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Abstract

We present a theory of choice among lotteries in which the decision maker’s attention is drawn

to (precisely defined) salient payoffs. This leads the decision maker to a context-dependent repre-

sentation of lotteries in which true probabilities are replaced by decision weights distorted in favor

of salient payoffs. By specifying decision weights as a function of payoffs, our model provides a novel

and unified account of many empirical phenomena, including frequent risk-seeking behavior, invari-

ance failures such as the Allais paradox, and preference reversals. It also yields new predictions,

including some that distinguish it from Prospect Theory, which we test.
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1 Introduction

Over the last several decades, social scientists have identified a range of important violations

of Expected Utility Theory, the standard theory of choice under risk. Perhaps at the most

basic level, in both experiments and everyday life, people frequently exhibit both risk loving

and risk averse behavior, depending on the situation. As first stressed by Friedman and

Savage (1948), people participate in unfair gambles, pick highly risky occupations (includ-

ing entrepreneurship) over safer ones, and invest without diversification in individual risky

stocks, while simultaneously buying insurance. Attitudes towards risk are unstable in this

very basic sense.

This systematic instability underlies several paradoxes of choice under risk. As shown

by Allais (1953), people switch from risk loving to risk averse choices among two lotteries

after a common consequence is added to both, in contradiction to the independence axiom

of Expected Utility Theory. Another form of instability is preference reversals (Lichtenstein

and Slovic, 1971): in comparing two lotteries with a similar expected value, experimental

subjects choose the safer lottery but are willing to pay more for the riskier one. Camerer

(1995) reviews numerous attempts to amend the axioms of Expected Utility Theory to deal

with these findings, but these attempts have not been conclusive.

We propose a new psychologically founded model of choice under risk, which naturally

exhibits the systematic instability of risk preferences and accounts for the puzzles. In this

model, risk attitudes are driven by the salience of different lottery payoffs. Psychologists

view salience detection as a key attentional mechanism enabling humans to focus their lim-

ited cognitive resources on a relevant subset of the available sensory data. As Taylor and

Thompson (1982) put it: “Salience refers to the phenomenon that when one’s attention

is differentially directed to one portion of the environment rather than to others, the in-

formation contained in that portion will receive disproportionate weighting in subsequent

judgments.” According to Kahneman (2011, p. 324), “our mind has a useful capability to

focus on whatever is odd, different or unusual.” We call the payoffs that draw the decision

maker’s attention “salient”. The decision maker is then risk seeking when a lottery’s upside

is salient and risk averse when its downside is salient. More generally, salience allows for a



theory of context dependent choice consistent with a broad range of evidence.

We build a model of decision making in which salient lottery payoffs are overweighted.

Our main results rely on three assumptions. Two of them, which we label ordering and

diminishing sensitivity, formalize the salience of payoffs. Roughly speaking, a lottery payoff

is salient if it is very different in percentage terms from the payoffs of other available lotteries

(in the same state of the world). This specification of salience captures the ideas that: i)

we attend to differences rather than absolute values (Kahneman, 2003), and ii) we perceive

changes on a log scale (Weber’s law). Our third assumption states that the extent to

which decision weights are distorted depends on the salience of the associated payoffs, and

not on the underlying probabilities. This assumption implies (see Proposition 1) that low

probabilities are relatively more distorted than high ones, in accordance with Kahneman and

Tversky’s (1979) observation that people have “limited ability to comprehend and evaluate

extreme probabilities”. We describe how, under these assumptions, the decision maker

develops a context-dependent representation of each lottery. Aside from replacing objective

probabilities with decision weights, the decision maker’s valuation of payoffs is standard.

At a broad level, our approach is similar to that pursued by Gennaioli and Shleifer (2010)

in their study of the representativeness heuristic in probability judgments. The idea of both

studies is that decision makers do not take into account fully all the information available

to them, but rather over-emphasize the information their minds focus on.1 Gennaioli and

Shleifer (2010) call such decision makers local thinkers, because they neglect potentially

important but unrepresentative data. Here, analogously, in evaluating lotteries, decision

makers overweight states that draw their attention and neglect states that do not. We

continue to refer to such decision makers as local thinkers. In both models, the limiting case

in which all information is processed correctly is the standard economic decision maker.

Our model describes factors that encourage and discourage risk seeking, but also leads

to an explanation of the Allais paradoxes. The strongest departures from Expected Utility

Theory in our model occur in the presence of extreme payoffs, particularly when these occur

with a low probability. Due to this property, our model predicts that subjects in the Allais

experiments are risk loving when the common consequence is small and attention is drawn

1Other models in the same spirit are Mullainathan (2002), Schwartzstein (2009) and Gabaix (2011).
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to the highest lottery payoffs, and risk averse when the common consequence is large and

attention is drawn to the lowest payoffs. We explore the model’s predictions by describing,

and then experimentally testing, how Allais paradoxes can be turned on and off. We also

show that preference reversals can be seen as a consequence of lottery evaluation in different

contexts that affect salience, rather than the result of a fundamental difference between

pricing and choosing. The model thus provides a unified explanation of risk preferences and

invariance violations based on a psychologically motivated mechanism of salience.

It is useful to compare our model to the gold standard of behavioral theories of choice

under risk, Kahneman and Tversky’s (KT, 1979) Prospect Theory. Like Prospect Theory,

our model incorporates the assumption that decision makers focus on payoffs, rather than

on absolute wealth levels, when evaluating risky alternatives (although in our model this

happens through payoff salience and not through the value function). Prospect Theory

also incorporates the assumption that the probability weights people use to make choices

are different from objective probabilities. But the idea that these weights depend on the

actual payoffs and their salience is new here. In some situations, our decision weights look

very similar to KT’s, but in other situations – for instance when small probabilities are not

attached to salient payoffs or when lotteries are correlated – they are very different. We

conduct multiple experiments, both of simple risk attitudes and of Allais paradoxes with

correlated states, which distinguish our predictions from KT’s, and uniformly find strong

support for our model of probability weighting.

The paper proceeds as follows. In Section 2, we provide the basic intuition for how

the salience of lottery payoffs shapes risk attitudes in the context of Allais’ “common con-

sequence” paradox. In Section 3, we present a salience-based model of choice among two

lotteries. In Section 4, we use this model to study risk attitudes, derive from first principles

Prospect Theory’s weighting function for a class of choice problems where it should apply,

and provide experimental evidence for our predictions. In Section 5 we show that our model

accounts for the Allais paradoxes, as well as for preference reversals, a phenomenon that

Prospect Theory cannot accommodate. We obtain further predictions for context effects

(which Prospect Theory also cannot accomodate), such as turning the Allais paradoxes or

preference reversals on and off depending on the description of payoff states, and find exper-
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imental support for these predictions. We then describe how the model deals with losses and

addresses reflection and framing effects. In Section 6, we take stock of the model’s predic-

tions, and compare it to alternative models of choice under risk. Section 7 concludes. Proofs

of the results in the text can be found in the Appendix. As Supplementary Material, Online

Appendix 1 presents additional results on preference reversals and failures of transitivity,

addresses mixed lotteries, and extends the model to choice among many lotteries. Online

Appendix 2 provides a detailed account of the experimental procedures and results.

2 Salience and the Allais Paradox

The Allais paradoxes (1953) are the best known and most discussed instances of failure

of the independence axiom of Expected Utility Theory. Kahneman and Tversky’s (1979)

version of the “common consequence” paradox asks experimental subjects to choose among

two lotteries L1(z) and L2(z):

L1(z) =


$2500 with prob. 0.33

$0 0.01

$z 0.66

, L2(z) =

 $2400 with prob. 0.34

$z 0.66
, (1)

for different values of the payoff z. By the independence axiom, an expected utility maximizer

should not change his choice as the common consequence z is varied, since z cancels out in

the comparison between L1(z) and L2(z).

In experiments, for z = 2400, most subjects are risk averse, preferring L2(2400) to

L1(2400):

L1(2400) =


$2500 with prob. 0.33

$0 0.01

$2400 0.66

≺ L2(2400) =
{

$2400 with prob. 1 .

(2)

When however z = 0, most subjects are risk seeking, preferring L1(0) to L2(0):
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L1(0) =

 $2500 with prob. 0.33

$0 0.34
� L2(0) =

 $2400 with prob. 0.34

$0 0.66
. (3)

In violation of the independence axiom, z affects the experimental subjects’ choices,

causing switches between risk averse and risk seeking behavior. Prospect Theory (KT 1979

and TK 1992) explains these switches as follows. When z = 2400, the low 0.01 probability

of getting zero in L1(2400) is overweighted, generating risk aversion. When z = 0, the extra

0.01 probability of getting zero in L1(0) is not overweighted, generating risk seeking. This

effect is directly built into the probability weighting function π(p) by the assumption of

subcertainty, e.g. π(0.34)− π(0) < 1− π(0.66).2

Our explanation of the Allais paradox does not rely on a fixed weighting function π(p).

Rather, it relies on how decision weights change as the payoff z alters the salience of different

lottery outcomes. Roughly speaking, in the choice between L1(2400) and L2(2400), the

downside of $0 feels a lot lower than the sure payoff of $2400. The upside of $2500, however,

feels only slightly higher than the sure payoff. Because the lottery’s downside is more salient

than its upside, the subjects focus on the downside when making their decisions. This focus

triggers the risk averse choice.

