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We discuss a new method for realizing number-resolving and non-demolition photo detectors
by strong coupling of light to individual single photon emitters, which act as strong optical non-
linearities. As a specific application we show how these elements can be integrated into an error-proof
Bell state analyzer, whose efficiency exceeds the best possible performance with linear optics even
for a modest atom-field coupling. The methods are error-proof in the sense that every detection
event unambiguously projects the photon state onto a Fock or Bell state.

PACS numbers: 03.67.-a, 42.50.Ex, 42.50.Pq

Experimental realization of number-resolving, non-
demolition photo (QND) detectors is a long-standing
challenge in quantum optics and quantum information
science. Conventional photodetectors measure only the
intensity or the energy of an incoming light pulse, and
are not capable of measuring photon states in a QND
fashion. More advanced measurements schemes can be
constructed using optical non-linearities, but these are
typically very weak since photons rarely interact with
each other. In this Rapid Communication, we show how
to overcome this problem by strong coupling of light
to individual single photon emitters. This provides a
strong optical non-linearity, which enables the realization
of number-resolving photon sorters and quantum non-
demolition photo detectors.

A common approach to realizing strong coupling be-
tween photons and atoms relies on cavity QED, where
the light field is confined to a high–Q resonator [1–3].
In order to reach the strong coupling regime in small in-
tegrated devices, great advances have been made using
photonic crystals [4, 5], tapered optical fibers coupled to
a single atom [6, 7], microwave transmission lines coupled
to a flux qubit [8], or surface plasmons modes coupled to
a single photon emitter [9–11]. In these systems the emit-
ter couples to a continuous one-dimensional spectrum of
modes and photon scattering is governed by the inter-
ference of absorbed, reemitted, and directly transmitted
waves [12–15]. In a similar way, the transmission of a
tighly focussed light beam can be controlled by a sin-
gle emitter in free space [16, 17]. In the present paper
we will explore possible applications of emitters coupled
to such a one-dimensional photonic continuum for photo
detection, but the ideas and formalism we use can also
be applied to cavity QED as well as other methods of
achieving strong optical non-linearities [18–20].

First, we consider passive devices based on simple two-
level emitters. The interaction with the emitter naturally
leads to a photon turnstile effect, which can be used to
implement a number resolving photon sorter. Secondly,
we consider a waveguide coupled to a three-level emitter

controlled by a classical laser field. This setup offers sig-
nificantly more opportunities at the expense of a more
complex optical setup. In particular we discuss QND
photo detectors. As a possible applications of these de-
vices we will show how to construct optical Bell-state
analyzers. A Bell measurement is an essential ingredient
in quantum information, as it enables efficient quantum
repeaters [21] as well as universal optical quantum com-
puters [22]. Unfortunately such a measurement cannot
be realized with linear optics [23], but requires a strong
nonlinearity. We focus on realistic systems with losses
and discuss how to make devices error-proof. Even in
the case of an error, the measurement shall at most give
an inconclusive but never a wrong result.
One of the conceptually simplest extensions of linear

optics is a device capable of non-destructively distin-
guishing single and two photon pulses. Such a photon
sorter can be realized with only passive optical elements
and simple two level emitters using the setup sketched in
Fig. 1. The procedure is most easily explained if the emit-
ters are coupled to semi-infinite waveguides extending
only in one direction, but can also be realized with infi-
nite waveguides if more optical elements are used [11, 15].
We assume that the incoming pulse enters the interfer-
ometer in the upper arm labelled by âin. A single photon
is split at the beam splitter and brought to interact with
the emitters, where it experiences a phase shift [12]

tk =
ck − ~ω0 + i~(γ − Γ)/2

ck − ~ω0 + i~(γ + Γ)/2
, (1)

where k is the photon wavenumber. Similar to the quan-
tum jump approach [24] we have added an imaginary part
to the resonance frequency of the emitter ω0 − iγ/2 de-
scribing a coupling of the emitter to other modes than the
waveguide with a rate γ. The coupling strength is given
by the rate of spontaneous emission into the waveguide
Γ. The phase shift (1) depends on the wavenumber k
but is the same in both arms of the interferometer. The
interferometer can therefore be balanced such that a sin-
gle photon always leaves the setup in mode âout. This is

http://arxiv.org/abs/1007.3273v1
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FIG. 1: (a) A photon sorter based on a 1D waveguide end-
coupled to a single emitter. The incident photons (mode âin)
are split at a beam splitter and both modes then interact with
a single emitter. A single photon will always be emitted in
mode âout while two photons are likely to be emitted in mode
b̂out but never split into one photon in each arm. (b) The
success probability of the photon sorter, i.e. the probability
that two photons are scattered to the mode b̂out, as a function
of the frequency width σ of a Gaussian input pulse.

