Yi,j ≤ min{m1,

m2} log2 n. We have

τ1m1m2/ˆ̀2 ≤ E[
∑

i,j

Yi,j]

= E[
∑

i,j

Yi,j|et] Pr[et] + E[
∑

i,j

Yi,j|¬et] Pr[¬et]

≤ E[
∑

i,j

Yi,j|et] +m2 Pr[¬et]

≤ E[
∑

i,j

Yi,j|et] + 2m2 exp(−2 log2 n).

Therefore,

E[
∑

i,j

Yi,j|et] ≥ τ1m1m2/ˆ̀2 − 2m2 exp(−2 log2 n)

≥ τ1m1m2

2ˆ̀2

=
τ1max{m1, m2}min{m1, m2}

2ˆ̀2

≥ τ1min{m1, m2}
2 log2 n

Next, define indicator variable Ij = 1 if and only if
∑

ai∈Af Yi,j > 0. The sum

∑

j Ij is the total number of newly infected agents in our weaker process and thus is

a lower bound on M(t). Note that if et holds,

∑

aj∈Au

Ij ≤
∑

i,j

Yi,j ≤ min{m1, m2} log2 n,

and hence

E[
∑

aj∈Au

Ij |et] ≤ min{m1, m2} log2 n.

On the other hand,

E[
∑

j

Ij|et] ≥ log−2 nE[
∑

i,j

Yi,j|et] ≥
τ1 min{m1, m2}

2 log4 n
(2.17)

Chapter 2: Information dissemination in k-dimensional spaces 65

Now define m̃ = τ1 min{m1,m2}
4 log4 n

. We have

2m̃

≤ E[
∑

j

Ij |et]

= E[
∑

j

Ij

∣
∣
∣et,
∑

j

Ij ≤ m̃] Pr[
∑

j

Ij ≤ m̃
∣
∣
∣et]

+E[
∑

j

Ij

∣
∣
∣et,
∑

j

Ij > m̃] Pr[
∑

j

Ij > m̃
∣
∣
∣et]

≤ E[
∑

j

Ij

∣
∣
∣et,
∑

j

Ij ≤ m̃] + min{m1, m2} log2 nPr[
∑

j

Ij > m̃
∣
∣
∣et]

≤ m̃+min{m1, m2} log2 nPr[
∑

j

Ij > m̃
∣
∣
∣et].

Therefore,

Pr

[
∑

j

Ij >
τ1 min{m1, m2}

4 log4 n

∣
∣
∣et

]

≥ τ1

4 log6 n
.

Finally,

Pr

[
∑

j

Ij >
τ1min{m1, m2}

4 log4 n

]

≥ Pr

[
∑

j

Ij >
τ1min{m1, m2}

4 log4 n

∣
∣
∣et

]

Pr[et]

≥ τ1

4 log6 n
(1− 2 exp(− log2 n)) ≥ τ1

5 log6 n

By setting τ0 = τ1/5, we get our result.

The next step is to characterize the growth rate at a larger scale. This requires

more notation. We denote the set of b3 subcubes of size ˆ̀
2 × ˆ̀

2 × ˆ̀
2 as C = {hi,j,k :

i, j, k ∈ [b]}. For an arbitrary subcube hi,j,k, we define its neighbors as N(hi,j,k) =

{hi′,j′,k′ : |i− i′|+ |j − j′|+ |k− k′| = 1}. In other words, hi′,j′,k′ is a neighbor of hi,j,k

if and only if both subcubes share a facet. Let H be an arbitrary subset of C. We

write N(H) = ⋃h∈HN(h).

Chapter 2: Information dissemination in k-dimensional spaces 66

Definition 2.4.3 (Exterior and interior surface). Let H be a subset of C. The exterior

surface of H is ∂H = N(H)−H. Let H be the complement of H. The interior surface

of H is ∂̇H = N(H)−H, i.e., the exterior surface of the complement of H.

At time step t = i∆t, let Gt be the set of all subcubes that contain more than

ˆ̀
2/2 infected agents and let gt = |Gt|; let Bt = Gt be the rest of the subcubes and let

bt = |Bt|. We say a subcube in Gt an infected (good) subcube and a subcube in Bt an

uninfected (bad) subcube.

We classify the agents in the process according to the subcubes they reside in. To

facilitate our analysis, we adopt the notational system A
·
t and A

·,·
t to represent the total

number of agents that belong to the type specified in the superscript. Specifically, let

A
f
t be the set of infected agents at time t; decompose the set Af

t as Af
t = A

f,G
t ∪Af,B

t ,

where A
f,G
t is the set of infected agents residing in the subcubes in Gt and A

f,B
t the

set of infected agents in Bt. Similarly, let Au
t be the set of all uninfected agents;

decompose the set Au
t as Au

t = A
u,G
t ∪ A

u,B
t , where A

u,G
t is the set of uninfected

agents residing in the subcubes in Gt and A
u,B
t the set of uninfected agents in Bt.

Furthermore, we denote ∆A
G
t and ∆ABt as the set of agents in Gt and Bt respectively

that are infected between t and t + ∆t. Hence the total increase in infected agents,

or equivalently the total decrease in uninfected agents, between t and t+∆t is given

by ∆At = ∆A
G
t ∪∆A

B
t . Lastly, we let ∆̃A

G
t be the set of agents in Gt ∪ ∂Gt that are

infected between t and t+∆t.

Similar to the lower bound analysis, here we also introduce good density condi-

tions that can be easily verified to hold with high probability, and reuse the symbols

Dt and D with slightly different meanings from the last section:

Chapter 2: Information dissemination in k-dimensional spaces 67

Definition 2.4.4. Let {Dt : t ≥ 0} be a sequence of binary random variables such

that Dt = 1 if for all time steps on or before t, the number of agents for any subcube

in V3 with size ˆ̀
2 × ˆ̀

2 × ˆ̀
2 is between ˆ̀

2 and 2ˆ̀2 log
2 n. Also, let D = Dn2.5.

The following lemma shows that Dt = 1 with high probability:

Lemma 2.4.5. For any t ≤ n2.5, Pr[Dt = 0] ≤ exp(− 1
15
log2 n) for sufficiently large

n.

Proof of Lemma 2.4.5. Fix a time t and let m̃ be the number of agents in an arbitrary

subcube of size ˆ̀
2 × ˆ̀

2 × ˆ̀
2. We have E[m̃] ≥ ˆ̀

2 log
2 n/27 ≥ log2 n. Therefore, by

Chernoff bounds (Theorem A.1.1), Pr[m̃ ∈ [1
2
E[m̃], 3

2
E[m̃]] ≥ 1 − 2 exp(− log2 n/12).

Now the total number of possible subcubes is at most (2n+1)3 and the total number

of time steps is n2.5. By a union bound, we have

Pr[D = 0] ≤ (2n+ 1)3 · n2.5 · 2 exp(− 1

12
log2 n) ≤ exp(− 1

15
log2 n)

for sufficiently large n.

We now state two bounds on the growth rate of the agent types, one relative to

the “boundary subcubes” ∂Gt and one relative to the total agents of each type:

Corollary 2.4.6. For some constant τ0,

Pr

[

|˜∆A
G
t ∩∆A

B
t | ≥ |∂Gt| ·

τ0 ˆ̀2

4 log13 n

∣
∣
∣
∣
∣
Ft,Dt = 1

]

≥ τ0 log
−6 n.

Consequently,

Pr

[

|˜∆A
G
t | ≥ |∂Gt| ·

τ0 ˆ̀2

4 log13 n

∣
∣
∣
∣
∣
Ft,Dt = 1

]

≥ τ0 log
−6 n

and

Pr

[

|∆A
B
t | ≥ |∂Gt| ·

τ0 ˆ̀2

4 log13 n

∣
∣
∣
∣
∣
Ft,Dt = 1

]

≥ τ0 log
−6 n.

Chapter 2: Information dissemination in k-dimensional spaces 68

Corollary 2.4.7. We have

Pr

[

|∆A
G
t | ≥

τ20
4 log38 n

|Au,G
t |
∣
∣
∣Ft,Dt = 1

]

≥ τ0 log
−6 n

and

Pr

[

|∆A
B
t | ≥

τ20
4 log38 n

|Af,B
t |
∣
∣
∣Ft,Dt = 1

]

≥ τ0 log
−6 n.

The proofs of these two corollaries both rely on using coupled diffusion pro-

cesses that have slower diffusion rates. These processes only allow infection lo-

cally i.e. within each “pair” of subcubes on the surface of Gt in the case of Corol-

lary 2.4.6 and within each subcube in Corollary 2.4.7, and hence can be tackled by

Lemma 2.4.2. The surface ∂Gt in Corollary 2.4.6 appears naturally from a matching

argument between neighboring infected and uninfected subcubes. Roughly speaking,

the bounds in Corollary 2.4.6 are tighter and hence more useful for the cases where

infected/uninfected agents are dense in the infected/uninfected subcubes, while those

in Corollary 2.4.7 are for cases where the agent types are more uniformly distributed.

Proof of Corollary 2.4.6. Agents in ∆̃A
G
t ∩ ∆A

B
t are those initially in ∂Gt at t and

become infected at the time t + ∆t. We focus on how the uninfected agents in ∂Gt

become infected.

Let us construct a graph G = (V,E), in which the vertex set V of G consists of

subcubes in ∂Gt ∪ ∂̇Gt and the edge set is defined as

E = {{u, v} : u ∈ ∂Gt, v ∈ ∂̇Gt, u ∈ N(v)}.

We may use a greedy algorithm to argue that there is a matching on G from ∂Gt

to ∂̇Gt with size at least |∂Gt|/11. Specifically, we have the following lemma.

Chapter 2: Information dissemination in k-dimensional spaces 69

Lemma 2.4.8. Let G be an arbitrary subset of Cd. Define ∂̇G and ∂G as the interior

and exterior surfaces of G (i.e. the set of points in G that neighbor with Gc and the

set of points in Gc that neighbor with G resp.; ~u and ~v are neighbors if ‖~u−~v‖1 = 1).

Define a bipartite graph with nodes denoting ∂̇G and ∂G, in which an edge (~u,~v), ~u ∈

∂̇G, ~v ∈ ∂G exists whenever ~u and ~v are neighbors. Then there exists a matching M

in this graph with |M | ≥ |∂G|/(4d− 1).

Proof of Lemma 2.4.8. We prove this statement by explicitly constructing the match-

ing M . First notice that the degree of each node is in the range [1, 2d]. We build

M iteratively. Each time, we pick an edge (~u,~v) ∈ E and place the edge into M .

We then remove nodes ~u,~v from L and R respectively as well as all edges incident to

them. Since the degrees of ~u,~v are bounded by 2d, we will remove at most 4d − 1

edges from E. We continue this process until no edge is left. Clearly, the edges we

place into M form a matching. Because there are at least |∂G| number of edges by

the lower bound of degrees, we conclude that |M | ≥ |∂G|
4d−1 .

Denote the matching as

M = {{h1, h′1}, {h2, h′2}, ..., {hk, h′k} : hi ∈ ∂Gt, h′i = ∂̇Gt},

where k ≥ |∂Gt|/11. We next define a coupling process with a slower diffusion rule:

an infected agent can transmit virus to an uninfected one if and only if at time t

the infected agent is in h′j and the uninfected one is in hj for some j. Let ρj be the

number of uninfected agents initially in hj at time t that become infected by time

t+∆t under the slower diffusion rule. We have
∑

j≤k ρj at most |∆̃A
G
t ∩∆ABt | in the

original process. We design the coupling in this way because ρj s are independent of

Chapter 2: Information dissemination in k-dimensional spaces 70

each other as they are decided by independent walks from disjoint pairs of subcubes.

Next we apply Lemma 2.4.2 on each pair of the matching. Fix an arbitrary

matched pair {hj , h′j}. Since hj ∈ ∂Gt, at time t there are at least ˆ̀
2/2 uninfected

agents in hj ; similarly, since h′j ∈ ∂̇Gt, there are at least ˆ̀
2/2 infected agents in h′j .

At time t we can find a subset of uninfected agent Au in h′j and a subset of infected

agents Af in hj such that |Au| = |Af | = ˆ̀
2/ log

2 n. Therefore, by Lemma 2.4.2, we

have

Pr[ρj ≥
τ0 ˆ̀2

log4 n
| Ft, Dt = 1] ≥ τ0 log

−6 n (2.18)

for some constant τ0. From Equation 2.18, we can see that E[ρj | Ft, Dt = 1] ≥

τ 20
ˆ̀
2 log

−10 n. Therefore,

E[
∑

j≤k
ρj | Ft, Dt = 1] ≥ τ 20

11
|∂Gt| ˆ̀2 log−10 n. (2.19)

Next, we consider two cases.

Case 1., |∂Gt| ≤ log9 n. In this case

Pr

[

|∆̃A
G
t ∩∆A

B
t | ≥ |∂Gt| ·

τ0 ˆ̀2

4 log13 n

∣
∣
∣Ft, Dt = 1

]

≥ Pr

[

|∆̃A
G
t ∩∆A

B
t | ≥ log9 n

τ0 ˆ̀2

4 log13 n

∣
∣
∣Ft, Dt = 1

]

≥ Pr

[

|∆̃A
G
t ∩∆A

B
t | ≥

τ0 ˆ̀2

4 log4 n

∣
∣
∣Ft, Dt = 1

]

≥ Pr[ρ1 ≥ τ0 ˆ̀2 log
−4 n | Ft, Dt = 1]

(only focus on an arbitrary matched pair in the matching)

≥ τ0 log
−6 n. (Lemma 2.4.2)

Case 2. |∂Gt| > log9 n. Notice that ρ1, ..., ρk are independent by construction. Also,

Chapter 2: Information dissemination in k-dimensional spaces 71

we have

|∂Gt| ·
τ0 ˆ̀2

4 log13 n
≤ τ 20

22
|∂Gt| ˆ̀2 log−10 n ≤

1

2
E
[

|∆̃A
G
t ∩∆A

B
t |
∣
∣
∣Ft, Dt = 1

]

.

By a Chernoff bound (the version we use is Theorem A.1.1 with δ = 1/2), we have

Pr

[

|∆̃A
G
t ∩∆A

B
t | ≤ |∂Gt| ·

τ0 ˆ̀2

4 log13 n

∣
∣
∣Ft, Dt = 1

]

≤ 2 exp

−

(1
2
)2E

[

|∆̃A
G
t ∩∆ABt |

∣
∣
∣Ft, Dt = 1

]

3

≤ 2 exp

(

− τ 20
132
|∂Gt| ˆ̀2 log−10 n

)

(using Equation 2.19)

≤ 1− τ0 log−6 n

for sufficiently large n. Our corollary thus follows.

Proof of Corollary 2.4.7. Let us start with proving the first inequality. We first couple

the diffusion problem with a slower diffusion process defined as follows. First, all the

infected agents in Bt at time t cannot transmit the virus. Second, agents in Gt are

able to transmit the virus to each other if and only if at time t they are in the same g

for some g ∈ Gt. For an arbitrary g ∈ Gt, we let Au,G
t,g be the set of uninfected agents in

g at time t. Accordingly, let ∆A
G
t,g be the set of agents in Au,G

g that become infected

at t +∆t under the slower coupled process. By Lemma 2.4.2, we have

Pr

[

|∆A
G
t,g| ≥

τ0 min{ˆ̀2/(log2 n), |Au,G
t,g |}

4 log4 n

∣
∣
∣
∣
∣
Ft, Dt = 1

]

≥ τ0 log
−6 n. (2.20)

Note that Lemma 2.4.2 requires that both the number of infected agents and the

number of uninfected agents are at most ˆ̀
2/(log

2 n). By Gt’s construction, there are

Chapter 2: Information dissemination in k-dimensional spaces 72

at least ˆ̀
2/2 infected agents in each subcube, and we may choose an arbitrary subset

of them with size ˆ̀
2/ log

2 n to form Af in Lemma 2.4.2. We do not know the exact

size of |Au,G
t,g | but in case |Au,G

t,g | > ˆ̀
2/ log

2 n, we let Af be an arbitrary subset of Au,G
t,g

with size ˆ̀
2/ log

2 n.

When Dt = 1, we have |Au,G
t,g | ≤ 2ˆ̀2 log

2 n. Therefore,

min{ˆ̀2/ log2 n, |Au,G
t,g |} ≥ min{ |A

u,G
t,g |

2 log4 n
, |Au,G

t,g |} ≥ |Au,G
t,g |/(2 log4 n).

Equation 2.20 can be rewritten as

Pr

[

|∆A
G
t,g| ≥

τ0|Au,G
t,g |

8 log8 n

∣
∣
∣
∣
∣
Ft, Dt = 1

]

≥ τ0 log
−6 n.

This also provides a lower bound over the expectation of |∆A
G
t,g|, i.e.,

E[|∆A
G
t,g| | Ft, Dt = 1] ≥ τ 20

8
|Au,G

t,g | log−14 n.

We also have

E[|∆A
G
t | | Ft, Dt = 1] =

∑

g E[|∆A
G
t,g| | Ft, Dt = 1]

≥ ∑

g
τ20
8
|Au,G

t,g | log−14 n

=
τ20
8
|Au,G

t | log−14 n.

(2.21)

Furthermore, by the way we design the coupled process, the random variables |∆A
G
t,g|

are independent given Ft, Dt = 1.

We consider two cases.

Case 1. There exists g ∈ Gt such that |Au,G
t,g | ≥ |Au,G

t |/ log29 n. In this case, we

have

Pr

[

|∆A
G
t | ≥

τ0|Au,G
t |

4 log38 n

∣
∣
∣
∣
∣
Ft, Dt = 1

]

≥ Pr

[

|∆A
G
t,g| ≥

τ0|Au,G
t,g |

4 log9 n

∣
∣
∣
∣
∣
Ft, Dt = 1

]

≥ τ0 log
−6 n.

Chapter 2: Information dissemination in k-dimensional spaces 73

Case 2. For all g ∈ Gt, |Au,G
t,g | < |Au,G

t |/ log29 n. Observe, on the other hand, that

∑

g |Au,G
t,g | = |Au,G

t |. In this case, we have the summation
∑

g |Au,G
t,g |2 < |Au,G

t |2 log−29 n.

(and it is maximized when every non-zero |Au,G
t,g | is exactly |Au,G

t | log−29 n). We there-

fore have
∑

g∈Gt

|Au,G
t,g |2 ≤ |Au,G

t | log−29 n
∑

g∈Gt

|Au,G
t,g | = |Au,G

t |2 log−29 n. (2.22)

Next, by Hoeffding’s inequality (See, e.g., Theorem A.1.3), we have

Pr

[

|∆A
G
t | ≤

τ0|Au,G
t |

4 log38 n

∣
∣
∣Ft, Dt = 1

]

≤ Pr

[

|∆A
G
t | ≤

E[|∆A
G
t | | Ft, DT = 1]

2

∣
∣
∣Ft, Dt = 1

]

= Pr

[
∑

g

|∆A
G
t,g| ≤

E[|∆A
G
t | | Ft, DT = 1]

2

∣
∣
∣Ft, Dt = 1

]

≤ 2 exp

(

−2(
1
2
E[|∆A

G
t | | Ft, Dt = 1])2

∑

g∈Gt |A
u,G
t,g |2

)

(apply Hoeffding’s inequality; we have |∆A
G
t,g| ≤ |Au,G

t,g |)

≤ 2 exp

(

−2
τ20
162
|Au,G

t |2 log−28 n
|Au,G

t |2 log−29 n

)

(by Equation 2.21 and Equation 2.22)

= exp(−Θ(log n))

≤ 1− τ0 log−6 n,

for sufficiently large n.

Proving the inequality regarding |∆ABt | is similar. We provide it here for com-

pleteness, but less patient readers may simply skip this part. We first couple the

diffusion problem with a slower process. First, all the infected agents in Gt at time t

cannot transmit virus. Second, agents in Bt are able to transmit virus to each other if

and only if at time t they are in the same b for some b ∈ Bt. For an arbitrary b ∈ Bt,

we let Af,B
t,b be the set of uninfected agents in b at time t. Accordingly, let ∆ABt,b be

Chapter 2: Information dissemination in k-dimensional spaces 74

the set of agents in A
f,B
t,b that becomes infected at t +∆t under the coupled process.

For technical reasons, we require the slower diffusion in the subcube b to halt when

|∆ABt,b| becomes large, i.e., |∆ABt,b| = |Af,B
t,b |. This added constraint |∆ABt,b| = |Af,B

t,b |

allows us to apply Hoeffding’s inequality in an easier manner.

When Dt = 1, Af,B
t,b ≤ 2ˆ̀2 log

2 n and min{|Af,B
t,b |, ˆ̀2(log2 n)} ≥ |Af,B

t,b |/(2 log4 n).

By Lemma 2.4.2, we have

Pr

[

|∆A
B
t,b| ≥

τ0|Af,B
t,b |

8 log8 n

∣
∣
∣
∣
∣
Ft, Dt = 1

]

≥ τ0 log
−6 n.

Similar to the analysis of Au,G
t,g , this inequality holds because we can always restrict

to a subset of agents if the number of infected/uninfected agents in the subcube is

too large to meet the requirement in Lemma 2.4.2. We also have

E[|∆A
B
t | | Ft, Dt = 1] =

∑

b

E[|∆A
B
t,b| | Ft, Dt = 1] ≥ τ 20

8
|Af,B

t | log−14 n. (2.23)

Furthermore, by the way we design the coupled process, the random variables |∆ABt,b|

are independent given Ft, Dt = 1.

We consider two cases.

Case 1. There exists an b ∈ Bt such that |Af,B
t,b | ≥ |Af,B

t |/ log29 n. In this case,

we have

Pr

[

|∆A
B
t | ≥

τ0|Af,B
t |

4 log38 n

∣
∣
∣Ft, Dt = 1

]

≥ Pr

[

|∆A
B
t,b| ≥

τ0|Af,B
t,b |

4 log9 n

∣
∣
∣Ft, Dt = 1

]

≥ τ0 log
−6 n.

Case 2. For all b ∈ Bt, |Af,B
t,b | < |Af,B

t |/ log29 n. In this case, we have

∑

b∈Bt

|Af,B
t,b |2 ≤ |Af,B

t |2 log−29 n. (2.24)

Next, by Hoeffding’s inequality (again by Theorem A.1.3),

Chapter 2: Information dissemination in k-dimensional spaces 75

we have

Pr

[

|∆A
B
t | ≤

τ0|Af,B
t |

4 log38 n

∣
∣
∣Ft, Dt = 1

]

≤ Pr

[

|∆A
B
t | ≤

E[|∆ABt | | Ft, DT = 1]

2

∣
∣
∣Ft, Dt = 1

]

= Pr

[
∑

b

|∆A
B
t,b| ≤

E[|∆ABt | | Ft, DT = 1]

2

∣
∣
∣Ft, Dt = 1

]

≤ 2 exp

(

−2(
1
2
E[|∆A

B
t | | Ft, Dt = 1])2

∑

b∈Bt |A
f,B
t,b |2

)

(apply Hoeffding’s inequality; we have |∆ABt,g| ≤ |Af,B
t,g |.)

≤ 2 exp

(

−2
τ40
162
|Af,B

t |2 log−28 n
|Af,B

t |2 log−29 n

)

(by Equation 2.23 and Equation 2.24)

≤ 1− τ0 log−6 n.

2.4.1 Leveraging local analysis

We now move to the global diffusion upper bound. As discussed in the beginning

of this section, the balance between the distributions of each type of subcube and the

distributions of actual agents plays a crucial role in our analysis. Fix an arbitrary

time t, we classify the joint configurations of the agents into four types:

• type 1 (namely P1,t): when |Gt| ≤ 1
2
((2n+ 1)/ˆ̀2)

3 and |Af,G
t | ≥ 1

2
|Af

t |.

• type 2 (namely P2,t): when |Gt| ≤ 1
2
((2n+ 1)/ˆ̀2)

3 and |Af,G
t | < 1

2
|Af

t |.

• type 3 (namely P3,t): when |Gt| > 1
2
((2n+ 1)/ˆ̀2)

3 and |Au,G
t | < 1

2
|Au

t |.

• type 4 (namely P4,t): when |Gt| > 1
2
((2n+ 1)/ˆ̀2)

3 and |Au,G
t | ≥ 1

2
|Au

t |.

Chapter 2: Information dissemination in k-dimensional spaces 76

Recall that Ft refers to the information on the global configurations up to time t. We

shall abuse notation slightly and say Ft ∈ Pi,t if the configuration of the agents at time

t belongs to the ith type described above. Notice that Ft belongs to exactly one of the

sets P1,t, P2,t, P3,t,P4,t. In brief, scenarios P1,t and P2,t have a majority of uninfected

subcubes, while P3,t and P4,t have a majority of infected subcubes. From another

perspective, P1,t and P3,t refer to situations when the dominant types (with respect

to the status of infection) are dense in their subcube types (infected/uninfected sub-

cubes), while P2,t and P4,t refer to the more uniform scenarios. The next lemma

states that when Ft ∈ P1,t ∪ P2,t, the total number of infected agents |Af
t | grows in

proportion to a monotone function of |Af
t | within ∆t steps. On the other hand, when

Ft ∈ P3,t ∪ P4,t, the total number of uninfected agents |Au
t | is reduced in proportion

to a monotone function of |Au
t | within ∆t steps.

Lemma 2.4.9. Fix an arbitrary t, define the following events,

e1(t) =

{

|∆At| ≥ 0.09τ0

(

|Af
t |

4ˆ̀2 log
2 n

)2/3
ˆ̀
2

log13 n

}

e2(t) =
{

|∆At| ≥ τ20
8 log38 n

|Af
t |
}

e3(t) =

{

|∆At| ≥ 0.015τ0

(
|Au

t |
4ˆ̀2 log

2 n

)2/3 ˆ̀
2

log13 n

}

e4(t) =
{

|∆At| ≥ τ20
8 log38 n

|Au
t |
}

.

We have

Pr[ei | Ft ∈ Pi,t, Dt = 1] ≥ τ0 log
−6 n

for i = 1, 2, 3, 4.

Intuitively, e1 and e2 connect the number of newly infected agents to the original

number of infected agents. When e1 or e2 are triggered sufficiently many times, the

number of infected agents doubles. Meanwhile, e3 and e4 connect the number of

newly infected agents to the original number of uninfected agents. When e3 or e4 are

triggered sufficiently many times, the number of uninfected agents halves.

Chapter 2: Information dissemination in k-dimensional spaces 77

The key to proving Lemma 2.4.9, which will ultimately lead to a bound on the

global growth rate of doubling/halving the total number of infected/uninfected agents

as depicted in the next proposition, is a geometric relation between the boundary of

Gt, i.e. ∂Gt, and Gt itself. More specifically, an isoperimetric bound on Gt guarantees

that no matter how packed together these good subcubes are, there are still an order

|Gt|2/3 of them exposed to the bad subcubes, hence the global infection rate cannot

be too slow.

Let us start with the isoperimetric bound we need.

Theorem 2.4.10. Let G be an arbitrary subset of Cd. There exists a pair of constants

α(d) > 1/2 and β(d) > 0, such that:

if |G| ≤ α(d) · |Zd| = α(d) · bd, then |∂G| ≥ β(d)|G|(d−1)/d

Specifically, β(3) ≥ 0.36.

The isoperimetric problem over Cd was studied in [16], in which the optimal struc-

ture of G that minimizes |∂G| is presented. Here, we provide another asymptotically

optimal proof based on a recursive argument. This proof could be of independent

interest.

To begin, let us prove the special case d = 2. The analysis for this case demon-

strates important ideas that are needed for showing the case for general d.

Lemma 2.4.11. Let G be an arbitrary subset of C2. If |G| ≤ 2
3
b2, we have

|∂G| ≥ 2

5
|G|1/2.

Chapter 2: Information dissemination in k-dimensional spaces 78

Proof. Let V = |G| and X(i) be the collection of lattice points in C
2 whose x coordi-

nates are i. Also we refer V (i) := X(i) ∩ G as the ith stripe of G. Define

i∗ = argmax
i
|V (i)| and i∗ = argmin

i
|V (i)|.

We next analyze two possible cases regarding the size of V (i∗).

Case 1. 0 < |V (i∗)| <
√

3V
2
. Since

√
3V
2
≤ b, for each i such that V (i) 6= ∅, we have

0 < |V (i)| ≤ |V (i∗)| < b.

On the other hand, when 0 < |V (i)| < b, there is at least one element of X(i) that is

also in ∂G. Since the cardinality of G is V , the number of non-empty stripes in G is

at least V
|V (i∗)| . Hence we have

|∂G| ≥ V

|V (i∗)| ≥
√

2V

3
>

2

5

√
V

Case 2. |V (i∗)| ≥
√

3V
2
. By an averaging argument, |V (i∗)| ≤ V/b. Using the fact

that V ≤ 2
3
b2, we have |V (i∗)| ≤

√
2
3
V .

Next we show that ∂G ≥ |V (i∗)| − |V (i∗)|. Consider an arbitrary j such that

(i∗, j) ∈ V (i∗) and (i∗, j) /∈ V (i∗). Since (i∗, j) ∈ G and (i∗, j) /∈ G, there exists a

lattice point on the “line segment” {(i, j) : i ∈ {i∗, ..., i∗}} that is in ∂G.

Finally, we have

∂G ≥ |V (i∗)| − |V (i∗)| ≥
(√

3

2
−
√

2

3

)
√
V ≥ 2

5

√
V .

We use induction to prove Theorem 2.4.10. Our idea of proving general d is

similar to the case d = 2. First, we let X(i) be the collection of lattice points

Chapter 2: Information dissemination in k-dimensional spaces 79

in C
d whose first coordinates are i and V (i) = X(i) ∩ G. Next, we also define

i∗ = argmaxi |V (i)| and i∗ = argmini |V (i)|. Then, we mimic the analysis for the

case d = 2 and discuss two possible cases: when |V (i∗)| is small and when |V (i∗)|

is large. When |V (i∗)|, we need to invoke results on lower dimension cases. When

|V (i∗)| is large, we shall show that |V (i∗)| − |V (i∗)| is a lower bound on the size of

∂G, which is sufficient for proving the theorem.

Let us proceed with the following lemma, which is the main vehicle for analyzing

the case |V (i∗)| is large.

Lemma 2.4.12. Let G be an arbitrary subset of Cd. We have

|∂G| ≥ |V (i∗)| − |V (i∗)|.

Proof. First, define the set ∆ as

∆ =
{

(i2, i3, ..., id) ∈ C
d−1
∣
∣
∣ ((i∗, i2, i3, ..., id) ∈ V (i∗)) ∧ ((i∗, i2, i3, ..., id) /∈ V (i∗))

}

Notice that by the definitions of V (i∗) and V (i∗), we have |∆| ≥ |V (i∗)| − |V (i∗)|.

Next, we show that for any (i2, ..., id) ∈ ∆, there exists an i1 such that (i1, ..., id) ∈ ∂G,

which immediately implies the lemma.

Fix a (d − 1)-tuple (i2, ..., id) ∈ ∆. Observe that (i∗, i2, ..., id) ∈ V (i∗) ⊆ G

and (i∗, i2,, id) /∈ V (i∗) and thus (i∗, i2,, id) /∈ G. Let us walk from the point

(i∗, i2, ..., id) to the point (i∗, i2, ..., id). Because we start with an interior point of G

and end at a point outside G, we leave the polytope G at least once. Hence, there

exists an i1 such that (i1, ..., id) ∈ ∂G.

Now we are ready to prove Theorem 2.4.10.

Chapter 2: Information dissemination in k-dimensional spaces 80

Proof of Theorem 2.4.10. We prove by induction on d. Specifically, we show that for

any d and any G(d) ⊆ Cd, there exists a pair of constants (that depends only on d)

α(d) ≥ 1/2 and β(d) > 0 such that

if |G| ≤ α(d)|Cd|, then |∂G(d)| ≥ β(d)|G|d−1.

The base case was considered in Lemma 2.4.11. Now let us assume the theorem holds

up to the d-dimensional space. We now prove the d+ 1 dimensional case.

Our α(d+ 1) and β(d+ 1) are set up in the following way:

α(d+ 1) = α(d)/2 + 1/4

β(d+ 1) = min

{

α(d)

(α(d+1))
d

d+1
− (α(d+ 1))

1
d+1 , β(d)(α(d+1))

1
d+1

(α(d))
1
d

} (2.25)

Let T =

(

α(d)

(α(d+1))
d

d+1

)

V
d

d+1 and consider the following two cases.

Case 1. |V (i∗)| < T . Our α(d + 1) is set up in a way that when V ≤ α(d + 1)bd+1,

T < α(d)bd. Next, we invoke the result for d dimensional case on each V (i), i ∈ [b].

Notice that a lattice on the exterior surface of V (i) in the space Cd is also on the

exterior surface of G. Let us call the size of the exterior surface of V (i) as |∂V (i)|. By

induction hypothesis, we have |∂V (i)| ≥ β(d)|V (i)| d−1
d . Note also

∑

i≤b |V (i)| = V .

Chapter 2: Information dissemination in k-dimensional spaces 81

Next, define f(x) = x
d−1
d , which is a concave function. We have

|∂G| ≥
∑

i≤b
|∂V (i)|

≥
∑

i≤b
β(d)f(|V (i)|) (induction hypothesis)

≥
∑

i≤b

β(d)|V (i)|
T

f(T) (|V (i∗)| < T and using the concave property of f(·))

=
β(d)V

T
f(T)

=
β(d)(α(d+ 1))

1
d+1

(α(d))
1
d

V
d

d+1 (using the definition of T)

≥ β(d+ 1)V
d

d+1 (by the construction of β(d))

Case 2. When |V (i∗)| ≥ T . By Lemma 2.4.12, |∂G| ≥ |V (i∗)| − |V (i∗)|. Also by an

averaging argument we have |V (i∗)| ≤ V/b. The theorem then follows.

Proof of Lemma 2.4.9. Part 1. P1,t, |Gt| ≤ 1
2
((2n+ 1)/ˆ̀2)

3 and |Af,G
t | ≥ 1

2
|Af

t |. Since

Dt = 1, the number of agents in each subcube is at most 2ˆ̀2 log
2 n. Therefore,

|Gt| ≥ |Af,G
t |/(2ˆ̀2 log2 n). To apply Corollary 2.4.6, we need to derive a relationship

between the size of Gt and the size of ∂Gt. This is an isoperimetric problem. By

Theorem 2.4.10,

|∂Gt| ≥ 0.36|Gt|2/3 ≥ 0.36

(

|Af,G
t |

2ˆ̀2 log
2 n

)2/3

.

Chapter 2: Information dissemination in k-dimensional spaces 82

We have

Pr

|∆At| ≥ 0.09τ0

(

|Af
t |

4ˆ̀2 log
2 n

)2/3
ˆ̀
2

log13 n

∣
∣
∣
∣
∣
Ft ∈ P1,t, Dt = 1

≥ Pr

|∆̃A
G
t | ≥ 0.09τ0

(

|Af,G
t |

2ˆ̀2 log
2 n

)2/3
ˆ̀
2

log13 n

∣
∣
∣
∣
∣
Ft ∈ P1,t, Dt = 1

≥ Pr

[

|∆̃A
G
t | ≥ |∂Gt|

τ0 ˆ̀2

4 log13 n

∣
∣
∣
∣
∣
Ft ∈ P1,t, Dt = 1

]

≥ τ0 log
−6 n (by Corollary 2.4.6)

Part 2. |Gt| ≤ 1
2
((2n + 1)/ˆ̀2)

3 and |Af,G
t | < 1

2
|Af

t |. Notice that |Af,B
t | ≥ |Af

t |/2

and |∆ABt | ≤ |∆At|. We have

Pr

[

|∆At| ≥
τ 20

8 log38 n
|Af

t |
∣
∣
∣Ft ∈ P2,t, Dt = 1

]

≥ Pr

[

|∆A
B
t | ≥

τ 20
4 log38 n

|Af,B
t |
∣
∣
∣Ft ∈ P2,t, Dt = 1

]

≥ τ0 log
−6 n (by Corollary 2.4.7)

Part 3. |Gt| > 1
2
((2n+ 1)/ˆ̀2)

3 and |Au,G
t | < 1

2
|Au

t |. This is similar to part 1. We

have

|∂Gt| = |∂̇Bt| ≥ |∂Bt|/6 ≥ 0.06|Bt|2/3 ≥ 0.06

(

|Au,B
t |

2ˆ̀2 log
2 n

)2/3

.

The second inequality holds because the exterior surface ∂Bt is in the neighborhood

of ∂̇Bt and |N(∂Bt|)| ≤ 6|∂Bt|. Notice that |Au,B
t | ≥ |Au

t |/2. We have

Pr

[

|∆At| ≥ 0.015τ0

(|Au
t |

4ˆ̀2 log
2 n

)2/3 ˆ̀
2

log13 n

∣
∣
∣
∣
∣
Ft ∈ P3,t, Dt = 1

]

≥ Pr

|∆A
B
t | ≥ 0.015τ0

(

|Au,B
t |

2ˆ̀2 log
2 n

)2/3
ˆ̀
2

log13 n

∣
∣
∣
∣
∣
Ft ∈ P3,t, Dt = 1

≥ Pr

[

|∆A
B
t | ≥ |∂Gt|

τ0 ˆ̀2

4 log13 n

∣
∣
∣
∣
∣
Ft ∈ P3,t, Dt = 1

]

≥ τ0 log
−6 n (by Corollary 2.4.6)

Chapter 2: Information dissemination in k-dimensional spaces 83

Part 4. |Gt| > 1
2
((2n + 1)/ˆ̀2)

3 and |Au,G
t | ≥ 1

2
|Au

t |. This is similar to part 2.

Notice that |Au
t | ≤ 2|Au,G

t | and |∆At| ≥ |∆A
G
t |. We have

Pr

[

|∆At| ≥
τ 20

8 log38 n
|Au

t |
∣
∣
∣Ft ∈ P4,t, Dt = 1

]

≥ Pr

[

|∆A
G
t | ≥

τ 20
4 log38 n

|Au,G
t |
∣
∣
∣Ft ∈ P4,t, Dt = 1

]

≥ τ0 log
−6 n. (by Corollary 2.4.7)

Our major proposition presented next essentially pins down the number of times

these events need to be triggered to double the number of infected agents or halve

the number of uninfected ones.

Proposition 2.4.13. Consider the information diffusion problem over V3 with m

agents. For any fixed t ≤ n2.5 − 4
√

m
n
log45 n∆t, define the following events

χ1(t) ≡
(

|Af

t+4
√

m
n

log45 n∆t
| ≥ 2|Af

t |
)

and χ2(t) ≡
(

|Au
t+4
√

m
n

log45 n∆t
| ≤ 1

2
|Au

t |
)

.

We have

Pr[χ1(t) ∨ χ2(t)] ≥ 1− exp(− log2 n).

Note that this bound suggests that for each time increment 4
√

m
n
log45 n∆t,

either the number of infected agents doubles or the number of uninfected agents

is reduced by half with high probability. Therefore, within time at most 2 logn ·
(
4
√

m
n
log45 n∆t

)
= 128nˆ̀2 log

47 n all the agents get infected with probability at least

1− 2 logn exp(− log2 n). This proves Theorem 2.4.1.

To summarize our approach, Corollaries 2.4.6 and 2.4.7 first translate the local

infection rate of Lemma 2.4.2 into a rate based on the subcube types (i.e. good and

Chapter 2: Information dissemination in k-dimensional spaces 84

bad subcubes). Then Lemma 2.4.9 further aggregates the growth rate to depend only

on the infected and uninfected agents, by looking at the geometrical arrangement of

the subcubes. Nevertheless, the bound from Lemma 2.4.9 is still too crude, but by

making a long enough sequence of trials i.e. 4
√

m
n
log45 n times, at least one of the

four scenarios defined in Lemma 2.4.9 occurs for a significant number of times, despite

the Ω(log−6 n) probability of occurrence for each individual step for any of the four

scenarios. This leads to the probabilistic bound for χ1(t) ∨ χ2(t).

Proof of Proposition 2.4.13. First, notice that Lemma 2.4.9 states that regardless of

the diffusion process’ history, one of e1, e2, e3, and e4 is guaranteed to occur with

Ω̃(1) probability. On the other hand, it is not difficult to see that when any of the

events e1, e2, e3, e4 occurs Ω̃(n/ˆ̀2) times, then either |Af
t | doubles or |Au

t | reduces

by a half. Although we do not know exactly which event happens at a specific time

t, we argue that so long as we wait long enough, the collection of events {e1, ..., e4}

occurs 4Ω̃(n/ˆ̀2) times and by Pigeonhole principle, at least one of e1, e2, ..., e4 will

be triggered Ω̃(n/ˆ̀2) times, concluding the proposition. The above argument can be

made rigorous via a Chernoff bound on the total number of occurrence of all four

events.

We now implement the idea. Let us define ς = 4
√

m
n
log45 n. Let ti = t+(i−1)∆t

for i ∈ [ς]. Note that ti depends on both i and t, but we suppress the dependence

on t for succinctness. This also applies to all other defined quantities in this proof.

Recall from Lemma 2.3.13 that Fti encodes all the available information up to time

Chapter 2: Information dissemination in k-dimensional spaces 85

ti. For each i ∈ [ς], define the following pairs of indicator functions

I1,2(ti) =

1 if Fti ∈ Pti,1 ∪ Pti,2

0 otherwise

and I3,4(ti) =

1 if Fti ∈ Pti,3 ∪ Pti,4

0 otherwise

Notice that for arbitrary ti, I1,2(ti) + I3,4(ti) = 1. Next define

ϕi = I1,2(ti) ·
|∆Ati |
|Af

ti |
+ I3,4(ti) ·

|∆Ati |
|Au

ti |
,

We first show a lower bound for
∑

i≤ς ϕi. Our strategy is to invoke Lemma 2.4.9

and apply a Chernoff bound. Special care needs to be taken when D = 0.

Let

r = min

0.015τ0

(
ˆ̀
2

4m log2 n

) 1
3

1

log16 n
,

τ 20
8 log38 n

.

By Lemma 2.4.9, we can see regardless of whether Fti belongs to P1,ti , ..., or P4,ti ,

Pr[ϕi ≥ r | Fti, Dti = 1] ≥ τ0 log
−6 n. (2.26)

where τ0 is the constant specified in Lemma 2.4.9. Here, we verify the case Fti ∈ P1,ti

for Equation 2.26. See (2.27). The computation for the other three cases can be

carried out similarly.

Next, let us define a family of indicator random variables {I(i) : i ≤ ς} so that

I(i) is Fti-measurable and

I(i) =

1 if ϕi ≥ r

0 otherwise.

Notice that
∑

i≤ς ϕi ≥ r
(∑

i≤ς I(i)
)
. By Equation 2.26, we have

Pr[I(i) = 1 | Fti, Dti = 1] ≥ τ0 log
−6 n.

C
h
a
p
ter

2
:
In
fo
rm

a
tio

n
d
issem

in
a
tio

n
in
k
-d
im

en
sio

n
a
l
spa

ces
86

Pr[ϕi ≥ r | Fti ∈ P1,ti ,Dti = 1]

≥ Pr

[

|∆At|
|Af

t |
≥ 0.015

log16 n
τ0

(
ˆ̀
2

4m log2 n

) 1
3

∣
∣
∣
∣
∣
Fti ∈ P1,ti , Dti = 1

]

≥ Pr

[

|∆At| ≥ 0.09
log16 n

τ0|Af
t |
(

ˆ̀
2

4m log2 n

) 1
3

∣
∣
∣
∣
∣
Fti ∈ P1,ti , Dti = 1

]

≥ Pr

|∆At| ≥ 0.09
log16 n

τ0

(
|Af

t |
4ˆ̀2 log

2 n

)2/3

|Af
t |

︸︷︷︸

≤m

1/3
(4ˆ̀2 log

2 n)2/3
(

ˆ̀
2

4m log2 n

) 1
3

∣
∣
∣
∣
∣
Fti ∈ P1,ti , Dti = 1

≥ Pr

[

|∆At| ≥ 0.09
log3 n

τ0

(
|Af

t |
4ˆ̀2 log

2 n

)2/3
ˆ̀
2

log13 n
m1/3(4 log2 n)2/3

(
1

4m log2 n

) 1
3

∣
∣
∣
∣
∣
Fti ∈ P1,ti , Dti = 1

]

≥ Pr

[

|∆At| ≥ 0.09τ0

(
|Af

t |
4ˆ̀2 log

2 n

)2/3
ˆ̀
2

log13 n

∣
∣
∣
∣
∣
Fti ∈ P1,ti , Dti = 1

]

≥ τ0 log
−6 n (Lemma 2.4.9)

(2.27)

Chapter 2: Information dissemination in k-dimensional spaces 87

Next, let us introduce another family of r.v. {I ′(i) : i ≤ ς} to incorporate the

good density variable as follows:

I ′(i) =

I(i) if Dti = 1

1 otherwise

Since I ′(i) ≥ I(i), we also have

E[I ′(i) | Fti , Dti = 1] ≥ τ0 log
−6 n.

On the other hand, by construction

E[I ′(i) | Fti , Dti = 0] = 1 ≥ log−7 n

This concludes that

E[I ′(i) | Fti] ≥ log−7 n

which implies

E[
∑

i≤ς
I ′(i)] ≥ ς log−7 n.

We construct a sequence of random variables {ξi} such that ξ0 = 0 and ξi+1 =

ξi+(I ′(i+1)−E[I ′(i+1) | Fti]). We can verify that ξi is a martingale with respect to

{Fti} and |ξi−ξi−1| ≤ 2 for all i. By Azuma-Hoeffding’s inequality (see Theorem A.1.3

),

Pr

[

|ξς| ≥
1

2
E[
∑

i≤ς
I ′(i)]

]

≤ 2 exp

(

−
1
4
E2[
∑

i≤ς I
′(i)]

2
∑

i≤ς 4

)

≤ 2 exp(− 1

32
ς log−14 n) ≤ exp(− log30 n).

Chapter 2: Information dissemination in k-dimensional spaces 88

This implies

Pr[
∑

i≤ς
I ′(i) ≤ 1

4
ςτ0 log

−6 n] ≤ exp(− log30 n).

Next, notice that

Pr[
∑

i≤ς
I ′(i) 6=

∑

i≤ς
I(i)] ≤ Pr[Dt+(ς−1)∆t = 0] ≤ Pr[D = 0] ≤ exp(− 1

15
log2 n)

where the last inequality follows from Lemma 2.4.5.

We conclude that

Pr[
∑

i≤ς
I(i) ≤ 1

4
ςτ0 log

−6 n] ≤ exp(− log30 n) + exp(− 1

15
log2 n) ≤ 2 exp(− 1

15
log2 n).

Finally, we show when
(∑

i≤ς I(i) >
1
4
ςτ0 log

−6 n
)
occurs, either χ1(t) or χ2(t) is

true. First, we have a lower bound
∑

i≤ς ϕi ≥ r · τ0ς
4 log6 n

≥ 2. Next, we show this lower

bound results in a minimum guarantee on |∆At|. Specifically, we have

(
∑

i≤ς
I1,2(ti)

|∆Ati |
|Af

ti |

)

+

(
∑

i≤ς
I3,4(ti)

|∆Ati |
|Au

ti |

)

≥ 2,

which implies either
∑

i≤ς
I1,2(ti)

|∆Ati |
|Af

ti |
≥ 1 (Case 1)

or
∑

i≤ς
I3,4(ti)

|∆Ati |
|Au

ti |
≥ 1 (Case 2)

Case 1. Observe that

|Af

t+4
√

m
n

log45 ∆t
− A

f
t | =

∑

i≤ς
|∆Ati |

Chapter 2: Information dissemination in k-dimensional spaces 89

because ∆A
f
ti are all disjoint for different i. We have

|Af

t+4
√

m
n

log45 ∆t
− A

f
t |

≥
∑

i≤ς
|∆Ati |

≥
∑

i≤ς
I1,2(ti)|∆Ati |

= |Af
t |
∑

i≤ς
I1,2(ti)

|∆Ati |
|Af

t |

≥ |Af
t |
(
∑

i≤ς
I1,2(ti)

|∆Ati |
|Af

ti |

)

(|Af
t | is non decreasing w.r.t. t)

≥ |Af
t |.

In this case, the event χ1(t) occurs.

Case 2. When A
u
tς = ∅, nothing needs to be proved. Let us focus on the situation

where Au
tς 6= ∅

|Au

t+4
√

m
n

log45 ∆t
− A

u
t |

≥
∑

i≤ς
|∆Ati |

≥
∑

i≤ς
I3,4(ti)|∆Ati |

= |Au
tς |
∑

i≤ς
I3,4(ti)

|∆Ati |
|Au

tς |

≥ |Au
tς |
(
∑

i≤ς
I3,4(ti)

|∆Ati |
|Au

ti |

)

(|Au
t | is non increasing w.r.t. t)

≥ |Au
tς |.

