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Abstract

Analysis of high dimensional data often seeks to identify a subset of important

features and assess their effects on the outcome. Furthermore, the ultimate goal

is often to build a prediction model with these features that accurately assesses

risk for future subjects. Such statistical challenges arise in the study of genetic

associations with health outcomes. However, accurate inference and prediction with

genetic information remains challenging, in part due to the complexity in the genetic

architecture of human health and disease.

A valuable approach for improving prediction models with a large number of

potential predictors is to build a parsimonious model that includes only important

variables. Regularized regression methods are useful, though often pose challenges

for inference due to nonstandard limiting distributions or finite sample distributions

that are difficult to approximate. In Chapter 1 we propose and theoretically jus-

tify a perturbation-resampling method to derive confidence regions and covariance

estimates for marker effects estimated from regularized procedures with a general

class of objective functions and concave penalties. Our methods outperform their

asymptotic-based counterparts, even when effects are estimated as zero.
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In Chapters 2 and 3 we focus on genetic risk prediction. The difficulty in accurate

risk assessment with genetic studies can in part be attributed to several potential

obstacles: sparsity in marker effects, a large number of weak signals, and non-linear

effects. Single marker analyses often lack power to select informative markers and

typically do not account for non-linearity. One approach to gain predictive power and

efficiency is to group markers based on biological knowledge such genetic pathways

or gene structure. In Chapter 2 we propose and theoretically justify a multi-stage

method for risk assessment that imposes a naive bayes kernel machine (KM) model

to estimate gene-set specific risk models, and then aggregates information across all

gene-sets by adaptively estimating gene-set weights via a regularization procedure.

In Chapter 3 we extend these methods to meta-analyses by introducing sampling-

based weights in the KM model. This permits building risk prediction models with

multiple studies that have heterogeneous sampling schemes.
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1.1 Introduction

Accurate prediction of disease outcomes is fundamental for successful disease pre-

vention and treatment selection. Recent advancement in biological and genomic

research has led to the discovery of a vast number of new markers that can poten-

tially be used to develop molecular disease prevention and intervention strategies.

For example, gene expression analyses have identified molecular subtypes that are

associated with differential prognosis and response to treatment for breast cancer

patients (Perou et al., 2000; Dent et al., 2007). For non-small cell lung cancer pa-

tients, a composite score consisting of several biological markers including cyclin E

and Ki-67 was shown to be highly predictive of patient survival (Dosaka-Akita et al.,

2001). However, construction of accurate prediction models with a panel of markers

is a difficult task in general. For example, statistical models for calculating individual

cancer risk have been developed for a few types of cancer in the past two decades

(Gail et al., 1989; Thompson et al., 2006; Cassidy et al., 2008; Freedman et al., 2009).

However, much refinement is needed even for the best of these models due to their

limited discriminatory accuracy (Spiegelman et al., 1994; Gail and Costantino, 2001).

The increasing availability of new potential markers, while holding great promise

for better prediction of disease outcomes, imposes challenges to model development

due to the high dimensionality in the feature space and the relatively small sample

size. To improve prediction with a large number of promising genomic or biologi-

cal markers, an important step is to build a parsimonious model that only includes

important markers. Such a model could reduce the cost associated with unneces-

sary marker measurements and improve the prediction precision for future patients.

For such purposes, various regularization procedures such as the LASSO (Tibshi-
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rani, 1996; Knight and Fu, 2000), the SCAD (Fan and Li, 2001, 2002, 2004; Zhang

et al., 2006), the adaptive LASSO (ALASSO; Zou, 2006; Wang and Leng, 2007), the

Elastic Net (Zou and Hastie, 2005; Zou and Zhang, 2009), and one-step local linear

approximation (LLA; Zou and Li, 2008) have been developed in recent years. These

procedures simultaneously identify non-informative variables and produce coefficient

estimates for the selected variables to induce a model for prediction.

These regularization procedures, while effective for variable selection and stable

estimation, yield estimators whose distributions are difficult to approximate. LASSO

type estimators have a non-standard limiting distribution that depends on which

components of the coefficient vector are zero. Since the LASSO type estimator is

not consistent in variable selection, the limiting distribution cannot be estimated di-

rectly. Furthermore, standard bootstrap methods fail when the true coefficient vector

is sparse (Knight and Fu, 2000). Recently, Chatterjee and Lahiri (2010) proposed a

truncated LASSO estimator whose distribution can be approximated using a resid-

ual bootstrap procedure. To overcome the difficulties in LASSO estimators, other

regularized procedures such as the SCAD and ALASSO have been proposed. These

estimators possess asymptotic oracle properties including perfect variable selection

and super efficiency. However, our simulation results suggest that in finite samples,

such oracle properties are far from being true and inference procedures based on

asymptotic properties such as those given in Zou (2006) perform poorly especially

when the signal to noise ratio (SNR) is high and the between covariate correlations

are not low. Recently, Pötscher and Schneider (2009, 2010) developed theory on the

coverage probabilities of the confidence intervals for ALASSO type estimators under

the orthogonal design. It was shown that estimating the distribution function of the

ALASSO estimator is not feasible when the true parameter is of similar magnitude
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to n−
1
2 , where n is the sample size. It is thus generally difficult to develop well per-

formed confidence regions (CRs) and hypothesis testing procedures based on these

regularized estimators. Such difficulties limit applicability to clinical studies where

confidence in statistical evidence is crucial for clinical decision making.

In this paper, we propose resampling methods to derive CR and testing proce-

dures for marker effects estimated from regularized procedures such as the ALASSO

and one-step SCAD estimator when the true parameter is fixed. Our preliminary

studies suggest that CRs constructed from such resampling procedures perform much

better than their asymptotic based counterparts. When the fitted model is merely

a working model, many frequently used estimation procedures may fail to produce

stable parameter estimates. Procedures that can provide stable parameter estimates

and valid interval estimates under a possibly misspecified working model are highly

valuable when building a prediction model with high dimensional data. Our pro-

posed procedures remain valid even if the fitted model fails to hold, provided that

the employed objective function satisfies mild regularity conditions. The rest of the

paper is organized as follows. In Section 2, we introduce the proposed perturbation

resampling procedures and describe various methods for constructing confidence re-

gions. In Section 3, we demonstrate the validity of the proposed procedures in finite

samples via simulation studies. In Section 4, we illustrate our proposed procedure

with an HIV drug resistance study where the goal is to predict phenotypic drug

resistance levels using genotypic viral mutations.
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1.2 Resampling procedures

Suppose that y = (y1, . . . yn)T is the n × 1 vector of response variables and

xj = (x1i, . . . , xpi)
T, i = 1 . . . n, are the predictors. Let X = [x1, . . . ,xn]T be the n×p

matrix of these covariates. Assume that the effect of x on y is determined via an

objective function L(θθθ; D) = `(y, α+βTx), where θθθ = (α,βT)T, α is an unknown lo-

cation parameter, β is an unknown p×1 vector of covariate effects, and D = (y,xT)T.

To assess the association between x and y, let L̃(θθθ) = n−1
∑n

i=1 L(θθθ; Di) be the ob-

jective function used to fit a regression model and θ̃θθ = (α̃, β̃
T

)T = argminθθθ L̃(θθθ). To

obtain a regularized estimator for θθθ0, we minimize the regularized objective function

L̂(θθθ) = L̃(θθθ) +

p∑
j=1

p′λnj(|β̃j|)|βj| (1.1)

where p′λnj(|β̃j|) is the derivative of a penalty pλnj(|βj|) evaluated at the initial es-

timate of β0j. We consider the cases where pλnj(|βj|) is the concave SCAD penalty

or the Lq penalty for 0 < q < 1, and utilize a one-step estimator of these penal-

ties with the local linear approximation (LLA) method proposed by Zou and Li

(2008). Additionally, we consider the ALASSO penalty of Zou (2006) that arises

when p′λnj(|β̃j|) = n−
1
2λn|β̃j|−1.

1.2.1 Regularity Conditions

To ensure the asymptotic oracle properties of the regularized estimators and the

validity of the proposed resampling procedures, we require the following set of con-

ditions:

C1. P{L(θθθ; D)} has a unique minimum at θθθ0 and a continuous secondary derivative
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with a positive definite A = ∂2P{L(θθθ; D)}/∂θθθθθθT|θθθ=θθθ0
> 0, where P is the

probability measure generated by the data X = {Di, i = 1, ..., n}.

C2. The class of functions indexed by θθθ, {L(θθθ; D) | θθθ ∈ Ω}, is Glivenko-Cantelli

(Kosorok, 2008), where D = (y,xT )T and Ω is the compact parameter space

containing θθθ0.

C3. There exists a “qausi-derivative” function U(θθθ; D) for L(θθθ; D) such that for

any positive sequence δn → 0

(a) P{U⊗2(θθθ0; D)} = B, a positive definite matrix.

(b) P{L(θθθ; D)−L(θθθ0; D)−U(θθθ0; D)(θθθ− θθθ0)} = 1
2
(θθθ− θθθ0)

TA(θθθ− θθθ0) + o(‖θθθ−

θθθ0‖2), where ‖θθθ − θθθ0‖ ≤ δn.

(c) Pn{L(θθθ1; D)− L(θθθ2; D)− U(θθθ2; D)(θθθ1 − θθθ2)} = 1
2
(θθθ1 − θθθ2)

TA(θθθ1 − θθθ2) +

o(‖θθθ1 − θθθ2‖2 + n−1/2‖θθθ1 − θθθ2‖), almost surely, uniformly in ‖θθθ1 − θθθ0‖ ≤

δn, ‖θθθ2 − θθθ0‖ ≤ δn.

These conditions are parallel to the conditions required in Proposition A1-A3 in

Jin et al. (2001). These regularity conditions hold for commonly used L2 minimiza-

tion with L(β; D) = (y − βTx)2 and L1 minimization with L(β; D) = |y − βTx|.

Details of the justification for these two cases can be found in Section 3 of Jin et al.

(2001). These conditions also guarantee that θ̃θθ is a consistent estimator of θθθ0 and

n
1
2 (θ̃θθ − θθθ0) converges in distribution to N(0,A−1BA−1). Let A = {j : β0j 6= 0} of

size q and Ac = {j : β0j = 0}, where aj denotes the jth component of a vector a.

Following similar arguments to those given in Zou (2006), Zou and Li (2008) and

the unconditional arguments given in the appendix, θ̂θθ = argminθθθ L̂(θθθ) has ‘good’

properties for certain choices of λn, including the oracle property,
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Lemma 1: (Oracle properties) Suppose that λn → 0 and λnn
1
2 → ∞. Then the

regularized estimates must satisfy the following:

1. Consistency in variable selection: limnP{I(Â = A) = 1} = 1, where Â = {j :

β̂j 6= 0}.

2. Asymptotic normality: n
1
2 (θ̂θθA− θθθ0A)→d *N(0,A−1

11 B11A−1
11 ), where A11 and B11

are the respective q × q submatrices of A and B corresponding to A.

This lemma guarantees that the regularized estimate asymptotically chooses the

correct model and has the optimal estimation rate. However, estimating the dis-

tribution of n
1
2 (θ̂θθ − θθθ0) in finite samples remains difficult. To estimate the stan-

dard errors of the SCAD estimates θ̂θθ = argminθ {L̃(θθθ) +
∑p

j=1 pλnj(|βj|)} when

L̃(θθθ) = n−1
∑n

i=1 L(θθθ; Di) is smooth in θθθ, Fan and Li (2001) proposed a local

quadratic approximation (LQA) method. This gives a sandwich estimator for the

covariance matrix of the estimated nonzero parameters:

ĉov
(
θ̂θθ bA
)

= {∇2L̃(θ̂θθ bA) + Σλ(θ̂θθ bA)}−1ĉov{∇L̃(θ̂θθ bA)}{∇2L̃(θ̂θθ bA) + Σλ(θ̂θθ bA)}−1 (1.2)

where ∇L̃(θ̂θθ bA) = ∂L̃(θ̂θθ bA)/∂θθθ, ∇2L̃(θ̂θθ bA) = ∂2L̃(θ̂θθ bA)/∂θθθ∂θθθT , and Σλ(θ̂θθ bA) is a diagonal

matrix with the (j, j)th element being I(β̂j 6= 0)p′λn1(|β̂j|)/|β̂j|. The LQA approach

can also be used to construct a covariance estimate for the ALASSO estimates where

p′λnj(|β̃j|) = n−
1
2λn|β̃j|−1. Similar to covariance estimates in Tibshirani (1996) and

Fan and Li (2001) for penalized estimates, this procedure estimates the standard

errors for variables with β̂j = 0 as 0. Although this sandwich estimator has been

proven to be consistent (Fan and Peng, 2004) under the linear regression model, it

tends to underestimate the standard errors, and normal confidence regions (CRs)

using this estimate often do not provide acceptable coverage in finite sample.
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To approximate the covariance of θ̂θθ more accurately, we propose a perturbation

method to estimate the distribution of n
1
2 (θ̂θθ − θθθ0) for a general class of objective

functions and penalties. Let G = {Gi, i = 1, . . . , n} be a set of independent and

identically distributed (i.i.d.) positive random variables with mean and variance

equal to one. We first perturb the initial objective function and obtain

L̃∗(θθθ) = n−1

n∑
i=1

L(θθθ,Di)Gi, and θ̃θθ
∗

= argmin
θθθ

L̃∗(θθθ). (1.3)

Then with the same set G, we obtain the minimizer of a stochastically perturbed

version of the regularized objective function:

L̂∗(θθθ) = L̃∗(θθθ) +

p∑
j=1

p′λ∗nj(|β̃
∗
j |)|βj| (1.4)

where λ∗n satisfies the same order constraints as λn as discussed in the Lemma 1.

In practice, one may select λn and λ∗n based on the BIC criterion detailed in the

appendix with the corresponding objective functions. In the appendix we first show

that n
1
2 (θ̂θθ
∗
A − θθθ0A) converges in distribution to N(0,A−1

11 B11A−1
11 ), the same limiting

distribution of n
1
2 (θ̂θθ−θθθ0). Furthermore, P∗(θ̂θθ

∗
Ac = 0)→ 1, where P∗ is the probability

measure generated by both X and G. In addition, we show that the distribution of

n
1
2 (θ̂θθ
∗
A − θ̂θθA) conditional on the data can be used to approximate the unconditional

distribution of n
1
2 (θ̂θθA− θθθA0) and that P∗(θ̂θθ

∗
Ac = 0 | X)→ 1. In practice, these results

allow us to estimate the distribution of n
1
2 (θ̂θθ − θθθ0) by generating a large number,

M , say, of random samples G. We obtain θ̂θθ
∗
m by minimizing the perturbed objec-

tive function for each sample m = 1, . . .M , and then approximate the theoretical

distribution of θ̂θθ by the empirical distribution {θ̂θθ
∗
m,m = 1, . . .M}. Specifically, the

covariance matrix of θ̂θθ can be estimated by the sample covariance matrix constructed

from {θ̂θθ
∗
m,m = 1, . . .M}.
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Estimating the distribution of n
1
2 (θ̂θθ−θθθ0) based on the distribution of n

1
2 (θ̂θθ
∗
− θ̂θθ) |

X leads to the construction of three possible (1− α)100% confidence regions for θθθ0.

For the first, let σ̂2
j = M−1

∑M
m=1(β̂

∗
mj − β̂j)2. We construct a normal CR for β0j,

CR*N
j , centered at β̂j with standard deviation σ̂∗j . Since n

1
2 (θ̂θθ
∗
− θ̂θθ)|X and n

1
2 (θ̂θθ− θθθ0)

converge to the same normal distribution, nσ̂2
j consistently estimates the variance of

n
1
2 (β̂j−β0j). This method is in contrast to CRAsym obtained with standard deviations

σ̂Asym

j estimated with the asymptotically consistent LQA sandwich estimator in Fan

and Li (2001) and Zou (2006). In contrast to setting the standard error to 0 when

β̂j = 0, we set CR*N
j = {0} if the proportion of β̂∗j being 0 is larger than a threshold

p̂high, such that p̂high → phigh < 1. This method accounts for the superefficiency

due to the oracle property and results in a shorter interval with valid coverage.

Secondly, we simply take the (α/2)100th and (1− α/2)100th quantiles of β̂∗j as the

upper and lower bounds of CR*Q

j . For the third, we estimate the density of β̂∗j

with a kernel density estimator and choose the (1− α)100% highest density region,

CR*HDR
j . We estimate the density of β̂∗j | X as a mixed density with distribution

f ∗j (β) = P̂0jI(β = 0) + (1 − P̂0j)f
∗
j (β), where P̂0j is the proportion of β̂∗j set to

0, and f ∗j (β) is the unknown distribution of β̂∗j given that it is not set to 0. To

construct a highest density confidence region that has accurate coverage of this mixed

distribution, we adjust the definition of the region depending on thresholds that

reflect the strength of evidence for β0j = 0. Our highest density confidence region

CR*HDR
j is defined as

CR*HDR

j =


{0} if P̂0j ≥ p̂high
{β : f ∗j (β) ≥ ĉ1} ∪ {0} if p̂low ≤ P̂0j < p̂high
{β : f ∗j (β) ≥ ĉ2} ∪ {0} if α ≤ P̂0j < max(α, p̂low)

{β : f ∗j (β) ≥ ĉ3} if P̂0j < α

(1.5)
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where ĉ1, ĉ2, and ĉ3 are chosen such that for H(c) =
∫
I{f ∗j (β) ≥ c}f ∗j (β)dβ, we

have H(ĉ1) = (1− α− P̂0j)/(1− P̂0j), H(ĉ2) = 1−α+α(P̂0j + p̂low), H(ĉ3) = 1−α,

while p̂low → 0 and p̂high → phigh = 1 − α. When P̂0j, the proportion of β̂∗j set to

zero, is greater than the upper thresholding value p̂high, we have strong evidence that

β0j = 0 and thus take {0} as the confidence interval. When P̂0j is between the high

and low thresholding p̂ values, we have moderately strong evidence that β0j = 0 and

thus take the mass at 0 and a 1−α− P̂0j highest density region from the β̂∗j | β̂∗j 6= 0

samples. The occurrence of α ≤ P̂0j < max(α, p̂low) suggests that β0j is likely to be a

weak signal. For such cases, it would be difficult to make inference about β0j due to

shrinkage. Thus, we inflate the highest density region from the β̂∗j | β̂∗j 6= 0 samples.

Finally, when P̂0j < α, we have strong evidence that β0j is nonzero and so we take

the 1− α highest density region of the continuous empirical distribution of nonzero

β̂∗j samples. The justification of this method and the choices of p̂high and p̂low are

relegated to the appendix.

In practice, when assessing the effects of multiple features, it is often impor-

tant to adjust for multiple comparisons. For interval estimation, we may construct

a (1 − α)100% simultaneous confidence region to cover the entire parameter vec-

tor θθθ0. We may then make statements about the importance of each of the co-

variates in the presence of other covariates while maintaining a type I error of α.

For the regularized estimator, we define the Normal simultaneous region as CR*Sim

=
∏

j /∈ bA∗{0} × ∏j∈ bA∗(β̂j − γασ̂
∗
j , β̂j + γασ̂

∗
j ) where Â∗ = {j : P̂0j < p̂high} and

γα is the (1 − α)100% quantile of

{
max

{
|β̂∗jm − β̂j|/σ̂∗j

}
j∈ bA∗

}M
m=1

. We define the

(1− α)100% HDR simultaneous region as CR*SimHDR =
∏

j CR*HDR
j,αs where CR*HDR

j,αs is

the 1-αs CR*HDR
j for β̂j and αs = 2(1−Φ(γα)). We compare the performance of these

confidence regions with numerical examples in Sections 1.3 and 1.4.
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1.3 Simulation studies

To examine the validity of our procedures in finite samples, we performed sim-

ulation studies to assess the performance of the corresponding confidence regions.

For each setting, we simulated 1500 data sets with n observations generated under

the linear model, y = Xβ + ε, where xij ∼ N(0, 1), the pairwise correlation between

xi and xj was set to cor(xi,xj) = ρ, εi ∼ N(0, σ2), and β, ρ, and σ were varied be-

tween settings. In each setting, β was sparse and included medium and high signals.