different if two photons enter the setup and interact in-
directly via the emitter in which case they can leave the
interferometer in mode b̂out with a significant probabil-
ity. To be more precise, we consider an input state of two
identical photons with pulse shape f2(k, p) = f1(k)f1(p):

|Ψin〉 =
1√
2

∫

dk dp f2(k, p)â
†
kâ

†
p|0〉. (2)

The beam splitter mixes the modes â and b̂ such that
â†kâ

†
p → â†kâ

†
p + 2â†k b̂

†
p + b̂†k b̂

†
p. When the photons then

interact with the same emitter, this introduces a strongly
correlated ’bound state’ contribution

f1(k)f1(p) → tktpf1(k)f1(p) + fB(k, p), (3)

whose precise form can be found in Refs. [13, 14]. Finally,
after interacting with the beam splitter once again, the
two-photon input state (2) is transformed to

|Ψout〉 =
1

2
√
2

∫

dkdp fB(k, p)b̂
†
k b̂

†
p|0〉 (4)

+
1√
2

∫

dkdp

(

tktpf1(k)f1(p) +
1

2
fB(k, p)

)

â†kâ
†
p|0〉.

Note that there are no mixed terms (e.g. â†k b̂
†
p), so that

the two photons always leave the interferometer in the
same arm. There is a significant probability that the two
photons leave the setup in mode b̂out, whereas a single
photon always leaves the the interferometer in mode âout,
such that the interferometer acts as a photon sorter.
The success probability of the photon sorter, i.e. the

probability that two photons are scattered to the mode
b̂out is given by

ps =
1

4

∫

dk dp ‖fB(k, p)‖2. (5)

The results are shown in Fig. 1 (b) for a Gaussian input
pulse f1(k) ∼ exp(−(ck−~ω0)

2/4σ2) as a function of the
frequency width σ. One observes that the efficiency of the
photon sorter strongly depends on the pulse shape of the
incident photons. They must be resonant to the atomic
transition and the frequency width σ should therefore not
be too large. On the other hand the photons should be
tightly localized in real space as they only interact when
they are at the same position. Thus an optimum value
of the efficiency is found for intermediate values of σ.

Regardless of the success probability the photon sorter
can provide insight into the nature of the incoming light
pulse. If for instance a conventional photo detector de-
tects the output in mode b̂out, the intensity of that mea-
surement directly reflects the two photon contribution in
the pulse. On the other hand the success probability can
be increased in array of concatenated devices by feeding
the output mode âout of one sorter to the next one. For
example, an array of five photon sorter increases the suc-
cess probability to 96 %. The success rate of such more
complex devices will be discussed in detail elsewhere [25].

To realize more advanced photo detection schemes we
shall now consider three-level emitters as also discussed
in Ref. [3, 26] in the framework of cavity QED. General-
izing these approaches, we now describe how to construct
a QND photo detector using the setup shown in Fig. 2
(a). A three-level emitter is prepared in a coherent super-
position of the ground state |g〉 and a metastable state
|s〉, which does not couple to the waveguide,

|g〉 −→ α|g〉+ β|s〉, and |s〉 −→ −β|g〉+ α|s〉, (6)

with β =
√
1− α2. A passing photon then introduces

a phase shift if and only if the emitter is in state |g〉.
In particular the transmission amplitude on resonance is
given by t0 = (γ −Γ)/(γ +Γ). Then one applies another
classical control pulse which inverts the transformation
(6). The complete procedure thus realizes the mapping

1 photon: |g〉 → (β2 + tkα
2)|g〉+ αβ(1 − tk)|s〉,

0 photons: |g〉 → |g〉. (7)