Therefore, the event χ2(t) occurs in this case.

Chapter 2: Information dissemination in k-dimensional spaces 90

2.5 The case when the number of agents is sparse

This section focuses on the case where m = o(n):

Proposition 2.5.1. Let a1, a2, ..., am be placed uniformly at random on V3, where

m < n log−2 n. Let a1 be the agent that holds a virus at t = 0, and T be the diffusion

time. We have for any constant c > 0,

Pr[T <
n3

m
log−c n] ≤ log−c n

and

Pr[T >
2n3

m
log15 n] ≤ exp(−(log2 n)/2).

Note that our analysis in Chapter 2.3 and Chapter 2.4 cannot be applied directly

to prove Proposition 2.5.1 because we required the side of each subcube to be of

length `2 =
√

n3

m
, which is larger than (2n + 1) when m = o(n). The diffusion time

for this case turns out to depend on m and n in a way different from the case where

n log2 n < m < n3. Nevertheless, some of the arguments can still be borrowed from

Lemma 2.4.2, together with the use of mixing time of a random walk in V3. Because

of the similarity of our analysis with previous sections, we only sketch our proof and

highlight the new main technicalities.

We first show the lower bound of the diffusion time:

Lemma 2.5.2. Let a1, a2, . . . , am be placed uniformly at random on V3, where m <

2n + 1. Let a1 be the agent that holds a virus at t = 0. Let T be the diffusion time.

We have, for any constant c > 0,

Pr[T <
n3

m
log−c n] ≤ log−c n

Chapter 2: Information dissemination in k-dimensional spaces 91

Proof. Let thesem random walks be S1, S2, ..., Sm. Since each random walk is already

at stationary distribution at t = 0, they are all distributed uniformly at any specific

time. Therefore, for any fixed t and fixed j > 1, Pr[‖S1
t − Sj

t ‖1 ≤ 1] ≤ 7/(2n + 1)3.

By a union bound,

Pr[∃t ≤ n3

m
log−c n, i > 1 : ‖S1

t − Si
t‖1 ≤ 1] ≤ n3

m logc n
·m · 7(2n+ 1)−3 < log−c n.

Therefore, with probability at least 1 − log−c n, S1 will not meet any other agent

before t = n3

m
log−c n, which also implies that the diffusion process has not been

completed.

Next we move to the upper bound:

Lemma 2.5.3. Let a1, a2, ..., am be placed uniformly at random on V3, where m <

n
log2 n

. Let a1 be the agent that holds a virus at t = 0. Let T be the diffusion time. We

have

Pr[T >
2n3

m
log15 n] ≤ exp(−(log2 n)/2).

The following is a key lemma for the upper bound analysis. The lemma reuses

arguments that appeared in Lemma 2.4.2. However, as the agents are sparser in this

case, new diffusion rules for the coupling process and the corresponding probabilistic

bounds are needed.

Lemma 2.5.4. Consider the diffusion process in which m < n
log2 n

. Fix a time t, and

let Af and Au be the set of infected and uninfected agents at time t with |Af | = m1

and |Au| = m2. Let c be a sufficiently large constant and ∆t = cn3(logn)/m. Let

M(t) be the number of newly infected agents from time t to t+∆t. Assume the agents

Chapter 2: Information dissemination in k-dimensional spaces 92

are arbitrarily (in an adversarial manner) distributed at time t. We have

Pr

[

M(t) ≥ min{m1, m2}
log5 n

]

≥ 1

2
log−5 n.

Proof. Similar to the proof of Lemma 2.4.2, we first count the number of times the

infected agents meet the uninfected agents. We then show that this number is close

to M(t) by demonstrating that the number of overcounts is moderate, which yields

the desired result. The device we use to count the number of meetings, however, is

different from the one we used for Lemma 2.4.2. In Lemma 2.4.2, we couple each of

the walks in V3 with their unbounded counterparts; since we only focus on a short

time frame, the bounded walks largely coincide with the unbounded ones. Here, the

right time frame to analyze is longer and the walks in V3 are more likely to hit the

boundary. It becomes less helpful to relate these walks with the unbounded ones.

Our analysis, instead, utilizes the mixing time property of V3.

Specifically, we cut ∆t into disjoint time intervals, each of which is of size cn2 log n

steps for some constant c to be determined later. We refer the k-th time interval as

the k-th round. The total number of rounds in ∆t steps is thus n/m.

We couple the diffusion process with a slower one. First, only agents in Af are

allowed to transmit the virus. An agent in Au will not be able to infect others even

if it becomes infected. This rule holds throughout the ∆t time increment.

In each round, we also impose more specific constraints on the diffusion rule as

follows. At the beginning of the k-th round (for any k), we first wait for c0n
2 log n

steps so that the distribution of each agent is 1/(16n3)-close to uniform distribution

(see Definition 2.6.10 and Lemma 2.6.11 for details; c0 is an appropriate constant

that exists as a result of Lemma 2.6.11). Within these time steps, no agent becomes

Chapter 2: Information dissemination in k-dimensional spaces 93

infected even if it meets a previously infected agent. After these steps, for an arbitrary

ai ∈ Af and aj ∈ Au, let Xk
i,j = 1 if both of the following conditions hold:

• the L1-distance between ai and aj is between n/450 and n/500.

• the L1-distance between ai and any boundary is at least n/20.

Since c0n
2 logn is already the mixing time for random walks on Vd, it is straight-

forward to see that with Ω(1) probability Xk
i,j = 1, for any k.

After c0n
2 log n steps at kth round, our slower diffusion rule allows ai ∈ Af to

transmit its virus to aj ∈ Au at the kth round only if

• Xk
i,j = 1.

• ai meets aj after the waiting stage and before the round ends.

• ai and aj have not visited any boundary after the waiting stage before they

meet. In other words, an agent ai ∈ Af (aj ∈ Au resp.) loses its ability to

transmit (receive resp.) the virus when it hits the boundary.

Let Y k
i,j be an indicator random variable that sets to 1 if and only if ai ∈ Af transmits

its virus to aj ∈ Au under the slower diffusion rule at the kth round, pretending

that aj is uninfected at the beginning of the k-th round even if it gets infected in the

previous rounds. Hence Y k
i,j, for a specific i and j, can be 1 for more than one k. This

apparently unnatural definition is used for the ease of counting in the sequel.

By Lemma 2.2.6,

Pr[Y k
i,j = 1] ≥ Pr[Y k

i,j = 1 | Xk
i,j = 1] Pr[Xk

i,j = 1] = Ω(1/n).

Chapter 2: Information dissemination in k-dimensional spaces 94

Therefore, we have

E

[
∑

i,j,k

Y k
i,j

]

= Ω
(m1m2

m

)

≥ τ1m1m2

m
, (2.28)

for some constant τ1.

We briefly lay out our subsequent analysis. We want to show two properties:

1. Pr[
∑

i,j,k Y
k
i,j = Ω(min{m1, m2})] = Ω̃(1).

2. For all j,
∑

i,k Y
k
i,j = Õ(1) with high probability.

We claim that these two properties together conclude our result. Roughly speaking,

when
(
∑

i,j,k Y
k
i,j = Ω(min{m1, m2})

)

and
(

∀j :∑i,k Y
k
i,j = Õ(1)

)

occur, each aj ∈

Au meets at most Õ(1) agents in Af while the total number of meetings between

infected and uninfected agents is min{m1, m2}. Consequently, the total number of

uninfected agents that ever meet an infected agent is Ω̃(min{m1, m2}), hence our

conclusion follows.

To prove the first property, we need to show with high probability, for any j, we

have
∑

i,k Y
k
i,j = Õ(1). Similarly, we also need to show with high probability, for any

i,
∑

j,k Y
k
i,j = Õ(1). Combining both of these we have

∑

i,j,k Y
k
i,j = Õ(min{m1, m2})

with high probability. Together with Equation 2.28, some rearrangement of terms

and Chernoff bounds, we can conclude that Pr[
∑

i,j,k Y
k
i,j = Ω̃(min{m1, m2})] = Ω̃(1).

We now carry out this scheme. We proceed to show that

Pr[∀j :
∑

i,k

Y k
i,j = Õ(1)] ≥ 1− exp(−Ω(log2 n)). (2.29)

and note that showing
∑

j,k Y
k
i,j = Õ(1) can be done similarly. We prove Equation 2.29

via the following two steps:

Chapter 2: Information dissemination in k-dimensional spaces 95

1. first, we show that with high probability,
∑

i Y
k
i,j = Õ(1) for any fixed k and j.

2. second, we show that with high probability, the number of k’s such that
∑

i Y
k
i,j >

0 is Õ(1) for all j.

Intuitively, the first step ensures that there will not be too many meetings associated

with aj for any single round. The second step specifies an upper bound on the number

of rounds in which aj meets at least one infected agent. When both event occurs, the

total number of meetings for aj is Õ(1).

Let us start with the first step. Fix a specific k and aj ∈ Au, by Corollary 2.2.5,

we have

Pr

∑

ai∈Af

Y k
i,j ≥ log2 n

∣
∣
∣
∣
∣
Xk

i,j

 ≤
(∑

ai∈Af Xk
i,j

log2 n

)(
c1 log

2 n

n

)log2 n

≤
(

m1

log2 n

)(
c1 log

2 n

n

)log2 n

≤ exp(− log2 n log log n).

By a union bound, we can also conclude that

Pr

∃k ≤ n

m
:
∑

ai∈Af

Y k
i,j ≥ log2 n

 ≤ exp(−1
2
log2 n log logn). (2.30)

Next, let us move to the second step. Let us define a family of indicator random

variables I(j, k), which sets to 1 if and only if
∑

ai∈Af Y k
i,j ≥ 1. When j and k are

fixed, we can compute the probability Pr[I(j, k) = 1]:

Pr[I(j, k) = 1] = E[I(j, k)] ≤ E

∑

ai∈Af

Y k
i,j

 ≤ τ1m1

n
.

The probability holds regardless of the history of the process up to the time the kth

round starts because c0n
2 log n time steps are used at kth round to shuffle the agents

Chapter 2: Information dissemination in k-dimensional spaces 96

so that they are distributed sufficiently uniform after these steps. We may apply a

special case of Chernoff bound (see, e.g., Theorem A.1.2) to show that Pr[
∑

k I(j, k) >

log2 n] < exp(− log3 n).

Therefore, we have

Pr

∃aj ∈ Au :
∑

k≤ n
m

I(j, k) > log2 n

 ≤ exp(−Θ(log2 n)). (2.31)

For a specific aj ∈ Au, when both
(∑

k I(j, k) < log2 n
)
and

(
k :
∑

i Y
k
i,j ≤ log2 n

)
,

we know that
∑

i∈Af ,k Y
k
i,j ≤ log4 n. Hence Equation 2.30 and 2.31 imply Pr[

∑

i∈Af ,k

Y k
i,j > log4 n] ≤ exp(−Θ(log2 n)) and therefore

Pr

∃aj ∈ Au :
∑

ai∈Af ,k

Y k
i,j > log4 n

 ≤ exp(−Θ(log2 n)) (2.32)

Similarly, we can show

Pr

∃ai ∈ Af :
∑

aj∈Au,k

Y k
i,j > log4 n

 ≤ exp(−Θ(log2 n)) (2.33)

Equation 2.32 and 2.33 yield

Pr

[
∑

i,j,k

Y k
i,j < min{m1, m2} log4 n

]

≥ 1− exp(−Θ(log2 n)). (2.34)

This gives the first property in the discussion following Equation 2.28. Moreover,

Equation 2.32 gives the second property.

Now, by using similar argument in the proof of Lemma 2.4.2, Equation 2.28 and

2.34 together give

Pr

[
∑

i,j,k

Y k
i,j ≥

τ1 min{m1, m2}
4

]

≥ Pr

[
∑

i,j,k

Y k
i,j ≥

τ1m1m2

2m

]

≥ log−5 n (2.35)

Chapter 2: Information dissemination in k-dimensional spaces 97

When
(
∑

i,j,k Y
k
i,j ≥ τ1 min{m1,m2}

4

)

and
(

∀aj ∈ Au :
∑

ai∈Af ,k Y
k
i,j ≤ log4 n

)

, the total

number of infected agents is at least τ1 min{m1,m2}
4 log4 n

. Hence, by setting c = 2c0, and

using Equation 2.32 and 2.35, our lemma follows.

From this we can mimic the argument that appeared in Proposition 2.4.13 to

reach the conclusion below:

Corollary 2.5.5. Consider the diffusion process in which m < n
log2 n

. Fix a specific

time t, and let Af and Au be the set of infected and uninfected agents at t such that

|Af | = m1 and |Au| = m2. Let M(t) be the number of new infected agents between

time t and time t + n3

m
log14 n. Assume the agents are arbitrarily (in an adversarial

manner) distributed at time t, we have

Pr
[

M(t) ≥ min
{

m1,
m2

2

}]

≥ 1− exp(− log2 n).

Similar to Lemma 2.4.13, Corollary 2.5.5 estimates the growth rate of infection as

either doubling the number of infected agents or halving the uninfected ones within

a certain time interval. One can then show that this implies Lemma 2.5.3. The

argument is analogous to Chapter 2.4 and hence is skipped here.

2.6 Random walks properties

This section states some peripheral results for random walks that we used in our

analysis.

Chapter 2: Information dissemination in k-dimensional spaces 98

Theorem 2.6.1. (First Passage Time, Chapter 3 of [42]) Let {St : t ∈ N} be a one

dimensional random walk from the origin. The probability ϕr,t that the first passage

through r occurs at time t is given by

ϕr,t =
r

t

(
t

t+r
2

)

2−t ≈
√

2

π

r√
t3
e−r

2/(2t).

Therefore, there exists constant C, such that for r, t ≥ C, we have

ϕr,t ∈ (
1

2

r√
t3
e−r

2/(2t),
r√
t3
e−r

2/(2t)).

Lemma 2.6.2. Let S be a bounded random walk in [−n, n] starting from position P .

For any other position Q ∈ [−n, n] with |P −Q| ≥ log2 n, the probability that S visits

Q within |P − Q|2/ log4 n time steps is at most exp(− log3 n) when n is sufficiently

large.

Proof. Let us couple S with an unbounded random walk S ′ that also starts at P in

the natural way, i.e. S and S ′ share the same random tosses to drive their moves.

First, we claim that at the first time S visits Q, the number of distinct lattice

points S ′ visits is at least |P − Q|. This claim can be seen through analyzing the

following two cases.

Case 1. The walk S never visits a boundary before its first visit to Q. In this case,

S ′ coincides with S, which implies S ′ also visits all the lattice points between P and

Q. The claim therefore follows.

Case 2. The walk S visits a boundary before it fist visits Q. In this case, the boundary

that S visits and the point Q lie on different sides of P . In other words, the distance

between this boundary and Q is at least |P −Q|. Now let us only consider the time

interval between the last time S visits the boundary (namely, t0) and the first time S

Chapter 2: Information dissemination in k-dimensional spaces 99

visits Q. The trajectory of S ′ within this time interval is identical to the trajectory

of S (up to an offset produced between time 0 and t0). Therefore, from t0 to the first

time S visits Q, the coupled walk S ′ visits at least |P −Q| distinct lattice points.

An immediate consequence of our claim is that a necessary condition for S to

visit Q is that S ′ has to visit either P − |P−Q|
2

or P + |P−Q|
2

. By Theorem 2.6.1, the

probability S ′ ever visits either of these points within time |P −Q|2/ log4 n is at most

exp(− log3 n) when n is sufficiently large, which completes our proof.

The next lemma concerns the first passage time for a random walk over bounded

space.

Lemma 2.6.3. Let S be a random walk on V1 = {−n, ..., n} that starts at A. Let B

be a point on V1 such that |B − A| = r. Let T be the first time S visits B. Fix an

arbitrary constant c, we have:

Pr[T ≤ cr2] = Ω(1).

Proof. Without loss of generality, let us assume −n ≤ A ≤ B ≤ n. We couple S with

an unbounded random walk S ′ that also starts at A in the natural way, i.e. having

S and S ′ share the same random tosses to drive their moves. Let T ′ be the first time

S ′ visits B. We first show that T ′ ≥ T . Note that before T ′, S ′ is always to the left

of B, and hence n. It is then easy to see that S is always overlapping or to the right

of S ′ before T ′. Hence S ′ hitting B at T ′ implies that S has already hit it at a time

before or at T ′.

Finally, by Theorem 2.6.1, we have

Pr[T ≤ cr2] ≥ Pr[T ′ ≤ cr2] = Ω(1).

Chapter 2: Information dissemination in k-dimensional spaces 100

Corollary 2.6.4. Let S be a random walk on V1 that starts at A, and B be a point

on V1 such that |B−A| = r. Let c1 and c2 be two arbitrary constants and let t = c1r
2.

We have

Pr[|St − B| ≤ c2r] = Ω(1).

Proof. Let T be the first time S visits B. By Bayes’ rule we have

Pr[|St −B| ≤ c2r]

≥ Pr[|St −B| ≤ c2r | T < t] Pr[T < t]

= Pr[|St − ST | ≤ c2r | T < t] Pr[T < t]

By Lemma 2.6.3, Pr[T ≤ t] = Ω(1). Next we claim Pr[|St−ST | ≤ c2r | T < t] = Ω(1).

This can be seen by showing Pr[|St − ST | ≤ c2r|T] = Ω(1) uniformly over T ∈ [1, t).

For this, note that Pr[|St − ST | ≤ c2r|T] = Pr[|S̃τ | ≤ c2r] where τ = t− T and S̃ is a

random walk starting at 0. We then write Pr[|S̃τ | ≤ c2r] = Pr[|S̃τ/
√
τ | ≤ c2r/

√
τ] ≥

Pr[|S̃τ/
√
τ | ≤ c2/

√
c1] = Ω(1) by Gaussian approximation on S̃τ/

√
τ . Therefore,

Pr[|St −B| ≤ c2r] = Ω(1).

For a d-dimensional unbounded random walk starting from the origin, recall that

pd(t, ~x) is the probability that the walk visits position ~x at time t. Let qd(t, x) be the

probability that the random walk visits ~x within time t. When d = 3, we will silently

drop the subscripts and write the functions as p(·, ·) and q(·, ·).

Theorem 2.6.5. [62] The function pd(t, ~x) has the following analytic form, when

t− ‖~x‖1 is even:

pd(t, ~x) =
2

td/2

(
d

2π

)d/2

exp

{−d‖~x‖22
2t

}

+ et(~x),

Chapter 2: Information dissemination in k-dimensional spaces 101

where |et(~x)| ≤ min
{
O(t−(d+2)/2), O(‖~x‖−22 t−d/2)

}
. pd(t, ~x) = 0 when t−‖~x‖1 is odd.

Theorem 2.6.6. [4] The function qd(t, ~x) satisfies the following asymptotic relations:

• If d = 2, ~x 6= ~0, and t ≥ ‖~x‖22, then we have

q2(t, ~x) = Ω

(
1

log ‖~x‖2

)

.

• If d ≥ 3, ~x 6= ~0, and t ≥ ‖~x‖22, then we have

qd(t, ~x) = Ω

(
1

‖~x‖d−22

)

.

When d ≥ 3, it is not difficult to see that the above asymptotic result is tight by

using Markov inequality:

Corollary 2.6.7. When d ≥ 3, the function qd(t, ~x) satisfies the following asymptotic

relation for t > ‖~x‖22
qd(t, ~x) = Θ

(
1

‖~x‖d−22

)

.

Next we show for any random walk that could start near the boundary, waiting

for a short period allows the walk to both stay away from the boundary and be

sufficiently close to where it starts.

Lemma 2.6.8. Consider a random walk S over the d-dimensional space Vd that starts

at ~x, where ~x = (x1, ..., xd) is an arbitrary point in the space. Let ~c = (c1, ..., cd) be a

point in Vd such that ‖~c− ~x‖ = Θ(r). Also let t = r2. We have

Pr[St ∈ B(~c, r)] = Ω(1). (2.36)

Chapter 2: Information dissemination in k-dimensional spaces 102

Proof. Recall that at each step, the random walk S uniformly selects a neighboring

point to move to. We may also interpret a move of S as if it first randomly selects an

axis to moves along and next decides which one of the two directions to take when

the axis is fixed. Let Ti be the number of the walk’s move that are along the i-th axis

within t steps. Define the event e as:

e =

{

∀i : 1
2
· t
d
≤ Ti ≤

5

4
· t
d

}

.

By Chernoff bounds, we have for any specific i ∈ [d],

Pr

[
1

2
· t
d
≤ Ti ≤

5

4
· t
d

]

≥ 1− exp(−Ω(t)) ≥ 1− 1

4d

for sufficiently large t. Therefore,

Pr[e] ≥ 1− d · 1
4d
≥ 3

4
.

Let (St)i be the i-th coordinate of the point St. We next compute Pr[St ∈ B(~c, r) |

e]:

Pr[St ∈ B(~c, r) | e]

= E [Pr[St ∈ B(~c, r) | T1, ..., Td, e] | e]

= E

Pr

∧

i∈[d]
(St)i ∈ [ci − r, ci + r]

∣
∣
∣T1, ..., Td, e

∣
∣
∣e

 (By the definition of B(~c, r))

= E

∏

i∈[d]
Pr
[

(St)i ∈ [ci − r, ci + r]
∣
∣
∣Ti, e

] ∣
∣
∣e

The last equality holds because the moves along the i-th axis are independent of the

moves along other axes when Ti is known. Next, using Corollary 2.6.4, we have

Pr
[

(St)i ∈ [ci − r, ci + r]
∣
∣
∣Ti, e

]

= Ω(1).

Chapter 2: Information dissemination in k-dimensional spaces 103

Therefore,

Pr[St ∈ B(~c, r) | e] = E

∏

i∈[d]
Pr
[

(St)i ∈ [ci − r, ci + r]
∣
∣
∣Ti, e

] ∣
∣
∣e

= E

∏

i∈[d]
Ω(1)

∣
∣
∣e

 = Ω(1).

Finally, we have

Pr[St ∈ B(~c, r)] ≥ Pr[St ∈ B(~c, r) | e] · Pr[e] = Ω(1).

Corollary 2.6.9. Let r be sufficiently large and r ≤ n
2(2β+6)

, where β is an arbitrary

constant between 1 and 80d. Let A = ~x and B be two points in Vd such that ‖A −

B‖1 ≤ r. Consider two bounded random walks S1 and S2 in Vd that start with A and

B respectively. Then, with Ω(1) probability, at time t = r2,

• S1
t is at least β · r away from any of the boundaries,

• ‖S1
t − A‖∞ ≤ (β + 2)r, and

• ‖S1
t − S2

t ‖∞ ∈ (r, 3r).

Proof. Let us first find an arbitrary ~c = (c1, ...cd) such that

• For all i ∈ [d]: |ci − xi| = (β + 1)r, i.e., ‖~c− ~x‖ = O(r).

• For all i ∈ [d]: −n + (β + 1)r ≤ ci ≤ n − (β + 1)r, i.e., ~c is sufficiently away

from the boundary.

We set up β in a way that such ~c always exists. By Lemma 2.6.8, we have Pr[S1
t ∈

B(~c, r)] = Ω(1). Next, in case S1
t ∈ B(~c, r), let ~d(S1

t) be an arbitrary point such that

Chapter 2: Information dissemination in k-dimensional spaces 104

• |di(S1
t)− (S1

t)i| = 2r

• the distance between ~d(S1
t) and any boundary is at least βr.

• (β + 1)r ≤ ‖~d(S1
t)−B‖∞ ≤ (β + 5)r.

Again by the way we designed β, such ~d(S1
t) always exists so long as S1

t ∈ B(~c, r).

Using Lemma 2.6.8 again, we have

Pr[S2
t ∈ B(~d(S1

t), r) | S1
t ∈ B(~c, r)] = Ω(1).

Therefore, we have

Pr
[(

S2
t ∈ B(~d(S1

t), r)
)

∧
(
S1
t ∈ B(~c, r)

)]

= Ω(1).

Finally, observe that when
(

S2
t ∈ B(~d(S1

t), r)
)

∧ (S1
t ∈ B(~c, r)), the three conditions

specified in the Corollary are all met. This completes our proof.

2.6.1 Mixing time in graphs

Definition 2.6.10 (Statistical distance). Let X and Y be two probability distributions

over the same support P. The statistical distance between X and Y is

∆(X, Y) = max
T⊆P
|Pr[X ∈ T]− Pr[Y ∈ T]|.

We also say that the distribution X is ε-close to Y if ∆(X, Y) = ε.

Lemma 2.6.11 (Mixing time for V3). Consider a random walk that starts at point

A for an arbitrary A ∈ V3. Let πt(A) be the distribution of the walk at time t, and π

be the uniform distribution on the nodes in V3. Let ε > 0. When t = Θ(n2 log(1/ε)),

we have

∆(πt(A), π) ≤ ε.

Chapter 2: Information dissemination in k-dimensional spaces 105

Although the mixing time of high dimensional torus were analyzed, we are not

aware of any literature that pins down the exact mixing time for V3. It is, how-

ever, straightforward to derive the mixing time in asymptotic form via computing

the conductance of V1 (the one-dimensional grid) and using results on mixing times

regarding tensoring graphs (e.g., Chapter 5 in [105] and [100]).

2.7 Existing techniques

This section briefly reviews existing lower bound and upper bound analysis tech-

niques and explains the difficulties in generalizing them to the three dimensional

case.

2.7.1 Lower bound

Two existing approaches that can potentially be adopted to our lower bound

analysis are:

1. Geometrically understand the growth rate of the smallest ball that covers all

the infected agents (hereafter, the smallest covering ball). An upper bound on

the ball’s growth rate translates into a lower bound on the completion time for

diffusion. Examples of this approach include [5, 71].

2. Analyze the interaction of the agents locally to conclude that the influence of

infection is constrained to a small region around the initially infected agent, over

a small time increment. A union bound or recursive argument is then applied

to give a global result. This approach is exemplified by [92].

Chapter 2: Information dissemination in k-dimensional spaces 106

Let us start with the first approach. Alves et al. and Kesten et al. [5,71] assume

the density of the agents is a constant; recall that the density of the agents is the

ratio between the total number of agents and the volume of the space. Their model

has infinite space, and hence there is no size parameter n. With this assumption,

they obtain that the radius of the smallest covering ball grows linearly in time almost

surely. Translating to our setting, an o(1) density of agents would lead to a growth

rate that is also linear in time t but scales in some way with the density. Directly

applying a linear growth rate would still give a valid lower bound of order Ω(n) on

the diffusion time, but this is substantially worse than the bound we need. One

potential way to improve their argument is to analyze the scaling of the growth rate

with respect to the density. While this approach may well be feasible, it is by no

means immediate. For example, the analysis of [5, 71] appears to depend on the fact

that two nearby agents have constant probability to meet within a small number of

steps, which leads to the conclusion that uninfected agents near the smallest covering

ball are quickly infected. This requires crucially that the density of agents is constant,

and relaxing this assumption to o(1) density appears non-trivial.

We have chosen instead to follow the technique developed by Pettarin et al. [92],

extending it via our diffusion tree argument. We now argue that this extension

appears necessary. Recall the island graph at time t defined in Definition 2.3.4.

Pettarin et al.’s approach can be summarized by the following three steps:

1. At any time step, the island graph Gt(γ) is constructed, where γ is an appro-

priately selected parameter.

2. Specify δt such that within δt time increment, w.h.p. a piece of virus is unable

Chapter 2: Information dissemination in k-dimensional spaces 107

to travel from one island to another.

3. Argue that the information has to travel across n/γ islands sequentially to

complete the diffusion so that a lower bound n
γ
·δt is established. The parameter

n/γ is asymptotically optimal because the space V3 cannot pack more than n/γ

islands along any directions (including those that are not parallel to the axes).

Now let us discuss the internal constraints over the parameters under this frame-

work that prevents us from optimizing the lower bound for the 3-dimensional case.

At step 1, we need to decide γ. When γ is set to be larger than n ·m−1/3 i.e. the

critical percolation point [92], Gt(γ) becomes connected w.h.p. and the subsequent

arguments break down. Therefore, γ ≤ n ·m−1/3.

At step 2, for illustration let us only focus on two islands Isd1 and Isd2, and let

a1 ∈ Isd1 and a2 ∈ Isd2 be two arbitrary agents each from the two islands. We now

need to decide on the value of δt. We are facing two options:

1. If δt is set to be smaller than γ2, then w.h.p. a1 and a2 do not meet in time

δt [92].

2. If δt is larger than γ2, then with probability Θ(1/γ), a1 and a2 will meet in time

δt (Lemma 2.2.3).

We consider both options to examine the quality of lower bounds we can get,

using step 3 above. For the first option, the lower bound we get is nγ ≤ n2 ·m−1/3,

which is suboptimal. For instance when m = n1.5, the lower bound is n1.5 as opposed

to Ω̃(n1.75). For the second option, regardless of the choice of δt, the lower bound

Chapter 2: Information dissemination in k-dimensional spaces 108

always fails to hold with probability Ω(1/γ) = Ω(m1/3/n) and so step 2 cannot be

satisfied with high probability.

Our analysis corresponds to setting δt large, but doing a more careful analysis

on the local infected region by considering a branching process that represents a

historical trace of the infection. Our island diffusion rule is correspondingly modified

from the rule of [92] to control the growth rate of this branching process.

2.7.2 Upper bound

We also explain why existing upper bound techniques such as those from [26,92]

do not appear to generalize immediately to the three dimensional case. The analyses

in [26, 92], which are based on percolation, follow a proof strategy that contains two

steps:

1. Let a1 be the initially infected agent. Identify a ball B (under L∞ norm) of

radius r that covers a1’s initial position so that after t1 time steps, where t1

is a parameter to be decided, a constant portion of the agents in B become

infected (i.e. fraction of infected agents to total number of agents in B is Θ̃(1)).

Moreover, these infected agents are well clustered i.e. at distance Õ(r) from the

ball B.

2. Show that if a ball B′ has a constant portion of infected agents at time t, then at

t+ t2, all adjacent balls with the same radius will also have a constant portion

of infected agents. Here, t2 is a parameter to be decided. Moreover, these newly

infected agents are well clustered i.e. at distance Õ(r) from the balls.

Chapter 2: Information dissemination in k-dimensional spaces 109

One usually also needs a good density condition i.e. agent density in any r-

ball is Θ(m(r/n)d). By repeatedly applying the second step, one can establish an

upper bound on the time that all balls in V3 have constant portion of infected agents.

Once this happens, usually it becomes straightforward to find the diffusion time. The

asymptotic upper bound will be n
r
· t2 + t1.

Let us explain this in more detail for the case d = 2. Assume good density

condition. First, we need to set t2 = Θ̃(r2) so that the newly infected agents at step 2

are well clustered. This ensures that the infected agents do not scatter uncontrollably

outside a distance from the ball and jeopardize our next recursion. We now sketch

a bound on r. Consider step 2. Suppose the number of infected agents in B′ at t is

m(r/n)2 × Θ̃(1). By our choice t2 = Θ̃(r2), each infected agent in B′ has probability

Θ̃(1) to meet each agent in the adjacent ball (by using Lemma 1 in [92]). Therefore,

the expected number of infections in the adjacent ball is given by

m(r/n)2 × Θ̃(1)
︸ ︷︷ ︸

of infected agents in B′
× m(r/n)2

︸ ︷︷ ︸

of uninfected agents
in an adjacent ball

× Θ̃(1)
︸︷︷︸

infection prob.

which, by the requirement of step 2, should be equal to m(r/n)2 × Θ̃(1). This gives

r = Θ(
√

n2/m). Note that this also leads to the condition that the number of infected

agents in B′ at t and the adjacent ball at t + t2 are both Θ̃(1).

Now set t1 = Θ̃(r2) and so the number of infected agents in B at time t1 is

m(r/n)2×Θ̃(1) = Θ̃(1). Note that both steps 1 and 2 are now satisfied. By recursively

applying the second step, we can see that by time n
r
· t2 + t1 = Θ̃(n2/

√
m) all the

balls in V2 will have m(r/n)2× Θ̃(1) infected agents. Hence in the same order of time

period Θ̃(n2/
√
m), all the agents in V2 will be infected. This time period gives the

Chapter 2: Information dissemination in k-dimensional spaces 110

optimal upper bound of the diffusion time for d = 2.

We now argue that this strategy does not work for d = 3. Let us attempt to

mimic the above argument step by step. Again set t2 = Θ̃(r2) so that the infected

agents are well clustered. Next, note that in contrast to the two-dimensional case,

Lemma 2.2.3 states that the meeting probability of two random walks in V3 with

initial distance r apart within time Θ(r2) is Θ(1/r). Hence, in light of step 2, we

require

m(r/n)3 × Θ̃(1)
︸ ︷︷ ︸

of infected agents in B′
× m(r/n)3

︸ ︷︷ ︸

of uninfected agents
in an adjacent ball

× Θ(1/r)
︸ ︷︷ ︸

infection prob.

= m(r/n)3 × Θ̃(1)
︸ ︷︷ ︸

desired # of
infections

which gives r = Θ̃(
√

n3/m). Note that the number of infected agents in B′ at t

and that of the adjacent balls at t + t2 in step 2 are now both m(r/n)3 × Θ̃(1) =

Θ̃(
√

n3/m) = Θ̃(r).

We now try to set an appropriate value for t1. First, note that step 1 requires

the number of infected agents in B at time t1 being Θ̃(r). Then the question is to

find the approximate time for one initially infected agent to infect Θ̃(r) agents that

are from B. Moreover, we need that these infected agents do not travel at distance

outside Ω̃(r) in the same time period.

To give a bound for this t1, let us look into the method of [92]. Note that in

the case of d = 2, the number of agents in B at any time is Θ̃(1). In this case, [92]

suggests chopping the time t1 into intervals each of length Θ̃(r2). During each of

these intervals, one only focuses on a pair of agents from B and see if they meet

each other; this method aims to reduce the analysis of correlation among multiple

agents’ meetings, a complicated quantity, to a sequence of independent problems that

involve only the meeting of two random walks. Since there are only Θ̃(1) such pair

Chapter 2: Information dissemination in k-dimensional spaces 111

combinations, and that each such meeting probability is Θ̃(1), a t1 = Θ̃(r2) is enough

to guarantee that the number of infected agents is Θ̃(1). Also these infected agents

are well clustered at B. Thus the argument works well for d = 2.

However, such an argument breaks down for d = 3 because now we are required

to have Θ̃(r) infected agents at t1, and the meeting probability between any two

agents is Θ̃(1/r). As a result the following tradeoffs cannot be balanced: 1) t1 is set

to be Θ̃(r2) so that the infected agents are well clustered, but the number of infected

agents at t1 will only be Θ̃(1); 2) t1 is set to be ω̃(r2), but then the infected agents

are not well clustered and may not constitute Θ̃(r) of infected agents within B at t1.

The first tradeoff appears if one uses the chopping argument of [92]: divide t1 into

intervals of length Θ̃(r2). For each interval, observe the number of meetings between

any infected and uninfected agents. This gives an expected total number of infections

at t1 as r · Θ̃(1/r) = Θ̃(1), which is less than the required number of Θ̃(r). Secondly,

setting t1 = ω̃(r2) boosts up the number of infected agents, but also increases the

chance that an infected agent escapes from the vicinity of B. An accurate analysis

of these two effects seems highly non-trivial and does not follow from the existing

results of [92].

Finally, we mention the work of Clementi et al. [26] to deal with issues similar to

above. At each step, conditioned on the positions of the infected agents, the infection

event of each uninfected agent becomes independent of each other. The change in the

infected population over time can then be analyzed. However, such analysis is possible

in [26] because the agents in their model can jump at a distance Θ(
√
n) at each step.

This leads to much less serial dependence for each agent and consequently requires

Chapter 2: Information dissemination in k-dimensional spaces 112

less effort in keeping track of each agent’s position. These phenomena, unfortunately,

do not apply to our settings.

Chapter 3

Continuous distributed counting

for non-monotonic streams

3.1 Background

A continuous distributed tracking model was introduced in [30] to address the

challenges of designing an effective strategy to constantly track statistics in a dy-

namic, distributed environment. In this model, data arrive in multiple streams to a

number of sites. All the sites are connected to a coordinator, and the goal of the co-

ordinator is to continuously track some function of the aggregate data, and update it

as new data arrives. An exact tracking would require each data sample to be commu-

nicated to the coordinator, which would incur a prohibitively large communication

cost - linear in the size of the input stream. Similarly, space and time processing

requirements may be very large. However, for most applications it is satisfactory to

provide an approximate tracking. Thus, a general formulation of a continuous dis-

113

Chapter 3: Continuous distributed counting for non-monotonic streams 114

tributed tracking problem is to design an algorithm that will minimize the space, time

and/or communication complexity while providing approximation guarantees on the

tracking accuracy. Continuous distributed tracking problems have recently gained

much interest in the research community [6, 31, 104, 112].

One of the basic building blocks for many of the existing algorithms is a counter.

The goal of the counter is to report, with a given relative accuracy, the sum of values

of all elements that have arrived across the aggregate stream arriving from distributed

sites. The main assumption in almost all the previous works is that the input stream

being counted is monotonic non-decreasing and, surprisingly, there is very little work

on continuous distributed non-monotonic counters. Similarly, most of the previous

algorithms using counters are not guaranteed to work correctly under non-monotonic

input stream.

However, many data streams do not satisfy the monotonicity property. A simple

motivating example is a voting/ranking application. Suppose users’ votes come in a

distributed stream. The goal is to keep a continuous track of which of the two options

has a higher number of votes, and approximately by which voting margin. Here, the

votes for each option can essentially be seen as two separate data streams, but we

are interested in continuously monitoring the difference of the two streams, which is

clearly non-monotonic. The naive approach of estimating the count of each option

separately and then taking the difference will not provide a relative error guarantee

for the difference.

Non-monotonic streams are common in many situations when dealing with in-

stantaneous instead of cumulative phenomena, e.g. tracking a difference. One ex-

Chapter 3: Continuous distributed counting for non-monotonic streams 115

ample we analyze in more detail is monitoring a process that exhibits long-range

dependency, a phenomena that has been found to be prevalent in nature, e.g. net-

work traffic [74]. Also, non-monotonic counters are useful as building blocks in more

complex algorithms whose inputs are not necessarily monotonic. A source of non-

monotonicity could be the use of random projections that transform an input data

stream into a non-monotonic stream. Another example that we discuss is a streaming

implementation of a Bayesian linear regression problem (c.f. [14]), which is useful in

the context of machine learning platforms for processing of large-scale data (e.g. [80]).

In this chapter we are interested in designing a continuous non-monotonic dis-

tributed counter with optimal communication complexity. We will also discuss its

applications in different scenarios. We now define the problem in more detail.

3.1.1 Problem Definition

Consider a standard distributed streaming model where k sites are connected to

a coordinator. Each site is allowed to communicate with the coordinator but they

cannot communicate with each other directly (and a broadcast message counts as k

messages). Data items a1, . . . , an arrive at sites ψ(1), . . . , ψ(n) respectively, at time

instants τ1 < · · · < τn. We shall refer to the item at as the t-th update. In a general

continuous distributed monitoring problem, the coordinator is responsible to maintain

a value of a function f(a1, . . . , at) at each time τt with a relative accuracy ε. We are

interested in the counter problem, where the goal is to track a sum St =
∑

i≤t ai of

all the items that have arrived until time τt. The coordinator then needs to maintain

an estimate that is between (1 − ε)St and (1 + ε)St. Note that, by definition, the

Chapter 3: Continuous distributed counting for non-monotonic streams 116

counter problem has low space and time complexity, and thus we focus on minimizing

communication complexity.

A monotonic counter only allows for positive increments. In particular, a canon-

ical example of a monotonic counter [61] implies at = 1 for all t, meaning that a

counter is incremented by one whenever an update arrives. We relax the assump-

tion that at is positive, and we call this a non-monotonic counting problem. In the

streaming literature, this input model is usually called a general (non-strict) turnstile

model [87].

To the best of our knowledge, the only research so far dealing with non-monotonic

input streams is Arackaparambil et al. [6], who studied the tracking of frequency

moments Fp, where deletion operations are allowed (at = 1 denotes an insertion

and at = −1 denotes a deletion). There, a strong negative result is established for

the adversary input case for both tracking counts and tracking Fp when deletion is

allowed: the worst-case communication complexity is Ω(n) messages for an input

stream of n elements. It is straightforward to construct a worst-case input for the

counter problem: consider the case where there is only one site and the updates

consist of alternations between an insertion and a deletion. In this case, the true

global counter evolves as the sequence 0, 1, 0, 1, When one update is missed from

the site, then the multiplicative error from the server becomes unbounded. Therefore,

upon the arrival of each update, the site has to send a message to the server, which

implies a communication lower bound of Ω(n) messages. While there is no way to

circumvent this linear lower bound barrier for the worst-case input, it is natural to

ask what the communication complexity is when the input is not fully adversarial

Chapter 3: Continuous distributed counting for non-monotonic streams 117

and consider the following question:

Can we design a continuous, distributed tracking protocols for counter for

non-monotonic updates that has a sublinear communication complexity when the input

is randomized?

In particular, we are interested in a random permutation model. In this model,

an adversary first decides the entire sequence of updates a′1, . . . , a
′
n for all sites. We

only assume that the sequence is bounded. Then, the “nature” decides a random

permutation π. The final input to the sites is a1 = a′π(1), a2 = a′π(2), . . . , an = a′π(n).

This model is very natural in large-scale settings (such as Internet scale, for example),

where data is collected from a large number of individuals (e.g. Twitter or Facebook

users). In such a model, a large amount of data is generated in short time intervals,

and it is reasonable to assume that the order in which the individuals enter their

inputs in the system is random, but the input itself can be arbitrary.

We are also interested if sublinear algorithms can be obtained for other types

of random inputs that are well motivated by applications. For example, the use

of random projections for computing sketches motivates to consider random i.i.d.

updates. Another example is found in nature where many real-world phenomena

exhibit self-similarity and long-range dependence (e.g. network traffic [74]) which

where traditionally modeled by random processes such as fractional Brownian motion

and found to be in good conformance with empirical data.

In all these data models, we shall assume that an adversary chooses the function

ψ(t) which defines how the stream is partitioned among the sites (an example is a load-

balancing algorithm that can arbitrarily scatter inputs across sites). The adversary

Chapter 3: Continuous distributed counting for non-monotonic streams 118

can only decide the function ψ(t) based on the information observed up to a point in

time. This means that when the input is a random permutation, ψ(t) can depend on

the content of the updates decided by the adversary, the prefix of the permutation

observed so far, and the values ψ(1), . . . , ψ(t − 1); while when the input is random,

the function ψ(t) can only depend on the values of a1, . . . , at−1 and the values of

ψ(1), . . . , ψ(t−1); . We will also assume that the times τ1, . . . , τn at which the inputs

arrive are decided by an adversary. This essentially implies that the coordinator and

the other sites have no knowledge of the time instants at which an input arrives to

its corresponding site, and any communication can only be initiated by a site that

has received an update.

Note that our model is a strict generalization of the standard monotonic stream

model for counting (c.f. Huang et al. [61]), where the updates are fixed to at = 1, and

the arrival times and sites are adversarial. In our case, we relax the assumption on

the value of updates and allow for randomly permuted adversarial or entirely random

values of updates, while still keeping the adversarial data partitioning and arrival

times.

3.1.2 Our Contributions

Our main results in this Chapter are matching upper and lower bounds on the

communication complexity for a continuous, distributed, non-monotonic counter (up

to a poly-logarithmic factor), which are sublinear in the size of the input. While these

bounds hold for different types of inputs, we give a single algorithm that is optimal

for all the types of inputs considered, and whose communication cost also matches

Chapter 3: Continuous distributed counting for non-monotonic streams 119

the corresponding lower bounds. The algorithm is lightweight in having only Õ(1)

space and update time complexity1.

We first provide results for the case of Bernoulli i.i.d. input (Chapter 3.3) where

we develop basic techniques that will be used in subsequent analysis. In the Bernoulli

i.i.d. model, we assume that each update at is a Bernoulli random variable, with

Pr[at = 1] = 1−Pr[at = −1] = p, for some unknown parameter p ∈ [0, 1]. The counter

value St is then a Bernoulli random walk with a drift µ = 2p − 1. In the case of a

Bernoulli i.i.d. input without a drift (µ = 0), we show that a count can be tracked with

Õ(
√
kn/ε) communication cost. In case of a Bernoulli i.i.d. input with an unknown

drift µ ∈ [−1, 1], the achievable communication cost is Õ(min{
√
kn,
√
k/|µ|}/ε). In

both cases, our algorithm does not need to know the drift. We also give matching

lower bounds for most important cases (Chapter 3.4), showing the optimality of our

algorithm.

This result should be compared with the communication cost Θ̃(
√
k/ε) for a

monotonic counter (with at = 1) that was recently established in [61]. We show that

the same bound holds for a more general choice of updates (any i.i.d. Bernoulli input),

as long as the drift is a positive constant. This is perhaps not entirely surprising, as

for the constant drift case we use the algorithm from [61] as one of the building blocks

for our algorithm. The key novel insight is that the communication cost increases to

Õ(
√
kn/ε) when the drift is |µ| = O(1/

√
n). Thus, we demonstrate that we are still

able to track the count with a sublinear communication cost, and we describe the

parameter ranges in which the cost is polynomial vs. polylog in the input size.

1We use Õ(x) = x logO(1)(nk/ε) notation to ignore log factors.

Chapter 3: Continuous distributed counting for non-monotonic streams 120

We next turn to our main results for the permutation model(Chapter 3.3.3).

Here we show that tracking is achievable with Õ(
√
kn/ε) communication cost and we

give a matching lower bound (Chapter 3.4). This is to be contrasted with Θ(n) lower

bound for a non-monotonic counter in a fully adversarial setting [6]. We show that, in

a setting where all other parameters are chosen by an adversary, randomly permuting

an arbitrary non-monotonic input is enough to permit a tracking algorithm with a

sublinear communication cost. This shows that a sublinear tracking of non-monotonic

input is still possible in a large number of real-world scenarios.

We further show that our algorithm can track a fractional Brownian motion

with Hurst parameter H ∈ [1/2, 1), where 1 < δ ≤ 1/H is an arbitrary parameter

(Chapter 3.3.4) with total expected communication cost of Õ(k
3−δ
2 n1−H/ε) messages.

For the case of independent increments (H = 1/2), we get the same bound as before.

For the case of positively correlated increments (1/2 < H < 1), which is of most

interest in applications, we get a smaller communication cost. This is intuitive in

view of the facts that increments are positively correlated which makes the process

more predictable and the variance is larger. This in turn implies smaller expected

residence of the count in the region of small values where there is a higher sensitivity

to relative errors. Interestingly, the algorithm does not require to know the exact

value of the parameter H , but only needs to have an estimate 1/δ such that H ≤ 1/δ.

Finally, we show how our counter can be used as a building block for some

instances of distributed tracking problems (Chapter 3.5). First, we construct an

algorithm to track the second frequency moment (F2 tracking) with Õ(
√
kn/ε2) com-

munication complexity (Chapter 3.5.1) and then provide a Ω(min{
√
kn/ε, n}) lower

Chapter 3: Continuous distributed counting for non-monotonic streams 121

bound that is matching in both n and k. We also show how to use the non-monotonic

counter as a building block for a Bayesian linear regression problem (Chapter 3.5.2),

and show that the Bayesian linear regression can also be tracked with sublinear com-

munication cost.

It is noteworthy that while the communication cost for non-monotonic random

streams with subconstant drift is sublinear in the input size, this is significantly

larger than for monotonic streams (Õ(
√
n) vs Õ(1)), which is because the problem is

intrinsically more difficult. However, the fact that the communication cost is sublinear

in the input size would still make the algorithm of appeal for practical applications.

For example, Twitter users generate more than 108 tweets a day [102]. In this scenario,

the communication cost of our algorithm for tracking a single counter would only be

in the order of 104 messages per day, which is a significant reduction of the traffic load.

Furthermore, our bounds are matching with the bounds for the monotonic counters

in k and ε parameters.

