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Abstract

By improving the precision and accuracy of public health surveillance tools, we can

improve cost-efficacy and obtain meaningful information to act upon. In this disserta-

tion, we propose statistical methods for improving public health surveillance research. In

Chapter 1, we introduce a pooled testing option for HIV prevalence estimation surveys to

increase testing consent rates and subsequently decrease non-response bias. Pooled test-

ing is less certain than individual testing, but, if more people to submit to testing, then

it should reduce the potential for non-response bias. In Chapter 2, we illustrate technical

issues in the design of neonatal tetanus elimination surveys. We address identifying the

target population; using binary classification via lot quality assurance sampling (LQAS);

and adjusting the design for the sensitivity of the survey instrument . In Chapter 3, we

extend LQAS survey designs for monitoring malnutrition for longitudinal surveillance

programs. By combining historical information with data from previous surveys, we de-

tect spikes in malnutrition rates. Using this framework, we detect rises in malnutrition

prevalence in longitudinal programs in Kenya and the Sudan. In Chapter 4, we develop

a computationally efficient geostatistical disease mapping model that naturally handles

model fitting issues due to temporal boundary misalignment by assuming that an un-

derlying continuous risk surface induces spatial correlation between areas. We apply our

method to assess socioeconomic trends in breast cancer incidence in Los Angeles between

1990 and 2000. In Chapter 5, we develop a statistical framework for addressing statistical

uncertainty associated with denominator interpolation and with temporal misalignment

in disease mapping studies. We propose methods for assessing the impact of the un-
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certainty in these predictions on health effects analyses. Then, we construct a general

framework for spatial misalignment in regression.
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1.1 Introduction

HIV prevalence estimates derived from national population-based surveys are often con-

sidered the gold standard of HIV prevalence estimation when non-response rates are low

(Martin-Herz et al., 2006; Garcia-Calleja et al., 2006; Mishra et al., 2008; Gouws et al.,

2008). However, finding and obtaining a blood sample from all individuals surveyed is a

considerable, if not almost impossible, challenge. Frequently, migrant or homeless popu-

lations are ignored and a large proportion of the sample does not consent to being tested,

potentially inducing (unmeasured) bias in the HIV prevalence estimators (Gouws et al.,

2008).

In this paper, we discuss a method for promoting increased testing consent rates.

Individual reluctance to test may be influenced by several factors, including those related

to social stigma associated with HIV and lack of available treatment for testing individuals

(Castro and Farmer, 2005; Vermund and Wilson, 2002). While no consensus has been

reached on reasons for test refusal or failing to return for test results, fear is a common

theme in such studies (Obermeyer and Osborn, 2007), and there is evidence that those

who are aware of their positive HIV status are less likely to consent to testing (Reniers and

Eaton, 2009). Additionally, the HIV testing protocol is an important factor in gaining test

consent (Reniers et al., 2009). The method of asking for consent, specifically convincing

survey participants of the importance of their contribution to fighting the HIV epidemic

while assuaging concerns about privacy of test results, could be key in improving test

consent rates.

One option for estimating prevalence while preserving the nonidentifiability of in-

dividuals, at the cost of greater uncertainty, is pooled testing (Gastwirth and Hammick,

1989), where individual samples are combined to form pooled samples. In this paper, we

propose a testing protocol that supplements the presumably more informative individual

testing with pooled testing. Each sampled individual is asked to provide a blood sample

for disease testing, where the investigators (and by choice the individual as well) learn
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the disease status of the individual. If the individual rejects this testing option, we ask if

he will provide a non-identifiable blood sample which will be combined with other sam-

ples in a pooled test and in which case no one knows this individual’s test result. If the

individual does not consent to pooled or individual testing, then he is not tested for the

disease, of course.

Ideally, by providing the pooled testing option, we significantly reduce the amount

of missingness in the sample. Pooled testing strategies are frequently used in practice (Tu

et al., 1995; Litvak et al., 1994; Quinn et al., 2000; Bilder et al., 2010; McMahan et al., 2011),

but to our knowledge, have never been combined with individual test results to construct

a potentially even better estimator. In this paper, we propose such an estimator and study

its analytical properties. In Section 2 of the paper, we discuss testing consent rates in HIV

prevalence estimation surveys and give examples of when non-response bias is an issue

in such surveys. We propose an estimator in Section 3 and describe its properties; Section

4 includes a simulation study examining small sample properties of this estimator and

illustrating the importance of pool size choice in such a survey design. Section 5 sug-

gests additional adjustments to account for non-response of those who consent to neither

pooled nor individual testing.

1.2 Missingness in HIV prevalence estimation surveys

Surveys designed to estimate HIV prevalence can have low testing consent rates, and

test refusal is potentially associated with risk of HIV infection. Depending on what is

driving test refusal in the population, missingness in a sample may induce bias in the

estimator of prevalence (Gouws et al., 2008). Reviews of national HIV prevalence surveys

have concluded that, while those who refuse testing may have a higher HIV prevalence,

bias induced by missingness is usually negligible because response rates are on average

sufficiently high (Garcia-Calleja et al., 2006; Mishra et al., 2008). However, the authors

make strong assumptions about missingness patterns in the survey and also reference

many surveys in which response rates are low enough that it is difficult to believe that bias
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in prevalence estimators is negligible. For instance, the HIV testing consent rate is 62.2%

in men and 68.2% in women in the most recent national South African survey (Shisana

et al., 2005), and consent rates are even lower in the longitudinal HIV surveillance survey

in rural KwaZulu Natal, South Africa, described in Tanser et al. (2008).

A taxonomy of the types of patterns of missingness is useful for analysis (Little

and Rubin, 2002). When missingness is at random, survey calibration techniques (such

as weight-class adjustments, poststratification, and imputation) allow for adjustment of

prevalence estimators to remove bias (Lohr, 1999). All such methods depend on the as-

sumption of missing at random, which states that conditional on covariates, the outcome

of interest (HIV status) is independent of the missingness mechanism (test refusal). Many

studies have shown that HIV test results are not missing completely at random (see Ober-

meyer and Osborn (2007) and references within); further, assuming missingness is at ran-

dom is a strong and untestable assumption. When asking individuals to consent to HIV

testing, regardless of how much covariate information is available on these individuals,

one could reasonably infer that missingness is nonignorable, is associated with disease

status, and cannot be completely explained by individual characteristics. For instance,

individual covariate information is likely to be unreliable or sparse when dealing with

sensitive topics, such as risky sexual behavior, fidelity, or drug use (Tourangeau and Yan,

2007). Sensitive issues such as partaking in risky sexual behavior are of course associated

with HIV status, and studies suggest that there are inconsistencies in reporting of sexual

behavior in Demographic Health Surveys (DHS) (Curtis and Sutherland, 2004; de Walque,

2007).

Using DHS data from Zambia, one study recently found that models based on ob-

served covariates (i.e. assume missingness is at random) are insufficient to correct for

selection bias in HIV prevalence estimation surveys (Bärnighausen et al., 2011). In this

study, 28% of men refused testing; the prevalence estimate of HIV in Zambian men in-

creases from 12% (based on measured HIV status alone and imputation) to 21% upon ad-

justing for unobserved covariates using a Heckman-type selection model. These results
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strongly suggest that bias in prevalence estimates can be very severe when missingness

depends on unobserved variables.

When missingness is not at random, the (heuristically) most conservative range of

estimates for HIV prevalence in a sample calculates the lower bound for prevalence by

assuming that all non-responders are HIV negative and the upper bound by assuming

all non-responders are HIV positive. Such plausibility bounds are obviously very wide

when the proportion of non-responders is high but are also arguably the most honest

bounds for our certainty regarding the sample prevalence estimates. Specifically, if only

a fraction q of the sample responds to the survey, the prevalence of HIV in the sample is

p = qpR+(1−q)pNR, where pR is the sample prevalence in the responders and pNR denote

sample prevalence in the non-responders. Since we only know that pNR is between 0 and

1, the lower bound for prevalence in the sample is qpR and the upper bound is qpR+(1−q).

The width of this interval is 1 − q, illustrating the importance of maximizing q in the

presence of nonignorable missingness.

As an example, consider the 2004 DHS survey in Malawi (National Statistical Office

and ORC Macro, 2005). The overall response rate for HIV testing was 70% in women

and 63% in men. Of those interviewed by health workers, 22% refused HIV testing; the

remainder of the non-response was driven by inability to locate sampled individuals for

testing. In the Lilongwe district, the response rate was only 39%, with 49% of subjects

refusing HIV testing and the rest unable to be located. The observed prevalence of HIV

for the Lilongwe district was 3.7% with 95% CI [sic] (1.0%, 6.4%), whereas the observed

prevalence in the rest of the country was 13.2% with 95% CI [sic] (12.3%, 14.2%). The

HIV prevalence estimates for Lilongwe were deemed “implausibly low” and prevalence

was imputed for everyone in the district of Lilongwe based on demographic information

obtained in the household survey. The imputed prevalence for the Lilongwe district was

estimated at 10.3 % with 95% CI [sic] (9.3%, 11.3%).

Consider the conservative plausibility bounds mentioned above for the Lilongwe dis-

trict. There were 500 individuals eligible for HIV testing in the district of Lilongwe, but
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only 193 of those eligible consented to HIV testing. Based on this information, we de-

duce that about seven out of the 193 consenters were HIV positive. If we assume all 307

non-consenters were HIV negative, a lower bound for HIV prevalence is 1.4% with 95%

CI (0.4%, 2.4%); likewise, if we assume all 307 non-consenters were HIV positive, an up-

per bound for HIV prevalence is 62.8% with 95% CI (58.6%, 67.0%). By taking the lower

confidence bound when we assume all non-responders are negative and the upper con-

fidence bound when we assume all non-responders are HIV positive, we can obtain the

most conservative plausibility bounds at the 95% confidence level. In the Lilongwe case,

the heuristic “plausibility bounds” for the prevalence of HIV are (0.4%, 67.0%), which now

includes the national prevalence estimate for HIV in Malawi. While no one would ever

present such wide plausibility bounds, these extreme bounds show the true amount of

certainty we have when we know nothing about non-responders. The Lilongwe exam-

ple illustrates the dangers of high non-response in an HIV prevalence estimation survey

and that everything possible should be done to minimize non-response in HIV prevalence

estimation surveys.

1.3 Framework for combining individual and pooled test
results

In standard HIV testing surveys, individuals are only asked to consent to an HIV test once.

Using a pooled testing option, we offer two opportunities to consent to HIV testing. For

those who select the non-identifiable pooled testing option, individual blood samples are

pooled with k − 1 other blood samples (k > 1), and only the test result of the pool is

known to anyone. We delay discussion about appropriate choice of k to below. Though

we anticipate that some will still refuse both individual and pooled HIV testing, the intent

is to lower missingness in the sample (and the associated inherent bias in the estimator) by

including individuals who refuse individual testing but are willing to provide a sample

for pooled testing. We propose a combined individual and pooled testing prevalence

estimator, for which privacy is preserved but prevalence can be estimated more accurately
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than when using only those willing to submit to individual testing.

In order to construct this estimator, we consider a simple random sample (SRS) sur-

vey design in which n individuals are sampled from a population of size N with disease

prevalence p. The methodology is straightforward to extend to the stratified or cluster

sampling case, insofar as pools are composed within the strata/clusters and a sufficient

proportion of the sample consents to pooled testing within each stratum/cluster. Assum-

ing we have a simple random sample of the population, the sample can be partitioned

into three separate groups: 1) those who consent to testing for a disease, 2) those who

only consent to unidentifiable pooled testing, and 3) those who refuse testing altogether.

The prevalence in each of these three groups may differ. We now describe a statistical

framework for constructing an estimator of prevalence based on the above partitioning

of the sample.

Let Y = (Y1, Y2, Y3) be a random variable classifying individuals by their testing con-

sent choices, Y ∼ Multinom(n, q1, q2, q3), where n = Y1 + Y2 + Y3. Specifically, Y1 reflects

the number who consent to individual testing; Y2 reflects the number who do not con-

sent to individual testing but consent to pooled testing; and Y3 reflects the number who

do not consent to test at all. Let X1|Y1 = number of HIV positive persons who consent

to individual test, X2|Y2 = number of HIV positive persons who consent to pooled test,

and X3|Y3 = number of HIV positive persons who do not consent to test. We model

Xi|Yi ∼ Bin(Yi, pi), i = {1, 2, 3}. For notational simplicity, we write Xi instead of Xi|Yi.

We assume X1, X2, and X3 are independent. Let p denote the overall prevalence of HIV

infection in the population, so

p = p1q1 + p2q2 + p3q3.

Note that we can never know p3, and any estimator of p will always be biased unless p3 is

equal to the prevalence in the population that consents to test; q3 is 0 (everyone consents

to test); or we adjust the estimator of prevalence based on some known and identifiable

structure on p3, such as p3 = p2. However, we can estimate the probability of having

HIV given that one consents to test by conditioning on the sample size in the consenters,
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n′ = Y1 + Y2 and adjusting q1 and q2 appropriately. That is, we define q′1 = q1/(q1 + q2)

and q′2 = q2/(q1 + q2) and redefine (Y1, Y2) ∼ Multinom(n′, q′1, q
′
2) or equivalently Y1 ∼

Bin(n′, q′1). Therefore, pT = p1q
′
1 + p2q

′
2. A natural estimator for pT is p̂T = p̂1q̂

′
1 + p̂2q̂

′
2,

where q̂′1 = Y1/n
′, q̂′1 = Y2/n

′, p̂1 = X1/Y1, and p̂2 is a consistent estimator of p2 that

has yet to be determined. Note that q̂′1, q̂′2, and p̂1 are consistent estimators of q′1, q′2 and

p1, respectively, as n′ → ∞. If p2 is observed, we can express pT in terms of the sample

quantities as:

p̂T =
Y1
n′
X1

Y1
+
Y2
n′
X2

Y2
.

However, because of the desire to preserve anonymity, we do not directly observeX2,

the number of HIV positive individuals in the pooled population. Rather, we observe the

number of pools that test positive, Z. It is straightforward to show that, conditional on

Y2, Z ∼ Bin(np, pz), where np = Y2/k is the total number of pools, k is the pool size, and

pz = 1− (1− p2)k. Define p̂z = Z/np. It follows that p2 = 1− (1− pz)1/k. Since p̂z
p→ pz as

np →∞, a consistent estimator for the prevalence in the pooled-consenting population is

the maximum likelihood estimator, p̂2 = 1 − (1 − p̂z)1/k. Assuming p2 is bounded away

from 0 and 1, we know that p̂2 is an asymptotically unbiased estimator of p2. Conditional

on Y2, the asymptotic variance of
√
Y2p̂2 is (1− p2)2((1− p2)−k − 1)/k (Tu et al., 1995). The

variance of p̂2 increases as k increases.

We can estimate the population prevalence in those who consent to test, pT , consis-

tently as:

p̂T =
Y1
n′
X1

Y1
+
Y2
n′
p̂2

which we refer to as the combined prevalence estimator. It follows that, as n′ → ∞, with

q1, q2 bounded away from 0, p̂T is unbiased (see Section 1.7.1 for proof), and the variance

of p̂T has the limiting form (see Section 1.7.2 for proof):

n′var(p̂T ) = q′1p1(1− p1) + q′2
1
k
(1− p2)2((1− p2)−k − 1) + q′1q

′
2(p1 − p2)2.

A natural large-sample variance estimator is thus:

ˆvar(p̂T ) =
1

n′

[
X1

n′ (1− X1

Y1
) + Y2

n′
1
k
(1− p̂2)2((1− p̂2)−k − 1) + Y1

n′
Y2
n′ (

X1

Y1

2 − p̂2)2
]
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Further, it can be shown that (p̂T − pT )/
√
var(p̂T ) ∼ N(0, 1) (Section 1.7.3). Therefore, we

can define a 100(1− α)% Wald-type confidence interval for p̂T as p̂T ± zα/2
√

ˆvar(p̂T ).

1.4 Properties of the combined estimator

In the remainder of this paper, we consider low, moderate, and high population preva-

lence settings where individual testing consent rates are low. In the low prevalence set-

ting, we assume the prevalence in the individual testers is 5% and the prevalence in the

pooled testers is 10%; in the moderate setting, prevalence in individual testers is 15% and

in pooled testers is 20%; and in the high prevalence setting, prevalence in the individ-

ual testers is 20% and in the pooled testers is 30%. We assume that the sub-population

that consents to individual testing constitutes 60% of the total testing population and the

sub-population that will only contribute a sample for pooled testing constitutes 40% of

the population. We also constrain pool size to be between 3 and 7. While a smaller pool

size will always result in a better estimator, pool size must be sufficiently large to protect

the confidentiality of the testers; in our simulation, we assume ethical limitations would

never mandate having a pool size larger than 7 and use this as our maximum pool size.

These settings are important to keep in mind and are referenced throughout the paper as

the low, moderate, and high prevalence settings.

The estimator in which we include pooled testers will almost always provide an im-

provement (in terms of mean-squared error) over the estimator which only offers individ-

ual testing. If we only offer individual testing, an estimate of the prevalence in the popu-

lation is p̂1 = X1/Y1. Assuming for now that q3 = 0, the bias in p̂1 is p1 − p = q2(p1 − p2),

which is non-zero when p1 6= p2 and q2 6= 0. However, even if p1 ≈ p2, the estimator using

pooled samples will usually have a smaller variance than the estimator which does not

incorporate pooled testing as long as a sufficient proportion of the population consents to

pooled testing. Since the combined estimator is asymptotically unbiased, the asymptotic
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mean-squared error (MSE) of the estimator is:

MSE(p̂T ) = 1
n′ (q

′
1p1(1− p1) + q′2

1
k
(1− p2)2((1− p2)−k − 1) + q′1q

′
2(p1 − p2)2).

The estimator using only individual testers has MSE:

MSE(p̂1) = 1
n′q′1

p1(1− p1) + [q2(p1 − p2)]2.

The ratio of these MSEs is always less than one when pool size is less than 7 for the low,

moderate, and high prevalence settings (see Figure 1.1), indicating that the combined

estimator outperforms the estimator using only individuals. Indeed, in the situations

in which pooled testers have a higher prevalence than individual testers, the MSE ratio

ranges between 0.1 and 0.4, and the combined estimator provides substantial improve-

ment over the estimator ignoring pooled testers. Even when the prevalence is the same

in the pooled and individual testing populations, the MSE ratio ranges between 0.6 and

0.85, and the combined estimator still outperforms the individuals-only estimator.
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Figure 1.1: Ratio of the asymptotic MSE for the combined estimator to the ratio of the
asymptotic MSE for the estimator using only individuals (MSE(p̂T )/MSE(p̂1)) in the low,
moderate, and high prevalence settings for two scenarios: (a) pooled testers have a higher
prevalence than individual testers, n′ = 1000; (b) the prevalence in the pooled testers
equals that in the individual testers (this ratio is independent of n′). The combined esti-
mator always has lower MSE than the individuals only estimator in these settings.
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Only offering pooled testing to everyone in the sample, as suggested in Gastwirth

and Hammick (1989), is cheaper than offering an individual and pooled testing option,

because fewer tests are performed. For instance, we could design a study which only

offers a pooled testing option and estimate prevalence using:

p̂pool = 1− (1− Z/np)k

where Z is the number of positive pools, np is the total number of pools, and k is the pool

size. Since p̂pool is asymptotically unbiased, the asymptotic MSE of this estimator is

MSE(p̂pool) = 1
nk

(1− p)2[(1− p)−k − 1].

Using the ratio MSE(p̂T )/MSE(p̂pool), we find that testing using the combined estimator

p̂T results in a smaller asymptotic MSE than the estimator which only offers pooled test-

ing p̂pool (Figure 1.2), assuming the sample size is the same for both estimators. The MSE
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Figure 1.2: Ratio of the MSE for the combined estimator to the ratio of the MSE when
everyone is offered pooled testing, MSE(p̂T )/MSE(p̂pool), as a function of pool size for the
low, moderate, and high prevalence settings when pooled testers have a higher preva-
lence than individual testers. The combined estimator always has lower MSE than the
estimator where everyone is offered pooled testing in these settings.
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for the combined estimator is 10% less than the MSE for the pooled testing only estima-

tor in the moderate and high prevalence settings, with less reduction in MSE in the low

prevalence setting. The combined estimator provides an improvement in MSE because

of the previously mentioned fact that the variance of the pooled prevalence estimator al-

ways decreases as the pool size decreases; intuitively, individual test results provide more

information than pooled test results on the same number of people, so providing an indi-

vidual testing option is optimal. Further, if everyone is offered pooled testing, individual

results are no longer available to those who are interested in learning their HIV status and

thus may be unethical (Diaz et al., 2005). And lastly, the survey protocol we suggest gives

individuals two opportunities to consent to testing (pooled or individual), rather than

only asking individuals to test once as in the pooled-testing only design, which could

help increase consent rates. Therefore, having both pooled and individual testing options

is advantageous.

Pooled prevalence estimators are biased in finite samples (Tu et al., 1995), and conse-

quently, p̂T is only asymptotically unbiased (Section 1.7.4):

E(p̂T ) = pT +
k − 1

2n′(1− p2)
E (Y2var(p̂2)) +O

((
n′

k

)− 3
2

)
6= pT

While replacing an estimator with a jackknifed version of the estimator typically re-

duces finite sample bias (Quenouille, 1956; Miller, 1974; Shao and Tu, 1995), in simulation,

we find that the jackknife estimator provides little improvement over the original estima-

tor (results not shown). Other suggestions for bias correction to the pooled prevalence

estimator have been suggested (Hepworth and Watson, 2009). For example, Burrows

(1987) suggests the estimator:

p̃2 = 1−
[

2kZ + k − 1

2knp + k − 1

]1/k
which removes the bias of order n′−1. We can use the Burrows estimator to define a new

prevalence estimator p̃T , which is constructed by substituting p̃2 for p̂2 in the combined

estimator. This new estimator p̃T has much smaller finite sample bias than p̂T in small

samples. In Figure 1.3, we plot the percent bias in the prevalence estimator for p̂T and
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Figure 1.3: Percent bias in the MLE estimator p̂T (thin lines) and the Burrows estimator
p̃T (bold lines) for pool size k = 7 as a function of sample size for low, moderate, and
high prevalence settings. Using the Burrows estimator results in a substantial reduction
in finite sample bias.

p̃T for pool size k = 7 (the size for which we see the greatest finite-sample bias). The

original estimator p̂T always overestimates the prevalence, with the severity of the bias

decreasing as the sample size increases. The Burrows estimator p̃T has negligible bias,

even for sample sizes as small as 100. Consequently, we recommend using p̃T in practice

rather than p̂T .

1.4.1 Simulation study assessing finite sample properties of the com-
bined estimator

Pooling has its limitations that are a function of prevalence. When the prevalence is high,

then, to be informative, the pools must be so small as not to have all the pools test pos-

itive (Tu et al., 1995; Burrows, 1987). On the other hand, to retain anonymity, the pool

sizes cannot be too small. Statistically, pooled estimators are potentially unstable when
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the prevalence in the pooled-sample population (p2) is high or when the number of in-

dividuals consenting to pooled testing (Y2) is small. In the case of most diseases that

are not extremely rare, such as HIV, the disease prevalence is typically high enough that

some pools will test positive, and we are not concerned with zero pools testing positive.

However, in moderate to high prevalence settings, the probability that all pools will test

positive must also be addressed. This probability is P (Z = np) = (1− (1− p2)k)np , which

decreases as np increases and/or k and p2 decrease. Therefore, choosing a sufficiently

small pool size k and obtaining a sufficiently large number of pools np are necessary to

ensure that the estimate of the population prevalence in the pooled testing group is rea-

sonable. Note that the lower bound for k is determined by how large the pools should be

to assuage concerns about identifiability of test results (see Section 1.6).

In a simulation study, we evaluate maximum pool sizes and minimum number of

pools such that the bias and standard error of p̃T are small and the 95% Wald confidence

interval coverage of p̃T is near 0.95. Individuals who do not consent to testing at all are

ignored throughout the simulations. Simulation parameters are chosen to reflect low,

moderate, and high prevalence settings which have low testing consent rates for individ-

uals as described in Section 1.4. We perform the simulation study for pool sizes 3, 5, and
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Figure 1.4: 95% confidence interval coverage for p̃T as a function of sample size calculated
using various pool sizes in the (a) low, (b) moderate, and (c) high prevalence setting as a
function of the sample size.
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7 (with 5,000 iterations each). Wald 95% confidence interval coverage is shown in Figure

1.4.

The 95% Wald confidence interval performs well for the combined estimator, with

coverage lingering around 95% for moderate sample sizes. The confidence interval cov-

erage drops below 60% very quickly when the pooled testers are ignored. As in the Li-

longwe example, confidence intervals are misleading when selection bias exists in the

sample.

In small sample sizes for the moderate and high prevalence settings, the empirical

standard error for the combined estimator is much larger than the derived standard er-

ror (results not shown), due to the fact that all of the pools test positive in a substantial

proportion of the simulation runs. The derived large-sample standard error is not valid

when all pools test positive, and, in such settings, using the pooled prevalence estima-

tor in practice is not advised. Further, finite sample bias is problematic in small sample

sizes when prevalence is moderate to high. Before using the asymptotic normality and

variance formula for the combined estimator, it is important to know how many pooled

testers are required for these asymptotics to be valid. In order to assess when the large-

sample asymptotics hold and the combined prevalence estimator is valid, we calculate
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Figure 1.5: Plot of the ratio of the empirical to the true MSE of the combined estimator as
a function of sample size for the (a) low, (b) moderate, and (c) high prevalence settings.
When asymptotic results are valid, this ratio will be close to 1.
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Table 1.1: Sample size (number of pooled testers) required to have an empirical MSE: true
MSE ratio < 1.05.

Pool size Low Prevalence Moderate Prevalence High Prevalence
3 50 (20) 50 (20) 150 (60)
5 100(40) 200 (80) 700 (280)
7 200(80) 500 (200) > 2000 (> 800)

the ratio of the empirical MSE and the asymptotic MSE (Figure 1.5). The asymptotic MSE is

described above, and the empirical MSE is defined as the square of the average empirical

bias in the combined estimator added to the empirical variance of the combined estimator

in the 5000 simulations. Since both empirical variance and bias should be higher than the

asymptotic variance and bias in finite samples, this ratio should provide a good metric

for gauging the validity of our estimator. When this ratio is less than 1.05, we declare the

estimator to be valid.

Table 1.1 provides suggestions as to minimum sample size and pool size required in

the low, moderate, and high prevalence settings in order to obtain a valid estimator. We

recommend not using pool sizes over 5 (preferably 3) in the high prevalence setting.

1.5 Adjusting for individuals who refuse testing

Ideally, in a disease prevalence estimation survey, all sampled individuals will consent to

test, either as an individual or in a pool. However, in practice, we anticipate that a certain

proportion of the population, q3, will refuse testing altogether. Unless we can assume

test status is missing completely at random, accounting for this missingness induced by

test refusal is key to constructing an unbiased estimator of prevalence. As previously dis-

cussed, assuming data is missing at random may be a poor assumption in such settings. A

more reasonable assumption might be that that those who refuse testing are more similar

to those who consent to pooled testing than they are to those who consent to individual

testing. With this motivation, we propose a weight-class adjustment (also called response

16



propensity weighting) to the estimator to improve the precision of population prevalence

estimates (Lohr, 1999).

In order to adjust the prevalence estimator, we divide the sample of size n into j

different strata, j = 1, ..., J . Denote the number of individuals sampled in the jth stratum

as nj , and assume that n′j individuals in stratum j consent to testing. If we have obtained

a simple random sample of the population, a naive estimator for prevalence, without

taking into account nonconsenters is:

p̂ =
∑
j

n′j∑
j n
′
j

p̂j,

where p̂j is the prevalence estimator in stratum j. This estimator is equivalent to estimat-

ing prevalence by calculating the number of disease positive individuals in a sample who

consent to testing and dividing by the total number of consenters. Hence, this estima-

tor relies on the assumption that we obtained a representative sample of the population,

namely that n′j/
∑

j n
′
j = nj/

∑
j nj .

