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Abstract

Kinetic microinstabilities in the solar wind arise when its non-thermal properties become

too extreme. This thesis project focused specifically on the four instabilities associated

with ion temperature anisotropy: the cyclotron, mirror, and parallel and oblique firehose

instabilities. Numerous studies have provided evidence that proton temperature anisotropy

in the solar wind is limited by the actions of these instabilities. For this project, a fully

revised analysis of data from the Wind spacecraft’s Faraday cups and calculations from

linear Vlasov theory were used to extend these findings in two respects. First, theoretical

thresholds were derived for α-particle temperature anisotropy instabilities, which were then

found to be consistent with a statistical analysis of Wind α-particle data. This suggests that

α-particles, which constitute only about 5% of ions in the solar wind, are nevertheless able

to drive temperature anisotropy instabilities. Second, a statistical analysis of Wind proton

data found that proton temperature was significantly enhanced in plasma unstable due to

proton temperature anisotropy. This implies that extreme proton temperature anisotropies

in solar wind at 1 AU arise from ongoing anisotropic heating (versus cooling from, e.g., CGL

double adiabatic expansion). Together, these results provide further insight into the complex

evolution of the solar wind’s non-fluid properties.
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pronaque cum spectent animalia cetera terram

os homini sublime dedit cælumque videre

iussit et erectos ad sidera tollere vultus

While other animals lean forward and gaze at the ground,

He gave to man a lofty countenance and commanded that

He look at the sky and raise his upright face to the stars.

∼ Ovid, Metamorphoses I.84-86



Chapter 1

Introduction

This chapter, the dissertation’s introduction, was written to place this thesis project into a

broader context and to overview fundamental concepts relating to it. Section 1.1 provides a

brief history of heliophysics. Section 1.2 introduces definitions and prior results referenced

throughout this dissertation, the structure of which is presented in Section 1.3.

1.1 Historical Overview of Heliophysics

Heliophysics is the study of the heliosphere: the region of space for which material from the

Sun dominates conditions in the local environment. Of course, the study of the Sun is as old

as astronomy itself. Throughout human history, virtually every society has recognized the

importance of the Sun to its existence, and many went so far as to elevate the observation

of the Sun to a divine office. Nevertheless, heliophysics is a relatively young discipline as its

development has been heavily dependent on the in situ observations made possible by the

Space Age.

1
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1.1.1 Early Observations of the Solar Corona

That the Sun emits light was as obvious to the ancients as it is to humans today, but very few

of the solar observations that have survived from antiquity unambiguously suggest material

extending beyond the disk of the Sun. During a total solar eclipse, the solar corona (i.e., the

Sun’s “atmosphere”) is plainly visible to the unaided eye. Scholars have identified various

ancient symbols and drawings as including stylistic depictions of the corona (Bhatnagar &

Livingston, 2005), though many of these interpretations are disputed. Plutarch (c. 90, 932

B) is often cited as providing the earliest, reasonably-credible description of the solar corona

(Golub & Pasachoff, 1997):

ἡ δὲ σελήνη κἂν ὅλον ποτὲ κρύψῃ τὸν ἥλιον, οὐκ ἔχει χρόνον οὐδὲ πλάτος ἡ ἔκλειψις

ἀλλὰ περιφαίνεταί τις αὐγὴ περὶ τὴν ἴτυν οὐκ ἐῶσα βαθεῖαν γενέσθαι τὴν σκιὰν καὶ

ἄκρατον.

Even if the moon, however, does sometimes cover the sun entirely, the eclipse does

not have duration or extension ; but a kind of light is visible about the rim which

keeps the shadow from being profound and absolute. (Plutarch, 1957, translation)

During the European Renaissance, scientific observations of the corona during solar

eclipses become more common and extensive. However, Kepler (1604, Chapter 8, Section 3)

dismissed the corona as being simply an artifact of the lunar atmosphere refracting sunlight:

Etenim, quia supra capite 6. numero 9. eò audaciæ cum Plutarcho processimus,

vt ausi fuerimus Lunæ, continentes, maria, montes & valles ascribere, quales hæc

nostra tellus habet: quantum superest, vt & aërem Lunæ cirumfundamus, qualis huic

nostræ terræ cirumfusus est? Tunc enim, nec id tamen crebrò, fiet id, quod supra

capite 7. numero 5. de terrestri aëre demonstrauimus; vt radij ab extremitatibus

Solis accedentes, Lunare corpus anfractu quodam, per refractiones in lunari aëre,

circumeant, sicq́ue ad visum nostrum breuiore cono terminentur.

Further, because in Chapter 6 Section 9 above we went along with Plutarch so far

as to have dared to ascribe to the moon continents, seas, mountains, and valleys,

such as this our earth has, how much more is it also to pour air around the moon,

such as is poured around this our earth? For then, and even if it is not poured
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densely, that which we have demonstrated above in Chapter 7 Section 5 concerning

the terrestrial air will happen: that the rays, approaching from the edges of the

sun, go around the lunar body in a kind of bending through the refractions in the

lunar air, and thus are bounded at our vision by a shorter cone. (Kepler, 2000,

translation)

Of course, with the development of more sophisticated instruments and observing techniques,

the corona was clearly identified as being a part of the Sun.

The nineteenth century saw the application of photography and spectroscopy to the

study of the corona (Golub & Pasachoff, 1997). Photography greatly aided the study of the

corona’s many dynamic structures (e.g., streamers and prominences) (Proctor, 1884) and

revealed the scale height of the corona to be on the order of one solar radius. However, such a

thick atmosphere was inconsistent with spectroscopic observations of the Sun’s photosphere

(i.e., it’s “surface”), which indicated temperatures of only about 6 000 K. Additionally,

spectra of the solar atmosphere itself were found to contain many spectral lines that had

never before been observed. This lead some to hypothesize that the corona was composed of

an unknown, extremely light element, which became known as coronium (Golub & Pasachoff,

1997).

However, support for the existence of coronium eroded as continued laboratory mea-

surements provided solar observers with more complete catalogs of spectral lines. Some of

the mysterious lines in the solar atmosphere were identified with the previously unknown

element helium1. However, others, in the corona itself, were found to originate from highly

ionized states of iron, nickel, and calcium, the presence of which indicated coronal temper-

atures on the order of 1 MK (Abetti, 1962). While such high temperatures accounted for

1The word helium is aptly derived from the Greek word for sun: ἥλιος (Oxford English

Dictionary , March 2012).
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the corona’s large scale height, it remained unclear why or how the corona could achieve

temperatures hundreds or thousands of times hotter than the photosphere.

1.1.2 Early Indications of the Solar Wind

As important discoveries were being made about the solar corona, evidence was also mount-

ing that solar material penetrated even deeper into space. Of course, for centuries, the

tails of comets had been observed to extend away from the Sun (versus anti-parallel to the

comet’s trajectory). Cometary tails are now understood to result largely from the solar

wind (Biermann, 1951; Zirin, 1966), which streams from the corona into deep space, but this

conclusion was not immediately evident. Kepler (1619) had proposed that they were caused

by the radiation pressure of sunlight (per the now-defunct corpuscular theory of light), and

Olbers (1812) suggested that they arise from the Sun having a net charge (Tiersch & Notni,

1989; McInnes, 1999; Heidarzadeh, 2008).

One of history’s most dramatic and influential examples of the Earth-Sun connection

came when Carrington (1859) and Hodgson (1859) simultaneously and independently ob-

served an intense solar flare originate from a cluster of sunspots. In describing the event,

Hodgson (1859) wrote

While observing a group of solar spots on the 1st September, I was suddenly sur-

prised at the appearance of a very brilliant star of light, much brighter than the

sun’s surface, most dazzling to the protected eye, illuminating the upper edges of

the adjacent spots and streaks, not unlike in effect the edging of the clouds at sun-

set; the rays extended in all directions; and the centre might be compared to the

dazzling brilliancy of the bright star α Lyræ when seen in a large telescope with

low power. It lasted for some five minutes, and disappeared instantaneously about

11.25 A.M.

Less than a day after this solar flare, Earth was embroiled in an intense geomagnetic storm.
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Ground observations (e.g., from Kew Observatory) revealed heavy distortions in Earth’s

magnetic field, telegraphic communications were disrupted around the world, and the au-

rora borealis was observed as far south as the Caribbean (Boteler, 2006, and contemporary

references therein). The New York Times (3 September 1859) printed the following descrip-

tion of the auroral activity as seen from New York City:

Streamers of yellow and orange shot up and met and crossed each other, like the

bayonets upon a stack of guns, in the open space between the constellations Aries,

Taurus and the Head of Medusa — about fifteen degrees south of the zenith. In this

manner — alternating great pillars, rolling cumuli, shooting streamers, curdled and

wisped and fleecy waves — rapidly changing its hues from red to orange, orange

to yellow, and yellow to white, and back in the same order to brilliant red, the

magnificent auroral glory continued its grand and inexplicable movements until the

light of morning overpowered its radiance and it was lost in the beams of the rising

sun.

Shortly afterward, some researchers, especially Stewart (1861), proposed a direct connection

between the solar flare and the geomagnetic storm (Alexander, 2005).

The discovery of the solar wind and the birth of modern heliophysics are usually credited

to Parker (1958). Chapman (1957) developed a model for the corona as a static atmosphere

(i.e., one with no inward or outward flow). However, the high coronal temperatures indicated

by spectroscopy meant that the corona was highly conductive. In Chapman’s model, this

accounted for the corona’s large scale height, but it prevented the corona from achieving

hydrostatic equilibrium (i.e., the gas pressure did not tend to zero at an infinite distance from

the Sun) (Zirin, 1966). To resolve this contraction, Parker (1958), building upon the work

of Biermann (1951), introduced a model for the corona that included the radially outward

flow of coronal material: a solar wind. Direct observational evidence for the solar wind

came from Neugebauer & Snyder (1962), who, using the Mariner 2 spacecraft, identified a

continually-flowing solar wind with typical speeds between 400 and 700 km/s.
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1.2 Background Information

This section introduces key concepts that are used throughout this dissertation and can

therefore be considered an augmentation of the outline provided in Section 1.3.

1.2.1 The Solar Wind as a Plasma Physics Laboratory

The exact cause of the solar corona’s extremely high temperatures remains unknown. How-

ever, as was first shown by Parker (1958), these temperatures would prevent a static corona

from maintaining pressure balance with the interstellar medium, and therefore give rise to the

supersonic outflow of the solar wind (Hundhausen, 1972; Burlaga, 1995; Golub & Pasachoff,

1997; Velli, 2001).

As measured near Earth (i.e., 1 AU from the Sun), the bulk flow of the solar wind is

typically nearly-radial and at a speed between 250 and 900 km/s. The background magnetic

field strength is generally about 5 nT, and the ion number density usually falls between about

1 and 10 cm−3. The vast majority of these particles protons (i.e., ionized hydrogen atoms)

and α-particles (i.e., fully ionized helium atoms). Protons are always the more abundant

component: though the fraction of α-particles (by number density) can be as high as 0.2, it

is most often between 0.01 and 0.05 (Schwenn, 1990; Kasper et al., 2007).

In astrophysical terms, the physical conditions of the solar wind are not unusual. On the

contrary, hot, low-density, magnetized plasmas exist in a variety of environments including

the interstellar medium, the intergalactic medium, and accretion disks (Schekochihin et al.,

2009). However, solar wind is distinct in that it provides the only opportunity for these types

of plasma conditions to be studied in situ (i.e., through direct measurements versus remote
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observations). No other, similar astrophysical environment is accessible to spacecraft, and

such low-density plasmas cannot be produced in laboratories. In this sense, the the solar wind

provides a unique “laboratory” for studying the microkinetics of not only heliospheric plasma

but of astrophysical plasmas in general. There is mounting evidence that these small-scale

phenomena have significant effects on macroscopic processes (e.g., acceleration and heating)

in the solar wind (Hollweg & Isenberg, 2002; Markovskii & Hollweg, 2004; Matteini et al.,

2007; Mecheri & Marsch, 2008) as well as in extrasolar plasmas (Schekochihin & Cowley,

2006; Sharma et al., 2006).

1.2.2 Temperature Anisotropy

The physical conditions described above ensure remarkably low rates of particle collisions in

solar wind plasma. Consequently, rather than being characterized as a fluid with a single

temperature and bulk velocity, the solar wind is more accurately analyzed by considering the

velocity distribution function (VDF), fj , of each particle species j (where j = p for protons,

α for α-particles, and e for electrons). The function fj(u) essentially specifies the relative

occurrence of j-particles with velocity u and is defined such that its zeroth, first, and second

moments are
∫

∀u

d3u fj(u) = nj ,

∫

∀u

d3uu fj(u) = nj vj , and

∫

∀u

d3u u2 fj(u) = nj

(

v2j + w2
j

)

,

(1.1)
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where nj is the number density of species j, vj is its bulk velocity, and wj is its root-mean-

square (RMS) thermal speed2. The temperature of species j is defined to be

Tj =
mj w

2
j

kB
, (1.2)

where mj is the mass of a j-particle. In thermal equilibrium, vj and Tj would each be the

same for all species j, but, as stated above, this is rarely observed in the solar wind due

largely to its low collisionality (Kasper et al., 2008).

The presence of a background magnetic field, B0, in the solar wind creates direction-

dependent transport coefficients (Stix, 1992). Essentially, this gives rise to heating and

cooling processes that act preferentially either perpendicularly or parallel to B0. Conse-

quently, each particle species j typically exhibits some degree of temperature anisotropy:

i.e., spherical asymmetry in its VDF. This can be interpreted as the species having a tem-

perature, T⊥j , along the axes perpendicular to B0 that is distinct from its temperature, T‖j ,

along the axis parallel to B0 (see Section 1.2.3 for a more complete model of an anisotropic

VDF). The scalar temperature3 of species j is then

Tj =
(

2 T⊥j + T‖j
)

/ 3 , (1.3)

and its temperature anisotropy is typically quantified by the ratio

Rj =
T⊥j

T‖j
=
w2

⊥j

w2
‖j

. (1.4)

2The root-mean-square thermal speed differs from the most-probable thermal speed, which

is larger by a factor of
√
2.

3The term scalar temperature is customarily used this way in the literature. Nevertheless,

it is technically erroneous as T⊥j and T‖j cannot be used to define a “vector temperature”

in a way that is consistent with the axioms of vector spaces.
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Spectroscopic measurements of the solar corona indicate that, for minor ions (e.g., oxygen),

theRj-values therein typically range from 10 to 20 (Cranmer et al., 2008), which suggests that

temperature anisotropy plays an important role in coronal heating (Isenberg & Hollweg, 1983;

Cranmer, 2001; Marsch & Tu, 2001; Isenberg & Vasquez, 2007). However, the temperature

anisotropy of protons and α-particles at 1 AU from the Sun usually falls between 0.1 and 10.

Numerous anisotropic heating and cooling processes have been found to affect the solar

wind as it streams outward from the corona. The most frequently cited anisotropic cooling

mechanism is CGL double adiabatic expansion (Chew et al., 1956), which causes T⊥j to

decrease more quickly than T‖j as the plasma expands. This phenomenon can partially ac-

count for the observed trend in Rp as a function of distance from the Sun (Marsch & Richter,

1984; Matteini et al., 2007) and for the extreme temperature anisotropies encountered in the

lunar wake (Clack et al., 2004). Conversely, perpendicular heating has been associated with

the cyclotron-resonant absorption of Alfvén waves (Marsch & Tu, 2001; Hollweg & Isenberg,

2002; Kasper et al., 2007). Likewise, studies have identified the Landau damping of kinetic

Alfvén waves as a source both of perpendicular heating (Sahraoui et al., 2009, 2010) and of

parallel heating (Quataert, 1998; Schekochihin et al., 2009; Chandran et al., 2010).

1.2.3 The Bi-Maxwellian VDF

The VDF’s observed in the solar wind are typically quite complex. However, for the study

of ion temperature anisotropy, it is generally sufficient to use a bi-Maxwellian distribution,

which (for a species j) is defined to be

f
(b)
j (u) =

nj

(2π)3/2 w2
⊥w‖

exp

(

−
∣

∣u‖ − v‖j

∣

∣

2

2w2
‖j

− |u⊥ − v⊥j|2
2w2

⊥j

)

, (1.5)
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where w⊥j and w‖j denote the perpendicular and parallel RMS thermal speeds, respectively.

In particular,

w⊥j =

√

kB T⊥j

mj
, and w‖j =

√

kB T‖j
mj

. (1.6)

The perpendicular and parallel projections of u (or any vector quantity) can be expressed

as

u‖ =
(

u · B̂0

)

B̂0 , and u⊥ = u− u‖ = u× B̂0 , (1.7)

respectively.

In part, the bi-Maxwellian model works well for ions in the solar wind because, while

the VDF of an ion species is generally anisotropic, it is almost always gyrotropic (i.e., is sym-

metric about B̂0). Gyrotropy develops relatively rapidly — typically in about one cyclotron

period, 2 π /Ωj , where

Ωj =
qj B0

mj
, (1.8)

is the cyclotron (angular) frequency of species j and qj is the charge of a j-particle. Under

typical conditions in the solar wind, Ωp ∼ 1 Hz, so the plasma is typically only observed

to deviate from gyrotropy during periods of particularly extreme and rapid changes. Loca-

tions where spacecraft occasionally encounter non-gyrotropic distributions include planetary

magnetosheaths (Lacombe et al., 1995) and the interaction region between the solar wind

and comet tails (Motschmann & Glassmeier, 1993). These plasmas are distinguished from

normal solar wind by the significant degree to which they evolve on timescales shorter than

the gyroscale.

Of course, temperature anisotropy can only develop in the presence of a background

magnetic field, which restricts the flow of thermal energy in the perpendicular directions.
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The degree to which a species j is influenced by this magnetic field can be quantified by

β‖j =
nj kB T‖j
B2

0 / (2µ0)
, (1.9)

which is the ratio of the parallel pressure of the j-particles to the magnetic pressure. Essen-

tially, β‖j gauges how much effect the magnetic field has on the behavior and evolution of

species j. Since the solar wind has an extremely high electrical conductivity (Hundhausen,

1972), the magnetic field and particles therein are essentially locked together. When β‖j ≪ 1,

the magnetic field has more energy in it than the j-particles do in their thermal motion, so

the field primarily controls the evolution of the plasma and drags the particles along with it.

However, when β‖j ≫ 1, the magnetic field follows the cue of the particles since they have

more of the plasma’s energy.

Because, by mass density, protons are the dominant particle species in the solar wind,

the value of β‖p can be interpreted in another way. In particular,

β‖p ≈
(√

2w‖p

cA

)2

, (1.10)

where

cA =
B0

√

µ0

∑

∀j mj nj

≈ B0√
µ0mp np

, (1.11)

is the Alfvén speed, which is the speed at which Alfvén waves propagate through the plasma.

Likewise,
√
2w‖p is approximately the speed of sound waves (at least those propagating

parallel to the magnetic field). Thus, β‖p approximates the relative propagation speeds of

these two types of waves. In highly magnetized plasma, β‖p ≪ 1, so Alfvén waves propagate

more quickly than sound waves. However, when β‖p ≫ 1, sound waves propagate faster.
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1.2.4 Particle Collision Rates and Collisional Age

As stated above, the low densities and high temperatures of the solar wind ensure that,

by terrestrial standards, the rates of Coulomb collisions among particles remain very low.

Particle collisions play an important role in establishing thermal equilibrium in a fluid, so

the observed non-thermal features of solar wind plasma (e.g., temperature anisotropy and

differential flow) are a direct consequence of weak collisionality.

The collisional timescale quantifies the characteristic length of time necessary for a given

parcel of plasma to be significantly effected by particle collisions. Numerous definitions exist

for this parameter because collisions erode different non-equilibrium features at different

rates. For the purposes of this thesis project, though, it was sufficient to consider the “self-

collision time” of an ion species j (Spitzer, 1956):

τj = (11.4 s)

(

1

lnΛj

)(

mj

mp

)1/2(
qj
qp

)−4
( nj

1 cm−3

)−1
(

Tj
1 K

)3/2

, (1.12)

where

Λj =

(

12 π

qp q
2
j

)(

ǫ30 k
3
B T

3
j

nj

)1/2

, (1.13)

is the plasma parameter (i.e., the argument of the Coulomb logarithm, lnΛj).

Since the ion population of the solar wind is dominated by protons, it is possible to

define the collisional age of a parcel of solar wind plasma to be

Ac =
D

τp vp
, (1.14)

where D is the distance of the observer from the Sun. Essentially, Ac is the number of

proton self-collision times that elapsed as the parcel traveled from the solar corona to the

observer. This interpretation tacitly assumes that, for the plasma’s entire journey, τp and vp
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are constant and vp is radial. Fortunately, though, observations in the inner heliosphere with

the Helios spacecraft have revealed that these parameters’ variations with distance from the

Sun are less significant than their temporal variations (Marsch et al., 1982; Marsch, 1991).

In situ measurements of the solar wind at D = 1 AU have shown that several indicators

of plasma equilibrium are strongly correlated with Ac (Kasper et al., 2008). For example, in

collisionally old plasma (i.e., that with Ac ≫ 1), significant departures from ion temperature

isotropy and temperature equilibrium are rare. However, such deviations are commonly

present in collisionally young plasma (i.e., that with Ac ≪ 1). Near Earth, the value of Ac

typically ranges from 0.01 to 100., which makes this location an excellent laboratory for the

exploration of collisional effects in astrophysical plasmas.

1.2.5 Ion Temperature Anisotropy Instabilities

In plasma, non-Maxwellian VDF’s and departures from thermal equilibrium are entropically

unfavorable as they provide a source of free energy. Therefore, in the absence of some

sustaining process, these features are eventually eroded, and the medium enters equilibrium.

As stated in Section 1.2.4, Coulomb collisions play a large role in this process in the solar

wind, but, in collisionally young solar wind, kinetic microinstabilities can also contribute.

Such an instability is triggered when the plasma departs so far from equilibrium that the

amplitudes of certain waves begin to grow exponentially. The resulting enhanced fluctuations

scatter particles in phase space and force the plasma closer to equilibrium.

Anisotropy-driven instabilities are the subset of kinetic microinstabilities that result

from Rj 6= 1. Both electron and ion temperature anisotropy can cause plasma to become

unstable, but the instabilities driven by each have very different properties (Gary, 1993).



CHAPTER 1. INTRODUCTION 14

Consequently, this thesis project focused only on ion temperature anisotropy instabilities.

Instabilities driven by proton temperature anisotropy (i.e., by Rp 6= 1) have been studied

extensively and found to have a strong effect on the observed distribution of Rp-values in

the solar wind. The actions of the cyclotron instability in limiting Rp > 1 and of the

parallel firehose instability in limiting Rp < 1 have both received extensive theoretical and

observational analysis (Gary et al., 1994, 1998, 2001; Kasper et al., 2002). However, more-

recent, larger-scale studies have suggested that the mirror instability may be more active in

limiting Rp > 1 while the oblique firehose instability may be more active in limiting Rp < 1

(Hellinger et al., 2006; Bale et al., 2009).

As stated above, this thesis project focused on ion temperature anisotropy instabilities

in the solar wind. In particular, the analysis of data from the Wind spacecraft’s Faraday

cups and calculations from linear Vlasov theory were used together to build upon these

existing results for proton instabilities and to extend them to the corresponding α-particle

instabilities, which have received far less attention in the literature (see Section 7.1).

1.3 Summary of This Dissertation

Including this introduction (i.e., Chapter 1), this dissertation contains a total of nine chap-

ters.

The in situ measurements of the solar wind that were used in this thesis project came

primarily from the Wind spacecraft’s Faraday cups (Wind/FC), which are described in

Chapter 2. Chapter 3 reports how Wind/FC “ion spectra” were analyzed, and Chapter 4

details how a dataset of the highest-quality spectra was compiled for this study.
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Chapter 5 introduces the analysis of ion temperature anisotropy instabilities with linear

Vlasov theory. This discussion includes the derivation of analytic results as well as a descrip-

tion of the software used in this project to calculate the growth rates of these instabilities.

Chapters 6 and 7 focus respectively on proton and α-particle temperature anisotropy

instabilities. Each reports on the analysis of the dataset detailed in Chapter 4 with the

software described in Chapter 5. Chapter 8 describes an extension of the work reported in

Chapter 6 and explores the connection between proton instabilities and heat flow in the solar

wind.

The general conclusions of this dissertation are presented in Chapter 9, which includes a

summary of key results and a brief discussion of possible continuations of this thesis project.

Appendix A provides information about the notation and typographical conventions

used in this dissertation. Its principal mathematical symbols are listed in Appendix B.



Chapter 2

The Wind Faraday Cups

The observations used in this thesis project came primarily from the Wind spacecraft’s Fara-

day cups (Wind/FC). Section 2.1 briefly overviews the motivations for the Wind spacecraft

and the purpose of its Faraday cups. Section 2.2 describes the typical design of Faraday cups

used for in situ measurements of space plasma, and Section 2.3 provides a more quantita-

tive analysis of their operation and performance. A conceptual overview of a Wind/FC ion

spectrum is given in Section 2.4, but a full discussion of processing these spectra is reserved

for Chapter 3.