Finally, we briefly discuss the main techniques used in this Chapter. As we are

designing algorithms for random streams in a distributed environment, our solution

naturally calls for an integration of different techniques from sampling theory, analy-

sis of stochastic processes, classical streaming algorithms, and distributed algorithm

design. The main ingredient in our algorithm to tackle an otherwise intractable prob-

lem in the adversarial setting is to make an optimal prediction on the evolution of

the counter process using a scarce communication resource and adaptively changing

the tracking strategy as we continuously update our predictions. Making the predic-

tion requires us to understand the volatility structure of the counter process; in our

Chapter 3: Continuous distributed counting for non-monotonic streams 122

specific case, this boils down to the analysis of first passage time of random walks

and random permutations. Designing a communication efficient tracking algorithm

requires us to construct a sampling based protocol that can judiciously cope with the

volatile structure of the process. To prove our matching lower bounds, we needed to

carefully decompose the entire tracking process into disjoint segments so that we can

apply results from the communication complexity and sampling theory separately on

each segment and reach a strong lower bound that is polynomial in n.

3.1.3 Related Work

The research on functional monitoring in distributed systems has considered a

variety of problems (e.g. [27, 29, 51, 52, 88]) including one-shot and continuous track-

ing query problems. To the best of our knowledge, Cormode et al. [30] is the first

work that articulated the distributed computation model that we consider in the

present Chapter. Substantial progress has recently been made on understanding

various problems under this model, including drawing a sample with or without re-

placement (e.g. [31, 104]) and answering holistic queries such as tracking the rank of

an item or computing a quantile (e.g. [28, 61, 112]).

The most closely related work to ours is the recent work of Huang et al. [61]

and Arackaparambil et al. [6]. The work of Huang et al. examines the same counter

problem as ours but assuming an important but more restrictive class of monotonic

streams, where only positive increments are allowed. Our work relaxes this assump-

tion on the input by allowing for non-monotonic streams where decrements are allowed

(either i.i.d. or random permutation). Specifically, we assume that the rate of pos-

Chapter 3: Continuous distributed counting for non-monotonic streams 123

itive increments is (1 + µ)/2, for some unknown drift parameter −1 ≤ µ ≤ 1. For

the special case of the drift parameter µ = 1, our counter algorithm would solve the

same counter problem as in [61] with the matching performance.

The work of Arackaparambil et al. considered non-monotonic functional moni-

toring in the adversarial setting, including the problem of continuously tracking F2

that we study here. They established an Ω(n) lower bound for the 1-site case and

an Ω(n/k) lower bound for the k-site case. For the random input stream that we

study here, we establish a tight lower bound that is sublinear in n and grows with k,

suggesting that our problem under random input may have a different structure than

the one under fully adversarial input.

3.2 Algorithms and Notations

This section presents our algorithm for continuous distributed counting for non-

monotonic streams. The algorithm is applicable to all input models, subject to choos-

ing appropriate constants. In the subsequent sections we will show how to choose the

constants for each input model under consideration.

In what follows, we shall write Xi be the i-th input (because the input is stochas-

tic) and let µ = E[Xi] be the drift rate of the counter process, Ŝt be the coordinator’s

estimate of St. When the context is clear, we refer to at as both the t-th update and

the item arrived at time t interchangeably though we shall be clear that the actual

physical time is irrelevant in our algorithm. Also, we shall assume that each site al-

ways keeps track of the total number of updates arrived locally and maintain a local

sum counter.

Chapter 3: Continuous distributed counting for non-monotonic streams 124

We will denote the sampling probability in SBC for the t-th update with pt =

Sample-Prob(Ŝt, t). For an algorithm, we define En to be the number of errors

observed over an input of size n. We will be interested in algorithms such that

Pr[En > 0] = O(1/n). We define Mn to be the number of messages transmitted over

an input of size n. We note that it is sufficient to limit the size of a message to

O(logn) bits to convey any possible counter value. Thus the number of bits trans-

mitted over an input of size n is Θ̃(Mn). We define Rt to be 1 if a message is sent to

the coordinator and otherwise Rt = 0. We further denote with Ut the time until next

message is sent to the coordinator as observed at time t. Similarly, we define Vt to

be the time until the count process exits the ball Bε(St) = {s ∈ Z : |x− St| ≤ εSt}.

For the purpose of exposition, we will first start with the most fundamental case

with Bernoulli i.i.d. increments. Recall that in this case Pr[Xt = 1] = p and Pr[Xt =

−1] = 1−p. The expected increment in each step is then µ , p−(1−p) = 2p−1. We

shall refer to µ as the drift of the problem. We will first treat the case without drift

(µ = 0 and p = 1/2) and then the general case with an unknown drift. The analysis

for other distributions heavily utilizes the idea developed for these simple cases.

We next introduce the basic constructs we need for the design of our distributed

algorithm.

3.2.1 Building Blocks

The key novel building block in our scheme is:

Sampling and Broadcasting (SBC). In this protocol, the coordinator broadcasts

its current estimate Ŝt to all the sites at the beginning. Each site maintains a common

Chapter 3: Continuous distributed counting for non-monotonic streams 125

sampling rate ≈ 1/(ε2Ŝ2
t) that depends only on the global estimate Ŝt. Whenever a

site receives a new update, it samples a Bernoulli random variable Rt with the above

rate. If Rt = 1, the following actions will be carried out sequentially (invoking Θ̃(k)

message exchanges):

1. The site signals the coordinator to sync all data.

2. The coordinator broadcasts a message to all the sites to collect their local coun-

ters.

3. Each site reports its local counter to the coordinator. The coordinator computes

the new exact count and broadcasts this new count to all sites.

Upon receiving the new count Ŝt, each site adjusts the sampling rate of the Bernoulli

random variable to

Sample-Prob(Ŝt, t) = min

{
α logβ n

ε2Ŝ2
t

, 1

}

(3.1)

where α and β are some appropriately chosen positive constants.

We will also use the following building blocks:

HYZ counter. In [61], a distributed counter is developed to track monotonic

updates with a relative accuracy ε and error probability δ using Õ(
√
k
ε
log(1/δ)) com-

munication when k = O(1/ε2) and Õ(k log(1/δ)) communication when k = ω(1/ε2)

(here, Õ(·) hides the poly-logarithmic dependencies on n). We shall refer this protocol

as HYZ(ε, δ).

Geometric Progression Search for µ (GPSearch). The goal of this building

block is to produce a reliable estimator of µ. It will report an estimate µ̂ only when

Chapter 3: Continuous distributed counting for non-monotonic streams 126

sure w.h.p. that µ̂ ∈ [(1−ε)µ, (1+ε)µ], where ε is a given constant. It also guarantees

that µ̂ is found before time Θ(logn/µ2). We describe the GPSearch protocol in more

details in Chapter 3.6.

Straightforward Synchronization (StraightSync). In this protocol, the coor-

dinator pulls out the exact values of t and St from the sites in the beginning of

the protocol. When a local site receives an update, it contacts the coordinator and

executes the following steps sequentially:

1. The site sends both the total number of local updates and the local counter to

the coordinator.

2. The coordinator updates the global count and the global number of updates.

3. The coordinator sends the updated global count and global number of updates

to the site.

3.2.2 Algorithm Overview

Our algorithm, called Non-monotonic Counter, consists of two phases.

Phase 1: The first phase covers updates from t = 0 to t = τ , where τ = c log n/(µ2ε)

for some sufficiently large constant c > 0. During this phase, we have two communi-

cation patterns:

• When (εŜt)
2 ≥ k, we use the SBC protocol.

• When (εŜt)
2 < k, we use the StraightSync protocol.

Chapter 3: Continuous distributed counting for non-monotonic streams 127

The coordinator shall make a broadcast when the algorithm makes a switch between

SBC and StraightSync protocol.

Phase 2: The second phase covers from t = τ to t = n (the second phase could be

empty when τ ≥ n). In the second phase, the algorithm maintains a HYZ(Θ(εµ),

Θ(1/n2)) to track the total number of positive updates and another HYZ(Θ(εµ),

Θ(1/n2)) to track the total number of negative updates. The difference between

the positive updates and the negative updates is the estimator maintained by the

coordinator.

In addition, our GPSearch procedure is executed in the background, and it will

be able to tell us a good estimate of µ, and decide when Phase 1 ends. When the

algorithm changes from the first phase to the second phase, the coordinator shall

make a broadcast to inform different sites of the phase change.

3.3 Upper Bounds

We now analyze Non-monotonic Counter for i.i.d. input, randomly ordered

streams, and fractional Brownian motion. Recall that because the input is of stochas-

tic nature, we shall write the updates as X1, X2, . . . , Xn instead of a1, . . . , an to em-

phasize the randomness. Our analysis starts with the simplest case, where k = 1 and

the input is i.i.d. with µ = 0. Then we move to the more complex scenarios, in which

there are multiple sites and unknown µ. Finally, we generalize our algorithms and

analysis to the randomly ordered stream and fractional Brownian motion case, where

the updates are no longer independent. Along the way, we shall explain the reasons

Chapter 3: Continuous distributed counting for non-monotonic streams 128

why we design the algorithm in such a way and gradually unfold the key techniques

used in the analysis.

3.3.1 I.I.D. Input with Zero Drift

Recall the algorithm Non-monotonic Counter that is described in Chapter 3.2.

To analyze the behavior of our algorithm we start by giving an upper bound for the

single-site case (k = 1), and we then turn to the multi-site case. In the single-site

case, we need to introduce a small modification to the algorithm. Since the site is

aware of the exact counter value Ŝt = St, there is no need for the straightforward

stage and we assume that the algorithm is always in the broadcast stage. Also, there

is no need for the coordinator to send messages back to the site.

We will use the sampling probability as defined earlier in (3.1) with α > 9/2 and

β = 2. The parameter α controls the tradeoff between communication complexity

and the success probability. The choice of pt is intuitive because the smaller St is, the

more likely that a small change of St will cause large multiplicative change; therefore,

the site should report the value to the coordinator with higher probability.

We have the following theorem:

Theorem 3.3.1. For the single-site case, the randomized algorithm Non-monotonic

Counter with the sampling probability as in (3.1), with α > 9/2 and β = 2, guarantees

to track the count within the relative accuracy ε > 0 with probability 1− O(1/n) and

uses the total expected communication of O(min{√n/ε · logn, n}) messages.

Before we present the full analysis, we comment on the intuition of using a

sampling based algorithm and setting the sampling probability as specified in (3.1).

Chapter 3: Continuous distributed counting for non-monotonic streams 129

We want the site to send messages to the coordinator as infrequently as possible.

Suppose that at time t, we have St = s and a message is sent to the server. We need

to understand what the next appropriate time would be to send another message.

Ideally, this shall happen at the time where St first passes through either s/(1 + ε)

or s/(1 − ε). Implementing this strategy is feasible when there is only one site but

it is unclear how it can scale up to k site case (because the challenge of distributed

tracking algorithms exactly lies in the difficulties of exactly tracing the aggregate

statistics and thus it is hard to spot the exact first passage time). It is therefore

desirable to use a “smooth” strategy by a site, i.e. the algorithm does not critically

rely on the knowledge on the time when St first passes through some pre-specified

points. The sampling based algorithm possesses such a property. We also need to

estimate the sampling rate of the algorithm. Intuitively, it takes an unbiased random

walk approximately (εs)2 time to travel for a distance of about length εs (to hit

either s/(1 − ε) or s/(1 + ε)). When εs becomes sufficiently large, we even have a

concentration result, i.e. with high probability, the time it takes to hit either s/(1−ε)

or s/(1 + ε) is Θ̃((εs)2). Therefore, sampling at rate Θ̃(1/(εs)2) is not only sufficient

to maintain high accuracy but also optimal.

Proof of Theorem 3.3.1. We shall first analyze the communication cost of the algo-

rithm. Then we shall argue our algorithm is correct with high probability.

Communication cost. We first show that the expected number of communicated

messages is bounded as asserted. Let ϑ =
√
α/ε · log n and note

E[Rt] = Pr[|St| ≤ ϑ] + ϑ2E[
1

S2
t

I(|St| > ϑ)].

Chapter 3: Continuous distributed counting for non-monotonic streams 130

Since Pr[|St| ≤ ϑ] = Θ(ϑ/
√
t) and E[1

S2
t
I(|St| > ϑ)] = Θ(1/(ϑ

√
t)), it follows

E[Rt] = Θ(ϑ/
√
t).

Hence, the expected number of transmitted messages is

∑

t≤n
E[Rt] = O(ϑ

√
n) = O(

√
n/ε · log n).

Correctness. We next establish the asserted bound on the probability of error. Let

us write Ft to be the σ-algebra generated by X1, . . . , Xt and R1, . . . , Rt, i.e. all the

information available up to the t-th update is measurable by Ft. Define the indicator

variable Rt that sets to 1 if and only if at the t-th update the site sends a message

to the coordinator. Notice that our algorithm guarantees that R1 = 1. Let Ut be the

number of updates until the next report is sent to the coordinator as observed at the

t-th update, i.e. Ut = min{τ > 0 : Rt+τ = 1}. We remark that Ut depends on a future

event and thus, it is not measurable by Ft. Next, let Vt = min{τ > 0 : St+τ /∈ Bε(St)}

be the number of updates until the first instance at which the coordinator fails to

track the counter within the relative accuracy ε, and let En be the number of such

update instances. Notice that a necessary and sufficient condition that at least one

error happens is that there exists at least one t ≤ n such that Rt = 1 and Vt < Ut.

We thus have

Pr[En > 0] = Pr[Rt = 1 and Vt < Ut, for some 1 ≤ t ≤ n],

where I(·) is an indicator function that sets to 1 if and only if its parameter is true.

By using the union bound, we have

Pr[En > 0] ≤
∑

t≤n
E[Rt · I(Vt < Ut)]. (3.2)

Chapter 3: Continuous distributed counting for non-monotonic streams 131

Using the fact that Rt is measurable by Ft, we have

E[Rt · I(Vt < Ut)] = EFt [E[RtI(Vt < Ut) | Ft]]

= EFt [RtE[I(Vt < Ut) | Ft]]

= EFt [Rt Pr[Vt < Ut | St]]

≤ EFt

[

Rt ·max
s

Pr[Vt < Ut | St = s]
]

= EFt [Rt] ·max
s

Pr[Vt < Ut | St = s].

We next proceed to give an upper bound for Pr[Vt < Ut | St = s]. Note that for every

r ≥ 0, it holds

Pr[Vt < Ut | St = s] = Pr[Vt < Ut, Vt > r | St = s] + Pr[Vt < Ut, Vt ≤ r | St = s]

≤ Pr[r < Ut | St = s, Vt > r] + Pr[Vt ≤ r | St = s] (3.3)

We start by giving a bound on Pr[Vt ≤ r | St = s]. Notice that under St = s the

distribution of Vt is equal to the distribution of the first passage time of either value

ds/(1− ε)e − s or value bs/(1 + ε)c − s for a symmetric random walk started at the

origin. The following lemma follows by standard results from the theory of random

walks (c.f. [73]) and the Hoeffding bound:

Lemma 3.3.2. For every r ≥ 0, it holds

Pr[Vt ≤ r | St = s] ≤ 2 exp(−
(ε
1−ε)

2s2

2r
). (3.4)

Proof. Let V +
t denote the number of steps until the random walk up-crosses the value

d s
1−εe, starting from value s. Similarly, we define V −t to be the number of steps until

Chapter 3: Continuous distributed counting for non-monotonic streams 132

the random walk down-crosses the value b s
1+ε
c starting from value s. Then,

Pr[Vt ≤ r|St = s] ≤ Pr[V +
t ≤ r|St = s] + Pr[V −t ≤ r|St = s]

≤ 2 Pr[V +
t ≤ r|St = s].

Now, let b = d s
1−εe−s and note that by the reflection principle of random walks,

we have

Pr[V +
t ≤ r|St = s] = Pr[X1 +X2 + · · ·+Xr = b] + 2Pr[X1 +X2 + · · ·+Xr > b]

≤ 2 Pr[X1 +X2 + · · ·+Xr ≥ b].

By applying the Hoeffding’s inequality, we bound the the probability in the right-hand

side with exp(− b2

2r
) which yields the asserted result.

From (3.4), we observe that Pr[Vt ≤ r | St = s] ≤ 2/nc for given c > 0, iff it

holds

(C1): r ≤ 1

2c logn

(
ε

1− ε

)2

s2.

We next note

Pr[r < Ut|St = s, Vt > r] ≤ (1− ρε(s))r (3.5)

where ρε(s) = Sample-Prob(s/(1 − ε), t). Requiring that the right-hand side in the

above inequality is less than or equal to 1/nc, we obtain

(C2): ρε(s) ≥ 1− exp(− c logn

(1 − ε)2r).

Indeed, both conditions (C1) and (C2) hold true by taking r = 1
2c logn

(
ε

1−ε
)2
s2 and

ρε(s) = min{2c2 log2 n
(εs)2

, 1}. The latter choice is a sufficient condition for (C2) in view

Chapter 3: Continuous distributed counting for non-monotonic streams 133

of the fact that min{x, 1} ≥ 1 − e−x, for x ≥ 0. Therefore, we showed that for

Pr[Vt < Ut|St = s] ≤ 3/nc to hold, it suffices that the sampling probability satisfies

pt ≥ min{2c
2 log n

ε2S2
t

, 1}. (3.6)

Combining with (3.2), we have

Pr[En > 0] ≤
∑

t≤n
E[Rt] ·O(1/nc)

= Θ(ϑn1/2−c) = Θ(n1/2−c logn).

From the last inequality, we note that no error occurs with high probability provided

that c > 3/2. Hence, in view of the inequality (3.6), it suffices to to choose the

sampling probability as in (3.1) with α = 2c2 > 9/2 and β = 2. This completes the

proof.

We now extend to the multiple site case. Let us first go through the intuition

why we want to distinguish the two stages of the algorithm, the straightforward

(StraightSync) stage and the broadcast (SBC) stage, described in Chapter 3.2. The

main idea of our distributed algorithm is to simulate the behavior of the sampling

algorithm for the single site case (Theorem 3.3.1). For that we require that each site

has a good estimate Ŝt of the global count St. As Ŝt gets updated, the copies of

the counter at all sites need to be updated, in order to maintain the correct local

sampling rate. The only way to achieve so is to broadcast the counter, which would

result in Θ̃(k) messages exchanged. The crucial observation here is that when Ŝt gets

updated frequently (i.e., when St is sufficiently small), broadcasting messages after

each update could be wasteful. It may be even worse than the trivial approach where

Chapter 3: Continuous distributed counting for non-monotonic streams 134

a site synchronizes only with the coordinator whenever it receives an update (result-

ing in Θ̃(1) messages). This “trivial” approach is captured in our straightforward

strategy, and we switch to it whenever it is less expensive. Note that we can use the

estimator Ŝt instead of the actual value St to decide whether the broadcasting or the

straightforward strategy has the smaller communication cost, because we guarantee

a sufficiently high accuracy of the estimator.

We have the following theorem.

Theorem 3.3.3. The randomized algorithm Non-monotonicCounter with the sam-

pling probability as in (3.1), with α large enough positive constant and β = 2, guaran-

tees to track the count within the relative accuracy ε > 0 with probability 1− O(1/n)

and uses the total expected communication of O(min{
√
kn/ε · log n, n}) messages.

Proof of Theorem 3.3.3. We need again to show that the algorithm is correct and the

communication complexity is as described. We start with showing the correctness

part.

Correctness. We will invoke a coupling argument that will allow us to reuse the

results of Theorem 3.3.1. We couple the proposed multiple sites algorithm with the

single site sampling algorithm with a different set of error parameters over the same

set of input. Specifically, we also execute a single site algorithm with relative accuracy

ε/3 and success rate 1−O(1/n2)2, in parallel to the multiple sites algorithm over the

same input sequence. We shall couple the random tosses in these two algorithms and

show that when the single site algorithm makes no error, our multiple sites algorithm

2To boost the success rate, we need to use a larger constant in the sampling parameter, i.e.

Sample-Prob(St, t) = min
{

2(1+c)2 log2 n

ε2Ŝ2

t

, 1
}

, any c > 3/2

Chapter 3: Continuous distributed counting for non-monotonic streams 135

will also make no error.

We need a few more notations. Let ps,i be the sampling rate for the single site

algorithm and Rs,i be its corresponding Bernoulli random variable. Let pm,i be the

sampling rate for the multiple sites algorithm and Rm,i be its corresponding Bernoulli

random variable. When we are in the straightforward stage, we shall assume pm,i = 1.

Finally, let Ŝs,t be the estimator of the single site algorithm at time t and Ŝm,t be the

estimator for the multiple sites algorithm.

We couple the Bernoulli random variable in the following way.

• When ps,i > pm,i: the two Bernoulli variables are sampled independently.

• When ps,i ≤ pm,i: if Rs,i = 1, then we set Rm,i = 1; otherwise, we set Rm,i = 1

with probability (pm,i − ps,i)/(1 − ps,i) and Rm,i = 0 otherwise. One may see

that we still have Pr[Rm,i = 1] = pm,i.

Now using the above coupling rules, we show that when the single site makes no

error, our multiple sites algorithm also makes no error. Suppose on the contrary that

at time t the multiple sites algorithm makes the first error. Then our algorithm ensures

that for every τ < t, it holds pm,τ ≥ ps,τ (by our choice of sampling probabilities), i.e.

the multiple sites algorithm samples more frequently than the single site algorithm.

Therefore, our coupling rule gives us Ŝm,t = St1 and Ŝs,t = St2 , where t1 > t2, i.e. the

multiple sites algorithm is holding a more recent value of the count. We can now get

a contradiction using the following arguments,

1. At time t2, the single site algorithm’s estimator is St1 and is correct. Therefore,

Chapter 3: Continuous distributed counting for non-monotonic streams 136

St1 ∈ Bε3(St2), i.e.

|St2 − St1 | ≤
ε

3
|St2 |. (3.7)

2. At time t, the multiple site algorithm is wrong. Therefore, St1 /∈ Bε(St), i.e.

|St1 − St| > ε|St|. (3.8)

3. At time t, the single site algorithm is correct, i.e. St2 ∈ Bε(St). We have

|St2 − St| ≤ ε|St|. We can use ε ≤ 1 to relax this inequality and get

|St2 | ≤ 2|St|. (3.9)

Using (3.7) and (3.8) and a triangle inequality, we have

|St2 − St| > ε|St| −
ε

3
|St2 | ≥ ε|St| −

2ε

3
|St| ≥

ε

3
|St|. (3.10)

The second inequality holds because of (3.9). (3.10) implies that the single site

algorithm errs at time t, which contradicts with our assumption.

Communication cost. We have the following types of communications,

1. At the straightforward stage, whenever there is an update, O(1) messages are

exchanged.

2. At the broadcast stage, whenever there is an update, O(k) messages are ex-

changed.

3. At the beginning and the end of the broadcasting stage, the coordinator needs

to make a broadcast to signal the stage change, which takes Θ(k) messages.

Chapter 3: Continuous distributed counting for non-monotonic streams 137

Notice that in order to change from the broadcast stage to straightforward stage, type

2 messages are sent for at least once. Therefore, the total complexity of the type 3

messages is asymptotically smaller than type 2 messages. We need to only focus on

the communication complexity for the first two type of messages.

Let Ct be the communication cost associated with the t-th update and let Rm,t

indicates the event that a message is sent to the communicator after the t-th update

(Rm,t shall correspond with Rt in Theorem 3.3.1). Therefore, when (εŜt)
2 < k, Ct = 1;

otherwise, E[Ct] = kE[Rm,t]. We estimate Ct using the following rule:

• If (1− ε)(εSt)
2 ≤ k, we set Ct = 1;

• If (1 + ε)(εSt)
2 > k, we set Ct = kE[Rm,t].

This rule intuitively gives a conservative guess on which stage we are in (conditioned

on the estimator being correct). Notice that when (1−ε)(εSt)
2 < k < (1+ε)(εSt)

2, in

this case, we can set Ct = 1 + kE[Rm,t] without impacting the asymptotic behavior.

The case where our estimator makes an error (and thus the above rules may not give

an overestimate of Ct) is an asymptotically smaller term.

We next proceed with computing the expectation of Ct using our overestimation

rule,

E[Ct] ≤ Pr[St ≤
√
k

ε
√
1− ε

]

︸ ︷︷ ︸

straightforward stage

+ kE[Rm,tI(St ≥
√
k

ε
√
1 + ε

)]

︸ ︷︷ ︸

broadcast stage

+ O(1/n2)
︸ ︷︷ ︸

estimator fails

= O(

√
k · log n
ε
√
t

).

(3.11)

We can compute the above terms using Theorem 3.3.1. Thus, the total communica-

tion cost in expectation is O(
√
nk/ε · log2 n).

Chapter 3: Continuous distributed counting for non-monotonic streams 138

3.3.2 I.I.D. Input with Unknown Drift

In the previous section we have seen that the communication complexity in the

case with no drift is Õ(
√
n). However, the monotonic counter from [61] is a special

case of our model with µ = 1, and its communication complexity is Õ(1). Clearly, we

conclude that a positive drift might help. The natural question then is whether this

observation holds for an arbitrary drift µ 6= 0, and how can we exploit it when the

drift is unknown.

To gain an intuition on the input’s behavior for an arbitrary drift, it is helpful to

re-parameterize each input Xt as Xt = µ+ Zt, where µ is the drift term and Zt is a

random variable representing the “noise” term, We shall intuitively view Zt as noise

that behaves similar to Gaussian noise. We want to identify which term contributes

more to the estimation error. Suppose St = s. It takes the drifting term εt time

units to reach ±εs while it takes the noise term (εs)2 to do so. When εt < (εs)2, the

drifting term dominates the process, otherwise, the noise term dominates the process.

Approximating s by its mean s ≈ tµ and solving the equation, εt < (εs)2, we get t ≈

1/(µ2ε). Therefore, the random walk St qualitatively behaves as follows: up to time

t = Θ(1/(εµ2)), the ”noise” sum term dominates the process; after time Θ(1/(εµ2)),

the drifting term dominates the process. Therefore, intuitively, for t ≤ 1/(εµ2) we

should use the algorithm that deals with the non-drift case, and for t ≥ 1/(εµ2) we

might be able to use the monotonic counter HYZ.

Note that the algorithm does not know the actual value of the drift µ. We use

an online estimator (the GPSearch algorithm, described in Chapter 3.2) to obtain

an estimate µ̂. Our estimator is conservative in the sense that it does not report µ̂

Chapter 3: Continuous distributed counting for non-monotonic streams 139

until confident that it is within [(1− ε′)µ, (1+ ε′)µ] (the performance of the GPSearch

estimator is discussed in Chapter 3.6). Once the estimator µ̂ is reported, we can

safely switch to the monotonic counter HYZ.

However, we need to guarantee correctness of the algorithm even before we have

an estimate of µ̂. The monotonic counter HYZ essentially samples with sampling

probability Θ(1/(εt)). So to guarantee the correctness before we know whether we are

in the no-drift phase or in the drift phase, we need to sample with the maximum of the

sampling rate Θ(1/(ε2s2)) of the no-drift phase and the sampling rate Θ(1/(εt)) of the

monotonic counter. We shall choose a slightly more conservative rate by tuning the

constants in the sampling probability (3.1) so that Sample-Prob(St, t) ≥ Θ̃(1/ε2s2 +

1/εt) for all t < 1/(µ2ε).

The crucial observation here is that this conservative way of sampling will not

result in substantial increase in communication resource. Indeed, we have two types

of unnecessary communication costs:

• Type 1: when t ≤ 1/(εµ2), the term Θ̃(1/εt) in the sampling rate is wasteful.

• Type 2: when t > 1/(εµ2), the term Θ̃(1/(εs)2) in the sampling rate is wasteful.

The total expected communication cost of type 1 is O(
∑

t≤n(1/t)) = O(logn), which is

acceptable. Computing the waste of type 2 is a bit more tedious, but we would be able

to see that in expectation
∑

t≤1/(εµ2) 1/(ε
2S2

t) = Ω
(∑

t≤n 1/(ε
2S2

t)
)
. In other words,

∑

1/(εµ2)<t≤n 1/(ε
2S2

t) = O
(
∑

t≤1/(εµ2) 1/(ε
2S2

t)
)

, i.e the total wasted communication

from the term Θ̃(1/(εs)2) is bounded by the total “useful” communication from the

same term. Therefore, the conservative sampling strategy is also optimal.

Chapter 3: Continuous distributed counting for non-monotonic streams 140

In what follows, we shall mimic the analysis Chapter 3.3.1 and study the single

site case and multiple site case separately.

Single site case. For the sake of our analysis, we shall analyze the performance of

our algorithm with the following sampling probability (for a constant α > 0):

Sample-Prob(St, t) = min

{
α log2 n

ε2S2
t

+
α log3 n

εt
, 1

}

. (3.12)

We remark that using a different sampling rate is only for the purpose of simpli-

fying the analysis for the special case where k = 1. In the actual algorithm, we will

stick to the sampling rate described in Chapter 3.2.

We have the following theorem for the single-site case, that we will use to prove

the results for the multi-site case.

Theorem 3.3.4. For k = 1 and for a sufficiently large constant α > 0, the random-

ized algorithm Non-monotonic Counter with the sampling probability as in (3.12)

guarantees to continually track the count within relative accuracy ε with at least

probability 1− O(1/n) and uses the total expected communication of O(min{1/(µε) ·

log3/2 n,
√
n/ε · log n, n}) messages.

Proof. In some parts of the analysis, we assume that p ≥ 1/2, i.e. the drift µ is

non-negative, which is sufficient as the other case can be analyzed by similar steps.

The proof will follow the same main steps as in the proof of Theorem 3.3.1 and we

will reuse the notation introduced therein.

Communication cost. We shall upper bound
∑

t≤n E[Rt] which is the expected

communication cost of our algorithm. Let us introduce two Bernoulli random vari-

Chapter 3: Continuous distributed counting for non-monotonic streams 141

ables R1
t and R2

t with respective parameters min{α log2 n
ε2S2

t
, 1} and min{α log3 n

εt
, 1}. We

then have
∑

t≤n
E[Rt] ≤

∑

t≤n
E[R1

t] +
∑

t≤n
E[R2

t].

Since
∑

t≤n
E[R2

t] = O(
logn

ε
) (3.13)

we shall focus on the term
∑

t≤n E[R
1
t]. Using the trick presented in Theorem 3.3.1,

we have

E[R1
t] = Pr[|St| ≤ ϑ] + ϑ2E[

1

S2
t

I(|St| > ϑ)]

where ϑ =
√
α
ε
· logn.

We first note that E[R1
t] = O(

√
n/ε · log n) for any drift µ ∈ (−1, 1). The key

observation is the simple fact that Pr[St = s] = O(1/
√
t) for every s ∈ [−t, t] which,

for example, follows from the Berry-Esseen central limit theorem. Now, it easily

follows
∑

t≤n Pr[|St| ≤ ϑ] =
∑

t≤nO(ϑ/
√
t) = O(ϑ

√
n) = O(

√
n/ε · logn). Also, we

have
∑

t≤n ϑ
2E[1

S2
t
I(|St| > ϑ)] = O(ϑ2

∑

t≤n
∑

s>ϑ
1√
ts2

) = O(ϑ
√
n) = O(

√
n/ε · logn).

We have thus showed that for every drift µ ∈ (−1, 1), we have

∑

t≤n
E[R1

t] = O(
√
n/ε · logn). (3.14)

We next show that
∑

t≤n
Pr[|St| ≤ ϑ] = O(

ϑ

µ
). (3.15)

Let us denote σ2 = 1− µ2 and ρ =
√

1+µ
1−µ . We observe

Pr[|St| ≤ ϑ] =
ϑ∑

s=−ϑ

(
t

t+s
2

)

2−tσtρs = O(
1√
t
· σt

ϑ∑

s=−ϑ
ρs) = O(

1√
t
· σt · ρ

ϑ+1 − 1

ρ− 1
)

Chapter 3: Continuous distributed counting for non-monotonic streams 142

where we made use of the fact
(

t
t+s
2

)
2−t ≤

(
t
t
2

)
2−t ≤

√
2√

π
√
t
. Now,

ρϑ+1 − 1

ρ− 1
=
µϑ

µ
(1 + o(1)) = ϑ(1 + o(1)).

Therefore, Pr[|St| ≤ ϑ] = O(ϑσt/
√
t). Observing that

n∑

t=1

1√
t
σt ≤ e− log(1

σ
) +

∫ n

1

1√
t
e− log(1

σ
)tdt = Θ(

1

log1/2(1
σ2)

) = Θ(
1

µ
)

we obtain
∑

t≤n Pr[|St| ≤ ϑ] = O(ϑ/µ), thus (3.15) holds.

We will further show that

∑

t≤n
ϑ2E[

1

S2
t

I(|St| > ϑ)] = O(
ϑ

µ
· log3/2 n). (3.16)

We will separately consider two possible cases µ = o(ε/ logn) and µ = Ω(ε/ log n).

Case 1: µ = o(ε/ log n), i.e. µ = o(1/ϑ). In this case, let τn = 1/µ2 · logδ n, for δ > 1.

Notice that we have

∑

t≤τn
ϑ2E[

1

S2
t

I(|St| > ϑ)] =
∑

t≤τn
ϑ2
∑

s>ϑ

1

s2
Pr[St = s]

=
∑

t≤τn
ϑ2
∑

s>ϑ

1

s2
· O(1/

√
t)

= O(ϑ
√
τn) = O(

ϑ

µ
· logδ/2 n).

Therefore, it remains to upper bound
∑

t>τn
ϑ2E[1

S2
t
I(|St| > ϑ)]. To do this, we

observe that for every time t ≥ τn, it holds

ϑ2E[
1

S2
t

I(|St| > ϑ)] ≤ Pr[St ≤ µt/2] + ϑ2E[
1

S2
t

I(St > µt/2)].

For the first term, we use the Hoeffding bound to obtain

Pr[St ≤ µt/2] ≤ exp(−(µt/2)
2

2t
) ≤ exp(−µ

2τn
8

) = exp(−1
8
logδ n)

Chapter 3: Continuous distributed counting for non-monotonic streams 143

and observe that Pr[St ≤ µt/2] = O(1/nc), for arbitrary constant c > 0, and hence

Pr[St ≤ µt/2] = O(ϑ/µ).

It remains only to show
∑

t≥τn ϑ
2E[1

S2
t
I(St > µt/2)] = O(ϑ/µ), which we do as

follows

∑

t>τn

ϑ2E[
1

S2
t

I(St > µt/2)] =
∑

t>τn

ϑ2
∑

s>µt/2

O(
1

s2
√
t
)

=
∑

t>τn

ϑ2 · O(1

µt3/2
) = O(

ϑ2

µτ
1/2
n

)

= O(
ϑ2

logδ/2 n
) = o(

ϑ

µ
)

where the last equality follows because of our assumption µ = o(1/ϑ).

Case 2: µ = Ω(ε/ log n), i.e. µ = Ω(1/ϑ). Since we assume that the drift is positive,

we have
∑

t≤n
ϑ2E[

1

S2
t

I(|St| > ϑ)] ≤
∑

t≤n
2ϑ2E[

1

S2
t

I(St > ϑ)].

Let us define τn = 2ϑ/µ and then note

∑

t≤n
ϑ2E[

1

S2
t

I(|St| > ϑ)] ≤ O(
ϑ

µ
) +

∑

t≥τn
2ϑ2E[

1

S2
t

I(St > ϑ)].

In the prevailing case µ = Ω(1/ϑ), so let µ ≥ c/ϑ, for a constant c > 0 and sufficiently

large n. We then have

E[
1

S2
t

I(St > ϑ)] ≤ E[
1

S2
t

I(St > c/µ)]

=
1

µ2t2

∑

c/µ<s≤µt/2

µ2t2

s2
Pr[St = s] + 4Pr[St > µt]

≤ 1

µ2t2

(
(µ2t)2

c2
Pr[St ≤ µt/2] +O(1)

)

.

Chapter 3: Continuous distributed counting for non-monotonic streams 144

Now, using the Hoeffding’s inequality, we have Pr[St ≤ µt/2] = Pr[−St+µt ≥ µt/2] ≤

exp(−µ2t
8
), and thus it follows

E[
1

S2
t

I(St > ϑ)] ≤ 1

µ2t2

(
(µ2t)2

c2
e−

(µ2t)
8 +O(1)

)

=
1

µ2t2
· O(1) = O(

1

µ2t2
).

Therefore,
∑

t≥τn
ϑE[

1

S2
t

I(St > ϑ)] = O(ϑ2
∑

t≥2ϑ/µ

1

µ2t2
) = O(

ϑ

µ
).

Combining (3.13), (3.14), (3.15) and (3.16) with the trivial fact
∑

t≤n E[Rt] ≤ n, we

showed that the communication complexity is
∑

t≤n E[Rt] = O(min{ log3/2 n
µε

,
√
n·logn
ε

,

n}).

Correctness. The probability that an error occurs is upper bounded as follows:

Pr[En > 0] ≤
∑

t≤n
E[Rt · I(Vt < Ut)].

We shall show the following holds

E[Rt · I(Vt < Ut)] = O(1/n2), for every 1 ≤ t ≤ n (3.17)

and then the proof of correctness follows via the union bound.

As already showed in (3.3), we have that for any value r ≥ 0, the following holds

Pr[Vt < Ut, Vt > r | St = s] ≤ Pr[Vt ≤ r | St = s]+Pr[r < Ut | St = s, Vt > r]. (3.18)

Recall that Ut ≤ r means that at least one report is sent to the coordinator and

Vt > r means that the walk does not escape the ball Bε(s) within next r updates as

observed at update t. Similar to our analysis in Theorem 3.3.1, the “trick” here is to

identify an appropriate value of r (that could depend on s) such that w.h.p. between

update t and t + r, the following two events happen:

Chapter 3: Continuous distributed counting for non-monotonic streams 145

1. at least one message is sent, and

2. the walk has not escape the ball Bε(s).

Similar to as in in equations (3.4) and (3.5) in the proof of Theorem 3.3.1, we will

next choose the value of r such that both above conditions hold with high probability.

Specifically, we take

r = min

{
εs

(1− ε)2 ,
1

µ

}

· εs

c logn

where c is a large enough positive constant. Notice again that the variable r is chosen

only for the purpose of analysis and is not used for the execution of the algorithm.

In the following we first upper bound the probability that the count exits the

ball Bε(s) and then upper bound the probability that no message is sent to the

coordinator.

Escape from the ball Bε(s). We may decompose the subwalk into two components:

the drift component and the noise component. We shall show that for every r′ ≤ r,

the following holds:

1. The expected increment is smaller than εs/2, i.e.

E[
∑

t≤i≤t+r′

Xi] ≤ εs/2. (3.19)

2. The value of the increment is within µr′ ± εs/2 with high probability, i.e.

Pr

[

|
∑

t≤i≤t+r′

Xi − µr′| ≥ εs/2

]

is small. (3.20)

When both two conditions hold, we are able to show that the probability that the

walk escapes the ball Bε(s) is small.

Chapter 3: Continuous distributed counting for non-monotonic streams 146

Condition 1 : Observe that r ≤ εs/(µc logn). Therefore, the expected drift between

time t and t+ r′ is at most

µr ≤ εs/(c logn) ≤ εs/2.

Condition 2 : Let us denote the noise component by N ,
∑

t≤i≤t+r′ Xi − r′µ. By

using the Hoeffding inequality, we have for large enough constant c > 0,

Pr[|N | ≥ εs/2] ≤ 2 exp

(

−(εs)
2

8r′

)

≤ 2 exp

(

−(εs)
2

8r

)

= O(1/n3).

By using the union bound, we can conclude that the probability that the walk escapes

Bε(s) is O(1/n
2), i.e. Pr[Vt ≤ r | St = s] = O(1/n2).

Time until next message. We now upper bound the probability Pr[r < Ut | St =

s, Vt > r] by considering two possible cases.

Case 1. εs
(1−ε)2 ≤ 1

µ
, i.e. r = (εs)2

(1−ε)2c logn . In this case, the noise component is dominant.

The sampling rate is at least as large as pt′ ≥ min
{

α log2 n
(1−ε)2(εs)2 , 1

}

for every t < t′ ≤

t+ r. If pt′ = 1 for at least one t < t′ ≤ t+ r, we have Pr[r < Ut | St = s, Vt > r] = 0

and we are done. If, otherwise, for every t < t′ ≤ t+ r it holds pt′ < 1, then we have

Pr[r < Ut | St = s, Vt > r] ≤
(

1− α log2 n

(1− ε)ε2s2
)r

. (3.21)

By substituting the value r = (εs)2

(1−ε)2c logn , we have Pr[r < Ut | St = s, Vt > r] =

O(1/n2), for sufficiently large constant c.

Case 2. εs
(1−ε)2 >

1
µ
, i.e. r = εs

µc logn
. In this case, the drift term is dominant. The

sampling rate satisfies pt′ ≥ min
{

c log3 n
εt

, 1
}

for every t < t′ ≤ t + r. In case that

Chapter 3: Continuous distributed counting for non-monotonic streams 147

there exists t′ such that pt′ = 1, we have Pr[r < Ut | St = s, Vt > r] = 0 and we are

done. If for every t < t′ ≤ t+ r, pt′ < 1, we have

Pr[r < Ut | St = s, Vt > r] ≤
(

1− α log3 n

εt

)(

1− α log3 n

ε(t+ 1)

)

· · ·
(

1− α log3 n

ε(t + r)

)

≤
(

1− α log3 n

ε(t + r)

)r

.

We further consider two subcases: when t is small and otherwise.

Case 2a. t < αr log2 n
ε

. For this case, we have t + r ≤ 2αr log2 n/ε, and thus

(

1− α log3 n

(t+ r)ε

)r

≤
(

1− α log3 n

2αr log2 n

)r

= O(1/n2).

Case 2b. t > αr log2 n
ε

. For this case t + r < 2t. The crucial observation is that the

value of St has a strong lower bound, i.e. it holds with high probability. Specifically,

by the Hoeffding inequality, we have

Pr[St ≤
tµ

2
] ≤ exp

(

−µ
2t

8

)

.

Using the facts t > (αr log2 n)/ε, r = εs
cµ logn

and s > (1−ε)2
µε

, we have t ≥ α
cµ2 (1 −

ε)2 log n, i.e.

Pr[St ≤
tµ

2
] = O(1/n2). (3.22)

Therefore, we have for s ≥ tµ
2
,

Pr
[

r < Ut

∣
∣
∣St = s, Vt > r

]

≤
(

1− c log3 n

2tε

)εt/(c logn)

≤ exp(−α
c
· log2 n) ≤ 1/n2.

Summary. Finally, we summarize the above cases. Let e be the following event

e =

{

St >
(1− ε)2
µε

}

∩
{

St <
tµ

2

}

.

Chapter 3: Continuous distributed counting for non-monotonic streams 148

Equation (3.22) gives us Pr[¬e] = O(1/n2). Also, let f be an element in the proba-

bility space associated with Ft and FFt(·) be the distribution function of Ft. We note

that the following series of inequalities hold

EFt [Rt · Pr[Vt < Ut | St]]

=

∫

f

Rt Pr[Vt < Ut | f]dFFt(f)

=

∫

f

Rt Pr[Vt < Ut | f]dFFt(f, e) +

∫

f

Rt Pr[Vt < Ut | f]dFFt(f,¬e)

(rule out the rare event ¬e.)

≤
∫

f

Rt Pr[Vt < Ut | f]dFFt(f, e) +O(1/n2)

≤
∫

f

Rt (Pr[Vt < r | f] + Pr[r ≤ Ut | f, Vt ≥ r]) dFFt(f, e) +O(1/n2)

≤
∫

f

Rt

(
O
(
1/n2

)
+O

(
1/n2

))
dFFt(f, e) +O(1/n2)

≤ O(1/n2)

∫

f

RtdFFt(f, e) + O(1/n2)

≤ O(1/n2) · E[Rt] = O(1/n2).

Therefore,
∑

t≤n E [Rt · I(Vt < Ut)] = O(1/n) which completes the proof.

Multiple site case. We now move to the analysis for the multiple site case. Similar

to the strategy we used in Chapter 3.3.1, we split the no-drift phase into the the

straightforward (StraightSync) stage and the broadcast (SBC) stage, as discussed in

the previous section. We then have the following theorem.

Theorem 3.3.5. There exists a choice of constants α and β > 0 for the randomized

algorithm Non-monotonic Counter, for the k-site count problem with unknown drift,

to guarantee the continuous tracking within a prescribed relative accuracy ε with high

probability and the following communication cost in expectation:

Chapter 3: Continuous distributed counting for non-monotonic streams 149

• Õ
(

min
{√

k
|µ|ε ,

√
kn
ε
, n
}

+
√
k
ε

)

, if k = O(1/(µε)2), and

• Õ
(

min
{√

k
|µ|ε ,

√
kn
ε
, n
}

+ k
)

, if k = ω(1/(µε)2).

Notice that our algorithm’s communication cost has two types of asymptotic

behaviors for different k because the HYZ counter uses different strategies for different

k.

Proof of Theorem 3.3.5. We shall show the following three statements in our analysis:

1. Using the non-drift algorithm before update τ = Θ(1/(µ2ε) · logn) is sufficient

to track the count with high probability.

2. Using the difference estimator after update τ is also sufficient to track the count

with high probability.

3. The communication complexity in the first phase is Õ(min{
√
k
|µ|ε ,

√
kn
ε
}).

Correctness up to time τ . To show the first part, since our k-site algorithm

is only mimicking the algorithm for the 1-site case, we only need to show that our

sampling rate here is at least as large as the sampling rate for the 1-site without

drifting case. Specifically, we shall show that

min

{
α log4 n

ε2S2
t

, 1

}

≥ min

{
α log2 n

ε2S2
t

+
α log3 n

εt
, 1

}

with high probability, i.e., log4 n/(ε2S2
t) = Ω(log3 n/(εt)), and hence, St = O(

√
t log n/

ε) with high probability. This can be seen through applying a standard Chernoff

bound.

Chapter 3: Continuous distributed counting for non-monotonic streams 150

Correctness after time τ . Let Pt and Mt denote the number of positive and

negative increments observed up to time t, respectively, i.e. Pt =
∑

i≤t I(Xi = 1) and

Mt =
∑

i≤t I(Xi = −1). Let P̂t and M̂t be estimators of Pt andMt, respectively, such

that P̂t ∈ B1/(εµ)(Pt) and M̂t = B1/(εµ)(Mt). Here, we show that P̂t − M̂t ≥ (1− ε)St

with high probability. Notice that the other condition P̂t − M̂t ≤ (1 + ε)St can also

be showed to hold with high probability in a similar fashion.

First, notice that P̂t−M̂t ≥ Pt−Mt−µεt/6. By using a Chernoff bound and the

fact that t = Ω(1/(µ2ε) · log n), we have t ≤ 2
3µ
St with high probability. Therefore,

P̂t − M̂t ≥ Pt −Mt − εSt with high probability.

Communication cost for the first phase. We reuse the notation developed for

the analysis of multiple site case with no drift. Let Ct be the communication cost

associated with the t-th update. We have

E[Ct] ≤ Pr[St ≤
√
k/ε] +

k log4 n

ε2
E[

1

S2
t

I(|St| ≤
√
k/ε)]. (3.23)

Using the communication analysis developed in Theorem 3.3.4 and re-scaling the

parameter ε as ε/
√
k, we have

Pr[|St| ≤ ϑ] + ϑ2E[
1

S2
t

I(|St| ≥ ϑ)]

= Pr[St ≤
√
2α
√
k/ε log2 n] +

k log2 n

ε2
E[

1

S2
t

I(|St| ≥
√
k/ε)]

≥ 1

log2 n
E[Ct]

where the last inequality follows from (3.23).

Therefore,

∑

t≤n
E[Ct] ≤ log2 n

(
∑

t≤n
(Pr[|St| ≤ ϑn] + ϑ2nE[

1

S2
t

I(|St| ≥ ϑn)])

)

Chapter 3: Continuous distributed counting for non-monotonic streams 151

which allows us to conclude the communication cost at the first phase is indeed

Õ(min{
√
k
|µ|ε ,

√
kn
ε
}).

3.3.3 Randomly Ordered Data Streams

We now move to the random permutation case. We use the same tracking al-

gorithm described in Chapter 3.2 to solve this problem by using the sampling rate

defined in (3.1) with β = 2 and sufficiently large α > 0.

Theorem 3.3.6. Let a1, . . . , an be an arbitrary, randomly permuted, sequence of

bounded real values. The randomized algorithm Non-monotonic Counter with the

sampling probability in (3.1) for β = 2 and sufficiently large constant α > 0 guaran-

tees to track the count within the relative accuracy ε with probability 1−O(1/n) and

uses the total expected communication of O(
√
kn/ε · logn + log3 n) messages.

