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Dr. Sydney Cash Alexander Mark Chan 

Extracting Spatiotemporal Word and Semantic Representations from 
Multiscale Neurophysiological Recordings in Humans 

ABSTRACT 

With the recent advent of neuroimaging techniques, the majority of the research 

studying the neural basis of language processing has focused on the localization of various 

lexical and semantic functions.  Unfortunately, the limited time resolution of functional 

neuroimaging prevents a detailed analysis of the dynamics involved in word recognition, and 

the hemodynamic basis of these techniques prevents the study of the underlying 

neurophysiology.  Compounding this problem, current techniques for the analysis of high-

dimensional neural data are mainly sensitive to large effects in a small area, preventing a 

thorough study of the distributed processing involved for representing semantic knowledge.  

This thesis demonstrates the use of multivariate machine-learning techniques for the study of 

the neural representation of semantic and speech information in electro/magneto-

physiological recordings with high temporal resolution.  Support vector machines (SVMs) allow 

for the decoding of semantic category and word-specific information from non-invasive 

electroencephalography (EEG) and magnetoenecephalography (MEG) and demonstrate the 

consistent, but spatially and temporally distributed nature of such information.  Moreover, the 

anteroventral temporal lobe (avTL) may be important for coordinating these distributed 

representations, as supported by the presence of supramodal category-specific information in 

intracranial recordings from the avTL as early as 150ms after auditory or visual word 

presentation.  Finally, to study the inputs to this lexico-semantic system, recordings from a high 

density microelectrode array in anterior superior temporal gyrus (aSTG) are obtained, and the 

recorded spiking activity demonstrates the presence of single neurons that respond specifically 

to speech sounds.  The successful decoding of word identity from this firing rate information 

suggests that the aSTG may be involved in the population coding of acousto-phonetic speech 

information that is likely on the pathway for mapping speech-sounds to meaning in the avTL.  

The feasibility of extracting semantic and phonological information from multichannel neural 

recordings using machine learning techniques provides a powerful method for studying 

language using large datasets and has potential implications for the development of fast and 

intuitive communication prostheses.  
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I. INTRODUCTION 

Language is a uniquely human characteristic and is the fundamental method by which 

we are able to convey complex ideas effortlessly and efficiently.  The way in which we think 

about and interact with the world is clearly reflected in the words we use, the meanings we 

ascribe to them, and the syntactic and grammatical rules we follow.  Perhaps more surprisingly, 

the converse is also true; language itself shapes the way we think and perceive the world 

(Winawer et al., 2007, Gilbert et al., 2006).  Understanding how the human brain generates, 

comprehends, and manipulates language is a crucial element in the quest for understanding 

and mapping human cognition. 

The production and comprehension of language are highly complex processes and 

require many neural systems that may not traditionally be viewed as language-specific.  There 

is often no clear boundary between the language processing system and other sensory and 

motor systems.  For example, where visual object recognition ends and semantic 

representations begin is difficult to define.  Similarly, understanding spoken language 

necessarily depends on the normal functioning of the auditory system, but where do these two 

pathways separate?  Studying the neural basis of language is difficult because it is inextricably 

linked to other sensory and cognitive processing streams, and disentangling them is nearly 

impossible.  Therefore, it is important that we do not view language as a distinct processing 

pathway, but instead as a system that functions on top of, and in conjunction with, all the other 

sensory and motor components of the brain. 

Over the past several decades, the study of the neural basis of language has focused on 

the neuroanatomical localization of specific components of language processing (Chao et al., 

1999, Caramazza, 1988, Patterson et al., 2007).  These components, from auditory and visual 
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word recognition to construction of syntactically correct sentences, have previously been 

assumed to be modular in terms of function, and lie in well-circumscribed regions of cortex.  

This way of thinking has led to a plethora of studies examining the language deficits of lesion 

patients and localization of language function via neuroimaging such as functional MRI (fMRI) 

and positron emission tomography (PET) (Chao et al., 1999, Mummery et al., 1998, Devlin et al., 

2002).  The assumption of a limited number of major loci of language function has led to 

analysis techniques that look for the most robust responses in small regions of interest (Friston 

et al., 1994).  Recently, however, the idea that high-order cognitive functions occur in spatially 

restricted areas has come into question (Haxby et al., 2001a, Ishai et al., 1999, Patterson et al., 

2007).  Taking a distributed view of cognitive processing, especially for representing complex 

information such as semantics, reduces the assumptions about spatial localization and can 

provide insights into the coordination of various brain areas for performing a particular task. 

While localization has been a large focus of language research over the last several 

years, neglecting the temporal aspects of language processing limits our understanding of how 

the brain comprehends and produces words and sentences.  Temporal information provides 

insights into serial, parallel, or feedback processing streams and allows for examination of 

measures of synchrony and causality.  Consequently, neuroimaging techniques like fMRI, with 

their low temporal resolution, are poor tools for examining temporal relationships.  By looking 

at a of variety electrophysiological recording techniques, such as electro- and magneto-

encephalography (EEG/MEG), we can study language processing at the millisecond-level, while 

also examining these pathways at a range of spatial scales, from microns to centimeters. 

The need to examine distributed models of language processing using a large number of 

recording electrodes at high temporal resolutions produces enormous quantities of data.  
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Traditional analysis techniques for examining neural data, such as statistical parametric 

mapping for fMRI (Friston et al., 1994), are typically optimized for examining large, robust 

differences that occur in well-defined regions.  As a consequence, these techniques can easily 

miss subtle, but widespread activity.  Multivariate techniques that are able to utilize 

information from a large number of sources and robustly handle high-dimensional data would 

provide a method by which such distributed time-series data can be examined.  In particular, a 

number of machine learning algorithms allow for the examination of a large number of features 

simultaneously and can extract information that is highly distributed, both spatially and 

temporally.  Furthermore, many of these techniques provide elegant ways of avoiding 

overfitting, a common problem when looking at small numbers of trials of very high 

dimensional data. 

Additionally, if language information can be robustly extracted from 

electrophysiological recordings, these algorithms could provide a foundation for the 

development of rapid and intuitive communication prostheses.  Several million people are 

unable to communicate adequately due to deficits at various stages of language or speech 

processing (Lapointe, 2005).  Stroke, aphasia, and amyotrophic lateral sclerosis (ALS) are three 

of many diseases that may impair the ability to adequately produce speech.  Understanding 

whether language information may be directly extracted from electrophysiological recordings 

may lead to language prosthetic devices that could aid these patients.  Current communication 

prostheses based on neural signals are often slow and unintuitive, and none of them examine 

language signals directly.  The feasibility of directly decoding language information from 

electrophysiology is relatively unexplored, but doing so could open important avenues of 

research that may aid in the development of novel communication-assistive devices. 
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In this dissertation, I begin by exploring the traditional models of language processing 

in the human brain and the classical evidence supporting such models.  I discuss the current 

theories regarding the visual and auditory streams for processing word information, and ideas 

regarding the organization and representation of semantic information in the brain.  I then 

review the major electro/magneto-physiological recording methodologies for exploring neural 

processing at high temporal resolutions and the machine learning techniques that are able to 

robustly handle such high-dimensional data. 

Chapter II explores the distributed representation of semantic information through 

non-invasive EEG and MEG recordings.  I demonstrate the feasibility of directly decoding 

semantic information from electro/magneto-physiological recordings using support vector 

machines and show that this information is consistent between modalities and individuals.  I 

also show that these algorithms allow for the study both spatial and temporal aspects of 

semantic category or individual word representations, and provide a way to explore the 

organization of conceptual knowledge.  Finally, an extensible decoding framework is proposed 

that may allow for the decoding of larger vocabularies in the future. 

While extracranial recording techniques provide excellent coverage of the cortical 

surface, they lack spatial resolution, and in Chapter III, intracranial EEG (iEEG) is utilized to 

study semantic category-specific representations in the anteroventral temporal lobe of patients 

with epilepsy.  By utilizing the fine spatial and temporal resolution of iEEG and 

microelectrodes, the temporal aspects of extracting semantic information from words are 

explored.  Microelectrodes allow for further study of the neural correlates of category-specific 

representations within medial temporal structures.  I also demonstrates that the use of 
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machine learning techniques for decoding semantic information from microelectrodes allows 

for quantification of information available at various times within the word processing stream. 

In Chapter IV, I examine even finer spatial scales by studying the firing of single neurons 

that are tuned to speech-specific auditory stimuli.  I study the hierarchical processing of speech 

stimuli at the single-unit level and explore whether the phoneme, as a construct of linguistics, is 

utilized by the human brain as a building block of auditory word stimuli.  I also explore the link 

between the representation of spoken words and written words within these single unit 

recordings.  Finally, classification algorithms are used to test whether a small population of 

cells carries sufficiently diverse phonetic information for the decoding of spoken words. 

In the final chapter, I synthesize the results of the work presented in this dissertation.  A 

general model of word processing, combining the data shown here with current theories and 

the results of other studies, is presented.  I comment on potential applications of the decoding 

of language information and explore methods that may improve accuracies to make brain-

based communication devices feasible.  Finally, I will discuss important future directions for 

language research using multivariate machine learning techniques.  Some of the data presented 

in this dissertation have previously been published in  Chan et al. (2010), Chan et al. (2011a), 

Chan et al. (2011b). 

1. TRADITIONAL MODELS OF LANGUAGE PROCESSING 

While scholars have studied the construction, use, and origin of language for hundreds 

of years, it wasn’t until relatively recently that we have been able to examine the underlying 

neural basis for language processing.  Here we describe general models of language processing, 

ideas regarding hierarchies and streams of information, the processing of language-related 
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visual and auditory stimuli, and the current ideas regarding the representation of semantic 

information. 

1.1. BROCA AND WERNICKE’S AREAS 

In 1861, Paul Broca, a French surgeon, described two patients with lesions in the 

inferior aspect of the frontal lobe who were unable to speak (Broca, 1861).  This particular type 

of neural impairment of language, now called Broca’s aphasia or non-fluent aphasia, typically 

presents with non-fluent, agrammatic speech in which function words are often omitted.  In 

general, word comprehension is usually intact.  Broca claimed that this particular region in 

inferior frontal gyrus of the left hemisphere, now called Broca’s area, was important for the 

production of language. 

In 1874, Carl Wernicke, a German physician and anatomist, described patients with 

lesions near the left temporal-parietal-occipital junction who had particular difficulty in 

comprehending language, but maintained relatively fluent language production (Wernicke, 

1874).  These patients with Wernicke’s, or receptive, aphasia typically have syntactically 

correct, fluent speech, however words are often misused or invented, and sentences rarely 

make sense semantically.  Furthermore, these patients are typically unable to comprehend 

language in either spoken or written form. 

These early lesion studies suggested that inferior perisylvian frontal areas may be 

important for language production while posterior temporal-parietal areas could be important 

for language comprehension.  This became and remained the prevalent view of language 

processing for many years (Grodzinsky et al., 1999, Caramazza, 1988).  Much later, theories 

emerged that suggested Broca’s region was instead crucial for syntactical processing while 
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Wernicke’s region was important in semantic representations (Grodzinsky, 1986, Caramazza, 

1988, Caplan, 2006).  This hypothesis would potentially explain the aggramatic speech of 

Broca’s aphasics whilst also explaining the poor comprehension and “word salad” effect 

observed in Wernicke’s aphasics.  It is now fairly apparent that both of these regions carry out 

highly complex processing tasks, and it has remained difficult to fully characterize their exact 

functions (Sahin et al., 2009). 

The development of functional neuroimaging, such as PET and fMRI, has allowed for 

more precise localization of language-related activity in healthy subjects.  However, the 

localization of language functions based on lesion studies and neuroimaging can only lead to as 

much as, what Alfonso Caramazza termed, a “modern phrenology” (Caramazza, 1988), in which 

very specific functions are attributed to highly circumscribed brain areas using techniques 

slightly more modern than skull measurements.  To ignore the possibility of distributed 

processing or neglect the temporal aspects of language processing limits our ability to 

understand how the brain processes and produces words and sentences. 