2.1 Introduction to the Wind Spacecraft

The Wind spacecraft was launched on November 1, 1994 to explore the Earth’s magneto-

sphere and the solar wind (Acuña et al., 1995). Along with the Polar spacecraft, Wind was

a part of the NASA Global Geospace Science (GGS) Program, which coordinated in situ

measurements of space environments with Earth-based remote observations and theoretical

16
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investigations. In turn, the GGS Program was part of the International Solar Terrestrial

Physics (ISTP) Program, which oversaw a multinational collaboration studying the Earth-

Sun system.

For its first decade of operation, Wind traveled widely and spent time near Earth, the

Moon, and the first and second Lagrangian points (L1 and L2, respectively). Wind has since

been positioned at L1, where it is slated to stay for the remainder of its mission.

As is evident from the diagram in Figure 2.1, the Wind spacecraft’s body is cylindrical

(Harten & Clark, 1995). Wind is a spin-stabilized spacecraft and rotates about its axis with

a period of approximately 3 seconds. The spacecraft is kept oriented such that its spin axis

is perpendicular to the ecliptic plane.

The observational investigations described in this dissertation primarily used ion mea-

surements from the Wind spacecraft’s two Faraday cups, which are part of the Solar Wind

Experiment (SWE) thereon (Ogilvie et al., 1995). The Wind Faraday cups (Wind/FC) were

designed to collect solar wind plasma and to measure directly the basic properties of its ions

(e.g., density). The cups are located on opposite sides of the spacecraft body, and each is

tilted slightly out of the ecliptic plane: one 15◦ north and the other 15◦ south.

2.2 Faraday Cup Design and Operation Principles

Essentially, a Faraday cup is a metal shell (typically cylindrical) with an aperture through

which plasma particles pass onto a plate called the collector, which is kept electrically isolated

from the metal shell. The collector is connected to ground via a detection circuit that

measures the current generated by the charged particles striking the plate.
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Figure 2.1.— Diagram of the Wind spacecraft published by Harten & Clark (1995).
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In the simplest design of a Faraday cup, any particle that is incident on the cup’s aper-

ture is allowed to enter (regardless of its mass, charge, and inflow speed) and the detection

circuit is just an ammeter. Then, the measured current indicates the net charge flux from

the inflowing plasma particles. Such a design is useful in some laboratory settings (e.g., for

the calibration of ion beams), but it has limited applications to space science. First, since

the solar wind is charge neutral (on scales larger than the Debye length) (Spitzer, 1956),

the currents from its electrons and ions would mostly cancel each other. Second, this design

provides no mechanism for discriminating among particles of different species or energies.

Consequently, composition cannot be measured, the particle number density and bulk speed

remain inextricably coupled, and no determination of temperature can be made.

In order to overcome these limitations, a Faraday cup for space science research typically

has a system of grids between its aperture and collector. Figure 2.2 shows a cross-sectional

diagram of a Faraday cup with three such grids. Both the outer grid and the inner grid

are electrically grounded, but the middle grid, known as the modulator, is allowed to have

a non-zero voltage. If the modular voltage is positive, all electrons flowing into the cup are

allowed to enter, but only ions with sufficient inflow speed are able to do so. Likewise, if the

modulator voltage is negative, all ions can enter but electrons that are entering too slowly

are deflected.

Because the Faraday cup in Figure 2.2 (like the Wind Faraday cups) is intended to

measure ions, its modulator voltage is kept non-negative. One mode of operation would be

to apply various DC modulator voltages and to measure the collector current for each. If the

cup is fixed in space and plasma conditions are static, then the measured collector current

should decrease as the modulator voltage increases. The exact trend in collector current

versus modulator voltage can thus be used to deduce information about the distribution of
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Figure 2.2.— Cross-sectional diagram of a Faraday cup with a square-wave modulator voltage

for the measurement of ions. The cup’s aperture is on the right, its collector plate is on the

left, and its three grids are indicated by dashed lines. The interaction of a j-ion with velocity

u is considered. To ensure that the ion enters the cup, it is implicitly assumed that uz < 0

(where ẑ is the pointing direction of the cup). For simplicity, the two other components of

u are neglected in this diagram. The arrows indicate the three possible types of trajectories

that the ion can take. If uz satisfies the criterion for the lower trajectory, the particle is

always deflected by the modulator. Conversely, if uz meets the upper criterion, it always

goes past the modulator and onto the collector plate. However, if uz satisfies the middle

criterion, the particle is rejected when the modulator voltage is high and accepted when it

is low.
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ion energies.

While this use of DC modulator voltages allows for a relatively simple measurement

scheme, it is highly sensitive to sources of background current. As mentioned above, a

positive modulator voltage means that all incident electrons from the plasma are allowed to

enter the cup. However, ultraviolet photons and other types of radiation generate additional

electrons as they strike the instrument. At 1 AU from the Sun, the current from all these

electrons can easily dwarf that of particles from solar wind plasma.

To mitigate the effects of background noise, most Faraday cups used in space environ-

ments employ an AC modulator voltage and a synchronous detection circuit that is similar

in concept to a lock-in amplifier. In many cases (including that of the Wind Faraday cups),

a square wave is used for the modulator voltage. Figure 2.2 shows the modulator voltage,

V , alternating between

V = (V0 −∆V/2) and (V0 +∆V/2) , (2.1)

where V0 is the DC offset of the square wave and ∆V is its peak-to-peak amplitude1. This

figure also considers an ion of mass mj > 0 and charge qj > 0 flowing into the cup. The

ẑ-direction is taken to be the pointing direction of the cup, and uz denotes the z-component

of the particle’s velocity2. The voltage difference between the outer grid and the modulator

creates an electric field between them that exerts a force on the ion in the ẑ-direction. Then,

depending on the value of uz, the ion’s trajectory will fall into one of three basic categories.

1Of course, in order to maintain a non-negative modulator voltage, it is tacitly assumed

that 0 ≤ ∆V ≤ 2 V0.

2For the particle to actually flow into the cup, it must hold that uz < 0.
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First, if uz is such that

mj u
2
z / 2 < qj (V0 −∆V/2) , (2.2)

then (regardless of whether V is in the high or low state) the electric field always reverses

the trajectory of the particle and thereby prevents it from reaching the collector. Second, if

uz is such that

qj (V0 +∆V/2) < mj u
2
z / 2 , (2.3)

then the electric field slows down but can never stop the incoming particle from reaching the

modulator. Because the inner grid is grounded, such a particle, after passing the modulator,

is accelerated back to its original inflow speed before it strikes the collector. The third and

final case is that of uz satisfying

qj (V0 −∆V/2) < mj u
2
z / 2 < qj (V0 +∆V/2) . (2.4)

For this range of uz-values, the modulator repels the particle when its voltage is in the high

state but not when its voltage is in the low state.

For Faraday cups with square-wave modulator voltages, the detector typically contains a

demodulation and integration circuit that is sensitive to the difference between the collector

current when V is low and that when V is high (Kasper, 2002). More specifically, the

AC-coupling and synchronization of the detector to the modulator voltage means that the

measured quantity is the half of the average value of this difference in current. As is shown

more explicitly in Section 2.3, the factor of one half is present because the ions satisfying

Equation 2.4 can only reach the collector half of the time (i.e., when V is in the low state).

The currents from other ions, solar wind electrons, and photoelectrons are automatically

excluded because they produce a DC signal at the collector.
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2.3 Theoretical Response of an Ideal Faraday Cup

This section extends Section 2.2 by presenting a more analytic discussion of an ideal Faraday

cup with a square-wave modulator voltage and synchronous detection. In particular, it

derives the theoretical response of such an instrument to a plasma consisting of a single ion

species j (with mass mj > 0, charge qj > 0, and VDF fj). Throughout this section, the

ion VDF is assumed to be homogeneous and static (i.e., that fj is independent of space

and time). As above, the Faraday cup is assumed to be stationary and, without the loss of

generality, to be pointing in the ẑ direction.

The first of this section’s three parts considers a completely arbitrary ion VDF. The

second part adds the assumption that the ion bulk flow is supersonic, which allows the

concept of the reduced VDF to be introduced. Finally, in the third part, the VDF is assumed

to be a supersonic bi-Maxwellian.

2.3.1 Response for an Arbitrary VDF

As in the previous section, the modulator voltage is denoted V . The first portion of this

derivation treats V as a constant, but then its results are generalized to the case where

V = V (t) is a square-wave. Nevertheless, because this hypothetical Faraday cup is for

measuring ions, V is assumed to be non-negative at all times.

The Faraday cup’s effective collecting area, A, accounts for the various geometric factors

that affect the flow of particles into the instrument: e.g., the projected size of the aperture

(in the particles’ frame of reference) and the transparency of the grids. Consequently, A

is a function of ûz = û · ẑ (i.e., the z-component of the normalized particle velocity û).



CHAPTER 2. THE WIND FARADAY CUPS 24

Typically, when the particles are moving straight into the cup (i.e., when ûz = −1), the

effective collecting area is at its maximum and almost equals the geometric area of the cup’s

opening. Intuitively,

A(ûz) = 0 for ûz ≥ 0 , (2.5)

since particles should have some inward (versus outward) velocity component in order to

enter the cup.

The expression

d3u = dux duy duz , (2.6)

denotes an infinitesimal volume of velocity space centered at a given particle velocity u. If

V = 0, then the contribution of the particles in this volume to the collector current is

dIj = −qj uz A(ûz) fj(u) d3u . (2.7)

The negative sign in the above equation comes from the choice of coordinate system and

simply reflects the convention that uz < 0 for inflowing particles.

A non-negative modulator voltage, V , sets a threshold value for −uz, below which the

particles in d3u create no collector current (since none passes the modulator grid), and above

which they contribute the current specified in Equation 2.7. By conservation of energy, this

cut-off speed is

u
(c)
j (V ) =

√

2 qj V

mj
. (2.8)

Thus, for a constant voltage V ≥ 0, the total collector current is

Ij(V ) =

∫

uz<−u
(c)
j (V )

dIj

= −qj
∫ −u

(c)
j (V )

−∞

duz uz

∫ ∞

−∞

duy

∫ ∞

−∞

duxA(û · ẑ) fj(u) .
(2.9)
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In the above expression, the argument of the effective collecting area, A, has been written

as û · ẑ (versus ûz) to emphasize that it depends on all three variables of integration (i.e.,

ux, uy, and uz).

If instead the modulator voltage, V , is taken to be a square wave, then V (t) can be

parameterized as follows:

V (t) =



































V0 +∆V/2 t ∈ [0, τm/2)

V0 −∆V/2 t ∈ [τm/2, τm)

V (t mod τm) else

, (2.10)

where t is time, τm is the period of the modulator voltage, V0 > 0 is its offset, and

∆V ∈ [0, 2V0] is its peak-to-peak amplitude. Assuming that the collector current is de-

tected synchronously, the demodulated (i.e., measured) current is

∆Ij =
1

τm

[

∫ τm/2

0

dt
(

Ij − Ij [V (t)]
)

+

∫ τm

τm/2

dt
(

Ij [V (t)]− Ij
)

]

=
1

τm

(

−
∫ τm/2

0

dt Ij[V (t)] +

∫ τm

τm/2

dt Ij[V (t)]

)

,

(2.11)

where

Ij =
1

τm

∫ τm

0

Ij[V (t)] dt , (2.12)

is the mean current from the collector (Kasper, 2002). Substitution of Equations 2.9 and

2.10 into Equation 2.11 gives the demodulated current for a square-wave modulator voltage:

∆Ij =
1

2
[Ij(V0 −∆V / 2)− Ij(V0 +∆V / 2)]

= −qj
2

∫ −u
(c)
j (V0−∆V/2)

−u
(c)
j (V0+∆V/2)

duz uz

∫ ∞

−∞

duy

∫ ∞

−∞

duxA(û · ẑ) fj(u) .
(2.13)
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2.3.2 Supersonic Flow and the Reduced VDF

The expression for ∆Ij in Equation 2.13 holds true for any VDF fj . However, at 1 AU from

the Sun, the solar wind is invariably highly-supersonic. Mathematically, this means that

vj ≫ wj (where vj is the bulk velocity of species j and wj is its thermal speed; see Equation

1.1) so that fj(u) is sharply peaked near u = vj . If A is a slowly varying function, then, to

good approximation,

∆Ij = −qj
2
A(v̂zj)

∫ −u
(c)
j (V0−∆V/2)

−u
(c)
j (V0+∆V/2)

duz uz

∫ ∞

−∞

duy

∫ ∞

−∞

dux fj(u) . (2.14)

This expression for ∆Ij can also be written as

∆Ij = −qj
2
A(v̂zj)

∫ −u
(c)
j (V0−∆V/2)

−u
(c)
j (V0+∆V/2)

duz uz Fzj(uz) , (2.15)

where

Fzj(uz) =

∫ ∞

−∞

duy

∫ ∞

−∞

dux fj(u) , (2.16)

is the “reduced VDF” (along the z-axis).

Intuitively, the moments of the reduced VDF, Fzj, should be closely connected to those

of the VDF itself, fj , (see Equation 1.1). The zeroth moment of Fzj is

∫ ∞

−∞

duz Fzj(uz) =

∫ ∞

−∞

duz

∫ ∞

−∞

duy

∫ ∞

−∞

dux fj(u) = nj . (2.17)

Thus, fj and Fzj have the same zeroth moment: nj . Likewise, the first moment of Fzj is
∫ ∞

−∞

duz uz Fzj(uz) =

∫ ∞

−∞

duz

∫ ∞

−∞

duy

∫ ∞

−∞

dux uz fj(u)

=

[
∫ ∞

−∞

duz

∫ ∞

−∞

duy

∫ ∞

−∞

dux u fj(u)

]

· ẑ

= nj vzj ,

(2.18)

Therefore, the first moment of Fzj is simply the z-component of the first moment of fj . The

thermal speed, wj, is defined such that the second moment of fj is nj

(

w2
j + v2j

)

. By analogy,
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wzj, the effective thermal speed along the z-axis, is defined such that the second moment of

Fzj is
∫ ∞

−∞

duz u
2
z Fzj(uz) = nj

(

w2
zj + v2zj

)

. (2.19)

In the special case of an isotropic VDF, the effective thermal speed along any axis equals wj.

2.3.3 Response for a Supersonic Bi-Maxwellian VDF

If fj is assumed to be bi-Maxwellian (i.e, it is assumed that fj = f
(b)
j ; see Equation 1.5) as

well as supersonic, then, based on Equations 2.15 and 2.16, the demodulated current is

∆I
(b)
j = −qj

2
A(v̂zj)

∫ −u
(c)
j (V0−∆V/2)

−u
(c)
j (V0+∆V/2)

duz uz F
(b)
zj (uz) , (2.20)

and the reduced VDF is

F
(b)
zj (uz) =

∫ ∞

−∞

duy

∫ ∞

−∞

dux f
(b)
j (u) . (2.21)

These integrals are more easily evaluated in the rest frame of the plasma than that of the

Faraday cup. Mathematically, this corresponds to making the substitution

u′ = u− vj . (2.22)

Then, the demodulated current can be written as

∆I
(b)
j = −qj

2
A(v̂zj)

∫ −u
(c)
j (V0−∆V/2)−vzj

−u
(c)
j (V0+∆V/2)−vzj

du′z (u
′
z + vzj)F

(b)
zj (u

′
z + vzj) , (2.23)

where

F
(b)
zj (u

′
z + vzj) =

nj√
8 π3w2

⊥j w‖j

∫ ∞

−∞

du′y

∫ ∞

−∞

du′x exp

(

−
u′2‖
2w2

‖j

− u′2⊥
2w2

⊥j

)

. (2.24)
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By definition (see Equation 1.7),

u′2‖ =
(

u′ · B̂0

)2

= u′2x B̂
2
x0 + u′2y B̂

2
y0 + u′2z B̂

2
z0

+ 2 u′x u
′
y B̂x0 B̂y0 + 2 u′y u

′
z B̂y0 B̂z0 + 2 u′z u

′
x B̂z0 B̂x0 ,

(2.25)

and consequently

u′2⊥ = u′2 − u′2‖

= u′2x

(

1− B̂2
x0

)

+ u′2y

(

1− B̂2
y0

)

+ u′2z

(

1− B̂2
z0

)

− 2 u′x u
′
y B̂x0 B̂y0 − 2 u′y u

′
z B̂y0 B̂z0 − 2 u′z u

′
x B̂z0 B̂x0 .

(2.26)

Then, by substitution,

F
(b)
zj (u

′
z + vzj) =

nj√
8 π3w2

⊥j w‖j

exp



−u′2z
B̂2

z0w
2
⊥j +

(

1− B̂2
z0

)

w2
‖j

2w2
⊥j w

2
‖j





∫ ∞

−∞

du′y exp



−u′2y
B̂2

y0w
2
⊥j +

(

1− B̂2
y0

)

w2
‖j

2w2
⊥j w

2
‖j

− u′y

u′z B̂
2
y0 B̂

2
z0

(

w2
⊥ − w2

‖

)

w2
⊥ w

2
‖





∫ ∞

−∞

du′x exp



−u′2x
B̂2

x0w
2
⊥j +

(

1− B̂2
x0

)

w2
‖j

2w2
⊥j w

2
‖j

− u′x

B̂x0

(

B̂y0 u
′
y + B̂z0 u

′
z

)(

w2
⊥ − w2

‖

)

w2
⊥w

2
‖



 .

(2.27)
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Evaluating the u′x-integral gives

F
(b)
zj (u

′
z + vzj) =

nj√
8 π3w2

⊥j w‖j

exp



−u′2z
B̂2

z0w
2
⊥j +

(

1− B̂2
z0

)

w2
‖j

2w2
⊥j w

2
‖j





∫ ∞

−∞

du′y exp



−u′2y
B̂2

y0w
2
⊥j +

(

1− B̂2
y0

)

w2
‖j

2w2
⊥j w

2
‖j

− u′y

u′z B̂
2
y0 B̂

2
z0

(

w2
⊥ − w2

‖

)

w2
⊥ w

2
‖





w⊥j w‖j

√

√

√

√

2 π

B̂2
x0w

2
⊥j +

(

1− B̂2
x0

)

w2
‖j

exp







B̂2
x0

[

B̂y0 u
′
y + B̂z0 u

′
z

]2 [

w2
⊥ − w2

‖

]2

2w2
⊥w

2
‖

[

B̂2
x0w

2
⊥j +

(

1− B̂2
x0

)

w2
‖j

]






,

(2.28)

which reduces to

F
(b)
zj (u

′
z + vzj) =

nj

2 π w⊥j

√

B̂2
x0w

2
⊥j +

(

1− B̂2
x0

)

w2
‖j

exp



−u′2z

(

1− B̂2
y0

)

w2
⊥j + B̂2

y0w
2
‖j

2w2
⊥j

[

B̂2
x0w

2
⊥j +

(

1− B̂2
x0

)

w2
‖j

]





∫ ∞

−∞

du′y exp



−u′2y

[

1− B̂2
z0

]

w2
⊥j + B̂2

z0w
2
‖j

2w2
⊥j

[

B̂2
x0w

2
⊥j +

(

1− B̂2
x0

)

w2
‖j

]

− u′y

u′z B̂y0 B̂z0

[

w2
⊥ − w2

‖

]

w2
⊥j

[

B̂2
x0w

2
⊥j +

(

1− B̂2
x0

)

w2
‖j

]



 .

(2.29)
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The evaluation of the remaining integral gives

F
(b)
zj (u

′
z + vzj) =

nj

2 π w⊥j

√

B̂2
x0w

2
⊥j +

(

1− B̂2
x0

)

w2
‖j

exp



−u′2z

[

1− B̂2
y0

]

w2
⊥j + B̂2

y0w
2
‖j

2w2
⊥j

[

B̂2
x0w

2
⊥j +

(

1− B̂2
x0

)

w2
‖j

]





√

√

√

√

√

2 πw2
⊥j

[

B̂2
x0w

2
⊥j +

(

1− B̂2
x0

)

w2
‖j

]

(

1− B̂2
z0

)

w2
⊥j + B̂2

z0w
2
‖j

exp







u′2z B̂
2
y0 B̂

2
z0

2w2
⊥j

[

B̂2
x0w

2
⊥j +

(

1− B̂2
x0

)

w2
‖j

]

[

w2
⊥ − w2

‖

]2

(

1− B̂2
z0

)

w2
⊥j + B̂2

z0w
2
‖j






.

(2.30)

This expression simplifies considerably to

F
(b)
zj (u

′
z + vzj) =

nj√
2 π wzj

exp



−1

2

(

u′z

w
(b)
zj

)2


 , (2.31)

where

w
(b)
zj =

√

(

1− B̂2
z0

)

w2
⊥j + B̂2

z0w
2
‖j , (2.32)

is the effective thermal speed of species j along the z-axis for a bi-Maxwellian VDF3. Equation

2.31 shows that the reduced VDF of a bi-Maxwellian is simply a one-dimensional Maxwellian

with a thermal speed w
(b)
zj .

3The definition of w
(b)
zj (i.e., the effective thermal speed for a bi-Maxwellian VDF) given in

Equation 2.32 is consistent with that of wzj (i.e., the effective thermal speed for an arbitrary

VDF) given in Equation 2.19.
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Substituting Equation 2.31 into Equation 2.23 gives

∆I
(b)
j = −qj nj A(v̂zj)√

8 πwzj

∫ −u
(c)
j (V0−∆V/2)−vzj

−u
(c)
j (V0+∆V/2)−vzj

du′z

(u′z + vzj) exp



−1

2

(

u′z

w
(b)
zj

)2


 .

(2.33)

Evaluating this integral gives the final expression for the demodulated current from ion

species j:

∆I
(b)
j =

1

4
qj nj A(v̂zj)



w
(b)
zj

√

2

π
exp



−1

2

(

u′z

w
(b)
zj

)2




− vzj erf

(

u′z√
2w

(b)
zj

)





u′
z=−u

(c)
j (V0−∆V/2)−vzj

u′
z=−u

(c)
j (V0+∆V/2)−vzj

,

(2.34)

where “erf” denotes the error function (Bevington & Robinson, 2003).

2.4 Wind/FC Ion Spectra

The analysis in Section 2.3 considers only a single particle species. However, in reality, a

Faraday cup measures the total demodulated current, ∆I, which incorporates the contribu-

tions of the various ion species in the plasma. More explicitly,

∆I =
∑

∀j

∆Ij +∆I(n) , (2.35)

where the sum is taken over all ion species and ∆I(n) quantifies the various sources of noise

in the measurement.

An ion spectrum from the Wind Faraday cups consists of all measurements of ∆I, from

both cups over a specified number of 3-second spacecraft rotations, Ξ, which may be as high

as 31. For any given rotation, the voltage on each cup’s modulator is varied (according to a
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200 Hz square wave) between

V
(w)
ξ −

∆V
(w)
ξ

2
, and V

(w)
ξ +

∆V
(w)
ξ

2
, (2.36)

where ξ = 1, . . . ,Ξ indicates the rotation number (Ogilvie et al., 1995). Thus, each spacecraft

rotation ξ corresponds to a voltage window that is centered at V
(w)
ξ and has a width ∆V

(w)
ξ .

Typically, to within digital precision,

∆V
(w)
ξ

V
(w)
ξ

=
∆V

(w)
ξ+1

V
(w)
ξ+1

≈ 6.5% , (2.37)

and

V
(w)
ξ +

∆V
(w)
ξ

2
= V

(w)
ξ+1 −

∆V
(w)
ξ+1

2
, (2.38)

for ξ = 1, . . . , (Ξ − 1) (Ogilvie et al., 1995). These relations provide for the continuous

coverage by and the logarithmic spacing of the voltage windows.

Over the course of each spacecraft rotation, each Faraday cup measures ∆I along 20

different directions. Since the two cups point in opposite directions, this corresponds to a

total of 40 unique pointing directions:

ẑ1, . . . , ẑη, . . . , ẑ40 . (2.39)

Thus, a Wind ion spectrum consists of the set of measurements of the demodulated

current

∆J(η,ξ) = ∆I
(

ẑη, V
(w)
ξ ,∆V

(w)
ξ

)

, (2.40)

for ξ = 1, . . . ,Ξ and η = 1, . . . , 40. The symbol J is used in place of I on the right-hand

side of the above expression to emphasize that ∆J(η,ξ) is a measured quantity while ∆I is

calculated based on a model. Chapter 3 discusses how the measurements of current can be

used to infer properties of the underlying VDF’s.



Chapter 3

Processing Wind/FC Ion Spectra

This chapter focuses on the theory and practice of analyzing Wind/FC ion spectra, which are

introduced in Section 2.4. The theoretical basis for interpreting these spectra is presented in

Section 3.1, and two different methods for carrying out this analysis are described in Section

3.2. Section 3.3 describes the specific analysis code used in this thesis project and focuses

on its improvements over the prior version.