Note that here, because of the adversarial choice of the input sequence, we cannot

exploit the drift. We remark that when the update is a fractional number from

[−1, 1] rather than {−1, 1}, our Non-monotonic Counter algorithm still holds. The

key difference between the analysis for Theorem 3.3.6 and the one for i.i.d. input is

that the updates are correlated when the content of the stream is decided in advance.

This difference boils down to a modified analysis for the first passage time of the

partial sums. In the Bernoulli i.i.d. case, a straightforward application of Hoeffding’s

inequality suffices to give a bound on the first passage time. While here Hoeffding’s

inequality is no longer applicable, we are able to use tail inequalities for sampling

without replacement [56, 98] to circumvent this problem.

Chapter 3: Continuous distributed counting for non-monotonic streams 152

In what follows, we first analyze the algorithm for the single site case. Then we

shall proceed to prove Theorem 3.3.6.

Single site case.

Let us recall that µ is used to represent the drift rate of the counter process,

which for a random permutation is defined by letting µn denote the final value of the

counter.

Our algorithm for the single site case is identical to the single site algorithm

for i.i.d. input stream. Specifically, we shall use the following sampling rate, for a

constant α > 0,

Sample-Prob(St, t) = min

{
α log2 n

ε2S2
t

+
α log3 n

εt
, 1

}

. (3.24)

We next prove Theorem 3.3.6 for the special case k = 1, which is decomposed

into three steps. In Lemma 3.3.9, we show that the algorithm is correct for sufficiently

small drift. In Lemma 3.3.10, we show that the algorithm is correct for large drift.

Finally, we shall analyze the communication cost in Lemma 3.3.11.

We first present two lemmas about deviation of a random permutation from a

typical sample-path which we shall use in the remainder of the proof.

Lemma 3.3.7. Let X1, X2, . . . , Xn be a random permutation such that
∑

i≤nXi = µn.

Also, let St ,
∑t

i=1Xi. Then, we have for every c ≥ 0,

Pr[∃t < n

2
: |St −

t

n
µ| ≥

√

2(1 + c)t log n] ≤ 1

nc
. (3.25)

We may apply Lemma 3.3.7 to the left half and right half of permutation (when

we apply it to the right half, we read the permutation from right to left) and yield

the following corollary.

Chapter 3: Continuous distributed counting for non-monotonic streams 153

Corollary 3.3.8. Let X1, X2, . . . , Xn be a random permutation such that
∑n

i=1Xi =

µn. Also, let St ,
∑t

i=1Xi. Then, we have for every c ≥ 0,

Pr[∃t < n

2
: |St −

t

n
µ| ≥

√

2(1 + c)min{t, n− t} log n] ≤ 1

nc
. (3.26)

Proof. (of Lemma 3.3.7) Our proof is a straightforward application of Hoeffding in-

equality for the special case of sampling without replacement. Specifically, by Theo-

rem 2 in [56], we have for every t ≤ n
2
and c ≥ 0,

Pr[|St −
t

n
µ| ≥

√

2(1 + c)t log n] ≤ 2 exp(−(
√

2(1 + c)t logn)2

2t
) =

2

n1+c
.

By using the union bound across t under consideration, we complete the proof.

We next state our main result for the case where µ = Õ(
√
n).

Lemma 3.3.9. Let µn be the final value of the counter. Suppose that µn ≤ √n log2 n,

then the algorithm Non-monotonic Counter with the sampling probability as in (3.24)

correctly tracks the counter with probability 1−O(1/n).

Proof. We again use the same notation as for the i.i.d. case. We have

Pr[En > 0] ≤
∑

t≤n
E[Rt · I(Vt < Ut)].

Our goal is again to show that E[Rt · I(Vt < Ut)] = O(1/n2). We need to consider

two cases t ≤ n/2 and t > n/2. In what follows, we only focus on the case t ≤ n/2

as the case t > n/2 can be analyzed by following similar same steps.

Define the event e that for large enough constant γ > 0, the following holds:

|St−µt| ≤ γ
√
t log n for every 1 ≤ t ≤ n. Lemma 3.3.7 gives us Pr[e] ≥ 1−1/n

1
2
γ2−1.

When the event e occurs, we have St ≥ −γ
√
t logn.

Chapter 3: Continuous distributed counting for non-monotonic streams 154

In what follows, our analysis will focus on the case where e happens. The prob-

ability of ¬e is sufficiently small that it becomes negligible for our analysis.

Recall that

E[RtI(Vt < Ut)] = EFt [Rt Pr[Vt < Ut | St]].

and that for any r ≥ 0, the following holds

Pr[Vt < Ut | St = s] ≤ Pr[Vt ≤ r | St = s] + Pr[r < Ut | St = s, Vt > r]. (3.27)

Let us define r = ε2s2

c(1−ε)2 logn , where c > 0 is an appropriately chosen constant. We

need to analyze two terms that appear in the right-hand side of equation (3.27) which,

respectively, correspond to the probability that the walk between steps t and t + r

exits the ball Bε(s) and the probability that no message is sent between t and t+ r.

Our goal is to show that both terms are O(1/n2), which allows us to conclude the

correctness proof.

Escape from the ball Bε(s) Here, we need to bound Pr[Vt ≤ r | St = s, e]. We shall

again view the walk as a composition of a drift and noise component and show that

the values of both components are smaller than εs/2 from update t to update t + r]

in order to conclude that Pr[Vt ≤ r | St = s, e] is small.

Case 1: drifting is small. Now, let us consider the trajectory of the walk from t

to n. We know that the walk starts at value s and ends at value µn. Since no

information during this period is revealed, the trajectory is a random trajectory

(with known starting and ending point). In other words, we may view the trajectory

as a random permutation with drift µn − s. Since s ≥ −γ√t log n (recall that we

Chapter 3: Continuous distributed counting for non-monotonic streams 155

assume event e happens), we have that the total drift for the trajectory is bounded by

µn+γ
√
n log n ≤ 2

√
n log2 n. The “drift rate” thus is ≤ 4√

n
log2 n. Next, we compute

an upper bound for the expected increment until time t+ r′, for 0 < r′ ≤ r. We have,

for every 0 < r′ ≤ r,

E[
∑

t≤i≤t+r′

Xi] ≤
4√
n
log2 n · r.

Case 2: noise is small. Let us define N = E[
∑

t≤i≤t+r′ Xi] − µr′. By using the

Hoeffding inequality (without replacement), we have

Pr[|N | ≥ εs

2
] ≤ 2 exp(−ε

2s2

8r′
) ≤ 2 exp(−ε

2s2

8r
) = O(1/n3).

By using the union bound, we may conclude that

Pr

[

|
∑

t≤i≤t+r′

Xi| > εs, for some 1 ≤ r′ ≤ r

]

= O(1/n2).

Time until next message. We now move to the term Pr[Vt < Ut, Vt > r | St = s, e].

By using the same manipulation as in the proof of Theorem 3.3.3, we have that for

large enough constant c > 0,

Pr[Vt < Ut, Vt > r | St = s, e] ≤ Pr[r ≤ Ut | S, Vt > r] ≤
(

1− (1− ε)2c log2 n

ε2s2

)r

= O(1/n2).

Therefore, we may conclude that

Pr[Rt · I(Vt < Ut)] ≤ Pr[¬e] +
∫

f

E[I(Vt < Ut) | f]dFFt(f, e) = O(1/n2)

which completes our analysis.

Now we proceed to analyze the case where µ >
√
n log2 n.

Lemma 3.3.10. Let µ be the final value of the counter. Suppose µn ≥ √n log2 n,

then the algorithm Non-monotonic Counter with the sampling probability as in (3.24)

correctly tracks the counter with probability 1−O(1/n).

Chapter 3: Continuous distributed counting for non-monotonic streams 156

Proof. We shall use the same set of notation and start by recalling the fact

Pr[En > 0] ≤
∑

t≤n
E[RtI(Vt < Ut)].

We need to show that E[RtI(Vt < Ut)] = O(1/n2) to conclude our analysis. Recall

that we use e to represent the event that |St − µt| ≤ γ
√
t log n, for every 1 ≤ t ≤ n,

where γ is a large enough constant. Using

Pr[Vt < Ut | St = s, e] ≤ Pr[r < Ut | St = s, Vt > r, e] + Pr[Vt ≤ r | St = s, e],

we need to show that Pr[r < Ut | St = s, Vt > r, e] = O(1/n2) and Pr[Vt ≤ r | St =

s, e] = O(1/n2). In this case, we choose r as follows

r = min

{
(εs)2

c(1− ε)2 log n,
εs

cµ logn

}

where c is a large enough constant c > 0.

Escape from the ball Bε(s) We now analyze the term Pr[Vt ≤ r | St = s, e]. We

again view the random walk as a composition of the drifting and noise component

and show that the values of both components are smaller than εs/2 from update t to

update t+ r in order to conclude that Pr[Vt ≤ r | St = s, e] is small.

Case 1: drifting is small. Let r′ ≤ r. We shall again interpret the trajectory

from t to n as a random permutation that starts at value s and ends at value µn.

Since s ≥ µt − γ
√
t log n (under event e), we have that the total drift is at most

µ(n − t) + γ
√
t logn. We can verify that µ(n − t) > γ

√
t log n for sufficiently large

n. Therefore, 2µ(n − t) is an upper bound of the total drift in the random trajec-

tory part. Now, for any 0 < r′ ≤ r, the expected increment between t and t + r′ is

Chapter 3: Continuous distributed counting for non-monotonic streams 157

E[
∑

t≤i≤t+r′ Xi] ≤ 2µr ≤ εs/2, where the last inequality holds because r ≤ εs
cµ logn

.

Case 2: noise is small. For any r′ ≤ r, let us recall that N = E[
∑

t≤i≤t+r′ Xi]− µr′.

By using the Hoeffding inequality (without replacement), we have

Pr[|N | ≥ εs

2
] ≤ 2 exp(−(εs)

2

8r′
) ≤ 2 exp(−(εs)

2

8r
) = O(1/n3).

We may thus conclude that Pr[Vt ≤ r | St = s, e] = O(1/n2).

Time until next message. We now upper bound the probability Pr[r < Ut | St =

t, Vt > r, e]. We again separately consider two possible cases.

Case 1. εs
(1−ε)2 ≤ 1

µ
, i.e. r = (εs)2

c(1−ε)2 logn . In this case, we have

Pr[Ut > r | Vt > r, St = s] ≤
(

1− α log2 n

(1− ε)2(εs)2
)r

= O(1/n2), for large enough γ > 0.

Case 2. εs
(1−ε)2 ≥ 1

µ
, i.e. r = εs

c(logn)µ
. In this case, we need to further consider two

subcases: t ≤ 1/(εµ2) · logn or otherwise. Recall that Õ(1/µ2ε) is approximately the

cut such that in the region before the cut, the noise term dominates and in the region

after the cut the drifting term dominates.

Case 2a. t ≤ 1/(εµ2) · log n. We have

Pr[Ut > r | Vt > r, St = s] ≤
(

1− γ log3 n

εt

)r

≤
(

1− γ log3 n

ε log n/(µ2ε)

) εs
c(1−ε)2 log nµ

≤
(

1− γ log3 n

log n/(µ2)

)
ε 1
µε (1−ε)2

c(1−ε)2 log nµ

= O(1/n2)

Chapter 3: Continuous distributed counting for non-monotonic streams 158

where in the second inequality we use the fact t ≤ 1/(µ2ε) · log2 n and the definition

of r, and in the third inequality we use the fact s ≥ (1− ε)2/(µε).

Case 2b. t ≥ 1/(µ2ε) · log n. The event e gives us s ≥ µt/2, for sufficiently large n.

Therefore, r ≥ εµt/2
cµ logn

= εt
2c logn

. We then have

Pr[r < Ut | St, Vt > r] ≤
(

1− γ log3 n

εt

) εt
2c log n

= O(1/n2).

We next move to analyze our communication cost. We have the following lemma.

Lemma 3.3.11. The expected communication complexity of algorithm Non-monotonic

Counter to track any random permutation is at most O(1
ε
· √n logn + log3 n) if µ is

bounded away from 1 (i.e. 1− µ = Ω(1)).

Proof. We shall show that for any t ∈ [log2 n, n− log2 n], it holds

Pr[St = x] = O(
1

min{
√
t,
√
n− t}

), −t ≤ x ≤ t. (3.28)

Then we may use the technique developed in Theorem 3.3.1 to conclude that the

expected communication cost from the sampling component Θ̃(1/(ε2s2)) is O(1
ε
·

√
n logn) while that of the sampling component Θ̃(1/(εt)) is O(log3 n), which would

complete our proof. Notice that giving up the regions [0, log2 n] and [n− log2 n, n] is

legitimate because the communication cost incurred in these two regions is asymp-

totically dominated by that in the other region.

We now proceed to prove (3.28). Let x be the number of positive signs and y

be the number of negative signs. We have x + y = n and x − y = µn, i.e. x = 1+µ
2
n

and y = 1−µ
2
n. We divide the positive signs and negative signs into three groups, D,

Chapter 3: Continuous distributed counting for non-monotonic streams 159

X , and Y . The set Y consists of the set of negative signs; the size of Y is 1−µ
2
n. X

consists of the set of positive signs of size 1−µ
2
µ. D consists of the remaining signs of

size µn.

We use the following way of generating random permutations:

• We first place signs from D uniformly at random across all n time units.

• We next place X and Y uniformly at random in the rest of the slots.

Let Dt be the number of signs from D that fall into the region [0, t]. Then Dt

follows a binomial distribution i.e. Dt ∼ B(µn, t/n). By using a Chernoff bound, we

have for any constant ε0:

Pr[Dt ≥ (1 + ε0)µt] ≤ exp(−ε20µ/3). (3.29)

Via some straightforward algebra manipulation, we may conclude from (3.29) that

Pr[t−Dt = Ω(t)] ≥ 1− 1

n4
.

The fraction 1/n4 is chosen rather arbitrary. Let us denote the event t − Dt = Ω(t)

as e. Under event e, let t0 = t − Dt = Θ(t). The rest of the slots in [0, t] then are

chosen uniformly from X and Y . Let x0 be the number of signs that are chosen from

x and y0 be the number of signs that are chosen from Y , where x0+y0 = t0. We have

Pr[St = Dt + x0 − y0] =
(|X|
x0

)(|Y |
y0

)

(|X|+|Y |
t0

) .

Let us write q(x0) = Pr[St = Dt + x0 − y0]. We shall show that

1. q(1) < q(2) < q(3) < · · · < q(t0/2) > q(t0/2 + 1) > · · · > q(t0).

2. q(t0
2
) = Θ(q(t0

2
+ 1)) = Θ(q(t0

2
+ 2)) = · · · = Θ(q(t0

2
+
√
t0)).

Chapter 3: Continuous distributed counting for non-monotonic streams 160

The second item allows us to conclude that q(t0/2) = O(1/
√
t0) = O(1/

√
t). The

first item gives us that q(t0/2) is the maximum item among all, which allows us to

conclude that Pr[St = x] = O(1/
√
t) for all x.

Proving the first item only require some straightforward manipulation. The

second item seems to be a known folklore. For completeness, we sketch a proof for

q(t0/2) = Θ(q(t0/2 +
√
t0). Our goal is to show that

q(t0/2)

q(t0/2 +
√
t0)

= O(1).

We have

q(t0/2)

q(t0/2 +
√
t0)

=

(|X|
t0
2

)(|Y |
t0
2

)

(|X|
t0
2
+
√
t0

)(|Y |
t0
2
−√t0

)

=
(|X| · · · |X − t0

2
|)2

[(t0/2)!]2
· (t0/2−

√
t0)!(t0/2 +

√
t0)!

(|X| · · · |X − t0
2
+
√
t0|)(|X| · · · |X − t0

2
−√t0|)

.

Notice that

(t0/2−
√
t0)!(t0/2 +

√
t0)!

[(t0/2)!]2
=

(t0/2 + 1) · · · (t0/2 +
√
t0)

(t0/2−
√
t0 + 1) · · · t0/2

=
∏

i≤√t0

(

1 +

√
t0

t0/2−
√
t0 + i

)

≤
(

1 +

√
t0

t0/2

)√t0

= O(1).

Similarly, we may show that

(|X| · · · |X − t0
2
+
√
t0|)(|X| · · · |X − t0

2
−√t0|)

(|X| · · · |X − t0
2
|)2 = O(1),

concluding q(t0/2) = O(q(t0/2−
√
t0)), which completes our complexity analysis.

Chapter 3: Continuous distributed counting for non-monotonic streams 161

Multiple site case. We now prove Theorem 3.3.6.

Proof of Theorem 3.3.6. Our analysis mostly follows the algorithm for the drifted

case. Here we highlight a few key components in our analysis. Specifically, we need

to verify the following statements.

1. It takes Õ(1/µ2) samples to estimate µ within an arbitrarily fixed relative ac-

curacy.

2. When t = Õ(1/(µ2ε)), then 1/(ε2S2
t) = Ω̃(1/εt). This condition makes sure that

treating the input as non-drifting is fine before time t = Õ(1/(µ2ε)).

3. When t = Ω̃(1/(µ2ε)), then the difference estimator works.

4. The expected communication cost is

(a) If t = Õ(1/(µ2ε)), the expected communication cost is Õ(
√

k
t
1
ε
).

(b) If t = Ω̃(1/(µ2ε)), the expected cost is

• Õ(
√

k/(µε)) when k < 1/(µ2ε2).

• Õ(k) otherwise.

First, notice that by Theorem A.1.5, when t = Ω(log n/(µ2ε)), we have Pr[|St−µt| >

0.1µt] ≤ exp(−Θ(tµ2)) = exp(−Θ(log2 n)). Therefore, the concentration results still

holds. Item 1 and 3 above can be proved by only using this tail inequality. For

item 2, we essentially only need to prove St ≤
√

t
ε
logc n for some constant c > 0.

This can also be proven by the concentration inequality. To prove item 4a, we only

need to utilize the fact that for any t < 1/(µ2t), Pr[St = x] = O(1
min{

√
t,
√
n−t}). Our

Chapter 3: Continuous distributed counting for non-monotonic streams 162

communication complexity at time t = Õ(1/(µ2ε)) is

Pr[St ≤
√
k/ε] + k Pr[St ≥

√
k/ε] = O(

√
k

ε

1

min{
√
t,
√
n− t}

)

which implies that the expected communication cost in the first phase is Õ(
√

k
t
1
ε
).

The communication in the second phase can be directly implied from Huang et al. [61].

3.3.4 Fractional Brownian Motion

In this section we consider the counting process St evolving as a fractional Brow-

nian motion with parameters σ > 0 and 0 < H < 1 where we extend the counting

process to continuous time in a natural manner. We briefly discuss some of the basic

properties of fractional Brownian motion (more details can be found, e.g. in [95]).

Fractional Brownian motion is a process with stationary increments whose finite di-

mensional distributions are Gaussian. Specifically, for a fractional Brownian motion

St, we have E[St] = 0, for every t ≥ 0 and the covariance of the process is defined as

E[StSu] =
σ2

2
(|t|2H + |u|2H − |u− t|2H).

Thus, the variance of the process is E[S2
t] = σ2|t|2H , for every t ≥ 0. The parameter

H is known as the Hurst parameter. For H = 1/2, the process corresponds to a

Brownian motion whose increments are independent. For 0 < H < 1/2, the variance

of St grows sublinearly with t and the process has a negative autocorrelation while for

1/2 < H < 1, the variance of St grows superlinearly with t. The process is self-similar,

meaning that random variables Sat and a
HSt have the same distribution. To simplify

notation, in the remainder, we will assume σ2 = 1. Notice that this is without loss of

Chapter 3: Continuous distributed counting for non-monotonic streams 163

generality as it amounts only to rescaling of the time units. It is noteworthy that the

fractional Brownian motion is one of standard statistical models that captures some

of the salient properties of temporal statistical dependencies that were observed in

many natural phenomena, including self-similarity and long-range dependency (see,

e.g. [95]).

We present an algorithm that requires only an upper bound on the Hurst param-

eter H and guarantees continual tracking within prescribed relative accuracy with

high probability for the range H ∈ [1/2, 1). Note that this is the range of particular

interest in practice since typical values of the Hurst parameter observed in nature fall

precisely in this region. For the purpose of deriving an upper bound on the commu-

nication complexity, we will write the sampling probability in the following form, for

1 < δ ≤ 2,

Sample-Prob(St, t) = min

{

αδ log
1+δ/2 n

(ε|St|)δ
, 1

}

(3.30)

where αδ = c(2(c+ 1))δ/2, for any c > 3/2.

As before, we start with the single site (k=1) case. We have the following theo-

rem.

Theorem 3.3.12. For the single site (k = 1) case, the randomized algorithm Non-

monotonic Counter with the sampling probability as in (3.30) guarantees to track the

count within the relative accuracy ε > 0 with probability 1 − 1/n for every 1/2 ≤

H ≤ 1/δ, where 1 < δ ≤ 2, and uses the total expected communication of O(n1−H/ε ·

log1/2+1/δ n) messages.

We observe that for standard Brownian motion, which we may interpret as a

continuous-time analog of a random walk, we have H = 1/δ = 1/2, and in this

Chapter 3: Continuous distributed counting for non-monotonic streams 164

case, the sampling probability and the result of the last theorem matches that of

Theorem 3.3.1. For values of the Hurst parameter H in (1/2, 1), the communication

complexity of the algorithm is sublinear in n, with the upper bound increasing with

n as a polynomial with the exponent decreasing with H as 1 − H (up to a poly-

logarithmic factor). Note that this is inline with the intuition as a larger value of the

parameter H means a larger variance and thus less of a concentration around value

zero where the relative error tolerance is the most stringent.

Proof of Theorem 3.3.12. We shall first analyze the communication cost. Then we

argue that the algorithm is correct with high probability.

Communication cost. We first note the following lemma.

Lemma 3.3.13. Suppose S is a Gaussian random variable with mean zero and vari-

ance σ2 > 0. Then, for every constants c > 0 and δ > 1,

E[min{c|S|−δ, 1}] ≤
√

2

π

δ

δ − 1

c1/δ

σ
.

Proof. We need to show that for a Gaussian random variable with mean zero and

variance σ2 > 0, the following holds for every c > 0 and δ > 1,

E[min{c|S|−δ, 1}] ≤
√

2

π

δ

δ − 1

c1/δ

σ
.

Note that

E[min{c|S|−δ, 1}] = E[c|S|−δI(|S|δ > c)] + Pr[|S|δ ≤ c]

= 2cE[S−δI(S > c1/δ)] + 2Pr[S ∈ [0, c1/δ]]

=
2c

σδ
E[

1

N
I(N > c1/δ/σ)] + 2Pr[N ∈ [0, c1/δ/σ]]

Chapter 3: Continuous distributed counting for non-monotonic streams 165

where N is a standard normal random variable (with mean 0 and variance 1). Now,

note

2c

σδ
E[

1

N
I(N > c1/δ/δ)] ≤ 2c

σδ

1√
2π

∫ ∞

c1/δ/σ

1

xδ
e−

x2

2 dx

≤ 2c

σδ

1√
2π

∫ ∞

c1/δ/σ

1

xδ
dx

=
2c

σδ

1√
2π

1

δ − 1

(σ

c1/δ

)δ−1

=

√

2

π

1

δ − 1

c1/δ

σ
.

It also holds

2 Pr[N ∈ [0, c1/δ/σ]] ≤ 2 · 1√
2π

c1/δ

σ
=

√

2

π

c1/δ

σ
.

Summing the two together we complete the proof.

Applying the lemma to the sampling probability given in (3.30), we have for

every 1 ≤ t ≤ n,

E[Rt] ≤
√

2

π

δ

δ − 1

[α(2(α+ 1))δ/2 log1+δ/2 n]1/δ

ε

1

tH
.

Therefore, the expected communication cost is

∑

t≤n
E[Rt] = O(n1−H/ε · log1/2+1/δ n).

Correctness. We next bound the probability of error. Note

Pr[Vt ≤ r | St = s] = Pr[max
i=t+1,...,t+r

Si − St ≥ d
s

1− εe − s | St = s]

≤ nPr[St+r − St ≥
ε

1− εs | St = s] (3.31)

We shall make use of the following lemma.

Chapter 3: Continuous distributed counting for non-monotonic streams 166

Lemma 3.3.14. Let (Z, Y) be a bivariate Gaussian random variable with mean (0, 0)

and covariance matrix Σ =

σ2
Z cZ,Y

cZ,Y σ2
Y

. Then, conditional on Z ∈ [z, z + dz), Y

is a Gaussian random variable with mean µY |z = cZ,Y /σ
2
Z · z and variance σ2

Y |z =

σ2
Y − cZ,Y /σ2

Z .

Proof. Let us denote with φZ,Y (z, y) the density of a bivariate normal random variable

with mean (0, 0) and covariance matrix Σ and let φZ(z) be the density of a normal

random variable with mean zero and variance σ2
Z .

We have

Pr[Y > y | Z ∈ [z, z + dz)] =
Pr[Y > y, Z ∈ [z, z + dz)]

Pr[Z ∈ [z, z + dz)]

=
1

φZ(z)

∫ ∞

y

φZ,Y (z, u)du.

Therefore,

Pr[Y > y | Z ∈ [z, z + dz)] =
1

1√
2πσZ

e
− z2

2σ2

Z

· 1

2π
√

|Σ|

∫ ∞

y

exp

−1

2

(

z u

)

Σ−1

z

u

 du

Now, note

Σ−1 =
1

|Σ|

σ2
Y −cZ,Y

−cZ,Y σ2
Z

where |Σ| = σ2
Y σ

2
Y − c2Z,Y . It is readily obtained that

(

z y

)

Σ−1

z

y

 =

z2

σ2
Z

+
σ2
Z

|Σ|

(

y − cZ,Y
σ2
Z

z

)2

Chapter 3: Continuous distributed counting for non-monotonic streams 167

and, thus,

1

2π
√

|Σ|

∫ ∞

y

exp

−1

2

(

z u

)

Σ−1

z

u

 du

= e
− z2

2σ2
Z ·
∫ ∞

y

exp(−1
2

σ2
Z

|Σ|(u−
cZ,Y
σ2
Z

z)2)du

= e
− z2

2σ2
Z · 1

2πσZ

∫ ∞

σZ√
|Σ|

(y− cZ,Y

σ2
Z

z)

e−
1
2
w2

dw

= e
− z2

2σ2
Z · 1√

2πσZ
Φ̄

(

σZ
√

|Σ|
(y − cZ,Y

σ2
Z

z)

)

where in the second equation we use the change of variable w = σZ√
|Σ|

(u− cZ,Y

σ2
Z
z).

Therefore, we obtain

Pr[Y > y | Z ∈ [z, z + dz)] = Φ̄

(

σZ
√

|Σ|
(y − cZ,Y

σ2
Z

z)

)

.

Let Gr be a Gaussian random variable with mean zero and variance

σ2
G(
s

b
) =

σ2
St+r|s

(1− µSt+r|s

b
)2

then, note Pr[St+r > b | St ∈ [s, s+ ds)] = Pr[Gr > b].

Defining κG = E[St(St−St+r)] and δ
2
G = E[(St+r−St)

2], it can be readily showed

that

σ2
G(
s

b
) =

δ2G − κ2G/σ2
St

(1− s
b
+ s

b
κG/σSt)

2
.

Now, since (Su, u ≥ 0) is a fractional Brownian motion with parameter 0 < H <

1, we have

δ2G = r2H

κG =
1

2
[(t+ r)2H − t2H − r2H].

Chapter 3: Continuous distributed counting for non-monotonic streams 168

In particular, for standard Brownian motion, δ2G = r and κG = 0.

For given ηn > 0, Pr[Gr > b] ≤ ηn is equivalent to

σ2
G(
s

b
) ≤

(
b

Φ̄−1(ηn)

)2

(3.32)

where Φ̄(·) is the complementary distribution of a normal random variable.

The following is a key lemma that enables us to use a stochastic comparison to

derive an algorithm that does not require exact knowledge of the Hurst parameter

H , for the case 1/2 ≤ H < 1, but only an upper bound on it.

Lemma 3.3.15. It holds σ2
G(

s
b
) ≤ δ2G

(1− s
b
)2
, for 1/2 ≤ H < 1.

Proof. This is evident from the fact κG ≥ 0 iff 1/2 ≤ H < 1 where equality holds for

H = 1/2.

Furthermore, we may use the fact Φ̄(x) ≤ e−
x2

2 , for large enough x, which yields

Φ̄−1(ηn) ≤ (2 log(1/ηn))
1/2, for large enough n. Hence, we obtain that for (3.32) to

hold for ηn = 1/nα+1, it suffices that
σ2
G

(1− s
b
)2
≤ (b

α logn
)2, i.e.

r ≤
(|b− s|
((α+ 1) logn)1/2

)1/H

. (3.33)

If this condition holds for b = s/(1− ε), then this implies Pr[St+r − St ≥ ε
1−εs | St =

s] ≤ 1/nα+1, and thus in view of (3.31), it follows Pr[Vt ≤ r | St ∈ [s, s+ ds)] ≤ 1/nα.

The rest of the proof follows by the same arguments as in the proof of Theo-

rem 3.3.3, using pt = min{ α logn
(1−ε)2r , 1} and r defined by taking equality in (3.33) with

b− s = εs/(1− ε), which yields the sampling probability

pt ≥ min

{
(2(α + 1) logn)1/(2H)

(ε|St|)1/H
· α log n, 1

}

.

Chapter 3: Continuous distributed counting for non-monotonic streams 169

The right-hand side is increasing with H , hence it suffices to set the sampling prob-

ability such that equality holds in the last relation with H replaced by 1/δ. This is

our sampling probability defined in (3.30).

Finally, we bound the error probability. We showed that Pr[Vt < Ut | St ∈

[s, s+ ds)] ≤ 3/nα, for every real value s and 1 ≤ t ≤ n. Hence,

Pr[En > 0] ≤
∑

t≤n
E[Rt] · O(1/nα) = O(n1−H−α/ε · log1/2+1/δ).

Hence, no error occurs with probability at least 1− 1/n, for any α > 2−H .

Multiple sites. Finally, we look at the case with multiple sites. Let the sampling

probability be as in (3.30) but with constant γα,δ redefined as follows αδ = 9 ·2δ/2(c+

1)1+δ/2, for any c > 3/2. Using the same coupling argument as in Theorem 3.3.5, we

have the following corollary.

Corollary 3.3.16. The randomized algorithm Non-monotonic Counter, with the

sampling probability given in (3.1), guarantees to track the count across k sites within

the relative accuracy ε > 0 with probability 1−O(1/n) for every 1/2 ≤ H ≤ 1/δ, where

1 < δ ≤ 2, and uses the total expected communication of Õ(n1−Hk
3−δ
2 /ε) messages.

Proof of Corollary 3.3.16. We can use exactly the same coupling argument as in The-

orem 3.3.3. The only difference is in calculating the communication costs at differ-

ent stages, expressed in (3.11). The communication in the straightforward stage is

Õ(n1−H√kε). To analyze the broadcast stage, let us write the sampling probability

in (3.30) as pt = max{ν/|St|δ, 1} with ν = (9 · 2δ/2(c+1)1+δ/2)1/δ/(ε/
√
k) (we use the

same re-scaling of the parameter ε to ε/
√
k as in the proof of Theorem 3.3.5). Notice

that ν1/δ <
√
k/(ε
√
1 + ε), and hence the probability of sending a message at time

Chapter 3: Continuous distributed counting for non-monotonic streams 170

t when in broadcast stage is kνE[|St|−δI(|St| >
√
k

ε
√
1−ε)]. From here, using a similar

derivation as in Lemma 3.3.13, we get that the overall expected cost in the broadcast

stage is Õ(n1−Hk
3−δ
2 /ε), which is the dominant cost for our choice of 1 < δ ≤ 2. In the

remainder of this proof we calculate upper bounds on the expected communication

cost.

We start by considering Eq. (3.11). Let us first calculate the expected number

of messages in the straightforward stage. We have

Pr[St ≤
√
k

ε
√
1− ε] = Pr[N ≤

√
k

tHε
√
1− ε] ≤

√

2

π

√
k

tHε
√
1− ε

where N is a standard normal random variable.

Next, we calculate the expected number of messages in the broadcast case. Let

ν = 9(α+1)(2(α+1))δ/2 log1+δ/2 n
εδ

, so the sampling probability is pt = max{ν/|St|δ, 1}.

Notice that ν1/δ ≤
√
k/(ε
√
1 + ε). We then have

kE[Rm,tI(St ≥
√
k

ε
√
1 + ε

)] = kE[max{ν/|St|δ, 1}I(St ≥
√
k

ε
√
1 + ε

)]

= kνE[|St|−δI(|St| >
√
k

ε
√
1− ε)]

= k
ν

tδH
E[

1

N
I(|N | ≥

√
k

ε
√
1− ε

1

tH
)]

≤ k
ν

tδH

√

2

π

1

δ − 1

(√
k

ε
√
1− ε

1

tH

)−δ+1

= Õ

(
1

tH
1

ε
k

3−δ
2

)

.

We see that the broadcast stage is dominant for 1 < δ ≤ 2, and hence the expected

communication cost is Õ(n1−Hk
3−δ
2 /ε).

Chapter 3: Continuous distributed counting for non-monotonic streams 171

3.4 Lower Bounds

In this section, we establish matching lower bounds for the two cases of inputs:

i.i.d. Bernoulli and random permutation. Recall that we denote with Mn the number

of messages exchanged over an input of size n. We are interested in the lower bounds

on the expected number of messages E[Mn] that is necessary to track the value over

an interval of n updates within ε relative accuracy with high probability. We use

sample-path arguments to prove the results.

We start by presenting lower bounds for the single site case, first without and

then with a drift. We then provide our main results that provides a lower bound

parameterized with the number of sites k for the case without drift. We conclude by

giving a lower bound for the case with random permutation input stream.

Theorem 3.4.1. Consider the single site (k = 1) continual count-tracking problem

for an input of n random i.i.d. updates without a drift (Pr[Xi = 1] = Pr[Xi = −1] =

1/2) within relative accuracy ε > 0 with probability at least 1 − O(1/n). Then the

expected number of messages exchanged is Ω(min{√n/ε, n}).

The key idea of the proof is the observation that whenever the value of the counter

is in E = {s ∈ Z : |s| ≤ 1/ε}, the site must report the value to the coordinator as

otherwise an error would occur with a constant probability. The proof then follows

by noting that
∑

t≤n Pr[St ∈ E] = Ω(
√
n/ε).

Proof of Theorem 3.4.1. Let E = {s ∈ Z : |s| ≤ 1/ε}. Our crucial observation here

is that whenever St walks inside the region E we have ε|St| < 1 and no errors are

allowed. Specifically, let It be the indicator random variable that sets to 1 if and

Chapter 3: Continuous distributed counting for non-monotonic streams 172

only if St ∈ E . Notice that E[It] = Pr[St ∈ E] = Ω(|E|/
√
t) = Ω(1/(

√
tε)) and

E[
∑

t≤n It] = Θ(min{√n/ε, n}). On the other hand, our error requirement gives us

Pr[Mn ≥
∑

t≤n It] ≥ 1 − 1/n. We can then derive E[Mn] from E[
∑

t≤n It] using the

following argument. Let A be the subset of the probability space whereMn ≥
∑

t≤n It

and let ¬A be the subset where this does not hold. We have

E[Mn] ≥
∫

A
MndF ≥

∫

A

∑

t≤n
ItdF

= E[
∑

t≤n
It]−

∫

¬A

∑

t≤n
ItdF ≥ E[

∑

t≤n
It]− 1

where the last equality follows from the facts that
∑

t≤n It ≤ n by construction, and

that
∫

¬A dF ≤ 1/n.

The lower bound in Theorem 3.4.1 is established by counting the average number

of visits to the set E , and we can use the same argument to establish a lower bound for

the general case of Bernoulli updates with with an arbitrary drift −1 < µ < 1 (that

is 0 < p < 1). Intuitively, the no drift case should be the worst case with respect to

communication complexity as observed in Chapter 3.3. Also, for any constant µ > 0

we expect to have the lower bound similar to the bound from [61] for a monotonic

counter E[Mn] = Ω(1/ε). It is thus of interest to ask what the lower bound would be

for small but non-zero drift µ = o(1). We have the following result.

Theorem 3.4.2. Consider the single site (k = 1) continual count-tracking with

Bernoulli random walk updates with drift µ = o(1) and relative accuracy param-

eter ε > 0. Suppose ε = ω(1/
√
n) and |µ| = O(ε). Then, for the tracking to

succeed with probability at least 1 − O(1/n), the expected number of messages is

Ω
(

min
{√

n, 1
|µ|

}

· 1
ε

)

.

Chapter 3: Continuous distributed counting for non-monotonic streams 173

The result is in line with the intuition that any non-zero drift may only reduce

the communication complexity, and it matches the bound in [61] for large enough

µ. Our lower bound matches the corresponding upper bound result (presented in

Theorem 3.3.4) up to poly-logarithmic factors.

Proof of Theorem 3.4.2. The proof is by direct analysis of the probability of event

St ∈ E = {s ∈ Z : |s| ≤ 1/ε}, where the distribution of St is given by

Pr[St = s] =

(
t

t+s
2

)

p
t+s
2 (1− p) t−s

2 .

We remark that in the proof it is implicitly assumed that p, µ and ε are sequences

indexed with n, but we omit to make this explicit in the notation for simplicity of

presentation.

For convenience, we introduce the notation σ2 = Var[X1] = 4p(1 − p) and let

ρ =
√

p
1−p . We then have

Pr[St = s] = σt 1

2t

(
t

t+s
2

)

ρs.

Since 1
2t

(
t

t+s
2

)
=
√

2
π

1√
t
for s = o(

√
t), we have

Pr[St = s] =

√

2

π

1√
t
σtρs · [1 + o(1)], for s = o(

√
t).

In order to simplify the notation and with a slight abuse in the remainder of the proof

we omit to write the factor [1 + o(1)].

Let θ0 ≥ 0 and θ1 ≥ 0 be such that |θ0| = o(
√
t) and θ1 = o(

√
t) and consider

Pr[St ∈ [−θ0, θ1]], for t = 1, 2, . . . , n. For 1/2 < p < 1 and s = o(
√
t), we have

Pr[St ∈ [−θ0, θ1]] =
√

2

π

1√
t
σt

θ1∑

s=−θ0

ρs

=

√

2

π

1√
t
σt

(
ρθ1+1 − 1 + ρθ0+1 − 1

ρ− 1
− 1

)

.

Chapter 3: Continuous distributed counting for non-monotonic streams 174

Let En[−θ0, θ1] denote the number of visits of the set [−θ0, θ1] by the counter St

and let τn = ω(max{θ0, θ1}). Then, note

E[En[−θ0, θ1]] ≥
n∑

t=τn

Pr[St ∈ [−θ0, θ1]] =
(
ρθ1+1 − 1 + ρθ0+1 − 1

ρ− 1
− 1

)

·
√

2

π

n∑

t=τn

1√
t
σt.

Notice that for every c > 0,

n∑

t=τn

1√
t
e−ct =

∫ n

τn

1√
t
e−ctdt ≥

∫ 2
√
n

2
√
τn

e−
c
4
u2

du = 2

√
π

c
[Φ(
√
2cn)− Φ(

√
2cτn)]

where Φ is the distribution of a standard normal random variable.

Therefore,

E[En[−θ0, θ1]] ≥
4anbn

log1/2(1
σ2)

(3.34)

where

an =
ρθ1+1 − 1 + ρθ0+1 − 1

ρ− 1
− 1

bn = Φ(log1/2(
1

σ2
)
√
n)− Φ(log1/2(

1

σ2
)
√
τn).

Now, we consider the case of a small but non-zero drift µ = p − (1 − p) = o(1)

and θ0 = θ1 = 1/ε where 1/ε is a positive integer. We will assume that τn = o(n) and

τn = ω(1/ε2), thus ε = ω(1/
√
n).

It is straightforward to show that the following asymptotes hold:

ρ = 1 + µ+O(µ2)

ρ− 1 = µ+O(µ2)

σ2 = 1− µ2

log(
1

σ2
) = µ2 +O(µ3)

Chapter 3: Continuous distributed counting for non-monotonic streams 175

For the term an, it holds

an = 2
ρ

1
ε
+1 − 1

ρ− 1
− 1 =

2

µ
(e

µ
ε − 1) · [1 + o(1)].

Hence, an = Θ(1/µ), for µ = O(ε). Notice that for the case ε = o(µ), an grows

as Ω(eµ/ε).

For the term bn, we observe

bn = Φ(log1/2(
1

σ2
)
√
n)− Φ(log1/2(

1

σ2
)
√
τn)

= [Φ(µ
√
n)− Φ(µ

√
τn)] · [1 + o(1)]

and is easy to derive that bn = Θ(1), for µ = O(1/
√
n) and bn = Θ(µ

√
n) for

µ = o(1/
√
n). Indeed, these are easy to derive from the above asymptotes and the

facts Φ(µ
√
n)−Φ(µ√τn) = 1−1/2 = 1/2 for µ = ω(1/

√
n) and Φ(µ

√
n)−Φ(µ√τn) ≥

1√
2π
e−

µ2n
2 µ(
√
n−√τn).

The assertion of the theorem follows by plugging the derived asymptotes for an,

bn and log1/2(1/σ2)) = µ[1 + o(1)] into (3.34).

We now move to the main result of this section which provides a lower bound

that is parameterized with the number of sites k. We consider only the non-drift

case, as this is used to establish the lower bound for the permutation model. While

the proof for k = 1 case essentially only needs to exploit the structure of a simple

random walk, here we need to carefully integrate techniques from communication

complexity theory with the structure of random walks. The main step is a reduction

to a query problem (Lemma 3.4.4) that at a time instance asks whether the sum of

updates over all k sites is larger than or equal to a Θ(
√
k) threshold, which requires

Chapter 3: Continuous distributed counting for non-monotonic streams 176

Ω(k) communication to guarantee a sufficiently low probability of error; otherwise,

the overall error probability does not satisfy the requirements.

We start our analysis by introducing a building block for communication com-

plexity.

Definition 3.4.3 (Tracking k inputs). Let c be a constant. Consider the following

functional monitoring problem: let X1, X2, . . ., Xk be i.i.d. variables from {−1, 1}

such that Pr[Xi = −1] = Pr[Xi = 1] = 1/2 that arrive uniformly to each of the sites

(i.e. each site receives exactly one update). Upon the arrival of the last update, we

require the coordinator to

• be able to tell whether the sum is positive or negative if |∑i≤kXi| ≥ c
√
k.

• do anything (i.e. no requirement) when |∑i≤kXi| < c
√
k.

We have the following lemma.

Lemma 3.4.4. Solving the tracking k inputs problem with probability 1 − c0 (w.r.t.

both the protocol and the input) for some constant c0 requires Θ(k) communication.

Proof of Lemma 3.4.4. Our proof follows that of Lemma 2.2 in [61]. Here, we only

need to argue that the communication lower bound still holds for a two round deter-

ministic protocol such that

• in the first round, a subset of sites report their individual values to the coordi-

nator;

• in the second round, the coordinator probes a subset of sites to make the deci-

sion.

Chapter 3: Continuous distributed counting for non-monotonic streams 177

The lemma follows in view of the fact that a randomized protocol can be seen as

a distribution over a set of deterministic algorithms. It suffices to consider the case

where o(k) messages are sent in the first round, as otherwise we are done with the

proof. This essentially reduces the communication complexity problem to a known

sampling complexity problem [61]. The only remaining obstacle here is that the input

distribution under our consideration is not exactly the same as the one studied in [61].

Therefore, we need to re-establish the sampling lower bound in our setting, which is

provided in the remainder of this section.

Let k′ = Θ(k) be the number of sites that have not sent any messages in the first

round, and without loss of generality, assume that these sites are 1, 2, . . . , k′. Since

the number of messages sent in the first round is o(k), in the second round, we need

to solve a problem that is at least as hard as the following one:

• answer whether the sum
∑

i≤kXi is positive or negative, if |∑i≤k′ Xi| ≥ c
√
k′;

• do anything (i.e. no requirement) when |∑i≤k′ Xi| < c
√
k′

where c is a positive constant.

Let us denote with z the number of sites that are sampled by the coordinator

in the second round, and without loss of generality, let us assume that these sites

are 1, 2, . . . , z. To contradict, let us suppose z = o(k′). Let N =
∑

i≤zXi be the

cumulative update value of the sampled sites and U =
∑

z<i≤k′ Xi be the cumulative

update value of the unsampled sites. Clearly, the optimal detection algorithm for

the sampling problem is to declare
∑

i≤k′ Xi > c
√
k′ if N > 0, to declare

∑

i≤k′ Xi <

−c
√
k′ if N < 0 and to declare either (with probability 1/2) if N = 0. The probability

Chapter 3: Continuous distributed counting for non-monotonic streams 178

of error is then

Pr[error] ≥ Pr[N < 0, N + U ≥ c
√
k′]

≥ Pr[−c√z ≤ N < 0] Pr[U ≥ c(
√
k′ +
√
z)].

Since N is a sum of independent and identically distributed random variables of

mean zero and variance 1, we have E[N] = 0 and Var[N] = z, and thus Pr[−c√z ≤

N < 0] = Θ(1). Similarly, since U is a sum of independent and identically random

variables of mean zero and variance 1, we have E[U] = 0 and Var[U] = k′ − z, and

under our assumption z = o(k′), it holds c(
√
k′ +

√
z) = c

√
k′ − z · [1 + o(1)] =

cVar[U] · [1+ o(1)], and thus Pr[U ≥ c(
√
k′+
√
z)] = Θ(1). Therefore, the probability

of error is Ω(1) which contradicts the error requirement, for sufficiently small constant

c0 in the statement of the lemma.

We are now ready to present our main lower bound theorem for the k-site case.

Theorem 3.4.5. For the case of k < n sites, the expected amount of communicated

messages to guarantee relative accuracy ε > 0 with probability at least 1 − O(1/n) is

Ω(min{
√
kn/ε, n}).

Here, again our lower bound matches the corresponding upper bound presented

in Theorem 3.3.5. The intuition behind the result is as follows. We chop the stream

into phases of k updates each, where each site gets exactly one update per phase. If

the counter value St is in between −
√
k/ε and

√
k/ε, we show that our problem is

equivalent to the tracking of k input problems, and Θ(k) messages need to be sent

Chapter 3: Continuous distributed counting for non-monotonic streams 179

to guarantee correctness. Summing the expected number of visits of the counter to

these states, we obtain the lower bound.

Proof of Theorem 3.4.5. We partition the updates into n/k phases, each of which

consists of k updates. In each phase, the k updates are randomly matched to k

sites (so that each site receives exactly one update). Let Ij be an indicator random

variable that sets to 1 when, at the beginning of the jth phase, the sum is in the

interval [−aj,k,ε, aj,k,ε] where aj,k,ε , min{
√
k/ε,
√
jk}. Notice that when the sum is

in the interval [−aj,k,ε, aj,k,ε], the additive error we can tolerate is at most ε
√
k/ε =

√
k.

Therefore, at the end of the jth stage, the tracking algorithm has to be able to tell

whether the absolute value of j-th phase’s sum is below −
√
k, above

√
k, or in between

the two. This is at least as difficult as the tracking k inputs problem we studied above,

with Θ(k) communication lower bound.

LetMn be the total number of messages exchanged between the coordinator and

the sites. Our correctness requirement gives us Pr[Mn ≥ Ω(k
∑

i≤n/k Ii)] ≥ 1 − 1/n.

Using the fact that E[
∑

i Ii] = min{
√

n/(εk), n/k}, and following similar arguments

as in the proof of Theorem 3.4.1, we get Ω(min{
√
kn/ε, n}).

Random Permutation. Finally, we have the following corollary providing a lower

bound on the communication complexity for randomly permuted input stream.

Corollary 3.4.6. The expected total communication in presence of a randomly per-

muted adversarial input, with −1 ≤ at ≤ 1 for all 1 ≤ t ≤ n, is at least Ω(
√
kn/ε)

messages.

Chapter 3: Continuous distributed counting for non-monotonic streams 180

Proof of Corollary 3.4.6. Consider an adversary that select each input a′t randomly

such that Pr[a′t = 1] = Pr[a′t = −1] = 1/2. Then the process (at) obtained by

randomly permuting (a′t) is also a sequence of Bernoulli variables, and from Theo-

rem 3.4.5 we know that E[Mn] ≥ Ω(
√
kn/ε). Clearly, using an averaging argument,

there is at least one deterministic sequence a′t that, randomly permuted, requires on

average Ω(
√
kn/ε) messages. This proves the claim.

