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Restrictions of Steiner bundles and divisors on the Hilbert

scheme of points in the plane

Abstract

The Hilbert scheme of n points in the projective plane parameterizes degree n zero-

dimensional subschemes of the projective plane. We examine the dual cones of effective

divisors and moving curves on the Hilbert scheme. By studying interpolation, restriction,

and stability properties of certain vector bundles on the plane we fully determine these

cones for just over three fourths of all values of n.

A general Steiner bundle on PN is a vector bundle E admitting a resolution of the form

0→ OPN (−1)
s M→ Os+rPN → E → 0,

where the map M is general. We complete the classification of slopes of semistable Steiner

bundles on PN by showing every admissible slope is realized by a bundle which restricts to

a balanced bundle on a rational curve. The proof involves a basic question about multipli-

cation of polynomials on P1 which is interesting in its own right.

iii



Contents

Title Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Divisors on Hn and some small examples . . . . . . . . . . . . . . . . . . . 3
1.3 A generalized interpolation problem . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Semistability of Steiner bundles on PN . . . . . . . . . . . . . . . . . . . . . 7
1.5 A semistability restriction theorem . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Multiplication of polynomials on P1 . . . . . . . . . . . . . . . . . . . . . . 9
1.7 Effective divisors on Hn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.8 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Steiner bundles 14
2.1 Multiplication of polynomials on P1 . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Matrices with entries in a fixed series . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Semistable pullbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4 Slopes of semistable Steiner bundles . . . . . . . . . . . . . . . . . . . . . . 28

3 Basic geometry of the Hilbert scheme of points in the plane 31
3.1 Divisors and curves on Hn . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 General results on the effective cone . . . . . . . . . . . . . . . . . . . . . . 35
3.3 The local geometry of Δ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Effective divisors on the Hilbert scheme of points in the plane 43
4.1 Interpolation for bundles on P2 . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Effective divisors on Hn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

iv



Contents v

5 The remaining effective cones 51
5.1 Summary of results and conjectures . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Existence of secant planes to curves . . . . . . . . . . . . . . . . . . . . . . 56
5.3 Some better moving curves on Hn . . . . . . . . . . . . . . . . . . . . . . . 59
5.4 The quadric resolution conjectures . . . . . . . . . . . . . . . . . . . . . . . 69
5.5 A minimality property of Steiner bundles . . . . . . . . . . . . . . . . . . . 75

A Table of cones of effective divisors and moving curves on Hn 86

Bibliography 93



Acknowledgments

First and foremost, I would like to thank my advisor Joe Harris for his incredible support

over the past several years. His endless patience and help is much appreciated. In addi-

tion to helping me learn algebraic geometry and develop intuition for the subject, he has

helped immensely with navigating graduate school, teaching, and professional development

in general. Joe was much more than just a research advisor, and is a true mentor.

I would also like to thank Izzet Coskun for suggesting the thesis problem discussed here,

and for many helpful discussions on the topic, as well as for his gracious hospitality during

a visit to UIC. Thank you as well to Brendan Hassett, Aaron Bertram, Noam Elkies, and

Lawrence Ein, all of whom provided valuable input to this project.

vi



To my parents

vii



Chapter 1

Introduction

1.1 Overview

Throughout mathematics, a particularly important class of spaces are configuration

spaces, parameterizing the possible arrangements of various geometric objects. Given a

space X, one of the simplest types of configuration spaces consists of the collections of n

distinct points on X; the configuration space for such objects is naturally given by

Y = (Xn \Δ)/Sn,

where Δ is the locus of all n-tuples with two equal entries and Sn is the symmetric group.

In algebraic geometry, X is usually a projective variety; in particular it is compact. In

this case, Y has a major defect, in that it clearly fails to be compact. The obvious solution

to this problem is to simply “include” the diagonals in Y , leading to the symmetric product

Xn/Sn. While this solution works wonderfully when X is a curve, if X has dimension larger

than 1 this space will be quite singular. In many ways a better compactification is given

by keeping track of the way in which points collide as they become coincident: instead

1
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of a typical point in the boundary consisting of two copies of one point and n − 2 other

points, the typical point in the boundary should consist of a point together with a tangent

direction, together with n− 2 other points.

Formalizing this idea leads one to define the Hilbert scheme X [n] parameterizing length

n zero-dimensional subschemes of X. From the viewpoint of algebraic geometry, zero-

dimensional subschemes are more natural than the zero-dimensional effective cycles param-

eterized by the symmetric product. Furthermore, in case X is a surface, the Hilbert scheme

is a smooth, irreducible projective variety of dimension 2n [10]; we note, however, that

Hilbert schemes are still very singular in higher dimensions. The problem of describing all

possible ways of compactifying Y can be loosely interpreted as the problem of determining

all the birational models of X [n]. One hopes that these other birational models have de-

scriptions in terms of the geometry of collections of points on X. A major theme in the

intersection of the study of birational geometry and moduli spaces is to understand the

geometric significance of such models.

This problem is a huge undertaking in full generality, so we focus on the case X = P2,

and denote by Hn the Hilbert scheme of n points in P2. A project initiated by Bertram

and Coskun has been successful in describing the various birational models of Hn for small

values of n; large values of n are considerably more challenging, however. A first step in

this program is to determine the various properties of divisor and curve classes on Hn;

in particular, we would like to know the cone of effective divisors EffHn ⊂ PicHn on

Hn–recall that this is the cone spanned by the codimension 1 subvarieties of Hn.

The main goal of this thesis is to determine the cone EffHn for many values of n. It

turns out that the problem of constructing divisors spanning this cone is intricately related

with many well-known areas of algebraic geometry. In particular, there are connections
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with the stability of vector bundles, generalized interpolation problems on surfaces, and

problems regarding multiplication of polynomials on projective spaces.

1.2 Divisors on Hn and some small examples

One of the principal reasons for focusing on P2 before other surfaces is that the divisor

group PicHn is particularly nice. If we fix a line ` ⊂ P2, then there is a divisor H given

as the locus of length n subschemes Γ ⊂ P2 which meet `. On the other hand, the locus of

nonreduced schemes, i.e. those schemes supported at fewer than n points, forms a divisor

Δ. It follows from Fogarty [11] that

PicHn = ZH ⊕ Z(Δ/2) (n ≥ 2).

Since H1 = P2, we will omit the assumption n ≥ 2 in the future when discussing Hn. The

class Δ always spans a boundary ray of EffHn, so our main question is to determine a

generator for the other edge aH − (b/2)Δ of this cone. If we call the number a/b the slope

of the class aH− (b/2)Δ, then we are trying to determine the minimum slope of an effective

divisor on Hn. We note that this cone is in fact closed, as Hn is log Fano and hence a Mori

dream space.

Of course the hope is that this other edge corresponds to some geometric property of

a collection of points in P2. Some examples are probably in order. In case n = 6, the

extremal divisor is given as the locus of 6 points which lie on a conic. For n = 7, the divisor

is the locus of 7 points such that some 6 of them lie on a conic. The divisor in case n = 8

is slightly more complicated. Here, 8 points generally lie on a pair of cubics. The pair of

cubics meet in a 9th point, and the extremal divisor is the locus where this 9th point lies

on a fixed line. In each of these cases, there is a curve class which sweeps out Hn and is
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dual to the divisor; the curve class is given by allowing n points to move in a linear pencil

on a smooth curve of some appropriate degree.

The first case where such simple constructions fail to produce the edge of the effective

cone is the case n = 12. A general collection Γ of 12 points lies on 3 independent quartics and

9 independent quintics. Furthermore, the quartics vanishing on 12 general points generate

the quintics vanishing on those points, in the sense that the multiplication map

H0(IΓ(4))⊗H
0(OP2(1))→ H0(IΓ(5))

is an isomorphism. The locus of Γ where this map fails to be an isomorphism forms a

divisor spanning the edge of the effective cone of H12. The key point, however, is that we

can describe this divisor in a different way. If we define a vector bundle E by the sequence

0→ E → OP2(4)
3 M→ OP2(5)→ 0,

where the mapM is given by a general matrix of linear forms, then this divisor is just given

by

DE = {Γ ∈H12 : H
0(E ⊗IΓ) 6= 0}.

In this case, the bundle E is simply TP2(2).

This last construction provides the correct framework for generalization. We will see

that for many values of n, there is a vector bundle E such that the extremal effective divisor

on Hn can be described as a locus where “interpolation fails” for sections of E.

1.3 A generalized interpolation problem

A classical problem in algebraic geometry is to determine when polynomial functions

can attain prescribed values at prescribed points. In its simplest form, this encompasses
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the technique of Lagrange interpolation, which essentially completely solves the problem

over P1: given any subscheme Γ ⊂ P1 of length n and a prescribed element σ ∈ H0(OΓ(d)),

there is guaranteed to be a degree d homogeneous polynomial f restricting to σ whenever

n ≤ d + 1, i.e. so long as the space of forms of degree d has dimension at least as big as

h0(OΓ(d)).

In higher dimensions, things get much more difficult, so it is typical to focus on general

collections of points. A first result is that if L is a line bundle on a variety X, then

vanishing at a general collection of n points imposes the expected number min{n, h0(L)} of

conditions on sections of L; thus interpolation problems are not particularly interesting for

general simple points imposing conditions on sections of a line bundle. Sometimes one says

line bundles have good postulation for general simple points.

For our purposes, it is important to consider the conditions imposed by simple points

on sections of a vector bundle. If E is a rank r vector bundle on X, then we expect that

vanishing at a general collection of n points imposes min{rn, h0(E)} conditions on sections

of E. While this was always true in the line bundle case, it is not at all automatic for vector

bundles. For instance, consider the vector bundle

E = OP1(−1)⊕OP1(1);

a simple point only imposes a single condition on sections of E, where we’d expect it to

impose two.

Definition 1.1. A nonzero vector bundle E of rank r on a variety X has interpolation for

n points if

1. it has h0(E) = rn, and
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2. for general Γ ∈ X [n], we have H0(E ⊗IΓ) = 0.

The hypotheses of the definition imply that the restriction map

H0(E)→ H0(E|Γ)

is an isomorphism for general Γ ∈Hn, so perhaps better terminology would be that E has

unique interpolation for n points; in the interest of brevity we’ll omit this adjective. We

may also simply say E has interpolation if the number n of points is clear.

We are interested in this definition because if X is a curve or surface and the vector

bundle E on X has interpolation for n points then the locus

DE = {Γ ∈ X
[n] : H0(E ⊗IΓ) 6= 0}

forms a divisor on X [n]. In the case of the Hilbert scheme Hn of points in the plane, we

can compute this divisor’s class as

[DE ] = c1(E)H −
r

2
Δ.

Since we are attempting to compute only the cone EffHn, it is worth pointing out that this

divisor class is a multiple of the class

μ(E)H −
1

2
Δ,

where μ(E) = c1(E)/ rk(E) is the slope of E. If we believe that the effective divisors on

Hn should come from vector bundles in this fashion, then computation of the effective cone

boils down to the following question.

Question 1.2. What is the minimum slope of a vector bundle E on P2 satisfying interpo-

lation for n points?

We will construct bundles answering this question for many values of n, and see that

they in fact give divisors spanning the edge of the effective cone.
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1.4 Semistability of Steiner bundles on PN

A general Steiner bundle E on PN of rank r is a vector bundle admitting a resolution

of the form

0→ OPN (−1)
s M→ Os+rPN → E → 0,

whereM is a general matrix of linear forms. In order for E to be locally free, it is necessary

and sufficient that either s = 0 or r ≥ N . Classically, some authors only call these bundles

Steiner bundles in case r = N , so one sometimes calls the bundles with r > N higher rank

Steiner bundles; many results on Steiner bundles are much easier in the case r = N . These

are some of the simplest vector bundles on PN , and much is known about them; we refer the

reader to Brambilla [5] for an interesting discussion of many of their properties. Recall that

a vector bundle E is called semistable if every coherent subsheaf F ⊂ E has μ(F ) ≤ μ(E).

Observe that the slope of the bundle E given by the above resolution is μ(E) = s/r. The

next result classifies the slopes of semistable Steiner bundles.

Theorem 1.3. Define a function ρN by

ρN (x) =
1

N − 1 + 1
1+x

,

and put

φN = lim
i→∞

ρiN (0) =

√
N2 + 2N − 3
2N − 2

−
1

2
,

where ρi+1 = ρ ◦ ρi and ρ0 = id. Define a set ΦN by

ΦN = {α : α > φN} ∪ {ρ
i
N (0) : i ≥ 0} ⊂ Q,

The set ΦN consists of all numbers larger than φN , together with 0 and all the convergents

in the continued fraction expansion of φN (half of which are larger than φN ).

There exists a semistable Steiner bundle of slope μ on PN if and only if μ ∈ ΦN .
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We call the numbers ρiN (0) the exceptional slopes of semistable Steiner bundles on P
N .

We note that a large portion of the proof of the theorem follows from earlier work of

Brambilla [4], [5]. In particular, Brambilla’s work can be seen to imply the nonexistence

of semistable Steiner bundles on PN with μ /∈ ΦN , and it also shows the existence of

semistable Steiner bundles with slope μ whenever μ is exceptional. We will show that every

slope μ ∈ ΦN can be realized by a semistable Steiner bundle on PN .

Example 1.4. The set Φ2 is particularly important since it is directly relevant to our result

below on the Hilbert scheme of points in P2, so we write it down explicitly as

Φ2 = {α : α > ϕ−1} ∪

{
0

1
,
1

2
,
3

5
,
8

13
,
21

34
,
55

89
, ∙ ∙ ∙

}

⊂ Q ϕ =
1 +
√
5

2
.

The exceptional slopes are ratios of consecutive Fibonacci numbers, and they converge to

the inverse of the golden ratio.

1.5 A semistability restriction theorem

To prove Theorem 1.3 we will actually prove something much stronger. Observe that

if C ⊂ PN is a curve and E|C is semistable then in fact E is semistable, as a destabilizing

subsheaf of E would restrict to a destabilizing subsheaf of E|C . In the other direction, if

E is a semistable vector bundle on PN and C is a general complete intersection curve of

sufficiently high multidegree, then it is known that E|C will be semistable; various results

to this effect have been given by several authors including Mehta and Ramanathan [15] and

Flenner [12]. The general theory does not provide good bounds on how large the degree of

C must be, however; furthermore, it also does not usually address what happens for specific

types of curves, for instance rational curves. We are able to give the following result.
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Theorem 1.5. Let E be a general Steiner bundle on PN , given by a resolution

0→ OPN (−1)
ks → Ok(s+r)PN → E → 0,

and assume μ(E) ∈ ΦN . If f : P1 → PN is a general degree r map and k is sufficiently

large, then

f∗E ∼= OP1(s)
kr.

In particular, E is semistable.

We believe that the theorem should be true for every k ≥ 1; we are able to prove this

only when μ(E) is exceptional, however. The main idea of the proof is to show that the

property that the pullback is balanced corresponds to some general matrix with entries in

an (N + 1)-dimensional series V ⊂ H0(OP1(r)) giving an isomorphism between two vector

spaces of polynomials on P1. We then look at an incidence correspondence consisting of

pairs of matrices and vectors in their kernels, and conclude by a dimension count that the

general such matrix has no kernel. The key ingredient in the dimension count is discussed

in the next section.

1.6 Multiplication of polynomials on P1

Consider the following basic problem about polynomial multiplication. Suppose we have

an (N + 1)-dimensional subspace V of the space Sr ⊂ k[u, v] of homogeneous polynomials

of degree r in u, v. If W is a subspace of Ss−1, think of W as filling up the “fraction”

η(W ) =
dimW

dimSs−1

of Ss−1 (noting that dimSs−1 = s). The space V ∙W spanned by products of elements of

V and W lies in Sr+s−1.
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Question 1.6. Let V ⊂ Sr be a general series of dimension N+1, and fix a positive integer

s. Is it true that for every W ⊂ Ss−1 we have η(V ∙W ) ≥ η(W )?

In other words, for general V , does multiplication of an arbitrary series W by V never

decrease the fraction of the ambient space that is occupied? Our proof of Theorem 1.5

works whenever this question has an affirmative answer.

Simple examples show that the answer is not always yes. For instance, if r/s > N and

V ⊂ Sr is any (N + 1)-dimensional series, then the multiplication map

V ⊗ Ss−1 → Sr+s−1

cannot be surjective. Taking W = Ss−1, we thus have η(V ∙W ) < η(W ) = 1.

The technical heart of the thesis lies in our answer to Question 1.6.

Theorem 1.7. Let V ⊂ Sr be a general series of dimension N + 1, and fix an integer s.

Assume r and s are coprime. Then every series W ⊂ Ss−1 satisfies η(V ∙W ) ≥ η(W ) if

and only if s/r ∈ ΦN (see Theorem 1.3 for the definition of ΦN ).

The coprimality assumption is mainly technical, and we suspect it is unnecessary; we

will in fact prove the more interesting reverse direction without this assumption. The proof

of the difficult direction essentially constructs a series V with the required properties under

the assumption s/r ∈ ΦN . To prove the easier direction, we show that if there is an (N+1)-

dimensional series V with the required properties for s, r, then there is a semistable Steiner

bundle on PN with slope s/r.
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1.7 Effective divisors on Hn

Our initial interest in the restriction result (Theorem 1.5) came from the observation

that it allows us to show that certain twists and/or duals of general Steiner bundles on P2

satisfy interpolation for n points. In particular, by specializing n points to certain points on

rational curves, we find that H0(E⊗IΓ) = 0 for certain vector bundles E with h0(E) = rn,

proving the difficult part of interpolation.