We obtained ALASSO estimators via LARS (Efron et al., 2004) for each simulated

data set with OLS initial estimates and λ chosen by the BIC as described in the

appendix, and then M = 500 perturbed samples using our proposed method with

G generated from a mean 1 exponential distribution. The sample size n was set to

100, 200, 400, or 1000, while ρ was 0, 0.2, or 0.5, and σ was 1 or 2. To compute

the highest density regions CR*HDR we utilized the hdrcde package in R with the

“ndr” bandwidth estimator as presented in Scott (1992) based on Silverman’s rule

of thumb (Silverman, 1986). We chose p̂low = min{
√

2/π exp(−nλ/(4σ̂2)), 0.49} and

p̂high = min{1 −
√

2/π exp(−nλ/σ̂2), 0.95} as justified in the appendix for CR*HDR,

CR*N, CR*Sim, and CR*SimHDR. We substituted the σ used in the standard deviation

estimate from Zou (2006) analogous to equation (1.2) with the known σ from the

simulations. We present the results for simulations with n = 100, 200 and 400 when

σ = 1 or 2 and p = 10 or 20. In these cases, the true β0 contains two large effects

of β0j = 1, two moderate effects of β0j = 0.5, and six (for p = 10) or sixteen (for

p = 20) noise parameters where β0j = 0. To examine the effect of regularization we

compare our CRs for the regularized estimators to CROLS, the normal CR based on

the empirical standard error of the perturbed ordinary least squares (OLS) estimates.
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Table 1.1: Coverage probabilities (lengths) of confidence regions when σ = 1. We multiply values by 100.
The lengths of the simultaneous confidence regions are averaged over the number of parameters.

p β0
n = 100 n = 200 n = 400
ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0 ρ = 0.2 ρ = 0.5

10 1 CR*N 91.6 (38) 92.7 (41) 92.5 (52) 92.9 (27) 94.1 (29) 94.2 (37) 93.9 (19) 95.1 (21) 94.9 (26)

CR*HDR 91.4 (38) 91.7 (40) 91.5 (51) 92.4 (27) 93.7 (29) 93.9 (36) 93.4 (19) 94.5 (21) 94.1 (26)

CR*Q 91.7 (38) 91.0 (40) 91.5 (51) 92.5 (27) 93.6 (29) 93.8 (36) 93.5 (19) 94.3 (20) 93.9 (26)
CRAsym 93.9 (41) 94.1 (43) 93.7 (53) 94.1 (28) 94.2 (30) 94.1 (36) 94.4 (20) 95.0 (21) 94.9 (25)
CROLS 91.4 (38) 91.7 (40) 90.6 (51) 93.0 (27) 93.6 (29) 93.9 (36) 93.0 (19) 94.3 (21) 93.7 (26)

0.5 CR*N 93.0 (40) 93.3 (43) 92.0 (54) 93.9 (28) 94.6 (30) 95.1 (38) 93.7 (20) 94.2 (21) 95.2 (27)

CR*HDR 91.9 (38) 92.5 (41) 93.4 (51) 93.5 (27) 94.0 (29) 93.8 (37) 93.7 (19) 93.8 (21) 94.7 (26)

CR*Q 91.7 (39) 92.3 (42) 90.7 (53) 93.3 (27) 93.7 (29) 93.9 (37) 93.8 (19) 93.6 (21) 94.7 (26)
CRAsym 93.3 (41) 93.5 (43) 91.5 (52) 94.5 (28) 94.3 (30) 93.7 (36) 95.0 (20) 94.0 (21) 94.1 (25)
CROLS 92.4 (38) 91.6 (41) 90.9 (50) 93.5 (27) 94.3 (29) 93.8 (36) 94.3 (19) 93.7 (21) 94.9 (26)

0 CR*N 97.6 (23) 98.5 (25) 98.1 (31) 98.4 (17) 98.3 (19) 97.9 (23) 98.7 (13) 98.7 (13) 98.7 (16)

CR*HDR 99.1 (17) 99.3 (18) 99.4 (23) 99.6 (12) 99.3 (13) 99.0 (16) 99.7 (8) 99.3 (8) 99.5 (11)

CR*Q 99.5 (31) 99.7 (33) 99.8 (43) 99.7 (22) 99.7 (24) 99.7 (30) 99.8 (16) 99.7 (17) 99.8 (21)
CROLS 92.9 (38) 92.9 (40) 91.7 (51) 93.4 (27) 93.0 (29) 92.6 (36) 93.4 (19) 93.7 (21) 93.6 (26)

CR*SimHDR 91.9 (36) 92.5 (39) 91.7 (49) 93.1 (26) 94.9 (28) 93.8 (36) 94.9 (19) 94.8 (20) 96.0 (25)

CR*Sim 92.5 (42) 92.9 (46) 91.9 (58) 93.7 (31) 95.5 (33) 95.2 (42) 95.5 (23) 95.7 (24) 96.6 (30)

CR*SimOLS 87.1 (54) 86.5 (58) 85.9 (72) 89.8 (38) 90.0 (41) 90.9 (52) 92.3 (28) 91.6 (30) 92.6 (37)

20 1 CR*N 91.7 (38) 92.4 (42) 92.5 (53) 93.3 (27) 92.9 (30) 94.3 (38) 95.4 (19) 94.6 (21) 94.5 (27)

CR*HDR 90.2 (37) 90.9 (41) 90.8 (51) 92.4 (26) 91.9 (29) 91.9 (36) 95.1 (19) 93.6 (21) 93.3 (26)

CR*Q 90.2 (37) 90.7 (41) 90.7 (51) 92.3 (26) 92.3 (29) 91.9 (36) 95.1 (19) 93.2 (21) 93.1 (26)
CRAsym 93.9 (41) 94.5 (44) 93.3 (54) 95.1 (28) 93.9 (30) 94.0 (37) 95.9 (20) 94.7 (21) 93.3 (26)
CROLS 90.3 (38) 89.9 (42) 90.0 (52) 92.6 (27) 92.1 (29) 92.0 (37) 95.3 (19) 93.4 (21) 93.3 (26)

0.5 CR*N 91.1 (40) 91.5 (44) 91.0 (56) 93.7 (28) 93.5 (30) 92.7 (39) 93.1 (20) 94.7 (21) 95.0 (27)

CR*HDR 89.7 (38) 90.3 (42) 92.5 (52) 93.1 (27) 93.1 (30) 91.7 (38) 92.9 (19) 93.3 (21) 94.4 (27)

CR*Q 89.7 (39) 89.7 (43) 89.2 (54) 92.7 (27) 92.5 (30) 91.5 (38) 92.7 (19) 93.5 (21) 94.5 (27)
CRAsym 91.7 (41) 92.0 (44) 89.7 (53) 94.5 (28) 93.2 (30) 92.3 (37) 93.7 (20) 94.3 (21) 94.2 (26)
CROLS 89.7 (38) 89.7 (42) 89.6 (52) 92.9 (27) 92.9 (29) 91.8 (37) 92.9 (19) 92.7 (21) 94.2 (26)

0 CR*N 96.6 (29) 97.3 (32) 96.8 (40) 98.6 (21) 98.5 (23) 98.7 (29) 98.8 (15) 99.1 (17) 99.0 (21)

CR*HDR 97.7 (25) 98.3 (28) 98.3 (34) 98.9 (17) 99.3 (19) 99.1 (24) 99.3 (12) 99.5 (13) 99.4 (16)

CR*Q 99.0 (31) 99.4 (34) 99.2 (43) 99.5 (22) 99.9 (24) 99.5 (30) 99.8 (15) 99.9 (17) 99.7 (21)
CROLS 89.5 (38) 90.1 (41) 90.1 (52) 92.4 (27) 92.2 (29) 92.6 (37) 94.7 (19) 93.8 (21) 94.2 (26)

CR*SimHDR 90.5 (42) 92.0 (47) 92.1 (58) 95.4 (31) 95.7 (34) 95.3 (44) 96.9 (22) 96.9 (25) 96.9 (32)

CR*Sim 92.5 (51) 91.9 (57) 91.7 (71) 96.5 (38) 97.5 (42) 96.5 (54) 97.7 (28) 97.8 (31) 98.1 (40)

CR*SimOLS 80.1 (59) 78.4 (64) 77.9 (80) 87.5 (41) 87.1 (45) 84.9 (57) 90.6 (29) 90.0 (32) 91.1 (41)
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Table 1.2: Coverage probabilities (lengths) of confidence regions when σ = 2. We multiply values by 100.
The lengths of the simultaneous confidence regions are averaged over the number of parameters.

p β0
n = 100 n = 200 n = 400
ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0 ρ = 0.2 ρ = 0.5

10 1 CR*N 92.6 (79) 94.3 (85) 92.9 (110) 93.4 (55) 94.4 (59) 94.9 (76) 94.4 (39) 94.2 (42) 94.7 (53)

CR*HDR 91.7 (76) 93.9 (82) 94.0 (104) 92.7 (55) 94.2 (59) 94.4 (74) 94.0 (39) 93.6 (42) 93.7 (52)

CR*Q 91.9 (77) 93.7 (84) 91.4 (107) 92.7 (55) 93.8 (59) 94.3 (75) 93.9 (39) 93.4 (42) 93.8 (52)
CRAsym 80.7 (57) 82.7 (60) 78.8 (73) 82.3 (40) 83.6 (42) 80.5 (51) 83.7 (28) 83.5 (30) 80.9 (36)
CROLS 91.7 (75) 93.4 (81) 91.1 (102) 92.7 (54) 93.4 (58) 94.0 (73) 94.0 (39) 93.7 (42) 93.4 (52)

0.5 CR*N 87.5 (80) 87.6 (86) 81.3 (100) 93.5 (59) 94.2 (63) 90.3 (79) 94.7 (41) 95.7 (44) 94.5 (57)

CR*HDR 90.3 (71) 91.4 (76) 83.9 (88) 95.9 (54) 96.5 (58) 92.3 (69) 93.5 (39) 94.5 (42) 96.5 (52)

CR*Q 91.5 (76) 92.3 (81) 90.5 (97) 93.4 (57) 93.9 (61) 92.8 (75) 94.0 (40) 94.6 (43) 94.0 (56)
CRAsym 76.5 (51) 76.3 (53) 67.3 (57) 78.8 (39) 78.8 (42) 78.3 (48) 79.9 (28) 80.9 (29) 78.1 (36)
CROLS 91.1 (75) 92.1 (81) 90.7 (101) 93.0 (54) 93.5 (58) 93.1 (72) 94.1 (38) 94.5 (41) 93.5 (52)

0 CR*N 97.1 (47) 97.1 (50) 97.7 (65) 98.1 (33) 98.0 (37) 98.1 (47) 98.3 (25) 98.4 (27) 98.8 (34)

CR*HDR 98.3 (40) 98.2 (40) 99.1 (52) 99.0 (25) 99.4 (28) 99.5 (36) 99.4 (17) 99.5 (19) 99.6 (24)

CR*Q 99.1 (64) 98.9 (68) 99.4 (86) 99.7 (45) 99.7 (49) 99.7 (61) 99.9 (32) 99.7 (34) 99.9 (43)
CROLS 91.3 (75) 91.2 (81) 91.7 (102) 92.9 (54) 92.5 (58) 92.3 (73) 94.1 (39) 94.7 (42) 94.2 (52)

CR*SimHDR 85.3 (71) 85.7 (77) 75.1 (96) 94.1 (51) 94.4 (56) 90.8 (70) 96.3 (38) 95.2 (41) 95.2 (52)

CR*Sim 84.1 (83) 84.1 (91) 73.9 (116) 93.4 (60) 93.5 (66) 90.1 (84) 96.6 (45) 95.9 (49) 95.8 (62)

CR*SimOLS 85.2 (108) 86.9 (116) 87.5 (146) 90.9 (77) 90.7 (83) 91.1 (104) 92.7 (55) 92.5 (59) 92.6 (74)

20 1 CR*N 91.2 (80) 91.7 (87) 90.0 (112) 92.1 (55) 93.9 (60) 92.9 (78) 94.3 (39) 93.7 (43) 94.6 (54)

CR*HDR 90.2 (76) 91.2 (83) 92.1 (104) 92.1 (54) 93.1 (59) 91.7 (75) 94.1 (38) 93.1 (42) 93.9 (53)

CR*Q 90.1 (77) 90.7 (84) 89.6 (107) 92.1 (54) 93.3 (59) 91.9 (76) 94.4 (38) 92.6 (42) 93.8 (53)
CRAsym 79.2 (58) 78.9 (62) 75.9 (76) 80.3 (40) 82.2 (43) 77.3 (53) 83.5 (28) 80.5 (30) 81.9 (37)
CROLS 89.7 (76) 90.1 (83) 89.7 (104) 92.3 (54) 92.9 (58) 91.3 (74) 94.4 (38) 92.9 (42) 93.8 (53)

0.5 CR*N 86.1 (81) 82.7 (86) 80.7 (103) 91.6 (59) 91.9 (64) 88.4 (81) 93.9 (41) 94.9 (45) 93.1 (58)

CR*HDR 91.0 (74) 87.8 (79) 84.7 (94) 95.7 (55) 94.7 (59) 92.1 (73) 93.3 (39) 94.3 (43) 96.1 (54)

CR*Q 89.1 (75) 88.8 (80) 88.6 (97) 92.0 (57) 92.1 (61) 90.9 (75) 93.3 (40) 94.1 (44) 92.5 (56)
CRAsym 72.5 (50) 71.6 (51) 64.2 (57) 77.2 (39) 76.6 (41) 73.8 (48) 81.3 (28) 79.2 (30) 76.8 (36)
CROLS 89.5 (76) 88.9 (82) 89.3 (104) 92.5 (54) 92.5 (59) 91.8 (74) 94.1 (38) 94.4 (42) 93.1 (53)

0 CR*N 97.3 (57) 96.8 (61) 97.0 (79) 98.5 (40) 97.3 (45) 97.7 (58) 98.8 (29) 98.9 (33) 98.9 (41)

CR*HDR 97.9 (53) 97.5 (55) 97.7 (70) 99.1 (35) 98.2 (39) 98.7 (50) 99.3 (24) 99.3 (27) 99.3 (33)

CR*Q 98.9 (63) 98.7 (69) 98.8 (87) 99.6 (44) 99.2 (49) 99.3 (62) 99.6 (31) 99.7 (34) 99.7 (43)
CROLS 90.1 (76) 90.2 (83) 89.8 (104) 92.8 (54) 91.9 (59) 91.9 (74) 93.5 (38) 93.5 (42) 93.7 (53)

CR*SimHDR 87.1 (81) 83.6 (89) 78.1 (112) 95.1 (60) 94.4 (66) 93.7 (84) 97.1 (45) 97.1 (50) 97.3 (62)

CR*Sim 86.1 (99) 82.8 (109) 78.3 (138) 94.3 (73) 94.4 (81) 94.1 (103) 97.8 (55) 98.3 (61) 97.1 (77)

CR*SimOLS 77.7 (117) 76.3 (128) 76.6 (160) 86.1 (82) 85.4 (90) 86.9 (114) 90.5 (59) 89.8 (64) 90.3 (81)
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In Tables 1.1 and 1.2 we see that when σ = 1, most regions perform similarly

for nonzero parameters. When σ = 2, the perturbation regions usually have higher

coverage than CRAsym and sacrifice very little in length. The asymmetric CR*HDR

has the shortest length when β0j = 0 for all settings. Coverage for CR*HDR and

simultaneous confidence regions can be low when n = 100 due to the difficulty of

estimating P̂0j at such a small sample size, but coverage reaches nominal levels by

n = 200. The standard deviation estimate from Zou (2006), σ̂Asym (also see Table

1.3), is not large enough to cover β0j sufficiently, and while the coverage probability

of the CROLS is not extremely low, it is notably outperformed by the other confidence

regions when β0j = 0. We omit the results from the settings where n = 1000 because

the results have similar patterns as those with n = 400. For these large sample

cases with n greater than or equal to 400 we saw convergence to 95% coverage for

the normal CRs, highest density regions, and OLS CRs in all settings when the

true parameter was nonzero. For true zero parameters, the coverage probabilities

of our confidence regions converged to 1, while the OLS CR converged to 0.95. A

tradeoff associated with our method is that while the coverage of our perturbation

confidence regions tends to be higher than CROLS and CRAsym, some power is sacrificed

for moderate signals of β0j = 0.5. This loss is minimal, however, and only appears

in difficult cases when sample size is low and ρ and σ are high. When β0j = 0,

CROLS has coverage lower than 95% for small samples while our methods produce

regions with coverage probability near 1 and very short lengths reflecting the oracle

properties. Overall, the most disparity between our methods and previous methods

is seen when the SNR is low.

The coverage probabilities and lengths of our simultaneous confidence regions

are also displayed in Tables 1.1 and 1.2. We compared our methods to CR*SimOLS,
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constructed analogously to CR*Sim except Â∗ = {j|j = 1, . . . , p} and CR*SimOLS is cen-

tered at the OLS estimates and the standard error is the sample standard deviation

of the perturbed OLS estimates. Our regularized CR*Sim and CR*SimHDR have the ad-

vantage of shrinking the dimension of the region by reducing some CRs to the point

{0} when P̂0j is large. We see that our CR*Sim and CR*SimHDR outperform CR*SimOLS

in coverage and have shorter lengths. For large sample settings when n = 1000,

CR*SimOLS converges further to 95% coverage with levels around 90% for p = 20 and

CR*Sim and CR*SimHDR have coverage almost always over 95%.

In Table 1.3 we also present the standard error estimates when σ = 2. For

notation, let the empirical standard deviations of the estimators β̂j and β̃j be denoted

as σ̃j and σ̃OLS
j , respectively. We see that our estimate of the standard error from

the perturbed samples, σ̂∗j , does well in estimating σ̃j. However, the standard error

proposed by Zou (2006) underestimates the true standard error of the parameter

estimates, especially when σ = 2 and β0j = 0.5 or 0. When the SNR is higher, σ̃Asym

j

estimates σ̃j well except when β0j = 0 because σ̂Asym

j = 0 whereas σ̃j and σ̂∗j are

clearly nonzero.

1.4 Example: HIV drug resistance

We illustrate our methods in a real example using the HIV antiretroviral drug sus-

ceptibility data described in Rhee et al. (2003). This dataset was refined from the

Stanford HIV Drug Resistance Database (available at http://hivdb.stanford.edu/ ),

and is used to study the association of protease mutations with susceptibility to the

protease inhibitor anti-retroviral (ARV) drug amprenavir. The data consist of mu-

tation information at 99 protease codons in the viral genome, of which 79 contain
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Table 1.3: Empirical s.d. of the parameter estimates (σ̃) and average s.e. estimates
(σ̂). We present results for settings when σ, the standard deviation of ε, is 2. All
values are multiplied by 100. Note that σ̂Asym

j = 0 when β̂j = 0, but β̂j and β̂∗j are
not always 0 in the simulations, and therefore the average σ̂Asym

j is nonzero.

p β0
n = 100 n = 200 n = 400
ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0 ρ = 0.2 ρ = 0.5

10 1 σ̃ 21.7 22.2 29.9 14.7 15.2 19.3 10.1 10.8 13.7
σ̃OLS 21.1 21.6 28.5 14.4 15.2 19.1 10.1 10.9 13.9
σ̂∗ 20.0 21.7 28.1 14.1 15.2 19.4 10.0 10.8 13.5
σ̂OLS 19.1 20.6 26.0 13.8 14.8 18.5 9.8 10.6 13.2
σ̂Asym 14.7 15.4 18.7 10.2 10.8 13.1 7.1 7.5 9.2

0.5 σ̃ 24.2 25.5 32.3 16.1 16.8 21.8 10.6 11.2 14.7
σ̃OLS 21.6 22.8 29.2 14.8 15.5 19.4 10.2 10.8 13.9
σ̂∗ 21.1 22.8 27.9 15.1 16.2 20.5 10.3 11.2 14.5
σ̂OLS 19.1 20.7 25.9 13.8 14.8 18.4 9.8 10.6 13.2
σ̂Asym 13.0 13.6 14.5 10.0 10.6 12.1 7.1 7.5 9.1

0 σ̃ 17.0 17.2 20.3 10.7 11.5 14.2 6.9 7.2 9.2
σ̃OLS 22.4 23.5 28.4 14.9 16.2 19.9 10.2 10.9 13.8
σ̂∗ 18.6 19.9 25.1 13.2 14.2 17.8 9.4 10.1 12.6
σ̂OLS 19.2 20.6 26.1 13.8 14.9 18.5 9.9 10.6 13.3
σ̂Asym 5.0 4.5 5.4 2.6 2.9 3.5 1.5 1.5 2.0

20 1 σ̃ 23.2 24.8 33.4 15.4 16.2 21.6 9.9 11.4 14.0
σ̃OLS 23.0 24.6 31.7 15.4 16.1 21.3 9.8 11.4 13.9
σ̂∗ 20.3 22.2 28.5 14.1 15.3 19.9 9.9 10.9 13.9
σ̂OLS 19.3 21.1 26.5 13.7 14.9 18.9 9.7 10.7 13.4
σ̂Asym 14.9 15.9 19.4 10.3 10.9 13.5 7.1 7.6 9.4

0.5 σ̃ 24.7 27.1 32.8 16.4 18.1 23.1 10.5 11.7 15.7
σ̃OLS 22.8 25.3 31.6 15.1 16.6 20.8 10.0 11.2 14.4
σ̂∗ 21.2 22.8 28.1 15.2 16.5 20.8 10.5 11.5 14.9
σ̂OLS 19.3 21.0 26.4 13.7 14.9 18.8 9.8 10.7 13.5
σ̂Asym 12.8 13.1 14.5 10.1 10.5 12.2 7.2 7.6 9.2

0 σ̃ 15.3 16.7 21.1 9.3 10.8 13.7 6.1 6.6 8.1
σ̃OLS 22.5 25.0 31.7 14.7 16.6 21.2 10.2 11.4 14.1
σ̂∗ 18.5 20.2 25.6 12.9 14.2 18.1 9.1 10.2 12.7
σ̂Asym 4.7 5.1 6.1 2.6 2.8 3.5 1.4 1.6 1.9
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mutations, and ARV drug resistance assays for n = 702 HIV infected patients. Drug

resistance was measured in units of IC50, the amount of drug needed to inhibit viral

replication by 50% in units of fold increase compared to drug-sensitive wildtype virus.