In order to adjust for non-consenters, we can weight each consenting individual in

the sample by the inverse probability that they consent to testing. This method of propen-

sity score weighting produces an unbiased estimator of prevalence when consenters and

non-consenters within stratum j are alike with respect to HIV status (that is, there are

no unmeasured confounders within stratum j). Using propensity score weighting, the

adjusted prevalence estimate becomes:

p̂ =
∑
j

nj
n
p̂j.

Propensity weighting adjustments have been discussed frequently in the literature

and have disadvantages including inflating the variance when the weights are large (Lit-

tle, 1986; Little and Vartivarian, 2003; Little, 1988). Such a situation would occur when in-

dividuals in a given stratum are very unlikely to participate in a survey. Collapsing strata

can be effective in reducing the impact of sparse data and large weights within a stratum

if such a situation occurs. Note that rather than dividing the data into strata, propensity
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scores can be calculated using logistic regression and weights can be constructed based

on predicted probabilities from a logistic regression, as employed in Mishra et al. (2008).

This propensity weighting framework extends naturally to the combined prevalence

estimator, assuming that we can construct homogeneous pools based on the j strata. Con-

struction of homogeneous pools is the primary challenge of implementing the weight-

class adjustment correction. Choosing appropriate strata requires balancing the need for

a sufficient number of pooled testers within each stratum to maintain confidentiality and

obtain valid prevalence estimates as well as the need to incorporate a sufficient amount of

information about the testers versus non-testers. Assuming we can construct such strata,

we can use the weight class adjustment in two different ways: 1) weight everyone in

the sample who consents to test by the inverse probability of testing within their respec-

tive stratum, or 2) weight only the pooled testers by the inverse probability of testing as a

pooled tester, conditional on not testing as an individual. The first method of weight class

adjustment assumes that non-testers are similar to testers (pooled or individual) within

strata with respect to HIV status, whereas the second method assumes that non-testers

are similar to pooled testers within strata. To choose the appropriate adjustment method,

reasons for not consenting to test should be obtained from the sample when possible. For

instance, if most people will not test because they dislike having blood drawn, then the

first method might be more plausible. If hesitance of the pooled testers and non-testers is

caused by suspicion of HIV positive status, the second method is more reasonable.

Simpler estimators could also be proposed without employing a weight-class adjust-

ment, which may be more feasible in practice. For instance, one could assume the preva-

lence of HIV in the non-testers is equal to the prevalence within the pooled testing popu-

lation and suggest p̂ = p̂1q̂1 + p̂2(q̂2 + q̂3), which is potentially a better estimator than p̂T for

the prevalence in the population. Lastly, we could assume a linear trend exists between

p1, p2, and p3, and define a prevalence estimator as p̂ = p̂1q̂1 + p̂2q̂2 + p̂3q̂3 using linear

extrapolation (e.g. p̂i = a + bi). These estimators need to be tested in practice before we

can contrast their merits.
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1.6 Discussion

When investigators designing a disease prevalence survey anticipate high refusal rates for

individual testing due to disease stigma, offering a pooled testing option and combining

pooled and individual sample results has the potential to significantly improve precision

of prevalence estimates. Further, acquiring blood samples for pooled testing also allows

the investigator to compare the prevalence in the individual testing population (p1) with

the prevalence in the pooled testing population (p2). A test of the hypothesis that p1 = p2 is

simple to construct. This hypothesis test and a corresponding 95% CI for (p̂1− p̂2) can help

determine the extent of selection bias in the sample. Evidence that the consenting and

part of the refusing populations are not different with respect to disease status is valuable

for generalizability of results to the entire population. Note that this is an association

test which does not take any covariates into account, though the test could be conducted

within strata if sample sizes are large enough.

Techniques have also been developed for regression analyses of disease status on co-

variates when blood samples are pooled (Vansteelandt et al., 2000; Xie, 2001; Bilder and

Tebbs, 2009; Chen et al., 2009). These ideas could easily be extended to the situation in

which we have both individual and pooled test results by allowing the pool size to vary in

the regression analysis (that is, pool size is 1 or k). Though we do not want to identify in-

dividuals within pooled samples, constructing pools that are homogeneous with respect

to the covariates of interest increases the precision of the regression coefficient estimates

(Vansteelandt et al., 2000).

Our proposed estimator above assumes a perfect test (sensitivity and specificity are

equal to one), but extending the estimator to imperfect tests is straightforward, as shown

in Tu et al. (1995). Let φ and ψ represent test sensitivity and specificity, respectively. The

probability that an individual consenter tests positive is p1φ + (1 − p1)(1 − ψ); assuming

sensitivity and specificity are the same for pools as for individual tests, the probability

that a pool tests positive is (1− (1− p2)k)φ+ (1− p2)k(1− ψ). Note that we also make the
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relatively mild assumption that φ+ψ−1 > 0. It follows that p̂1,φ,ψ = (X1/Y1 +1−ψ)/(φ+

ψ− 1) and V ar(p̂1,φ,ψ) = V ar(p̂1)/(φ+ψ− 1)2. Define p̃z as Z/np when using the standard

pooled prevalence estimator; and as (Z+ (k− 1)/2k)/(np+ (k− 1)/2k) when the Burrows

correction is used. In the pooled setting,

p̂2,φ,ψ = 1−
(

φ− p̃z
φ+ ψ − 1

)1/k

when 1 − ψ ≤ p̃z ≤ φ; p̂2,φ,ψ = 0 when 0 ≤ p̃z ≤ 1 − ψ; and p̂2,φ,ψ = 1 when φ ≤

p̃z ≤ 1. Also, asymptotic normality for p̂2,φ,ψ holds, where V ar(p̂2,φ,ψ) = V ar(p̂2)/(φ +

ψ − 1)2. Therefore, when the sensitivity and specificity of a test are known, they are

easily incorporated into the framework of the individual and pooled testing prevalence

estimator, as p̂T,φ,ψ = q1p̂1,φ,ψ + q2p̂2,φ,ψ and (p̂T,φ,ψ − pT )/( ˆV arφ,ψ(p̂T,φ,ψ))1/2 ∼ N(0, 1),

where V arφ,ψ(p̂T,φ,ψ) is simple to calculate by using the same form of the variance as p̂T ,

but substituting V1/(φ + ψ − 1)2, V2/(φ + ψ − 1)2 for V1, V2 (see Section 1.7.3). Sample

variance is calculated by substituting p̂1,φ,ψ, p̂2,φ,ψ for p̂1, p̂2.

Many testing protocols are currently being used in HIV surveillance programs which

aim to optimize efficiency and retain anonymity. There exists an ongoing debate about the

ethics of unlinked anonymous testing (UAT) (Diaz et al., 2005; Krishnan and Jesani, 2009).

In sentinel populations such as pregnant women at ANC clinics, UAT without informed

consent is a commonly used protocol. Blood samples that are obtained for routine tests

are also tested for HIV without any informed consent and are not linked back to the

individual in any way. As treatment becomes more available, the ethics of such testing

procedures become more questionable, and our suggested protocol requires obtaining

informed consent from the individual. Voluntary UAT (or UAT with informed consent)

is a much more widely accepted testing protocol and is currently used in DHS surveys.

Informed consent is obtained before testing blood for HIV, but test results are not linked

back to the individuals and, those who test cannot learn their disease status. Our testing

protocol bypasses any of the ethical issues associated with UAT, as sampled individuals

have three options: 1) test as an individual and learn their disease status, 2) test as an

individual and do not learn their disease status, or 3) submit blood for pooled testing and
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do not learn their disease status.

Preserving privacy of the pooled testers is a primary concern in our protocol. If a

pool tests negative, we know the test results of individuals in the pool (negative) within

the bounds of the sensitivity of the testing kit. Presumably, individuals are not as con-

cerned with the confidentiality and identifiability of negative test results, and we are not

concerned with this situation. If a pool tests positive, individual test results in the pos-

itive pool are non-identifiable mathematically for pools of size 2 or bigger. Of course,

the issue of trust is important; those carrying out the survey need to convince those sur-

veyed that their privacy requests be respected if we wish to lower q3 as much as possible.

Furthermore, ethical non-identifiability for positive pools may mandate larger pool sizes.

If a pool tests positive, the probability that an individual is positive (when φ = 1)

is p/(1 − (1 − p)k) by Bayes Theorem. For instance, when the population prevalence is

20%, the probability that an individual in a positive pool is HIV positive is 1 when k = 1

(individual testing), 0.56 when k = 2, 0.41 when k = 3, 0.34 when k = 4, 0.30 when

k = 5, 0.27 when k = 6, and 0.25 when k = 7. Since the population prevalence is 20%,

without testing at all, the probability a person is infected is 20%. As k increases, the

probability that an individual tests positive given the pool tests positive approaches the

population prevalence. Thus, as pool size and prevalence increase, we gain less additional

information about the disease status of individuals in a pool when the pool tests positive.

However, using pool sizes that are too large decreases accuracy of the pooled testing

estimator (Section 1.4.1). Hence, the key idea in this confidentiality protection problem

is “to balance the need for confidentiality protection with legitimate needs of data users”

(Cox and Zayatz, 1995). The United States’ Federal Commission for Statistical Methodol-

ogy lays out threshold rules for identifiability of survey responses for tabular data within

U.S. Agencies; generally, at least 3-5 responses per cell are required for non-identifiability,

but this minimum choice of responses per cell often varies with the sensitivity of the infor-

mation and potential for disclosure (Federal Committee on Statistical Methodology, 1994).

In order to use the pooled samples, pool size must be carefully selected by balancing the
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precision of the pooled estimator with the ethical restraints imposed by nondisclosure of

individual test information.

Lastly, in selecting survey design parameters, namely pool size and total sample size,

an a priori estimate of q2 is necessary. This proportion can be estimated by conducting a

small pilot study in the population before the survey is conducted.

1.7 Statistical Properties of the Combined Estimator

In this Section, we provide descriptions of and proofs for the properties of the combined

estimator, including the asymptotic unbiasedness, an analytic form of the variance esti-

mate, the asymptotic distribution, and the finite sample bias.

1.7.1 Asymptotic unbiasedness of pT

E(p̂T ) = EY (E(X1

n′ + Y2
n′ p̂2|Y ))

= pT

1.7.2 Derivation of asymptotic variance of pT

Recall V1 = p1(1− p1) = Y1V ar(p̂1) and V2 = 1
k
(1− p2)2((1− p2)−k − 1) = Y2V ar(p̂2).

V ar(p̂T ) = E(V ar(p̂T |Y ))︸ ︷︷ ︸
a

+V ar(E(p̂T |Y ))︸ ︷︷ ︸
b

E(V ar(p̂T |Y )) = 1
n′ (q

′
1V1 + q′2V2)

V ar(E(p̂T |Y )) = 1
n′ (q

′
1q
′
2(p

2
1 − 2p1p2 + p22))

V ar(p̂T ) = 1
n′ (q

′
1p1(1− p1) + q′2

1

k
(1− p2)2((1− p2)−k − 1)

+q′1q
′
2(p1 − p2)2)
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1.7.3 Asymptotic Distribution of pT

Define the new notation V1 = p1(1− p1) and V2 = (1/k)(1− p2)2((1− p2)−k − 1). It follows

that n′q′1V ar(p̂1|Y1)
p→ V1 and n′q′2V ar(p̂2|Y2)

p→ V2 and V1 and V2 are free of both Y1 and Y2.

Note that
√
n′q′1p̂1 ∼ N(0, V1) and

√
n′q′2p̂2 ∼ N(0, V2) are independent.

Further,
√
n′(q̂′1 − q′1, q̂

′
2 − q′2)

T ∼ N(0, q′1(1 − q′1)1), where 1 is a 2 × 2 matrix of 1s.

Rewrite:

√
n′(p̂T − pT ) =

√
n′(p̂1(q̂

′
1 − q′1) + p̂2(q̂

′
2 − q′2)) +

√
q′1
√
n′q′1(p̂1 − p1) +

√
q′2
√
n′q′2(p̂2 − p2))

Note that:

√
q′1
√
n′q′1(p̂1 − p1) +

√
q′2
√
n′q′2(p̂2 − p2)) ∼ N(0, q′1V1 + q′2V2).

and:

√
n′(p1(q̂

′
1 − q′1) + p2(q̂

′
2 − q′2)) ∼ N(0, q′1(1− q′1)(p21 − 2p1p2 + p22)).

We know that p̂1
p→ p1 and p̂2

p→ p2. Applying Slutsky’s rule, and the independence of Xi

and Yi, i = {1, 2},
√
n′(p̂T − pT )

L→ N(0, VpT )

where VpT = q′1p1(1− p1) + q′2
1
k
(1− p2)2((1− p2)−k − 1) + q′1q

′
2(p1 − p2)2.

1.7.4 Derivation of finite sample bias in pT

E(p̂T ) = EY (E(X1

n′ + Y2
n′ p̂2|Y ))

= pT + E
(
Y2
n′

k−1
2(1−p2)var(p̂2)

)
+O

(
(n

′

k
)−

3
2

)
≈ pT + k−1

2n′k
(1− p2)1−k(1− (1− p2)k) +O((n

′

k
)−

3
2 )
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2.1 Introduction

Since 1999, UNICEF, the United Nations, and WHO, along with other partners, have com-

mitted to achieving global elimination of neonatal tetanus (NT). Neonatal tetanus elimi-

nation is defined as less than 1 case of NT per 1000 live births in the highest risk district

in a country. Detecting NT cases in the population is difficult using sentinel surveillance

or household surveys. Sentinel surveillance of health facilities ignores any NT cases that

were not taken to the facility for treatment. In household surveys, determining if an in-

fant’s illness was due to tetanus is difficult if the child was not taken to a health facility.

Consequently, neonatal elimination surveys are conducted by using household surveys

that monitor the NT mortality rate, defined as the number of deaths from neonatal tetanus

per live births. The NT mortality rate is easier to monitor in practice due to the availabil-

ity of the verbal autopsy method of diagnosis; further, the mortality rate among births

with tetanus remains high in most countries conducting neonatal elimination surveys.

An exception to this rule is China.

For a country to declare neonatal tetanus elimination, a lot quality assurance sam-

pling survey is conducted to determine whether the nation achieved elimination. In this

manuscript, we illustrate technical issues in the design of neonatal tetanus elimination

surveys. We extend the work conducted in Stroh and Birmingham (2002), expanding

the authors’ ideas of using binary classification and double sampling designs to declare

neonatal tetanus elimination in countries. Using the original survey design framework

proposed in Stroh and Birmingham (2002), we detail statistical considerations pertaining

to the survey design methodology.

In Section 2.2, we describe issues with identifying the target population, or highest

risk district, for the survey. In Section 2.3, we introduce the lot quality assurance sam-

pling (LQAS) methodology, and discuss extensions of this methodology that are used in

NT surveys, including cluster sampling, finite population adjustments, and double sam-

pling designs. In Section 2.4, we discuss the sensitivity of the survey instrument to detect
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NT cases and the implications of monitoring a marker for NT incidence, namely the NT

mortality rate. In Section 2.5, we describe the statistical calculations used to construct

the survey design, and the metrics used to evaluate the properties of the design. Finally,

in Section 2.6, we present a recommended survey design for the elimination of neonatal

tetanus.

2.2 Selection of districts for the survey

NT elimination surveys occur at the district-level, where a district is defined as the third

administrative level in a country (with nation as the first level). The first step in the design

of an NT elimination survey is deciding which districts in a country are likely to have the

highest NT incidence. These districts will be the target population for the survey(s). NT

elimination is declared at the district level of aggregation, with the formal definition of

NT elimination being “an NT incidence rate < 1 in 1000 live births in every district in a

country.” The implications of this definition are important to consider when designing an

NT elimination survey.

NT rates less than 1 in 1000 live births must be achieved in every district. We only

conduct elimination surveys in the highest-risk district(s), under the logic that if the rates

of NT are less than 1 in 1000 in these districts, then the rates are also below this threshold

in all the lower risk districts. This reliance on a prior ranking of NT risk within districts

should be emphasized, since the validity of subsequently declaring a country as having

achieved elimination depends on this ranking. Selection of the target population is non-

trivial and a very important component of the survey design procedure.

If we can identify the worst performing districts with 100% accuracy, then only sur-

veying the worst performing districts is an acceptable and accurate practice. However, if

we have many districts with potentially high NT rates, then we need to survey all of these

districts. We cannot randomly choose one or two of the districts to conduct surveys in, as

we run the very real risk of failing to select a district that has not achieved elimination.

26



If we randomly select among high risks districts, we lose precision in our classification at

the national level.

The smaller the district to be surveyed, the more precise we can be in our classification

of elimination within that district (because, in small districts, we sample a large fraction

of all the live births). On the other hand, if a district is too small, we may encounter oper-

ational problems. A case in point, when conducting an NT elimination survey, sometimes

it is not logistically feasible to only survey the worst performing district, due to an insuf-

ficient number of live births in that district (e.g. such a survey might require sampling all

of the live births in the district). In this situation, we can redefine the target population for

an elimination survey by combining multiple high-risk districts into one survey. How-

ever, subsequent to this recombining, if we conduct a survey across districts, then we are

changing the definition of elimination in this country, which should be clearly stated and

approved by the assessment team before conducting the survey. The revised definition of

elimination for the country is now “an average NT incidence rate < 1 in 1000 live births

among the worst performing districts in a country.”

In many situations, collapsing across multiple districts will be the most practical op-

tion. For instance, districts in Vietnam are frequently sub-divided, such that Vietnam had

34 districts in 1997, 125 by 2001, 424 by 2002 and 662 by 2011. It is impractical to conduct

a survey at the district level in this situation; the number of live births per district is too

small to construct a meaningful or logistically plausible sampling frame, and, further, the

districts no longer represent meaningful subdivisions of the country.

It is important to not overlook the implications of pooling information across multiple

districts in changing the definition of elimination. For instance, consider a situation in

which we identify three high risk districts with a low number of live births. We decide

to conduct one elimination survey, sampling from all three districts combined. Now, we

define NT elimination in this country as “an average NT incidence rate < 1 in 1000 live

births in the high risk districts.” This definition is different from the standard definition

of elimination that requires elimination in every district. Even if one of the three districts
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has an NT incidence rate greater than 1 in 1000 live births, the country will usually be

declared as having achieved elimination if the average incidence rate across the three

high risk districts is less than 1 in 1000, since the average across these three districts can

be less than 1 in 1000 without the rate being less than 1 in 1000 in each of the three districts.

2.3 Introduction to the LQA-CS survey methodology

The LQA-CS survey method is appropriate for selected populations in the final stage of

MNT elimination when there is evidence suggesting that NT incidence has been reduced

to less than 1 case/1000 live births and only occurs sporadically (not in clusters). Viewed

as requiring a binary decision (has MNT elimination occurred, yes or no?), it is clear that

no further requirement is made of the method to also provide an actual estimate of the

MNT rate. In contrast, conventional surveys designed to estimate the NTMR with any

degree of confidence require very large sample sizes - tens of thousands of live births -

due to the extremely low incidence of NT in the final stages of MNT elimination (Dixon

et al., 2005). Hence, the LQA-CS method is able to use relatively smaller sample sizes than

the traditional estimation surveys (Valadez, 1991). Because of the smaller sample sizes

required in general for the classification process (as opposed to the estimation process),

the LQA-CS surveys are feasible and affordable in countries ready to demonstrate MNT

elimination.

The LQA-CS survey assesses whether NT elimination in the target population has

been achieved. Classification as having achieved or failed to achieve NT elimination is

the goal, rather than estimation of the NTMR rate. NTMR rates can be estimated us-

ing LQA-CS data, but the estimates have large variances (resulting in very wide confi-

dence intervals) and are susceptible to selection bias if the survey is stopped early. There-

fore, calculating point estimates and confidence intervals for NTMR is not recommended;

rather, the number of observed NT cases and the number of sampled live births should

be reported.

28



In an LQA-CS survey, the number of NT deaths detected during the survey is com-

pared to a pre-determined maximum acceptance number of NT deaths that defines

whether the district “passes” (elimination achieved) or “fails” (elimination not achieved).

The acceptance number is calculated to ensure that there is a high probability that a dis-

trict with a high NT incidence rate during the 12 month interval covered by the survey

does not “pass”, and that districts with truly low NT rates do not “fail”.

Lot quality assurance sampling (LQAS) survey designs in public health have been

described extensively in the literature (e.g. Valadez (1991); Robertson and Valadez (2006)).

We briefly describe the LQAS methodology, to aid in the interpretation of the final survey

design.

2.3.1 Review of LQAS methodology

To declare elimination in a district, we need to decide whether the rate of neonatal tetanus

mortality during the 12 month interval covered by the survey is sufficiently low. We

denote the district-level NTMR as p. In the district, we sample n live births, and let X

denote the number of cases of neonatal mortality caused by neonatal tetanus.

Assuming the population size/number of live births in a district is large (> 50, 000),

we can model X using a binomial distribution, specifically X ∼ Binomial(n, p). For

some number d (the acceptance number), if X > d, we conclude that elimination has not

occurred; if X ≤ d, elimination has occurred. In choosing a sampling design for an LQAS

survey, the goal is to select a sample size n and corresponding acceptance number d such

that we run a small risk of misclassifying districts as having achieved or not achieved

elimination. The lot quality assurance sampling (LQAS) survey design is determined by

the following two equations, which control the error of the classification procedure:

P (X ≤ d|n, pu) ≤ α

P (X > d|n, pl) ≤ β

For a given choice of n and d, α is the probability that we classify a district as having
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achieved elimination when the NTMR is greater than or equal to pu; and β is the prob-

ability that we classify a district as not having achieved elimination, when the NTMR is

less than or equal to pl. To select an appropriate sample size n and decision rule d, we first

need to decide what the relevant choices of pl, pu, α, and β are.

As an example, if we choose α = 0.1 and β = 0.1, we then find a sample size n and

acceptance number d such that we can make the following statement about our survey:

“In an area with a true NTMR equal to 0.0021 (pu) or more, if we repeat the MNTE elimi-

nation survey a very large number of times, we would incorrectly conclude that neonatal

tetanus has been eliminated at most 10% (α) of the time. In an area with a true NTMR

equal to 0.00035 (pl) or less, if we repeat the MNTE survey a very large number of times,

we would incorrectly conclude that elimination has not occurred at most 10% (β) of the

time.”

If a district has a true NTMR between pl and pu, we say that the NTMR lies in the

“grey region.” We do not restrict the classification errors within the grey region. Within

this region, the risk of misclassification is higher than the smaller of α and β. To fully

understand classification properties for districts with true NTMR in the grey region, we

must examine the operating characteristic curve or the risk curve (see Section 2.5).

In the neonatal tetanus elimination surveys, we have selected pl and pu such that

some districts with true NTMR rates in the grey region have not technically met the def-

inition of elimination, but have achieved low enough NTMR rates that it is not a grave

error to mistakenly declare elimination in these areas, if that mistake were to occur. Elim-

ination surveys are only conducted when we have some confidence that elimination has

been achieved, so ideally most districts will not have true NTMR rates that lie within the

grey region. However, it is important to understand the inherent risk in the classification

procedure.

In an LQAS survey, shortening the grey region results in more precise classifications.

However, the length of the grey region is directly related to the sample size for the survey.

30



Table 2.1: Impact of the length of the grey region on the sample size. Single and double
sampling plans are presented for large populations (> 50, 000 live births per year) and a
population with 5,000 live births per year.

> 50, 000 live births 5,000 live births
Single Double Single Double

pu d n d1 n1 d2 n2 d n d1 n1 d2 n2

3.0 2 2,540 0 1,430 2 1,310 1 1560 0 1,200 1 430
2.0 3 4,780 0 2,140 4 4,070 1 2270 0 1,740 1 650
1.5 5 8,840 0 2,860 6 8,000 1 2560 0 1,970 1 720
1.0 14 28,760 0 4,280 16 29,870 1 3400 0 2,640 1 920

When searching for a rare event in the population, required sample sizes are generally

large, and we must balance precision and feasibility in our selection of pl and pu. Table

2.1 illustrates the impact of decreasing the grey region, lowering pu when pl = 0.00035,

α = 0.1 and β = 0.1 (as above). To convert the NTMR thresholds in Table 2.1 back

to NT incidence rates, see the discussion about sensitivity and specificity in Section 2.4.

Assuming sensitivity is 70% and specificity is 100%, these upper thresholds for NTMR

correspond to NT incidence rates of 3, 2, 1.5, and 1 cases/1000 live births; and the lower

NTMR threshold corresponds to an incidence rate of 0.5 cases/1000 live births

2.3.2 Finite population size effect

When the number of live births in a district is not sufficiently large (< 50, 000 live

births in the population), we model X using the hypergeometric distribution, X ∼

Hypergeometric(n,N,m), where n once again denotes the number of live births sampled.

N is the total number of live births and m = Np is the number of neonatal tetanus deaths

in the district over the 12 month survey period for a given NTMR p. When N is large,

the binomial and hypergeometric distributions are equivalent; the sample size and accep-

tance number for the survey will be identical regardless of which distribution is used for

the calculations.

To design an LQAS survey, we calculate the parameter m using pu and pl. The con-
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sequences of searching for a rare event in a finite population on the survey design are

nontrivial. The NTMR p can only take on a finite number of values, since m is an integer

by definition. Specifically, consider a population of 2,500 live births. The NTMR can only

take on certain values in the population: p = 0 with 0 NT deaths; p = 0.4/1000 live births

with 1 NT death; p = 0.8/1000 live births with 2 NT deaths; p = 1.2/1000 live births with

3 NT deaths; and so on.

When designing an LQAS survey, the grey region is usually no longer truly from pl

to pu, but is wider, because p can only take on a finite number of values. For instance, in

the example above with a population size of 2,000, if we select pl = 0.0005 and pu = 0.002,

then the true grey region spans from 0.004 to 2, because p cannot take on the value of

0.0005.

The lengthening of the grey region impacts smaller population sizes more than the

larger populations, where p can take on a wider range of values. It is important to discuss

the appropriateness of the grey region when designing a survey with finite population

sizes. For instance, if only 500 live births occur in a district, designing an elimination

survey based on pl and pu is difficult. Elimination has only been achieved if 0 NT deaths

occur in the district. The narrowest possible grey region is from 0 to 0.002, as p can only

take on the values 0, 0.002, 0.004, etc. It is more intuitive and more appropriate to discuss

absolute numbers of events, instead of focusing solely on rates, when dealing with very

rare events in a finite population.

Given that NT is an endemic disease and cases can sporadically occur, the size of

the target population should be sufficiently large to allow for the occurrence of acute,

random cases without triggering an alarm signifying a chronic level. Therefore, the total

number of eligible live births in a district should exceed 3,000 to conduct a meaningful

NT elimination survey.
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2.3.3 Cluster Surveys

Standard LQAS surveys usually select a simple random sample from the target popula-

tion. Using simple random sampling requires an enumeration of the entire population in

the district, sampling from this list, and then locating the sampled individuals. In MNTE

surveys, it is impractical to implement simple random sampling within districts. Cluster

sampling is logistically easier to carry out.

In NT elimination surveys, a cluster survey is conducted, but the data is analyzed

by treating it as a simple random sample. Clusters for the LQA-CS survey are selected

in the same manner as for a standard 30 x 7 cluster survey for immunization coverage

(Lemeshow and Robinson, 1985). Note that the number of clusters and number of house-

holds to visit within each cluster in the LQA-CS survey are different from the 30 x 7 cluster

survey.

As in the 30x7 surveys, probability proportional to size sampling is used for the se-

lection of clusters. Specifically, the probability of a cluster being included in the survey is

proportional to the number of live births in the survey.

Usually, cluster sampling increases the amount of variability in a survey, due to the

fact that outcomes are more similar for individuals in the same cluster than for individuals

in different clusters; so, to obtain a representative snapshot of the population, one needs

to sample from many clusters. This within-cluster similarity is often quantified using the

intracluster correlation coefficient (ICC or ρ); and the increase in variability in the survey

estimators is measured by the design effect (DEFF), usually greater than one and defined

to be the ratio of the variance of the survey using cluster sampling and the variance using

simple random sampling.

To obtain the same level of precision with a cluster sample as one would obtain with

a simple random sample, one needs to sample n ∗ DEFF individuals for the survey

(often referred to as the effective sample size). When the number of clusters is large, and

the population size within each cluster is large and approximately equal across clusters,
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DEFF ≈ 1 + (m− 1)ρ, where m is the number of individuals sampled in each cluster.