In contrast, in the choice between L1(0) and L2(0), both lotteries have the same downside

risk of zero. Now the upside of winning $2500 in the riskier lottery L1(0) is more salient

and subjects focus on it when making their decisions. This focus triggers the risk seeking

choice. The analogy here is to sensory perception: a lottery’s salient payoffs are those

which differ most from the payoffs of alternative lotteries. The decision maker’s mind then

focuses on salient payoffs, inflating their weights when making a choice. Section 5 provides

a fuller account of the Allais experiment, which also highlights the role played by the level

of objective probabilities.

2In Cumulative Prospect Theory (Tversky and Kahneman, 1992) the mathematical condition on proba-
bility weights is slightly different but carries the same intuition: the common consequence is more valuable
when associated with a sure rather than a risky prospect.

5



3 The Model

A choice problem is described by: i) a set of states of the world S, where each state s ∈ S

occurs with objective and known probability πs such that
∑

s∈S πs = 1, and ii) a choice set

{L1, L2}, where the Li are risky prospects that yield monetary payoffs xis in each state s.

For convenience, we refer to Li as lotteries.3 Here we focus on choice between two lotteries,

leaving the general case of choice among N > 2 lotteries to Section 6.

The decision maker uses a value function v to evaluate lottery payoffs relative to the

reference point of zero.4 Through most of the paper, we illustrate the mechanism generating

risk preferences in our model by assuming a linear value function v (in online Appendix 1,

when we focus on mixed lotteries, we consider a piece-wise linear value function featuring loss

aversion, as in Prospect Theory). Absent distortions in decision weights, the local thinker

evaluates Li as:

V (Li) =
∑
s∈S

πsv(xis). (4)

The local thinker (LT) departs from Equation (4) by overweighting the lottery’s most salient

states in S. Salience distortions work in two steps. First, a salience ranking among the states

in S is established for each lottery Li. Second, based on this salience ranking the probability

πs in (4) is replaced by a transformed, lottery specific decision weight πis. To formally define

salience, let xs = (xis)i=1,2 be the vector listing the lotteries’ payoffs in state s and denote

by x−is the payoff in s of lottery Lj, j 6= i. Let xmin
s , xmax

s respectively denote the largest and

smallest payoffs in xs.

Definition 1 The salience of state s for lottery Li, i = 1, 2, is a continuous and bounded

function σ(xis, x
−i
s ) that satisfies three conditions:

3Formally, Li are acts, or random variables, defined over the choice problem’s probability space (S, FS , π),
where S is assumed to be finite and FS is its canonical σ-algebra. However, as we will see in Equation (11),
the decision maker’s choice depends only on the Li’s joint distribution over payoffs and not on the exact
structure of the state space. Thus we use the term lotteries, in a slight abuse of nomenclature relative to
the usual definition of lotteries as probability distributions over payoffs.

4This is a form of narrow framing, also used in Prospect Theory. Koszegi and Rabin (2006, 2007) build a
model of reference point formation and use it to study shifts in risk attitudes. Their model cannot account for
situations where expectations and thus reference points are held fixed (such as lab experiments we consider
here). Our approaches are complementary, as one could combine our model of decision weights with Koszegi
and Rabin’s two part value function.
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1) Ordering. If for states s,s̃ ∈ S we have that [xmin
s , xmax

s ] is a subset of [xmin
s̃ , xmax

s̃ ], then

σ
(
xis, x

−i
s

)
< σ

(
xis̃, x

−i
s̃

)
2) Diminishing sensitivity. If xjs > 0 for j = 1, 2, then for any ε > 0,

σ(xis + ε, x−is + ε) < σ(xis, x
−i
s )

3) Reflection. For any two states s, s̃ ∈ S such that xjs, x
j
s̃ > 0 for j = 1, 2, we have

σ(xis, x
−i
s ) < σ(xis̃, x

−i
s̃ ) if and only if σ(−xis,−x−is ) < σ(−xis̃,−x−is̃ )

Section 3.1 discusses the connection between these properties and the cognitive notion

of salience. The key properties driving our explanations of anomalies are ordering and

diminishing sensitivity. The reflection property only plays a role in section 5.3 when we

consider lotteries which yield negative payoffs. To illustrate Definition 1, consider the salience

function:

σ(xis, x
−i
s ) =

|xis − x−is |
|xis|+ |x−is |+ θ

, (5)

where θ > 0. According to the ordering property, the salience of a state for Li increases in

the distance between its payoff xis and the payoff x−is of the alternative lottery. In (5), this is

captured by the numerator |xis−x−is |. Diminishing sensitivity implies that salience decreases

as a state’s average (absolute) payoff gets farther from zero, as captured by the denominator

term |x1s|+ |x2s| in (5). Finally, according to reflection, salience is shaped by the magnitude

rather than the sign of payoffs: a state is salient not only when the lotteries bring sharply

different gains, but also when they bring sharply different losses. In (5), reflection takes the

strong form σ(xis, x
−i
s ) = σ(−xis,−x−is ). These properties are illustrated in Figure 1 below.

The salience function in specification (5) satisfies additional properties besides those of

Definition 1. For instance, it is symmetric, namely σ(x1s, x
2
s) = σ(x2s, x

1
s), which is a natural

property in the case of two lotteries but which is dropped with N > 2 lotteries. Although

our main results rely only on ordering and diminishing sensitivity, we sometimes use the
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Figure 1: Properties of a salience function, Eq. (5)

tractable functional form (5) to illustrate our model.

Consider the choice between L1(z) and L2(z) introduced in Section 2. When the common

consequence is z = 2400, the possible payoff states are S = {(2500, 2400), (0, 2400), (2400, 2400)}.

We then have:

σ(0, 2400) > σ(2500, 2400) > σ(2400, 2400). (6)

The inequalities follow from diminishing sensitivity and ordering, respectively, and can be

easily verified for Equation (5). The state in which the riskier lottery L1(2400) loses is the

most salient one (which causes risk aversion).5 A similar calculation shows that, when the

common consequence is z = 0, the state (2500, 0) in which the risky lottery L1(0) wins is the

most salient one, which points to risk seeking. In short, changing the common consequence

affects the salience of lottery payoffs, as described in Section 2. Section 5.1 provides a full

analysis of the Allais paradoxes.

5In this example, constructing the state space from the alternatives of choice is straightforward. Section
3.2 discusses how the state space S is constructed in more complex cases.
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3.1 Salience, Decision Weights and Risk Attitudes

Given a salience function σ, for each lottery Li the local thinker ranks the states and distorts

their decision weights as follows:

Definition 2 Given states s, s̃ ∈ S, we say that for lottery Li state s is more salient than s̃

if σ(xis, x
−i
s ) > σ(xis̃, x

−i
s̃ ). Let kis ∈ {1, ..., |S|} be the salience ranking of state s for Li, with

lower kis indicating higher salience. All states with the same salience obtain the same ranking

(and the ranking has no jumps). Then, if s is more salient than s̃, namely if kis < kis̃, the

local thinker transforms the odds πs̃/πs of s̃ relative to s into the odds πis̃/π
i
s, given by:

πis̃
πis

= δk
i
s̃−k

i
s · πs̃
πs

(7)

where δ ∈ (0, 1]. By normalizing
∑

s π
i
s = 1 and defining ωis = δk

i
s/
(∑

r δ
kir · πr

)
, the

decision weight attached by the local thinker to a generic state s in the evaluation of Li is:

πis = πs · ωis. (8)

The local thinker evaluates a lottery by inflating the relative weights attached to the

lottery’s most salient states. Parameter δ measures the extent to which salience distorts

decision weights, capturing the degree of local thinking. When δ = 1, the decision maker is a

standard economic decision maker: his decision weights coincide with objective probabilities

(i.e., ωis = 1). When δ < 1, the decision maker is a local thinker, namely he overweights the

most salient states and underweights the least salient ones. Specifically, s is overweighted if

and only if it is more salient than average (ωis > 1, or δk
i
s >

∑
r δ

kir · πr). The case where

δ → 0 describes the local thinker who focuses only on a lottery’s most salient payoffs.

The critical property of Definition 2 is that the parameter δ does not depend on the

objective state probabilities. We discuss the cognitive motivations for this assumption in

Section 3.1. This specification implies:

Proposition 1 If the probability of state s is increased by dπs = h ·πs, where h is a positive

constant, and the probabilities of other states are reduced while keeping their odds constant,
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i.e. dπs̃ = − πs
1−πsh · πs̃ for all s̃ 6= s, then:

dωis
h

= − πs
1− πs

· ωis ·
(
ωis − 1

)
. (9)

Proposition 1 (see the Appendix for proofs) states that an increase in a state’s probability

πs reduces the distortion of the decision weight in that state by driving ωis closer to 1. That

is, low probability states are subject to the strongest distortions:6 they are over-weighted

if salient and under-weighted otherwise. In contrast to KT’s (1979,1992) assumption, low

probability (high rank) payoffs are not always overweighted in our model; they are only

overweighted if they are salient, regardless of probability (and rank). In accordance with KT,

however, the largest distortions of choice occur precisely when salient payoffs are relatively

unlikely. This property plays a key role for explaining some important findings such as the

common ratio Allais Paradox in Section 5.1.7

Given Definitions 1 and 2, the local thinker computes the value of lottery Li as:

V LT (Li) =
∑
s∈S

πisv(xis) =
∑
s∈S

πsω
i
sv(xis). (10)

Thus, Li’s evaluation always lies between the value of its highest and lowest payoffs.

