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ABSTRACT: We report a novel nanoparticulate drug delivery
system that undergoes reversible volume change from 150 to
40 nm upon phototriggering with UV light. The volume
change of these monodisperse nanoparticles comprising
spiropyran, which undergoes reversible photoisomerization,
and PEGylated lipid enables repetitive dosing from a single
administration and enhances tissue penetration. The photo-
switching allows particles to fluoresce and release drugs inside
cells when illuminated with UV light. The mechanism of the
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light-induced size switching and triggered-release is studied. These particles provide spatiotemporal control of drug release and
enhanced tissue penetration, useful properties in many disease states including cancer.

B INTRODUCTION

Controlled release technology is expected to have a profound
impact in many medical fields including oncology.! The
incorporation of chemotherapeutic agents in nanoparticle
(NP) delivery vehicles has improved drug solubility, reduced
clearance, reduced drug resistance, and enhanced therapeutic
effectiveness.” With controlled release NP systems, a single
dose can sustain drug levels within the desired therapeutic
range for long periods in various diseases (e.g, diabetes’ or
cancer*). Several nanoparticulate therapeutics, for example,
Doxil (~100 nm PEGylated liposome loaded with doxorubicin)
and Abraxane (~130 nm albumin-bound paclitaxel nano-
particles), have been approved by the FDA, and have shown
improved pharmacokinetics and reduced adverse effects
compared to their parent drugs.” However, currently approved
nanomedicines provide modest survival benefits for patients,>®
perhaps in part because of poor tumor penetration.
Nanoparticle size is one crucial determinant of accumulation
and penetration into tumor tissue.” Nanoparticles with sub-100
nm sizes are optimal for the enhanced permeation and
retention (EPR) effect for passive tumor targeting.8 However,
physiological barriers, such as the dense interstitial matrix—a
complex assembly of collagen, glycosaminoglycans, and
proteoglycans—hinder the delivery of drugs throughout the
entire tumor.” For example, Doxil (~100 nm) is found trapped
near the tumor vasculature.'® Although the small size
(molecular weight = 544 Da) of doxorubicin released from
Doxil allows rapid diffusion, doxorubicin cannot migrate far
from the particles due to rapid uptake of doxorubicin by
perivascular cells, which results in heterogeneous therapeutic
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effects.'’ Deep penetration of nanoparticles in tumors is
necessary to enhance their therapeutic effect.'”

Another significant drawback of commercially available drug
delivery NPs is that drugs are released at a predetermined rate
irrespective of patient needs or changing physiological
circumstances. A triggerable drug delivery system would allow
repeated on-demand dosing that would be adaptable to the
patients’ regimen and allow multiple dosages from a single
administration.® It might also help address the potential
importance of timing on therapeutic effect (“chrono-admin-
istration”) in the treatment of cancer,'* a concept that is
receiving burgeoning recognition, for example, the periodicity
of VEGF expression in breast cancer regulates tumor cancer
vascular permeability.'> Another clinical example of the
importance of timing is that periodic infusion of angiotensin
IT via the tail vein can enhance macromolecular delivery into
tumors by overcoming the barrier of elevated interstitial fluid
pressure within tumors; no such increase of macromolecular
uptake occurs either by an acute or chronic increase in blood
pressure induced by angiotensin IL'® Furthermore, the
permeability of many tumor models varies with time and in
response to treatment, so that vascular pore sizes vary greatly,
resulting in heterogeneous NP extravasation and drug delivery
efficacy.>'” On-demand drug release from NPs accumulated in
tumors could allow in situ chrono-administration, potentially
increasing drug retention in cancers, maximizing tumor killing
and minimizing metastatic spread.
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Here, we have developed a photoswitching nanoparticulate
system that uses light as the remote means of triggering both
on-demand drug release and reversible changes in particle
volume to enhance tissue penetration.

