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Concurrent Channel Access and Estimation for
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School of Engineering and Applied Sciences

Harvard University
{thlin, htk}@eecs.harvard.edu

Abstract—This paper presents MIMO/CON (“MIMO with
concurrent channel access and estimation”), a PHY/MAC cross-
layer design delivering throughput scalable to many users
for multiuser MIMO wireless networking. The basic idea of
MIMO/CON is to allow concurrent launches of multiple data
transmissions from multiple users so that a multi-antenna MIMO
access point (AP) can fully realize its MIMO capacity gain.
Using compressive sensing, MIMO/CON can estimate channel
state information (CSI) of multiple channels simultaneously
without requiring strict synchronization and coordination among
distributed users. Furthermore, MIMO/CON can boost chan-
nel utilization without explicit access control by allowing the
number of concurrent transmissions to exceed receive antennas
momentarily. MIMO/CON has been implemented and evaluated
on a 4×4 MIMO testbed with software-defined radios. Further,
simulation results suggest that MIMO/CON can achieve a 210%
improvement in MAC throughput over existing staggered access
protocols in a 5-antenna AP scenario.

I. INTRODUCTION

MIMO technologies enable an opportunity of linear increase
in wireless channel capacity from the additional degrees-of-
freedom created by multiple antennas. However, in single-user
MIMO, the capacity gain is limited by the relatively small
diversity offered by transmit antennas co-located on the same
user platform. Multiuser MIMO (MU-MIMO) [7] removes this
limitation with geographically separated users and rich spatial
diversity. This allows further boosting of channel capacity.

In this paper, we consider a MU-MIMO scenario where
an access point (AP) is equipped with many antennas and
every user possesses one antenna. We focus on the uplink
case where multiple indoor users (i.e., “senders”) concurrently
transmit data to a multi-antenna AP. With MU-MIMO, one
would expect a throughput speedup factor of K with K receive
antennas on the AP given sufficient spatial diversity; however
realized throughput in a real-world system can be substantially
less due to the difficulty of fully parallelizing channel access.

For proper MIMO packet decoding, channel state informa-
tion (CSI) must be estimated from packet preambles. Existing
MU-MIMO systems (e.g., [20], [13]) stagger data transmis-
sions in order to allow random access yet avoid preamble
collisions which could impede CSI estimation. Staggered
transissions, however, result in efficiency loss that increases
with the number of senders. For example, consider 1500-
byte packets transmitted with 39Mbps data rate. Note that
each packet transmission spans 300µs. With an average access
delay of 100µs [14], there can be no more than 3 concurrent
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Fig. 1: Two access strategies for multiuser MIMO (MU-
MIMO) networks. Shaded areas denote packet preambles.
Staggered access means only partially parallelized data trans-
missions, resulting in low channel utilization. In contrast,
concurrent access can realize MIMO capacity gain by fully
parallelizing data transmissions.

transmissions. Further, they are only partially parallelized as
depicted in Figure 1(a). One may use frame aggregation [2]
to send longer payload and amortize the access overhead.
However, frame aggregation is not practical for delay sensitive
traffics such as VoIP or HTTP. Such protocols are thus not
scalable to large K.

We argue that a more efficient approach to coordinate
distributed senders is to launch multiple data transmissions
concurrently without forcing serialization thereby allowing the
transmissions fully parallelized (shown in Figure 1(b)). We call
this access strategy concurrent access. To realize concurrent
access, our proposed design, MIMO/CON, has the following
two features:
• MIMO/CON can derive accurate CSI using only loosely

synchronized and uncoordinated concurrent preambles,
thus suited to geographically separated users. This, how-
ever, usually means an unpractically long preamble se-
quence with length proportional to synchronization offset.
In contrast, by using compressive sensing techniques,
MIMO/CON can reduce the preamble length to near the
minimum required as in the ideal case where senders are
perfectly synchronized and scheduled for transmission.

• MIMO/CON can boost channel utilization without explic-
itly controlling the number of senders to match the num-
ber of AP receive antennas. With random access, senders
are likely to either underutilize the available degrees-of-
freedom, or overbook with collisions. MIMO/CON miti-
gates this problem by a novel scheme, called delay packet



decoding, that can opportunistically decode packets in
collisions at a later time. This means only a subset of
packets involved in a collision need to be retransmitted.
Hence, MIMO/CON on average need not be hampered
by the efficiency loss when senders make uncoordinated
access decisions.

MIMO/CON exploits two important insights. First, the CSI,
i.e., the channel impulse response, is expected to be sparse and
constituted of only a few significant taps due to the small delay
spread in an indoor environment. Second, allowing concurrent
preambles to be loosely synchronized and uncoordinated does
not create additional channel state information. Instead, this
merely injects the CSI to a higher-dimensional space with
many more zero variables due to the additional potential
preamble arrival times and potential senders (see Section
III-A). To solve for this higher-dimensional CSI, instead of
naively increasing the preamble length to match the number of
variables, MIMO/CON directly measures the sparse informa-
tion. MIMO/CON leverages the recent theory of compressive
sensing [6] which shows that the sparse information can be
derived almost as if the locations of the nonzero unknowns
are known a priori. As a result, by formulating a sparse iden-
tification problem, MIMO/CON can minimize the concurrent
preamble length for practical MU-MIMO systems.

Concurrent channel estimation also provides better handling
of collisions when the number of senders exceeds the num-
ber of AP antennas. This follows from the observation that
concurrent channel estimation is independent from MIMO
degrees-of-freedom and can identify senders even in a col-
lision. MIMO/CON thus buffers collisions and exploits later
retransmissions to find decoding opportunity. As a result,
MIMO/CON can tolerate demand fluctuations better and relax
the access control by concerning only average use of the
medium and realize statistical gains over random access.

We have prototyped MIMO/CON using software-defined
radios, and evaluated it through testbed experiments and
simulations. Our evaluation reveals the following:

• The aggregated network throughput of MIMO/CON
scales well with users. In particular, our simulation re-
sults suggest that MIMO/CON delivers 140% and 210%
throughput gains over staggered access with 5-antenna
AP under PHY rates 13Mbps and 52Mbps, respectively.