Once we’ve constructed effective divisors onHn, we must show they are extremal. Given

an effective divisor D, we can show it is extremal by finding a dual moving curve class, i.e.

a curve class γ ∈ N1(Hn) such that γ ∙ D = 0 and irreducible representatives of γ sweep

out a dense open subset of Hn. In this manner, we construct the nontrivial edge of EffHn

for roughly 76% of all values of n. Our new results on EffHn are summarized in the next

theorem. Previously, the cone was only known for sporadic values of n with zero density in

the natural numbers.

Theorem 1.8. Write

n =
r(r + 1)

2
+ s (0 ≤ s ≤ r);

there is a unique such decomposition.

1. If s/r ∈ Φ2 (see Example 1.4), then the divisor

D = (r2 − r + s)H −
r

2
Δ

spans an edge of the effective cone of Hn; sufficiently large multiples of this class are

the loci where interpolation fails for a general vector bundle E with resolution

0→ OP2(r − 2)
ks → OP2(r − 1)

k(s+r) → E → 0.
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These divisors are dual to moving curves γ on Hn given by allowing n points to move

in a linear pencil on a smooth curve of degree r.

2. If 1− s+1r+2 ∈ Φ2 and s ≥ 1, then the divisor

D′ = (r2 + r + s− 1)H −
r + 2

2
Δ

spans an edge of the effective cone of Hn; sufficiently large multiples of this class are

the loci where interpolation fails for a general vector bundle F with resolution

0→ F → OP2(r)
k(2r−s+3) → OP2(r + 1)

k(r−s+1) → 0.

These divisors are dual to moving curves γ′ on Hn given by allowing n points to move

in a linear pencil on a smooth curve of degree r + 2.

The cases where the effective cone is not determined by the theorem are those n such

that the ratio s/r is close to (but not equal to) 1/2.

1.8 Structure of the thesis

We begin the thesis by proving our results on Steiner bundles, including the polynomial

multiplication result, in Chapter 2. In Chapter 3 we take some time to verify basic properties

of the Hilbert scheme Hn, most of which are known but have not been collected into a

good single source. This includes the computation of the Picard group (at least over Q),

verification of the fact that the Hilbert scheme is a Mori dream space (so that the effective

cone is closed), and a local study of the boundary divisor Δ. We then apply our results on

Steiner bundles to prove our main theorem on Hilbert schemes in Chapter 4. In Chapter

5 we discuss progress on determining the effective cone of Hn for values of n not covered
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by our main theorem. This includes a construction of more highly sloped moving curves

for many values of n, as well as a series of conjectures predicting the cone for many n. As

there are many results of many flavors in this chapter, we refer the reader to Section 5.1 for

a summary of the current state of affairs.

Finally, at the end of the thesis Appendix A provides a table describing the cone of

effective divisors and dual cone of moving curves for small n.



Chapter 2

Steiner bundles

In this chapter, we will prove our main results on Steiner bundles on PN . The majority

of the work lies in proving Theorem 1.7 regarding polynomial multiplication on P1, and we

do this in Section 2.1. We then use this theorem to prove a result about matrices with

polynomial entries lying in a fixed linear series on P1 in Section 2.2. This result allows us to

show that pullbacks of Steiner bundles to general rational curves of appropriate degree are

balanced, which we show in the next section. Finally, we conclude the chapter by completing

the classification of slopes of semistable Steiner bundles and by proving converses of all the

earlier results in the chapter.

2.1 Multiplication of polynomials on P1

Our first goal is to prove Theorem 1.7. For actually proving the theorem, a renormal-

ization of our notation will be useful. Recall that we write Sa = H
0(OP1(a)); we choose an

affine coordinate u on P1, so Sa corresponds to polynomials of degree at most a in u. To

avoid trivialities, we will assume b > a and N ≥ 2 throughout this section. If V ⊂ Sb−a is

14
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an N -dimensional series and W ⊂ Sa−1 is a nonempty series, we define the filling ratio of

W with respect to V by

μV (W ) =
dim(V ∙W )
dimW

,

where V ∙W denotes the image of V ⊗W → Sb−1. In terms of filling ratios, the theorem

aims to classify when μV (W ) ≥ b/a holds for every W ⊂ Sa−1 when V ⊂ Sb−a is a general

fixed series of dimension N .

In the introduction we had r = b− a and s = a, so

b

a
= 1 +

(s
r

)−1
.

We thus define a set

ΨN = 1 + Φ
−1
N−1,

defining arithmetic options on sets elementwise, and note that b/a ∈ ΨN if and only if

s/r ∈ ΦN−1, where we interpret division by zero as yielding ∞. The set ΨN has a nicer

description than ΦN−1 does: if we put

θ(x) = N − x−1

and ψN = limi→∞ θ
i(∞), where we interpret θ(∞) as N , then it is trivial to verify

ΨN = {α : 1 < α < ψN} ∪ {θ
i(∞) : i ≥ 0} ⊂ Q ∪ {∞}.

We remark that

ψN =
N +

√
N2 − 4
2

,

so N − 1 ≤ ψN < N . Furthermore, every finite element of ΨN is no larger than N .

Notice that to prove the theorem it suffices to find a single N -dimensional V with the

required property. The next theorem refines one direction of Theorem 1.7, and its statement

will be a bit easier to work with.
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Theorem 2.1. Suppose b/a ∈ ΨN , and let V ⊂ Sb−a be a general series of dimension N .

For every nonempty W ⊂ Sa−1 we have μV (W ) ≥ b/a.

Proof. The proof proceeds in two steps. First, we will show in Proposition 2.3 below that

the theorem is true when 1 < b/a ≤ N − 1 via a direct argument with monomials. The

theorem is also vacuously true when a = 0 so that b/a = ∞. Next, if N − 1 < b/a ≤ N

and b/a ∈ ΨN , put a′ = Na − b and b′ = a. We will show in Lemma 2.4 that proving the

theorem for a, b, and N can be reduced to proving the theorem for a′, b′, and N . Notice

that the ratio b′/a′ satisfies

θ

(
b′

a′

)

= N −
a′

b′
=
b

a
, so

b′

a′
= θ−1

(
b

a

)

.

Now look at the function

θ−1(x) =
1

N − x
.

We observe that θ−1 has a fixed point at ψN (this explains the essential nature of ψN to the

theorem), and that repeated application of θ−1 will eventually decrease any ratio b/a with

N − 1 < b/a < ψN to a ratio θ
−n(b/a) with 1 < θ−n(b/a) ≤ N − 1, where the theorem is

already known to hold. On the other hand, if b/a ∈ ΨN and b/a > ψN , then b/a = θi(∞)

for some i, and applying θ−i reduces us to the trivial case of b/a = ∞, completing the

proof.

On a first reading, it may make sense to skip to the next section at this point, as what

follows is both self-contained and the most technical portion of the thesis. We now proceed

to prove the two results cited in the previous proof; we first show that the theorem holds

when 1 < b/a ≤ N − 1. All the difficulty of the result occurs already in case N = 3, so we

focus on this case first.
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Lemma 2.2. Suppose 1 < b/a ≤ 2, and let c be the remainder upon division of a by b− a.

The net

V = 〈1, uc, ub−a〉

satisfies μV (W ) ≥ b/a for every nonempty W ⊂ Sa−1.

Proof. Let W ⊂ Sa−1, and consider the space W
′ ⊂ Sa−1 spanned by leading terms (with

respect to u) of polynomials inW . Clearly dimW = dimW ′. When we multiply a monomial

in V by a monomial in W ′, we obtain a monomial which is the leading term of an element

of V ∙W . This implies that dim(V ∙W ′) ≤ dim(V ∙W ), and therefore μV (W ′) ≤ μV (W ).

Thus to prove the result, we may assume W is spanned by monomials.

We now rephrase the question in terms of sumsets. Given a set S ⊂ {0, . . . , a − 1}, we

define the filling ratio of S by

μ(S) =
|S + {0, c, b− a}|

|S|
,

where a sum S + T of two sets of integers denotes {s + t : s ∈ S, t ∈ T}. We must show

μ(S) ≥ b/a for any nonempty S.

We first reduce to the case where a, b are coprime. If k|a and k|b then k|(b− a) and k|c.

It is easy to see that if the result holds for a/k and b/k then it holds for a and b; one can

partition {0, . . . , a− 1} into the sets

{0, k, . . . , a− k} ∪ {1, k + 1, . . . , a− k + 1} ∪ ∙ ∙ ∙ ∪ {k − 1, 2k − 1, . . . , a− 1},

and addition of {0, c, b− a} respects this decomposition.

Now assuming a and b are coprime, first suppose that the natural map α : S → Z/(b−

a)Z is surjective, so that S contains an integer of each residue class mod b − a. Then
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|S + {0, b− a}| ≥ |S|+ b− a, since |S + {0, b− a}| contains a new element in each residue

class mod b− a. But |S| ≤ a, so we conclude

μ(S) =
|S + {0, c, b− a}|

|S|
≥
|S + {0, b− a}|

|S|
≥ 1 +

(b− a)
|S|

≥
b

a
.

Next assume α is not surjective. Think of Z/(b−a)Z as a graph by joining two residues

by an edge whenever they differ by c. Since c is relatively prime to b − a, this graph is a

connected cycle on b− a vertices. If the induced subgraph α(S) is not connected, one of its

connected components T ⊂ Z/(b − a)Z must satisfy μ(α−1(T )) ≤ μ(S). Indeed, if T is a

component of α(S) and T is the complement of T in Z/(b−a)Z, then by construction the sets

α−1(T )+{0, c, b−a} and α−1(T )+{0, c, b−a} are disjoint and have union S+{0, c, b−a},

so

μ(S) =
|α−1(T )|
|S|

μ(α−1(T )) +
|α−1(T )|
|S|

μ(α−1(T ))

is the weighted average of μ(α−1(T )) and μ(α−1(T )). Thus at least one of these numbers

is no larger than μ(S). Continuing to break up T ∩ α(S) into components if necessary, we

eventually find a component with the desired property. We may thus assume that α(S) is

connected.

Now that α(S) is connected, it must look like an arithmetic progression with step size

c:

α(S) = {d, d+ c, d+ 2c, . . . , d+ kc} (mod b− a),

where k is between 0 and b − a − 2; the above listed elements are all distinct. We can

approximate

|S + {0, c, b− a}| ≥ |S|+ k + 2,

since S + {0, b− a} contains at least k+1 elements not in S (one in each residue class mod
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b − a in α(S)) and S + c has an element whose residue mod b − a has class d + (k + 1)c,

which is not a residue of any element of S + {0, b− a}.

The last ingredient we need to bound the filling ratio of S is an upper bound on its size.

If β : {0, . . . , a − 1} → Z/(b − a)Z is the residue map, we can say that |S| ≤ |β−1(α(S))|.

We write a = (b − a)q + c as in the division algorithm. The fiber of β over a residue e in

Z/(b − a)Z has size q or q + 1: it is q + 1 if 0 ≤ e < c, and it is q otherwise. We must

therefore determine how many h of the residues e in α(S) satisfy 0 ≤ e < c.

Instead of thinking about residues, think about integers. Starting at each multiple of b−a

we place a “bucket” c integers wide, and we are asking how many terms in our arithmetic

progression with step size c land in the buckets. Since the step size of the progression is the

same as the bucket width, each bucket can contain at most one term from the progression,

and it is impossible to “skip over” a bucket. The arithmetic progression will therefore hit as

many buckets as possible if we have d = c−1, so that the progression starts at the rightmost

edge of a bucket. The number of buckets hit will equal one more than the number of times

the sequence passes a multiple of b− a. Therefore

h ≤ 1 +
c− 1 + kc
b− a

< 1 + (k + 1)
c

b− a
.

We conclude

|S| ≤ |β−1(α(S))| = q(k + 1) + h < 1 + (k + 1)

(

q +
c

b− a

)

.

Finally, we finish the proof by observing

μ(S) =
|S + {0, c, b− a}|

|S|
≥
|S|+ k + 2
|S|

= 1 +
k + 2

|S|

> 1 +
(b− a)(k + 2)

(b− a) + (k + 1)((b− a)q + c)
=
bk + 3b− 2a

ak + b
.
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But

bk + 3b− 2a
ak + b

≥
b

a
,

since cross-multiplying shows that it is equivalent to

(b− a)(2a− b) ≥ 0,

which is true by assumption. We conclude μ(S) > b/a, as was to be shown.

The equivalent result for N > 3 follows readily from the result for N = 3, as we will

now demonstrate.

Proposition 2.3. Theorem 2.1 holds when 1 < b/a ≤ N − 1.

Proof. Write b − a = qa + r, choosing the remainder in the range 0 < r ≤ a. Let V ′ ⊂ Sr

be a net such that for every W ⊂ Sa−1 we have μV ′(W ) ≥ (r+ a)/a; this is possible by the

lemma since 1 < (r + a)/a ≤ 2. Define

V = 〈1, ua, u2a, ∙ ∙ ∙ , u(q−1)a〉+ uqaV ′.

Since

q =
b

a
− 1−

r

a
<
b

a
− 1 ≤ N − 2

we find

dimV ≤ q + 3 < N + 1,

and therefore dimV ≤ N . But for W ⊂ Sa−1 we have

V ∙W ∼=W ⊕ uaW ⊕ u2aW ⊕ ∙ ∙ ∙ ⊕ u(q−1)aW ⊕ uqa(V ′ ∙W )

since the polynomials in W have degree smaller than a. Thus

dim(V ∙W ) = q dimW + dim(V ′ ∙W ),
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and

μV (W ) = q + μV ′(W ) ≥ q + 1 +
r

a
=
b

a
,

completing the proof.

We now complete the second step of the proof of the theorem.

Lemma 2.4. Put a′ = Na− b and b′ = a, and assume N − 1 < b/a ≤ N . If Theorem 2.1

holds for a′, b′, N , then it holds for a, b,N .

Proof. Consider an inclusion of vector bundles

0→ OP1(a
′ − 1)⊕OP1(−1)

N−2 M→ OP1(a− 1)
N → Q→ 0

given by a general matrix M of polynomials, and let Q be the cokernel. Since N ≥ 2, we

find that Q is locally free, hence equals OP1(b − 1) by a Chern class calculation. We thus

have an exact sequence on global sections

0→ Sa′−1
α
→ SNa−1

β
→ Sb−1 → 0.

Here the map β is specified by elements of an at most N -dimensional series V ⊂ Sb−a; these

polynomials are the (N − 1) × (N − 1)-minors of the matrix M . On the other hand, the

map α : Sa′−1 → SNa−1 = S
N
b′−1 is given by independent elements of a general N -dimensional

series V ′ ⊂ Sb′−a′ , so by assumption we may assume V
′ satisfies the conclusion of the

theorem for a′, b′, N . We claim V satisfies the conclusion of the theorem for a, b,N .

To see this, suppose W ⊂ Sa−1 is chosen such that the filling ratio μV (W ) is minimal.

If μV (W ) = N then we are done, so we may assume μV (W ) < N , which is to say that

β|WN : W
N → Sb−1 is not injective. Write K = α(Sa′−1) = ker β. Then W

N ∩ K is
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non-empty. Let W ′ ⊂W be the subseries spanned by entries of elements of WN ∩K. Then

by construction

WN ∩K = (W ′)N ∩K.

For any series W ⊂ Sa−1 we have an exact sequence

0→WN ∩K →WN → V ∙W → 0,

so

dim(V ∙W ) = N dimW − dim(WN ∩K)

and

μV (W ) = N −
dim(WN ∩K)
dimW

.

Thus

μV (W ) = N −
dim(WN ∩K)
dimW

≥ N −
dim((W ′)N ∩K)

dimW ′ = μV (W
′),

with equality if and only if W = W ′. Since W was chosen with minimal filling ratio,

W =W ′, i.e. W is spanned by the entries of elements of WN ∩K.

Now put U = α−1(WN ∩ K) ⊂ Sa′−1. Clearly dimU = dim(W
N ∩ K) since α maps

Sa′−1 isomorphically onto K. By the previous paragraph, we see that V
′ ∙ U = W since

V ′ ∙ U contains all the entries of any element of WN ∩K.

Finally, since the result holds for V ′ we have

1

N − ba
=
b′

a′
≤ μV ′(U) =

dim(U ∙ V ′)
dimU

=
dimW

dim(WN ∩K)

=
dimW

N dimW − dim(V ∙W )
=

1

N − μV (W )
,

and we conclude μV (W ) ≥ b/a.
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2.2 Matrices with entries in a fixed series

In this section we prove a result which gives the main link between Steiner bundles and

our polynomial multiplication question.

Proposition 2.5. Let V ⊂ Sb−a be a general series of dimension N , and let M be a general

ak× bk matrix with entries in V . Assume b/a ∈ ΨN . If k is sufficiently large, then the map

Sbka−1
M
→ Sakb−1

is an isomorphism.

Proof. We first show that it suffices to consider the case where a, b are coprime. For say

a = a′d, b = b′d, with (a′, b′) = 1. We can decompose

Sa−1 ∼= S
d
a′−1 Sb−1 ∼= S

d
b′−1,

where the ith factor of each decomposition is spanned by all monomials uc with c ≡ i

(mod d). If we have a series V ′ ⊂ Sb′−a′ which proves the theorem for a
′, b′, then we can

regard it as a series V ⊂ Sb−a by making the change of variables u 7→ ud. Then a general

matrix M with entries in V will respect the decompositions

Sbka−1
∼= (Sbka′−1)

d Sakb−1
∼= (Sakb′−1)

d

and give an isomorphism

Sbka′−1
∼=→ Sakb′−1

on each of the d factors separately. Thus M is an isomorphism.