B RESULTS AND DISCUSSION

Photochromic properties are controllable light-induced changes
in color or reversible photoexcited transformations between
two isomers.'® There has been intensive investigation of
photochromic materials for applications from sunglasses to
optically rewritable data storage,'® optical switching,*® and
chemical sensing.*' The photoswitchable NPs developed here
were composed of spiropyran (SP, a family of photochromic
molecules, Figure lab) and lipids. SP consists of a nitro-
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Figure 1. (a) Structure and photoisomerization reaction between
spiropyran (SP) and merocyanine (MC). (b) Abbreviations for SP and
MC derivatives. (c) Scheme of photoswitching SP NPys composed of
SP-C9 and DSPE-PEG. Yellow oval, SP molecule; blue line, the alkyl
chain (R) in SP; red, lipid part; green line, PEG. SP NPys are
converted to MC NPys (purple sphere: MC molecule) by UV light
irradiation; the reversible photoisomerization from MC NPys to SP
NPys happens in dark but is accelerated by visible light (500—600
nm).

benzopyran and an indoline moiety with orthogonal orientation
(Figure 1a). Both moieties absorb in the ultraviolet spectrum
independently.”* Ultraviolet light (UV, 365 nm) induces ring-
opening in the pyran to form merocyanine (MC, Figure 1a).
The nitrophenol and indoline chromophores are merged to
form one large planar z-system, leading to intense absorption in
the visible (Vis) spectral region (500—600 nm).”> The
zwitterionic MC form is less stable than the hydrophobic SP
form and undergoes spontaneous ring-closing back to SP in the
dark that is accelerated by photoexcitation of MC in the Vis
absorption band."®* The polarity or hydrophilicity changes of
SP molecules that accompany their photoisomerization have
been suggested to alter microenvironments within polymers
and supermolecular assemblies such as Langmuir—Blodgett
films, micelles, and liposomes.””>** We hypothesize that SP
isomerization upon irradiation would lead to hydrophilicity
changes which would switch the NPs’ physical assembly
properties and trigger drug release. Of note, micromolar
concentrations of SP derivatives are reported to have minimal
cytotoxicity in macrophages, gastric cells, and epithelial cells
after exposure for 72 h.*® These properties suggest that SP is a
suitable base material for light-responsive NPs for triggered
release.

Formulation of Photoswitchable NPs with Light-
Triggered Size Changes. SP derivatives bearing hydrophobic
alkyl chains (Figure la,b) were synthesized by coupling 2-
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hydroxy-5-nitrobenzaldehyde with substituted 2,3,3-trimethyl-
3H-indolium iodide (Figure Sla). NPs were initially prepared
by direct nanoprecipitation of SP alone (an extensively used
simple method for the preparation of NPs with therapeutic
agents embedded in the hydrophobic matrices).”® An
acetonitrile solution of SP-C9 (10 mg/mL) was nano-
precipitated into water (final acetonitrile/water = 1/40, v/v),
resulting in NP sizes of 198.1 & 2.5 nm with a polydispersity of
0.09 + 0.02, determined by dynamic light scattering (DLS, N =
S, Table S1).

Irradiation of the SP-C9 NPs with UV light (365 nm,
intensity ~1 W/em? ~ 3.1 X 107¢ einstein) led to
photoisomerization and the subsequent conversion of hydro-
phobic SP-C9 to amphiphilic MC-C9, and a change in the sizes
of the NPs. The irradiated NPs had a bimodal size distribution
(Figure S1b), with one peak at 39.6 + 3.0 nm (N = S, 99.1% of
number population, determined by DLS; attributable to NPs
assembled by MC-C9), and another at 202.1 nm (0.9% of
number population; attributable to NPs formed with SP-C9).
After irradiation, the colorless NP solution became purple, with
a strong Vis absorption band characteristic of MC-C9
(maximum absorption wavelength 4. = 560 nm; Figure
S1c,d). Nanoprecipitation of a SP analogue with a shorter alkyl
chain, SP-C7, produced NPs that did not undergo a significant
size change upon UV irradiation (Table S1).

SP-C9 NPs formed in aqueous solution aggregated when
introduced into PBS (Table S1), presumably due to salt-
induced screening of electrostatic repulsive forces between
particles.”’” In addition, the NPs had low actual drug loadings wt
% (loading wt % < 1%) and efficiencies (<13%; Table S2). The
loading efficiency did not increase in NPs made of SPs with a
longer alkyl chain (SP-C18, Table S2). Higher drug loading of
delivery vehicles is desirable for optimal therapeutic effect, to
enhance the potency of NPs that reach the tumors.*®