• The compressive sensing based channel estimation
scheme works over a wide range of SNRs. In particular,
the derived CSI can decode MIMO packets successfully
with SNR as small as 5dB, the minimum required for
data transmission, and achieves performance comparable
to interference-free, serially transmitted preambles.

• Compressive sensing is a natural fit for MIMO channel
estimation. The antenna diversity presented by multiple
antennas on MIMO AP can speed up compressive sensing
decoding. Using 4 receive antennas, the decoding algo-
rithm converges in 1 iteration for most of the experiments.

In short, MIMO/CON can achieve high and scalable MAC
efficiency to take advantage of an increased number of receive

antennas on the AP, and is amenable to the future trend
of massive MIMO designs (e.g., 802.11ac suggests up to 8
antennas on the AP, and an unlimited number of antennas
scenario is depicted in [15] for cellular networks).

II. RELATED WORK

MIMO/CON is closely related to and built on prior work
on practical MU-MIMO systems [20][13]. For backward com-
patibility reasons, we share the same goal of realizing MU-
MIMO throughput gains with widely used WiFi-like CSMA.
As future MIMO designs are expected to see a substantial
increase in the number of antennas, MIMO/CON further
addresses the scalability issue in MU-MIMO medium access
control. A recent proposal, Contrabass [24], has the objective
of realizing concurrent access, but the design does not exploit
the expected sparsity for channel estimation, and thus suffers
from a higher overhead in preamble length and complexity.
Throughput scalability issues can also be found in future point-
to-point high speed WLAN. FICA [19] and WiFi-Nano [14]
both aim at reducing MAC inefficiency under this setting.

Exploiting channel sparsity for channel estimation has a
long history of investigation (see [4] for a nice review.) In
particular, [18] shares a similar random probe formulation
with MIMO/CON. However, MIMO/CON stands out from
all prior work in two aspects. First, previous work assume
long delay spread environments with perfect synchronization
among senders and known sender identity. MIMO/CON in-
stead tackles the short delay spread and loosely synchronized
WiFi environment, and uses compressive sensing to resolve
timing misalignment and identify transmitting users. Second,
previous work focus on PHY layer improvement such as
enhancing demodulation performance and pilot size reduction.
In contrast, MIMO/CON demonstrates that exploiting channel
sparsity can lead to significant throughput gains in MAC
level and is of particular importance for multiuser MIMO
networking.

Lastly, MIMO/CON’s collision handling is based on inter-
ference removal techniques, which has previously been used to
handle interference under various settings (e.g. [9], [12], [10]).
The novelty of MIMO/CON’s approach lies in packet identifi-
cation. With compressive sensing decoding, MIMO/CON can
reliably identify packets from concurrent channel estimation
while other approaches such as ZigZag [9] rely on the small
frequency differences in oscillator between sender hardware.

III. BACKGROUND

MIMO systems rely on distinct spatial signatures (the CSI
vector) from each transmit antenna to separate concurrent data
streams. Signals received by multiple receive antennas sit in
a higher dimensional space, and by projecting the signal onto
proper subspace formed by the spatial signatures, individual
data streams can be decoupled and decoded (see, e.g., [22]).

The spatial signature is usually measured from a known
preamble sequence preceding the data packet. In single-user
MIMO, preambles from different transmit antennas are sched-
uled for serial transmissions by the same sender. However, in



the multiuser scenario, preamble transmissions may not easily
be scheduled and thus may suffer from mutual interference.
A noisy preamble under such interference prohibits accurate
CSI estimation and results in poor MIMO performance. Prior
work [20][13] resolves this issue by ensuring that preambles
from different senders are not overlapped in time. The AP can
then estimate the CSI vectors by sequentially projecting the
received signal onto interference-free subspaces.

Serialized non-overlapping preambles, however, impose a
significant channel access delay. In order to avoid preamble
collisions, a set of K concurrent transmissions has to undergo
K access delay. As shown in Figure 1(a), this hampers the
MIMO throughput especially under a high PHY data rate (thus
shorter packet durations) or a large number of receive antennas
(thus many concurrent senders expected).

A. Concurrent channel access and exploitable sparsity

MIMO/CON takes an opposite approach. It launches mul-
tiple data transmissions simultaneously so that the contention
cost is paid only once for multiple senders. The principle is
simple: assuming the backoff operations of senders are in lock-
step with each other, generally concurrent access occurs by
increasing the sender transmission probability of a time slot.
After a set of concurrent transmissions begins, other senders
can detect and avoid interfering with ongoing transmissions
via carrier sensing. A nice thing about this concurrent access
scheme is that the senders behave exactly as in 802.11 DCF
and do not even need to be aware of AP’s MIMO capability to
realize MIMO capacity gain. A larger number of AP’s receive
antennas will result in a lower contention level and the senders
can transmit more aggressively. Conversely, the senders will
see a higher contention level and back off when the AP has
fewer antennas.

To realize concurrent access, MIMO/CON must maintain
synchronization among senders and must obtain CSI from
fully overlapped preambles. Note that the synchronization here
means only a loose one in the sense that substantial synchro-
nization offsets between transmissions can be tolerated. Such
synchronization in general is required in MU-MIMO systems
for proper MIMO decoding, and can be realized by exploiting
the cyclic prefix (CP) structure in OFDM symbols (see Section
VI). Therefore, the major challenge lies in channel estimation
from a collection of concurrently received preambles, which
this paper studies.

To see how channels can be concurrently estimated, let us
first understand the sparsity in channel impulse response. The
channel impulse response is the channel distortion from a
transmitter to a receiver. Narrowband OFDM subcarriers in
general can be modeled as flat fading channels, where the
channel distortion can be approximated as a complex value
representing the amplitude attenuation and phase shift [22].