When ρ is small relative to m, such that DEFF ≈ 1, then we can treat the clus-

ter sample like a simple random sample (and this is the current practice for neonatal

tetanus surveys.) Historically, low design effects have been observed in surveys esti-

mating NTMR (Rothenberg et al., 1985). Additionally, elimination surveys are only con-

ducted when there is sufficient evidence that districts have low NT rates without any

clustering of cases, adding credibility to the operative assumption. Lastly, from October

2000 to August 2011, the LQA-CS survey for the validation of MNT elimination has been

implemented in 23 countries. One survey was conducted per country, except for India

and Indonesia, who conducted 13 and 3 surveys, respectively. From the 41 survey reports

available (where 4,571 clusters were visited), 42 neonatal deaths attributable to NT were

reported. None of the clusters reported more than one neonatal death attributable to NT.

Therefore, we select households for inclusion in the survey using cluster sampling,

and do not adjust for the impact of clustering in the survey (assume DEFF = 1), as we

have this strong evidence that clustering effects are negligible in MNTE surveys; in other

words, that DEFF = 1. If more than one NT death is found in a given cluster, efforts

should be made to determine if the NT infections were related and due to a common

cause or common risk factors. Specifically, if TT immunization rates vary substantially by

cluster and unclean delivery and/or harmful cord care practices exist, clustering of NT

cases is more likely. The cord care practice of one or several births attendants could also

be the critical risk indicator for NT in absence of sufficient TT coverage in a cluster.

If the NT cases have a suspected common cause, such as the same birth attendant

and no TT immunization, this important information should be presented and discussed

when the final decision about NT elimination is made. On the other hand, if the clustering

of NT cases is caused by lingering widespread use of hazardous delivery conditions or

contaminated traditional substances on the cord, then the clustering could suggest that

risky conditions and practices still exist in areas in which TT coverage is not sufficiently

high.
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2.3.4 Double sampling

A double sample procedure divides the total sample into two parts, and these parts are

then surveyed sequentially - whether the second part is carried out is conditional on the

results of the first part. This sampling procedure is analogous to interim monitoring in

clinical trials. For additional sequential LQAS designs, see Myatt and Bennett (2008);

Olives et al. (2009) for example.

Regardless of whether a single or double sampling plan is used, “failure to achieve

elimination” can be declared at any point in the survey if the number of detected NT

deaths surpasses the acceptance number, and the survey can be stopped early. If a large

number of NT deaths are observed early in the survey, the survey should not be stopped

until enough data (we require a representative sample of at least 250 mothers of eligible

live births) has been collected to assess the remaining risk factors for NT (e.g. TT coverage;

proportion of deliveries in a health facility and assisted by medically-trained attendants;

and use of traditional substances on the umbilical stump).

It is important to keep in mind that, when the survey is stopped early, the collected

data may not be representative of the entire district (because not all clusters have been

visited). On many occasions, we may not want to stop the survey, even after the sample

of 250 mothers was obtained. Specifically, if clusters are visited systematically (e.g. all

urban clusters are visited first), then the collected data is susceptible to selection bias.

Coverage estimates from the subsample obtained before the survey was stopped are no

longer generalizable to the entire population. If clusters are visited on a random basis,

the coverage estimates may be representative, even if the survey is stopped early. When

representative coverage estimates of the additional indicators (e.g. vaccination, cord care,

and clean delivery) are of interest, program managers must carefully consider whether

the collected data is a representative sample of the district. If it is unclear whether the

sample is representative, sampling should continue.

The double sampling plan has the advantage of allowing elimination to be declared
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from the results of a preliminary first sample if the number of NT deaths detected is very

low (e.g. 0). When the number of NT deaths in the first sample is not low enough to

declare elimination (and the number of NT deaths in the first sample does not exceed the

acceptance number), the second sample is necessary.

To construct a double sampling survey plan, we again specify thresholds pl, pu, α,

and β. We also need to specify an additional parameter, α1, which is the probability of

declaring elimination after the preliminary sample, given pu. This additional parameter

does not affect the overall α-level of the survey design, but instead serves as a guide

to select the sample size and decision rule for the preliminary sample. Based on these

parameters, we can find the minimum sample sizes for the preliminary and secondary

samples, n1 and n2, and the corresponding acceptance numbers d1 and d2, to meet our

survey design specifications.

The proposed double and single sampling plans are designed using identical overall

survey parameters pl, pu, α, and β. Therefore, to decide between a single and double sam-

pling plan, we evaluate cost-effectiveness and feasibility, and are not concerned about

the statistical precision of double versus single sampling (as they have the same preci-

sion). Thus the main reason that one would use a double sampling design is to reduce

the amount of money/time spent conducting the survey.

Double sampling is only more cost-effective if we expect that the district has achieved

elimination with some reasonable level of confidence. If the second sample is required,

the total sample size required for a double sampling survey is always greater than the

sample size for a single sampling survey. This result is due to the fact that we analyze

the data twice during the survey period and have two different opportunities to declare

elimination. In statistics, this issue is often referred to as “multiple comparisons”, and we

must adjust the classification errors to account for the fact that we look at the data twice.

So, to obtain the desired classification errors α and β, we must sample more individuals

in the double sampling plan to account for the inflated classification errors caused by

looking at the data twice. As a general rule, we want to minimize the probability that we
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will need the second part of the sampling.

Note that planning a double sampling survey also requires some extra effort when

contrasted to a single sampling plan. Specifically, one must decide which clusters will

be included in the first and in the second sample. Clusters should be divided between

the samples such that the first sample is representative of the entire target population.

Otherwise, inferences about the additional indicators (vaccination coverage, clean de-

livery, cord care, etc.) will not be representative of the surveyed population and will

consequently be difficult to interpret. As an example, we cannot spatially partition the

district to construct the first and second sample, though data collection would be much

easier subsequent to such a partitioning. Additionally, one must analyze the data from

the small sample, and decide whether the next sampling stage should occur. This interim

analysis could be logistically challenging. Further, survey preparations are necessary for

all clusters (for both the first and second sample) and may be considerable if a second

part is required.

When choosing between a single versus double sampling plan, the deciding factor

should be: “Is the cost/time savings that are potentially associated with double sampling

worth the additional logistics that go into planning a double sampling survey and the

potential extra cost of the second part?” So we need a measure of the odds that a second

sample will be required. The odds of requiring a second sample decrease with the odds

that the NT rate is well-below 1 in 1000 live births. If we expect that a second sample

will be required in the double sampling plan (i.e. we are uncertain about whether or not

elimination has been achieved), then we should choose a single sampling plan, to save

both time and money. More commonly, it may simply be logistically infeasible to conduct

a double sampling survey. For instance, a lack of communication equipment and/or long

travel times between clusters would preclude the midpoint evaluation (to determine if

the second sample is required).

In summary, the decision of whether to use a single or double sampling plan requires

some prior information about the district-level NTMR and knowledge of the cost and
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logistical differentials for single and double sampling plans.

2.4 Sensitivity, specificity and selection bias in mortality
surveys

The definition of NT elimination is < 1 case of NT per 1000 live births. However, it is

operationally easier to accurately monitor NT mortality, rather than detect actual cases

of NT. We thus use NT mortality as a marker of what we ideally would like to measure,

NT incidence. Consequently, we must consider the implications of measurement error

induced by monitoring a proxy of our outcome of interest.

We can rephrase this issue in terms of the sensitivity and specificity of the survey

instrument/protocol. In an NT survey, sensitivity is the probability that an NT case is

detected, given that the NT case is included in the sample. Alternatively, we can state the

sensitivity as the proportion of NT deaths in the sample that are detected by the survey

instrument. An NT case can fail to be detected in two different ways: (1) the case is not

fatal, or (2) the case is fatal, but NT is not deemed the cause of death.

NT cases are diagnosed using the verbal autopsy method (Anker et al., 1999). If we

can assume that all deaths due to NT are diagnosed properly, then the sensitivity for our

survey is equal to the mortality rate among cases of NT in the population. Once again, if

the mortality rate is low, then we are using a very insensitive diagnosis for NT, and we

need to adjust the survey parameters accordingly. Low sensitivity will result in possibly

declaring that elimination has occurred, when it truly has not.

Selection bias and recall bias are also common issues in retrospective neonatal mortal-

ity surveys (Becker et al., 1993; Central Statistical Agency and ORC Macro, 2006; National

Population Commission and ICF Macro, 2009; National Statistics Office and ICF Macro,

2009). When neonatal death rates observed in these surveys are lower than expected,

we have evidence of non-sampling errors induced by selection and recall bias. Omission

of live births and subsequent deaths for children who are not living at the time of the
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interview is usually the most common source of non-sampling error in surveys of live

births; children who die in early infancy are the most commonly omitted births. Addi-

tionally, households with live children are more likely to be suggested by the local guides,

and houses with potential infant deaths are consequently bypassed. Some surveys have

found that guides may also incorrectly displace child mortalities into the neonatal age

group when under pressure to find NT deaths. Poor quality in the reporting of age at

death could lead to under-reporting of infant deaths. Lastly, in some surveys, moth-

ers with children were more likely to be at home at the time of the survey, as opposed

to mothers without children, increasing the potential to miss additional neonatal deaths

(Sokal et al., 1988). Selection bias could result in declaring that elimination has occurred

when it has not.

Understanding the potential of non-sampling errors induced by selection and recall

bias to impact the underestimation of NT incidence is important to obtaining accurate sur-

vey results. We can adjust the sensitivity of the survey instrument downward to account

for this underestimation induced by these biases.

Specificity is the probability that a live birth included in the survey is correctly classi-

fied as not being an NT case. The specificity of the survey will be a function of the infant

mortality rate and the specificity of the verbal autopsy method and should be close to 1

for NT surveys. If the verbal autopsy method for detecting NT deaths correctly confirms

all non-NT deaths, then the specificity of the survey instrument is 1, and we do not mis-

classify any neonatal deaths as NT cases. Low specificity will result in possibly declaring

that elimination has not occurred, when it truly has.

To adjust the survey design parameters pl and pu for the sensitivity and specificity of

the survey instrument, we can exploit the relationship:

p = pixsensitivity + (1− specificity)x(1− pi)

where p is the measured NT mortality rate using current survey protocol, and pi is the

true incidence rate of NT in the population.
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The mortality rate among the births with NT sets an upper bound for the sensitivity.

For example, if we assume that the mortality rate among the NT cases is 80%, then the

highest possible sensitivity for the survey is 80%. In this case, we assume that NT mortal-

ity is high (80%), all cases of NT in the sample are detected, and selection and recall biases

are not an issue. When NT mortality is lower, say 50%, and we expect that only 80% of

NT deaths would ever be detected in the survey, then the sensitivity is 80% ∗ 50% = 40%,

and we need to adjust pl and pu downward by this 40%. Additionally, it is unreasonable

to assume that recall and selection bias will not cause downward bias in NTMR estimates.

Given that recall and selection biases impact most retrospective child mortality surveys,

we should adjust the sensitivity further to reflect these biases.

It is clear that underestimating sensitivity is more conservative (i.e. harder to declare

elimination) than overestimating sensitivity. Failing to adjust for sensitivity of the survey

instrument will produce survey results that are difficult to interpret. It is much more

likely that NT elimination could be incorrectly declared if the potentially low sensitivity

of the survey instrument is ignored.

2.5 An explanation of probability calculations for operat-
ing characteristic curves

The LQA-CS method is considered the most practical for assessing whether MNT elim-

ination has been achieved (Stroh and Birmingham, 2002). If districts at highest risk are

surveyed and a pass decision is made, we conclude that other districts (at lower risk) have

also achieved NT elimination (as discussed in Section 2.6).

The operating characteristic (OC) curve is defined as the probability of finding at most

d (the acceptance number) NT deaths in the survey as a function of the true NT mortality

rate in the district. To calculate the OC curves for a single sampling plan with sample size
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n and acceptance number d, we use properties of the binomial distribution to calculate:

OC(p) = P (X ≤ d|p) =
d∑

k=0

(
n

k

)
pk(1− p)(n−k)

Recall that the OC curve is a function of p, the true NTMR rate in the district. The objective

is to make the right tail of the OC curve as small as possible (minimize the probability of

declaring elimination when p is large) and the left tail as large as possible (maximize the

probability of declaring elimination when p is sufficiently small).

If the number of live births in the district is less than 50,000, because of the very low

incidence of interest here, we recommend calculating the OC curve using the hypergeo-

metric distribution (Section 2.3.2). The hypergeometric distribution accounts for the fact

that the population size is finite (and is otherwise identical to the binomial distribution,

which assumes an infinite population size). For populations with fewer than 50,000 live

births, we calculate the OC curve using the formula:

OC(p) = P (X ≤ d|N,m = Np) =
d∑

k=0

(
m
k

)(
N−m
n−k

)(
N
n

)
where p = m/N . Note that p can only take on a finite number of values when we use the

hypergeometric distribution, since m = {0, 1, 2, , N} is finite.

Calculations for the OC curve using a double sampling plan are slightly more com-

plex. We design the surveys so that the probability of declaring elimination when p > pu

is approximately the same for the single and double sampling plans. Equivalently, we say

that the α-error of the single sampling plan is equal to the α-error of the double sampling

plan. We also ensure that these plans have approximately equal β-errors.

To calculate an OC curve for a double sampling plan, we again need to calculate the

probability that we declare elimination (pass) for a given rate of NT mortality in the pop-

ulation, but we need to consider the fact that we can declare elimination at two different

time points. We calculate (1) the probability of passing at the first stage of sampling;

and (2) the probability of passing at the second stage of sampling given that we did not

pass at the first stage. To obtain the total probability of passing a district when using a
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double sampling plan, we add these two probabilities (because the events are mutually

exclusive).

OC(p) = P (pass|p)

= P (pass at stage 1|p) + P (pass at stage 2 and not at stage 1|p)

= OC1(p) +OC2(p),

where

OC1(p) = P (X1 ≤ d1|p) =

d1∑
k=0

(
n1

k

)
pk(1− p)n1−k

OC2(p) =

d2∑
k=d1+1

P (X1 = k|p)P (X2 ≤ d2 − k|p)

=

d2∑
k=d1+1

(
n1

k

)
pk(1− p)n1−k

d2−k∑
j=0

(
n2

j

)
pj(1− p)n2−j

Note that we first calculate the first stage sample size and acceptance number, n1 and

d1, using thresholds pl, pu, α1, and set β1 = 1 (because we use the first sample to ‘stop

early’ if we can declare elimination). Then, to finalize the second-stage sampling design,

we calculate OC(p) over a range of n2 and d2, fixing n1 and d1, searching for a sample

size and acceptance rule with the pre-specified design properties. Then, using OC(p),

we examine whether the selected sample sizes and acceptance numbers meet the design

specifications (governed by pl, pu, α, andβ).

Similar to the single sampling plan, we can use the hypergeometric distribution to

calculate the OC curve for a double sampling plan when the number of live births in a

district is less than 50,000 in the 12 month survey period. In this case, we would calculate
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OC1(p) and OC2(p) using the hypergeometric as follows:

OC1(p) = P (X1 ≤ d1|p) =

d1∑
k=0

(
m
k

)(
N−m
n1−k

)(
N
n1

)
OC2(p) =

min(n1,d2)∑
k=d1+1

P (X1 = k|p)P (X2 ≤ d2 − k|p)

=

min(n1,d2)∑
k=d1+1

(
m
k

)(
N−m
n1−k

)(
N
n1

) d2−k∑
j=0

(
m−k
j

)(
N−n1−(m−k)

n2−j

)(
N−n1

n2

)

2.5.1 Risk Curve

A closely related concept to the OC curve is the risk curve. The risk curve is a function

that gives the risk of making a mistake in the classification. Its definition requires the

same quantities as the OC curve, plus a cut-off point, p∗, to demarcate the acceptable

NTMR from the unacceptable. Minimization of the risk curve is the desideratum of a

good design. Plotting the risk curve clearly indicates the true NTMR at which we are most

likely to “make an error” in declaring that elimination has or has not occurred (where

elimination is defined as NT incidence < 1 case per 1000 live births. Adjusting p∗ for the

imperfect sensitivity and specificity of the survey, we define p∗ = sensitivity ∗ 1/1000 +

(1− specificity) ∗ 1/1000 = 0.7/1000 NT deaths per 1000 live births.

2.6 Choosing a sampling plan

To design an LQA-CS survey for NT elimination, we progress through the following

steps.

1. Select pil and piu, the relevant upper and lower thresholds for an LQA-CS survey

based on NT incidence. We select pil = 0.5 cases/1000 live births and piu = 3

cases/1000 live births.
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2. Select error rates α and β. We select α = 0.1 and β = 0.1. For the double sampling

plans, we also choose α1 = 0.05, β1 = 1.

The choice of pil, p
i
u and α and β is equivalent to stating: “In a district with a true NT

rate equal to 0.003 (piu) or more, if we repeat the MNTE elimination survey a number

of times, we would incorrectly conclude that neonatal tetanus has been eliminated

less than or equal to 10% (α) of the time. And in a district with a true NT rate equal

to 0.0005 (pi1), if we repeat the MNTE survey a very large number of times, we would

incorrectly conclude that elimination has not occurred 10% (β) of the time.”

3. Adjust the thresholds pil and piu for the estimated sensitivity and specificity of the

survey instrument (includes the mortality rate adjustment), to obtain new thresh-

olds pl and pu. We assume that the sensitivity is 0.7 and specificity is 1, result-

ing in mortality thresholds pl = 0.35 NT deaths/1000 live births and pu = 2.1 NT

deaths/1000 live births.

4. Calculate sample size based on α, β, pl and pu (and α1 and β1 for double sampling

plans.). If the size of the target population is known and is less than 50,000 live

births, we use the formulas based on the hypergeometric distribution for the calcu-

lations. Otherwise, we use the binomial distribution. Usually, the hypergeometric

distribution will be more appropriate, as the target population of live births is usu-

ally substantially less than 50,000.

For a large target population (> 50, 000 live births), we arrive at the following designs.

When using a single sampling plan, we need to sample 2,540 live births, and declare

elimination if we observe less than or equal to 2 cases of NT mortality.

With a double sampling plan, we should initially sample 1,430 live births. If we do

not observe any cases of NT mortality, we declare elimination. If we observe greater than

2 cases, we declare elimination has not been achieved. If we observe exactly 1 or 2 cases,

we sample an additional 1,310 live births. If we observe less than or equal to 2 cases

among all 1, 430 + 1, 310 = 2, 740 live births, then we declare elimination. Otherwise, we
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conclude NT elimination has not occurred.

The OC curves corresponding to these sampling designs are plotted in Figure 2.1.

Note that the single and double sampling OC curves appear nearly identical, reflecting

the fact that the single and double sampling plans were designed to have comparable

statistical classification properties.

Figure 2.2 shows the risk curves corresponding to the OC curves in Figure 2.1 when

p∗ = 0.7 deaths/1000 live births. Using these figures, it is clear that the risk of misclassi-

fying a district as having achieved elimination is high when the true NTMR in a district
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(a) Single Sampling (b) Double Sampling

Figure 2.1: OC curves for single and double sampling plans. Sample size and acceptance
number calculated using pl = 0.00035, pu = 0.0021, α = 0.1 and β = 0.1.

(a) Single Sampling (b) Double Sampling

Figure 2.2: Risk curve for single and double sampling plans. Sample size and acceptance
number calculated using pl = 0.00035, pu = 0.0021, α = 0.1 and β = 0.1.
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is between 0.7 and 2 NT deaths/1000 live births. We are willing to accept this risk, be-

cause an NTMR in this range is practically very close to achieving the formal definition

of elimination and is consequently considered a major public health achievement for the

country.

The risk of declaring that a country has not achieved elimination when it truly has

remains relatively low (< 30%). This property of the survey design is a consequence of

choosing a value of pl that is closer to p∗ than pu. If we select pl and pu such that they are

equidistant from p∗ (and choose α = β), the risk of incorrectly declaring that a country

has or has not achieved elimination should be close to 50% when the true NTMR p is very

close to p∗ (irrespective of whether it is higher or lower).

In Table 2.2, we list the probability of declaring that elimination has occurred, for

various values of p (these are plotted in the OC curves as well, but are listed below for

reference).

In Table 2.3, we present sample sizes and decision rules using the design parameters

in Section 2.6, when the target population size is less than 50,000 live births.
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Table 2.2: OC calculations for single and double sampling plans. Upper and lower thresh-
olds are denoted with a *. Sample size and acceptance number calculated based on the
parameters: pl = 0.35 NT deaths/1000 live births and pu = 2.1 NT deaths/1000 live births,
α = 0.1 and β = 0.1.

p (/1000) Single Double
0.0 1.000 1.000
0.1 0.998 0.998
0.2 0.985 0.984
0.35∗ 0.939 0.934
0.5 0.864 0.855
0.7 0.737 0.723
1.0 0.534 0.519
2.0 0.118 0.117
2.1∗ 0.099 0.099
3.0 0.018 0.022
4.0 0.002 0.004
5.0 0.0003 0.001

Table 2.3: Sample sizes for finite population sizes. pl = 0.35/1000; pu = 2.1/1000; α = 0.1;
β = 0.1; α1 = 0.05. In single sampling plan, sample n live births and denote number of NT
deaths detected as X. Declare elimination if X ≤ d. In the double sampling plan, sample
ni live births at stage i and denote number of NT deaths as Xi. Declare elimination when
X1 ≤ d1 and when X1 +X2 ≤ d2.

Single Sampling Double Sampling
Pop pl pu d n α β d1 n1 d2 n2 α1 α2 β

3,000 0.33 2.33 1 1,360 0.10 0.00 0 1,050 1 380 0.05 0.10 0.00
4,000 0.25 2.25 1 1,480 0.10 0.00 0 1,140 1 410 0.05 0.10 0.00
5,000 0.20 2.20 1 1,560 0.10 0.00 0 1,200 1 430 0.05 0.10 0.00
6,000 0.33 2.17 1 1,610 0.10 0.07 0 1,240 1 450 0.05 0.10 0.07
7,000 0.29 2.14 1 1,650 0.10 0.06 0 1,270 1 470 0.05 0.10 0.06
8,000 0.25 2.12 1 1,690 0.10 0.04 0 1,300 1 470 0.05 0.10 0.04
9,000 0.33 2.11 1 1,710 0.10 0.10 0 1,320 1 480 0.05 0.10 0.10

10,000 0.30 2.10 1 1,730 0.10 0.08 0 1,330 1 490 0.05 0.10 0.08
15,000 0.33 2.13 2 2,370 0.10 0.03 0 1,340 2 1,220 0.05 0.10 0.03
20,000 0.35 2.10 2 2,440 0.10 0.04 0 1,380 2 1,250 0.05 0.10 0.05
25,000 0.32 2.12 2 2,440 0.10 0.04 0 1,380 2 1,240 0.05 0.10 0.04
30,000 0.33 2.10 2 2,470 0.10 0.04 0 1,400 2 1,260 0.05 0.10 0.05
40,000 0.35 2.10 2 2,490 0.10 0.05 0 1,400 2 1,290 0.05 0.10 0.06
50,000 0.34 2.10 2 2,500 0.10 0.05 0 1,410 2 1,280 0.05 0.10 0.05
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3.1 Introduction

Lot Quality Assurance Sampling (LQAS), also referred to as sampling for attributes or ac-

ceptance sampling, has a long history of applications in industrial quality control (Dodge

and Romig, 1929). In the past 20 years, LQAS applications have become increasingly

popular in global health care surveys (Robertson and Valadez, 2006).

Recently, LQAS cluster survey designs were introduced to classify prevalence of acute

malnutrition as acceptable or high in emergency settings (Deitchler et al., 2007, 2008).

LQAS malnutrition surveys were criticized for reporting too many false positives (clas-

sifying areas of acceptable malnutrition status as unacceptable) (Bilukha, 2008; Bilukha

and Blanton, 2008). The poor classification properties of LQAS surveys were claimed

many years ago by Sandiford (1993) in the context of vaccination coverage. To aid in

the interpretation of malnutrition surveys, Bilukha and Blanton (2008) suggest reporting

probability of high malnutrition in an area within the study results. In response, Olives

and Pagano (2010) illustrate the difficulties in reporting false positive rates and illustrate

how a Bayesian methods must be used to achieve this objective.

Additionally, existing LQAS malnutrition survey designs require sampling a large

number of clusters to minimize the impact of within-cluster correlation. The cost-

effectiveness and feasibility of survey designs that require visiting over 60 different clus-

ters is questionable.

In this paper, we review LQAS survey designs for monitoring global acute malnutri-

tion and propose extensions to the existing designs to address limitations in LQAS mal-

nutrition surveys. In Section 3.2, we review LQAS surveys for monitoring the prevalence

of malnutrition in children. In Section 3.3, we propose a simple adjustment to sample

size calculations for LQAS surveys to incorporate within-cluster correlation. In Section

3.4, we draw from the historical quality control literature to introduce a framework for

incorporating LQAS into longitudinal surveillance systems for acute malnutrition. This

framework provides principled guidelines for designing an LQAS-type classification pro-
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cedure to detect changes in malnutrition prevalence over time in a region.

3.2 Review of LQAS surveys for malnutrition

Malnutrition is frequently quantified using the binary indicator global acute malnutri-

tion (GAM), usually defined as a weight-to-height Z-score (WHZ) < −2 and/or bipedal

edema; alternatively, GAM is defined as a middle-upper arm circumference (MUAC)

< 125mm and/or presence of an edema. The World Health Organization classifies mal-

nutrition prevalence as critical if the prevalence of GAM in a population is ≥ 15% (World

Health Organization, 2000). Severity of malnutrition in an area is often assessed using

surveys of GAM prevalence in children age 6-59 months (Deitchler et al., 2007). It is im-

portant to accurately classify the prevalence of malnutrition as high and to detect sudden

rises in malnutrition prevalence using cost-effective surveys in order to inform when aid

should be sent to a region and how resources should be allocated to reduce malnutrition.

The prevalence of acute malnutrition has traditionally been assessed using 30x30

cluster sampling surveys (30 clusters of 30 children) (Binkin et al., 1992), though there

is currently no general consensus as to the optimal survey design to assess the prevalence

of acute malnutrition (Spiegel, 2007). Deitchler et al. (2007) propose using LQAS surveys

with cluster sampling to assess the prevalence of global acute malnutrition (GAM) based

on WHZ scores and field test 33x6 and 63x7 cluster survey designs using pre-specified

classification thresholds. LQAS surveys are typically less costly than traditional 30x30

cluster survey designs for estimating the prevalence of malnutrition, due to the smaller

sample sizes required (Deitchler et al., 2008).

We review the LQAS malnutrition surveys presented in Deitchler et al. (2007). In a

study region, community health workers collect measurements on n children, and find

that X out of the n children have GAM. The number of children with GAM is then mod-

eled using the binomial distribution, X ∼ Binomial(n, p), where p is the true proportion

in the surveyed area. For some number d, if X > d, malnutrition prevalence is classified
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as high; if X ≤ d, then the malnutrition prevalence is classified as acceptable.

In choosing a sampling design for an LQAS survey, the goal is to select a sample

size n and decision rule d such that we run a small risk of misclassifying districts as

requiring intervention or not. The LQAS survey design is determined by the following

two equations, which control the risk profile of the classification procedure:

P (X > d|p ≤ pl) ≤ β

P (X ≤ d|p ≥ pu) ≤ α

We want to minimize the risk of classifying prevalence as high when the true prevalence

of GAM is “low,” and minimize the risk of classifying prevalence as acceptable when

the true prevalence is “high.” The meanings of “low” and “high” are determined by the

choice of pl and pu, the lower and upper thresholds, chosen based on contextual knowl-

edge. To design a survey, we specify α, the probability of classifying as acceptable when

the true GAM prevalence is greater than pu; and β, the probability of classifying preva-

lence as high when the true GAM prevalence is less than pl.