To improve the stability and loading efficiencies of NPs while
maintaining the NPs’ photoswitching properties, we produced
hybrid SP/lipid-polyethylene glycol (PEG) NPs (termed NPys;
Figure 1c) using a rapid ultrasonication method.” An
acetonitrile solution of SP-C9 (1 mg/mL) was slowly added
into a 4 wt % ethanolic aqueous solution containing lecithin
and 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-N-
carboxy(polyethylene glycol)-5000 (DSPE-PEG, [SP-C9]/
[DSPE-PEG]/[lecithin] = 32/16/1), followed by addition of
water to adjust the organic/aqueous solution volume ratio to 1/
10. After sonication for 8 min and filtration of the organic
solvent, SP NPys were obtained with an average hydrodynamic
diameter of 143.2 & 2.1 nm and a polydispersity of 0.03 + 0.01
(N = S, Figure 2a). SP-C9 was not detected by HPLC in the
filtrate after repetitive washing of the NPys by ultra-
centrifugation, indicating that SP-C9 was completely incorpo-
rated into NPs (Figure S2ab). After UV illumination (30s,
~100% conversion to MC), the absorption band of the NPys
moved to a 4., at 551 nm (Figure 2b). As with the nonhybrid
NPs, UV irradiation of NPys induced a size change (to 47.1 +
1.3 nm, polydispersity of 0.05 + 0.02, N = S). These results
confirmed that both the photochromic properties of SP-C9 and
light-triggered size change were maintained in the SP NPys.

MC NPy reverted to SP NPy in darkness or by Vis light,
with an accompanying increase in volume (Figure 2a).
Consequently, there could be inaccuracies in measuring MC
NPy size by relatively slow techniques such as DLS. To confirm
particle shrinkage after irradiation (Figure 2a), we produced
NPy containing MC—CN, a similar but relatively stable MC
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Figure 2. (a) Dynamic light scattering measurement of size changes of
SP-C9/DSPE-PEG/lecithin SP NPys upon alternating UV (30 s) and
visible light (3 min) illumination. Inset: the solution of NPy before
and after UV irradiation. (b) Steady-state absorption spectra of NPy
([SP-C9] = 0.46 mM) and their corresponding isomerized MC NPy
(Amax = 551 nm) upon UV light irradiation.

quinoidal structure, which is a 1, 6-addition adduct of MC-C9
with trimethylsilyl cyanide (Figure S3).>* MC—CN NPys were
59.4 nm in diameter, with a polydispersity of 0.04 (Figure S3c),
similar to the size of MC NPy produced from SP NPy by UV-
irradiation (47.2 nm with a polydispersity of 0.0S, Figure 2a).
Direct nanoprecipitation of MC—CN resulted in 42.6 nm NPys
with a polydispersity of 0.11 (Figure S3d), a result consistent
with the DLS measurements of MC NPys.

The PEGylated lipid was designed to give NPys a relatively
neutral surface charge for prolonged circulation and stabiliza-
tion.>" The ¢ potential of SP NPy and MC NPy at pH 7.5 was
—6.25 + 031 mV and —5.12 + 0.12 mV, respectively. The
results indicated the similarly neutral charges of NPy before
and after irradiation. No aggregation was observed for over 4 h

in PBS (Figure S2c). The stability of NPys was also evaluated
in serum by monitoring the absorbance change at 560 nm,
since nanoparticles cannot be accurately detected in dense
serum solutions by DLS.>> No significant aggregation was
observed over 4 h.

For eventual clinical translation, it has to be possible for NPs
to be stable during manufacturing, storage, and trans-
portation.*> SP NPys were lyophilized for 48 h with bovine
serum albumin (BSA, NP/BSA 1/15, w/w), a known
lyoprotectant reagent,”* then stored at —20 °C for over one
month. The subsequent reconstitution of lyophilized SP NPy
in PBS did not significantly change the NPy sizes and
photochromic properties (Figure S4). Lyophilization of SP
NPy in water (without albumin) led to micrometer-sized,
nondispersible aggregates upon reconstitution in PBS. Since
albumin is used clinically, this lyoprotection strategy may be
useful for potential translational of SP NPs.

To examine whether this formulation could be used to form
NPs containing a broad range of compounds, we tested the
ability to encapsulate rhodamine B, coumarin 6, cyanine $§
(CyS), paclitaxel, docetaxel, proparacaine, and doxorubicin.
NPs with adjustable loadings up to 10 wt % (with relatively
high loading efficiencies) and low polydispersities were readily
obtained for all of the therapeutics (docetaxel, doxorubicin,
proparacaine) and dyes (Cy$, thodamine B, coumarin 6) tested
(Table 1).