1.2. LANGUAGE PROCESSING STREAMS 

The idea of a processing “stream” in which information flows from one area to the next 

is ubiquitous in neuroscience research, and there are significant amounts of evidence that 

many of the basic functions the brain performs are structured in such a fashion (Romanski et 

al., 1999, Milner and Goodale, 2006, Hickok and Poeppel, 2007, Saur et al., 2008, Arnott et al., 

2004, Halgren et al., 2006, Hickok and Poeppel, 2004, Rauschecker and Scott, 2009, Spitsyna et 

al., 2006, Ungerleider and Haxby, 1994).  A processing stream structure has been observed in 

both the visual and auditory systems in which low level information (spots of light or simple 

frequency elements) enters into primary sensory areas and is subsequently passed and 
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processed by downstream areas to extract higher order information such as visual/auditory 

object identity (Rauschecker, 1998, Hubel and Wiesel, 1962). 

Furthermore, for a given modality, numerous studies have suggested that information is 

processed by multiple parallel streams depending on the type of information that needs to be 

extracted.  For example, in the visual system, a ventral “what” stream is believed to extract 

information regarding visual object identity, while the dorsal “where” stream is thought to 

extract information regarding spatial location and motion (Mishkin et al., 1983, Ungerleider 

and Haxby, 1994).  A similar dual stream hypothesis also exists for auditory information, in 

which a ventral stream identifies sounds, while a dorsal stream maps sound to location (Arnott 

et al., 2004, Romanski et al., 1999, Tian et al., 2001). 

This idea of a stream of processing has also been applied to the processing of language 

information.  In this case, it is not the flow of a single type of sensory information through a 

processing pathway, but many types of information are fed into the language processing 

“stream.”  The commonality between these different inputs is that they all contain coded lexical 

and semantic information.  One of the most common views of language processing streams is 

summarized in Figure I-1. 
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FIGURE I-1: MODEL OF LANGUAGE PROCESSING STREAMS 

A common view of language processing, adapted from Martin (2003).  In this model, language 
information flows in a hierarchical stream from which simple features are combined to form more 
complex objects until it leads to the activation of lexical identity and semantics.  It is unclear 
whether the lexicons and phonological/orthographic representations are separate or common 
between input and output systems.  Furthermore, conversions from orthography to phonology are 
also unclear. 

In this model of single word processing, sensory input can come in the form of a spoken 

word, a written word, or a picture.  From these inputs, either acoustic-phonetic or visual 



10 
 

features are extracted by early sensory processing areas from which more complex linguistic 

items, such as phonemes and graphemes, are constructed.  Several of these objects presumably 

combine to form the full lexical representation of an auditory or written word.  Lexical identity 

then provides access to the associated semantic concepts.  The output pathway is similar to the 

input pathway, but reversed, going from a lexico-semantic concept to a phonological or 

orthographic lexicon by which phonemes and an articulatory plan, or graphemes and a motor 

plan, is generated. 

While some elements of this model are likely accurate, many pieces are highly debated.  

For one, it is unclear whether input and output representations of lexical information 

(phonological and orthographic) are separate entities or whether a single lexical 

representation serves both purposes.  Furthermore, while phonemes are ubiquitous in the 

study of linguistics and language, it is unclear whether the brain actually utilizes such building 

blocks for the representation of auditory words.  Whether there exists a common lexical 

representation, or whether auditory and visual representations of words are separate is also 

unclear.  Finally, it is unknown whether particular processing steps are mandatory regardless 

of task demands.  For example, can lexical access be performed without semantic access in 

cases where it is not necessary (such as repetition)?  Or, does the transition from orthography 

to lexical access require an intermediate step of phonological recoding? 

While the model shown in Figure I-1 outlines the general processing modules that may 

be necessary for language comprehension and production, it says nothing about the neural 

basis of these processing steps.  Understanding the neural processing of language information 

is crucial for placing constraints and limitations on theories of word processing.  We begin by 
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exploring the earliest stages of language processing that involve the extraction of phonological 

or orthographic information from auditory and visual signals in a hierarchical fashion. 

1.3. HIERARCHICAL PROCESSING OF SPEECH 

While the idea of a stream describes a pathway of information flow, it does not, by itself, 

describe the mechanism by which information is processed.  Hierarchical processing of 

information within these streams has been a long-standing view of sensory processing, 

originating in studies of the visual system (Van Essen and Maunsell, 1983, Ungerleider and 

Haxby, 1994).  This idea suggests that at the earliest stages of processing, very simple features 

are extracted from low-level information, such as points or bars of light.  These features are 

then combined to form more complex representations, such as moving bars of light or 

particular shapes.  Proceeding down the processing stream leads to continually greater 

abstraction and highly complex representations of sensory information. 

Studies in humans and non-human primates have shown that the auditory system, like 

the visual system, is organized in a hierarchical fashion (Rauschecker, 1998, Rauschecker and 

Scott, 2009, Tian et al., 2001, Kumar et al., 2007, Wessinger et al., 2001).  At the lowest levels, 

neurons in primary auditory cortex typically respond to pure tones of a very specific frequency, 

while higher order auditory areas utilize these simple inputs to construct more complex 

representations of auditory inputs that are sensitive to larger frequency bandwidths or specific 

rates of frequency modulation (Figure I-2) (Bitterman et al., 2008, Rauschecker, 1998, Tian and 

Rauschecker, 1994, Tian et al., 2001, Rauschecker, 1997).  In humans, the same frequency 

tuning of primary auditory neurons has also been observed (Bitterman et al., 2008, Howard et 

al., 1996), and neuroimaging has suggested that the hierarchy of general auditory information 

is also present (Wessinger et al., 2001). 



12 
 

 

FIGURE I-2: HIERARCHICAL ORGANIZATION OF NEURONS IN THE AUDITORY 
SYSTEM 

Illustration of the hierarchical organization of the representation of auditory signals, adapted from 
Rauschecker et al. (2009).  Units which respond to pure frequency (F1-F9) are time shifted and 
summed to obtain representations of frequency modulation (FM1-FM3).  These FM cells are 
combined to form more complex auditory representations that represent a target representation 
with harmonic elements (T1). 

While this hierarchical structure is present for the processing of general auditory 

information, it has been suggested that speech information is also organized in a hierarchical 

fashion (Hickok and Poeppel, 2007, Rauschecker and Scott, 2009).  In this case, simple auditory 

frequency information would be combined to form acoustic/phonetic representations, which 

lead to full spoken word representations (Hickok and Poeppel, 2007, Obleser et al., 2010).  

Unfortunately, the exact form of the representation of mid-level acoustic/phonetic information 
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is unknown.  However, many studies suggest that individual phonemes, as studied in 

linguistics, are first extracted, followed by the construction of consonant-vowel (CV) pairs, or 

consonant-vowel-consonant (CVC) sequences (Obleser et al., 2006, Obleser et al., 2010, Jancke 

et al., 2002, Desai et al., 2008, Liebenthal et al., 2005).  In addition, many have suggested that 

speech information initially enters primary auditory cortex in Heschl’s Gyrus, and subsequently 

moves posteriorly towards Wernicke’s area where phonetic information is extracted (Boatman 

et al., 1995, Steinschneider et al., 2011, Desai et al., 2008, Chang et al., 2010, Crone et al., 2001b, 

Geschwind and Levitsky, 1968, Wernicke, 1874).  There is increasing evidence, however, that 

the anterior superior temporal lobe plays a role in phonological processing (Obleser et al., 

2006, Creutzfeldt et al., 1989a, Callan et al., 2004), and Chapter IV explores the representation 

of speech information in single units in this area. 

In further parallels to the visual system, a two stream hypothesis for speech processing 

has been proposed (Saur et al., 2008, Hickok and Poeppel, 2004).  In this model, a dorsal stream 

connects superior temporal lobe to the frontal and parietal lobes via the arcuate and superior 

longitudinal fascicles and subserves the mapping of sound to articulation and spatial 

localization of speech (Hickok and Poeppel, 2004, Hickok and Poeppel, 2007).  The antero-

ventral stream, on the other hand, proceeds forward and inferiorly in the temporal lobe and is 

thought to be important for speech perception and the mapping of sound to meaning 

(Rauschecker and Scott, 2009, Scott et al., 2000). 

Many of these previous studies have largely focused on the use of neuroimaging such as 

fMRI and diffusion tensor imaging (DTI) to map the neuroanatomical layout of speech 

processing (Saur et al., 2008).  What has largely been lacking is a temporal viewpoint on the 

interaction of these individual processes, and discussion of feed-forward versus feedback 
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activation.  Furthermore, while the hierarchical processing pathway of the non-human primate 

auditory system has been well studied down to the single unit level (Rauschecker, 1997, 

Rauschecker and Scott, 2009), whether the hierarchical processing of speech sounds is present 

at the level of single units in humans is unknown and is explored in Chapter IV. 

1.4. VISUAL WORD FORM AREAS 

In 1892, Dejerine described a patient with a lesion in the left inferior temporal-occipital 

area who had lost the ability to read or write words (Dejerine, 1892).  Dejerine proposed that 

this area was important for carrying word-related information from the visual system to 

perisylvian language areas.  Since then, other studies have suggested that this area is actively 

engaged in processing the features of visual words, rather than passively routing visual 

information to language areas (Binder and Mohr, 1992, Cohen et al., 2000). 

This region of the posterior fusiform gyrus, that has since been named the visual word 

form area (VWFA), is present along the ventral visual stream at the mesial edge of the occipito-

temporal sulcus.  The VWFA has been shown to be consistently activated during word reading 

that is invariant to text size, font, or case (Dehaene et al., 2002, Dehaene et al., 2001, 

Warrington and Shallice, 1980, Fiez and Petersen, 1998).  It has further been demonstrated 

that, similar to the hierarchical processing of other visual stimuli, word processing also follows 

a hierarchical flow (Vinckier et al., 2007, Dehaene et al., 2005).  This hierarchy has been 

demonstrated along the length of the fusiform gyrus such that more posterior areas exhibit 

larger activation to false-fonts and strings of uncommon letters, while more anterior areas 

show greater activity to pseudowords and actual words.  It is important to note that there is an 

ongoing debate regarding whether the VWFA is specialized for the processing of orthographic 

forms or whether it also processes other forms of complex visual information (Price and 
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Devlin, 2003, Price et al., 2003b, Cohen and Dehaene, 2004, Cohen et al., 2000, Cohen et al., 

2002, Dehaene and Cohen, 2007, Dehaene et al., 2005, Dehaene et al., 2002).  The idea of 

specialization in the language system is commented upon in Section V.1.2. 

Although this visual word processing pathway is consistent in the context of the 

hierarchical ventral visual stream, it remains unclear how this system interacts with the other 

language processing networks.  For example, it is unclear how a lexical item subsequently 

activates the semantic representation associated with that word.  While it is possible that 

semantic concepts are directly activated from the visual-lexical representation, it has been 

argued that access of the phonological representation of words is an important part of visual 

word reading (Coltheart et al., 1993, Humphreys and Evett, 1985, Seidenberg, 1985).  Some 

studies claim that the translation of othrographic forms to phonological information occurs 

before lexical access, and is a necessary step for understanding a written word (Frost, 1998, 

Braun et al., 2009).  Others suggest a dual-route hypothesis of written word recognition such 

that phonological recoding of written words may occur before lexical access for infrequently 

encountered or novel words, while for common words, visual information leads directly to 

lexical access (Coltheart et al., 1993, Seidenberg, 1985).  Relevant new evidence that 

contributes to this debate, at the single unit level, is presented in Section V.1.3. 

1.5. THEORIES OF SEMANTIC KNOWLEDGE REPRESENTATION 

The goal of the auditory and visual word processing streams, described previously, is to 

eventually feed into the lexical and semantic systems to retrieve word function and meaning.  

The study of the neural basis of semantic representations in humans largely began, again, by 

studying patients with particular brain lesions.  Patients with damage to the left prefrontal 

cortex are often impaired when attempting to retrieve words given specific lexical or semantic 
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cues (Baldo and Shimamura, 1998).  In addition, it was observed that some patients with 

temporal lobe damage have difficulty naming various objects or properties of these objects 

(Hodges et al., 1992, Warrington, 1975, Hart and Gordon, 1990).  These studies suggested that 

the prefrontal and temporal cortices might be important for the storage and retrieval of lexical 

and semantic information. 

In 1983, Warrington and McCarthy reported a patient with a cortical lesion who was 

impaired in producing or comprehending the names of nonliving objects (Warrington and 

McCarthy, 1983), and in 1984, Warrington and Shallice described four patients with herpes 

simplex encephalitis who demonstrated a relative impairment of knowledge of animals with a 

relative sparing of nonliving objects (Warrington and Shallice, 1984).  These findings were 

subsequently observed in many other lesion patients (Damasio et al., 1996, Hillis and 

Caramazza, 1991, Sacchett and Humphreys, 1992, Sheridan and Humphreys, 1993, Gainotti, 

1996).  Most of the patients with impaired knowledge of living things had sustained damage to 

left temporal lobe while patients with impaired nonliving object knowledge had frontal-

parietal involvement (Caramazza and Shelton, 1998, Damasio et al., 1996, Tranel et al., 1997, 

Mahon and Caramazza, 2009).  This suggested that these two areas were important for the 

representation of one of these two semantic categories. 