Policy-makers decided to select α = 0.1, β = 0.2 as acceptable risks, and selected

3 couplets for pl and pu: (1) 5-10%, (2) 10-15%, and (3) 15-20%. Based on these design

features, 33 × 6 (n = 198) and 67 × 3 (n = 201) cluster sampling designs were chosen as

guide designs for monitoring malnutrition prevalence, with respective decision rules 13,

23, and 33 (Deitchler et al., 2007). (Note that these designs have classification risks that

are near the α = 0.1 and β = 0.2, but do not necessarily meet these cut-offs).

Due to the infeasibility of implementing simple random sampling in emergency set-

tings, children are sampled within villages (cluster sampling). Olives et al. (2009) demon-

strate via simulation that these survey designs result in negligible clustering effects, be-

cause the cluster sample sizes are small (size 3 or 6) and the number of clusters sampled is

large. For traditional 30× 30 surveys, the effects of clustering vary by region (Katz, 1995).
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Table 3.1: Average GAM prevalence, by WHZ (W) and MUAC (M). Number of surveys
(Surv.) at each location; and number of kids, households (HH), and clusters sampled
(Clus.); and average age of the sampled children in months are shown. Locations (Loc.)
are Garissa (G) - pastoral (P), riverine (R), and urban (U); Mandera (M) - pastoral (P),
riverine (R), and urban(U); Mathere Slum (MS), Sudan (S) - urban (U) and riverine (R).

Loc. Surv. Kids HH Clus. GAM-W GAM-M Age
GP 3 224.7 163.0 33.0 15.5 3.8 30.3
GR 3 225.7 168.0 33.0 16.8 2.7 31.2
GU 3 231.3 170.0 33.0 14.6 5.4 31.7
MP 3 226.7 181.0 33.0 27.9 13.4 27.4
MR 3 221.7 151.7 33.0 36.6 12.3 30.6
MU 3 234.7 161.3 33.0 10.3 8.4 29.5
MS 3 230.7 139.0 33.0 21.4 6.1 30.8
SU 4 317.5 177.0 32.5 22.3 10.5 30.2
SR 2 222.5 137.0 33.0 21.2 7.7 30.9

Table 3.2: Number of surveys with high prevalence classification, out of 28 total surveys.

pl − pu Couplet High Gam
5-10% 26
10-15% 25
15-20% 19

3.2.1 LQAS surveys for monitoring malnutrition in Kenya and the Su-
dan

LQAS 33 × 6 surveys were conducted at three sites in South Sudan and seven sites in

Kenya at six month intervals during 2008 and 2009. Most sites have conducted three

rounds of surveys. Table 3.1 contains summary statistics for the surveys conducted at

each location. Trends in GAM prevalence by location across time are shown in Figure 3.1.

Prevalence of malnutrition is high in each location, peaking in the Mandera region. The

estimates of GAM prevalence differ substantially when MUAC, rather than WHZ score, is

used to construct the GAM indicator. Following standard protocol for LQAS malnutrition

surveys, we use WHZ score to construct the GAM indicator in our analyses.
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Figure 3.1: Prevalence of GAM by location

Using the pre-specified LQAS malnutrition survey designs, we analyze the results of

28 different 33× 6 LQAS surveys according to the survey protocol. Because all of the sur-

veys included more than 198 children (most had∼ 220 children in the survey), for sake of

this discussion, we randomly deleted observations from the surveys to produce samples

of 198 and used the standard LQAS decision rules. We repeated this procedure 100 times,

and determined on average, in how many surveys we classified the prevalence of GAM

as high, based on the 3 couplets above. Results of the data analysis are presented in Table

3.2. The prevalence of GAM has seasonal and regional variations, but is chronically high

in most regions.

3.3 Incorporating clustering

Current LQAS cluster sampling designs for monitoring GAM assume that classification

risks calculated under simple random sampling (SRS) are preserved in the cluster sam-
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pling design. Assuming individuals within clusters are similar, cluster sampling will

inflate classification risks, with the amount of inflation depending on the sample size per

cluster and on the intracluster correlation (Lohr, 1999).

Define K as the number of clusters in the population; k as the number of clusters

sampled; M as the population size within each cluster (assumed equal across clusters);

andm as the sample size per cluster. The intracluster correlation quantifies the magnitude

of the between cluster variability in prevalence relative to the within cluster variability,

and can be defined as

ρ = 1− M

M − 1

SSW

SSTO
,

where M is the within-cluster population size; SSW is the within-cluster sum of squares;

and SSTO is the total sum of squares (Lohr, 1999).

Recently, several methods have been proposed for preserving classification risk when

clustering is present (Pezzoli et al., 2009; Greenland et al., 2011; Hedt-Gauthier et al., 2012).

Results from previous surveys suggest that ρ may be low enough in the malnutrition set-

ting that current LQAS designs are valid (Deitchler et al., 2008), while other studies incon-

clusively suggest clustering of malnutrition status exists at the household- or village-level

(Fenn et al., 2004; Katz, 1995).

Simulation studies verified that current LQAS designs in the malnutrition setting pre-

serve classification risks (Olives et al., 2009). However, making this strong parametric

assumption and relying on a ‘low enough’ ρ could lead to problems when ρ is high. Ad-

ditionally, the cost effectiveness of the current designs are questionable, because they

requiring visiting a large number of clusters, which may be infeasible in practice (Binkin

et al., 1992).

We propose a simple design procedure to incorporate clustering. Estimates from clus-

ter sampling survey designs have higher variances than those from simple random sam-

ples. Following Rao and Scott (1992), we exploit the relationship between the intraclass

correlation (ρ) and the design effect to adjust the effective sample sizes used. The effec-
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tive sample size is the sample size required if we were to take a simple random sample

from the population to achieve the same variance as in the cluster survey design (Rao and

Scott, 1992).

We assume that (1) the number of individuals sampled per cluster m is constant, (2)

the population size within each cluster M is large and is equal across clusters, and (3) the

number of clusters in the population K is large. (These assumptions are identical to those

in Hedt-Gauthier et al. (2012) and Pezzoli et al. (2009)). Then, the design effect is (Kerry

and Martin Bland, 2001):

DEFF = 1 + (m− 1)ρ.

When the number of clusters in the population K is small (i.e. we sample a significant

fraction of the clusters in the population), the design effect is approximately:

DEFF = 1 + (fm− 1)ρ

where f is the first stage finite population correction, (1 − k/K) (see Section 3.8.1 for

derivation).

To design an LQAS survey with cluster sampling, we iterate through choices of m

and k until we find a decision rule that meets the classification risks α and β for a given

choice of pl and pu. The algorithm proceeds as follows:

1. For a given m and k, calculate the effective sample size , n∗ = n/DEFF , where

n = mk. Round n∗ to the nearest integer.

2. Search for a decision rule d∗ using the standard binomial LQAS model with sample

size n∗, specifying α, β, pl, and pu.

3. To obtain the final decision rule, calculate d∗DEFF and round this quantity to the

nearest integer, to obtain the decision rule d.

4. The final sample size is n, consisting of k clusters of size m, and the decision rule is

d.
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For a given k, we are not guaranteed that sample size and decision rule exist that

meet the risk thresholds, α and β. To find the minimum number of clusters that must be

sampled, we consider the properties of the effective sample size as m (the within-cluster

sample size) increases. Using this formulation, we see that as m gets large, the effective

sample size converges to

n∗max =
k

(1− k
K

)ρ

(see Section 3.8.2 for derivation). We must sample enough clusters such that a decision

rule exists for n∗max that meets the design specifications under simple random sampling

using the binomial model.

This method for sample size calculation extends the existing methods (e.g. Pezzoli

et al. (2009); Hedt-Gauthier et al. (2012)) by allowing for a finite number of clusters in the

population. The method is conceptually closer to Hedt-Gauthier et al. (2012), relying on

specification of the intraclass correlation ρ, rather than the standard deviation of p, sd(p)

(Pezzoli et al., 2009). All of these methods will produce similar results when pl and pu are

bounded away from 0 or 1, but differ when pl and pu are close to 0 and 1. Fixing ρ as a

constant instead of sd(p) guarantees that the support of p is always between 0 and 1.

The major limitation to our clustering adjustment is the potential for rounding errors

to inflate the classification risks, α and β. Because we have rounded in steps (1) and (3),

our procedure is inexact and classification risks will generally be close to, but not exactly

equal to, α and β. Rounding generally slightly increases one of α or β, but not both (see

Figure 3.3). Additionally, as in Hedt-Gauthier et al. (2012), an estimate of ρ is needed

to design the survey. In an ongoing longitudinal surveillance program, we can update

estimates of ρ over time.

We no longer need to stay within the confines of the 67 × 3 or 33 × 6 designs to

ensure that clustering does not inflate our classification risks. Insofar as we can obtain

a reasonable estimate of ρ, we can design surveys that meet the classification risks for

various combinations of m and k. For instance, suppose we know that approximately

20 children can be sampled in a cluster per day. Then, we could fix m = 20, and use
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Figure 3.2: Sample sizes for LQAS survey designs when pl = .1, pu = .15, α = .1, β = .2,
comparing finite(K = 20) versus infinite number of clusters, when ρ = 0.05.

the design procedure above to determine the number of total clusters that we need to

visit. Alternatively, we could compare the expected cost of different choices of m and k to

decide on a final design (Hedt-Gauthier et al., 2012).

To illustrate the performance of the design effect correction for clustering, we evaluate

the properties of the LQAS survey design with pl = 0.10, pu = 0.15, α = 0.1, and β = 0.2

in simulation. To construct our two simulated populations, we generate K = 20 cluster

level prevalences from a Beta distribution, with correlation coefficient ρ = 0.05 and mean

prevalences equal to pl and pu. We then scale the 20 prevalence estimates so that their

means are exactly equal to pl or pu, and their intracluster correlations are exactly equal.

Therefore, the prevalence estimates within clusters no longer follow a Beta distribution,

but have the correct means and intracluster correlations.

Results of the simulation are shown in Figures 3.2 and 3.3. Assuming the number
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(a) Classification risks (b) Rounding error

Figure 3.3: Classification risks and rounding error for finite cluster LQAS survey designs
when pl = 0.10, pu = 0.15, α = 0.1, β = 0.2, K = 20, and ρ = 0.05. Panel (a): empirical
(dotted line) and calculated (solid line) classification risks. Panel (b): rounding error for
the decision rule (d∗DEFF − d).

of clusters in the population is infinite will result in a much larger sample size than nec-

essary, when the true number of clusters in the population is small (Figure 3.2). In the

simulated data, the estimated classification risks are close to the empirically calculated

risks, and differences between the estimated and empirical risks are driven by rounding

error (Figure 3.3). Rounding error results in an increase in one of α or β; and a decrease

in the other.

3.4 Designing surveillance tools to detect changes over
time

How to design and interpret the results of an LQAS survey for malnutrition depends on

the goals of the survey. We consider two different motivations for conducting an LQAS

survey.
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First, consider an LQAS design to determine if regions are meeting pre-specified

guidelines for intervention (Setting 1). For instance, the WHO recommends setting up

therapeutic feeding centers in populations with GAM prevalence in children 6-59 months

greater than 10% (World Health Organization, 1999). Implementing LQAS in this frame-

work is straightforward, choosing pl and pu such that feeding centers are set up in popu-

lations with prevalence pl or lower with probability less than or equal to α, and feeding

centers are not set up in populations with prevalence pu or higher with probability less

than or equal to β. We can use the LQAS protocol described in Sections 3.2 and 3.3 to de-

sign these surveys. For instance, we might choose pl = 5% and pu = 10%, acknowledging

the fact that the risk of intervening in areas with prevalences between 5-10% is greater

than α and increases as the prevalence approaches the upper threshold 10%.

Alternatively, for programs with longitudinal surveillance of malnutrition, the goal of

the survey might be to detect changes in the malnutrition prevalence signalling a malnu-

trition crisis (Setting 2). If we observe a substantial spike in the malnutrition prevalence

in a population, we need to quickly intervene. In this section, we discuss designing LQAS

surveys for detecting spikes in the malnutrition rates (Setting 2). For now, we assume that

the effects of clustering are negligible (i.e. we collect a simple random sample at each time

point). In Section 3.4.2, we address how to adjust for using a cluster sampling design at

each time point.

In the manufacturing industry, the distinction between Setting 1 and Setting 2 is

analogous to the difference between quality control and process control (Sower et al.,

1993). Quality control is concerned with balancing the number of defective goods sold

to the consumer with the cost of repairing defective goods for the producer. Detecting

rises in malnutrition prevalence is inherently tied to statistical process control (Colosimo

and Del Castillo, 2006). In process control, an indicator (e.g. malnutrition prevalence) is

tracked over time, and an alarm is sounded when the indicator goes ‘out of control’ (when

a spike in malnutrition prevalence occurs). Knowledge of when a process is ‘in control’

(baseline acceptable malnutrition prevalence) is necessary for understanding when the
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process is ‘out of control.’

This baseline acceptable rate of malnutrition varies across populations, due to differ-

ences in body-types or different definitions of GAM. For instance, pastoralist populations

tend to be tall and thin. Relatively healthy children in pastoralist population are more

likely to be classified as malnourished than those in other populations, when GAM is

defined using WHZ scores (Myatt et al., 2009).

When this baseline acceptable rate is unknown, we may be able to specify a range

of rates that are acceptable for a given population, e.g. between 0-5%. Equivalently, we

specify a baseline distribution of acceptable malnutrition rates, denoted f0(·). We then

compare this ‘in-control’ baseline distribution to the data that we collect to determine if

we have observed a spike in malnutrition rates.

Our survey design procedure for detecting spikes in malnutrition in a population

where the baseline rate is unknown is motivated by Yousry et al. (1991), who suggest

using empirical Bayes process control theory to monitor the defect rate using binary indi-

cators when the baseline in-control rate is unknown. We apply this general approach to

aid in the design of LQAS surveys for monitoring GAM.

While our survey design uses empirical Bayes principles to estimate the baseline dis-

tribution, sample size and decision rule calculations are based on classical acceptance

sampling theory. The distinction between Bayesian acceptance sampling (Olives and

Pagano, 2010) and classical acceptance sampling is described in Section 3.7.

When designing surveys to detect sudden rises in malnutrition, we consider four

different scenarios:

1. the baseline rate of malnutrition, p0, is known,

2. the baseline distribution of malnutrition f0(·) is known,

3. we have some historical information about the baseline distribution of malnutrition

and have data from a baseline survey,
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4. we have some historical information about the baseline distribution of malnutrition

and have data from k surveys.

Following the initiation of a longitudinal surveillance program, we anticipate that

Scenario 3 will hold, and we will not know much about the population of interest. Over

time, we gather more information about the population of interest (Scenario 4), until we

have a stable estimate of the baseline rate of malnutrition, with uncertainty bounds (Sce-

nario 2). As we gather more information, we will may be able to use a known baseline

rate of malnutrition p0 to detect spikes in prevalence (Scenario 1).

3.4.1 Detecting deviations from a baseline distribution

Scenario 1

Scenario 1 is easy to accommodate in practice. We conduct a survey at time t and observe

Xt out of Nt malnourished children. We can then use standard LQAS protocol, selecting

a lower threshold pl = p0 and an upper threshold pu = p0 +∆U , where ∆U is a meaningful

deviation in prevalence from the baseline. In this setting, the baseline distribution f0(·) is

a point mass at p0.

Scenario 2

To design a survey when the baseline distribution of malnutrition f0(·) is known (Scenario

2), we model Xt using a betabinomial distribution. That is, f0(·) is a Beta distribution,

and assess whether the observed data Xt is consistent with f0(·) shifted by ∆L or by ∆U .

(Figure 3.4).

Consider the following example. In a population, the prevalence of malnutrition has

historically varied between 3% and 6% due to random fluctuations; when the prevalence

is within this range, the population is considered relatively well-off. We assume the base-

line distribution follows a Beta distribution with mean equal to (3 + 6)/2 = 4.5%, with
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Figure 3.4: Searching for an increase ∆ in pt−1 at the current time point, when pt−1 is
measured with error.

95% of the density between 3 and 6%. Using these specifications, we estimate a = 34.6

and b = 733.7.

When prevalence is low at time t, pt ∼ f0(·), Xt ∼ Betabinomial(nt, a, b), and we can

calculate P (Xt > d|f0(·)) for a given nt and d. Next, suppose that we aim to detect a

5% shift in the prevalence of malnutrition from baseline. Then, we can calculate P (Xt ≤

d|f0(·)+0.05) (see Section 3.8.4 for how to calculate this quantity). The advantage of using

the Betabinomial model to select a survey design (as opposed to fixing pl as a constant and

using the binomial distribution), is that we accommodate uncertainty in the baseline rate

of malnutrition. Without a substantial amount of contextual information, we anticipate

that there will be uncertainty in the baseline rate of malnutrition across populations.

Scenario 3

Next, we discuss how to design a survey for Scenario 3, when we have limited historical

information about the population of interest, along with data from a baseline survey. In
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the baseline survey (at time t − 1), we observed Xt−1 malnourished children out of Nt−1

children.

Before collecting data, we use historical information to estimate the baseline distribu-

tion of malnutrition in the population, e.g. p ∼ Beta(a0, b0). We specify the parameters

a0 and b0 using prior knowledge of the population distribution of malnutrition. Choos-

ing a0 = b0 = 1 assumes all prevalences are equally likely and may not be the optimal

choice. If no historical information is available, we recommend selecting a0, b0 < 1. In

our examples, we use a0 = b0 = 0.1. Poor specification of a0 and b0 can result in incorrect

classifications.

To incorporate baseline data, the program manager should examine the data from the

baseline survey and use contextual knowledge to determine if the survey results suggest

malnutrition prevalence was high or low at baseline. If the data from the baseline survey

is not consistent with the historical prior and prevalence appears high at baseline, then

we should assume that prevalence is high at baseline and proceed with the monitoring

and evaluation program accordingly. For instance, in the next survey following an inter-

vention to attempt to lower malnutrition prevalence, we could aim to detect whether we

have seen a drop in malnutrition prevalence from the baseline survey.

To design our survey, we assume malnutrition prevalence was relatively low and consistent

with historical information at baseline. We aim to detect whether malnutrition prevalence

increased from the baseline prevalence. Define pt−pt−1 = ∆. We choose upper and lower

classification thresholds ∆L,∆U based on the following criteria: if ∆ > ∆U , a notable

rise in prevalence occurred from the previous time point; if ∆ < ∆L, no notable changes

occurred. Typically, ∆L = 0 is a logical choice. Values between ∆L,∆U are in the ‘grey

area,’ and we do not restrict classification risks within the ‘grey area’ in the survey design.

Our objective is to find a minimum sample size at time t,Nt, and a decision rule d such

that Pr(Xt ≤ d|∆ = ∆U , Xt−1) ≤ α and Pr(Xt > d|∆ = ∆L, Xt−1) ≤ β. The classification

risk α is the probability of classifying the change in prevalence as sufficiently low when
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when ∆ ≥ ∆U , and β is the probability of classifying the change in prevalence as high

when ∆ ≤ ∆L.

Assuming Xt−1 ∼ Bin(Nt−1, pt−1), and given our prior knowledge a0, b0, we calculate

pt−1|Xt−1 ∼ Beta(a, b), where a = Xt−1 + a0, b = Nt−1−Xt−1 + b0. We construct a distribu-

tion for pt−1|Xt−1 and determine how likely it is that pt was drawn from this distribution,

shifted by ∆L or by ∆U .

Given Nt and d, we can calculate the OC probabilities OC(∆) = P (Xt ≤ d|∆, Xt−1)

at ∆L and ∆U (see Section 3.8.4 ), and obtain α and β for the design. We iterate through

choices of Nt and d to find the optimal design that minimizes Nt and meets the specified

classification risk thresholds.

Conceptually, this survey design is slightly different from those in Scenarios 1, 2, and

4. In this design, we compare the prevalence at time t to the prevalence at time t − 1,

accounting for uncertainty in the estimate of pt−1. In the other designs, we compare the

prevalence at time t to the baseline rate or baseline distribution of malnutrition.

Scenario 4 - comparing changes in prevalence over multiple time points

In Kenya and the Sudan, surveys are conducted every 6 months to monitor malnutrition.

We aim to detect rises in the prevalence of malnutrition. In the previous section, we

compared changes in prevalence from the previous time point (e.g. from baseline). Now,

we consider how to combine information over multiple time points (e.g. a baseline, six-

month, and one-year survey) to detect a rise in malnutrition.

As an example, consider comparing the one-year survey to the baseline and six-

month survey. If the prevalence did not change between baseline and six-months, then

we should pool the information across these two surveys and compare the pooled preva-

lence to the prevalence at the one-year survey. But, if the prevalence dropped between

baseline and six-months, we aim to sustain this lower prevalence and thus compare the

prevalence at one-year to the lower six-month prevalence. If the prevalence rose between
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baseline and six months, then we determine if this rise is sustained at one-year. We de-

note the baseline, 6-month, and one-year prevalences as p1, p2, and p3, respectively. To

summarize, we aim to determine if p3 is greater than the minimum of p1 and p2.

To detect rises in malnutrition prevalence, we can pool together information from the

time points that are within ε of min(p1, ..., pt−1) to estimate f0(·). For instance, we could

pool together information from surveys that are within 2% of min(p1, ..., pt−1). In order to

pool information between surveys, we directly employ the weighted method of moments

estimator in Yousry et al. (1991), and empirically calculate P (pi < min(p1, ..., pt−1) + ε) to

obtain weights for the mean and variance estimators.

Choosing ε > 0 results in pooling of more information, but is less ‘conservative’ than

choosing ε = 0. We could try to find an optimal ε for the survey design, but we suggest

choosing either 0 or a value that is a fraction of ∆, e.g 1/5 or 1/10 of ∆U − ∆L. In our

applications, we choose ε = (∆U −∆L)/5 = 2%, when ∆L = 0 and ∆U = 10%.

Assuming that the baseline distribution f0(·) follows a Beta(a, b) distribution, we can

then estimate a and b, using historical information and the past survey data. See Section

3.8.5 for more information on how to calculate these weights and estimate the baseline

distribution f0(·).

The advantage of using this surveillance tool is that we can pool together historical

prior information and data from previous surveys. The approach is conservative, in that

we compare the next time point to the “best case scenario,” when prevalence was low. By

using historical information, we avoid comparing the current time point to any extreme

minima, by shifting the minimum toward the historical mean prevalence. If the preva-

lence has been chronically high throughout the surveillance program, then this design is

not the best surveillance tool to use; malnutrition prevalence must be ‘in control’ during

at least one surveillance time point to detect rises in prevalence. Further, given that the

baseline distribution is estimated by collapsing information across surveys, our estimate

of the baseline distribution may be inaccurate when we have data from very few surveys,
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or there exists one survey that is an outlier.

3.4.2 Clustering in Temporal Surveys

In Section 3.4, we propose a surveillance tool for detecting rises in malnutrition preva-

lence over time, assuming the data was generated from a simple random sample. When

data is collected using cluster sampling, we can use the design effect to adjust the sample

size, as in Section 3.3.

Consider a survey comparing prevalence at time t to the prevalence at time t − 1

(Scenario 3). First, we estimate ρ using the data from time t− 1 and calculate the effective

sample size for the survey at time t − 1. Then, we update the distribution of pt−1|Xt−1,

Beta(a, b), using the effective sample size rather than the original data, to incorporate the

additional uncertainty in our sample due to clustering. To calculate the sample size for

the survey at time t, we repeat the algorithm in Section 3.3, but perform the calculations

in step 2 using the betabinomial distribution at time t − 1, shifted by ∆L and ∆U , rather

than the standard binomial model.

When adjusting for clustering with multiple surveys (Scenario 4), we assume ρ is con-

stant over time and estimate across the surveys to obtain a stable estimate of ρ. Again,

we would calculate the effective sample size for each of the previous surveys and con-

struct f0(·) by pooling information across the surveys using their effective sample sizes.

Then, we again repeat the algorithm in Section 3.3, but perform the calculations in step 2

using the betabinomial distribution, f0(·) shifted by ∆L and ∆U , rather than the standard

binomial model.
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3.5 Data application - survey designs in Kenya and South
Sudan

3.5.1 Impact of clustering on the survey design

Using the 33 × 6 LQAS data from Kenya and South Sudan, we assess the impact of clus-

tering on the survey design, using the methods presented in Section 3.3. We define mal-

nutrition using the GAM indicator constructed using WHZ scores, and we assume that

there are an infinite number of clusters in each survey site. This assumption is most likely

violated, but we do not have information about how the clusters were enumerated.

For each survey, we estimate the intraclass correlation ρ using maximum likelihood

estimation, assuming the data are generated from a betabinomial distribution. Ridout

et al. (1999) summarizes many estimators of ρ for binary data. If the data do no fol-

low a betabinomial distribution, our estimate of ρ may be poor. The average intracluster

correlation over all of the surveys is ρ̂ = 0.037, and ranges from 0.00 to 0.13 across the sur-

veys. Estimates of ρ using the betabinomial model were similar to the Ridout et al. (1999)

ANOVA estimator, suggesting the betabinomial model is reasonable in this setting.

The estimate ρ̂ = 0.037 is a somewhat low, but non-negligible, intraclass correlation

for binary data. For instance, in a 33 × 6 survey using the 15-20% couplet, if ρ = 0, the α

and β risks are 0.14 and 0.22, respectively; if ρ = 0.037, these risks are now 0.16 and 0.24.

These risks will be higher for the surveys with ρ > 0.037.

Advertising this survey design as having an α and β level of 0.1 and 0.2 is off the

mark. Fixing m = 6, when ρ = 0, we would actually need to sample 44 (rather than 36)

clusters to meet the desired risk levels. With ρ = 0.037, we would need to sample 53

(exact) or 57 (DEFF) clusters. If the number of clusters in the population was finite, say

K = 50, then we then need to visit 46 clusters. For ρ = .1 with an infinite number of

clusters, we would need to sample 66 (DEFF) or 67 (exact) clusters.

In Figure 3.5, we plot the relationship between m and k for the 15-20% couplet when
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Figure 3.5: Relationship between k and m for pl = 0.15, pu = 0.2, α = 0.1, β = 0.2.

ρ = {0, 0.037, 0.1}. As m gets large, k converges to a constant, illustrating the concept

that the effective sample size plateaus as m increases. Further, for small m, k is similar

between designs, because variance inflation due to clustering increases as m increases.

Sampling very few children per cluster may not be cost-effective, depending on the

distance between clusters. Visiting 30-60 clusters/villages (depending on ρ) and only

measuring 6 children per village could result in wasting both time and resources trav-

elling between the villages. Rather than using cookbook designs, we can estimate the

number of children that a field team could measure in one day, say m = 20. Then, we can

use the LQAS sample size calculators, adjusting for intraclass correlation, to calculate the

number of clusters we need to visit. When ρ = 0.037, using the design effect sample size

formula, we need to travel to 23 clusters. So, now we would actually sample 430, rather

than 53 ∗ 6 = 318 children if m = 6. However, the cost of the survey may decrease due to

the reduction in travel expenses.
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Table 3.3: Comparing time two to time one. Columns denote prevalence p̂t and intraclass
correlation coefficient ρ̂t estimates at each time point; required sample sizes and decision
rules for time two, X and d, and ∆?, denoting whether a rise in prevalence occurred at
time two.

Estimates No Clustering Clustering
Loc. p̂1 p̂2 ρ̂1 ρ̂2 N d X ∆? N d X ∆?
GP 18.3 15.6 .05 .04 116 25 18.1 N 168 36 26.3 N
GR 12.5 20.7 006 .07 89 14 18.4 Y 126 20 26.1 Y
GU 17.0 11.5 .04 .05 131 27 15.1 N 156 31 18.0 N
MP 22.7 30.8 .01 .00 156 41 48.1 Y 168 44 51.8 Y
MR 36.6 38.3 .05 .00 248 100 - ? 432 174 - ?
MU 25.6 22.9 .00 .13 165 48 37.7 N 168 49 38.4 N
MS 20.7 4.3 .05 .03 136 33 5.8 N 192 46 8.2 N
SR 25.8 19.7 .03 .05 187 55 36.8 N 228 67 - ?
SU 20.0 22.4 .00 .04 136 32 30.4 N 138 32 30.9 N

3.5.2 Examining changes over time

We now use the survey designs presented in Section 3.4 to assess whether changes in

GAM prevalence have occurred over time. First, we use the data at baseline, and compare

the subsequent time point to determine if a spike in prevalence has occurred (Scenario 3 in

Section 3.4). We plug-in the estimate of ρ from the previous survey to account for cluster-

ing in the surveys. We do not implement the designs to detect changes between multiple

time points, due to the limited number of surveys (three per location) and insufficient

historical information.