We now assume a and b are coprime. Choose V so that the conclusion of Theorem 2.1

is satisfied. Observe that Sbka−1 and S
ak
b−1 both have dimension abk, so to show some M is
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an isomorphism, it suffices to show it is injective. Consider the incidence correspondence

Σ = {(M,G) :MG = 0}
α β

Matak×bk(V ) PSbka−1

where Matak×bk(V ) denotes the space of ak× bk matrices with entries in V . We would like

to prove that

dimΣ < dimMatak×bk(V ) = Nabk
2,

since then α is not dominant and the general matrix M gives an isomorphism. We estimate

the dimension of Σ by looking at the projection β. For G ∈ PSbka−1, we denote by WG the

subspace of Sa−1 spanned by the entries of G. We put

X` = {G : dimWG ≤ `} ⊂ PS
bk
a−1,

and we easily compute

dim(X` \X`−1) = dimGr(`, Sa−1) + bk`− 1 = `(a− `) + bk`− 1.

We decompose

Σ =
a⋃

`=1

β−1(X` \X`−1),

so we must show each β−1(X` \X`−1) has dimension smaller than Nabk2.

To analyze the dimension of β−1(X` \X`−1), we must bound the dimension of the fiber

over a point G ∈ X`\X`−1. If G = (g1, . . . , gbk), then a matrixM satisfiesMG = 0 exactly

when each of its ak rows are in the kernel of

V bk → Sa−1

(f1, . . . , fbk) 7→ f1g1 + ∙ ∙ ∙+ fbkgbk
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The image of this map is V ∙WG, so the kernel has dimension Nbk − dim(V ∙WG). Thus

the fiber of β over G has dimension

dimβ−1(G) = (Nbk − dim(V ∙WG))ak.

Now if W ∈ Gr(`, Sa−1) is chosen to minimize dim(V ∙W ), we estimate

dimβ−1(X` \X`−1) ≤ `(a− `) + bk`− 1 +Nabk
2 − ak dim(V ∙W ).

We need this quantity to be smaller than Nabk2, which amounts to saying

`(a− `)− 1 < k(a dim(V ∙W )− b`). (2.1)

If ` = a then this inequality is immediate since V ∙ Sa−1 = Sb−1. Otherwise, if ` < a, we

know μV (W ) ≥ b/a. This inequality is in fact strict, since

μV (W ) =
dim(V ∙W )
dimW

has denominator smaller than a and b/a is already written in lowest terms. Thus

a dim(V ∙W )− b` > 0,

and for k sufficiently large Inequality (2.1) holds.

Remark 2.6. We believe the conclusion of the proposition holds even if k = 1. The

argument given here is not refined enough to prove this, however. To see this, look at

Inequality (2.1) in case k = 1:

`(a− `)− 1 < a dim(V ∙W )− b`.

This inequality is equivalent to the inequality

μV (W ) ≥
b

a
+ 1−

dimW

a
.
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However, we observe that this inequality will not be satisfied if b/a > N − 1 and dimW is

small compared to a, since then the inequality would imply μV (W ) > N . This inequality

is never satisfied for any V and W .

To prove the proposition by this general method for k = 1, it would be necessary to

further stratify the X` \X`−1 into loci of the form

Yr,` = {G ∈ X` \X`−1 : dim(V ∙WG) ≤ r}.

Theorem 2.1 shows that Yr,` is empty if b/a ∈ ΨN and r < b`/a. More generally, we could

ask for an upper bound on the dimension of Yr,` for all r, `, and if this estimate is strong

enough the result for k = 1 would follow.

Since this last question seems interesting in its own right, we phrase it in language that

does not involve the notation from the proof of Theorem 2.5.

Problem 2.7. Let V ⊂ Sa be a general linear series of dimension N . Estimate the dimen-

sion of

{W : dim(V ∙W ) ≤ r} ⊂ Gr(`, Sb).

2.3 Semistable pullbacks

We are now ready to prove our result on the semistability of pullbacks of Steiner bundles

to rational curves. The main observation is that the splitting type of a vector bundle on a

rational curve is easy to detect cohomologically.

Theorem 2.8. Let E be a general Steiner bundle on PN , given by a resolution

0→ OPN (−1)
ks M→ Ok(s+r)PN → E → 0,
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where s/r ∈ ΦN and M is given by a general matrix of linear forms. If f : P1 → PN is a

general degree r map and k is sufficiently large, then

f∗E ∼= OP1(s)
kr.

Proof. Suppose f : P1 → PN is given by a general (N + 1)-dimensional series V ⊂

H0(OP1(r)). The bundle f
∗E fits into an exact sequence

0→ OP1(−r)
ks f

∗M
→ Ok(s+r)P1 → f∗E → 0,

and the map f∗M is given by a general k(s + r) × ks matrix with entries in V . Observe

that c1(f
∗E) = ksr, and thus

f∗E ∼=
kr⊕

i=1

OP1(ai)

for some numbers ai with
∑
ai = ksr. We will have f

∗E ∼= OP1(s)
kr if and only if

H0((f∗E)∨(s− 1)) = 0.

Dualizing the above exact sequence and twisting by OP1(s− 1), we get an exact sequence

0→ (f∗E)∨(s− 1)→ OP1(s− 1)
k(s+r) → OP1(s+ r − 1)

ks → 0,

so H0((f∗E)∨(s− 1)) = 0 if and only if

H0(OP1(s− 1))
k(s+r) → H0(OP1(s+ r − 1))

ks

is injective. But (r + s)/s ∈ ΨN+1 since s/r ∈ ΦN , so Proposition 2.5 completes the

proof.

As a consequence, we obtain the semistability of the above Steiner bundles.

Corollary 2.9. For sufficiently large k, the bundles of the previous theorem are semistable.

Thus every slope μ ∈ ΦN is realized by a semistable Steiner bundle.
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Proof. In the notation of the theorem, if F ⊂ E is a destabilizing subbundle, then f∗F ⊂

f∗E is also a destabilizing subbundle, so E is semistable since f∗E is.

This corollary is our contribution to the proof of Theorem 1.3 from the introduction; we

will complete the proof in the next section.

2.4 Slopes of semistable Steiner bundles

To complete the proof of Theorem 1.3, we must show that if μ /∈ ΦN then there is no

semistable Steiner bundle of slope μ. While it is not much of a stretch to derive this result

from Brambilla [5], the result there is only stated for P2. Furthermore, the basic structure

of the argument is interesting, and gives insight into Steiner bundles with slope μ < φN .

We therefore sketch the argument, quoting results from Brambilla when necessary.

First of all, we fix N and let {an} be the sequence defined recursively by

a−1 = 0

a0 = 1

an+1 = (N + 1)an − an−1.

For n ≥ 0, we define the Fibonacci bundle Fn to be the general Steiner bundle with resolution

0→ OPN (−1)
an−1 M→ OanPN → Fn → 0.

The bundles Fn are exceptional (see [4]), so the isomorphism class of Fn is constant as M

varies in an open set.

The following result follows from a trivial induction on n.

Lemma 2.10. We have μ(Fn) = ρ
n
N (0).
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It is worth recalling that ρnN (0) is an increasing sequence that converges to φN . The main

result we will need from Brambilla [5] is the following theorem concerning the structure of

unstable general Steiner bundles.

Theorem 2.11 (Theorem 6.3 [5]). Let E be a general Steiner bundle on PN , and suppose

μ(Fn) ≤ μ(E) < μ(Fn+1).

There are uniquely determined integers k1 and k2 such that

E ∼= F k1n ⊕ F
k2
n+1.

Proof of Theorem 1.3. If E is a general Steiner bundle on PN with slope μ /∈ ΦN , then

0 < μ < φN . Thus by the lemma and the theorem E must be a direct sum of two bundles

of different slopes, and E is not semistable.

Notice that since any general Steiner bundle with exceptional slope is a direct sum of

copies of a single Fibonacci bundle Fn, we can conclude from Theorem 2.11 that Theorem

2.8 holds for all k ≥ 1 in case the slope is exceptional.

Corollary 2.12. Theorem 2.8 holds for all k ≥ 1 in case s/r is an exceptional slope.

Now that we have finished the classification of semistable slopes of Steiner bundles, it is

possible to prove converses to Theorem 2.1 and Proposition 2.5.

Corollary 2.13. Let V ⊂ Sb−a be a general N -dimensional series, and let M be a general

ak × bk matrix with entries in V . If the map

Sbka−1
M
→ Sakb−1

is an isomorphism for some k ≥ 1, then b/a ∈ ΨN .
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Proof. By the proofs of Theorem 2.8 and Corollary 2.9, the hypotheses imply there is a

semistable Steiner bundle on PN−1 with slope a/(b−a). By Theorem 1.3, a/(b−a) ∈ ΦN−1

and thus b/a ∈ ΨN .

Corollary 2.14. Suppose V ⊂ Sb−a is an N -dimensional series such that μV (W ) ≥ b/a

for every W ⊂ Sa−1, where a and b are coprime. Then b/a ∈ ΨN .

Proof. By the proof of Proposition 2.5, the general map

Sbka−1 → Sakb−1

given by a matrix with entries in V is an isomorphism for k sufficiently large. By the

previous corollary, b/a ∈ ΨN .
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Basic geometry of the Hilbert

scheme of points in the plane

We begin our discussion of the Hilbert scheme of points in the plane by discussing some

of its basic properties. We start with a discussion of the divisor and curve classes on Hn in

Section 3.1. In the next section, we discuss some general results on the effective cone of Hn.

To make our intersection calculations totally rigorous, we check that several intersections

are transverse in Section 3.3. While the required transversality results are easy to believe,

we are unaware of a source where they are actually verified. This material will serve as a

foundation for our construction of extremal effective divisors in the next chapter.

3.1 Divisors and curves on Hn

The goal of this section is to understand the divisor and curve classes on Hn, as well

as their intersection properties. While the material in this section is likely well-known to

experts, we include it for the sake of completeness.

31
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We begin by investigating the Picard group of Hn. Recall that Hn carries two natural

divisor classes H and Δ, where H is the locus of subschemes meeting a fixed line and Δ is

the locus of singular subschemes.

Lemma 3.1. The Q-vector space PicHn ⊗Q is spanned by H and Δ.

Proof. There is an exact sequence

Q → PicHn ⊗Q → Pic(Hn \Δ)⊗Q → 0

1 7→ Δ,

which shows that PicHn ⊗Q is spanned by Δ and the preimage of generators of Pic(Hn \

Δ)⊗Q, so it suffices to show that the restriction of H to Hn \Δ spans Pic(Hn \Δ)⊗Q.

We have Hn \ Δ ∼= (Symn P2) \ Δ′, where Δ′ is the locus of 0-cycles supported at fewer

than n points. There is then an n!-sheeted covering space

p : (P2)n \Δ′′ → (Symn P2) \Δ′,

where Δ′′ is the evident locus. If D is any divisor class on (Symn P2) \ Δ′, then we see

p∗p
∗D = n!D. It follows that the map

p∗ : Pic((Symn P2) \Δ′)→ Pic((P2)n \Δ′′)

is injective mod torsion.

At this point, we need to understand the group Pic((P2)n \Δ′′). Since Δ′′ has codimen-

sion 2 in (P2)n and (P2)n is smooth, it follows that Pic((P2)n \Δ′′) ∼= Pic((P2)n). Recalling

that Pic(X) = H1(O∗X) for any smooth X, we consider the exponential sequence

0→ Z→ O(P2)n → O
∗
(P2)n → 0
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on (P2)n. The Künneth formula shows that h1,0((P2)n) = h2,0((P2)n) = 0, so

Pic((P2)n) ∼= H2((P2)n,Z) ∼= Zn.

That is, the Picard group of (P2)n is generated by pullbacks of OP2(1) along the n possible

projections.

The image of p∗ lies entirely in the Sn-equivariant portion of Pic((P2)n \Δ′′) = Zn. But

Sn acts on Zn by permutation of the factors, so the equivariant divisors form a copy of Z,

generated by p∗H. It follows that Pic(Hn \Δ)⊗Q is generated by H.

Dually, we would like to understand the curve classes on Hn. Consider the following

curves, each parameterized by a P1.

• α is the locus where n − 1 points are fixed and the nth point moves on a fixed line

disjoint from the n− 1 other points.

• β is the locus where n−2 points are fixed and a “spinning tangent vector” is supported

at another fixed point.

• δ is the locus where n− 2 points are fixed and a pair of points moves in a base point

free linear pencil on a fixed line disjoint from the n− 2 other points.

Since β is contained in Δ, it will be convenient to introduce one further divisor class for

the purpose of computing the intersection pairing between curves and divisors:

• D1 is the locus of schemes Γ ∈Hn which meet some line in a subscheme of degree at

least 3.

The filled in entries of the following intersection table follow immediately from the defini-

tions.
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H Δ D1

α 1 0
(
n−1
2

)

β 0 n− 2

δ 1
(
n−2
2

)

Notice that Δ is an extremal effective divisor since α is a moving curve dual to Δ.

To compute δ ∙ Δ, let L ⊂ P2 be a line and let D ⊂ H0(OL(2)) be a pencil. Singular

members of this pencil correspond to branch points of the degree 2 map L → P1 induced

by D . By Riemann-Hurwitz, there are exactly two such singular members, so δ meets Δ

in two points. We will see in Section 3.3 that these intersections occur with multiplicity

one, so in fact δ ∙Δ = 2. Since we know H and Δ generate PicHn ⊗ Q, this allows us to

complete the intersection table.

H Δ D1

α 1 0
(
n−1
2

)

β 0 −2 n− 2

δ 1 2
(
n−2
2

)

In particular, we conclude

D1 =

(
n− 1
2

)

H −
n− 2
2
Δ

δ = α− β.

Modulo one relatively difficult fact, this discussion allows us to derive the full integral Picard

group.

Theorem 3.2. The Picard group of Hn is

PicHn = ZH ⊕ Z(Δ/2),
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and the space of integral curve classes is

A1(Hn) = Zα⊕ Zβ.

The intersection pairing PicHn ×A1(Hn)→ Z is given by

H Δ

α 1 0

β 0 −2

Proof. The difficult missing ingredient is the fact that Pic(Hn) is torsion free, which is

proved in Fogarty [11]. Granted that result, all we must do is determine which divisors

aH + bΔ are in PicHn, where a, b ∈ Q. Intersecting with α and β shows that if such a

divisor lies in PicHn then a ∈ Z and 2b ∈ Z. It remains to show that Δ/2 is in fact a

divisor class. However, we shall see in Lemma 4.7 that if α : Ξn → Hn is the universal

family, then c1(α∗OΞn) = −Δ/2.

3.2 General results on the effective cone

In this section we collect two previously known results on the structure of the effective

cone EffHn. We thank Izzet Coskun for calling these results to our attention. The first

part of the next result will also be useful in the study of the local geometry of the divisor

Δ in the next section.

Proposition 3.3. Fix a point q ∈ P2, and define a rational map

iq :Hn 99K Hn+1

Γ 7→ Γ ∪ {q}.
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If i∗q : PicHn+1 → PicHn is the induced map on Picard groups, then i∗qH = H and

i∗qΔ = Δ, so PicHn and PicHn+1 are naturally identified.

Furthermore, under this identification, EffHn+1 is contained in EffHn.

Proof. The claim that i∗qH = H is straightforward. To see i
∗
qΔ = Δ, observe that i

−1
q (Δ) =

Δ holds set-theoretically (as iq is defined everywhere except the codimension 2 locus of Γ

with {q} ⊂ Γ). Thus we must show iq(Hn) is generically transverse to Δ ⊂ Hn+1. Let

Γ ∈Hn be a point consisting of a degree 2 scheme and n− 2 other points, and assume Γ is

disjoint from q. In terms of the identification

Tiq(Γ)Hn+1 = H
0(NΓ∪{q}/P2) = H

0(NΓ/P2)⊕H
0(Nq/P2),

iq∗TΓHn is just the subspace H
0(NΓ/P2). On the other hand, TΓ∪{q}Δ contains the subspace

H0(Nq/P2). Since Γ ∪ {q} is a smooth point of Δ ⊂ Hn+1, it follows that TΓ∪{q}Δ cannot

contain H0(NΓ/P2), so iq(Hn) is transverse to Δ ⊂Hn+1 at iq(Γ).

For the statement on effective cones, let D ⊂ Hn+1 be an effective divisor, and choose

a reduced collection p1, . . . , pn+1 of points such that the corresponding point in Hn+1 does

not lie in D. Then D meets ip1(Hn) properly, so i
∗
p1(D) is an effective divisor on Hn with

the same class as D under the identification of Picard groups.

The next proposition shows the effective cone is always closed, so it is reasonable to look

for constructions of effective divisors spanning its edges.

Proposition 3.4. The Hilbert scheme Hn is a log Fano variety, hence a Mori dream space.

In particular, the effective cone of Hn is closed.

Proof. By well-known results in birational geometry (see [14] for a survey with the relevant

results and terminology), it is enough to show Hn is log Fano. The canonical class of Hn is
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KHn = −3H. Thus −KHn is nef, and since the nef cone is the closure of the ample cone we

see −(KHn + εΔ) is ample for small ε > 0. Furthermore, the pair (Hn, εΔ) is Kawamata

log terminal for small ε since Hn is smooth, so Hn is log Fano.