Researchers are interested in determining which protease mutations are associated

with ARV resistance so that they may develop a genotype test for resistance that

looks for these mutations in the patient’s infecting HIV strain. Therefore, we aim

to examine the effect of the presence of any of the mutations at 79 codons on IC50,

where higher IC50 measurements indicate higher levels of drug resistance. We chose

to log-transform the non-negative IC50 outcome and represented the presence of each

of the mutations as a binary predictor in our regression model. We removed the fif-

teen mutations that occurred less than 0.5% in the data set. Recently, Wu (2009)

analyzed these data with a permutation test for regression coefficients of LASSO. In

this paper, we will analyze the data using ALASSO and gain inference by using our

perturbation methods to construct CRs and standard errors.

For this analysis, we used LARS to fit an ALASSO linear model with initial pa-

rameters β̃ estimated by OLS and λ and λ∗ chosen to minimize the BIC as described

in the appendix. We generated M=500 perturbation variable sets G, consisting of

n = 702 i.i.d. variables from an exponential distribution with mean and variance

equal to 1, and for each G we minimized the perturbed objective function to ob-

tain β̂
∗
m. We constructed 95% CRs using our perturbation method and compared

inference gained from CR*N, CR*HDR, and CR*Q to the inference from CRAsym and

CROLS. We estimated the σ used in the standard deviation estimate from Zou (2006)

analogous to equation (1.2) with the residual variance from the nonregularized linear

regression model and chose p̂high and p̂low as described in the simulation studies.
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Codon P10 P30 P32 P33 P37 P46 P47 P48 P50 P54 P64 P71 P76 P84 P88 P89 P90 P93
Johnson et al *  *   * *  * *   * *   *  

Wu Adjusted * * * *  * * * * *   * * *  *  

OLS * * * * * * * * * * * * * * * * * *
Asymptotic Based * * * * * * * * * * * * * * * * * *

Perturbation (Normal) * * * * * * * * * * * * * * * * * *
Perturbation (HDR) * * * * * * * * * * * * * * * * * *

Perturbation (Q) * * * * * * * * * * *  * * *  * *
p̂0 0 0 0 0 0.01 0 0 0.01 0.02 0 0 0.05 0 0 0 0.05 0 0.02

Figure 1.1: Perturbation methods results denoting significant associations between
genetic mutations and drug susceptibility.

We present a graphical summary of the analysis results in Figure 1.4. Previous

studies by Prado et al. (2002) and results collected by Johnson et al. (2005) found

that mutations at codons 10, 32, 46, 47, 50, 54, 73, 82, 84 and 90 emerge in am-

prenavir resistant viral genomes. Using a permutation based p-value adjusted for

multiple testing, Wu (2009) determined these mutations (except 73 and 82) as well

as additional codon mutations to be significantly associated with amprenavir sus-

ceptibility at the α = 0.05 level for a total of thirteen significant associations. The

ALASSO estimator obtained with λ = 0.56 from BIC estimated 36 coefficients as

nonzero. The confidence region from nonregularized estimates CROLS was significant

for twenty-six mutations. Our perturbation based CR*N, CR*HDR, and CR*Q for the

mutations found significant by Wu (2009) did not include zero and three new muta-

tions (37, 64, 93) had significant perturbation confidence regions. We see in Figure

1.4 that the parameter for codons 71 and 89 have marginally significant Normal and
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HDR confidence regions and marginally nonsignificant quantile confidence regions

and note that P̂0j is marginally close to 0.05.

−1 0 1 2

95% Perturbation (Normal) CIs
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95% Perturbation (HDR) CRs
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P32
P33

P37
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P47
P48
P50
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P71
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P84

P88
P89
P90

P93

Figure 1.2: 95% perturbation CRs (CR*N and CR*HDR) for the association between

genetic mutations and antiretroviral drug susceptibility. Estimated coefficients β̂j
are represented with a circle on each CR line and a star at zero signifies that the
CR includes the point mass at zero. The shaded region denotes the simultaneous
confidence regions CR*Sim and CR*SimHDR. Note that even coefficients estimated as
zero may have CRs around their estimates and that CR*HDR may be asymmetrical
and noncontiguous.

Our use of ALASSO provides estimates of the effects of each mutation while

adjusting for the presence of other mutations. Several studies have shown that mu-

tations associated with resistance to protease inhibitors can have varying effects when

combined with other mutations (Schumi and DeGruttola, 2008; Van Marck et al.,

2009). For instance, the mutation at codon 32 has been found to have no effect on
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resistance of the protease inhibitor drug darunavir when a mutation at codon 84

is present (Van Marck et al., 2009). Our method allows us to determine the size

of associations without orthogonalizing predictors and we adjust for multiple test-

ing with the simultaneous confidence region CR*Sim. Results could be impacted by

studies summarized in Johnson et al. (2005) that may not have adjusted for other

mutations, and the use of LASSO estimators that do not have oracle properties in

Wu (2009). Our methods highlight three new mutations that have not been found

to be associated with drug susceptibility. Furthermore, our methods produce CRs

for the coefficients of mutations that were estimated as zero. These CRs quantify

the uncertainty in our estimation and can aid scientists who wish to conduct future

drug therapy studies involving the codons.

1.5 Discussion

In this paper, we address the problem of constructing a covariance estimate for pa-

rameter estimates obtained with a general objective function and concave penalty

functions including adaptive LASSO and SCAD. The proposed methods for covari-

ance estimates are simple to implement and possess the attractive property that

parameters estimated as zero have nonzero standard errors. We may then construct

confidence regions for each parameter estimate and obtain more meaningful inference.

We have shown through extensive simulation studies using the ALASSO penalty

that our perturbation method results in confidence regions with accurate coverage

probability. The perturbation based normal CR does not sacrifice much in length

and has reasonable coverage for small sample sizes. We set the CR to {0} when the

proportion of perturbed estimates set to 0 is higher than a threshold, and therefore
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shorten the length by utilizing the oracle property. The perturbation based highest

density region has even shorter length and good coverage probability, especially for

the moderate signal β0j = 0.5 in comparison to all other confidence regions. The

asymptotic based Normal interval that uses the standard error estimate presented

in Zou (2006) fails to reach nominal coverage levels due to the underestimation of

the standard error, most notably when the standard error is estimated as 0 when

β̂ = 0. However, our estimate of the standard error of the parameter estimates

based on our perturbation samples is close to the empirical standard error of the

ALASSO estimates, even for parameters estimated as 0. Additionally, we propose

two types of simultaneous CRs that adjust for multiple comparisons. We again utilize

the oracle property and reduce the dimension of our region by setting intervals to

{0} when the proportion of zero perturbed parameter estimates is high. Therefore,

the average length of our Normal simultaneous region will often be shorter than the

simultaneous OLS region. For instance, when all covariates are independent, the OLS

length is asymptotically proportional to γOLS = max
{∣∣∣(β̃j − β0j)/σ

∣∣∣}p
j=1

whereas

the perturbation region length is asymptotically proportional to (q/p)γ where γ =

max
{∣∣∣(β̂j − β0j)/σ

∣∣∣}
β0j 6=0

. Note that γ ≤ γOLS and so the length of the perturbation

region will be shorter than the OLS length when the true model is sparse. Similarly,

when the covariates are not independent,
{

(β̃j − β0j)/σ
}p
j=1
∼ N(0,Corr(β̂)) and

the perturbation region generally has shorter average length than the OLS region.

Simple simulations show that when q parameters are estimated as nonzero, we expect

the perturbation region length to be approximately 0.36 times the OLS region length

when p = 10 and q = 4 and approximately 0.16 times the OLS region length when

p = 20 and q = 4 for both the independent case and the compound symmetry case

when ρ = 0.5 and σ = 1. However, in finite sample, the gain in interval length for
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the shrinkage estimators may be substantially less than the theoretical gain as oracle

properties may be far from being true and the intervals may need to be enlarged to

ensure proper coverage levels.

When the SNR is low, much larger sample sizes may be required for the re-

sampling procedure to yield confidence intervals with proper coverage levels. We

conducted further simulations for the case when β = (1, 1, 0.1, 0.1,01×(p−4))
T. In

general, we find that the standard error estimates perform well even with sample

sizes around 100. The confidence intervals have reasonable coverage levels for β3

when σ = 1 and the correlation ρ is low with sample size 400 or larger. For example,

when σ = 1, ρ = 0.2, and p = 20, the coverage level of the 95% CR*HDR of β3 is

about 90% for n = 400 and 94% for n = 1000. As we increase the correlation ρ and

σ, the interval estimation of β3 becomes more difficult. For example, for the most

difficult case with σ = 2, ρ = 0.5, and p = 20, the empirical coverage level of CR*HDR

is about 60%, 84% and 90% when n = 400, 1000, and 2000, respectively. This is a

particularly difficult case as it has been shown that estimating the distribution func-

tion of the ALASSO type estimator is not feasible when the effect size is of similar

magnitude to n−
1
2 (Pötscher and Schneider, 2009). Note that when σ = 2, the effect

size corresponding to β3 is 0.05 whereas n−
1
2 = 0.1 when n is 100 and n−

1
2 ≈ 0.032

for n = 1000.

Additionally, it is well known that regularized estimators, while possessing asymp-

totic oracle properties, are prone to bias in finite samples. Bias correction for

the ALASSO estimator can be achieved based on our perturbation samples. We

present the technical details of the estimation of the bias in the appendix. We

find that this bias correction works well in practice, especially when the signal
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is small or moderate, as when β0j = 0.5. For example, in our simulations when

p = 20, n = 200, ρ = 0.2, σ = 2, and β0j = 0.5, the bias of β̂j is -0.067 while the bias

of β̂BC
0j is -0.034. Similar gains are seen for most settings. The bias corrected estima-

tor has empirical standard error similar to that of the original ALASSO estimator

but with smaller bias. We could construct analogous bias-corrected estimators based

on other penalties and objective functions. The model size with the ALASSO and

bias-corrected ALASSO estimator in our simulations is close to 5 when σ = 1, except

for the difficult cases when n = 100 and p = 20 for which the average model size is

closer to 5.5. For the settings where the SNR is low with σ = 2, the oracle property

is weak in finite samples and so the model size is between 5 and 6 when p = 10 and

between 6 and 9 when p = 20.

We note that when p is large relative to n, initial parameter estimates obtained

with ridge regression can produce more stable results. Furthermore, our results may

be extended to the case where p tends to ∞ at some rate slower than n. We expect

that the theory could be derived using similar arguments as given in Fan and Peng

(2004) and Zou and Zhang (2009). Lastly, we note that our methods are robust to

misspecification of the model and are valid provided that regularity conditions given

in Section 2 hold.
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1.7 Appendix A: Proofs

1.7.1 Justification for the resampling method

To show that the distribution of n
1
2 (θ̂θθ−θθθ0) can be estimated by that of n

1
2 (θ̂θθ
∗
− θ̂θθ) | X

under conditions C1-C3, we first consider the distribution of n
1
2 (θ̂θθ
∗
− θθθ0) under the

product probability measure P∗ generated by the data, X, and the perturbation

variables G = {Gi, i = 1, . . . , n}. Throughout, we assume that the parameter space

for θθθ, denoted by Ω, is a compact set and θθθ0 is an interior point of Ω. Note that this

compactness condition may be nontrivial in practice. This condition is necessary for

this proof of our proposed method, and validity of the method without this condition

warrants further investigation. We let Pn denote the empirical measure generated by

X and Gn = n−
1
2 (Pn−P). We use notation→p to denote convergence in probability.

We first show that θ̃θθ
∗
→p θθθ0, where θ̃θθ

∗
is the perturbed initial parameter estimate

obtained by minimizing the perturbed un-regularized likelihood in (1.3). For f ∈

{L(θθθ; D)}, denote the empirical perturbation measure as P∗nf = n−1
∑n

i=1Gif(Xi).

Since {L(θθθ; D) : θθθ ∈ Ω} is P-Glivenko-Cantelli, by Corollary 10.14 of Kosorok

(2008) |L̃∗(θθθ) − P{L(θθθ; D)}| ≤ |L̃∗(θθθ) − L̃(θθθ)| + |L̃(θθθ) − P{L(θθθ; D)}| = |(P∗n −

Pn){L(θθθ; D)}|+ |(Pn − P){L(θθθ; D)}| uniformly converges to zero. Then, under con-

dition C1, P{L(θθθ; D)} has a unique minimum at θθθ0, and so θ̃θθ
∗
→p θθθ0 (Newey and

McFadden, 1994, Theorem 2.1).

We now show that θ̂θθ
∗
→p θθθ0. First note that

∑p
j=1 p

′
λ∗nj

(|β̃∗j |)|βj| → 0 in probabil-

ity. When the penalty is Lq, p
′
λ∗nj

(|β̃∗j |) = λn|βj|q, p′(|β̃∗j |)→p p
′(|β0j|) by the contin-

uous mapping theorem and λn → 0. For the SCAD penalty, p′λ∗nj(|β̃
∗
j |) = λnI(|β̃∗j | ≤

λn) + (aλn − |β̃∗j |)+I(|β̃∗j | > λn)/(a − 1). We consider two cases: (i) β0j 6= 0, and
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(ii) β0j = 0. For case (i), λn → 0 and |β̃∗j | →p |β0j|. Thus, I(|β̃∗j | ≤ λn) →p 0

and (aλn − |β̃∗j |)+ →p 0. For case (ii), λn → 0 and (aλn − |β̃∗j |)+ →p 0. Finally,

for the ALASSO penalty, p′λ∗nj(|β̃
∗
j |) = λn|n

1
2 β̃∗j |−1, |n 1

2 β̃∗j | = OP(1), and λn → 0.

Then, since θθθ lies in a compact space,
∑p

j=1 p
′
λ∗nj

(|β̃∗j |)|βj| ≤ τ
∑p

j=1 p
′
λ∗nj

(|β̃∗j |) ≤

||β||Bn, where τ = max{|βj|}, Bn = oP(1) since p′λ∗nj(|β̃
∗
j |) →P 0 for each j, and

hence supθθθ

∣∣∣∑p
j=1 p

′
λ∗nj

(|β̃∗j |)|βj|
∣∣∣ →p 0 (Newey and McFadden, 1994, Lemma 2.9).

Now, with similar arguments as above for the proof of θ̃θθ
∗
→p θθθ0, we have that

|L̂∗(θθθ) − P{L(θθθ; D)}| ≤ |L̃∗(θθθ) − P{L(θθθ; D)}| +
∑p

j=1 p
′
λ∗nj

(|β̃∗j |)|βj| uniformly con-

verges to zero. This implies the convergence of θ̂θθ
∗
→p θθθ0.

We next show that ‖θ̂θθ
∗
− θθθ0‖ = OP∗(n

− 1
2 ). It is sufficient to show that for any

ε > 0, there exits C > 0 such that

P∗
(

inf
‖θθθ−θθθ0‖≥Cn−

1
2

L̂∗(θθθ) > L̂∗(θθθ0)

)
> 1− ε (1.6)

Consider θθθ = θθθ0 + n−
1
2 u. Condition C3(c) implies

Pn{L(θθθ0 + n−
1
2 u)− L(θθθ0)− n−

1
2 U(θθθ0; D)Tu} − 1

2
n−1uTAu

‖n− 1
2 u‖

= oP(1) (1.7)

uniformly in u. By the multiplier central limit theorem (Kosorok, 2008, Theorem

10.1),

P∗n{L(θθθ0 + n−
1
2 u)G− L̃(θθθ0)G− n−

1
2 U(θθθ0; D)TuG} − 1

2
n−1uTAu

‖n− 1
2 u‖

= oP∗(1) (1.8)

uniformly in u. It follows that uniformly for θθθ ∈ {θθθ : ‖θθθ − θθθ0‖ ≤ n−
1
2 u},

L̃∗(θθθ0 + n−
1
2 u)− L̃∗(θθθ0) = n−

1
2 Pn{U(θθθ0; D)G}u +

1

2
n−1uTAu + oP∗(n

−1‖u‖) (1.9)

and thus we may approximate n{L̂∗(θθθ0 + n−
1
2 u)− L̂∗(θθθ0)} with Gn{U(θθθ0; D)G}u +

1
2
uTAu + n

∑p
j=1 p

′
λ∗nj

(|β̃∗j |)
(∣∣∣β0j + n−

1
2uj

∣∣∣− |β0j|
)

+ oP∗(‖u‖2 + ‖u‖).
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Now we show the “consistency” of variable selection, i.e., P∗(θ̂θθ
∗
Ac = 0) → 1 as

n → ∞. It suffices to to show that for any constant C and given θ̃θθA such that

‖θ̃θθA − θθθ0A‖ = OP∗(n
− 1

2 )

P∗
[
argmin

‖θθθAc‖≤Cn−
1
2
L̂∗
{(
θ̃θθ

T

A, θθθ
T

Ac

)T}
= 0
]
→ 1. (1.10)

Let ũA and uAc denote n
1
2 (θ̃θθA − θθθ0A) and n

1
2 θθθAc , respectively. It follows from (1.9)

n
[
L̂∗
{(
θθθT

0A + n−
1
2 ũT

A, n
− 1

2 uT

Ac

)T}
− L̂∗

{(
θθθT

0A + n−
1
2 ũT

A, 0
T

)T}]
(1.11)

= [Gn{U(θθθ0; D)T

AcG}+ ũT

AA12] uAc +
1

2
uT

AcA22uAc + n
∑
j∈Ac

p′λ∗nj(|β̃
∗
j |)|n−

1
2uj|

+ oP∗(‖uAc‖2 + ‖uAc‖) =
∑
j∈Ac

n
1
2p′λ∗nj(|β̃

∗
j |) |uj|+Rn(uAc). (1.12)

where sup‖uAc‖≤C Rn(uAc)/ (‖uAc‖2 + ‖uAc‖) = oP∗(1). Zou and Li (2008) consider

the limiting behavior of n
1
2p′λ∗nj(|β̃

∗
j |) for SCAD and Lq penalties in their proof of the

oracle properties of the one-step LLA estimator. They show that for both cases, when

j ∈ Ac, n
1
2p′λ∗nj(|β̃

∗
j |) →p ∞. Additionally, for the ALASSO penalty, n

1
2p′λ∗nj(|β̃

∗
j |) =

n−
1
2λn|n

1
2 β̃∗j |−1, when j ∈ Ac, we have n−

1
2λn →∞ and |n 1

2 β̃∗j | = OP∗(1). Hence, for

all three types of penalties, n
1
2p′λ∗nj(|β̃

∗
j |)→p ∞. Thus, for any ε > 0, there exist C1 >

C0 > 0 and N0 such that P∗
{∑

j∈Ac n
1
2p′λ∗nj(|β̃

∗
j |) |uj| ≥ C1

∑
j∈Ac |uj|

}
≥ 1 − ε and

P∗
{
C0

∑
j∈Ac |uj| ≥ |Rn(uAc)|

}
≥ 1−ε for ‖uAc‖ ≤ C and n ≥ N0. This implies that

with probability greater than 1 − 2ε, n
[
L̂∗
{(
θ̃θθ

T

A, n
− 1

2 uT
Ac

)T}
− L̂∗

{(
θ̃θθ

T

A, 0
T

)T}]
≥

(C1 − C0)
∑

j∈Ac |uj| ≥ 0, which implies (1.10).