HeLa (cervical cancer cell), PC-3 (human prostate
carcinoma), and human umbilical vein endothelial cells
(HUVEC) were used to assess the cytotoxicity of SP NPys.
Following 72 h of exposure to NPs, cell viability was
determined by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide) assay.>> The SP NPy did not
cause significant cytotoxicity in either cell line except at
extremely high concentrations (Figure SSa). The ECy, values
(the concentrations at which cell viability was reduced by 50%,
determined by interpolation from the data in Figure SSa) for
the [SP-C9] in those NPys were 9.53 mM for HUVEC (6.33
mg/mL NPys), 7.01 mM for HeLa cells (4.66 mg/mL NPys),
and 7.41 mM for PC-3 cells (4.92 mg/mL NPys). In a 70 kg
adult, these ECs, values are approximately equivalent to 70 g/
dose (~ 1 g/kg) assuming NPys are restricted to the 14 L
extracellular fluid, or 25 g/dose (~350 mg/kg) if the NPs are
restricted to the 5 L bloodstream, extremely high doses
compared to those used clinically with Doxil (dosage: SO mg/

Table 1. Characteristics of Photoswitching SP NPy

drug/dye initial LD % actual LD % LD efficiency %
Rhodamine B S 249 + 0.13 49.8
Coumarin 6 10 6.84 + 0.07 68.4
Calcein S 2.71 + 0.09 54.2
Cyanine § 10 9.41 + 0.05 94.1
Paclitaxel S 3.97 + 0.04 794
Paclitaxel 10 8.21 + 0.14 82.1
Docetaxel 10 742 + 0.11 74.2
Doxorubicin S 2.69 + 0.21 53.7
Doxorubicin 10 4.96 + 0.14 49.6
Proparacaine 10 6.35 £ 0.16 63.5
Proparacaine 15 7.64 + 0.19 510

size (nm) polydispersity size-UV (nm) polydispersity
129.7 + 1.8 0.054 742 + 2.6 0.081
747 £ 2.9 0.013 272 + 4.5 0.086
1339 + 6.7 0.064 50.6 + 4.8 0.072
108.6 + 4.5 0.071 727 + 0.8 0.066
101.7 + 3.1 0.052 40.1 + 89 0.065
116.1 + 1.1 0.088 76.1 + 5.2 0.066
1254 + 5.0 0.039 49.7 +£ 5.8 0.043
969 + 4.7 0.035 41.5 + 6.4 0.043
93.3 +£ 32 0.074 49.8 + 6.7 0.058
87.5 £ 2.7 0.049 482 + 54 0.100
102.3 + 6.6 0.071 66.1 + 2.5 0.032

“Determined by DLS and HPLC. Abbreviations: LD, loading; size-UV, sizes of NPs treated by UV irradiation (N = S). Data are means + SD (N =

S).
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m?).>® The ECy, value for MC NPy in HeLa cells was 3.46 mg/
mL, similar to that for SP NPy (Figure SSb).

Repetitive Photoswitching and Light-Triggered Drug
Release Profiles of NPs. The repeatability of the photo-
switching property of NPy was evaluated by alternating cycles
of UV and Vis light. This modulation was fully reversible for at
least 4 continuous cycles (UV irradiation for 30 s and Vis light
for 3 min, Figure 3). However, the absorbance at the MC-C9
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Figure 3. Reversible NPy photochromism (solid line, Abs:
absorbance) and size switching (dashed line) with alternating UV
(“UV”, 30 s) and visible light (“Vis”, 3 min) irradiation. The
modulation of NPy size and photochromism was fully reversible for at
least 4 cycles. Data are means + SD, N = 4.

peak maximum decreased 43% after 4 cycles, and was
accompanied by a reduction in size from 143.2 to 98.7 nm in
the SP state (Figure 3). The decrease of absorbance after
repetitive irradiation could be due to photofatigue (the loss of
performance in photoisomerization) — a common property of
organic photochromic compounds.”” The absorption intensity
of MC in NPy at 551 nm faded at a rate dependent on the UV
(365 nm) irradiation time, and that antioxidant agents could
not eliminate the decrease in MC-C9 absorption, suggesting an
O,-independent fatigue mechanism for photofatigue in SP
NPys (see Figure S6 and Scheme S1 and associated
discussion).