3.3 The local geometry of Δ

In order to justify the calculation of intersection numbers of curves on Hn with the

boundary divisor Δ, it is necessary to better understand the local geometry of Δ.

In this work, we will focus predominantly on a particular type of curve on Hn. Let

C ⊂ P2 be a smooth curve of degree r, and suppose we have a base-point free linear pencil

D of degree n on C. This pencil naturally induces a map

P1 → C [n] ⊂Hn,

so we get a curve γ in Hn. Evidently γ ∙H = r. On the other hand, singular members of

the pencil correspond to ramification points of the map C → P1 induced by the pencil. In

case this map is simply ramified and the corresponding intersections of γ with Δ all have

multiplicity one, Riemann-Hurwitz tells us that

2g(C)− 2 = n(2g(P1)− 2) + γ ∙Δ,

so

γ ∙Δ = r(r − 3) + 2n.

Our main goal for the section is to make this calculation rigorous, even in case the pencil

D has base points, the ramification of the induced map C → P1 is not simple, and/or

the intersections of γ with Δ are not transverse. By not having to verify these restrictive

hypotheses, it becomes easier to construct curves of the desired class on Hn.
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One approach to make this calculation rigorous is to give a detailed description of the

tangent cone of the dual hypersurface of a curve embedded in projective space, and argue

that the multiplicities of singularities in the dual hypersurface correspond to the ramifica-

tion indices in the Riemann-Hurwitz formula; the framework for doing the calculation this

way can be found in [17]. However, a somewhat less painful argument with fewer local

computations is possible, which we present here.

Proposition 3.5. Let D ⊂ PH0(L) be an arbitrary linear pencil of degree n on a smooth

curve C ⊂ P2 of degree r. If γ is the induced curve in Hn, then

γ ∙H = r

γ ∙Δ = r(r − 3) + 2n.

Proof. First suppose that n ≥ 2g(C) + 1, so that L automatically gives an embedding

C ⊂ PH0(L)∗. In this case, we observe that the curve class γ does not depend either on the

choice of L or the choice of pencil D ⊂ PH0(L). Indeed, the Abel-Jacobi map C [n] → PicnC

realizes C [n] as a PN -bundle over PicnC for some N , where the fiber over L is the complete

series PH0(L). We may then form the associated flag bundle over PicnC whose fiber over

L ∈ PicnC consists of tuples σ ∈ D ⊂ PH0(L), where D is a pencil and σ is a section. This

flag bundle maps to Hn, and letting σ vary in a fixed pencil D ⊂ PH0(L) gives a curve of

class γ; allowing the pencil to vary shows all these curves are equivalent. We may therefore

assume that both L and D are general.

Denote by C∗ ⊂ PH0(L) the dual variety of C, consisting of hyperplanes in PH0(L)∗

tangent to C. It is a reduced hypersurface. The pencil D is a line in PH0(L), so D ∙ C∗

equals the degree of C∗; since D is general, it meets C∗ transversely at degC∗ smooth

points, all of which correspond to points in C [n] of the form 2p1+ p2+ ∙ ∙ ∙+ pn−1. Then the
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map C → P1 induced by D is simply ramified over degC∗ points, and thus

2g(C)− 2 = n(2g(P1)− 2) + degC∗,

from which we find degC∗ = r(r − 3) + 2n.

We now wish to conclude by push-pull that γ ∙ Δ = r(r − 3) + 2n. For this, we need

to know that if i : PH0(L) → Hn is the evident inclusion then i∗Δ = C∗. We see this

in two steps. We will show in Lemma 3.6 that if j : C [n] → Hn is the inclusion then

j∗Δ = ΔC[n] . Assuming this for now, observe that if k : PH
0(L)→ C [n] is the inclusion then

k−1ΔC[n] = C
∗ holds set-theoretically. Furthermore, k−1ΔC[n] is reduced. Let U ⊂ ΔC[n] be

the smooth locus of the diagonal. Restricting the Abel-Jacobi map to U gives a dominant

map U → PicnC. By generic smoothness, the differential of this map is surjective at a

general point of U . It follows that k−1ΔC[n] meets the generic fiber of the Abel-Jacobi map

generically transversely, from which we conclude k∗ΔC[n] = C∗ and thus i∗Δ = C∗. This

completes the proof in case degL ≥ 2g(C) + 1.

As a special case of what we have just shown, observe that if δ is the curve on H2

studied in the previous section, then δ ∙Δ = 2. It follows that β ∙Δ = −2. More generally,

these intersection numbers hold on Hn by Proposition 3.3.

To finish the proof without the assumption that n is large, we show that if D = {Dt}t∈P1

is a pencil and p ∈ C is a general point, then the result holds for D if it holds for the pencil

D + p that has a base-point. By adding many base-points, we reduce to the previous case.

Choose the point p so that it is not a ramification point of the map f : C → P1 induced

by D ; without loss of generality assume that f(p) = 0, so p ∈ D0. Choose a general line
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L ⊂ P2 meeting C transversely at p. We may then define a rational map

P1 × L 99K Hn+1

(t, q) 7→ Dt ∪ {q}.

This map fails to be defined exactly at the point (0, p): as we approach (0, p) from different

directions in P1 × L, the limiting point in Hn+1 is the n − 1 points of D0 other than p

unioned with any degree 2 subscheme of P2 supported at p. Thus blowing up P1 × L at

(0, p) resolves the indeterminacy in this map, and the fiber over q ∈ L is reducible, with one

copy of P1 mapping to Hn+1 according to D + p and another copy mapping to Hn+1 as a

curve of class β; the common intersection of these two curves maps to the unique scheme

in the curve of class β which lies in C.

The upshot is that the class γD+p is equivalent to iq(γD) − β, where iq : Hn 99K Hn+1

unions a scheme with a general fixed point q. By Proposition 3.3 and our calculation of

Δ ∙ β,

γD+p ∙Δ = γD ∙Δ+ 2,

which is the required equality.

We finish the section with the promised lemma.

Lemma 3.6. Let C ⊂ P2 be a smooth curve of degree r, and let j : C [n] → Hn be the

inclusion. Then j∗Δ = ΔC[n] .

Proof. To prove that j∗Δ = ΔC[n] , it suffices to prove that j∗C
[n] meets Δ generically

transversely. To show this, we perform an explicit tangent space calculation. Suppose C is

defined by the equation f(x, y) = 0 in affine local coordinates, and without loss of generality

assume C passes through the origin and is tangent to the x-axis there, so that f lies in the
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ideal (x2, y) ⊂ C[x, y]. Let Γ ∈Hn be the scheme corresponding to a union of Γ′ = Z(x2, y)

and n− 2 other points p1, . . . , pn−2 lying on C. Recall that

TΓHn = H
0(NΓ/P2) = H

0(NΓ′/P2)⊕H
0(Np1/P2)⊕ ∙ ∙ ∙ ⊕H

0(Npn−2/P2).

Clearly TΓΔ contains the subspace of TΓHn spanned by all the H
0(Npi/P2) summands.

There is a similar decomposition for TΓC
[n], so our computation amounts to showing that

the image of TΓΔ in H
0(NΓ′/P2) meets the subspace H

0(NΓ′/C) transversely. As these

subspaces are independent of n, it suffices to consider the case n = 2, where Γ = Γ′.

Now in case n = 2, we identify TΓΔ and H
0(NΓ/C) as subspaces of H

0(NΓ/P2). We have

H0(NΓ/P2) = HomOP2 (IΓ,OΓ) = HomC[x,y]((x
2, y),C[x]/(x2)).

This last space is a 4-dimensional C-vector space, where x2 and y are independently able to

map to any element of C[x]/(x2). This last description is compatible with the description of

TΓHn as a subspace of the tangent space to the Grassmannian in which the Hilbert scheme

embeds, so we can calculate tangent vectors by the standard approach for Grassmannians.

First let us identify TΓΔ. As Δ is 3-dimensional and smooth at Γ, we introduce three

families of ideals corresponding to arcs in Δ and specializing to IΓ = (x
2, y):

• At = (x2, y − t),

• Bt = ((x− t)2, y), and

• Ct = (x2, y − tx).

Each family of ideals induces an arc in Δ, and we compute the homomorphisms ϕA, ϕB , ϕC :

(x2, y)→ C[x]/(x2) corresponding to their tangent vectors.
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• Put v(t) = x2 and w(t) = y− t, so that v and w are extensions of x2 and y to nearby

elements of At. Then

ϕA(x
2) = v′(0) = 0 and ϕA(y) = w

′(0) = −1.

• Put v(t) = (x− t)2 and w(t) = y, so that v and w are extensions of x2 and y to nearby

elements of Bt. Then

ϕB(x
2) = v′(0) = −2x and ϕB(y) = w

′(0) = 0.

• Put v(t) = x2 and w(t) = y− tx, so that v and w are extensions of x2 and y to nearby

elements of Ct. Then

ϕC(x
2) = v′(0) = 0 and ϕC(y) = w

′(0) = −x.

We observe that these three tangent vectors are independent, so they span TΓΔ.

Our assumptions on f (the local equation of C) imply that (f, x) are analytic local

coordinates for C2 near (0, 0). Also, we can find a holomorphic function g(x) so that

f(x, g(x)) ≡ 0 near x = 0. We put Dt = (x2 − t, y − g(x)), which specifies a holomorphic

arc in C [2] limiting to IΓ. Putting v(t) = x
2 − t shows

ϕD(x
2) = v′(0) = −1;

as ϕ(x2) never has a nonzero constant term for ϕ ∈ TΓΔ, transversality follows.
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Effective divisors on the Hilbert

scheme of points in the plane

In this chapter we apply our results on Steiner bundles to construct effective divisors

on Hn. In the first section we show that certain vector bundles on P2 derived from Steiner

bundles have interpolation for n points, and we link the condition of interpolation to semista-

bility. In the next section we derive a formula for the class of an effective divisor on Hn

coming from a vector bundle that has interpolation for n points, and we prove our main

theorem on the effective cone.

For the remainder of the thesis, we write

n =
r(r + 1)

2
+ s, with 0 ≤ s ≤ r.

An overarching theme of our results is that the qualitative behavior of the effective cone

of Hn depends primarily on the approximate value of the number s/r ∈ [0, 1], and not on

either s or r itself. It is thus very useful to keep this decomposition of n in mind.

43
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4.1 Interpolation for bundles on P2

In this section, we investigate when certain twists and/or duals of general Steiner bundles

on P2 satisfy interpolation; in the next section, we will use this information to construct

effective divisors on Hn. We fix notation for this section in the following theorem.

Theorem 4.1. Write

n =
r(r + 1)

2
+ s (s ≥ 0),

and consider a general vector bundle E given by a resolution

0→ OP2(r − 2)
ks → OP2(r − 1)

k(s+r) → E → 0.

For sufficiently large k, E has interpolation for n points if and only if E is semistable, i.e.

exactly when s/r ∈ Φ2.

Alternately, consider a general vector bundle F given by a resolution

0→ F → OP2(r)
k(2r−s+3) → OP2(r + 1)

k(r−s+1) → 0.

For sufficiently large k, F has interpolation for n points if and only if F is semistable, i.e.

exactly when

1−
s+ 1

r + 2
∈ Φ2.

We will focus primarily on showing the result holds for bundles having the form of E in

the theorem, then indicate how analogous results for F are proved. The following simple

lemma plays a key role in showing semistable twisted Steiner bundles satisfy interpolation.

Lemma 4.2. With notation as in Theorem 4.1, if C ⊂ P2 is a curve of degree r, then the

induced map

H0(E)→ H0(E|C)



Chapter 4: Effective divisors on the Hilbert scheme of points in the plane 45

is an isomorphism, and H1(E|C) = 0. Furthermore, h0(E) = krn.

Proof. Since H1(E) = 0 and there is an exact sequence

0→ E(−r)→ E → E|C → 0,

it suffices to show that H0(E(−r)) = H1(E(−r)) = H2(E(−r)) = 0. This follows immedi-

ately from the sequence

0→ OP2(−2)
ks → OP2(−1)

k(s+r) → E(−r)→ 0.

The final statement is trivial.

Thus in order to show a bundle E as above has interpolation, we may take the following

approach. Choose some curve C ⊂ P2 of degree r, and show there are n points p1, . . . , pn ∈ C

such that h0(E|C(−p1 − ∙ ∙ ∙ − pn)) = 0. It then follows that E has no nonzero sections

vanishing at p1, . . . , pn. By choosing C to be rational, we may apply our restriction results

on Steiner bundles.

Proposition 4.3. With notation as in Theorem 4.1, if k is sufficiently large and E is

semistable (i.e. if s/r ∈ Φ2), then E has interpolation for n points.

Proof. Since h0(E) = krn, we must only show that no nonzero sections of E vanish at

general points p1, . . . , pn. Let C ⊂ P2 be a general rational curve of degree r. By the

lemma, H0(E) → H0(E|C) is an isomorphism. Since C is general, it has (r − 1)(r − 2)/2

nodes. We specialize (r − 1)(r − 2)/2 of our n points onto the nodes of C, and specialize

the remaining 2r + s− 1 points onto smooth points of C. Denote by D1 the divisor of the

nodes of C and by D2 the divisor of the smooth points.
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Let f : P1 → C be the normalization of C, given by a general net V ⊂ H0(OP1(r)), and

let D̃1 and D̃2 be the divisors on P1 lying over D1 and D2, so that

deg D̃1 = 2degD1 and deg D̃2 = degD2.

Then

H0(f∗(E|C)(−D̃1 − D̃2)) ∼= H
0(E|C(−D1 −D2)).

By Theorem 2.8,

f∗(E(−(r − 1))|C) ∼= OP1(s)
kr,

and therefore

f∗(E|C) ∼= OP1(r
2 − r + s)kr.

But

deg(D̃1 + D̃2) = r
2 − r + s+ 1,

so H0(f∗(E|C)(−D̃1 − D̃2)) = H0(OP1(−1)
kr) = 0.

On the other hand, we can show that if E has interpolation then E is semistable. The

key tool is the following result for curves.

Lemma 4.4. Let E be any vector bundle on a smooth curve C with h1(E) = 0. If E has

interpolation for n points, then E is semistable.

Proof. If E has rank r and has interpolation, then h0(E) = rn and

h0(E ⊗ L) = h1(E ⊗ L) = 0

for a general line bundle L of degree −r. Thus L is cohomologically orthogonal to E, and

E is semistable [9]. (An elementary argument using Riemann-Roch for vector bundles can

also be given.)
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Proposition 4.5. With notation as in Theorem 4.1, if E has interpolation, then E is

semistable.

Proof. If s/r > 1 we have already seen that E is semistable (regardless of whether it has

interpolation), so we assume s/r ≤ 1. Let p1, . . . , pn ∈ P2 be general points such that E

has no nonzero sections vanishing at p1, . . . , pn. Since s ≤ r, there exists a smooth curve C

of degree r that contains p1, . . . , pn. By Lemma 4.2, we have

h0(E|C) = krn, h0(E|C(−p1 − ∙ ∙ ∙ − pn)) = 0, and h1(E|C) = 0,

so E|C has interpolation and Proposition 4.4 implies E|C is semistable. But then E must

also be semistable.

Finally, we address what happens in the case of kernel bundles F .

Proposition 4.6. With notation as in Theorem 4.1, if k is sufficiently large then F has

interpolation if and only if it is semistable.

Proof. The proof is almost identical to the one given for E if one lets degree r + 2 curves

play the role of the degree r curves in the proof for E. We also apply Theorem 2.8 to

the dual of F instead of to F . The only nontrivial point is that a priori we could have

h1(F ) > 0, and thus h0(F ) > k(r+2)n; however, assuming semistability holds the analogue

of Proposition 4.3 shows that h0(F ⊗IΓ) = 0 for a general collection Γ of n points, which

then forces h0(F ) = k(r + 2)n.

4.2 Effective divisors on Hn

In this section, we prove our main theorem on the effective cone of divisors on the Hilbert

scheme of points in P2. We first show that a vector bundle E that has interpolation gives
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rise to a divisor on the Hilbert scheme, given as the locus of subschemes where interpolation

fails. We also compute the class of this divisor.

We begin by proving a simple result on the relation between vector bundles on P2 and

bundles on Hn.

Lemma 4.7. Let E be a vector bundle of rank r on P2, and let Ξn be the universal family

over Hn, with maps as in the following diagram.

Ξn
β

α

P2

Hn

Then the bundle E[n] := α∗β
∗E has rank rn and satisfies

c1(E
[n]) = c1(E)H −

rkE

2
Δ.

We remark that the transformation E 7→ E[n] is known as a Fourier-Mukai transforma-

tion. The vector bundles on Hn of the form E[n] are known as the tautological bundles on

Hn.

Proof. We compute ch(E[n]) using Grothendieck-Riemann-Roch. The map α is finite and

generically simply ramified along the divisor

Δ̃ = {(Γ, p) : p ∈ Γsing} ⊂ Ξn ⊂Hn × P
2,

so c1(TΞn/Hn) = −Δ̃, and we observe that α∗(Δ̃) = Δ. Also, if ω is a line class in P
2, then

α∗β
∗ω = H, so α∗β

∗c1(E) = c1(E)H. But R
iα∗β

∗E = 0 for i > 0, so

ch(E[n]) = α∗(ch(β
∗E) ∙ Td(TX /Hn))

= α∗((r + β
∗c1(E) + ∙ ∙ ∙ )(1−

1

2
Δ̃ + ∙ ∙ ∙ ))

= rn+ c1(E)H −
r

2
Δ + ∙ ∙ ∙ ,



Chapter 4: Effective divisors on the Hilbert scheme of points in the plane 49

and we conclude c1(E
[n]) = c1(E)H − r2Δ.

