
 

Effectiveness of Schema-Based Instruction for Improving Seventh-
Grade Students’ Proportional Reasoning: A Randomized

Experiment

 

 

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Jitendra, Asha K., Jon R. Star, Danielle N. Dupuis, & Michael C.
Rodriguez. 2012. Effectiveness of Schema-Based Instruction for
Improving Seventh-Grade Students’ Proportional Reasoning: A
Randomized Experiment. Journal for Research on Educational
Effectiveness.

Accessed February 19, 2015 10:29:54 AM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:9544241

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Open Access Policy Articles, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#OAP

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH 

https://core.ac.uk/display/28940136?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/9544241&title=Effectiveness+of+Schema-Based+Instruction+for+Improving+Seventh-Grade+Students%E2%80%99+Proportional+Reasoning%3A+A+Randomized+Experiment
http://nrs.harvard.edu/urn-3:HUL.InstRepos:9544241
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP


SCHEMA-BASED INSTRUCTION   1 

 

 

 

Effectiveness of Schema-Based Instruction for  

Improving Seventh-Grade Students’ Proportional Reasoning:  

A Randomized Experiment 

 

Asha K. Jitendra, University of Minnesota, 245 Education Sciences Building, 56 E. River Road, 

e-mail: jiten001@umn.edu, Phone: 612-626-7116, Fax: 612-624-8241 

 

Jon R. Star, Harvard University, Gutman Library 442, 6 Appian Way, Cambridge, MA 02138, e-

mail: jon_Star@Harvard.edu, Phone: 617-496-2511, Fax: 617-496-3095 

 

Danielle N. Dupuis, University of Minnesota, 275G Education Sciences Building, 56 E. River 

Road, e-mail: dupui004@umn.edu, Phone: 612-625-0130, Fax: 612-624-8241 

 

Michael C. Rodriguez, University of Minnesota, 170 Education Sciences Building, 56 E. River 

Road, e-mail: mcrdz@umn.edu, Phone: 612-624-4323, Fax: 612-624-8241 

 

Address correspondences to: Asha K. Jitendra, Department of Educational Psychology, 

University of Minnesota, 245 Education Sciences Building, 56 E. River Road, Minnepolis, MN 

554555.  Phone: (612) 626-7116; Fax: (612) 624-8241; E-mail: jiten001@umn.edu. 

 

 
 

mailto:jiten001@umn.edu
mailto:jon_Star@Harvard.edu
mailto:akj2@lehigh.edu


SCHEMA-BASED INSTRUCTION   2 

 

Abstract 

This study examined the effect of schema-based instruction (SBI) on seventh-grade students’ 

mathematical problem solving performance. SBI is an instructional intervention that emphasizes 

the role of mathematical structure in word problems and also provides students with a heuristic 

to self-monitor and aid problem solving. Using a pretest-intervention-posttest-retention test 

design, the study compared the learning outcomes for 1,163 students in 42 classrooms who were 

randomly assigned to treatment (SBI) or control condition. After 6 weeks of instruction, results 

of multilevel modeling indicated significant differences favoring the SBI condition in proportion 

problem solving involving ratios/rates and percents on an immediate posttest (g = 1.24) and on a 

six-week retention test (g = 1.27). No significant difference between conditions was found for a 

test of transfer. These results demonstrate that SBI was more effective than students’ regular 

mathematics instruction.  

 

KEYWORDS: word problem solving, ratio, proportion, and percent, middle school students, 

schema-based instruction 
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Effectiveness of Schema-Based Instruction for Improving Seventh-Grade Students’ 

Proportional Reasoning: A Randomized Experiment 

 Reform efforts in U.S. mathematic education are motivated by the need to raise the 

mathematics performance of students. Although the mathematical achievement of U.S. students 

in relation to national standards and international comparisons has shown signs of improvement 

over the years, there is concern that a large proportion of U.S. middle- and higher-grade students 

are not performing at adequate levels (National Mathematics Advisory Panel, [NMAP], 2008). 

On the 2009 National Assessment of Education Progress mathematics, for example, only 32% 

and 12% of Grade 8 and Grade 12 students, respectively, performed at or above the “proficient” 

level in mathematics (National Center for Education Statistics, 2009). These findings have 

translated into the need for more remedial mathematics education courses for incoming students 

at U.S. colleges (NMAP, 2008).  

One explanation for this lackluster performance is students' difficulties with proportional 

reasoning (Fujimura, 2001; Lobato, Ellis, Charles, & Zbiek, 2010). Mathematics researchers 

agree that proportional thinking (reasoning with ratios, rates, and percentages) is critical to 

understanding advanced mathematics; it provides the bridge between the numerical, concrete 

mathematics of arithmetic and symbolic algebra (e.g., Fuson & Abrahamson, 2005; Lamon, 

2007; Lesh, Post, & Behr, 1988). The centrality of proportional reasoning is emphasized in the 

Common Core State Mathematics Standards (2010), where “developing understanding of and 

applying proportional relationships” in Grade 7 is one of four critical areas of focused 

instructional time. Furthermore, proportionality is closely associated with real-world applications 

and for understanding many problems in science, and technology (Karplus, Pulos, & Stage, 

1983; Lo & Watanabe, 1997; Tourniare & Pulos, 1985). Thus, it is disconcerting that many 
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upper elementary and middle school students evidence difficulty in solving even simple 

proportion problems (Adjiage & Pluvinage, 2007).  

Conventional efforts to improve the teaching and learning of proportions have had 

limited success, as evidenced by reports showing that college students and young adults continue 

to struggle with proportional reasoning (Ahl, Moore, & Dixon, 1992; Cai & Wang, 2006; 

Fujimura, 2001; Jitendra, Woodward, & Star, 2011; Lamon, 2007). Some scholars have proposed 

that students' difficulties with proportions may be related to the ways that this topic is treated in 

many mathematics texts (e.g., Lamon, 1999). Considerable research in mathematics education 

has focused on how to improve students' proportional reasoning (e.g., Behr, Harel, Post, & Lesh, 

1992; Lamon, 2007; Lesh, Post, & Behr, 1988; Litwiller & Bright, 2002), with recommendations 

that include providing ratio and proportion tasks in a wide range of contexts (e.g., measurements, 

prices, rates) and ensuring that students have experienced conceptual instruction before 

presenting symbolic strategies for solving proportional problems.  

Accordingly, the purpose of the present randomized controlled study was to rigorously 

evaluate the effectiveness of one instructional intervention, schema-based instruction (SBI), 

which has shown promise in prior work in enhancing students’ ability to solve problems with 

embedded ratio, proportion, and percent concepts (e.g., Jitendra, Star, Starosta, Leh, Sood, & 

Caskie, 2009; Jitendra, Star, Rodriguez, Lindell, & Someki, 2011).  