We choose ∆L = 0,∆U = 0.1, α = 0.1, and β = 0.2; that is, we aim to detect 10%

changes in prevalence at least 90% of the time. We will accept detecting a change in

prevalence when none has occurred at most 20% of the time. The survey designs and

results are presented in Table 3.3. In our analysis, we have data from the 33 × 6 surveys,

rather than from surveys with the recommended sample sizes. Therefore, given the ob-

served data, we say that “a change has occurred over time” for a location if we would

conclude that a change occurred the majority of the time if we randomly sampled from

the collected survey data. For some of the surveys, we have not collected enough data
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with the 33× 6 design to reach a conclusion as to whether or not the prevalence changed

over time.

In the Garissa Riverine and Mandera Pastoral populations, we detect a rise in preva-

lence over time from baseline. Using the highest 15-20% couplet, we would classify the

Mandera Pastoral population as high prevalence at all three time points. Using the de-

sign to detect changes, we obtain more information - not only is the prevalence high in

this region, it is on the rise.

3.6 Discussion

In this article, we discuss extensions to LQAS survey designs for monitoring malnutrition

that improve the accuracy and flexibility of the existing designs. Using a simple design ef-

fect adjustment, LQAS surveys can be designed to preserve the prespecified classification

risks when cluster sampling is used. Further, if the number of clusters in the population

is finite, we adjust the sample size downward. Due to the potential impact of rounding

errors, we caution against using the design effect adjustments in surveys with very small

sample sizes (< 30) or with very rare events. In these scenarios, if the number of clusters

is large, an exact method (such as Hedt-Gauthier et al. (2012)) is preferable.

Additionally, we present a cohesive surveillance tool for monitoring the prevalence

of acute malnutrition over time. By combining historical information with data from

previous surveys, we estimate the baseline distribution of “acceptable” malnutrition rates

and detect spikes in malnutrition by comparing the collected data to this distribution.

When the baseline distribution is iteratively updated, program managers must keep track

of the following information: (1) number of malnourished children, (2) total sample size,

(3) ρ, and (4) estimated design effect (if the sample size per cluster is constant over time

and the number of clusters in the population is large, then tracking the design effect is

not necessary). We anticipate that this longitudinal surveillance tool will be useful in any

program aiming to detect deviations from a baseline rate, where the exact baseline rate is
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unknown.

Using this survey design, we were able to detect rises in malnutrition prevalence in

longitudinal programs in Kenya and the Sudan, where the baseline rates of malnutrition

are known to vary.

3.7 Comparing Classical and Bayesian LQAS designs

LQAS survey designs for monitoring GAM have been criticized for the difficulty in in-

terpreting the survey results and for producing too many false positives (Bilukha, 2008;

Bilukha and Blanton, 2008). To address these criticisms, Olives and Pagano (2010) illus-

trate that using a Bayesian approach is necessary to control false positive and false nega-

tive rates. Myatt and Bennett (2008) provide another interesting public health application

of a Bayesian classification procedures, using sequential survey designs for monitoring

transmitted HIV drug resistance in developing countries.

In this section, we illustrate the properties of Bayesian and classical LQAS surveys.

The classical LQAS classification procedure requires specification of the classification

risks α and β. When p ≥ pu, α is the bound on the probability of classifying low; when

p ≤ pl, β is the bound on the probability of classifying high. The conditional probabilities

α and β condition on whether the true prevalence p in an area is≥ pu or≤ pl, respectively.

The survey design procedure does not bound the classification risk between pl and

pu (i.e. areas in the grey region). To calculate our sample size and decision rule, we only

specify α, β, pl, and pu, and consequently do not specify whether it is an error to classify

areas in the grey region as high or low (pl < p < pu). LQAS designs are constructed

to ensure that areas with prevalences in the extremes (i.e. not in the grey region) are

classified correctly.

To design a comparable Bayesian LQAS survey/classification procedure, we again

specify upper and lower thresholds, pl and pu. We specify classification risks αB and βB,
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with a different interpretation than α and β. In a Bayesian LQAS design, αB is the prob-

ability that p > pu, given that the prevalence in an area is classified as low; βB is the

probability that p < pl given that the prevalence in an area is classified as high. In the

Bayesian design, the probabilities αB and βB are conditional on the classification decision

(high or low.). In the design phase, we again make the implicit assumption that classifi-

cation of areas in the grey region as either high or low is acceptable. In B-LQAS surveys,

the length of the grey region can be set to 0.

We could design a Bayesian classification procedure based on different criteria than

specifying αB and βB, e.g. using the figure of merit or specifying a loss function (Olives

and Pagano, 2010). We discuss Bayesian survey designs based on the classification risks

αB and βB to facilitate contrasting the Bayesian and classical survey designs. The discus-

sion does not depend on which criteria are used to select a design.

The relationship between Bayesian and classical acceptance sampling designs is

somewhat analogous to the relationship between sensitivity, specificity, positive predic-

tive value (PPV), and negative predictive value (NPV). In the disease testing context,

sensitivity is the probability that an individual tests positive given that he is disease posi-

tive; specificity is the probability that an individual tests negative given that he is disease

negative. PPV is the probability that an individual who tests positive is disease positive;

NPV is the probability that an individual who tests negative is disease negative. The dif-

ference between sensitivity, specificity, PPV, and NPV is the reversal of the conditioning

event. Sensitivity and specificity condition on the disease status of an individual and

are therefore properties of the test. PPV and NPV condition on the result of the test and

consequently depend on the prevalence of the disease in the population.

Likewise, the fundamental difference between Bayesian and classical LQAS designs

is the reversal of the conditioning event. In a classical LQAS design, α and β are calculated

conditional on p and are therefore properties of the survey design. In a Bayesian design,

αB and βB are calculated conditional on the classification decision (e.g. high or low) and

depend on auxillary information, specifically a prior distribution of p.
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Classical Bayesian
α = P (Classify low|p ≥ pu) αB = P (p ≥ pu|Classify low)
β = P (Classify high|p ≤ pl) βB = P (p ≤ pl|Classify high)

Criticisms of classical LQAS designs often point out the high number of ‘false positive’

or ‘false negative’ classifications. However, we can calculate ‘false positive’ and ‘false

negative’ rates only if we know the underlying population distribution for p, the prior

distribution. Classical designs do not control for the number of false positive or false

negative classifications; Bayesian designs do control the false positive and false negative

rates, assuming the prior is known.

False positive and negative rates

To calculate the false positive rate, P (p > pu|classify low), or false negative rate, P (p <

pl|classify high), from a survey, we need to specify the prior distribution for malnutrition

prevalence. To perform these calculations, we could specify a non-informative prior for

p, such as a Beta(1, 1). Then, we could estimate the posterior distribution for p and the

false positive and false negative rates, assuming p is equally likely to take on all values

between 0 and 1. If we specify an informative prior distribution, we could estimate the

posterior distribution for p more precisely. However, if we misspecify the informative

prior, our estimate of p will be biased, along with the false positive and false negative

rates. As the sample size increases, our data will dominate the prior information.

Similarly, we could use a non-informative prior to design a Bayesian acceptance sam-

pling plan. For instance, if we specify a Beta(1, 1) prior, the classification risks αB and

βB are then false positive and false negative rates, assuming p is equally likely to take on all

values between 0 and 1. When this assumption is not met, αB and βB are not true false

positive and false negative rates for the population of interest. When a noninformative

prior is used, decision rules and sample sizes will be similar to those from the classical

design (Olives and Pagano, 2010).

If we incorporate more prior information, the classical and Bayesian sampling de-
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signs will differ. If we misspecify the prior distribution, then the risks αB and βB will be

biased estimates of the false positive and false negative rates. For instance, if our prior

suggests malnutrition is high when prevalence is actually low, we will underestimate

the false positive rate; if the prior suggests prevalence is low when it is truly high, we

will overestimate the false negative rate, potentially missing malnutrition emergencies.

Bayesian acceptance plans provide the minimum sample size required to satisfy the clas-

sification risks; consequently, the data may not dominate the prior distribution when an

informative prior is selected.

Definition of the prior

To use a Bayesian acceptance sampling plan, the prior must be known. One can concep-

tualize the prior in the following manner: at a given location and time, the prevalence of

malnutrition p is random variable, drawn from a known distribution - the prior. Bayesian

designs have been used in manufacturing, because measuring the rate of random fluctu-

ations in a machine over time allows construction of an accurate prior distribution; for a

given machine, this prior is constant over time. Construction of this prior outside of the

controlled manufacturing setting is a more difficult because this prior will change over

time.

Consider the following hypothetical example. A population has a baseline rate of

malnutrition between 3% and 7%; denote the baseline distribution of malnutrition preva-

lence as f0(·). If a crisis occurs (e.g. a war or a drought), the prevalence of malnutrition

spikes and is between 15% and 20%; denote the crisis distribution of malnutrition as f1(·).

Then, we can write the prior distribution as:

f(p) = w0f0(p) + w1f1(p)

for p ∈ (0, 1), where w1 is the probability that a crisis has occurred and malnutrition

prevalence has spiked, andw0 = 1−w1. To specify a prior for a Bayesian design, we would

need to know 3 quantities: f0(·), f1(·), and w0. The distributions of f0(·) and f1(·) can be

estimated from historical data or knowledge of the program managers, when available.
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To specify w0, we need to know the likelihood that we are in a crisis setting, i.e. the

probability that the malnutrition prevalence is high. However, this is presumably the

goal of the survey - to detect whether a rise in malnutrition has occurred.

Classical LQAS survey designs always maintain the specified classification risks α

and β, regardless of the underlying population distribution. The cost of using the clas-

sical design is that we are often more interested in the Bayesian interpretation, i.e. false

positive and false negative rates (Bilukha and Blanton, 2008; Olives and Pagano, 2010).

However, for a Bayesian survey design, whether or not the classification risks αB and βB

are correct depends completely on the correct specification of the prior distribution. The

design parameters αB and βB control the false positive and false negative rate, but are

only interpretable with respect to the prior that was selected. If the prior is misspecified,

αB and βB are no longer interpretable.

3.8 Statistical derivations of the survey design attributes

We have proposed numerous adjustments to the LQAS survey designs for monitoring

malnutrition. In this section, we derive statistical properties of these adjustments and

describe how to perform the subsequent calculations.

3.8.1 Derivation of design effect formula

First, we define the necessary notation. The population contains K clusters (PSUs), and

k are sampled; within each clusters, there are M individuals (SSUs), and m are sampled.

The survey weights are equal for all individuals in the population, because we are assum-

ing that clusters are approximately the same size. The intraclass correlation ρ is defined

as:

ρ = 1− M

M − 1

σ2
W

σ2
W + σ2

B
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For large M , ρ = 1− σ2
W

σ2
W+σ2

B
. Then, as K →∞,

DEFF =
V arclus(p̂)

V arSRS(p̂)

=
(1− k

K
)
σ2
B

k
+ (1− m

M
)
σ2
W

km

(1− km
KM

)
(σ2

B+σ2
W )

km

=
m(1− k

K
)ρ

(1− km
KM

)
+

(1− m
M

)(1− ρ)

(1− km
KM

)

≈ m(1− k
K

)ρ+ (1− ρ)

≈ 1 + (mf − 1)ρ

where f = (1− k
K

). Note that when the number of clusters K is large, DEFF ≈ 1 + (m−

1)ρ.

3.8.2 Derivation of effective sample size asymptote

Denote the effective sample size as k →∞ as n∗.

n∗ =
n

DEFF

=
n

1 + (mf − 1)ρ

=
km

1 + (m{1− k
K
} − 1)ρ

=
k

1
m

+ (1− k
K
− 1

m
)ρ

=
k

(1− k
K

)ρ

3.8.3 Moment estimators for the Beta distribution

The mean and variance of a Beta(a,b) distribution are µ = a/(a+b), V = (ab)/({a+b}2{a+

b+ 1}). Let θ = (1− µ)/µ. Then, a = θ/(V {1 + θ}3)− 1/(1 + θ). b = aθ.

Given data from T distinct time points, Yousry et al. (1991) suggests estimating
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E(Xt/nt) and V ar(Xt/nt) as

µ̂ =

∑T
t=1 λtXt∑T
t=1 λtnt

and V̂ =

∑T
t=1 (λtnt{Xt/nt − µ̂}2)∑T

t=1 λtnt
.

where 0 < λt < 1 are weights. Recursive forms of these equations are provided in Yousry

et al. (1991) for fast updating.

To incorporate historical information, we estimate E(Xt/nt) and V ar(Xt/nt) as:

µ̂ =

∑T
t=1 λt(Xt + a0)∑T

t=1 λt(nt + a0 + b0)
and V̂ =

∑T
t=1 (λt(nt + a0 + b0){(Xt + a0)/nt − µ̂}2)∑T

t=1 λt(nt + a0 + b0)
.

Consequently, we smooth the individual estimates at each time point toward the histor-

ical data, diminishing the impact of outliers and reducing the variance of the baseline

distribution as we include more historical information.

3.8.4 Evaluating Pr(Xt ≤ d|∆, Xt−1)

Denoting the density for pt by f0(·), we calculate

Pr(Xt ≤ d|∆, Xt−1) =

∫
P (Xt ≤ d|p,∆, Xt−1)f0(p)dp

noting that pt ∼ Beta(a, b), and Xt|pt,∆ ∼ Bin(Nt, pt + ∆). This integral can be evaluated

using MCMC integration.

Alternatively, to obtain a closed form estimate of this integral, we can assume that

pt ∼ Beta(a, b), where a and b are estimated using the method of moments as follows:

1. Calculate µ̂t−1 and V̂t−1, the estimated mean and variance of the Beta(a, b) distribu-

tion.

2. Assume µ̂t = µ̂t−1 + ∆, V̂t = V̂t−1, where µ̂t and V̂t are the mean and variance of the

Beta(a, b) distribution, respectively.

3. Calculate a and b using the moments µ̂t and V̂t.
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Now, we can obtain a closed form expression for the OC probabilities by using the

betabinomial model for Xt, specifically Xt ∼ Betabinomial(a, b).

Pr(Xt ≤ d|∆, Xt−1) =
d∑
i=0

(
Nt

i

)
B(i+ a,Nt − i+ b)

B(a, b)

where B() is the beta function.

The MCMC integration and MOM approaches will provide similar results for suf-

ficiently large a, b, due to the approximate asymptotic normality of the Beta distribu-

tion. Conceptually, the MCMC distribution comparesXt/Nt to a shiftedBeta distribution,

whereas the method of moments defines a new Beta distribution by fixing the variance

at time t− 1 and shifting the mean by ∆.

3.8.5 Evaluating P (Xt ≤ d|∆, X1, ..., Xt−1)

Denote Xi, Ni as the number of malnourished children and total sample size at time

i = {1, ..., t}. We compare the prevalence of malnutrition at time t to the distribution of

malnutrition at the previous time points, when the prevalence was low. To achieve this goal,

we need to first construct a distribution that reflects the prevalence of malnutrition when

low, over the previous t− 1 time points, which we denote f0(·). We assume that f0(·) is a

Beta(a, b) distribution, where a, b are calculated using the weighted method of moments

estimator. For i = {1, ..., t−1}, the weights are defined as λi = P (pi < min(p1, ..., pt−1)+ε),

where ε is a user-defined parameter. There is not a closed form for calculating the weights,

and therefore this calculation is performed empirically, by sampling from the posterior

distributions of {pt}.

Pr(Xt ≤ d|∆, X1, ..., Xt) =

∫
P (Xt ≤ d|p,∆, Xt−1)f0(p)dp

=

∫ d∑
i=0

P (Xt = i|p,∆, Xt−1)f0(p)dp
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We evaluate this integral in the exact same way as in the above section, using either

MCMC integration or method of moments.
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4.1 Introduction

Area-level aggregated count data arise frequently in the disease mapping setting (Best

et al., 2005; Wakefield, 2007); for instance, in this paper, we assess the impact of socioe-

conomic disparities on breast cancer incidence by linking census data from multiple time

points to cancer registry data. Our dataset is large (∼ 2000 areas at each time point) and

contains temporally misaligned boundaries, because census tract boundaries change over

time. These types of data are becoming increasingly common in practice, due to our abil-

ity to merge census data and data from other large databases, such as disease registries.

Area-level data is most frequently modeled using hierarchical Bayesian models, with

spatial correlation between areas incorporated through area-specific random effects hav-

ing conditional Markov random field (MRF) priors (Besag et al., 1991). In the spatio-

temporal setting where boundaries change over time, the use of area-specific random ef-

fects is not applicable because the areas are not well-defined over the course of the study

(Chen et al., 2008).

To our knowledge, few approaches to spatial regression exist that allow for temporal

boundary misalignment. Mugglin et al. (2000) and Zhu et al. (2000) address the boundary

misalignment issue using hierarchical Bayesian models, with conditional Markov ran-

dom field (MRF) priors on the area-specific random effects. These existing methods are

computationally intensive, and typically bog down for large datasets. Zhu et al. (2000)

suggest including time- and area-specific random effects in the linear predictor of the

model, implicitly assuming that the area-level random effects are independent across time

points. Because this independence assumption is typically violated in standard longitu-

dinal settings, the resulting inferences on changes over time can be inefficient.

In this paper, we propose a geostatistical disease mapping model that allows for spa-

tially misaligned boundaries over time. We model the underlying spatial continuous risk

surface as a Gaussian random field (Kelsall and Wakefield, 2002; Best et al., 2000; Muller

et al., 1997). We reduce the computational burden of spatial smoothing by modeling spa-
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tial correlation using bivariate low-rank, penalized-splines (Kammann and Wand, 2003;

Ruppert et al., 2003). Area-level data is sometimes treated as point-referenced based on

the centroid of an area, and the penalized-spline/mixed model approach is then used to

model spatial variability, e.g. Lee and Durban (2009). However, these models also do not

directly incorporate information about the size and shape of each area and can perform

poorly (Best et al., 2005). By modeling the underlying spatial risk surface and aggregating

to the area-level, we overcome these limitations.

We implement the model within the generalized linear mixed model (GLMM) frame-

work, modeling the underlying spatial surface using radial basis splines (Kammann and

Wand, 2003; Ruppert et al., 2003), facilitating fitting a reduced-rank, computationally fast

version of the model. We estimate model parameters using a penalized quasi-likelihood

approximation to maximum likelihood estimation (Breslow and Clayton, 1993). Similar

to the Kelsall and Wakefield model, our approach has the desirable property that smaller

areas have larger prior variances. Additionally, the actual shape of each area, as opposed

to only the neighborhood structure, is incorporated into the covariance between areas,

avoiding any problems that could arise from oddly-shaped areas. Our method is easy to

program in standard statistical software packages and is not computationally intensive

relative to MRF formulations.

Section 4.2 introduces the motivating study for our methodology. Section 4.3 de-

scribes the formulation of the geostatistical disease mapping model, and Section 4.4

presents spatio-temporal extensions of the model. Sections 4.5 and 4.6 give the results

of a simulation study and data analysis, respectively.

4.2 Motivating study: Breast cancer incidence in Los Ange-
les

Breast cancer is presently the leading cause of cancer among U.S. women (excluding non-

melanoma skin cancers), accounting for 28% of the diagnosed cases (American Cancer
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Society, 2010). Breast cancer typically has been portrayed as a “disease of affluence.” As

secular changes in the socioeconomic distribution of breast cancer risk factors occur, inci-

dence rates in poorer countries and among poorer women in more affluent countries may

be “catching up” over the long term (Krieger et al., 2006). Examining the changes in the

socioeconomic distribution of breast cancer incidence is important for public perception

and policies regarding the disease, as well as to gauge the population mortality burden of

breast cancer (Krieger et al., 2006). We investigate the hypothesis that the socioeconomic

gradient in breast cancer incidence is decreasing over time by examining data associations

between socioeconomic measures and breast cancer incidence rates across two decades.

We apply our method to assess changes in the socioeconomic gradient of breast can-

cer in women over time in Los Angeles County, CA, focusing on the time periods 1988-

1992 and 1998-2002, which precedes the change in breast cancer incidence rate attributed

to declining use of hormone therapy. Krieger et al. (2006) originally analyzed these

data by calculating age-standardized breast cancer incidence rates, stratified by decade,

race/ethnicity, and socio-economic status, and ignoring spatio-temporal correlation be-

tween areas. Our analysis parallels this original report, but incorporates spatio-temporal

information into a regression model, yielding a more efficient analysis.

We quantify the socioeconomic gradient by calculating the difference in the breast

cancer log-incidence rate ratios corresponding to an area-based socioeconomic measure

(ABSM) for the time periods 1988-1992 and 1998-2002. We obtain total population counts

of women by age and race/ethnicity and poverty indicators (ABSMs) from U.S. census

data at the census tract (CT) level in L.A. county for 1990 and 2000. There are a total of

1,642 census tracts in 1990 and 2,056 census tracts in 2000, reflecting a large number of

census tract boundary changes between the two time periods. We obtained the breast

cancer case data from the Los Angeles Cancer Surveillance Program cancer registry. We

appended the census tract geocode to each cancer registry record, based on the location

and date of residence at diagnosis. We link incident cases between 1988-1992 to the 1990

census population data and cases between 1998-2002 to the 2000 census data.
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Figure 1. Examples of possible changes to census tract boundaries from one census to the next. (a) Simple
split: tract 1001.01 is split into tracts 1001.00 and 1001.01; (b) simple merge: tracts 1002.00 and 1003.01
are merged into a single tract 1002.00; (c) complex changes: parts of tracts 1001.00, 1002.00, and 1003.02

have been combined with the entirety of tract 1003.01.
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Figure 4.1: Examples of changes to census tract boundaries from one census to the next.

U.S. census tract boundaries are redefined over time as necessary to maintain an av-

erage population between 3,000 and 4,000 in each census tract, with each tract relatively

socioeconomically homogeneous (US Census Bureau, 1994). Figure 4.1 illustrates differ-

ent types of changes in census tract boundaries. Because changes do not always take the

form of simple splitting or merging, there is not a one-to-one correspondence between

census tracts over time.

4.3 Statistical framework for the spatial model

Best et al. (2005) and Wakefield (2007) review standard spatial disease mapping models.

We use the following notation for our disease mapping model. Observed cases of a dis-

ease Yi within an area Ai are modeled using a Poisson likelihood, Yi ∼ Poisson(eSiEi), for

i = 1, ...,M . We model Si, the log-relative risk of disease, as a function of covariates and

spatial random effects. Assuming disease prevalence varies within certain strata j (such

as age groups), we calculate the expected number of cases in a region Ei using the preva-

lence of disease and the population count in each strata (i.e. using internal or external

standardization). Our model assumes that the disease is rare and that the risk associated
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with living in area i acts proportionally on the baseline risks for each stratum.

We now develop a geostatistical model for spatial correlation that is similar in nature

to Kelsall and Wakefield (2002), which we refer to as KW throughout this paper. Consider

an areaAwhich is partitioned into regions {Ai}. Specifically, let i index census tracts (CTs)

in region A, i = 1, ...,M , and sij be a point location within Ai, sij ∈ Ai. Define |Ai| as the

area of Ai; Yi as the number of events in Ai; λ(s) as the intensity of the Poisson process at

point s; and fi(s) as the population density in Ai at point s. If we assume the population

density is uniform over Ai, then fi(s) = 1/|Ai|. If more information is available about the

population density within an area Ai, we can use a piecewise uniform surface to estimate

fi(s).

The diseased cases Y (s) follow a Poisson process with intensity Eifi(s)R(s), where

R(s) is the relative risk of disease at location s. Aggregating to the area-level,

Yi ∼ Poisson{Ei
∫
Ai
fi(s)R(s)ds}, and the average relative risk in area Ai is Ri =∫

Ai
fi(s)R(s)ds. Disregarding spatial and covariate effects, Yi ∼ Poisson(EiRi).

We incorporate covariates and spatial random effects through modeling the log-

relative risk as S(s) = logR(s) = S ′(s) + βZ(s), where Z(s) is the covariate surface and

S ′(s) is a continuous surface inducing spatial correlation between areas. KW propose

a multivariate normal model for the area-level log-relative risk, with the covariance be-

tween the two areas interpreted as the average covariance between two points chosen

randomly from the two areas. Diverging from KW, we model S ′(s) using a penalized

spline term.

4.3.1 Approximating the log-relative risk

We construct our model as a generalized linear mixed model (GLMM) using radial splines

to model spatial correlation (Ruppert et al., 2003). The underlying model for the log-

relative risk is S(s) = βX(s)+S ′(s) = βX(s)+
∑

l Zl(s)ul,where we write the spatial terms

of the model S ′(s) as a penalized spline term. The basis functions {Zl(s)} are known, de-
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rived from a set of knots on the area A and a standard spatial covariance function (which

we discuss in Section 4.3.2), and the {ul} terms are basis coefficients assumed to be in-

dependent normal random effects estimated via model fitting. By using this penalized

spline representation, we express the model for the underlying relative risk as a gener-

alized linear mixed model (GLMM). We use a quadrature approximation to estimate the

spatial random effects for each area:

Si =

∫
Ai

fi(s)

{
X(s)β +

∑
l

Zl(s)ul

}
ds ≈ Xiβ +

∑
l

∑
j

wijZl(sij)ul.

where {sij}j=1,...,di are the di design points selected area Ai, and {wij} are the corre-

sponding quadrature weights for each area (
∑

j wij = 1 where j = 1, ..., di). If {Xi} is

an aggregate-level covariate, then Xi =
∫
Ai
X(s)fi(s)ds whereas if {Xi} is inheritable,

Xi = X(s) ∀s ∈ Ai. Conclusions drawn based on inheritable covariates are subject to

ecological bias if we extrapolate area-level results to individuals (Wakefield, 2007).

In order to fit our model, appropriate design points {sij} and corresponding quadra-

ture weights {wij} must be selected. If the design points correspond to sub-areas with

known population counts (such as the centroids of block groups within census tracts),

quadrature weights could be chosen to reflect the underlying population density, wij =

Nij/Ni, where Nij is the total population size in sub-area Aij and Ni =
∑

j Nij is the to-

tal population size in area Ai. Alternatively, assuming the population density is constant

within an area, the best choice of design points corresponds to a grid of equally spaced

points within each area; the resulting quadrature weights are wij = 1/di. With only one

design point (the centroid) per area, our approach reduces to the model in which areas

are treated as point-referenced data based on the centroid of the area, and a standard

covariance function is specified to model spatial correlation between centroids.

4.3.2 Defining the spatial correlation structure

We write the underlying model for the log-relative risk in mixed model form as S∗ =

X∗β + Z̃∗u, where S∗ = {Sij}j=1,...,di;i=1,...,M ; Z̃∗ is a contrast matrix described below;
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and u ∼ MVN(0, σ2
uI). Sij is the log-relative risk at design point j in area i. We construct

Z̃∗ such that Cov(Sij, Si′j′) = C(|sij − si′j′ |;ρ), where C is a standard spatial covariance

function that depends on the distance between the design points and parameters ρ. Due

to the aggregate nature of the data, choice of a spatial covariance function is less impor-

tant in this setting, as the model is not as sensitive to misspecification of the correlation

function (see Section 4.5.2). We recommend using the exponential covariance function,

Cov(Sij, Si′j′) = σ2exp(−|sij − si′j′ |/ρ) for its simplicity. We choose a value for the range

parameter ρ by selecting a plausible value based on the fact that 3/ρ is the approximate

distance at which the correlation between Sij and Si′j′ is less than 0.05 (Banerjee et al.,

2003). Alternatively, we could select ρ by choosing a value that minimizes the model

deviance.

We fit a reduced rank approximation of the model by choosing a set of knots

{κg}g=1,...,G and basing our spatial correlation structure on the distances between the de-

sign points sij and the G knots (Kammann and Wand, 2003). When computationally

feasible, we define the knots as the centroids of the areas in the study (G equals the num-

ber of areas in the study). A more practical approach is to use a knot selection algorithm

to choose G knots in the study region, e.g. Johnson et al. (1990), which performs well in

practice (Wand, 2003).