We hypothesized that the phototriggered shrinkage of NPys
might induce drug release. In the absence of UV photo-
triggering, drugs (e.g., doxorubicin) and dyes (e.g.,, rhodamine
6B) loaded in SP NPy showed slow release in PBS that was
complete within 48—72 h (Figure 4, Figure S7). Upon UV
irradiation (30s), NPys encapsulating rhodamine 6B (loading
wt% = 4.3%) released 29.3% of the loaded dye within 1 h as
determined by HPLC, while 7.2% was released in the same
period without UV irradiation. Of note, the release kinetics of
NPys that had been triggered (Figure 4, blue line) eventually
slowed to a rate similar to that of NPys that were not irradiated
(Figure 4, black line). This decrease in the release rate could be
explained by the majority of the MC-C9 in NPs spontaneously
converting back to SP-C9, resulting in NPs reassembled in their
original structure. In a separate group, UV triggering (30 s
irradiation) was conducted every 3 h for three cycles (Figure 4,
green line), with an increase in release at each event.

UV-triggered release was demonstrated in cells by
fluorescence imaging of SP NPy loaded with calcein. Calcein
was selected because its fluorescence self-quenches while it is
entrapped inside particles, whereas calcein released from
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Figure 4. Release profiles in PBS for rhodamine B loaded in SP NPy
under different conditions: without irradation; with UV irradiation for
30 s at 0 h; with repetitive UV irradiation at 0, 3,and 6 h. The times of
irradiation are indicated by purple arrows. Data are means + SD, N =

6.

particles will become diluted and fluoresces.*® SP NPy loaded
with calcein (2.7 wt %) were incubated with HeLa cells. After 4
h, the media containing NPys was removed and the cells were
washed with PBS. Cells in medium were then illuminated by
UV (365 nm) for 2 s, left in darkness for S min, then imaged
(Figure S8). Strong fluorescence intensity with an emission
maximum at 510 nm was noted in the cells, indicating that the
calcein was released from NPs that had been taken up.
Iumination followed by imaging was repeated S times, during
which the fluorescence intensity gradually increased to
saturation (Figure S8ab). Cells treated with same NPs but
without UV irradiation did not fluoresce, suggesting that the
UV triggered rapid calcein release and intracellular dispersal
from SP NPy. These results were validated by flow cytometry,
which showed a 24.7-fold increase in fluorescence intensity
after a 10 s UV treatment (Figure S8c).

Surface Functionalization of NPs. Nanoparticle ther-
apeutic effect can be enhanced and toxicity reduced by surface
modification with moieties that allow intracellular penetration
and/or targeting of specific tissues.”” To examine the potential
suitability of the NPy for targeted drug delivery, we formulated
NPs (NP, composed of SP-C9 and a mixture of DSPE-
PEG,0p-maleimido (DSPE-PEG-MAL) and DSPE-PEG in a 4/
1 ratio (w/w), 153.1 nm in diameter and with a polydispersity
of 0.09. A cell penetration peptide (Cpp) Cys-Tat (47—57)
(sequence: CYGRKKRRQRRR-NH,) was introduced onto SP
NPy, loaded with CyS by reaction of the carboxyl-terminal Cys
of the peptide with the MAL on the NPy, surface (NPs/Cpp =
100/1, w/w). The fluorescence intensity of Hela cells
incubated with the resulting NPs (SP NP,;-Cpp) for 30 min,
measured by flow cytometry, was 7.1 times higher than that of
cells treated with SP NPy, lacking Cpp (N = 4, fluorescence
intensities of 1940 & 215 and 273 + 197, respectively; Figure
Sa).

We compared the cytotoxicity of doxorubicin-loaded SP
NP,-Cpp (doxorubicin/SP NP,-Cpp) to that of SP NPy,
without Cpp (doxorubicin/SP NP,,). HeLa cells were
incubated with doxorubicin/SP NPy-Cpp or doxorubicin/SP
NP, for 2 h, then incubated in medium without NPs for a total
of 48 h; cell viability was measured by MTT assay. The
doxorubicin/SP NPy-Cpp were significantly more cytotoxic

dx.doi.org/10.1021/ja211888a | J. Am. Chem. Soc. 2012, 134, 8848—8855
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Figure S. (a) Flow cytometric analysis of the internalization of CyS in
SP NP,-Cpp. Red line, untreated HeLa cells; green line, HeLa cells
treated with CyS/SP NPy, for 30 min; blue line, HeLa cells treated
with CyS/SP NPy,-Cpp for 30 min; (b) MTT assay to determine the
differential cytotoxicity of doxorubicin/SP NPy, and doxorubicin/SP
NP,,. Data are means + SD, N = 6, asterisks indicate P < 0.005.