With the advent of functional neuroimaging, numerous studies have attempted to 

further localize the areas responsible for representation of animal or object categories.  

Through fMRI and PET imaging, studies have shown increased activation in lateral fusiform 

gyrus in response to animals (Chao et al., 1999, Martin et al., 1996, Hauk et al., 2008, Devlin et 

al., 2005, Perani et al., 1999, Noppeney et al., 2006, Price et al., 2003a), while objects have 

elicited increased activation in posterior middle temporal gyrus (Perani et al., 1999, Hauk et al., 
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2008, Martin et al., 1996, Mummery et al., 1998, Mummery et al., 1996) medial fusiform gyrus 

(Chao et al., 1999, Devlin et al., 2005, Mechelli et al., 2006, Whatmough et al., 2002) and fronto-

parietal areas (Chao and Martin, 2000).  While some of the detected areas are consistent 

between studies, others are inconsistently found.  Similar to the “modern phrenology” of 

localizing more general language function, it is difficult for fMRI and PET to describe the 

neurophysiological basis of these category representations or the order of operations for 

accessing semantic operations due to lack of temporal resolution and measurement of 

hemodynamic changes. 

A number of theories have emerged that attempt to describe the organization of the 

semantic knowledge that might explain the double-dissociation between animal and nonliving 

object representations.  The first theory suggests that the brain organizes conceptual 

knowledge into discrete evolutionarily important categories, two of which are living and 

nonliving objects (Caramazza and Shelton, 1998, Warrington, 1981).  In other words, 

evolutionary pressures have led to the specialized representation of practically relevant 

categories such as animals and manipulable objects, and the systems that represent these 

different categories are distinct. 

The second theory, often called the Sensory/Functional Theory, posits that the double 

dissociation between animal and object categories arises because the brain organizes semantic 

information by modality (Warrington and McCarthy, 1983, Warrington and Shallice, 1984, 

Gainotti, 1996).  In essence, animals are largely distinguished based on their visual properties 

(e.g. a giraffe has four legs, a long neck, and is yellow) while manmade objects may largely be 

represented by their functional or associative traits (e.g. a hammer is used to hit nails).  

Therefore, damage to the area critical for visual representations would disproportionally 
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impair knowledge of animals, while damage to the motor representation might impair the 

knowledge of objects such as tools. 

The third theory, known as the Organized Unitary Content Hypothesis, claims that the 

representation of a semantic concept is made up of the coactivation of all of the features and 

properties that define it, and that similar features are represented in nearby areas of the brain 

(Caramazza et al., 1990).  This theory also claims that these representations do not rely on a 

particular sensory or motor system as in the Sensory/Functional theory.  In this case, because 

animals tend to have many of the same features in common (e.g. have legs, eyes), and objects or 

tools have many of the same features in common (e.g. have handles, use with hands), damage 

to any specific set of feature representations would disproportionately impair knowledge of 

one category over another (Caramazza et al., 1990, Riddoch et al., 1988).  One recent study 

demonstrated that by assuming the validity of this theory, the fMRI activity of various words 

and categories could be predicted (Mitchell et al., 2008). 

None of the theories outlined above about the organization of semantic knowledge 

provide strong predictions about the neuroanatomical basis of this knowledge, or the 

processing performed when accessing semantic concepts.  Most theories of the basis of 

semantic knowledge share the view that this information is widely distributed in the brain 

(Patterson et al., 2007, Martin and Chao, 2001).  Semantic knowledge is closely linked to 

perception and action, and it is hypothesized that semantic representations may often overlap 

with the regions responsible for perception and action (Martin, 2007).  Specifically, the ventral 

occipitotemporal area, within the ventral visual stream, has been implicated in the 

representation of object form (Chao et al., 1999, Grill-Spector et al., 2001, Haxby et al., 2001a, 

Shinkareva et al., 2008), the lateral posterior temporal cortex, near visual motion areas, are 
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thought to be important for representing objects in which motion is critical for identification 

(Moore and Price, 1999, Perani et al., 1995, Mummery et al., 1996, Mummery et al., 1998, 

Perani et al., 1999), and ventral premotor cortex has been associated with the representation of 

object-use-associated motor information (Chao and Martin, 2000, Grabowski et al., 1998, 

Grafton et al., 1997).  This hypothesis is closely linked to the Sensory/Functional theory of 

semantic organization in which conceptual knowledge may depend on the combination of 

modality-specific features that are represented in the brain areas responsible for perception 

and action. 

In addition, one recent hypothesis suggests that while semantic knowledge may be 

widely distributed, a semantic hub is necessary for coordinating these various areas (Patterson 

et al., 2007, Mummery et al., 1999, Mion et al., 2010, Lambon Ralph et al., 2010).  This semantic 

hub would coordinate information from various areas depending on the requirements of the 

particular task at hand (Figure I-3).  This hypothesis predicts that damage to this central 

processing area would lead to modality non-specific impairment of semantic knowledge.  This 

idea has largely stemmed from the observations derived from patients with semantic dementia 

(Bozeat et al., 2000, Jefferies et al., 2009, Patterson et al., 2007, Lambon Ralph et al., 2007, 

Lambon Ralph et al., 2010, Pobric et al., 2007).  These patients often show a degradation of the 

knowledge of people, animals, and objects that manifests as an inability to name them or make 

semantic generalizations.  In many of these patients, degeneration of the anterior temporal 

lobes (aTL) is present, leading some to believe that the aTL is the location of this semantic hub.  

These findings have been mimicked by the use of repetitive transcranial magnetic stimulation 

(rTMS) to the aTL which transiently prevents the normal functioning of the targeted area 

(Binney et al., 2010, Lambon Ralph et al., 2009, Pobric et al., 2010a, Pobric et al., 2007, Pobric et 

al., 2010b). 
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FIGURE I-3: MODEL OF SEMANTIC INFORMATION WITH OR WITHOUT HUB 

Two views of semantic information representation, adapted from Patterson et al. (2007).  Both 
views share the idea that semantic knowledge is distributed, but one hypothesis (B) suggests that a 
semantic hub, potentially in the anterior temporal lobe, is necessary for coordinating the different 
knowledge centers and allows for generalizations to be made across modality-specific information 
sources.  Therefore, in a task that requires judgment of the size on an object when provided the 
spoken name of the object, the two hypotheses would predict different methods of access.  In (A), 
the name directly activates the necessary components via the links between these areas utilizing 
top-down task requirements for weighting such connections.  In (B), the name of the object 
activates the semantic hub, and combined with task requirements, the appropriate distributed 
features are accessed. 

Most of these aforementioned studies have attempted to examine the basis of semantic 

knowledge by focusing on the localization of various semantic functions through lesion studies 

and neuroimaging (Chao et al., 1999, Chao and Martin, 2000, Perani et al., 1995, Perani et al., 
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1999, Mummery et al., 1998, Mummery et al., 2000, Devlin et al., 2005).  While fMRI and PET 

provide increased spatial resolution compared to lesions studies and allow for examination of 

semantic function in healthy subjects, it is difficult for either of these techniques to examine the 

temporal aspects of semantic representations that may allow for the study of feedforward or 

feedback processing.  Furthermore, if semantic representations are truly distributed, utilizing 

univariate analysis techniques that look for large changes in a small number of variables may 

not be able to detect the subtle but widespread activity that we might expect.  It is therefore 

important to examine these semantic representations using recording modalities that provide 

high temporal resolution, and utilize multivariate techniques to examine distributed activity. 

2. RECORDING METHODOLOGIES 

The advent of functional neuroimaging, in the form of fMRI and PET, has allowed for the 

examination of  neural activity at a very high spatial resolution not previously possible with 

other non-invasive techniques (Chen and Ugurbil, 1999).  fMRI measures the blood-

oxygenation-level-dependent (BOLD) response which is a hemodynamic signal correlated to 

neural activity.  The BOLD response, however, is not a direct measure of neural activity, and it 

is difficult to examine neurophysiological mechanisms of cognitive processing by only 

quantifying changes in blood oxygenation.  Furthermore, the temporal resolution of fMRI is on 

the order of many seconds, making it difficult to examine the temporal aspects of neural 

processing, neural oscillations, or latency effects.  Language processing occurs in real-time, 

making it important to move beyond the simple localization of language function by studying 

fine-scale temporal information.  Additionally, magnetic susceptibility artifacts of fMRI 

prevents reliable imaging of activity in the anterior temporal lobes, preventing the study of 

semantic information and processing that may occur there. 
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In this dissertation, electro/magneto-physiological recording techniques are used to 

examine the neural mechanisms involved in language processing at multiple spatial scales 

while always maintaining millisecond temporal resolution.  The high temporal resolution of 

electrophysiology confers several benefits.  It allows for the analysis of timing of language 

information in the brain, which may allow for examination of feedforward versus feedback 

processing, the order of processing steps in various language pathways, and synchrony within 

or between neuronal populations.  Furthermore, adding a temporal dimension provides a rich 

feature space from which machine learning algorithms may successfully extract language 

information.  If the decoding of language signals is ever to become feasible for communication 

prostheses, it is important that the employed recording methodology provides sufficient 

temporal resolution to allow for rapid communication.  In the subsequent sections, we will 

examine the neurophysiological basis and advantages/disadvantages of 

electroencephalography (EEG), magnetoencephalography (MEG), intracranial EEG (iEEG), and 

microelectrode recording techniques. 

2.1. ELECTROENCEPHALOGRAPHY (EEG) AND MAGNETOENCEPHALOGRAPHY (MEG) 

The electrical activity of the brain, recorded by electroencephalogram, was first 

measured by Hans Berger in 1924.  Since then, it has become the predominant way in which 

clinicians and neuroscientists directly measure aggregate neural activity in a noninvasive 

fashion.  EEG is typically thought to capture the synaptic activity of large populations of 

pyramidal cells that are arranged radially with respect to the cortical layers.  Therefore, given a 

population of cells that is simultaneously depolarized, a voltage gradient occurs between 

deeper and more superficial layers that can be detected by an electrode on the scalp.  EEG 

generally involves recording from less than ten to over 100 electrodes placed across the scalp, 
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but most commonly 21 electrodes organized in a standardized “10-20” layout are used (Figure 

I-4A).  Therefore, EEG provides excellent recording coverage over most of the lateral cortical 

surface, however, because voltage drops with the square of the distance from the source, it is 

difficult to record from deeper sources (e.g. the basal ganglia, thalamus, or medial structures). 

 

FIGURE I-4: A TYPICAL EEG AND MEG SETUP 

A) A standardized EEG cap and electrodes that are typically used in cognitive experiments.  A 
standardized 10-20 system of electrode locations usually utilizes 21 electrodes.  B) A typical MEG 
system (Elekta, Stockholm, Sweden) with approximately 300 SQUID sensors. C) Pyramidal cells 
lying on a gyrus generate electrical dipoles that are oriented radially (blue arrows), allowing them 
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(Figure I-4 continued) to be detected outside the skull by EEG sensors, however the concurrent 
magnetic fields are oriented tangentially limiting their sensitivity to MEG sensors.  On the other 
hand, cells in a sulcus have a tangentially oriented electrical dipole, but the magnetic fields 
propagate outside the skull allowing MEG to detect them in this case. 

The lead field of EEG has been heavily debated, and there is no clear agreement on the 

volume of cortex which contributes to the signals recorded at a particular electrode.  Most 

estimates place the half-sensitivity-volume (HSV) of EEG around 7cm3 (Malmivuo et al., 1997, 

Malmivuo and Suihko, 2004, Liu et al., 2002), which is far from the millimeter-scale resolution 

of fMRI.  In addition, due to the physics of the generated electrical fields, EEG is typically more 

sensitive to radially oriented dipoles (e.g. cortical sources which are on the gyri), than to 

tangentially oriented dipoles (e.g. sources lying within the sulci) (Figure I-4C). 