Theoretical Framework and Review of Research 

Our SBI is a multicomponent intervention that is grounded in the research on expertise 

and schema theory. Four major features underlie the SBI framework – priming the mathematical 

structure of problems, visual representations, explicit teaching of problem solving heuristics, and 

procedural flexibility. 
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Theoretical Framework 

Priming the mathematical structure of problems. From both the expertise literature 

and schema theory, it is clear that cognizance of the role of the mathematical (semantic) structure  

of a problem is critical to successful problem solving (Sweller, Chandler, Tierney, & Cooper, 

1990). A defining characteristic of expert problem solvers is distinguishing “relevant information 

(related to mathematical structure) from irrelevant information (contextual details), perceiving 

rapidly and accurately the mathematical structure of problems and in generalizing across a wider 

range of mathematically similar problems” (Van Dooren, de Bock, Vleugels, & Verschaffel, 

2010, p. 22). As such, experts often solve problems using pattern recognition procedures and 

working forward from problem classification to solution (Lajoie, 2003; Yekovich, Thompson, & 

Walker, 1991). There is evidence that training that focuses on priming the problem structure 

leads to improved schema development (Chen, 1999; Quilici & Mayer, 1996, 2002). Schemata 

are hierarchically organized, cognitive structures that are acquired and stored in long-term 

memory that “allow us to treat multiple elements of information in terms of larger higher-level 

units (or chunks)” (Kalyuga, 2006, p. 2). Organizing problems on the basis of structural features 

(e.g., ratio/rate problem) rather than surface features (i.e., the problem context or cover story–

bicycle problem) can evoke the appropriate solution strategy.  

 In the domain of arithmetic word problems in the elementary grades, research has 

identified basic types of problem situations or schemata (e.g., Change, Group, Compare) that 

highlight the mathematical structure of these problems (see Carpenter, Fennema, Franke, Levi, & 

Empson, 1999). There is strong empirical support for the benefits of explicit schema training in 

solving arithmetic word problems (e.g., Fuchs, Powell, et al., 2009; Fuchs, Seethaler, et al., 

2008; Fuchs, Zumeta, et al., 2010; Fuson & Willis, 1989; Jitendra, Griffin, Haria, Leh, Adams, & 
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Kaduvetoor, 2007). In contrast, even though considerable research on proportion problem 

solving has been conducted (e.g., Behr, Harel, Post, & Lesh, 1992; Fuson & Abrahamson, 2005; 

Lamon, 2007; Lesh, Post, & Behr, 1988; Litwiller & Bright, 2002), there is not a well-

established typology of basic problem types of proportion problems that emphasizes 

mathematical structure. Rather, existing typologies focus only on the mathematical subtopic with 

the broad range of proportion problems (e.g., rate, ratio, scale drawings, percent, percent of 

change) (see Greer, 1992; Marshall, 1995; Vergnaud, 1983). However, emerging work in this 

domain has provided strong evidence that the establishment of a typology for proportion word 

problems, along with instruction that emphasizes underlying mathematical structure, can be 

effective in the middle grades with proportional reasoning (e.g., Jitendra et al., 2009; Jitendra et 

al.,  2011; Xin, Jitendra, & Deatline-Buchman, 2005). 

Visual representations as mathematical tools. In addition to recognition of problem 

structure, visual representations are equally important in facilitating solution to a problem 

(Stylianou, 2011). According to Yekovich, Thompson, and Walker (1991), "experts and novices 

also differ in the way they mentally represent problems; novices seem to represent superficial 

aspects of problems whereas experts represent the 'semantics' of problems" (p. 190). Solving 

word problems requires mentally representing the different elements described in the problem 

text. Some students have difficulty generating a representation of the problem or holding the 

representation in working memory to act upon it. As such, visual representations (e.g., tables, 

graphs, diagrams) that effectively link the relationships between quantities in the problem with 

the mathematical operations needed to solve or represent the problem are helpful tools in 

promoting problem solving (Sellke, Behr, & Voelker, 1991). The use of schematic 

representations in this manner is an integral component of SBI in many prior studies (e.g., Fuchs, 
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Seethaler, et al., 2008; Fuson & Willis, 1989; Jitendra et al., 2009; Jitendra et al., 2007; Jitendra 

et al., 2011; Xin, 2008; Xin et al., 2005). In contrast to pictorial representations of problems that 

include concrete but irrelevant details that “are superfluous to solution of the math problem” 

(Edens & Potter, 2006, p. 186), schematic representations that allow students to look beyond 

surface features of word problems to interpret and elaborate on information, which may be 

especially important for ratio and proportion problems (Hegarty & Kozhevnikov, 1999; 

Marshall, 1995; Pape & Tchoshanov, 2001). 

Explicit instruction on problem-solving heuristics. Teaching heuristics – systematic 

approaches to represent, analyze, and solve problems – as a means to enhance student learning 

has received considerable attention in mathematics education. On the one hand, universal 

heuristics such as Pólya’s (1990/1945) four-step problem solving model (i.e., understand the 

problem, devise a plan, carry out the plan, and look back and reflect) have come under scrutiny 

for several reasons, including the failure to reliably lead to improvements in students' word 

problem solving performance (Lesh & Zawojewski, 2007). Schoenfeld (1992) argued that the 

strategies listed in Polya’s heuristic are descriptive and do not provide the necessary detail for 

individuals who are not already familiar with the strategies to effectively use them. On the other 

hand, teaching a number of domain-specific, prescriptive procedures has its own limitations, 

most notably the failure to affect transfer (Schoenfeld, 1992). Although studies have resulted in 

moderate mean effect sizes, the effectiveness of heuristic training seems to be related to 

classroom-related conditions such as how heuristics are taught or integrated into the mathematics 

curriculum (Goldin, 1992; Hembree, 1992; Koichu, Berman, & Moore, 2007). Building on the 

work of Marshall (1995) and Mayer (1999), we addressed some of these limitations. The 

heuristic in SBI comprises four separate but interrelated problem solving procedural steps: 
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problem schema identification (schema knowledge), representation (elaboration knowledge), 

planning (strategic knowledge), and solution (execution knowledge) (Marshall, 1995). Several 

studies (Jitendra, Griffin, McGoey, Gardill, Bhat, & Riley, 1998; Jitendra et al., 2007; Xin et al., 

2005) have shown that heuristic training in SBI linked to particular problem types (e.g., additive 

and multiplicative compare, proportion) is more effective than heuristic training involving a 

version of Polya’s problem solving model for improving student learning and impacting transfer 

to solve novel problems.  

Procedural flexibility. In addition to the ability to attend to the mathematical structure of 

problems and represent the problem using schematic diagrams, expert problem solvers have deep 

and robust knowledge of problem solving procedures, including when, how, and why to use a 

broad range of methods for a given class of problems is important (Hatano, 2003; Star, 2005, 

2007). According to Star (2005), deep procedural knowledge can be characterized as “knowledge 

of procedures that is associated with comprehension, flexibility, and critical judgment” (p. 148). 