We use vector ĥ to represent the channel distortion of
the subcarriers. Here we use the “hat” notation to denote
the frequency domain representation of a vector. Suppose
now a sender transmits a preamble vector d̂ over the OFDM
subcarriers. The received signal on the i-th subcarrier can be
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Fig. 2: The locations of the significant taps are determined
by the timing misalignment between the beginning of the
extracted FFT window and that of preamble sequence.

written as
ŷi = ĥid̂i + n̂i (1)

where n̂ is the noise. Taking an inverse Fourier transform on
the received signal yields its time domain representation:

y = h⊗ d + n (2)

The time domain convolution in (2) can be interpreted as
the intersymbol interference caused by the multipath effect
where signals with different propagation delays overlap with
each other. Under this interpretation, the components of h
thus can be viewed as the channel distortion on paths with
different propagation delays. In an indoor environment, the
delay spread is supposed to be small (30-60 ns or even less,
based on various measurement studies [3][8]). Therefore, we
can assume h is a very sparse vector. For example, in 802.11n
with 20MHz bandwidth, the sampling interval is 50ns. This
means h has no more than 2 nonzero components.

However, the locations of the few nonzeros in h are in
general unknown at the receiver. Although with short delay
spread, the significant taps should always be the first few, their
locations in fact vary according to the timing misalignment of
the extracted FFT window for an OFDM symbol. This phe-
nomenon is illustrated in Figure 2 that shows two concurrent
OFDM symbols and the associated h. One can see that the
indices of the significant taps are the differences between the
beginning of the FFT window and that of preamble sequence.

Let us extend (1) to the case of multiple concurrent senders:

ŷi =
∑
j

d̂j ĥij + n̂i (3)

As shown in (3), the signal ŷi received on the i-th subcar-
rier is a linear combination of the channel responses from
different transmitters j. To solve for ĥij , we need to collect
as many equations as the number of unknowns. The number
of unknowns is determined by two system parameters: the
maximum synchronization offset and the number of potential
senders. Figure 3 illustrates the relationship between the num-
ber of unknowns and synchronization offsets. For simplicity,
we assume every channel has one significant tap. In Figure
3(a), the three OFDM symbols are perfectly synchronized.
Since we know the significant tap must be the first one, there
are only 3 unknowns. In Figure 3(b), the maximum timing mis-
alignment between the OFDM symbols is 4 samples. Hence



for each channel, there are 4 possible significant tap locations,
resulting in 12 unknowns. Similarly, for a larger misalignment
of 8 samples in Figure 3(c), the number of unknowns increases
to 24. The number of unknowns thus increases proportionally
to synchronization offset. Further, given the sender identity
is not known a priori, the total number of unknowns needs
to be multiplied by the number of potential senders. For
geographically distributed users, it is generally difficult and
also expensive to provide tight synchronization among them.
In this case, it is desirable to use loose synchronization which
results in large synchronization offset. One thus would need a
very long preamble in order to generate enough equations for
solving these many unknowns.

For example, consider a scenario with loose synchronization
provided by a simple reference broadcast method which has
2µs accuracy [19]. This means under 20MHz bandwidth, the
significant taps can be at 40 possible locations. Assuming a 4-
antenna AP with 100 potential senders and no more than 2 taps
in their channel response, the number of unknowns is at least
4000 (40×100) while only 8 of them are not zero. A naive
solution would need to send at least 200µs (4000×50ns) long
preambles, which is clearly unpractical due to the very large
preamble overhead. In contrast, if we can directly estimate the
8 nonzero variables, 400ns long preambles would generate a
sufficient number of equations. This thus motivates exploiting
compressive sensing for concurrent channel estimation. We
will briefly introduce compressive sensing in the next section,
and in Section IV, we will discuss how to design concurrent
channel estimation based on compressive sensing.

B. Compressive sensing

Compressive sensing has been shown to be a powerful
approach in compressing discrete sparse signals of large sizes
[6]. It arises from an interesting question: Given a K-sparse
vector of some large length N, can one recover the K nonzero
components using M linear measurements with M < N?
Equivalently, given an M × N sensing matrix A, and the
measurement vector y = Ax, can we recover the unknown
vector x exactly? Since this linear system is underdetermined,
the problem in general has infinite solutions for x. However,
it has been shown that exact recovery of sparse solutions is
possible by taking sufficiently many random projections of x,
i.e. use a random matrix for A. These random projections can
capture all useful information about the sparse vector with
high probability. More precisely, recovery is assured when
the sensing matrix A satisfies, e.g., the restricted isometry
property (RIP). In essence, the RIP means that any submatrices
of A are close to orthonormal so that when the submatrices
operate on the nonzero components of the sparse vector,
the information about the nonzeros is not lost. It has been
shown in the literature (see, e.g., [5]) that the number M
of measurements required can be as small as O(K log N

K ),
meaning that the number is approximately a constant multiple
of the sparsity K when log N

K is small. Empirically, the factor
is between 3 and 4, which we call the oversampling ratio.
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Fig. 3: The number of unknowns in channel impulse response
is proportional to the maximum synchronization offset.

IV. CONCURRENT MULTIUSER CSI ESTIMATION

A challenge of estimating CSI from concurrent preambles
is that although the information we want to capture is small,
there can be a huge number of unknowns. But the AP does
not know a priori which senders participate in the concurrent
transmission, nor the timing misalignment to determine the
location of the significant taps. If the AP had this information,
it could have dropped all zero unknowns in CSI estimation and
a short preamble would be sufficient.

Fortunately, we can leverage the major insight from com-
pressive sensing: a few random projections of the unknown
vector can preserve sufficient information for sparse recovery
with high probability.

A. Random preamble sequences for CSI estimation

Bearing this insight in mind, in MIMO/CON, users identify
themselves with distinct random codes in their preambles. As
we will see, the AP will receive random linear measurements
of channel impulse response formed from these codes. For
simplicity, MIMO/CON uses Bernoulli random codes com-
posed of {1,-1}, which are assigned by the AP during initial
association.