3.1 Physical Meaning of Wind/FC Ion Spectra

The measured currents, ∆J(η,ξ), of a Wind/FC ion spectrum (see Section 2.4) do not have a

direct physical interpretation, per se, because they depend on both the plasma parameters

(e.g., particle density) as well as the instrument parameters (e.g., the effective collecting

area, A). However, as Equations 2.13 and 2.40 would suggest, each measured ∆J(η,ξ)-value

reveals some information about the VDF’s of the plasma’s particle species.

33



CHAPTER 3. PROCESSING WIND/FC ION SPECTRA 34

This section describes a simple formalism that relates the ∆J(η,ξ)-values of a given spec-

trum to the proton reduced-VDF, Fzηp, for that spectrum’s various pointing directions, ẑη.

This analysis, which essentially is based on Equation 2.15, requires numerous simplifications

and, most notably, assumes that the protons are the only ion species in the plasma. Nev-

ertheless, it provides a physically intuitive method of visualizing Wind/FC ion spectra and

lays the foundation for the moments analysis thereof (see Section 3.2.1).

3.1.1 Relating Current to the Reduced VDF

The center voltage and voltage width of a spectrum’s ξ-th window are respectively denoted

Vξ and ∆Vξ. If protons are assumed to be the only ion species in the plasma, then the voltage

windows can be converted to inflow-speed windows. So long as the window’s relative width

is sufficiently narrow, its center inflow-speed is approximately

u
(w)
ξ = u(c)p

(

V
(w)
ξ

)

, (3.1)

and its width in inflow speed is

∆u
(w)
ξ = u(c)p

(

V
(w)
ξ +

∆V
(w)
ξ

2

)

− u(c)p

(

V
(w)
ξ −

∆V
(w)
ξ

2

)

. (3.2)

The function u
(c)
p (V ) (see Equation 2.8) can likewise be approximated by its first-order Taylor

expansion about V = V
(w)
ξ :

u(c)p (V ) = u(c)p

(

V
(w)
ξ

)

+
u
(c)
p

(

V
(w)
ξ

)

2 V
(w)
ξ

(

V − V
(w)
ξ

)

. (3.3)

Thus,

∆u
(w)
ξ =

1

2
u(c)p

(

V
(w)
ξ

) ∆V
(w)
ξ

V
(w)
ξ

=
1

2
u
(w)
ξ

∆V
(w)
ξ

V
(w)
ξ

. (3.4)
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Assuming that the proton VDF is sufficiently supersonic, Equation 2.15 can be used to

deduce that the measured current for the ξ-th window along the η-th pointing direction, ẑη,

is

∆J(η,ξ) = −qp
2
A(v̂zηp)

∫ −
(

u
(w)
ξ

−∆u
(w)
ξ

/2
)

−
(

u
(w)
ξ

+∆u
(w)
ξ

/2
)

duzη uzη Fzηp

(

uzη
)

. (3.5)

For a sufficiently narrow window (relative to the width of the VDF), the measured current

can be approximated as

∆J(η,ξ) =
qp
2
A(v̂zηp)Fzηp

(

u
(w)
ξ

)

u
(w)
ξ ∆u

(w)
ξ . (3.6)

With the integral now gone, this expression can be rearranged to give

F̃zηp

(

u
(w)
ξ

)

=
2∆J(η,ξ)

qpA(v̂zηp) u
(w)
ξ ∆u

(w)
ξ

. (3.7)

The left-hand side of this equation appears as F̃zηp rather than Fzηp in order to emphasize that

the right-hand side is the value of Fzηp that is inferred from the measured current, ∆J(η,ξ).

Conveniently, F̃zηp is directly proportional to ∆J(η,ξ), and, other than physical constants, the

constant of proportionality depends only on the design and settings of the instrument.

3.1.2 Visualizing Wind/FC Ion Spectra

Though Equation 3.7 was derived using numerous assumptions, it provides a mechanism

for visualizing a Wind/FC ion spectrum that emphasizes the physical meaning of the raw

measurements. Rather than the measured current, ∆J(η,ξ), being plotted versus Vξ, the

inferred reduced-VDF, F̃zηp, are plotted versus u
(w)
ξ . Essentially, this process removes the

instrument parameters (e.g., effective collecting area) from the plot to leave only the plasma

parameters.
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For example, Figure 3.1 shows part of a typical Wind/FC ion spectrum that was col-

lected at roughly 00:20 UTC on 3 January 2008. More specifically, this figure contains a plot

(in black) of F̃zηp versus u
(w)
ξ for each of 15 pointing directions ẑη. A full Wind ion spectrum

contains measurements from 40 pointing directions (see Section 2.4), but the remaining 25

have been excluded for concision.

Each plot in Figure 3.1 is labeled with the azimuthal angle between its corresponding

ẑη and the sunward direction. A “noise floor” is visible in each plot and is actually the

result of the instrument’s non-zero measurement threshold1. The plots for which the cup

was pointed in the Sun’s general direction also show two peaks: the taller, lower-speed peak

corresponds to the protons and the other to the α-particles. Even though the α-particle bulk

speed is usually comparable to that of the protons, the α-particle peak in each plot appears

translated by a factor of about 2 relative to the proton peak because, by Equation 2.8,

u
(c)
j (V ) =

√

qj / qp
mj /mp

u(c)p (V ) , (3.8)

for any ion species j and modulator voltage V . This scaling allows Faraday cups to be used

to discriminate among different particle populations based on charge-to-mass ratio.

The plots in Figure 3.1 also contain various colored curves and symbols. These indicate

the results of the dvapbimax analysis code, which is described in Section 3.3.2.

1More formally, this is the smallest current that the spacecraft is able to digitally encode.

While this threshold is independent of the modulator voltage, V , this noise floor appears

as a power law because the voltage bins of a Wind/FC ion spectrum are logarithmically

spaced (see Equation 2.37). However, the noise floor does have slight deviations from an

ideal power law because the finite set of discrete voltages that the instrument’s high voltage

power supply can produce do not themselves have perfectly logarithmic spacing.
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3.2 Methods for Analyzing Wind/FC Ion Spectra

This section introduces the principles behind two algorithms for processing ion spectra from

the Wind Faraday cups: moments analysis and non-linear analysis. While the discussion

in this section is primarily theoretical, specific implementations of these analysis techniques

are detailed in Section 3.3.

3.2.1 Moments Analysis

In its simplest form, moments analysis assumes that protons are the only ion species in the

plasma2. In this technique, data from each pointing direction ẑη are considered separately,

and discrete calculus is used to infer values for np, vzηp, and wzηp from the moments of the

inferred reduced-VDF, F̃zηp. This approach is limited because it ignores the effects of other

ion species (most notably, α-particles) as well as the noise floor. Additionally, moments

analysis relies heavily on Equation 3.7, which was derived based on numerous assumptions

about the operation of the instrument and the plasma parameters. Nevertheless, moments

analysis has the advantage of being computationally relatively simple and robust.

For a given pointing direction, ẑη, summing Equation 3.7 over all velocity windows gives

Ξ
∑

ξ=1

F̃zηp

(

u
(w)
ξ

)

∆u
(w)
ξ =

2

qpA(v̂zηp)

Ξ
∑

ξ=1

∆J(η,ξ)

u
(w)
ξ

. (3.9)

Assuming that the velocity windows are relatively narrow and offer sufficiently wide and

2While the moments analysis code for Wind Faraday cup spectra makes this assumption,

it is not absolutely necessary. For example, the corresponding code for the SWEPAM ion

instrument on the ACE spacecraft is able to discriminate among different ion species. How-

ever, the ACE/SWEPAM instrument suite (McComas et al., 1998) differs substantially from

Wind/SWE (Ogilvie et al., 1995).
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continuous coverage, the left-hand side of the above expression is approximately the zeroth

moment of Fzηp. By this assumption and Equation 2.17,

Ξ
∑

ξ=1

F̃zηp

(

u
(w)
ξ

)

∆u
(w)
ξ ≈

∫ ∞

−∞

Fzηp

(

u
(w)
ξ

)

du
(w)
ξ = np . (3.10)

Therefore, the inferred proton density is

ñηp =
2

qpA
(

ˆ̃vzηp

)

Ξ
∑

ξ=1

∆J(η,ξ)

u
(w)
ξ

. (3.11)

The subscript η on ñηp indicates that a separate value for np is inferred along each pointing

direction ẑη. A better estimate of np can be derived from the weighted average of multiple ñηp-

values, where the weights are computed based on the standard methods of error propagation

(Bevington & Robinson, 2003).

The first moment of the reduced VDF can be approximated in the same way so that,

by Equation 2.18,

Ξ
∑

ξ=1

u
(w)
ξ F̃zηp

(

u
(w)
ξ

)

∆u
(w)
ξ ≈

∫ ∞

−∞

u
(w)
ξ Fzηp

(

u
(w)
ξ

)

du
(w)
ξ = np vzηp . (3.12)

Combining this result with Equation 3.7 gives the inferred value for the proton bulk speed

along the zη-axis:

ṽzηp =
2

qp ñηpA
(

ˆ̃vzηp

)

Ξ
∑

ξ=1

∆J(η,ξ) . (3.13)

Finally, this method, along with Equation 2.19, can be used to approximate the second

moment of the reduced VDF:

Ξ
∑

ξ=1

(

u
(w)
ξ

)2

F̃zηp

(

u
(w)
ξ

)

∆u
(w)
ξ ≈

∫ ∞

−∞

(

u
(w)
ξ

)2

Fzηp

(

u
(w)
ξ

)

du
(w)
ξ

= np

(

w2
zηp + v2zηp

)

.

(3.14)



CHAPTER 3. PROCESSING WIND/FC ION SPECTRA 40

This result, along with Equation 3.7, gives the inferred value for the proton thermal speed

along the zη-axis:

w̃zηp =

√

√

√

√

√

2

qp ñηpA
(

ˆ̃vzηp

)

Ξ
∑

ξ=1

u
(w)
ξ ∆J(η,ξ) − ṽ2zηp . (3.15)

Equations 3.11, 3.13, and 3.15 specify the values of np, vzηp, and wzηp inferred from a

moments analysis of the η-th speed window of a Wind/FC ion spectrum. However, vzηp, and

wzηp are not particularly useful quantities, per se, because they are specific to the zη-axis.

Additionally, the quantity

A
(

ˆ̃vzηp

)

, (3.16)

appears as a factor in all three equations. While the effective collecting area function, A,

itself is measured as part of instrument calibration or estimated based on the instrument’s

design, its argument in these equations can only be computed if the vector bulk velocity, vp,

can be inferred.

For these reasons, data from multiple pointing directions are necessary. Presumably,

each pointing direction, ẑη, of the cup is known a priori and therefore can be expressed in

geocentric solar ecliptic (GSE) coordinates (Russell, 1971) (or any other standard coordinate

system that is independent of the spacecraft). More formally, this means that each ẑη can

be expressed as

ẑη = (ẑη · x̂GSE) x̂GSE + (ẑη · ŷGSE) ŷGSE + (ẑη · ẑGSE) ẑGSE , (3.17)

where each of the above dot products is known (based on the instrument configuration) for

each ẑη. The zη-component of the proton bulk velocity can likewise be expressed in terms of
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the these known dot products:

vzηp = vp · ẑη

= vxGSE p (ẑη · x̂GSE) + vyGSE p (ẑη · ŷGSE) + vzGSE p (ẑη · ẑGSE) .

(3.18)

Thus, for a given Wind/FC ion spectrum, values of ṽzηp from multiple pointing directions,

ẑη, can be used together to derive estimators for the components of vp in the GSE (or any

other) coordinate system.

If a bi-Maxwellian model is assumed for the proton VDF, a similar procedure can be used

to extract estimates of w⊥p and w‖p from the inferred values of wzηp based on Equation 2.32.

However, this method requires measurements of the direction of the background magnetic

field, B̂0, in order to separate the perpendicular and parallel thermal speeds. In the case of

Wind , measurements of B̂0 are readily available from another of its instruments (see Section

3.3.1).

3.2.2 Non-Linear Analysis

As discussed above, the moments analysis of aWind/FC spectrum has numerous limitations.

First, the derivation of Equations 3.11, 3.13, and 3.15 relies on numerous assumptions, most

of which related to the relative width of each inflow-speed window being sufficiently small.

In reality, though, the windows are rather coarsely spaced so that a higher cadence of spectra

can be achieved. Second, the moments analysis derived above does not account for the finite

performance characteristics of the instrument. The Wind Faraday cups operate near their

detection threshold, which can consequently skew the results of a moments analysis. Third,

this moments analysis provides no mechanism for inferring the physical properties of the

α-particles.
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Non-linear fitting offers an alternative that eliminates some of these problems. In this

approach, an analytic expression that is dependent on known instrument parameters and

unknown particle parameters is developed to model the measured currents, ∆J(η,ξ), of a

spectrum. Then, the best-fit values of the particle parameters can be derived from a non-

linear fitting algorithm (i.e., χ2-minimization program) (Taylor, 1997; Bevington & Robin-

son, 2003).

For example, in the standard code, the Wind Faraday cups are assumed to only detect

protons and α-particles and that each of these species has a bi-Maxwellian VDF. Conse-

quently, the measured currents are modeled as follows:

∆J(η,ξ) = ∆I(b)p

(

ẑη, V
(w)
ξ ,∆V

(w)
ξ

)

+∆I(b)α

(

ẑη, V
(w)
ξ ,∆V

(w)
ξ

)

+∆I(n)
(

ẑη, V
(w)
ξ ,∆V

(w)
ξ

)

,

(3.19)

where the ∆I
(b)
j terms are as specified in Equation 2.34 and ∆I(n) is a function that models

all sources of “noise” (e.g., the non-zero detection threshold of the instrument).

Of course, as is detailed below, non-linear analysis is fraught with its own complications.

First, initial guesses of the fit parameters are required by virtually all non-linear fitting

algorithms. Especially for complicated models, these algorithms tend to be highly-sensitive

to the initial guesses and to converge properly only for guesses that are already quite close

to the best-fit values. Second, non-linear fitting programs usually invoke iterative or Monte-

Carlo algorithms, which typically require very large numbers of CPU cycles.
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3.3 Code for Analyzing Wind/FC Ion Spectra

Since Wind ’s inception, the analysis software for ion spectra from its Faraday cups has

been written and rewritten several times. The earliest and most fundamental programs

were developed at the Massachusetts Institute of Technology (MIT) primarily by Drs. Alan

Lazarus and John Steinberg and focused primarily on deriving the proton bulk parameters.

Modifications by Dr. Mathias Aellig expanded the code to derive both proton and α-particle

parameters. Later, Dr. Justin Kasper built upon Dr. Aellig’s work to develop the IDL

program apbimax, which (for the first time) modeled the ion VDF’s as bi-Maxwellians (versus

Maxwellians) (Kasper, 2002).

A major component of this thesis project was the modification of apbimax to a yet

more sophisticated version: dvapbimax. All Wind/FC ion parameters presented in the

subsequent chapters of this dissertation are from the output of dvapbimax. This section

provides a detailed description of dvapbimax, but first presents an outline of apbimax, upon

which it was based.

3.3.1 The apbimax Code

To process a given Wind/FC ion spectrum, the apbimax code first loads in the data from

that spectrum: i.e., the measured values of ∆J(η,ξ) along with the associated values of ẑη,

V
(w)
ξ , and ∆V

(w)
ξ . However, in order to separate the perpendicular and parallel temperature

components, apbimax also needs measurements of the background magnetic field, B0, which

are taken from Wind ’s Magnetic Field Investigation (MFI) (Lepping et al., 1995). The

publicly-available Wind/MFI data provide measurements of the local magnetic field at a
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3-second cadence (i.e., essentially one measurement per rotation3). Since a Wind/FC ion

spectrum is measured over Ξ > 1 rotations, B0 is simply taken to be the average measured

value:

B =
1

Ξ

Ξ
∑

ξ=1

Bξ , (3.20)

where Bξ denotes the local magnetic field as measured during the spectrum’s ξ-th spacecraft

rotation.

As stated above, apbimax models the plasma as being composed of protons and α-

particles and assumes that each species has a bi-Maxwellian VDF (see Equation 3.19). This

gives a total of twelve free parameters: each species j has the three components of its bulk

velocity (vj), its number density (nj), and its perpendicular and parallel thermal speeds (w⊥j

and w‖j, respectively). The ultimate function of apbimax is to use a non-linear algorithm

to fit the model specified in Equation 3.19 to the spectrum’s measured currents, ∆J(η,ξ),

and thereby derive best-fit values for these twelve free parameters. However, because the

parameter space is relatively large, apbimax employs a multi-step process to reduce false or

failed convergences of the fitting algorithm.

First, apbimax uses a moments analysis (as described above) to derive estimates of the

protons’ six free parameters, which are then used as initial guesses for these parameters in

the non-linear analysis. Initial guesses of the α-particle parameters are näıvely derived from

those for the proton parameters. For example, the initial guess of nα is taken to be 0.03

times the initial guess of np.

Next, apbimax selects which of the spectrum’s ∆J(η,ξ)-values will be used for the non-

3The measurements of the magnetic field by Wind/MFI are provided, to within the pre-

cision of spacecraft’s clock, at a 3-second cadence. However, Wind ’s rotation period is not

exactly 3 seconds and has actually varied slightly over the course of its mission.
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linear fit. This step is necessary because, as exemplified by the spectrum in Figure 3.1,

most ∆J(η,ξ)-values have ion contributions that fall below the noise floor (i.e., the detection

threshold) of the instrument (see Equation 3.19). When such data are included in the non-

linear fitting, they often cause the algorithm to converge to non-physical parameter values.

Based on the initial guesses of the fit parameters, the code identifies two subsets of the

spectrum’s ∆J(η,ξ)-values (that need not be mutually exclusive): those for which protons

seem to have contributed significantly to the measured current (i.e., the “proton points”)

and likewise for the α-particles (i.e., the “α-particle points”).

Once the point selection is made, apbimax finally runs the non-linear fitting, which is

actually done twice. First, apbimax uses only the proton points and calculates best-fit values

for the six proton parameters. These new proton parameters are then used to generate new

initial guesses of the α-particle parameters (in lieu of those from the moments analysis) and

point selection is rerun. Finally, apbimax runs the non-linear fitting algorithm for the second

time, but now fits all twelve free parameters based on all selected points (i.e., the unions of

the proton and the α-particle points).

3.3.2 The dvapbimax Code

The plots ofWind/FC ion spectra in this chapter are shown with the results of the dvapbimax

analysis. The blue and green curves correspond to F
(b)
zηj

(for j = p and α, respectively; see

Equation 2.31) as evaluated using the best-fit parameter values from dvapbimax. The cyan

curve indicates the sum of the blue and green curves along with a noise term that reflects

the non-zero detection threshold of the instrument (see Equation 3.19). Like its predecessor,

dvapbimax uses an algorithm for point selection: blue ×’s indicate proton points, green
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�’s indicate α-particle points, and cyan ⊠’s indicate points for both species. Occasionally,

selected points are shown in red rather than their usual color; these data were used in the

fit but then subsequently identified as likely outliers.

As stated above, dvapbimax is an enhanced version of apbimax that was developed as

a major component of this thesis project. The name “dvapbimax” refers to one of the key

features of this code: an improved model of the α-proton differential flow

∆vαp = vα − vp , (3.21)

which is detailed below along with other modifications.

3.3.2.1 Improved Model of α-Proton Differential Flow

In apbimax, the components of proton and α-particle bulk velocities along each axis are

mutually-independent fit parameters. However, the gyrotropy of the solar wind, which helps

to give rise to the bi-Maxwellian distribution in the first place (see Chapter 1), would suggest

that ∆vαp should tend to be parallel to the background magnetic field, B0. Indeed, the

distribution in Figure 3.2, which was generated by Kasper et al. (2006) using output from

apbimax, confirms that (to within instrumental precision) ∆vαp is almost always parallel to

the average magnetic field, B. The only significant exception occurs when ∆vαp is very small.

However, this is to be expected since, for small values of ∆vαp, the relative uncertainty in

∆vαp is so large that (to within instrumental precession) ∆vαp is effectively zero.

Based on this assessment, apbimax’s use of independent proton and α-particle bulk

velocities is redundant. For dvapbimax, the perpendicular component of the α-proton differ-

ential flow, ∆v⊥αp, was explicitly assumed to be zero so that the fit parameters vxα, vyα, and

vzα could be replaced with a single free parameter for the parallel component of differential
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Figure 3.2.— Distribution, reproduced from Kasper et al. (2006), of the values of ∆vαp / vp

and
∣

∣

∣
∆v̂αp · B̂

∣

∣

∣
from apbimax output. Each column has been normalized so that the maxi-

mum value therein is unity. When ∆vαp / vp is very small, the differential flow’s magnitude is

(to within measurement precision) zero, and its angle relative to the measured magnetic field

is noise-dominated. However, for all other values of ∆vαp / vp, the value of
∣

∣

∣
∆v̂αp · B̂

∣

∣

∣
gener-

ally strays very little from unity, which suggests that the differential flow remains strongly

aligned with the background magnetic field under most conditions in the solar wind.
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flow: ∆v‖αp. Under this convention, the inferred value of vα is calculated (via Equation

3.21) from the fit value of vp and

∆vαp = ∆v‖αp B̂0 , (3.22)

where the value of ∆v‖αp is taken from the fit and the value of B̂0 is derived from Wind/MFI

data. The introduction of this new model for differential flow reduced the total number

of fit parameters from twelve to ten. In general, the removal of superfluous parameters

decreases both the computation time and the likelihood of the algorithm failing to converge

or converging to a false fit.

3.3.2.2 Higher-Cadence Measurements of Magnetic Field

As stated above, apbimax uses Wind/MFI data with a 3-second time resolution but then

averages these measurements of the magnetic field over the duration of each ion spectrum.

However, the direction of the solar wind’s magnetic field is known to change very rapidly.

The variation in the magnetic field direction over the course of a given spectrum can be

quantified by the angular deviation

ψB =
1

Ξ

Ξ
∑

ξ=1

arccos
(

B̂ξ · B̂
)

. (3.23)

Figure 3.3 shows a plot of ψB for a one-hour sample of 3-second MFI data; for simplicity,

rather than showing ψB for individual ion spectra, a running, 31-measurement window is

used instead. While ψB sometimes remained close to zero, this plot shows periods during

which ψB became quite large, which correspond to times when the direction of the magnetic

field was changing dramatically.

These changes in the direction of the magnetic field have important implications for

the measurement of temperature anisotropy. Under typical conditions in the solar wind,
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Figure 3.3.— Plots of the magnetic field components (top) and ψB (bottom) for a one-hour

period of 3-second Wind/MFI data beginning at 00:00 UTC on 10 June 2008. The upper

plot uses the geocentric solar ecliptic (GSE) coordinate system (Russell, 1971); the xGSE-

component of the magnetic field B is shown in red, the yGSE-component in green, and the

zGSE-component in blue. The lower plot was generated using Equation 3.23 with a running

31-measurement window (i.e., Ξ = 31).
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the magnetic field varies far more rapidly than the ion bulk parameters. Nevertheless, the

perpendicular and parallel temperature components are defined relative to the background

magnetic field. Therefore, even if the temperature components are nearly constant over

a given ion spectrum, the variations in the magnetic field direction cause the ion VDF’s

to rotate in kind. When the Wind Faraday cups measure an ion spectrum while this is

happening, the perpendicular and parallel temperature components are smeared together,

which causes the temperature to seem more isotropic than it actually is.

In dvapbimax, the averaging of MFI data has been eliminated so that each speed win-

dow (i.e., 3-second spacecraft rotation) of each spectrum has its own measurement of the

background magnetic field. Essentially, dvapbimax uses B̂ξ for B̂0 in Equations 2.32 and

3.22, while apbimax uses B̂. Thus, even though dvapbimax assigns each spectrum a single

value for each of its ten fit parameters (including ∆v‖αp, w⊥j, and w‖j), the values of ∆vαp

and wzηj vary from rotation to rotation.

The use of the higher-resolution magnetic field data, along with the differential flow

model described above, has produced significant improvements in the quality of dvapbimax

output relative to that of apbimax. For example, Figure 3.4 shows a partial ion spectrum

from a period of high magnetic-variability along with the corresponding dvapbimax analysis.

In the apbimax analysis, the fitted reduced-VDF of each ion species in each pointing direction

would always appear as a parabola on a log-lin plot (like those in this figure) because the

VDF is modeled with a bi-Maxwellian and the magnetic field is assumed to be constant. A

parabola, though, does not describe the α-particle spectral peaks in Figure 3.4. However,

these irregularities are reproduced quite well by the reduced VDF’s from the dvapbimax

analysis. Evidently, the non-parabolic shapes of the α-particle spectral peaks primarily result

from strong changes in the direction of the magnetic field, which dvapbimax incorporates
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more accurately than its predecessor.

For broader evidence of the superiority of dvapbimax to apbimax in this regard, Figure

3.5 shows a direct, statistical comparison of the output from these two codes. To generate

this plot, the (ψB, Rp)-plane was divided into bins that were linearly spaced along the ψB-

axis and logarithmically spaced along the Rp-axis. The ion spectra were then divided among

these bins based first on the results of apbimax and then based on the results of dvapbimax.

For a fair comparison, only spectra that were successfully fit by both programs were used.