Define the di × G matrix Zi = {C (|sij − κ1|) , ..., C (|sij − κG|)}j=1,...,di
, which corre-

sponds to the covariance between the design points in area i and the G knots. We stack

the area-specific Zi matrices to construct Z = (Zi)i=1,...,M . Define the G × G matrix rep-

resenting the covariance between the knots as Ω = {C(|κg1 − κg2|)}g1,g2=1,...,G. Then, Z̃∗ =

ZΩ−1/2. From the definition of Z̃∗, it follows that Var(S∗) ≈ σ2
uZ̃
∗Z̃∗T = σ2

uZΩ−1ZT .

Now, let Si be the area level log-relative risk for area Ai. For S = (S1, S2, ..., SM), S =

Xβ+Z̃u,where Z̃ = WZ̃∗,X = WX∗, andW is aM×
∑M

i=1 di block-diagonal matrix of

the quadrature weights. Specifically, row i ofW contains the di quadrature weights wij in

the columns corresponding to area Si and 0s everywhere else. Then, Var(S) = σ2
uZ̃Z̃

T =

σ2
uWZΩ−1ZTW T . Since S∗ ∼ MVN{X∗β,Var(S∗)} and S is a linear transformation of
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S∗, it follows thatS ∼ MVN{Xβ,Var(S)}. Examining the covariance between individual

areas clarifies that the covariance matrix in our model has the same interpretation as that

in the KW model. The covariance between the log-relative risk for areas Ai and Aj is

Cov(Si, Sj) =
∑di

k=1

∑dj
l=1wikwjlσkl =

∑di
k=1wik

∑dj
l=1wjlσkl, where σkl is the covariance

between the log-relative risk at points sik and sjl. That is, the covariance between two

areas is a weighted average of the covariance between the design points in the area, and

the variance of an area is the average covariance between the design points within an

area.

4.3.3 Generalized linear mixed model construction

Using the above formulation of the log-relative risk within an area, we write the model as

Yi ∼ Poisson(eSiEi), whereS = Xβ+Z̃u. In this model, β are fixed effect parameters,S =

(S1, ..., SM)T , X = (x1, ..., xM)T , u = (u1, ..., uG)T ∼ N(0, σ2I) are independent random

effects, and Z̃ is the M ×G matrix defined in Section 4.3.2.

We introduce an overdispersion parameter φ into the model to account for additional

non-spatial variability in the data greater than that predicted by the Poisson distribution.

We consider other methods for incorporating residual overdispersion below and compare

the performance of these various approaches 4.5.2. The likelihood for the model is:

L(β, φ, σ2; yi) ∝ (σ
√

2π)−K
∫
RG

exp

{
M∑
i=1

1
φ
(−eηi + yiηi) +

G∑
l=1

−u2l /2σ2

}
du.

The likelihood involves a G-dimensional integral, which is computationally expensive to

evaluate. We approximate this integral using penalized quasi-likelihood (PQL) (Breslow

and Clayton, 1993). We have constructed an R package for fitting this model, available for

download at http://www.hsph.harvard.edu/statinformatics/soft/areaglmm.html, and

SAS code is available from the authors upon request.

In Section 4.5, we evaluate the performance of the PQL approximation for our model.

Fitting our model using a Bayesian framework for the estimation of parameters is rel-
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atively straightforward (Crainiceanu et al., 2005), though much more computationally

intensive.

Modeling Overdispersion

We incorporate spatial random effects into our model that allow for spatially structured

extra-Poisson variability. If residual non-spatially structured variability arises, we can in-

corporate this overdispersion in the regression model in several different ways. In Section

3.3, we suggest estimating an overdispersion parameter φ to account for nonspatial vari-

ability. This method uses quasi-likelihood estimation, specifying the mean and variance

of Yi (E(Yi|Xi) = µi,Var(Yi|Xi) = φµi), but not the full distribution of Yi. We call this the

“quasi-Poisson” model. Alternatively, we could model Yi using negative binomial regres-

sion to account for residual overdispersion by assuming that Yi|Xi, ψi ∼ Poisson(ψiµi),

and ψi follows a Gamma distribution, and then marginalizing over ψi. Lastly, we could

add a normally-distributed random-intercept into the linear predictor of our model.

4.3.4 Mapping the relative risk surface

Constructing the smoothed predicted continuous relative risk surface or the smoothed

predicted area-level relative risk surface is relatively straightforward. The pointwise rel-

ative risk estimates are R(s) = exp
{
X(s)β̂ +

∑
l Zl(s)ûl

}
, and the area-level relative risk

estimates are Ri ≈ exp
[∑

j wij

{
X(sij)β̂ +

∑
l Zl(sij)ûl

}]
, where the sij are design points

in Ai with corresponding quadrature weights wij .

In order to obtain confidence bounds for the area-specific relative risk estimates, we

estimate the standard errors for the fixed and random effects based on the PQL procedure

(Ruppert et al., 2003). Specifically, Cov
{(

β̂
û

)
|u
}
' (CTV C + σ2I)−1CTV C(CTV C +

σ2I)−1,whereC = (X Z) and V = Var(Y |X,Z,u) = eSE andE is the expected count

in each area. The standard error of the linear predictor S is
√
CCov

{(
β̂
û

)
|u
}
CT , which

we can use to obtain pointwise or area-specific confidence intervals.
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4.4 Spatio-temporal extensions

Extending the model from the spatial to the spatio-temporal setting is straightforward

using the spatial mapping methods of Wager et al. (2004). Assume we observe counts

in Mt areas at time points t = 1, ..., T , where Yit ∼ Poisson(EitRit) and i = 1, ...,Mt. For

notational simplicity, we assume knot locations are the same across time points, though

this assumption is not necessary.

We propose three different spatio-temporal models for the underlying log-relative

risk. First, if the underlying risk surface is the same shape at each time point and shifts

by a constant over time, then we model the log-relative risk as (Model 1):

Sijt = Xijtβ +
∑
l

Zl(sijt)ul + δt,

where ul ∼ N(0, σ2) and δt is an intercept for time t. We note that δt = δt, or some vari-

ation of this, might be more appropriate in some applications. Model 1 assumes perfect

correlation between spatial random effects across time.

Another option for modeling spatial structure is to fit a model analogous to Zhu et al.

(2000), where we do not allow for a common spatial surface across time points (Model 2):

Sijt = Xijtβ + δt +
∑
l

Zlt(sijt)ult,

where ult ∼ N(0, σ2
t ). In Model 2, spatial random effects are independent across time

points, ignoring temporal correlation in the spatial random effects. Zlt(·) are time-specific

spline terms defined in the same way as in Section 4.3.2, except that the range parameter

(or correlation structure) does not necessarily have to be equal across time points.

By adding an additional time-specific spatial random effect, we can fit a more flexible

spatio-temporal model (Model 3):

Sijt = Xijtβ + δt +
∑
l

{Zl(sijt)ul + Zlt(sijt)ult},

where ul ∼ N(0, σ2) and ult ∼ N(0, σ2
t ) are independent random effects. In Model 3, the

spatial relative risk surface differs at each time point due to the inclusion of the {ult} ran-
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dom effect terms. The shared spatial surface represented by the {ul}s, which are constant

across time, induce temporal correlation in the random effects. Unless data are extremely

sparse, we recommend using Model 3 in practice.

The area-level model for the log-relative risk at time t is St = WtS
∗
t , where S∗t =

{Sijt}i=1,...,di;j=1,...,Mt . Wt is a time-specific quadrature weight matrix, identical to W , but

specific to time t. For instance, the area-level log-relative risk for Model 3 is St = Xtβt +

WtZ̃
∗(u + ut), where ut = (u1t, ..., uGt)

T and ut ∼ MVN(0, σ2
utI). Then, Var(St) =

WtZ̃
∗(Ω−1

0 + Ω−1
t )Z̃∗TW T

t , similar to the variance of the log-relative risk at a single time

point.

Within this geostatistical framework, boundary misalignment between areas over

time no longer requires complicated model fitting schemes. The quadrature weight ma-

trixWt is different between time points when boundaries are misaligned, because design

points may lie in different areas across time as boundaries change. To understand how

our method accounts for boundary misalignment, it is useful to think of the locations of

the design points and knots that induce the underlying risk surface as being fixed across

time (though this is not necessary in model fitting). Because we model the underlying

risk surface through these reference design points and knots, changing boundaries are no

longer problematic.

4.5 Simulation Study

We conduct a simulation study to assess performance of the model. Goals of the simu-

lation study include: (1) quantifying gains in power for detecting changes in a covariate

effect over time when we account for temporal correlation in spatial random effects; (2)

confirming that bias is negligible in the fixed effects and variance components when we

use the PQL approximation with sparse data, and (3) examining sensitivity of the model

to choice of the range parameter ρ and to the number of knots used.
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4.5.1 Design of simulation study

We briefly describe the design of our simulation study, but relegate the specific details to

Section 4.8.

To construct our datasets, we start with a (0, 1) × (0, 1) regular grid of equal size

areas, but relax this assumption shortly. We divide the grid into 64, 256, or 1024 square

blocks (areas). We fix the disease incidence p at 0.11 cases per 100 person-years and the

total population in the area at 9.5 million, similar to our data application. We define the

expected number of cases in an area as the product of the disease incidence and the total

population in the area.

We simulate a Poisson process with intensity λijt at location j in area i at time t,

where the log-intensity is (analogous to Model 3 in Section 4.4) log(λijt) = log(Eijt) +

βxxit + βtt + βxtxitt + ξ(sijt) + ξt(sijt). Eijt is the expected number of cases at time t in

area i at point j. ξ(sijt) and ξt(sijt) are shared and time-specific spatial log-relative risks,

respectively, at location sijt, a point in area i at location j at time t, t = {0, 1}. We generate

ξ(·) and ξt(·) as realizations from a smooth Gaussian process with a Matern(ν = 0.3, κ =

2) correlation structure, where ν is a range parameter and κ is a smoothness parameter

(Figure 4.6). We generate the shared surface between time points, ξ(·), to induce spatio-

temporal correlation in the data. We generate an area-level covariate xit from a uniform

distribution, and are interested in the parameter βxt, which represents the change in the

effect of the covariate across time. The true value for this covariate in our study is βxt =

−0.5.

At each time point, we generate a realization from the continuous Poisson process

with rate λijt, and aggregate the cases over each area to obtain area-level case counts.

We run 2,000 simulations for each scenario described. We model the area-level expected

count µit using Model 3:

log(µit) = log(Eit) + βxxit + βtt+ βxtxitt+
∑
j

∑
l

Zl(sij)(ul + ult),
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where Eit = Nitp; Nit is the population size in area i at time t; and the penalized spline

terms are identical to those defined in Sections 4.3.2 and 4.4. We simulate our data as-

suming no residual overdispersion (unless otherwise stated). However, we fit the ‘quasi-

Poisson’ model in our simulations and estimate an overdispersion parameter φ, in or-

der to investigate whether identifiability problems arise between spatial variance and

overdispersion parameters.

4.5.2 Results of simulation study

First, we examine the power and type I error associated with the test H0 : βxt = 0 for

Models 1, 2, and 3 for two different settings. In Setting 1, we simulate data from a model

with σ = 0.3, σ1 = σ2 = 0.2 and compare the fits of Models 1, 2, and 3; in Setting 2, we

eliminate time-specific heterogeneity by simulating from a model with σ = 0.3, σ1 = σ2 =

0 and compare the fits of Models 1 and 2.

Figures 4.2 and 4.3 display power curves for Settings 1 and 2, respectively, for testing

H0 : βxt = 0, when the data contains 64 and 256 areas. These figures illustrate that incor-

porating temporal correlation in the spatial random effects increases the power to detect

differences in a covariate effect across time. The amount of power gained increases as

the amount of spatial heterogeneity or temporal correlation in the spatial random effects

increases (results not shown) and as the number of areas at each time point decreases.

Misspecifying the model by ignoring this temporal correlation can result incorrect

inferences about the parameter βxt, since we are examining the change in a covariate

effect across time. In panel (a) in Figures 4.2 and 4.3, we see that the type I error deviates

from 0.05 when the spatio-temporal correlation structure is misspecified. When temporal

correlation is ignored (Model 2), the type I error is less than 0.05, and the test is overly

conservative. In Setting 2, when time-specific heterogeneity is ignored, the type I error is

greater than 0.05.

In our simulations, power gains and differences in type I error between the three
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models were negligible in the scenario with 1,024 areas (results not shown). Existing

models that handle temporal boundary misalignment will perform as well as our pro-

posed model (in terms of the efficiency of βxt). However, these existing approaches are

fully Bayesian, and the computational efficiency of our frequentist parameter estimation

framework is beneficial when the number of areas is large. Model fitting time can change

from days (for alternative Bayesian models) to minutes (using the PQL approximation for

parameter estimation).

Tables 4.1, 4.2, and 4.3 show results of the simulation study assessing the sensitivity

of the model to: (1) the sparseness of the data, (2) the choice of the range parameter ρ, and

(3) the choice of the number of knots G.

In Table 4.1, we assess the performance of the PQL approximation when data are

sparse, varying the expected area counts within an area. When testing H0 : βxt = 0, the

type I error is near 0.05 and 95% Wald CI coverage is near 0.95 regardless of the expected

area counts; variance components for the spatial random effects are also unbiased. We

conclude that the PQL approximation performs well.

In Table 4.2, we examine sensitivity of the model to the choice of the range parame-

ter ρ (assuming an exponential correlation structure and ρt = ρ). Zhang (2004) showed

that ρ and σ2 are not jointly identifiable in a spatial GLMM, and so misspecification of ρ

leads to inconsistent estimates of σ, σ1, and σ2. Point estimates and standard errors of the

fixed effects remain accurate, and type I error is near 0.05 when we misspecify the range

parameter, insofar as the choice of the range parameter is ‘reasonable’ (i.e. the average

‘radius’ of an area < 3/ρ < the maximum distance between areas).

In Table 4.4, we evaluate the performance of each model for overdispersion. When

modeling non-spatial residual overdispersion, the quasi-Poisson model performs well

in the settings with 256 and 1024 areas. With 64 areas, the quasi-Poisson model does

not perform as well as the negative-binomial and random-intercept models. In this set-

ting, we could improve somewhat upon the simulation results by using the random-
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Figure 4.2: Plot of the power for the test H0 : βxt = 0, Ha : βxt 6= 0, at the α = 0.05 level as
a function of βxt, when βx = 1. (a) 64 and (b) 256 areas. σ = 0.3, σ1 = σ2 = 0.2. The lines
are labeled according to the model that is being fit (e.g. ‘1’ corresponds to Model 1.)

−0.5 −0.4 −0.3 −0.2 −0.1 0.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

βxt

P
ow

er

1
2

−0.5 −0.4 −0.3 −0.2 −0.1 0.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

βxt

P
ow

er

1
2

Figure 4.3: Plot of the power for the test H0 : βxt = 0, Ha : βxt 6= 0, at the α = 0.05 level as
a function of βxt, when βx = 1. (a) 64 and (b) 256 areas. σ = 0.3, σ1 = σ2 = 0. The lines are
labeled according to the model that is being fit (e.g. ‘1’ corresponds to Model 1.)
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Table 4.1: Determining sensitivity of the model to the sparseness of the data (quantified
by the expected count E in each region). We omit results from the E = 0.1, E = 0.5
settings from the 64 areas case and E = 0.1 from the 256 areas case, because data is
sparse enough that some simulations had only 1 or 2 cases, resulting in unstable model
estimates. se = E{se(β̂xt)}, sd = SD(β̂xt).

Areas E E(β̂xt) se sd 95% Cov. Type I E(σ̂) E(σ̂1)/E(σ̂2) E(φ̂)

64

1 -0.517 1.146 1.200 0.934 0.059 0.277 0.266/0.262 0.903
2 -0.513 0.817 0.851 0.941 0.064 0.300 0.231/0.231 0.915
5 -0.488 0.533 0.538 0.947 0.062 0.319 0.207/0.211 0.938
10 -0.503 0.388 0.402 0.939 0.070 0.332 0.215/0.211 0.942

256

0.5 -0.497 0.796 0.802 0.951 0.061 0.295 0.226/0.215 0.935
1 -0.511 0.568 0.600 0.935 0.054 0.310 0.209/0.202 0.950
2 -0.501 0.405 0.419 0.944 0.064 0.313 0.205/0.209 0.963
5 -0.488 0.261 0.268 0.943 0.053 0.307 0.210/0.209 0.979
10 -0.506 0.190 0.190 0.948 0.061 0.299 0.211/0.209 0.991

1024

0.1 -0.516 0.879 0.916 0.939 0.063 0.289 0.220/0.232 0.935
0.5 -0.493 0.401 0.404 0.949 0.053 0.309 0.205/0.201 0.969
1 -0.501 0.285 0.290 0.948 0.050 0.306 0.206/0.211 0.978
2 -0.510 0.203 0.202 0.950 0.054 0.299 0.210/0.207 0.986
5 -0.499 0.130 0.129 0.951 0.052 0.282 0.207/0.204 1.002
10 -0.502 0.093 0.093 0.955 0.045 0.273 0.203/0.199 1.017
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Table 4.2: Determining sensitivity of the model to choice of the range parameter. se =

E{se(β̂xt)}, sd = SD(β̂xt).

Areas ρ E(β̂xt) se sd 95% Cov. Type I E(σ̂) E(σ̂1)/E(σ̂2) E(φ̂)

64

3 -0.509 0.136 0.142 0.938 0.058 0.440 0.266/0.270 1.171
5 -0.507 0.131 0.134 0.942 0.056 0.326 0.218/0.219 1.000
10 -0.507 0.137 0.139 0.942 0.060 0.324 0.231/0.229 0.888
20 -0.508 0.157 0.158 0.936 0.068 0.481 0.333/0.331 0.937
40 -0.510 0.197 0.199 0.942 0.053 1.172 0.622/0.652 1.995

256

3 -0.500 0.100 0.099 0.956 0.058 0.324 0.227/0.226 1.076
5 -0.500 0.101 0.099 0.954 0.055 0.273 0.200/0.198 1.075
10 -0.500 0.105 0.101 0.957 0.051 0.261 0.199/0.196 1.124
20 -0.501 0.117 0.107 0.968 0.041 0.345 0.253/0.250 1.369
40 -0.502 0.141 0.120 0.980 0.027 0.686 0.402/0.412 2.091

1024

3 -0.498 0.093 0.093 0.949 0.049 0.325 0.228/0.227 1.019
5 -0.498 0.093 0.093 0.949 0.049 0.274 0.200/0.198 1.019
10 -0.498 0.094 0.093 0.951 0.049 0.260 0.200/0.195 1.031
20 -0.498 0.097 0.094 0.956 0.045 0.344 0.255/0.251 1.082
40 -0.499 0.105 0.098 0.962 0.038 0.669 0.422/0.423 1.263
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Table 4.3: Determining sensitivity of the model to choice of the number of knots parame-
ter. se = E{se(β̂xt)}, sd = SD(β̂xt).

Areas G E(β̂xt) se sd 95% Cov. Type I E(σ̂) E(σ̂1)/E(σ̂2) E(φ̂)

64

16 -0.497 0.221 0.158 0.993 0.010 0.417 0.195/0.204 5.308
25 -0.497 0.195 0.148 0.989 0.014 0.378 0.188/0.196 3.819
36 -0.497 0.174 0.139 0.981 0.016 0.346 0.189/0.193 2.777
49 -0.495 0.144 0.127 0.970 0.034 0.396 0.209/0.215 1.681
64 -0.496 0.131 0.127 0.952 0.050 0.319 0.215/0.213 0.980

256

36 -0.502 0.113 0.105 0.967 0.027 0.352 0.220/0.217 1.455
64 -0.502 0.105 0.102 0.956 0.045 0.303 0.208/0.202 1.198
100 -0.501 0.101 0.101 0.953 0.046 0.273 0.200/0.194 1.073
144 -0.501 0.101 0.101 0.953 0.046 0.273 0.200/0.194 1.073
196 -0.501 0.101 0.101 0.953 0.046 0.273 0.200/0.194 1.073

1024

25 -0.504 0.099 0.093 0.952 0.048 0.391 0.241/0.245 1.184
49 -0.505 0.095 0.092 0.953 0.054 0.330 0.221/0.219 1.079
100 -0.505 0.093 0.091 0.950 0.060 0.274 0.201/0.199 1.018
144 -0.505 0.092 0.091 0.948 0.062 0.254 0.194/0.191 0.999
225 -0.507 0.106 0.106 0.943 0.051 0.260 0.214/0.126 0.980
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Table 4.4: Comparing models for residual overdispersion, where φ denotes an overdis-
persion parameter (with different meaning for each of the different models). QP, NB, and
RI denote the quasi-Poisson model, the negative-binomial model, the random intercept
model, respectively. φ̂ represents the traditional residual overdispersion parameter in the
QP model; the scale parameter for the negative binomial model for count data in the NB
model; and the variance of the random intercepts in the RI model. We did not consider
the random intercept model for the 1024 area case, because the other models performed
sufficiently well and were substantially faster to fit.

Areas Model E(β̂xt) E{se(β̂xt)} SD(β̂xt) 95% Cov. Type I E(φ̂) % Converge

64
NB -0.499 0.466 0.484 0.940 0.058 0.034 0.812
QP -0.490 0.459 0.489 0.926 0.069 1.362 1.000
RI -0.497 0.466 0.470 0.947 0.060 0.035 0.852

256
NB -0.493 0.223 0.235 0.936 0.063 0.037 0.222
QP -0.501 0.226 0.233 0.944 0.061 1.456 1.000
RI -0.496 0.228 0.231 0.944 0.060 0.038 0.910

1024 NB -0.489 0.111 0.112 0.953 0.064 0.042 0.268
QP -0.502 0.112 0.114 0.949 0.052 1.504 1.000

intercept model (which is the ‘correct model’ in our simulation study). Convergence is-

sues arose with the negative binomial model in our simulations, whereas the random-

intercept model converges > 85% of the time. The quasi-Poisson model converges > 99%

of the time in simulation.

Additionally, we note that the variance parameters σ2, σ2
1, and σ2

2 are relatively un-

biased when the range parameter is correctly specified (Table 4.2), suggesting that the

model which allows for a common surface and time-specific spatial surfaces is identifi-

able with sufficient data. This result is consistent with Wager et al. (2004) and Coull et al.

(2001), who fit similar models to Model 3.

Further, we find that when data are generated from a smooth underlying surface, a

model with as few as ∼ 64 knots will perform as well as models with higher knot choices

(Table 4.3). When the underlying spatial surface is less smooth, more knots are required to

appropriately model the surface. For instance, if the range of the spatial correlation is less
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Time 1 Time 2

Figure 4.4: Non-regular, misaligned grid used in the simulation study with 64 areas.

than the minimum distance between knots, oversmoothing of the spatial surface occurs.

When we do not include enough knots in the model (for instance, the scenario with 64

areas andG < 64), the data appears highly overdispersed (φ̂ >> 1) and the standard error

of β̂xt is underestimated.

For the scenarios with 64 and 256 areas, we repeat our simulations assessing sensitiv-

ity of the model to knot selection, choice of range parameter, and the number of design

points using a non-regular, misaligned grid, shown in Figure 4.4. We exclude the 1,024

case because we observed the greatest power differences and sensitivity to parameter

choices for the 64 and 256 area scenarios; additionally, the setting with 1,024 areas better

approximates a regular grid. When estimating fixed effects and variance parameters, the

model was not sensitive to the choice of the number of design points (results not shown).

In Table 4.5, we examine how well the model predicts the area-specific relative risks

as a function of the number of knots included in the model, when the data is no longer

on a regular grid. We present the average mean-squared error (defined in Section 4.8), as

well as estimates of βxt and se(β̂xt). The results from the irregular grid are nearly identical
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Table 4.5: Comparing the performance of our model when data is simulated on a regular
versus an irregular, misaligned grid. We compare the models for different choices of the
number of knots, for the scenarios with 64 and 256 areas. se = E{se(β̂xt)}, sd = SD(β̂xt).

Misaligned Irregular Grid Regular Grid
Areas G E(β̂xt) se sd MSE E(β̂xt) se sd MSE

64
36 -0.501 0.173 0.164 0.013 -0.499 0.171 0.150 0.012
49 -0.500 0.161 0.155 0.009 -0.498 0.139 0.136 0.006
64 -0.499 0.155 0.153 0.008 -0.497 0.125 0.135 0.005

256
100 -0.502 0.099 0.098 0.008 -0.502 0.101 0.100 0.009
144 -0.502 0.098 0.098 0.007 -0.502 0.099 0.100 0.008
196 -0.502 0.098 0.097 0.007 -0.502 0.097 0.100 0.008

to the regular grid, with a small inflation in the MSE when the data contains only 64 areas.

The results from our simulations suggest that the model results and model validity do not

change substantially, regardless of whether the data is misaligned over time.

Using data simulated on the irregular, misaligned grid, we evaluate how well our

model performs when the range parameter changes across time, but we fit a model as-

suming that the range is constant over time (see Section 4.8 for detailed description of

data generation). Under these conditions, we still obtain valid estimates of βxt and se(β̂xt)

(Table 4.6). Once again, correct specification of the range parameter is not important in

obtaining valid model results, due to the lack of identifiability between the spatial vari-

ance parameters and the range parameter.

Lastly, the estimated overdispersion parameter φ̂ in our simulations is often less than

1, suggesting that data are underdispersed. Specifically, data appear underdispersed

when choice of G (number of knots) is high as well as when data are sparse (Tables 4.1

and 4.3). In this situation, unless there is a plausible reason for why the data are under-

dispersed, we recommend fixing φ = 1 or adjusting the number of knots such that φ̂ ≈ 1,

as suggested in Wager et al. (2004). Based on our simulations, when estimates of φ are

less than 1, the model performance improves when we fix φ = 1 and do not estimate an
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Table 4.6: Comparing the performance of our model when the range parameter changes
across time and when the range parameter is fixed over time, fitting a model which as-
sumes the latter is true. Data is simulated on an irregular, misaligned grid, for the scenar-
ios with 64 and 256 areas. se = E{se(β̂xt)}, sd = SD(β̂xt).

Range parameter changes Fixed range parameter
Areas ρ E(β̂xt) se sd MSE E(β̂xt) se sd MSE

64
3 -0.493 0.165 0.178 0.014 -0.498 0.151 0.149 0.009
5 -0.494 0.166 0.179 0.010 -0.497 0.155 0.153 0.008
10 -0.495 0.182 0.192 0.012 -0.496 0.175 0.173 0.010

256
3 -0.501 0.104 0.102 0.012 -0.503 0.098 0.097 0.007
5 -0.502 0.105 0.102 0.012 -0.503 0.099 0.097 0.008
10 -0.502 0.107 0.103 0.012 -0.503 0.101 0.099 0.009

overdispersion parameter (results not shown).

4.6 Analysis of the Los Angeles Breast Cancer Data

Using the spatio-temporal model described in Section 4.4, we re-analyze the Los Angeles

cancer data presented in Krieger et al. (2006), restricting our attention to the time periods

1988-1992 and 1998-2002. Descriptive statistics for the LA cancer data are shown in Table

5.1. The number of census tracts in LA county was 1,642 in 1990 and 2,056 in 2000; the

total population count of women over 15 years old was 3,492,249 in 1990 and 3,625,360

in 2000. Following standard practice for cancer incidence rates centered around a cen-

sus (Boyle and Parkin, 1991), we estimate person-time by assuming that the population

counts are constant within each 5-year time period (1988-1992 and 1998-2002) and multi-

ply the decennial population counts from the censuses by 5.

Age at diagnosis is categorized into 8 groups: 15-24, 25-34, 35-44, 45-54, 55-64, 65-

74, 75-84, and 84+. Data are available for white non-Hispanic, Hispanic, black non-

Hispanic, and Asian Pacific Islander populations. We use internal standardization to

calculate the expected number of breast cancer cases by CT for each time period. We
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analyze the data combining all race/ethnicities (standardizing by age and race/ethnicity)

and for each race/ethnicity group individually (standardizing only by age). Chen et al.