To work with OFDM, we assume the preamble length equals
the number of subcarriers M , and the preamble is sent over
individual OFDM subcarriers. Denote the preamble sequence
owned by sender i as a vector ai. The received signal ŷ at the
AP can be written as a linear combination of all concurrently
transmitted preambles, passing through the channel with noise:

ŷ = Âĥ + n̂ =
[
Φ1 Φ2 · · · ΦN

]

x1ĥ1

x2ĥ2

...
xN ĥN

+ n̂ (4)

where

Φi = diag(ai) =

ai1 . . .
aiM

 (5)

ĥi is a complex vector denoting the channel frequency re-
sponse from transmitter i to the AP. Since only a subset
of senders transmit, we use a {0,1} binary variable xi to
indicate whether sender i is active over a total of N senders.
In (4), the dimension of Â is M × MN , and thus (4) is
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Fig. 4: Channel impulse response measured with 6.25MHz
bandwidth. A significant tap is observed at tap 0 with some
energy leakage around.

an underdetermined system that cannot be solved by matrix
inversion.

As stated earlier, the unknown vector is sparse in the time
domain. Hence we first convert the system into a sparse
recovery problem by taking inverse Fourier transform on
individual channel responses.

ŷ = Ah+n̂ =
[
Φ1F Φ2F · · · ΦNF

]

x1h1

x2h2

...
xNhN

+n̂ (6)

Let us now interpret (6) using compressive sensing. Note that
the delay spread D is the same for every channel between the
senders and the AP. Assume the number of active senders is
K. h is then a DK-sparse vector of length MN . The received
signal ŷ is the compressively sensed measurement vector with
length M . To recover h, we only need M to be a small
multiple of DK, which can be much less than MN . Note that
M is the number of subcarriers and is independent from DK.
Therefore one can control the number of measurements to
accommodate different sparsity by adjusting the OFDM FFT
size.

Before we describe how to solve the sparse recovery prob-
lem concerning (6), there are a few points worth noting.
First, the formulation can be thought of as a generalized form
of CDMA that attempts to multiplex preamble transmissions
without creating mutual interference. Traditional CDMA re-
quires that the codes possessed by different senders to be
orthogonal to each other. However, this assumes the worst case
that all senders will transmit concurrently. Since we know the
number of concurrent senders is bounded above by K, we
can have a less constraining requirement that asks for only
every subset of K codes to be orthogonal. This is exactly the
formulation of compressive sensing that leads to a shorter code
length.

Second, although the delay spread in an indoor environment
is small and should contain only 1 or 2 significant taps, in
practice the measured channel impulse response can have more
nonzero taps due to leakage [23]. The leakage effect is a result
of propagation delays that are not multiples of the sampling
intervals. The energy of these delays then leaks into every
tap in the discretization process. Figure 4 shows a channel
impulse response measured in an indoor environment with

Algorithm 1 CoSaMP algorithm
Input: measurement vector ŷ, sensing matrix A, and sparsity
level KD
Output: estimated channel vector hi

1: h0 = 0; u = ŷ; i = 1;
2: while |u| > tol do
3: p = AHu (Support estimation)
4: Ω = supp(pβKD)
5: T = Ω ∪ supp(hi−1) (Merge previous support)
6: b|T = A†Ty (Least squares to estimate signal)
7: b|T c = 0
8: hi = bKD (Prune estimate to be KD-sparse)
9: u = ŷ −Ahi (Update signal residual)

10: i = i+ 1
11: end while

leakage. Fortunately, the leakage is concentrated around the
most significant tap, and can be almost entirely captured by
measuring a few additional neighboring taps.

Lastly, note that the scheme exploits the sparsity in channel
impulse response, or equivalently the correlation between
channel response on neighboring subcarriers. Therefore, it is
important to obtain measurements from a sufficient number of
subcarriers in order to capture the correlation. This suggests
that preambles composed of {0,1} random sequence will not
yield good recovery performance.

B. Sparse CSI recovery

MIMO decoding relies on per-packet spatial signatures, and
therefore sparse recovery of CSI must be done within a packet
time, which is usually several hundreds of microseconds.
However, sparse recovery is generally considered a computa-
tionally expensive problem. MIMO/CON exploits the diversity
of multiple receive antennas on the the same AP platform to
relieve the computation burden and shorten the decoding time.

Specifically, we note that the multi-antenna diversity fits
well with a popular class of sparse recovery algorithms based
on orthogonal matching pursuit (OMP) [21]. In OMP-type
algorithms, the algorithms iteratively make guesses on the lo-
cations of potential nonzero unknowns and drop all other zero
unknowns. As individual receive antennas obtain independent
measurements, they naturally can make the guessing more
robust, and make the algorithm converge faster. Our decoding
algorithm is built on CoSaMP [17], the state-of-the-art efficient
algorithm for sparse recovery, and extends the algorithm to
incorporate the multi-antenna diversity.

1) The CoSaMP algorithm: The basic idea of CoSaMP
is simple. Given that the solution vector h is KD-sparse,
if we know the locations of the KD nonzero variables (the
“support”), we can eliminate all other variables and turn the
problem into an overdetermined one. The overdetermined sys-
tem can then be solved by standard least squares algorithms.
If the set of guessed nonzero variables is not entirely correct,
the same technique can be used again to improve support



estimation from the residual signal. We display the pseudocode
of the algorithm in Algorithm 1.

Support estimation is the most critical step in the algorithm.
A good estimation would lead to the correct sparse solution
with rapid convergence. The support can be estimated via a
proxy vector p = AHAh. Because A is RIP, the submatrices
of A are close to orthonormal. This means that components
in p with large magnitudes will point to nonzeros in h. Since
we have y = Ah, the proxy vector can be computed by a
simple matrix vector multiplication:

p = AHŷ (7)

Finally we introduce a simple heuristic on support set
selection which simplifies the selection process and also
simplifies our future discussion. The heuristic exploits the
hierarchical structure in h that h can be divided into N blocks
corresponding to N senders. One thus can first estimate the
active senders and then estimate the significant taps only from
the active senders. The active senders can be estimated by
forming a sender proxy by taking the largest value of each
block in the proxy vector. In our implementation, we first
estimate αK senders, and βKD taps with α = 1 and β = 2.
Later we will show that with multi-antenna diversity, choosing
proper α and β is not difficult because the proxy vector is
robust.

2) Multi-antenna diversity: Multi-antenna diversity arises
from an important observation: the h vectors observed by
different receive antennas share the same support. That is
because preambles received at co-located antennas come from
the same set of active senders, they share the same symbol
timing misalignment. One thus can exploits this diversity
presented in measurements collected at every antenna.

