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The beginning of molecular T cell 
biology
The field of immunology has been 
grounded in basic biology since its incep-
tion, with myriad applications to human 
disease. Development of both preventive 
and therapeutic vaccines as treatments 
for human infectious diseases dates to the 
time of Pasteur’s efforts in the nineteenth 
century (Debre and Forster, 1998). Since 
then, harnessing immunity through pre-
cise knowledge of molecular and cellular 
mechanisms was perceived as important 
in medical science.

Adaptive immunity is the most sophis-
ticated and effective system to combat and 
rid infectious pathogens (Murphy et al., 
2007). Adaptive immunity endows jawed 
vertebrates, including mammals, with 
precursors of T (thymus-derived), and B 
(bone marrow-derived) lymphocytes able 
to generate a repertoire of clonotypic anti-
gen receptors (TCR and BCR) of immense 
diversity from somatic rearrangements of 
variable gene segments (VDJ recombina-
tion). Spatio-temporally controlled differ-
entiation and selection processes of those 
cells shape two complementary “arms” of 
the immune system, offering protection 
with exquisite specificity, sensitivity, and 
long-term memory.

Key discoveries during the last quarter 
of the twentieth century began to unravel 
the cellular and molecular nature of adap-
tive immunity. In the 1960s, T and B 
lymphocytes were identified and their inter-
actions shown to be essential for antibody 
production. The basic paradigm of immu-
noglobulin (Ig) gene rearrangements that 
generate antibody diversity was revealed in 
1976 (Tonegawa, 1993). The “dual” specifi-
city of T cells for foreign peptide and self-
MHC inferred by functional studies was 
discovered and clearly noted to be distinct 

from the “single” specificity of antibody rec-
ognition of foreign proteins (Zinkernagel, 
1997). This realization then led to an intense 
effort to understand the molecular puzzle 
represented by the self versus non-self rec-
ognition and the receptor and ancillary 
molecules on T cells responsible for this 
unusual recognition.

Initial studies suggesting the existence of 
an “I-J-specific” suppressor factor secreted 
by T cells and TCR specificity achieved 
through Ig genes were refuted. Rather, the 
discovery of how to expand T cells in vitro, 
via IL-2 dependent T cell cloning (Baker 
et al., 1979), in conjunction with mono-
clonal antibody (Milstein, 1993), and flow 
cytometry screening (Julius et al., 1972) 
technologies together with in vitro func-
tional analyses were decisive in molecular 
identification for the long sought-after TCR. 
The key breakthroughs came in the early 
1980s with the identification in human of a 
clonotypic disulfide-linked heterodimer, the 
αβ Ti, which together with CD3 molecules, 
were essential for antigen/MHC recognition 
and cellular activation (Reinherz et al., 1982; 
Acuto et al., 1983a; Meuer et al., 1983a,b). 
Biochemical evidence showed that, similar 
to Ig molecules, both Ti α and β chains pos-
sessed variable and constant regions (Acuto 
et al., 1983a,b). A comparable αβ Ti was 
soon identified also in the mouse in 1983, 
with similar cognate immune recognition 
features (Haskins et al., 1983; Kappler et al., 
1983). Those murine studies supported an 
earlier suggestion that a tumor-specific 
marker on mouse T-lymphoma cells might 
be TCR-related (Allison et al., 1982). Within 
2 years, cDNAs for TCR αβ subunits were 
obtained by several groups including Davis 
and Mak with the bona-fide identification 
established by the Ti αβ protein sequence 
(Acuto et al., 1984; Hedrick et al., 1984a,b; 
Yanagi et al., 1984). Collectively, these 

results confirmed the clonotypic nature 
of the Ti αβ first identified biochemically. 
These studies showed that TCR combinato-
rial diversity was generated by the same type 
of site-specific gene recombination mecha-
nisms as with Ig genes, but without somatic 
hypermutation and led to identification of a 
second type of TCR, the γδ TCR (reviewed 
in Tonegawa, 1993).

CD4 and CD8 co-receptors identified 
during the same period, were soon recog-
nized as ancillary structures that optimize 
TCR recognition and T cell activation via 
interaction with monomorphic segments of 
MHC class II and I molecules, respectively 
(Meuer et al., 1982). A few years later, the 
“dual recognition” puzzle was solved when 
it was shown that MHC class I and class II 
proteins bound foreign and self-peptides 
derived from degradation of intracellular 
or exogenous proteins and that such com-
plexes could be recognized by the TCR 
(reviewed in Unanue, 2006). Structures of 
peptides complexed with MHC molecules 
then followed (Bjorkman et al., 1987; 
Jardetzky et al., 1994).