Since salience is defined on the state space S, one may wonder whether splitting states,

or generally considering a different state space compatible with the lotteries’ payoff distri-

butions, may affect the local thinker’s evaluation (10). We denote by X the set of dis-

tinct payoff combinations of L1, L2 occurring in S with positive probability, and by Sx the

set of states in S where the lotteries yield the same payoff combination x ∈ X, formally

Sx ≡ {s ∈ S |xs = x}. Clearly, S = ∪x∈XSx. By Definition 1, all states s in Sx are equally

salient for either lottery, and thus have the same value of ωis, which for simplicity we denote

6This follows from the normalization of the decision weights. Since the expected distortion is zero,∑
i πiω

i
s = 1, and since the distortion factor ωis for state s does not depend directly on its probability, states

with lower probabilities are relatively more distorted.
7Proposition 1 can also be stated in terms of payoffs: if lottery Li yields payoff xk with probability pk,

then increasing pk while reducing the probabilities pk′ of other payoffs xk′ (keeping their odds constant)
decreases the distortion of pk if and only if xk is more salient than average. That is, in a given choice
context, the probabilities of unlikely payoffs are relatively more distorted (see the Appendix for details).
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ωix. Using (8) we can rewrite V LT (Li) in (10) as:

V LT (Li) =
∑
x∈X

(∑
s∈Sx

πs

)
ωixv(xix), (11)

where xix denotes Li’s payoff in x. Equation (11) says that the state space only influences

evaluation through the total probability of each distinct payoff combination x, namely πx =∑
s∈Sx

πs. This is because salience σ(., ) depends on payoffs, and not on the probabilities

of different states. Hence, splitting a given probability πx across different sets of states

does not affect evaluation (or choice) in our model. There is therefore no loss in generality

from viewing S as the “minimal” state space X identified by the set of distinct payoff

combinations that occur with positive probability. In the remainder of the paper, we keep

the notation of Equation (10), with the understanding that S is this “minimal” state space

(and omit the reference to the underlying lotteries).

In a choice between two lotteries, Equation (10) implies that - due to the symmetry of

the salience function (i.e. k1s = k2s for all s) - the local thinker prefers L1 to L2 if and only if:

∑
s∈S

δksπs
[
v(x1s)− v(x2s)

]
> 0. (12)

For δ = 1, the local thinker’s decision weights coincide with the corresponding objective

probabilities. For δ < 1, local thinking favors L1 when it pays more than L2 in the more

salient (and thus less discounted) states.

3.2 Discussion of Assumptions and Setup

Salience and Decision Weights

In our model the choice context shapes decision makers’ perception of lotteries through

the mechanism of payoff salience. The properties of the salience function seek to formalize

features of human perception, which we believe – in line with Kahneman, Tversky, and others

– to be relevant for choice under risk. The intensity with which we perceive a signal, such

as a light source, increases in the signal’s magnitude but also depends on context (Kandel et

al, 1991). Analogously, in choice under risk the signals are the differences in lottery payoffs
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across states. Via the ordering property, the salience function σ(., .) captures the signal’s

magnitude in a given state. The role of context is captured by diminishing sensitivity (and

reflection): the intensity with which payoffs in a state are perceived increases as the state’s

payoffs approach the status quo of zero, which is our measure of context.8

Consistent with psychology of attention, we assume that the decision maker evaluates

lotteries by focusing on, and weighting more, their most salient states. The “local thinking”

parameter 1/δ captures the strength of the decision maker’s focus on salient states, proxying

for his ability to pay attention to multiple aspects, cognitive load, or simply intelligence.

Our assumption of rank-based discounting buys us analytical tractability, but our main re-

sults also hold if the distortion of the odds in (7) is a smooth increasing function of salience

differences, for instance δ[σ(x
i
s,x

−i
s )−σ(xis̃,x

−i
s̃

)].9 One benefit of this alternative specification is

that it would avoid discontinuities in valuation. However, discontinuities play no role in our

analysis, so for simplicity we stick to ranking-based discounting. The main substantive re-

striction embodied in our model is that the discounting function does not depend on a state’s

probability, which implies that unlikely states are subject to the greatest distortions. This

notion is also encoded in Prospect Theory’s weigthing function, in which “highly unlikely

events are either ignored or overweighted, ” (KT 1979). Together with subadditivity, this

feature, also present in early work on probability weigthing (Edwards 1962, Fellner 1961),

allows KT to account for risk loving behavior and the Allais paradoxes. Quiggin’s (1982)

rank-dependent expected utility and Tversky and Kahneman’s (1992) Cumulative Prospect

Theory (CPT) develop weigthing functions in which the rank order of a lottery’s payoffs

8As in Weber’s law of diminishing sensitivity, in which a change in luminosity is perceived less intensely if
it occurs at a higher luminosity level, the local thinker perceives less intensely payoff differences occurring at
high (absolute) payoff levels. Interestingly, visual perception and risk taking seem to be connected at a more
fundamental neurological level. McCoy and Platt (2005) show in a visual gambling task that when monkeys
made risky choices neuronal activity increased in an area of the brain (CGp, the posterior cingulate cortex)
linked to visual orienting and reward processing. Crucially, the activation of CGp was better predicted by
the subjective salience of a risky option than by its actual value, leading the authors to hypothesize that
“enhanced neuronal activity associated with risky rewards biases attention spatially, marking large payoffs
as salient for guiding behavior (p. 1226).”

9A smooth specification would also address a concern with the current model that states with similar
salience may obtain very different weights. This implies that i) splitting states and slightly altering payoffs
could have a large impact on choice, and ii) in choice problems with many states the (slightly) less salient
states are effectively ignored. However, since none of our results is due to these effects, we stick to rank-based
discounting for simplicity.
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affects probability weighting.10

Our theory exhibits two sharp differences from these works. First, in our model the mag-

nitude of payoffs, not only their rank, determines salience and probability weights: unlikely

events are overweighted when they are associated with salient payoffs, but underweighted

otherwise. As a consequence, the lottery upside may still be underweighted if the payoff

associated with it is not sufficiently high. As we show in Section 4, this feature is crucial

to explaining shifts in risk attitudes. Second, and more important, in our model decision

weights depend on the choice context, namely on the available alternatives as they are pre-

sented to the decision maker. In Section 5 we exploit this feature to shed light on the

psychological forces behind the Allais paradoxes and preference reversals.

Our main results rely on ordering and diminishing sensitivity of σ(·, ·), as well as on

the comparatively larger distortion of low probabilities. We however sometimes illustrate

the model by using the more restrictive salience function in Equation (5), which offers a

tractable case characterized by only two parameters (θ, δ). This allows us to look for ranges

of θ and δ that are consistent with the observed choice patterns.

The State Space

Salience is a property of states of nature that depends on the lottery payoffs that occur

in each state, as they are presented to the decision maker. The assumption that payoffs

(rather than final wealth states) shape the perception of states is a form of narrow framing,

consistent with the fact that payoffs are perceived as gains and losses relative to the status

quo, as in Prospect Theory.

In our approach, the state space S and the states’ objective probabilities are a given of the

choice problem.11 In the lab, specifying a state space for a choice problem is straightforward

when the feasible payoff combinations – and their probabilities – are available, for instance

when lotteries are explicitly described as contingencies based on a randomizing device. For

example, L1 ≡ (10, 0.5; 5, 0.5) and L2 ≡ (7, 0.5; 9, 0.5) give rise to four payoff combinations

{(10, 7), (10, 9), (5, 7), (5, 9)} if they are played by flipping two separate coins, but only to

10Prelec (1998) axiomatizes a set of theories of choice based on probability weighting, which include CPT.
For a recent attempt to estimate the probability weighting function, see Wu and Gonzalez (1996).

11In particular, we do not address choice problems where outcome probabilities are ambiguous, such as
the Ellsberg paradox. This is an important direction for future work. Similarly, the salience-based decision
weights are not to be understood as subjective probabilities.
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two payoff combinations {(10, 7), (5, 9)} if they are contingent on the same coin flip. In

our experiments, we nearly always describe the lotteries’ correlation structure by specifying

the state space. However, classic experiments such as the Allais paradoxes provide less

information: they involve a choice between (standard) lotteries, and the state space is not

explicitly described. In this case, we assume that our decision maker treats the lotteries

as independent, which implies that the state space is the product space induced by the

lotteries’ marginal distributions over payoffs.12 Intuitively, salience detects the starkest payoff

differences among lotteries unless some of these differences are explicitly ruled out.

For the choice problems we study, the choice set and thus the state space are unam-

biguous. All our results are obtained by equating the choice set with the set of options the

decision maker is actively considering (the consideration set). In real world applications,

however, the consideration set need not coincide with the choice set. In some situations,

the decision maker may in fact consider only a subset of the available options. For example,

he may discard universally dominated lotteries from his choice set before evaluating other,

more attractive, lotteries. As another example, suppose that the payoffs of two lotteries are

determined by the roll of the same dice. One lottery pays 1,2,3,4,5,6, according to the dice’s

face; the other lottery pays 2,3,4,5,6,1. The state in which the first lottery pays 6 and the

second pays 1 may appear most salient to the decision maker, leading him to prefer the first

lottery. Of course, a moment’s thought would lead him to realize that the lotteries are just

rearrangements of each other, and recognize them as identical. In the following, we assume

that, before evaluating lotteries, the decision maker edits the choice set by discarding all but

one of the lottery permutations (at random, thus preserving indifference between the permu-

tations). Both forms of editing are plausibly related to salience itself: in these cases, before

comparing payoffs, what is salient to the decision maker are the properties of permutation

or dominance of certain lotteries.