Incorporating the diversity into the CoSaMP algorithm
requires only one modification: replacing line 3 of Algorithm
1 with (8).

p =
1
K

K∑
i=1

abs(AHui) (8)

Note that abs denotes taking element-wise absolute of the
vector and K is the number of AP antennas. Intuitively, (8)
reduces the noise in the proxy estimate by taking the average
of multiple estimates. However, this is only true if individual
measurements are sufficiently different.

To see where the real diversity is from, let us first consider
a simple case where there are only K nonzero variables in h,
and say the nonzero variables are the first K ones, h1 to hK .
Denote the entries of AHA as bij with its diagonal of all 1’s,
we can expand Eq.(7):{

pi = hi +
∑K
j=1,j 6=i bijhj if i = 1...K

pi =
∑K
j=1 bijhj if i > K

(9)

Note that AHA is diagonally dominant, i.e. bij is small
when i 6= j; the proxy p thus equals to h distorted by
some noise. In other words, finding the support from p is
a detection problem where the two equations in Eq.(9) can
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Fig. 5: Multi-antenna diversity improves the quality of support
selection. Measurements from multiple antennas can help
distinguish the locations of nonzero and zero variables.

be approximated as two Gaussian distributions with mean hi
and 0. The misidentification rate is then determined by the
overlapping region of the tails in the two distributions.

We can write a similar expression for the proxy vector p′

obtained from the second antenna:{
p′i = h′i +

∑K
j=1,j 6=i bijh

′
j if i = 1...K

p′i =
∑K
j=1 bijh

′
j if i > K

(10)

Eq.(9) and Eq.(10) share the same bij because the preamble
sequences of the senders are the same. The only difference
thus lies in the channel impulse response observed by the
two antennas. Given the two antennas are located close to
each other, the observed signal attenuation will not have too
much diversity. However, their phase shift can easily be very
different. The wavelength of GHz waves is on the order of
10cm. We then can model Eq.(10) as independent Gaussian
distributions from Eq.(9). In other words, if we have K
proxy vectors, by taking the average over their magnitudes,
the variance of the resulting Gaussian distributions can be
reduced in a rate of O(K−1/2). Therefore, the size of the tail
overlapping region diminishes and the proxy estimate quickly
becomes very robust.

To demonstrate that the diversity of phase shift in h im-
proves the robustness of proxy vectors, we conduct a simu-
lation that deliberately sets the signal attenuation in channel
response to be the same and varies the phase shift uniform
randomly between [0,2π). We assume a scenario with K = 6
active senders out of total N = 100, each with one significant
tap of magnitude 0.1 and 4 leakage taps on both sides with
magnitude 0.03. The simulation is repeated 1000 times with
different random sensing matrices and different locations of
the taps.

Figure 5 shows the resulting CDF of the magnitudes of the
sender proxy values. In Figure 5(a), misidentification occurs
when the proxy values that point to nonactive senders is higher
than those pointing to active senders. In this case, the CoSaMP
algorithm needs to be run for more iterations to correctly
identify all active transmitters. In contrast, in Figure 5(b), with
3 antennas the identification has become relatively easy, due
to the reduced variances of the two distributions.

Finally, we note that robust support estimation is not only



beneficial in improving the computation speed; but also helpful
in reducing the oversampling ratio of compressive sensing. The
result will be shown in Section VII-C.

3) Computational complexity: The computational complex-
ity of the decoding algorithm is dominated by the support
estimation. With a naive matrix-vector multiplication AHŷ,
the computational complexity is O(NM2). However, A in-
volves multiple DFT matrices, and we can compute the proxy
vector in blocks to exploit the structure in DFT matrices. For
example, the i-th block in p can be computed by:

pi = F−1ΦH
i ŷ (11)

Given that ΦH
i is a diagonal matrix, the overall complexity is

therefore O(NMlogM) with FFT. The other computationally
extensive operation in the algorithm is related to solving least
squares problems. We can use standard iterative methods such
as the conjugate gradient algorithm to achieve O(MDK)
computation time.

V. MAXIMIZING CHANNEL UTILIZATION

Beyond concurrent channel estimation, the MIMO/CON
MAC layer needs to control the number of concurrent senders
to maximize channel utilization. Suppose the AP has K receive
antennas. Ideally we want to ensure that always K senders
transmit concurrently. However, because random access by
distributed senders inevitably leads to fluctuations between
underutilizing (less than K senders) and overbooking the
channel (collisions), this problem cannot be generally solved
without exchanging information between distributed senders.

Instead, MIMO/CON mitigates the problem by delay packet
decoding to allow momentarily channel overbooking. The
opportunity arises from two observations: first, concurrent
channel estimation can be decoupled from MIMO degrees-of-
freedom. That is, with a proper preamble size, MIMO/CON
can learn the sender identities and the associated CSI even
in a collision. Second, the MAC layer normally retransmits
collided packets at a later time. Therefore, MIMO/CON can
exploit the correctly received retransmissions to opportunisti-
cally decode packets involved in previous collisions.

To illustrate the idea, consider a simple scenario that the
AP has two antennas, and at time t1 three senders transmit
packets p1, p2, and p3 concurrently. Thus the AP receives the
following:

y = h1p1 + h2p2 + h3p3 (12)

Since the AP has degrees-of-freedom two, at this point the
AP cannot decode the concurrent transmissions and this is a
collision. Suppose p3 is retransmitted and received correctly
at a later time t2. We then can regenerate h3p3 in the first
collision to decode packets p1 and p2:

y − h3p3 = h1p1 + h2p2 (13)

noting that h3 has been obtained at t1 via concurrent channel
estimation. Since this equation has only two unknowns left,
we can proceed to decode p1 and p2.

Now we are left with the question on how to adapt the
sender transmission probability to network contention level.
MIMO/CON’s approach is similar to 802.11 DCF: when a
sender sees a transmission opportunity, it tosses a coin to
determine whether it will begin a transmission. If a collision
occurs, the transmission probability is reduced to avoid future
collisions. This strategy fits well with the above collision
handling scheme since the retransmission is less likely to be
collided and the AP can go back to decode packets in the
previous collision. The classic additive increase multiplicative
decrease (AIMD) control principle, for example, can be used
to probe for optimal transmission probability and achieve
fairness among senders.