3.5 Applications

3.5.1 Tracking the Second Frequency Moment

We now apply our distributed counter algorithms for continuously tracking sec-

ond frequency moment of the randomly ordered stream. Let us recall the F2 problem.

The input stream consists of a1, a2, ..., an, where at = (αt, zt), αt are all items from

the universe [m], and zt ∈ {−1, 1} for all t ≤ n. Denote with mi(t) =
∑

s≤t:αs=i zs the

sum of elements of type i in the stream at time t. Here, we allow the count mi(t) to be

non-monotonic in t (i.e. allow decrements of the counts). Our goal is to continuously

track the second moment of the stream, i.e. F2(t) =
∑

i≤mm
2
i (t), at the coordinator.

We shall refer to this problem as monitoring F2(t) with decrements.

Next, we review the fast AMS sketching algorithm for this problem (see [32] and

references therein). Consider a set of counters (Si,j)i≤I,j≤J whose values at the t-th

update are Sij(t), and set Sij(0) = 0. Let gj : [m] → {−1, 1} and hj : [m] → J

(for j ≤ I) be two sets of 4-wise independent hash functions. Upon receiving the

t-th item (αt, zt), we add zt · gj(αt) to all (Sj,hj(αt)(t))j≤I . When I = O(log 1/δ) and

Chapter 3: Continuous distributed counting for non-monotonic streams 181

J = O(1/ε2), we are able to recover F2 with ε-relative guarantee with prob. 1− δ for

a specific t. We can then execute log n copies of the fast AMS sketches in parallel to

make sure our estimator is correct for all updates.

An important property of fast AMS sketching is that it updates only O(log(1/δ)+

log n) = Õ(1) counters after each update. Let ni =
∑

s≤n 1I{αs = i} be the number of

occurencies of item i in the stream until time t. Clearly,
∑

i∈[m] ni = n. Further, let

Ñij = {k ∈ [m] : hj(k) = i} be the set of items that map to the counter Sij. Tracking

counter Sij in randomly ordered stream takes Õ(
√

k
∑

k∈Ñij
nk/ε) communication.

Summing over all counter, and using Jensen inequality, we get that the expected

total number of communicated messages is Õ(
√
kn/ε2). We also remark that the

lower bound Ω(
√
kn/ε) for counter in randomly ordered stream is also a lower bound

for F2(·) for randomly ordered streams. We may summarize the upper bound and the

lower bound results in the following corollary.

Corollary 3.5.1. The communication lower bound for tracking the frequency moment

F2(t) with decrements in randomly ordered stream is Ω(min{
√
kn/ε, n}). There exists

a randomized algorithm for tracking F2(t) using the total expected communication of

Õ(
√
kn/ε2) messages.

3.5.2 Bayesian Linear Regression

We next describe another application of a distributed non-monotonic counter in

tracking the posterior of the coefficients in a Bayesian linear regression. Recall the

Bayesian linear regression problem (c.f. [14]): assume we are given a set of training

data (x1, y1), (x2, y2), . . . , (xn, yn), where xi is a row-vector xi ∈ Rd and yi ∈ R. We

Chapter 3: Continuous distributed counting for non-monotonic streams 182

are interested in carrying out a linear regression over this data, i.e. finding a w ∈ Rd

such that y = wT ·x best fits the training data {(xt, yt)}t≤n. Furthermore, we impose

an initial prior knowledge over the vector w0, and in particular we assume that it

follows a multivariate Gaussian distribution w0 ∼ N (m0, S0). Our goal is to maintain

a posterior belief over wt, as the training data {(xt, yt)}t≤n arrives.

In the distributed functional monitoring setting, the training data {(xt, yt)}t≤n

arrives at different sites in a streaming fashion and the coordinator has to continuously

track an approximate estimate of the mean mt and the variance St of wt. We assume

that the training data is an arbitrary bounded sequence selected by an adversary, and

randomly permuted, as in the random permutation model.

We next describe how we may use O(d2) counters to track the posterior belief.

Let At be an t × d matrix so that the i-th column of At is xi. Also, denote with

yt ∈ Rt a vector whose i-th component is yi. Furthermore, let β be the inverse of

the variance of the noise variable in the model, i.e., yt = wT · At + N (0, β−1). The

value of β is usually assumed to be a known parameter (see Bishop [14] for a detailed

description of the model). It turns out that the posterior of w is also a Gaussian

distribution with mean mt and variance St, where

mt = St(S
−1
0 m0 + βAT

t yt)

S−1t = S−10 + βAT
t At.

(3.35)

The inverse of S−1t at time t is also referred as the precision matrix. Observe that

tracking the precision matrix S−1t as well as the vector AT
t y suffices to recover the

posterior structure of w. Our specific goal here is to continuously track S−1t and AT
t yt

by using our counter algorithm.

Chapter 3: Continuous distributed counting for non-monotonic streams 183

Upon the arrival of the t+ 1-st update, we have

S−1t+1 = S−1t + β xTt+1xt+1
︸ ︷︷ ︸

outer product of xt+1

and AT
t+1yt+1 = AT

t yt + (yt+1 × (xt+1)1, yt+1 × (xt+1)2, . . . , yt+1 × (xt+1)d)
T .

Therefore, to track S−1t ∈ Rd×d, it suffices to keep d2 counters {Ci,j}i,j≤d such that

upon the arrival of the t-th training data, Ci,j ← Ci,j +β(xt)i(xt)j. Similarly, we may

keep another d copies of counters {Di}i≤d to track AT
t yt, where Di ← Di+yt×(xt)i at

the t-th update. Notice that here our algorithm can guarantee each entry in S−1t and

AT
t y has at most ε-relative error. The actual error of our estimate for mt, however,

also depends on how sensitive of the precision matrix’s inverse is when it is perturbed.

The total communication complexity using this algorithm thus is Õ(
√
knd2/ε),

being sublinear in the size of training data for a wide range of parameters.

3.6 Geometric Progression Search for µ

Recall that in our algorithm, we need a protocol that continuously search for an

estimate µ̂ such that µ̂ ∈ [(1− ε)µ, (1 + ε)µ], where ε is given input parameter. This

protocol also guarantees that µ̂ is found before time Θ(log n/µ2).

We now describe the implementation of the protocol. In the protocol, we define

a geometric progression sequence {`i}i≥0 such that `i = (1 − ε)i, for i ≥ 0. Our

algorithm progressively tests whether µ ≤ `i for i ≥ 0. When we find an `i such

that µ ≥ `i, we only need Õ(1/µ2) = Õ(1/`2i) samples to estimate µ (here Õ(·) hides

polylogarithmic dependencies on n).

To decide whether µ ≤ `i, the coordinator will probe all the sites at time t =

Chapter 3: Continuous distributed counting for non-monotonic streams 184

Θ(logn/`2i) (recall that we maintain a HYZ counter to track the total number of

updates). When µ < `i, we have Pr[St ≥ `i+1 · t] = O(1/n3) by a Chernoff bound.

When µ ≥ `i, we then can move to estimate µ, specifically, our estimator is µ̂ = St/t

and we have Pr[µ̂ /∈ [(1− ε)µ, (1 + ε)µ]] = O(1/n3). One may see that we are able to

find an estimate of µ before time Θ(log n/µ2) using such a process.

Notice that the sampled data are reused in our search process. Therefore, the

error events are correlated. But since the length of the data stream is n, we may

use a union bound to conclude that the probability we make at least one error in

the search process is O(1/n2). Finally, our search ends before we reach `i = Θ̃(1/n),

which means the total number of communication is Õ(k).

Chapter 4

Revisiting Chernoff-Hoeffding

Bounds for Markov Chains

4.1 Background

In this chapter, we establish large deviation bounds for random walks on general

(irreversible) finite state Markov chains based on mixing properties of the chain in

both discrete and continuous time settings. To introduce our results we focus on the

discrete time setting, which we now describe.

LetM be an ergodic Markov chain with finite state space V = [n] and stationary

distribution π. Let (v1, . . . , vt) denote a t-step random walk on M starting from a

distribution ϕ on V . For every i ∈ [t], let fi : V → [0, 1] be a weight function at step

i so that Ev←π[fi(v)] = µ > 0 for all i. Define the total weight of the walk (v1, . . . , vt)

by X ,
∑t

i=1 fi(vi). The expected total weight of the random walk (v1, . . . , vt) is

E[1
t
X] ≈ µ as t→∞.

185

Chapter 4: Revisiting Chernoff-Hoeffding Bounds for Markov Chains 186

When the vi’s are drawn independently according to the stationary distribution

π, a standard Chernoff-Hoeffding bound says that

Pr [|X − µt| ≥ δµt] ≤

e−Ω(δ
2µt) for 0 ≤ δ ≤ 1,

e−Ω(δµt) for δ > 1.

However, when (v1, . . . , vt) is a random walk on a Markov chain M , it is known that

the concentration bounds depend inherently on the mixing properties of M , that is

the speed at which a random walk converges toward its stationary distribution.

Variants of Chernoff-Hoeffding bounds for random walk on Markov chains have

been studied in several fields with various motivations [48,55,67,75,79,106,108]. For

instance, these bounds are linked to the performance of Markov chain Monte Carlo

integration techniques [64,75]. They have also been applied to various online learning

problem [103], testing properties of a given graph [49], leader election problems [67],

analyzing the structure of the social networks [9,85], understanding the performance

of data structures [45], and computational complexity [55]. Improving such bounds

is therefore of general interest.

We improve on previous work in two ways. First, all the existing deviation

bounds, as far as we know, are based on the spectral expansion λ(M) of the chain

M . This spectral expansion λ(M) characterizes how much M can stretch vectors in

Rn under a normed space defined by the stationary distribution π, which coincides

with the second largest absolute eigenvalue of M when M is reversible. (A formal

definition is deferred to Chapter 4.2.) The most general result for Markov chains in

Chapter 4: Revisiting Chernoff-Hoeffding Bounds for Markov Chains 187

this form (see, e.g. [79, 106]) is

Pr [|X − µt| ≥ δµt] ≤

‖ϕ‖πe−Ω((1−λ)δ
2µt) for 0 ≤ δ ≤ 1,

‖ϕ‖πe−Ω((1−λ)δµt) for δ > 1.

(4.1)

where ϕ is an arbitrary initial distribution and ‖ · ‖π is the π-norm (which we define

formally later).

However, for general irreversible Markov chains, the spectral expansion λ does

not directly characterize the mixing time of a chain and thus may not be a suitable

parameter for such bounds. A Markov chainM could mix rapidly, but have a spectral

expansion λ close to 1, in which case Eq. (4.1) does not yield meaningful bound. In

fact there is a way to modify any given Markov chain M so that the modified Markov

chainM ′ has (asymptotically) the same mixing-time asM , but the spectral expansion

of M ′ equals 1 (Chapter 4.4 gives a detailed construction). It is therefore natural to

seek a Chernoff-type bound for Markov chains directly parameterized by the chain’s

mixing time T .

Second, most previous analyses for deviation bounds such as Eq. (4.1) are based

on non-elementary methods such as perturbation theory [48,75,79,108]. Kahale [67]

and Healy [55] provided two elementary proofs for reversible chains, but their results

yield weaker bounds than those in Eq. (4.1). Recently, Wagner [106] provided another

elementary proof for reversible chains matching the form in Eq. (4.1). Together with

the technique of “reversiblization” [43, 79], Wagner’s analysis can be generalized to

irreversible chains. However, his use of decoupling on the linear projections outright

arguably leads to a loss of insight; here we provide an approach based on directly

tracing the corresponding sequence of linear projections, in the spirit of [55]. This

Chapter 4: Revisiting Chernoff-Hoeffding Bounds for Markov Chains 188

more elementary approach allows us to tackle both reversible and irreversible chains

in a unified manner that avoids the use of “reversiblization”.

As we describe below, we prove a Chernoff-type bound for general irreversible

Markov chains with general weight functions fi based on the standard L1 (variation

distance) mixing time of the chain, using elementary techniques based on extending

ideas from [55]. The exponents of our bounds are tight up to a constant factor. As

far as we know, this is the first result that shows that the mixing time is sufficient to

yield these types of concentration bounds for random walks on Markov chains. Along

the way we provide a unified proof for (4.1) for both reversible and irreversible chains

based only on elementary analysis. This proof may be of interest in its own right.

4.2 Preliminaries

Throughout this Chapter we shall refer M as the discrete time Markov chain

under consideration. Depending on the context, M shall be interpreted as either the

chain itself or the corresponding transition matrix (i.e. it is an n by n matrix such

that Mi,j represents the probability a walk at state i will move to state j in the next

step). For the continuous time counterpart, we write Λ as the generator of the chain

and let M(t) = etΛ, which represents the transition probability matrix from t0 to

t0 + t for an arbitrary t0.

Let u and w be two distributions over the state space V. The total variation

distance between u and w is ‖u−w‖TV = maxA⊆V
∣
∣
∑

i∈A ui −
∑

i∈A wi

∣
∣ = 1

2
||u−w||1.

Let ε > 0. The mixing time of a discrete time Markov chain M is T (ε) =

min {t : maxx ‖xM t − π‖TV ≤ ε}, where x is an arbitrary initial distribution. The

Chapter 4: Revisiting Chernoff-Hoeffding Bounds for Markov Chains 189

mixing time of a continuous time Markov chain specified by the generator Λ is T (ε) =

min {t : maxx ‖xM(t)− π‖TV ≤ ε}, where M(t) = eΛt.

We next define an inner product space specified by the stationary distribution π:

Definition 4.2.1 (Inner product under π-kernel). Let M be an ergodic Markov chain

with state space [n] and π be its stationary distribution. Let u and v be two vectors

in Rn. The inner product under the π-kernel is 〈u, v〉π =
∑

x∈[n]
uivi
π(i)

.

We may verify that 〈·, ·〉π indeed forms an inner product space by checking it is

symmetric, linear in the first argument, and positive definite. The π-norm of a vector

u in Rn is ‖u‖π =
√

〈u, u〉π. Note that ‖π‖π = 1. For a vector x ∈ Rn, we write

x‖ = 〈x, π〉ππ for its component along the direction of π and x⊥ = x − x‖ for its

component perpendicular to π.

We next define the spectral norm of a transition matrix.

Definition 4.2.2 (Spectral norm). Let M the transition matrix of an ergodic Markov

chain. Define the spectral norm of M as λ(M) = max〈x,π〉π=0
‖xM‖π
‖x‖π .

When M is clear from the context, we shall simply write λ for λ(M). We shall

also refer 1−λ(M) as the spectral gap of the chainM . In the case whenM is reversible,

λ(M) coincides with the second largest eigenvalue of M (the largest eigenvalue of M

is always 1). However, when M is irreversible, such relation does not hold (one hint

to realize that the eigenvalues of M for an irreversible chain can be complex, and the

notion of being the second largest may not even be well defined). Nevertheless, we

can still connect λ(M) with an eigenvalue of a matrix related to M . Specifically, let

M̃ be the time reversal ofM : M̃(x, y) = π(y)M(y,x)
π(x)

. The multiplicative reversiblization

Chapter 4: Revisiting Chernoff-Hoeffding Bounds for Markov Chains 190

R(M) of M is R(M) ≡ MM̃. The value of λ(M) then coincides with the square root

of the second largest eigenvalue of R(M), i.e. λ(M) =
√

λ(R(M)). Finally, notice

that the stationary distribution of M , M̃ , and R are all the same. These facts can

be found in [43].

4.3 Chernoff-Hoeffding Bounds for Discrete Time

Markov Chains

We now present our main result formally.

Theorem 4.3.1. Let M be an ergodic Markov chain with state space [n] and station-

ary distribution π. Let T = T (ε) be its ε-mixing time for ε ≤ 1/8. Let (V1, . . . , Vt)

denote a t-step random walk on M starting from an initial distribution ϕ on [n], i.e.,

V1 ← ϕ. For every i ∈ [t], let fi : [n] → [0, 1] be a weight function at step i such

that the expected weight Ev←π[fi(v)] = µ for all i. Define the total weight of the walk

(V1, . . . , Vt) by X ,
∑t

i=1 fi(Vi). There exists some constant c (which is independent

of µ, δ and ε) such that

1. Pr[X ≥ (1 + δ)µt] ≤

c‖ϕ‖π exp
(
−δ2µt/(72T)

)
for 0 ≤ δ ≤ 1

c‖ϕ‖π exp (−δµt/(72T)) for δ > 1

2. Pr[X ≤ (1− δ)µt] ≤ c‖ϕ‖π exp
(
−δ2µt/(72T)

)
for 0 ≤ δ ≤ 1

Before we continue our analysis, we remark on some aspects of the result.

Optimality of the bound The bound given in Theorem 4.3.1 is optimal among

all bounds based on the mixing time of the Markov chain, in the sense that for any

Chapter 4: Revisiting Chernoff-Hoeffding Bounds for Markov Chains 191

given T and constant ε, one can find a δ, a family of functions {fi : V → [0, 1]}, and

a Markov chain with mixing time T (ε) = T that has deviation probabilities matching

the exponents displayed in Theorem 4.3.1, up to a constant factor. In this regard,

the form of our dependency on T is tight for constant ε. For example, consider the

following Markov chain:

• The chain consists of 2 states s1 and s2.

• At any time step, with probability p the random walk jumps to the other state

and with probability 1 − p it stays in its current state, where p is determined

below.

• for all fi, we have fi(s1) = 1 and fi(s2) = 0.

Notice that the stationary distribution is uniform and T (ε) = Θ(1/p) when ε is a

constant. Thus, we shall set p = Θ(1/T) so that the mixing-time T (ε) = T . Let us

consider a walk starting from s1 for sufficiently large length t. The probability that

the walk stays entirely in s1 up to time t is (1− p)t ≈ e−tp = exp(−Θ(t/T)). In other

words, for δ = 1 we have

Pr[X ≥ (1+δ)µt] = Pr[X ≥ t] = Pr[the walk stays entirely in s1] = exp(−Θ(t/T (ε))).

This matches the first bound in Theorem 4.3.1 asymptotically, up to a constant

factor in the exponent. The second bound can be matched similarly by switching

the values of fi(·) on s1 and s2. Finally, we remark that this example only works for

ε = Ω(1), which is how mixing times appear in the usual contexts. It remains open,

though, whether our bounds are still optimal when ε = o(1).

Chapter 4: Revisiting Chernoff-Hoeffding Bounds for Markov Chains 192

Dependency on the threshold ε of the mixing time Note that the dependence

of ε only lies on T (ε). Since T (ε) is non-decreasing in ε, it is obvious that ε =

1/8 gives the best bound in the setting of Theorem 4.3.1. In fact, a more general

form of our bound, as will be seen along our derivation later, replaces 1/72 in the

exponent by a factor (1 −
√
2ε)/36. Hence the optimal choice of ε is the maximizer

of (1 −
√
2ε)/T (ε) (with ε < 1/2), which differs for different Markov chains. Such

formulation seems to offer incremental improvement and so we choose to focus on the

form in Theorem 4.3.1.

Comparison with spectral expansion based Chernoff bound The bound

given in Theorem 4.3.1 is not always stronger than spectral expansion based Cher-

noff bounds (4.1) that is presented in, for example, Lezaud [79] and Wagner [106].

Consider, for instance, a random constant degree regular graph G. One can see that

the spectral gap of the Markov chain induced by a random walk over G is a con-

stant with high probability. On the other hand, the mixing time of the chain is at

least Ω(log n) because the diameter of a constant degree graph is at least Ω(log n).

Lezaud [79] or Wagner [106] gives us a concentration bound Pr[X ≥ (1 + ε)µt] ≤

c‖ϕ‖π exp (−Θ(δ2µt)) when δ < 1 while Theorem 4.3.1 gives us Pr[X ≥ (1 + ε)µt] ≤

c‖ϕ‖π exp (−Θ(δ2µt/(log n))).

Comparison with a union bound Assuming the spectral expansion based Cher-

noff bound in Lezaud [79] and Wagner [106], there is a simpler analysis to yield a

mixing time based bound in a similar but weaker form than Theorem 4.3.1: we first

divide the random walk (V1, ..., Vt) into T (ε) groups for a sufficiently small ε such that

the ith group consists of the sub-walk Vi, Vi+T (ε), Vi+2T (ε), The walk in each group

Chapter 4: Revisiting Chernoff-Hoeffding Bounds for Markov Chains 193

is then governed by the Markov chainMT (ε). This Markov chain has unit mixing time

and as a result, its spectral expansion can be bounded by a constant (by using our

Claim 4.3.1 below). Together with a union bound across different groups, we obtain

1. Pr[X ≥ (1 + δ)µt] ≤

cT‖ϕ‖π exp
(
−δ2µt/(72T)

)
for 0 ≤ δ ≤ 1

cT‖ϕ‖π exp (−δµt/(72T)) for δ > 1

2. Pr[X ≤ (1− δ)µt] ≤ cT‖ϕ‖π exp
(
−δ2µt/(72T)

)
for 0 ≤ δ ≤ 1 (4.2)

Theorem 4.3.1 shaves off the extra leading factors of T in these inequalities,

which has significant implications. For example, Eq. (4.2) requires the walk to be at

least Ω(T log T), while our bounds address walk lengths between T and T log T . Our

tighter bound further can become important when we need a tighter polynomial tail

bound.

As a specific example, saving the factor of T becomes significant when we gen-

eralize these bounds to continuous-time chains using the discretization strategy in

Fill [43] and Lezaud [79]. The strategy is to apply known discrete time bound on

the discretized continuous time chain, say in a scale of b units of time, followed by

taking limit as b → 0 to yield the corresponding continuous time bound. Using this

to obtain a continuous analog of Eq. (4.2) does not work, since under the b-scaled

discretization the mixing time becomes T/b, which implies that the leading factor in

Eq. (4.2) goes to infinity in the limit as b→ 0.

We now proceed to prove Theorem 4.3.1.

Proof. (of Theorem 4.3.1) We partition the walk V1, ..., Vt into T = T (ε) subgroups

so that the i-th sub-walk consists of the steps (Vi, Vi+T , ...). These sub-walks can be

Chapter 4: Revisiting Chernoff-Hoeffding Bounds for Markov Chains 194

viewed as generated from Markov chain N ,MT . Also, denote

X(i) ,
∑

0≤j≤t/T
fi+jT (Vi+jT)

as the total weight for each sub-walk and X̄ =
∑T

i=1X
(i)/T as the average total

weight.

Next, we follow Hoeffding’s approach [57] to cope with the correlation among the

X(i). To start,

Pr[X ≥ (1 + δ)µt] = Pr

[

X̄ ≥ (1 + δ)
µt

T

]

≤ E[erX̄]

er(1+δ)µt/T
. (4.3)

Now noting that exp(·) is a convex function, we use Jensen’s inequality to obtain

E[erX̄] ≤
∑

i≤T

1

T
E[erX

(i)
]. (4.4)

We shall focus on giving an upper bound on E[erX
(i)
]. This requires two steps:

• First, we show the chain N has a constant spectral gap based on the fact that

it takes one step to mix.

• Second, we appy a bound on the moment generating function of X(k) using its

spectral expansion.

Specifically, we shall prove the following claims, whose proofs will be deferred to later

part of this Chapter.

Claim 4.3.1. Let M be a general ergodic Markov chain with ε-mixing time T (ε). We

have λ(MT (ε)) ≤
√
2ε.

Chapter 4: Revisiting Chernoff-Hoeffding Bounds for Markov Chains 195

Claim 4.3.2. Let M be an ergodic Markov chain with state space [n], stationary

distribution π, and spectral expansion λ = λ(M). Let (V1, . . . , Vt) denote a t-step

random walk on M starting from an initial distribution ϕ on [n], i.e., V1 ← ϕ. For

every i ∈ [t], let fi : [n] → [0, 1] be a weight function at step i such that the expected

weight Ev←π[fi(v)] = µ for all i. Define the total weight of the walk (V1, . . . , Vt) by

X ,
∑t

i=1 fi(Vi). There exists some constant c and a parameter r > 0 that depends

only on λ and δ such that

1.
E[erX]

er(1+δ)µt
≤

c‖ϕ‖π exp
(
−δ2 (1− λ)µt/36

)
for 0 ≤ δ ≤ 1

c‖ϕ‖π exp (−δ(1− λ)µt/36) for δ > 1.

2.
E[e−rX]

e−r(1−δ)µt
≤ c‖ϕ‖π exp

(
−δ2(1− λ)µt/36

)
for 0 ≤ δ ≤ 1.

Claim 4.3.1 gives a bound on the spectral expansion of each sub-walk X(i), uti-

lizing the fact that they have unit mixing times. Claim 4.3.2 is a spectral version

of Chernoff bounds for Markov chains. As stated previously, while similar results

exist, we provide our own elementary proof of claim 4.3.2, both for completeness and

because it may be of independent interest.

We now continue the proof assuming these two claims. Using Claim 4.3.1, we

know λ(N) ≤ 1
2
. Next, by Claim 4.3.2, for the i-th sub-walk, we have

E[erX
(i)
]

er(1+δ)µt/T
≤

c‖ϕM i‖π exp
(
−δ2µt/(72T)

)
for 0 ≤ δ ≤ 1

c‖ϕM i‖π exp (−δµt/(72T)) for δ > 1

(4.5)

for an appropriately chosen r (which depends only on λ and δ and hence the same for

all i). Note thatM i arises becauseX(i) starts from the distribution ϕM i. On the other

hand, notice that ‖ϕM i‖2π = ‖ϕ‖M i‖2π + ‖ϕ⊥M i‖2π ≤ ‖ϕ‖‖2π + λ2(M i)‖ϕ⊥‖2π ≤ ‖ϕ‖2π
(by using Lemma 4.3.3), or in other words ‖ϕM i‖π ≤ ‖ϕ‖π. Together with (4.3) and

Chapter 4: Revisiting Chernoff-Hoeffding Bounds for Markov Chains 196

(4.4), we obtain

Pr[X ≥ (1 + δ)µt] ≤

c‖ϕ‖π exp
(
−δ2µt/(72T)

)
for 0 ≤ δ ≤ 1

c‖ϕ‖π exp (−δµt/(72T)) for δ > 1

This proves the first half of the theorem. The second case can be proved in a similar

manner, namely that

Pr[X ≤ (1− δ)µt] = Pr

[

X̄ ≤ (1− δ)µt
T

]

≤ E[e−rX̄]

e−r(1−δ)µt/T

≤
T∑

k=1

1

T

E[e−rX
(k)
]

e−r(1−δ)µt/T

≤ c‖ϕ‖π exp
(
−δ2µt/(72T)

)

again by Jensen’s inequality applied to exp(·).

4.3.1 Mixing Time v.s. Spectral Expansion

We next prove Claim 4.3.1. We remark that Sinclair [100] presents a similar

result for reversible Markov chains: for every parameter ε ∈ (0, 1),

1

2

λ(M)

1− λ(M)
log

1

2ε
≤ T (ε), (4.6)

where T (ε) is the ε-mixing-time of M . However, in general it is impossible to get

a bound on λ(M) based on mixing time information for general irreversible chains

because a chain M can have λ(M) = 1 but the ε-mixing-time of M is, say, T (ε) = 2

for some constant ε (and λ(M2)� 1).

Chapter 4: Revisiting Chernoff-Hoeffding Bounds for Markov Chains 197

In light of this issue, our proof of Claim 4.3.1 depends crucially on the fact

that MT (ε) has mixing time 1, which, as we shall see, translates to a bound on its

spectral expansion that holds regardless of reversibility. We need the following result

on reversible Makrov chains, which is stronger result than Eq. (4.6) from [100].

Lemma 4.3.2. Let 0 < ε ≤ 1/2 be a parameter. Let M be an ergodic reversible

Markov chain with ε-mixing time T (ε) and spectral expansion λ(M). It holds that

λ(M) ≤ (2ε)1/T (ε).

We remark that it appears possible to prove Lemma 4.3.2 by adopting an anal-

ysis similar to Aldous’ [2], who addressed the continuous time case. We present an

alternative proof that is arguably simpler; in particular, our proof does not use the

spectral representation theorem as used in [2] and does not involve arguments that

take the number of steps to infinity.

Proof. (of Lemma 4.3.2) Recall that for an ergodic reversible Markov chainM , it holds

that λ(M t) = λt(M) for every t ∈ N. Hence, it suffices to show that λ(MT (ε)) ≤ 2ε.

Also, recall that λ(MT (ε)) is simply the second largest eigenvalue (in absolute value)

of MT (ε). Let v be the corresponding eigenvector, i.e. v satisfies vMT (ε) = λ(MT (ε))v.

Since M is reversible, the entries of v are real-valued. Also, notice that v is a left

eigenvector of M while (1, 1, ..., 1)T is a right eigenvector of M (using the fact that

each row of M sums to one). Furthermore, v and (1, ..., 1)T do not share the same

eigenvalue. So we have 〈v, (1, ..., 1)T 〉 = 0 , i.e.
∑

i vi = 0. Therefore, by scaling v,

we can assume w.l.o.g. that x , v+π is a distribution. We have the following claim.

Claim 4.3.3. Let x be an arbitrary initial distribution. Let M be an ergodic Markov

Chapter 4: Revisiting Chernoff-Hoeffding Bounds for Markov Chains 198

chain with stationary distribution π and mixing time T (ε). We have ‖xMT (ε)−π‖TV ≤

2ε‖x− π‖TV .

Proof. (of Claim 4.3.3) The inequality holds trivially when x = π. Let x 6= π be an

arbitrary distribution on M , δ , ‖x − π‖TV > 0, and y , x − π. We decompose y

into a positive component y+ and a negative component y− by

y+i =

yi if yi ≥ 0

0 o.w.

and y−i =

0 if yi ≥ 0

−yi o.w.

Note that by definition,
∑

i y
+
i =

∑

i y
−
i = δ. We define z+ = y+/δ and z− = y−/δ.

Observe that z+ and z− are distributions. By the definition of ε-mixing time, we have

‖z+MT (ε) − π‖TV ≤ ε, and ‖z−MT (ε) − π‖TV ≤ ε,

or equivalently, ‖z+MT (ε) − π‖1 ≤ 2ε and ‖z−MT (ε) − π‖1 ≤ 2ε. Now, we are ready

to bound the statistical distance ‖xMT (ε) − π‖TV as follows.

‖xMT (ε) − π‖TV = (1/2)‖xMT (ε) − π‖1

= (1/2)‖(x− π)MT (ε)‖1

= (1/2)‖(y+ − y−)MT (ε)‖1

= (1/2)‖δz+MT (ε) − δz−MT (ε)‖1

= (δ/2)‖(z+MT (ε) − π)− (z−MT (ε) − π)‖1

≤ (δ/2)
(
‖(z+MT (ε) − π)‖1 + ‖(z−MT (ε) − π)‖1

)
≤ 2εδ.

We now continue to prove Lemma 4.3.2. By Claim 4.3.3, ‖xMT (ε) − π‖TV ≤

2ε‖x−π‖TV , i.e. ‖xMT (ε)−π‖1 ≤ 2ε‖x−π‖1. Observing that (xMT (ε)−π) and (x−π)

Chapter 4: Revisiting Chernoff-Hoeffding Bounds for Markov Chains 199

are simply λ(MT (ε))v and v, the above inequality means λ(MT (ε))‖v‖1 ≤ 2ε‖v‖1,

which implies λ(MT (ε)) ≤ 2ε, as desired.

We are now ready to prove our main claim.

Proof. (of Claim 4.3.1) The idea is to reduce to the reversible case by considering

the reversiblization of MT (ε). Let M̃T (ε) be the time reversal of MT (ε), and R ,

MT (ε)M̃T (ε) be the reversiblization ofMT (ε). By Claim 4.3.1, λ(MT (ε)) =
√

λ(R). Let

us recall (from Chapter 4.2) that M , MT (ε), and M̃T (ε) all share the same stationary

distribution π. Next, we claim that the ε-mixing-time of R is 1. This is because

‖ϕMT (ε)M̃T (ε) − π‖TV ≤ ‖ϕMT (ε) − π‖TV ≤ ε, where the second inequality uses

the definition of T (ε) and the first inequality holds since any Markov transition is a

contraction mapping: for any Markov transition, say S = (s(i, j)), and any vector

x, ‖xS‖1 =
∑

j |
∑

i xis(i, j)| ≤
∑

j

∑

i |xi|s(i, j) =
∑

i |xi| = ‖x‖1; putting x =

ϕMT (ε)−π and S = M̃T (ε) gives the first inequality. Now, by Lemma 4.3.2, λ(R) ≤ 2ε,

and hence λ(MT (ε)) =
√

λ(R) ≤
√
2ε, as desired.

4.3.2 Bounding the Moment Generating Function

We now prove Claim 4.3.2. We focus on the first inequality in the claim; the

derivation of the second inequality is similar and is deferred to Chapter 4.5.

Claim 4.3.2 leads directly to a spectral version of the Chernoff bound for Markov

chains. Lezaud [79] and Wagner [106] give similar results for the case where fi are the

same for all i. The analysis of [106] in particular can be extended to the case where

the functions fi are different. Here we present an alternative analysis and along the

way will discuss the merit of our approach compared to the previous proofs.

Chapter 4: Revisiting Chernoff-Hoeffding Bounds for Markov Chains 200

Recall that we define X =
∑t

i=1 fi(Vi). We start with the following observation,

which has been used previously [55, 79, 106].

E[erX] = ‖ϕP1MP2...MPt‖1, (4.7)

where the Pi are diagonal matrices with diagonal entries (Pi)j,j , erfi(j) for j ∈ [n].

One can verify this fact by observing that each walk V1, . . . , Vt is assigned the corre-

sponding probability in the product of M ’s with the appropriate weight er
∑

i fi(Vi).

For ease of exposition, let us assume Pi are all the same at this moment. Let

P = P1 = ... = Pt, then (4.7) becomes ‖ϕ(PM)t−1P‖1 = 〈ϕ(PM)t−1P, π〉π =

〈ϕ(PM)t, π〉π = ‖ϕ(PM)t‖1 (see Lemma 4.3.3 below). Up to this point, our analysis

is similar to previous work [48, 55, 79, 106]. Now there are two natural possible ways

of bounding ‖ϕ(PM)t‖1 = 〈ϕ(PM)t, π〉π.

• Approach 1. Bounding the spectral norm of the matrix PM . In this

approach, we observe that 〈ϕ(PM)t, π〉π ≤ ‖ϕ‖π‖PM‖tπ where ‖PM‖π is the

operator norm of the matrix PM induced by ‖ · ‖π (see, for example, the proof

of Theorem 1 in [106]). This method decouples the effect of each PM as well as

the initial distribution. WhenM is reversible, ‖PM‖π can be bounded through

Kato’s spectral perturbation theory [48, 75, 79]. Alternatively, Wagner [106]

tackles the variational description of ‖PM‖π directly, using only elementary

techniques, whose analysis can be generalized to irreversible chains.

• Approach 2. Inductively giving a bound for x(PM)i for all i ≤ t. In

this approach, we do not decouple the product ϕ(PM)t. Instead, we trace

the change of the vector ϕ(PM)i for each i ≤ t. As far as we know, only

Chapter 4: Revisiting Chernoff-Hoeffding Bounds for Markov Chains 201

Healy [55] adopts this approach and his analysis is restricted to regular graphs,

where the stationary distribution is uniform. His analysis also does not require

perturbation theory.

Our proof here generalizes the second approach to any ergodic chains by only

using elementary methods. We believe this analysis is more straightforward for the

following reasons. First, directly tracing the change of the vector ϕ(PM)i for each step

keeps the geometric insight that would otherwise be lost in the decoupling analysis as

in [79,106]. Second, our analysis studies both the reversible and irreversible chains in

a unified manner. We do not use the reversiblization technique to address the case for

irreversible chains. While the reversiblization technique is a powerful tool to translate

an irreversible Markov chain problem into a reversible chain problem, this technique

operates in a blackbox manner; proofs based on this technique do not enable us to

directly measure the effect of the operator PM .

We now continue our analysis by using a framework similar to the one pre-

sented by Healy [55]. We remind the reader that we no longer assume Pi’s are

the same. Also, recall that E[erX] = ‖ϕP1MP2...MPt‖1 = 〈ϕP1MP2...MPt, π〉π =

‖(ϕP1MP2...MPt)
‖‖π. Let us briefly review the strategy from [55].

• First, we observe that an arbitrary vector x in Rn can be decomposed into

its parallel component (with respect to π) x‖ = 〈x, π〉π and the perpendicular

component x⊥ = x − x‖ in the Lπ space. This decomposition helps tracing

the difference (in terms of the norm) between each pair of ϕP1M...PiM and

ϕP1M...Pi+1M for i ≤ t, i.e. two consecutive steps of the random walk. For

this purpose, we need to understand the effects of the linear operators M and

Chapter 4: Revisiting Chernoff-Hoeffding Bounds for Markov Chains 202

Pi when they are applied to an arbitrary vector.

• Second, after we compute the difference between each pair xP1M...PiM and

xP1M...Pi+1M , we set up a recursive relation, the solution of which yields the

Chernoff bound.

We now follow this step step framework to prove Claim 4.3.2

The effects of theM and Pi operators Our way of tracing the vector ϕP1MP2...M

Pt relies on the following two lemmas.

Lemma 4.3.3. (The effect of theM operator) LetM be an ergodic Markov chain

with state space [n], stationary distribution π, and spectral expansion λ = λ(M). Then

1. πM = π.

2. For every vector y with y⊥π, we have yM⊥π and ‖yM‖π ≤ λ‖y‖π.

Lemma 4.3.4. (The effect of the P operator) Let M be an ergodic Markov

chain with state space [n] and stationary distribution π. Let f : [n] → [0, 1] be a

weight function with Ev←π[f(v)] = µ. Let P be a diagonal matrix with diagonal

entries Pj,j , erf(j) for j ∈ [n], where r is a parameter satisfying 0 ≤ r ≤ 1/2. Then

1. ‖(πP)‖‖π ≤ 1 + (er − 1)µ.

2. ‖(πP)⊥‖π ≤ 2r
√
µ.

3. For every vector y⊥π, ‖(yP)‖‖π ≤ 2r
√
µ‖y‖π.

4. For every vector y⊥π, ‖(yP)⊥‖π ≤ er‖y‖π

Chapter 4: Revisiting Chernoff-Hoeffding Bounds for Markov Chains 203

Items 1 and 4 of Lemma 4.3.4 state that P can stretch both the perpendicular

and parallel components along their original directions moderately. Specifically, a

parallel vector is stretched by at most a factor of (1 + (er − 1)µ) ≈ 1 +O(rµ) and a

perpendicular vector is stretched by a factor of at most er ≈ 1 +O(r). (Recall r will

be small.) On the other hand, items 2 and 3 of the lemma state that P can create a

new perpendicular component from a parallel component and vice versa, but the new

component is of a much smaller size compared to the original component (i.e. only

of length at most 2r
√
µ times the original component).

Remark We note that the key improvement of our analysis over that of Healy [55]

stems from items 2 and 3 of Lemma 4.3.4. Healy [55] proved a bound with a factor of

(er−1)/2 = O(r) for both items for the special case of undirected and regular graphs.

Our quantitative improvement to O(r
√
µ) (which is tight) is the key for us to prove

a multiplicative Chernoff bound without any restriction on the spectral expansion of

M .

Note that Lemma 4.3.3 is immediate from the definitions of π and λ. We focus

on the proof of Lemma 4.3.4:

Proof. (of Lemma 4.3.4). For the first item, note that by definition, ‖(πP)‖‖π =

〈πP, π〉π =
∑

i e
rf(i)πi. We simplify the sum using the fact that erx ≤ 1 + (er − 1)x

when r, x ∈ [0, 1].

‖(πP)‖‖π =
∑

i

erf(i)πi ≤
∑

i

(1+(er−1)f(i))πi =
∑

i

πi+(er−1)
∑

i

f(i)πi = 1+(er−1)µ,

where the last equality uses the fact that
∑

i πi = 1, and
∑

i f(i)πi = Ev←π[f(v)] = µ.

Chapter 4: Revisiting Chernoff-Hoeffding Bounds for Markov Chains 204

For the second item, by the Pythagorean theorem , we have

‖(πP)⊥‖2π = ‖πP‖2π − ‖(πP)‖‖2π =
∑

i

e2rf(i)πi −
(
∑

i

erf(i)πi

)2

.

Recall that r ≤ 1/2 and f(i) ≤ 1, and therefore 2rf(i) ≤ 1. Using the fact that

1 + x ≤ ex ≤ 1 + x+ x2 when x ∈ [0, 1], we have

∑

i

e2rf(i)πi −
(
∑

i

erf(i)πi

)2

≤
∑

i

(1 + 2rf(i) + 4r2f 2(i))πi −
(
∑

i

(1 + rf(i))πi

)2

≤ 1 + 2rµ+ 4r2µ− (1 + rµ)2

= 1 + 2rµ+ 4r2µ− (1 + 2rµ+ r2µ2) ≤ 4r2µ,

The second inequality uses the fact that
∑

i f
2(i)π(i) ≤ ∑i f(i)π(i) = µ (since 0 ≤

f(i) ≤ 1). It follows that ‖(πP)⊥‖π ≤
√

4r2µ = 2r
√
µ.

For the third item, by definition, ‖(yP)‖‖π = 〈yP, π〉π. Since P is diagonal,

we have 〈yP, π〉π = 〈y, πP 〉π. By definition, y⊥π means 〈y, π〉π = 0. Therefore,

‖(yP)‖‖π = 〈y, πP 〉π − 〈y, π〉π = 〈y, π(P − I)〉π. By the Cauchy-Schwarz Inequality,

we have 〈y, π(P − I)〉π ≤ ‖y‖π‖π(P − I)‖π.

We proceed to upper bound ‖π(P − I)‖π:

‖π(P − I)‖2π =
∑

i

(πi(e
rf(i) − 1))2/πi =

∑

i

(erf(i) − 1)2πi.

Using erx ≤ 1 + (er − 1)x for r, x ∈ [0, 1], we have
∑

i(e
rf(i) − 1)2πi ≤

∑

i(1 + (er −

1)f(i) − 1)2πi =
∑

i(e
r − 1)2f 2(i)πi ≤ (2r)2

∑

i f(i)πi ≤ (2r)2µ, where the second-

to-last inequality uses the fact that er − 1 ≤ 2r for r ∈ [0, 1] and 0 ≤ f(i) ≤ 1.

Therefore, ‖(yP)‖‖π ≤ ‖π(P − I)‖π‖y‖π ≤ 2r
√
µ‖y‖π.

Chapter 4: Revisiting Chernoff-Hoeffding Bounds for Markov Chains 205

Finally, for the fourth item, we have

‖(yP)⊥‖2π ≤ ‖yP‖2π =
∑

i

y2i e
2rf(i)

πi
≤
∑

i

y2i e
2r

πi
= e2r‖y‖2π,

which implies ‖(yP)⊥‖ ≤ er‖y‖π.

Recursive analysis We now provide a recursive analysis for the terms xP1M...MPi

for i ≤ t based on our understanding of the effects from the linear operators M and

Pi. This completes the proof for Claim 4.3.2.

Proof. (of Claim 4.3.2). First, recall that

E[erX] = ‖(ϕP1MP2...MPt)
‖‖π = ‖(ϕP1MP2...MPtM)‖‖π =

∥
∥
∥
∥
∥
∥

(

ϕ
t∏

i=1

(PiM)

)‖∥∥
∥
∥
∥
∥
π

.

where the second equality comes from Lemma 4.3.3. Our choice of r is

r = min{1/2, log(1/λ)/2, 1−
√
λ, (1− λ)δ/18}.

We shall explain how we make such a choice as we walk through our analysis.

We now trace the π-norm of both parallel and perpendicular components of the

random walk for each application of PiM . Let z0 , ϕ and zi = zi−1PiM for i ∈ [t].

By triangle inequality and Lemma 4.3.3 and 4.3.4, for every i ∈ [t],

‖z‖i ‖π = ‖(zi−1PiM)‖‖π = ‖((z‖i−1 + z⊥i−1)PiM)‖‖π

≤ ‖(z‖i−1PiM)‖‖π + ‖(z⊥i−1PiM)‖‖π

≤ (1 + (er − 1)µ) ‖z‖i−1‖π + (2r
√
µ) ‖z⊥i−1‖π,

Chapter 4: Revisiting Chernoff-Hoeffding Bounds for Markov Chains 206

and similarly,

‖z⊥i ‖π ≤ ‖(z‖i−1PiM)⊥‖π + ‖(z⊥i−1PiM)⊥‖π ≤ (2rλ
√
µ) ‖z‖i−1‖π + (erλ) ‖z⊥i−1‖π

≤ (2rλ
√
µ) ‖z‖i−1‖π +

√
λ‖z⊥i−1‖π,

where the last inequality holds when r ≤ (1/2) log(1/λ) i.e. er ≤ 1/
√
λ. The reason

to require r ≤ (1/2) log(1/λ) is that we can guarantee the perpendicular component

is shrinking (by a factor of
√
λ < 1) after each step.

Now let α0 = ‖z‖0‖π = 1 and β0 = ‖z⊥0 ‖π, and define for i ∈ [t],

αi = (1 + (er − 1)µ)αi−1 + (2r
√
µ)βi−1 and βi = (2rλ

√
µ)αi−1 +

√
λβi−1.

One can prove by induction easily that ‖z‖i ‖π ≤ αi and ‖z⊥i ‖π ≤ βi for every i ∈ [t],

and αi’s are strictly increasing. Therefore, bounding the moment generating function

E[erX] = ‖z‖t ‖π ≤ αt boils down to bounding the recurrence relation for αi and βi.

Observe that in the recurrence relation, only the coefficient (1 + (er − 1)µ) >

1 while the remaining coefficients (2r
√
µ), (2rλ

√
µ), and

√
λ are all less than 1 if

r is chosen sufficiently small. This suggests, intuitively, αi’s terms will eventually

dominate. This provides us a guide to reduce the recurrence relation to a single

variable as follows.

First let us give an upper bound for βi.

Claim 4.3.4. For every i ∈ [t], βi ≤ 2r
(
∑i−1

j=0

√

λj+2µ
)

αi−1 +
√
λiβ0.

Proof. of Claim 4.3.4. The lemma follows by expanding the recurrence relation and

Chapter 4: Revisiting Chernoff-Hoeffding Bounds for Markov Chains 207

using the fact that αi’s are increasing. i.e.

βi = 2rλ
√
µiαi−1 +

√
λβi−1 = 2rλ

√
µαi−1 +

√
λ2rλ

√
µαi−2 +

√
λ2βi−2

= · · · = 2r

i−1∑

j=0

√

λj+2µαi−j−1

+
√
λiβ0

Finally, by using the fact that αi are strictly increasing, we complete the proof.

We can then bound αi by substituting βi−1 using Claim 4.3.4.

Claim 4.3.5. α1 ≤ (1 + (er − 1)µ) + 2r
√
µβ0, and for every 2 ≤ i ≤ t,

αi ≤

1 + (er − 1)µ + 4r2
√
µ

i−2∑

j=0

√

λj+2µ

αi−1 + 2r
√

λi−1µβ0.

Proof. The case of i = 1 is trivial. For 2 ≤ i ≤ t, this follows by applying the

recurrence relation, Claim 4.3.4, and the fact that αi−2 < αi−1.

αi = (1 + (er − 1)µ)αi−1 + (2r
√
µ) βi−1

≤ (1 + (er − 1)µ)αi−1 + (2r
√
µ)

2r

i−2∑

j=0

√

λj+2µ

αi−2 +
√
λi−1β0

≤

1 + (er − 1)µ + 4r2
√
µ

i−2∑

j=0

√

λj+2µ

αi−1 + 2r
√

λi−1µβ0

For notational simplicity, let A1 = 1 + (er − 1) and for 1 < i ≤ t, let

Ai ,

1 + (er − 1)µ + 4r2
√
µ

i−2∑

j=0

√

λj+2µ

 .

Claim 4.3.5 then can be expressed as αi ≤ Aiαi−1+2r
√
µmin{

√
λi−1, 1}β0, for every

i ∈ [t]. By expanding iteratively, we obtain (4.8), where the last inequality uses the

fact that 1/(1 −
√
λ) ≤ 2/(1 − λ) for λ ∈ [0, 1). It remains to upper bound

∏

iAi.