T cell acTivaTion and regulaTion
TCR signaling evokes T cell lineage com-
mitment and repertoire selection during 
development, maintains the peripheral T 
cell pool, and further differentiates naïve T 
cells into effector or memory cell popula-
tions upon immune stimulation. Through 
many studies, we know that the TCR is a 
multimeric transmembrane complex com-
posed of an antigen binding clonotypic 
heterodimer (αβ or γδ) in non-covalent 
association with the signal-transducing 
CD3 subunits (CD3εγ, CD3εδ, and CD3ζζ; 
Clevers et al., 1988). Structural analyses of 
TCR or CD4 and CD8 co-receptors alone 
or in complex with pMHC using X-ray 
crystallography and NMR in conjunction 
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with the basic rules that shape the unique 
biology of the “system” T cell. This should 
help to explain how transient events of 
phosphorylation and other protein modi-
fication allow T cells to coordinately switch 
on and off functional pathways by integrat-
ing signals in time and space from multiple 
receptors, thereby controlling gene expres-
sion, morphological changes, and mobility. 
We can anticipate that deep insights in this 
area will be revealed by determining the 
dynamics of the global proteome of differ-
ent T cell subsets, during distinct differen-
tiation stages and following one or more 
stimuli. The era of this bold challenge has 
already begun with enormous technologi-
cal progress complementing sophisticated 
transcriptome and metabolome approaches 
(Luber et al., 2009; Mayya et al., 2009; 
Brockmeyer et al., 2010).

Of great interest has been the discovery 
that, upon pMHC stimulation, the T cell/
APC interface forms micrometer-scale TCR 
clusters arising from smaller ones creating 
what is referred to as the Immunological 
Synapse (Dustin et al., 2010). These molec-
ular platforms, connected to underlying 
signalosomes through organization of 
dynamic protein complexes, likely pro-
vide signaling stability as well as signaling 
complex disposal/recycling. Thus, the IS 
ensures prolonged signaling and orches-
trates expression of T cell differentiation 
programs and consequently cell fates. 
Increasingly sophisticated technologies of 
super-resolution optical microscopy and 
other biophysical approaches in live cells 
will add further understanding of the spatial 
organization of the cellular chemistry.

amalgamaTion of basic and 
TranslaTional sciences
Translational endeavors aim to block T cell 
activation in the setting of organ transplan-
tation or autoimmunity or, conversely, stim-
ulate T cell activation to foster immunity 
to protect against infectious diseases and 
cancers. The success of these approaches 
is predicated on unraveling the complex-
ity of immune recognition and pathways 
of activation. Nowhere would this knowl-
edge be more prescient than for design of 
novel T cell-based vaccines (Bambini and 
Rappuoli, 2009). While the world’s cur-
rently licensed vaccines against infectious 
pathogens almost exclusively target genera-
tion of antibody production, this strategy is 

of the adaptive response; and (2) exploiting 
this knowledge for modulating these mecha-
nisms as additional tools to fend off autoim-
munity and improve vaccination.