Lastly, we will justify the oracle property of θ̂θθ
∗
A. Since P∗(θ̂θθ

∗
Ac = 0) → 1, θ̂θθ

∗
A can

be considered as the minimizer of L̂∗A(θθθA) = L̂∗{(θθθT

A, 0
T)T}. Following the approach
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of Zou (2006), we consider the reparametrization

L̂∗A(θθθ0A + n−
1
2 uA)

= PnL
{(
θθθT

0A + n−
1
2 uT

A, 0
T

)T

,Di

}
Gi +

∑
j∈A

p′λ∗nj(|β̃
∗
j |)
∣∣∣β0j + n−

1
2uj

∣∣∣ (1.13)

Let û
(n)
A = arg minuA

L̂∗A(θθθ0A + n−
1
2 uA). Note û

(n)
A = n

1
2 (θ̂θθ
∗
A − θθθ0A) is also the

minimizer of V ∗n (uA) ≡ L̂∗A(θθθ0A + n−
1
2 uA)− L̂∗(θθθ0), as L̂∗(θθθ0) is a constant. Again,

it follows from (1.9)

V ∗n (uA) = n
1
2 uT

APn{UA(θθθ0,D)G}+
1

2
uT

AA11uA

+n
∑
j∈A

p′λ∗nj(|β̃
∗
j |)
(∣∣∣β0j + n−

1
2uj

∣∣∣− |β0j|
)

+oP∗(‖uA‖2 + ‖uA‖) (1.14)

To examine the limiting behavior of the third term of V ∗n (u), we have β0j 6= 0,

n
1
2 (|βj0 + n−

1
2uj| − |βj0|) →p uj sgn(β0j), since j ∈ A. Also, as Zou and Li

(2008) proved in their appendix, n
1
2p′λ∗nj(|β̃

∗
j |) →p 0 when j ∈ A for the SCAD

and Lq penalties. For the ALASSO penalty, n
1
2p′λ∗nj(|β̃

∗
j |) = λn|β̃j|−1, λn → 0,

and |β̃j|−1 →p |β0j|−1 for β0j 6= 0. Therefore, by Slutsky’s theorem, we have

np′λ∗nj(|β̃
∗
j |)
(∣∣∣β0j + n−

1
2uj

∣∣∣− |β0j|
)

= oP∗(1) and

V ∗n (uA) = uT

AGn{UA(θθθ0,D)G}+
1

2
uT

AA11uA + oP∗(1 + ‖uA‖2 + ‖uA‖). (1.15)

Thus, û
(n)
A = −A−1

11 Gn{UA(θθθ0,D)G} + oP∗(1). Since Gn{UA(θθθ0,D)G} converges to

N(0,B11) in distribution, n
1
2 (θ̂θθ
∗
A− θθθ0A)→d N(0,A−1

11 B11A−1
11 ) and P∗(θ̂θθ

∗
AC = 0)→ 1.

Then the perturbed regularized estimator θ̂θθ
∗

is asymptotically normal in the true

nonzero parameter set.

Similar arguments as given above, along with the conditional multiplier cen-

tral limit theorem (Kosorok, 2008, Theorem 10.4), can be used to justify that
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the distribution of n
1
2 (θ̂θθ
∗
− θ̂θθ) | X approximates that of n

1
2 (θ̂θθ − θθθ0). Specifi-

cally, we can similarly obtain n
1
2 (θ̂θθA − θθθ0A) = −A−1

11 Gn{UA(θθθ0,D)} + oP(1) and

P∗(θ̂θθAC = 0) → 1. Therefore, n
1
2 (θ̂θθ
∗
A − θ̂θθA) = −A−1

11 Gn{UA(θθθ0,D)(G − 1)} + oP∗(1).

Since −A−1
11 Gn{UA(θθθ0,D)(G − 1)} | X →d N(0,A−1

11 B̂11A−1
11 ) and B̂11 →P B11,

n
1
2 (θ̂θθ
∗
A − θ̂θθA) | X and n

1
2 (θ̂θθA − θθθ0A) converge in distribution to the same limit. Fur-

thermore, P∗(θ̂θθ
∗
AC = 0|X)→ 1.

1.7.2 Choice of thresholding values p̂high and p̂low for confi-
dence regions

We choose values for p̂high and p̂low to converge at rates relative to the order of the

tuning parameter λ and bounded by the probability that our perturbation samples

are set to zero. For illustration, consider the univariate β case with one predictor

under orthonormal design. Consider standardized parameters γ̂ = β̂/σ, γ = β/σ

and λ̃n = λn/σ
2, where λn → 0 and n

1
2λn →∞. Then

γ̂
.∼ N(γ0, n

−1), γ̂1 = γ̂

(
1− λ̃n
|γ̂|2

)
+

, γ∗1
.∼ γ∗

(
1− λ̃n
|γ∗|2

)
+

(1.16)

where γ∗
.∼ N(γ̂, 1/n). Thus γ∗1 = 0 with probability

P̂0 = P{|γ∗| < λ̃1/2
n } = Φ{n1/2(λ̃1/2

n − γ̂)} − Φ{−n1/2(λ̃1/2
n + γ̂)} (1.17)

First consider non-zero parameters. Without loss of generality, assume that γ0 > 0.

Let ε = 2λ̃
1
2
n and assume that γ0 > 2ε. Then

E(P̂0) =E
[
Φ
{
n

1
2 (λ̃

1
2
n − γ̂)

}
− Φ

{
n

1
2 (−λ̃

1
2
n − γ̂)

}]
(1.18)

≤
[
Φ
{
n

1
2 (λ̃

1
2
n − ε)

}
− Φ

{
n

1
2 (−λ̃

1
2
n − ε)

}]
P (γ̂ > ε) + P (γ̂ ≤ ε) (1.19)

≤2Φ(−n
1
2 ε) /

√
2/π exp{−nλ̃n} =

√
2/π exp{−nλn/σ2} (1.20)
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Thus, we propose to choose the lower bound p̂low =

min(0.49,
√

2/π exp{−nλn/(4σ2)}) such that p̂low �
√

2/π exp(−nλn/σ2). On the

other hand, if γ0 = 0, then

E(1− P̂0) =E
[
Φ
{
n

1
2 (−λ̃

1
2
n + γ̂)

}
+ Φ

{
n

1
2 (−λ̃

1
2
n − γ̂)

}]
(1.21)

≈2Φ
{
−n

1
2 λ̃

1
2
n/
√

2
}

/
√

2/π exp{−nλ̃n/4} =
√

2/π exp{−nλn/(4σ2)}
(1.22)

Thus, we chose p̂∗high = 1 −
√

2/π exp(−nλn/σ2) such that p̂∗high � 1 −√
2/π exp{−nλn/(4σ2)}. Note that we chose p̂low and p̂high such that p̂low goes

to 0 at a much slower rate than P̂0 for γ0 6= 0. On the other hand, when γ0 = 0,

p̂∗high goes to 1 at a much faster rate than P̂0 and thus P̂0 > p̂high = min(1−α, p̂∗high)

occurs with probability approaching 1 as n→∞, for any fixed α > 0. Consequently,

this indicates a strong evidence of γ = 0 when P̂0 > p̂high. When σ is unknown, it is

replaced with a consistent estimate σ̂.

1.7.3 Justification of highest density region and bias esti-
mate

For j ∈ AC , P∗(β̂∗j = 0) → 1 and thus for any α > 0, P∗(P̂0j > α) → 1, and

P(P̂0j < p̂high) + P(P̂0j < p̂low) → 0. Hence, P∗(0 ∈ CR*HDR

j ) → 1 and so we

include {0} in our CR when P̂0j > p̂low and the coverage of CR*HDR
j converges to 1

when β0j = 1. For j ∈ A, P̂0j →p 0, and our estimates converge to a continuous

distribution, specifically n
1
2 (β̂∗j − β̂j) | X →d N(0, σ2

j ), where σ2
j is the asymptotic

variance of n
1
2 (β̂j − β0j). It follows that supx |n−

1
2f ∗j (β̂0j + n−

1
2x) − φσj(x)| →p 0

where φσ(x) = φ(x/σ)/σ and φ(·) is the density function of the standard normal.

Therefore, supβ |n−
1
2f ∗j (β) − φσj{n

1
2 (β − β̂0j)}| →p 0 and n−

1
2 ĉ3 →p c30, where c30
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is the solution to
∫
I{φσj(x) > c30}φσj(x)dx = 1 − α. It follows that the coverage

of our CR converges to nominal levels since, with respect to probability measure

P∗, pr(β0j ∈ CR*HDR

j ) = pr
{
f ∗j (β0j) ≥ ĉ3

}
+ oP∗(1) = pr

{
n−

1
2f ∗j (β0j) ≥ n−

1
2 ĉ3

}
+

oP∗(1) = pr
[
φσj{n

1
2 (β0j − β̂0j)} ≥ c30

]
+ oP∗(1)→ 1− α.

Here we define our bias corrected estimator for β0j,

β̂BCj = β̂j + I(β̂j 6= 0)b̂iasj, (1.23)

where b̂iasj =
(

1
M

∑M
m=1 β̂

∗
j,m

)
(−1)I[

PM
m=1{I(bβ∗j,m>0)−I(bβ∗j,m<0)}<0]

(
Â−1
λ

)
jj
/{nmax(|ξ̂7.5|,

|ξ̂97.5|)}, Âλ = n−1

(
XTbAX bA + n−

1
2λndiag

{
1/β̃2

j

}p
j=1

)
and ξ̂r is the r percentile of

{β̃∗j,m,m = 1, . . .M}. We estimate A for ALASSO with Âλ following the methods

of Cai et al. (2009) where a stabilized estimate of the covariance of coefficients from

an accelerated failure time model is used.

1.8 Appendix B: Model selection

1.8.1 Selection of λ with Bayes Information Criterion

In Section 2, we suggest choosing the tuning parameter λn by minimizing the BIC.

Here we explicitly present the BIC for the linear regression objective function and

ALASSO penalty that we utilized in the simulations and data example in Sections

3 and 4. First, assume that the data has been centered so there is no intercept. We

implement a least squares approximation of the likelihood for BIC(λ) as in Wang

and Leng (2007). For a given λ,

BIC(λ) = (β̂(λ)− β̃)T Σ̂
−1

λ (β̂(λ)− β̃) + q̂λωn (1.24)
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where β̂(λ) minimizes the least squares objective function L̂(β) = (y −Xβ)T (y −

Xβ) +
∑p

j=1 p
′
λ(|β̃j|)|βj|, based on (1.1), Σ̂

−1

λ = (σ̂2n)−1{XTX + λ diag{I(β̂j(λ) 6=

0)/|β̃jβ̂j(λ)|}pj=1} is a stabilized estimate of Σ similar to that in Zou (2006), σ̂2 is

the consistent estimate of σ from the linear regression model based on the residual

variance, and q̂λ estimates the degrees of freedom of ALASSO with the number

of nonzero elements of β̂(λ) (Zou et al., 2007). We choose ωn = min(n0.1, log(n))

because numerical results suggest that log(n) is much greater than n0.1 and leads to

excessive shrinkage of moderately sized parameters in finite sample.
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2.1 Introduction

Accurate and individualized prediction of risk plays a central role in successful disease

prevention and treatment selection. Recent advancement in biological and genomic

research has led to the discovery of a vast number of new markers associated with

disease outcomes. For example, gene expression analyses have identified molecular

subtypes that are associated with differential prognosis and response to treatment

for breast cancer patients (Perou et al., 2000; Dent et al., 2007). For non-small cell

lung cancer patients, several biological markers including cyclin E and Ki-67 were

shown to be highly predictive of patient survival (Dosaka-Akita et al., 2001). These

new discoveries hold great potential for improving the prediction of clinical outcomes,

and may lead to personalized, tailored medicine. To realize the goals of personalized

medicine, significant efforts have been made towards building risk prediction models.

For example, statistical models for predicting individual risk have been developed

for various types of diseases (Gail et al., 1989; Chen et al., 2006; Thompson et al.,

2006; Cassidy et al., 2008; Wolf et al., 1991; D’Agostino et al., 1994). However, these

models, largely based on traditional clinical risk factors, have limitations in their

clinical utilities (Spiegelman et al., 1994; Gail and Costantino, 2001; Vasan, 2006).

For example, the predictive accuracy as measured by the C-statistics (Pepe, 2003)

was only about 0.70 for the Framingham stroke models (Wolf et al., 1991; D’Agostino

et al., 1994) and about 0.60 for the breast cancer Gail model (Gail et al., 1989).

To improve risk prediction for complex diseases, incorporating genotype infor-

mation into disease risk prediction has been considered an eventuality of modern

molecular medicine (Yang et al., 2003; Wray et al., 2008; Johansen and Hegele,

2009; Janssens and van Duijn, 2008). Microarray, genome-wide association studies
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(GWAS) as well as next generation sequencing studies provide attractive mecha-

nisms for identifying important genetic markers for complex diseases (McCarthy

et al., 2008; Pearson and Manolio, 2008; Mardis, 2008). Despite the initial success

of GWAS, these studies focus primarily on the discovery of genetic variants associ-

ated with risk. A common approach to incorporate genotype information into risk

prediction is to perform genome-wide univariate analysis to identify genetic markers

associated with disease risk and then construct a genetic score from the total number

of risk alleles or sum of log expression levels. Such a genetic score is then included

as a new variable in the risk prediction model and assessed for its incremental value

in risk prediction. However, adding such simple risk scores to the prediction model

has led to little improvement in risk prediction accuracy (Gail, 2008; Meigs et al.,

2008; Purcell et al., 2009; Lee et al., 2012). This is in part due to the fact that non-

linear and interactive effects that may contribute to disease risk have not yet been

identified or incorporated. (Marchini et al., 2005; McKinney et al., 2006; Wei et al.,

2009). Furthermore, existing findings have shown that common genetic variants of-

ten explain a small portion of genetic heritability of complex diseases and suggest

that numerous genes may simultaneously affect the disease risk (Visscher et al., 2008;

Paynter et al., 2010; Wacholder et al., 2010; Machiela et al., 2011; Makowsky et al.,

2011). Therefore, to achieve optimal accuracy, one must incorporate such complex

effects from multiple genes into the new risk prediction model.

Statistical procedures for combining markers to improve risk prediction have been

proposed for linear additive effects with a small number of markers (Su and Liu, 1993;

McIntosh and Pepe, 2002; Pepe et al., 2006). However, relatively little statistical

research has been done on risk prediction in the presence of high dimensional markers

with complex non-linear interactive effects. Current literature on studying interactive
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effects focuses primarily on testing for the significance of interactions (Umbach and

Weinberg, 1997; Yang and Khoury, 1997; Chatterjee and Carroll, 2005; Murcray

et al., 2009). Traditional statistical methods that include explicit interaction terms

in regression are not well suited for detecting or quantifying such interactive and non-

linear effects, especially when the number of predictors is not very small and when

higher order and non-linear interactions are present. To overcome such difficulties, we

propose to employ a kernel machine (KM) regression framework which has emerged

in the last decade as a powerful technique to incorporate complex effects (Cristianini

and Shawe-Taylor, 2000; Schölkopf and Smola, 2002). Recently, statistical procedures

for making inference about model parameters under KM regression framework have

been proposed (Li and Luan, 2003; Liu et al., 2007, 2008). The KM models implicitly

specify the underlying complex functional form of covariate effects via knowledge-

based similarity measures that define the distance between two sets of covariates.

These procedures, while useful in capturing non-linear effects, may not be efficient

when the underlying model is too complex. The lack of efficiency is even more

pronounced when the number of candidate markers is large, with the possibility that

many such markers are unrelated to the risk.

To achieve a good balance between model complexity and estimation efficiency,

we propose a multi-stage adaptive estimation procedure when the genomic markers

are partitioned into M gene-sets based on prior knowledge. In the first stage, by

imposing a blockwise naive bayes KM (NBKM) model, the marker effects within a

gene-set are allowed to be complex and interactive while the total effects from the M

gene-sets are assumed to be aggregated additively. Within each gene-set, we propose

to improve the estimation via an KM principal component analysis (PCA) (Schölkopf

and Smola, 2002; Bengio et al., 2004; Braun, 2005) which effectively reduces the
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degree of freedom. In the second stage, we recalibrate our estimates adaptively via a

blockwise variable selection procedure to account for the fact that some of the gene-

sets may be unrelated to the risk and the model imposed in the first stage may not

be optimal. The NBKM model is described in section 2 and the detailed procedures

for model estimations are given in section 3. Procedures for assessing the predictive

accuracy of the resulting risk score are given in section 4. In section 5, we first

provide results from simulation studies illustrating the performance of our proposed

procedures and compare them to some of the existing procedures. Then, applying

our methods to a GWAS of type I diabetes (T1D) collected by Welcome Trust Case

Control Consortium (WTCCC), we obtain a genetic risk score classifying T1D and

evaluate its accuracy in classifying the T1D disease status. Some closing remarks

are given in section 6.

2.2 Naive-bayes kernel machine (NBKM) model

Let Y denote the binary outcome of interest with Y = 1 being diseased and Y = 0

being non-diseased. Suppose there are M distinct gene-sets available for predict-

ing Y and we let Z(m) denote the vector of genetic markers in the mth set. The

gene-sets can be created via biological criteria such as genes, pathways, or linkage

disequilibrium (LD) blocks. Let Z(•) = (Z(1)T , ...,Z(M)T)T denote the entire vector of

genetic markers from all M sets. Assume that data for analysis consist of n inde-

pendent and identically distributed random vectors, {(Yi,Z(•)
i , l = 1, ...,M), i ∈ D},

where D = {1, ..., n} indexes all subjects the entire dataset. Throughout, we use the

notation ‖ · ‖1 and ‖ · ‖2 to denote the L1 and L2 vector norm.

To construct a prediction model for Y based on Z(•), we impose a working Naive
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Bayes (NB) assumption that {Z(m),m = 1, . . . ,M} are independent of each other

conditional on Y. Under this assumption, it is straightforward to see that

logitpr(Yi = 1 | Z(•)
i ) = a+

M∑
m=1

logitpr(Yi = 1 | Z(m)

i ), (2.1)

and thus pr(Y = 1 | Z(•)) can be approximated by first approximating pr(Y = 1 |

Z(m)) using data from the mth gene-set only. To estimate pr(Y = 1 | Z(m)), we

assume a logistic KM model

logitpr(Yi = 1 | Z(m)

i ) = a(m) + h(m)(Z(m)

i ) (2.2)

where h(m)(·) ∈ H
(m)

k is an unknown centered smooth function and the functional

space H
(m)

k is implicitly specified by a positive definite kernel function k(·, ·).

For any pair of genetic marker vectors (z1, z2), k(z1, z2) measures the similarity

or distance between z1 and z2. Examples of kernel functions under investigation

include

(i) polynomial kernel: kPOLY(z1, z2; d) = (1 + zT
1z2)

d corresponding to d-way mul-

tiplicative interactive effects;

(ii) IBS kernel for genetic markers: kIBS(z1, z2) =
∑p

l=1 IBS(z1l, z2l), where

IBS(z1l, z2l) represents the number of alleles shared identity by state;

(iii) Gaussian Kernel: kGAU(z1, z2) = exp{−‖z1− z2‖2/ρ} which allows for complex

non-linear smooth effects, where ρ is a tuning parameter.

These kernel functions have been advocated as effective in capturing interactive ef-

fects (Schölkopf and Smola, 2002; Kwee et al., 2008). The choice of k directly impacts

the complexity and predictive performance of the model and should be selected based
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on the biological knowledge and empirical evidence of the relationship between Z and

Y .

Under the naive bayes kernel machine (NBKM) model assumptions given in

(2.1) and (3.5), the conditional likelihood of Y given Z(•) is a monotone function

of
∑M

m=1 h
(m)(Z(m)). Therefore,

∑M
m=1 h

(m)(Z(m)) is the optimal risk score of Z(•)

for classifying Y in the sense that
∑M

m=1 h
(m)(Z(m)) achieves the highest ROC curve

among all risk scores determined by Z(•) (McIntosh and Pepe, 2002). It follows that

the optimal risk score can be estimated by separately fitting the mth KM model

(3.5) to data from the mth gene-set: {(Yi,Z(m)

i ), i = 1, ..., n}.