C
h
a
p
ter

4
:
R
evisitin

g
C
h
ern

o
ff
-H

oeff
d
in
g
B
o
u
n
d
s
fo
r
M
a
rko

v
C
h
a
in
s

208

αt

≤ At(At−1(· · · (A3(A2(A1 + 2r
√
µβ0) + 2r

√
λµβ0) + 2r

√

λ2µβ0) · · ·) + 2r
√

λt−2µβ0) + 2r
√

λt−1µβ0

= (At · · ·A1) + (At · · ·A2(2r
√
µβ0)) + (At · · ·A3(2r

√
λµβ0)) + · · ·+ At(2r

√

λt−2µβ0) + 2r
√

λt−1µβ0

≤
(

1 + 2r
√
µβ0 + 2r

√
λµβ0 + 2r

√

λ2µβ0 + · · · 2r
√

λt−1µβ0

)

(
∏

iAi)

≤
(

1 +
4r
√
µβ0

1−
√
λ

)

(
∏

iAi) ≤
(

1 +
8r
√
µβ0

1−λ

)

(
∏

iAi) ,

(4.8)

Chapter 4: Revisiting Chernoff-Hoeffding Bounds for Markov Chains 209

Using (1 + x) ≤ ex, we have

t∏

i=1

Ai ≤ exp

(er − 1)µ +

t∑

i=2

(er − 1)µi + 4r2
√
µ

i−2∑

j=0

√

λj+2µ

.

The first two sums in the exponent lead to
∑

i(e
r − 1)µi = (er − 1)µt. . We now

bound the last sum in the exponent, which can be viewed as an “error” term due to

the correlation between each step of the random walk.

t∑

i=2

4r2
√
µ

i−2∑

j=0

√

λj+2µ ≤ 4r2µ

t∑

i=1

i−2∑

j=0

√
λj = 4r2µt

t−2∑

j=0

√
λj ≤ 8r2µt

1− λ
,

where last inequality uses
∑t−2

j=0

√
λj ≤ 1/(1 −

√
λ) ≤ 2/(1 − λ). Putting things

together, we have

t∏

i=1

Ai ≤ exp

{

(er − 1)µt+
8r2µt

1− λ

}

= exp

{(

(er − 1) +
8r2

1− λ

)

µt

}

,

and recalling that ‖ϕ‖‖π = 1 and β0 = ‖ϕ⊥‖π,

E[erX] ≤ αt ≤
(

1 +
8rµβ0

1− λ

)(
∏

i

Ai

)

≤ 2max

{

1,
8r
√
µ

1− λ

}

‖ϕ‖π exp
{(

(er − 1) +
8r2

(1 − λ)

)

µt

}

.

Recall that our goal is to choose an r to bound E[erX]/er(1+δ)µt. Choosing r =

min{1/2, log(1/λ)/2, 1 −
√
λ, (1 − λ)δ/18} = (1 − λ)δ/18, we complete the proof of

Claim 4.3.2.

Notice that our proof also works even for the case Eπ[fi(v)] are different for

different values of i, which results in a more general Chernoff type bound based on

spectral expansions. This more general result, as far as we know, has not been noted

in existing literatures with the exception of Healy [55], who gave a Chernoff bound of

this kind with stronger assumptions for regular graphs, although the analysis given

Chapter 4: Revisiting Chernoff-Hoeffding Bounds for Markov Chains 210

by Lezaud [79] or Wagner [106] also appears to be generalizable as well. On the other

hand, this strengthened result of Claim 4.3.2 does not seem to be sufficient to remove

the requirement that Eπ[fi(v)] are the same for Theorem 4.3.1.

4.3.3 Continuous Time Case

We now generalize our main result to cover the continuous time chains. The

analysis is similar to the one presented by Lezaud [79].

Theorem 4.3.5. Let Λ be the generator of an ergodic continuous time Markov chain

with state space [n] and mixing time T = T (ε). Let {vt : t ∈ R+} be a random walk

on the chain starting from an initial distribution ϕ such that vt represents the state

where the walk stay at time t. Let {ft : [n]→ [0, 1] | t ∈ R+} be a family of functions

such that µ = Ev←π[ft(v)] for all t. Define the weight over the walk {vs : s ∈ R+} up

to time t by Xt ,
∫ t

0
fs(vs)ds. There exists a constant c such that

1. Pr[X ≥ (1 + δ)µt] ≤

c‖ϕ‖π exp
(
−δ2µt/(72T)

)
for 0 ≤ δ ≤ 1

c‖ϕ‖π exp (−δµt/(72T)) for δ > 1

2. Pr[X ≤ (1− δ)µt] ≤ c‖ϕ‖π exp
(
−δ2µt/(72T)

)
for 0 ≤ δ ≤ 1

Proof. (of Theorem 4.3.5). We mimic the strategy from Lezaud [79] to discretize the

chain in b time units, i.e. consider the states vib for i = 0, 1, ..., t/b. The stationary

distribution of this discretized chain vib is the same as the original continuous time

Chapter 4: Revisiting Chernoff-Hoeffding Bounds for Markov Chains 211

chain, and hence µ = Eπft(vt) = Eπfib(vib). Now by Theorem 4.3.1 we have

1. Pr

t/b
∑

i=1

fib(vib) ≥ (1 + δ)
δµt

b

 ≤

c‖ϕ‖π exp
(
−δ2µ(t/b)/(72T/b)

)
for 0 ≤ δ ≤ 1

c‖ϕ‖π exp (−δµ(t/b)/(72T/b)) for δ > 1

2. Pr

t/b
∑

i=1

fib(vib) ≤ (1− δ)
δµt

b

 ≤ c‖ϕ‖π exp
(
−δ2µ(t/b)/(72T/b)

)
for 0 ≤ δ ≤ 1

Notice that the mixing time for the discretized chain is T/b while the total number

of steps here is t/b. In the exponents, the term b appears in both the numerator and

the denominator and they cancel with each other. Taking limit as b → 0 completes

the proof [79].

4.4 Construction of Mixing Markov Chain with

No Spectral Expansion

We now show that any ergodic Markov chain M with mixing time T = T (1/4)

can be modified to a chain M ′ such that M ′ has mixing time O(T) but spectral

expansion λ(M ′) = 1.

Our modification is based on the following simple observation. Let M ′ be an

ergodic Markov chain with stationary distribution π′. If there exist two states v and

v′ such that (i) M ′v,v′ = 1, i.e., state v leaves to state v′ with probability 1, and (ii)

M ′u,v′ = 0 for all u 6= v, i.e., the only state transits to v′ is v, then λ(M ′) = 1: Note

that in this case, π′(v) = π′(v′) since all probability mass from v leaves to v′, which

receives probability mass only from v. Consider a distribution x whose probability

mass all concentrates at v, i.e., xv = 1 and xu = 0 for all u 6= v. One step walk from

Chapter 4: Revisiting Chernoff-Hoeffding Bounds for Markov Chains 212

x results in the distribution xM ′ whose probability mass all concentrates at v′. By

definition, ‖x‖π′ = ‖xM ′‖π′ and thus λ(M ′) = 1.

Now, let M be an ergodic Markov chain with mixing time T = T (1/4) and

stationary distribution π. We shall modify M to a Markov chain M ′ that preserves

the mixing-time and satisfies the above property. We mention that it is not hard to

modify M to satisfy the above property. The challenge is to do so while preserving

the mixing-time. Our construction is as follows.

• For every state v in M , we “split” it into three states (v, in), (v,mid), (v, out)

in M ′.

• For every state (v, in) in M ′, we set M ′(v,in),(v,in) = M ′(v,in),(v,mid) = 1/2, i.e.,

(v, in) stays in the same state with probability 1/2 and transits to (v,mid)

with probability 1/2.

• For every state (v,mid) in M ′, we set M ′(v,mid),(v,out) = 1, i.e., (v,mid) always

leaves to (v, out).

• For every pairs of states u, v inM , we set the transition probabilityM ′(u,out),(v,in)

from (u, out) to (v, in) to be Mu,v.

It is not hard to verify that the modified chain M ′ is well-defined, ergodic, and

satisfies the aforementioned property (namely, (v,mid) leaves to (v, out) with proba-

bility 1 and is the only state that transits to (v, out)). It remains to show thatM ′ has

mixing-time O(T). Toward this goal, let us define yet another Markov chain C that

consists of three states {in,mid, out} with transition probability Cin,in = Cin,mid =

1/2, and Cmid,out = Cout,in = 1. Clearly, C is ergodic and has constant mixing-time.

Chapter 4: Revisiting Chernoff-Hoeffding Bounds for Markov Chains 213

Now, the key observation is that a random walk onM ′ can be decomposed into walks

on M and C in the following sense: every step on M ′ corresponding to a step on C

in a natural way, and one step on M ′ from (u, out) to (v, in) can be identified as a

step from u to v in M . Note that the walks on M and C are independent, and in

expectation, every 4 steps of walk on M ′ induce one step of walk on M . It is not

hard to see from these observation that the mixing time of M ′ is at most 8T .

4.5 The Bound When the Sum Is Less Than Mean

We now prove the remaining part of Claim 4.3.2 for completeness, i.e.

Claim 4.5.1. Let M be an ergodic Markov chain with state space [n], stationary

distribution π, and spectral expansion λ = λ(M). Let (V1, . . . , Vt) denote a t-step

random walk on M starting from an initial distribution ϕ on [n], i.e., V1 ← ϕ. For

every i ∈ [t], let fi : [n] → [0, 1] be a weight function at step i such that the expected

weight Ev←π[fi(v)] = µ for all i. Define the total weight of the walk (V1, . . . , Vt) by

X ,
∑t

i=1 fi(Vi). There exists some constant c and a parameter r > 0 that depends

only on λ and δ such that

2.
E[e−rX]

e−r(1−δ)µt
≤ c‖ϕ‖π exp

(
−δ2(1− λ)µt/36

)
for 0 ≤ δ ≤ 1.

We mimic the proof strategy presented in Chapter 4.3.2. Observe first that

E[e−rX] = ‖xP1MP2...MPt‖1,

where Pi’s are diagonal matrices with diagonal entries (Pi)j,j , e−rfi(j) for j ∈ [n].

Thus, our goal is to bound the moment generating function E[erX].

Chapter 4: Revisiting Chernoff-Hoeffding Bounds for Markov Chains 214

Similar to the analysis presented in Chapter 4.3.2, we need to understand the

effect of the Pi operators.

Lemma 4.5.1. Let M be an ergodic Markov chain with state space [n] and stationary

distribution π. Let f : [n] → [0, 1] be a weight function with Ev←π[f(v)] = µ. Let

P be a diagonal matrix with diagonal entries Pj,j , e−rf(j) for j ∈ [n], where r is a

parameter satisfying 0 ≤ r ≤ 1/2. We have

• ‖(πP)‖‖π ≤ 1− rµ+ r2

2
µ.

• ‖(πP)⊥‖π ≤
√
2r
√
µ

• For every vector y⊥π, ‖(yP)‖‖π ≤ r
√
µ‖y‖π.

• For every vector y⊥π, ‖(yP)⊥‖π ≤ ‖y‖π

Proof. For the first item, we have

‖(πP)‖‖π =
∑

i≤n
e−rf(i)πi

≤
∑

i≤n
(1− rf(i) + r2

2
f(i))πi

≤ 1− rµ+
r2

2
µ

The first inequality holds because e−rx ≤ 1− rx+ r2x/2 for 0 ≤ x ≤ 1.

Chapter 4: Revisiting Chernoff-Hoeffding Bounds for Markov Chains 215

(2). we may use Pythagorean theorem and get

‖(πP)⊥‖2π = ‖(πP)‖2π − ‖(πP)‖‖2π

=
∑

i≤n
e−2rf(i)πi −

(
∑

i≤n
e−rf(i)πi

)2

≤
∑

i≤n

(
1− 2rf(i) + 2r2f 2(i)

)
πi −

(
∑

i≤n
(1− rf(i))πi

)2

= 2r2µ− r2µ2

≤ 2r2µ.

This implies ‖(πP)⊥‖π ≤
√
2r
√
µ.

(3). First, since y⊥π, we have 〈y, π〉π = 0. Next notice that by Cauchy Schwarz

inequality,

‖(yP)‖‖π = 〈y, πP 〉π − 〈y, πI〉π = 〈y, π(P − I)〉π ≤ ‖y‖π‖π(P − I)‖π.

We next bound ‖π(P − I)‖π. Specifically,

‖π(P − I)‖2π =
∑

i≤n
(e−rf(i) − 1)2πi

=
∑

i≤n
(1− e−rf(i))2πi

≤
∑

i≤n
(rf(i))2πi

≤ r2
∑

i≤
f(i)πi

≤ r2µ.

Therefore, ‖(yP)‖‖π ≤ r
√
µ‖y‖π.

(4). We have ‖(yP)⊥‖π ≤ ‖(yP)‖π ≤ ‖y‖π.

Now we proceed to prove Claim 4.5.1 using Lemma 4.5.1.

Chapter 4: Revisiting Chernoff-Hoeffding Bounds for Markov Chains 216

Proof. (of Claim 4.5.1). Let us recall that z0 , x and zi = zi−1PiM for i ∈ [t].

Lemma 4.5.1 gives us

‖z‖i ‖π ≤ (1− rµ+
r2

2
µ)‖z‖i−1‖π + r

√
µ‖z⊥i−1‖π

and

‖z⊥i ‖π ≤
√
2λr
√
µ‖z‖i−1‖π + λ‖z⊥i−1‖π

Following our strategy presented in Chapter 4.3.2, let α0 = ‖z‖0‖π = 1 and β0 = ‖z⊥0 ‖π

and define for each i ∈ [t],

αi = (1− rµ+ µr2/2)αi−1 + r
√
µβi−1 (4.9)

and

βi = (
√
2rλ
√
µ)αi−1 + λβi−1. (4.10)

We can inductively show that ‖z‖i ‖π ≤ αi and ‖z⊥i ‖π ≤ βi for each i ∈ [t].

Our goal becomes to give an upper bound for αi and βi. Also, we shall set

r = min{1/2, log(1/λ)/2, 1 −
√
λ, (1 − λ)δ/8} throughout our analysis. Next, we

recursively substitute the value of βi from Eq.(4.10) into Eq.(4.9) and yield,

αi = (1− (r − r2/2)µ)αi−1 +
√
2r2µλαi−2 + ... +

√
2r2µλi−1α0 + r

√
µλi−1β0 (4.11)

Using the fact that r ≤ 1−
√
λ and thus αi ≤ (1− (r − r2/2)µ)αi−1 for all i ≥ 1, we

may conclude
√
λαi−1 ≤ αi. Now (4.11) becomes

α ≤
(

1− (r − r2/2)µ+
√
2r2
√
µ

(
i−1∑

j=1

√
µ
√
λi−j

))

αi−1 + r
√
µλi−1β0. (4.12)

Next, let us define Ai as follows,

Ai ,

(

1− (r − r2/2)µ+
√
2r2
√
µ

(
i−1∑

j=0

√
µ
√
λi−j

))

.

Chapter 4: Revisiting Chernoff-Hoeffding Bounds for Markov Chains 217

We then have

αi ≤ Aiαi−1 + r
√
µλi−1β0.

Therefore, we can see that

αt ≤
(
∏

i≤t
Ai

)(

1 + β0
r
√
µ

1− λ

)

.

On the other hand, we can see that

(
∏

1≤i≤t
Ai

)

≤ exp

{
∑

i≤t

(
−(r − r2/2)µ

)
+
∑

1≤i≤t

√
2r2
√
µ

(
∑

1≤j≤t−1

√

λi−jµ

)}

≤ exp

{

−(r − r2/2)µt+ 2
√
2r2

1− λ µt
}

= exp

{

−rµt+
(

r2

2
+

2
√
2r2

1− λ

)

µt

}

≤ exp

{

−rµt+
(

4r2

1− λµt
)}

Notice that 1 + β0
r
√
µ

1−λ = O
(

r‖x‖π
1−λ

)

. By using the fact r = min{1/2, log(1/λ)/2, 1 −
√
λ, (1− λ)δ/8}, we complete the proof.

Chapter 5

Technology diffusion in

communication networks

5.1 Introduction

There has been significant interest in the networking community on the impact

of cascade effects on the diffusion of technology upgrades in the Internet [10, 19, 24,

38, 39, 47, 53, 65, 66, 89]. Thinking of the global Internet as a graph, where each node

represents an independent, economically-motivated autonomous system (AS), e.g.

AT&T, Google, Telecom Italia, or Bank of America, a key problem is to determine the

set of nodes that governments and regulatory groups should target as early adopters

of the new technology, with the goal of triggering a cascade that causes more and

more nodes to voluntarily adopt the new technology [19, 47, 53, 66]. Given the effort

and expense required to target ASes as early adopters, a natural objective (that

has appeared in both the networking literature [10, 19, 47] and also that of viral

218

Chapter 5: Technology diffusion in communication networks 219

marketing [37,69]) is to find the smallest possible seedset of early adopters that could

drive a cascade of adoption; doing this would shed light on how best to manage the

upgrade from insecure routing [18] to secure routing [70,76], or from IPv4 to IPv6 [33],

or the deployment of technology upgrades like QoS [60], fault localization [12], and

denial of service prevention [111].

Thus far, the literature has offered only heuristic solutions this problem. In

this paper, we design the first approximation algorithm with a provable performance

guarantee that optimizes the selection of early adopter nodes, in a model of that

captures the following important property: the technologies we study only allow a

pair of nodes to communicate if they have a path between them consisting of nodes

that also use the new technology [12, 19, 47, 60, 63, 76, 111].

Model. Consider a graph G(V,E) that represents the internetwork. We use the

following progressive process to model the diffusion of a new technology: a node starts

out as inactive (using an older version of the technology) and activates (adopts the

new, improved technology) once it obtains sufficient utility from the new technology.

Once a node is active, it can never become inactive. To model the cost of technology

deployment, the standard approach [50, 69, 97] is to associate a threshold θ(u) with

each node u that determines how large its utility should be before it is willing to

activate. A node’s utility depends on the size of the connected components of active

nodes adjacent to u in G. Thus, node u activates if the connected component con-

taining u in the subgraph induced in G by nodes {v : v ∈ V,Node v is active} ∪ {u} has

size at least θ(u). We study the following optimization problem:

Given G and the threshold function θ : V → {2, ..., |V |}, what is the
smallest feasible seedset S ⊆ V such that if nodes in S activate, then all

Chapter 5: Technology diffusion in communication networks 220

remaining nodes in V eventually activate?

This model of node utility captures two key ideas:

1. the traditional notion of “direct network externalities/effects” from economics [40,

68], marketing [13] and other areas [83], that supposes an active node that is

part of a network of k active nodes has utility that scales with k, and

2. the fact that we are interested in networking technologies that only allow a pair

of active nodes u, v ∈ G(V,E) to communicate if there is path of active nodes

between them in G.

Our model has much in common with the vast literature on diffusion of innovations,

and especially the linear threshold model for diffusion in social networks, articulated

by Kempe et al. [69] and extensively studied in many other works. Indeed, the two

models diverge only in the choice of the utility function; ours is non-local, while theirs

depends the (weighted) sum of a node’s active neighbors in G. Meanwhile, the non-

local nature of our utility function has much in common with the classic literature

on “direct network externalities/effects” [13, 40, 68, 83] with the important difference

that these classic models ignore the underlying graph structure, and instead assume

that utility depends on only a count of the active nodes. We shall now see that these

differences have a substantial effect on our algorithmic results.

5.1.1 Our results.

Our main result is an approximation algorithm based on linear programming that

consists of two phases. The first is a linearization phase that exploits combinatorial

Chapter 5: Technology diffusion in communication networks 221

properties to encode our problem as an integer program (IP) with a 2-approximate

solution, while the second is a randomized rounding algorithm that operates by re-

stricting our search space to connected seedsets, i.e. seedsets that induce a connected

subgraph of G . We have:

Theorem 5.1.1 (Main result). Consider a networking technology diffusion problem

{G(V,E), θ} where the smallest seedset has size opt, the graph has diameter r (i.e.

r is the length of “longest shortest path” in G), and there are at most ` possible

threshold values, i.e. θ : V → {θ1, ..., θ`}. Then there is a polynomial time algorithm

that returns a seedset S of size O(r` log |V | · opt).

Relationship to the linear threshold model in social networks. Our main

result highlights the major algorithmic difference between our work and the linear

threshold model in social networks [69]. In the social network setting, Chen [20]

showed that this problem is devastatingly hard, even when r, ` = O(1); to avoid

this discouraging lower bound, variations of the problem that exploit submodular

properties of the objective have been considered (e.g. where thresholds are chosen

uniformly at random [69] or see [21,93] and references therein). Indeed, the ubiquity

of these techniques seems to suggest that diffusion problems are tractable only when

the objective exhibits submodularity properties. Our work provides an interesting

counterpoint: our positive result does not rely on submodular optimization, and we

show that the influence function in our problem, and its natural variations, lacks

submodularity properties.

Dependencies on r, `, and log |V | are necessary. Removing our algorithm’s

dependence on r, `, or log |V | is likely to require a very different set of techniques

Chapter 5: Technology diffusion in communication networks 222

because of the following barriers:

1. Computational barrier. We use a reduction from Set Cover to show that our

problem does not admit any o(ln |V |)-approximation algorithm, even if r, ` =

O(1).

2. Information-theoretic barrier. We present a family of problem instances that

prove that any algorithm that returns a connected seedset must pay an Ω(r)-

increase in the size of the seedset in the worst case.

3. Integrality gap. The linear program we use has an integrality gap of Ω(`) so

that our rounding algorithm is asymptotically optimal in `.

Quality of approximation. We interpret the quality of our approximation for

typical problem instances.

Networking. The motivation for our problem is to help centralized authority (e.g.

a government, a regulatory group) determine the right set of autonomous systems

(ASes) in the Internet to target as early adopters for an upgrade to a new networking

technology [41, 82]. We comment on the asymptotic order of r and ` when a cen-

tralized authority executes this algorithm. The graph G is the Internet’s AS-level

graph, which is growing over time, with diameter r that does not exceed O(log |V |)

(see, e.g. [77]). We remark that the empirical data we have about the Internet’s

AS-level topology [8, 23, 36, 99] is the result of a long line of Internet measurement

research [94]. On the other hand, obtaining empirical data on ASes’ thresholds is still

subject to ongoing research [41, 46]. The following natural assumption and practical

constraint restrict the threshold granularity `: (a) ASes should not be sensitive to

Chapter 5: Technology diffusion in communication networks 223

small changes in utility (e.g. 1000 nodes vs. 1001 nodes), and that (b) in practice,

it is infeasible for a centralized authority to obtain information about θ(u) from ev-

ery AS u in the Internet, both because this business information is kept private and

because, perhaps more importantly, many of these nodes are in distant and possi-

bly uncooperative countries. Thus, thresholds should be chosen from a geometric

progression {(1 + ε), (1 + ε)2,, (1 + ε)`} or even restricted to a constant size set

{5%, 10%, 15%, 20%, 30%, 50%} as in [19, 47, 89] so that ` = O(log |V |). Our approx-

imation ratio is therefore polylogarithmic in |V | in this context.

Other settings. Since our model is a general, there could be other settings where

` may not be O(log |V |). Here, the performance of our algorithms is governed by

the stability of the problem instance. Stability refers to the magnitude of the change

in the optimal objective value due to a perturbation of the problem instance, and

is commonly quantified using condition numbers (as in e.g. numerical analysis and

optimization [34, 59, 78]). We naturally expect unstable problem instances (i.e. with

large κ) to be more difficult to solve. Indeed, we can use condition numbers to

parameterize our approximation ratio:

Definition 5.1.2 (Condition number). Consider a problem instance Π = {G, θ} and

a positive constant ε. Let Π+ = {G, θ+} and Π− = {G, θ−} be two problem instances

on the same graph G where for every v ∈ V , we have θ+(v) = (1 + ε)θ(v) and

θ−(v) = (1 − ε)θ(v). Let opt+ (opt−) be the value of the optimal solution for Π+

(Π−). The condition number is κ(Π, ε) , opt+

opt−
.

Corollary 5.1.3. There exists an efficient algorithm to solve a technology diffusion

problem Π = {G, θ} whose approximation ratio is Õ(κ(Π, ε) · r).

Chapter 5: Technology diffusion in communication networks 224

See details in Chapter 5.4.

Finally, we remark that our IP formulation might also be a promising starting

point for the design of new heuristics. Indeed, in Chapter 5.7 we ran a generic IP solver

to find seedsets on problem instances of non-trivial size; the seedsets we found were

often substantially better than those returned by several natural heuristics (including

those used in [10, 19, 47]).

Organization. We present our IP formulation in Chapter 5.2, and describe our

rounding algorithm in Chapter 5.3. Lower bounds are in Chapter 5.5. We also present

supplementary material on the (lack of) submodularity/supermodularity properties

of our problem (Chapter 5.6), our experimental results (Chapter 5.7), and expository

examples and figures (Chapter 5.8).

5.2 Linearization & formulating the IP

We now show how to sidestep any potential difficulties that could result from

the non-local nature of our setting. To do this, we restrict our problem in a manner

that allows for easy encoding using only linear constraints, while still providing a

2-approximation to our objective. We need the following notions:

Activation sequences. Given a seedset S, we can define an activation sequence T

as a permutation from V to {1, ..., n} where n = |V | that indicates the order in which

nodes activate. The t-th position in the sequence is referred as the t-th timestep. We

allow a seed node to activate at any timestep, while a non-seed node u may activate

at a timestep T (u) as long as u is part of a connected component of size at least θ(u)

Chapter 5: Technology diffusion in communication networks 225

in the subgraph of G induced by {u} ∪ {v : T (v) < T (u)}.

Connected activation sequences. A connected activation sequence T is an

activation sequence such that at every timestep t, the set of active nodes induces a

connected subgraph of G. We may think of T as a spanning tree over the nodes in

the graph, where, at every timestep, we add a new node u to the tree subject to the

constraint that u has a neighbor that is already part of the tree.

Our IP will find the smallest seedset S that can induce a connected activation

sequence. At first glance this could result in a factor of r growth in the seedset size.

However, the following lemma, which may be of independent interest, shows that the

seedset size grows at a much smaller rate:

Lemma 5.2.1. The smallest seedset that can induce a connected activation sequence

is at most twice the size of the optimal seedset.

Notice that requiring the activation sequence T to be connected is weaker than

requiring a connected seedset S: since T allows a seed to activate after a non-seed,

the connectivity of T can be preserved by non-seeds whose activation time occurs

between the activation times of the seed nodes.

Proof of Lemma 5.2.1. Given an optimal activation sequence Topt and seedset opt,

we shall transform it into a connected activation sequence T . Along the way, we add

nodes to the seedset in manner that increases its size by a factor of at most 2.

Notation. Let Gi(T) be the subgraph induced by the first i active nodes in T .

We say a node u is a connector in an activation sequence T if the activation of u in

T connects two or more disjoint connected components in GT (u)−1(T) into a single

component.

Chapter 5: Technology diffusion in communication networks 226

Creating a connected activation sequence. Notice that an activation sequence

T (·) is connected if and only if there exists no connector in the sequence. Thus, it

suffices to iteratively “remove” connectors from T until no more connectors remain.

To do this, we initialize our iterative procedure by setting T ← Topt. Each step

of our procedure then finds the earliest connector u to activate in T , adds u to the

seedset, and applies the following two transformations (sequentially):

Transformation 1: First, we transform T so that every component in GT (u)(T)

is directly connected to u. Let D(u) be the subsequence of T such that every node

in D(u) both activates before u, and is part of a component in GT (u)(T) that is not

connected to u. Transform T so the subsequence D(u) appears immediately after

node u activates. (This does not harm the feasibility of T , because the nodes in D(u)

are disconnected from the other nodes in GT (u)(T) that activate before u.)

Transformation 2: Next, we transform the activation sequence so that it is

connected up to time T (u). To see how this works, assume that there are only two

connected components C1 and C2 in GT (u)−1(T), where |C1| ≥ |C2|. Our transforma-

tion is as follows:

1. First, activate the nodes in C1 as in T (·).

2. Then, activate u. (This does not harm feasibility because we added u to the

seedset. Connectivity is ensured because u is directly connected to C1.)

3. Finally, have all the nodes in C2 activate immediately after u; the ordering of

the activations of the nodes in C2 may be arbitrary as long as it preserves con-

nectivity. (This does not harm feasibility because (a) seed nodes may activate at

Chapter 5: Technology diffusion in communication networks 227

any time, and (b) any non-seed v ∈ C2 must have threshold θ(v) ≤ |C2| ≤ |C1|

and our transformation ensures that at least |C1| + 1 nodes are active before

any node in C2 activates.)

We can easily generalize this transformation to the case where k components are

connected by u by letting |C1| ≥ |C2| ≥ ... ≥ |Ck| and activate C1, u, and the rest

of the components sequentially. At this point, the transformed activation sequence is

feasible and connected up to time t = 1 + |C1|+ |C2|+ ...+ |Ck|.

Seedset growth. It remains to bound the growth of the seedset due to our

iterative procedure. We do this in three steps. First, we observe that the number

of extra nodes we added to the seedset is bounded by the number of steps in our

iterative procedure. Next, we iteratively apply the following claim (proved later) to

argue that the number of steps in our iterative procedure is upper bounded by number

of connectors in the optimal activation sequence, Topt:

Claim 5.2.1. Let Tj be the activation sequence at the start of jth step. The number

of connectors in Tj+1 is less than the number of connectors in Tj.

Thus, it suffices to bound the number of connectors in Topt. Our third and final

step is to show that the number of connectors in Topt is bounded by |opt|. To do this,

we introduce a potential function Φ(t) that counts the number of disjoint connected

components in GTopt(t)(T), and argue the following:

• For every connector u that activates at time t in Topt and joins two or more

components, there is a corresponding decrement in Φ, i.e. Φ(t) ≤ Φ(t− 1)− 1.

• Next, we have that Φ(1) = Φ(|V |) = 1, since at the first timestep, there is only

Chapter 5: Technology diffusion in communication networks 228

one active node, and at the last timestep all the nodes in the graph are active

and form a single giant component. Thus, for every unit decrement in Φ at

some time t, there is a corresponding unit increment in Φ at some other time

t′.

• Finally, for any unit increment in Φ, i.e. Φ(t′) = Φ(t′ − 1) + 1, it follows that a

new connected component appears in GTopt(t′)(T). This implies that a new seed

activates at time t′. Thus, it follows that the number of unit decrements of Φ

is upperbounded by the size of the seedset |opt|.

Thus, we may conclude that the number of connectors added to the seedset in our

iterative procedure is upperbounded by the number of connectors in Topt which is

upperbounded by the size of the optimal seedset opt, and the lemma follows.

The correctness of Claim 5.2.1 is fairly intuitive, given that our transformations

always preserve the ordering of the nodes that are not in the components joined by

node u. We include the proof for completeness.

Proof of Claim 5.2.1. We make use of the following observation:

Observation 1: If two activation sequences T and T ′ have a common suffix, i.e.

T = T ′ for timesteps τ, τ + 1, ..., |V |, then T and T ′ contain the same number of

connectors after time τ − 1.

Let t = Tj(u), where u is the earliest connector in Tj . By construction, no

connectors exist in Tj prior to time t. Furthermore, we can use Observation 1 to

argue that Tj and Tj+1 contain the same number of connectors after time t. Thus, it

Chapter 5: Technology diffusion in communication networks 229

suffices to show that Transformations 1 and 2 in the jth step of our iterative procedure

do not introduce new connectors that activate in prior to time t.

Let T ∗ be the activation sequence after Transformation 1 in the jth step of our

iterative procedure, and let t′ = T ∗(u). We can see that (1) no new connectors

activate before time t′ in T ∗ (since, before t′ our construction ensures that T ∗ consists

only of active components that are joined by u) and (2) no new connectors activate

between time t′+1 and t inclusive (since (a) u was chosen as the earliest connector in

Tj , and (b) Transformation 1 preserves the order of the nodes that activate between

time t′ + 1 and t inclusive in T ∗).

Finally, we conclude by arguing that Transformation 2 cannot introduce new

connectors by (1) applying Observation 1 to the nodes after t′ and (2) observing that

after Transformation 2, the nodes that activate before t′ create a single connected

component, and thus by definition cannot contain any connectors.

IP encoding. The beauty of a connected activation sequence T is that every

nonseed node’s decision to activate becomes local, rather than global: node v need

only check if (a) at least one of its neighbors are active, and (b) the current timestep t

satisfies t ≥ θ(v). Moreover, given a connected activation sequence T , we can uniquely

recover the smallest feasible seedset S that could induce T by deciding that node u

is a seed iff θ(u) > T (u). Thus, our IP encodes a connected activation sequence T , as

a proxy for the seedset S. Let xi,t be an indicator variable such that xi,t = 1 if and

only if T (vi) = t. The integer program is presented in Figure 5.1. The permutation

constraints guarantee that the variables xi,t represent a permutation. The connectivity

constraints ensure that if xi,t = 1 (i.e. node vi activates at step t), there is some other

Chapter 5: Technology diffusion in communication networks 230

node ui′ such that vi′ (a) is a neighbor of node vi and and (b) activates at earlier time

t′ < t. Finally, the objective function minimizes the size of the seedset by counting

the number of xi,t = 1 such that t < θ(vi).

We remark that our IP formulation suggests a similarity between our setting

and the vehicle routing with time windows problem (e.g. [11, 15, 35, 44]). Consider

a time windows problem, where we are given an undirected metric graph G and

time window [r(u), d(u)] for each node u, and our objective is to choose a tour for

the vehicle through G that visits as many nodes as possible during their respective

time windows. In our setting (restricted to connected activation sequences), the tour

becomes a spanning tree, and each node u has time window [θ(u), n]. Understanding

the deeper connection here is an interesting open question.

5.3 Rounding algorithm.

Unfortunately, the simple IP of Figure 5.1 has a devastating Ω(n) integrality gap

(Chapter 5.5.3 presents a negative example). We eliminate this integrality gap by

min
∑

i≤n
∑

t<θi
xi,t

subject to: ∀t, i : xi,t ∈ {0, 1}

∀i : ∑

t≤n xi,t = 1 (permutation constraints)

∀t : ∑

i≤n xi,t = 1 (permutation constraints)

∀t > 1, i :
∑

{vi,vi′∈E}
∑

t′<t xi′,t′ ≥ xi,t (connectivity constraints)

Figure 5.1: Simple IP for the networking technology diffusion problem.

Chapter 5: Technology diffusion in communication networks 231

adding extra constraints to the IP of Figure 5.1, and refer to the resulting IP as the

augmented IP. We defer presentation of this IP to Chapter 5.3.2 and focus now on

the high level structure of our rounding algorithm.

Our rounding algorithm is designed to exploit the relationship between seedset S

and connected activation sequences T ; namely, the fact that we can uniquely recover

a S from T by deciding that node u is a seed if T (u) < θ(u). As such, it returns both

S and T with the following four properties:

1. Consistency. S and T are consistent ; namely, T is an activation sequence for

the diffusion process induced by {G, θ, S}. (Recall that T is such that any seed

u ∈ S can activate at any time, and any non-seed u /∈ S can activate whenever

it is connected to an active component of size at least θ(u)− 1.)

2. Feasibility. T is such that every node eventually activates.

3. Connectivity. T is a connected activation sequence.

4. Small seedset. The seedset S has small size, i.e. size bounded in the objective

function of our LP.

But how should we round the fractional xi,t values returned our LP relaxation to

achieve this? Let’s first consider two natural approaches for sampling S and T :

Approach 1: Sample the seedset S: Recall that in a connected activation

sequence, a node that activates at time t < θ(u) must be a seed. Therefore, we can

sample the seedset S by adding each node ui to S with probability proportional to

∑

t<θ(ui)
xi,t.

Chapter 5: Technology diffusion in communication networks 232

Approach 2: Sample the activation sequence T : We can instead sample the

activation sequence T by deciding that node ui activates before time t with probability

proportional to
∑

τ<t xi,τ .

However, neither of these approaches will work very well. While Approach 1 guar-

antees that the seedset S is small (Property 4), it completely ignores the more fine-

grained information provided by the xi,t for t ≥ θ(vi) and so its not clear that nonseed

nodes will activate at the right time (Property 2). Meanwhile, Approach 2 guarantees

feasibility (Property 2), but by sampling activation times for each node independently,

it ignores correlations between the xi,t. It is therefore unlikely that the resulting T

is connected (Property 3), and we can no longer extract a small seedset (Property 4)

by checking if T (u) < θ(u).

Instead, we design a sampling procedure that gives us a coupled pair {S, T}

where, with high probability, (a) the distribution of S will be similar to that of

Approach 1, so that the seedset is small (Property 4), while (b) the distribution of

T will be similar to Approach 2, so we have feasibility (Property 2), and also (c)

that T is connected (Property 3). However, S and T are not necessarily consistent

(Property 1). Later, we show how we use repeated applications of the sampling

approach below to “error-correct” inconsistencies, but for now, we start by presenting

the sampling routine:

Approach 3: Coupled sampling. We start as in Approach 1, adding each v ∈ V

to S with probability min
{

1, α
∑

t<θ(v) xv,t

}

. We next run deterministic processes:

S ← Glue(S) followed by T ← GetSeq(S).

The Glue procedure, defined below, ensures that S is connected (i.e. induces

Chapter 5: Technology diffusion in communication networks 233

a connected subgraph of G), and blows up |S| by an O(r)-factor (where r is graph

diameter). Meanwhile, Get-Seq, defined in Chapter 5.3.2, returns a connected ac-

tivation sequence T ; we remark that T may not be a permutation (many nodes or

none could activate in a single timestep), and may not be feasible, i.e. activate every

node.

Glue(S)

1 while S is not connected

2 do

3 Let C be a connected component in the subgraph induced by S.

4 Pick u ∈ S \ C. Let P be the shortest path connecting u and C in G.

5 Add nodes in P to S.

6 return S.

The properties of Approach 3 are captured formally by the following proposition,

whose proof (Chapter 5.3.2) presents a major technical contribution of our work:

Proposition 5.3.1. Let α = 24(1+ε) ln(4n
2

ε
) and ε be a suitable constant. Then there

exists an augmented IP and an efficiently computable function Get-Seq(·) such that

Approach 3 returns S and T (that are not necessarily consistent), where

1. T is connected,

2. for any v /∈ S we have that T (v) ≥ θ(v), and

3. for any v and t,

• if
∑

t′≤t xv,t′ ≥ 1
12(1+ε)

, then Pr[T (v) ≤ t] ≥ 1− ε
4n2 .

Chapter 5: Technology diffusion in communication networks 234

• if
∑

t′≤t xv,t′ <
1

12(1+ε)
, then Pr[T (v) ≤ t] ≥ (1 + ε)(

∑

t′≤t xv,t′).

Notice that the third item in Proposition 5.3.1 suggests that the distribution

of T in Approach 3 is “close” to that of Approach 2. In what follows, we apply

the ideas we developed thus far to design an algorithm that uses Proposition 5.3.1

to “error-correct” inconsistencies between S and T so that all four properties are

satisfied. Then, in Chapter 5.3.2 we present the more technically-involved proof of

Proposition 5.3.1.

5.3.1 Resolving inconsistencies using rejection-sampling

Recall the threshold function θ : V → {θ1, ..., θ`}, and suppose a threshold θj is

good with respect to T if there are at least θj−1 active nodes in T by time θj−1. The

following simple lemma presents the properties we need from our rejection sampling

algorithm:

Lemma 5.3.2. Let S be a seedset and T be an activation sequence. If

• (P1). T is connected and feasible (for any v ∈ V , T (v) ≤ n), and

• (P2). T (v) ≥ θ(v) for all v /∈ S, and

• (P3). every θj for j ∈ [`] is good with respect to T (·),

then S is consistent with T and S is a feasible seedset.

Proof. To show that S and T are consistent, we argue that by the time a non-seed

v /∈ S activates in T , there are at least θ(v) − 1 active nodes. Since v activates at

time T (v) ≥ θ(v), this follows because T (·) is connected and each θj is good. Since

T is feasible and S is consistent with T , we have that S is feasible.

Chapter 5: Technology diffusion in communication networks 235

We construct a pair of {S, T} that meets the properties of Lemma 5.3.2 in two

phases. First, we construct ` pairs {S1, T1}, ..., {S`, T`} where for each {Sj, Tj} we

have that (P.1) and (P.2) hold, a single threshold θi is good w.r.t. Ti, and Si is

“small”, i.e. |Si| ≤ 24(1+ ε)2 ln(4n
2

ε
)r · opt. The second phase assembles these ` pairs

into a single {S, T} pair so all θj are good w.r.t. T , so that (P1)-(P3) hold, and the

seedset S is bounded by O(r` lnn · opt), so our main result follows.

Step 1. Rejection-sampling to find {Sj, Tj} pairs ∀j ∈ [`]. The following

lemma shows that we can repeat Approach 3 until we find Sj , Tj that satisfy the

properties above:

Lemma 5.3.3 (Success of a single trial). Let Sj and Tj be sampled as in Approach 3.

For any t, let At be the number of nodes active in Tj up to time t (inclusive). Then

Pr[At ≥ t ∧ An = n] ≥ ε
2n
.

To see why, observe that (P1)-(P2) hold by Proposition 5.3.1, and θj is good w.r.t.

Tj with probability ε
2n

by Lemma 5.3.3, and Sj has the required size with probability

≥ 1− 1
n10 by standard Chernoff bounds (the exponent 10 here is chosen arbitrarily).

Therefore, we successfully find the required {Sj, Tj} with probability ε
2n
− 1

n10 in a

single trial. After O(n logn) independent trials, we find the required {Sj, Tj} with

probability 1− 1/nc for sufficiently large c.

Proof of Lemma 5.3.3. Recall that At is number of active nodes by time t (inclusive).

We have

Pr[An < n] = Pr[∃v : T (v) > n] ≤
∑

v∈V
Pr[T (v) > n] ≤ nε

4n2
=

ε

4n
. (5.1)

Chapter 5: Technology diffusion in communication networks 236

The last inequality holds because of Proposition 5.3.1. It suffices to show that Pr[At ≥

t] ≥ 3ε
4n

since Pr[An = n ∧At ≥ t] ≥ Pr[At ≥ t]− Pr[An < n].

Let us partition V into heavy nodes H , and light nodes L. We put v ∈ H when

∑

τ≤t xv,τ ≥ 1
12(1+ε)

, and v ∈ L otherwise. Let’s consider two cases, based on the

“weight” of the light nodes ρt:

ρt =
∑

v∈L

∑

τ≤t
xv,τ (5.2)

Case 1. ρt < 1 (The light nodes are very light). Recalling that the permutation

constraints of our LP impose that
∑

v∈V
∑

τ<t xv,τ = t, it follows that

t− 1 < t− ρt =
∑

v∈V

∑

τ<t

xv,τ −
∑

v∈L

∑

τ≤t
xv,τ =

∑

v∈H

∑

τ≤t
xv,τ ≤ t

Using the first and last inequalities and taking the ceiling, we get that

|H| ≥
⌈
∑

v∈H

∑

τ≤t
xv,τ

⌉

= t.

Since |H| ≥ t, if every node in H activates before time t we know that At ≥ t. We

write

Pr[At ≥ t] ≥ Pr[T (v) ≤ t, ∀v ∈ H] ≥ 1−
∑

v∈H
Pr[T (v) > t] ≥ 1− ε

4n
, (5.3)

where the last inequality in (5.3) holds because of Proposition 5.3.1.

Case 2. ρt ≥ 1 (The light nodes are not very light). We start by defining two events.

E1 is the event that all the heavy nodes are active by time t, i.e. T (v) ≤ t ∀v ∈ H .

E2 is the event that at least ρt light nodes are on by time t, i.e. |{v ∈ H ∧ T (v) ≤

t}| > ρt.

Chapter 5: Technology diffusion in communication networks 237

When both E1 and E2 occur, we have

At ≥ |H|+ ρt ≥
∑

v∈H

∑

τ≤t
xv,τ +

∑

v∈L

∑

τ≤t
xv,τ = t

where both the second inequality and the last equality use the permutation constraints

of the LP. It follows that Pr[At > t] ≥ Pr[E1∧E2] ≥ Pr[E2]−Pr[¬E1]. We now bound

each event individually.

Let’s start by bounding Pr[E2]. Letting I(·) be an indicator variable that sets to

1 iff the parameter is true, we have that

E[
∑

v∈L
I(T (v) ≤ t)] =

∑

v∈L
Pr[T (v) ≤ t] ≥

∑

v∈L

(

(1 + ε)
∑

t′≤t
xv,t′

)

= (1 + ε)ρt (5.4)

where the inequality uses Proposition 5.3.1 as usual. Meanwhile, using the law of

total probability we get

E[
∑

v∈L
I(T (v) ≤ t)] ≤ Pr[E2]n+ Pr[¬E2]ρt ≤ Pr[E2]n + ρt (5.5)

Combining (5.4)-(5.5) we find that Pr[E2] ≥ ερt
n
≥ ε

n
. Next, we bound Pr[E1] by

observing that

Pr[¬E1] ≤
∑

v∈H
Pr[T (v) > t] ≤ ε

4n

using Proposition 5.3.1 for the last inequality again. Finally, we combine both bounds

to conclude that Pr[At > t] ≥ Pr[E1 ∧ E2] ≥ Pr[E2]− Pr[¬E1] ≥ 3ε
4n

as required.

Step 2. Combine the {Si, Ti} to obtain the final {S, T}. We can now construct

our final {S, T} pair in a rather straightforward way: to construct S, we take the

union of all the Sj ’s and then use Glue to connect them; that is we take S ←

Glue(
⋃

j≤` Sj). To construct T , we set T (v) = 1 for all seeds v ∈ S and T (v) =

minj≤` Tj(v) (∀v ∈ V \S).

Chapter 5: Technology diffusion in communication networks 238

To conclude, we need show that this {S, T} pair satisfies Lemma 5.3.2.

• First we show (P1) holds. Since every Tj is feasible, and T (v) ≤ Tj(v) by

construction, it follows that T is also feasible. Next we show that T (v) is

connected by induction over t. As a base case, observe that T = minj≤` Tj(v)

is connected at t = 1, since the seedset S = Glue(
⋃

j Sj) is connected. As

the induction step, we assume that T is connected up to time t (inclusive) and

show that T is also connected up to time t + 1 (inclusive). To do this, let v

be a node such that T (v) = t + 1. It follows that there exists j ≤ ` such that

Tj(v) = t + 1; since Tj is connected, there must be another node u such that

Tj(u) < t + 1 and u and v are neighbors in the graph G. Since T (u) ≤ Tj(u),

it follows that v is connected to a node (namely node u) that is active at time

t+ 1, and the induction step follows.

• We show that (P2) holds. For all v /∈ S, we have v /∈ Sj for all j ≤ `. This

means Tj(v) ≥ θ(v) for all j. Therefore, T (v) ≥ θ(v) and (P2) holds.

• Finally, (P3) holds. For each j ≤ ` we know that θj is good w.r.t to Tj . For all

j ≤ `, every node v has T (v) ≤ Tj(v) by construction, so that the number of

active nodes at time θj in T must be no fewer than the number of active nodes

in Tj. (P3) follows since θj is good w.r.t to Tj for every j ≤ `.

It follows that Lemma 5.3.2 holds and the final seedset S is indeed a feasible seedset.

Since the size of each seedset Si is bounded by O(r logn · opt) (and the gluing in

Phase 2 grows the seedset by an additive factor of at most ` · r) it follows that S has

size at most O(`r log n · opt) and our main result follows.

Chapter 5: Technology diffusion in communication networks 239

t = 1 xA,1 = 0.1
t = 2 xB,2 = 0.1 (because xB,2 ≤ xA,1)
t = 3 xC,3 = 0.1 (because xC,3 ≤ xB,1

t = 4 xB,4 = 0.2 (because xB,4 ≤ xA,1 + xC,3)
t = 5 xC,5 = 0.2 (because xC,5 ≤ xB,2 + xB,4)
t = 6 xB,6 = 0.4 (because xB,6 ≤ xA,1 + xC,3 + xC,5)
t = 7 xC,7 = 0.7 (because xC,7 ≤ xB,2 + xB,4 + xB,6)
t = 8 xB,8 = 0.3 (because xB,8 ≤ xA,1 + xC,3 + xC,5 + xC,7)
t = 9 xA,9 = 0.9 (because xA,9 ≤

∑
t′≤8

xB,t′)

Figure 5.2: A pathological example for the simple LP.

5.3.2 Strengthened IP and coupled sampling

We show how we use a flow interpretation of our problem to prove Proposi-

tion 5.3.1.

The need for stronger constraints

In Chapter 5.5.3, we show that the LP in Figure 5.1 has an Ω(n) integrality gap.