Of particular interest here is flexibility, which is knowledge of multiple solution methods for 

solving certain types of problems and the ability to choose the most appropriate method for a 

particular problem (Star, 2005). An emphasis on having students actively compare, reflect on, 

and discuss multiple solution methods is a central feature of mathematics reform efforts (Silver, 

Ghousseini, Gosen, Charalambou, & Strawhun, 2005). Further, recent studies by Rittle-Johnson 

and colleagues (e.g., Rittle-Johnson & Star, 2007) provide empirical evidence for improving 

student learning when instruction emphasizes and supports comparing and contrasting multiple 

solution methods.  
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Research Related to SBI Intervention 

We found only three randomized controlled studies with middle school students that 

directly link SBI to measured student outcomes in solving proportion word problems involving 

ratios/rates and percents (Jitendra et al., 2009; Jitendra et al., 2011; Xin et al., 2005). First, Xin et 

al. conducted a small study with 22 middle school students with learning problems in grades 6 

through 8. Students who received about three to four 60-min researcher-taught tutoring sessions 

per week for a total of 12 sessions in solving a limited set of mathematical topics related to 

proportion (ratio and proportion word problems) scored higher than students who were instructed 

in a general problem solving heuristic. The effect sizes comparing the SBI group with the control 

group were large following treatment (d = 1.69) and on the retention tests (d > 2.50). Further, 

transfer (d = 0.89) occurred to novel problems derived from standardized mathematics 

achievement tests. 

The more recent work of Jitendra and colleagues (e.g., Jitendra et al., 2009) also tested 

the potential benefits of SBI for 148 students from eight 7th grade mathematics classrooms, with 

classrooms randomly assigned to SBI or “business as usual” control condition that received the 

same amount of instruction on the same topics. In contrast to the work by Xin et al. (2005), this 

study expanded the topics included within the intervention (including ratios, equivalent fractions, 

rates, proportion, scale drawings). In addition, the study extended the Xin et al. study by 

increasing the number and diversity (low-, average-, and high-achieving) of students involved, 

having classroom teachers provide all instruction, emphasizing multiple solution strategies, and 

administering a 4-month retention test. Compared to students in the control group, students in the 

SBI group improved their word problem solving performance with moderate effects at 

immediate posttest (d = 0.45) and on the retention test (d = 0.56).  
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Jitendra et al. (2011) built on the two studies described above to evaluate the 

effectiveness of SBI on seventh grade students’ learning to solve proportion problems in a 

randomized controlled trial. This study addressed several limitations in research design of the 

Jitendra et al. (2009) study such as significantly extending the class time allotted to the 

intervention; providing longer professional development to classroom teachers; exploring the 

robustness of SBI by conducting the study in two districts that used very different mathematics 

programs; and extending the focus of proportion problem solving to percents, including simple 

interest. At the end of treatment, students receiving SBI intervention outperformed students in 

the control condition on the problem-solving immediate posttest (Hedges’ g = 0.75). However, 

the improved problem solving skills were not maintained a month after the end of the 

intervention. Yet the effects on this delayed posttest were practically significant (g = 0.46), 

suggesting a lack of power given the small sample size (n = 21 classrooms) to detect significant 

differences.  

The present study extended the work of Jitendra et al. (2011) by increasing the number of 

students involved and by reducing the direct involvement from the research team in supporting 

SBI classroom implementation. Although research team members continued to provide support 

to teachers as needed, the support was minimal, focusing on logistical issues rather than the level 

of curriculum implementation intensity provided in previous studies. We posed the following 

three research questions to guide the SBI research study: What is the effect of the SBI 

intervention on seventh graders’ (1) problem solving performance, (2) retention of problem 

solving skills over 6 weeks, and (3) transfer of problem solving skills? 
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Method 

Sample 

A subset of seventh-grade teachers at three suburban public schools in Minnesota 

participated in the study. The three districts included in our sample used MathThematics 

(Billstein & Williamson, 2008), Math Course  (Larson et al., 2007), and Math Connects Course  

(Day, Frey, & Howard,, 2009) at the middle school level. The districts varied somewhat on 

student enrollment (10,113, 20,510, and 16,488 students, respectively) and on student 

characteristics; students were mostly Caucasian (61%, 54%, and 77%), with 36%, 36%, and 16% 

receiving free or reduced lunch.  

Our sample consisted of 1,163 seventh-grade students and their 15 teachers from 42 

classrooms at six middle schools in the three school districts. The mean age of the students was 

12.83 (SD = 0.38). The majority of the students were Caucasian (60%), with 17% African 

American, 11% Asian, 10% Hispanic, and 1% American Indian. Approximately 34% of students 

received free or reduced lunch, 11% were special education students, and 7% were English 

language learners (see Table 1 for student demographic information by condition). Students were 

initially assigned to one of two conditions: control or SBI.  

The teachers of these students (11 females and 4 males) had a mean age of 31.27 years 

(range: 24 to 53 years). They ranged in mathematics teaching experience from 1 to 11 years (M = 

6.2 years). Fourteen of the 15 teachers were Caucasians; one teacher was African-American. Six 

teachers had an undergraduate degree in mathematics, whereas nine teachers had master’s 

degrees. Fourteen of the teachers held secondary education certification.  
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Design and Procedure 

We used a randomized treatment-control, pretest-posttest design. Blocking by teacher at 

each school, the 42 classrooms were randomly assigned to the SBI (n = 594 students) or control 

(n = 569 students) condition so that classrooms were nested in instructional treatments, and 

students were nested in classrooms and treatments. Blocking by teacher meant that teachers with 

multiple classrooms taught both treatment and control classrooms, while teachers with a single 

classroom were randomly assigned to teach either a treatment or control classroom. We chose to 

block the assignment of conditions by teacher to reduce the variability between the conditions, 

and as such increase precision. Blocking is typically done to reduce a source of variability that is 

not of substantive interest - in this case, variability due to teachers. By blocking on teacher we 

control for the effects of teachers, which gives us a more precise estimate of the treatment effect. 

Professional development for all teachers (described below) was provided prior to the start of the 

intervention. In treatment classrooms, SBI was implemented in five 45-50 min mathematics 

classes a week over 6 weeks. In the same time period (6 weeks), students in the control condition 

were taught the same topics as in SBI classrooms but using instructional practices specified in 

their textbook; that is, with no special emphasis on the underlying mathematical structure of the 

problems.  

We collected pretest data on mathematical problem solving and problem-solving transfer 

two weeks before the intervention started. Posttest data on the same variables were collected at 

the end of the intervention as well as six weeks later on the problem-solving test to measure 

retention of problem solving skills. All measures were group-administered to students by their 

classroom teachers. We gathered implementation data via classroom observations. Below is a 
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description of the professional development, the intervention, the assessment of treatment 

implementation, and the measures.  

Professional Development 

All teachers in this project participated in 12 hours of professional development. The 

content and focus of the SBI training focused on the topics of ratio, proportion, and percent, 

particularly as they related to students’ understanding, implementation of SBI and importance of 

adhering to the standard "as-usual" curriculum in the control classrooms. The training consisted 

of: (a) engaging teachers in a discussion of how their students would approach ratio and 

proportion types as well as analyzing expected student solutions, explanations, and difficulties; 

(b) emphasizing the underlying structure of ratio and proportion problem types and using 

schematic diagrams to represent the problem, (c) presenting multiple short video segments to 

illustrate the SBI intervention implemented by a teacher from the previous year and discussing 

how to introduce the procedures inherent to the SBI approach and elicit student discussions, and 

(d) having teachers read the lesson plans and discuss implementation of SBI.  