If the state of the emitter is now measured to be |s〉, e.g.
by measuring the transmission of a classical light pulse
afterwards, this unambiguously reveals the presence of a
single photon. Unlike conventional photo detection this
does not disturb the photon, i.e. the scheme realizes a
QND measurement. Furthermore if no photon is present,
the emitter returns deterministically to the initial state
|g〉, i.e. there are no dark counts. The optimal detector
efficiency Γ/(γ + Γ) approaches unity when Γ ≫ γ. It is
reached when α = 1/

√
2. For the Bell state measurement

discussed below, it is advantageous to reduce the error
of detecting the emitter in state |g〉 although a photon
has passed the detector. This strategy is realized by the
choice α = 1/(1− t0).
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FIG. 2: (a) A QND photo detector based on three-level emit-
ters strongly coupled to a one-dimensional waveguide. (b)
Integration in a Bell state analyzer. (c) The success and error
probabilities as a function of the scaled decay rate γ/Γ for a
Gaussian input pulse for different values of the width σ.

The photo detection schemes discussed above may be
used in a variety of contexts where the measurement of
more involved properties of light is required. A particu-
larly important application is the design of an optical Bell
state analyzer, which distinguishes the four Bell states

|φ±〉= 1

2

∫

dk dp f1(k)f1(p)
(

â†1kâ
†
3p ± â†2kâ

†
4p

)

|0〉

|ψ±〉= 1

2

∫

dk dp f1(k)f1(p)
(

â†1kâ
†
4p ± â†2kâ

†
3p

)

|0〉,(8)

where the subscripts 1−4 refer to four different photonic
modes. In principle, a BSA can be achieved directly from
the scheme for photonic quantum gates in cavity QED
[3]. Such setups, however, often require rapid switching
of the optical path and delay lines for photons, which is
experimentally unfavorable. Here, we consider a modi-
fied version of Ref. [3], which avoids these elements and
integrate it into a BSA. This setup shall be efficient and
error-proof even for an imperfect coupling, i.e γ 6= 0, so
that it cannot give a wrong measurement result.
For resonant input photons, the photo QND detector

introduced above is sufficient to realize a simple error-
proof BSA using the setup shown in Fig. 2 (b). We as-
sume that the logical state of both control and target
photon are encoded into two spatial modes. The control
photon (modes â1,2) passes the setup well before the tar-
get photon (modes â3,4). For the Bell states |φ±〉, both
photons pass the same arm of the setup subsequently.
The emitter coupled to this arm is transferred from state
|g〉 to |s〉 and back to state |g〉 after interacting with
the control and target photon, respectively. The other
emitter always remains in the internal state |g〉. On the
contrary, the two photons pass through different arms
of the interferometer for the Bell states |ψ±〉, so that

both emitters are transferred to the state |s〉. A mea-
surement of the internal state of the emitters thus allows
to distinguish between the subspaces spanned by |φ±〉
(atomic state |gg〉) on the one hand and |ψ±〉 (atomic
state |ss〉) on the other hand. Whether it is the plus or
the minus sign is revealed by the coincidence pattern of
detectors placed after a beamsplitter mixing the modes
1 and 2 as well as 3 and 4. Taking into account pho-
ton loss, the success probability of this BSA is given by
psuccess = η2|t0|2 = η2(γ − Γ)2/(γ + Γ)2, where η is the
efficiency of the final photo detectors. With non-resonant
input, the probability for a successful Bell measurement
is given by

psuccess =
η2|t0|2
|1− t0|4

∫

dk dp |f2(k, p)(1− tk)(1− tp)|2 (9)

regardless of which of the Bell states is incident. This
result (with η = 1) is plotted in Fig. 2 (c) as a function
of the loss rate γ/Γ for Gaussian input pulses. One finds
that a Purcell factor of Γ/γ ≈ 5.8 is sufficient to exceed
the η2 × 50 % limit of linear optics.
The present setup is, however, not strictly error-proof

if the input photons are not completely resonant. While
the measurement result |ss〉 leads to an unambiguous Bell
state measurement, the result |gg〉 does not. It can be
almost certainly attributed to the subspace spanned by
|φ±〉, but there is a small probability that it has been
triggered by the states |ψ±〉. This error can, however, be
suppressed to a large extend by choosing a rotation angle
of α = 1/(1 − t0). In this case the residual probability
to obtain an erroneous measurement result for the input
state |ψ±〉 is given by

perror =
η2

|1− t0|4
∫

dkdp |f2(k, p)(t0 − tk)(t0 − tp)|2.
(10)