For each bin, separate counts were kept of the number of apbimax spectra and the number of

dvapbimax spectra therein. The plot in Figure 3.5 shows the ratio of the dvapbimax counts

to the apbimax counts for bins which had at least 16 spectra from each code.

Since apbimax and dvapbimax calculate ψB in the same way, Figure 3.5 compares the

Rp-values of dvapbimax to those of apbimax as a function of ψB. This plot shows that

dvapbimax generally produces more extreme values (both ≫ 1 and ≪ 1) for Rp, which

suggests that apbimax truly does suppress temperature anisotropy by smearing temperature

components.

3.3.2.3 Improved Non-Linear Fitting Algorithm

For the non-linear fitting of the Wind/FC ion spectra, apbimax uses the standard IDL com-

mand curvefit, which is an implementation of the Levenberg-Marquardt algorithm (Mar-

quardt, 1963) and is based largely on the implementation given by Bevington & Robinson

(2003). However, for the dvapbimax code, curvefit was replaced with Dr. Craig Mark-

wardt’s mpfit (Markwardt, 2009). While mpfit is also an implementation of the Levenberg-

Marquardt algorithm, it is based on that found in the MINPACK-1 library of FORTRAN subrou-
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Figure 3.5.— Occurrences of (ψB, Rp)-values in the dvapbimax data relative to those in

the apbimax data. The color assigned to each (ψB, Rp)-bin corresponds to the ratio of the

number of dvapbimax data in that bin to the number of apbimax data. In order to suppress

the effects of counting statistics, only bins with at least 16 data from each analysis code are

shown.
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tines (Moré et al., 1980). On the whole, mpfit is far more robust and flexible than curvefit,

so dvapbimax could include a more sophisticated non-linear analysis than apbimax.

In particular, mpfit allows its user to hold the values of some fit parameters fixed while

best-fit values are calculated for the others. As stated above, apbimax’s non-linear analysis

of a Wind/FC ion spectrum first fits for the proton bulk parameters and then for the proton

and α-particle parameters together. However, utilizing the features of mpfit, dvapbimax

fits for the proton parameters, then for the α-parameters (while holding the values of the

proton parameters fixed), and finally fits for the proton and α-particle parameters together.

This process of fitting the response of each species independently before fitting their

joint response is particularly useful in handling a proton beam, which occurs when a fraction

of the protons form a second bi-Maxwellian population that usually has a slightly-higher

bulk speed than that of the proton core (Feldman et al., 1973; Asbridge et al., 1974). Figure

3.6 shows a portion of a typical Wind ion spectrum that features a prominent proton beam.

Like most such spectra, the density and speed of the beam relative to the core are not high

enough for the beam to appear as its own spectral peak in these plots; instead it manifests as

a distortion to the high-speed side of the proton core’s peak. This type of distortion tends to

cause both the moments and non-linear analysis to produce a proton VDF that is too wide

as it is essentially stretched to accommodate the two overlapping spectral peaks. To correct

this, dvapbimax searches for any strong outliers from the initial fit of the proton parameters

that are consistent with the effects of a proton beam. The algorithm then eliminates these

from the subsequent joint fit of the proton and α-particle parameters so that the best-fit

proton parameters describe the proton core only.

While α-particle beams are rarely (if ever) observed in Wind ion spectra, fitting for the
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α-particle parameters brings its own problems. For example, complications often arise when

the α-particles are particularly hot and/or fast relative to the protons. In particular, these

conditions can cause dvapbimax to make poor initial guesses of the α-particle fit parameters

and consequently to misidentify α-particle points during point selection. Ironically, part of

the problem is that runs of mpfit (or curvefit for that matter) generally do not explicitly

fail; instead, the code converges but does so to physically unreasonable values for the fit

parameters. To compensate for this, dvapbimax uses a series of checks to assess the validity

of parameter values. If any check fails, dvapbimax generates a revised initial guess of the

α-particles’ parameters, reselects the α-particle points, and reruns the fit of the α-particle

VDF. In this way, dvapbimax can recover from a poor fit by revising its fit strategy.



Chapter 4

Selecting Wind/FC Ion Spectra for

Statistical Analysis

The dvapbimax software (see Section 3.3.2) was used to analyze the 4 798 309 Wind/FC

ion spectra captured from late-1994 (i.e., launch) to mid-2010. However, the results from

only a fraction of these were suitable for the statistical analysis described in the proceeding

chapters. Section 4.1 details the various criteria used to select the set of spectra whose

dvapbimax output was ultimately used in this study. Some of the basic properties of this

final dataset are presented in Section 4.2.

4.1 Selection Criteria

A given spectrum was only included in the final dataset if it satisfied three different sets of

selection criteria, each of which is described below. The first (and most fundamental) set

of criteria were based on Wind ’s location relative to Earth and on the convergence of the

57
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dvapbimax algorithm. The criteria in the second set established standards for the quality of

the dvapbimax fits. The third was actually only a single criterion and specified a maximum

collisional age for the spectra.

4.1.1 Spacecraft Location and Algorithm Convergence

The most fundamental selection criterion for a spectrum was that the Wind spacecraft was

actually in the solar wind when it was recorded. Until recently, Wind spent a significant

portion of its time near or inside Earth’s magnetosphere (see Section 2.1). As the physics

associated with the magnetosphere is distinct from that of the solar wind (Prölss, 2004),

only spectra from when Wind was far outside of the Earth’s bow shock were selected. In

particular, based on Merka et al. (2003), it was required that

r
(s)
xGSE

R⊕
> 30− 3

250

(

r
(s)
yGSE

)2

+
(

r
(s)
zGSE

)2

R2
⊕

, (4.1)

where R⊕ is the radius of the Earth and

r(s) = r(s)xGSE
x̂GSE + r(s)yGSE

ŷGSE + r(s)zGSE
ẑGSE , (4.2)

denotes the position vector of the spacecraft in the geocentric solar ecliptic (GSE) coordinate

system (Russell, 1971). The boundary of the region specified by Equation 4.1 is a cylindrically

symmetric paraboloid with its axis along the xGSE-axis.

Another important selection criterion was that the fitting algorithm have converged in

a reasonable number of iterations. Most of the spectra that did not meet this criterion

had a weak α-particle signal. When the α-particle number density is particularly low, the

α-particle spectral peak can fall below the Wind/FC detection threshold. Likewise, if the
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Figure 4.1.— Histogram of χ2
R for the spectra that met the selection criteria in Section 4.1.1

proton temperature is particularly high, the proton spectral peak can become wide enough

to envelop the relatively small α-particle peak.

In all, 3 829 271 spectra (i.e., 79.8% of the total) met these criteria based on spacecraft

location and algorithm convergence. Figure 4.1 shows a histogram of χ2
R-values (Taylor,

1997; Bevington & Robinson, 2003) from the fits of these spectra, which indicates that the

typical χ2
R-values returned by the dvapbimax code were quite large: the median was, in

fact, 39.4. Ideally, a fit should have a χ2
R-value of about unity, but this assumes that the

fit model adequately captures the underlying physical processes and that the uncertainties

in the measurements take into account all sources of error. For several reasons, these as-

sumptions are not entirely valid in the dvapbimax analysis, each of which contributes to the

inflation of the resultant χ2
R-values. First, the estimated uncertainties in the measured Fara-

day cup currents only accounted for the minimum current that could be digitally encoded

by the detector. This method neglects, for example, the measurement noise of the detector
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as well as uncertainties in the effective collecting area of the cup as a function of particle

inflow-direction (see Section 2.3). Second, the dvapbimax code relies on the assumption of

supersonic flow, which allows the effective collecting area to be removed from the integrand

of the model (see Section 2.3.2). While this assumption eliminates the need for numeri-

cal integration, it introduces additional uncertainty that is not quantified in the analysis.

Third, the calculation of χ2
R tacitly assumes that the ion VDF’s actually are bi-Maxwellian.

While a bi-Maxwellian usually provides a reasonable analytic model of an ion distribution’s

core, deviations, especially in the wings of the distribution, are often evident. Fourth, as

previously discussed, approximately 90 seconds are required to produce sufficient data for a

typical Wind/FC ion spectrum. However, higher-cadence measurements with other in situ

instruments have revealed significant variations in ion parameter values on these time scales.

Figures 4.2 and 4.3 together contain a histogram for each of the ten dvapbimax fit pa-

rameters. The seven parameters shown in Figure 4.2 (i.e., np, nα, vxp, w⊥p, w‖p, w⊥α, and

w‖α) are grouped together because a value of zero for any of these would be physically unre-

alistic; with the exception of vxp, which should always be negative, each of these parameters

should always be positive. In contrast, the three parameters considered in Figure 4.2 (i.e.,

vyp, vzp, and ∆v‖αp) can realistically take on positive or negative values.

A histogram of the relative uncertainty in each parameter in Figure 4.2 is shown in

Figure 4.4; one for the absolute uncertainty in each parameter in Figure 4.3 is shown in

Figure 4.5. Many of these uncertainties (relative and absolute) seem unreasonably large.

However, these values do not represent true uncertainties in the fit parameters since, like the

χ2
R-values, they incorporate deviations from the bi-Maxwellian model and rapid variations

in plasma conditions. Additionally, each uncertainty has been scaled by χR, which further

inflates its value.
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Figure 4.2.— Histograms of seven of the ten dvapbimax fit parameters for the spectra that

met the selection criteria in Section 4.1.1. These seven fit parameters are distinct from the

other three in that values of zero are physically unrealistic. Histograms of the remaining

three are given in Figure 4.3. In this figure, the binning of np- and nα-values (top row) is

logarithmic, but the other five parameters are binned linearly.
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Figure 4.3.— Histograms of three of the ten dvapbimax fit parameters for the spectra that

met the selection criteria in Section 4.1.1. These three fit parameters are distinct from the

other seven in that values of zero are physically realistic. Histograms of the remaining seven

are given in Figure 4.2. The median value of vyp (unlike that of vxp) is appreciably different

from zero: more so than can be accounted for by the observed spread of values. Rather, this

offset resulted from the measurements having been made in the frame of reference of the

Wind spacecraft, which moves approximately with the Earth as the planet orbits the Sun.

On average, Earth’s orbital velocity is about 30 km/s in the ŷGSE-direction.
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Figure 4.4.— Histograms of uncertainties in seven of the ten dvapbimax fit parameters for

the spectra that met the selection criteria in Section 4.1.1. Each uncertainty has been scaled

by χR and is given as a percentage relative to its corresponding parameter. These seven fit

parameters are distinct from the other three in that values of zero are physically unrealistic

(see Figure 4.2). Histograms of uncertainties in the remaining three are given in Figure 4.5.
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Figure 4.5.— Histograms of uncertainties in three of the ten dvapbimax fit parameters for

the spectra that met the selection criteria in Section 4.1.1. Each uncertainty has been scaled

by χR. These three fit parameters are distinct from the other seven in that values of zero

are physically realistic (see Figure 4.3). Histograms of uncertainties in the remaining seven

are given in Figure 4.4.
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4.1.2 Fit Quality

The next set of criteria were based on the quality of each spectrum’s fit. Since there were

too many spectra for each to be individually studied by human eyes, the assessment of fit

quality was based on predefined ranges for χ2
R, the fit parameters, and the uncertainties in

the fit parameters. The dvapbimax algorithm has ten fit parameters, so a total of twenty-one

quantities were used to assess fit quality for the purposes of data selection. As summarized

in Table 4.1, each of these quantities was assigned a minimum and a maximum, which were

chosen by studying temporal trends and analyzing a subset of dvapbimax output in detail.

As stated in Section 4.1.1, the values of χ2
R (see Figure 4.1) as well as those of the

uncertainties (see Figures 4.4 and 4.5) are unusually high, but such large values do not

reflect uncertainty in parameter values for the fits as much as the assumptions of the analysis.

Nevertheless, the χ2
R-values and uncertainty values can still be interpreted as indicators of

fit quality. For example, lower χ2
R-values tended to correspond to indicate better fits of the

spectra — even when the χ2
R-values are significantly greater than unity.

For a few spectra, the dvapbimax code returned a near-zero value for one of the seven

fit parameters that physically cannot have a value of zero or for one of the uncertainties of

any of the ten fit parameters. This phenomenon is manifest in some of the histograms in

Figures 4.2, 4.4, and 4.5 as an unexpectedly large number of spectra in the lowest-valued

bin. For example, when the dvapbimax code had difficulty separating the perpendicular and

parallel temperature components of an ion species j, it occasionally returned a near-zero

value for either w⊥j or w‖j. Because of these types of errors, the criteria in Table 4.1 specify

both a maximum and a minimum for each of the ten fit parameters and its corresponding

uncertainty.
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Quantity Minimum Maximum

χ
2 R χ2

R 0 150
F
it
P
ar
am

et
er
s

np 0.5 50.

nα 0.02 2.

vxp −1200. −200.

vyp −70. 130.

vzp −100. 100.

∆v‖αp −100. 100.

w⊥p 2. 100.

w‖p 2. 100.

w⊥α 2. 150.

w‖α 2. 150.

U
n
ce
rt
ai
n
ti
es

R
el
at
iv
e

χR σnp
/ np 0.1% 5.%

χR σnα
/ nα 0.5% 50.%

χR σvxp / (−vxp) 0.01% 0.5%

χR σw⊥p
/w⊥p 0.2% 25.%

χR σw‖p
/w‖p 0.2% 25.%

χR σw⊥α
/w⊥α 1.% 120.%

χR σw‖α
/w‖α 1.% 120.%

A
b
s.

χR σvyp 0.1 km/s 5. km/s

χR σvzp 0.1 km/s 5. km/s

χR σ∆v‖αp
0.1 km/s 50. km/s

Table 4.1: Selection criteria based on fit quality. As described in Section 4.1.2, minimum and

maximum values were specified for twenty-one quantities: χ2
R, each of the ten dvapbimax fit

parameters, and each fit parameter’s uncertainty. All of the uncertainties are scaled by χR,

and seven of them are specified as relative (versus absolute) uncertainties. The asymmetry

in the range of selected vyp-values is explained in the caption to Figure 4.3
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Figure 4.6.— Histogram of Ac for the spectra that met the selection criteria in Sections 4.1.1

and 4.1.2.

In all, 2 148 228 spectra (i.e., 44.8% of the total) met the selection criteria for fit quality

listed in Table 4.1 as well as those specified in Section 4.1.1. Figure 4.6 shows a histogram

of collisional age, Ac, (see Equation 1.14) for these spectra. The distribution of Ac-values,

though quite wide, is roughly centered on a collisional age of unity. Thus, solar wind plasma

at 1 AU can range from nearly collisionless to highly collisional.

Figure 4.7, which was generated from the same spectra as Figure 4.6, shows how

|∆vαp| / cA, Tα / Tp, and Rp trend as functions of collisional age. Each parameter has its

own plot, which was generated by dividing the plot area into a lin-log grid of bins. The spec-

tra were then sorted into these bins, and the bin counts in each column were renormalized so

that the most-populated bin had a value of unity. Thus, the color of each bin indicates, for

its Ac-range, the relative number of spectra that occur in its range in |∆vαp| / cA, Tα / Tp,

or Rp; darker colors correspond to higher rates.
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Figure 4.7.— Trends in
∣

∣∆v‖αp
∣

∣ / cA (top), Tα / Tp (middle), and Rp (bottom) as functions of

collisional age Ac for the spectra that met the selection criteria in Sections 4.1.1 and 4.1.2.

In each plot, these spectra were sorted into a lin-log grid of bins, and then the bin counts

in each column of were renormalized so that the most-populated bin had a value of unity.

Larger renormalized values are indicated by darker colors.
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Each of the parameters considered in Figure 4.7 (i.e., |∆vαp| / cA, Tα / Tp, and Rp)

is an indicator of plasma equilibrium (or, more precisely, the lack thereof). In thermal

equilibrium, the plasma would have neither differential flow nor temperature anisotropy, and

all species in the plasma would have the same temperature. Based on these indicators, Figure

4.7 suggests that most collisionally old spectra (i.e., those for which Ac ≫ 1) are close to

thermal equilibrium. However, this figure also shows that collisionally young spectra (i.e.,

those for which Ac ≪ 1) tend to have the most dramatic non-equilibrium features. In these

spectra, Tα ≈ Tp is virtually never observed, and |∆vαp| / cA ≈ 0 and Rp ≈ 1 are relatively

rare. Figure 4.7 and similar figures produced by Kasper et al. (2008) and Bale et al. (2009)

have been interpreted as demonstrating the important role that collisions play in bringing

solar wind plasma into thermal equilibrium.

4.1.3 Collisional Age

The final selection criterion was that each Wind/FC ion spectrum be collisionally young:

i.e., that (based on the fit values of the dvapbimax parameters)

Ac ≤ 0.3 . (4.3)

The selection of only collisionally young plasma was important for several reasons. First, as

discussed in Section 4.1.2, collisional relaxation gradually isotropizes plasma (Kasper et al.,

2008; Bale et al., 2009), which can mask any prior effects of anisotropy-driven instabilities.

For example, Figure 4.7 clearly shows how Rp tends toward unity as Ac increases. Second,

collisional relaxation gradually brings the various particles species into thermal equilibrium.

Such coupling of bulk parameters can complicate the identification of the ion species driving

an instability. Third, the statistical analysis of collisionally young spectra can be more
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Parameter Median

nα / np 0.0418

β‖p 0.835

β‖α 0.166

Rp 0.746

Rα 0.759

T‖α / T‖p 5.11

cA / c 1.64× 10−4

∣

∣∆v‖αp
∣

∣ / cA 0.330

Table 4.2: Median values of select, dimensionless parameters for the spectra that met all

selection criteria specified in Section 4.1.

legitimately compared with the results of linear Vlasov theory, which explicitly assumes a

collisionless plasma (see Chapter 5).

In all, 927 711 (i.e., 19.3%) of Wind/FC ion spectra satisfied the criterion specified by

Equation 4.3 as well as those in Sections 4.1.1 and 4.1.2. These formed the final dataset that

was used for the statistical analysis described in the remainder of this dissertation.

4.2 Properties of the Final Dataset

This section gives a general overview of this dataset and introduces a simple model for

anisotropy correlation. Particular attention is given to temperature anisotropy correlation

because of the strong effects that this phenomenon can have on instabilities (see Chapters 6

and 7).
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4.2.1 Typical Parameter Values

Table 4.2 lists the median values of certain important dimensionless parameters for the

dataset, most of which are consistent with prior observations of solar wind plasma (both with

Wind and with other spacecraft). These values formed the basis of the default parameter

values used in this study’s linear Vlasov calculations (see Table 5.2).

Like prior studies (e.g., Kasper et al., 2008), this project found the α-particle tempera-

ture to be significantly higher than the proton temperature in collisionally young solar wind.

Table 4.2 lists the median value of T‖α / T‖p as 5.21, but in collisionally old wind, this ratio

is usually quite close to unity. Thus, while in collisionally old spectra these two species

generally have the same temperature, the α-particles in collisionally young plasma tend to

have a thermal speed that is approximately equal to (or even slightly greater than) that of

the protons1 (see Figure 4.7).

It is also noteworthy that the median values of the ratios cA / c (i.e., the Alfvén speed

relative to the speed of light) and ∆v‖αp / cA (i.e., the α-proton parallel differential flow

relative to the Alfvén speed) were so small. Figure 4.8 shows a histogram of each ratio, and

indeed cA / c never approaches unity and ∆v‖αp / cA only rarely does.

The selection of only collisionally young spectra somewhat biases the final dataset in

favor of fast solar wind (see Equation 1.14), which numerous studies have shown to have

an origin and evolution that are distinct from those of slow solar wind. A histogram of

vp-values from the final dataset is shown in Figure 4.9. The almost total lack of spectra with

vp < 300 km/s confirms a bias in favor of fast solar wind. However, this bias does not seem

1Because an α-particle is 4.0 times more massive than a proton, w‖α = w‖p corresponds

to T‖α = 4.0 T‖p (see Equation 1.6).
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Figure 4.8.— Histograms of cA / c (top) and
∣

∣∆v‖αp
∣

∣ / cA (bottom) for the spectra that met

all selection criteria in Section 4.1.
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Figure 4.9.— Histogram of vp for the spectra that met all selection criteria in Section 4.1.

to be particularly strong since the median value of vp is still only 474 km/s.

4.2.2 Temperature Anisotropy Correlation

Even in collisonless plasma, the bulk parameters of different particle species can still be

correlated with each other. Since this study considered instabilities driven by ion temperature

anisotropy, an investigation of anisotropy correlation was warranted. For a given value of Rj

(where j = p or α), what is the “typical” value of Rj′ (where j
′ = α or p)?

Figure 4.10 shows plots of median Rj′ versus Rj for (a) j = p and (b) j = α. To generate

each plot, the selected data described above were sorted into logarithmically-spaced Rj-bins.

For each of these bins, a blue diamond indicates its median values of Rj and Rj′, and a

vertical blue line indicates the range of the central-68% of its Rj′-values. Note that the plots

are not simply inverses of each other because each has a different binning: Figure 4.10(a)
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shows typical values of Rα for various Rp-values, and Figure 4.10(b) vice versa.

The plots in Figure 4.10 clearly show positive correlation between Rp and Rα: when one

species is significantly anisotropic, the other usually is as well. Unfortunately, as is discussed

in Chapters 6 and 7, the analysis of anisotropy-driven instabilities becomes complicated when

multiple species are anisotropic. If Rj 6= 1 and Rj′ = 1, then clearly species j drives any

ensuing instability. However, ifRj and Rj′ are both non-unity, each ion species is contributing

internal free energy toward driving an instability. If Rj and Rj′ are also comparable in value,

the formalism of a driving species fails altogether.

To facilitate the exploration of this issue, the correlation of Rj′ to Rj was quantified by

ζ , which was defined such that

Rj′ = Rζ
j . (4.4)

Obviously, ζ = 0 corresponds to species j′ being isotropic for all values of Rj . For values of

ζ > 0, though, both species j and species j′ are anisotropic. However, so long as 0 ≤ ζ ≪ 1,

species j′ is far less anisotropic than species j, and j can be safely labeled as the primary

driver of any temperature anisotropy instability in the plasma.

The definition of ζ in Equation 4.4 was chosen primarily to avoid the complex situation

of Rj ≈ Rj′. Nevertheless, this model for anisotropy correlation is reasonably consistent

with observations. The red, dashed lines in Figure 4.10 correspond to (a) ζ = 0.5 and (b)

ζ = 0.25. These values of ζ are not from a fit and are simply intended to show that the

correlation between ion temperature anisotropies can be roughly captured by Equation 4.4.



Chapter 5

Linear Vlasov Theory of Temperature

Anisotropy Instabilities

The focus of this dissertation project was on kinetic microinstabilities driven by ion tempera-

ture anisotropy, and this chapter provides an introduction to the analysis of these instabilities

with linear Vlasov theory. An overview of microinstabilities in general is given in Section

5.1. Section 5.2 discusses the the fundamental principles of linear Vlasov theory, which is

used in Section 5.3 to derive the dispersion relation for electromagnetic waves in uniform,

magnetized plasma. The four instabilities associated with ion temperature anisotropy are

introduced in Section 5.4, and the software used in this study to calculate their growth rates

is described in Section 5.5.

76
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5.1 Introduction to Plasma Microinstabilities

In general, many different types of instabilities can develop in plasmas. While some of these

are associated with macroscopic phenomena such as gradients in bulk velocity or density,

microinstabilities develop from non-equilibrium features of the plasma’s VDF’s. In thermal

equilibrium, each particle species has a Maxwellian VDF and all species share the same

temperature and bulk speed. Under these conditions, the plasma is stable to all microin-

stabilities. However, as discussed in Section 1.2.2, a wide variety of processes (e.g., double

adiabatic expansion and the anisotropic dissipation of turbulence) in the solar wind cause

the plasma to develop various non-thermal features. These deviations from equilibrium are

entropically unfavorable and (if sufficiently strong) can cause instabilities to develop.

Various methods exist for the theoretical study of plasma instabilities. Perhaps the

most basic approach is to use magnetohydrodynamics (MHD), which is built upon Maxwell’s

equations and the fluid conservation equations (Cowling, 1957; Kulsrud, 1983; Baumjohann

& Treumann, 1997; Treumann & Baumjohann, 1997). Though MHD is often used in the

study of plasma macroinstabilities, it provides, per se, no mechanism for the analysis of

microinstabilities (Gary, 1993; Kasper, 2002).

Consequently, this study exclusively employed linear Vlasov analysis, which uses a linear

expansion of the Vlasov equation to explore the behavior of small-amplitude, sinusoidal

waves in plasma (Gary, 1993; Baumjohann & Treumann, 1997). Unlike MHD, this method

explicitly assumes that the plasma is collisionless and can be used to derive the growth rates

of kinetic microinstabilities.