2.3 Model estimation under the NBKM model

2.3.1 Kernel PCA estimation for modeling the mth gene-Set

To estimate h(m) based on data from the mth gene-set, we note that by Mercer’s

Theorem (Cristianini and Shawe-Taylor, 2000), any h(m)(z) ∈ H
(m)

k has a primal

representation,

h(m)(z) =
∑∞

j=1 β
(m)

j ψ(m)

j (z), (2.3)

where {β(m)

j } are the square summable unknown coefficients, ψ(m)

j (z) =
√
λ(m)

j φ(m)

j (z),

{λ(m)

j } and {φ(m)

j } are the eigenvalues and eigenfunctions of k under the probability

measure PZ(m) , where λ(m)

1 ≥ λ(m)

2 ≥ · · · ≥ 0 and PZ(m) is the distribution of Z(m).

For finite samples, a suitable approach to incorporate the potentially large number

of parameters associated with h(m) is to maximize a penalized logistic likelihood

function with the penalty accounting for the smoothness of h(m). However, since

the forms of the basis functions for h, {ψ(m)

j (z)}, are intractable in general, it is not
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feasible to directly use the primal representation to estimate h(m). On the other hand,

by the representer theorem (Kimeldorf and Wahba, 1971), the maximum penalized

likelihood estimator for h(m) ∈ H
(m)

k must admit a dual representation,

h(m)(z) =
∑n

j=1α
(m)

j k(z,Z(m)

j ), (2.4)

where {α(m)

j } are the unknown regression parameters. An estimator of (a(m),α(m))

can be obtained as the maximizer of the penalized log-likelihood function as given

in Liu et al. (2008),

L(D)(a,α; Kn(m)) = YT log g(a+Kn(m)α)+(1−Y)T log{1−g(a+Kn(m)α)}−ταTKn(m)α,

(2.5)

where Y = (Y1, ..., Yn)T, g(·) = logit−1(·), Kn(m) = n−1[k(Z(m)

i ,Z(m)

j )]1≤i,j≤n, and τ is

a tuning parameter controlling the amount of regularization.

The above Liu et al. (2008) estimator may not be efficient due to the high di-

mensionality in the parameter space and could be numerically challenging to obtain

when the sample size n and hence the dimension of α is not small, as in many GWAS

settings. To improve the estimation precision, we propose the use of the kernel PCA

(Schölkopf and Smola, 2002; Bengio et al., 2004; Braun, 2005) where only the PCs

with large eigenvalues are included for estimation. When the eigenvalues {λ(m)

j } de-

cay quickly, the feature space H
(m)

k may be approximated well with the space spanned

by the leading eigenfunctions and {β(m)

j

√
λ(m)

j } may also decay quickly. Due to the

bias and variance trade-off, the estimation of h(m) may be improved by employing

the approximated feature space. To this end, we apply a singular value decomposi-

tion to Kn(m), and denote the non-decreasing eigenvalues by (l(m)

1 , . . . .., l(m)
n ) and the

corresponding eigenvectors by (u(m)

1 , ...,u(m)
rn , ...,u

(m)
n ). Let r(m)

n be the smallest r such

that
∑r

i=1 l
(m)

i /
∑n

i=1 l
(m)

i ≥ ℘, where ℘ ∈ (0, 1) is a pre-specified proportion. The
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kernel PCA approximation to Kn(m) corresponding to these rn(m) eigenvalues is then

K
[rn(m)]
n(m) = U(m)D(m)UT

(m), where

U(m) =
[
u(m)

1 , ...,u(m)

rn(m)

]
, and D(m) = diag

{
l(m)

1 , ..., l(m)

rn(m)

}
(2.6)

With the kernel PCA approximation, one may estimate (a(m),α(m)) as the maxi-

mizer of L(D)(a,α; K
[rn(m)]
n(m) ), where L(D)(a,α; K

[rn(m)]
n(m) ) is obtained by replacing Kn(m)

in L(D)(a,α; Kn(m)) with K
[rn(m)]
n(m) . However, since K

[rn(m)]
n(m) is singular, such a max-

imization does not have a unique solution and thus is unstable. We propose a

reparametrization with

β(m) = Ψ̃
T

(m)α
(m), where Ψ̃(m) = U(m)diag

{√
l(m)

1 , ...,

√
l(m)
rn

}
. (2.7)

This reparameterization essentially links the dual representation back to the pri-

mal representation since the observed eigenvalues and eigenvectors of Kn(m) are

approximating the corresponding eigenvalues and eigenfunctions of k under the

probability measure PZ(m) . Thus, the kernel PCA approximation along with

the reparameterization results in approximating {h(m)(Z(m)

1 ), ..., h(m)(Z(m)
n )}T with

Ψ̃(m)β
(m). This approach also has computational advantages due to the reduc-

tion in the number of unknown parameters from n in the dual form to rn(m)

which is often much smaller than n. With the reparametrization, for the train-

ing samples, we essentially transform the original covariate matrix (Z(m)

1 , ...,Z(m)
n )T

to Ψ̃(m) and estimate {h(m)(Z(m)

1 ), ..., h(m)(Z(m)
n )}T as Ψ̃(m)β̂

(m)

, where {â(m), β̂
(m)

} =

argmaxa,β {L(P)(a,β; Ψ̃(m))}, where

L(P)(a,β; Ψ̃(m)) = YT log g(a+ Ψ̃(m)β) + (1−Y)T log{1− g(a+ Ψ̃(m)β)} − τ‖β‖22,

(2.8)

and τ ≥ 0 is a tuning parameter that can be selected via criteria such as the AIC or

cross-validation, such that n−
1
2 τ → 0.
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To estimate H(z(•)) = {h(1)(z(1)), ..., h(M)(z(M))}T for a future subject with marker

value Z(•) = z(•), one may find the transformed covariate in the non-linear feature

space via the Nyström method (Rasmussen, 2004) as

Ψ̂(m)(z
(m)) = n−1diag

(
1√
l(m)

1

, ...,
1√
l(m)
rn

)
UT

(m)

[
k(z(m),Z(m)

1 ), · · · , k(z(m),Z(m)

n )
]
.

(2.9)

Subsequently, we estimate h(m)(z(m)) as ĥ(m)(z(m)) = Ψ̂(m)(z
(m))β̂

(m)

. In Appendix

A, we show that our estimator is root-n consistent for h(·) under the assumption

that the reproducible kernel hilbert space H
(m)
k is finite dimensional. This is often a

reasonable assumption for GWAS settings since each gene-set has a finite set of single-

nucleotide polymorphism (SNP) markers, which can only span a finite dimensional

space regardless the choice of kernel.

2.3.2 Combining multiple gene-sets for risk prediction

With the estimated ĥ(m), one may simply classify a future subject with Z(•) =

{z(m),m = 1, ...,M} based on
∑M

m=1 ĥ
(m)(z(m)) under the naive bayes assumption.

However, since some of the gene-sets may not be associated with disease risk, includ-

ing ĥ(m) from these gene-sets in the model may lead to a decrease in the precision of

prediction and risk score estimation. To further improve the precision, we propose

to employ an LASSO regularization procedure (Tibshirani, 1996) in the second step

to estimate the optimal weight for each individual gene-set. The regularized estima-

tion would assign a weight zero for the non-informative regions while simultaneously

providing stable weight estimates for the informative regions. Specifically, based on

the synthetic data {Y, Ĥ} constructed from the first step, we re-weight the gene-sets
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in the second step by fitting the logistic model

logitpr(Y = 1 | Z(•)) = b0 + γTĤ(Z(•)) (2.10)

where γ = (γ1, · · · , γM)T, Ĥ(Z(•)) = [ĥ(1)(Z(1)), ..., ĥ(M)(Z(M))]T and Ĥ =

[ĥ(m)(Z(m)

i )]n×M . We obtain a LASSO regularized estimate of {b0,γ}, as

{b̂, γ̂} = argmax
b,γ

{
LbH(b,γ)− τ2‖γ‖1

}
, (2.11)

where τ2 ≥ 0 is a tuning parameter such that n−
1
2 τ2 → 0 and τ2 →∞, and

LbH(b,γ) = YT log g(b+ Ĥγ) + (1−Y)T log{1− g(b+ Ĥγ)} (2.12)

It is important to note that our estimator γ̂ is essentially an adaptive LASSO (Zou,

2006) type estimator since these weights are multiplied with ĥ(m)(z) which are consis-

tent for h(m). As a result, γ̂ exhibits the gene-set selection consistency property such

that P (Â = A)→ 1 as n→∞, where A = {m : h(m)(z) 6= 0} and Â = {m : γ̂m 6= 0}.

Therefore, this method of estimation consistently includes only informative regions

in the prediction model. We show in Appendix B that the proposed adaptively

reweighting procedure is consistent in group selection, i.e. P (Â = A)→ 1 in proba-

bility as n→∞.

When such a risk prediction model is formed, it is crucial to assess its ability

in discriminating subjects with or without disease. For a given risk score P, the

discrimination accuracy can be summarized based on various measures such as the

area under the receiver operating characteristic (ROC) curve (AUC) (Swets, 1988;

Pepe, 2003). The ROC curve is determined from plotting sensitivity against 1-

specificity for all possible cut-offs of the risk score. An AUC of 1 indicates a perfect

prediction and 0.5 indicates a random result. Few clinical scores achieve AUCs
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ranging > 0.75, and scores with an AUC of 0.95 or greater are considered excellent.

Since the number of parameters involved in the training the proposed risk score

could be quite large, the AUC should be estimated empirically in an independent

validation set. This validation set may be a new data set, or one could set aside a

random sample of the data so that D is partitioned into Dt and Dv prior to building

the model.

2.3.3 Improved estimation of γ via cross-validation

Based on the estimation procedures described in section 2.3, we may estimate the

probability of disease for a future subject with Z(•) under the NBKM as

P̃ (Z(•)) = g
{
b̂+ γ̂TĤ(Z(•))

}
. (2.13)

However, training of the KM model for each specific gene-set involves complex models

with a potentially large number of effective model parameters, the estimation of γ

in the second stage may also suffer from instability due to overfitting if we estimate

γ on the same dataset that we use to estimate β for h(z).

To overcome overfitting issues, we propose a K-fold cross-validation procedure to

partition the training data Dt of size nt into K parts of approximately equal sizes,

denoted by {Dt(k), k = 1 . . . , K}. For each k we use data not in Dt(k) to obtain an

estimate for h(m) as ĥ(m)

t(−k) based on procedures described in section 2.3.1; and then

use those estimates to predict subjects in Dt(k) to obtain Ĥt(k) = [ĥ(m)

t(−k)(Z
(m)

t(k)i)]ntK ×M .

Then an improved estimate of γ, denoted by γ̂cv, can be obtained via maximization

of
K∑
k=1

[
YT

t(k) log g(b+ Ĥt(k)γ) + (1−Yt(k))
T log{1− g(b+ Ĥt(k)γ)}

]
− τ2‖γ‖1, (2.14)
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This procedure maximizes the use of the training set to estimate γ̂cv while reducing

overfitting bias. As shown in the simulation section, this method provides a more

accurate estimate of γ than using the entire Dt without cross-validation which leads

to overfitting. The consistency of γ̂cv can be established using similar arguments as

those given in Appendix E for γ̂.

We then use the entire training set Dt to obtain an estimate of H as Ĥ(Z(•))

on for an out of sample subject with covariate data Z(•). The final estimated risk

prediction model would thus predict the risk of disease for this new subject as

P̂ (Z(•)) = g{b̂t + γ̂T

cvĤ(Z(•))} (2.15)

2.4 Numerical analyses

2.4.1 Type I diabetes GWAS dataset

Type I diabetes (T1D), also known as juvenile-onset diabetes, is a chronic autoim-

mune disease characterized by insulin deficiency and hyperglycemia due to the de-

struction of pancreatic islet beta cells. Diagnosis and onset often occurs in childhood.

Since the discovery of the association of the disease with the HLA sequence poly-

morphisms in the late 1980s, the understanding of T1D pathogenesis has advanced

with the identification of additional genetic risk factors for the disease (Van Belle

et al., 2011). T1D is thought to be triggered by environmental factors in genetically

susceptible individuals. However, the proportion of newly diagnosed children with

known high-risk genotypes has been decreasing, suggesting that further genetic risk

markers have not yet been discovered (Borchers et al., 2010).
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Compiling information from a number of large scale genetic studies conducted

and published in recent years, the National Human Genome Research Institute

(NHGRI) provides an online catalog which lists 75 single nucleotide polymor-

phisms (SNPs) that have been identified as T1D risk alleles (Hindorff et al., 2009,

http://www.genome.gov/gwastudies/ Accessed December 10, 2011) and 91 genes

that either contain these SNPs or flank the SNP on either side on the chromo-

some. Expanding the search to other documented autoimmune diseases (Rheuma-

toid arthritis, Celiac disease, Crohn’s disease, Lupus, Inflammatory bowel disease),

the NHGRI lists 375 genes containing or flanking 365 SNPs that have been found to

be associated with this class of diseases.

Included among the studies listed in the NHGRI catalog is a large-scale GWAS

collected by WTCCC, a group of 50 research groups across the UK that was formed in

2005. The study, detailed in Burton et al. (2007), consists of 2000 T1D cases and 3000

controls of European descent from Great Britain. The control subjects were drawn

from the 1958 British Birth Cohort and the UK Blood Services. Approximately

482,509 SNPs were genotyped on an Affymetrix GeneChip 500K Mapping Array

Set. We chose to segment the genome on the 22 autosomal chromosomes into gene-

sets that include a gene and a flanking region of 20KB on either side of the gene.

The WTCCC data we use for analysis includes 350 gene-sets that either contain or

lie up- or down-stream of the 365 SNPs that were previously found to be associated

with autoimmune diseases. The data includes 40 of the 75 SNPs that were previously

found to be associated with T1D. These 350 gene-sets cover 9,256 SNPs present in

the WTCCC data.
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2.4.2 Simulation studies

We first present results from simulation studies with data generated from the SNP

data from the WTCCC study. To assess the performance of our methods, we chose

settings that reflect possible types of genetic association with disease risk. For il-

lustrative purposes, we let Z(•) be the aforementioned M = 350 gene-sets. We

generated the disease status of 1500 subjects from the logistic regression model,

logitP (Y = 1|Z(•)) =
∑4

m=1 h
(m)(Z(m)), where we modeled h(m)(z) for m = 1, . . . 4

as linear or nonlinear functions of Z(m), with varying degrees of complexity. The re-

maining 346 gene-sets were included as non-informative regions. The labels used in

the subsequent tables are denoted in parentheses in the following model descriptions.

We present the results from three settings where h(m)(z) for l = 1, . . . 4 are all linear

(allL), all nonlinear (allNL), or two linear and two nonlinear functions (LNL). We

relegate details about the forms of these functions to Appendix F.

We partition each dataset into a training set of 1000 and a validation set of 500

subjects. We estimate h(m)(·) using the training set by fitting the block specific KM

model with either a linear kernel function, kLIN, or an IBS kernel function, kIBS. To

compare the performance of our KM PCA approach to the Liu et al. (2008) approach,

we obtain estimates by maximizing (2.5) with the full kernel matrix (noPCA) and

also based on the PCA approximated likelihood in (2.8) with ℘ = .99 or .999. When

combining information across the M blocks, we use both γ̂ and γ̂cv described in

section 2.3 to estimate γ. We compare our adaptive weighting scheme (ANB) that

adaptively estimate γ to the purely naive bayes approach where γ = 1 (NB). Ad-

ditionally, we compare our methods to models that do not incorporate the block

structure of the data by fitting three global modelswith all 9,256 SNPs in the 350
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gene-sets: (1) a global KM model with kIBS (gIBS), (2) a global ridge regression model

(gRidge), as well as (3) the sure independence screening procedure (SIS) described

in Fan and Lv (2008). Lastly, we compare our methods to the weighted sum of the

marginal log odds ratios for each of the SNPs (WLGR). The tuning parameter was

selected by maximizing the AIC for the ridge regression model in the first stage and

via the BIC for the LASSO model in the second stage for combining across blocks.

The results are based on 1500 Monte Carlo simulations.

First, we present results on selecting informative blocks via our second stage adap-

tive estimation of γ. As shown in Figure 2.1, the informative blocks have nonzero

estimated coefficients with high probability for strong signals, though the power to

select blocks can be lower for blocks with weaker signals. Noninformative blocks are

excluded from the model with very high probability, illustrating the oracle property

of γ̂ proved in the appendix. In Table 2.1 we see that the method with kLIN selects

a larger model on average than the method with kIBS but has a lower probability of

selecting the informative gene-sets with nonlinear effects. The method without PCA

gives a larger model on average and performs similarly to our method in choosing

the correct informative gene-sets. Overall, the best performance in estimation and

gene-set selection is seen for models with kIBS.

Table 2.1: Average model size (average number of true blocks selected) from simula-
tion studies for the adaptively weighted gene-set regression model. The true model
includes four informative blocks.

K ℘ allL LNL NL
IBS .999 4.1 (2.7) 4.0 (3.0) 4.5 (3.1)
LIN .999 5.4 (2.8) 5.7 (2.8) 4.4 (2.5)
IBS noPCA 4.2 (2.7) 4.1 (3.0) 4.5 (3.1)
LIN noPCA 6.6 (2.9) 7.0 (2.8) 5.3 (2.5)
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Figure 2.1: Proportion of γ̂m estimated as nonzero from simulation studies for the
adaptively weighted gene-set regression model. Presented are proportions for the
four informative blocks as well as a sample of 3 out of the 346 non-informative
blocks for each of the three settings representing different types of effects within
each informative block (all linear, 2 linear and 2 nonlinear, and all nonlinear).

To compare the methods with respect to predictive performance, we project the

model estimates into a validation set of 500 subjects and report the AUC estimates

and their standard errors from all models in Table 3.1. The global methods (gRidge,

gIBS, SIS, WLGR) generally have substantially worse predictive performances com-

pared to our proposed ANB procedures, suggesting the benefit of taking advantage

of blocking combined with adaptive weighting. The benefit of blocking can be also

highlighted when we compare results between the ANB procedures and the SIS pro-
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cedures. The SIS procedures outperform global ridge and WLGR procedures with

higher AUC values, but also have larger standard errors than any other method.

Even when all effects are linear and SIS performs fairly well with higher AUC than

other global methods as well as NB blockwise methods, we still see substantial im-

provement in prediction when applying an ANB method with either the linear or IBS

kernel. Although both procedures allow for marker selection, the ANB procedures

can more effectively estimate the effect of informative blocks and remove the non-

informative blocks. When comparing ANB and NB procedures, we see that similar

to the global methods, the purely NB methods tend to result in a substantially lower

AUC with a higher standard error compared to our ANB methods due to the inclu-

sion of non-informative gene-sets. The IBS kernel generally performs well, resulting

in similar performances as the linear kernel when the effects are linear; and better

performances than the linear kernel when the effects are non-linear. In particular,

for non-linear effects settings, the IBS kernel leads to higher AUCs for our ANB

procedure with smaller standard errors than the linear kernel. Our methods with

PCA perform very similarly to methods without PCA in terms of prediction with

very slight improvement in model size and prediction accuracy, but the computa-

tional efficiency is much greater when using PCA. Decreasing ℘ from 0.999 to 0.99

gives nearly identical results so we report only ℘ = 0.999 which is approximately

1 − 1/nt. Overall, we observe the strengths of the PCA and adaptively weighted

blocking models, and note that we obtain the best prediction accuracy with kIBS.

The average number of PCs included in the first stage for ℘ = 0.999 (mean 26,

median 12) is typically quite larger than those for ℘ = 0.99 (mean 12, median 7).

It is important to note that both procedures select substantially fewer PCs than

the total number of nonzero eigenvalues, which is the number used in the noPCA
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methods. Furthermore, most computational algorithms to estimate eigenvalues have

difficulty exactly estimating true zero eigenvalues and so selecting all of the PCs

corresponding to estimated nonzero eigenvalues can lead to much instability and can

increase the computational burden, especially with large n. Thus, in general, we

recommend ℘ = 0.999 to achieve an excellent balance between prediction accuracy

and computational ease.