from “black box” To “Pandora’s 
box”: dynamic signalosomes, 
immunological synaPse, and 
comPuTaTional modeling
Since the mid 1980s, many groups engaged 
in comprehending the role of TCR, co- 
receptors, co-stimulatory, and cytokine 
receptors in T cell activation. T cells were 
mysterious “black boxes” in which an input 
(e.g., signal one, signal two, cytokines) may 
result in diverse outputs (development, 
effector cell differentiation, lethal hit, cell 
death), with few clues as to how these proc-
esses develop biochemically. Work from the 
early 1990s until the present has brought to 
light most of the T cell signaling tool-box 
elements, now confronting T cell biologists 
with the opening of “Pandora’s box.” The 
interesting surprise has been that highly 
specific or unique sets of signaling proteins 
are grafted onto a template of prototypic 
signaling schemes and components found 
in virtually all cell types. This feature is dis-
cernible from the TCR and ancillary recep-
tors down to the control of gene expression 
(Weiss, 2009) and likely serves distinctive 
developmental, survival, and cell activation 
processes associated with the T cell arm of 
the immune response. The most recent 
discovery is of a T cell unique signalosome 
component important in T cell positive 
selection (Fu et al., 2009; Johnson et al., 2009; 
Lesourne et al., 2009) suggested to regulate 
the Ras pathway (Brockmeyer et al., 2010). 
Not unexpectedly, such a vital TCR-based 
signaling machinery is counter-balanced 
by negative regulators of activation. Both 
immunologic (CTLA-4/CD80 or 86, PD-1R/
PD-1) and more general (Adenosine recep-
tor A2A-R/adenosine) inhibitory check-
point pathways have been revealed. These 
immunosuppressive pathways prevent col-
lateral damage from inflammation leading 
to termination of immune cell activation 
in intimate associate with regulatory T cells 
(Rudd et al., 2009; Sitkovsky, 2009). Control 
mechanisms establishing positive and nega-
tive feedback with their tunable thresholds 
have been brought to light in TCR signaling 
(Acuto et al., 2008). Combinations of quan-
titative data and computational modeling of 
such events are just beginning to provide us 

with biophysical studies have contributed to 
our understanding of cognate recognition 
(Wang and Reinherz, 2002; Rudolph et al., 
2006). Structures of CD3εγ and CD3εδ 
ectodomain heterodimers (Sun et al., 2001; 
Arnett et al., 2004; Kjer-Nielsen et al., 2004; 
Sun et al., 2004) and of transmembrane 
CD3ζζ homodimers (Call et al., 2006) have 
provided clues as to their unique dimeri-
zation interfaces and topology relative to 
the αβ dimer, which should be relevant to 
understand how the TCR transduces sig-
nals. Upon interaction with pMHC, the αβ 
TCR heterodimer induces phosphorylation 
of immunoreceptor tyrosine-based activa-
tion motifs (ITAMs) in the cytoplasmic 
tails of the associated CD3 subunits (Reth, 
1989; Irving and Weiss, 1991; Letourneur 
and Klausner, 1992). Recent evidence sug-
gests that TCR complex quaternary changes 
by means of torque exerted during recogni-
tion of pMHC on the opposite face of an 
antigen presenting cell could be the initial 
trigger (Kim et al., 2009). However, this 
signal transduction mechanism appears 
rather unconventional in that the TCR and 
the tyrosine kinase Lck required to initiate 
signaling are not constitutively associated, 
instead interacting only after TCR engage-
ment. In addition, a relatively large fraction 
of Lck is constitutively activated (Nika et al., 
2010), suggesting that TCR and kinase co-
localization is the relevant event to induce 
rapid and sensitive signal transduction. 
This scenario poses a challenge requiring 
a deep understanding of the biophysics of 
protein dynamics in biological membranes. 
Likewise, clarification of the basic physical 
and chemical events that convert a recog-
nition of pMHC by a weakly interacting 
(∼1–100 μM Kd

) TCR into an intracellular 
signal with great specificity, sensitivity, and 
diverse biological outcomes remains an 
intense challenge for future investigation.

In vivo, chemokines function as chemoat-
tractants to guide cell migration, including 
movements of T cells via interaction with 
the chemokine receptors, G protein- coupled 
receptors on the surface of leukocytes 
(Fernandez and Lolis, 2002). Their ligation 
promotes signal cascades including changes 
in avidity and cell adhesion via integrins. 
TCR stimulation also modulates integrin 
avidity on T cells (Hynes, 2002). It can be 
anticipated that these areas will continue 
to be intensely investigated for at least two 
reasons: (1) understanding in vivo activation 
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to elicit high avidity T cells as effectors, 
memory, and effector/memory populations 
under the appropriate cytokine milieu fol-
lowed by mobilization of these cells into 
the infected organ via relevant chemokines 
and addressins is necessary to induce the 
protective response. In addition, augment-
ing the relevant effector/effector memory 
population by concurrent blockade of 
inhibitory pathways (CTLA4, PD-1R, and 
A2AR) seems logical. That said, the details 
of pathway function and optimal kinetics of 
interdiction relative to antigen stimulation 
require elucidation. Finally, it is important 
to acknowledge that T cell biology needs 
to be considered in conjunction with that 
of B cells, immunologic memory, innate 
immunity, tolerance, and inflammation, 
all of which are addressed within Frontiers 
in Immunology.
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