than the doxorubicin/SP NPy (Figure Sb). These results
suggest that the SP NPy’s have the capacity to be
functionalized by a broad range of biomolecules (e.g.,
aptamers*® or other peptides*') to enhance drug delivery.
Light-Triggering Enhances Diffusion in Collagen
Matrices. As discussed above, the ability to penetrate tissue
could have a bearing on therapeutic effectiveness. We evaluated
whether the light- triggered size change could enhance diffusive
transport through a dense collagen gel at a concentration
(0.74%; 7.4 mg/lez) similar to the 9.0 + 2.5 mg/mL of
interstitial matrix estimated for interstitial collagen in human
tumors (e.g, LS174T) and murine tumors (e.g,, MCalV).'®*
SP NPys (1 mg/mL) loaded with S wt % indocyanine green
(ICG), a NIR dye, were placed in contact with collagen gels in
a horizontal capillary tube, then incubated for a further 12 h at
37 °C. A NIR imaging system was used to track particle
infiltration into the collagen (Figure 6). Free ICG penetrated
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Figure 6. Normalized NIR fluorescence intensity vs distance profiles
for various formulations’ penetration into collagen gels over a period of
12 h (7.4 mg/mL): free ICG (black, diffusion coefficient = 3.59 + 1.94
x 1077 cm?s™!), ICG/SP NPy (red, diffusion coefficient = 7.65 + 1.63
X 1077 em*s™!), ICG/SP NPy irradiated by UV light (blue, diffusion
coefficient = 2.24 & 0.42 X 107% cm?>s ™! at t = 0 for 10 s), and ICG/SP
NPy, irradiated twice by UV (green, for 10 s each time, separated by 3
h,). Diffusion coefficient data are means + SD, N = 4. The dashed
lines are theoretical curves fitting the intensity profiles using a one-
dimension diffusion model.

4.0 + 0.21 mm into the collagen gels, ICG/SP NPy penetrated
83 + 0.10 mm without UV triggering, and ICG/SP NPy
triggered by UV for 10 s penetrated 12.1 + 0.02 mm (N = 4, P
< 0.005 for irradiated ICG/SP NPy compared to free ICG and
unirradiated ICG/SP NPy). (The mechanical properties of
collagen barely change after 1 h irradiation at 254 nm UV light,
~1.7 X 107° einstein.**) By fitting the fluorescence intensity of
ICG/SP NPy to a one-dimensional diffusion model, we
obtained an average diffusion coefficient of 2.24 + 0.42 X
1078 cm*s™! for UV-triggered ICG/SP NP;; NPs (N = 4, P <
0.005 compared to free ICG), while the diffusion coefficient for
unirradiated ICG/SP NPy (7.65 + 1.63 X 1077 cm*s™, N = 4)
was not statistically significantly different from that of free ICG
(3.59 + 1.94 X 1077 cm*s™", N = 4, P = 0.064) compared to
unirradiated ICG/SP NPy (Figure 6). The relatively low
diffusion rate of free ICG in collagen gels compared to NPys
might be partly due to the lipophilicity of ICG.** Gel
penetration was further enhanced by increasing irradiation:
ICG/SP NPy irradiated twice (for 10 s each, separated by 3 h)
penetrated 16.8 + 0.10 mm with an average diffusion

coefficient of 1.97 + 028 X 107° cm®s™' (calculated by
modified one dimension diffusion models; N = 4; Figure 6
green line). The fact that the diffusion coefficient of light-
triggered ICG/SP NPy was significantly larger than those for
nonirradiated ICG/SP NPy and free ICG (for both P < 0.005)
suggests that light-induced shrinkage might help deepen tissue
penetration of SP NPy and their payloads. That possibility is
supported by the observation that irradiation does not appear
to affect the other physicochemical properties of PEGylated
NP, (they have similar slightly negatively charged surfaces
before and after irradiation).