Since an electrical current induces a magnetic field, the same synaptic sources that 

produce voltage potentials also generate magnetic fields, and these fields can be recorded using 

magnetoencephalography (MEG) (Figure I-4B).  Despite the fact that these fields are extremely 

small, around 10-12 tesla, the superconducting quantum interference device (SQUID) used in 

MEG is an extremely sensitive detector that is able to record such signals.  MEG is typically 

more sensitive to tangentially oriented dipoles (e.g. activity occurring in sulci), making the 

information it provides complementary to the information EEG provides.  The smearing effect 

the skull has on voltage potentials has much less influence on magnetic fields, leading to 

potentially better resolution of high-frequency activity and smaller lead fields.  While it was 

traditionally believed that MEG was better able to localize cortical sources of activity than EEG 

using inverse models, it is unclear whether this is true if the number of sensors employed in 

both modalities is equal (Malmivuo et al., 1997, Malmivuo and Suihko, 2004, Cohen et al., 1990, 

Liu et al., 2002).  High, high density EEG electrodes are rarely used, while MEG typically 

employs over 300 sensors. 
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In many cases, both magnetometers, which measure the absolute strength of the 

magnetic field underneath the sensor, and gradiometers, which measure changes in magnetic 

field in a particular direction, are used in MEG recordings.  Because the MEG scanner is 

physically large, due to the necessary liquid helium cooling of the SQUID sensors, and a 

magnetically shielded room is needed, the use of MEG for communication prosthesis is 

unviable.  Despite this, MEG provides substantial temporal resolution and coverage that makes 

it ideal as a first pass in studying distributed spatiotemporal semantic representations. 

EEG and MEG, have excellent spatial coverage due to their extracranial nature, however, 

it is difficult to record from several critical brain areas using these techniques.  Brain areas that 

have particular relevance for the representation of objects and semantic knowledge, such as 

the inferior and medial temporal lobe (e.g. inferotemporal cortex, entorhinal cortex, perirhinal 

cortex, parahippocampal gyrus, and hippocampus), cannot be reliably recorded using EEG and 

MEG.  One way to effectively study the role of such inferior and medial areas with high 

temporal resolution is to record from electrodes that are placed within the skull that can access 

these brain regions. 

2.2. INTRACRANIAL EEG (iEEG) 

While EEG and MEG provide excellent temporal resolution, their spatial resolution is 

fairly low.  Also, due to being recorded extracranially, they are susceptible to eye movement 

(EOG), EKG, and muscle artifacts.  By using electrodes which are implanted intracranially, we 

are able to maintain millisecond-scale time-resolution, reliably record high frequency activity, 

examine much finer spatial scales of activity, and record from areas that are inaccessible by 

non-invasive electrophysiology (Pfurtscheller and Cooper, 1975).  Similar to EEG and MEG, 

iEEG also records aggregate synaptic activity, however the spatial resolution of these 
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electrodes is much higher (approximately 1-2cm3).  Intracranial EEG (iEEG) electrodes are 

either subdural surface electrodes which lie on the pial surface to record from lateral cortex, or 

depth electrodes that penetrate the brain to record from deeper structures such as the medial 

temporal lobe or cingulate.  Surface electrodes are typically 5mm platinum discs (2.3mm 

exposed diameter) embedded in a silastic sheet with a 10mm distance between contacts 

(Figure I-5A-B).  These electrodes are often arranged in an 8x8 “grid” or 1x8 “strip” and a 

number of these grids or strips are often implanted to provide the necessary coverage of the 

cortical surface.  Depth electrodes, on the other hand, consist of a long, flexible shaft with 6-8 

electrodes along its length (Figure I-5C).  Electrodes are platinum cylinders 1.1mm in diameter 

and 2.3mm long with 5mm spacing between each contact.  These electrodes are typically 

implanted such that they penetrate the brain from the lateral surface and enter 10-15cm to 

record from deeper structures.  In general, 4-5 depth electrodes are implanted into each 

hemisphere of the brain (Figure I-5D). 

Due to the invasiveness of intracranial electrodes, these recordings are only performed 

for clinically relevant indications.  In this dissertation, all recordings from iEEG are obtained 

from patients with medically intractable epilepsy who are undergoing presurgical evaluation 

for localization and eventual resection of their seizure focus.  These electrodes are implanted 

semi-chronically (i.e. from several days to several weeks) and provide a unique opportunity to 

directly study neurophysiology invasively in humans.  Unlike EEG and MEG, intracranial 

electrodes generally provide more restricted coverage of the lateral cerebral cortex, and the 

exact placement, number, and type of electrodes implanted is always based solely on clinical 

decision-making.  In many cases, intracranial surface electrodes provide excellent unilateral 

coverage of cortex surrounding the Sylvian fissure and central sulcus (i.e. lateral temporal lobe, 
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anterior/inferior parietal lobe, and motor/premotor cortex).  This is ideal for the study of 

various aspects of language that have been localized to perisylvian cortices. 

Depth electrodes often allow recording from bilateral inferior temporal lobe, mesial 

temporal structures (e.g. hippocampus, amygdala, parahippocampal cortices), and cingulate 

gyrus, which are difficult to record from using extracranial electrophysiological techniques.  

These depth recordings (which are utilized in the analysis performed in Chapter III), are 

particularly valuable due to the inability of both extracranial electrophysiology as well as 

functional neuroimaging to record activity from these areas.  In the case of fMRI, magnetic 

susceptibility artifacts are commonly present around the anterior and inferior temporal lobes, 

preventing the study of the crucial processing of semantic information that may occur in these 

areas. 
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FIGURE I-5: INTRACRANIAL ELECTRODES 

A) A view of the right lateral cortical surface with a 64-contact subdural grid placed over it.  B) 
Sagittal X-ray of the implanted grid.  C) An 8-contact depth electrode.  D) A coronal CT image of 10 
implanted 8-contact depth electrodes with 5 on each side. 

2.3. MICROELECTRODES 

EEG, MEG, and even iEEG all record the summed synaptic activity from large 

populations of cells, which can be thought of as the average input to a particular cortical area.  

It has been observed, however, that the average synaptic activity to a large area can be very 

different from the spiking activity of individual neurons (Nir et al., 2007, Rasch et al., 2008).  

Examining the activity of small groups of individual neurons, or even single neurons, would 



29 
 

allow for the characterization of single-cell responses to language stimuli and would provide a 

way of studying the output, rather than input, of cortical columns. 

To record neural activity at such a high spatial resolution, a number of different types of 

penetrating microelectrode arrays have been developed (Ulbert et al., 2001, Campbell et al., 

1991, Kipke et al., 2003, Kim et al., 2010).  Microelectrode arrays can record local field 

potentials (LFPs), multiunit activity, and single unit activity from multiple contacts 

simultaneously, and sometimes provide interpretable spatial information.  These data allow for 

a characterization of the neuronal inputs (synaptic activity) as well as the outputs (unit firing 

activity) from a small set of cells.  Microelectrodes have been used extensively in animal 

research (Rousche and Normann, 1998, Santhanam et al., 2004, Tian and Rauschecker, 1994), 

but their use in humans is very limited (Truccolo et al., 2011, Hochberg et al., 2006, Fried et al., 

1997).  In the same population of epilepsy patients who are implanted with clinical iEEG 

electrodes, we have the opportunity to implant an additional microelectrode array, provided 

that the patient consents to the research and it is known a priori what region is likely to be 

resected.  This provides a unique opportunity to study language at the single neuron level. 

In this dissertation, we utilize two types of microelectrode arrays.  The first is a linear 

microelectrode array with contacts along the shaft of a thumbtack-like probe designed by 

Ulbert et al. (2001) (Figure I-6A).  The length of the shaft ranges from 2-4mm with 24 contacts 

spaced evenly along its length.  This allows for the simultaneous recording of laminar activity 

across all cortical layers and provides a powerful way to examine incoming and outgoing 

information from the recorded cortex.  These electrodes can also record the firing of small 

populations of cells, termed multi-unit activity (MUA).  MUA is seen in the high frequency 

(>300Hz) component of these recordings, and bandpass filtering the signal followed by 
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rectification provides a measure of the firing of a small group of neurons.  While multi-unit 

activity is most commonly recorded from these laminar electrodes, it is also occasionally 

possible to isolate the firing of single neurons, giving rise to measures of single-unit activity.   

Besides measuring the firing activity in a cortical column, these laminar electrodes are 

also able to measure the synaptic inputs to the recorded region in the form of the current 

source density (CSD).  The CSD is a distribution of the sources and sinks of current along the 

depth of the cortical layers, and can be computed as the second spatial derivative of the field 

potential.  Current sources indicate that positive charge is flowing out of the cell at that location 

while current sinks indicate that positive charge is flowing into the cell (potentially 

depolarization).  In most cases, a source and sink are paired due to the loop of current within 

the dendrites and extracellular media.  A given sink-source pair can be generated in one of two 

ways: the sink can be an active sink due to an excitatory input, or the source may be an active 

source due to inhibitory input.  The recording of simultaneous multi-unit activity can 

distinguish between these two possibilities.  An inhibitory input will demonstrate decreases in 

firing, while an excitatory input will show increases in firing.  We will utilize this type of 

electrode and analysis in Chapter III. 



31 
 

 

FIGURE I-6: MICROELECTRODE ARRAYS 

A) The 24 contact “thumbtack” microelectrode array designed by Ulbert et al. (2001) allows for 
examination along the length of the cortical layers.  B) The Utah Array (Blackrock Microsystems, 
Salt Lake City, UT) allows for the recording of LFP and single unit activity from 96 electrodes in a 
4x4mm array. C) Illustration of the physiology that the laminar microelectrode captures.  Given a 
current source density (CSD) profile, current sources and sinks can be localized within the cortical 
layers.  In this case, a deep source occurs simultaneously with a superficial sink.  This scenario can 
be generated by either an excitatory input superficially, or a deep inhibitory input.  To distinguish 
between the two cases, the multi-unit activity can be recorded and would show an increase in firing 
near the cell body for the excitatory case, but a decrease in firing for the inhibitory case. 
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The second type of microelectrode is a 10x10 array of penetrating probes spaced 

400µm apart, resulting in a 4mmx4mm square array (Figure I-6B).  Each electrode within the 

array has a 20µm exposed platinum tip that allows for the recording of highly localized activity.  

Electrodes are 1-1.5mm in length, allowing for the recording of a large number of single 

neurons from layers II, III or IV.  As with the laminar microelectrode, this microelectrode array 

(known as the Utah Array) allows for the recording of both LFP and single-unit firing, but also 

provides spatial information within a given cortical layer due to the regular spacing of the 

contacts.  Chapter IV describes recordings obtained from a Utah Array in a human patient.  

Recordings made from both of these microelectrode arrays are sampled at 20-30kHz, providing 

sufficient time resolution for resolving the waveform shapes of extracellular action potentials. 

3. MACHINE LEARNING TECHNIQUES 

As neural recording technology and storage solutions have improved over the last 

several decades, it has become common to collect larger and larger neural datasets.  In the case 

of fMRI, thousands of voxels of information are obtained per trial, while EEG and MEG obtain 

hundreds of channels worth of data at 100-500Hz.  With the continuous 30kHz recording from 

the 96 channel microelectrode arrays described above, datasets easily exceed 1TB per 24hr 

period.  To look for robust effects within such enormous datasets, a number of statistical 

techniques have been developed.  In fMRI, statistical parametric mapping (SPM) allows for 

construction of a model of the activity at each voxel based on the experimental conditions 

(Friston et al., 1994).  This allows for hypothesis testing between a number of experimental 

conditions, but because thousands of voxels are tested, a correction for multiple comparisons is 

necessary.  This adjusts the final false positive rate, but also greatly reduces the sensitivity of 

such an analysis.  This technique has been further extended to examination of the time-series 
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data obtained via MEG and called dynamic statistical parametric mapping (dSPM) (Dale et al., 

2000), but this analysis suffers from similar drawbacks. 

Both of these techniques are ubiquitous in the study of fMRI and MEG data, and because 

of the correction for multiple comparisons, they are best able to detect large effects in 

contiguous areas of cortex.  These techniques are not designed to detect subtle but widespread 

activity that might be expected from distributed models of semantic activity.  Multivariate 

machine learning techniques, on the other hand, are able to handle high-dimensional datasets 

and determine the combination of variables that provides the most discriminative power 

between two or more experimental conditions.  These algorithms utilize statistical techniques 

to learn decision rules that allow for the decoding of information from a set of neural feature 

inputs.  Besides providing a method for decoding of neural data, the generated models often 

allow for the quantification of information content in a set of features and can be used to 

explore spatiotemporal language representations from electrophysiological data.  One 

particularly robust machine learning classifier developed over the last several years is the 

Support Vector Machine (SVM). 