Intervention  

SBI. The instructional content consisted of ratio, proportion and percent topics. Within 

SBI and as described below, teachers used four instructional practices. First, teachers primed the 

mathematical structure of problems by focusing on a variety of problem types related to 

proportions (see Table 2 for classification of these problems into schemata in the SBI 

curriculum). Teachers were encouraged to stimulate students’ thinking about how problems 

within and across types are similar and different. Second, teachers visually mapped information 

in the problem using schematic diagrams. For example, to visually represent information in a 

proportion problem, teachers prompted students to identify the ratios in the problem and write 
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them in the proportion diagram (see Table 2). Third, teachers provided explicit instruction on a 

problem-solving heuristic (DISC: D – Discover the problem type, I – Identify information in the 

problem to represent in a diagram, S – Solve the problem, C – Check the solution), with 

accompanying deep-level questions for each step in the heuristic (e.g., Why this is a proportion 

problem? How is this problem similar to or different from one I already solved?). Finally, 

teachers worked to develop students’ procedural flexibility, including explicit teaching of 

multiple solution methods for solving proportion problems and being cognizant of specific 

methods that are more efficient than others. Teachers modeled by thinking aloud as they engaged 

in these four practices and scaffolded by gradually shifting responsibility for problem solving to 

the students. (For further details of the SBI instructional approach, see Jitendra et al., 2009; 

Jitendra et al., 2011) 

Control classrooms. Information on curricula used in control classrooms was gathered 

by reviewing the procedures outlined for teaching ratio, proportion, and percent topics in the 

three district-adopted mathematics textbooks as well as three formal observations of each 

teacher’s mathematics activities (see section below on measures). District 1 used MathThematics 

Book 2 (Billstein & Williamson, 2008), which is a ‘reform-oriented’ curricula developed with 

funding from the National Science Foundation. District 2 employed Math Course 2 (Larson et 

al., 2007), and District 3 used Math Connects Course 3 (Day et al., 2009) – both of which are 

more ‘traditional’ mathematics curricula. Although the control classrooms used different 

textbooks, they covered the same topics (e.g., ratios, rates/proportions, scale drawings, fractions, 

decimals, and percent). Instructional procedures differed from SBI in that core practices did not 

explicitly (a) emphasize the underlying mathematical structure of the problems, (b) promote 

problem solving heuristics, or (c) teach multiple solution strategies – cross multiplication was the 
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most common approach used across all three textbooks. Instructionally, the most salient 

differences between the control curricula were that the texts used in District 2 and 3 relied more 

heavily on whole class direct instruction, while the text used in District 1 made extensive use of 

explorations of mathematical ideas in small groups. Anecdotal evidence suggests that these three 

curricula are used widely, both in the state of Minnesota and across the US more generally.  

Classroom Observations of Fidelity 

We videotaped 39 observations of classroom instruction in the treatment condition and 42 

observations in the control condition during the 6-week intervention to ensure fidelity of 

treatment and to identify contamination of instruction, if any, in the control classrooms. This 

sampling resulted in three observations per teacher within condition. Below we describe the 

fidelity measures and the procedures used to establish treatment fidelity. as well as our 

assessment of evidence of contamination of instruction. 

Fidelity measures. Two observation instruments were used to describe and measure 

teachers’ adherence to the implemented intervention or curriculum (SBI or control). The fidelity 

measure for the treatment condition consisted of 5 items measuring general teacher behaviors 

(e.g., provides positive feedback) and 15 items corresponding to critical elements of the 

treatment (e.g., solving the problem using the DISC 4-step strategy). Examples of items 

associated with Step 1 of the DISC strategy are identifying the problem type by focusing on the 

key problem features and discussing whether the problem is similar to/different from previously 

solved problems. The observation instrument for the control condition consisted of the same 5 

items measuring general teacher behaviors and 4 items specific to the SBI curriculum to 

determine if control teachers spontaneously provided instruction that was similar to the key 

components of SBI and to examine evidence of cross contamination.  
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Fidelity. Fidelity was measured using a dichotomous rating scale for each item on the 

observation forms. Interrater agreement computed via a second rater observing the videotape and 

rating one randomly selected videotape of a teacher per condition averaged .99 for SBI and .98 

for the control condition. The results for key fidelity variables are presented in Table 3. Items in 

Section I represent teacher behaviors that we expected to observe in both treatment and control 

classrooms (e.g., sets purpose, provides positive feedback). Results indicate that on average, SBI 

teachers (M = .97; SD = .17) engaged in these behaviors slightly more often than control teachers 

(M = .91; SD = .29), the largest difference was on the item “provides lesson closure” (see Table 

3). Section II includes items related to teacher’s SBI implementation of the DISC four-step 

procedure. While we only expected to see these behaviors performed by SBI teachers, we 

included these items on our control fidelity measure. As seen in Table 3, SBI teachers averaged 

.79 to .93 across these four items. For the most part, control teachers were not observed 

implementing these steps with the exception of step 4 (i.e., solves the problem). Section III 

consists of items related to teacher or student use of the DISC checklist, which was assessed only 

in SBI classrooms. Results showed that teachers modeled and prompted use of the DISC 

checklist more often than students’ use of the checklist across the three observations. 

 More generally, Table 3 shows that fidelity scores for teacher behaviors were relatively 

stable across the three observations for both treatment and control classes. These data suggest 

that teachers in control classes consistently adhered to their curriculum and teachers in treatment 

classes consistently implemented SBI at a moderately high level over time to allow us to 

attribute group differences to the implementation of SBI.  
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Measures  

Mathematical problem-solving tests. The experimenter-designed 23-item mathematical 

problem-solving test (Jitendra et al., 2009; Jitendra et al., 2011) measures students’ ability to 

solve problems involving ratios/rates and percents using standardized protocol and scoring 

procedures. We used the same assessment as a pretest, posttest, and delayed posttest (6 weeks 

following instruction). The problem-solving test consists of multiple-choice items derived from 

the TIMSS, NAEP and state assessments, with two short-answer conceptual item designed to 

assess students’ knowledge of ratio and percent of change concepts. To estimate reliability we fit 

the parallel, tau-equivalent, and congeneric measurement models to the pretest, posttest, and 

delayed posttest separately. Results indicated that the congeneric model fit the data best with all 

RMSEA less than 0.04 and all GFI greater than 0.95. Reliability estimates from the congeneric 

model were 0.69, 0.79, and 0.82 for the pretest, posttest, and delayed posttest, respectively. With 

the exception of the conceptual items, all items were scored for accuracy of the answer. The 

mean interscorer agreement assessed by two research assistants independently scoring 33% of 

the protocols was 99.78% for pretest, 99.96% for posttest, and 99.96% for delayed posttest.  

For the short-answer conceptual items, students had to explain their reasoning, and 

responses were scored on 4- and 6-point scales. To score these items, we first constructed a 

scoring template based on a sample (n = 90) of protocols randomly selected from both 

instructional conditions. Next, two research assistants scored a sample of the protocols using the 

scoring criteria to obtain consensus followed by independent, blind scoring of the protocols 

(interscorer agreement on 20% of explanations was 98% and 94% for the ratio and percent of 

change items, respectively). 
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In addition, we administered an 18-item mathematical problem-solving transfer test 

(Jitendra et al., 2011) consisting of items derived from the TIMSS, NAEP, and state assessments 

that were not directly aligned with the taught content. The transfer test assessed whether SBI 

impacted transfer to novel problems having the same mathematical structure but of a different 

type or having a modified problem structure (e.g., probability) but which require an 

understanding of ratios. The same assessment was used as a pretest and posttest. As with the 

problem-solving test, we fit the parallel, tau-equivalent, and congeneric measurement models to 

the transfer pretest and posttest separately. Again, results indicated that the congeneric model fit 

the data best with all RMSEA less than 0.03 and all GFI greater than 0.96.  Reliability estimates 

from the congeneric model were 0.73 and 0.81 for the pretest and posttest, respectively The 

mean interscorer agreement for 33% percent of the protocols assessed was 99.97% for pretest 

and 99.80% for posttest. 