Of course, linear theory does have its own fundamental limitations. For example, since
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all equations in linear theory are (by definition) only expanded to first order, only small-

amplitude perturbations can be considered. Thus, while linear theory can be used to deter-

mine the initial growth rate of an instability, it provides no information about the instability’s

longterm evolution. Consequently, linear theory cannot be used to study how the actions of

instabilities affect the bulk parameters of plasma. Instead, more sophisticated methods are

necessary, which usually requires the abandonment of analytic methods in favor of numerical

ones: e.g., the “brute force” simulation of each particle’s position and momentum with time,

“hybrid” simulations that model some species as individual particles and others as a bulk

fluid, and “particle-in-cell” codes (Gary, 1993; Matteini et al., 2011; Chandran et al., 2011).

However, these methods necessitate a great deal of computational power and therefore were

eschewed for this study.

5.2 Introduction to Linear Vlasov Theory

This section provides an overview of the Vlasov equation and how it can be linearized to

study plasma waves. The specific case of electromagnetic waves in uniform, magnetized

plasma is treated in much more detail in Section 5.3.

5.2.1 The Vlasov Equation

For a particle species j with a VDF fj = fj(t, r,u) (where r is particle position and u is

particle velocity), the Boltzmann transport equation is

dfj
dt

=
∂fj
∂t

∣

∣

∣

∣

coll

, (5.1)
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where the left-hand side denotes the total derivative of fj and the right-hand side encapsu-

lates the influences of collisions among particles on the evolution of fj (Gary, 1993). In the

absence of collisions, the latter vanishes. Then, applying the chain rule to the former gives

∂fj
∂t

+ u · ∂fj
∂r

+
F

mj
· ∂fj
∂u

= 0 , (5.2)

where F = F(t, r,u) is the net force on the particles. The Vlasov equation comes from

assuming that the only forces associated with the electric field, E = E(t, r), and the magnetic

field, B = B(t, r), act on the plasma:

∂fj
∂t

+ u · ∂fj
∂r

+
qj
mj

(E+ u×B) · ∂fj
∂u

= 0 . (5.3)

In general, it is quite challenging to solve the Vlasov equation analytically. The most obvious

difficulty is that this differential equation involves seven independent variables: t, the three

components of r, and the three components of u. In full generality, fj is a function of all

seven of these variables and the fields E and B are functions of the first four. Additionally,

because all particles in the plasma contribute to E and B, the Vlasov equation written for one

particle species is implicitly coupled to those written for all other species. Therefore, even

though Equation 5.3 is only written for a single species j, any solution must simultaneously

consider all of the plasma’s species.

The linear analysis of the Vlasov equation mitigates some of these difficulties by as-

suming that the temporal variations in fj , E, and B can be approximated by a plane-wave
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perturbation. More formally,

fj(t, r,u) = f
(0)
j (r,u) + f

(1)
j (t, r,u)

= f
(0)
j (r,u) + f

(1)
j (k, ω,u) exp[i (k · x− ω t)] ,

E(t, r) = E(0)(r) + E(1)(t, r)

= E(0)(r) + E(1)(k, ω) exp[i (k · x− ω t)] , and

B(t, r) = B(0)(r) +B(1)(t, r)

= B(0)(r) +B(1)(k, ω) exp[i (k · x− ω t)] ,

(5.4)

where k is the wavevector and ω is the angular frequency. Under the usual convention, k is

taken to be real-valued, and ω is taken to be complex-valued such that

ω = ωr + i γ , (5.5)

where i =
√
−1 is the imaginary unit. The imaginary component, γ, is referred to as

the growth rate and indicates how the wave’s amplitude changes in time; the wave decays

(exponentially) if γ < 0 but grows (exponentially) if γ > 0.

In linear Vlasov analysis, the linear expansions of fj, E, and B (see Equation 5.4) are

combined with the Vlasov equation (see Equation 5.3) as well as Maxwell’s equations:

∂

∂r
·E =

ρ

ǫ0
, (5.6a)

∂

∂r
·B = 0 , (5.6b)

∂

∂r
×E = −∂B

∂t
, and (5.6c)

∂

∂r
×B = µ0 J+ µ0 ǫ0

∂E

∂t
, (5.6d)

where J is current density. The ultimate goal of linear Vlasov analysis is to then use the

resultant system of equations to derive the dispersion relation (i.e., the equation relating ω
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and k). Section 5.3 overviews the derivation of the dispersion relation for electromagnetic

waves in uniform, magnetized plasma.

5.2.2 The Growth Rate of an Instability

For stability analysis, the key quantity is γ (i.e., the imaginary component of ω) because

it indicates the initial time-evolution of the wave’s amplitude. If γ(k) > 0 for at least

some values of k, the plasma is considered unstable due to the exponential growth of the

associated waves, which eventually causes particles to scatter and drives the plasma toward

a more stable state.

Even for relatively mundane plasma conditions, the dispersion relation typically is a

very complicated equation and may not even have a closed form. Nevertheless, numerical

methods generally can be used to calculate the value of ω = ωr + i γ corresponding to any

given k-value. In this way, the function γ(k) can be explored to determine whether or not

the plasma is stable.

In practice, the function γ(k) often has multiple local maxima, each of which may or may

not be greater than zero. Rather than considering the global maximum value, it is generally

more useful to associate each maximum with a different instability. Then, an instability’s

growth rate, γmax, is taken to be the growth rate, γ, of its fastest-growing mode, kmax; i.e.,

γmax = γ(kmax) = max
k

γ(k) , (5.7)

where the maximization is taken over all wavevectors, k, that are associated with the insta-

bility. Likewise, the instability’s real frequency is

ωmax = ωr(kmax) . (5.8)
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When plasma is identified as being unstable to a given instability, it is meant that γmax > 0

for that instability.

5.3 Electromagnetic Dispersion Relation for Uniform,

Magnetized Plasma

In this section, the Vlasov equation (see Equation 5.3) and Maxwell’s equations (see Equation

5.6) are linearized and used to derive the dispersion relation for electromagnetic fluctuations

in uniform plasma. For simplicity, this calculation is made in the frame of reference for which

the unperturbed plasma has no net current; i.e., that for which

∑

∀j

qj nj vj = 0 . (5.9)

Throughout this section, it is assumed that the plasma contains no zeroth-order electric field

and that the zeroth-order magnetic field is non-zero, uniform, and constant; i.e.,

E(0)(r) = 0 , and B(0)(r) = B0 6= 0 , (5.10)

where B0 is the background magnetic field. Without loss of generality, the coordinate system

is chosen such that

B0 = B0 ẑ , (5.11)

and

k = ky ŷ + kz ẑ . (5.12)

The propagation angle, θ, of the wave relative to the background magnetic field is defined

to satisfy

cos θ =
kz
k

=
kz

√

k2y + k2z
, (5.13)
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where k (i.e., the magnitude of k) denotes the wavenumber.

Initially, only minimal assumptions are made about the particle VDF’s. However, in

Section 5.3.3, each particle species is taken to have a bi-Maxwellian VDF and, in keeping

with observations (see Figure 3.2), the differential flow between any two species is parallel to

B0. This latter assumption, along with Equation 5.9, is equivalent to stating that, for each

species j,

vj = v‖j ẑ . (5.14)

5.3.1 Application of Maxwell’s Equations

Based on Equations 5.4 and 5.10, the first-order expansions of E and B are

E(t, r) = E(1)(t, r) , and B(t, r) = B0 +B(1)(t, r) , (5.15)

where

E(1)(t, r) = E(1)(ω,k) exp[i (k · r− ω t)] , and

B(1)(t, r) = B(1)(ω,k) exp[i (k · r− ω t)] .

(5.16)

Per Equation 5.9, the frame of reference is chosen such that the unperturbed plasma has no

net current. Thus, the first-order expansion of the current density is

J(t, r) = J(1)(t, r) = J(1)(ω,k) exp[i (k · r− ω t)] . (5.17)

Substituting these expressions into Faraday’s law and Ampère’s law (i.e., Equations 5.6c and

5.6d, respectively) gives

µ0 J
(1)(k, ω) =

i

ω
k×

[

k× E(1)(k, ω)
]

+ µ0 ǫ0 i ωE(1)(k, ω) . (5.18)

The particle flux density of species j is

Γj(t, r) =

∫

∀u

d3uu fj(t, r,u) =

∫ ∞

−∞

duz

∫ ∞

−∞

duy

∫ ∞

−∞

dux u fj(t, r,u) , (5.19)
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where fj is the species’ VDF. Therefore, based on Equation 5.4,

J(1)(k, ω) =
∑

∀j

qj Γ
(1)
j (k, ω) , (5.20)

where

Γ
(1)
j (k, ω) =

∫ ∞

−∞

duz

∫ ∞

−∞

duy

∫ ∞

−∞

dux u f
(1)
j (k, ω,u) , (5.21)

is the coefficient of the first-order term in the linear expansion of Γj .

This species’ dimensionless conductivity tensor, Sj , is defined to satisfy the following

relationship:

Γ
(1)
j (k, ω) = −i ǫ0 k

2 c2

qj ω
Sj(k, ω) ·E(1)(k, ω) . (5.22)

Combining Equations 5.18, 5.20, and 5.22 gives

D(k, ω) · E(1)(k, ω) = 0 , (5.23)

where

D(k, ω) =
(

ω2 − c2 k2
)

1+ c2 kk+ c2 k2
∑

∀j

Sj(k, ω) , (5.24)

is the plasma’s dispersion tensor. In this expression, kk denotes the dyadic product of k

with itself (see Appendix A) and

1 =





1 0 0

0 1 0

0 0 1



 , (5.25)

indicates the unit tensor (i.e., the 3 × 3 identity matrix). The dispersion tensor can be
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written more explicitly by expressing its elements individually:

Dxx(k, ω) = ω2 − c2 k2 + c2 k2
∑

∀j

Sxxj(k, ω) ,

Dxy(k, ω) = c2 k2
∑

∀j

Sxyj(k, ω) ,

Dxz(k, ω) = c2 k2
∑

∀j

Sxzj(k, ω) ,

Dyx(k, ω) = c2 k2
∑

∀j

Syxj(k, ω) ,

Dyy(k, ω) = ω2 − c2 k2z + c2 k2
∑

∀j

Syyj(k, ω) ,

Dyz(k, ω) = c2 ky kz + c2 k2
∑

∀j

Syzj(k, ω) ,

Dzx(k, ω) = c2 k2
∑

∀j

Szxj(k, ω) ,

Dzy(k, ω) = c2 ky kz + c2 k2
∑

∀j

Szyj(k, ω) , and

Dzz(k, ω) = ω2 − c2 k2y + c2 k2
∑

∀j

Szzj(k, ω) .

(5.26)

Because E(1)(ω,k) partially specifies the amplitude of the first-order perturbation, it

can never be allowed to vanish to zero: otherwise, the plasma would have no perturbation

at all. The combination of this fact and Equation 5.23 gives the dispersion relation for

electromagnetic fluctuations in homogeneous plasma:

det [D(k, ω)] = 0 . (5.27)

Since, in general, D is complex-valued, the determinants of its real and imaginary components

must separately equal zero; i.e.,

det(ℜ[D(k, ω)]) = 0 , and det(ℑ[D(k, ω)]) = 0 . (5.28)
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The remainder of this section focuses on the derivation of an expression for S, which enables

this dispersion relation actually to be used.

5.3.2 Application of the Vlasov Equation

In order for the plasma to be in a state of equilibrium (stable or otherwise), the Vlasov equa-

tion should be satisfied for the zeroth-order (i.e., background) VDF’s and fields. Expanding

Equation 5.3 to the zeroth order gives

qj
mj

(u×B0) ·
∂f

(0)
j

∂u
= 0 . (5.29)

For the remainder of this section, it is assumed that the criterion specified by Equation 5.29

is met by the zeroth-order VDF of each species j. This is indeed true for bi-Maxwellian

VDF’s with relative drift parallel to the background magnetic field (see Section 5.3.3) as

well as for various other classes of functions.

Now, expanding Equation 5.3 to first order and applying Equation 5.29 gives

∂f
(1)
j

∂t
+ u ·

∂f
(1)
j

∂r
+

qj
mj

(u×B0) ·
∂f

(1)
j

∂u
= − qj

mj

(

E(1) + u×B(1)
)

·
∂f

(0)
j

∂u
. (5.30)

The right-hand side of this equation is the total time derivative of f
(1)
j . Therefore,

f
(1)
j (t, r,u) = − qj

mj

∫ t

−∞

dt′

(

E(1)[t′, r(t′)] + u(t′)×B(1)[t′, r(t′)]
)

·
∂f

(0)
j [u(t′)]

∂u(t′)
.

(5.31)

In the above equation, r and u denote the specific phase-space location of a given particle at

the specific time t. However, r(t′) and u(t′) are functions indicating the position and velocity

of the particle for all times t′ ≤ t and are of course subject to the boundary conditions

r(t′ = t) = r , and u(t′ = t) = u . (5.32)
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The importance of this distinction is exemplified by the following:

dr(t′)

dt′
= u(t′) , but

dr

dt′
= 0 . (5.33)

Essentially, then, the right-hand side of Equation 5.31 calculates the particle’s perturbed

location in phase space by integrating over all forces that ever acted on it.

Substituting the first-order expansions of E and B (i.e., Equations 5.15 and 5.16) into

Faraday’s law (i.e., Equation 5.6c) gives

B(1)(t, r) =
1

ω
k× E(1)(t,k) . (5.34)

Using this expression, Equation 5.31 can be rewritten as

f
(1)
j (t, r,u,k, ω) = − qj

mj

∫ t

−∞

dt′ exp(i bj [t
′, r(t′),k, ω])

[

∂f
(0)
j [u(t′)]

∂u(t′)
+

1

ω
k×

(

u(t′)×
∂f

(0)
j [u(t′)]

∂u(t′)

)]

· E(1)(k, ω) ,

(5.35)

where

bj [t
′, r(t′),k, ω] = k · [r(t′)− r(t)]− ω (t′ − t) . (5.36)

Of course, the difficulty with evaluating the integral in Equation 5.35 is that doing

so requires expressions for r(t′) and u(t′) for all values of t′ < t. In less formal terms,

this integration requires knowing the entire history of the particle’s path through phase

space, of which an exact calculation is impractical. However, the particle’s trajectory can

be approximated by assuming that, for t′ < t, only the zeroth-order forces acted on it. Since

the only such force results from the background magnetic field, B0, the particle’s motion
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was helical. In particular, its velocity (for t′ < t) was

ux(t
′) = u⊥ cos[Ωj (t

′ − t)− φ] ,

uy(t
′) = −u⊥ sin[Ωj (t

′ − t)− φ] , and

uz(t
′) = uz ,

(5.37)

where Ωj is the particle’s cyclotron frequency (see Equation 1.8),

u⊥ =
√

u2x + u2y , (5.38)

and

φ = arctan

(

uy
ux

)

. (5.39)

As with all helical motion, the perpendicular and parallel components of the particle’s ve-

locity (i.e., u⊥ and u‖ = uz, respectively) are constants (i.e., independent of t′). Integration

of Equation 5.37 with respect to t′ reveals the particle’s position (for t′ < t) to have been

rx(t
′) = rx +

u⊥
Ωj

(sin[Ωj (t
′ − t)− φ] + sinφ) ,

ry(t
′) = ry +

u⊥
Ωj

(cos[Ωj (t
′ − t)− φ] + cos φ) , and

rz(t
′) = rz + uz (t

′ − t) .

(5.40)

Applying Equations 5.12, 5.37, and 5.40 to Equations 5.35 and 5.36 gives

f
(1)
j (k, ω,u) = − qj

mj

∫ 0

−∞

dτ exp[i bj(τ,k, ω,u)]

[

∂f
(0)
j [u(τ)]

∂u(τ)
+

1

ω
k×

(

u(τ)×
∂f

(0)
j [u(τ)]

∂u(τ)

)]

·E(1)(k, ω) ,

(5.41)

and

bj(τ,k, ω,u) =
ky u⊥
Ωj

[cos(Ωj τ − φ)− cosφ] + (kz uz − ω) τ , (5.42)

where the variable of integration has been offset from t′ to

τ = t′ − t . (5.43)
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5.3.3 Assumption of Bi-Maxwellian VDF’s and Parallel Bulk Flow

Now, it is explicitly assumed that the zeroth-order VDF of each species is a bi-Maxwellian

with a bulk velocity that is parallel to the background magnetic field; i.e.,

f
(b0)
j (u) =

nj

(2π)3/2 w2
⊥w‖

exp

[

− u2x
2w2

⊥j

−
u2y

2w2
⊥j

−
(

uz − v‖j
)2

2w2
‖j

]

. (5.44)

Though the left-hand side of this equation indicates that f
(b0)
j is a function of u, it’s gyrotropy

means that it is actually only dependent on u⊥ and u‖ = uz. Therefore, Equation 5.44 can

equivalently be written as

f
(b0)
j (u⊥, uz) =

nj

(2π)3/2 w2
⊥w‖

exp

[

− u2⊥
2w2

⊥j

−
(

uz − v‖j
)2

2w2
‖j

]

. (5.45)

Nevertheless, the u-gradient of f
(b0)
j in dependent on other components of u:

∂f (b0)

∂u
=

1

w2
⊥j

[

−Rj u+ (Rj − 1)u⊥ +Rj v‖j ẑ
]

f
(b0)
j (u⊥, uz) , (5.46)

where Rj is the temperature anisotropy of species j (see Equation 1.4).

Substituting Equations 5.45 and 5.46 into Equation 5.41 gives

f
(b1)
j (k, ω,u) =

(

qj
mj w2

⊥j

f
(b0)
j (u⊥, uz)

∫ 0

−∞

dτ exp[i bj(τ,k, ω,u)]

[

Rj u(τ)− (Rj − 1)

(

1− kz uz
ω

)

u⊥(τ)

− (Rj − 1)

(

ky uz
ω

)

uy(τ) ẑ− v‖j
Rj kz
ω

u⊥(τ)

+ v‖j Rj

(

1 +
ky uy(τ)

ω

)

ẑ

]

)

· E(1)(k, ω) .

(5.47)
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Then, by substitution of Equation 5.47 into Equation 5.21,

Γ
(b1)
j (k, ω) =

(

qj
mj w2

⊥j

∫ ∞

−∞

duz

∫ ∞

0

du⊥ u⊥

∫ 2π

0

dφ

u f
(b0)
j (u⊥, uz)

∫ 0

−∞

dτ exp[i bj(τ,k, ω,u)]

[

Rj u(τ)− (Rj − 1)

(

1− kz uz
ω

)

u⊥(τ)

− (Rj − 1)

(

ky uz
ω

)

uy(τ) ẑ− v‖j
Rj kz
ω

u⊥(τ)

+ v‖j Rj

(

1 +
ky uy(τ)

ω

)

ẑ

]

)

· E(1)(k, ω) ,

(5.48)

where

ux(τ) = u⊥ cos(Ωj τ − φ) ,

uy(τ) = −u⊥ sin(Ωj τ − φ) ,

u⊥(τ) = ux(τ) x̂+ uy(τ) ŷ , and

u(τ) = u⊥(τ) + uz ẑ .

(5.49)

In Equation 5.48, the integration over u has been shifted to cylindrical coordinates to take

advantage of the cylindrical symmetry of much of the integrand.

Finally, Equation 5.48 can be used with Equation 5.22 to give an expression for the

dimensionless conductivity tensor:

S
(b)
j (k, ω) =

i q2j ω

ǫ0mj w
2
⊥j k

2 c2

∫ ∞

−∞

duz

∫ ∞

0

du⊥ u⊥ f
(b0)
j (u⊥, uz)

∫ 2π

0

dφu

∫ 0

−∞

dτ exp[i bj(τ,k, ω,u)]

[

Rj u(τ)− (Rj − 1)

(

1− kz uz
ω

)

u⊥(τ)

− (Rj − 1)

(

ky uz
ω

)

uy(τ) ẑ− v‖j
Rj kz
ω

u⊥(τ)

+ v‖j Rj

(

1 +
ky uy(τ)

ω

)

ẑ

]

.

(5.50)
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Though not intractable, evaluating the expression for S
(b)
j in Equation 5.50 is non-trivial.

In the most commonly-used approach, the integrand is expanded as an infinite series and

the integration is carried out term-by-term. Details on this method are presented by Gary

(1993) and by Baumjohann & Treumann (1997).

5.4 Ion Temperature Anisotropy Instabilities

The primary purpose of this study was to explore how instabilities driven by ion temperature

anisotropy affect the solar wind. For the theoretical portion of this analysis, then, it was

sufficient to consider, as in Section 5.3.3, a uniform, magnetized plasma in which each particle

species has a bi-Maxwellian VDF. Consequently, the dispersion relation given in Equation

5.27, along with the dimensionless conductivity tensor specified in Equation 5.50, could be

used to numerically compute γ(k).

One consequence of these assumptions is that the fields and VDF’s are all symmetric

about the background magnetic field, B0, which means that γ(k) is also symmetric about

B0. In Section 5.3, this property allows the coordinate system to be chosen such that kx = 0

without loss of generality. Thus, when computing γ(k), it is sufficient to consider γ(k, θ),

where k = |k| is the wavenumber and θ is the angle between k and B0 (see Equation 5.13).

The k and θ values corresponding to a local maximum growth rate value, γmax, are denoted

kmax and θmax. More formally,

γmax = γ(kmax, θmax) = max
k,θ

γ(t, θ) , and ωmax = ωr(kmax, θmax) , (5.51)

where the maximization is taken over all (k, θ)-values associated with the instability in

question (cf. Equations 5.7 and 5.8).



CHAPTER 5. LINEAR VLASOV THEORY 92

One-Dimensional Two-Dimensional

θmax = 0◦ 0◦ < θmax ≤ 90◦

ωmax > 0 ωmax = 0

Rj > 1 Cyclotron Mirror

Rj < 1 Parallel Firehose Oblique Firehose

Table 5.1: Summary of ion temperature anisotropy instabilities. The cyclotron and parallel

firehose instabilities are classified as parallel or one-dimensional since they always have

θmax = 0◦. The mirror and oblique firehose instabilities are referred to as oblique or two-

dimensional and always have ωmax = 0. For an ion species j, the cyclotron and mirror

instabilities can be triggered by sufficiently-large Rj > 1, while the parallel and oblique

firehose instabilities can develop for sufficiently small Rj < 1.

If only one ion species j is anisotropic, any associated instabilities are commonly re-

ferred to as being driven by that species. In this case, the function γ(k, θ) usually has at

most two local maxima. One of these two maxima only occurs at θ = 0◦, and the corre-

sponding instability is referred to as the parallel firehose instability if Rj < 1 or the cyclotron

instability if Rj > 1. These instabilities can be thought of as being one-dimensional or par-

allel since one need only search along the k-axis to locate the associated γmax-value. The

other maximum only occurs at θ 6= 0◦, and the corresponding instability is called the oblique

firehose instability if Rj < 1 or the mirror instability if Rj > 1. Since locating the γmax-

value corresponding to these two instabilities requires searching both in k and θ, they can be

classified as two-dimensional or oblique. However, it can be shown that the oblique firehose

and mirror instabilities always have ωr = 0, so (by symmetry) it is sufficient to only consider

θ ∈ (0◦, 90◦].

These four types of anisotropy-driven instabilities are summarized in Table 5.1.
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5.5 Calculating Instability Growth Rates

For this thesis project, Dr. S. Peter Gary of Los Alamos National Laboratory (LANL)

supplied two of his FORTRAN 77 programs for linear Vlasov calculations: T3 and EAN. Each

program models a plasma consisting of multiple species of charged particles, each of which

is assumed to have a bi-Maxwellian VDF, and numerically solves the dispersion relation (see

Equations 5.27 and 5.50) for the ω-value that corresponds to each user-provided k-value.

In this study, these programs were used to model solar wind plasma, which was assumed

to be electrically neutral and to consist of proton, α-particles, and electrons. Consequently,

each calculation made with either code had nine free plasma parameters, which are listed

in Table 5.2 along with their default values. All T3 and EAN calculations reported in this

dissertation were made using these default values unless stated otherwise.

Table 5.2 indicates that alternative values were not considered for three of the nine

plasma parameters: Re, T‖e / T‖p, and cA / c. Since this study only considered ion-driven

instabilities, the electrons, for simplicity, were always taken to be isotropic. Under this

assumption of Re = 1.00, both T3 and EAN were found to be quite insensitive to the electron

temperature, so T‖e / T‖p was kept at its default value. Likewise, cA / c was never changed

from its default value since all values ≪ 1.00 gave practically identical output.

Despite their similar design and function, T3 and EAN differ in two important ways

that necessitated that both of these programs be used in this study. First, T3 implicitly

assumes that k and B0 are parallel; in contrast, EAN is able to consider non-zero θ-values.

Consequently, T3 is a one-dimensional code in that it calculates

γ(k) = γ(k, θ = 0◦) , (5.52)
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Parameter
Default

Comment
Value

β‖p or β‖α — A value need only be specified for one of these.

Rp 1.00

Rα 1.00

Re 1.00 No alternative values were considered.

T‖α / T‖p 4.00

T‖e / T‖p 1.00 No alternative values were considered.

nα / np 0.05

cA / c 2.00× 10−4 No alternative values were considered.

∆v‖αp / cA 0.00 EAN cannot consider alternative values.