The SVM is a supervised learning algorithm that attempts to discriminate between two 

or more classes (e.g. different experimental conditions) based on a potentially high 

dimensional set of features computed for each class.  Therefore, by training an SVM to 

discriminate between the representation of animals and objects in MEG data, we can generate a 

model that can later be used to predict the class membership of a novel set of neural data.  

While many algorithms for classification exist, support vector machines have been shown to 

have very good generalization performance, and have proved to work well with neural data 

(Shoeb et al., 2004, Mourao-Miranda et al., 2005, Shao et al., 2009, Wai Kei et al., 2008, Chan et 
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al., 2008).  Many other classification algorithms are often based on measures of the “center” of 

the distributions of the given data (e.g. Fisher Discriminants).  SVMs, on the other hand, belong 

to a class of algorithms known as “maximum margin classifiers” (Vapnik, 1995).  SVMs generate 

a decision boundary based on the border cases that are most difficult to classify, while the 

majority of the points that are easy to classify are essentially ignored.  This can provide very 

good generalization performance, helps to reduce overfitting, and makes SVMs ideal for high 

dimensional data sets such as the neural recordings obtained from EEG, MEG, and iEEG. 

To be more formal, given a set of feature vectors and labels (     ) where    

[       ]     and    {    }, SVMs and other learning algorithms find a mapping 

 ( )   .  In the case of neural data,    are a set of potentially high dimensional neural data 

while    are the class labels that might correspond to “animals” and “objects”.  Given a new 

feature vector, the classifier can be used to predict the class label as  ̂      ( ( )).  SVMs 

attempt to learn the function, f, by minimizing 
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where, ( )      (   ) is the hinge loss,   is a regularization parameter, and   is a 

Reproducing Kernel Hilbert Space that limits the set of possible functions that the SVM can 

learn.  This hinge loss penalizes all misclassified training set points, but also penalizes correctly 

classified points within a certain distance from the decision boundary.  This loss function 

therefore attempts to maximize the margin by which the two classes are separated. 

Because the space of functions SVMs model is a Reproducing Kernel Hilbert Space, we 

can view the SVM as projecting our d-dimensional data into an even higher (possibly infinite) 
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dimensional feature-space via a nonlinear feature map         where    .  The SVM 

then learns a linear boundary between the classes in this feature-space.  Because training and 

testing an SVM only requires the computation of dot products in the feature-space, performing 

the transformation   explicitly is unnecessary.  Instead, one can simply define and use the 

Kernel, or dot product in this high dimensional space,  (     )  〈 (  )  (  )〉.  This linear 

decision boundary in the feature-space is equivalent to a non-linear decision boundary in the 

input space, and provides SVMs with part of their flexibility. 

While SVMs often provide very good performance, the models they generate are often 

difficult to interpret.  The Naïve Bayes Classifier (NBC) has a probabilistic formulation that is 

easily interpretable, and has shown surprisingly good classification performance despite its 

simplicity.  It operates under the assumption that all of the features in the training set are 

independent of one another. 

 ( )   (          )   (  ) (  )  (  )  ∏ (  )

 

   

 

Given a new set of features, NBCs choose the class, C, with the highest posterior 

probability.  Using Bayes rule, it computes the posterior probability of each class given the set 

of features as 

 (   )   (            )  
 (            ) ( )
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and chooses the class based on 
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Therefore, probabilities are generated for each potential class making it relatively 

simple to interpret the output and intermediate steps of this algorithm.  While the 

independence assumption is often invalid for many datasets, the Naïve Bayes Classifier often 

still performs well (Rish, 2001, Lewis, 1998).  Unlike SVMs, however, the Naïve Bayes Classifier 

requires a choice of probability distribution, and this probability distribution can heavily affect 

the performance of the classifier.  Depending on the choice of the probability distribution, 

Naïve Bayes Classifiers can generate nonlinear boundaries, but in the case of equal variance 

Gaussians, linear boundaries are generated from the product of the feature likelihoods.  For 

high dimensional feature vectors, this may not be a problem. 

While classifiers such as SVMs and NBCs do not intrinsically model time series 

information, we can still utilize these techniques to quantify changing amounts of information 

over time.  Decoding features in sliding windows generates a series of accuracies that can be 

used to understand how much information is present at any particular point in time.  In this 

dissertation, this technique is commonly used to determine when semantic or phonological 

information first appears in the recordings and features of interest. 

Another machine learning technique that elegantly handles time series data is the 

Hidden Markov Model (HMM).  HMMs are heavily used for representing phonetic information 

in automated speech recognition systems, and it is possible that they may also be used to 

decode phonological information from neural data.  HMMs assume that the modeled system 

shifts between a set of discrete states, however these states cannot be directly observed 

(Figure I-7).  Instead, each state emits an observable output value, or set of values, that can be 

represented by a probability distribution.  Switching between states is determined by a set of 

transition probabilities that determines whether the system stays in its current state or moves 
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to the next state at the next time point.  The Expectation-Maximization algorithm allows for the 

training of the parameters of an HMM given a set of data, and the forward-backward algorithm 

allows for the computation of the likelihood of observing a set of output values for a given 

model.  While this dissertation mainly utilizes classification algorithms like SVMs and NBCs, I 

demonstrate the potential use of an HMM for decoding phonological and word-specific 

representations in the Conclusion, Section V.2.2. 

 

FIGURE I-7: EXAMPLE OF HIDDEN MARKOV MODEL 

An example of a three state, left-to-right Hidden Markov Model.  Each state Si emits one, or multiple, 
output value(s) that follows a probability distribution (e.g.  (     )).  The system moves between 
states with the indicated transition probabilities.  In the case of the phonological representation of a 
word, each state may be one phoneme in a sequence of phonemes with the output variables being 
either an observed acoustic feature (when observing speech), or a set of neural information (when 
recording information from the brain). 

Regardless of the choice of machine learning technique, all of these algorithms allow for 

the consideration of high dimensional data.  While the classification accuracy gives a sense of 

the amount of information present in the underlying neural data, we can also examine the 

generated models to derive an understanding of which features contributed most to the 

classification.  This provides a method by which distributed activity in the high dimensional 

electrophysiological data from EEG, MEG and iEEG can be quantitatively analyzed and studied. 
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4. COMMUNICATION PROSTHESES 

Utilizing machine learning techniques to extract language information from 

electrophysiology not only allows for the study of distributed representations of semantic, 

lexical, and speech information, but may also provide the foundation by which the decoding of 

this information may be put to practical use.  Over 1 million Americans are unable to use verbal 

language to communicate adequately due to disruptions in various parts of the neural 

pathways required for normal language production (Lapointe, 2005).  Currently available 

communication assistance systems do not directly decode language intent.  Instead, these 

approaches allow for the choosing of letters, words, or symbols indirectly through a secondary 

pathway such as motor imagery, the P300 potential, or eye movement (LaCourse and Hludik, 

1990, Pfurtscheller and Neuper, 2001, Pfurtscheller et al., 1998, Farwell and Donchin, 1988).  In 

current forms, these prostheses are slow and may be difficult to use.  The P300 speller, for 

example, operates at speeds of 10 characters per minute or less (Donchin et al., 2000). 

Alternatively, one may imagine a prosthesis which could directly decode a combination of 

semantic, lexical, phonetic, and articulatory representations to allow entire words or concepts 

to be generated.  This second approach is enormously challenging but may eventually provide 

an intuitive method for affected patients to communicate.  

Direct decoding of higher order neural information for use in brain computer interfaces 

(BCI) has grown rapidly in the past several decades.  Perhaps the most sophisticated endeavor 

in this regard is found in advances in motor prosthesis development (e.g. Hochberg et al., 2006, 

Leuthardt et al., 2006, Donoghue, 2008, Pfurtscheller and Neuper, 2001, Santhanam et al., 2006, 

Wilson et al., 2006, Birbaumer, 2006).  Both extracranial and intracranial EEG recordings have 

been used in humans to provide the control signals for motor-prosthetic devices.  For 

intracranial devices, it has been shown that the accuracy of such devices can approach 95% 
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when choosing between 4 targets (Santhanam et al., 2006) and a tetraplegic human patient 

with an implanted microelectrode array has demonstrated the ability to control a computer 

cursor or prosthetic hand (Hochberg et al., 2006).  The ability to decode perception of visual 

scenes and objects from primary visual cortex via imaging techniques has also been extensively 

explored (Haxby et al., 2001b, Kay et al., 2008, Kamitani and Tong, 2005).  These successes 

strongly demonstrate that essential and detailed information can be extracted from ongoing 

neural activity at multiple spatial and temporal scales. 

Despite the success in decoding other types of neural activity, it is unknown whether 

machine learning techniques can extract language-specific information from 

electrophysiological recordings.  There are several lines of research that are attempting to 

extract low-level information for the development of communication prostheses, but none of 

these methods directly examine semantic information. 

Brain-computer interfaces based on the P300 evoked-potential are some of the most 

well-developed communication prostheses.  P300 spellers are based on the “oddball” effect 

seen in EEG recordings and have relatively good accuracy in healthy individuals (Birbaumer, 

2006, Farwell and Donchin, 1988, Kaper et al., 2004).  The P300 is an event-related potential 

seen in EEG recordings that occurs when a rare, oddball stimulus is presented (Donchin et al., 

2000).  This decoding scheme allows the subject to select a letter from a grid by concentrating 

on the letter while each row and column of the grid is highlighted.  Highlighting of the 

appropriate row and column evokes the P300, and this potential can be decoded if a sufficient 

number of repetitions are performed.  Unfortunately, this type of device is relatively slow, 

requiring many seconds to communicate a single letter (Donchin et al., 2000). 
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There are several possible approaches that may allow for the development of faster and 

more intuitive communication prostheses.   A prosthesis which decodes the articulatory motor 

commands used in speech is currently in the early stages of development (Brumberg et al., 

2009, Guenther, 2009).  This paradigm utilizes invasive intracranial recordings in order to 

record neural activity from speech motor areas, and attempt to decode articulatory commands 

to reconstruct phonetic speech information.  While this approach may eventually demonstrate 

high levels of accuracy, it is unclear whether a prosthesis based on motor activity would be 

viable for patients that have impaired language ability due to higher-order functions. 

While both of these techniques show promise as communication prosthesis, very little 

work has been done to engineer a prosthesis which is based directly on semantic language 

information.  A prosthetic device which could decode language processing from neural activity 

would be highly intuitive and could possibly surpass the maximum speed of current prosthetic 

devices by directly decoding entire words and concepts in a single step, rather than requiring 

the subject to construct words from letters or sounds.  If such high-order language 

representations are to be decoded from neural recordings, it is important that the 

spatiotemporal representation of semantic information be understood.  We begin by exploring 

these distributed representations using machine learning techniques that can handle high-

dimensional data. 
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II. DECODING DISTRIBUTED SEMANTIC REPRESENTATIONS 
FROM MEG AND EEG 

1. INTRODUCTION 

Understanding the neural basis of semantic knowledge is crucial for informing or 

constraining current theories regarding the organization of semantic information in the brain.  

Because semantic information covers an extremely broad domain of knowledge, there are 

many different ways for examining its representation in the brain.  However, contrasting the 

neural differences between representing animals and manmade objects has been an extremely 

popular technique for studying semantics due to the robust effects observed in lesion studies 

(Warrington and McCarthy, 1983, Warrington and Shallice, 1984). 

With the advent of functional neuroimaging techniques (e.g. PET and fMRI), numerous 

studies have been performed to investigate the neural basis of semantic representations.  

Neuroanatomical differences in the representation of specific semantic categories, especially 

living and non-living objects, have been seen in imaging studies (Hauk et al., 2008, Chao et al., 

1999, Caramazza and Mahon, 2003, Martin and Chao, 2001, Dhond et al., 2007, Caramazza and 

Shelton, 1998, Shinkareva et al., 2008, Tranel et al., 1997).  Despite extensive work 

investigating the animate/inanimate distinction, the reported results are variable from study to 

study (Moore and Price, 1999, Devlin et al., 2002).  Most studies agree that the left posterior 

middle temporal gyrus is activated in response to tools and man-made objects (Perani et al., 

1999, Damasio et al., 1996, Martin et al., 1996, Mummery et al., 1998, Mummery et al., 1996, 

Chao et al., 1999, Moore and Price, 1999), and that inferior temporal-occipital cortex is 

activated for animals and natural stimuli (Perani et al., 1995, Perani et al., 1999, Chao et al., 

1999, Damasio et al., 1996).  However, results are conflicting with regard to the medial 

temporal surface, left medial frontal cortex, and parietal cortex; several studies suggest 
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activation for animals in these areas (Damasio et al., 1996, Martin et al., 1996) while other 

studies find activation by man-made and non-living objects (Mummery et al., 1998, Mummery 

et al., 1996, Perani et al., 1995, Chao and Martin, 2000).  Furthermore, many of the brain areas 

showing differential activation to living and non-living stimuli are only reported in a single 

study. 