Data Analysis Procedures 

 To assess differences in mathematical problem solving between the treatment and control 

groups, we fit a series of multilevel models using HLM 6 (Raudenbush, Bryk, & Congdon, 

2004). The outcome variables included in the analyses were the mathematical problem solving 

posttest, delayed posttest, and transfer posttest. Pretest scores, ethnicity, eligibility for 

free/reduced priced lunch and special education status served as student-level and classroom-

level covariates. The treatment variable and a set of dummy variables representing the schools 

served as additional classroom-level covariates. Preliminary analyses indicated no significant 

interaction between the treatment variable and pretest scores for any of the outcome variables; as 

such, the interactions are excluded from all analyses that follow. Descriptive statistics for the 

pretest, posttest, and delayed posttest measures by treatment group for each school are presented 
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in Table 4. Descriptive statistics for the transfer pretest and posttest measures by treatment group 

for each school are presented in Table 5.  

 For each outcome, the Level 1 model contained four student-level variables: pretest 

score, ethnicity, free or reduced priced lunch eligibility, and special education status. Ethnicity 

was dummy coded so that minority students (African American, Hispanic, Asian, Native 

American) were coded as 0 and Caucasian students were coded as 1. Eligibility for free or 

reduced priced lunch was coded so that students who were eligible for free or reduced priced 

lunch were coded as 1 and students who were not eligible were coded as 0. Special education 

students were coded as 1 and general education students were coded as 0. Similarly, each Level 2 

model contained variables representing classroom and school level information. Level 2 

variables included: treatment group (coded 1 = treatment, 0 = control); average classroom pretest 

score; percent non-minority students, percent of students eligible for free or reduced priced lunch 

and percent of special education students in a classroom; and five dummy variables representing 

the six schools included in the sample (School F served as the reference school). We also created 

variables representing treatment by school interactions (product terms), but these effects were 

not significant in any analyses we conducted so they are not discussed further or included in the 

results. All Level 1 variables were group-mean centered so that the Level 1 intercepts could be 

interpreted as classroom means. All Level 2 variables were grand-mean centered.  Because of the 

small number of Level 2 units (J = 42 classrooms), restricted maximum likelihood estimation 

was used for all analyses reported (Raudenbush & Bryk, 2002).   
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Models for Mathematical Problem Solving (Posttest and Delayed Posttest) and Transfer of 

Mathematical Problem Solving 

 For the mathematical problem-solving posttest, delayed posttest, and transfer test, we 

fitted three different models. The first model was an unconditional model and contained no 

covariates at either level. This model allowed us to assess the amount of variation in classroom 

means, unadjusted for the influence of covariates. The second model included all of the student 

demographic variables and pretest scores at Level 1 and Level 2. All of the Level 1 covariates 

were treated as fixed effects at Level 2, so the Level 2 variables were only predictors of Level 1 

intercepts. In the third and final model the treatment variable and the five dummy variables 

representing schools were included as predictors of Level 1 intercepts. The same models were 

fitted to the posttest, delayed posttest, and transfer test. The final fitted model for mathematical 

problem solving and transfer tests was: 

Level 1 model: 

 
Level 2 model: 

 

 

 We examined model assumptions for all the analyses. This included examining the 

normality of Level 1 residuals and the homogeneity of Level 1 variances. No major violations to 

either of these assumptions were found for any of the models. Likewise, Level 1 residuals were 
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uncorrelated with Level 1 variables, and Level 2 random effects were uncorrelated with Level 2 

variables. The Level 2 random effects showed no significant deviations from normality.  

Results 
 

Evidence of contamination. Because 12 of the 15 teachers in the present study taught 

both SBI and control classrooms, we performed a series of sensitivity analyses to assess the 

possibility of contamination between the two conditions. Our first step was to perform a series of 

independent samples t-tests, where the posttest, delayed posttest, and transfer posttest served as 

the dependent variables. The independent variable comprised two groups of teachers, those who 

taught treatment or control classrooms (n = 3) and those who taught treatment and control 

classrooms (n = 12). Results indicated no statistically significant differences between the two 

groups of teachers on any of the outcome variables (all p > .30).  

Because we were concerned that teachers who taught SBI and control classrooms might 

be likely to use SBI materials in their control classrooms, we performed another series of 

independent samples t-tests. Only teachers who taught control classrooms were included in these 

analyses (n = 14) and items and total scores from our fidelity of implementation (FOI) data 

served as dependent variables. The independent variable consisted of two groups of teachers, 

those who taught only control classrooms (n = 2) and those who taught treatment and control 

classrooms (n = 12). Our focus in these analyses was on a set of items (Section II) that assessed 

the extent to which control teachers used SBI materials or the SBI approach in their control 

classrooms. There were no significant differences between the two groups of teachers on any of 

the items or the total score for this FOI section. These results suggest that teachers who taught 

both SBI and control classrooms were equally likely to use SBI materials in their control 

classrooms as teachers who had no exposure to SBI.    
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Our final analysis to explore the possibility of contamination was to refit our final HLM 

models including teachers as a third level (only intercepts were allowed to vary). We used these 

analyses to assess the amount of variation in the posttest, delayed posttest, and transfer posttest 

that could be attributed to between teacher differences. The results indicated that teachers 

accounted for 2% of the variation in the posttest and delayed posttest and no variation in the 

transfer posttest. The values for the posttest and delayed posttest were not significant. These 

results indicate that teachers do not contribute to significant variation in the outcomes. Likewise, 

including teachers as a third level in the model did produce any significant changes to the final 

model coefficients or effect sizes.  

Based on these analyses, we did not find evidence that contamination impacted our 

results. More specifically, among teachers who taught both SBI and control classrooms, our 

classroom observations did not indicate that SBI materials and instructional practices were 

widely used in control classrooms. In addition, students of teachers who taught both SBI and 

control classrooms did not perform better on any of our measures than students of teachers who 

only taught in control classrooms. However, it should be noted that all of the statistical tests 

described above suffer from a lack of statistical power because of the small sample sizes and 

should be interpreted with caution given the unbalanced groups. 