To understand why this gap comes about, let us suppose that each xi,t returned by

the LP is a mass that gives a measure of the probability that node vi activates at

time t. Consider the following example (also see Figure 5.2):

Pathological example. Consider a graph that contains a clique of nodes A,B and

C. Suppose the LP returns a solution such that at t = 1, node A has mass 0.1, while

all other nodes have mass 0. The constraints repeatedly allow mass from node A

to circulate through nodes B and C and then back to A, as shown in the variable

assignments beside. Finally, at t = 9, enough mass has circulated back to A, so that

A has mass 0.9 and thus “probability” 0.9 of activating. Note that this is highly

artificial, as all of this mass originated at A to begin with! In fact, no matter how we

Chapter 5: Technology diffusion in communication networks 240

interpret these xi,t, the example suggests that this “recirculation of mass” is unlikely

to give us any useful information about when node A should actually activate.

The flow constraints

As the example above suggests, we can think of the diffusion process in the con-

text of network flows. Specifically, we suppose that when a nonseed node u activates

at time T (u), a unit flow originates at a seed node and flows to node u along the

network induced by the nodes active prior to timestep T (u). We therefore augment

the IP of Figure 5.1 with this idea by introducing flow constraints :

The flow network. For any solution {xi,t}i,t≤n, we define a flow network H,

in with vertex set V (H) = {Xi,t : i, t ∈ [n]} and edge set E(H) = {(Xi,t, Xi′,t′) :

t′ > t ∧ {vi′, vi} ∈ E(G)}. Every node Xi,t in the flow network H has capacity xi,t,

while edges in H do not have capacity bounds. We let the line that connects nodes

{Xi,t : t = θ(vi)} be the threshold line. All the Xi,t such that t < θ(vi) are flow graph

nodes to the left of the threshold line; very roughly, these nodes corresponds the region

where vi is a seed. The rest are flow graph nodes to the right of the threshold line,

and roughly correspond to vi being a nonseed. A sample flow graph and its threshold

line appears in Chapter 5.8.

Flow constraints. For now, we suppose the first node to be activated in the

optimal solution is known to be v1 (so that x1,1 = 1); we can see later this assumption

can be removed. For any i and t ≥ θ(vi), we define the (i, t)-flow as the multiple-sink

flow problem over the flow network H, where the source is X1,1 and the sinks are

nodes to the right of threshold line, namely {Xi,θ(vi), Xi,θ(vi)+1, ..., Xi,t}. The demand

Chapter 5: Technology diffusion in communication networks 241

for the sink Xi,t is xi,t. Our flow constraints require that every (i, t)-flow problem (for

all i and all t ≥ θ(vi)) has a solution.

We have the following Lemma.

Lemma 5.3.4. The augmented IP for the technology diffusion problem is such that

• when T (v1) = 1 in the optimal connected activation sequence, this IP returns

the same set of feasible solutions as the simple IP of Figure 5.1.

• the fractional solution for the corresponding relaxed LP satisfies all the (i, t)-flow

constraints.

Furthermore, we can solve the corresponding relaxed linear program efficiently.

Proof of Lemma 5.3.4. Our implementation is presented in Figure 5.3. We prove

Lemma 5.3.4 in three parts. First, we show that if we add following two constraints

to the IP in Figure 5.1: (a) x1,1 = 1 and (b) that (i, t)-flow problems have feasible

solutions for all i and t ≥ θ(vi), then the resulting IP returns the subset of solutions

of the original IP where T (v1) = 1. We also remark on how to remove the assumption

that T (v1) = 1 in the optimal T . Second, we show how to encode the flow constraints

as an IP. Finally, we mention why the corresponding relaxed LP is efficiently solvable.

Part 1. Any connected activation sequence satisfies the flow constraints It

suffices to show that for any connected activation sequence, its corresponding integral

variables {xi,t}i,t≤n satisfy the (i, t)-flow constraints for all i and t ≥ θ(vi).

In what follows, we both use {xi,t}i,t≤n and T (·) to represent the activation

sequence. Let {xi,t}i,t≤n be a connected activation sequence. Let us consider an

Chapter 5: Technology diffusion in communication networks 242

min
∑

i≤n
∑

t<θi
xi,t

subject to:

∀i, t : xi,t ∈ {0, 1}

∀i ∑

t≤n xi,t = 1 (permut’n cstr)

∀t ∑

i≤n xi,t = 1 (permut’n cstr)

∀t > 1, i :
∑

{vi,vi′∈E}
∑

t′<t xi′,t′ ≥ xi,t (connectivity cstr)

x1,1 = 1 (make X1,1 the source)

∀i, t ≥ θ(ui)

∀ partitions of V (H)

S, S, s.t.X+
1,1 ∈ S, ski,t ∈ S

∑

e∈δ(S,S) c(e) ≥
∑

θ(ui)≤t′≤t xi,t′ (flow cstr).

Figure 5.3: Integer program for solving the technology diffusion problem.

Chapter 5: Technology diffusion in communication networks 243

arbitrary (i, t)-flow. Let τ be the time step such that xi,τ = 1. Recall that the demand

in an (i, t)-flow problem is
∑

θ(ui)≤τ≤t xi,τ . Therefore, when τ > t or τ < θ(vi), the

demand is 0 and we are done. We only need to consider the case where θ(vi) ≤ τ ≤ t.

We claim that when {xi,t}i,t≤n is a connected activation sequence, for any t and

vk , T−1(t), there exists a path v1vi1vi2 ...vijvk such that

T (v1) < T (vi1) < ... < T (vij−1
) < T (vij) < T (vk) = t.

This can be seen by induction on t. For the base case, t = 2 and the path is v1vk. For

the induction step, suppose the claim holds for every time step up to t− 1. We show

that it also holds when vk activates at the t-st time step. Since {xi,t}i,t≤n is connected,

there exists a vk′ such that there is an edge {vk′, vk} ∈ E and T (vk′) < T (vk). By the

induction hypothesis, there must be a path v1...vk′ that connects v1 and vk′, where

the activation time of each node on the path increases monotonically. Thus, the path

we seek is v1vi1 ...vk′vk, which completes the proof of the induction step.

We conclude the proof by using the claim we proved by induction. Namely, there

is a path from v1 to the node vk activating at time t. It follows that we can we push

a unit of flow along the path induced in the flow graph H, namely X1,1, Xi1,T (vi1)
, ...,

Xij ,T (vij)
, Xk,t, so we must have a feasible solution to the (i, t)-flow problem.

Turning on v1. We remark that while we have been assuming that v1 is known to

activate at t = 1 in the optimal solution, we can ensure this assumption holds by

polynomial-time “guessing”; run the IP O(|V |) times, relabeling a different node in

the graph as v1 in each run, and use the run that returns the smallest seedset.

Part 2. Implementation of the flow constraints. The (i, t)-flow constraints are

enforced via the max-flow-min-cut theorem, i.e. by using the fact that the minimum

Chapter 5: Technology diffusion in communication networks 244

cut between the source and the sinks is the same as the maximum flow. Thus, to

ensure every (i, t)-flow problem has a feasible solution, we require the capacity for

all the cuts between the source and the sinks to be larger than the demand. The

actual implementation is quite straightforward, but we present the details of the IP

for completeness:

• The capacity constraints we have are over the nodes in H. We use standard

techniques to deal with this: we replace each node Xi,t in H with two nodes

X+
i,t and X

−
i,t connected by a directed edge of capacity xi,t.

• There are multiple sinks in a (i, t)-flow problem. To deal with this, for every

i and t ≥ θ(vi), we introduce a new node ski,t to H that is connected to every

sink Xi,θ(vi), Xi,θ(vi)+1, ..., Xi,t that sinks all the flow in the (i, t)-flow problem.

Our implementation is presented in Figure 5.3. Let S and S be two arbitrary partition

of the nodes in H. We let δ(S, S) be the cut of the partition, i.e. the set of edges

whose end points are in different subsets of the partition. Also, we let c(e) be the

capacity of the edge e, i.e. c({X+
i,t, X

−
i,t}) = xi,t and c(e) =∞ for all other edges.

Part 3. The relaxed linear program is efficiently solvable. Our relaxed LP

contains an exponential number of constraints (namely, the flow constraints). Nev-

ertheless, we can use the ellipsoid method to find an optimal solution in polynomial

time using a separation oracle [110] that validates if each of the (i, t)-flow problems

over H have solutions, and if not, returns a min-cut constraint that is violated. This

oracle can be constructed using algorithms in, e.g. [54].

Eliminating the integrality gap. The flow constraints eliminate the pathological

Chapter 5: Technology diffusion in communication networks 245

example above, and therefore also the Ω(n) integrality gap. To see why, notice that

the (B, 4)-flow problem has total demand 0.2 (i.e. xB,2 = 0.1 and xB,4 = 0.1) but

there is no way to supply this demand from XA,1.

Why coupled sampling works.

In addition to improving the robustness of our IP, the flow constraints also have

the following pleasant interpretation that we use in the design our rounding algorithm:

if there is a flow f ∈ [0, 1] from a seed node to a non-seed node u at time t, then node

u has probability f of activating at time t.

On connected seedsets. To ensure that all network flows originate at seed

nodes, Approach 3 requires Get-Seq to return an activation sequence T where all

seed nodes activate before the non-seed nodes. If we couple this with the requirement

that T is connected (so we can use the trick of deciding that node v is a seed if

T (v) < θ(v)), it follows that we require a connected seedset S (i.e. the nodes in S

induce a connected subgraph of G). Approach 3 achieves this by using Glue to

connect the nodes it samples into its seedset S, and then deterministically generates

T using Get-Seq as specified below.

Chapter 5: Technology diffusion in communication networks 246

Get-Seq(H, S)

1 Initialize by flagging each Xu,t ∈ H as “inactive” by setting bu,t ← 0.

2 ∀ u ∈ S, bu,t ← 1 for t < θ(u).

3 // “Activate” each Xu,t to the left of the threshold line

4 for t← 1 to n

5 do ∀ u s.t. θ(u) ≥ t:

6 if (∃v, τ : ((Xv,τ , Xi,t) ∈ E(H)) ∧ (bv,τ = 1))

7 bu,t ← 1 for t ≥ θ(u)

8 // “Activate” each Xu,t to the right of the threshold line

9 Obtain T by taking T (u)← min {t : bu,t = 1} for every u ∈ V .

10 return T .

Intuition behind the proof of Proposition 5.3.1. Given the probabilistic

interpretation of flows, consider what happens if two disjoint flows f1 and f2 originate

from different seeds and arrive simultaneously at node u at time t. The total flow at

node u at time t is then f1 + f2. What does this merge of two disjoint flows mean

in our probabilistic interpretation? It turns out that the natural interpretation is

already pretty sensible: with probability f1, the technology is diffused via the first

flow, and with probability f2 the technology is diffused via the second flow. Now,

the probability that the technology is diffused to u via either of these two flows is

1− (1− f1)(1− f2). When f1, f2 are both small, this probability becomes ≈ f1 + f2,

so that the total flow can be used to determine node u’s activation probability. On

the other hand, when f1 or f2 is large, we are fairly confident that u should activate

prior to time t, and so we can simply decide that T (u) ≤ t without incurring a large

Chapter 5: Technology diffusion in communication networks 247

increase in the size of the seedset. Given that the total demand in the (u, t) flow

problem is
∑

θ(u)≤τ≤t xu,τ , it follows that the probability that u is a nonseed and is

activated by time t is roughly proportional to this demand. Also, notice that u itself

is chosen as a seed with probability
∑

τ<θ(u) xu,τ so by combining these events in the

appropriate way, we get that Pr[T (u) ≤ t] ∝∑τ<t xu,τ as required by the third item

in Proposition 5.3.1.

To formalize this intuition, we need a few definitions. First, for each pair u and t

(where t ≥ θ(u)), let an arbitrary (but fixed) solution Fu,t for the (u, t)-flow problem

be the representative flow for the (u, t)-flow problem. To help us understand how

disjoint flows merge, we use the following notion:

Definition 5.3.5 (Border nodes). Consider the (u, t)-flow problem on the flow graph

H and the corresponding representative flow Fu,t. Let us decompose the flow into

paths (in an arbitrary but consistent manner) P1, P2, ..., Pq. Consider an arbitrary

path Pk and let Xj,τ be the last node on Pk that is to the left of the threshold line.

Define Xj,τ = border(Pk).

• The border nodes for the (u, t)-flow problem on flow graph H are β(u, t) ,

{border(P1), ..., border(Pq)}.

• The border nodes for the (u, t)-flow problem on G are

B(u, t) , {vj : ∃τ s.t. Xj,τ ∈ β(u, t)}.

For notational convenience, when t < θ(u), we let β(u, t) = B(u, t) = ∅.

An expository example of G, H and their border nodes is in Chapter 5.8. Border

nodes are useful because Get-Seq ensures any nonseed node u activates before time

Chapter 5: Technology diffusion in communication networks 248

t > θ(u) whenever a border node in B(u, t) is in the seedset S. Letting pj be the

probability that node vj is placed in the S in a single run of Approach 3, and defining

the seed weight of node vj as ωj ,
∑

t<θ(vj)
xj,t so that pj = min{1, αωj} (recall

that α is our sampling bias in Approach 3), it follows that Pr[T (u) ≤ t] is related to

∑

vj∈B(u,t) ωj. The following lemma therefore allows us to relate Pr[T (u) ≤ t] to the

demand in the (u, t)-flow problem
∑

θ(u)≤τ≤t xu,τ , which is the main task of the proof

of Proposition 5.3.1:

Lemma 5.3.6 (Border node lemma).
∑

vj∈B(u,t) ωj ≥
∑

θ(u)≤τ≤t xu,τ for any u ∈ V

and t ≥ θ(u).

This lemma uses the fact the demand of the (u, t)-flow problem is upperbounded by

the total capacity of the border nodes B(u, t), which is in turn upperbounded by the

total seed weight of the border nodes.

Proof of Lemma 5.3.6. Let us decompose the representative flow Fi,t into paths (in

an arbitrary but consistent manner) P1, P2, ..., Pq, and let fk be the volume of the

flow on path Pk.

∑

θ(vi)≤τ≤t

xi,τ =
∑

k

fk (the demand in the (i, t) flow problem is satisfied)

=
∑

Xj,τ∈β(i,t)

∑

border(Pk)=Xj,τ

fk (multiple border(Pk) can map to a single Xj,τ)

≤
∑

Xj,τ∈β(i,t)

xj,τ (bounding capacity of Xj,τ)

=
∑

vj∈B(i,t)

∑

τ s.t. Xj,τ∈β(i,j)

xj,τ (translating from H to G)

≤
∑

vj∈B(i,t)

∑

τ≤θ(vj)

xj,τ (τ s.t. Xj,τ ∈ β(i, j)⇒ τ ≤ θ(vj))

=
∑

vj∈B(i,t)

wj (definition of wj)

Chapter 5: Technology diffusion in communication networks 249

Notice that the last four lines give the total seed weight of the border nodes as an

upper bound on their total capacity.

Armed with our border node lemma, we can move on to our main task:

Proof of Proposition 5.3.1. One can verify, by the construction of GetSeq, that the

activation function T is always connected and for any u /∈ S, T (u) ≥ θ(u). Our main

objective here is to prove that Pr[T (u) ≤ t] ∝ ∑τ<t xi,t for every pair (u, t) where

u ∈ V and t ≤ n. More specifically, we need to show that:

Part 1. If
∑

t′≤t xu,t′ <
1

12(1+ε)
, then Pr[T (u) ≤ t] ≥ (1 + ε)(

∑

t′≤t xu,t′)

Part 2. If
∑

t′≤t xu,t′ ≥ 1
12(1+ε)

, then Pr[T (u) ≤ t] ≥ 1− ε
4n2 .

(5.6)

Our proof relies on the observation that T (u) ≤ t if at least one of the following

events hold:

E1: u is seed (because GetSeq activates all seeds at t = 1)

E2: ∃ an active border node vj ∈ B(u, t) in G. (E2 implies there exist τ < t′ ≤ t such

that the border node Xj,τ in H is active and GetSeq will activate node Xu,t′

and u activates by time t.)

We now use the relationship between the capacity of the border nodes and the demand

of the (u, t) flow problem (namely,
∑

θ(u)<τ≤t xu,τ) to prove Part 1 of (5.6). Given our

Chapter 5: Technology diffusion in communication networks 250

observation above we have:

Pr[T (v) ≤ t] = Pr[E1 ∨ E2] ≥ 1−min{Pr[¬E1],Pr[¬E2]}

≥ 1−min
{

Pr[¬E1], 1− 2(1 + ε)
(∑

θ(u)≤τ≤t
xu,τ

)}

(Lemma 5.3.7)

≥ 1−min
{

1− 2(1 + ε)
∑

τ<θ(u)

xu,τ , 1− 2(1 + ε)(
∑

θ(u)≤τ≤t
xu,τ)

}

(Since α ≥ 2(1 + ε))

≥ max
{

2(1 + ε)
∑

τ<θ(u)

xu,τ , 2(1 + ε)(
∑

θ(u)≤τ≤t
xu,τ)

}

≥ (1 + ε)
∑

τ≤t
xu,τ

which completes the proof, modulo Lemma 5.3.7 used in the second inequality.

Lemma 5.3.7 applies the border node Lemma 5.3.6 to relate the probability that at

least one border node is in the seedset (i.e. Pr[¬E2]) with the demand of the (u, t)-flow

problem (i.e.
∑

θ(u)≤τ≤t xu,τ). Specifically:

Lemma 5.3.7. For every u ∈ V and t ∈ [n] where
∑

τ≤t xu,τ ≤ 1
12(1+ε)

we have

Pr[¬E2] = 1−
∏

vj∈B(u,t)

(1− pj) ≥ 2(1 + ε)
∑

θ(u)≤τ≤t
xu,τ

Proof of Lemma 5.3.7. We shall find a non-negative sequence p′j (vj ∈ B(u, t)) such

that

• Condition 1:
∏

vj∈B(u,t)(1− pj) ≤
∏

vj∈B(u,t)(1− p′j)

• Condition 2:
∑

j∈B(u,t) p
′
j = 4(1 + ε)

∑

θ(u)≤τ≤t xu,τ .

When both conditions hold, we can bound
∏

vj∈B(u,t)(1 − pj) by
∏

vj∈B(u,t)(1 − p′j),

which can then be approximated by its first-order terms. We use existential arguments

to find the sequences p′j (for each vj ∈ B(u, t)): We start by recalling that pj =

min{1, αωj} and α > 4(1+ ε). It follows that when ωj ≥ 1
4(1+ε)

for some vj ∈ B(u, t),

the pj = 1 and the lemma trivially holds. Thus, we may assume that 4(1 + ε)ωj ≤ 1

Chapter 5: Technology diffusion in communication networks 251

for all vj ∈ B(u, t), and we can write

∑

vj∈B(u,t)

pj ≥ 4(1 + ε)
∑

vj∈B(u,t)

ωj ≥ 4(1 + ε)
∑

θ(u)≤τ≤t
xu,τ .

where the second inequality uses Lemma 5.3.6.

We now know that there exists a sequence p′j such that pj ≥ p′j and
∑

j∈B(u,t) p
′
j =

4(1 + ε)
∑

θ(u)≤τ≤t xu,τ , which meets Condition 1 and Condition 2. It follows that

∏

vj∈B(u,t)(1 − pj) ≤
∏

vj∈B(u,t)(1 − p′j), and we may complete the proof with the

following first-order approximation:

Lemma 5.3.8 (First order approximation). Let x1, x2, ..., xk be real positive values

such that
∑

i≤k xi ≤ 1. Then

∏

i≤k
(1− xi) ≤ 1− 1

2

(
∑

i≤k
xi

)

.

Proof of Lemma 5.3.8 (First order approximation). Let x1, x2, ..., xk be real positive

values such that

∑

i≤k xi ≤ 1. Notice that for any 0 ≤ x ≤ 1, we have (1−x) ≤ e−x. Let s ,
∑

i≤k xi.

We have

∏

i≤k
(1−xi) ≤

∏

i≤k
exp(xi) = exp(

∑

i≤k
xk) = exp(s) ≤ 1−s+ s2

2
≤ 1−s(1− 1

2
) = 1− s

2
.

When we substitute the xi’s in Lemma 5.3.8 with p′js, and use the fact that

∑

j∈B(u,t)

p′j = 4(1 + ε)
∑

θ(u)≤τ≤t
xu,τ ≤ 4(1 + ε) 1

12(1+ε)
= 1

3
< 1.

we complete the proof because
∏

vj∈B(u,t)(1− p′j) ≤ 1− 1
2
· 4(1 + ε)

∑

θ(vj)≤τ≤t xu,τ

Chapter 5: Technology diffusion in communication networks 252

We now move to the second part of Proposition 5.3.1. , i.e. we consider a pair

(u, t) such that
∑

τ≤t xu,τ ≥ 1
12(1+ε)

. Let us consider two cases.

Case 1.
∑

τ≤min{θ(u)−1,t} xu,τ ≥ 1
24(1+ε)

. In this case, pu = 1 and u is always selected

as a seed. Thus, Pr[T (u) ≤ t] = 1.

Case 2.
∑

τ≤min{θ(u)−1,t} xu,τ <
1

24(1+ε)
In this case, we can see that

∑

θ(u)≤τ≤t xu,τ ≥
1

24(1+ε)
. Therefore, we use the border node Lemma 5.3.6 to get

∑

vj∈B(u,t)

ωj ≥
1

24(1 + ε)
. (5.7)

Now, recall that Pr[T (u) ≤ t] ≥ Pr[E2] = 1−∏vj∈B(u,t)(1− pj). Therefore, it suffices

to prove that
∏

vj∈B(u,t)(1− pj) ≤ ε
4n2 .

At this point, our analysis deviates from the analysis for the first part of Propo-

sition 5.3.1. There, the pj values were small enough to allow
∏

vj∈B(u,t)(1− pj) to be

approximated using only first-order terms. Here, we are dealing with the case where

pj’s are large. Thus,
∏

vj∈B(u,t)(1−pj) decays exponentially, and it is more appropriate

to approximate it using exponential functions. By using (5.7) and the following ap-

proximation Lemma 5.3.9 (with λ as α) we can see that indeed
∏

vj∈B(i,t)(1−pj) ≤ ε
4n2 ,

which completes the proof.

Lemma 5.3.9. Let ε be an arbitrary constant. Let x1, ..., xk be numbers between

[0, 1] such that
∑

i≤k xi = s, where s ≥ 1
24(1+ε)

. Let λ = 24(1 + ε) ln(4n
2

ε
) and pi =

min{λxi, 1}. It follows that

∏

i≤n
(1−min{λxi, 1}) ≤

ε

4n2
.

Proof of Lemma 5.3.9. Let us consider two cases over the values of xi. In the first

case, there exists some xi such that λxi ≥ 1. For this case, we have
∏

i≤n(1 −

Chapter 5: Technology diffusion in communication networks 253

min{λxi, 1}) = 0 ≤ ε
4n2 .

In the second case, where all xi are less than 1/λ, the quantity
∏

i≤k(1 − pi) =
∏

i≤k(1− λxi) is maximized when x1 = x2 = ... = xk = s
k
. In other words,

∏

i≤k
(1− λxi) ≤

(

1− λs

k

)k

=

(

1− λs

k

) k
λs

λs

≤ e−λs

≤ exp(− λ

24(1 + ε)
)

= exp(− ln(
4n2

ε
)) =

ε

4n2
.

This completes the proof for Proposition 5.3.1.

Asymptotic optimality of our rounding algorithm. We pay a factor of

` in our rounding algorithm, because we merge ` different {S, T} samples to make

sure all the thresholds are good. But is this really necessary? In Chapter 5.5.3,

show that our rounding algorithm is asymptotically optimal in `, by presenting an

Ω(`) integrality gap for the LP of Figure 5.3. Our problem instance is composed of `

individual gadgets, where the nodes in gadget i have thresholds chosen from a carefully

constructed constant-size set. We can force these gadgets to be “independent”, in that

sense that if a single {S, T} sample causes one of the thresholds in gadget i to be

good, we know that whp no threshold in any other gadget can be good. It follows

that merging ` different {S, T} samples, each ensuring that a single threshold is good,

is inevitable.

Chapter 5: Technology diffusion in communication networks 254

Improvement to the approximation ratio. Observe that in our rounding

procedure we require all Tj ’s in each of the sampled pairs {Sj, Tj} to be feasible

(i.e. all nodes have to be active at the end of Tj). This requirement is not necessary

because the merged T will be feasible even if only one of the Tj is feasible. We remark

here that this observation can be exploited to improve the algorithm so that it returns

a feasible seedset of size α · opt + β, where α = O(r(logn+ `)) and β = O(r` logn).

5.4 Proof of Corollary 5.1.3

Let us consider an arbitrary technology diffusion problem Π = {G, θ}. Let Π+

and Π− be the corresponding diffusion problems defined in Definition 5.1.2. Recall

that opt is the optimal solution for Π, opt+ is the optimal solution for Π+ and opt−

is the optimal solution for Π−. Let P , {b1 + εc, b(1 + ε)2c, ..., b(1 + ε)qc}, where

q = log1+ε n + 1. We next define a new technology diffusion instance Π′ = {G, θ′}

that uses the same graph and θ′(u) (for each u) is the smallest number in P that is

larger than θ(u). Notice that θ′(u) ≤ (1+ ε)θ(u). Let opt′ be the size of optimal seed

set for Π′. We can run our approximation algorithm on Π′ and get a solution, whose

size is at most O(log2 n ·r ·opt′) since the number of thresholds in Π′ is log n. Because

θ′(u) ≥ θ(u) for all u, a feasible solution in Π′ is also a feasible solution in Π. Thus,

the seedset returned by our algorithm is feasible and opt ≤ opt′. Similarly, we can

see that opt− ≤ opt and opt′ ≤ opt+. Therefore, the seedset size can be expressed as

O(log2 n · roptopt′
opt

) = O(log2 n · roptopt+
opt−

) = O(κ(Π, ε)(log2 n) · ropt).

Chapter 5: Technology diffusion in communication networks 255

5.5 Lower bounds

We now present the following three lower bounds for the technology diffusion problem.

1. Computational barrier: the technology diffusion problem is at least as hard

as a Set Cover problem, so that our problem does not admit any o(ln|V |)-

approximation algorithm.

2. Information theoretic barrier: in the worst case, the optimal solution with a

connected seedset could be Ω(r) times larger than the optimal solution.

3. Integrality gaps: The simple IP (Figure 5.1 discussed in Chapter 5.2) has an

Ω(n) integrality gap. The augmented IP (presented in Figure 5.3) has an Ω(`)

integrality gap.

5.5.1 Computational barrier

We now prove that the technology diffusion problem is at least as hard as the

set cover problem. Let us recall the definition (of the optimization version) of the

set cover problem: given a finite universe U and a family S of subsets of U , we are

interested in finding the smallest subset T of S such that T is a cover of U , i.e.

⋃

T∈T T = U . The set cover cannot be approximated within a factor of (1− o(1)) lnn

unless NP has quasi-polynomial time algorithm (see [3] and references therein). We

have the following lemma.

Lemma 5.5.1. Given an α-approximation algorithm for the technology diffusion

problem with constant number of threshold values θ ≥ 2, and constant graph diameter

r ≥ 3, we can obtain an O(α)-approximation algorithm for the set cover problem.

Chapter 5: Technology diffusion in communication networks 256

Set-type

vertices

ve1

ve2

Vem+1

Element-type

vertices
ve'1

Ve’2

Vem+1

m+1

n

…

……

… vTmvT1 vT1

Figure 5.4: Reduction.

Moreover, the reduction holds even if the seedset in the technology diffusion problem

is required to be connected.

Thus, we can see that there is no c lnn approximation algorithm (for some con-

stant c) for the technology diffusion problem.

Proof of Lemma 5.5.1. Let us consider an arbitrary set cover instance (U ,T), where

m = |T| is the number of sets in T.

The reduction. We construct a technology diffusion problem as described below,

and illustrated in Figure 5.4:

• The vertex set consists of the following types of vertices:

1. The set type: for each T ∈ T, we shall construct a node vT in the technol-

ogy network.

2. The element type: for each e ∈ U , we shall construct m+1 nodes ve,1, ve,2,

..., ve,m+1.

Chapter 5: Technology diffusion in communication networks 257

• The edge set consists of the following edges:

1. For each T ∈ T and e ∈ T , we add the edges {vT , ve,1}, {vT , ve,2}, ...,

{vT , ve,m+1}.

2. The set type vertices are connected as a clique. (For each T 6= T ′ ∈ T, we

add the edge {uT , uT ′}).

• The thresholds θ(·) are set as follows,

1. For any e ∈ U and i ≤ m+ 1, we set θ(ve,i) = 2.

2. For every T ∈ T, we set θ(vT) = (m+ 1)n + 1.

Properties of the reduction. Notice that our technology diffusion problem has

only two types of threshold values. Furthermore, the diameter of the graph we form

is exactly 3 hops (in terms of edges); the maximum distance in this graph is from one

ve,i node to another. Finally, we show below that the seedset must consist of set-type

vertices. Since these vertices form a clique, it follows that there exists an optimal

seedset that is connected.

Correctness. To conclude that the size of the optimal seed set is the same as

the size of the optimal cover (which also means that our reduction is approximation-

preserving), we establish the following:

Item 1. For any feasible cover S in the set cover problem, the corresponding seed

set {vS : S ∈ S} is a feasible solution for the technology diffusion problem.

Item 2. Any feasible seedset in the technology diffusion problem that only consists

of set-type vertices corresponds to a feasible cover in the set cover problem.

Chapter 5: Technology diffusion in communication networks 258

Item 3. Given a feasible seedset that consists of element type vertices, there is a

feasible seedset of equal or smaller size that consists only of set type vertices.

Since the set type vertices form a clique, we have that the optimal solution for

the technology diffusion problem is also a connected one.

Item 1. To show the first item, we simply walk through the activation process:

When S is a cover, let the seedset be vTi
for all Ti ∈ S. Notice that this seedset is

connected. Upon activating the seedset, the vertices ue,i for all e ∈ U and i ≤ m + 1

are activated because they are connected to at least one active seed. Now, there are

(m+ 1)n active nodes, so the rest of the set type vertices are activated.

Item 2. To show the second item, we consider an arbitrary seedset that only

consists of the set type vertices: U = {vT1 , vT2 , ..., vTk
}, where T1, ..., Tk ∈ T. We shall

show that if T1, ..., Tk is not a cover, then the seed set cannot be feasible (i.e. some

nodes will remain inactive in the technology diffusion problem).

Let e ∈ U/ (∪j≤kTj) be an element that is not covered by the sets in {T1, ..., Tk}.

Let us consider the nodes ve,1, ve,2, ..., ve,m+1, and node vT for each T /∈ {T1, ..., Tk}

in the technology diffusion problem. We claim that none of these vertices will be

activated with seedset U . Suppose, for the sake of contradiction, that one or more

of these vertices are activated, and consider the first activated vertex among them.

There are two cases:

Case 1. vT (T /∈ T) is activated first. This is impossible: when ve,i (i ≤ m+1) are not

activated, the number of activated nodes is at most (n−1)(m+1)+m < (m+1)n.

Case 2. ve,i (i ≤ m + 1) is activated first. This is impossible because ve,i is only

Chapter 5: Technology diffusion in communication networks 259

connected with vT , where T /∈ {T1, ..., Tk} and none these set type vertices are

activated.

Item 3. Finally, we move onto the third item. Let us consider a feasible seedset

F that does not consist of only set type vertices. We show that we can easily remove

the element type vertices in F : let ve,i be an arbitrary vertex in F . Then we can

remove ve,i from F and add an vT to F such that e ∈ T . This does not increase the

cardinality of F . Furthermore, ve,i would still be activated, which implies that the

updated F is still be a feasible seed set.

5.5.2 Information theoretic bound

Lemma 5.5.2. For any fixed integer r, there exists an instance of technology diffusion

problem {G, θ} such that (a) the diameter of G is Θ(r), and (b) the optimal connected

seedset is at least Ω(r) larger than the optimal seedset.

Proof of Lemma 5.5.2. Let r > 0 be an arbitrary integer. We define graph Gr as

follows (see Figure 5.5):

• The vertex set is {v1, ..., v2r+1}.

• The edge set is {{vi, vi+1} : 1 ≤ i < 2r + 1}.

The threshold function shall be defined as follows,

• θ(v1) = θ(v2r+1) = 2 and θ(vr+1) = 2r + 1.

• For 1 < i ≤ r, θ(vi) = i.

• For r + 2 ≤ i < 2r + 1, θ(vi) = 2r + 2− i.

Chapter 5: Technology diffusion in communication networks 260

It is straightforward to see that the diameter of the graph is 2r = Θ(r). It remains

to verify that the optimal connected solution is Θ(r) times larger than the optimal

solution.

It’s easy to see that {v1, v2r+1} is a feasible seedset and therefore, the size of the

optimal seed set is O(1). We next show that any feasible connected set has size Ω(r).

Since the seedset must be connected, wlog we can assume that the seedset is

{vi, vi+1, ..., vj} and by symmetry i ≤ r + 1. When j < r + 1, node vr+1 will never

activate (because vr+1 has threshold 2r+1, it only activates when all other nodes are

active, but in this case all r nodes to the right of vr+1 are inactive). It follows that a

feasible seedset requires j ≥ r + 1.

When i = 1, the size of the seedset is Θ(r) and the lemma follows. So, we

need only consider the case where i > 1: symmetry allows us to assume wlog that

r+1−i ≥ j−(r+1) i.e. θ(vj+1) ≥ θ(vi−1). Therefore, since we have j−i+1 nodes in

the seedset, a necessary condition for this seedset to be feasible is thus j−i+1 ≥ i−2.

Using the fact that j ≥ r + 1, we get i ≤ r/2 + 2 and j − i = Ω(r), which completes

our proof.

One drawback of this construction is that ` = Θ(n). We may modify θ(·) so that

` = Õ(1) (thus ensuring that our lower bound depends on graph diameter r, rather

than the number of thresholds `):

• When i ≤ n, set θ(ui) = max{2blog2 ic, 2},

• when i = n+ 1, set θ(ui) = 2n+ 1, and

• When i > n, set θ(ui) = max{2blog2(2n+2−i)c, 2}.

Chapter 5: Technology diffusion in communication networks 261

v
1

v
2

v
3

v
2r+1

v
2r

v
2r-1

v
r+2

v
r+1

v
r… …

1
=2

2
=2

3
=3 …

r
=r

r+1
=2r+1

r+2
=r …

2r-1
=3

2r
=2

2r+1
=2

Figure 5.5: An instance of the technology diffusion problem for the proof of

Lemma 5.5.2.

One can use similar arguments to show that the size of the optimal seedset is O(1)

while the size of the optimal connected seedset is Θ(r).

5.5.3 Integrality gap

Integrality gap for the simple IP of Figure 5.1

We construct a problem instance with ` = O(1) where the solution returned by

the simple IP of Figure 5.1 is O(1), while the optimal seedset has size Θ(n), implying

an integrality gap that is polynomial in n = |V |.

The problem instance. We let w and h be parameters of the problem instance

{G, θ}. These parameters control the shape of the graph G and the size of the

integrality gap. We will decide the parameters at the end to maximize the integrality

gap. The graph G (see Figure 5.6) has a node set of size n = wh+h+1 that consists

of the following nodes:

• The root node R.

• The “seed candidates” {s1, ..., sh}.

• The “tail nodes” vi,j for i ≤ h and j ≤ w.

The edge set consists of the following two types of edges:

Chapter 5: Technology diffusion in communication networks 262

shs1

Seed

candidates

R

v1,1

v1,2

v1,w

s2

Tail nodes

w

h

…
…

…

Root

vertex

v2,1

v2,2

v2,w
…

vh,1

vh,2

vh,w

…

Figure 5.6: The graph for the hard instance with Ω(h) integrality gap

• all the “seed candidates” si (i ∈ [h]) are connected with the root R.

• for any specific i ∈ [h], the nodes si, vi,1, vi,2, ..., vi,w form a chain. In other

words, {si, vi,1} ∈ E and {vi,j, vi,j+1} ∈ E for 1 ≤ j ≤ w − 1.

Hereafter, we shall refer to the chain si, vi,1, ..., vi,w as the i-th tail of the graph. The

threshold function θ is specified as follows:

• θ(R) = n.

• for any si we have θ(si) = n− h+ 2.

• for any vi,j we have θ(vi,j) = 2.

To exhibit the integrality gap, we shall first construct a feasible fractional solution

of constant size, and then show that the optimal integral solution gives rise to a seedset

of size Θ(h).

Chapter 5: Technology diffusion in communication networks 263

The fractional solution. Table 5.1 describes a feasible fractional solution of

constant size. We now walk through this solution. In the solution, we group the rows

in the following way:

• The first row corresponds with the root node.

• The rest of the rows are grouped by “stripes”. A stripe consists of a seed

candidate and its corresponding tail. For example, the first stripe consists of

the rows for s1, v1,1, ..., v1,w.

We shall also divide the columns into two parts. The first part is the “false

propagation” stage, consisting of 2+wh columns where we use a small fractional seed

set to activate the tail nodes. The second part is the “completion stage” consisting

of h−1 rows , where we fill in the residual mass of the nodes so that the permutation

constraints are met.

Variable assignments in the fractional solution. We now describe the assignments

in Table 5.1.

• xR,1 = 1, i.e. the root is first activated.

• Let ε , 1/h. For each stripe {si, vi,1, ..., vi,w}, we assign values in the false

propagation region as follows: xsi,2 = ε and xvi,j ,j+2+kw = ε for all j ≤ w and

0 ≤ k < h. The rest of the variables in this region are set to 0. This assignment

exhibits a periodic pattern, so that mass can circulate back and forth along a

tail until all nodes in the tail are activated at the end of the false propagation

stage. (Refer to the underlined values in the first stripe of Table 5.1).

C
h
a
p
ter

5
:
T
ech

n
o
logy

d
iff
u
sio

n
in

co
m
m
u
n
ica

tio
n
n
etw

o
rks

264

Table 5.1: A fractional solution for the simple IP formulation

First cycle Second cycle h− 2 other cycles Completion stage
R 1 0 0 0 0 . . . 0 0 0 0 . . . 0 . . . 0 0 0 . . . 0

1st
strip

e

s1 0 ε 0 0 0 . . . 0 0 0 0 . . . 0 . . . 1− ε 0 0 . . . 0
v1,1 0 0 ε 0 0 . . . 0 ε 0 0 . . . 0 . . . 0 0 0 . . . 0
v1,2 0 0 0 ε 0 . . . 0 0 ε 0 . . . 0 . . . 0 0 0 . . . 0
v1,3 0 0 0 0 ε . . . 0 0 0 ε . . . 0 . . . 0 0 0 . . . 0
...

. . .
. . .

.
v1,w 0 0 0 0 0 . . . ε 0 0 0 . . . ε . . . 0 0 0 . . . 0

2n
d
strip

e

s2 0 ε 0 0 0 . . . 0 0 0 0 . . . 0 . . . ε 1− 2ε 0 . . . 0
v2,1 0 0 ε 0 0 . . . 0 ε 0 0 . . . 0 . . . 0 0 0 . . . 0
v2,2 0 0 0 ε 0 . . . 0 0 ε 0 . . . 0 . . . 0 0 0 . . . 0
v2,3 0 0 0 0 ε . . . 0 0 0 ε . . . 0 . . . 0 0 0 . . . 0
...

. . .
. . .

.
v2,w 0 0 0 0 0 . . . ε 0 0 0 . . . ε . . . 0 0 0 . . . 0

3rd
strip

e

s3 0 ε 0 0 0 . . . 0 0 0 0 . . . 0 . . . 0 2ε 1− 3ε . . . 0
v3,1 0 0 ε 0 0 . . . 0 ε 0 0 . . . 0 . . . 0 0 0 . . . 0
v3,2 0 0 0 ε 0 . . . 0 0 ε 0 . . . 0 . . . 0 0 0 . . . 0
v3,3 0 0 0 0 ε . . . 0 0 0 ε . . . 0 . . . 0 0 0 . . . 0
...

. . .
. . .

.
v3,w 0 0 0 0 0 . . . ε 0 0 0 . . . ε . . . 0 0 0 . . . 0
...

...
...

...
...

...
...

h
-th

strip
e

sh 0 ε 0 0 0 . . . 0 0 0 0 . . . 0 . . . 0 0 0 . . . (h− 1)ε
vh,1 0 0 ε 0 0 . . . 0 ε 0 0 . . . 0 . . . 0 0 0 . . . 0
vh,2 0 0 0 ε 0 . . . 0 0 ε 0 . . . 0 . . . 0 0 0 . . . 0
v3,3 0 0 0 0 ε . . . 0 0 0 ε . . . 0 . . . 0 0 0 . . . 0
...

. . .
. . .

.
vh,w 0 0 0 0 0 . . . ε 0 0 0 . . . ε . . . 0 0 0 . . . 0

Chapter 5: Technology diffusion in communication networks 265

• Finally, we fill in the variables in the completion stage so that the permutation

constraints are met. Notice that at time n−h+2, only the rows that correspond

with the seed candidates si (i ≤ h) do not sum up to 1. We use the columns

in the completion stage to fill in the extra mass using a “greedy” approach. In

other words, at the column n− h + 2, we first fill in the unused mass (namely

1 − ε) from s1. Then we fill in the unused mass from s2 as much as possible,

subject to the constraint that the column sums to 1 (namely ε). Next, we move

to the next column (the n−h+3-rd column). Then we fill in the mass from s2

and as much mass as possible from s3 to this column. This process continues

until all mass from si (i ≤ h) is filled.

The fractional solution is feasible. Next, we argue that such assignments are

feasible. Since, we satisfied the permutation constraints by construction (Table 5.1),

we only argue that the connectivity constraints are met.

• We need to start thinking about connectivity when t = 2. At this time step, the

connectivity constraints are met because all the seed candidates are connected

to the root R, which is activated at time t = 1.

• Next, we argue that the connectivity constraints are met in the propagation

stage. Let us consider the first cycle in the propagation stage. In the first time

step of the first cycle, an ε-fraction of mass is activated at vi,1 for all i ≤ h. Since

vi,1 is connected with si, and an ε portion of si is active prior to the beginning

of the 1st cycle, the connectivity constraint is met for this step. For the rest of

the timesteps of the first cycle, note that by the time we assign ε to the node

vi,j, an ε portion of mass is already activated at vi,j−1. Since {vi,j−1, vi,j} ∈ E

Chapter 5: Technology diffusion in communication networks 266

for all j < w, the connectivity constraints are met for the entire first cycle. The

argument for the remaining cycles proceeds in a similar manner.

• Finally, showing the connectivity holds in the completion stage is trivial: this

follows because only seed candidates activate at the this stage, and seed candi-

dates are all connected to the root which has been fully activated since t = 1.

Hence, we can conclude that the fractional solution in Table 5.1 is feasible.

The integral solution. To prove that the optimal integral solution is a seedset

of size O(h), we show that any seedset of size less than h
5
will fail to activate all

the nodes in the graph. Here, the constant 1
5
is chosen rather arbitrarily and is not

optimized.

First, we notice that for any feasible set S that contains one or more tail nodes,

we can transform it into a feasible set S ′ such that (a) |S ′| ≤ |S| and (b) no tail nodes

are in S ′. To construct the new seedset, replace each tail node vi,j in S by it’s parent

seed candidate si. Since the activation of si always causes the activation of vi,j for

any j, it follows that S ′ is a feasible seedset whenever S is a feasible seedset.

Thus, we may focus on the seedset that contains only R and/or seed candidates.

Wlog, we may assume the seed set is a subset in U = {R, s1, ..., sh
5
}. Next, we argue

that the seedset U fails to activate all the nodes in the graph. First, we can see that

all the tails vi,j (i ≤ h
5
and j ≤ w) with parent seed candidates in U will be active.

After they are activated, the total number of activated nodes will be h
5
+1+ wh

5
. Now

we argue that no other nodes are active because (a) all seed candidates si (i >
h
5
)

that are not in U cannot be activated since the following holds

(h
5
+ 1 + wh

5
) + 1 < θ(si) = n− h+ 2 (5.8)

Chapter 5: Technology diffusion in communication networks 267

for sufficiently large constant w and sufficiently large n, and (b) all tail nodes vi,j

(i > h
5
and j ≤ w) cannot be activated until their parent seed candidate is active.

A Θ(n) integrality gap. We can conclude that the integral solution has a seedset

size of O(h) while the fractional solution is O(1). When we set w be a sufficiently

large constant and h = Θ(n) (we only need to ensure that (5.8) holds), our integrality

gap is Θ(n).

Integrality gap for the augmented IP of Figure 5.3.

We next prove the following theorem.

Theorem 5.5.3. Consider the augmented linear program of of Figure 5.3. For any

sufficiently large n and any ` ≤ cn1/3, where c is a suitable constant, there exists a

problem instance with an Ω(`) integrality gap.

The problem instance. To simplify the exposition, we will assume that our

problem instance {G, θ} is such that our graph G has |V | = n nodes, where n− 1 is

a multiple of `, and the range of θ is 2`+ 2 different threshold values. We shall let w

be the integer such that (w+ 2)`+ 1 = n, and let ε , 1/`. Our graph G is described

as follows (See Figure 5.7):

• the node set consists of the following:

– The root vertex R.

– The set of “seed candidate” {s1, ..., s`}.

– The set of “blockers” {b1, ..., b`}.

– The set of “tails” vi,j, where i ≤ ` and j ≤ w.

Chapter 5: Technology diffusion in communication networks 268

sk
s1

R

v1,1

b2

…

…s2 b2 bk

v1,w v2,1
… v2,w

vk,1
… vk,w

Figure 5.7: The graph for the hard instance with Ω(k) integrality gap

• The edge set consists of the following three types of edges

– There is an edge between the root and any seed candidate, i.e. {R, si} ∈ E

for all i ≤ `.

– There is an edge between the root and any blocker, i.e. {R, bi} ∈ E for all

i ≤ `.

– For any i, j, we have {si, vi,j} ∈ E and {bi, vi,j} ∈ E.

In what follows, we shall also refer to the subgraph induced by si, bi, vi,1, ..., vi,w as

the i-th gadget of the graph. We set the threshold function θ as follows:

• θ(R) = n.

• θ(si) = (w + 1)`+ 3.

• θ(vi,j) = (i− 1)(w + 1) + 3.

• θ(bi) = (i− 1)(w + 1) + w/`+ 2.

In what follows, we shall first show that a feasible solution of size O(1) exists for

the relaxed LP. Then we shall show that the optimal integral solution is a seedset of

size Ω(`).

Chapter 5: Technology diffusion in communication networks 269

The fractional solution. We now construct feasible fractional solution of size

O(1). See the table in Figure 5.2. The intuition behind our construction is to activate

the root R at the first time step, i.e. xR,1 = 1, and then activate an ε-portion of each

seed candidate in the second time step. This total of 1 + `ε = 2 mass will be the size

of the entire (fractional) seedset. We will make sure that the rest of the node’s mass

will activate after their thresholds, and will therefore not contribute to the size of the

fraction solution.

We divide our construction into two time stages. The first is the “false propaga-

tion” stage, where all the nodes except for the seed candidates will be fully activated.

The second is the “completion stage” where the remaining inactivated mass from the

seed candidates will be activated. Next, we describe each of these two stages in detail.

False propagation stage. The false propagation stage consists of (w + 1) × ` time

steps, divided into ` blocks, each consisting of (w + 1) time steps. Notice that the

thresholds of the seed candidates θ(si) ∀i occur exactly after the false propogation

stage ends. During i-th block of the false propagation stage, the blocker bi and tail

nodes vi,j ∀j ∈ [w] in i-th gadget will be fully activated. Since there are exactly

(w + 1) such nodes, the i-th block is a (w + 1) × (w + 1) matrix, the only non-zero

variables in the i-th block will be those of the blocker and tail nodes in the i-th gadget.

These variables are expressed as the sub-matrices M in Table 5.2.

The variable assignments in M . We next describe the variable assignments in

M for the i-th block, as shown in Table 5.3. Our variable assignments will keep the

invariance that before the i-th block, all nodes in the k-th gadget, except for the seed

candidate nodes, are fully activated for every k ≤ i− 1.

C
h
a
p
ter

5
:
T
ech

n
o
logy

d
iff
u
sio

n
in

co
m
m
u
n
ica

tio
n
n
etw

o
rks

270

Table 5.2: Feasible fractional assignments for the flow based linear program.

Propagation Stage Completion Stage
R 1 0 0 . . . 0 0 . . . 0 0 0 . . . 0
s1 0 ε 0 . . . 0 . . . 0 . . . 1− ε 0 0 . . . 0
s2 0 ε 0 . . . 0 . . . 0 . . . ε 1− 2ε 0 . . . 0
...

...
...

... . . .
...

s` 0 ε 0 . . . 0 . . . 0 . . . 0 0 0 . . . (`− 1)ε
b1 0 0

M 0 . . . 0

0 0 0 . . . 0
v1,1 0 0 0 0 0 . . . 0
...