Table 5.2: List of the nine physical parameters that can be adjusted in the T3 and EAN

codes. In reality, these programs have other parameters (e.g., ne), but they are restricted

by the assumptions (used throughout this study) that the plasma has no net charge and

consists only of protons, α-particle, and electrons (see Section 5.5). There is no need to

specify both β‖p and β‖α since one can be calculated from the other using T‖α / T‖p and

nα / np (see Equation 1.9). The second column lists each parameter’s default value. Unless

stated otherwise, any calculation described in this dissertation was made using these values.
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while EAN is two-dimensional in that it calculates γ(k, θ) in general. Thus, EAN was needed

to calculate the growth rates of the two-dimensional (i.e., mirror and oblique firehose) in-

stabilities, while T3 was used to calculate the growth rates of the one-dimensional (i.e.,

cyclotron and parallel firehose) instabilities. Second, the EAN code implicitly assumes that

the α-proton differential flow, ∆vαp, is zero, but T3 has ∆v‖αp as a free parameter (though

∆v⊥αp is still fixed at zero). Essentially, while T3 has all of the nine free parameters listed

in Table 5.2, EAN has only eight since it has ∆v‖αp / cA effectively locked to its default value

of 0.00. Consequently, this study could only explore the effects of differential-flow on the

one-dimensional instabilities.

For this thesis project, T3 and EAN themselves were left largely unmodified and were used

to generate the dispersion plots shown in Chapters 6 and 7. However, in order to compare

theory and observation, this study primarily used these programs to evaluate (under various

plasma conditions) the instability growth rate, γmax, for each point in a fine grid over the

(β‖j , Rj)-plane. Since this grid contained no many points, the wrapper program SRCH was

written to automatically and repeatedly execute T3 and EAN. As detailed in Section 6.4, a

certain degree of care was needed in constructing SRCH because, due to the complexity of

the equations involved, both T3 and EAN are highly sensitive to the initial guesses passed to

them. Additionally, SRCH had to be able to handle various numerical problems as well as the

complications that arise from having multiple ions in the plasma (see Sections 6.2 and 7.4).



Chapter 6

Instability Constraints on Proton

Temperature Anisotropy

This thesis project used the theoretical techniques introduced in Chapter 5 and theWind/FC

dataset described in Chapter 4 to study the effects of ion temperature anisotropy instabilities

on solar wind plasma. This chapter focuses specifically on proton instabilities; α-particle

instabilities are discussed in Chapter 7.

Section 6.1 introduces the dispersion plot as a tool for stability analysis and presents

example plots for the four proton temperature anisotropy instabilities (see Table 5.1). Some

of the complications that can arise from having multiple ion species in the plasma are explored

in Section 6.2. The concept of an instability threshold is introduced in Section 6.3, and the

method used in this thesis project to calculate them is described in Section 6.4. Section

6.5 presents thresholds for the proton instabilities under the default plasma conditions and

compares these to the Wind/FC dataset. Alternative plasma conditions are explored in

Section 6.6.

96
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6.1 Dispersion Plots for Proton Temperature Aniso-

tropy Instabilities

One of the most common ways to assess the theoretical stability of a given plasma configura-

tion is a dispersion plot: i.e., a plot, based on the appropriate dispersion relation, of complex

angular frequency, ω = ωr + i γ, as a function of wavevector, k (see Chapter 5). From such

a plot, it is possible to discern which (if any) k-values are growing (i.e., have a growth rate,

γ, that is positive).

The logistics of plotting ω versus k can be problematic if for no other reason than k is a

three-dimensional vector. However, temperature anisotropy instabilities are usually studied

by assuming that each particle species’ VDF is a bi-Maxwellian (see Equation 1.5), which

is radially symmetric about the background magnetic field, B0. As discussed in Section 5.4,

this means that ω(k) shares this symmetry. Therefore, it is sufficient to plot ωr(k, θ) and

γ(k, θ), where k = |k| is the wavenumber and θ is the angle between k and B0.

Table 5.1 reveals that this dispersion analysis can be further simplified. Two of the

four instabilities listed therein, the cyclotron and parallel firehose instabilities, are one-

dimensional in that their fastest-growing mode, kmax, always occurs parallel to B0. Thus,

to calculate γmax and ωmax for these two instabilities, it is sufficient to plot

ωr(k) = ωr(k, θ = 0◦) and γ(k) = γ(k, θ = 0◦) . (6.1)

The remaining two instabilities, the mirror and oblique firehose, are two-dimensional and

have been shown to always have ωmax = 0. Therefore, for these two instabilities, only γ(k, θ)

need be plotted.

Figures 6.1, 6.2, 6.3, and 6.4 respectively show examples of dispersion plots for the
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Figure 6.1.— Plots of ωr (top) and γ (bottom) as functions of k for the proton-driven parallel

firehose instability for β‖p = 3.16. Each γ-curve is labeled with the Rp-value that was used

in T3 to generate it along with its corresponding ωr-curve. As the value of Rp < 1 decreases,

the value of γmax increases, which indicates that the plasma is more unstable.
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Figure 6.2.— Plots of ωr (top) and γ (bottom) as functions of k for the proton-driven

cyclotron instability for β‖p = 1.00. Each γ-curve is labeled with the Rp-value that was used

in T3 to generate it along with its corresponding ωr-curve. As the value of Rp > 1 increases,

the value of γmax also increases, which indicates that the plasma is more unstable.
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Figure 6.3.— Plots of γ as a function of k and θ for the proton-driven oblique firehose

instability for β‖p = 3.16. Values of γ < 10−3Ωp are not shown. Each plot was generated

with EAN and assuming a different Rp-value: 0.35 (upper-left), 0.30 (upper-right), 0.25 (lower-

left), and 0.20 (lower-right). As the value of Rp < 1 decreases, the values of γmax, kmax, and

θmax all increase.
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Figure 6.4.— Plots of γ as a function of k and θ for the proton-driven mirror instability for

β‖p = 1.00. Values of γ < 10−3Ωp are not shown. Each plot was generated with EAN and

assuming a different Rp-value: 2.00 (upper-left), 2.25 (upper-right), 2.50 (lower-left), and

2.75 (lower-right). As the value of Rp > 1 increases, the values of γmax and kmax increase,

but the value of θmax decreases.
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proton-driven parallel firehose, cyclotron, oblique firehose, and mirror instabilities. The first

two plots were generated using output from T3, while the latter two show output from EAN

(see Section 5.5). In all four plots (as well as in all similar plots in the remainder of this

dissertation), γ and (where applicable) ωr are normalized to the proton cyclotron frequency,

Ωp, (see Equation 1.8). Likewise, k is normalized to Ωp /w‖p (where w‖p is the proton parallel

thermal speed), and θ (where applicable) is given in units of degrees.

The plots in Figure 6.1 of ωr and γ as functions of k for the proton-driven parallel

firehose instability were generated using a fixed value of β‖p = 3.16 and five representative

Rp-values: 0.75, 0.70, 0.65, 0.60, and 0.55. For relatively large values of Rp < 1, γ(k) is

negative for all k, so the plasma is stable (at least to parallel-propagating modes). However,

as Rp decreases, γ(k) becomes positive for some k values, which means that the plasma is

unstable to those modes.

Figure 6.2 shows the corresponding plots for the proton-driven cyclotron instability.

The value of β‖p was kept fixed at 1.00, but five different values of Rp were considered:

1.50, 1.75, 2.00, 2.25, and 2.50. For sufficiently low values of Rp > 1, the value of γ(k)

remains negative for all values of k, and the plasma is stable to the proton-driven cyclotron

instability. However, as Rp increases, γ(k) becomes positive for a finite domain of k-values,

which indicates that the plasma is unstable to these modes. Additionally, as Rp grows, kmax

grows along with γmax.

Figure 6.3 shows plots of γ as a function of k and θ for the proton-driven oblique firehose

instability for β‖p = 3.16. Each plot was generated for a different Rp-value: 0.35, 0.30, 0.25,

and 0.20. As the value of Rp < 1 decreases, the value of γmax increases, which indicates that

the plasma is becoming more active. As γmax increases, so do both kmax and θmax.
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Finally, Figure 6.4 shows plots of γ(k, θ) for the proton-driven mirror instability for

β‖p = 1.00, each of which was generated for a different Rp-value: 2.00, 2.25, 2.50, and 2.75.

As the value of Rp > 1 increases, so does the value of γmax, which corresponds to the plasma

becoming progressively more unstable. While kmax increases with γmax, θmax decreases.

Since the plots for the proton-driven cyclotron and mirror instabilities (Figures 6.2 and

6.4, respectively) were all generated with β‖p = 1.00, they can be used to compare the relative

action of these two instabilities in limiting Rp > 1 at that particular β‖p-value. Even by visual

inspection, for a given Rp-value (e.g., Rp = 2.50), γmax for the cyclotron instability is greater

than that for the mirror instability. This is consistent with past theoretical results which

suggest that (under typical solar wind conditions) the proton-driven cyclotron instability

has a higher growth rate than the proton-driven mirror instability for β‖p . 6.0 (Gary et al.,

1976). However, recently-published observational results by Hellinger et al. (2006) and Bale

et al. (2009) as well as the results reported in this chapter suggest that the mirror instability

is more active than the cyclotron instability in limiting Rp > 1 in the solar wind at 1 AU.

One consistent feature of all of these plots is that the peaks in γ are all quite broad. This

means that an accurate value of γmax can usually be established with relative ease. However,

evaluating kmax and (where applicable) θmax is complicated by even relatively small rounding

or floating-point errors made over the course of the calculation.

6.2 Effects of Stationary, Isotropic α-Particles

For default calculations of proton instabilities, nα/np = 0.05, ∆v‖αp = 0, and Rα = 1 (see

Table 5.2). However, even this relatively-small, stationary, and isotropic population of α-
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particles can significantly impact the growth rates of the proton instabilities. Under certain

plasma conditions, these effects can even dramatically change the morphology of γ(k).

For example, Figure 6.5 shows plots for the proton parallel firehose instability of ωr(k)

and γ(k) for β‖p = 6.51 and five different values of Rp: 0.715, 0.720, 0.725, 0.730, and

0.735. For all of these Rp-values, γmax > 0, and (as expected) the value of γmax decreases

as that of Rp increases. However, for the higher Rp-values, the γ(k)-curves have a distinct

“notch.” This feature has been found to be absent in similar plots for lower values of

nα / np, so it has been interpreted as the isotropic α-particles stabilizing the plasma against

the anisotropic protons. Surprisingly, this notch is so narrow and deep that it causes γ(k) to

develop two, distinct peaks and therefore two local maxima. This complicates the calculation

of γmax (especially using automated algorithms) since a second peak in γ(k) can easily be

missed. Furthermore, as this figure shows, the relative heights of the peaks can change:

for Rp = 0.730, the high-k peak is higher, but, for Rp = 0.735, the low-k peak is higher.

Figure 6.6, which is introduced in Section 6.5, reveals that this double-peak effect causes a

discontinuity in the trends of γmax, kmax, and ωmax over the (β‖p, Rp)-plane for the proton

parallel firehose instability.

The occurrence of double peaks in γ is not limited to the proton parallel firehose insta-

bility. As can be seen in Figure 6.8, this effect has an even more dramatic impact on the

proton oblique firehose instability. Each plot in this figure clearly shows a “hook” in the re-

gion around (β‖p, Rp) ≈ (3.0, 0.6). This double-peak phenomenon also manifests itself, albeit

more subtly, with the proton mirror instability in the region around (β‖p, Rp) ≈ (10., 3.) (see

Figure 6.9). However, because the double-peak phenomenon in the mirror instability is even

more pronounced when α-particles are the driving species (i.e., when protons are isotropic

and α-particles are anisotropic), a more complete discussion is reserved for Section 7.4.
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Figure 6.5.— Plots of ωr (top) and γ (bottom) as functions of k for the proton-driven parallel

firehose instability for β‖p = 6.51. Each γ-curve is labeled with the Rp-value that was used

in T3 to generate it along with its corresponding ωr-curve. At the larger values of Rp, γ(k)

has a distinct “notch,” which results from the plasma’s small population of isotropic α-

particles (i.e., nα / np = 0.05 and ζ = 0.00) and causes discontinuities in kmax(β‖p, Rp) and

ωmax(β‖p, Rp) (see Figure 6.6).
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These occurrences of double peaks in γ(k) and γ(k, θ) for proton instabilities should

not be interpreted as the development of separate instabilities driven by the α-particles. For

each of the plots mentioned in this section, the α-particles were assumed to be isotropic and

stationary (relative to the protons), so they had no free energy associated with them to drive

such an instability. Rather, it would be more accurate to classify the double-peak effect a

perturbation of the proton instabilities caused by the presence of another ion species.

The various examples in this section (as well as those in Sections 7.2 and 7.4) suggest

some limitations to using γmax as a proxy for the overall activity of an instability. A po-

tentially more accurate measure of an instability’s growth rate might consist of an integral

of γ(k) (or some function thereof) over all k or over all k for which γ(k) > 0. Developing

the theoretical framework for such a metric is beyond the scope of this study. Additionally,

such a definition would present numerous computation problems since it would necessitate

accurate calculations of γ(k) over a wide domain of k-values rather than just the limited

domain near kmax.

6.3 Introduction to Instability Thresholds

The function γ(k) for an instability driven by the temperature anisotropy of an ion species j

is dependent on all of the plasma’s various bulk parameters (e.g., the density and temperature

of each species) but is particularly sensitive to two dimensionless parameters: β‖j and Rj .

Consequently, such an instability is commonly analyzed by calculating its γmax as a function

of β‖j and Rj. This partitions the (β‖j, Rj)-plane into two regions: one unstable, where

γmax(β‖j , Rj) > 0, and the other stable. Formally, the instability threshold is the curve

that separates these two regions and thereby defines the onset of the instability. However,
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for γmax > 0, the value of γ−1
max can be interpreted as roughly the amount of time that the

instability takes to significantly effect the plasma. Thus, because the high variability of solar

wind bulk parameters renders the use of the threshold criterion γmax = 0 to be impractical,

this study instead used

γmax = 10−2Ωp . (6.2)

Intuitively, the threshold of an anisotropy-driven instability should be a monotonic curve

in the (β‖j , Rj)-plane and is customarily analyzed as a threshold temperature anisotropy, Rj ,

that varies as a function of β‖j . Because Rj = 1 is inherently stable for all anisotropy-driven

instabilities, the instability threshold can never cross Rj = 1, but

lim
β‖j→∞

Rj(β‖j) = 1 . (6.3)

Various analytic approximations for Rj(β‖j) have been developed, but one that has recently

gained popularity (and is used in through the remainder of this dissertation) is

Rj(β‖j) = 1 +
a

(

β‖j − β0
)b
, (6.4)

where a, b, and β0 are fit parameters with values that are specific to the instability in question

(Hellinger et al., 2006).

However, as described in Sections 6.2 and 7.4, the double-peak effect can result in

irregularities (some physical but others merely computational) in the trends of γmax(β‖j , Rj)

for some instabilities in certain regions of the (β‖j , Rj)-plane. In the case of the proton

and α-particle mirror instabilities, the double-peak effect only seems to appear at relatively

high γmax-values: far away from from the threshold criterion specified by Equation 6.2. For

each of the proton firehose instabilities, though, this effect manifests itself very near to the

threshold (see Figures 6.6 and 6.8). Consequently, for these instabilities, the affected regions

were suppressed in fits of Equation 6.4 to the γmax-contour specified by Equation 6.2.



CHAPTER 6. PROTON ANISOTROPY INSTABILITIES 108

6.4 Calculating γmax Across the (β‖j, Rj)-Plane

In order to actually calculate an instability threshold (i.e, derive best-fit values for the

parameters a, b, and β0 from Equation 6.4), γmax must be calculated for various (β‖j , Rj)-

values while the values of all other plasma parameters remain fixed. To this end, the wrapper

program SRCH was written for the T3 and EAN programs. The SRCH code begins by prompting

the user to select a primary driving species j (i.e., protons or α-particles) and an instability

(i.e., parallel firehose or cyclotron for T3 or oblique-firehose or mirror for EAN). Then, the

program partitions a portion of the (β‖j , Rj)-plane into a fine grid. A starting point in the

grid and various settings for the linear analysis code are automatically generated by adapting

a table of results from prior, successful runs. The SRCH program then proceeds to repeatedly

call the appropriate linear analysis code (i.e., T3 or EAN) on the various grid points. It begins

with the starting point, and then continues on to other points by using the successful results

(if any) of its neighbors as a guide for executing the linear analysis code on that point.

For each point, SRCH attempts to identify values for γmax, kmax, and either ωmax (for T3) or

θmax (for EAN). In doing so, the code verifies that these values correspond to a valid local

maximum.

In addition to specifying j (i.e., the driving species) and the particular instability, the

user is left to assign values to the SRCH code’s four physical parameters, which are listed

in Table 6.1 along with their default values. However, the last parameter in Table 6.1,

∆v‖αp / cA, is only applicable if SRCH is used to run the T3 code since the EAN code implicitly

assumes that ∆v‖αp = 0.

Section 6.5 describes instability thresholds generated for the protons using the default

values in Table 6.1 and compares these theoretical limits on Rp with the dataset described in
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Parameter
Default Alternative

Value Values

nα / np 0.05 0.10, 0.20

T‖α / T‖p 4.00 2.00, 8.00

ζ 0.00 0.05, 0.25, 0.50

∆v‖αp / cA 0.00 −0.50, +0.50

Table 6.1: List of the four physical parameters that can be adjusted in the SRCH code. The

second column lists each parameter’s default value, and the third column lists the alternative

values that were considered in this study. Note that the last parameter, ∆v‖αp / cA, is only

relevant if SRCH is used to run the T3 linear analysis code; the EAN code always implicitly

assumes that the value of this parameter is zero.

Chapter 4. Section 6.6 explores how varying the four SRCH parameters affects the instability

thresholds.

6.5 Default Instability Thresholds

This section describes the investigation of proton temperature anisotropy instabilities for the

default parameter values listed in Table 6.1. The SRCH code was run for each of the four

instabilities listed in Table 5.1, and the corresponding results are shown graphically in Figure

6.6 for the parallel firehose instability, Figure 6.7 for the cyclotron instability, Figure 6.8 for

the oblique firehose instability, and Figure 6.9 for the mirror instability. All four figures

contain plots of γmax and kmax over the (β‖p, Rp)-plane. Figures 6.6 and 6.7 also contain

plots of ωmax but no plots of θmax; since the parallel firehose and cyclotron instabilities are

one-dimensional, θmax = 0◦ by definition. Conversely, Figures 6.8 and 6.9 include plots of

θmax but not ωmax since ωmax = 0 for these two-dimensional instabilities.
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Figure 6.6.— Plots of γmax (upper-left), ωmax (upper-right), and kmax (lower-left) as functions

of β‖p and Rp for the proton-driven parallel firehose instability. These plots were generated

by using the default value for each of the four SRCH parameters (see Table 6.1). No plot of

θmax was necessary since, being one-dimensional, the parallel firehose instability always has

θmax = 0◦ by definition.
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Figure 6.7.— Plots of γmax (upper-left), ωmax (upper-right), and kmax (lower-left) as functions

of β‖p and Rp for the proton-driven cyclotron instability. These plots were generated by using

the default value for each of the four SRCH parameters (see Table 6.1). No plot of θmax was

necessary since, being one-dimensional, the cyclotron instability always has θmax = 0◦ by

definition.
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Figure 6.8.— Plots of γmax (upper-left), kmax (lower-left), and θmax (lower-right) as functions

of β‖p and Rp for the proton-driven oblique-firehose instability. These plots were generated

by using the default value for each of the four SRCH parameters (see Table 6.1). No plot of

ωmax was necessary since, being two-dimensional, the oblique firehose instability always has

ωmax = 0.
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Figure 6.9.— Plots of γmax (upper-left), kmax (lower-left), and θmax (lower-right) as functions

of β‖p and Rp for the proton-driven mirror instability. These plots were generated by using

the default value for each of the four SRCH parameters (see Table 6.1). No plot of ωmax was

necessary since, being two-dimensional, the mirror instability always has ωmax = 0.
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Instability
Fit Parameters

a b β0
Parallel Firehose −1.144 0.774 −0.0619

Cyclotron +1.001 0.330 −0.0000

Oblique Firehose −1.134 0.910 +0.3617

Mirror +1.054 0.600 −0.0031

Table 6.2: Thresholds for one- and two-dimensional instabilities driven by proton tempera-

ture anisotropy. In deriving these thresholds, only the default values of the SRCH parameters

were used (see Table 6.1). These thresholds correspond to the instability growth rate contour

γmax = 10−2Ωp (see Equation 6.2) as fit to the model given in Equation 6.4.

As stated above (see Equation 6.2), an instability’s threshold was taken to be the contour

of γmax = 10−2Ωp in the (β‖p, Rp)-plane. For each of these four instabilities, this contour

was extracted from its corresponding plot of γmax(β‖p, Rp) and fit to the model specified by

Equation 6.4. The results of these fits are listed in Table 6.2.

Figure 6.10 shows how these theoretical instability thresholds compare to the observed

distribution of (β‖p, Rp)-values from the Wind/FC ion spectra. The distribution was gener-

ated by sorting the selected observations (see Chapter 4) into a 50×50 grid of logarithmically-

spaced bins in the (β‖p, Rp)-plane. The number of observations, n, in each bin was tallied,

and bins with n < 16 were discarded as statistically insignificant. The value of the probabil-

ity distribution p(β‖p, Rp) was estimated for each bin by dividing n by the bin’s widths, ∆β‖p

and ∆Rp, and by the total number of spectra, N . The theoretical thresholds specified in

Table 6.2 for the proton temperature anisotropy instabilities are plotted over this empirical

distribution.

Figure 6.10, like similar figures presented by Hellinger et al. (2006) and Bale et al. (2009),

provides strong evidence that instabilities driven by proton temperature anisotropy limit the
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Figure 6.10.— Probability distribution of (β‖p, Rp)-values from Wind/FC ion spectra (see

Chapter 4). Overlaid curves show the thresholds of the proton temperature anisotropy

instabilities given in Table 6.2, all of which were generated using the default values of the four

SRCH parameters (see Table 6.1). The green curves correspond to the one-dimensional (i.e.,

parallel firehose and cyclotron) instabilities, and the magenta curves to the two-dimensional

(i.e., oblique firehose and mirror) instabilities.
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range of Rp-values observed in the solar wind. As the value of β‖p increases, the observed

range of Rp-values narrows and the theoretical instability thresholds likewise converge toward

Rp = 1. However, both studies noted that the distribution of proton observations is more

consistent with the thresholds of the two-dimensional instabilities than with those of the

one-dimensional instabilities. In Figure 6.10, this effect is borne out especially for Rp > 1,

where the contours of p(β‖p, Rp) are more closely aligned with the mirror instability threshold

than with the cyclotron instability threshold. Curiously, this holds true even at β‖p-values

for which the cyclotron instability theoretically places a stricter limit on Rp > 1 than the

mirror instability. The cause of this apparent inconsistency remains a mystery. One possible

explanation is that the preceding analysis only considered the thermal cores of the ion VDF’s

and explicitly assumed them to be bi-Maxwellian. Numerous studies (e.g., Hellinger &

Trávńıček, 2011, and references therein) have shown that other non-Maxwellian features

in ion VDF’s (e.g., beams and halos) can significantly impact the overall stability of the

plasma. Alternatively, Bale et al. (2009) has speculated that two-dimensional instabilities

may be more efficient at scattering particles in phase space despite their potentially lower

growth rates because they are associated with non-propagating modes (i.e., ωmax = 0). Since

these waves, by definition, have zero phase speed, they resonate with the thermal core of

the VDF, which contains the majority of particles. In contrast, modes associated with

one-dimensional instabilities generally have large phase speeds, so they resonate with the

less-populated superthermal portion of the VDF. Hybrid expanding box simulations of the

proton parallel and oblique firehose instabilities by Matteini et al. (2006) and Matteini et al.

(2011) seem to support this interpretation; the former instability was found primarily to

deform the wings of the proton VDF while the latter had a much greater impact on the

plasma’s overall trajectory through the (β‖p, Rp)-plane.
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6.6 Dependence of Thresholds on Plasma Parameters

This thesis project also explored how changes to the values of the four SRCH parameters

listed in Table 6.1 affected the theoretical instability thresholds. These parameters were

varied one at a time, and the results are shown in Figure 6.11, which contains four versions

of the plot shown in Figure 6.10. Each one shows the probability distribution p(β‖p, Rp) and

the default instability thresholds from Figure 6.10. However, each plot also shows additional

instability thresholds (represented with dashed, dotted, and dash-dotted curves) where the

value of one of the SRCH parameters in Table 6.1 was changed from its default value. The

upper-left plot of Figure 6.10 considers variations in the value of nα / np, the upper-right plot

T‖α / T‖p, the lower-left plot ζ , and the lower-right plot ∆v‖αp / cA. The parameterizations

(based on Equation 6.4) of these instability thresholds are listed in Table 6.3 for the one-

dimensional instabilities and Table 6.4 for their two-dimensional counterparts. However, as

noted in Section 5.5, variations in ∆v‖αp / cA could only be considered for the one-dimensional

instabilities since ∆v‖αp / cA is essentially locked to zero (its default value) in the EAN code.