In other situations, the consideration set may be larger than the actual choice set, for

instance when the choice problem itself reminds the decision maker of options that are not

actually available for choice. In this case, options outside the choice set may influence salience

12In online Appendix 2 we provide experimental evidence consistent with this assumption, as well as details
on the information given in the experimental surveys.
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and choice. This perspective provides insight into the endowment effect, as shown in (BGS

2012), and into puzzles in consumer choice such as decoy effects and context-dependent

willingness to pay for goods, as shown in (BGS 2011). Here this issue arises only in our

discussion of preference reversals, where we argue that when people evaluate a lottery in

isolation, they might compare it to the alternative of having nothing (see Section 5.2).

Endogenizing the consideration set is an important direction for future work. There is

a large literature on this topic in marketing and a growing one in decision theory (e.g.,

Manzini and Mariotti 2007, Masatlioglu, Nakajima and Ozbay 2010), but a consensus model

has not yet emerged. In a similar spirit, the model could be generalized to take into account

determinants of salience other than payoff values, such as prior experiences and details

of presentation, or even color of font. These may matter in some situations but are not

considered here.

Salience and Context Dependent Choice

We are not the first to propose a model of context dependent choice among lotteries.

Rubinstein (1988), followed by Aizpurua et al (1990) and Leland (1994), builds a model

of similarity-based preferences, in which decision makers simplify the choice among two

lotteries by pruning the dimension (probability or payoff, if any), along which lotteries are

similar. The working and predictions of our model are different from Rubinstein’s, even

though we share the idea that the common ratio Allais paradox (see Section 5.1.2) is due to

subjects’ focus on lottery payoffs. Loomes (2010) proposes a model which is closely related to

Rubinstein’s, and presents evidence which suggests a role for probability comparisons across

lotteries in choice. In Regret Theory (Loomes and Sugden 1982, Bell 1982, Fishburn 1982),

the choice set directly affects the decision maker’s utility via a regret/rejoice term added

to a standard utility function. In our model, instead, context affects decisions by shaping

the salience of payoffs and decision weights. Regret Theory shares with our model the idea

that states with higher payoff differences have a disproportionate effect on choices. In that

theory, decision makers get (dis)utility from comparing foregone outcomes. Regret theory

can account for a certain type of context dependence, such as a role for correlations among

lotteries; however, by adopting a traditional utility theory perspective, it cannot capture

framing effects or violations of procedural invariance (Tversky, Slovic and Kahneman 1990).
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Moreover, since Regret Theory does not feature diminishing sensitivity (as it excludes the

notion of a reference point), it has a hard time accounting for standard patterns of risk

preferences, including risk averse preferences for fair 50-50 gambles over gains and their

reflection over losses.

Formal models of context dependent choice (e.g. Fishburn 1982) may be criticized as

not being falsifiable because too many choice patterns can be justified. We stress that

our psychologically based assumptions of ordering and diminishing sensitivity place tight

restrictions on the predictions of our model under any value (and salience) function. To

give one example, both the ordering and the diminising sensitivity property make strong

predictions regarding the conditions for, and the directionality of, the Allais paradox. In

particular, they imply that the independence axiom of Expected Utility Theory should hold

when the mixture lotteries are correlated (see Section 5.1). To give another example, the

distortion of decision weights in Definition 2 implies that pairwise choice among two or

three outcome independent lotteries having the same support is transitive and that choice is

consistent with first order stochastic dominance when lotteries are independent (see online

Appendix 1). In future work, it may be useful to uncover the precise axioms consistent with

Definitions 1 and 2.

4 Salience and Attitudes Towards Risk

We first describe how salience affects the risk preferences of a local thinker with linear utility.

To do so, consider the choice between a sure prospect L0 = (x, 1) and a mean preserving

spread L1 = (x+ g, πg; x− l, 1− πg), with gπg = (1− πg)l. All payoffs are positive. In this

choice, there are two states: sg = (x + g, x), in which the lottery gains relative to the sure

prospect, and sl = (x− l, x), in which the lottery loses.

Since L1 is a mean preserving spread of L0, Equation (12) implies that for any δ < 1, a

local thinker with linear utility chooses the lottery if and only if the gain state sg is more

salient than the loss state sl, i.e. when σ(x + g, x) > σ(x − l, x). In this case, using the

notation of Definition 2, the weight π1
g attached to the event of winning under the lottery is

higher than the event’s probability πg. As a result, the local thinker perceives the expected
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value of L1 to be above that of L0, and exhibits risk seeking behavior, choosing L1 over L0.

Using the fact that gπg = (1 − πg)l, the condition for sg to be more salient than sl can

be written as:

σ

(
x+

1− πg
πg

· l, x
)
> σ (x− l, x) . (13)

The ordering property of salience has two implications. First, when the state sg is very

unlikely, it is also salient: at πg ' 0 the lottery’s upside is very large, its salience is high,

and (13) always holds. Second, the salience of sg decreases in πg: as the lottery wins with

higher probability, its payoff gain g is lower and thus less salient. Thus, Equation (13) is less

likely to hold as πg rises. The diminishing sensitivity property in turn implies that when

the lottery gain is equal to the loss (i.e., g = l), the loss is salient. As a consequence, when

πg = 1/2 the state sg is less salient than sl, so (13) is violated.

As a result, condition (13) identifies a probability threshold π∗g < 1/2 such that: for πg <

π∗g the lottery upside is salient, the local thinker overweights it and behaves in a risk seeking

way; for πg > π∗g the lottery downside is salient, the local thinker overweights it and behaves

in a risk averse way; for πg = π∗g states sg and sl are equally salient and the local thinker is risk

neutral. Remarkably, these properties of decision weights recover key features of Prospect

Theory’s inverse S-shaped probability weighting function (KT 1979): over-weighting of low

probabilities, and under-weighting of high probabilities. Indeed, Figure 2 shows the decision

weight π1
g as a function of probability πg. Low probabilities are over-weighted because

they are associated with salient upsides of longshot lotteries. High probabilities are under-

weighted as they occur in lotteries with a small, non salient, upside.

Note however that in our model the weighting function is context dependent. In contrast

to Prospect Theory, overweighting depends not only on the probability of a state but also

on the salience of its payoff in (13). In particular, overweighting is shaped by the average

level of payoffs x. To see this, denote by r = vLT (L0)− vLT (L1) the “premium” required by

the local thinker to be indifferent between the risky option L1 and the sure prospect L0 (r

is positive when the local thinker is risk averse). For a rational decision maker with linear

utility, r = 0 regardless of the payoff level x. To see how the local thinker’s risk attitudes
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Figure 2: Context dependent probability weighting function

depend on x, consider the following definition:

Definition 3 A salience function is convex if, for any state with positive payoffs (y, z) and

any x, ε > 0, the difference σ(y + x, z + x)− σ(y + x+ ε, z + x+ ε) is a decreasing function

of the payoff level x. A salience function is concave if this difference increases in x.

A salience function is convex if diminishing sensitivity becomes weaker as the payoff level x

rises. The Appendix then proves:

Lemma 1 If the salience function is convex, then r = vLT (L0)− vLT (L1) weakly decreases

with x. Conversely, if the salience function is concave then r weakly increases with x.

If convexity holds and diminishing sensitivity becomes weaker with x, then a higher payoff

level weakly reduces r, increasing the valuation of the risky lottery L1 relative to that of

the safe lottery L0. In Equation (13), this increases the threshold π∗g , boosting risk seeking.

If instead diminishing sensitivity becomes stronger with x, a higher payoff level leads to an

increase in r, weakly decreasing L1’s valuation relative to that of L0. In equation (13) this

reduces the threshold π∗g , hindering risk seeking.

The salience function of Equation (5) satisfies convexity. Using this function, the condi-

tion (13) for sg to be more salient than sl becomes:

(
x+

θ

2

)
(1− 2πg) > l · (1− πg), (14)
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which is indeed more likely to hold for higher x (so long as πg < 1/2).

Equation (14) implies that, holding the lottery loss l constant, risk attitudes follow Figure

3 below (where for convenience we set θ · l ' 0). As x rises, the threshold π∗g below which

Figure 3: Shifts in risk attitudes

the decision maker is risk seeking increases, so that risk seeking behavior can occur even at

relatively high probabilities πg (but never for πg > 1/2, though).

We tested the predictions illustrated in Figure 3 by giving experimental subjects a se-

ries of binary choices between a mean preserving spread L1 = (x + g, πg; x − l, 1 − πg)

and a sure prospect L2 = (x, 1). We set the downside of L1 at l = $20, yielding an

upside g of $20 · (1 − πg)/πg. We varied x in {$20, $100, $400, $2100, $10500} and πg in

{.01, .05, .2, .33, .4, .5, .67}. For each of these 35 choice problems, we collected at least 70

responses. On average, each subject made 5 choices, several of which held either πg or x

constant. The observed proportion of subjects choosing the lottery for every combination

(x, πg) is reported in Table 1; for comparison with the predictions of Figure 3, the results

are shown in Figure 4.

The patterns are qualitatively consistent with the predictions of Figure 3. First, and

crucially, for any given expected value x, the proportion of risk takers falls as πg increases

and there is a large drop in risk taking as πg crosses 0.5. This prediction is consistent with

the probability weighting function depicted in Figure 2. Second, for a given πg < 0.5, the
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Table 1: Proportion of Risk-Seeking Subjects

E
x
p

ec
te

d
va

lu
e
x

$10500 0.83 0.65 0.50 0.48 0.46 0.33 0.23
$2100 0.83 0.65 0.48 0.43 0.48 0.38 0.21
$400 0.60 0.58 0.44 0.47 0.33 0.30 0.23
$100 0.58 0.54 0.40 0.32 0.22 0.30 0.13
$20 0.15 0.2 0.12 0.08 0.10 0.25 0.15

0.01 0.05 0.2 0.33 0.4 0.5 0.67
Probability of gain πg

Figure 4: Proportion of Risk-Seeking Subjects

proportion of risk takers increases with the expected value x. The effect is statistically

significant: at πg = 0.05 a large majority of subjects (80%) are risk averse when x = $20,

but as x increases to $2100 a large majority (65%) becomes risk seeking. This finding is

consistent with the finer hypothesis, encoded in equation (5), that diminishing sensitivity

may become weaker at higher payoff levels. The increase in x raises the proportion of risk

takers from around 10% to 50% even for moderate probabilities in the range (0.2, 0.4).