VI. DISCUSSION

In this section, we discuss several design issues related to
implementing MIMO/CON in practice.
(a) Hidden terminal: As in traditional CSMA, MIMO/CON
avoids collisions through carrier sensing; therefore it also suf-
fers from the hidden terminal problem where hidden senders
cannot be detected and may cause interference. The problem
may result in channel overbooking, and asynchronous con-
current transmissions that do not have overlapped preambles.
When there are less than K concurrent transmissions, one
can still apply the chain decoding technique [20] in staggered
access to separate the two data streams if preambles are not
overlapped. On the other hand, when the contention level is
high, one will need to use RTS/CTS handshakes to contain the
traffic. Interestingly, one can easily envision that concurrent
preambles can also be a good primitive for building efficient
concurrent RTS. A full design of concurrent RTS however is
beyond the scope of this paper and left as future work.
(b) Frequency and time synchronization: MIMO/CON does
not have more stringent requirement on frequency and time
synchronization over existing MU-MIMO systems such as
the system described in [13]. Synchronization techniques in
previous literature [19][13] can be employed in MIMO/CON.
For frequency synchronization, since hardware oscillator fre-
quency is relatively stable, the senders can use the AP’s
frequency as a reference, and correct the offset periodically.
For timing synchronization, symbol timing misalignment be-
tween concurrent preambles can be tolerated by using the
cyclic prefix design in OFDM as a guard interval (see, e.g.,
[16]). Therefore one can adjust the CP length to accomodate
the synchronization error and in the mean time, scale the
data length accordingly to maintain the same CP overhead
percentage.
(c) Rate adaptation: In MIMO, the level of inter-stream
interference depends on the orthogonality between the spatial
signatures of concurrent senders. As a result, rate adaptation
is especially difficult if the spatial signatures of concurrent
senders cannot be known at the sender a priori. This issue
may be addressed by a rateless rate adaptation design (e.g.,
[11]), where rate adaptation can be totally blind.
(d) Backward compatibility: MIMO/CON builds on random
access and carrier sensing and only changes the preamble



structure when transmitting uplink data; therefore it may seem
that MIMO/CON nodes can operate with 802.11 nodes. How-
ever, since MIMO/CON nodes can transmit concurrently with
each other but not with normal 802.11 nodes, they will have
a lower collision rate than 802.11 nodes. As a result, 802.11
nodes may spend more time in backoff and are disadvantaged
in channel access. A simple strategy to mitigate the problem
is to have MIMO/CON nodes transmit less aggressively and
sacrifice network throughput somewhat when coexisting with
802.11 nodes.

Lastly, although throughout the paper we assume that each
sender is equipped with one antenna, the results can easily be
generalized to the case with multi-antenna senders by having
the sender operate as multiple single antenna senders.

VII. EVALUATION

We have implemented MIMO/CON on software-defined
radios. We use the USRP-N200 boards with WBX daughter-
boards, and drive them with the UHD software [1]. The radios
operate with center frequency 916MHz and a 6.25MHz band-
width. In the testbed experiments, we focus on evaluating the
performance of concurrent preambles. For delay packet decod-
ing, our implementation is based on interference removal; such
implementation has been studied extensively in the literature
[9][20]. Thus we focus our evaluation on performance gains
of delay packet decoding on overall throughput.

In implementing concurrent preambles, a slight change is
made in the formulation in (6): the DC subcarrier is not used
for avoiding unwanted DC offset from the wireless transceiver.
Note that the DC offset can shift the zero values in channel
impulse response to a nonzero constant and thus eliminate the
sparsity.

A. MIMO decoding performance with concurrent preambles

We use a 4×4 MIMO scenario to evaluate the perfor-
mance of concurrent channel estimation in a lab environment.
The performance is compared against a baseline case where
interference-free preambles are transmitted sequentially. In
the setting, we assume there are 100 senders but only 4 of
them transmit at any given time. The distance between the
transmitters and the receivers is around 2 to 3 meters. We
vary the transmission power and the distances to get different
SNR values.

For the baseline scheme to which MIMO/CON com-
pares, we apply the standard least squares method [23] to
interference-free preambles. The channel is estimated by solv-
ing the following equation:

ĥ = Φ−1ŷ (14)

where Φ = diag(ai) and ai is the known preamble sequence.
In both cases, the obtained channel estimate is then used

to decode 4 MIMO data streams immediately followed by
the preamble with the standard zero-forcing method and
successive interference cancellation [22]. The FFT size of both
preamble and data symbols are set to 128 points. We repeat
each experiment 300 times with different random preambles.
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Fig. 6: Comparison of the frequency domain CSI measured
from interference-free preambles and concurrent preambles.

Figure 6 shows an example of the resulting channel estimate
on every subcarrier. The 4 curves correspond to the CSI of the
4 transmitters to 1 receiver. In Figure 6(a), the channel esti-
mation from interference-free preambles gives a less smooth
curve due to the noise in channel estimation as the estimation
is done with a single preamble symbol without any averaging.
In contrast, the channel estimate from concurrent preambles is
smoother as shown in Figure 6(b). The smoothness reflects the
assumption that the channel has only a few significant taps. It
can be seen that the curves in both figures are fairly close to
each other.

How does the CSI obtained from concurrent preambles
perform in MIMO decoding? Figure 7 shows the scatter plots
of the decoded SNR of the subsequent data transmission
decoding with the channel estimated from interference-free
preambles versus that from concurrent preambles. The exper-
imental results reveal the followings: first, taking 13 taps (6
on each side of the significant tap) is sufficient for channel
estimation in all SNRs. Taking fewer taps can result in a
degradation in decoded SNR because the recovered CSI is
less accurate. The number of taps required also determines
the preamble length for sufficient measurement. Second, with
a sufficient number of taps such as 13 taps in Figure 7(a),
the decoding performance with concurrent preambles is better
than interference-free preambles. This shows that MIMO/CON
which exploits the channel sparsity in fact can help filter out
noise in channel estimation. This is because a nonzero value
appearing in a large-delay tap is automatically suppressed
during sparse signal recovery. Third, when the signal SNR
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Fig. 7: MIMO decoding performance using CSI estimated from concurrent preambles in 4x4 MIMO. Taking 13 taps is sufficient
for reconstructing accurate CSI. Using fewer taps results in degradation in decoding performance, especially when the signal
SNR is high.

is high, more taps are required to achieve relatively good
decoding performance. For the case with low signal SNR, the
accuracy of channel estimation is limited by noise and thus
taking fewer taps is sufficient.