The effects that varying the values of the four SRCH parameters had on the instability

thresholds were non-trivial; some thresholds were quite insensitive to the value of one param-

eter but much more affected by the value of another. However, a visual inspection of Figure

6.11 reveals that the threshold of none of the instabilities was particularly dependent on any

of these four parameters. The parameters in Table 6.1 all relate the bulk properties of the

α-particles to those of the protons, so presumably the α-particles have relatively little overall

impact on the instability thresholds of the far more abundant protons. Indeed, Figure 6.11

reveals virtually no variation in the two-dimensional instability thresholds. Changes to the

SRCH parameters had a greater effect on the one-dimensional instability thresholds, which
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Figure 6.11.— Plots of p(β‖p, Rp) from Wind/FC ion spectra and the thresholds given in

Tables 6.3 and 6.4 (green for one-dimensional, magenta for two-dimensional). The solid

curves were generated with default values for all four SRCH parameters, but, for the others,

one parameter had an alternative value. In the upper-left, nα/np = 0.10 (dashed) and 0.20

(dotted). In the upper-right, Tα / Tp = 2.00 (dashed) and 8.00 (dotted). In the lower-left,

ζ = 0.05 (dashed), 0.25 (dotted), and 0.50 (dash-dotted). In the lower-right, ∆v‖αp / cA =

−0.50 (dashed) and +0.50 (dotted).
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seem to have been most sensitive to the values of nα / np and ∆v‖αp / cA. Increasing the value

of nα / np caused the one-dimensional instability thresholds to move farther from Rp = 1 for

all β‖p-values; presumably, the presence of a greater abundance of isotropic α-particles has a

stabilizing effect on the plasma. While the one-dimensional instability thresholds were also

significantly effected by variations in ∆v‖αp / cA, the nature of these changes cannot be so

easily characterized or intuitively explained.



Chapter 7

Instability Constraints on α-Particle

Temperature Anisotropy

The structure of this chapter is very similar to that of Chapter 6. While that chapter focuses

on proton temperature anisotropy instabilities, this chapter discusses those associated with

α-particles.

Section 7.1 introduces the concept of α-particle temperature anisotropy instabilities, and

Sections 7.2 and 7.3 explore how anisotropy correlation and differential flow, respectively,

affect them. Some of the complications that arise from the presence of protons in the plasma

are discussed in Section 7.4. Section 7.5 presents thresholds for the α-particle instabilities for

the default plasma conditions, while Section 7.6 considers other values for these parameters.
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7.1 Overview of α-Particle Instabilities

Given the strong evidence in Chapter 6 that instabilities limit the observed distribution ofRp-

values in the solar wind, do similar limits exist on Rα-values? The excitation of instabilities

driven by α-particle temperature anisotropy has received relatively little attention in the

literature. Some studies, such as those of Gary & Winske (1993) and Liu et al. (2007), have

considered how anisotropic α-particles affect plasma already unstable due to the proton-

driven cyclotron instability, which is similar to the discussion of the ζ-parameter in Chapter 6.

A more extensive theoretical and observational analysis of the α-particle cyclotron instability

was carried out by Gary et al. (2003). The simulations of Hellinger et al. (2005) and Lu et al.

(2006) modeled a plasma with anisotropic α-particles and incorporated the propagation of

both parallel and oblique electromagnetic fluctuations, but their analyses were limited to

only a few sets of initial conditions.

In some circles, the very notion of α-particle temperature anisotropy instabilities has

been dismissed as unlikely. Even though the α-particles are typically hotter than the protons

(see Figure 4.7), their low relative abundance means that they generate a much smaller frac-

tion of the solar wind’s particle pressure. From the standpoint of a single-fluid (e.g., MHD)

model of the solar wind, this means that the α-particles would be incapable of destabilizing

the plasma as a whole. However, in a collisionless regime, protons and α-particles resonate

with different modes. Consequently, a sufficiently large departure of Rα from unity (even in

the presence of isotropic protons) could cause some waves to grow and thereby trigger an

instability.

The separate resonance conditions for protons and α-particles are exemplified in Figure

7.1, which shows plots for the cyclotron instability of ωr(k) and γ(k) for different values of
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Figure 7.1.— Plots of ωr (top) and γ (bottom) as functions of k for the cyclotron instability

for β‖p + β‖α = 1.00 and Rp = Rα = 3.16. Each γ-curve is labeled with the value of nα / np

that was used in T3 to generate it along with its corresponding ωr-curve. The γ-curves for

which the proton and α-particle number densities are comparable clearly show two peaks of

similar heights, which indicates an instability driven by both particle species.
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nα / np. The values of Rp and Rα were kept equal and fixed to 3.16 and the value of the

sum β‖p + β‖α was fixed at 1.00. Since both protons and α-particles are anisotropic, both

contribute to destabilizing the plasma, but the relative influence of the two species depends

on their relative abundance. For intermediate values of nα / np, γ(k) has two distinct peaks

that are of comparable height: one at low-k corresponding to the α-particles and one at high-

k for the protons. At small values of nα / np, the peak at high-k is significantly higher than

that at low-k, which suggests that the protons are primarily driving the instability. However,

as the value of nα / np increases, the low-k peak begins to dominate, which indicates that

the α-particles become the driving species.

Separate proton and α-particle resonances also occur with two-dimensional instabilities.

Figure 7.2 contains four plots of γ(k, θ) for the oblique firehose instability. While β‖α =

3.00 and Rα = 0.866 for all plots, each was generated using a different Rp-value: 0.914,

0.911, 0.907, and 0.904. For the largest of the Rp-values (i.e., when the protons are most

isotropic), the corresponding plot of γ(k, θ) contains only one peak, which is the result of

the α-particle temperature anisotropy. As Rp decreases (i.e., as the protons becomes more

anisotropic), though, a second, higher-k peak emerges, which indicates the action of the

anisotropic protons. Decreasing the value of Rp causes the growth of not only the proton peak

but the α-particle peak as well: even before the distinct proton peak emerges, making the

protons more anisotropic causes γmax to increase. Eventually, for sufficiently small Rp < 1,

the proton peak completely overtakes the α-particle peak.
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Figure 7.2.— Plots of γ as a function of k and θ for the oblique firehose instability for

β‖α = 3.00 and Rα = 0.866. Values of γ < 10−3Ωp are not shown. Each plot was generated

with EAN and assuming a different Rp-value: 0.914 (upper-left), 0.911 (upper-right), 0.907

(lower-left), and 0.904 (lower-right). The corresponding ζ-values are respectively 0.625,

0.650, 0.675, and 0.700. However, for progressively smaller Rp-values, the proton peak

emerges and eventually overtakes the α-particle peak.
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7.2 Effects of Anisotropy Correlation

While Figures 7.1 and 7.2 indicate that (theoretically) the temperature anisotropy of α-

particles alone can cause plasma to become unstable, they also show some of the complica-

tions that arise when multiple ion species are anisotropic. When the proton and α-particle

peaks in γ have similar heights (see, e.g., Figures 7.1 and 7.2), the two species contribute

roughly equally to the instability, which therefore cannot be classified as being primarily

driven by either ion species.

A full analysis of plasma with anisotropic protons and α-particles was beyond the scope

of this thesis project, but some treatment was still necessary. Figure 4.10 shows a correlation

between Rp and Rα, which suggests that having only one ion species be anisotropic is unusual.

However, so long as one ion species is significantly more anisotropic than the other (i.e.,

0 ≤ ζ ≪ 1; see Equation 4.4), the former can be safely identified as the primary driver of

any ensuing instability.

The effects that varying the value of ζ has on a given instability are not always intuitive.

A larger ζ-value corresponds to the plasma having more free energy and therefore being less

stable. For example, in Figure 7.2, increasing the value of ζ (even while ζ is still too small for

a distinct proton peak to be present) causes the value of γmax to likewise increase. However,

γmax is not a perfect proxy for overall plasma stability. Figure 7.3 shows plots for the α-

particle cyclotron instability of ωr(k) and γ(k) for six different ζ-values: 0.00, 0.05, 0.10,

0.15, 0.20, and 0.25. The values of β‖α and Rα were respectively fixed to 1.00 and 3.16. This

figure clearly shows that, as ζ increases, γmax slightly decreases. If γmax is interpreted as

quantifying the degree to which the plasma is unstable, then this would mean that making

the protons more anisotropic actually stabilizes the plasma. However, such a conclusion
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Figure 7.3.— Plots of ωr (top) and γ (bottom) as functions of k for the α-driven cyclotron

instability for β‖α = 1.00 and Rα = 3.16. Each ωr-curve is labeled with the ζ-value that was

used in T3 to generate it along with its corresponding γ-curve. As the value of ζ increases,

the domain of k-values for which γ(k) > 0 becomes substantially wider, but the value of

γmax paradoxically (albeit slightly) decreases.
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would be precipitous as it fails to consider all of the changes that occur to the γ-curve as the

value of ζ is increased. Specifically, the decrease in γmax is quite minor relative to the increase

in the domain of k-values for which γ(k) is positive. Thus, even though the maximum growth

rate slightly decreases, substantially more waves are growing. This counterintuitive example

underscores the limitations of γmax that were discussed in Section 6.2.

7.3 Effects of α-Proton Differential Flow

As stated in Chapter 5, the T3 code has the added feature of being able to consider the

situation where the protons and α-particles are streaming relative to each other along the

magnetic field (i.e., the case of ∆v‖αp 6= 0). Differential flow between ion species, if sufficiently

large, has been established as a driver of its own kinetic microinstabilities (see Schwartz,

1980, and references therein). However, the value of ∆v‖αp can also impact the growth rate

of instabilities driven by ion temperature anisotropies. For the values of ∆v‖αp typically

observed in the solar wind, this effect is relatively minor for proton temperature anisotropy

instabilities (see the lower-right plot of Figure 6.11) but is somewhat more pronounced for

some of their α-particle counterparts.

As an example, Figure 7.4 shows how the α-particle cyclotron instability is affected by

α-proton differential flow. The plots of ωr(k) and γ(k) in this figure were generated using

various values (both positive and negative) for ∆v‖αp / cA while keeping fixed β‖α = 1.00

and Rα = 3.16. While the ωr-curves indicate a relatively strong dependence on the value of

∆v‖αp / cA, all of the γ-curves appear quite similar. Indeed, the greatest value of γmax shown

in Figure 7.4 is only 2.1 times the least. Furthermore, while Figure 7.4 considers values of

∣

∣∆v‖αp
∣

∣ / cA up to 1.5., Figure 4.8 (bottom) indicates that values this high rarely occur in



CHAPTER 7. α-PARTICLE ANISOTROPY INSTABILITIES 130

Figure 7.4.— Plots of ωr (top) and γ (bottom) as functions of k for the α-driven cyclotron

instability for β‖α = 1.00 and Rα = 3.16. Each ωr-curve is labeled with the value of ∆v‖αp / cA

that was used in T3 to generate it along with its corresponding γ-curve.
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Wind/FC data.

7.4 Effects of Stationary, Isotropic Protons

Section 6.2 contains various examples of how stationary, isotropic α-particles can affect

proton temperature anisotropy instabilities. Unfortunately, stationary, isotropic protons can

have similarly pathological effects on the α-particle instabilities.

Much of Section 6.2 is dedicated to examples of double peaks in γ(k) and γ(k, θ), which

occasionally result for proton instabilities due to the presence of isotropic α-particles. This

double-peak phenomenon causes irregularities for the proton-driven parallel firehose, oblique

firehose, and mirror instabilities (see Figures 6.6, 6.8, and 6.9, respectively).

Curiously, however, there is no clear evidence of the double-peak effect for the α-particle

firehose instabilities: Figures 7.6 and 7.8 lack the “hook” structure that can be seen in Figures

6.6 and 6.8. Potentially, the double-peak effect does not occur for the α-particle firehose

instabilities (at least for the plasma conditions considered in this study). Alternatively, its

signature in the α-particle firehose instabilities may (for some reason) be much weaker than

in the corresponding proton instabilities, or it may occur at (β‖α, Rα)-values outside of the

domain considered in this study.

Nevertheless, the double-peak effect clearly manifests itself for the α-particle mirror

instability. Figure 7.5 shows plots for this instability of γ(k, θ). While all of the plots

assumed β‖α = 10., each was generated using a different Rα-value: 2.4, 2.5, 2.6, and 2.7.

Together, these plots show two distinct peaks. For Rα = 2.5, the lower-k peak is taller;

however, for Rα = 2.6, the higher-k peak is taller. This switching in the relative size of
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Figure 7.5.— Plots of γ as a function of k and θ for the α-driven mirror instability. Values

of γ < 10−3Ωp are not shown. For each plot, the protons were assumed to be isotropic and

to have no bulk flow relative to the α-particles. While β‖α = 10.0 was used for all four

plots, each was generated using a different Rα-value: 2.4 (upper-left), 2.5 (upper-right), 2.6

(lower-left), and 2.7 (lower-right).
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the two peaks results in the α-particle mirror instability having strong discontinuities in the

(β‖α, Rα)-plane, which are clearly apparent in Figure 7.9 (especially in the plot of kmax). A

similar but less-dramatic manifestation of this effect occurs with the proton mirror instability

(see Figure 6.9).

7.5 Default Instability Thresholds

This section describes the analysis of the four α-particle temperature anisotropy instabilities

using the default values of the four SRCH parameters listed in Table 6.1. The SRCH code was

run in the manner described in Section 6.4 for each of the instabilities listed in Table 5.1. The

results of this analysis are shown graphically in Figure 7.6 for the parallel firehose instability,

Figure 7.7 for the cyclotron instability, Figure 7.8 for the oblique firehose instability, and

Figure 7.9 for the mirror instability. Plots of γmax(β‖α, Rα) and kmax(β‖α, Rα) appear in each

of these figures. However, as explained in Section 6.5, plots of ωmax(β‖α, Rα) only appear in

the figures for the one-dimensional instabilities, and plots of θmax(β‖α, Rα) only appear in

the figures for the two-dimensional instabilities.

Using the method described in Section 6.5, the threshold (as defined by Equation 6.2)

of each α-particle instability was extracted and fit to the model given in Equation 6.4. These

parameterizations of the α-particle instability thresholds are given in Table 7.1 along with

those from Table 6.2 for the proton instabilities for reference.

The left-hand plot of Figure 7.10 is simply a reproduction of Figure 6.10, which shows

the default proton instability thresholds plotted over the observed distribution of (β‖p, Rp)-

values from the Wind/FC ion spectra. As described in Section 6.5, the alignment of the
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Figure 7.6.— Plots of γmax (upper-left), ωmax (upper-right), and kmax (lower-left) as functions

of β‖α and Rα for the α-driven parallel firehose instability. These plots were generated by

using the default value for each of the four SRCH parameters (see Table 6.1). No plot of

θmax was necessary since, being one-dimensional, the parallel firehose instability always has

θmax = 0◦ by definition.
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Figure 7.7.— Plots of γmax (upper-left), ωmax (upper-right), and kmax (lower-left) as functions

of β‖α and Rα for the α-driven cyclotron instability. These plots were generated by using

the default value for each of the four SRCH parameters (see Table 6.1). No plot of θmax was

necessary since, being one-dimensional, the cyclotron instability always has θmax = 0◦ by

definition.
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Figure 7.8.— Plots of γmax (upper-left), kmax (lower-left), and θmax (lower-right) as functions

of β‖α and Rα for the α-driven oblique firehose instability. These plots were generated by

using the default value for each of the four SRCH parameters (see Table 6.1). No plot of

ωmax was necessary since, being two-dimensional, the oblique firehose instability always has

ωmax = 0.
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Figure 7.9.— Plots of γmax (upper-left), kmax (lower-left), and θmax (lower-right) as functions

of β‖α and Rα for the α-driven mirror instability. These plots were generated by using the

default value for each of the four SRCH parameters (see Table 6.1). No plot of ωmax was

necessary since, being two-dimensional, the mirror instability always has ωmax = 0.
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Instability
Fit Parameters

a b β0

D
ri
v
in
g
S
p
ec
ie
s

j
=
p

Parallel Firehose −1.144 0.774 −0.0619

Cyclotron +1.001 0.330 −0.0000

Oblique Firehose −1.134 0.910 +0.3617

Mirror +1.054 0.600 −0.0031

j
=
α

Parallel Firehose −0.624 0.505 +0.2289

Cyclotron +0.480 0.443 −0.0000

Oblique Firehose −1.106 0.839 +0.2988

Mirror +1.515 0.467 +0.0069

Table 7.1: Thresholds for one- and two-dimensional instabilities driven by either proton

(j = p) or α-particle (j = α) temperature anisotropy. In deriving these thresholds, only the

default values of the SRCH physical parameters were used (see Table 6.1). These thresholds

correspond to the instability growth rate contour γmax = 10−2Ωp (see Equation 6.2) as fit to

the model given in Equation 6.4. The proton instability thresholds listed in this table are

identical to those in Table 6.2 and are reproduced here for reference.
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theoretical instability thresholds with the distribution of observations in this and similar

plots generated by Hellinger et al. (2006) and Bale et al. (2009) has been interpreted as

strong evidence that proton temperature anisotropy instabilities limit the range of Rp-values

observed in the solar wind.

The right-hand plot of Figure 7.10 shows the α-particle counterpart of the left-hand

plot: i.e., the default α-particle instability thresholds plotted over the observed distribution

of (β‖α, Rα)-values. Side-by-side, the two plots of Figure 7.10 are remarkably similar. In each,

the observed range of Rj-values narrows as the value of β‖j increases, which is consistent

with the actions of anisotropy-driven instabilities. Additionally, each plot shows a general

agreement between the distribution of observations and the theoretical limits set by the

instability thresholds (especially those for the two-dimensional instabilities). This suggests

that the observed distribution of Rα-values is limited by α-particle temperature anisotropy

instabilities just as that of Rp-values is limited by the corresponding proton instabilities.

However, Figure 7.10 shows that the agreement between the theoretical limits on tem-

perature anisotropy and the observations thereof is significantly weaker for the α-particles

than it is for the protons. This discrepancy may, in large part, stem from the low relative

abundance of α-particles. Observationally, the signal from α-particles is significantly weaker

than that of the protons, so the uncertainties in the parameter values of the former are typ-

ically much larger than those of the latter. Theoretically, as discussed in the next section,

the low relative abundance of α-particles seems to make their instability thresholds generally

more sensitive to the values of the parameters listed in Table 6.1. In fact, it is shown that a

larger ζ-value produces α-particle instability thresholds that are considerably better-aligned

with the observed distribution of (β‖α, Rα)-values.
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7.6 Dependence of Thresholds on Plasma Parameters

As with the proton instabilities (see Section 6.6), this study also used SRCH to explore how the

alternative parameter values listed in Table 6.1 affected the α-particle instability thresholds.

The results of this analysis are quantitatively summarized in Tables 7.2 and 7.3, which

respectively list parameterizations (based on Equation 6.4) of the one- and two-dimensional

α-particle instability thresholds. The first row of each table gives the thresholds for the

default parameters values, which are also listed in Table 7.1. For the thresholds in each of

the remaining rows, all but one of the parameters was set to its default value. However, while

variations in the value of ∆v‖αp / cA could be considered for the one-dimensional instabilities

(see Table 7.2), this was not possible for their two-dimensional counterparts (see Table 7.3)

because EAN does not allow non-zero differential flow (see Section 5.5).

The instability thresholds parameterized in Tables 7.2 and 7.3 are shown in Figure

7.11 plotted over copies of the probability distribution p(β‖α, Rα) from the right-hand plot

of Figure 7.10. As usual, the thresholds of the one-dimensional instabilities are shown in

green while those of the two-dimensional instabilities are shown in magenta. Each of the

four plots in Figure 7.11 shows the default α-particle instability thresholds as solid curves.

Additionally, the upper-left plot shows the thresholds for the alternative values of nα / np,

the upper-right plot those for the alternative values of T‖α / T‖p, the lower-left plot those for

the alternative values of ζ , and the lower-right plot those for alternative values of ∆v‖αp / cA

(for the one-dimensional thresholds only due to the limitation of EAN).

A comparison of Figure 7.11 to Figure 6.11 (i.e., its proton counterpart) shows that,

overall, the α-particle instability thresholds are more sensitive than their proton counterparts

to the values of the parameters from Table 6.1. Most likely, this sensitivity stems from the
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Figure 7.11.— Plots of p(β‖α, Rα) from Wind/FC ion spectra and the thresholds given in

Tables 7.2 and 7.3 (green for one-dimensional, magenta for two-dimensional). The solid

curves were generated with default values for all four SRCH parameters, but, for the others,

one parameter had an alternative value. In the upper-left, nα/np = 0.10 (dashed) and 0.20

(dotted). In the upper-right, Tα / Tp = 2.00 (dashed) and 8.00 (dotted). In the lower-left,

ζ = 0.05 (dashed), 0.25 (dotted), and 0.50 (dash-dotted). In the lower-right, ∆v‖αp / cA =

−0.50 (dashed) and +0.50 (dotted).
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low relative abundance of α-particles. For example, for fixed values of (β‖p, Rp), a slight

change in T‖α / T‖p has relatively little impact on the total thermal energy density of the

plasma; however, for fixed values of (β‖α, Rα), such a change would have a more significant

effect.

Figure 7.11 shows that not all of the α-particle instabilities are affected the same way by

variations in the value of a given parameter. As was the case for protons (see Figure 6.11),

the one-dimensional α-particle instabilities are generally more sensitive to the parameter

values than their two-dimensional counterparts. The two-dimensional α-particle instability

thresholds in Figure 7.11, for the most part, show relatively little dependence on the SRCH

parameters, but ζ (lower-left plot) provides a notable exception. Even a small increase

in the value of ζ significantly pulls the oblique firehose and mirror instability thresholds

closer to isotropy (i.e., toward Rα = 1). In fact, a value of ζ = 0.25 or 0.50 produces

thresholds for the two-dimensional instabilities that are in significantly better alignment

with the observations than those generated using the default value ζ = 0.00. Given the

sensitivity of these instabilities to the value of ζ , this improved agreement between theory

and observations is not surprising: Figure 4.10 shows that the observations themselves are

more consistent with a value of ζ = 0.25 than with one of ζ = 0.00.



Chapter 8

Proton Temperature in Unstable

Plasma

This chapter extends the analysis of Chapter 6 to investigate more closely the connection

between proton temperature anisotropy instabilities and heat flow in the solar wind. Section

8.1 motivates the connection between proton temperature anisotropy instabilities and ani-

sotropic heating and cooling processes. Variations in proton temperature (both the scalar

temperature and the temperature components) over the (β‖p, Rp)-plane are shown and dis-

cussed in Section 8.2. Section 8.3 presents the results of a novel analysis technique which

explores trends in observed proton temperature versus instability growth rate (as calculated

from linear Vlasov theory).

146
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8.1 Origins of Ion Temperature Anisotropy

Figure 6.10 shows the distribution of Wind/FC ion spectra extending up to and slightly

beyond the thresholds of proton temperature anisotropy instabilities. In order for the protons

to remain in this marginally unstable state (at least long enough to be observed), ongoing

processes must be acting in the solar wind to counteract the isotropizing effects of the

instabilities. The most obvious candidates are anisotropic heating and cooling processes (see

Section 1.2.2) since they directly affect the temperature components.

Anisotropy-driven instabilities themselves are not understood to appreciably heat or

cool the plasma (see, e.g., Southwood & Kivelson, 1993). Since the free energy that drives

these instabilities is associated with Rp 6= 1, their ultimate effect should be to bring T⊥p and

T‖p closer to equality while conserving Tp. Thus, comparing the temperatures of stable and

unstable plasma gauges the relative roles of anisotropic heating and cooling in the plasma

prior to the instability’s onset. If Tp is elevated in marginally unstable plasma, anisotropic

heating was more active than cooling; if Tp is depressed, anisotropic cooling was more active.

8.2 Temperature Trends over the (β‖p, Rp)-Plane

One assessment of the connection between proton temperature and the actions of proton

temperature anisotropy instabilities is carried out by examining variations in Tp, T⊥p, and

T‖p across the (β‖p, Rp)-plane. A plot of Tp(β‖p, Rp) is shown in Figure 8.1, while Figure 8.2

shows plots of T⊥p(β‖p, Rp) (left) and T‖p(β‖p, Rp) (right). Each of these plots was gener-

ated by dividing the selected Wind/FC ion spectra (see Chapter 4) into a 50 × 50 grid of

logarithmically-spaced bins in the (β‖p, Rp)-plane. The number of observations, n, in each
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Figure 8.1.— Plot of proton scalar temperature, Tp, over the (β‖p, Rp)-plane. The overlaid

curves indicate the theoretical instability thresholds listed in Table 6.2; the thresholds of

the one-dimensional (i.e., parallel firehose and cyclotron) instabilities are shown in green,

and those of the two-dimensional (i.e., oblique firehose and mirror) instabilities are shown in

magenta. The regions where the median Tp is highest occur near or beyond these thresholds.
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bin was calculated, and bins with n < 16 were discarded. Each plot shows, for each of its

remaining bins, the median value of the parameter listed in the plot’s title. The grid in each

plot was interpolated into contours, and the default proton instability thresholds specified

in Table 6.2 were overlaid (with those for the one-dimensional instabilities shown in green

and those for the two-dimensional instabilities shown in magenta).