Although not a formal test of our theory, these patterns are broadly consistent with

the predictions of our model.13 The online Appendix 2 describes additional experiments

13The weighing function of Prospect Theory and CPT can explain why risk seeking prevails at low πg,
but not the shift from risk aversion to risk seeking as x rises. To explain this finding, both theories need a
concave value function characterized by strongly diminishing returns. In the online Appendix 2 we provide
further support for these claims by showing that standard calibrations of Prospect Theory cannot explain
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on longshot lotteries whose results are also consistent with out model but inconsistent with

Prospect Theory under standard calibrations of the value function. In that Appendix we

show that using the salience function in (5) the parameter values δ ∼ 0.7 and θ ∼ 0.1

are consistent with the above evidence on risk preferences, as well as with risk preferences

concerning longshot lotteries. These values are not a formal calibration, but we employ them

as a useful reference for discussing Allais paradoxes in the next section.

5 Local Thinking and Context Dependence

5.1 The Allais Paradoxes

5.1.1 The “common consequence ” Allais Paradox

Let us go back to the Allais paradox described in Section 2. We now describe the precise

conditions under which our model can explain it. Recall that subjects are asked to choose

between the lotteries:

L1(z) = (2500, 0.33; 0, 0.01; z, 0.66), L2(z) = (2400, 0.34; z, 0.66) (15)

for different values of z. For z = 2400, most subjects are risk averse, preferring L2(2400) to

L1(2400), while for z = 0, most subjects are risk seeking, preferring L1(0) to L2(0).

When z = 2400, the minimal state space is S = {(2500, 2400), (0, 2400), (2400, 2400)}.

The most salient state is one where the risky lottery L2400
1 pays zero because, by ordering

and diminishing sensitivity we have:

σ(0, 2400) > σ(2500, 2400) > σ(2400, 2400). (16)

our experimental findings. For example, the calibration in Tversky and Kahneman (1992) features the value
function v(x) = x0.88, which is insufficiently concave. Importantly, calibrations of the value function are
notoriously unstable: using two other sets of choice data, Wu and Gonzalez (1996) estimate v(x) = x0.5

and v(x) = x0.37, respectively. The fact that calibration is so dependent on the choice context suggests that
choice itself is context dependent.
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By Equation (12), a local thinker then prefers the riskless lottery L2(2400) provided:

−(0.01) · 2400 + δ · (0.33) · 100 < 0, (17)

which holds for δ < 0.73. Although the risky lottery L1(2400) has a higher expected value,

it is not chosen when the degree of local thinking is severe, because its downside of 0 is very

salient.

Consider the choice between L1(0) and L2(0). Now both options are risky and, as dis-

cussed in Section 3, the local thinker is assumed to see the lotteries as independent. The mini-

mal state space now has four states of the world, i.e. S = {(2500, 2400), (2500, 0), (0, 2400), (0, 0)},

whose salience ranking is:

σ(2500, 0) > σ(0, 2400) > σ(2500, 2400) > σ(0, 0). (18)

The first inequality follows from ordering, and the second from diminishing sensitivity. By

Equation (12), a local thinker prefers the risky lottery L0
1 provided:

(0.33) · (0.66) · 2500− δ · (0.67) · (0.34) · 2400 + δ2 · (0.33) · (0.34) · 100 > 0 (19)

which holds for δ ≥ 0. Any local thinker with linear utility chooses the risky lottery L1(0)

because its upside is very salient.

In sum, when δ < 0.73 a local thinker exhibits the Allais paradox. This is true for

any salience function satisfying ordering and diminishing sensitivity, and thus also for the

parameterization δ = 0.7, θ = 0.1 obtained when using (5). It is worth spelling out the exact

intuition for this result. When z = 2400, the lottery L2400
2 is safe, whereas the lottery L2400

1

has a salient downside of zero. The local thinker focuses on this downside, leading to risk

aversion. When instead z = 0, the downside payoff of the safer lottery L0
2 is also 0. As a

result, the lotteries’ upsides are now crucial to determining salience. This induces the local

thinker to overweight the larger upside of L0
1, triggering risk seeking. The salience of payoffs

thus implies that when the same downside risk is added to the lotteries L2400
1 and L2400

2 ,

the sure prospect L2400
2 is particularly hurt because the common downside payoff induces
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the decision maker to focus on the larger upside of the risky lottery, leading to risk seeking

behavior. This yields the “certainty effect” of Prospect Theory and CPT (KT 1979 and TK

1992) as a form of context dependence due to payoff salience.

This role of context dependence invites the following test. Suppose that subjects are

presented the following correlated version of the lotteries L1(z) and L2(z) in Equation (15):

Probability 0.01 0.33 0.66

payoff of L1(z) 0 2500 z

payoff of L2(z) 2400 2400 z

(20)

where the table specifies the possible joint payoff outcomes of the two lotteries and their

respective probabilities. Correlation changes the state space but not a lottery’s distribution

over final outcomes, so it does not affect choice under either Expected Utility Theory or

Prospect Theory. Critically, this is not true for a local thinker: the context of this correlated

version makes clear that the state in which both lotteries pay z is the least salient one, and

also that it drops from evaluation in Equation (12), so that the value of z should not affect

the choice at all. This is due to the ordering property: states where the two lotteries yield the

same payoff are the least salient ones and in fact cancel out in the local thinker’s valuation

(ordering leads to them being “edited out” by the local thinker). That is, in our model –

but not in Prospect Theory – the Allais paradox should not occur when L1(z) and L2(z) are

presented in the correlated form as in (20).

We tested this prediction by presenting experimental subjects correlated formats of lot-

teries L1(z) and L2(z) for z = 0 and z = 2400. The observed choice pattern is the following:

L1(2400) L2(2400)

L1(0) 7% 9%

L2(0) 11% 73%

The vast majority of subjects do not reverse their preferences (80% of choices lie on the

NW-SE diagonal), and most of them are risk averse, which in our model is also consistent with

the fact that (0, 2400) is the most salient state in the correlated choice problem (20). Among

the few subjects reversing their preference, no clear pattern is detectable. This contrasts

23



with the fact that our experimental subjects exhibit the Allais paradox when lotteries are

presented in an uncorrelated form (see the online Appendix 2, Supplementary Material).

Thus, when the lotteries pay the common consequence in the same state, choice is invariant

to z and the Allais paradox disappears. Our model accounts for this fact because, as the

common consequence z is made evident by correlation, it becomes non-salient. As a result,

subjects prune it and choose based on the remaining payoffs.14

This result captures Savage’s (1972, pg. 102) argument in defense of the normative char-

acter of the “sure thing principle”, and validates his thought experiment. Other experiments

in the literature are consistent with our results. Conlisk (1989) examines a related variation

of the Allais choice problem, in which each alternative is given in compound form involving

two simple lotteries, with one of the simple lotteries yielding the common consequence z.

Birnbaum and Schmidt (2010) present the Allais problem in split form, singling out the

common consequence z in each lottery. In both cases, the Allais reversals subside. Our

model also rationalizes the disappearance of the Allais paradox in Colinsk’s (1989) second

example, which uses non-boundary lotteries. See also Harrison (1994) for related work on

the common consequence paradox.

5.1.2 The “common ratio” Allais Paradox

We now turn to the “common ratio” paradox, which occurs in the choice between lotteries:

L1(π
′) = (6000, π′; 0, 1− π′), L2(π) = (α · 6000, π; 0, 1− π), (21)

where L1(π
′) is riskier than L2(π) in the sense that it pays a larger positive amount (α < 1)

with a smaller probability (π′ < π). By the independence axiom, an expected utility

14We tested the robustness of the correlation result by changing the choice problem in several ways: 1) we
framed the correlations verbally (e.g. described how the throw of a common die determined both lotteries’
payoffs), 2) we repeated the experiment with uncertain real world events, instead of lotteries, and 3) we
varied the ordering of questions, the number of filler questions, and payoffs. As online Appendix 2 shows,
our results are robust to all these variations. We also ran an experiment where subjects were explicitly
presented the lotteries of Equation (15) with z = 2400 as uncorrelated, with a state space consisting of the
four possible states. The choice pattern exhibited by subjects is: i) very similar to the one exhibited when
the state space is not explicitly presented, validating our basic assumption that a decision maker assumes
the lotteries to be uncorrelated when this is not specified otherwise, and ii) very different from the choice
pattern exhibited under correlation (with 35% of subjects changing their choice as predicted by our model,
see online Appendix 2).
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maximizer with utility function v(·) chooses the safer lottery L2(π) over L1(π
′) when:

v(α · 6000) ≥ π′

π
· v(6000) + v(0)

(
1− π′

π

)
. (22)

The choice should not vary as long as π′/π is kept constant. A stark case arises when

π′/π = α; now the two lotteries have the same expected value and a risk averse expected

utility maximizer always prefers the safer lottery L2(π) to L1(π
′) for any π. Parameter α

identifies the “common ratio” between π′ and π at different levels of π.