(2008) emphasize that it may not be appropriate to assume a common spatial effect across

racial/ethnic groups due to patterns of racial/ethnic segregation. We report results for

all race/ethnicities combined and for the two largest subgroups, White non-Hispanics

and Hispanics.

We select the percent of the population below the poverty level in a CT as our area

based socioeconomic measure (ABSM). Following Krieger et al. (2006), we model the re-

lationship between the ABSM and the log-relative risks associated with pre-determined

epidemiologically meaningful poverty groups. Therefore, we model the percent of the

population below poverty as a 5-level categorical variable as follows: (a) among census

tracts with < 5% poverty, we distinguish between those with ≥ 10% high income house-

holds (8.3% of CTs) and < 10% high income households (9.2% of CTs); and (b) among

the remaining census tracts, we distinguish between those with 5.0−9.9% (23.6% of CTs),

10.0−19.9% (26.6% of CTs), and≥ 20% poverty (the federal definition of a “poverty area”

and 32.4% of CTs). High income households are defined as ≥ 4 times the US median

household income.

To model spatial variability, we define ρ = 15/∆ based on epidemiological plausi-

bility, where ∆ is the maximum distance between CTs in LA county. We use 30 design

points per CT and select 100 knots throughout the study region using the space filling

design described in Johnson et al. (1990) and implemented in the R package FIELDS.

Let Yit denote the observed number of incident breast cancer cases in CT i at time t,

Table 4.7: Descriptive Statistics for LA Breast Cancer Data. Median (IQR) are presented.

Population Size Observed Cases Expected Cases
All 9150 (6980, 12005) 12 (7, 18) 12.2 (8.2, 17.4)
White non-Hispanic 3060 (710, 6061.3) 6 (1, 13) 7.0 (1.8, 13.6)
Hispanic 2742.5 (1120, 5180) 2 (1, 3) 1.7 (0.8, 3.1)
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and assume Yit ∼ Poisson(µit). We fit the model (analogous to Model 3):

log(µit) = log(Eit) + β0 + βppovit + βtIt=2000 + βptpovitIt=2000 +
∑
j

∑
l

Zl(sij)(ul + ult)

where povit is a 4 × 1 indicator variable for the poverty category of area i at time t; and∑
j

∑
l Zl(sij)(ul + ult) is the spatio-temporal spline term, defined in Model 3 in Section

4.4. For model identifiability, we use the ‘> 20% poverty’ category as the reference cate-

gory.

For each race/ethnicity, fitting Model 3 takes approximately 15 minutes using the

glmmPQL function in R and 3 minutes using PROC GLIMMIX in SAS. Based on the re-

sults from Model 3 in Table 4.8, the socioeconomic gradient in breast cancer does not ap-

pear to be decreasing over the time period studied. Instead, consistent with the findings

in Krieger et al. (2006), we observed that the IRR remained stable over time in the dif-

ferent racial/ethnic groups, and that the socioeconomic gradient was smaller among the

white non-Hispanic women (among whom the “catch up” may have already occurred),

and greater among Hispanic women, for whom cancer risk factors may still exhibit strong

socioeconomic patterning.

In Table 4.9, we examine the estimated spatial variance parameters and compare the

results from Models 2 and 3. The standard errors of the estimated fixed effects β̂
pt

from

Model 3 are consistently smaller than those in Model 2 in all analyses. In our analysis,

incorporating correlation between the spatial random effects across time results in a sub-

stantial increase in power. Specifically, in the combined racial/ethnic group analysis, we

have stronger evidence that there exists a change in the socioeconomic gradient of breast

cancer over time using Model 3 (p = 0.03) versus Model 2 (p = 0.15). In Figure 4.5, we

plot the common residual spatial surface across both time points for all races combined,

as well as the residual spatial surface from 1990, estimated using Model 3 (note that we

do not detect any residual spatial variability for the 2000 time point, as σ̂2 ≈ 0). The simi-

larity between the spatial surfaces across time drives the gain in efficiency obtained when

we use Model 3.
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Figure 4.5: Plot of the common spatial residual relative risk surface for the 1990 and 2000
time periods in LA county; and the additional time-specific spatial residual relative risk
surface for the year 1990 in LA County.
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Table 4.8: Results from Los Angeles cancer data analysis. Incidence rate ratios relative
to the > 20% poverty category are shown for each time period and race/ethnicity group,
with Wald p-values testing whether the log-IRR changes across time for each poverty
category and for all categories combined.

Category IRR 1988-1992 IRR 1998-2002 p-value

All

> 20% 1 1 -
10− 20% 1.09 (1.05, 1.14) 1.09 (1.05, 1.13) 0.9829
5− 10% 1.13 (1.08, 1.18) 1.18 (1.14, 1.22) 0.1592
< 5% & < 10% high inc. 1.15 (1.09, 1.20) 1.28 (1.22, 1.34) 0.0056
< 5% & ≥ 10% high inc. 1.25 (1.19, 1.30) 1.28 (1.23, 1.33) 0.5053

Wald test, 4df 0.0281

White

> 20% 1 1 -
10− 20% 1.01 (0.93, 1.08) 0.992 (0.93, 1.06) 0.755
5− 10% 1.03 (0.96, 1.11) 1.073 (1.01, 1.14) 0.439
< 5% & < 10% high inc. 1.07 (0.98, 1.15) 1.150 (1.07, 1.23) 0.178
< 5% & ≥ 10% high inc. 1.15 (1.07, 1.23) 1.190 (1.12, 1.26) 0.501

Wald test, 4df 0.2654

Hispanic

> 20% 1 1 -
10− 20% 1.16 (1.07, 1.25) 1.23 (1.16, 1.31) 0.2752
5− 10% 1.33 (1.22, 1.44) 1.43 (1.34, 1.52) 0.2770
< 5% & < 10% high inc. 1.38 (1.23, 1.53) 1.79 (1.64, 1.94) 0.0119
< 5% & ≥ 10% high inc. 1.63 (1.43, 1.83) 1.62 (1.43, 1.81) 0.9714

Wald test, 4df 0.1419
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Table 4.9: Results from LA breast cancer data analysis, comparing spatial variance pa-
rameters and p-values testing H0 : βpt = 0 between Model 2 (spatial random effects are
independent across time) and Model 3 (allows for temporal dependence in spatial ran-
dom effects).

Race/Ethnicity Model σ̂ σ̂1 σ̂2

√
φ̂ p-value

All 3 0.0870 0.0461 0.000 1.109 0.0281
2 - 0.1008 0.0746 1.110 0.1497

White 3 0.1304 0.000 0.000 1.162 0.2654
2 - 0.1572 0.0971 1.155 0.2904

Hispanic 3 0.1290 0.000 0.000 1.061 0.1419
2 - 0.1411 0.0905 1.061 0.1906

4.7 Discussion

Motivated by the temporal boundary misalignment issues in the Los Angeles breast can-

cer incidence study, we develop an area-level disease mapping model that incorporates

spatio-temporal correlation in the presence of temporal boundary misalignment. Anyone

using U.S. census data from more than one decade inevitably encounters the same tem-

poral boundary misalignment issues that we face. Previous solutions to this problem are

computationally intensive and ignore temporal correlation in the spatial random effects,

potentially leading to inefficient inferences.

The proposed model does require selecting a parametric form for the correlation

structure for the underlying continuous relative risk surface. Our simulation study sug-

gests that the exponential correlation structure performs well and that the choice of the

range parameter ρ is not too important. While fixing the range parameter may seem arbi-

trary, Zhang (2004) prove that, in spatial GLMMs, it is impossible to consistently estimate

ρ and the variance parameter σ2, but that the ratio σ2/ρ is both more stable and more

important to interpolation than the individual parameters. Therefore, fixing one param-

eter (ρ) and estimating the other (σ2) should provide a consistent estimate of the spatial

random effects.

108



While we have emphasized the usefulness of our model in addressing the tempo-

ral boundary misalignment problem, it is important to note that this new method will

be a very useful and computationally efficient alternative to the popular fully-Bayesian

disease mapping models for data collected at a single time point. Most disease map-

ping applications in the literature use study regions containing only a few hundred areas,

and fitting fully Bayesian models is feasible in such cases. For larger datasets with thou-

sands of areas, which are becoming more common in epidemiological applications, these

Bayesian models are more difficult to implement. By using a PQL approximation to max-

imum likelihood inference, we reduce the computation time from hours to minutes for

our dataset and avoid any issues associated with model convergence and prior selection.

Our method is also easy to program in standard software (SAS and R), filling a gap in the

available software for fitting GLMMs with area-level spatial correlation.

Furthermore, while constructed in a different manner, the area-level spatial prior in

our model has the same interpretation as that proposed in Kelsall and Wakefield (2002).

Their model is often cited in disease mapping reviews as a good option for modeling

area-level spatial correlation, as it seems appropriate to model the area-level relative risk

as arising from a continuous underlying surface. However, we could not find any articles

that use this method in practice, presumably due to the challenges associated with model

fitting. We hope that the simplicity of our model will facilitate its use in practice.

In the present model for spatio-temporal variability, following Wager et al. (2004), we

assume that the correlation between the log-relative risk at a given location at different

time points is the same. When boundaries are aligned across time, this corresponds to

the assumption that Corr{log(µitj , µitk)} = c, where c is a constant, for all time points j, k.

When data are available at only two time points, this model is appropriate. When data

are available at more than two time points, one might develop more sophisticated lon-

gitudinal extensions of this model that induce more correlation between occasions closer

together in time. One viable option is using a model-based approach and incorporating

spatio-temporal correlation through placing relevant priors on the random effects {ult},
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such as ult ∼ N {0,Σ(ρt)}. For instance, we could specify an AR(1) prior on {ult}. Fitting

a frequentist version of this model in standard software is also of interest.

Using the Los Angeles County breast cancer incidence data, we find no clear evidence

supporting the hypothesis that the socioeconomic gradient in breast cancer incidence is

decreasing over time, consistent with the findings in Krieger et al. (2006). Results were

robust to the choice of model parameters, including as the range parameter, number of

knots, or the ABSM included in the regression model.

4.8 Detailed description of the simulation study

To construct our datasets, we generate a continuous log-relative risk surface and a contin-

uous log-population density surface using a Gaussian random field on a 512 × 512 pixel

grid. The common spatial variability is induced by spatial log-relative risk surfaces ξ(s),

generated from ξ ∼ GRF{0, σ2Σ(ν)}; similarly, the time-specific log-risk surfaces are

generated from ξt ∼ GRF{0, σ2
tΣ(ν)}. We generate relatively smooth surfaces, choosing

the correlation structure Σt(ν) = Matern(0.3, 2) on a (0, 1) × (0, 1) grid (Figure 4.6). The

population density surface is generated similarly, using a Matern(0.3,2) log-population

density surface, but standardized to have a total population of ∼ 9.5 million people over

the entire grid (similar to the data application).

We divide the grid into 64, 256, or 1024 square blocks (areas) and simulate data on

this grid at two time points. In order to reflect the attributes of the motivating L.A. breast

cancer dataset, the incidence p is 0.11 cases per 100 person-years. In the scenario with

1024 areas, the average number of cases and total population per area are 10 and 9,000,

respectively; these values increase as the number of areas decreases, in order to maintain

the same p throughout the analysis and to illustrate how the results change when level of

aggregation of the data changes. We do not use age-specific disease rates in our simula-

tion study; the expected number of cases in an area is crudely defined as the product of

the disease incidence and the population size within an area.
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Figure 4.6: Realizations from Gaussian process with Matern(0.3,2) correlation structure
on (0, 1)× (0, 1) grid, divided into 256 areas.

We simulate a Poisson process with intensity λijt at each point location on the grid,

where the log-intensity is (analogous to Model 3 in Section 4.4):

log(λijt) = log(Eijt) + βxxit + βtt+ βxtxitt+ ξ(sijt) + ξt(sijt),

where sijt is a point in area i at location j at time t, t = {0, 1}, and Eijt is the expected

number of cases at time t in area i at point j.

Unless stated otherwise, the true parameter values in the simulation study are: βx =

1, βt = 0.2, βxt = −0.5, σ = 0.3, σ1 = σ2 = 0.2. To assess type I error, we fix βxt = 0. The

area-level covariates xit are generated from a Unif(0, 0.5) distribution, to reflect a poverty

indicator such as percent of the population below poverty. Spatial random effects sij and
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sijt are generated from Gaussian processes as described above, such that the point-wise

relative risk attributed to underlying spatial heterogeneity lies between 0.71 and 1.40 50%

of the time and between 0.37 and 2.66 95% of the time.

This data generating mechanism does not induce any residual overdispersion into

the data. To assess the appropriate model for residual overdispersion, we induce overdis-

persion in our data by introducing a covariate xO,it ∼ N(0, 0.22) into the data generating

mechanism and omitting this covariate when fitting the model.

To obtain area-level population counts from the underlying population density data,

we integrate over the density surface. Using the population density surface and log-

relative risk from the above model, we generate an area-level case counts from a realiza-

tion of the underlying Poisson process model with rate λijt at location i in area j at time

t. We run 2,000 simulations for each scenario described.

We then model the area-level expected count µit using Model 3:

log(µit) = log(Eit) + βxxit + βtt+ βxtxitt+
∑
j

∑
l

Zl(sij)(ul + ult),

where Eit = Nitp; Nit is the population size in area i at time t; and the penalized spline

terms are identical to those defined in Sections 4.3.2 and 4.4. We assume the underlying

spatial surface follows a Gaussian process with an exponential correlation structure with

ρ = 5 (note that we are misspecifying the correlation structure throughout the simula-

tion study, as we generated data from a Matern correlation function; this misspecification

did not affect our results). For settings with more than 64 areas, we fit a reduced-rank

model with 100 knots spaced evenly across the grid to represent spatial heterogeneity.

For the 64 area case, we use 64 knots. We account for residual overdispersion using the

‘quasi-Poisson’ model. Though we simulate our data assuming no residual overdisper-

sion (except for the simulations in Table 4.4, which include residual overdispersion), we

include an overdispersion parameter φ in all of the models we fit to investigate whether

identifiability problems arise between spatial variance parameters and residual overdis-

persion parameters.
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In the Los Angeles breast cancer incidence analysis, we are specifically interested

in testing whether a covariate effect changes across time. Using the model above, this

corresponds to testing the null hypothesis H0 : βxt = 0, and we focus on the parameter

βxt throughout the simulation study.

As a supplement to Section 4.5.2, which describes results of the simulation study,

we provide Tables 4.1-4.6 displaying simulation results assessing various aspects of our

model. Specifically, we assess the performance of the PQL approximation procedure when

data are sparse (Table 4.1). We also report the sensitivity of the model to choice of the

range parameter (Table 4.2); the choice of the number of knots (Table 4.3); and the choice

of the method used to model residual overdispersion (Table 4.4). All simulations are

performed with the true value βxt = −0.5, except to calculate the Type I error, in which

case βxt = 0. For each of the tables below, we present the model-based standard errors

for β̂xt and the Monte Carlo standard deviations of β̂xt. Columns 4 and 5 show 95% Wald

confidence interval coverage when βxt = −0.5 and type I error when βxt = 0, respectively.

In the simulation, recall that true values of σ, σ1, and σ2 are 0.3, 0.2, and 0.2. The last

column in the tables shows the average estimate of the overdispersion parameter φ.

Tables 4.1-4.4 present the results of simulations when we generate data on a regular

grid. For the scenarios with 64 and 256 areas, we run additional simulations assessing

sensitivity of the model to knot selection, choice of range parameter, and the number of

design points using data simulated on a non-regular, misaligned grid (Figure 4.4). Results

from the simulations using the non-regular, misaligned grid are in Tables 4.5 and 4.6.

In Tables 4.5 and 4.6, we examine the estimated area-level relative risks for different

scenarios, by calculating the average mean-squared error for the area-level relative risk

estimates:

MSE = E

{
1
Mt

∑
i,t

(R̂it −Rit)
2

}
.

Rit and R̂it are the true and estimated area-level relative risks, respectively, for area i at

time t and M is the number of areas.
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In Table 4.6, we assess whether the model is sensitive to the misspecification of the

range parameter. When generating the data, we fix the range parameter in one set of sim-

ulations (using a Matern(0.3, 2) correlation structure on the (0, 1) × (0, 1) grid) and allow

this parameter to change over time in another set (using 3 different correlation structures:

Matern(0.3,2) for the shared spatial surface, Matern(0.1,2) and Matern(0.5, 2) surfaces for

the time-specific spatial heterogeneity). In Table 4.6, we compare the fixed effects esti-

mates and standard errors, as well as the average MSE, from these simulations. The MSE

is lower when we fix the range parameter, but this result is likely an artifact of how we

simulate the data. Specifically, when the range parameter changes across time, we gener-

ate data using a smaller range parameter at one time point than when the range parameter

is fixed; the smaller range parameter results in a more heterogeneous simulated surface

that is more difficult to predict, inflating the MSE.
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5.1 Introduction

Temporal disease mapping applications in public health are becoming progressively more

complicated, as the size and complexity of available data increases. We aim to map

changes in breast cancer incidence over time in Los Angeles County and relate these

changes to socioeconomic status. Using data from 1980-2000, there are approximately

35,000 data points. In US census data, shifting census tract boundaries over time cause

area-to-area temporal boundary misalignment (Chen et al., 2008; Hund et al., 2012). Ad-

ditionally, accounting for spatio-temporal correlation disease mapping models is difficult

when datasets are large and boundary misalignment occurs.

Another issue that arises frequently in temporal disease mapping applications is

missing census tract population counts within age and race/ethnicity strata at the in-

tercensal years (Best and Wakefield, 1999). The issue of how large a role uncertainty in

denominators plays in disease mapping studies is an open question. Phipps et al. (2005) il-

lustrate how intercensal population projection errors within age and race/ethnicity strata

can induce bias in the estimation of breast cancer incidence rates in counties in California.

Smith and Shahidullah (1995) quantify population projection errors for census tracts in

Florida using past census data to project census tract counts, comparing their projections

to current census data.

Predicting intercensal population counts introduces additional layers of uncertainty

into disease mapping models. Best and Wakefield (1999) propose a Bayesian frame-

work for incorporating uncertainty into disease mapping models when intercensal de-

nominators are unknown. The Best and Wakefield (1999) interpolation model for inter-

censal counts may not be optimal when predicting population counts in different age and

race/ethnicity strata; further, the method becomes more computationally intense as the

number of census tracts increases and may not be feasible when datasets contain thou-

sands of census tracts at each time point. However, to our knowledge, no other methods

exist for incorporating uncertainty in intercensal count projections in disease mapping
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models.

In this paper, we discuss common issues in spatio-temporal disease mapping applica-

tions, specifically addressing uncertainty in intercensal denominator projections and tem-

poral boundary misalignment. We propose a new framework for predicting intercensal

population counts and for assessing the impact of uncertainty in these predictions on

health effects analyses. We then quantify the statistical uncertainty associated with popu-

lation count uncertainty when estimating the relationship between socioeconomic status

and breast cancer incidence. In Section 5.2, we introduce the Los Angeles County breast

cancer incidence dataset. In Section 5.3, we propose various modeling frameworks for in-

tercensal denominator interpolation, and we evaluate the performance of these models in

simulation in Section 5.4. In Section 5.5, we construct a general framework for addressing

spatial misalignment in regression models; we apply this model to the LA breast cancer

dataset in Section 5.6 to assess changes in the socioeconomic gradient in breast cancer

incidence between 1980 and 2000.

5.2 Assessing socioeconomic gradients in breast cancer in-
cidence in LA county

Breast cancer is typically characterized as a disease of affluence, but Krieger et al. (2006)

predict that incidence rates may be “catching up” among poorer women in more affluent

countries. We investigate the hypothesis that the socioeconomic gradient in breast cancer

incidence is decreasing over time by examining data associations between socioeconomic

measures and breast cancer incidence rates between 1980 and 2000 in Los Angeles County,

CA. For other analyses of and descriptions of this dataset, see Krieger et al. (2006); Chen

et al. (2008); and Hund et al. (2012).

We obtained the breast cancer case data from the Los Angeles Cancer Surveillance

Program cancer registry. We appended the census tract geocode to each cancer registry

record, based on the location and date of residence at diagnosis. We obtained population
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Table 5.1: Descriptive Statistics for LA Breast Cancer Data. Median (IQR) are presented.

Population Expected cases Observed cases % below poverty
Total women

1980 1790 (1288, 2335) 2.3 (1.6, 3.0) 2 (1, 3) 10.0 (5.8, 18.8)
1990 2033 (1510, 2634) 2.6 (1.9, 3.4) 2 (1, 4) 10.6 (5.5, 20.4)
2000 1704 (1297, 2198) 2.2 (1.6, 3.0) 2 (1, 4) 15.0 (7.4, 25.8)

Black women
1980 28 (9, 127) 0.0 (0.0, 0.1) 0 (0, 0) 10.0 (5.8, 18.8)
1990 55 (20, 184) 0.0 (0.0, 0.2) 0 (0, 0) 10.6 (5.5, 20.4)
2000 54 (21, 173) 0.1 (0.0, 0.2) 0 (0, 0) 15.0 (7.4, 25.8)

counts within census tracts from the 1980, 1990 and 2000 US censuses for different age and

race/ethnicity groups; and county-level population totals within age and race/ethnicity

groups for the intercensal years (1981-1989 and 1991-1999).

Age at diagnosis is categorized into 8 groups: 15-24, 25-34, 35-44, 45-54, 55-64, 65-

74, 75-84, and 84+. We use internal standardization to calculate the expected number

of breast cancer cases by CT for each time period. First, we ignore race/ethnicity and

conduct our analysis for all women in LA county, standardizing the expected cases by

age. Next, we restrict our analysis to the population of black women, again standardizing

by age.

We quantify the socioeconomic gradient by calculating differences in breast cancer

log-incidence rate ratios corresponding to an area-based socioeconomic measure (ABSM)

between 1980 and 2000. We use the percent of the population below the poverty-level as

the ABSM in our analyses.

Descriptive statistics for the LA cancer data are shown in Table 5.1. Figure 5.1 shows

the county-level growth trends for the total and black populations. The number of census

tracts in LA county was 1,633 in 1980; 1,642 in 1990 and 2,056 in 2000. The total population

count of women over 15 years old was 2,993,192 in 1980; 3,492,249 in 1990; and 3,625,360

in 2000. The total number of black women over 15 years old was 369,543 in 1980; 402,207

in 1990; and 381,302 in 2000.
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(a) Total women (b) Black women

Figure 5.1: Population trends by age group in LA county for the female total and black
populations. Age groups are shown above their respective trend lines.

5.3 Predicting intercensal population counts

The US Census provides intercensal population estimates within age and race/ethnicity

groups at the county-level. However, in disease mapping studies, study investigators of-

ten use smaller geographic units, such as census tracts, as the units of analysis, to provide

more geographic resolution in spatially heterogeneous populations. Census tracts (and

block groups) are designed to be socioeconomically homogeneous; consequently, Krieger

et al. (2002) report that socioeconomic health effects studies conducted at the census tract

or block group level outperform zip-code aggregation. To calculate age-standardized ex-

pected breast cancer cases within census tracts, we need to estimate the population counts

within age and race/ethnicity groups during the intercensal years (1981-1989, 1991-1999).
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5.3.1 Boundary Normalization

Census tract boundaries shift over time at the census years, 1980, 1990, and 2000. In

order to project intercensal population counts between the census years, we first need

to normalize the census tract boundaries to a standard set of boundaries. The US cen-

sus provides some normalized population counts, but does not break down these counts

into age and race/ethnicity strata. Commercial GIS software provides normalized counts

within these strata (Chen et al., 2008).

We normalize the 1980 and 2000 census tract boundaries to the 1990 boundaries. The

primary challenge of normalizing the boundaries is that predictions must preserve To-

bler’s pyncophylactic property (Tobler, 1979). For instance, if two census tracts merge

together, the count in the new tract should equal the sum of the counts in the two merged

census tracts; if a census tract boundary did not change over time, then count should

remain the same. Additionally, we need to ensure that the normalized predictions are

positive.

The simplest normalization procedure that preserves these properties is proportional

allocation of population counts (Gotway and Young, 2002). Gotway and Young (2007)

propose an area-to-area kriging method to normalize boundaries that preserves the pyn-

cophylactic property, but does not guarantee that projected counts are positive. We pro-

vide a review of proportional allocation and area-to-area kriging below.

We use both proportional allocation and area-to-area kriging to obtain two sets of nor-

malized population counts. In our application, proportional allocation outperforms the

kriging model in terms of root mean-square error (RMSE) and mean absolute prediction

error (MAPE) in our validation set (see Section 5.4). In Section 5.3.2, we combine results

from the kriging and proportional allocation models to produce more accurate intercensal

interpolations using model stacking.
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Area-to-area kriging and proportional allocation

In a given county, denote Nita the population count for stratum a in census tract i at

time t , denoted Ait. Denote the county-level population count in stratum a at time t by

Nta. The aggregate, county-level population counts {Nta} are known for all time points

(t = {1, 2, ..., T}). The census tract population counts {Nita} are known only at census

years (t = 1, T ). In this example, we assume that we have counts from 2 census years, at

time 1 and time T , but the method easily extends to more than two censuses.

Without loss of generality, we regularize population counts to the boundaries at time

t = 1. First, we plot the empirical variogram using the centroids of the areas and deter-

mine a reasonable spatial model for interpolation. After finding an appropriate spatial

covariance function for modeling the data, we predict census counts for the time t = 1

boundaries using the kriging equations Gotway and Young (2007):

N∗jTa =
∑
i

wijaNita

where N∗jTa are the estimated counts at time T in census tract j, after changing to the time

1 boundaries. The kriging weights wja = (w1ja, ..., wKija) are:

wja = ΣT ∗T,aΣ
−1
TT,a

where ΣT ∗T,a[1, i] = Cov(N∗jTa, NiTa) is a 1 × i matrix describing the covariance between

the counts at the time 1 and time T boundaries; and ΣTT,a[i, j] = Cov(NjTa, NiTa) is a i× i

variance-covariance matrix for the counts at time T . Note that
∑

i |Ait|wija = |AjT |.

While our variogram fitting model is rather ad-hoc, we do not believe that the form of

the variogram will be as important in area-to-area kriging, as both the area of the census

tracts and the spatial covariance function play a role in determining the new interpolated

counts. We could use the more sophisticated variogram fitting methods presented in Got-

way and Young (2007). In our application, the number of areas is large and the population

counts are variable, which can produce unstable kriging results (e.g. negative population

counts in areas). Following Gotway and Young (2007), we use a local kriging approach to
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predict the census tract counts, using only the nearest 5-15 neighboring areas to predict

the new count.

If the spatial structure of the population counts is ignored and proportional allocation

is used to normalize boundaries, then wija = |Aijt|/|Ait|, where |Aijt| is the area of the

portion of census tract i at time t that is contained in area j at time T . Again,
∑

i |Ait|wija =

|AjT |.

5.3.2 Interpolating intercensal counts

After obtaining normalized census tract counts in 1980 and 2000, we interpolate inter-

censal tract counts using the 1990 census boundaries as our reference set of boundaries.

We predict census tract population counts within age and race/ethnicity strata at all inter-

censal years (1981-1989, 1991-1999), given (1) census tract population counts within age

and race/ethnicity strata at the census years (1980, 1990, 2000) and (2) county-level popu-

lation counts within age and race/ethnicity strata at all years (1980-2000). In this section,

we propose multiple models for intercensal population count interpolation; these models

are also listed in Section 5.3.3.

Linear Interpolation

First, we interpolate using simple linear interpolation, assuming that the population

within a census tract changes linearly over time. Linear interpolation does not require the

county-level population totals, and therefore ignores any county-level population growth

trends.

Apportionment Probabilities

Best and Wakefield (1999) interpolate intercensal counts via apportionment probabilities.

In our application, the apportionment probability pita is the fraction of the population
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within stratum a in LA county living in census tract i at time t, pita = Nita/Nta. Apportion-

ment probabilities are known at the census years and are extrapolated to the intercensal

years. To impute intercensal counts, apportionment probabilities are modelled using a

logistic-linear model:

logit(pita) = β0ia + βi1at

Then, N̂ita = Ntapita.