Table 2.2: AUC ×100 (empirical standard error) for the simulation studies. The
columns represent the types of functions used to generate the outcome.

K ℘ Block Weighting allL LNL NL
IBS .999 ANB 80.9 (2.1) 87.5 (1.8) 84.1 (2.2)
LIN .999 ANB 81.2 (2.3) 81.3 (2.5) 76.2 (3.2)
IBS .999 NB 71.2 (2.3) 73.0 (2.6) 70.8 (2.8)
LIN .999 NB 71.9 (2.4) 70.3 (2.6) 67.2 (2.9)
IBS noPCA ANB 80.7 (2.2) 87.4 (1.8) 84.0 (2.1)
LIN noPCA ANB 80.9 (2.4) 81.2 (2.5) 75.5 (3.5)
IBS noPCA NB 71.2 (2.3) 73.0 (2.5) 70.6 (2.8)
LIN noPCA NB 68.6 (5.9) 68.6 (2.8) 65.2 (3.1)

Global Method allL LNL NL
gRidge 70.7 (2.4) 69.5 (2.5) 64.1 (2.9)

gKernelIBS 73.6 (2.3) 75.6 (2.3) 68.5 (2.8)
SIS 75.4 (3.9) 72.5 (5.0) 66.7 (4.2)

WLGR 65.7 (2.6) 63.8 (2.8) 57.5 (3.2)

We also conducted simulation studies to examine the effects of data partitioning

on our estimates of ψ and γ. We proposed a cross-validation procedure on the

training set to estimate γ in section 2.3.3. However, there are two simpler approaches

to consider: (1) using the entire training set to estimate h(m) and the same entire

training set to estimate γ, (2) dividing the training set into two non-overlapping

parts, estimating h(m) on the first part and γ on the second part. As expected, our

simulation studies revealed that method (1) led to overfitting in our estimates, and

50



method (2) was underpowered to accurately estimate ψ(m) and h(m). The average

AUCs from method (1) were consistently about 10% lower than the AUCs from

our cross-validation method (γ-CV). The average AUCs from method (2) were more

similar to AUCs from (γ-CV), but γ for gene-sets with weak effects were estimated

as 0 much more often. Furthermore, when comparing AUCs of the naive bayes

methods for (2) and (γ-CV), we saw that AUCs were lower for method (2), which

implies that our estimates of h(m) with half of the training data in method (2) were less

accurate than our estimates using the entire training set in (γ-CV). We conclude that

using a cross-validated approach to estimate the gene-set weights improves estimation

and prediction accuracy in smaller data sets where method (2) is underpowered.

Additionally, this CV method avoids the overfitting that results from estimating

parameters from both stages of estimation on the same training set.

2.4.3 Data example

Using the methods described above, we also constructed T1D risk prediction models

based on the WTCCC GWAS dataset. To build our prediction model, we randomly

selected 3500 subjects as a training set to implement the first stage and the cross-

validation procedures for the second stage, and left the remaining 1500 subjects for

a validation set.

Although our dataset includes 40 SNPs that are known to be associated with

T1D disease status, they do not explain all of the genetic variability and there may

be many other SNPs that are associated with disease status through complex effects.

Furthermore, many autoimmune diseases may be caused by the same SNPs or genes

and therefore investigating SNPs or genes associated with other autoimmune diseases
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might improve prediction of T1D disease status. We hope to gain predictive power

by allowing other SNPs to be included in the model via the gene-sets constructed

with the NHGRI catalog.

We compare our methods to the same methods described in the simulation sec-

tion. The AUC estimates in the validation set for selected procedures are shown in

Table 2.3. In addition, we compare our methods to univariate SNP based methods

that include only the 40 SNPs found to be associated with T1D in the model. We

combine these 40 SNPs through either ridge regression, a kernel machine model with

KIBS, and a weighted log odds ratio risk score (univariate WLGR). In general, our

proposed ANB KM estimators have much higher AUC than the global methods and

purely NB methods. Our prediction model obtains a high AUC (ÂUC = 0.94, me-

dian across 15 permutations of the data) via the ANB KM PCA method with kIBS

with ℘ = .999. This method obtains almost identical results to the same method

that does not use PCA, but it required much less computational time. Our procedure

estimates 112 of the 350 gene-sets to have nonzero effects in the second stage. It

includes 41 of the 92 genes that have been associated with T1D in the final model.

The other 71 genes that were included in the model were not reported as being asso-

ciated with T1D specifically, but have been shown to be linked to other autoimmune

disease risk. The KLIN ANB blockwise methods select many more gene-sets to be

included in the final model and have much lower AUC.

The most common methods for risk prediction build a prediction rule based on

univariate SNP testing and estimation. We see in this case that prediction accuracy

can be greatly improved with our methods. By incorporating many more SNPs

through a gene block structure and by adaptively weighting the blocks’ effects we
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can predict disease risk very accurately.

Table 2.3: AUC ×100 for the models used to predict type 1 diabetes risk in the
WTCCC dataset using 350 gene-sets. Median AUC across 15 random permutations
of the dataset.

K ℘ Block Weighting AUC Model Size
IBS .999 ANB 94.3 112
LIN .999 ANB 84.5 344
IBS .999 NB 85.5 350
LIN .999 NB 83.6 350
IBS noPCA ANB 94.1 103
LIN noPCA ANB 85.1 344
IBS noPCA NB 84.4 350
LIN noPCA NB 82.2 350

Global Method AUC
gRidge 80.1

gKernelIBS 82.2
WLGR 82.0
Ridge 76.1

KernelIBS 78.1
WLGR 78.3

2.5 Discussion

The successful incorporation of genetic markers in risk prediction models has impor-

tant implications in personalized medicine and disease prevention. However, stan-

dard methods for building such models are hindered by large datasets and nonlinear

genetic associations with the outcome of interest. To overcome these challenges, we

propose a multi-stage prediction model that includes genetic markers partitioned

into gene-sets based on prior knowledge about the LD structure or pathway infor-

mation. To achieve a good balance between allowing a flexible model that captures
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complex interactive effects and efficient estimation in the model parameters, we uti-

lize a NBKM regression framework that builds non-linear risk models separately for

each gene-set and then aggregates information from multiple gene-sets efficiently via

an adaptive block-wise weighting scheme. Through simulation studies and a real

data example, we show that our NBKM model performs well and maintains high

prediction accuracy even when the underlying association of covariates and disease

risk is complex. We see that kernel PCA approximation improves over the noPCA

methods mainly in the computational efficiency, but also slightly in model selection

and prediction accuracy. Hence in practice, we would recommend applying the ker-

nel PCA with a relatively stringent threshold such as 1− n−1 although the optimal

selection of threshold warrants further investigation.

Incorporating the block structure of the gene-sets in our model could potentially

improve prediction accuracy over global methods that attempt to build one-stage

models with a large number of unstructured genetic markers. Of course, one would

expect that their relative performance may also depend on how well the gene-sets

are grouped together. In our numerical studies, we partitioned the genome based on

the gene structure. One may also consider forming sets of genetic markers based on

other biological criteria such as linkage disequilibrium blocks or genetic pathways.

We note that when partitioning the entire genome into gene-sets, one may first screen

these blocks using a testing procedure such as the logistic kernel machine score test

proposed by Liu et al. (2008) to reduce the number of blocks in the model which may

improve efficiency and prediction accuracy. It would also be interesting to explore

the best procedures for this initial screening stage. We have found the KM score

test for associations within gene blocks to perform well in other numerical examples.

However, further research is needed to explore how the proposed procedure is affected
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by the screening procedure and the criteria used for forming the gene-sets.

Lastly, the proposed procedures can be easily extended to adjust for covariates.

For example, if there are existing clinical variables or population structure principal

components X available for risk prediction, one may impose a conditional NBKM

model by extending (2.1) and (3.5) to

logitpr(Yi = 1 | Z(•)
i ,Xi) = a0 + XT

ib0 +
M∑
m=1

logitpr(Yi = 1 | Z(l)

i ,Xi)

and logitpr(Yi = 1 | Z(m)

i ,Xi) = a(l)

0 + XT

ib
(m)

0 + h(m)(Z(m)

i ), respectively.

The proposed procedures can be carried out by first fitting M separate models with

(Xi,Z
(m)

i ) and then adaptively weighting to obtain a sparse combination of h(m) across

M gene-sets.

2.6 Appendix A: Proofs

2.6.1 Convergence of the kernel PCA estimator of ĥ(m)(z(m))

Here we show that our kernel PCA estimator ĥ(m)(z(m)) = Ψ̂(m)(z
(m))Tβ̂

(m)

from the

NBKM is a root-n consistent estimator for h(m)(z(m)) under the assumption that

the dimension of the feature space H
(m)

k is finite. To simplify notation we drop

some m subscripts and superscripts. By Mercer’s Theorem (Cristianini and Shawe-

Taylor, 2000), h(z) ∈ Hk has a primal representation h(z) =
∑r

j=1 βjψj(z), ψj(z) =√
λjφj(z), where {λj} and {φj} are the eigenvalues and eigenfunctions of k under

the probability measure PZ, r <∞ and |φj(·)| is bounded by a constant Cϕ.

First we show that asymptotically, the number of eigenvalues and eigenvectors
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included in the kernel PCA model is greater or equal to the true number of nonzero

eigenvalues. To this end, we recall that we select the rn eigenvalues that satisfy∑rn
j=1 lj/

∑n
i=1 lj ≥ ℘ = 1− ε→ 1. Then

P (rn < r) = P (rn ≤ r − 1) ≤ P

(∑r−1
j=1 lj∑n
i=1 lj

> 1− ε

)
(2.16)

= P

(
ε <

lr +
∑n

j=r+1 lj∑n
i=1 lj

)
(2.17)

= op(n
−1)→ 0 (2.18)

since lr → λr > 0 and
∑n

j=r+1 lj/
∑n

j=1 lj → 0 from Koltchinskii and Giné (2000,

Theorem 3.1) and Braun (2005, Theorem 3.94). Therefore, P (rn ≥ r) → 1. Hence

in the sequel for the purpose of establishing OP (n−
1
2 ) convergence rate of ĥ(z)−h(z)

in probability, we only considers the realizations when rn ≥ r.

In order to obtain convergence of ĥ(z) we must have convergence of the eigensys-

tem. We first address the asymptotic behavior of the eigenvectors and eigenfunctions

in the following two subsections.

2.6.2 Convergence of eigenvectors within sample space

By the spectral theorem we may write the kernel function k as k(s, t) =∑r
j=1 λjφj(s)φj(t), where λ1 > λ2 > · · · > λr and Eφj(X)φl(X) = δjl, where

δij is the Kronecker’s delta. As in the text, denote Kn the Gram matrix, i.e.,

Kn = n−1 {k(Zi,Zj)}1≤i,j≤n. By these kernel properties and a singular value de-

composition (SVD), we have that

Kn = n−1ΦΛΦT = n−1Φ̂Λ̂Φ̂
T

, (2.19)
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where Φ = {φj(Zi)}1≤i≤n,1≤j,≤r, Λ = diag(λ1, . . . , λr), Φ̂ = [u1, ...,un] and Λ̂ =

diag(l1, ..., ln) are the eigenvector and eigenvalue matrices. It is clear that

E‖n−1ΦTΦ− I‖2F = E
r∑

j1,j2=1

(Enφj1(X)φj2(X)− Eφj1(X)φj2(X))2 (2.20)

where En stands for the empirical expectation, i.e., Enf(X) = n−1
∑n

i=1 f(xi), and

‖·‖F represents the Frobenius matrix norm. Letting the SVD of Φ be Un×rDr×rV
T
r×r,

we have ∑
j

(n−1d2
j − 1)2 = ‖n−1ΦTΦ− I‖2F = Op(n

−1), (2.21)

which implies that maxj |n−
1
2dj − 1| = Op(n

− 1
2 ). Write G̃ = UVTΛVUT. Then

‖G̃−Kn‖2F = ‖UVTΛVUT − n−1UDVTΛVDUT‖2F (2.22)

= ‖VTΛV− n−1DVTΛVD‖2F (2.23)

≤ ‖VTΛV‖2max

r∑
j1,j2=1

(1− n−1dj1dj2) (2.24)

= Op(n
−1) (2.25)

Recall that UVT is the eigenvector of G̃ and Un×rnDrn×rnUT
n×rn is the kernel PCA

approximation to Kn. From a standard perturbation analysis and the fact that∑n
j=r+1 lj = Op(n

− 1
2 ), there exists a constant C > 0 such that

‖n−
1
2 U− [UVT,0n×(rn−r)]‖2F ≤ ‖n−

1
2 Φ̂− [UVT,0n×(n−r)‖2F ≤ C‖G̃−Kn‖2F = Op(n

−1).

(2.26)

Finally, by the triangular inequality, ε̂U ≡ n−
1
2‖U−[Φ,0n×(rn−r)]‖F is bounded above

by

‖n−
1
2 Φ− UVT‖F + ‖n−

1
2 U− [UVT,0n×(rn−r)]‖F = Op(n

− 1
2 ) (2.27)
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This, together with Theorem 3.1 of Koltchinskii and Giné (2000) regarding the

convergence of the eigenvalues of Kn, implies that

n−
1
2‖Ψ̃− [Ψ,0n×(rn−r)]‖F = Op(n

− 1
2 ). (2.28)

2.6.3 Convergence of eigenvectors, Nyström projection

We now extend this result to include data points outside the sample space and show

that the Nyström projection estimate of the eigenvector

Φ̂(z) = {φ̂j(z)}1≤j≤rn = n−1D−1
rn×rnU

T

n×rnKz (2.29)

also converges to [Φ(z) = {φj(z)}T
1≤j≤r,0

T
rn−r]

T at a root-n rate, where Kz =

[k(z,Z1), ..., k(z,Zn)]T. To this end, recall that Φ = {Φ(Zi)}1≤i≤n and let D≤r =

diag{l1, ..., lr} and U≤r = [u1, ...,ur]. Then

‖Φ̂(z)− [Φ(z)T,0T

rn−r]
T‖2 = ‖Φ̂≤r(z)−Φ(z)‖2 +Op(n

− 1
2 ) (2.30)

= ‖n−1D−1
≤rU

T

≤rKz −Φ(z)‖2 +Op(n
− 1

2 ) (2.31)

≤ ‖n−1D−1
≤r(U≤r −Φ)TKz‖2 + ‖n−1D−1

≤rΦ
TKz −Φ(z)‖2 +Op(n

− 1
2 ) (2.32)

≤ rl−1
r ε̂U

∥∥∥n− 1
2 Kz

∥∥∥
2

+ ‖n−1D−1
≤rΦ

TKz −Φ(z)‖2 +Op(n
− 1

2 ) (2.33)

= rl−1
r ε̂U

∥∥∥n− 1
2 Kz

∥∥∥
2

+ ‖n−1D−1
≤rΦ

TΦΛΦ(z)−Φ(z)‖2 +Op(n
− 1

2 ) (2.34)

≤ rl−1
r ε̂U

∥∥∥n− 1
2 Kz

∥∥∥
2

+ Cϕ‖n−1D−1
≤rΦ

TΦΛ− I‖F +Op(n
− 1

2 ) (2.35)

≤ rl−1
r ε̂U

∥∥∥n− 1
2 Kz

∥∥∥
2

+ Cϕ
{
‖n−1ΦTΦ‖F‖n−1D−1

≤rΛ− I‖F + ‖n−1ΦTΦ− I‖F
}

+Op(n
− 1

2 ) (2.36)

which is of order Op(n
− 1

2 ). The above result follows from lj → λj > 0 for 1 ≤ j ≤ r

and ‖lj − λj‖ = Op(n
− 1

2 ) (Koltchinskii and Giné, 2000, Theorem 3.1) .
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Once again, now that we have convergence of the eigenvectors, it is clear

that we obtain convergence of the estimate Ψ̂(z) =
{√

ljφ̂j(z)
}

1≤j≤r
to Ψ(z) ={√

λjφj(z)
}

1≤j≤r by Theorem 3.1 of Koltchinskii and Giné (2000) which proves the

eigenvalues of Kn converge to the true eigenvalues almost surely, so we have

‖Ψ̂(z)− [Ψ(z)T,0T

rn−r]
T‖2 = Op(n

− 1
2 ). (2.37)

2.6.4 Convergence of ĥ(z)

The convergence of ĥ(z) follows from the convergence of our eigenfunctions above.

First, consider the case when z is a sample point Zi and we are interested in h̃(Zi)−

h(Zi) for h̃(Zi) = ψ̃iβ̂ =
∑rn

j=1 ψ̃j(Zi)β̂j where ψ̃j(Zi) = uji
√
lj. By (2.28), ψ̃j(Zi) =√

ljuji = OP (n−
1
2 ). We have

n
1
2

[
h̃(Zi)− h(Zi)

]
= n

1
2

rn∑
j=1

ψ̃j(β̂j − βj0)︸ ︷︷ ︸
A

+n
1
2

rn∑
j=1

(ψ̃j − ψj)βj0︸ ︷︷ ︸
B

(2.38)

For A, we wish to show that for any given ε > 0, there exists a large constant C such

that

P

 sup
‖n

1
2 (β−β0)‖≥C

[
L(P)(a,β; Ψ̃)− L(P)(a,β0; Ψ̃)

]
< 0

 ≥ 1− ε (2.39)

Let q = n
1
2 (β − β0), and for a matrix (or vector) A with rn columns (elements), let

A≤r and A>r be the first r and remaining rn−r columns (elements). From Appendix

2.6.3, we have ‖Ψ̃≤r − Ψ‖F + ‖Ψ̃>r‖F = Op(n
− 1

2 ) and β0,>r = 0. This, together

with a taylor series expansion, a law of large number, and a central limit theorem,
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implies that

Dn(q) ≡ L(P)(a,β0 + n−
1
2 q; Ψ̃)− L(P)(a,β0; Ψ̃) (2.40)

= n−
1
2

[
Y − g(a+ Ψ̃≤rβ0,≤r)

]T

Ψ̃q− 1

2
qT

[
n−1

n∑
i=1

ξ(a+ ψ̃
T

iβ0)ψ̃iψ̃
T

i

]
q

−2n−
1
2 τ

r∑
j=1

β0jq + n−1τrqTq + oP
(
n−1‖q‖2

)
(2.41)

= n−
1
2

{
Y − g(a+ Ψβ0,≤r)

}T
Ψq≤r −

1

2
qT

≤r
{
n−1ΨTdiag{ξ(a+ Ψβ0,≤r)}Ψ

}
q≤r

−2n−
1
2 τ

r∑
j=1

β0jq + n−1τrqTq +OP (n−
1
2 )‖q‖ −OP (n−

1
2 )‖q‖2 (2.42)

≤ OP (1)‖q‖ − qT

≤rAq≤r +OP (n−
1
2 )‖q‖2 (2.43)

where `(y, s) denotes the log likelihood function for the logistic regression model

P (Y = y | s) = g(s) with outcome y and score s, ξ(x) = g(x){1 − g(x)}, n− 1
2 τ =

op(1), and A is the limit of n−1ΨTdiag{ξ(a+ Ψβ0,≤r)}Ψ. Since A is positive definite

with smallest eigenvalue ιA bounded away from 0, −qT
≤rAq≤r ≤ −ιA‖q≤r‖22. When

‖q‖ ≥ C, we select a C sufficiently large so that the second term in (2.43) dominates

Dn and so

P

{
sup
‖q‖≥C

[
L(P)(a,β0 + n−

1
2 q,0; Ψ̃)− L(P)(a,β0; Ψ̃)

]
< 0

}
→ 1. (2.44)

Therefore, n
1
2 (β̂ − β0) = Op(1) and n

1
2

∑rn
j=1 ψ̃j(β̂j − βj0) = OP (1).

For B,
∑r

j=1 n
1
2

(
ψ̃j − ψj

)
βj0 = OP (1) by (2.28). Using similar techniques with

the Nyström projection estimate Ψ̂ and the result (2.37) it follows that ĥ(z) =

Ψ̂(z)β̂ =
∑rn

j=1

√
ljφ̃j(z)β̂j also converges to h(z) at a n

1
2 rate for z outside the

sample space. Therefore, taking ĥ(z) to be h̃(z) for z in the sample, we have

n
1
2

[
ĥ(z)− h(z)

]
= OP (1) (2.45)
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for all z.