The variability of previously reported results may be due, in part, to the statistical 

analysis of high-dimensional neuroimaging data.  The traditional univariate statistical 

techniques used to analyze these data require correction for multiple comparisons to control 

for false positives, often making them insensitive to subtle, but widespread, effects within the 

brain.  Therefore, univariate techniques may yield differing results depending on task-specific 

responses.  As discussed in Section I.1.5, most current theories about the neuroanatomical 

basis of semantic knowledge agree that a distributed network of brain areas likely encodes this 

information (Patterson et al., 2007, Martin and Chao, 2001, Mitchell et al., 2008, Caramazza and 

Mahon, 2003).   Therefore a multivariate decoding technique, which considers relationships 

between all features concurrently, might be able to detect distributed cortical areas that are 

differentially activated by living and non-living objects. 

In these previous studies, due to the constraints of the imaging modality as mentioned 

in Section I.2, the temporal representation of these semantic categories could not be 

investigated.  Furthermore, fMRI and PET do not directly measure neural activity, but rather a 

metabolic correlate.  Utilizing electroencephalography (EEG) and magnetoencephalography 

(MEG) allows for the study of both the spatial and temporal dynamics involved in the language 

processing.  In this chapter, we record simultaneous noninvasive EEG and MEG of healthy 
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participants performing a language task to explore the differences in the neural representation 

of living and non-living objects as well as individual words. 

For successful decoding of multichannel EEG and MEG data, a classifier which is robust 

to high-dimensional data must be utilized.  Support vector machines (SVMs) are used here to 

decode semantic category and individual word information from neural representations.  In 

combination with the multichannel electro/magneto-physiological recordings performed in 

this chapter, SVMs allow for a multivariate examination of the spatiotemporal dynamics of the 

processing of words and concepts.  Here, we use subject-specific decoders to study individual 

semantic representations, and subsequently examine the consistency between subjects and 

modalities using generalized SVM classifiers. 

The successful decoding of semantic information from high-dimensional neural 

recordings not only allows for the study of language processing, but also has potential 

applications in the future development of language-based neuroprostheses.  At the end of this 

chapter, we extend the SVM analysis by showing that a scalable hierarchical decoding 

framework that sequentially decodes word properties to narrow the search space improves on 

the single classifier decoding results, and may allow for the decoding of larger libraries of 

words and concepts. 

2. METHODS 

2.1. PARTICIPANTS AND DATA COLLECTION 

Nine right-handed, healthy male volunteers were recorded using simultaneous scalp 

EEG and MEG while performing auditory and visual versions of a language task.  The two tasks 

were performed in two separate sessions, separated by an average of 4 months.  Participants 
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were native-English speakers between the ages of 22 to 30.  This study was approved by the 

local institutional review board, and signed statements of consent were obtained from all 

subjects. 

MEG was recorded using a 306-channel Elekta Neuromag Vectorview system 

(Stockholm, Sweden).  Signals were band-pass filtered from 0.1 to 200Hz and digitized at 

600Hz.  Data from magnetometers and gradiometers were recorded, however only 

gradiometers were utilized here due to the lower noise in these sensors.  Simultaneous EEG 

recordings were obtained from a 64-channel EEG cap at a sampling rate of 600Hz with the 

same filter settings as the MEG recordings.  EEG was recorded using a mastoid electrode 

reference, but were digitally converted to a double-banana bipolar montage to reduce noise 

and create recording montages that were analogous to the gradiometer recordings of MEG. 

2.2. LANGUAGE TASKS 

A visual (SV) and an auditory version (SA) of a language task was performed by each 

participant.  A single trial involved presentation of a written word for 300ms (in the SV task), 

or an auditory word 500ms in length (in the SA task), followed by a fixation point.  Subjects 

were instructed to press a button if the presented word represented an object larger than one 

foot in any dimension (target trials; e.g. tiger, sofa), while refraining from responding to objects 

smaller than a foot (non-target trials; e.g. cricket, lipstick).  Exactly half of the trials involved 

words representing objects larger than one foot, requiring a motor response (target trials).  

This required subjects to access the semantic representations of these particular words and 

potentially retrieve visuospatial or propositional knowledge of the associated object.  Words 

were equally divided between living objects (animals and animal parts) and non-living objects 

(man-made items).  Half of the trials presented a novel word which was only shown once 
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during the experiment while the other half of the trials presented one of ten repeated words 

(each shown multiple times during the experiment). 

Novel words representing living and non-living objects were balanced in terms of mean 

number of syllables (SA: living = 1.52, non-living = 1.36, SV: living = 2.18, non-living = 2.09), 

letters (SA: living = 5.22, non-living = 5.21, SV: living = 6.49, non-living = 6.8), and lexical 

frequency (SA: living = 15.5 per million, non-living = 17.34, SV: living = 12.52, non-living = 

12.45) (Francis and Kucera, 1982).  These word properties were not statistically different 

between living and non-living object categories (Wilcoxon sign-rank, p>0.05).  Auditory words 

had slightly fewer letters than visually presented words because they were required to fit 

within a 500ms stimulus window.  Repeated words were chosen to be representative of the 

novel words with respect to frequency and length.  Visual stimuli were presented as white text 

on a black background while auditory stimuli were normalized in peak volume and length.  The 

SV and SA tasks contained unique sets of words with no overlap between the two experiments.  

The visual version of the task included 390 trials while the auditory version included 780 trials.  

Analysis of modality-specific word processing in these tasks was previously performed by 

Marinkovic, et al. (2003). 

2.3. PREPROCESSING 

Signals from each channel of the MEG and EEG recordings were initially bandpass 

filtered from 1 to 30Hz.  Independent component analysis was performed on MEG and EEG 

signals, and EOG and EKG components were removed using a modified version of the automatic 

component rejection algorithm specified in Shao et al. (2009) using a single-class, instead of 

weighted, support vector machine.  For each trial, the continuous recordings were epoched 

from 1s before to 2s after stimulus onset.  Trials containing large artifacts were rejected using a 



46 
 

predefined amplitude threshold (300µV for EEG, 5pT/cm for MEG).  Thresholds were 

intentionally set high to retain as much of the dataset as possible to reduce over-fitting the 

classifiers.  After alignment to stimulus onset, waveforms from all channels were baseline 

corrected using a 500ms pre-stimulus period.  These preprocessing steps were performed 

within MATLAB, using the EEGLAB 6.03b (Delorme and Makeig, 2004) and FieldTrip toolboxes 

(ver. 20080611, http://fieldtrip.fcdonders.nl/). 

2.4. DECODING ANALYSIS 

Two main components are necessary for the decoding of neural information: a feature 

extractor and a classifier.  The goal of feature extraction is to reduce the full neural signal to a 

smaller number of components that are relevant for the subsequent classification task.  In this 

case, the average amplitude in six 50ms time windows were sampled from every channel and 

concatenated into a large feature vector for each trial (Figure II-1).  Thus, a single feature 

vector represents the amplitude-based spatiotemporal properties of a single trial.  The six time 

points selected for decoding living versus non-living objects were 200, 300, 400, 500, 600, and 

700ms post-stimulus, and the times selected for decoding individual words were 250, 300, 350, 

400, 450, and 500ms.  Previous literature suggests that the N400 component of event related 

potentials (ERPs) is associated with semantic processing and integration, which informed our 

choice of these time ranges (Bentin et al., 1993, Hagoort et al., 2004, Kutas and Hillyard, 1984, 

Marinkovic, 2004).  These time ranges also minimize early auditory or visual effects when 

examining individual repeated words, and account for later activity when examining novel 

words (Marinkovic et al., 2003).  Increasing the number of time points beyond six led to 

negligible increases in decoder performance, but substantially increased computational time 
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needed to train the classifier.  Because EEG and MEG signals have different magnitudes, 

features were transformed to a standard normal distribution z-score (  (   )). 

The second component of a decoding paradigm, the classifier, finds a relationship 

between the feature vector inputs and the corresponding word class (e.g. living/non-living 

object category or specific word).  The generated classifier model allows for the prediction of 

the word class for novel data.  For the classification of the MEG and EEG data recorded here, 

support vector machines (SVMs), as implemented by Joachims (1999), were chosen as the 

classifier.  SVMs were chosen due to their robustness to high-dimensional data and ability to 

generate nonlinear decision boundaries (Vapnik, 1995).  Using a set of training data from 

multiple classes (in our case, living and non-living object categories or individual words), SVMs 

attempt to find a separating boundary which maximizes the margin between these classes 

(Figure II-1); this reduces over-fitting and allows for good generalization when classifying 

novel data.  For multiclass data, the SVM implementation suggested by Crammer & Singer 

(2002) is used. 
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FIGURE II-1: DECODING FRAMEWORK UTILIZING AMPLITUDE-BASED FEATURE 
EXTRACTION AND SVMS. 

The amplitude at 6 post-stimulus time points are selected from each channel and concatenated into 
an initial feature vector.  The feature vectors from all channels are concatenated into a final feature 
vector.  A single feature vector represents the spatio-temporal dynamics of a single trial.  A 
nonlinear SVM is trained on these feature vectors to discriminate between the two semantic classes 
(living vs. non-living objects) or between individual words.  This results in a decision boundary by 
which new trials can be classified.  In the multiclass case, multiple decision boundaries are 
generated to separate individual classes from each other. 

To estimate the accuracy of the trained classifiers, a bootstrap cross-validation was 

performed.  This procedure splits the data into non-overlapping training and testing sets in 

order to evaluate the effectiveness of the classifier when encountering new data.  For each 

round of cross-validation, one to thirty random trials of the same type (living or non-living 

objects in the binary case, individual words in the multiclass case) were omitted before training 

the SVM.  The omitted (test) trials were then individually classified using the resulting model 

and discriminant scores averaged to generate the final classification.  One thousand rounds of 

bootstrap cross-validation were performed to obtain an estimate of classification accuracy.  

Only non-repeated words were used to train the SVM to distinguish between living and non-
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living objects, to allow for training on a large variety of unique stimuli within each category.  By 

necessity, repeated words were used to train the SVM to classify individual words. 

A radial-basis-function kernel, with parameter γ=0.05, was used in training the SVM to 

allow for nonlinear decision boundaries.  The C-parameter, specifying the tradeoff between 

misclassification of training examples and maximal margin, was set to 1.  A multiclass version 

of the classifier was also trained to discriminate between the five large (target) or five small 

(non-target) words based on the implementation in Crammer and Singer (2002).  Significance 

thresholds, at p=0.05, were computed using permutation distributions generated by 

performing 1000 repetitions of the cross-validation procedure on trials with shuffled target 

labels.  All subsequent results indicating statistically significant decoding accuracies utilize this 

metric unless otherwise specified. 

2.5. DATA VISUALIZATION 

The final classifier generated by the SVM consists of a set of weights that, combined 

with the identified support vectors, can be used to classify new trials.  In the linear case, a 

simple weight vector is generated, the weight of each feature dictates the importance of that 

feature in the final classification.  Thus, examining the linear SVM weights allows determination 

of important spatiotemporal features in the classification of living versus non-living objects.  By 

plotting the SVM weight vector on a 2-D topographic representation of the scalp (topoplot), we 

can generate a map of the time-sensor points which contribute the most to the final classifier. 

In the individual word (multiclass) case, a set of weights is generated for each of the five 

words.  Highly variable weights associated with a particular feature indicate that the classifier 

more heavily utilizes this feature to discriminate different words.  Thus, the variance of the 
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weights for each feature was computed as a metric of relative importance of each time-sensor 

point and plotted in a topoplot.  Because the lead field of a MEG planar gradiometer is directly 

under the sensors, these topoplots are a valid way of exploring the cortical areas contributing 

to the discrimination (Hämäläinen and Ilmoniemi, 1994). 