Mathematical Problem Solving (Posttest) 

 To estimate the intraclass correlation (ICC), we fitted an unconditional model to the 

posttest that contained no covariates at Level 1 or Level 2. The ICC, which measures the 

proportion of variance in mathematical problem solving between classrooms, was .222 for the 

posttest, which indicates that 22.2% of the variance in the posttest was between classrooms, and 

77.8% of the variance was within classrooms. The between classroom variance was statistically 
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significant, τ00 = 7.33, χ2 (41) = 330.59, p < .001. Next, we estimated a model that contained all 

of the student demographic variables and the pretest variable at both Level 1 and Level 2. The 

addition of these covariates reduced the within classroom variability in the posttest by 37.3% and 

the between classroom variation by 80.8%. However, there was still significant variation in 

classroom intercepts to be explained (τ00 = 1.41, χ2 (37) = 199.97, p < .001). Our final step was 

to add the treatment variable and the school dummy variables as predictors of the Level 1 

intercepts. The inclusion of these variables explained an additional 6.9% of the between 

classroom variation, indicating that the final model explained 87.7% of the variance between 

classrooms. However, significant variation in classroom intercepts remained unexplained (τ00 = 

0.61, χ2 (31) = 61.08, p = .001). The results of the final model can be found in Table 6.  

 Given the coding and centering schemes used in the analysis, the grand mean intercept, 

γ00 = 17.55, t(31) = 101.60, p < .001, represents the predicted posttest score for an average 

student (i.e., for a student at the mean on each covariate). Significant predictors of Level 1 

intercepts (classroom means) included the treatment variable (γ01 = 1.48, t(31) = 3.99, p < .001) 

and the pretest scores (γ05 = 0.93, t(31) = 6.03, p < .001). Results indicate that students in the SBI 

condition scored on average 1.48 points higher than students in the control condition, with an 

effect size (g) of 1.24. We calculated an effect size for the treatment variable by dividing the 

condition coefficient (γ01) by the standard deviation of the classroom intercepts (i.e., the square 

root of τ00) from the previous (student demographic) model (Hedges, 2007).   

Mathematical Problem Solving (Delayed Posttest) 

 The unconditional ICC for the delayed posttest was .222, indicating that 22.2% of the 

variance was between classrooms, τ00 = 6.96, χ2 (41) = 324.34, p < .001, and 77.8% was within 

classrooms. Our next step involved fitting a model that contained all of the student demographic 



SCHEMA-BASED INSTRUCTION   24 

 

variables and the pretest variable at both Level 1 and Level 2, which reduced the within 

classroom variability by 35.4% and the between classroom variation by 87.9%. However, there 

was still significant variation in classroom intercepts to be explained (τ00 = 0.84, χ2 (37) = 87.20, 

p < .001). Our last step involved adding the treatment variable and the school dummy variables 

as predictors of the Level 1 intercepts, which explained an additional 9.2% of the between 

classroom variation. In total, the final model explained 97.1% of the between classroom 

variance, with no significant variation between classrooms left to be explained (τ00 = 0.20, χ2 

(31) = 41.38, p = .10). Table 7 presents results of the final model. 

 The grand mean intercept, which represents the predicted delayed posttest score for an 

average student, was estimated to be 17.00, t(31) = 120.70, p < .001. Significant predictors of 

Level 1 intercepts included the treatment variable (γ01 = 1.17, t(31) = 3.88, p = .001) and the 

pretest scores (γ05 = 0.83, t(31) = 6.62, p < .001). The results indicate that students in the SBI 

condition scored on average 1.17 points higher than students in the control condition (g = 1.27).  

Transfer of Mathematical Problem Solving 

 The unconditional ICC for the transfer posttest was .165, indicating that 16.5% of the 

variance was between classrooms and 83.5% was within classrooms. The between classroom 

variance was statistically significant, τ00 = 1.86, χ2 (41) = 239.94, p < .001. Next, we added all of 

the student demographic variables and the pretest variable at both Level 1 and Level 2, which 

reduced the within classroom variability by 39.4% and the between classroom variation by 

93.6%. However, there was still significant variation in classroom intercepts to be explained (τ00 

= 0.12, χ2 (37) = 56.77, p = .02). As above, our final step was to add the treatment variable and 

the school dummy variables as predictors of the Level 1 intercepts. The inclusion of these 

variables explained no additional between-classroom variation. As such, the final amount of 



SCHEMA-BASED INSTRUCTION   25 

 

between classroom variance explained by the variables was 93.6%. However, there was still 

significant variation in classroom intercepts left unexplained (τ00 = 0.15, χ2 (31) = 52.38, p = 

.01). 

 The grand mean intercept was estimated to be 11.48, t(31) = 120.24, p < .001, which 

represents the predicted transfer posttest score for an average student. Pretest scores (γ05 = 0.97, 

t(31) = 6.81, p < .001) were the only significant predictor of the transfer posttest. The results did 

not indicate a statistically significant effect for the treatment variable, γ01 = 0.23, SE = 0.21, t(31) 

= 1.12, p =.247.  

Discussion 

The main objective of our study was to investigate the effects of SBI that focused on 

priming the mathematical structure of problems, use of visual representations, explicit instruction 

in teaching heuristics, and an emphasis on multiple solution strategies on seventh graders’ 

mathematical problem solving involving ratios, proportions, and percents compared to students 

in regular mathematics programs in their schools. The following three major results emerged 

from this study. First, students in the treatment classes outperformed students in the comparison 

classes on a measure of problem solving. The effect size was large (g = 1.24) when students in 

SBI classes were compared to control students and exceeded the effect sizes reported in the SBI 

literature for ratio, proportion, and percent problem solving when delivered by classroom 

teachers rather than researchers (Jitendra et al., 2009; Jitendra et al., 2011). Second, relative to 

control students, SBI students maintained their superior performance on the delayed (follow-up) 

posttest. The associated effect size was large (g = 1.27) and also exceeded the effect sizes in 

prior SBI research with middle school students (Jitendra et al., 2009; Jitendra et al., 2011). These 
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findings confirm the efficacy of SBI as a feasible intervention to enhance students’ problem 

solving performance. 

Third, students in the SBI classes did not outperform the control students on the transfer 

test of problem solving. It is worth pointing out that we performed a priori power analyses on all 

of the HLM models using the Optimal Design software (Raudenbush et al., 2011). The results of 

these analyses indicated that we had enough statistical power (β = .80) to detect large effects 

(i.e., d’s > .60). As such, the finding for the transfer measure is discouraging. However, our 

result is consistent with a prior study by Jitendra et al. (2011). Similar to Jitendra et al., there are 

at least two reasons for the lack of transfer effect. First, even though items for both the posttest 

and transfer measures were derived from the TIMSS, NAEP, and state standardized mathematics 

assessments, the lack of SBI transfer may be attributed to differences between the posttest and 

transfer test with regard to the problem types sampled. For example, the posttest included ratio, 

proportion, and percent items that aligned with seventh-grade mathematics content standards; the 

transfer test comprised novel and complex items (e.g., probability) that were probably less 

sensitive to the effects of SBI. Second, the finding might be better clarified using Wagner’s 

(2006) theory of transfer-in-pieces that highlights the importance of multiple examples. While 

we did provide many worked examples that emphasized the critical features of problem types, it 

may be the case that longer duration of SBI is necessary to achieve transfer. As noted in Wagner, 

transfer is “the incremental growth, systematization, and organization of knowledge resources 

that only gradually extend the span of situations in which a concept is perceived as applicable” 

(p. 10). At the same time, and consistent with the overall aims of SBI, transfer results may be 

improved by priming students to focus on the similarities and differences between new domains 

(e.g., probability) and previously learned concepts of ratio and proportion. Future research 
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should explore the performance of students when provided with even longer interventions and 

instruction that makes explicit connections to content outside of the instructional domain.  