We can use this lemma to give the class of an effective divisor corresponding to a bundle

that has interpolation.

Proposition 4.8. Let E be a vector bundle of rank r on P2 that has interpolation for n

points. The locus of schemes Γ ∈ Hn such that h0(E ⊗IΓ) 6= 0 forms an effective divisor

DE in Hn, and its class is

[DE ] = c1(E
[n]) = c1(E)H −

r

2
Δ.

Proof. Recall that the fiber of E[n] over a point Γ ∈Hn is identified with the space H0(E|Γ).

We have a natural map

ψ : H0(E)⊗OHn → E[n]

of vector bundles of rank rn on Hn, so the locus where ψ fails to be an isomorphism

has codimension at most 1. Furthermore, ψ fails to be an isomorphism exactly when

H0(E)→ H0(E|Γ) is not an isomorphism, and due to the sequence

0→ E ⊗IΓ → E → E|Γ → 0

this occurs exactly when H0(E⊗IΓ) 6= 0. Since E has interpolation, the degeneracy locus

of ψ has codimension 1. Also, its class is given by c1(E
[n]).

We now fill in the last few steps in the proof of Theorem 1.8.

Proof of Theorem 1.8. From the resolutions

0 → OP2(r − 2)
ks → OP2(r − 1)

k(s+r) → E → 0

0 → F → OP2(r)
k(2r−s+3) → OP2(r + 1)

k(r−s+1) → 0
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we compute

c1(E) = k(r2 − r + s),

c1(F ) = k(r2 + r + s− 1).

By Theorem 4.1 and Proposition 4.8, if k is sufficiently large and s and r are such that E

(resp. F ) is semistable, we get corresponding effective divisors DE (resp. DF ) with classes

[DE ] = k
(
(r2 − r + s)H − r2Δ

)
,

[DF ] = k
(
(r2 + r + s− 1)H − r+22 Δ

)
.

Let γ ⊂Hn be the curve given by letting n points move in a linear pencil on a smooth

curve C of degree r. Since n < h0(OP2(r)), a general collection of n points lies on a smooth

curve of degree r. Furthermore, Riemann-Roch asserts this collection moves in a linear

pencil on C since n > g(C). Thus γ is a moving curve on Hn. Likewise, allowing n points

to move in a linear pencil on a smooth curve C ′ of degree r + 2 also gives a moving curve

γ′ on Hn provided s > 1 so that n > g(C ′) = r(r + 1)/2. By Proposition 3.5, we have

γ ∙H = r γ ∙Δ = r(r − 3) + 2n = 2(r2 − r + s)

γ′ ∙H = r + 2 γ′ ∙Δ = (r + 2)(r − 1) + 2n = 2(r2 + r + s− 1).

We conclude that γ ∙DE = γ′ ∙DF = 0, completing the proof.



Chapter 5

The remaining effective cones

We conclude the thesis by providing partial results on the effective cone of Hn in cases

not covered by Theorem 1.8. While 24% of all values of n remain open, we can construct

moving curves that conjecturally span the moving cone for about a third of the remaining

cases. We also give conjectural constructions of effective divisors and moving curves for

many open values of n. We then illustrate computer-aided proofs of these conjectures for

small n, at least in a fixed positive characteristic.

5.1 Summary of results and conjectures

Let us briefly summarize an approximate picture of the current results and conjectures

on the effective and moving cones. The actual results are slightly more messy, and are made

precise in the indicated places. In particular, we neglect to mention the sporadic cases that

can be handled via exceptional Steiner bundles and analogous concepts, and focus solely on

cases corresponding to continuous behavior.

51
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Figure 5.1: Conjectural schematic picture of the slope of the nontrivial edge of the effective

cone of Hn, where n = r(r + 1)/2 + s, r is fixed, and s ranges from 0 to r. The image is

distorted to emphasize the relative slopes between the lines; for large r these slopes are all

very similar.

Recall that

n =
r(r + 1)

2
+ s (0 ≤ s ≤ r).

The structure of the effective cone of Hn predominately depends on the value of the ratio

s/r, with only some slight inaccuracy; in the asymptotic picture as r becomes large, this

inaccuracy vanishes. Figure 5.1 summarizes the following discussion.

Case 1. 0 < s/r < 1 − ϕ−1 ≈ 0.382. By Theorem 1.8, the nontrivial extremal ray of
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the effective cone is spanned by

μ(E)H −
1

2
Δ =

r2 + r + s− 1
r + 2

H −
1

2
Δ,

where E is a vector bundle with resolution

0→ E → OP2(r)
2r−s+3 → OP2(r + 1)

r−s+1 → 0,

so the extremal ray is given by Steiner kernel bundles. Dually, the moving curve is given

by letting n points move in a linear pencil on a smooth curve of degree r + 2.

Case 2. 0.414 ≈
√
2−1 < s/r < 1/2. There is a moving curve given by letting n points

move in a linear pencil on a curve of degree 2r − 1 having

m = r2 − (r − 1)− n

nodes and no further singularities—this construction works when 0 < s/r < 1/2, but

provides a moving curve of slope higher than the moving curve from Case 1 roughly when

s/r > 0.4 (Theorem 5.5). According to Conjecture 5.13, this moving curve is extremal, dual

to the divisor given as the locus where interpolation fails for a general vector bundle with

resolution

0→ OP2(r − 3)
s → OP2(r − 1)

2r+s−1 → E → 0,

a quadric cokernel bundle ; interpolation is not known for these bundles. The extremal ray

would be spanned by

2r2 − 3r + 2s+ 1
2r − 1

H −
1

2
Δ.

Case 3. 1/2 < s/r < 2 −
√
2 ≈ 0.586. Dually to the previous case, we predict in

Conjecture 5.14 that the edge of the effective cone corresponds to divisors coming from

quadric kernel bundles, with resolution of the form

0→ E → OP2(r)
3r−s+6 → OP2(r + 2)

r−s+1 → 0.
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The moving curve should be given by allowing n points to move in a linear pencil on a curve

of degree 2r + 5 having

m = (r + 3)2 − (r + 2)− n

nodes and no other singularities (the existence of this moving curve class is also not known).

The extremal ray is spanned by

2r2 + 3r + 2s− 2
2r + 5

H −
1

2
Δ.

Case 4. 0.618 ≈ ϕ−1 < s/r ≤ 1. Here Theorem 1.8 asserts the edge is spanned by the

class

r2 − r + s
r

H −
1

2
Δ,

corresponding to a Steiner cokernel bundle with resolution

0→ OP2(r − 2)
s → OP2(r − 1)

r+s → E → 0.

Allowing n points to move in a linear pencil on a smooth curve of degree r yields the moving

curve.

Remark 5.1. While the previous theorems and conjectures address the vast majority of

all n, approximately 6.4% of all cases are completely open. There are a few natural guesses

as to the slope of the effective cone for the remaining n, each generalizing the current data.

For simplicity, let us focus on the case 1/2 < s/r ≤ 1; the other cases have a dual picture.

Possibility 1. Given an n with 1/2 < s/r ≤ 1, we have constructed two different moving

curve classes, as in Cases 3 and 4 above. Perhaps one of these two moving curve classes is

always extremal.

If this is the case, then there exist n such that the dual extremal effective divisors do

not come from vector bundles satisfying interpolation, as we will discuss in Section 5.5.
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Possibility 2. Wemay need to allow more general vector bundles. Noting that in the solved

and conjectured cases stable bundles have played an important role, we can choose a general

stable vector bundle E having minimal slope among vector bundles with χ(E) = n ∙ rkE.

If such a bundle has interpolation, it may yield a divisor spanning the edge of the effective

cone.

Drezet and Le Potier’s classification in [6] of the possible numerical invariants of stable

vector bundles allows one to determine the minimal slope in the preceding construction, and

this slope agrees with the conjectured slope in the Steiner and quadric cases. A difficulty

with this possibility is that the ranks of the minimal vector bundles become astronomical

(in fact, are unbounded) when s/r is around 3/5, which means the dual moving curves

would correspond to points moving on plane curves of very large degree.

Possibility 3. Finally, instead of allowing arbitrary stable vector bundles, perhaps we

should only allow stable vector bundles where the minimal resolution of either the bundle

or its dual is homogeneous, in the sense that the matrix consists entirely of forms of the

same degree.

We feel that this option seems somewhat less natural, but it has the upside of allowing

divisors to come from vector bundles while bounding the complexity of the situation around

s/r = 3/5.

Remark 5.2. The first case not handled by Steiner or quadric bundles is

n = 142 =
16 ∙ 17
2
+ 6

Already in this case, all three possibilities disagree. It is easy to check that Possibilities 1,
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2, and 3 predict edges spanned by

277

18
H −

1

2
Δ,

1185

77
H −

1

2
Δ, and

77

5
H −

1

2
Δ,

respectively. Note in particular that if Possibility 2 is accurate, the dual moving curve

involves 142 points moving on a curve of degree divisible by 77.

5.2 Existence of secant planes to curves

The principal tool we will use to construct moving curves on Hn is the existence of

higher secant planes to curves in projective space.

Theorem 5.3. Let C ⊂ Ps be a curve of degree n and genus g. Then C has d-secant

(d− r − 1)-planes if when we put

k = s+ 1− d+ r

δ = n− g − s

we have

δ ≥ 0, rk ≤ d, and (r − δ)k ≤ g.

If we omit the hypothesis (r − δ)k ≤ g, this result appeared in [2, VIII.4, p. 355] as a

consequence of the general secant plane formula; with this omission, however, the result is

not true. For instance, without this hypothesis the theorem would imply a degree 4 elliptic

curve in P3 possesses trisecant lines, which is false.

This result follows easily from the corresponding result for linear series on C, whose

statement is actually a bit more applicable to our work. Let D = PV ⊂ PH0(L) be a gsn

on C, and let V rd ⊂ C [d] be the locus of divisors of degree d which impose at most d − r

conditions on D .
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Theorem 5.4. Suppose

δ ≥ 0, rk ≤ d, and (r − δ)k ≤ g,

where k and δ are as in Theorem 5.3. Then V rd is nonempty. On the other hand, if

δ ≥ 0, rk ≤ d, and (r − δ)k > g,

then either V rd is empty or it does not have the expected dimension d− rk.

Proof. If V rd is empty or has the expected dimension d− rk ≥ 0, then the class v
r
d of V

r
d in

rational cohomology is computed by the general secant plane formula

vrd =
∑

1≤β1<∙∙∙<βk≤k+r

Δ(β)2

(
k∏

i=1

μ(r, k, δ, i, βi)

)

θ
∑
(βi−i)xrk−

∑
(βi−i),

where Δ(β) is the Vandermonde determinant corresponding to β1, . . . , βk, the function μ is

defined by

μ(r, k, δ, i, βi) =

(
δ + i− 1
r + i− βi

)
(r + i− βi)!

(r + k − βi)!(βi − 1)!
,

θ is the pullback of the theta-divisor on J(C) via the Abel-Jacobi map C [d] → J(C), and

x is the class of the locus of Γ ∈ C [d] containing a fixed point of C [2, VIII.4, p. 355]. The

binomial coefficient in μ is defined for arbitrary integers n and i by the convention

(
n

i

)

=






n(n− 1) ∙ ∙ ∙ (n− i+ 1)
i!

if i > 0

1 if i = 0

0 if i < 0.

Fix a sequence 1 ≤ β1 < ∙ ∙ ∙ < βk ≤ k + r corresponding to a single term

Δ(β)2

(
k∏

i=1

μ(r, k, δ, i, βi)

)

θ
∑
(βi−i)xrk−

∑
(βi−i)
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in the sum for vrd. Clearly Δ(β)
2 is a nonzero positive number. For each i with 1 ≤ i ≤ k,

we have δ + i− 1 ≥ 0 since δ ≥ 0, so we have

(
δ + i− 1
r + i− βi

)

≥ 0

and thus μ(r, k, δ, i, βi) ≥ 0 for all i. Notice that this binomial coefficient, and hence

μ(r, k, δ, i, βi), vanishes precisely when

δ − 1 < r − βi.

Thus the product
∏
i μ(r, k, δ, i, βi) is positive so long as δ−1 ≥ r−βi for all i, which occurs

whenever δ − 1 ≥ r − β1. If in fact

β1 ≥ r − δ + 1,

then we must have

βi ≥ r − δ + i

for all i.

When equality holds for all i, so βi = r − δ + i, the corresponding term reduces to a

positive number times

θk(r−δ)xkδ.

Since x is ample on Cd and θ is ample on J(C), this cycle is nonempty and effective so long

as k(r − δ) ≤ g, so that the power of θ does not exceed g. When this inequality holds, we

conclude that the cycle vrd is nontrivial, being a finite nonempty sum of positive effective

terms, and thus V rd is nonempty.

On the other hand, if k(r − δ) > g, then we have

k∑

i=1

(βi − i) ≥ k(r − δ) > g
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for any sequence {βi} such that
∏
i μ(r, k, δ, i, βi) 6= 0. Since θ

g+1 = 0, the corresponding

term is zero, and thus vrd = 0 when V
r
d has the expected dimension.

5.3 Some better moving curves on Hn

The goal of this section is to construct a family of highly-sloped moving curves on Hn

for certain values of n where we have not yet determined the edge of the effective cone.

Theorem 5.5. Write n = r(r + 1)/2 + s, and suppose 0 ≤ s < r/2. If Γ ∈Hn is general,

then there is a curve C ⊂ P2 of degree 2r − 1 having

m = r2 − (r − 1)− n

nodes and no other singularities, such that Γ lies on smooth points of C and Γ moves in a

linear pencil on the normalization C̃ of C. If γ ⊂ Hn is the corresponding moving curve

class, then

γ ∙H = 2r − 1

γ ∙Δ ≥ 2(2r2 − 3r + 2s+ 1),

with equality whenever the pencil on C̃ has no member containing the full preimage of a

node of C.

Note that

m =
1

2
(r2 − 3r − 2s+ 2),

so 0 ≤ m < n since s ≥ 0.

With γ as in the theorem, if E is a general vector bundle with resolution

0→ O(r − 3)s → O(r − 1)2r+s−1 → E → 0
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and E has interpolation for n points, then γ ∙DE ≤ 0, and equality is typically expected. We

suspect such bundles E satisfy interpolation so long as they are semistable, which occurs

roughly when
√
2 − 1 < s/r < 1/2; we make this more precise in the next section. This

moving curve has a bigger slope than the moving curve given by letting n points move in a

linear pencil on a smooth curve of degree r + 2 so long as s ≥ 1
5(2r − 1).

The key ingredient in the proof of the theorem is the study of a particular correspon-

dence. Fix a line L ⊂ P2, and define

Σ =






(Γ,Γ′,Γ′′) :

Γ ∪ Γ′ ∪ Γ′′ is a reduced complete

intersection of two r-ics,

and (Γ ∪ Γ′) ∩ L = ∅






⊂Hn ×Hm × L
[r−1],

noting that

n+m+ (r − 1) = r2.

The next proposition summarizes the relevant properties of Σ for the proof of the theorem.

Proposition 5.6. If n = r(r + 1)/2 + s with 0 ≤ s < r/2, then Σ

1. is irreducible,

2. dominates Hn, and

3. dominates Hm.

Let us first show that the proposition implies the theorem. We recall two facts for use

in the proof.

Theorem 5.7 (Cayley-Bacharach [8]). Let C1, C2 ⊂ P2 be plane curves of degrees d, e, and

suppose that the intersection Γ = C1∩C2 is zero-dimensional. Let Γ′ and Γ′′ be subschemes
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of Γ residual to one another in Γ, and set s = d + e − 3. If k ≤ s is a nonnegative

integer, then the dimension of the family of curves of degree k containing Γ′ (modulo those

containing all of Γ) is equal to the failure of Γ′′ to impose independent conditions on curves

of complementary degree s− k.

While we will only need the Cayley-Bacharach theorem in the classical case where Γ is

reduced, the full concept of residual schemes plays a role in the proof of Proposition 5.6.

We recall that the subscheme Γ′′ of Γ residual to a subscheme Γ′ ⊂ Γ is the scheme defined

by the ideal sheaf

IΓ′′ = Ann(IΓ′/IΓ).

For arbitrary schemes this concept is not well-behaved; for instance if Γ′ ⊂ Γ then the resid-

ual to the residual to Γ′ in Γ need not be Γ′ again. However, when Γ is Gorenstein (which in

particular occurs whenever Γ is a zero-dimensional complete intersection) everything works

nicely.

The other result we will need describes the minimal resolution of the ideal sheaf of a

general collection of n points in P2.