This model does not impose any standard population growth or decay model on the

population counts. Additionally,
∑

i pit 6= 1, so we adjust the apportionment probabilities

to sum to 1.

In addition to the linear-logistic model, we also fit a model assuming that apportion-

ment probabilities increase linearly over time within census tracts.

Additive model for population change over time

Next, we construct an additive model for the intercensal population counts. We estimate

changes in the population within a stratum over time, modelling Nita = Ni(t−1)a + rita,

where rita is the unknown population growth parameter of interest. Because data reflect-

ing births, deaths, or migration at the census tract level within strata are not available, we

cannot incorporate any direct population growth or decline data into our model. Conse-

quently, we build a model based on the concept that populations change gradually over

time. Events such as Hurricane Katrina are of course exceptions to this rule, but, in most

circumstances, this model should be reasonable.

We assume population changes are smooth over time within each census tract and

meet the county-level total population constraints at each year. Specifically, the parame-

ters {rita} encompass population growth or decline due to births, deaths, and migration.

We solve for {rita} by minimizing an objective function that imposes smoothness con-
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straints on the population growth parameters rita, e.g.

n∑
i=1

T−1∑
t=1

|NiTa −Ni1a|−qr2ita.

In this model, q is a user-specified parameter that adjusts smoothness in the growth pa-

rameters {rita} by the total amount of growth in a census tract over time. Specifically,

choosing q = 0, areas experiencing a lot of growth over time will have very smooth

growth trends over time, whereas those with less growth may have more erratic growth

patterns. Choosing q = 1 would provide more balance between areas with different net

population growth over time.

We have n(t− 1) unknown parameters, {rita}. Without imposing any constraints, the

solution to the minimization problem is {rita} = 0. However, we aim to minimize this

quadratic objective function, subject to the three linear constraints: (1)
∑

t rita = NiTa −

Ni1a, (2)
∑

i rita = Nta −N(t−1)a, and (3) Nita > 0.

We solve the constrained optimization problem using the quadprog function in

Matlab. Using this additive growth model, the parameters {rita} are directly inter-

pretable, and we can compare many different models by changing the objective function.

We avoid framing the intercensal population count imputation problem within a

probabilistic framework, e.g. modelling the population counts using a Poisson distribu-

tion. Determining a parametric distribution for the population counts is difficult, given

the skewed distribution of census tract counts within strata and the linear constraints.

Further, we are more concerned with interpolation, and using a probabilistic approach

can result in oversmoothing. Lastly, if we knew the correct model for the intercensal

population counts, then we would know the exact intercensal population count (because

census tract counts are known at the census years). For instance, if we knew the birth,

death, and migration rates for each substratum in each census tract, then we would know

the intercensal population counts. Given that we do not know the correct model, the

error that we are concerned with is model misspecification, rather than sampling error.

This distinguishes our approach from the probabilistic framework outlined in Best and
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Wakefield (1999), described in Section 5.7.1.

Model stacking

Lastly, we can consider a linear combination of the intercensal models. In our disease

mapping model, we aim to estimate the expected number of breast cancer cases in a

census tract as accurately as possible in the intercensal years. To determine the opti-

mal weights for the linear combination, we use the 1980 and 2000 census data to predict

the 1990 census tract expected case counts for each model and compare the predicted

expected counts to the actual 1990 census data.

DenoteEit as the expected breast cancer case count in census tract i at time t, and Êitm

as the estimated expected breast cancer case count using intercensal model m. We fit K

different intercensal population models, {M1, ...,MK}. Let ωm denote the weight assigned

to model m,
∑

m ωm = 1. (We omit the time index on ωm because we are only predicting

the expected counts at one year, 1990.) We construct a linear combination of the models,

ÊS
it =

∑
m ωmÊitm and estimate ωm using model stacking (Wolpert, 1992). Traditional

stacking minimizes
n∑
i=1

(
Eit −

K∑
m=1

ωmÊitm

)2

with respect to {ωm} to obtain model weights. The distribution of census tract counts

within strata is highly skewed, and the L-2 norm will emphasize the prediction of inter-

censal counts in tracts with very large populations. Therefore, to avoid outliers driving

the choice of the weights, we also estimate the set of weights {ω1
m} that minimizes the

objective function with respect to the L-1 norm,

n∑
i=1

∣∣∣∣∣(Eit −
K∑
m=1

ω1
mÊitm

∣∣∣∣∣.
Model stacking weights for the L-1 and L-2 norm are shown in Table 5.2. Traditional

Bayesian model averaging weights (Hoeting et al., 1999) are also shown in Table 5.2, to

contrast the stacking weights to model averaging weights. Stacking selects the best linear
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Table 5.2: Stacking weights for L-1 and L-2 norm; and Bayesian model averaging weights,
in the total and black populations.

Total Population Black Population
Stacking Stacking

Model L-1 L-2 BMA L-1 L-2 BMA

Prop. alloc.

A1 0.063 0.121 0.252 0.099 0.000 0.000
A2 0.000 0.000 0.000 0.002 0.000 0.000
A3 0.000 0.000 0.000 0.126 0.501 0.000
LI 0.855 0.789 0.748 0.180 0.000 0.000
P1 0.000 0.000 0.000 0.478 0.213 0.000
P2 0.000 0.000 0.000 0.000 0.000 1.000

Krige

A1 0.000 0.000 0.000 0.000 0.000 0.000
A2 0.000 0.000 0.000 0.000 0.000 0.000
A3 0.000 0.000 0.000 0.000 0.000 0.000
LI 0.082 0.037 0.000 0.000 0.000 0.000
P1 0.000 0.053 0.000 0.114 0.286 0.000
P2 0.000 0.000 0.000 0.000 0.000 0.000

combination of the fitted models to improve prediction, whereas Bayesian model averag-

ing assumes the data generating model is in the set of candidate models and weights the

models accordingly to incorporate model uncertainty.

Intercensal models

We fit various different intercensal models in our analysis, including linear interpolation;

two apportionment probability models (linear and logistic-linear); three additive popu-

lation growth models (q = 0, 0.5, 1); and the two stacked models (L-1 and L-2 norm).

In Section 5.3.3, we list the proposed intercensal models (and the abbreviations that we

use for these models). We fit each model using proportional allocation and area-to-area

kriging for boundary normalization. In Figure 5.2, we plot two sample trajectories of ex-

pected counts from the different models. We observe differences in the expected counts at

the census years in the linear interpolation model due to the fact that we use internal stan-

dardization, and we did not constrain the sum of the population counts at the intercensal

years to match the county-level population.
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Figure 5.2: Intercensal expected count estimates for the different models. Panel 1 shows a
census tract with a substantial amount of population change over time, and panel 2 shows
a census tract with very little change over the 20 year time period. Expected counts were
calculated using proportional allocation for boundary normalization.

5.3.3 Final list of intercensal interpolation models.

In this Section, we list the intercensal models fit in the validation procedure and analyses

in the remainder of the paper.

1. Additive models, for q = 0, 0.5, 1 (A1, A2, A3), minimize

n∑
i=1

T∑
t=1

|NiTa −Ni1a|−qr2ita

subject to linear constraints in Section 5.3.2.

2. Apportionment probabilities - Nita = Ntapita, where

• Logistic-linear (P1): logit(pita) = β0 + β1t

• Linear (P2): pita = β0 + β1t

3. Linear interpolation (LI): Nita = Ni(t−1)a + αi(t−1)a, αita = NTa−N1a

T−1 .
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We fit each of the 6 different intercensal interpolation models (A1, A2, A3, P1, P2, L1)

to the normalized census counts calculated using area-to-area kriging and using propor-

tional allocation. Lastly, we combine the 12 models above using model stacking with the

L-1 and L-2 norms (models S1 and S2, respectively). Therefore, we fit 14 unique inter-

censal population count models.

5.4 Simulation Study

To gauge the impact of denominator uncertainty in our disease mapping model, we use

the 1980 and 2000 censuses and the county-level population totals from 1980-2000 to pre-

dict the expect breast cancer counts in 1990. We estimate the expected breast cancer case

counts between 1981 and 1999, using the 1980 and 2000 census tract data and the county-

level total populations at each time point. We then compare the predicted expected counts

for each model Êi(1990)m to the true expected counts in 1990, Ei(1990). We use internal stan-

dardization to calculate the expected counts, with age-specific probabilities calculated

using only breast cancer cases and true census tract counts from 1990.

To determine which model for the expected case counts has the lowest prediction er-

ror, we compare the root mean squared error, RMSE = (1/n)(
∑n

i=1(Eit− Êitm)2)−1/2; and

mean absolute prediction error, MAPE = (1/n)
∑n

i=1 |Eit− Êitm|. Comparing predictions

in the expected counts is preferable to comparing absolute population counts, because the

final disease mapping model relies on the population counts only through the expected

case counts. Therefore, we should favor models that produce estimates of the expected

counts that are closest to the expected counts calculated from the census data.

Next, we perform a simulation study to assess whether errors in denominators can

induce bias in coefficient estimates. We generate simulated datasets by using the expected

cancer case counts and percent of the population below poverty in the census tract. Ex-

pected case counts are again calculated using internal standardization, but now use data
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from all three census years. We generate outcomes Yit ∼ Pois(µit), where

log(µit) = log(Eit) + β0 + β1xit + β2t+ β3xitt

where xit is the poverty indicator in census tract i at time t, t = {0, 10, 20}, and β0 =

0.1, β1 = −1, β2 = 0, and β3 = 0.025.

After generating 1,000 simulated datasets using the 1990 census data, we fit the above

model to each simulated dataset, changing only the expected case counts to the predicted

counts. Then, we compare estimates of β3 (analogous to the socioeconomic gradient)

across the models. We also fit a model using only the 1990 data to assess bias in the

estimate of the association between socioeconomic status and breast cancer incidence;

specifically, we model the linear predictor as log(µit) = log(Eit) +α0 +α1xit, where t = 10,

and assess bias in α1 (note that α1 = −0.75 under the data generating model).

We fit the two generalized linear models using the estimated expected counts {Êitm}

for each set of interpolated census counts m. By changing only the denominators, we can

assess the impact that denominator uncertainty has on estimating the association between

socioeconomic status and breast cancer incidence and changes in the socioeconomic gra-

dient over time in our disease mapping study. We compare 14 different models, listed in

Section 5.3.3; using this comprehensive list, we can compare the performance of propor-

tional allocation versus kriging; and the relative performance of the intercensal interpo-

lation models in Section 5.3.2.

Results from the simulation study are presented in Table 5.3. Prediction errors are

generally similar between all of the models, and the stacked models have the lowest pre-

diction error, as expected. The prediction error is consistently lower in the models using

proportional allocation for boundary normalization (versus area-to-area kriging).

Examining the total population, bias in the estimates of β3 and α1 is negligible in the

majority of the models. Substantial bias is observed only in the linear-logistic apportion-

ment probability model.

When we restrict to the black population only, bias in the estimates of β3 and α1 is
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(Ê
−
E

)
∼
E

S
E
S
∼

(Ê
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low only in the linear apportionment probability model and in the stacking model using

the L-2 norm. In the remaining models, bias in the coefficient and interaction estimates is

high.

We examine the source of the bias in these estimates in Table 5.4. First, for each model

m, we regressEit−Êitm onEit, to assess the relationship between the true expected cancer

counts and prediction error in the estimates. In census tracts with higher expected counts,

prediction error tends to be greater.

Next, we regress xit (the percent of the population below poverty in a census tract)

on the prediction error, Eit − Êitm. In the total population, poverty is associated with

prediction error only in the two models with substantial bias. When we restrict to the

black population only, poverty is correlated with the prediction error.

Specifically, an increase in the difference between the true and predicted expected

breast cancer counts Eit − Êitm is strongly associated with an increase in the poverty

indicator. In most of the interpolation models, predicted expected counts were overesti-

mated in census tracts with more poverty, resulting in substantial underestimation of the

relationship between SES and breast cancer incidence in 1990 and consequently an over-

estimate in the socioeconomic gradient. In summary, we found that correlation between

the covariate of interest and expected counts can result in systematic bias in fixed effects

estimates in disease mapping models, particularly when stratifying by race/ethnicity.

In the above simulation study, we only used data from the three census years, so that

we could compare the true census data with the predicted counts to gauge the impact of

bias. However, when fitting a disease mapping model to twenty time points, rather than

just three, we might observe less bias. Therefore, we conducted additional simulations

to assess the impact of denominator uncertainty across multiple time points. We selected

three models to use as our “true” intercensal population counts (i.e. as our data generat-

ing model): (1) the linear apportionment probability model, (2) the additive model with

q = 0, and (3) the stacked model using the L-2 norm. We used only the models with
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proportional allocation boundary normalization. After generating the data using one of

the three models, we fit the same model, changing only the expected counts (and using

those from remaining intercensal count models), and assessed bias in the estimates of β3.

Results of the simulation study are shown in Table 5.5.

Using data from the twenty different time points, we find that estimates of the socioe-

conomic gradient are similar across all models, especially in the total population. We still

observe some bias in β̂3 for many of the models, but bias is greatly attenuated compared

to the simulations that use data from only the three census years. The estimates of the

association between the poverty indicator and incidence are biased, but the bias is similar

across time points, resulting in only moderate bias in the estimate of the socioeconomic

gradient (results not shown).

The stacking model performed reasonably well in terms of coefficient bias, and we

use the L-2 norm stacked model in our final analyses.

5.5 General Spatial Misalignment Framework

Now that we have population denominator data for each time point, we can estimate the

association between SES and breast cancer incidence between 1980 and 2000. In order

construct this spatio-temporal disease mapping model, we need a plausible model for

residual spatial variability in the data. Area-to-area spatial misalignment arises in our

data, because of the boundary differences in the 1980, 1990, and 2000 census tracts. We

could use the normalized census tract counts in 1980 and 2000 (normalized to the 1990

boundaries), but this solution would introduce unnecessary uncertainty into our model.

Handling area-level temporal misalignment is simple using Hund et al. (2012), but flexi-

bility in the structure of the residual spatio-temporal variability is limited.
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5.5.1 Review of Area-level Geoadditive Models

Banerjee et al. (2008) and Kammann and Wand (2003) discuss reduced rank geoadditive

modelling for point-level data. Hund et al. (2012) propose a geoadditive model for mis-

aligned area-level data, constructed within the generalized linear mixed model frame-

work. To bypass issues with temporal data misalignment, they model the underlying

continuous spatial surface and aggregate to the area-level by using a quadrature approx-

imation. In the section below, we extend the Hund et al. (2012) to allow for more general

spatio-temporal variability.

For a collection of disjoint areas s in the study regionA, we model the outcome Y (s)

and area-level covariates X(s) using an exponential family, Y (s) ∼ f(µ,θ), where the

linear predictor η(s), as a function of covariates and spatial random effects. We select

a fine grid of evenly-spaced quadrature points ω over the study region, and model the

underlying latent continuous spatial process. We aggregate over the grid of quadrature

points to obtain the area-level model:

η(a) = X(s)β +W (s)Z(s)u,

where W (s) is a quadrature weight matrix that aggregates the latent continuous surface

over each area to obtain area-level random effects; the matrix Z(a) are basis functions

projecting from the quadrature points to a set of fixed knot locations using a spatial cor-

relation function C(θ); u are basis coefficients estimated via model fitting.

To define Z(a), we choose a set of knots {κg}g=1,...,G. The G × G matrix Ω =

[C(|κi − κj|)]Gi,j=1 is a variance-covariance matrix modelling spatial variability between

the knots. The M × G matrix Z̃(s) = [C(|s − κj|)].j=1 projects from the quadrature point

locations to the knot grid. Then, we constructZ(s) = ˜Z(s)Ω−1/2, and finish specification

of the model by assuming u ∼ MVN(0, σ2I). Note that the predictive process model of

Banerjee et al. (2008) defines Z(s) = ˜Z(s)Ω−1 and u ∼MVN{0, σ2C(θ)}. These models

produce very similar results, but we use the Kammann and Wand (2003) model to facil-

itate computationally efficient frequentist model fitting in standard software. Choosing
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W (s) = I , we arrive at the geoadditive point-level model of Kammann and Wand (2003).

Note that W (s)Z(s)u is not directly interpretable in terms of the area-level resid-

ual spatial relative risk unless f(·) is the identity link function (e.g. when the outcome is

normally distributed).

5.5.2 Multivariate spatial regression with misalignment

To construct a multivariate spatial regression model that bypasses model fitting diffi-

culties associated with spatial misalignment, we exploit two important features of the

geoadditive framework described above: (1) the area-level model is a generalization of

the point-level model; and (2) spatial variability is induced though a fixed set of knots.

Suppose we now have J outcome types Yj(sj) observed over sj locations or areas.

Consider the following multivariate model for linear predictor ηj = g(µj):

ηj(sj) = Xjβj +Zj(sj)uj

where i indexes individual and j indexes type of outcome. The basis coefficients Zj(sj)

are constructed based on a fixed set of knots, identical to the coefficients in the univariate

setting. The form of the coefficients Zj(sj) depends on whether the outcome is area-

or point-referenced. However, it is clear that model-fitting does not depend on point-

or area-level alignment of data locations, and mixing area- and point-level outcomes is

consequently trivial.

In the multivariate model, we induce correlation between the random effects at the

knot-locations to induce correlation between the spatial surfaces for each outcome type.

Specifically, uj ∼ MVN(0,Σ), where Σ is a J × J unstructured variance-covariance ma-

trix. The random effects at different knot locations, e.g. ul and uk, are independent. Note

that the parametric form for Σ is flexible, and, as an example, and we could replace the

unstructured matrix with an AR(1) covariance matrix if we were working with spatio-

temporal data. Hence, the model affords a fair amount of flexibility regarding choice
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of the covariance structure between outcomes. Additional random effects (for instance,

within-subject correlation), can also be added to the model, when relevant.

5.5.3 Spatial Confounding

Because poverty in LA county varies spatially, spatial confounding induced by collinear-

ity between the spatial random effects and poverty indicator could distort the relationship

between poverty and breast cancer incidence in our disease mapping study (Hodges and

Reich, 2010). To avoid bias in estimation of our fixed effects due to this collinearity, we

project Zt(s) at each time t, following Reich et al. (2006). The projected basis functions

are defined as ZPt (s) = PtZt(s), where Pt = I −Xt(X
′
tXt)X

′
t.

5.5.4 Model fitting

We fit our disease mapping model using the PQL approximation to maximum likelihood

(Breslow and Clayton, 1993). Alternatively, we could use the computationally efficient

Bayesian predictive process model, noting that the distribution of the random effects and

definition of the random effects design matrix would be slightly different (Banerjee et al.,

2008). As in Banerjee et al. (2008), we can use the Sherman-Woodbury matrix inversion

formulas (Harville, 2008) to improve the computational efficiency of the PQL estimation

algorithm, inverting a JG×JGmatrix, rather than anM×M matrix, whereM is the total

sample size.

Estimation of the variance components, Σ, is the most difficult aspect of the model

fitting procedure. In our disease mapping model, we assume Σ has a heterogeneous

AR1 structure, namely Cov(uit, ujt) = 0, V ar(uit) = σ2
t , and Cov(uit, uit′) = σtσt′ρ

|t−t′|.

Following Hund et al. (2012), we model spatial variability using an exponential variance

structure, C(si, sj) = σ2
t exp(−r|si− sj|), and fix the range parameter r. Hence, we have 22

variance components in our disease mapping model.
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When the number of variance components is large, maximizing the profile log-

likelihood becomes increasingly computationally intensive. We consider an alternative

computationally efficient algorithm for estimating the variance components. First, we fit

univariate disease mapping models at each time point, and estimate the marginal vari-

ance components, {σ2
t }. Then, we maximize the profile likelihood to estimate ρ, fixing the

marginal variance components.

5.6 Data Application

To examine the impact of denominator uncertainty in our analysis, we first fit a Poisson

generalized linear model to the data, ignoring any residual spatial variability. Let Yit

denote the observed number of incident breast cancer cases in CT i at time t, and assume

Yit ∼ Poisson(µit). We fit the model:

log(µit) = log(Êitm) + βt + βptxit

where xit is the percent of the population below poverty in area i at time t. We intro-

duce an overdispersion parameter φ into the model to account for additional non-spatial

variability in the data greater than that predicted by the Poisson distribution.

We fit the model for each set of expected counts described in Sections 5.3 and 5.4.

In Figure 5.3, we plot β̂pt over time for each set of counts in both the total and black

populations.

Paralleling our simulation study, estimates of the socioeconomic gradient in breast

cancer incidence in the total population are similar across all intercensal population in-

terpolation models, even though estimates of the relationship between SES and breast

cancer incidence at each time point differ between models. Restricting to black women

only, we observe more heterogeneity in estimates of the socioeconomic gradient, as well

as in the estimates of the relationship between SES and breast cancer incidence at each

time point, due to the sparsity of breast cancer cases and the highly skewed distribution

of the population denominators.
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(a) Total population

(b) Black population

Figure 5.3: Estimates of β̂pt and corresponding 50% confidence intervals for the different
intercensal count models.

In the total population, we observe an apparent decrease in β̂pt over time. To quantify

this decrease, we fit a more parametric model, assuming breast cancer incidence and the

socioeconomic gradient change linearly over time,

log(µit) = log(Êitm) + β0 + βT t+ βPxit + βPTxitt,

for each modelm. We compare estimates of β̂PT for each model in the total and black pop-

ulations in Table 5.6. Ignoring residual spatial variability, we find that the socioeconomic

gradient in breast cancer incidence in the total population appears to be increasing over

time (p < 0.001). We observe no change in the socioeconomic gradient in breast cancer

incidence over time in the black population.
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Table 5.6: Estimates of β̂PT for the intercensal models.

Total Population Black Population
Model β̂pt se(β̂pt) p-value β̂pt se(β̂pt) p-value

P

A1 -0.025 0.007 0.0002 0.008 0.014 0.552
A2 -0.024 0.007 0.0002 0.004 0.014 0.770
A3 -0.024 0.007 0.0002 -0.000 0.015 0.997
LI -0.024 0.007 0.0004 -0.006 0.016 0.680
P1 -0.023 0.007 0.0008 0.002 0.017 0.900
P2 -0.025 0.007 0.0002 -0.001 0.016 0.942

K

A1 -0.028 0.007 < 0.0001 0.007 0.014 0.625
A2 -0.027 0.007 < 0.0001 0.003 0.014 0.860
A3 -0.027 0.007 < 0.0001 -0.002 0.015 0.911
LI -0.027 0.007 < 0.0001 -0.010 0.016 0.531
P1 -0.025 0.007 < 0.0001 -0.001 0.018 0.973
P2 -0.028 0.007 < 0.0001 -0.005 0.016 0.770

S S1 -0.025 0.007 0.0002 -0.001 0.016 0.948
S2 -0.025 0.007 0.0002 -0.002 0.016 0.895

To address the potential impact of residual spatial variability in our analysis, we fit

the geoadditive disease mapping model, modeling the linear predictor,

log(µit) = βt + βptxit +Zit(sit)ut

where the basis functions and coefficientsZit(sit) and ut are defined as in Section 5.5. We

also fit the projected model to bypass issues with spatial confounding, defining the basis

functions as ZPit (sit) (as in Section 5.5.3).

To model spatial variability, we use the heterogeneous AR(1) correlation structure for

the distribution of the basis coefficientsut (Section 5.5.4), and construct the basis functions

Zit(sit) using the exponential correlation structure, with Corr(sit − κg) = exp(−|sit =

κg|ν). We choose ν = 15/∆ based on epidemiological plausibility, where ∆ is the maxi-

mum distance between CTs in LA county. We use 60 design points per CT and select 150

knots throughout the study region using the space filling design described in Johnson

et al. (1990) and implemented in the R package FIELDS.

We only display results from the spatio-temporal models for the total population. In
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Figure 5.4: Estimates of β̂pt and corresponding 50% confidence intervals for the total pop-
ulation, using the spatial model with and without the spatial confounding projection.

the black population, estimates of the variance components {σt} were consistently zero,

suggesting no residual spatial variability exists in the black population.

Results from the total population are plotted in Figure 5.4. Examining the plot, we

see that the socioeconomic gradient is attenuated in the unadjusted model that ignores the

impact of spatial confounding, compared to the model with the projected basis functions.

Next, we assume a linear trend in breast cancer incidence and in the socioeconomic

gradient over time,

log(µit) = β0 + βT t+ βPxit + βPTxitt+Zit(sit)ut.

Ignoring spatial confounding, we estimate β̂PT = −0.014, and se(β̂PT ) = 0.009. Testing

the hypothesis that β̂PT = 0, the p-value is 0.11, and we do not observe a statistically sig-

nificant change in the socioeconomic gradient over time. Including the spatial projection

in Section 5.5.3, we estimate β̂PT = −0.023, and se(β̂PT ) = 0.007. Now, we do observe a

statistically significant increase in the socioeconomic gradient over time (p = 0.001). With-

out projecting, spatial confounding could mask the increasing gradient in socioeconomic

status in LA county. Results from the spatial confounding model are similar to the results

from the overdispersed Poisson model.
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5.7 Discussion

In this paper, we address common issues in large disease mapping applications, includ-

ing missing population counts at intercensal years, temporal boundary misalignment,

and spatial confounding. We assess the impact of uncertainty in intercensal population

counts on estimating data associations between area-level indicators and disease inci-

dence. When the intercensal interpolation model induces correlation between the indi-

cators and errors in the expected case count, bias can be substantial. By using model

stacking, we reduce the prediction error in our model and thereby should lower the co-

variance between the ABSM and these errors. In the future, we plan to explore accounting

for model uncertainty using Bayesian model averaging (Hoeting et al., 1999).

We also propose a model for temporal boundary misalignment within a geostatistical

framework, generalizing the model presented in Hund et al. (2012). Within this frame-

work, it is simple to implement the spatial confounding projection to avoid collinearity

between fixed effects and spatial random effects (Hodges and Reich, 2010).

Analyzing data from women in LA county between 1980 and 2000, we find that the

socioeconomic gradient in breast cancer incidence does not appear to be decreasing over

time. Rather, in the total population, the gradient appears to increase over the twenty-

year period. If we ignored spatial confounding in our analyses, we would have markedly

underestimated the increase in the socioeconomic gradient in breast cancer incidence.

Chen et al. (2008) emphasize that it may not be appropriate to assume a common

spatial effect across racial/ethnic groups due to patterns of racial/ethnic segregation. In

future analyses, we hope to expand our analysis to other race/ethnicity groups.

5.7.1 Incorporating uncertainty in intercensal counts

In future analyses, we aim to incorporate uncertainty in the intercensal population counts

into our model. When interpolating intercensal tract counts, there are two primary
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sources of uncertainty: (1) uncertainty associated with the kriging predictions during the

boundary re-normalization, and (2) uncertainty associated with the choice model for the

intercensal counts.

Using the population apportionment model in Section 5.3.2, Best and Wakefield

(1999) suggest modelling intercensal population counts using a hierarchical Bayesian

framework:

N1ta, ..., NMnta|Nt ∼ Multinomial(Nta, p1ta, ..., pnta),

p1ta, ..., pMnta ∼ Dirichlet(s1tap̂1ta, ..., sntap̂nta)

where p̂it = Nit/
∑

iNit, and n is the total number of census tracts at the intercensal years.

The parameters {sita} control the variance of the Dirichlet prior and consequently

control the amount of uncertainty in the intercensal count estimates. Best and Wakefield

(1999) use migration data from the previous year to calibrate their model and estimate the

{sita} parameters.

The Best and Wakefield (1999) model for incorporating uncertainty has several limita-

tions for our application. First, BW introduce sampling error by modelling Nita|Nta using

the multinomial model. In our application, we do not actually have any “sampling er-

ror”, because we are dealing with a census of the population. The error in the intercensal

estimates is driven by model misspecification, not sampling. Additionally, we are inter-

ested in assessing the change in an association over time. The BW model conditions on

the county-level total at each time point and consequently interpolates intercensal counts

independently at each time point. We anticipate that counts within a tract at consecutive

time points will be highly correlated. When examining changes in the association be-

tween disease incidence and an indicator (SES) over time, we lose efficiency by ignoring

autocorrelation in the population denominators. We prefer a method for incorporating

uncertainty that preserves the temporal correlation in census tract counts.
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