2.6.5 The oracle of gene-set weights

Here we prove that the regularized estimate γ̂ exhibits the oracle sparsity prop-

erty, in that limn→∞ P(γ̂AC = 0) = 1, where γ̂ is defined as in (3.18) and

AC = {m : h(m)(z) = 0} with its complement A = {m : h(m)(z) 6= 0}. We may

also reparameterize the objective function from (3.18) by defining θm = γm‖ĥ(m)‖,

‖ĥ(m)‖ =

√
n−1

∑n
i=1(ĥ

(m)(Z(m)

i ))2, H̃im = ĥ(m)(Z(m)

i )/‖ĥ(m)‖, H̃m = [H̃1m, ..., H̃nm]T,

and H̃ = [H̃1, ..., H̃M ]. The reparameterized estimator can then be represented as

{b̂, θ̂θθ} = argmax
b,θθθ

LeH(b, θθθ)− τ2
M∑
m=1

|θm|
‖ĥ(m)‖

(2.46)

where

LeH(b, θθθ) = YT log g(b+ H̃θθθ) + (1−Y)T log{1− g(b+ H̃θθθ)}. (2.47)

Now let u = n
1
2 (θ̂θθ − θθθ0) and define φ(H̃Tθθθ) = log(1 + exp(H̃Tθθθ)). Then we have

Vn(u) ≡

[
LeH(b, θθθ0 + n−

1
2 u)− τ2

M∑
m=1

|θ0m + n−
1
2um|

‖ĥ(m)‖

]

−

[
LeH(b, θθθ0)− τ2

M∑
m=1

|θ0m|
‖ĥ(m)‖

]
(2.48)

= n−
1
2

[
Y − φ′(b+ H̃Tθθθ0)

]
H̃Tu− (2n)−1uT

[
H̃Tφ′′(b+ H̃Tθθθ0)H̃

]
u

−n−
1
2 τ2

M∑
m=1

n
1
2

[
|θ0m + n−

1
2um| − |θ0m|

]
‖ĥ(m)‖

+ op(n‖u‖2) (2.49)

We know the first two components of (2.49) are Op(1), converging to some func-

tion V (u), so consider the limiting distribution of the third term. When m ∈ A,
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n−
1
2

[
|θ0m + n−

1
2um| − |θ0m|

]
→ umsgn(θ0m), n−

1
2 τ2 → 0, ‖ĥ(m)‖ → C > 0. There-

fore, by Slutsky’s theroem, the third term converges to 0. However, when m ∈ AC ,

n
1
2 (|θ0m + n−

1
2um| − |θ0m|) = |um|, τ2 →∞, ‖ĥ(m)‖ = Op(n

− 1
2 ). Thus, we have

Vn(u)→

{
V (u) if um = 0,∀m ∈ AC

∞ if um 6= 0,∀m ∈ AC
(2.50)

Since Vn is convex in u and V has a unique minimum, we can use the epi-convergence

results (Geyer, 1994) as in Knight and Fu (2000) and Zou (2006) to show that

n
1
2 (θ̂θθA − θθθ0A) = Op(1) and n

1
2 θ̂θθAC →d 0.

Now we show that for all m ∈ AC , P (θ̂m 6= 0) → 0. For the event θ̂m 6= 0, the

Karush-Kuhn-Tucker (KKT) optimality conditions imply that

H̃T

m

[
Y − φ′(b+ H̃θ̂θθ)

]
=

τ2

‖ĥ(m)‖
(2.51)

From the taylor expansion along with similar arguments as in Zou (2006) and as

above, we have

n−
1
2 H̃T

m

[
Y − φ′(b+ H̃θ̂θθ)

]
= n−

1
2 H̃T

m

[
Y − φ′(b+ H̃θθθ0)

]
+

n−1H̃T

mdiag{φ′′(b+ H̃θθθ0)}H̃
[
n

1
2 (θθθ0 − θ̂θθ)

]
+ op(1)

= Op(1). (2.52)

However, n
1
2 τ2 →∞ while n

1
2‖ĥ(m)‖ = Op(1) so τ2

‖bh(m)‖
→∞. Therefore,

P (θ̂m 6= 0) ≤ P

{
H̃T

m

[
Y − φ′(b+ H̃θ̂θθ)

]
=

τ2

‖ĥ(m)‖

}
→ 0. (2.53)

Therefore, since γ̂m = 0 implies θ̂m = 0 almost everywhere, we have proved that γ̂

exhibits the oracle property.
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2.7 Appendix B. Simulation details

For the simulation settings, we generated disease status through various functions of

the SNPs in four regions. Specifically, logitpr(Y = 1 | Z(•)) =
∑4

m=1 h
(m)(z), where

h(m)(z) = h(NLm)(z) for the nonlinear (allNL) model, h(m)(z) = h(Lm)(z) for the linear

(allL) model, and h(m)(z) = h(Lm)(z),m = 1, 2 and h(m)(z) = h(NL(m−1))(z),m = 3, 4

for the partially linear and nonlinear (NLN) model. The forms of these functions

are as follows: h(NL1) includes many two- and three-way interactions, h(NL2) has

exponential effects and a many-way interation, h(NL3) includes exponential effects, a

many-way interaction, and a tan(z) function with 24 causal SNPs, h(NL4) includes

exponential effects and a sin(z) function with 10 causal SNPs, h(L1) is additive for ten

SNPs with equal weight, h(L2) is additive for all SNPs in a region with equal weight,

h(L3) is additive for 12 SNPs with 6 having a small weight of .1 and the others a

weight of .6, h(L4) is additive of 10 third of the SNPs in a region with 5 having a

small weight of .35 and the others having a weight of .75.
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3.1 Introduction

Analyses of genetic association studies have provided major insights into the archi-

tecture of complex human disease, often focusing on strong associations of single

markers or genes. Clinicians and statisticians alike strive to elucidate the effects

of genetic patterns on disease risk and development. The discovery of many single

nucleotide polymorphisms (SNPs) and other genetic markers that are highly associ-

ated with disease reveal the potential to accurately predict disease outcomes based

on a patient’s genetic profile. However, building accurate prediction models to clas-

sify disease risk remains difficult and can not solely rely on results from testing and

estimation procedures.

The standard approach for harnessing information from a genetic study involves

univariate testing of the association of individual markers with the outcome of inter-

est. These univariate tests seek to identify the most highly associated markers that

reach a stringent level of significance in the data. Often, different studies will result in

discrepant results (Ioannidis et al., 2001, 2003). This can be a result of false positives

and negatives, as well as a variety of differences in the datasets, such as heterogenous

populations and sampling schemes. Replication of results is further hindered by un-

derpowered studies that test association of thousands or millions markers with data

from a much smaller number of subjects. Therefore, markers with weak effects or

even rare alleles with strong effects can remain hidden. Generating larger data sets

is always ideal, but can be prohibitively expensive and time consuming, especially

for rare diseases. As a result, methods for meta-analyses have been adapted from the

clinical trial setting to be utilized for combining data from multiple genetic studies

to increase power in detecting associations.
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Association results from meta-analyses have improved upon results from smaller

individual studies by identifying alleles with more moderate effect sizes (Lohmueller

et al., 2003; Zeggini et al., 2008; Stahl et al., 2010). For most complex diseases,

however, only a fraction of the estimated genetic variation, or heritability, is explained

by the implicated markers. There has been much speculation regarding the reasons

for this so-called “missing heritability,” including arguments that studies have still

bee too underpowered to identify many common alleles with weak effects or rare

alleles with stronger effects (Maher, 2008; Manolio et al., 2009; Eichler et al., 2010;

Gibson, 2012). Furthermore, it is likely that complex diseases are influenced by

complex effects of SNPs and genes that are not accurately represented by standard

methods that assume markers are additively associated with disease.

A common approach to incorporate genotype information into risk prediction is

to construct a genetic score from the total number of risk alleles or sum of log ex-

pression levels. Such a genetic score is then included as a new variable in the risk

prediction model and assessed for its incremental value in risk prediction. However,

supporting the missing heritability perception, little improvement in prediction ac-

curacy is gained by adding such simple risk scores to the prediction model based on

clinical markers (Gail, 2008; Meigs et al., 2008; Lee et al., 2012). Polygenic methods

have been developed with the aim of predicting disease risk with a risk score incor-

porating a much larger number of markers (Evans et al., 2009; Purcell et al., 2009),

but again, these additive burden models often fail to explain much more heritability

than has been already accounted for with clinical markers and published risk alleles

(Makowsky et al., 2011; Machiela et al., 2011).

In this paper, we address two main challenges of genetic risk prediction by con-
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structing a prediction model that (1) incorporates complex effects of a large number

of markers, and (2) combines data across heterogenous studies to increase prediction

accuracy for future patients. Explicitly modeling complex effects such as interactions

and nonlinear effects is a difficult problem that requires prior knowledge of the true

genetic architecture, as well as large sample sizes. Therefore, we implement the Adap-

tive Naive Bayes Kernel Machine (ANBKM) proposed in Chapter 2 that efficiently

captures nonlinear effects a via a kernel machine (KM) PCA regression framework

without specifying a functional form (Cristianini and Shawe-Taylor, 2000; Schölkopf

and Smola, 2002). This multi-stage method also leverages the biological structure of

the genome by building the prediction model within gene-sets or regions and then

aggregating over gene-set effects. Additionally, the ANBKM allows for incorpora-

tion of clinical covariates and population stratification variables (Price et al., 2006)

that can account for differences in study populations. We extend these methods

to applications for meta-analyses by developing a weighted version of this method

that incorporates weights based on case-control sampling probabilities. This allows

for accurate prediction even when combining data from studies with heterogeneous

sampling schemes, even complex nested case-control studies. The weights are derived

from the density-weighted Nyström method developed by Zhang and Kwok (2009).

The Nyström method estimates the eigenfunctions of prohibitively large kernel ma-

trix K with the eigenfunctions of a smaller K̃ constructed from a randomly sampled

subset of the data (Williams and Seeger, 2001). We implement the density-weighted

version of this method to estimate the eigenfunctions of the true kernel matrix of the

entire unobservable population from which we sample our genetic data.

The structure of this paper is as follows. We first describe the established kernel

machine methods for prediction in section 3.2. In section 3.3 we present our methods

67



for a weighted representation of the ANBKM model and in section 3.4 we describe

procedures for implementing these methods in meta-analyses. In section 3.5 we

summarize the complete meta-analysis procedure. We then illustrate the practical

use of our methods by detailing a case study where we classify rheumatoid arthritis

(RA) risk with data from 6 genome wide association studies (GWAS) in section

3.6. In section 3.7 we summarize simulation studies. We close with discussion and

remarks in section 3.8.

3.2 Kernel Machine Methods

3.2.1 Logistic Kernel Machine Regression

First consider a single general data set consisting of n subjects with the genetic

predictors z of subject i denoted Zi, and the binary outcome of interest as Yi, with

Yi = 1 being diseased and Yi = 0 being non-diseased. We may assume that Y is

related to z through an unknown centered smooth function h(·) so that

logitpr(Y | z) = a+ h(z). (3.1)

The logistic kernel machine (KM) model (Cristianini and Shawe-Taylor, 2000;

Schölkopf and Smola, 2002) assumes h(·) ∈ Hk where Hk is the functional space

implicitly specified by a positive definite kernel function k(·, ·) that measures the

similarity or distance between a pair of genetic markers. The functional space Hk

is spanned by a set of basis vectors ψj(z) =
√
λjφj(z), such that {λj} and {φj}

are the eigenvalues and eigenfunctions of k under the probability measure Pz, where

λ1 ≥ λ2 ≥ · · · ≥ 0 and Pz is the distribution of z. Therefore, by Mercer’s Theorem
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(Cristianini and Shawe-Taylor, 2000), any h ∈ Hk has a primal representation,

h(z) =
∑∞

j=1 βjψj(z), (3.2)

and by the representer theorem (Kimeldorf and Wahba, 1971), the maximum penal-

ized likelihood estimator for h ∈ Hk must admit a dual representation,

h(z) =
∑n

j=1αik(z,Zi). (3.3)

These results reveal that the kernel function k projects the covariates z into the

feature space Hk where h(z) is a linear combination of the underlying basis functions.

The choice of kernel therefore determines the form of h in the original space and hence

influences predictive performance of the model. Examples of kernels include the

simple linear kernel kLIN = zT
1z2 that implicitly assumes the simple logistic regression

model, and polynomial kernels kPOLY(z1, z2; d) = (1 + zT
1z2)

d corresponding to d-way

multiplicative interactive effect. The Gaussian Kernel, kGAU(z1, z2) = exp{−‖z1 −

z2‖2/ρ} with tuning parameter ρ, assumes the radial basis and allows for complex

non-linear smooth effects. The IBS kernel is kIBS(z1, z2) =
∑p

l=1 IBS(z1l, z2l), where

IBS(z1l, z2l) represents the number of alleles shared identity by state. There are

strong arguments in favor of using these nonlinear kernels to capture interactive

effects of genetic markers (Kwee et al., 2008; Wu et al., 2010). There are many other

possible kernel functions and much work has been done in exploring various types

of kernels (Wessel and Schork, 2006; Lin and Schaid, 2009; Mukhopadhyay et al.,

2010). The kernel should satisfy Mercer’s theorem (Cristianini and Shawe-Taylor,

2000) and be selected a priori based on biological knowledge of the between Y and

Z.

69



3.2.2 Adaptive Naive-Bayes Kernel Machine (ANBKM)
Classification Model

We are interested in the setting when we assume that the genetic predictors of

subject i, denoted Z
(•)
i , can be divided into M non-overlapping gene-sets so that

Z
(•)
i = {Z(1)

i , . . . ,Z
(M)
i }. We may build a prediction model that incorporates possible

complex associations of the genetic predictors with the outcome while leveraging the

biological information in the gene-set structure by implementing a logistic Adaptive

Naive Bayes Kernel Machine (ANBKM) model (propsed in Chapter 2). This model

estimates pr(Yi = 1 | Z(•)
i ) for subject i by aggregating over gene-set effects

logitpr(Yi = 1 | Z(•)
i ) = a+

M∑
m=1

γmlogitpr(Yi = 1 | Z(m)

i ), (3.4)

where γ is estimated via the penalized regression procedure LASSO. Within the mth

gene-set, pr(Yi = 1 | Z(m)

i ) is estimated with a logistic kernel machine model

logitpr(Yi = 1 | Z(m)

i ) = a(m) + h(m)(Z(m)

i ), (3.5)

where h(m)(·) ∈ H
(m)

k is an unknown centered smooth function and the functional

space H
(m)

k is implicitly specified by the chosen kernel function k(·, ·) Therefore, as

in (3.2) h(m) ∈ H
(m)

k has a primal representation,

h(m)(z) =
∑∞

j=1 β
(m)

j ψ(m)

j (z), (3.6)

As outlined in Chapter 2, since the basis functions {ψ(m)

j (z)} are intractable in

general, we may estimate these basis functions with eigenvalues and eigenvec-

tors obtained via kernel principal components analysis (PCA) on the gram matrix

K = n−1{k(Zi,Zj)}1≤i≤n,1≤j≤n. To gain efficiency and stability we take advantage

of the decay of eigenvalues of k and include only the leading r(m)
n eigenvalues and
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eigenvectors in our model, where r(m)
n is the smallest r such that

∑r
i=1 l

(m)

i /
∑n

i=1 l
(m)

i

is greater than a large pre-specified proportion. We then estimate β through a lo-

gistic ridge regression model using the leading r(m)
n basis function estimates. We

estimate h(z(•)) for future subjects with genetic data z(•) with the Nyström method

for approximating eigenfunctions (Rasmussen, 2004).

3.3 Weighted Estimation of Kernel Eigenfunc-

tions

Our estimates of h(z) depend heavily on our estimates of the basis functions of

k. In kernel machine learning theory, it is common to define the eigenvalues and

eigenfunctions of the kernel function k by relating them via the integral∫
k(z′, z)φj(z)dPz(z) = λjφj(z

′). (3.7)

where Pz is the underlying probability distribution of the covariate vector z (Williams

and Seeger, 2001). Then, as a consequence of Mercer’s Theorem, if the data

{Z1, . . . ,Zn} are drawn i.i.d. from Pz, we may numerically approximate the inte-

gral with

n−1

n∑
i=1

k(z′,Zi)φj(Zi) ≈ λjφj(z
′). (3.8)

This equation is fundamental for justifying the use of the kernel PCA and the

Nyström methods for estimating ψj(z) =
√
λjφj(z). However, genetic studies of-

ten do not have an underlying i.i.d sampling scheme and so Pz is not constant over

the data {Zi}1≤i≤n. For example, case-control studies are one of the most common

sampling schemes for constructing GWAS to study rare diseases. In this method,

rare disease cases are oversampled from the underlying population so that the pro-

71



portion of cases in the observed data is much higher than the prevalence. Hence, P̃z,

the distribution of the observed data, does not equal Pz, but instead depends on dis-

ease status of subject i. Each data point Zi should not be given equal weight in the

estimation of the basis functions of k. This could result in a form of sample selection

bias in our estimates of ψj and hence bias in our estimates of h(z) in our predic-

tion model. In order to adjust for possible sample selection bias in our estimates,

we propose to adapt the density-weighted Nyström method presented in Zhang and

Kwok (2009). The Nyström method has been used to estimate the eigenfunctions of

a prohibitively large matrix K with the eigenfunctions of a smaller K̃ constructed

from a randomly sampled subset of the data (Williams and Seeger, 2001). We utilize

the density-weighted version of the Nyström method to estimate the eigenfunctions

of the true kernel matrix of the entire unobservable population from which we sample

our genetic data. Zhang and Kwok (2009) extended the Nyström method by weight-

ing by P̃z at each of the sampled points. For the purposes of adjusting for sampling

schemes in our estimates, we may assume P̃z(Zi) = wiPz(Zi), with
∑n

i=1wi = 1. For

example, a standard case-control study with the prevalence of the disease population

π and n1 cases and n0 cases would have weights wi = π/n1 if subject i is a case,

and wi = (1 − π)/n0 if subject i is a control. Therefore, the integral in (3.7) and

numerical result of (3.8) may be approximated as

λjφ̃j(z
′) =

∫
k(z′, z)φ̃j(z)dP̃z(z) ≈ n−1

n∑
i=1

wik(z′,Zi)φ̃j(Zi) (3.9)

where φ̃j are the eigenfunctions of this weighted representation of k. We may

approximate φ̃j with ũ via the eigenvalue decomposition n−1KWũj = l̃jũj,

where l̃j and ũj are the eigenvalues and eigenvectors of the asymmetric matrix

KW = Kdiag{wi}1≤i≤n = {wik(Zi,Zj)}1≤i≤n. Through the variable transforma-
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tion uj = W1/2ũj and by defining K̃ = W1/2KW1/2 we can transform this equation

into a symmetric eigenvalue problem so that n−1K̃uj = l̃juj. Therefore, our final

estimate of the eigenfunction for a sample point is ũ = W−1/2u. Adapting the es-

timate of the set of basis functions Ψ(m)(z
(m)) = {ψj(z(m))}1≤j≤rn in Chapter 2, we

have:

Ψ̂(m)(z
(m)) = n−1

[
w1k(z(m),Z(m)

1 ), . . . , wnk(z(m),Z(m)

n )
]
Ũ(m)diag

 1√
l̃(m)

1

, · · · , 1√
l̃(m)
rn


(3.10)

where Ũ(m) =
[
ũ(m)

1 , . . . , ũ(m)

rn

]
. Therefore, our estimate of h is

ĥ(m)(z(m)) = Ψ̂(m)(z
(m))β̂

(m)

(3.11)

3.4 Meta-Analysis Model

3.4.1 Notation

Heretofore we have merely been focusing on single datasets. When we introduce

multiple data sets from independent sources with possibly heterogenous sampling

schemes, we introduce more challenges in building a prediction model.

Now suppose we have a set of S data-sets, S = {D(s) = {Yi,Z(s)(•)
i }1≤i≤ns|s =

1 . . . S}, with each consisting of data from ns subjects drawn from the general popu-

lation via independent studies. We may divide the set of datasets into a set of “train-

ing sets” denoted St1 that we use to estimate our kernel machine model parameters

Ψ(m),β(m), a second set of “training sets” denoted St2 that we use to estimate the

gene-set weights γ, and a set of “validation sets” denoted Sv that we use to estimate

the prediction accuracy of our final model. Denote the genetic covariate data from
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the ns subjects in study s as {Z(s)(•)
i }1≤i≤ns so that the data in gene-set m for study

s is denoted {Z(s)(m)
i }1≤i≤ns .