Theorem 5.8 (Gaeta [7]). If n = r(r+1)/2+ s with 0 ≤ s ≤ r, then the ideal sheaf IΓ of

a general Γ ∈Hn admits a resolution

0→ O(−r − 1)r−2s ⊕O(−r − 2)s → O(−r)r−s+1 → IΓ → 0

or

0→ O(−r − 2)s → O(−r)r−s+1 ⊕O(−r − 1)2s−r → IΓ → 0,

depending on whether s ≤ r/2 or s ≥ r/2. In either case, the homogeneous ideal of Γ is

generated by r-ics and (r + 1)-ics.
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Proof of Theorem 5.5. Since Σ dominates Hn, for a general Γ ∈ Hn we can find a triple

(Γ,Γ′,Γ′′) ∈ Σ. Since Γ ∪ Γ′ is linked in a complete intersection of r-ics to the collinear

collection Γ′′, by Cayley-Bacharach the collection Γ ∪ Γ′ fails to impose independent condi-

tions on curves of degree 2r − 4. Then by Riemann-Roch, if there is a curve C of degree

2r − 1 passing through Γ, nodal at each point of Γ′, and having no further singularities,

then Γ moves in a linear pencil on the normalization C̃ of C. Riemann-Hurwitz says that

this linear pencil on C̃ has

2g(C̃)− 2− n(2g(P1)− 2) = 2(2r2 − 3r + 2s+ 1)

singular members (with multiplicity). If γ ⊂Hn is the induced curve in Hn, it follows that

γ ∙H = 2r − 1

γ ∙Δ ≥ 2(2r2 − 3r + 2s+ 1),

with equality whenever no additional points of γ ∩Δ arise when the pencil descends from

C̃ to C. We must therefore show that such a curve C exists.

Consider the blowup BlΓ∪Γ′∪Γ′′ P2, and denote by E,F,G the sums of exceptional divisors

corresponding to Γ,Γ′, and Γ′′. By construction, the series |rH − E − F −G| is nonempty

and base point free. If we show that |(r − 1)H − F | is nonempty and base point free, then

|(2r − 1)H − E − 2F − G| is base-point free and its general member will be smooth by

Bertini. Furthermore, the general curve of degree r vanishing along Γ∪ Γ′ ∪ Γ′′ has general

tangent directions at points of Γ′ (since Γ ∪ Γ′ ∪ Γ′′ is a transverse complete intersection of

r-ics), so the general member of |(2r − 1)H − E − 2F − G| meets each of the components

of F in a distinct pair of points. Thus the general member of this series corresponds to a

plane curve of degree 2r − 1 passing through Γ, nodal at each point of Γ′, and having no

further singularities.
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To finish the proof, we must therefore show |(r− 1)H − F | is nonempty and base-point

free. Nonemptiness is obvious, as

dim |(r − 1)H − F | ≥ h0(OP2(r − 1))− 1−m = 2r + s− 2,

with equality whenever Γ′ imposes independent conditions on curves of degree r − 1. Thus

we concentrate on base-point freeness.

We claim that if X ⊂ Hm is any proper subvariety, then for general Γ ∈ Hn we may

find a triple (Γ,Γ′,Γ′′) ∈ Σ such that Γ′ /∈ X. Indeed, if β : Σ→Hm is the projection, then

since it is dominant we see that U = β−1(Hm \X) ⊂ Σ is a nonempty open subset. Since

Σ is irreducible, U is a dense open subset. But since Σ dominates Hn, so does U , and the

claim follows.

In particular, if we take X ⊂ Hm to be the locus of Γ′ such that |(r − 1)H − F | is

base-point free, it suffices to show that X is a proper subvariety of the Hilbert scheme.

For this it suffices to know that the general Γ′ ∈ Hm is cut out scheme-theoretically by

(r − 1)-ics, or that its ideal has a set of generators with degrees no more than r − 1. But

since m <
(
r
2

)
, Gaeta’s theorem implies the ideal of Γ′ is generated by polynomials of degree

at most r − 1.

The most important aspect of Σ for the previous proof is the fact that it dominates Hn,

as this is the condition that ensures we can find a potential location Γ′ for the nodes of C.

Unfortunately the full proof that Σ dominates Hn is rather technical, even though the basic

idea is simple. The next lemma contains the key insight of the proof, and also explains the

occurrence of the condition s < r/2.

Lemma 5.9. If Γ ∈ Hn is general and 0 ≤ s < r/2, then there is some Γ′′ ∈ L[r−1] such

that Γ ∪ Γ′′ lies on a pencil of r-ics.
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Proof. Let V = H0(IΓ(r))|L, and consider the linear series E = PV on L. No curve in

PH0(IΓ(r)) contains L since Γ lies on no (r − 1)-ic, so the restriction map H0(IΓ(r)) →

V ⊂ H0(OL(r)) is injective. Thus

dimE =

(
r + 2

2

)

− 1− n = r − s,

so E is a gr−sr on the rational curve L. We must show that there is some divisor Γ′′ on L

of degree r− 1 such that E (−Γ′′) has dimension at least 1; if we can do this then a lift of a

pencil in E (−Γ′′) to a pencil in PH0(IΓ(r)) will be a pencil vanishing on Γ ∪ Γ′′.

Thus we wish to show that the locus V sr−1 of divisors Γ
′′ ⊂ L of degree r − 1 which fail

to impose at least r − s conditions on E is nonempty. We denote by s, n, r, d, g, k, δ the

variables from Section 5.2, apologizing for the conflicts with our current notation. Then we

have

s = r − s n = r r = s

d = r − 1 g = 0

k = s+ 1− d+ r = 2 δ = n− g − s = s.

The three inequalities

δ ≥ 0, r k ≤ d, and (r − δ)k ≤ g

are all satisfied since 0 ≤ s < r/2, so in fact V sr−1 is nonempty by Theorem 5.4.

Now that we have the lemma, assume Γ ∈Hn is general, and find some Γ′′ ∈ L[r−1] such

that Γ∪ Γ′′ lies on a pencil of r-ics. Then we can let Γ′ be the scheme residual to Γ ∪ Γ′′ in

the base locus BsD . Assuming that BsD is reduced and meets L exactly in Γ′′, the triple

(Γ,Γ′,Γ′′) lies in Σ, and we are done. Justifying this assumption requires substantial effort,

however.
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Lemma 5.10. If 0 ≤ s < r/2, then Σ dominates Hn.

Proof. We must introduce a couple auxiliary correspondences. First, let

X = {(Γ′′,D) : D ∈ Gr(2,H0(IΓ′′⊂P2(r)))} ⊂ L
[r−1] ×Gr(2,H0(OP2(r))).

That is, X is the Grassmannian bundle over L[r−1] corresponding to 2-planes in the vector

bundle on L[r−1] whose fiber over a point Γ′′ ∈ L[r−1] is H0(IΓ′′⊂P2(r)). Since every

Γ′′ ∈ L[r−1] imposes r − 1 independent conditions on r-ics, Grauert’s theorem [13, III.12.9]

implies this vector bundle can be constructed as a pushforward. Clearly X is projective

and irreducible. We must also consider the dense open subsets in X given by

X1 = {(Γ′′,D) : BsD is zero-dimensional}

X2 =
{
(Γ′′,D) : BsD is zero-dimensional, reduced, and BsD ∩ L = Γ′′

}
.

It is easy to see that these are in fact dense open subsets of X .

We now introduce the correspondence

Y =






(Γ,Γ′′′, (Γ′′,D)) :

Γ reduced

Γ ∩ L = ∅

Γ lies on no (r − 1)-ic

Γ ⊂ Γ′′′

Γ′′′ is residual to Γ′′ in BsD






⊂Hn ×Hn+m ×X1,

noting that D automatically has zero-dimensional base locus since Γ ⊂ BsD and Γ lies on

no (r − 1)-ic, so that every member of D is irreducible.

Lemma 5.9 implies that Y dominates Hn. We saw that for general Γ ∈ Hn there is

some Γ′′ ∈ L[r−1] and a pencil D such that Γ∪Γ′′ ⊂ BsD . Now if we take Γ′′′ to be residual

to Γ′′ in BsD , the point (Γ,Γ′′′, (Γ′′,D)) lies in Y .
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Observe that we have a map

φ :X1 →Hn+m ×X1

given by sending a point (Γ′′,D) to (Γ′′′, (Γ′′,D)), where Γ′′′ is the scheme residual to Γ′′ in

BsD . If

α : Y →Hn+m ×X1

is the projection, then we see that

α−1(φ(X1)) = Y .

We claim that α−1(φ(X2)) contains a dense open subset of Y ; if this is true then α−1(φ(X2))

will dominate Hn, which implies Σ dominates Hn.

Let (Γ,Γ′′′, (Γ′′,D)) be any point in Y , and choose a general curve γ(t) = (Γ′′t ,Dt) in X

with γ(0) = (Γ′′,D), parameterized by a disc Δ. For small nonzero t, we have γ(t) ∈ X2,

so that the scheme Γ′′′t residual to Γ
′′
t in BsDt is a reduced collection of points disjoint from

Γ′′t . After a base change if necessary, we may assume that there are n + m arcs pi(t) in

P2 parameterized by Δ such that Γ′′′t = {p1(t), . . . , pn+m(t)} for nonzero t. Without loss

of generality we may assume Γ = {p1(0), . . . , pn(0)}; the assumption that Γ is reduced is

crucial here. Then if we write Γt = {p1(t), . . . , pn(t)}, we obtain an arc

γ̃ : Δ → Y

t 7→ (Γt,Γ
′′′
t , (Γ

′′
t ,Dt))

such that γ̃(0) = (Γ,Γ′′′, (Γ′′,D)) and γ̃(t) lies in α−1(φ(X2)) for small nonzero t. Thus

α−1(φ(X2)) is dense in Y , completing the proof.

The proof that Σ dominates Hm is much easier.
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Lemma 5.11. If 0 ≤ s < r/2, then Σ dominates Hm.

Proof. Note that m < n. If Γ′ ∈Hm is general, choose a general Γ0 ∈Hn−m. Then Γ′ ∪Γ0

is general in Hn, so since Σ dominates Hn we can find some triple (Γ′ ∪ Γ0,Γ1,Γ′′) ∈ Σ.

Clearly then (Γ0 ∪ Γ1,Γ′,Γ′′) ∈ Σ, so Σ dominates Hm.

We conclude the proof of the proposition by showing Σ is irreducible.

Lemma 5.12. If 0 ≤ s < r/2, then Σ is irreducible. In fact, if we have

n = r(r + 1)/2 + s

and only assume s ≥ 0, then Σ is irreducible so long as m ≥ 0, so that the definition of Σ

makes sense.

Proof. Let us put

Ξ = {(p, (Γ′′,D)) : p ∈ BsD} ⊂ (P2 \ L)×X2,

and observe that Ξ is an (n + m)-sheeted covering space of X2 (see the proof of Lemma

5.10 for the definition of X2). Denote by

Ξ(k) = {(p1, . . . , pk, (Γ
′′,D)) : pi ∈ BsD distinct} ⊂ ((P

2 \ L)k \Δ)×X2.

If we show Ξ(n+m) is irreducible, then Σ is irreducible since it is the image of Ξ(n+m)

under the map

(p1, . . . , pm+n, (Γ
′′,D)) 7→ ({p1, . . . , pn}, {pn+1, . . . , pn+m},Γ

′′).

As Ξ(n+m) is an étale (m+ n)!-sheeted cover of the irreducible variety X2, it suffices to

show that Ξ(n +m) is connected. Equivalently, we can show that the monodromy group
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of Ξ → X2 is the full symmetric group. To do this, we show the monodromy acts doubly

transitively on a fiber and that it contains a simple transposition.

To see the monodromy acts doubly transitively, it suffices to show that Ξ(2) is connected.

Consider the slightly enlarged correspondence

Ξ̃(2) = {(p1, p2, (Γ
′′,D)) : pi ∈ BsD distinct} ⊂ ((P

2 \ L)2 \Δ)×X ,

observing in particular that we have allowed D to be an arbitrary pencil containing Γ′′.

Then the fiber of Ξ̃(2) over the triple (p1, p2,Γ
′′) consists of the Grassmannian

Gr(2,H0(I{p1,p2}∪Γ′′(r))).

Observing that the dimension h0(I{p1,p2}∪Γ′′(r)) is independent of p1, p2, and Γ
′′, we con-

clude by Grauert’s theorem that Ξ̃(2) is actually the Grassmannian bundle associated to

a vector bundle on the irreducible variety (P2 \ L)2 \Δ. Thus Ξ̃(2) is irreducible, and the

dense open subset Ξ(2) is connected.

To find a simple transposition, consider the following family of pencils of r-ics, corre-

sponding to a real loop in X2. Fix r − 1 points Γ′′ on L, let C1 be a general curve of

degree r containing Γ′′, and let C2 be a general curve of degree r − 1 containing Γ′′. Pick a

general tangent line to C1, and choose affine coordinates on P2 so that this line is given by

y = 0 and tangent to C1 at the origin. Fix a small ε, and denote by Lt the line given by

y = εe2πit. Put Dt = 〈C1, C2 ∪ Lt〉. As t goes from 0 to 1, this gives a loop in X2 based at

〈C1, C2∪L0〉. The local equation of C1 near the origin is y = x2, so we see that the induced

element of the monodromy group exchanges the pair of points of L0 ∩ C1 near the origin

with one another while leaving all other base points of D0 fixed. Thus the monodromy

group contains a simple transposition, and is the full symmetric group.
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5.4 The quadric resolution conjectures

In case

s

r − 12
>
√
2− 1 ≈ 0.414,

the vector bundle E with general resolution

0→ O(r − 3)s → O(r − 1)2r+s−1 → E → 0

will be stable by [5], and we have h0(E) = n rkE. These bundles are also stable in case

s/(r − 12) is a convergent in the continued fraction expansion of
√
2− 1; these bundles are

analogs of the Steiner bundles with exceptional slopes. We saw in the last section that if E

has interpolation for n points and s/r < 1/2 then there is a moving curve on Hn dual to

the divisor DE .

Conjecture 5.13. Suppose

√
2− 1 <

s

r − 12
≤
1

2

or s/(r− 12) is a convergent in the continued fraction expansion of
√
2−1. Then the bundle

E above satisfies interpolation for n points, so the class [DE ] spans an edge of EffHn.

Note that, at least for small n, computers are relatively good at checking whether

bundles satisfy interpolation or not, at least over a finite field (coefficient explosion makes

the calculation infeasible over Q). For instance, the Macaulay2 script in Figure 5.2 verifies

that the vector bundle on P2F7919 with resolution

0→ OP2(4)
3 M→ OP2(6)

16 → E → 0

satisfies interpolation for 31 points in about 10 seconds. The program is successful in

showing E satisfies interpolation if it outputs “True.”
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--define initial parameters

r = 7;

s = 3;

n = lift(r*(r+1)/2+s,ZZ);

--define the ring to work in

R = ZZ/7919[x,y,z];

--construct the ideal sheaf of n general points

I = ideal(1_R);

for i from 1 to n do I = intersect(I,ideal(random(1,R),random(1,R)));

J = sheaf module I;

--construct the matrix M; Macaulay morphisms go backwards

M = random(R^{r-1}^(2*r+s-1),R^{r-3}^s);

--construct the vector bundle E

E = sheaf cokernel M;

--verify cohomology vanishing

HH^0(E ** J) == 0

Figure 5.2: Macaulay2 script for checking interpolation for a quadric resolution cokernel
bundle.
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An affirmative answer to this conjecture would compute EffHn in another 8.6% of all

cases. In the cases where s/r is just larger than 1/2, there is a similar conjecture, which we

now explain. Suppose that s/r > 1/2 and

r − s+ 1

r + 52
>
√
2− 1,

which approximately says that s/r < 2−
√
2 ≈ 0.586. In this case the vector bundle F with

resolution

0→ F → OP2(r)
3r−s+6 → OP2(r + 2)

r−s+1 → 0

is stable.

Conjecture 5.14. Suppose s > r/2 and either

r − s+ 1

r + 52
>
√
2− 1

or (r − s+ 1)/(r + 52) is a convergent in the continued fraction expansion of
√
2− 1. Then

the vector bundle F above has interpolation for n points. Furthermore, there is a moving

curve on Hn given by allowing n points to move in a linear pencil on a curve of degree

2r + 5 having

m =
1

2
(r2 + 9r − 2s+ 14)

nodes, and its class is dual to DF .

A trivial modification of the previous script can be used to test when F has interpolation.

A potential construction of the moving curves in this conjecture works very similarly to the

construction in the previous section. Specifically, consider the correspondence

Σ =






(Γ′,Γ,Γ′′) :

Γ′ ∪ Γ ∪ Γ′′ is a reduced complete

intersection of two (r + 3)-ics,

and (Γ′ ∪ Γ) ∩ L = ∅






⊂Hm ×Hn × L
[r+2],
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noting that

n+m+ (r + 2) = (r + 3)2.

We have reversed the order of the Hm and Hn factors from the last section, for the reason

that m lies in the lower half of the range of numbers between two triangular numbers.

Explicitly, we have

m =
(r + 3)(r + 4)

2
+ (r − s+ 1) =

r′(r′ + 1)

2
+ s′,

where r′ = r+3 and s′ = r− s+1, and it follows from s > r/2 that s′/r′ < r′/2. Thus Σ is

precisely the correspondence we constructed to study moving curves on Hm in the previous

section. It therefore dominates both Hm and Hn by Proposition 5.6, and is irreducible as

well.

The only sticking point when trying to mimic the proof from the last section to produce

a moving curve on Hn is that the proof that there exists a curve nodal at Γ′ and passing

through Γ does not work, as the series of curves of degree r + 2 passing through Γ′ is typi-

cally empty, and thus Bertini’s theorem cannot be used to prevent additional singularities.