B. Impact of multi-antenna diversity in improving decoding
efficiency

In this subsection, we conduct experiments to measure the
benefits of multi-antenna diversity in sparse recovery using
the same 4×4 MIMO setting. The experiments are repeated
with different levels of SNRs, which are measured from
interference-free packets. We configure similar SNR for all
senders.

As discussed in Section IV-B, incorporating measurements
from different antennas can make the proxy vector more robust
and facilitate support selection. To simplify discussion, we
focus on identifying active senders from the proxy vector using
the most significant tap. The decoding algorithm can proceed
to identify other taps after knowing the senders. We measure
the minimum α so that the top αK elements in the reduced
proxy vector include all active senders. A larger α indicates
more noise in the proxy vector and is more difficult for support
selection. A proxy vector with α = 1 is optimal, meaning that
the top K components in the vector correspond exactly to the
K active senders.

In Figure 8, we plot the distribution of α over multiple
experiments with varying numbers of receive antennas. We
make the following observations: first, the distribution of
α under different SNRs is similar, with α slightly larger
in low SNR. With 1 receive antenna, more than 50% of
the experiments have α = 1; however, around 20% of the
experiments α is larger than 2. This shows that although in
general the proxy vector can identify active senders correctly,
at times it cannot especially when the SNR is low. Second,
incorporating measurements from 2 antennas, the proxy vector
quickly becomes more robust in the high SNR case. In low
SNR, it takes 3 antennas to achieve similar performance. When
measurements from all 4 antennas are included, almost all of
the experiments can identify all senders correctly with α = 1.

TABLE I: CSI recovery rate from concurrent preambles.

Number of Antennas 1 2 3 4
Low SNR 89% 99% 99% 100%
Medium SNR 99% 100% 100% 100%
High SNR 100% 100% 100% 100%

Facilitating support selection also improves the algorithm
in recovery rate. Shown in Table I, the algorithm does not
converge to the right solution in 11% of the experiments
with 1 antenna in low SNR. In contrast, when all 4 antennas
are included, the algorithm always converges to the correct
solution.

C. FFT size of concurrent preambles

The FFT size of concurrent preambles needs to grow with
a larger MIMO system or a higher bandwidth with more
significant taps in order to maintain sufficient measurements.
We conduct simulations to study the number of active senders
that can be supported given a preamble length. The simulation
setting is the same as in Section IV-B while we change the
number of nonzero taps to be 13 as found in the software-
defined radio based experiments.

Fundamentally the FFT size has to be greater than the
number of unknowns that needs to be solved. This fundamental
limit is plotted as the vertical dotted lines in Figure 9. When
1 antenna is incorporated for recovery, the preamble FFT size
of 128 and 256 can support up to 4 and 8 active senders,
respectively. When 4 antennas are used, the same preamble
FFT size can support up to 7 and 14 active senders. We note
that in this case, the preamble FFT size has an oversampling
ratio of 1.4, which is close to the optimal of 1. We thus
conclude that the overhead of concurrent preambles is close
to the minimum.

D. Throughput improvement

In this subsection, we investigate the throughput improve-
ment of MIMO/CON. Although we can implement the func-
tionalities of MIMO/CON on software radios, the current hard-
ware system we have in lab cannot run fast enough to support
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Fig. 8: Impact of multi-antenna diversity in improving decoding efficiency. By incorporating just a few measurements from
different antennas, one can estimate CSI from concurrent preambles in only one iteration of the decoding algorithm. Each plot
includes a blown-up subplot to show details of CDF for α near 1.
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carrier sensing and real-time concurrent preamble decoding
for a large number of active users. Thus we turn to software
simulators to study MIMO/CON’s throughput performance
for many users scenario. We implemented an event-driven
simulator, which assumes standard 802.11n parameters: 28 µs
DIFS, 10 µs SIFS, 20 µs PHY preamble, and 9 µs slot time.
We assume a standard 1500-byte data packet size and a 14-
byte ACK packet size.

We compare MIMO/CON with SAM [20], a staggered
access design for MU-MIMO systems. In addition, to evalu-
ate the effectiveness of delay packet decoding, we compare
MIMO/CON with and without the feature turned on. For
simplicity, we first assume the optimal transmission probability
that leads to the highest aggregated throughput is known in
the simulation, but will relax this assumption. The throughput
under the optimal scheduler is also plotted for reference.

In the first two simulation experiments, we simulate an
environment with 20 senders that always have data packets
to send. The senders are assumed to have the same PHY data
rates, 13Mbps and 52Mbps, to represent the low and high SNR
regimes, respectively. Results are shown in Figure 10. First,
staggered access performs well when there are fewer antennas;
however the throughput quickly saturates when the number
of antennas increases, which is due to serializing channel

contention. Assuming an average backoff period of 10 slots,
the maximum number of overlapping packets for staggered
access is then 8.5 and 2.7 under 13Mbps and 52Mbps. No
further throughput improvement will be possible when the
number of receive antennas is beyond this limit. Second,
MIMO/CON without delay packet decoding (MIMO/CON
basic) performs the worst when the number of receive antennas
is small. This loss of efficiency comes from the difficulty
in balancing between overbooking and underutilizing the
channel. However, even without delay packet decoding, the
throughput with MIMO/CON scales well to a larger number
of receive antennas. Third, delay packet decoding can mitigate
the channel utilization problem. With delay packet decoding,
the throughput discrepancy between MIMO/CON and the
optimal scheduler is reduced by 50%. The remaining gap is
mainly due to channel underutilization. Lastly, we add AIMD
control to MIMO/CON to dynamically adjust the transmission
probability. The results show that adding AIMD is effective
and delivers similar throughput performance. Overall, with 5
receive antennas, MIMO/CON can improve the throughput of
staggered access by 140% under 13Mbps; a larger improve-
ment of 210% is observed with a higher 52Mbps data rate.