Together, these results suggest that 6 weeks of regular classroom instruction in ratio, 

proportion, and problem solving could potentially be supplanted by SBI. In this study, SBI was 

more effective than the mathematics instruction used in participating schools, reflecting the 

usefulness of the principles incorporated in SBI (i.e., priming the mathematical structure). In 

addition, our results suggest that these findings generalize to the total sample: Even though 

general education students outperformed special education students and Caucasian students 

outperformed minority students, the pattern of findings favoring SBI remained the same in these 

subgroups. Further, we are encouraged about the potential effectiveness of SBI resulting from a 

relatively brief period of time and requiring only two days of professional development, 

especially since implementing any novel “instructional practice requires considerable change on 

the part of teachers” (Yoon, Duncan, Lee, Scarloss, & Shapley, 2007, cited in Vaughn, et al., 

2011, p. 958). This relatively brief amount of time for professional development is feasible for 

most schools.  

While acknowledging the importance of interventions designed to more broadly impact 

students’ proportional thought processes, this study indicates the relevance of a somewhat more 

targeted focus of SBI. In light of the literature on expert/novice differences in problem solving, 

SBI in this study targeted an appropriate set of mathematical competencies (e.g., problem 

comprehension in terms of recognizing the underlying mathematical structure, procedural 

flexibility) that are integral to successful word problem solving. The present findings point to the 

merits of strategy instruction using an explicit problem solving heuristic that emphasizes the 

underlying problem structure via visual representations and encourages procedural flexibility.  
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Limitations 

 We need to consider at least two limitations of this study. Based on the design of this 

study, the contamination from treatment to control classes is a possibility since the majority of 

teachers taught in both conditions. However, as noted above, we monitored control classrooms 

during the observations for contamination, which was none to minimal. Second, because SBI is a 

multicomponent intervention, we cannot determine which of the components might be associated 

with impact and which may be less influential to mathematical problem solving. As with all 

multicomponent intervention research, there is a need “to experimentally manipulate and isolate 

the impact of the various components determining their relative effects” (Vaughn et al., 2011, p. 

959).  

Future Research 

 The results of our study corroborate the view that SBI enhances problem solving 

involving ratio, proportion, and percent and was found to be more effective than regular 

mathematics instruction. Based on the study findings, there are several possibilities for future 

research. First, we intend to investigate the differential benefits of this approach with urban, 

suburban, and rural students in a randomized controlled trial with random assignment of teachers 

to treatment. Second, we will continue to explore ways of improving SBI so that it can improve 

students’ problem solving beyond the target domain (e.g., proportion). Third, our 

conceptualization of procedural flexibility relates to the ability to select the strategy (cross 

multiplication using ratios, the equivalent fractions strategy, or the unit rate strategy) that would 

be deemed most efficient in solving the problem based on the numbers in the problems. 

Unfortunately, we did not assess the strategy choices that students employed in this study to 

understand whether procedural flexibility had an impact, not only on accuracies, but also on 
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strategy choices in the posttest, which would be an important issue to explore in future research. 

Finally, we are also interested in the sustainability of SBI and think it is worthwhile to examine 

whether student learning accrues in SBI-experienced teachers’ classrooms as compared to SBI-

novice teachers’ classrooms.  
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Table 1. 

Student Demographic Information by Condition 

 
Variable 

Schema-based Instruction Control Total 
M SD n (%) M SD n (%) M SD N (%) 

Age (in years)  12.81 0.40 571 51.26 12.85 0.36 543 48.74 12.83 0.38 1114  

Gender              

     Male    288 50.30   264 48.60   552 49.50 

     Female   285 49.70   279 51.40   564 50.50 

Ethnicity              

     American Indian   9 1.60   7 1.30   16 1.40 

     Asian   68 11.90   57 10.50   125 11.20 

     Hispanic   57 10.00   49 9.00   106 9.50 

     Black   92 16.10   99 18.20   191 17.10 

     Caucasian   345 60.40   331 58.20   676 60.70 

Free/Reduced Lunch 
 

  188 33.00   193 35.50   382 34.20 

Special Education   73 12.70   43 7.90   116 10.50 

ELL   42 7.30   36 6.60   78 7.00 

Note: M = mean; SD = standard deviation; n = sample size; ELL= English language learner. Sample sizes on the demographic 

variables differ because of missing data; descriptive statistics are presented for all students who provided information on each 

variable.
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Table 2.  

Examples of Problem Types  

Example of Problem Problem Type 

Last weekend, Will helped his father clean the 

garage. For every 3 hours of work, he took a 2 

hour break. If he worked for 6 hours (not 

including breaks), how many hours did he 

spend taking breaks? 

Ratio 

 
On a geography map test that was worth 25 

points, Janie got a grade of 20%. How many 

points did she earn on the geography test? 

 

 

Percent: Part-whole comparison 
 

 

Mariah and Alex both started exercising more 

and each lost 8 pounds. Before they started 

exercising, Mariah weighed 160 lbs. and Alex 

weighed 200 lbs. Who had the greater percent 

of decrease in weight, Mariah or Alex? 

Percent of change 

Mariah: 

 
Alex: 

 
 

  

Compared 

Base 

6 
Hours worked 

 

x 
Hours on a break 

 

 

x 
Number of points 

earned 

 
25 

Total points 

 
 

Part 

Whole 

x 

8 
lbs 

200 
lbs 

Change 

Original 

x 

8 
lbs 

160 
lbs 

Change 

Original 
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Carlos is on the school’s track team. He takes 

54 minutes to run 6 miles. How long did it take 

him to run 2 miles? 

 

Proportion 

 
Tammy looks on a map and finds that Atlantic 

City beach is 7 cm from the hotel where she is 

staying. The scale of the map is 4 cm = 6 miles. 

How many miles away is the beach from the 

hotel? 

  

Scale Drawing 

 
 

Ricardo took his family out to dinner. The bill 

was $60. If Ricardo wants to leave the server a 

15% tip, how much money should he leave? 

What was the total cost of the meal? 

Percent of change: 

 
Keisha’s parents lend Keisha $200 so she can 

buy an iPod Nano. They charge Keisha 3% 

simple annual interest. What will be the total 

amount that Keisha will owe her parents in 1 

year? 

 

Simple interest 

 
 
 

If Then 

 
54 

minutes 
 

6 
miles 

 

2 
miles 

 

x 
minutes 

 

If Then 

 4 cm 
 

7 cm 
 

6 miles 
 

x miles 
 

$60 
 

$60 
 

$? 
 

+ $9 
 $x 

 

$? 
 

$9 
 

& 

Change 

Original 

Original Change New 

Balance 

$200 

$200 

$x 
$? 

+$6 

$? 
$6 

& 

Simple 
Interest 

Principle 

Principle Simple 
Interest 
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Table 3.  