Observe that the expected dimension of the series of curves of degree 2r+5 passing through

Γ and nodal at Γ′ is
(
2r + 7

2

)

− 1− n− 3m = 2s− r − 1,

which is always (at least just barely) nonnegative under our assumption s > r/2. For

instance, in the case n = 32, we have m = 59 and the expected dimension of curves passing

through n points and nodal at m points is zero—we expect there to be a unique such curve.

No Bertini-type argument which argues curves are smooth by producing reducible curves

can possibly work, as this unique curve is typically irreducible.
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Resolving this issue seems to be a difficult interpolation-type problem. Even asserting

that for a general (Γ′,Γ,Γ′′) ∈ Σ the series of curves double at Γ′ and containing Γ has

the expected dimension is not at all obvious, as Γ and Γ′, while general separately, depend

closely on one another.

However, our knowledge of Σ allows us to at least attack specific cases by computer, by

way of the next result.

Proposition 5.15. Assuming s > r/2, suppose there is some (Γ′,Γ,Γ′′) ∈ Σ such that the

series of curves of degree 2r + 5 double at Γ′ and containing Γ has the expected dimension,

and suppose some curve in this series has nodes at each point of Γ′ and no other singularities.

Then the curve class described in Conjecture 5.14 is a moving curve.

Proof. Consider the open subset

Σ◦ = {(Γ′,Γ,Γ′′) : h0(I(Γ′)2∪Γ(2r + 5)) = 2s− r} ⊂ Σ.

By hypothesis, it is nonempty, and since Σ is irreducible it is dense and irreducible. Over Σ◦

there is a vector bundle whose fiber over (Γ′,Γ,Γ′′) is H0(I(Γ′)2∪Γ(2r+5)), so the projective

bundle

Ξ = {(Γ′,Γ,Γ′′, C) : (Γ′,Γ,Γ′′) ∈ Σ◦, C ∈ PH0(I(Γ′)2∪Γ(2r + 5))}

is irreducible. In Ξ there is an open subset where C has no unprescribed singularities. Our

assumption shows this subset is dense, and thus dominates Hn.

Strictly speaking, we have only proved the proposition over C, as our proof of the

irreducibility of Σ was over C; we suspect there aren’t any problems in characteristic p,

where we actually need the proposition. Since we are merely gathering evidence, we won’t

worry about this.
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--define initial parameters

r = 7; s = 4; n = lift(r*(r+1)/2+s,ZZ); m = (r+3)^2-(r+2)-n;

R = ZZ/7919[x,y,z];

--construct the ideal of r+2 general points on the line y=0

I = ideal(1_R);

for i from 1 to r+2 do I = intersect(I,ideal(y,random(1,R)));

--construct the ideal of n general points

J = ideal(1_R);

for i from 1 to n do J = intersect(J,ideal(random(1,R),random(1,R)));

--construct a general pencil of degree r+3 curves in the intersection

--of I and J

B1 = super basis(r+3,intersect(I,J));

a = lift((r+5)*(r+4)/2-(r+2)-n,ZZ);

M1 = random(R^a,R^1); M2 = random(R^a,R^1);

f = (B1 * M2)_(0,0); g = (B1 * M1)_(0,0);

K = ideal(f,g);

--construct m points as the residual base locus to the n+(r+2) points

L = quotient(K,intersect(I,J));

--construct the fat point scheme of points consisting of n simple

--points and m double points

N = saturate(intersect(J,L^2));

--choose a random curve in the series

B2 = super basis(2*r+5,N)

M3 = random(R^(2*s-r),R^1)

h = (B2 * M3)_(0,0);

--verify the n points and m double points impose the expected number

--of conditions on curves of degree 2r+5

hilbertFunction(2*r+5,N) == n + 3*m

--verify the curve has precisely m nodes, and no other singularities

degree ideal jacobian ideal(h) == m

Figure 5.3: Macaulay2 script for verifying Conjecture 5.14 on the existence of moving curve
classes.
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To utilize the proposition with Macaulay2, we take the following approach. Choose r+2

random Fp-points Γ′′ lying on L, and choose n random Fp-points Γ in P2Fp . Choose a random

pencil D of (r+3)-ics containing Γ ∪ Γ′′, and let Γ′ be the residual base locus. Then verify

that H0(I(Γ′)2∪Γ(2r + 5)) has the expected dimension, take a random curve in this series,

and check that it has only the prescribed singularities. The script in Figure 5.3 carries out

this procedure for n = 32; a successful output consists of two copies of “True,” one for the

expected dimension check and one for a check of the singularities of a random curve. This

script runs very quickly, and can be used to provide evidence for the conjecture on moving

curves for many n. Checking interpolation for the corresponding vector bundle provides a

much larger computational bottleneck.

5.5 A minimality property of Steiner bundles

In Remark 5.1 we discussed three different natural sounding statements which could

uniformly describe the effective cone of Hn. The first and simplest such statement, Pos-

sibility 1, claims that for each n one of the four different constructions of moving curves

(three of which we know actually work, and one of which is conjectured) gives the edge of

the moving cone.

Proposition 5.16. If Possibility 1 is true, then there exist n such that the nontrivial edge

of the effective cone of Hn is not spanned by a divisor DE, where E is a vector bundle on

P2 having interpolation for n points. In particular, this is true whenever

s

r
∈

{

α :
3

5
< α <

1

ϕ

}

\ Φ2

While the proposition itself may be of limited interest since it derives a conclusion from a
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statement we have no evidence for, it is a consequence of an interesting minimality property

of Steiner bundles.

Recall that for every n = r(r+1)/2+ s with 0 ≤ s ≤ r there is a moving curve γ on Hn

given by allowing n points to move in a linear pencil on a smooth curve of degree r. We

have

γ ∙H = r γ ∙Δ = 2(r2 − r + s).

If E is any vector bundle satisfying interpolation for n points, then the associated divisor

DE = c1(E)H −
rkE

2
Δ

must satisfy γ ∙DE ≥ 0, and so

μ(E) ≥
r2 − r + s

r
.

When equality holds in this inequality, the divisor DE spans an edge of the effective cone.

We have seen that if s/r ∈ Φ2, then there are twists of Steiner bundles achieving equality.

Our main result in this section provides a converse: if equality holds, then the bundle is the

appropriate twist of a Steiner bundle.

Theorem 5.17. Let E be a vector bundle with interpolation for n points, and assume

μ(E) =
r2 − r + s

r
.

Then E admits a resolution of the form

0→ OP2(r − 2)
sk → OP2(r − 1)

(s+r)k → E → 0

for some k ∈ Q.
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In particular, no such bundle exists unless s/r ∈ Φ2. Indeed, if E has a resolution of

the specified form then it must be semistable by Proposition 4.5, and thus s/r ∈ Φ2 by

Theorem 1.3. Proposition 5.16 follows by noting that Possibility 1 predicts the slope of the

extremal edge of the effective cone is (r2 − r + s)/r in case 3/5 < s/r < ϕ−1.

The case where s = 0 is easier than the general case, but treating it uniformly with the

other cases would complicate things slightly. We leave the details of this case to the reader,

and focus on the much more important cases where 0 < s ≤ r.

To prove the theorem, we start by noting that any vector bundle E on P2 admits a

resolution of the form

0→ A→ B → E → 0

where A and B are both direct sums of line bundles. We recall the argument from [3].

Indeed, since E is locally free the graded C[x, y, z]-module H0(E(∗)) is finitely generated.

It is then easy to find a split bundle B and a surjection B → E → 0 such that the maps

H0(B(m))→ H0(E(m)) are surjective for every m. The kernel A of this surjection is then

locally free, and Horrocks’ splitting criterion [16] implies A is split.

We may further assume that the resolution

0→ A
M
→ B → E → 0

is minimal, in the sense that all entries of the matrix M lie in the irrelevant ideal (x, y, z) ⊂

C[x, y, z]. Observe that h0(E) depends only on the bundles A and B, and not on M (so

long as M is injective). It follows that if E has interpolation for n points, then the bundle

E′ corresponding to a general matrix M ′ : A → B also has interpolation for n points. It

also has the same slope as E.
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If A and B have a common summand OP2(a) then the resolution

0→ A
M ′
→ B → E′ → 0

fails to be minimal since M ′ will have some nonzero scalar entries. It is then possible to

cancel some common factors and arrive at a resolution

0→ A′ → B′ → E′ → 0

where A′ and B′ have no common summand. If in fact E′ admits a resolution of the form

0→ OP2(r − 2)
sk → OP2(r − 1)

(s+r)k → E′ → 0

for some k ∈ Q, then it follows that E does as well. For in this case, E admits a minimal

resolution of the form

0→ OP2(r − 2)
sk ⊕ C

M
→ OP2(r − 1)

(s+r)k ⊕ C → E → 0

for some split vector bundle C. If OP2(a) is the largest twist of a line bundle appearing in C

and a ≥ r− 1, then by the minimality hypothesis this summand of C must be in the kernel

of M , contradicting that M is injective. Similarly, if OP2(b) is the smallest twist of a line

bundle appearing in C and b ≤ r − 2 then by minimality E must have a direct summand

isomorphic to OP2(b). But then clearly E does not satisfy interpolation for n points, as

h0(OP2(b)) < n. It follows that C = 0, and E has the required resolution.

Thus, in order to prove the theorem we may assume that E admits a resolution

0→ A→ B → E → 0

by split bundles with no common factor.
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In order to impose restrictions on the resolution of an interpolation bundle with minimal

slope, we isolate a numerical property of vector bundles satisfying interpolation (for n points,

as always in this section). For a split vector bundle A and an integer m, we denote by Am

the subbundle spanned by the summands O(a) having a ≥ m, and we call it the mth

truncation of A. We further define a function ν on split vector bundles by

ν(A) = h1(A⊗IΓ),

where Γ is a general union of n points.

To make things slightly less messy, it will be useful to be able to work with formal

direct sums of line bundles with positive rational exponents instead of integer exponents.

We will call such an object a Q-split vector bundle. We extend the functions c1, rk, ν, and

truncation Q-linearly to the space of Q-split bundles. Clearly every Q-split bundle has some

power which is an honest split bundle.

We now say that a pair (A,B) of Q-split vector bundles has numerically interpolative

cokernel (for n points) or is an NIC pair if the following conditions are satisfied.

1. A and B are Q-linear sums of line bundles O(a) with a ≤ r − 1, and no summand of

A appears in B,

2. ν(A) = ν(B),

3. for every integer m, we have ν(Am) ≤ ν(Bm), and

4. if we define the slope μ(A,B) by

μ(A,B) =
c1(B)− c1(A)
rkB − rkA

,

then μ(A,B) is finite and μ(A,B) > r − 1.
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(In fact, assuming (A,B) is nonzero, condition (4) can be seen to follow from the first three

conditions, but we will not bother ourselves with the proof). Observe that every NIC pair

of Q-split bundles gives rise to an NIC pair of split bundles by taking sufficiently divisible

powers.

Lemma 5.18. If a nonzero vector bundle E satisfies interpolation and has a resolution

0→ A→ B → E → 0

by split bundles with no common factor, then (A,B) is an NIC pair, and μ(A,B) = μ(E).

Proof. Let Γ be a general collection of n points. Since E satisfies interpolation, we find that

the map H0(A⊗IΓ)→ H0(B⊗IΓ) is an isomorphism. If we write A as a sum of O(ai) with

a1 ≤ ∙ ∙ ∙ ≤ aα and B as a sum of O(bj) with b1 ≤ ∙ ∙ ∙ ≤ bβ , then since we have an injection

A→ B we find ai < bβ−α+i for 1 ≤ i ≤ α. Thus h0(O(ai)⊗IΓ) ≤ h0(O(bβ−α+i)⊗IΓ) for

1 ≤ i ≤ α, with equality if and only if all the bβ−α+i are no larger than r−1, and we conclude

h0(A⊗IΓ) ≤ h0(B⊗IΓ), with equality if and only if h0(A⊗IΓ) = h0(B⊗IΓ) = 0. Since

equality must hold, we find that the summands in A and B are all of the form O(a) with

a ≤ r − 1, confirming property (1).

We next claim that the map H1(A ⊗ IΓ) → H1(B ⊗ IΓ) is an isomorphism, so that
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ν(A) = ν(B). It is clearly injective. From the diagram

0 0 0

0 A|Γ B|Γ E|Γ 0

0 A B E 0

0 A⊗IΓ B ⊗IΓ E ⊗IΓ 0

0 0 0

we obtain the commuting diagram

H1(E|Γ) H2(A|Γ)

H1(B) H1(E) H2(A)

H1(A⊗IΓ) H1(B ⊗IΓ) H1(E ⊗IΓ) H2(A⊗IΓ)

H0(E|Γ) H1(A|Γ)

H0(E)

H0(E ⊗IΓ)

with exact rows and columns. Now H1(E|Γ), H2(A|Γ), H1(B), H1(A|Γ), and H0(E ⊗IΓ)

all vanish. Furthermore, since E satisfies interpolation H0(E) → H0(E|Γ) is actually an

isomorphism. It follows that the maps H1(E ⊗IΓ) → H1(E) and H2(A ⊗IΓ) → H2(A)

are both isomorphisms, and since H1(E) → H2(A) is injective we find H1(E ⊗ IΓ) →
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H2(A⊗IΓ) is injective. We conclude that H1(A⊗IΓ)→ H1(B⊗IΓ) is surjective, hence

an isomorphism, and property (2) holds.

Since H1(A⊗IΓ)→ H1(B ⊗IΓ) is an isomorphism, it follows that the induced maps

H1(Am ⊗IΓ)→ H1(Bm ⊗IΓ)

are injective for every m, and thus ν(Am) ≤ ν(Bm), verifying property (3).

Finally, we remark that μ(E) = μ(A,B), and clearly μ(E) > r − 1, so property (4)

holds. Thus (A,B) has numerically interpolative cokernel.

Since vector bundles satisfying interpolation give rise to NIC pairs having the same

slope, the next result implies the main theorem from this section.

Proposition 5.19. Let (A,B) be an NIC pair of Q-split bundles. Then

μ(A,B) ≥
r2 − r + s

r
,

with equality if and only if (A,B) is of the form (O(r−2)sk,O(r−1)(s+r)k) for some k ∈ Q.

The main idea is to show that any NIC pair other than (O(r − 2)sk,O(r − 1)(s+r)k)

gives rise to a new NIC pair having strictly smaller slope, and that by performing such an

operation finitely many times we can arrive at a pair of the form (O(r−2)sk,O(r−1)(s+r)k).

Proof. Let a be the smallest twist occurring as a summand of A, and let b be the smallest

twist occurring as a summand of B, so that we can write

A = O(a)α ⊕Aa+1 B = O(b)β ⊕Bb+1.

We observe that the NIC-pair hypothesis implies a < b. For if b < a we would have

ν(Ba) < ν(B) = ν(A) = ν(Aa),
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contradicting ν(Aa) ≤ ν(Ba); furthermore a = b is excluded by the minimality hypothesis.

We use induction on −(a+ b).

We have a+ b ≤ 2r − 3, so the base case occurs when a = r − 2 and b = r − 1. Thus

A = O(r − 2)α B = O(r − 1)β .

The hypothesis ν(A) = ν(B) easily shows that we have α = sk and β = (s + r)k for some

k ∈ Q, and we find μ(A,B) = (r2 − r + s)/r.

Given an NIC-pair (A,B) with a+ b < 2r−3, we will now construct an NIC-pair (C,D)

such that μ(C,D) ≤ μ(A,B) and such that the corresponding sum c + d of the smallest

twists in C and D satisfies c+d > a+b. Furthermore, we will show that either the inequality

μ(C,D) ≤ μ(A,B) is strict or c ≤ −2, in which case the inequality will become strict at a

later step. Our construction takes one of three forms, depending on the structure of A and

B.

Case 1: b = r − 1. In this case we may write

A = O(a)α ⊕Aa+1 B = O(r − 1)β ,

and we have r − a− 2 > 0. Put

A′ = O(a+ 1)α+
α

r−a−2 ⊕Aa+1 B′ = O(r − 1)β+
α

r−a−2 ,

and observe that μ(A′, B′) = μ(A,B). Furthermore, notice that

ν(A′) = ν(A) +
α

r − a− 2
ν(O(a+ 1)) + α(ν(O(a+ 1))− ν(O(a)))

and

ν(B′) = ν(B) +
α

r − a− 2
ν(O(r − 1)).
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Thus

ν(A′)− ν(B′) =
α

r − a− 2
(ν(O(a+ 1))− ν(O(r − 1))) + α(ν(O(a+ 1))− ν(O(a))).

In case a < −1, this expression is clearly positive since then ν(O(a)) = ν(O(a + 1)). On

the other hand for a ≥ −1 we can use the formula

ν(O(a)) =
r(r + 1)

2
+ s−

(
a+ 2

2

)

to find

ν(A′)− ν(B′) =
1

2
α(r − a− 2)(r − a− 1),

which is also positive. We can then choose some positive rational number γ such that the

pair

C = A′ D = B′ ⊕O(r − 1)γ

satisfies ν(C) = ν(D). Due to the form of D, we also conclude ν(Cm) ≤ ν(Dm) for every

m. Now μ(C,D) is a weighted average of r− 1 and μ(A′, B′), so since μ(A′, B′) > r− 1 we

find

r − 1 < μ(C,D) < μ(A′, B′) = μ(A,B).

Notice that the sum c+ d of the smallest twists in C and D satisfies c+ d > a+ b. If C and

D have any common summands we can cancel them without affecting the numerics, so we

conclude that (C,D) is an NIC pair with the required properties.