It is well known (KT 1979) that, contrary to the Expected Utility Theory, the choices

of experimental subjects depend on the value of π: for fixed π′/π = α = 0.5, when π = 0.9

subjects prefer the safer lottery L2(0.9) = (3000, 0.9; 0, 0.1) to L1(0.45) = (6000, 0.45; 0,

0.55). When instead π = 0.002, subjects prefer the riskier lottery L1(0.001) = (6000, 0.001;

0, 0.999) to L2(0.002) = (3000, 0.002; 0, 0.998). This shift towards risk seeking as the

probability of winning falls has provided one of the main justifications for the introduction of

the probability weigthing function. In fact, KT (1979) account for this evidence by assuming

that this function grows slower than linearly for small π; hence, απ is overweighted relatively

to π at low values of π, inducing the choice of L1(π
′) when π = 0.002.

Consider the choice between L1(π
′) and L2(π) in our model. For α = 1/2 there are four

states of the world, S = {(6000, 3000), (0, 3000), (6000, 0), (0, 0)}. Once more, ordering and

diminishing sensitivity suffice to imply that the salience ranking among states is

σ(6000, 0) > σ(0, 3000) > σ(6000, 3000) > σ(0, 0). (23)

It is convenient to express the local thinker’s decision as a function of the transformed

probabilities of the lottery outcomes (as opposed to those of states of the world).15 Denoting

these transformed probabilities by π̂′ and π̂, we find that the local thinker evaluates the odds

15From any vector of state-specific decision weights (πis)s∈S , the decision weight πi(x) attached to lottery
i’s payoff x is equal to the sum of the decision weights of all states where lottery i pays payoff x. Formally,
πi(x) =

∑
s∈Sxi

πis where Sxi is the set of states where i pays x.
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with which the riskier lottery L1(π
′) pays out relative to the safer one L2(π) as:

π̂′

π̂
=
π′

π
· (1− p) + pδ2

(1− π′)δ + π′2
. (24)

With a linear utility, the local thinker selects the safer lottery L2(π) if and only if π̂′/π̂ ≤ 1/2.

This implies that the local thinker chooses the safer lottery when:

π ≥ 2(1− δ)
2− δ − δ2

. (25)

As in the common ratio effect, the local thinker is risk averse when π is sufficiently high and

risk seeking otherwise. In particular, for δ ∈ (0.22, 1), the local thinker switches from L2(0.9)

to L1(0.001) just as experimental subjects do. This is true for any salience function satisfying

ordering and diminishing sensitivity and thus also for the parameterization δ = 0.7, θ = 0.1.

The intuition for this result (see Proposition 1) is that salience exerts a particularly

strong effect in low probability states. The upside of the riskier lottery L1(π
′) is salient at

every π, creating a force toward risk seeking. Crucially, however, this force is strong precisely

when π is low. In this case, the greater salience of the risky lottery’s upside blurs the small

probability difference π − π′ = (1− α)π between the two lotteries. When instead π is large,

the decision maker realizes that the risky lottery is much more likely to pay nothing, inducing

him to attach a large weight on the second most salient state (0, 3000). This is what drives

the choice of the safe lottery L2(π).

Experimental evidence shows that this common ratio effect is also not robust to the

introduction of correlation. KT (1979) asked subjects to choose between two lotteries of the

type (23) in a two-stage game where in the first stage there is a 75% probability of the game

ending without any winnings and a 25% change of going to stage two. In stage two, the

lottery chosen at the outset is played out. The presence of the first stage is equivalent to

reducing by 75% the winning probability for both lotteries, so in terms of final outcomes this

setting is equivalent to the setting that leads to the common ratio effect above. Crucially,

KT document that in this formulation there is no violation of the independence axiom.

In explaining this behavior, KT informally argue that individuals “edit out” the correlated

first stage state where both lotteries pay zero. Our model yields this editing as a consequence
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of the low salience and cancellation of such state. Adding a correlated state where both

lotteries pay 0 neither affects the salience ranking in Equation (23) nor – more importantly

– the odds ratios between states. As a result, the local thinker chooses as if he disregards

the correlated state and its probability. This is what experimental subjects do.

In sum, our model explains the Allais paradoxes as the by-product of a specific form

of context dependence working though the salience of lottery payoffs. Adding a common

payoff to all lotteries or rescaling their probabilities changes risk preferences by changing

the salience and the weighting of the lotteries’ upsides or downsides. These effects depend

on how the lotteries are presented. Adding a common payoff or rescaling probabilities by

introducing into the lotteries a non-salient correlated state does not affect choice: it is too

enticing for subjects to disregard this state and to abide by the independence axiom.

5.2 Preference Reversals

Context dependence in our model can also explain the phenomenon of preference reversal

described by Lichtenstein and Slovic (1971) and confirmed by Grether and Plott (1979) and

Tversky, Slovic and Kahneman (1990). Subjects are asked to choose between a safer lottery

Lπ, which has a high probability of a low payoff, and a riskier lottery L$, which has a low

probability of a high payoff (we use conventional notation for the lotteries). Subjects may

systematically choose the safer lottery Lπ and yet state a higher minimum selling price for

the riskier lottery L$. Preferences as revealed by choice are thus the opposite of preferences

as revealed by pricing, leading to claims that choosing and pricing follow two fundamentally

different principles. Neither Prospect Theory nor Expected Utility Theory can rationalize

preference reversals.

To study preference reversals in our model, consider how a local thinker prices a lottery.

Given that in our model valuation is context dependent, the concept of a minimum selling

price can be interpreted in two distinct ways.16 Under the valuation approach, in jointly

16Several authors have studied preference reversals by focusing on the details of the experimental procedure,
in particular the incentive structures. Thus, Karni and Safra (1987) suggest that Grether and Plott’s BDM
elicitation mechanism should be interpreted as a choice between two stage-lotteries, and that preference
reversals follow from violations of the independence axiom required to interpret elicited prices as certainty
equivalents (see also Holt (1986)). Segal (1988) suggests instead it results from violations of the reduction
axiom. Evidently, the interpretation of experimental procedures is an important factor even in models which
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evaluating two lotteries {L1, L2}, the minimum selling price for either of them is the lottery’s

monetary valuation obtained by using the decision weights determined in {L1, L2} according

to Definitions 1 and 2. Formally, a local thinker with a value function v(·) prices L1 at:

Pmin(L1 |L2 ) = v−1

[∑
s∈S

π1
sv(x1s)

]
, (26)

where π1
s is the decision weights of state s for lottery L1 in the context of its choice from

the set {L1, L2}. Here salience is determined by the consideration set {L1, L2}, which does

not coincide with the local thinker’s choice set (since he is not choosing between the two

lotteries, he is pricing them). With a linear value function, the price Pmin(L1|L2) is the

expected value of L1 as perceived by the local thinker. If the local thinker is asked to price a

lottery in isolation, this approach suggests that he evaluates it together with the alternative

of not having the lottery, namely having zero for sure, L0 ≡ (0, 1). We see this as a natural

way to model the elicitation of minimum selling prices in cases where – as in most preference

reversal experiments – subjects must state this price (potentially under an incentive scheme).

Alternatively, under the revealed preference approach, the minimum selling price is found

by revealed preference: the price of lottery L1 is then the minimum amount of money c1

such that adding the sure prospect Lc = (c1, 1) to the choice set makes the local thinker

weakly prefer the sure prospect. In this approach, salience is determined by the decision

maker’s actual choice set {L1, Lc}. In this section we adopt the valuation approach to study

reversals. In online Appendix 1, we show that our model can also yield reversals using

the revealed preference approach, but under more restricted circumstances than under the

valuation approach. Consistent with the difference between the two approaches, experiments

that explicitly implemented the revealed preference approach found significantly lower levels

of reversals (Bostic, Herrnstein and Luce 1989, see also Tversky, Slovic and Kahneman 1990).

In the preference reversal experiments, subjects are first asked to price in isolation, and

preserve transitivity and are not context dependent.
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then to choose among, the following two independent lotteries:

L$ =

 x, with prob. π′

0, 1− π′
, Lπ =

 αx, with prob. π

0, 1− π
, (27)

where typically π′/π = α = 1/2, as in the common ratio experiments. We know from (25)

that, with linear utility, the local thinker selects the safer lottery Lπ when π > 2(1− δ)/(2−

δ−δ2). In the literature, we typically have π > 3/4, so this constraint holds for any δ ≥ 2/3.

Thus, when asked to choose, a local thinker having linear utility and δ = 0.7 is risk averse

and prefers Lπ to L$, just as most experimental subjects do.

In contrast, when the local thinker is asked to price the lotteries in isolation, he evaluates

each lottery relative to L0 = (0, 1). In this comparison, each lottery’s upside is salient. As a

consequence, since α = 1/2 the local thinker prices the lotteries as:

P (Lπ |L0 ) = x
2
· π
π+(1−π)δ , P (L$ |L0 ) = x · π/2

π/2+(1−π/2)δ . (28)

For any δ < 1, the local thinker prices L$ higher than Lπ in isolation, i.e.

P (L$ |L0 ) > P (Lπ |L0 ).