Enhanced Diffusion of Photoswitching NPs in the
Cornea. We assessed the potential for photoswitching SP NPy
to carry drugs across the cornea in a manner analogous to the
findings in collagen gels. Corneas are composed of 90—95 wt %
of dense collagens, rendering the delivery of drugs through the
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cornea to the anterior chamber difficult. Particles containing
CyS (CyS/SP NPy) were applied to fresh cadaveric porcine
corneas with or without UV light triggering for 1 min, and
incubated for 8 h. Gross examination of the corneas and NIR
scanning of CyS$ in corneal cross section demonstrated that the
diffusion of CyS/SP NPy was markedly enhanced by UV light
triggering (Figure 7). Histologically, corneas treated with CyS/

a Cy5'SPNP; Cy5/SPNPy  Cy5/SP NP, Cy5
+UvV +UV
b Cy5/SP NPy Cy5/SP NPy Cy5

+UV

Figure 7. Ex vivo study of CyS/SP NPy penetration in porcine
corneas. (a) Fresh corneas after an 8-h treatment with CyS/SP NPy
(with or without UV irradiation for 1 min) or CyS. The green color
indicates the presence of CyS (a blue dye that becomes greenish in the
slightly yellow tissue of the eye); (b) near-infrared images of cross
sections of corneas tissues treated as in panel (a). The scale bar = 1
cm.

SP NPy and UV light were indistinguishable from untreated
controls under light microscopy, showing no tissue injury
(Figure S9). Since collagen is one of the major components of
the interstitial matrix, these results suggest the potential
usefulness of SP NPy for light-triggered drug delivery to
targeted tissues, for example, eyes and tumors. These results are
consistent with a recent report that polymeric micelles ~30 nm
(close to MC NPys sizes) showed enhanced tissue penetration
and potent antitumor activity in poorly permeable pancreatic
tumors.* The histological findings, together with the benign
cytotoxicity (Figure SS) are consistent with a favorable safety
profile, but this remains to be validated by in vivo studies.

The wavelengths of the UV light we used for SP NPy
triggering might limit the application of this technology to areas
of the body that can be illuminated directly, for example, the
eyes and ears. Of note, the photochromic conversion of SP
could be potentially triggered at depths up to several
centimeters by near-infrared lasers using two-photon technol-
ogy (wavelength ~ 720 nm), through soft tissues, bone, and
intact skull.*®

Fluorescence of Photoswitching NPs. The possibility
that NPy could perform as fluorescent light-triggered imaging
probes was suggested by the fact that SP or nanoparticles
surface-modified with SP have been utilized as fluorescence
imaging probes in different microscopy techniques, including
optical lock-in detection (OLID),”” two-photon photoswitch-
ing, and imaging by noninvasive near-infrared (NIR) light.28
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Although MC-C9 does not fluoresce in organic solvents (e.g.,
acetonitrile), we found that NPy could switch between
fluorescence (as MC-C9) and nonfluorescence (as SP-C9).
UV-irradiation of SP NPy in aqueous solution created MC
NPy, (Figure 1c) with an ~8-fold increase in red fluorescence
(600—800 nm) compared to MC-C9 in acetonitrile ([MC-C9]
= 0.20 mM for both acetonitrile solution and NPys). The 4,
of MC NPy red-shifted by 32 to 672 nm compared to MC-C9
in acetonitrile (Figure S10a and associated discussion of
mechanism). The fluorescence exponential decay constant of
MC NPy, (Figure S10b) was 1.44 X 10~*s™" at 672 nm (t,/, =
4813 s), much slower than for free MC-C9 in acetonitrile
solution (t;,, = 346 s). The intensity of the fluorescence and
the duration of the decay of that intensity for MC in NPy
would be sufficient for use in microscopic imaging, unlike free
MC.

The fluorescent photochromic properties of NPs could be
used to track them in biological studies (e.g., intracellular drug
delivery) with greater reliability than with simple fluorescence,
which can be confounded by interfering fluorophores or in vivo
autofluorescence.****” In fact, NPs surface-modified with SP
have been utilized as light-triggerable fluorescent probes.>*"
Here, we evaluated whether fluorescence switching of SP NPy
could be achieved in living cells in vitro in a HeLa cell line
(Figure 8a). We loaded CyS (emission max = 690 nm) into SP

Figure 8. Fluorescence images of the internalization of Cy5-containing
NPy by HeLa cells after 2 h incubation. (a) Nuclear staining with
DAPI (blue color). (b) NPys were illuminated by UV for 2s then
imaged with 560 nm emission filters (green color); NPys were seen to
be internalized. (c) The red color (emission at 700 nm) shows the
CyS loaded in the SP NPy (d) The overlay of panels a—c. The orange
color demonstrated colocalization of SP NPy; with CyS. The scale bar
= 50 pm.