Confusion matrices were also generated in the individual word (multiclass) case to 

compare the actual word presented with the word predicted by the classifier.  These matrices 

indicate the type and quantity of errors generated by the multiclass SVM when decoding 

individual words and allow for a systematic analysis of the words that were most difficult to 

classify.  Any given row of these matrices shows the distribution of classification of a particular 

word with the diagonal indicating correct classification and off-diagonals indicating errors.  

2.6. INTERMODALITY AND INTERSUBJECT DECODING 

To study supramodal representations, we trained an SVM on features from either the 

auditory or visual tasks from a single subject.  Data from the same subject, but opposing 

modality, was then used to test the classifier.  Because no word overlap was present between 

the repeated words in the SV and SA versions of the task, this could only be done for the 

classification of categories (animals versus non-living objects). 

Intersubject decoding was also performed to examine the consistency of language-

related representations between individuals.  In this case, an SVM was trained on data from all 

but one subject within a single modality.  The data from the remaining subject was then used as 

test data.  This was repeated by omitting each subject in turn.  This analysis was performed on 

both living/non-living category and individual words. 
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2.7. HIERARCHICAL TREE DECODING 

Although utilizing a single multiclass decoder to distinguish individual word 

representations often works well, it does not directly incorporate a priori knowledge about 

semantic classes and the features which best discriminate these categories.  Moreover, as the 

number of classes or features grow, it becomes more difficult for a single classifier to perform 

well with a fixed size of training data.  To combine information from the classifier models 

generated to decode semantic category and individual words, we implemented a hierarchical 

framework which attempts to decode word properties sequentially.  Given an unknown word, 

the tree decoder first classifies it as either a large (target) or small (non-target) object.  The 

word is then classified as living or non-living object, and finally as an individual word within 

the predicted semantic category.  This allows the appropriate features to be used to decode 

each word property, narrowing the search space before individual words are decoded.  Such a 

construct is easily scalable and could allow for the eventual decoding of larger libraries of 

words. 

As a proof-of-concept, a 3-level hierarchical decoding construct was implemented using 

a set of SVMs for each level of the tree.  Amplitude (six time points from 200-700ms) and 

spectral features (8-12Hz power at six time points from 200-700ms) were first utilized to 

decode whether an unknown word represented a large (target) or small (non-target) object.  

The spectral features allowed for motor intent to contribute to this initial classification.  In the 

second and third levels of the tree, amplitude features from 200-700ms were utilized to decode 

living/non-living object category, and amplitude features from 250-500ms were used to 

decode individual words.  A separate SVM was trained (using the same parameters described in 

section 2.4) for each level of the tree using the appropriate trials.  Upon classification of a new 

trial, the result of earlier levels determined which of the trained models would be utilized to 
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decode subsequent features.  For example, if a novel trial was first decoded as a large object 

(target trial), and subsequently decoded as a living object, the final classifier would label the 

trial as either a “dinosaur”, “python” or “steer”. 

To compare performance to a single multiclass decoder, an SVM was trained to 

discriminate between all 10 words using the full set of amplitude and spectral features used in 

the hierarchical tree decoding.  A bootstrap cross-validation with 1000 repetitions was again 

used to estimate the accuracy of this decoder. 

3. RESULTS 

3.1. BEHAVIORAL RESULTS 

To ensure that behavioral responses to different trial types did not contribute to the 

decoding of words and semantic categories, we first analyzed the accuracy and response times 

of button presses (to large objects) for all subjects.  Accuracy of behavioral responses ranged 

from 71.6 to 95.5% with a mean of 90.3±1.4% across subjects.  Mean response times varied 

from 760 to 1152ms with a cross-subject mean of 943±27ms.  Mean accuracies for living and 

nonliving object categories across subjects were 90.4±1.6% and 90.2±1.6% respectively.  Mean 

response times for living and nonliving object categories were 947±30ms and 962±25ms.  

Accuracies and response times were not significantly different between living and nonliving 

object trials for any of the subjects (Wilcoxon sign-rank, p>0.05).  It is therefore unlikely that 

differential behavioral responses influenced subsequent decoding analyses.  Accuracies were 

not significantly different between SV and SA tasks (Wilcoxon, p>0.05), although mean 

response times were shorter for the visual task (SV: 864ms, SA: 1023ms, Wilcoxon, 

p<0.00001).  As expected, response times were shorter for repeated versus novel words 
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(repeated: 868ms, novel: 1023ms, Wilcoxon, p<0.001).  Mean accuracies and times were not 

significantly different between individual repeated words for any subject (ANOVA, p>0.05). 

3.2. DECODING OF SEMANTIC CATEGORY 

We first attempted to train a SVM to decode living versus non-living objects.  The SVM 

was trained separately on EEG features, MEG features, and both combined.  Figure II-2A-B 

illustrates the decode accuracies after averaging 5 trials (chance accuracy = 50%).  When 

utilizing EEG features alone, data from 7 of the 9 subjects in the SV task and 6 of 9 in the SA 

task, showed statistically significant decoding accuracy (permutation test, p<0.05).  When 

utilizing MEG features alone, data from 8 of the 9 subjects in SV and 7 of 9 in SA showed 

significant decoding accuracy (permutation test, p<0.05).  Statistically significant decoding 

accuracy was obtained from all subjects when utilizing combined EEG and MEG features in 

both SV and SA tasks.  When utilizing combined EEG and MEG features, accuracies ranged from 

63-86% (mean±s.e. = 76±2%) for the SV task and 62-91% (mean±s.e. = 75±3%) for the SA task.  

Training on both MEG and EEG features increased accuracies by an average of 12% for the SV 

task and 10% for the SA task over using EEG features alone and 8% (SV) and 4% (SA) over 

MEG features alone (Wilcoxon sign-rank, p<0.05).  Accuracies for the SV and SA task were not 

statistically different in any set of features when discriminating between living and non-living 

objects (Wilcoxon, p>0.05).  These results suggest that high-dimensional machine-learning 

algorithms, such as SVMs, are able to robustly extract semantic category information from 

multichannel electro/magneto-physiological recordings.  
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FIGURE II-2: DECODING ACCURACY WHEN DISTINGUISHING BETWEEN LIVING 
AND NON-LIVING OBJECTS OR INDIVIDUAL WORDS. 

The bar graphs illustrate classifier accuracy for each subject when distinguishing between living 
and non-living object category (A-B) or between individual words (C-D) after averaging 5 trials.  
Inset panels illustrate mean decoding accuracy as a function of the number of trials averaged.  Blue 
indicates the use of EEG features, red indicates MEG features, and green indicates that both EEG and 
MEG features were used.  In both the main figure and insets, chance accuracy (0.5 for living/non-
living and 0.2 for individual words) is shown as the horizontal black line and accuracies above the 
dashed line are statistically significant (permutation test, p<0.05).  A-B) Data from all subjects show 
significant decoding ability in at least one set of features.  In all cases, utilizing combined EEG and 
MEG features resulted in significant decode accuracies.  C-D) When utilizing both EEG and MEG 
features, decoding performance when distinguishing individual words is statistically significant in 
all cases, and exceeds 95% accuracy in the SA task. 
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To explore the effect of the number of trials averaged on decoding accuracy, we also 

performed a leave-n-out cross-validation on all sets of features with all subjects (Figure II-2 

inset panels).  Not surprisingly, increasing the number of trials averaged resulted in increased 

decode performance in all cases.  However, averaging more than approximately 7 trials 

resulted in only marginal additional increases in performance. 

3.3. DECODING OF INDIVIDUAL WORD REPRESENTATIONS 

We subsequently examined SVM decoding of individual word representations utilizing 

multiclass SVMs.  We trained and tested classifiers on either the 5 repeated non-target (small 

objects) or target words (large objects) to decode individual word representations without the 

potential motor confound (chance accuracy = 20%).  The requirement for a motor action 

(button-press when the presented object was larger than one foot) may result in the decoding 

of that volitional response, rather than word processing information per se, when examining 

differences between all 10 words.  The ability of the classifier to predict the observed word was 

statistically significant for all subjects after averaging 5 trials in at least one set of features 

(permutation test, p<0.05) (Figure II-2C-D).  Accuracies varied from 32-79% (mean±s.e. = 

60±5%) using combined EEG/MEG features for the SV task (chance accuracy is 20%).  For the 

auditory task, accuracies varied from 66-97% (mean±s.e. = 83±4%).  Training the SVM 

classifier on both EEG and MEG features increased average decode performance by 18% for the 

SV task and 29% for the SA task over using EEG features alone and 2% (SV) and 7% (SA) over 

MEG features alone (Wilcoxon, p<0.05).  The decoding accuracies of the SV and SA tasks when 

utilizing solely EEG features were not significantly different (Wilcoxon, p>0.05).  However, 

utilizing MEG alone or both feature types resulted in significantly better performance in the SA 

data than utilizing the corresponding feature sets in the SV data (Wilcoxon, p<0.01). 
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The SA task contained twice as many trials as the SV task (780 for SA versus 390 for SV) 

which may have resulted in the difference in decoding accuracy between the two presentation 

modalities.  By utilizing only the first 390 trials of the SA task, accuracy of the multiclass 

decoder after averaging 5 trials (mean±s.e. = 61±4%) was not significantly different from SV 

performance (mean±s.e. = 60±5%) (Wilcoxon, p>0.05).   

Again, increasing the number of trials averaged increases decoding performance 

substantially (Figure II-2C-D inset panels).  In the case of individual word decoding for the SV 

task, there is a slight decrease in accuracy when the number of trials averaged is increased 

from 6 to 8.  This is likely due to the fact that increasing the number of trials averaged causes a 

corresponding decrease in the number of trials used for training the SVM, leading to a less 

robust classifier.  This is especially pronounced in the multiclass SV case on account of the 

relatively smaller number of total trials per condition when compared to the SA task.  These 

data also illustrate that combining EEG and MEG features improves accuracy over either 

feature set alone.  Taken together, these results demonstrate surprisingly robust ability to 

decode individual words from spatiotemporal features computed from multichannel 

electrophysiology. 

3.4. DECODING USING PROBABILISTIC CLASSIFIERS 

While a decoding analysis is a powerful method for exploring electro/magneto-

physiological data, not all classification algorithms are suited for such an analysis.  To 

demonstrate the advantages of utilizing machine-learning techniques robust to high-

dimensional data, we compared the decode accuracy obtained when using SVMs (sections 3.2 

and 3.3) to the use of a popular probabilistic classifier.  Because traditional Fisher linear 

discriminant analysis and Bayesian decoders are unable to handle cases in which the number 
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of features is close to, or exceeds, the number of trials, we utilized a naïve Bayes classifier.  

Naïve Bayes classifiers assume independence of features, and are thus able to train and classify 

this particular set of MEG/EEG features. 

When classifying living/non-living category using MEG and EEG features, a naïve Bayes 

classifier resulted in average accuracies of 54±4% and 51±3% for SV and SA respectively 

(chance=50%).  This was significantly lower than the SVM classification of the same data (76% 

for SV, 75% for SA, Wilcoxon sign-rank, p<0.005), and in fact not statistically different from 

chance.  Similarly, when classifying individual words using MEG and EEG features, a naïve 

Bayes classifier yielded accuracies of 41±4% and 46±3% for SV and SA data respectively 

(chance=20%).  This, again, is significantly lower than the classification using an SVM (60% for 

SV, 83% for SA, p<0.005).  These results suggest that a decoding analysis of MEG/EEG data 

requires techniques which are robust to high-dimensional data.  In this case, SVMs, when 

compared to a naïve Bayes classifier, are better able to handle such data and can provide 

insight into the spatiotemporal representations of semantic knowledge. 

3.5. SVM WEIGHTS DEMONSTRATE SPATIOTEMPORAL DYNAMICS 

Examining the SVM weights allows us to determine the features which were most 

important in the generation of the final SVM classifier (Figure II-3).  In the linear case, the 

weight of each feature dictates the importance of that feature in the final classification.  

Because the weights of a nonlinear classifier cannot be easily visualized, we utilized linear 

SVMs when examining classifier weights.  The performance when using nonlinear SVMs was 

greater than the performance of the linear SVMs by 3.3% on average (Wilcoxon sign-rank, 

p<0.05), however decode accuracy remained high in the linear case.  In all cases where the 

nonlinear SVM yielded statistically significant decode accuracy, the linear SVM also yielded 
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statistically significant accuracy.  Thus, examining the linear SVM weights allows determination 

of important spatiotemporal features in the classification. 