Summary of Fidelity Observations in SBI and Control Classrooms  

 Schema-Based Instruction Control 

 Observation 
1 

Observation 
2 

Observation 
3 

Total Observation 
1 

Observation 
2 

Observatio
n 3 

Total 

 Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) 
Section I – Teacher Behaviors         
1.  Sets the purpose for the lesson .85 (.38) 1.00 (.00) .92 (.28) .92 (.28) .93 (.26) .93 (.26) .92 (.28) .93 (.26) 
2.  Emphasizes critical concepts in 

the lesson 1.00 (.00) 1.00 (.00) .92 (.28) .97 (.17) 1.00 (.00) 1.00 (.00) .92 (.28) .97 (.17) 

3.  Provides positive feedback 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) .92 (.28) .86 (.35) .77 (.42) .85 (.38) 
4.  Monitors on-going student 

performance 1.00 (.00) 1.00 (.00) .92 (.28) .97 (.17) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 

5.  Provides lesson closure 1.00 (.00) .92 (.28) 1.00 (.00) .97 (.17) .85 (.38) .85 (.38) .62 (.49) .77 (.42) 
         
Section II –4-Step DISC Strategya         
1.  Discovers the problem type .87 (.34) .73 (.44) .90 (.30) .83 (.38) .00 (.00) .00 (.00) .00 (.00) .00 (.00) 
2.  Identifies information in the 

problem to represent in a 
diagram 

.92 (.28) .91 (.29) .95 (.22) .93 (.26) .00 (.00) .00 (.00) .00 (.00) .00 (.00) 

3.  Solves the problem .96 (.20) .86 (.35) .94 (.24) .92 (.28) .07 (.26) .07 (.26) .08 (.27) .07 (.26) 
4.  Checks the solution .67 (.47) .84 (.37) .85 (.38) .79 (.41) .00 (.00) .00 (.00) .00 (.00) .00 (.00) 
         
Section III – Use of DISC Checklist         
1.  Teacher models using the DISC 

checklist .85 (.38) .89 (.31) 1.00 (.00) .91 (.29)     

2.  Teacher prompts students to use 
the DISC checklist .73 (.44) 1.00 (.00) 1.00 (.00) .91 (.29)     

3.  Students use the DISC checklist .64 (.48) .78 (.41) .77 (.42) .73 (.44)     
Note. a = Each of the four steps involves several sub-steps, and the score for each step represents an aggregate of the sub-steps.  
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Table 4.  

Descriptive Statistics for Problem Solving Measures by Condition and School 

 

Control Schema-based Instruction 

Pretest Posttest Delayed 
Posttest  Pretest Posttest Delayed 

Posttest  

M SD M SD M SD n M SD M SD M SD n 

School A 11.49 4.13 14.94 4.65 15.04 4.63 88 11.04 4.16 17.31 5.57 16.19 5.24 93 

School B 14.43 4.66 17.74 5.45 17.69 5.60 134 13.68 4.84 17.96 6.00 17.47 5.26 140 

School C 11.12 4.30 14.67 5.43 12.70 5.02 77 11.01 4.36 15.21 5.20 14.67 5.72 76 

School D 12.60 5.45 17.28 5.26 16.44 4.91 36 14.58 4.85 20.29 4.19 18.98 4.05 59 

School E 13.83 4.22 16.74 5.10 17.15 5.09 122 13.57 5.20 17.40 5.91 17.22 5.82 141 

School F 15.93 5.24 20.27 5.46 19.97 5.02 112 16.01 4.96 21.87 4.96 21.17 4.49 85 

Total 13.59 4.90 17.16 5.56 16.89 5.55 569 13.35 5.05 18.18 5.82 17.57 5.54 594 

Note. M = mean; SD = standard deviation, n = sample size.  
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Table 5. 

Descriptive Statistics for Transfer Measures by Condition and School 

 
Control Schema-based Instruction 

Pretest Posttest  Pretest Posttest  
M SD M SD n M SD M SD n 

School A 9.19 3.03 10.52 3.30 88 8.97 3.15 10.37 3.75 93 

School B 11.34 3.20 12.00 3.33 134 10.52 3.20 11.59 3.14 140 

School C 8.53 3.36 9.58 3.44 77 9.19 3.21 10.64 3.30 76 

School D 9.71 3.33 11.80 2.89 36 11.25 2.76 12.29 2.65 59 

School E 10.43 3.04 11.55 3.04 122 10.43 2.88 11.52 3.36 141 

School F 11.81 3.04 12.85 3.27 112 12.10 2.95 13.67 2.39 85 

Total 10.43 3.33 11.50 3.39 569 10.39 3.19 11.64 3.32 594 
Note. M = mean; SD = standard deviation, n = sample size.  
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Table 6. 

HLM Full Model for Problem Solving Posttest 

Fixed Effect Coefficient SE t df P 

 Intercept, G00 17.547 0.173 101.60 31     0.000 

  Condition, G01 1.478 0.370 3.99 31 0.000 

  Caucasian, G02 -3.334 2.129 -1.57 31 0.127 

  Free/reduced lunch, G03 -2.376 2.538 -0.94 31 0.357 

  Special ed. status, G04 -5.549 2.378 -2.33 31 0.026 

  Pretest, G05 0.925 0.153 6.03 31 0.000 

  School A, G06 -0.361 1.556 -0.23 31 0.818 

  School B, G07 -0.973 0.669 -1.45 31 0.156 

  School C, G08 -1.870 1.700 -1.10 31 0.280 

  School D, G09 -0.134 0.858 -0.16 31 0.877 

  School E, G010 -1.271 0.612 -2.08 31 0.046 

Ethnicity slope, G10 0.460 0.315 1.46 1070 0.145 

Free/reduced lunch slope, G20 -0.648 0.334 -1.94 1070 0.052 

Special ed. status slope, G30 -1.205 0.438 -2.75 1070 0.006 

Pretest slope, G40 0.661 0.028 23.64 1070 0.000 

Random Effect SD Variance χ2 df P 

Intercept, U0 0.78 0.61 61.08 31 0.001 

Residual, R 4.01 16.05    
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Table 7. 

HLM Full Model for Problem Solving Delayed Posttest 

Fixed Effect Coefficient SE t df P 

 Intercept, G00 17.001 0.141 120.70 31 0.000 

  Condition, G01 1.169 0.302 3.88 31 0.001 

  Caucasian, G02 -1.097 1.724 -0.64 31 0.529 

  Free/reduced lunch, G03 -2.273 2.082 -1.09 31 0.284 

  Special ed. status, G04 -5.018 1.941 -2.59 31 0.015 

  Pretest, G05 0.831 0.126 6.62 31 0.000 

  School A, G06 0.033 1.269 0.03 31 0.979 

  School B, G07 -0.898 0.540 -1.66 31 0.106 

  School C, G08 -2.023 1.385 -1.46 31 0.154 

  School D, G09 -0.815 0.692 -1.18 31 0.248 

  School E, G010 -1.007 0.497 -2.03 31 0.051 

Ethnicity slope, G10 0.395 0.313 1.26 1070 0.208 

Free/reduced lunch slope, G20 -0.749 0.331 -2.26 1070 0.024 

Special ed. status slope, G30 -0.415 0.435 -0.96 1070 0.340 

Pretest slope, G40 0.632 0.028 22.76 1070 0.000 

Random Effect SD Variance χ2 df P 

Intercept, U0 0.45 0.20 41.37 31 0.101 

Residual, R 3.98 15.82    
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