...
... . . .

v1,w 0 0 0 0 0 . . . 0
b2 0 0

0 M . . . 0

0 0 0 . . . 0
v2,1 0 0 0 0 0 . . . 0
...

...
... . . .

v2,w 0 0 0 0 0 . . . 0
...

...
...

...
...

.
b` 0 0

0 0 . . . M

0 0 0 . . . 0
v`,1 0 0 0 0 0 . . . 0
...

...
... . . .

v`,w 0 0 0 0 0 . . . 0

Chapter 5: Technology diffusion in communication networks 271

The i-th block begins at the 3 + (i − 1)(w + 1)-th time step and ends at the

2 + i(w + 1)-th time step. The assignments in M are divided into multiple cycles,

each of which spans w/` = εw time steps. Notice that the i-th block will contain in

total ` cycles, and one extra time step that does not belong to any cycle. This extra

time step will be inserted between the end of the first cycle and the beginning of the

second cycle and will be used to activate the blocker bi, i.e. xbi,3+(i−1)(w+1)+w/` = 1.

In each cycle, every node’s mass needs to be incremented by ε. We do this using

a greedy construction, incrementing the mass of ` tail nodes by ε in each timestep of

a given cycle, so that the column constraints are met for this cycle. For this reason,

we need w
`
time steps to fully activate all the tail nodes; this follows because there

are in total ` cycles, so the sum of the active portion of any tail node vi,j in the i-th

block is ε · ` = 1, so that vi,j is completely activated.

Feasibility of the assignments. We show why our variable assignments at the prop-

agation stage are feasible, and do not increase the mass of the fractional seedset.

Our analysis is based on induction. Recall our invariance that prior to the start of

the i-th block, all blockers and tail nodes in the j-th gadget (k ≤ i − 1) are fully

activated. We shall show that if the invariance holds up to the (i − 1)st block, the

variable assignments in the i-th block are feasible (and do not introduce any mass to

the seedset). Suppose that the invariance holds up to the (i − 1)-st block. Then we

have that:

• the seedset does not increase, because mass for each node is assigned after its

corresponding threshold. (This follows since the i-th block starts at timestep

(w+1)(i− 1)+3 and the tail nodes have θ(vi,j) = (w+1)(i− 1)+3. Similarly,

Chapter 5: Technology diffusion in communication networks 272

the blocker bi is activated at time (w + 1)(i − 1) + 3 + w/` while θ(bi) =

(w + 1)(i− 1) + 3 + w/`.)

• the flow constraints are met. During the first cycle, (timesteps (w+1)(i−1)+3

to (w + 1)(i− 1) + w/`+ 2), we may push a flow of size ε to any tail node vi,j

through the path R-si-vi,j since the seed candidate si has is an ε-portion active.

Next, at timestep (w + 1)(i − 1) + w/` + 3 the blocker bi must receive a unit

flow; this is feasible since bi is directly connected to the root that is fully active

at t = 1. Finally, during the remaining cycles (timesteps (w+1)(i−1)+w/`+4

to (w+1)i+2) we may continue to fully activate the tail nodes vi,j by pushing

a up to a unit of flow through the path R-bi-vi,j.

Thus, we may conclude that the assignments at the i-th block are feasible and will

not increase the size of the seedset, which further implies that the invariance also

holds for the i-th block.

Completion stage. We now describe the assignments for the completion stage. The

completion stage starts at time t2 , 3+`(w+1). Since t2 ≥ θ(si), activating the seed

candidates in this stage does not increase the side of the seedset. Note further that

the only rows that do not sum to 1 correspond to the seed candidates. We again take

a greedy approach to fill in the residual mass from the seed candidates (similar to

that used in the completion stage of the integrality gap presented in Chapter 5.5.3).

At column t2, we let xs1,t2 = 1 − ε and xs2,t2 = ε, filling in the unused row mass

from s1, and filling in the unused row mass of s2 as much as possible subject to the

column constraint of column t2. We repeat this process for each of the `−1 remaining

columns, until all mass from the seed candidates is used up.

Chapter 5: Technology diffusion in communication networks 273

By construction, the completion stage satisfies the row and column permutation

constraints, and does not increase the size of the fractional seedset (since all seed

candidates activate after their thresholds). Finally, the flow constraints are satisfied

since we can push up to a unit of flow to each si along its direct connection to R.

The integral solution. To prove that the optimal integral solution is a seedset of

size Ω(`), we show that any seedset of size `
3
fails to activate the whole graph when

w ≥ ck2 for some suitable constant c. Fix an arbitrary seedset S. Let

I , {i : ∃v ∈ S s.t. v is in the i-th gadget} . (5.9)

We shall write I = {i1, ..., iq}, where q ≤ `
3
. Next, let k be the smallest integer that

is not in I. We proceed to construct a superset S ′ of S and argue that S ′ still fails

to activate the whole graph. The set S ′ is constructed as follows:

• Any nodes that are in S are also in S ′.

• The root R is in S ′.

• Any tail or blocker nodes that are in the first (k − 1)-st gadgets are in S ′.

We argue that S ′ will not activate any additional nodes in the graph. For the sake

of contradiction, suppose u /∈ S ′ is the first node activated when S ′ is the seedset.

There are two cases:

Case 1. u is in the k-th gadget. The topology of the graph G ensures that any tail

node vk,j cannot be activated before sk or bk. Therefore, u cannot be vk,j. One can

see that min{θ(bk), θ(sk)} = θ(bk) = (k − 1)(w+ 1) + 3 + εw. On the other hand, we

only have

|S ′| ≤ (k − 1)(w + 1) +
`

3
+ 1.

C
h
a
p
ter

5
:
T
ech

n
o
logy

d
iff
u
sio

n
in

co
m
m
u
n
ica

tio
n
n
etw

o
rks

274

Table 5.3: Matrix M, the fractional assignments for a block

First cycle Second cycle Third cycle ... w
`
-th cycle

bi 0 0 0 . . . 0 0 1 0 0 0 . . . 0 0 0 0 0 . . . 0 0 . . . 0 0 0 . . . 0 0

vi,1 ε 0 0 . . . 0 0 0 ε 0 0 . . . 0 0 ε 0 0 . . . 0 0 . . . ε 0 0 . . . 0 0

vi,2 ε 0 0 . . . 0 0 0 ε 0 0 . . . 0 0 ε 0 0 . . . 0 0 . . . ε 0 0 . . . 0 0

...
... . . .

...
...

... . . .
...

... . . .
... . . .

... . . .
...

vi,` ε 0 0 . . . 0 0 0 ε 0 0 . . . 0 0 ε 0 0 . . . 0 0 . . . ε 0 0 . . . 0 0

vi,`+1 0 ε 0 . . . 0 0 0 0 ε 0 . . . 0 0 0 ε 0 . . . 0 0 . . . 0 ε 0 . . . 0 0

vi,`+2 0 ε 0 . . . 0 0 0 0 ε 0 . . . 0 0 0 ε 0 . . . 0 0 . . . 0 ε 0 . . . 0 0

...
... . . .

...
...

... . . .
...

... . . .
... . . .

... . . .
...

vi,2` 0 ε 0 . . . 0 0 0 0 ε 0 . . . 0 0 0 ε 0 . . . 0 0 . . . 0 ε 0 . . . 0 0

...
...

... . . .
...

...
... . . .

...
...

...
... . . .

vi,w−`+1 0 0 0 . . . 0 ε 0 0 0 0 . . . 0 ε 0 0 0 . . . 0 ε . . . 0 0 0 . . . 0 ε

vi,w−`+2 0 0 0 . . . 0 ε 0 0 0 0 . . . 0 ε 0 0 0 . . . 0 ε . . . 0 0 0 . . . 0 ε

...
... . . .

...
...

... . . .
...

... . . .
... . . .

... . . .
...

vi,w 0 0 0 . . . 0 ε 0 0 0 0 . . . 0 ε 0 0 0 . . . 0 ε . . . 0 0 0 . . . 0 ε

Chapter 5: Technology diffusion in communication networks 275

active nodes. Therefore, when `
3
≤ εw so that ` < cn1/3 for a sufficiently small

constant c, neither bk nor sk can be active, and so we have a contradiction.

Case 2. u is not in the k-th gadget. In this case θ(u) ≥ k(w + 1) + 3. On the other

hand, |S ′| ≤ (k − 1)(w + 1) + `
3
+ 1, so that when ` < cn1/3 for sufficiently large `,

the total number of active nodes is less than θ(u), which is also a contradiction.

The integrality gap. The optimal fractional solution has size O(1), while the

optimal integral solution is a seedset of size Ω(`) (when ` < cn1/3 for large enough

constant c), so our integrality gap is Ω(`).

5.5.4 Remark on the role of flow constraints in reducing the

integrality gap

Finally, we remark the role of flow constraints in reducing the integrality gap

from O(n) to O(`). From the two gap instances we presented, we can see that there

are two types of “bad” mass that can adversarially impact the quality of the linear

program:

1. The recirculation of “fake” mass, as discussed in the pathological example of

Chapter 5.3.2. We used recirculation of mass to construct the gap instance for

the simple IP of Figure 5.1 in Chapter 5.5.3.

2. A chain of fractional mass. Recall that both our gap instances (Chapter 5.5.3

and Chapter 5.5.3), used a seed candidate si to connect to a set of w = 1/ε

tail nodes vi,1, ..., vi,w so that when an ε-portion of si becomes active, the total

active fractional mass is ε · (w + 1) > 1. Meanwhile, in the integral solution,

Chapter 5: Technology diffusion in communication networks 276

we need to activate at least one seed to have a full unit of active mass, which

creates a gap of size 1/ε.

The flow constraints eliminate “bad” mass of the first type (see Chapter 5.3.2), but

cannot eliminate the second type. It turns out that if we only have the second type

of “bad” mass, the integrality gap becomes O(`) instead of O(n).

For ease of exposition, we explain the relationship between the gap and ` by

refering to the problem instance presented in Chapter 5.5.3. These arguments can

also be generalized to other problem instances. Our crucial observation is that the

blockers in each of the gadgets have different thresholds. To see why, suppose that

two or more gadgets had blockers that did share the same threshold. Observe that if

we add a seed candidate from one of these gadgets to the seedset, all the nodes in all

these gadgets will become active (because the blockers all have the same threshold).

This means that we need to include fewer nodes in seedset for the optimal integral

solution, which reduces the size of the integrality gap. To sum up, the idea behind

our gap instance is to to pad k parallel gadgets together to get a gap of size Θ(k);

for this padding to work we need at least Θ(k) different threshold values, and so the

granularity of the threshold function ` scales linearly with the integrality gap.

5.6 Our problem is neither submodular nor super-

modular

We wondered about the relationship between the algorithmic properties of our

model and the linear threshold model on social networks articulated in [69]. [20]

Chapter 5: Technology diffusion in communication networks 277

showed that the problem of selecting an optimal seedset in the linear threshold mode

in social networks cannot be approximated within a factor of O(2log
1−ε |V |) when the

thresholds are deterministic and known to the algorithm. [69] got around this lower

bound by assuming that nodes’ thresholds are chosen uniformly at random after the

seedset is selected, and designing an algorithm that chooses the optimal seedset in

expectation. Their (1−1/e− ε)-approximation algorithm relies on the submodularity

of the influence function, i.e. the function f(S) which gives the expected number of

nodes that activate given that nodes in S are active.

In this section, we shall show that algorithmic results for submodular and/or

supermodular optimization do not directly apply to our problem, even if we restrict

ourselves to (a) graphs of constant diameter, (b) diffusion problems with a small

number of fixed thresholds, or if (c) we choose the thresholds uniformly at random as

in [69]. Moreover, we see neither diminishing, nor increasing marginal returns even if

we restrict ourselves to (d) connected seedsets.

5.6.1 Fixed threshold case

In this section, we construct two families of technology diffusion instances where

the threshold function θ is given as input. Each family will be on a graph of diameter

at most 4, and require at most 2 different threshold values, and each will consider

connected seedsets. The first family will fail to exhibit the submodularity property

while the second will fail to exhibit supermodularity.

Let {G, θ} be an arbitrary technology diffusion problem. We shall write fG,θ(S)

be the total number of nodes that eventually activate after seedset S activates. When

Chapter 5: Technology diffusion in communication networks 278

v
1

v
2

v
n

v
n+1

v
n+2

v
2n

v
2n+1

 =n+2
2n+1

=2n+1 =n+2

Figure 5.8: An instance of the technology diffusion problem.

G and θ are clear from the context, we simply refer to fG,θ(S) as f(S).

The influence function is not submodular.

Let n be a sufficiently large integer such that the number of nodes in the graph

is 2n + 1. This family of technology diffusion problems (which again is implicitly

parameterized by n) is shown in Figure 5.8 and defined as follows:

• The node set is {v1, v2, ..., v2n+1}.

• The edge set is constructed as follows,

– The subsets {v1, ..., vn} and {vn+1, ..., v2n} form two cliques.

– Node v2n+1 is connected to all other nodes in the graph, i.e. edges are

{v1, v2n+1}, ... ,{v2n, v2n+1}.

• The threshold function is

– for i ≤ 2n, θ(vi) = n+ 2.

– θ(v2n+1) = 2n+ 1.

Chapter 5: Technology diffusion in communication networks 279

v
n-3

 =2 =n

v
n-1

v
n-2

v
n

Figure 5.9: Another instance of the technology diffusion problem.

To show this problem is non-submodular, we shall find two disjoint sets S1 and S2

such that

f(S1) + f(S2) < f(S1 ∪ S2) (5.10)

We chose S1 = {v1, ..., vn} and S2 = {v2n+1}. Note that S1 and S2 are connected, and

that f(S1) = n, f(S2) = 1, while f(S1 ∪ S2) = 2n+ 1 so that (5.10) holds.

The influence function is not supermodular.

Let n be a sufficiently large integer that represents the number of nodes in the

graph. Our family of technology diffusion problems G, θ (implicitly parameterized by

n) shown in Figure 5.9 and defined as follows:

• The node set is {v1, ..., vn}.

• The edge set is defined as follows:

– For any 1 ≤ i < j ≤ n − 4, {vi, vj} is in the edge set, i.e. the subgraph

induced by {v1, ..., vn−4} is a complete graph.

– The remaining edges are {v1, vn−3}, {v1, vn−2}, {vn−3, vn−1}, {vn−2, vn},

and {vn−3, vn−2}.

Chapter 5: Technology diffusion in communication networks 280

• The threshold function is

– For i ≤ n− 4, θ(vi) = 2.

– For i > n− 4, θ(vi) = n.

To show this problem is not supermodular, we choose two disjoint sets S1 and S2 such

that

f(S1) + f(S2) > f(S1 ∪ S2) (5.11)

We choose S1 = {vn−3} and S2 = {vn−2}. Note that S1 and S2 are connected, and

f(S1) = f(S2) = n− 3, while f(S1 ∪ S2) = n− 2 so that (5.11) indeed holds.

5.6.2 Randomized threshold case

We now consider a modified version of our problem, where, as in [69], we assume

that thresholds are chosen uniformly at random:

Definition 5.6.1 (Randomized technology diffusion optimization problem.). The

randomized technology diffusion model is as before, with the exception that nodes

choose their thresholds uniformly and independently at random from the set {2, 3, ..., n}.

Thus, the randomized technology diffusion optimization problem is to find the small-

est feasible seedset S in expectation over the choice of thresholds, when G is given as

input.

We follow [69] and let the influence function fG(S) be the expected number of

nodes that are eventually activated, i.e. fG(S) = Eθ[fG,θ(S)], where fG,θ(S) is the

number of activated nodes, and expectation is taken over the choice of thresholds.

We present two families of problem instances: each family will be on a graph of

Chapter 5: Technology diffusion in communication networks 281

diameter at most 4, and will consider connected seedsets. The first family will fail to

exhibit submodularity of fG(S), while the second will fail to exhibit supermodularity.

The influence function is not submodular.

Let n be a sufficiently large integer such that the number of nodes in the network

is 2n+ 1. Our family of G (parameterized by n) is defined as

• The node set is {v1, v2, ..., v2n+1}.

• The edge set is constructed as follows,

– The subsets {v1, ..., vn} and {vn+1, ..., v2n} form two cliques.

– The remaining edges are {v2n+1, v1} and {v2n+1, v2n}.

Notice that this family of graphs is almost identical to the non-submodular example

presented in the previous section, shown in Figure 5.8, except that now, the middle

node v2n+1 is only connected to v1 and v2n. We shall find two disjoint set S1 and S2

such that

fG(S1) + fG(S2) < fG(S1 ∪ S2). (5.12)

Our choice of S1 and S2 is S1 = {v1, ..., vn} and S2 = {v2n+1}. We start with

computing fG(S1):

fG(S1)

= E[fG,θ(S1) | θ(v2n+1) ≤ n+ 1]Pr[θ(v2n+1) ≤ n+ 1]

+E[fG,θ(S1) | θ(v2n+1) > n+ 1]Pr[θ(v2n+1) > n+ 1]

(5.13)

Chapter 5: Technology diffusion in communication networks 282

Notice that

E[fG,θ(S1) | θ(v2n+1) ≤ n+ 1] = E[fG,θ(S1 ∪ S2)] = fG(S1 ∪ S2) (5.14)

E[fG,θ(S1) | θ(v2n+1) > n+ 1] = n

Therefore, we may rewrite (5.13) as

fG(S1) = fG(S1∪S2) Pr[θ(v2n+1) ≤ n+1]+nPr[θ(v2n+1) > n+1] =
fG(S1 ∪ S2)

2
+
n

2
.

(5.15)

We next move to compute fG(S2). To understand how the influence of S2 = {v2n+1}

spreads, we condition on the thresholds of its neighbors: θ(v1), θ(v2n).

fG(S2) ≤ 1 · Pr[θ(v1) > 2 ∩ θ(v2n) > 2] + (2n+ 1) · Pr[θ(v1) = 2 ∪ θ(v2n) = 2]

= 1(1− 1
2n
)(1− 1

2n
) + (2n+ 1)(2 1

2n
(1− 1

2n
) + 1

2n
1
2n
)

= 1 + 2n 1
2n
(2(1− 1

2n
) + 1

2n
) ≤ 3 (5.16)

Therefore, from (5.15) and (5.16) we have

fG(S1) + fG(S2) ≤ 3 + 1
2
(fG(S1 ∪ S2) + n) (5.17)

Recall that our goal is to show that fG(S1) + fG(S2) < fG(S1 ∪ S2). Using (5.17), we

now see that it suffices to prove that

fG(S1 ∪ S2) > n + 6

We prove this by conditioning on the event that S1 ∪ S2 activates node v2n:

fG(S1 ∪ S2) = fG(S1 ∪ S2 ∪ {v2n}) Pr[θ(v2n) ≤ n+ 2] + (n + 1)Pr[θ(v2n) > n + 2]

≥ (n+ 2 + n−1
2
)n+1

2n
+ (n+ 1)n−1

2n

= n + 1 + n+1
4

Chapter 5: Technology diffusion in communication networks 283

where the first inequality follows because the thresholds of half of the nonseed nodes

{vn+1, ..., v2n−1} are ≤ n+1 in expectation. Thus, we indeed have that S1 and S2 are

connected and fG(S1) + fG(S2) < fG(S1 ∪ S2) when n is sufficiently large.

The influence function is not supermodular.

Let n be a sufficiently large integer such that the number of nodes in the network

is 2n+ 1. Our family of graphs (parameterized by n) is defined as follows,

• The node set is {v1, v2, ..., v2n+1}.

• The edge set is constructed as follows,

– The subsets {v1, ..., vn} and {vn+1, ..., v2n} form two cliques.

– Node v2n+1 is connected to all other nodes in the graph.

– There is an additional edge {v1, v2n}.

Notice that this family of graphs is almost identical to the one shown in Fig-

ure 5.8, except for the addition of a single edge {v1, v2n}. We shall find two disjoint

set S1 and S2 such that

fG(S1) + fG(S2) > fG(S1 ∪ S2). (5.18)

Our choice of S1 and S2 is S1 = {v1, ..., vn} and S2 = {vn+1, ..., v2n}. Notice that these

sets are connected by the edge {v1, v2n}. By symmetry we have that f(S1) = f(S2),

so we start by computing fG(S1). Let T be the number of active nodes in S2, and let

Chapter 5: Technology diffusion in communication networks 284

A be the event that node v2n+1 is active.

E[fG,θ(S1)] ≥ n+ (1 + E[T |A, S1 active]) Pr[A|S1 active]

≥ n+ (1 + n · n+1
2n

) n
2n

= n + 1
2
(1 + n+1

4
) (5.19)

where the second inequality follows because we used the trivial bound E[T |A, S1 active] ≥

nn+1
2n

where we ignore all cascading effects; we simply assume that each of the n nodes

in S2 is connected to an active component of size n+ 1. On the other hand,

E[fG,θ(S1 ∪ S2)] ≤ 2n+ 1 (5.20)

Thus we indeed have fG(S1) + f(S2) ≥ 2n + 1 + n+1
4
> 2n + 1 = fG(S1 ∪ S2) for all

n.

5.7 Experiments with the IP of Figure 5.1

Given the prevalence of heuristics like “choose the high degree nodes” in the

literature on technology diffusion in communication networks (e.g. [10, 19, 47]), we

sanity-check our approach against several heuristics. Our goal in the following is to

give evidence that we can find solutions that are substantially different from known

heuristics, and to suggest that our IP could be a promising starting point for the

design of new heuristics.

We considered problem instances where (a) G(V,E) is 200-node preferential at-

tachment graph with node outdegree randomly chosen from {1, 2, 3, 4} [1], and (b)

thresholds θ randomly chosen from

Chapter 5: Technology diffusion in communication networks 285

{max{2, c}, 2c, 3c, ..., d200
c
e · c}. We ran four groups of experiments with threshold

step-length parameter c fixed to 1, 5, 10, and 20 respectively. For each group, we

used a fresh random preferential attachment graph, and repeated the experiment five

times with a fresh random instance of the threshold functions. We solved each of

these 20 problem instances using the simple IP formulation presented in Figure 5.1

(with the extra restriction that the highest degree node must be part of the seedset)

and the Gurobi IP solver. We compared the result against five natural heuristics that

iteratively pick a node u with property X from the set of inactive nodes, add u to

the seedset S ′, activate u, let u activate as many nodes as possible, and repeats until

all nodes are active. We instantiate property X as:

(a) degree: highest degree,

(b) degree-threshold : highest (degree)×(threshold),

(c) betweenness: highest betweenness centrality,

(d) degree discounted: highest degree in the subgraph induced by the inactive nodes

[22],

(e) degree connected: highest degree and connected to the active nodes.

For each group, Table 5.4 presents the average seedset size and the average

Jaccard index |S∩S′|
|S∪S′| between IP seedset S and the heuristic seedset S ′. We also

compute the fraction of nodes in S that are also part of the top-|S| nodes in terms

of (a) degree (the row denoted “degree overlap”), and (b) betweenness centrality

(“betweenness overlap”). The results of Table 5.4 do indeed give evidence that our

IP can return seedsets that are substantially different (and often better), than the

seedsets found via heuristics.

C
h
a
p
ter

5
:
T
ech

n
o
logy

d
iff
u
sio

n
in

co
m
m
u
n
ica

tio
n
n
etw

o
rks

286

Table 5.4: Comparison of the IP of Figure 5.1 to several heuristics.

threshold step length: c = 1 c = 5 c = 10 c = 20

Size Jaccard Size Jaccard Size Jaccard Size Jaccard

degree 11.8 0.42 20.9 0.36 24.45 0.38 41.75 0.46

degree-threshold 8.95 0.41 15.40 0.42 19.00 0.44 33.25 0.55

betweenness 10.50 0.45 19.65 0.39 24.2 0.38 40.85 0.47

degree discounted 11.2 0.39 21.55 0.34 25.35 0.36 41.60 0.45

degree connected 12.9 0.35 22.65 0.29 25.90 0.33 43.25 0.44

ip solver 6.45 1 11.15 1 13.75 1 23.45 1

degree overlap 0.44 0.39 0.37 0.39

betweenness overlap 0.47 0.39 0.37 0.40

Chapter 5: Technology diffusion in communication networks 287

5.8 Expository examples and figures

We now present examples of the constructions we used in Chapter 5.2 and Chap-

ter 5.3. We start with the problem instance {G, θ} in Figure 5.10, and present a

feasible connected activation sequence T for this problem instance. This feasible con-

nected activation sequence T uniquely corresponds to the seedset S = {A,D}, since

these are the only nodes that have T (u) < θ(u).

The flow graph H used for the relaxed linear program is shown in Figure 5.11.

The solid line is the threshold line. The (solid and dotted) trajectories represent some

paths that can be used to push some amount of flow f ∈ [0, 1] between the nodes

in H (i.e. so that the flow constraints are satisfied). Notice that every trajectory in

H corresponds to an edge in the original graph G. Let us consider the (E, 6)-flow

problem. The solid trajectories in Figure 5.11 illustrate a feasible flow to solve the

problem, which we use as the representative flow FE,6. Notice that (E, 6)-flow has

demand from two nodes (E, 5) and (E, 6) and thus FE,6 has two sinks. We decompose

FE,6 into two paths P1 = (A, 1), (C, 3), (F, 4), (E, 5) and P2 = (A, 1), (B, 5), (E, 6).

The border node for path P1 is border(P) = (F, 4) and the border node for path P2

is border(P) = (A, 1). Thus, β(E, 6) = {(A, 1), (F, 4)} and B(E, 6) = {A, F}.

Chapter 5: Technology diffusion in communication networks 288

A

B

C

D

F
E

Threshold function

θ(A) = 5

θ(B) = 2

θ(C) = 3

θ(D) = 5

θ(E) = 4

θ(F) = 6

A connected activation sequence

xA,1 = 1, (∀t 6= 1, xA,t = 0)

xB,2 = 1, (∀t 6= 2, xB,t = 0)

xC,3 = 1, (∀t 6= 3, xB,t = 0)

xD,5 = 1, (∀t 6= 5, xB,t = 0)

xE,6 = 1, (∀t 6= 6, xB,t = 0)

xF,4 = 1, (∀t 6= 4, xB,t = 0)

Figure 5.10: A problem instance and a feasible connected activation sequence.

Chapter 5: Technology diffusion in communication networks 289

Figure 12: The representative flow in -flow problem and the corresponding border nodes.

(A, 1) (A, 2) (A, 3) (A, 4) (A, 5) (A, 6)

(B, 1) (B, 2) (B, 3) (B, 4) (B, 5) (B, 6)

(C, 1) (C, 2) (C, 3) (C, 4) (C, 5) (C, 6)

(D,1) (D, 2) (D, 3) (D, 4) (D, 5) (D, 6)

(E, 1) (E, 2) (E, 3) (E, 4) (E, 5) (E, 6)

(F, 1) (F, 2) (F, 3) (F, 4) (F,5) (F, 6)

Threshold Line

Figure 13: The representative flow in -flow problem and the corresponding border nodes.

40
Figure 5.11: The H graph and the trajectories of flows.

Bibliography

[1] Réka Albert and Albert-László Barabási. Statistical mechanics of complex net-
works. Rev. Mod. Phys., 74, Jan 2002.

[2] D. Aldous. Some inequalities for reversible markov chains. Journal of London
Mathematical Society, 25:564–576, 1982.

[3] Noga Alon, Dana Moshkovitz, and Shmuel Safra. Algorithmic construction of
sets for k-restrictions. ACM Trans. Algorithms, 2:153–177, April 2006.

[4] O. S. M. Alves, F. P. Machado, S. Yu. Popov, and K. Ravishankar.
The shape theorem for the frog model with random initial configuration.
arXiv:math/0110280v1, October 2001.

[5] O. S. M. Alves, S. Yu. Popov, and F. P. Machado. The shape theorem for the
frog model. Annals of Applied Probability, 12(2):533–546, 2002.

[6] C. Arackaparambil, J. Brody, and A. Chakrabarti. Functional monitoring with-
out monotonicity. In Proc. of ICALP, 2009.

[7] Tamio Arai, Eiichi Yoshida, and Jun Ota. Information diffusion by local com-
munication of multiple mobile robots. In Proceedings of IEEE International
Conference on Systems, Man and Cybernetics, 1993, pages 535–540, 1993.

[8] Brice Augustin, Balachander Krishnamurthy, and Walter Willinger. IXPs:
Mapped? In IMC, 2009.

[9] K. Avrachenkov, B. Ribeiro, and D. Towsley. Improving random walk estima-
tion accuracy with uniform restart. In 7th Workshop on Algorithms and Models
for the Web Graphs (WAW 2010), 2010.

[10] Ioannis Avramopoulos, Martin Suchara, and Jennifer Rexford. How small
groups can secure interdomain routing. Technical report, Princeton Univer-
sity Comp. Sci., 2007.

[11] N. Bansal, A. Blum, S. Chawla, and A. Meyerson. Approximation algorithms
for deadline-tsp and vehicle routing with time-windows. In Proceedings of the

290

Bibliography 291

thirty-sixth annual ACM symposium on Theory of computing, pages 166–174.
ACM, 2004.

[12] Boaz Barak, Sharon Goldberg, and David Xiao. Protocols and lower bounds
for failure localization in the Internet. In IACR EUROCRYPT, 2008.

[13] F.M. Bass. A new product growth model for consumer durables. Management
Science, pages 215–27, 1969.

[14] C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[15] A. Blum, P. Chalasani, D. Coppersmith, W. Pulleyblank, P. Raghavan, and
M Sudan. The minimum latency problem. In SDM, 1994.

[16] Béla Bollobás and Imre Leader. Compressions and isoperimetric inequalities.
Journal of Combinatorial Theory, Series A, 56:47–62, 1991.

[17] Randal E. Bryant, Randy H. Katz, and Edward D. Lazowska. Big-data com-
puting: creating revolutionary breakthroughs in commerce, science, and society.
CRA Report, 2008.

[18] K Butler, T Farley, P McDaniel, and J Rexford. A survey of BGP security
issues and solutions. Proceedings of the IEEE, 2010.

[19] Haowen Chang, Debabrata Dash, Adrian Perrig, and Hui Zhang. Modeling
adoptability of secure BGP protocol. In Sigcomm, 2006.

[20] N. Chen. On the approximability of influence social networks. In ACM-SIAM
Symposium on Discrete Algorithms, 2008.

[21] W. Chen, A. Collins, R. Cummings, T. Ke, Z. Liu, D. Rincón, X. Sun, Y. Wang,
Wei. W., and Yuan. Y. Influence maximization in social networks when negative
opinions may emerge and propagate. In SDM, 2011.

[22] Wei Chen, Yajun Wang, and Siyu Yang. Efficient influence maximization in
social networks. In Proc. 15th Conference on Knowledge discovery and data
mining, KDD ’09, pages 199–208. ACM, 2009.

[23] Ying-Ju Chi, Ricardo Oliveira, and Lixia Zhang. Cyclops: The Internet AS-level
observatory. ACM SIGCOMM CCR, 2008.

[24] David D. Clark, John Wroclawski, Karen R. Sollins, and Robert Braden. Tussle
in cyberspace: defining tomorrow’s Internet. Trans. on Networking, 2005.

[25] Andrea E. F. Clementi, Angelo Monti, and Riccardo Silvestri. Fast flooding
over manhattan. In PODC, pages 375–383. ACM, 2010.

Bibliography 292

[26] Andrea E. F. Clementi, Francesco Pasquale, and Riccardo Silvestri. Manets:
High mobility can make up for low transmission power. In ICALP (2), volume
5556 of Lecture Notes in Computer Science, pages 387–398. Springer, 2009.

[27] G. Cormode and M. Garofalakis. Sketching streams through the net: Dis-
tributed approximate query tracking. In Proc. of International Conference on
Very Large Databases, 2005.

[28] G. Cormode, M. Garofalakis, S. Muthukrishnan, and R. Rastogi. Holistic ag-
gregates in a networked world: Distributed tracking of approximate quantiles.
In Proc. of SIGMOD, June 2005.

[29] G. Cormode, S. Muthhukrishnan, and W. Zhuang. What’s different: Dis-
tributed, continuous monitoring of duplicate-resilient aggregates on data
streams. In Proc. IEEE International Conference on Data Engineering, 2006.

[30] G. Cormode, S. Muthukrishnan, and K. Yi. Algorithms for distributed func-
tional monitoring. In Proc. of SODA, 2008.

[31] G. Cormode, S. Muthukrishnan, K. Yi, and Q. Zhang. Optimal sampling from
distributed streams. In Proc. of PODS, June 2010.

[32] Graham Cormode, Minos Garofalakis, Peter J. Haas, and Chris Jermaine. Syn-
opses for massive data: Samples, histograms, wavelets, sketches. Foundations
and Trends in Databases, 2011.

[33] S. Deering and R. Hinden. RFC 2460: Internet Protocol, Version 6 (IPv6)
Specification. http://www.ietf.org/rfc/rfc2460.txt, 1998.

[34] J. W. Demmel. On condition numbers and the distance to the nearest ill-posed
problem. NUMERISCHE MATHEMATIK, 51(3):251–289, 1987.

[35] M. Desrochers, J.K. Lenstra, M.W.P. Savelsbergh, and F. Soumis. Vehicle
routing with time windows: Optimization and approximation. Technical re-
port, Department of Operations Research and System Theory, Centrum voor
Wiskunde en Informatica, 1987.

[36] Xenofontas Dimitropoulos, Dmitri Krioukov, Marina Fomenkov, Bradly Huf-
faker, Young Hyun, and kc claffy. AS relationships: Inference and validation.
ACM SIGCOMM Computer Communication Review, JAN 2007.

[37] Pedro Domingos and Matt Richardson. Mining the network value of customers.
In Proc. 7th Conf on Knowledge discovery and data mining, KDD ’01, pages
57–66, New York, NY, USA, 2001. ACM.

Bibliography 293

[38] Benjamin Edelman. Running out of numbers: Scarcity of ip addresses and what
to do about it. Technical report, Harvard Business School, 2009.

[39] H. A. Elmore, L. J. Camp, and B. P. Stephens. Diffusion and adoption of ipv6
in the arin region. In Workshop on the Economics of Internet Security, 2008.

[40] J. Farrell and G. Saloner. Standardization, compatibility, and innovation. The
RAND Journal of Economics, pages 70–83, 1985.

[41] FCC. The communications security, reliability and interoperability council iii
working group 6: Secure bgp deployment. Technical report, March 2012.

[42] William Feller. An introduction to probability theory and its applications, Vol-
ume 1. Wiley series in probability and mathematical statistics. John Wiley &
sons, 1951.

[43] A. Fill. Eigenvalue bounds on convergence to stationarity for nonreversible
markov chains, with an application to the exclusion process. Annals of Applied
Probability, 1, Number 1:62–87, 1991.

[44] Greg N. Frederickson and Barry Wittman. Approximation algorithms for the
traveling repairman and speeding deliveryman problems. Algorithmica, 62(3-
4):1198–1221, 2012.

[45] A. Frieze, P. Melsted, and M. Mitzenmacher. An analysis of random-walk
cuckoo hashing. SIAM Journal of Computing, 2011.

[46] P. Gill, M. Schapira, and S. Goldberg. Modeling on quicksand: dealing with
the scarcity of ground truth in interdomain routing data. ACM SIGCOMM
Computer Communication Review, 42(1):40–46, 2012.

[47] Phillipa Gill, Michael Schapira, and Sharon Goldberg. Let the market drive
deployment: A strategy for transistioning to BGP security. SIGCOMM’11,
2011.

[48] D. Gillman. A chernoff bound for random walks on expander graphs. SIAM
Journal on Computing, 27(4), 1997.

[49] O. Goldreich and D. Ron. On testing expansion in bounded degree graphs.
Electronic Colloquium on Computational Complexity (ECCC), 2000.

[50] Mark Granovetter. Threshold models of collective behavior. American Journal
of Sociology, 83(6):1420–1443, May 1978.

[51] M. B. Greenwald and S. Khanna. Space-efficient online computation of quantile
summaries. In Proc. of SIGMOD, pages 58–66, 2001.

Bibliography 294

[52] M. B. Greenwald and S. Khanna. Power-conserving computation of order-
statistics over sensor networks. In Proc. of PODS, 2004.

[53] Roch Guérin and Kartik Hosanagar. Fostering ipv6 migration through network
quality differentials. SIGCOMM Comput. Commun. Rev., 40:17–25, June 2010.

[54] J. Hao and J B. Orlin. A faster algorithm for finding the minimum cut in a
graph. In SODA, 1992.

[55] A. Healy. Randomness efficient sampling within nc1. Computational Complex-
ity, 17(1), 2008.

[56] W. Hoeffding. Probability inequalities for sums of bounded random variables.
American Statistical Association Journal, pages 13–30, March 1963.

[57] W. Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58(301):13–30, 1963.

[58] Peter D. Hoff, Adrian E. Raftery, and Mark S. Handcock. Latent space ap-
proaches to social network analysis. Journal of the American Statistical Asso-
ciation, 97:1090–1098, 2001.

[59] R. Horn and C. Johnson. Matrix Analysis. Cambridge University Press, 1999.

[60] M.P. Howarth, P. Flegkas, G. Pavlou, N. Wang, P. Trimintzios, D. Griffin,
J. Griem, M. Boucadair, P. Morand, H. Asgari, and P. Georgatsos. Provi-
sioning for inter-domain quality of service: the MESCAL approach. IEEE
Communications Magazine, June 2005.

[61] Z. Huang, K. Yi, and Q. Zhang. Randomized algorithms for tracking distributed
count, frequencies, and ranks. In arXiv:1108.3413v1, Aug 2011.

[62] Barry D. Hughes. Random Walks and Random Environments. Volume 1: Ran-
dom Walks. Oxford University Press, 1995.

[63] G Huston. Stacking it up: Experimental observations on the operation of dual
stack services. In NANOG’52, 2011.

[64] M. Jerrum and A. Sinclair. The Markov chain Monte Carlo method: an ap-
proach to approximate counting and integration. PWS Publishing, Boston, MA,
USA, 1996.

[65] Y. Jin, S. Sen, R. Guerin, K. Hosanager, and Z-L. Zhang. Dynamics of compe-
tition between incumbent and emrging network technologies. NetEcon, 2008.

Bibliography 295

[66] D Joseph, N Shetty, J Chuang, and I Stoica. Modeling the adoption of new
network architectures. In CoNEXT’07: Conference on emerging Networking
EXperiments and Technologies, 2007.

[67] N. Kahale. Large deviation bounds for markov chains. Combinatorics, Proba-
bility, and Computing, 6(4), 1997.

[68] M.L. Katz and C. Shapiro. Network externalities, competition, and compati-
bility. The American economic review, 75(3):424–440, 1985.

[69] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influ-
ence through a social network. In ACM SIGKDD, 2003.

[70] S Kent, C Lynn, and K Seo. Secure border gateway protocol (S-BGP). JSAC,
2000.

[71] Harry Kesten and Vladas Sidoravicius. The spread of a rumor or infection in a
moving population. Annals of Probability, 33(6):pp. 2402–2462, 2005.

[72] Abdelmajid Khelil, Christian Becker, Jing Tian, and Kurt Rothermel. An
epidemic model for information diffusion in manets. In Proceedings of the 5th
ACM international workshop on Modeling analysis and simulation of wireless
and mobile systems, MSWiM, pages 54–60. ACM, 2002.

[73] T. Konstantopoulos. Markov Chains and Random Walks. Lecture notes, 2009.

[74] W. Leland, M. Taqqu, W. Willinger, and D. Wilson. On the self-similar nature
of ethernet traffic. IEEE/ACM Transactions on Networking, 2(1):1–15, 1994.

[75] C. A. Leon and F. Perron. Optimal hoeffding bounds for discrete reversible
markov chains. Annals of Applied Probability, 14(2), 2004.

[76] M. Lepinski, editor. BGPSEC Protocol Specification. IETF Network Working
Group, Internet-Draft, March 2011. Available from http://tools.ietf.org/

html/draft-lepinski-bgpsec-protocol-00.

[77] J Leskovec, J Kleinberg, and C. Faloutsos. Graphs over time: Densification laws,
shrinking diameters and possible explanations. In ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), 2005.

[78] D. Leventhal and A. S. Lewis. Randomized methods for linear constraints:
Convergence rates and conditioning. Mathematics of Operations Research,
35(3):641–654, 2010.

[79] P. Lezaud. Chernoff-type bound for finite markov chains. Annals of Applied
Probability, 8(3):849–867, 1998.

Bibliography 296

[80] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. Hellerstein.
Graphlab: A new framework for parallel machine learning. In Proc. of the 26th
Conference on Uncertainty in Artificial Intelligence (UAI), 2010.

[81] Michael W. Mahoney. Algorithmic and statistical perspectives on large-scale
data analysis. arXiv:1010.1609v1, 2010.

[82] Carolyn Duffy Marsan. White house issues ipv6 directive. Network World,
September 28, 2010.

[83] B Metcalfe. Metcalfe’s law: A network becomes more valuable as it reaches
more users. InfoWorld, 1995.

[84] Michael Mitzenmacher and Eli Upfal. Probability and computing: randomized
algorithms and probabilistic analysis. Cambridge University Press, 2005.

[85] A Mohaisen, A. Yun, and Y Kim. Measuring the mixing time of social graphs. In
IMC’10 Proceedings of the 10th Annual Conference on Internet Measurement,
2010.

[86] Stephen Morris. Contagion. The Review of Economic Studies, Jan., 2000.

[87] S. Muthukrishnan. Data streams: Algorithms and applications. Foundations
and Trends in Computer Science, 2005.

[88] C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous queries over
distributed data streams. In Proc. ACM SIGMOD International Conference on
Management of Data, 2003.

[89] Andy Ozment and Stuart E. Schechter. Bootstrapping the adoption of internet
security protocols. In The Fifth Workshop on the Economics of Information
Security (WEIS 2006)., 2006.

[90] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pager-
ank citation ranking: Bringing order to the web. Technical Report 1999-66,
Stanford InfoLab, November 1999. Previous number = SIDL-WP-1999-0120.

[91] Yuval Peres, Alistair Sinclair, Perla Sousi, and Alexandre Stauffer:. Mobile
geometric graphs: Detection, coverage and percolation. In SODA, pages 412–
428. SIAM, 2011.

[92] Alberto Pettarin, Andrea Pietracaprina, Geppino Pucci, and Eli Upfal.
Tight bounds on information dissemination in sparse mobile networks.
arXiv:1101.4609v2, 2011.

Bibliography 297

[93] Manuel Gomez Rodriguez and Bernhard Schölkopf. Influence maximization
in continuous time diffusion networks. In 29th International Conference on
Machine Learning (ICML), 2012.

[94] M. Roughan, W. Willinger, O. Maennel, D. Perouli, and R. Bush. 10 lessons
from 10 years of measuring and modeling the internet’s autonomous systems.
Selected Areas in Communications, IEEE Journal on, 29(9):1810–1821, 2011.

[95] G. Samorodnitsky and M. S. Taqqu. Stable non-Gaussian random processes.
Chapman & Hall, 1994.

[96] Purnamrita Sarkar and Andrew W. Moore. Dynamic social network analysis
using latent space models. SIGKDD Explorations, 7(2):31–40, 2005.

[97] T C Schelling. Micromotives andMacrobehavior. Norton, 1978.

[98] R. J. Serfling. Probability inequalities for the sum in sampling without replace-
ment. Ann. Statist, 2(1):39–48, 1974.

[99] Y. Shavitt and E. Shir. Dimes: Let the internet measure itself. ACM SIGCOMM
Computer Communication Review, 35(5):71–74, 2005.

[100] Alistair Sinclair. Improved bounds for mixing rates of marked chains and multi-
commodity flow. In LATIN, volume 583 of Lecture Notes in Computer Science,
pages 474–487. Springer, 1992.

[101] Alistair Sinclair and Alexandre Stauffer. Mobile geometric graphs, and detection
and communication problems in mobile wireless networks. arXiv:1005.1117v2,
2010.

[102] Twitter Search Team. The engineering behind twitter’s new search experience,
2011.

[103] C. Tekin and M. Liu. Online algorithms for the multi-armed bandit problem
with markovian rewards. In 48th Annal Allerton Conference on Communica-
tion, Control, and Computing (Allerton), 2010.

[104] S. Trithapura and D. P. Woodruff. Optimal random sampling from distributed
streams revisited. In Proc. of DISC, Roma, Italy, Sep 2011.

[105] Salil P. Vadhan. Pseudorandomness, available at http://people.seas.

harvard.edu/~salil/pseudorandomness/. 2010.

[106] R. Wagner. Tail estimates for sums of variables sampled by a random walk.
Combinatorics, Probability, and Computing, 17(2), 2008.

Bibliography 298

[107] Yi Wang, Shyam Kapadia, and Bhaskar Krishnamachari. Infection spread in
wireless networks with random and adversarial node mobilities. In Proceeding of
the 1st ACM SIGMOBILE workshop on Mobility models, MobilityModels ’08,
pages 17–24. ACM, 2008.

[108] A. Wigderson and D. Xiao. A randomness-efficient sampler for matrix valued
functions and applications. In Proceedings of the 46th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), 2005.

[109] David Williams. Probability with martingales. Cambridge mathematical text-
books. Cambridge University Press, 1991.

[110] David P. Williamson and D. B. Shmoys. The design of approximation algo-
rithms. Cambridge University Press, 2010.

[111] A Yaar, A Perrig, and D Song. SIFF: a stateless internet flow filter to mitigate
ddos flooding attacks. IEEE Symposium on Security and Privacy, 2004.

[112] K. Yi and Q. Zhang. Optimal tracking of distributed heavy hitters and quan-
tiles. In Proc. of PODS, June 2009.

Appendix A

Probability review

A.1 Concentration bounds

Below we describe several concentration bounds we used in the thesis. These

results could be found in standard textbooks such as [42, 84].

Theorem A.1.1 (Chernoff bounds). Let X1, ..., Xn be independent Poisson trials

with Pr[Xi] = pi. Let X =
∑

i≤nXi and µ = E[X]. Then the following Chernoff

bounds hold:

• For 0 < δ < 1,

Pr[|X − µ| ≥ δµ] ≤ 2 exp(−µδ2/3).

• For R ≥ 6µ,

Pr[X ≥ R] ≤ 2−R.

Theorem A.1.2 (Chernoff bounds for dependent variables). Let X1, ..., Xn be pos-

sibly dependent Poisson trials with Pr[Xi = 1 | X1, ..., Xi−1] ≥ p. Let X =
∑

i≤nXi

299

Appendix A: Probability review 300

and µ = np. Then the following Chernoff bound holds:

• For 0 < δ < 1,

Pr[X ≤ (1− δ)µ] ≤ exp(−µδ2/2).

On the other hand, if Pr[Xi = 1 | X1, ..., Xi−1] ≤ p, the following bound holds:

• For any δ > 0,

Pr[X > (1 + δ)µ] ≤ exp(−µδ2/4).

Hoeffding’s Inequality

Let −∞ < ai ≤ bi < ∞ be a given sequence of real numbers for 1 ≤ i ≤ t. The

following inequality was established by Hoeffding [56].

Theorem A.1.3. Suppose X1, X2, . . . , Xt is a sequence of independent random vari-

ables such that ai ≤ Xi ≤ bi for every 1 ≤ i ≤ t. Let µ = E[
∑

i≤tXi]. Then, the

following inequality holds, for every x ≥ 0,

Pr[
∑

i≤t
Xi − µ ≥ x] ≤ exp(− 2x2

∑

i≤t(bi − ai)2
).

The following special case is also used in the thesis.

Corollary A.1.4. Assume that in addition ai = −1 and bi = 1, for every 1 ≤ i ≤ t.

Then,

Pr[
∑

i≤t
Xi − µ ≥ x] ≤ exp(−x

2

2t
), for every x ≥ 0.

Sampling Without Replacement

Similar type of bounds as in earlier section hold also for sampling without re-

placement. In particular, the following is a result of Hoeffding [56] (Section 6) for

sampling from a finite population.

Appendix A: Probability review 301

Theorem A.1.5. Suppose X1, X2, . . . , Xt is a sample drawn by uniform random sam-

pling without replacement from a set of values {c1, c2, . . . , cn} such that for some

−∞ < a < b < ∞, it holds a ≤ ci ≤ b, for every 1 ≤ i ≤ n. Then, the bound of

Theorem A.1.3 holds with µ = (1
n

∑

i≤n ci)t, i.e. for every x ≥ 0,

Pr[
∑

i≤t
Xi − µ ≥ x] ≤ exp(− 2x2

(b− a)2t).