Both lotteries are priced above their expected value, but L$ is more overpriced than Lπ

because it pays a higher gain with a smaller probability, and from Proposition 1 we know

that lower probabilities are relatively more distorted.17

Thus, while in a choice context the local thinker prefers the safer lottery Lπ, in isola-

tion he prices the risky lottery L$ higher, exhibiting a preference reversal. Crucially, this

behavior is not due to the fact that choosing and pricing are different operations. In fact,

in our model choosing and pricing are the same operation, as in standard economic the-

ory. Preference reversals occur because, unlike in standard theory, evaluation in our model

is context dependent. Pricing and choosing differ because the underlying evaluations are

17These predictions are borne out by the literature as well as by our own experimental data. Tversky,
Slovic and Kahneman (1990) show that preference reversals follow from overpricing of L$ in isolation, and
that Lπ is not underpriced. Our model predicts that decision makers price Lπ close to its expected value
because it offers an extremely high probability of winning, which is hardly distorted.
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performed in different contexts. One noteworthy feature of our model is that it generates

preference reversals through violations of “procedural invariance”, defined by Tversky, Slovic

and Kahneman (1990) as situations in which a subject prices a lottery above its expected

value, P (L1|L0) > E(x1s), and yet prefers the expected value to the lottery, L1 ≺ (E(x1s), 1).

Tversky, Slovic and Kahneman (1990) show that the vast majority of observed reversals fol-

low from the violations of procedural invariance, as predicted by our model. Regret Theory

can also generate preference reversals, using the revealed preference approach to determine

certainty equivalents (Loomes and Sugden 1983). These reversals are not due to violations

of procedural invariance (in contrast to the evidence), but due to intransitivity in choice.

One distinctive implication of our context-based explanation is that reversals between

choice and pricing should only occur when pricing takes place in isolation but not if decision

makers price lotteries in the choice context itself. We tested this hypothesis by giving subjects

a choice between lotteries L$ = (16, 0.31; 0, 0.69) and Lπ = (4, 0.97; 0, 0.03), which Tversky,

Slovic and Kahneman (1990) found to lead to a high rate of preference reversals. Subjects

stated their certainty equivalents for the two lotteries, in isolation and in the context of

choice.18 Our model then predicts that preference reversal should occur between choice and

pricing in isolation, but not between choice and pricing in the choice context.19

Despite considerable variation in subjects’ evaluations (which is a general feature of such

elicitations, see Grether and Plott (1979), Bostic, Herrnstein and Luce (1990), Tversky,

Slovic and Kahneman (1990)), the results are consistent with our predictions. First, among

the subjects who chose Lπ over L$, the average (avg) price of Lπ in isolation was lower than

the average price of L$ in isolation:

avg[P (Lπ |L0 )] = 4.6 < avg[P (L$ |L0 )] = 5.2 .

Thus, our subject pool exhibits the standard preference reversal between choice and average

18In our experimental design, each subject priced each lottery only once, and different lotteries were priced
in different contexts. This design ensures that subjects do not deform their prices to be consistent with their
choices; however, it also implies that preference reversals are not observed within-subject but only at the
level of price distributions across subject groups (see online Appendix 2 for more details).

19This prediction does not change if we allow for the option L0 ≡ (0, 1) to be included in the choice set.
See online Appendix 1 for details on choice among more than two lotteries.
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pricing in isolation.20

Second, preference reversals subside when we compare choice and pricing in the choice

context. In fact, in this context the same subjects priced their chosen lottery Lπ higher, on

average, than the alternative risky lottery L$:

avg[P (Lπ|L$)] = 4.3 > avg[P (L$|Lπ)] = 4.1

As predicted by our model, in the choice context the average price ranking is consistent with

choice.21 One may object that this agreement is caused by the subjects’ wish to be coherent

when they price just after a choice. However, each subject priced only one of the lotteries

in the choice context.22 It appears to be the act of comparing the lotteries that drives their

evaluation during choice, and not (only) an adjustment of value subsequent to choice.

Another potential objection is that our experiments do not elicit true selling prices. It

is well known that it is difficult to design price elicitation mechanisms for subjects who

violate the independence axiom of Expected Utility Theory. To avoid these problems, Cox

and Epstein (1989) study preference reversals by only eliciting the ranking of selling prices

across lotteries. In their experiments, Cox and Epstein directly compared lotteries to each

other, so their procedure can be viewed as eliciting evaluations in the context of choice. They

find some evidence of preference reversals, but crucially they show that these reversals are

equally likely in both directions (from risk averse choice to risk seeking pricing, and from risk

seeking choice to risk averse pricing). Symmetric reversal patterns are typically attributed

20This reversal holds not only with respect to average prices but also for the distribution of prices we
observe. Assuming that subjects draw evaluations randomly from the price distributions, we estimate that
around 54% of the subjects who choose Lπ would exhibit the standard preference reversals (see online
Appendix 2). The average prices above imply that some subjects priced the safer lottery Lπ above its
highest payoff. Such overpricing can occur even in a laboratory setting and with incentives schemes (Grether
and Plott 1974, Bostic et al 1990), perhaps due to misunderstanding of the pricing task. In online Appendix
2 we consider truncations of the data that filters out such overpricing.

21In our data, the distribution for P (Lπ|L$) does not dominate that for P (L$|Lπ). This is due to the
fact that: i) on average subjects attribute similar values to both lotteries in the choice context, and ii) there
is substantial variability in choice (and thus in pricing), as about half the subjects chose each lottery. In
online Appendix 2 we look in a more detailed way at the manifestation and significance of fact ii) in light
on Tversky, Slovic and Kahneman’s (1990) analysis of preference reversals.

22We ran another version of the survey where we asked the subjects to price the lotteries under comparison
but without having to choose between them. In line with the valuation approach, these subjects exhibited
similar behavior on average, namely pricing L$ higher than Lπ in isolation, but similarly to Lπ under
comparison.
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to arbitrary fluctuations in evaluation, see Bostic et al (1990) (although Cox and Epstein

interpreted them as akin to a violation of procedural invariance). Thus we interpret Cox

and Epstein’s results as consistent with our prediction that systematic preference reversals

subside when prices are elicited in a choice context.

These results suggest that choice and pricing may follow the same fundamental principle

of context-dependent evaluation. Preferences based on choice could differ from those inferred

from pricing in isolation because they represent evaluations made in different contexts.

5.3 Reflection and Framing Effects

KT (1979) show that experimental subjects tend to shift from risk aversion to risk seeking as

gains are reflected into losses. Our model yields these shifts in risk attitudes solely based on

the salience of payoffs, without relying on the S-shaped value function of Prospect Theory. To

see this, consider the choice between lottery L1 = (x1s, πs)s∈S and sure prospect L2 = (x, 1),

both of which are defined over gains (i.e. x1s, x > 0) and have the same expected value

E(x1s) = x. For a local thinker with linear value function:

V LT (L1) =
∑
s∈S

πsω
1
sx

1
s = E(x1s) + cov[ω1

s , x
1
s] (29)

where cov[ω1
s , x

1
s] =

∑
s∈S πs [ω1

s − 1] [x1s − x] (recall that E(ω1
s) = 1). Thus, the local thinker

is risk averse, choosing L2 over L1, when cov[ω1
s , x

1
s] < 0. If then L1 and L2 are reflected

into lotteries L′1 = (−x1s, πs)s∈S and L′2 = (−x, 1), property 3) in Definition 1 implies that

the salience ranking among states does not change. As a result, the same decision maker is

risk seeking, choosing L′1 over L′2 when:

cov
[
ω1
s ,−x1s

]
= −cov

[
ω1
s , x

1
s

]
> 0, (30)

which is fulfilled if and only if the decision maker was originally risk averse. Intuitively, a

salient downside inducing risk aversion in the gain domain becomes a salient upside inducing

risk seeking in the loss domain. Our model thus yields the fourfold pattern of risk prefer-
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ences23 without assuming a value function that is concave for gains and convex for losses.

With the same logic our model can account for the Tversky and Kahneman (1981) famous

framing experiments, even with a linear value function.

Consider the Public Health Dilemma, which describes the outbreak of a disease that is

expected to kill 600 people. When the choice between medical responses is framed in terms

of lives saved (respectively lost), the local thinker specifies the payoffs as gains (respectively

losses). In the lives saved frame, the most salient outcome is the one where nobody is saved,

leading to a risk-averse choice, while in the lives lost frame, the most salient outcome is the

one where nobody dies, triggering a risk-seeking choice.

Note, however, that in our model reflection of risk attitudes is a knife-edge property: it

holds only if the decision maker’s value function is linear. A concave value function v(·)

in the loss domain would play against the reflection of salient payoffs, creating an intrinsic

preference for a moderate and certain loss. The distinction between the salience of payoffs

and the curvature of the value function can provide insight into findings that reflection of

risk attitudes is only partial and decreases with payoff magnitude (Laury and Holt, 2005).

6 Taking Stock

We now take stock by summarizing the role of different assumptions in generating our results

and by comparing our predictions to those of Prospect Theory. Denote by “Ordering” the

ordering property, by “DS” the diminishing sensitivity property, and by “Odds” the property

of Definition 2 that distortions do not depend on probability odds. Table 2 summarizes how

our model and Prospect Theory account for Allais Paradoxes and preference reversals.24

Anomalies in our model can be driven by a change in the salience ranking of payoffs

(such as the Allais common consequence paradox) or by the differential distortion of small

probabilities (such as the Allais common ratio paradox, where the salience ranking does not

23The four-fold pattern of risk preferences refers to risk seeking behavior for gambles with small probabil-
ities of gains and gambles with moderate or large probabilities of losses, and risk averse behavior when the
signs of payoffs are reversed, see Tversky, Slovic and Kahneman (1990).