3.4.2 Combining Estimates of Eigenfunctions Across Studies

When estimating h(z) with multiple datasets that were drawn from the population

via heterogeneous sampling schemes, special care must be taken to estimate the

eigenfunctions from each study accurately before combining estimates across studies.

First, consider the eigenfunctions estimated using the data from using study s, D(s) ∈

St1, as the training set. Implementing the weighted estimation procedures detailed

in section 3.3, we obtain estimates of the eigenfunctions through Nyström projection

on the entire meta-data:

Ψ̂
(s)

(m)(Z
(•)(m)) = Ψ̂

(s)

(m)(
[
Z(1)(m), . . . ,Z(s)(m), . . . ,Z(S)(m)

]
N×M) (3.12)

where Ψ̂
(s)

(m)(z
(m)) denotes the estimate of Ψ(m)(z

(m)) based on the eigenfunctions

estimated from kernel PCA on the weighted gram matrix with the mth gene-set of

study s:

K̃(s) = n−1
s {w

(s)
j k(Z

(s)(m)
i ,Z

(s)(m)
j )}1≤i,j≤ns . (3.13)

The weight w
(s)
j is estimated based on the sampling scheme of study s. We

then estimate β(m) with β̂
(s)(m)

, by constructing the pseudo-data {Y, Ψ̂
(s)

(m)} where

Ψ̂
(s)

(m) is the estimated eigenfunctions on the training data in St1, so that Ψ̂
(s)

(m) =

{Ψ̂
(s)

(m)(Z
(d)(m))}D(d) ∈St1 and maximizing the penalized logistic regression likelihood

so that

{â(m), β̂
(s)(m)

} = argmax
a,β

{L(a,β; Ψ̂
(s)

(m))}, (3.14)
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where

L(a,β; Ψ̂
(s)

(m)} = YT log g(a+Ψ̂
(s)

(m)β)+(1−Y)T log{1−g(a+Ψ̂
(s)

(m)β}−τ‖β‖22, (3.15)

where τ ≥ 0 is a tuning parameter that can be selected via criteria such as the AIC

or cross-validation, such that n−
1
2 τ → 0.

We then may combine the estimates generated from using each of the training

data sets in St1 to estimate h(m)(z) by weighting the study-specific estimates with

the respective sample sizes:

ĥ(m)(z(m)) =
1

|St1|
∑
s∈St1

ns
N

Ψ̂
(s)

(m)(z
(m))β̂

(s)(m)
(3.16)

with Ψ̂
(s)

(m)(z
(m)) via (3.12) and β̂

(s)(m)
via (3.15). We therefore estimate h(m)(Z(s)(m))

for a subject in study s in St2 and Sv with genetic data Z(s)(m) as ĥ(m)(Z(s)(m)). To

estimate gene-set weights γ, we construct synthetic data {Y, Ĥ} and fit a logistic

regression model as in Chapter 2:

logitpr(Y = 1 | Z(•)) = b0 + γTĤ(Z(•)) (3.17)

where γ = (γ1, · · · , γM)T is the vector of gene-set weights, Ĥ(Z(•)) =

[ĥ(1)(Z(1)), ..., ĥ(M)(Z(M))]T denotes the vector ĥ(m) for all M gene-sets of an ar-

bitrary Z(•), and Ĥ = Ĥ(Z(St2)(•)) = [ĥ(1)(Z(St2)(1)), . . . , ĥM(Z(St2)(M))]T =

[ĥ(m)(Z(St2)(m))]|St2|×M is the synthetic data matrix of ĥ(m) for each subject i in a

study s in the second training set St2. We obtain a LASSO regularized estimate of

{b0,γ}, as

{b̂, γ̂} = argmax
b,γ

{
LbH(b,γ)− τ2‖γ‖1

}
, (3.18)

where τ2 ≥ 0 is a tuning parameter such that n−
1
2 τ2 → 0 and τ2 →∞, and

LbH(b,γ) = YT log g(b+ Ĥγ) + (1−Y)T log{1− g(b+ Ĥγ)} (3.19)
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Note that our estimator γ̂ is essentially an adaptive LASSO (Zou, 2006) type esti-

mator since these weights are multiplied with ĥ(m)(z) which are consistent for h(m);

see Chapter 2 for the proof of the oracle property of γ̂.

When analyzing several large datasets we are able to set aside a separate set of

data St2 to estimate γ. Estimating the gene-set weights on a separate set of data

St2 than the set used to estimate β(m) prevents overfitting of the γ̂ estimates to the

nuances of the training set. If we can not afford to set aside data for this second stage

of estimation, we may employ the cross-validation techniques presented in Chapter

2 to obtain the estimates for β(m) and γ on the same training data. It is likely that

a meta-analysis would not have such sample size restrictions, however, and so we we

recommend a separate St2.

3.5 Final Prediction Model

3.5.1 Model and Algorithm

Based the estimation procedures described in previous sections, the final algorithm

is as follows:

(i) Divide subjects from multiple studies into the training sets St1, St2 and the

validation set Sv.

(ii) Divide the genetic data for each subject, Z
(•)
i , into M gene-sets so that Z

(•)
i =

{Z(1), . . . ,Z(M)}.

(iii) Estimate Ψ̂
(s)

(m)(z
(m)) via (3.12) and β̂

(s)(m)
via (3.15) with each study s from

training set St1, so that ĥ(m)(Z(m)) is aggregated over studies in St1 as in (3.16)
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(iv) Estimate γ̂ via (3.18) with training set St2

(v) Use Nyström projection methods to estimate the probability of disease for a

future subject with z(•) as

P̃ (z(•)) = g
[
b̂+ γ̂TĤ(z(•))

]
= g

[
b̂+

M∑
m=1

γ̂mĥ
(m)(z(m))

]
. (3.20)

(vi) Validate the model in set Sv via a relevant measure of prediction accuracy, such

as those described in the following section.

3.5.2 Model Validation

After such a risk prediction model is formed, it is crucial to assess its ability in dis-

criminating subjects with or without disease. For a given risk score P, the discrim-

ination accuracy can be summarized based on the receiver operating characteristic

(ROC) curve (Pepe, 2003). A popular measure for summarizing the overall accuracy

of P in predicting Y is the area under the ROC curve (AUC), AUC =
∫ 1

0
ROC(u)du.

We refer to Pepe (2003) for discussion about the attributes of ROC curves for eval-

uating diagnostic markers of disease. To obtain an accurate estimate of the AUC

in a new population, we suggest withholding at least one pure validation study in

Sv to calculate the ROC curve and AUC statistic. In this way, we do not introduce

overfitting bias into our prediction accuracy estimates.

A related measure for summarizing accuracy in the presence of covariates is

matched AUC (Pepe, 2000; Cai and Pepe, 2002; Dodd and Pepe, 2003). This semi-

parametric representation of AUC models the probability of correctly ranking the

risk of individuals within a group of subjects with the same covariate value. This
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is a useful method when considering genetic risk prediction adjusting for population

stratification covariates. In this way, we are quantifying the ability of our prediction

model to assess risk that does not depend on population stratification.

3.6 Case Study: Rheumatoid Arthritis Risk Clas-

sification with Multiple Case-Control GWAS

3.6.1 Data

Rheumatoid arthritis (RA) is the most common autoimmune inflammatory joint

disease that affects 1% of the adult population worldwide (Gabriel et al., 1999).

Over the past 15 years, the understanding of RA pathogenesis has advanced with

the identification of environmental and genetic risk factors for the disease (Liao et al.,

2009; Karlson et al., 2010). Several clinical risk factors have been implicated, such

as age, gender, and smoking habits, but much of the disease liability is known to be

based on genetic profiles; the narrow-sense heritability of RA has been estimated to

be in the range of 0.55-0.68 (MacGregor et al., 2000; van der Woude et al., 2009).

Compiling information from a number of large scale genetic studies conducted

and published in recent years, the National Human Genome Research Institute

(NHGRI) provides an online catalog which lists 94 single nucleotide polymor-

phisms (SNPs) that have been identified as RA risk alleles (Hindorff et al., 2009,

http://www.genome.gov/gwastudies/ Accessed December 10, 2011) and 90 genes

that either contain these SNPs or flank the SNP on either side on the chromosome.

Expanding the search to other documented autoimmune diseases (type I diabetes,

Celiac disease, Crohn’s disease, Lupus, Inflammatory bowel disease), the NHGRI lists
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375 genes containing or flanking 365 SNPs that have been found to be associated

with this class of diseases.

The SNPs that have been identified as RA risk alleles explain only a fraction

of the heritability (Raychaudhuri, 2010; Stahl et al., 2010). The majority of these

SNPs are located near genes of known immune functions, often in the the major

histocompatibility complex (MHC) region, a large region on chromosome 6 that

is known to contain a large number of genes related to immune system functions.

Multiple large GWAS studies have been conducted to study RA, and several recent

meta-analyses have been performed to combine many of these studies to increase

power in discovering risk loci in various populations (Stahl et al., 2010; Zhernakova

et al., 2011; Okada et al., 2012). With univariate testing methods, these meta-

analyses have found several associated SNPs that were not previously known to be

associated with RA. However, based on polygenic analysis methods, Stahl et al.

(2012) estimates that at least 20% of the genetic variance of this disease is left to be

found in the genome. This suggests that our blockwise methods that aim to build a

prediction model with larger portions of the genome will most likely have increased

accuracy over a simple additive model that merely incorporates known SNPs and

genes.

The meta-data that we analyzed are drawn from 6 studies from the North America

and Europe: the Brigham Rheumatoid Arthritis Sequential Study (BRASS) from

the Boston area in the US, with 483 cases and 1449 controls; the CANADA study

from Canada with 589 cases and 1472 controls; the Epidemiological Investigation of

Rheumatoid Arthritis (EIRA) from Sweden with 1173 cases and 1089 controls; the

North American Rheumatoid Arthritis Consortium (NARAC) I from North America
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with 867 cases and 1041 controls; NARAC II with 462 cases and 693 controls; the

Wellcome Trust Case Control Consortium from the United Kingdom with 1525 cases

and 3018 controls drawn from the 1958 British Birth Cohort and the UK Blood

Services. See Stahl et al. (2010) for more details about each study. All genetic data

was imputed to include SNPs from the HapMap 2 release.

3.6.2 Approaches and Results

We divided the study data as follows: We chose four studies for the initial train-

ing stage St1 = {BRASS,CANADA,EIRA,NARACI}, one study for the sec-

ond training stage St2 = {WTCCC}, and the last study for the final valida-

tion stage Sv = {NARACII}. We also compared these results to those with

St2 = {NARACII} and Sv = {WTCCC}. For simplicity of illustration we chose to

estimate γ with a separate study in St2, though a possible alternative approach is to

utilize the cross-validation methods as presented in Chapter 2. We chose to segment

the genome on the 22 autosomal chromosomes into gene-sets that include a gene and

a flanking region of 20KB on either side of the gene. The data we used for analysis

includes 367 gene-sets that either contain or lie up- or down-stream of the 365 SNPs

that were previously found to be associated with autoimmune diseases. These 367

gene-sets cover a total of 43,345 SNPs in our dataset.

To account for any population stratification differences between populations, we

include the top 5 eigenvectors from population stratification analysis in the model

(Price et al., 2006), by imposing a conditional ANBKM model as follows:

logitpr(Yi = 1 | Z(•)
i ,Xi) = a0 + XT

ib0 +
M∑
m=1

logitpr(Yi = 1 | Z(m)

i ,Xi) (3.21)
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and

logitpr(Yi = 1 | Z(m)

i ,Xi) = a(m)

0 + XT

ib
(m)

0 + h(m)(Z(m)

i ), (3.22)

where Xi represents the population eigenvectors.

Table 3.1: AUC ×100 for RA risk prediction model, matched on the top five popu-
lation stratification eigenvectors. The numbers in parentheses are the number of γ̂
estimates that are nonzero, or, the number of gene-sets included in the final classifi-
cation rule. The columns denote the study used as a validation set.

K ℘ Block Weighting NARAC II WTCCC
IBS .999 ANB 74.9 (11) 73.3 (19)
LIN .999 ANB 75.1 (8) 73.5 (21)
IBS .999 NB 72.9 (367) 71.1 (367)
LIN .999 NB 69.9 (367) 69.3 (367)

Table 3.2: AUC ×100 for RA risk prediction model, adjusting for G, the weighted
log odds ratio risk score with known SNPs. The columns denote the study used as
a validation set.

K ℘ Risk Score NARAC II WTCCC
IBS .999 h(Z) +G 77.1 70.7
LIN .999 h(Z) +G 77.4 71.4

G 76.8 69.5

As seen in Table 3.1, the prediction accuracy in the validation set, NARAC II,

is estimated with an AUC of 0.751 when using the linear kernel with 99.9% PCA,

and WTCCC has an AUC of 73.5. The IBS kernel performs similarly in this data

set. These AUC estimates are matched using population stratification eigenvalues

from principal component analysis as covariates (Pepe, 2000; Cai and Pepe, 2002;

Dodd and Pepe, 2003). This estimate allows direct comparison of risk within groups

of subjects who have similar ethnic diversity. We found that matched and non-

matched AUC results were similar and feel confident that population stratification

has been properly accounted for in our methods.
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Table 3.3: Genes (listed by their entrez ID) with non-zero estimates of γ̂ using various
methods. The disease(s) that each gene has been associated with are listed in the
third column. RA+ denotes that the gene has been found to be associated with RA
and other autoimmune diseases.

St2: WTCCC NARAC2
Chr Gene (entrez) Disease(s) KIBS KLIN KIBS KLIN

1 4774 Celiac 0.00 0.00 0.00 -1.04
1 54665 RA+ 2.97 0.00 3.92 0.00
1 26191 RA+ 1.45 3.94 0.00 3.57
2 5966 RA 0.00 0.00 0.00 1.58
2 150962 Cel, Chr 0.00 0.00 2.40 0.00
5 79722 RA 0.00 0.00 1.86 2.77
5 727984 RA+ 0.00 0.00 1.15 0.00
6 3135 RA 0.00 0.00 0.82 1.00
6 352961 Lup 0.41 0.00 1.78 0.89
6 4277 Lup 0.00 0.00 0.00 0.06
6 55937 RA 0.00 0.00 -0.74 -0.78
6 7148 Lup 0.42 0.13 0.00 0.00
6 4855 RA+ 0.39 0.17 0.72 0.15
6 10665 RA+ 0.11 0.42 -0.54 -0.46
6 3122 T1D 0.50 0.81 1.93 3.16
6 3132 RA 0.56 0.00 0.00 -0.23
6 3127 RA 0.04 0.16 0.15 0.00
6 3123 RA+ 0.00 0.00 0.20 0.00
6 3117 RA+ 1.96 1.37 1.64 0.32
6 3119 RA+ 0.45 0.82 0.69 1.26
6 3118 RA+ 0.00 0.00 0.25 0.00
6 3120 Lup 0.00 0.00 0.24 0.29
7 9844 RA+ 0.00 0.00 0.00 0.12
8 640 RA+ 0.00 0.00 0.38 0.90
9 6366 RA 0.00 0.00 0.00 0.91
9 26147 RA+ 0.00 0.00 0.00 0.27
9 7185 RA 0.00 0.00 4.02 3.04
21 1826 RA 0.00 0.00 0.66 0.95

In Table 3.3, we report the genes that have weights estimated as non-zero. Most of

the genes detected have previously been found to be associated with RA, though five
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previously unknown genes do appear to improve the prediction. Four of these genes

lie in the MHC region on chromosome 6, while one of the genes is on chromosome

1 and has previously been discovered in studies of celiac disease. We note that

prediction accuracy decreases when all gene-sets are included in the final model via

the purely naive bayes method. This suggests that including noninformative blocks

introduces noise into the model that decreases the prediction accuracy. Results from

the LASSO in the second stage of estimation for γ̂ suggest that approximately 20

gene-sets are informative in the prediction model, while the other 340 gene-sets do

not contribute to the accuracy of classification. In Table 3.2 we show the AUC values

adjusted for the known genetic risk score (G) calculated from the meta-analysis log

odds ratio estimates in Stahl et al. (2010). We estimated a genetic risk score based

on this G alone as well as G with our estimate of risk from the NBKM meta-analysis

procedures. Most of the predictive accuracy is explained by the risk score. However,

including additional gene-sets in our initial model that are not known to be associated

with RA may improve our ability to find signal outside of these known SNPs.

In our results we see that IBS and linear kernels perform similarly. This may be

because many of the effects in these gene-sets are appropriately modeled as linear,

or alternatively that an unexplored kernel may capture the effects more accurately.

Further investigation is warranted and multiple kernel learning procedures may be

useful to determine the best kernel to model the data.

3.7 Simulation Studies

We conducted simulation studies to determine the effects of our weighting methods on

AUC in a meta-analysis setting. We simulated various case-control data sets from
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a normal model and implemented our methods with an additive Gaussian kernel

with varying widths. In this way, we could explicitly calculate the eigenfunctions of

the kernel that we aim to estimate (Williams and Seeger, 2000). We found that the

prediction accuracy gained from estimating weighted eigenfunctions is most apparent

when the eigenvalues of the kernel function decays at a fairly slow rate, and the

studies have fairly small sample sizes. In this case, the weighted eigenfunctions that

are estimated with the small sample size span a space closer to that spanned by the

true eigenfunctions than the unweighted versions. The small number unweighted

eigenfunctions from the sample do not span the true eigenspace. However, as sample

sizes increase and the eigenvalues decay more rapidly, the gain in prediction accuracy

is less apparent because the number of weighted eigenfunctions span a similar space

as the increased number unweighted eigenfunctions.

3.8 Discussion

Accurate prediction of disease outcomes with genetic markers need not be restricted

by heritability that is missed by small genetic studies looking for additive effects of

a small number of markers. Our gene-set meta-analysis for classification has shown

that genetic susceptibility to complex diseases can be efficiently modeled via a kernel

machine framework that allows for nonlinear effects of markers gene-sets, and that

data from various studies with heterogenous sampling schemes can be efficiently com-

bined to improve predictive power. Through the ANBKM model, we can achieve a

balance between capturing complex effects and efficient estimation of model parame-

ters. Incorporating the block structure of the gene-sets improve prediction accuracy

and computational efficiency over global methods. By adaptively weighting the gene-
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sets in the final stage of estimation, we introduce parsimony in our model that can

reduce overfitting and therefore improve prediction precision for future data sets.

Furthermore, we allow for the flexibility of including numerous studies with differing

clinical characteristics, ancestry, and case-control sampling probabilities by control-

ling for any available clinical or population stratification variables, and by adapting

the ANBKM method to incorporate sampling weights.

Note that when the genetic predictors are partitioned into gene-sets based on

prior knowledge, we may not wish to include all gene-sets in the initial model, espe-

cially when we are partitioning over an entire genome as in this case. The original

data set may include thousands of non-informative gene-sets that could unnecessary

noise in our model, thereby reducing prediction performance. Therefore, we suggest

implementing an initial screening procedure using a liberal threshold that removes

highly non-informative gene-sets prior to building the ANBKM model. One possibil-

ity is to utilize the logistic KM score test proposed by Liu et al. (2008) that tests the

null hypothesis H0 : h(m)(z) = 0 against a general alternative, where h(m)(z) ∈ Hk

models the effect of the gene set z on the outcome Y with Hk specified with a kernel

function k, as in (3.1). This test has high power to detect a gene-set effect in high-

dimensional problems because it combines signal across markers within a region and

accounts for their correlation with a low degree of freedom test. It has been extended

and adapted for genomic data, including genome wide sequence data, by Kwee et al.

(2008) and Wu et al. (2010, 2011). Note that such a liberal screening is subsequently

refined through the adaptive weighting of gene-set effects with LASSO that further

reduces the number of gene-sets in the final prediction model.

Our results from the meta-analysis of RA disease risk reveal that slight predictive
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power can be gained by including a number of unknown regions in the classification

model. We believe that including even more unknown gene-sets would further im-

prove accuracy. Additionally, with even more studies included in the meta-analysis,

we believe that our measures of prediction accuracy will increase as we may then im-

prove estimation of the basis functions of Hk. The addition of clinical variables will

also help account for differences in study populations and therefore allow for more

accurate estimation of the contribution of genetic effects in our model. One may

also consider forming sets of genetic markers based on genes or genetic pathways,

and including regions in the classification model based on known pathway functions.

In this way, we may uncover genes or pathways that were previously not known to

be associated with the disease, but that may significantly contribute to prediction

ability.
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