The plot of Tp(β‖p, Rp) in Figure 8.1 shows a tendency for Tp to grow with β‖p, which

is expected since β‖p ∝ T‖p (see Equation 1.9). However, even beyond this overall trend,

the highest Tp-values occur in two regions: one near the mirror instability threshold and the

other near the firehose instability thresholds. Even at high-β‖p, these regions have median

Tp-values that are significantly higher than those in the region between them (i.e., near

Rp = 1), which is consistent with an earlier suggestion of this effect that was identified

by Liu et al. (2006). Additionally, the high-Tp region at Rp > 1 is more aligned with the

mirror instability threshold than with the cyclotron instability threshold, which provides

further evidence that (at 1 AU) the mirror instability is more active in limiting Rp > 1.

Unfortunately, the similarity of the thresholds of the two firehose instabilities allows no such

comparison between them.

The plots of T⊥p(β‖p, Rp) and T‖p(β‖p, Rp) in Figure 8.2, when considered along with the

plot of Tp(β‖p, Rp) in Figure 8.1, indicate that the enhanced Tp near the mirror instability

threshold is almost entirely due to increased T⊥p and that the enhanced Tp near the firehose

instability thresholds is almost entirely due to increased T‖p. Conceivably, deviations in Rp

from unity could stem from a decrease in one of the two temperature components. However,

the plots in Figure 8.2 show no strong evidence that T⊥p is depressed near the firehose

instability thresholds or that T‖p is depressed near the mirror instability threshold.
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Figure 8.3.— Plots of mean Tp (black squares), T⊥p (red diamonds), and T‖p (blue triangles)

versus Rp for three ranges of β‖p: (a) 0.04 to 0.07, (b) 0.4 to 0.7, and (c) 4.0 to 7.0. For T⊥p

and T‖p, error bars indicate the uncertainties in the mean values. The solid black line in each

plot indicates the mean Tp value over the range of Rp-values that it spans. The solid red

and blue curves show the projected values of T⊥p and T‖p if Tp equaled this mean value for

all Rp. Shading indicates enhancements in the observed T⊥p- and T‖p-values beyond these

extrapolations.
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For a more detailed perspective on these temperature enhancements, Figure 8.3 shows

the mean values of Tp, T⊥p, and T‖p as functions of Rp for the observations in each of three

representative ranges of β‖p: (a) 0.04 to 0.07, (b) 0.4 to 0.7, and (c) 4.0 to 7.0. Curiously,

each plot has a domain of Rp-values for which Tp is approximately constant; a black line

indicates each of these domains and the mean Tp-value over it. The colored curves show the

expected trends in T⊥p and T‖p if Tp had the value indicated by the black line for all Rp.

The shaded regions indicate the departures of the data from this simple model.

All three plots in Figure 8.3 show a strong enhancement in Tp and T⊥p for Rp & 1,

which is consistent with enhancements seen near the mirror instability threshold in Figures

8.1 and 8.2. A similar enhancement in T‖p for Rp . 1 is only apparent in Figure 8.3(c)

because the firehose instabilities are only active for β‖p & 1. Curiously, though, Figure 8.3

also suggests that, whenever one temperature component is enhanced beyond the expected

trend for constant-Tp, the other is as well. Interpreting this effect is complicated by Figure

8.2, which suggests that only one temperature component is appreciably enhanced near

either threshold. Potentially, then, the simultaneous enhancement of both temperature

components in Figure 8.3 results simply from the breakdown of the constant-Tp model, which

itself lacks any theoretical or even intuitive justification. However, the concurrent excess in

both temperature components could possibly be a result of the instabilities themselves. The

ultimate effect of a proton temperature anisotropy instability is to drive Rp closer to unity

by redistributing thermal energy so that T⊥p and T‖p become closer in value. Therefore,

the simultaneous enhancement of both temperature components in Figure 8.3 could be an

indication of the initial stages of this process.
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8.3 Temperature TrendsWith Instability Growth Rate

This section focuses on more quantitatively comparing the relative effectiveness of the mirror

and cyclotron instabilities at limiting Rp > 1. While in principle a similar comparison could

be made for Rp < 1 of the parallel and oblique firehose instabilities, their theoretical trends

in growth rate (see Figures 6.6 and 6.8) are too similar for the proceeding method.

Figure 6.10 shows the probability distribution of (β‖p, Rp)-values from the selected

Wind/FC ion spectra (see Chapter 4) with the default thresholds for the proton temperature

anisotropy instabilities (see Table 6.2) overlaid. Like similar plots by Hellinger et al. (2006)

and Bale et al. (2009), the distribution of observations seems to be more aligned with the

threshold of the mirror instability than with that of the cyclotron instability, which has been

interpreted as evidence that the former is more active in limiting Rp > 1 (despite setting a

weaker limit than the latter for β‖p . 1.). However, this analysis is quite subjective. Can a

more rigorous and quantitative assessment be made?

As described in Chapter 6, all of the instability thresholds in this study were derived

by calculating the instability growth rate, γmax, over a fine grid of (β‖j , Rj)-values (where

j indicates the instability’s driving species). The results of this analysis for the proton cy-

clotron and mirror instabilities, for the default values of the SRCH parameters (see Table 6.1),

are shown respectively in Figures 6.7 and 6.9. Deriving the thresholds of these instabilities

(which are listed in Table 6.2) corresponds to simply extracting and fitting the contours of

constant γmax = 10−2Ωp (see Equation 6.2). However, this analysis is somewhat wasteful in

that it discards most of the information in these plots.

This section describes a more advanced method for using the computed γmax(β‖p, Rp)-
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values to interpret the Wind/FC proton data. In particular, the values of γmax(β‖p, Rp) were

interpolated so that a γmax-value could be individually assigned to each spectrum based on

its specific values of β‖p and Rp. This procedure was performed separately for the proton

cyclotron and mirror instabilities and used the γmax-values shown respectively in Figures

6.7 and 6.9. This unique and entirely new analysis more closely integrated the theoretical

and empirical data so that the effects of instabilities on the plasma could be more directly

explored.

The plots in Figure 8.4 show Tp (top), T⊥p (middle), T‖p (bottom) as functions of γmax

for the cyclotron (left) and mirror (right) instabilities. The plots in this figure were made

using only the Wind/FC ion spectra with 0.4 < β‖p < 0.7, which is the same subset of data

used for Figure 8.3(b). For each plot, the spectra were divided into logarithmically-spaced

γmax-bins. The mean temperature- and γmax-values of the bins are indicated with diamonds,

and error bars show the uncertainties in these mean values.

For each instability, Figure 8.4 shows that Tp and T⊥p each has a strong, positive corre-

lation with γmax but that T‖p is largely independent of (or perhaps is somewhat negatively

correlated with) γmax. These trends are consistent with the temperature enhancements seen

in Figures 8.1 and 8.2: near the cyclotron and mirror instability thresholds, Tp and T⊥p

are significantly elevated, and T‖p seems mostly unaffected by proximity to these thresholds.

However, the analysis shown in Figure 8.4 carries the advantage of actually quantifying these

effects.

Each plot in Figure 8.4 is labeled with the equation for the best linear fit of the data

therein, and this fit is also plotted along with the data. Interestingly, the trend in each plot

is well-fit by this simple, linear model. However, even more remarkably, the fitted slopes
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Figure 8.4.— Plots, for 0.4 < β‖p < 0.7, of Tp (top), T⊥p (middle), and T‖p (bottom) as

functions of γmax for the proton cyclotron (left) and mirror (right) instabilities. The values

of β‖p and of the proton temperatures are empirical and taken from the Wind/FC ion

spectra (see Chapter 4); conversely, the values of γmax are theoretical and taken from the

same calculations used to produce Figures 6.7 and 6.9. For each instability, interpolation was

used to assign a γmax-value to each Wind/FC ion spectrum. These spectra were then sorted

into logarithmically-spaced γmax-bins, and the diamonds in the plots indicate the median

temperature- and γmax-values of these bins. Each plot shows the equation and curve of the

best linear fit of the data therein.
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of Tp(γmax) and T⊥p(γmax) are each more than twice as high for the mirror instability than

the cyclotron instability. In the above discussion of Figures 8.1 and 8.2, it is noted that

the contours of Tp(β‖p, Rp) and T⊥p(β‖p, Rp) qualitatively seem to be more aligned with the

threshold of the mirror instability than with that of the cyclotron instability. The analysis

in Figure 8.4 shows this quantitatively and thereby lends new credence to the interpretation

that the mirror instability is more active than the cyclotron instability in limiting the values

of Rp > 1 observed in the solar wind.



Chapter 9

Conclusions and Discussion

This chapter concludes this dissertation. Section 9.1 overviews the most significant results

from the analysis presented in the preceding chapters. Section 9.2 contains comments on

the larger implications of these results and on possible ways in which this work could be

extended.

9.1 Summary of Results

For this thesis project, both observational and theoretical methods were used to explore how

ion temperature anisotropy instabilities affect the evolution of plasma in the heliosphere.

The Wind spacecraft’s Faraday cups were used to provide in situ measurements of protons

and α-particles in the solar wind. The code used to extract ion bulk parameters from these

measurements was fully revised from an earlier version to increase its reliability and to

improve the quality of its data output. In particular, this version was found to produce

significantly more accurate values for the temperature anisotropy, Rj = T⊥j / T‖j, of both
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protons and α-particles (j = p and α, respectively). Additional code, based on linear Vlasov

theory, was used to predict thresholds in the (β‖j , Rj)-plane for both the proton and α-

particle temperature anisotropy instabilities under a variety of plasma conditions.

This study’s combined observational and theoretical analysis has provided the most

conclusive evidence to date that kinetic microinstabilities limit the range of α-particle tem-

perature anisotropy observed in the solar wind. Similar studies have previously shown this

to be the case for protons, the dominant ion in the solar wind, but the ability of a low-

abundance ion, like α-particles, to drive temperature anisotropy instabilities had not been

demonstrated. Nevertheless, the theoretical work in this thesis project showed that a suf-

ficiently anisotropic population of α-particles can indeed lead to unstable plasma modes.

Furthermore, this study’s analysis of Wind/FC data found that the distribution of Rα-values

observed in interplanetary space is consistent with the limits predicted for these instabilities.

In calculating instability thresholds from linear Vlasov theory, different values for four

basic plasma parameters were considered (see Table 6.1). For the most part, the thresh-

olds of the proton instabilities were not particularly sensitive to these parameters, but the

α-particle instability thresholds showed considerably more variability. The interspecies ani-

sotropy coupling factor, ζ , was of particular interest because the use of more-realistic ζ values

in calculations of α-particle thresholds was found to dramatically improve their agreement

with the observed (β‖α, Rα)-values.

This study, like those of Hellinger et al. (2006) and Bale et al. (2009), found that

observations of solar wind protons were more consistent with the limits imposed by the

two-dimensional (i.e., mirror and oblique firehose) instabilities than those imposed by the

one-dimensional (i.e., cyclotron and parallel firehose) instabilities. Curiously, this holds
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true even at β‖p-values for which a one-dimensional instability places the stricter limit on

Rp. The analysis in this thesis project found the same phenomenon with the α-particles,

for which the differences between the one- and two-dimensional thresholds are even more

dramatic. The cause of this apparent inconsistency remains a mystery. However, two-

dimensional instabilities are associated with non-propagating modes, which Bale et al. (2009)

has speculated could make them more efficient at scattering particles in phase space despite

potentially lower growth rates.

In an extended analysis of the proton data, this study explored trends in proton temper-

ature over the (β‖p, Rp)-plane. The scalar temperature was found to be significantly enhanced

in marginally unstable plasma relative to plasma with isotropic protons (i.e., Rp = 1). For

Rp > 1, almost all of this temperature enhancement seemed to be in the perpendicular

component: the parallel component appeared to be unaffected or perhaps weakly depressed.

Likewise, for Rp < 1, the parallel component was found to be enhanced and the perpendicu-

lar component to be either unchanged or slightly decreased. These results strongly suggest

that the values of both Rp > 1 and Rp < 1 observed in the solar wind are more the products

of anisotropic heating rather than cooling.

The enhancements seen in scalar and perpendicular temperature for Rp > 1 were quanti-

tatively confirmed by a novel technique that directly combined the observed (β‖p, Rp)-values

with the calculated growth rates for the cyclotron and mirror instabilities. This analysis also

indicated that the temperature trends were remarkably better aligned with the growth rate

of the mirror versus the cyclotron instability and thus provided further evidence that the

former is more active in limiting Rp > 1.
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9.2 Future Paths and Applications

Though α-particle temperature anisotropy instabilities have not received much attention in

the literature, this study found strong evidence that they limit the observed distribution

of Rα-values in the solar wind. This result has implications for the study of minor ions

(e.g., carbon and oxygen) throughout the heliosphere. Could the temperature anisotropies

of these even-less-abundant species be similarly limited by instabilities? Minor ions are

preferentially and anisotropically heated, and spectroscopic methods have established that

they can typically achieve temperature anisotropies of 10 to 20 in the solar corona (Cranmer

et al., 2008). However, are these remotely-measured anisotropy values an accurate indication

of the total heating of coronal plasma or are they simply the limits imposed by anisotropy-

driven instabilities? If a minor ion species is demonstrated to be able to drive such an

instability, it could significantly impact how observations of astrophysical plasmas (both

inside and outside of the solar system) are interpreted. An extension of this thesis project’s

linear Vlasov analysis to include minor ions may help to reveal the complex interplay among

different particle species in such plasmas.

This study’s analysis of proton temperature trends strongly suggests that anisotropic

heating is more responsible than cooling for producing the extreme proton temperature

anisotropies (both Rp < 1 and Rp > 1) that ultimately lead to the onset of the associated

instabilities. While, in principle, anisotropic cooling processes could drive Rp far enough

from unity to trigger an instability, only weak evidence was found that either the perpen-

dicular or the parallel component of proton temperature is depressed in unstable plasma.

This result was particularly surprising for Rp < 1 since conventional wisdom has held that

perpendicular cooling from CGL double adiabatic expansion is a major factor in driving



CHAPTER 9. CONCLUSIONS AND DISCUSSION 161

Rp < 1 (Chew et al., 1956; Matteini et al., 2007). Instead, parallel heating seems to have

a more significant role in exciting the proton firehose instabilities. This finding motivates

more detailed studies of parallel heating mechanisms, which have received significantly less

attention in the literature than their perpendicular counterparts. These results could have

important implications for the study of the solar wind as well as the expanding, magnetized

plasmas that are found in other astrophysical environments.

In principle, these methods for studying trends in proton temperature over the (β‖p, Rp)-

plane could also be used to consider trends in α-particle temperature over the (β‖α, Rα)-plane,

but the lower accuracy of the α-particle data could pose practical problems. Assuming that

these complications could be overcome, the natural expectation would be that the α-particle

temperature trends would mimic those for proton temperature. However, this may not be

the case since heating and cooling processes are known to act with different efficiencies on

different ions species.

For this thesis project, trends in proton temperature in plasma with Rp > 1 were

also studied with an entirely new technique in which theoretical values for the mirror and

cyclotron instability growth rates were assigned to each Wind/FC ion spectrum. This anal-

ysis uniquely combined theoretical and observational results and, in doing so, provided a

quantitative assessment of trends in proton temperature. The scalar and perpendicular tem-

peratures were each shown to be positively and linearly correlated with the growth rate of

either instability, but the trends in temperature versus growth rate were found to be twice as

steep for the mirror instability. This result quantitatively indicates that the temperature en-

hancements in the (β‖p, Rp)-plane are more aligned with the mirror instability’s growth-rate

contours and therefore that the mirror instability has a stronger impact on the evolution of

the plasma.
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Nevertheless, this merger of theoretical and observational results has raised several im-

portant questions. First, why are the trends in temperature versus growth rate so remarkably

linear? Despite the success of this model, there is no clear theoretical justification for it.

Second, how are the fit parameters of this model related to the evolution of the plasma?

For example, the slope is presumably dependent on the rate of perpendicular heating and

the efficiency with which the instability isotropizes temperature. Investigating these ques-

tions could provide important insights into the interaction between these two processes in

astrophysical plasmas.

In this thesis project, theoretical instability growth rates were assigned to eachWind/FC

ion spectrum via interpolation over the (β‖p, Rp)-plane. Of course, this limited the analysis to

fixed values for the remaining plasma parameters. Conceivably, though, this analysis could

be significantly improved by running linear Vlasov code for each spectrum individually by

using its particular set of values for the fit parameters. While running the code on each

spectrum would likely prove to be very computationally intensive, this approach should

produce better results because the computed values of growth rate would more accurately

reflect the measured plasma conditions. Additionally, this method removes the need to

identify a single driving species or even to distinguish among different types of instabilities

(e.g., temperature anisotropy versus drift instabilities) since the use of the full set of measured

parameters automatically accounts for these different effects.
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Appendix A

Summary of Units and Notation

The International System of Units (Le Système international d’unités) (Bureau international

des poids et mesures , 2006; Thompson & Taylor, 2008) is exclusively employed in this disser-

tation. In keeping with the de facto standards in space plasma physics, speeds are generally

specified in units of km/s, number densities in units of cm−3, and magnetic field strength

and component in units of nT.

In this dissertation, the names of programs, programming languages, and software pack-

ages appear in a monospaced font. Programs written in IDL have their names appear in

lower-case letters, but, following historical convention, those written in FORTRAN have their

names fully capitalized.

A vector quantity appears in boldface and its magnitude in italics. The projection and

component of a vector along a given axis are shown in boldface and italics, respectively,

with a subscript that indicates the axis. The symbols ⊥ and ‖ correspond respectively to the

axes perpendicular and parallel to the background magnetic field, B0. Likewise, x, y, and z
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are used to indicate the axes of a Cartesian coordinate system; xGSE, yGSE, and zGSE refer

to the axes of the geocentric solar ecliptic coordinate system (Russell, 1971) in particular.

A normalized vector quantity (i.e., unit vector), its projections, and its components are also

typeset according to these conventions, but each of these additionally bears a caret symbol

ˆ above it.

A tensor appears in boldface sans-serif, and each of its components appears in italics

with subscripts that are listed in “row-column” order; i.e., for any tensor C,

C =





Cxx Cxy Cxz

Cyx Cyy Cyz

Czx Czy Czz



 . (A.1)

The juxtaposition of two vectors (without any operator between them) indicates their dyadic

product, the result of which is a tensor. For example, for any two vectors a and b,

ab =





ax bx ax by ax bz
ay bx ay by ay bz
az bx az by az bz



 . (A.2)

The principal mathematical variables that appear in this dissertation are listed in Ap-

pendix B. As elsewhere in this document, a subscript j is used to indicate a given particle

species (with j = p for protons, j = α for α-particles, and j = e for electrons). Some symbols

in Appendix B appear with parenthetical superscripts, which indicate that the symbols are

serving specialized purposes. Additionally, in the main body of this dissertation, a super-

script (b) is added to a symbol from Appendix B when it is used under the assumption of

a bi-Maxwellian VDF (see Equation 1.5). Likewise, the superscripts (0) and (1) are applied

to indicate respectively the zeroth- and first-order terms in the expansion of a function (see,

e.g., Equation 5.4). In a few cases, these superscripts are combined to form (b0) and (b1).



Appendix B

Index of Symbols

Symbol Description Reference

1 Unit tensor (i.e., 3× 3 identity matrix) Equation 5.25

A Effective collecting area Section 2.3.1

Ac Proton collisional age Equation 1.14

a Fit parameter for Rj(β‖j) Equation 6.4

B Magnetic field Equation 5.3

B Mean measured magnetic field Equation 3.20

B0 Background magnetic field Section 1.2.2

Bξ ξ-th magnetic field measurement Equation 3.20

b Fit parameter for Rj(β‖j) Equation 6.4

bj Phase of plasma wave Equation 5.36

D Distance of an observer from the Sun Equation 1.14

c Speed of light in vacuo Mohr et al. (2008)

cA Alfvén speed Equation 1.11
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E Electric field Equation 5.3

F Force Equation 5.2

Fzj Reduced VDF of species j along the z-axis Equation 2.16

F̃zηj Inferred value of Fzηj Equation 3.7

fj Velocity distribution function (VDF) of species j Section 1.2.2

Ij Collector-plate current from species j Section 2.3.1

i Imaginary unit (i.e.,
√
−1) Equation 5.5

I Mean current from Faraday cup collector plate Equation 2.12

J Current density Equation 5.6d

k Wavevector Section 5.2.1

k Wavenumber (i.e., |k|) Equation 5.13

kB Boltzmann constant Mohr et al. (2008)

kmax Value of k corresponding to γmax Equation 5.7

kmax Value of k corresponding to γmax Equation 5.51

mj Mass of a particle of species j Equation 1.2

N Total number of spectra in a histogram Section 6.5

n Number of spectra in a given bin of a histogram Section 6.5

nj Number density of species j Equation 1.1

ñηj η-th inferred value of nj Equation 3.11

p Probability distribution Section 6.5

qj Charge of a particle of species j Equation 1.8

R⊕ Radius of the Earth Equation 4.1

Rj Temperature anisotropy (ratio) of species j Equation 1.4

Rj Instability threshold in the (β‖j , Rj)-plane Section 6.3
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r Position in space Section 5.2.1

r(s) Position of the Wind spacecraft Equation 4.2

Tj Scalar temperature of species j Equation 1.2

T⊥j Perpendicular temperature of species j Section 1.2.2

T‖j Parallel temperature of species j Section 1.2.2

t Time Section 2.3.1

t′ Time (variable of integration) Section 5.3.1

u Velocity (of an individual particle) Section 1.2.2

u′ Velocity in rest frame of plasma bulk flow Equation 2.22

u
(c)
j Cut-off speed for species j Equation 2.8

u
(w)
ξ Center inflow-speed of the ξ-th spectral window Equation 3.1

V Voltage of Faraday cup modulator grid Section 2.2

V0 Voltage offset of Faraday cup modulator grid Equation 2.1

V
(w)
ξ Value of V0 for the ξ-th spectral window Section 2.4

vj Bulk velocity of species j Equation 1.1

ṽzηj Inferred value of vzηj = vj · ẑη Equation 3.13

wj RMS thermal speed of species j Equation 1.1

w⊥j Perpendicular RMS thermal speed of species j Equation 1.6

w‖j Parallel RMS thermal speed of species j Equation 1.6

wzj Effective thermal speed along z-axis Equation 2.19

w̃zηj Inferred value of wzηj Equation 3.15

x̂ Direction of a Cartesian coordinate system’s x-axis Equation 4.2

ŷ Direction of a Cartesian coordinate system’s y-axis Equation 4.2

ẑ Direction of a Cartesian coordinate system’s z-axis Equation 4.2
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ẑη η-th pointing direction of the Faraday cup Section 2.4

β‖j Plasma parallel-β of species j Equation 1.9

β0 Fit parameter for Rj(β‖j) Equation 6.4

γ Growth rate (i.e., imaginary component of ω) Equation 5.5

γmax Instability growth rate (local maximum of γ) Equation 5.7

∆I Total demodulated current (from all ion species) Equation 2.35

∆Ij Demodulated current from j-particles Equation 2.11

∆I(n) Noise/background in demodulated current Equation 2.35

∆J(η,ξ) Measured value of ∆I(ẑη,∆V
(w)
ξ , V

(w)
ξ ) Equation 2.40

∆Rj Width in Rj of a given bin of a histogram Section 6.5

∆u
(w)
ξ Width (in inflow speed) of the ξ-th spectral window Equation 3.2

∆V Faraday cup grid voltage amplitude Equation 2.1

∆V
(w)
ξ Value of ∆V for the ξ-th spectral window Section 2.4

∆vαp α-proton differential flow Equation 3.21

∆β‖j Width in β‖j of a given bin of a histogram Section 6.5

ζ Interspecies anisotropy coupling Equation 4.4

η Index for pointing directions in a spectrum Section 2.4

θ Angle between k and B Equation 5.13

θmax Value of θ corresponding to γmax Equation 5.51

Λj Plasma parameter of species j Equation 1.13

µ0 Magnetic constant Mohr et al. (2008)

Ξ Total number of windows in a spectrum Section 2.4

ξ Index for windows in a spectrum Section 2.4

σ Uncertainty (in subscripted parameter) Section 4.1.1
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τ Time relative to t Equation 5.43

τm Period of Faraday cup modulator voltage Equation 2.10

τj Self-collision time of species j Equation 1.12

φ Phase of cyclotron motion Equation 5.39

χR Reduced-χ Taylor (1997)

ψB Angular deviation in B Equation 3.23

Ωj Cyclotron angular frequency of species j Equation 1.8

ω Complex angular frequency Section 5.2.1

ωmax Value of ωr corresponding to γmax Equation 5.8

ωr Real component of ω Equation 5.5