24Tables 2 and 3 list the main properties that drive each effect in either theory, but are not exhaustive.
We use the 1979 version of Prospect Theory, but the cumulative version (TK, 1992) is very similar for the
purpose of this comparison.
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Salience Theory Prospect Theory

Allais Common Consequence Ordering and DS Sub-certainty of π(p)

Allais Common Consequence (correlated) Ordering Editing (but not explicit)

Allais Common ratio Ordering, DS and Odds Sub-additivity of π(p)

Allais Common ratio (correlated) Ordering Isolation effect (Editing)

Preference Reversals Ordering, DS and Odds No

Preference Reversals (choice) Ordering No

Table 2: Taking stock of Anomalies

change). The ordering property plays a crucial role throughout, determining the direction

of the choice anomalies.

By providing insight into what drives the anomalies, the model also identifies circum-

stances where the anomalies disappear. Crucially, these follow from the same properties that

cause the anomalies to begin with. Anomalies disappear when the choice problems are set

up so that the representation of each lottery is stable for the decision maker across different

treatments – e.g. when the common consequence is made evident in the Allais paradox.

The situation with Prospect Theory is very different. Each Allais paradox is explained

through a different assumption about the probability weighting function, or on the edit-

ing process which is not formally modeled. Finally, Prospect Theory cannot account for

preference reversals, since choice follows from context-independent evaluation.

Consider now another well-documented choice pattern: the four-fold pattern of risk pref-

erences (TK, 1992): risk aversion (RA) for gains of high probability, risk seeking (RS) for

gains of low probability, and the reverse for losses. As shown in Section 4 for gains, and

in Section 5.3 for losses, our model reproduces this pattern based solely on the properties

of salience (including that diminishing sensitivity depends on the magnitude of payoff level,

and not their sign, as encoded in the reflection property of Definition 1). We further predict

that risk attitudes should depend on the payoff level x. In light of the experimental results of

Section 4, we adopt the convexity property of Definition 3, whereby diminishing sensitivity

gets weaker as payoff levels increase. These predictions are summarized in Table 3 for choices
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between a sure payoff and a mean-preserving spread.

for gains Salience Theory Prospect Theory

RA for high p DS Concave v(·) and sub-certainty of π(p)

RS for low p, high x Ordering v(·) low curvature, π(p) > p for small p

x-dependent switch to RS Ordering, DS Non-linear v(·)

RA for low p, low x DS, convexity v(·) very concave for low x

for losses Salience Theory Prospect Theory

RS for high p DS Convex v(·) and sub-certainty of π(p)

RA for low p, high |x| Ordering v(·) low curvature, π(p) > p for small p

x-dependent switch to RA Ordering, DS Non-linear v(·)

RS for low p, low |x| DS, convexity v(·) very convex for low |x|

Table 3: Taking stock of Risk Attitudes (RA: risk aversion, RS: risk seeking)

In Prospect Theory, the main driver of risk attitudes is the curvature of the value function.

As discussed in Section 4, different patterns of risk attitudes put different constraints on this

function, which can be hard to reconcile. Our context dependent account of risk preferences

does not require any assumptions on the curvature of the value function. Instead, that role

is taken by the diminishing sensitivity property of the salience function.

Regret Theory is also able to account for several patterns of choice under risk by assum-

ing that states with higher payoff differences play a disproportionate role in choice. This

intuition is closely related to ordering. To account for the Allais paradoxes, however, Re-

gret Theory requires an additional convexity assumption which, as noted by the authors,

lacks an independent psychological basis. More important, by focusing exclusively on payoff

differences and neglecting diminishing sensitivity, Regret Theory can capture neither the

dependence of risk attitudes on the payoff level x, nor framing effects and violations of

procedural invariance, as previously noted.

In sum, we think that our model provides a parsimonious account of context dependent

shifts in risk preference based on psychologically founded assumptions about the nature and

the impact of the perceptual salience of lottery payoffs.
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7 Conclusion

Our paper explores how cognitive limitations cause people to focus their attention on some

but not all aspects of the world, the phenomenon we call local thinking. We argue that

salience, a concept well-known to cognitive psychology, shapes this focus. In the case of

choice under risk, this perspective can be implemented in a straightforward and parsimonious

way by specifying that contrast between payoffs shapes their salience, and that people inflate

the decision weights associated with salient payoffs. Basically, decision makers overweight

the upside of a risky choice when it is salient and thus behave in a risk-seeking way, and

overweigh the downside when it is salient, and behave in a risk averse way. This approach

provides an intuitive and unified explanation of the instability of risk preferences, including

the dramatic switches from risk seeking to risk averse behavior resulting from seemingly

innocuous changes in the problem, as well as of some fundamental puzzles in choice under

risk such as the Allais paradox and preference reversals. It makes predictions for when these

paradoxes will and will not occur, which we test and confirm experimentally.

Other aspects of salience have been used by economists to examine the consequences

of people reacting to some pieces of data (salient ones) more strongly than to others. For

example, Chetty et al. (2009) show that shoppers are more responsive to sales taxes already

included in posted prices than to sales taxes added at the register. Barber and Odean (2008)

find that stock traders respond to “attention grabbing” news. Perhaps most profoundly,

Schelling (1960) has shown that people can solve coordination problems by focusing on salient

equilibria based on their general knowledge, without any possibility for communication.

Memory becomes a potential source of salient data. Our formal approach is consistent with

this work, and stresses that in the specific context of choice under risk the relative magnitude

of payoffs is itself a critical determinant of salience.

Our specification of contrast as a driver of salience could be useful for thinking about a

variety of economic situations. For example, salience may affect consumer behavior: when

considering which of different brands to buy, a consumer might focus on the attributes where

the potential brands are most different, neglecting the others (see Tversky and Simonson

(1993), Bordalo (2011), Koszegi and Szeidl (2011)). We use a version of this paper’s model
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of salience to investigate consumer choices more broadly, as well as the endowment effect

(Bordalo, Gennaioli and Shleifer, (2011, 2012)). In many applications, the key idea of

our approach is that mental frames, rather than being fixed in the mind of the consumer,

investor, or voter, are endogenous to the contrasting features of the alternatives of choice.

This notion could perhaps provide a way to study how context shapes preferences in many

social domains.

Royal Holloway, University of London

CREI, Universitat Pompeu Fabra, CEPR

Harvard University
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Appendix

A. Proofs

Proposition 1 If the probability of state s is increased by dπs = hπs and the probabilities

of other states are reduced while keeping their odds constant, i.e. dπs̃ = − πs
1−πshπs̃ for all

s̃ 6= s, then for every lottery Li:

dωis
h

= − πs
1− πs

· ωis · (ωis − 1)

Proof. By definition,

ωis =
δk

i
s−1∑

r δ
kir−1 · πr

Therefore,

dωis = − ωis∑
r δ

kir−1 · πr

∑
r

δk
i
r−1 · dπr

Replacing dπs = hπs and dπr = − πs
1−πshπr (for r 6= s) leads to

dωis = − ωis∑
r δ

kir−1 · πr

[
− hπs

1− πs

∑
r 6=s

δk
i
r−1 · πr + hδk

i
s−1πs

]

Thus
dωis
h

= −ωis
1∑

r δ
kir−1 · πr

[
− πs

1− πs

∑
r 6=s

δk
i
r−1 · πr + δk

i
s−1πs

]

The parenthesis on the right hand side can be rearranged to yield

πs
1− πs

[
δk

i
s−1(1− πs)−

∑
r 6=s

δk
i
r−1 · πr

]
=

πs
1− πs

[
δk

i
s−1 −

∑
r

δk
i
r−1 · πr

]

where the sum is now over all states r. Inserting this term back into the equation above we

get the result:
dωis
h

= −ωis
πs

1− πs
(ωis − 1)

Proposition 1 has the following corollary: let lottery L yield payoff xm with total proba-
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bility pm, with
∑

n pn = 1. Let m be the set of states where L pays xm, and denote elements

of m by sm,j, where j = 1, ..., |m|. Then pm =
∑

sm,j∈m πsm,j
= pm

∑
sm,j∈m π̃sm,j

, where

we write π̃sm,j
= πsm,j

/pm (if L is being compared to another lottery L′ and both lotteries

are independent, then π̃sm,j
is just the probability that L′ gives payoff yj where the set m is

equal to the state (xm, yj)). Denote the salience distortion of pm by

ωm =

∑
sm,j∈m π̃sm,j

δksmj
−1∑

n

∑
sn,j∈n π̃sn,j

δksnj−1 · pn

Corollary 1 If the probability pm of payoff xm is increased by dpm = hpm and the probabil-

ities of other states are reduced while keeping their odds constant, i.e. dpm̃ = − pm
1−pmhpm̃ for

all m̃ 6= m, then:
dωs
h

= − pm
1− pm

· ωm · (ωm − 1)

The proof of Corollary 1 is parallel to that of Proposition 1.

Lemma 1: If the salience function is convex, then r = vLT (L0)− vLT (L1) weakly decreases

with x. Conversely, if the salience function is concave then r weakly increases with x.

Proof. First note that, due to linear utility, the premium r is independent of x for a given

salience ranking. In fact, for any salience ranking we have

vLT (L0)− vLT (L1) = x− 1

pδg + (1− p) δl
[
pδg (x+ g) + (1− p) δl (x− l)

]
=

1

pδg + (1− p) δl
[
l (1− p) δl − gpδg

]
Second, note that if σ(x+ g, x)− σ(x, x− l) increases in x, then the upside of the risky

lottery L1 becomes weakly more salient as x increases. In particular, if L1’s upside goes from

being non salient (for low x) to being salient (for high x), the shift in r is negative:

l (1− p)− gpδ
pδ + (1− p)

− l (1− p) δ − gp
p+ (1− p) δ

∝ −p (1− p)
(
1− δ2

)
[g + l]

which proves the claim when the salience function is convex (note that this shift goes to zero

as δ approaches 1). The concave case is analogous.
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