For a Gaussian wavepacket, perror vanishes as σ
4/(γ+Γ)4

for σ/(γ + Γ) → 0. It thus remains small also for a non-
monochromatic input photon as shown in Fig. 2 (d).
In order to realize a fully error-proof BSA, one needs

another measurement stage, which unambiguously de-
tects |φ±〉. In principle this can be realized by exchanging
the modes â1 and â2 and then repeating the above scheme
[25]. This would, however, require rapid switching of the
optical path between control and target photon.
As we will now show, a fully passive, error-proof BSA

may in fact be constructed using the photon sorters in-
troduced above. The setup to perform these operations
is summarized in Fig. 3 (a). Assume that the four optical
modes containing the Bell state in Eqn. (8) are incident
on a beam splitter array mixing the modes 1 and 4 as well
as 2 and 3 (denoted by BS1 in Fig. 3). The states |ψ±〉 are
mapped onto ∼ (â†21 − â†24 ± â†22 ∓ â†23 )|0〉, suppressing the
pulse shape for simplicity. The two photons are always
located in the same mode for the states |ψ±〉, whereas
they are always located in two different modes for the
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FIG. 3: (a) Setup of a BSA composed of a photon sorter (PS)
and linear beam splitter arrays (BS1 and BS2, see text). The
crossed squares represent Faraday mirrors separating incom-
ing and reflected modes. Each of the arrows represents four
modes carrying the Bell state. (b) Total success probability of
an array of n = 1 (1x + LO) and n = 5 (5x+LO) error-proof
BSAs, plus a linear optical BSA at the end of the array as
a function of the ratio γ/Γ assuming a Gaussian pulse shape
with frequency width σ/Γ = 0.36. The success probability of
a linear optical BSA (LO) is plotted for comparison.

states |φ±〉. If each of the modes is now incident on the
photon sorter introduced above, the states |ψ±〉 are sep-

arated to the modes b̂1,...,4 with a significant probability.
It is then possible to distinguish between |ψ+〉 and |ψ−〉
with linear optics and conventional photodetectors only,
giving rise to an unambigious Bell state measurement. If
no photon is detected we can simply go on with the two
photons in the modes â1,...,4. In order to detect also the
Bell states |φ±〉, one undoes the effect of the first beam
splitter array BS1 and then mixes the modes 1 and 3 as
well as 2 and 4 instead (denoted by BS2 in Fig. 3). Now
it’s the states |φ±〉, for which the two photons are located
in the same mode, these are thus separated to the modes
ĉ1,...,4 by the photon sorter and subsequently detected.
The photons are either measured in the two detector ar-
rays projecting unambiguously onto one of the Bell states
or leave the BSA in the modes â1,...,4. In the latter case
another measurement can be attempted.
The proposed BSA works probabilistically – with a

non-vanishing probability the photons are not detected
but just transmitted through the complete setup. The
success probability is given by the probability of two pho-
tons to be scattered to the modes b̂1,...,4 or ĉ1,...,4, respec-
tively, and thus given by the success probability of the
photon sorter, which is given in Eqn. (5) and plotted in
Fig. 1 (b). If the detection fails and the photons are trans-
mitted, one can just repeat all operations. However, in
actual experiments photon losses are inevitable and the

coupling of the emitter to the one-dimensional waveguide
is not perfect. Photon loss only leads to an inconclusive
measurement result and Fig. 3 (b) shows the resulting
success probability of an array of 1 (dashed line) and 5
(solid line) concatenated BSAs, as a function of the ra-
tio γ/Γ. After passing this array, the remaining modes
are detected with a linear optical BSA. As shown in the
figure already a modest Purcell factor of Γ/γ ≈ 3.3 is
sufficient to exceed the 50 % limit of linear optics.

In conclusion we have shown that the coupling of sin-
gle emitters to one-dimensional waveguides opens up new
possibilities for number resolving, non-demolition photo
detection. We have explicitly shown how to construct
photon sorters and QND detectors, and that these sys-
tems can be used for efficient Bell state analysis. Most
importantly the devices are error proof in the sense that
imperfect coupling only leads inconclusive and not wrong
results. As a consequence the devices work with modest
coupling efficiencies, which are well within reach of cur-
rent experiments.
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