For a heterogeneous scenario where senders have different
SNR and thus different data rates, we note that MIMO/CON
will still deliver better throughput scalability than SAM. How-
ever, the aggregated network throughput of both approaches
will be bottlenecked by the sender of the lowest rate. In other
words, the throughput performance will be as if all senders
operate at the lowest data rate. This is because concurrent
transmissions are not independent of each other and must be
transmitted in groups. Therefore the time spanned by a set of
concurrent transmissions is dominated by the slowest sender.
Similar problems exist when senders send packets with various
sizes. To improve the efficiency, one may need to cluster
senders according to their SNR, or bound the packet duration
to avoid few slow senders hampering overall throughput.

Finally, to understand the scalability of MIMO/CON, we
conduct a larger scale simulation with 100 senders and up to
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Fig. 10: Throughput of MIMO/CON with 20 nodes.
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32 receive antennas on the AP. Figure 11 shows the throughput
with PHY data rate 13Mbps. The trends of the curves stay
similar as those in Figure 10. The throughput of staggered
access is limited by the packet duration and thus cannot be
improved by the additional antennas. MIMO/CON, in contrast,
has no such contraints, and scales well with the increased
MIMO degrees-of-freedom.

VIII. CONCLUSIONS

In this paper, we have proposed an ambitious scheme for
the purpose of achieving full utilization of uplink capacity
offered by an AP equipped with many receive antennas. A
key to our scheme, called MIMO/CON, is a novel decoding
method which can estimate CSI and identify active senders
from concurrently received packet preambles. While it may
not be surprising that CSI can be derived from fully over-
lapped preambles with joint estimation methods, the task
becomes significantly more difficult when distributed senders
are loosely synchronized and not subject to mutual or cen-
tral coordination. MIMO/CON leverages the recent theory
of compressive sensing to overcome this challenge. In the
MAC layer, MIMO/CON addresses the channel utilization
issue by a novel strategy called delay packet decoding that ex-
ploits normal MAC layer retransmission mechanism to recover
otherwise undecodable packets in a collision. In summary,
MIMO/CON is a method that allows efficient multiuser MIMO
networking among distributed users without requiring strict
synchronization and coordination. We believe the proposed
concurrent channel access and estimation schemes or similar
approaches will be important components for future high-
throughput multiuser MIMO networks.

REFERENCES

[1] Ettus research. In www.ettus.com.
[2] IEEE 802.11n-2009. Amendment 5: Enhancements for higher through-

put. October 2009.
[3] J. Andersen, T. Rappaport, and S. Yoshida. Propagation measurements

and models for wireless communications channels. IEEE Commun.
Mag., 33(1):42–49, 1995.

[4] W. Bajwa et al. Compressed channel sensing: A new approach to
estimating sparse multipath channels. Proc. IEEE, 98(6):1058–1076,
2010.

[5] E. Candes and T. Tao. Decoding by linear programming. IEEE Trans.
Inf. Theory, 51(12):4203–4215, 2005.

[6] M. Davenport et al. Introduction to compressed sensing. Electrical
Engineering, pages 1–68, 2011.

[7] D. Gesbert et al. Shifting the MIMO paradigm. IEEE Signal Process.
Mag., 24(5):36–46, 2007.

[8] S. Ghassemzadeh et al. Measurement and modeling of an ultra-wide
bandwidth indoor channel. IEEE Trans. Commun., 52(10):1786–1796,
2004.

[9] S. Gollakota and D. Katabi. Zigzag decoding: combating hidden
terminals in wireless networks. In ACM SIGCOMM 2008.

[10] S. Gollakota et al. Interference alignment and cancellation. In ACM
SIGCOMM 2009.

[11] A. Gudipati and S. Katti. Strider: automatic rate adaptation and collision
handling. In ACM SIGCOMM 2011.

[12] L. Li et al. Retransmission 6= repeat: simple retransmission permutation
can resolve overlapping channel collisions. In ACM MobiCom 2010.

[13] K. Lin el al. Random access heterogeneous MIMO networks. In ACM
SIGCOMM 2011.

[14] E. Magistretti et al. WiFi-Nano: reclaiming WiFi efficiency through 800
ns slots. In ACM MobiCom 2011.

[15] T. Marzetta. Noncooperative cellular wireless with unlimited numbers
of base station antennas. IEEE Trans. Wireless Commun., 9(11):3590–
3600, 2010.

[16] M. Morelli et al. Synchronization techniques for orthogonal frequency
division multiple access (OFDMA): A tutorial review. Proc. IEEE,
95(7):1394–1427, 2007.

[17] D. Needell and J. Tropp. CoSaMP: Iterative signal recovery from in-
complete and inaccurate samples. Applied and Computational Harmonic
Analysis, 26(3):301–321, 2009.

[18] J. Romberg. An overview of recent results on the identification of sparse
channels using random probes. In IEEE CDC 2010.

[19] K. Tan el al. Fine-grained channel access in wireless lan. In ACM
SIGCOMM 2010.

[20] K. Tan el al. SAM: enabling practical spatial multiple access in wireless
LAN. In ACM MobiCom 2009.

[21] J. Tropp and A. Gilbert. Signal recovery from random measurements
via orthogonal matching pursuit. IEEE Trans. Inf. Theory, 53(12):4655–
4666, 2007.

[22] D. Tse and P. Viswanath. Fundamentals of wireless communication.
Cambridge Univ Pr, 2005.

[23] J. Van de Beek, O. Edfors, M. Sandell, S. Wilson, and P. Borjesson. On
channel estimation in OFDM systems. In IEEE VTC 1995.

[24] S. Yoon, I. Rhee, B. Jung, B. Daneshrad, and J. Kim. Contrabass:
Concurrent transmissions without coordination for ad hoc networks. In
IEEE INFOCOM 2011.