NPy since its emission spectrum would have little overlap with
that of MC NPy (emission max = 672 nm). CyS-containing SP
NPys were incubated with HeLa cells for 2 h in darkness then
exposed to UV illumination for 2 s, causing immediate
fluorescence attributable to MC NPy (Figure 8b). Fluorescence
microscopy (Figure 8) indicated that CyS (red color) and MC-
containing hybrid NPs (green color) were colocalized in HeLa
cells (orange color in Figure 8d).

Mechanism of Photoswitching NPs. We propose the
following assembly model to explain the photoswitching of SP
NPy (Figure 9). The SP NPys are composed of a hydrophilic
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UV (k)

MC NP, — SP NP,

Figure 9. Proposed assembly states of reversible light-triggered SP
NPy size switching: SP NPy converted MC NPy upon irradiation
(solid arrow, i to ii); graduate transition (dash arrow, ii to iii to i) from
MC NPy to SP NPy in the dark, with the conversion of zwitterionic
MC-C9 to hydrophobic SP-C9 to cause the reassembly of NPy.
Yellow oval, SP molecule; blue line, the alkyl chain in SP; red, lipid
part; green line, PEG; and purple oval, MC molecule.

PEG shell, beneath which are the hydrophobic alkyl chains of
the DSPE and the SP-C9 (Figure 9i). Given the reported
destabilization of monolayer surfactant films by SP,** SP is
likely to perturb the alkyl chain packing inside the SP NPy,
causing the hydrophobic core to have a loose structure (Figure
9i) and increasing particle size. Upon irradiation, SP converts to
zwitterionic MC, that moves outward to relatively polar
microenvironments within the NPy, such as the phosphogly-
cerol moiety linking DSPE and PEG.*” The polar micro-
environment around MC in NPy is evidenced by the fact that
the 4,.,, of MC in NPy (551 nm) is comparable to the 4, of
MC in polar solvents (Figure $11).*" (The effective dielectric
constant of the microenvironment of MC in NPy is ~18, i.e., is
relatively polar; detailed discussion in Figure S11.) As MC
moves toward the more hydrophilic PEG layer of the NPy, it
moves away from the alkyl chains of the DSPE and lecithin,
allowing them to assemble tightly inside the hydrophobic cores;
in consequence, the NPy volume shrinks (Figure 9ii).

The NPy size will increase again once MC reverts to SP and
translocates into the hydrophobic core, perturbing the assembly
of the lipids. The alkyl chains of DSPE and lecithin may impede
the isomerization of MC to SP, as suggested by the fact that the
isomerization in NPy (A, = 551 nm) was 12.2-fold slower
than that of free MC-C9 in acetonitrile (4,,,, = S60 nm, Figure
S$12). This slowing of the isomerization from MC to SP has also
been observed in MC in polymeric films.'®*

B CONCLUSION

We have described photoswitchable NPys that allow
spatiotemporal controlled release of drugs and enhanced tissue
penetration upon UV illumination. This formulation was simple
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to produce, and tolerated lyophilization, which may facilitate
potential clinical translation.”® The NPys could achieve high
loadings with various drugs (chemotherapeutic, local anes-
thetics). The NPys developed here could be adapted for a
range of applications, as they could be modified with functional
ligands. The phototriggering system could also be used to
enhance NPy tissue penetration, which might improve
antitumor efficacy, penetration into ocular tissue and across
the tympanic membrane. This is quite different from
conventional approaches, where external energy sources
enhance penetration by disrupting tissues.*®

The photoswitchability is an attractive feature in that it can
allow fine spatiotemporal control of drug release: drug is
released at the irradiated site, during irradiation. This approach
also obviates the need for developing a specific ligand to the
tissue of interest. We have previously developed an analogous
approach to the same problem by decorating nanoparticles with
nonspecific ligands caged with photosensitive chemical
protecting groups; upon irradiation, the caging groups would
come off, allowing the nanoparticles to bind.*"® These two
approaches and others'? could prove synergistic.
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