Case 2: b < r − 1 and α ≤ β. Here we write

A = O(a)α ⊕Aa+1 B = O(b)β ⊕Bb+1.

We first modify this pair by putting

A′ = O(a+ 1)α ⊕Aa+1 B′ = O(b)β−α ⊕O(b+ 1)α ⊕Bb+1.
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Notice that μ(A′, B′) = μ(A,B). Furthermore, we have ν(A′) ≥ ν(B′), since a < b implies

that

ν(A)− ν(A′) ≤ ν(B)− ν(B′).

The inequality ν(A′) ≥ ν(B′) is strict unless b ≤ −2.

In case b ≤ −2, we claim that the twist O(a + 1) does not occur in B′. If α = β,

then this follows from the fact that a < b. So instead assume α < β. Then B′ still has

a twist of index b. We cannot have b = a + 1, for then it follows that Aa+1 = Aa+2 and

ν(Aa+2) > ν(Ba+2) since α < β. Thus a+ 1 < b, and O(a+ 1) does not occur in B′.

We may now choose a nonnegative rational number γ so that if

C = A′ D = B′ ⊕O(r − 1)γ

then ν(C) = ν(D). As in the previous case, we find r−1 < μ(C,D) ≤ μ(A,B), and the last

inequality is necessarily strict unless the number c corresponding to the smallest twist in C

has c ≤ −2. By construction we have ν(Cm) ≤ ν(Dm) whenever m ≤ b. For m ≥ b + 1,

we observe that ν(Dm) ≥ ν(Bm) whereas ν(Cm) = ν(Am), so also ν(Cm) ≤ ν(Dm) in this

case. Cancelling common summands if necessary, (C,D) has the required properties.

Case 3: b < r − 1 and α > β. Similarly to the previous case, put

A′ = O(a)β ⊕O(a+ 1)α−β ⊕Aa+1 B′ = O(b+ 1)β ⊕Bb+1,

then choose a nonnegative number γ so that the bundles

C = A′ D = B′ ⊕O(r − 1)γ

satisfy ν(C) = ν(D). The full details are essentially the same.



Appendix A

Table of cones of effective divisors

and moving curves on Hn

Write n = r(r + 1)/2 + s. For small values of n, we know the nontrivial extremal

moving curve class on Hn is given by allowing n points to move in a linear pencil on the

normalization C̃n of a curve Cn in P2 of some degree having some number δ(Cn) of nodes

and no other singularities. Multiples of Dn can be represented as loci where interpolation

fails for a vector bundle En on P2 having interpolation for n points. If Dn = aH − b2Δ, we

denote by μ(Dn) = a/b the slope of the divisor class Dn. Note that μ(Dn) = μ(En), and

by Proposition 3.3 we have μ(Dn) ≤ μ(Dn+1) for all n.

In the following table, data for indices n with no annotation follows from Theorem 1.8.

We mark n with various symbols based on the status of establishing the corresponding data.

• ∗: For these indices (e.g. n = 17), the described curve class is in fact a moving

curve class by Theorem 5.5, and interpolation for En is checked over a finite field with

Macaulay, as described in Section 5.4.
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• ∗∗: The described curve class is moving by Theorem 5.5, but interpolation has not

been checked for En.

• †: The moving curve class and interpolation for En were checked over a finite field

with Macaulay.

• ‡: The moving curve class was checked over a finite field with Macaulay. Interpolation

for En takes too long to check with an ordinary computer, and remains completely

open.

Table A.1: Effective and moving cones of Hn

n r s degCn δ(Cn) En μ(Dn)

3 2 0 2 0 O(1) 1
4 2 1 2 0 coker(O → O(1)3) 3/2
5 2 2 2 0 coker(O2 → O(1)4) 2
6 3 0 3 0 O(2) 2
7 3 1 5 0 ker(O(3)8 → O(4)3) 12/5
8 3 2 3 0 coker(O(1)2 → O(2)5) 8/3
9 3 3 3 0 coker(O(1)3 → O(2)6) 3
10 4 0 4 0 O(3) 3
11 4 1 6 0 ker(O(4)10 → O(5)4) 10/3
12 4 2 4 0 coker(O(2)2 → O(3)6) 7/2
13 4 3 4 0 coker(O(2)3 → O(3)7) 15/4
14 4 4 4 0 coker(O(2)4 → O(3)8) 4
15 5 0 5 0 O(4) 4
16 5 1 7 0 ker(O(5)12 → O(6)5) 30/7
17∗ 5 2 9 4 coker(O(2)2 → O(4)11) 40/9
18 5 3 5 0 coker(O(3)3 → O(4)8) 23/5
19 5 4 5 0 coker(O(3)4 → O(4)9) 24/5
20 5 5 5 0 coker(O(3)5 → O(4)10) 5
21 6 0 6 0 O(5) 5
22 6 1 8 0 ker(O(6)14 → O(7)6) 21/4
23 6 2 8 0 ker(O(6)13 → O(7)5) 43/8
24 6 3 6 0 coker(O(4)3 → O(5)9) 11/2
25 6 4 6 0 coker(O(4)4 → O(5)10) 17/3

continued on next page
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continued from previous page

n r s degCn δ(Cn) En μ(Dn)

26 6 5 6 0 coker(O(4)5 → O(5)11) 35/6
27 6 6 6 0 coker(O(4)6 → O(5)12) 6
28 7 0 7 0 O(6) 6
29 7 1 9 0 ker(O(7)16 → O(8)7) 56/9
30 7 2 9 0 ker(O(7)15 → O(8)6) 19/3
31∗ 7 3 13 12 coker(O(4)3 → O(6)16) 84/13
32† 7 4 19 59 ker(O(7)23 → O(9)4) 125/19
33 7 5 7 0 coker(O(5)5 → O(6)12) 47/7
34 7 6 7 0 coker(O(5)6 → O(6)13) 48/7
35 7 7 7 0 coker(O(5)7 → O(6)14) 7
36 8 0 8 0 O(7) 7
37 8 1 10 0 ker(O(8)18 → O(9)8) 36/5
38 8 2 10 0 ker(O(8)17 → O(9)7) 73/10
39 8 3 10 0 ker(O(8)16 → O(9)6) 37/5
40 8 4 8 0 coker(O(6)4 → O(7)12) 15/2
41 8 5 8 0 coker(O(6)5 → O(7)13) 61/8
42 8 6 8 0 coker(O(6)6 → O(7)14) 31/4
43 8 7 8 0 coker(O(6)7 → O(7)15) 63/8
44 8 8 8 0 coker(O(6)8 → O(7)16) 8
45 9 0 9 0 O(8) 8
46 9 1 11 0 ker(O(9)20 → O(10)9) 90/11
47 9 2 11 0 ker(O(9)19 → O(10)8) 91/11
48 9 3 11 0 ker(O(9)18 → O(10)7) 92/11
49∗ 9 4 17 24 coker(O(6)4 → O(8)21) 144/17
50† 9 5 23 83 ker(O(9)28 → O(11)5) 197/23
51 9 6 9 0 coker(O(7)6 → O(8)15) 26/3
52 9 7 9 0 coker(O(7)7 → O(8)16) 79/9
53 9 8 9 0 coker(O(7)8 → O(8)17) 80/9
54 9 9 9 0 coker(O(7)9 → O(8)18) 9
55 10 0 10 0 O(9) 9
56 10 1 12 0 ker(O(10)22 → O(11)10) 55/6
57 10 2 12 0 ker(O(10)21 → O(11)9) 37/4
58 10 3 12 0 ker(O(10)20 → O(11)8) 28/3
59∗ 10 4 19 32 coker(O(7)4 → O(9)23) 179/19
60 10 5 10 0 coker(O(8)5 → O(9)15) 19/2
61 10 6 10 0 coker(O(8)6 → O(9)16) 48/5
62 10 7 10 0 coker(O(8)7 → O(9)17) 97/10
63 10 8 10 0 coker(O(8)8 → O(9)18) 49/5
64 10 9 10 0 coker(O(8)9 → O(9)19) 99/10

continued on next page
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continued from previous page

n r s degCn δ(Cn) En μ(Dn)

65 10 10 10 0 coker(O(8)10 → O(9)20) 10
66 11 0 11 0 O(10) 10
67 11 1 13 0 ker(O(11)24 → O(12)11) 132/13
68 11 2 13 0 ker(O(11)23 → O(12)10) 133/13
69 11 3 13 0 ker(O(11)22 → O(12)9) 134/13
70 11 4 13 0 ker(O(11)21 → O(12)8) 135/13
71∗ 11 5 21 40 coker(O(8)5 → O(10)26) 220/21
72‡ 11 6 27 111 ker(O(11)33 → O(13)6) 95/9
73 11 7 11 0 coker(O(9)7 → O(10)18) 117/11
74 11 8 11 0 coker(O(9)8 → O(10)19) 118/11
75 11 9 11 0 coker(O(9)9 → O(10)20) 119/11
76 11 10 11 0 coker(O(9)10 → O(10)21) 120/11
77 11 11 11 0 coker(O(9)11 → O(10)22) 11
78 12 0 12 0 O(11) 11
79 12 1 14 0 ker(O(12)26 → O(13)12) 78/7
80 12 2 14 0 ker(O(12)25 → O(13)11) 157/14
81 12 3 14 0 ker(O(12)24 → O(13)10) 79/7
82 12 4 14 0 ker(O(12)23 → O(13)9) 159/14
83∗ 12 5 23 50 coker(O(9)5 → O(11)28) 263/23
84 12 6 12 0 coker(O(10)6 → O(11)18) 23/2
85‡ 12 7 29 126 ker(O(12)35 → O(14)6) 336/29
86 12 8 12 0 coker(O(10)8 → O(11)20) 35/3
87 12 9 12 0 coker(O(10)9 → O(11)21) 47/4
88 12 10 12 0 coker(O(10)10 → O(11)22) 71/6
89 12 11 12 0 coker(O(10)11 → O(11)23) 143/12
90 12 12 12 0 coker(O(10)12 → O(11)24) 12
91 13 0 13 0 O(12) 12
92 13 1 15 0 ker(O(13)28 → O(14)13) 182/15
93 13 2 15 0 ker(O(13)27 → O(14)12) 61/5
94 13 3 15 0 ker(O(13)26 → O(14)11) 184/15
95 13 4 15 0 ker(O(13)25 → O(14)10) 37/3
96 13 5 15 0 ker(O(13)24 → O(14)9) 62/5
97∗ 13 6 25 60 coker(O(10)6 → O(12)31) 312/25
98‡ 13 7 31 143 ker(O(13)38 → O(15)7) 389/31
99 13 8 13 0 coker(O(11)8 → O(12)21) 164/13
100 13 9 13 0 coker(O(11)9 → O(12)22) 165/13
101 13 10 13 0 coker(O(11)10 → O(12)23) 166/13
102 13 11 13 0 coker(O(11)11 → O(12)24) 167/13
103 13 12 13 0 coker(O(11)12 → O(12)25) 168/13

continued on next page
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n r s degCn δ(Cn) En μ(Dn)

104 13 13 13 0 coker(O(11)13 → O(12)26) 13
105 14 0 14 0 O(13) 13
106 14 1 16 0 ker(O(14)30 → O(15)14) 105/8
107 14 2 16 0 ker(O(14)29 → O(15)13) 211/16
108 14 3 16 0 ker(O(14)28 → O(15)12) 53/4
109 14 4 16 0 ker(O(14)27 → O(15)11) 213/16
110 14 5 16 0 ker(O(14)26 → O(15)10) 107/8
111∗ 14 6 27 72 coker(O(11)6 → O(13)33) 121/9
112 14 7 14 0 coker(O(12)7 → O(13)21) 27/2
113‡ 14 8 33 160 ker(O(14)40 → O(16)7) 448/33
114 14 9 14 0 coker(O(12)9 → O(13)23) 191/14
115 14 10 14 0 coker(O(12)10 → O(13)24) 96/7
116 14 11 14 0 coker(O(12)11 → O(13)25) 193/14
117 14 12 14 0 coker(O(12)12 → O(13)26) 97/7
118 14 13 14 0 coker(O(12)13 → O(13)27) 195/14
119 14 14 14 0 coker(O(12)14 → O(13)28) 14
120 15 0 15 0 O(14) 14
121 15 1 17 0 ker(O(15)32 → O(16)15) 240/17
122 15 2 17 0 ker(O(15)31 → O(16)14) 241/17
123 15 3 17 0 ker(O(15)30 → O(16)13) 242/17
124 15 4 17 0 ker(O(15)29 → O(16)12) 243/17
125 15 5 17 0 ker(O(15)28 → O(16)11) 244/17
126∗ 15 6 29 85 coker(O(12)6 → O(14)35) 418/29
127∗ 15 7 29 84 coker(O(12)7 → O(14)36) 420/29
128‡ 15 8 35 179 ker(O(15)43 → O(17)8) 509/35
129 15 9 15 0 coker(O(13)9 → O(14)24) 73/5
130 15 10 15 0 coker(O(13)10 → O(14)25) 44/3
131 15 11 15 0 coker(O(13)11 → O(14)26) 221/15
132 15 12 15 0 coker(O(13)12 → O(14)27) 74/5
133 15 13 15 0 coker(O(13)13 → O(14)28) 223/15
134 15 14 15 0 coker(O(13)14 → O(14)29) 224/15
135 15 15 15 0 coker(O(13)15 → O(14)30) 15
136 16 0 16 0 O(15) 15
137 16 1 18 0 ker(O(16)34 → O(17)16) 136/9
138 16 2 18 0 ker(O(16)33 → O(17)15) 91/6
139 16 3 18 0 ker(O(16)32 → O(17)14) 137/9
140 16 4 18 0 ker(O(16)31 → O(17)13) 275/18
141 16 5 18 0 ker(O(16)30 → O(17)12) 46/3
142 16 6 ? ? ? ?

continued on next page
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n r s degCn δ(Cn) En μ(Dn)

143∗∗ 16 7 31 98 coker(O(13)7 → O(15)38) 479/31
144 16 8 16 0 coker(O(14)8 → O(15)24) 31/2
145‡ 16 9 37 198 ker(O(16)45 → O(18)8) 576/37
146 16 10 16 0 coker(O(14)10 → O(15)26) 125/8
147 16 11 16 0 coker(O(14)11 → O(15)27) 251/16
148 16 12 16 0 coker(O(14)12 → O(15)28) 63/4
149 16 13 16 0 coker(O(14)13 → O(15)29) 253/16
150 16 14 16 0 coker(O(14)14 → O(15)30) 127/8
151 16 15 16 0 coker(O(14)15 → O(15)31) 255/16
152 16 16 16 0 coker(O(14)16 → O(15)32) 16
153 17 0 17 0 O(16) 16
154 17 1 19 0 ker(O(17)36 → O(18)17) 306/19
155 17 2 19 0 ker(O(17)35 → O(18)16) 307/19
156 17 3 19 0 ker(O(17)34 → O(18)15) 308/19
157 17 4 19 0 ker(O(17)33 → O(18)14) 309/19
158 17 5 19 0 ker(O(17)32 → O(18)13) 310/19
159 17 6 19 0 ker(O(17)31 → O(18)12) 311/19
160∗∗ 17 7 33 113 coker(O(14)7 → O(16)40) 542/33
161∗∗ 17 8 33 112 coker(O(14)8 → O(16)41) 544/33
162‡ 17 9 39 219 ker(O(17)48 → O(19)9) 215/13
163 17 10 ? ? ? ?
164 17 11 17 0 coker(O(15)11 → O(16)28) 283/17
165 17 12 17 0 coker(O(15)12 → O(16)29) 284/17
166 17 13 17 0 coker(O(15)13 → O(16)30) 285/17
167 17 14 17 0 coker(O(15)14 → O(16)31) 286/17
168 17 15 17 0 coker(O(15)15 → O(16)32) 287/17
169 17 16 17 0 coker(O(15)16 → O(16)33) 288/17
170 17 17 17 0 coker(O(15)17 → O(16)34) 17
171 18 0 18 0 O(17) 17
172 18 1 20 0 ker(O(18)38 → O(19)18) 171/10
173 18 2 20 0 ker(O(18)37 → O(19)17) 343/20
174 18 3 20 0 ker(O(18)36 → O(19)16) 86/5
175 18 4 20 0 ker(O(18)35 → O(19)15) 69/4
176 18 5 20 0 ker(O(18)34 → O(19)14) 173/10
177 18 6 20 0 ker(O(18)33 → O(19)13) 347/20
178 18 7 20 0 ker(O(18)32 → O(19)12) 87/5
179∗∗ 18 8 35 128 coker(O(15)8 → O(17)43) 611/35
180 18 9 18 0 coker(O(16)9 → O(17)27) 35/2
181‡ 18 10 41 240 ker(O(18)50 → O(20)9) 720/41

continued on next page
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n r s degCn δ(Cn) En μ(Dn)

182 18 11 ? ? ? ?
183 18 12 18 0 coker(O(16)12 → O(17)30) 53/3
184 18 13 18 0 coker(O(16)13 → O(17)31) 319/18
185 18 14 18 0 coker(O(16)14 → O(17)32) 160/9
186 18 15 18 0 coker(O(16)15 → O(17)33) 107/6
187 18 16 18 0 coker(O(16)16 → O(17)34) 161/9
188 18 17 18 0 coker(O(16)17 → O(17)35) 323/18
189 18 18 18 0 coker(O(16)18 → O(17)36) 18
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