 

FIGURE II-3: CLASSIFIER WEIGHTS SHOW IMPORTANT TIMES AND LOCATIONS 
FOR DECODING. 

A-B) SVM weights of the classifier trained on living and non-living object categories in MEG show 
areas of significant differences.  Areas of dark red indicate biases in classification towards non-
living objects, and blue denotes biases towards animals and living objects.  Averaged weights across 
all subjects are shown at each sensor-time point for the (A) visual and (B) auditory tasks.  Bilateral 
anterior temporal and inferior frontal differences are seen at 400-600ms during both the SV and SA 
tasks (white arrows).  Left temporal-occipital differences showing larger responses to objects are 
apparent at 200ms (red arrows) with differences showing larger responses to living objects 
occurring at 400-700ms in both modalities (black arrows).  C-D) Variance of SVM weights is shown 
at each time-sensor point indicating relative importance of each feature in individual word    
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(Figure II-3 continued) discrimination.  Features with larger variance indicate larger separation 
between the SVM weights in that particular dimension and correlate with increased discrimination 
ability.  C) Extracranial weights from the SV task indicate occipital significance around 300-400ms 
(black arrows) and inferior temporal significance at several times (white arrows).  D) Weights from 
the SA task show bilateral anterior temporal and inferior frontal significance from 250-450ms 
(white arrows), and inferior occipital significance at 300 and 500ms (black arrow).  Inferior 
parietal significance is also seen from 350-400ms (blue arrow). 

Averaged weights across subjects for the visual (Figure II-3A) and auditory (Figure 

II-3B) tasks show a broadly distributed pattern of information-specific activity.  Large weights 

are observed at all sampled time points and across both hemispheres.  In particular, bilateral 

anterior temporal and inferior frontal weights increase to inanimate objects relative to living 

objects from 400-600ms.  A concurrent increase of SVM weights in response to living over non-

living objects is present at left inferior temporal-occipital sensors from 400-700ms.  

Interestingly, an early temporal-occipital increase in weights to non-living objects is seen at an 

earlier latency of 200ms.  While left inferior temporal-occipital activation to animals has 

previously been observed, the earlier activation to non-living objects has not been reported. 

When decoding individual word representations, the multiclass SVM generates one set 

of weights for each class. For visualization purposes, the variance of the SVM weights across 

words for each time-sensor point was computed and displayed (Figure II-3C-D).  Features with 

higher variances differ more across classes, generally making them more important in the final 

classification.  These data also show fairly distributed set of time-sensor points which 

contribute to the decoding.  The SV data showed inferior occipital increase in weight variance 

from 300-400ms, and inferior temporal activation from 400-500ms (Figure II-3C).  The SA task 

showed increased weight variance in bilateral anterior temporal areas from 250-450ms with 

increases in posterior sensors at 300 and 500ms (Figure II-3D). 
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To further study the time-course of semantic information present in MEG signals, a 

cumulative window decoding analysis was performed to decode individual word identity from 

these neural recordings.  MEG amplitude features were computed in 30ms windows for the 

repeated words and the SVM decoder attempted to predict individual word identity from a 

cumulative set of windows beginning at 0ms.  Data from both SA and SV tasks demonstrate 

significant decode accuracies beginning at approximately 150ms and saturating around 500ms 

(Figure II-4).  This is roughly consistent with the time course of the SVM weights observed in 

Figure II-3, suggesting that word-specific information occurs as early as 150-200ms. 

 

FIGURE II-4: CUMULATIVE TIME DECODING DEMONSTRATES TIME COURSE OF 
INFORMATION 

Decoding the ten repeated words in the SA (left) and SV (right) tasks using MEG data from 
cumulative 50ms time windows shows the time course of information.  In both cases, information 
content provides significant decoding accuracy starting at approximately 150ms and this accuracy 
saturates at approximately 600ms for both modalities. 

3.6. SEMANTIC CATEGORY INFORMATION IS SPATIALLY DISTRIBUTED 

While SVM weights demonstrate that a large number of sensors at various time points 

contribute to the classification of semantic category, it is important to understand whether the 
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accuracy achieved in this decoding is a result of the information present in a small number of 

electrodes.  To determine whether this was the case, a SVM was trained and tested on the same 

set amplitude features in the 6 time windows used for the other analyses, but instead of 

utilizing all sensors, decoding was performed on single sensors (Figure II-5).  The mean 

accuracy for this single sensor decoding was 52±2%, and ranged from 45-60%.  To test 

whether any of these accuracies were statistically significant, a null distribution was generated 

by shuffling the labels of trials.  Only 3.7% of the channels demonstrated statistically significant 

accuracy (p<0.05), yet no single channel approached the mean accuracy when using all 

channels of 71%.  The skewness of the distribution of accuracies was computed as 0.67 (with 

the skewness of the null distribution at -0.02), showing that the distribution was skewed 

towards above-chance accuracies.  This may suggest that a large number of channels had 

accuracies above 50% and carried some semantic information, despite not being statistically 

significant.  This is consistent with the idea that the representation of semantic category is 

highly distributed, and that no single sensor is able to provide the same amount of information 

that can be extracted when all sensors are combined. 
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FIGURE II-5: DECODING OF SINGLE CHANNELS DEMONSTRATES THE SPATIALLY 
DISTRIBUTED NATURE OF SEMANTIC CATEGORY INFORMATION 

The decoding of single channels failed to yield accuracies near the accuracy obtained when using all 
channels of 71%.  However, the distribution of accuracies was highly skewed (skewness = 0.67), 
suggesting that a large number of channels with accuracies above 50% contained semantic 
information despite the fact that only 3.7% of channels demonstrated significant accuracy with 
regard to the computed null distribution (p<0.05). 

3.7. SYSTEMATIC ERRORS IN INDIVIDUAL WORD DECODING REVEAL SEMANTIC 
STRUCTURE 

Confusion matrices were constructed to analyze errors generated when discriminating 

between all 10 repeated words (Figure II-6A).  The actual stimulus words are present along the 

vertical axis while the words predicted by the classifier are present along the horizontal axis.  

The colors along any given row (actual word) indicate the proportion of trials of that word 

which were classified as each of the possible choices (predicted words) (i.e. the confusion rate).  

Therefore, if the classifier correctly classified the word “feather” in all cases, the first element in 
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the row corresponding to “feather” would be 1 (i.e. “feather” was always classified as “feather”) 

with all other elements being 0 (i.e. “feather” was never classified as any other word).  

Therefore, the diagonal elements in the matrix display correctly classified trials. 

 

FIGURE II-6: INDIVIDUAL WORD DECODING CONFUSION MATRICES. 

A) Averaged confusion matrices for decoding all 10 individual words (averaging 5 trials) indicate 
the types of errors made.  The vertical axis displays the actual stimulus word while the horizontal 
axis displays the word predicted by the classifier.  The colors along any given row (actual word) 
indicate the proportion of trials of that word which were classified as each of the possible choices 
(predicted words).  The diagonal elements display correctly classified trials.  Words are sorted into 
small and large objects (divided by black lines), and living or non-living categories (blue and red 
text).  These matrices demonstrate a significant ability to decode individual words without regard 
to large/small conditions.  B) Within and between-category confusion rates are shown for the 
large/small and living/non-living object distinctions.  In all cases, confusion rates between 
categories are statistically lower than confusion rates within each category. 

Visual examination of confusion matrices confirms that decoding of the MEG auditory 

data yields the highest accuracy, followed by EEG auditory data, followed by data from the 
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visual task.  The confusion matrices of combined EEG and MEG data were virtually identical to 

the confusion matrices generated to MEG data alone.  A larger confusion rate is visually 

apparent within target (large object) or non-target (small object) classes (upper left and lower 

right corners), compared to between the two classes (lower left and upper right).  The required 

motor response associated with the target trials may be providing additional non-language 

information allowing for a decreased error rate when decoding between all 10 repeated words 

(as discussed in section 3.3).  Despite this, the ability to decode individual words is seen within 

the large and small object groups; providing additional evidence that word-specific information 

is present in the neural signals being classified. 

To quantify the effects of semantic category and large versus small objects on confusion 

rates, we performed a 3-way ANOVA on these data (Figure II-6B).  This was performed to 

determine if two words which were within the same class (e.g. both living objects, both small 

objects, etc.) had a higher confusion rate than two words in different classes.  In other words, 

the ANOVA compares differences in “within-class” confusion rates to “between-class” confusion 

rates.  The ANOVA analysis involved three factors (living/non-living, large/small, and subjects) 

with two levels in the categorical factors (within-class or between class) and 9 levels in the 

subject factor (one for each subject). 

For the SV task, the average large/small between-class confusion rate (mean±s.e. = 

0.0472±0.027) was significantly smaller than large/small within-class confusion (0.125±0.045; 

F=45.72, p<0.00001).  Average living/non-living object between-class confusion (0.074±0.037) 

was significantly smaller than living/non-living object within-class confusion (0.092±0.043; 

F=8.59, p<0.005).  For the SA task, the average large/small between-class confusion 

(0.038±0.028) was significantly smaller than large/small within-class confusion (0.067±0.036; 
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F=20.28, p<0.00001).  Average living/non-living object between-class confusion (0.045±0.031) 

was also significantly smaller than living/non-living object within-class confusion 

(0.058±0.034; F=7.99, p<0.05).  This shows that it is more difficult for the classifier to 

discriminate words within the same semantic category than words of different categories.  This 

suggests semantically related words have similar neural representations, and provides further 

evidence of the natural distinction between living and non-living objects. 

3.8. LOW-LEVEL STIMULUS PROPERTIES 

It is possible that the generated classifiers are utilizing neural activity related to low-

level visual or auditory stimulus properties when decoding individual words.  For example, the 

classifier may be decoding brain activity which is specific for the number of letters in the visual 

word or the number of syllables in the acoustic word, and not the semantic information 

associated with the word.  To test this, we performed a shuffling based on stimulus properties 

to evaluate this potential confounding factor.  Within either the 5 target or non-target words, 

we randomly swapped half of the trials between two words with equal numbers of letters or 

numbers of syllables, thus creating two categories with consistent sensory characteristics but 

scrambled lexical referents, while leaving the remaining three words unchanged.  If the decode 

ability was solely based on either of these visual or phonetic properties of the stimulus, we 

would see no change in accuracy.  In fact, the decoding accuracy of these sensory based 

categories dropped by 24% (letters) and 30% (syllables) (Wilcoxon sign-rank, p<0.01).  

Accuracies remained statistically above chance due to the fact that trials associated with 3 of 

the 5 words were left unchanged. 

Although these low-level properties were not solely responsible for the decode ability, if 

these stimulus characteristics contributed information to the decoding, shuffling trials between 
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two words with different sensory characteristics would result in a larger drop in accuracy 

compared to shuffling between words with consistent sensory characteristics.  The drop in 

performance when swapping trials between words with similar sensory characteristics was 

not significantly different from the performance when swapping trials between words with 

different sensory characteristics (25% for letters and 28% for syllables, Wilcoxon, p>0.05).  

These sensory characteristics therefore did not contribute significantly to the decoding of 

individual words in the visual version of the task. 

We performed the same shuffling analysis for the SA task as well.  The drop in 

performance was 23% when shuffling between words with the same number of syllables 

(Wilcoxon, p<0.01).  This decrease in accuracy was not statistically different from the decrease 

in accuracy when shuffling between words with different numbers of syllables (20%, Wilcoxon, 

p>0.05). 

To control for the possibility of frequency-related acoustic properties of the words 

affecting the decode analysis (in the SA task), we attempted to predict stimulus properties 

using the same set of neural features used in the individual word decoding.  In this case, the 

SVM algorithm performed a regression instead of classification to predict the power of the 

acoustic stimuli within five frequency bands (250-500Hz, 500Hz-1kHz, 1-2kHz, 2-4kHz, and 4-

8kHz).  If any of these acoustic properties contribute to the decoding of individual words, we 

would expect that a SVM trained on the previously used features would also be able to predict 

the power in these auditory frequency bands.  To statistically test these results, a permutation 

distribution was computed by shuffling trials so that each trial was associated with a random 

set of stimulus band-power values for 2000 trainings of the SVM regression.  The root-mean-

squared error was computed for each of these repetitions, resulting in a distribution of errors 
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for the case that no information about stimulus band-power was present in the computed 

features.  The root-mean-square error of this regression was not statistically significant based 

on a permutation distribution computed by shuffling the stimuli (p>0.05, Figure II-7).  This 

result suggests that the decoding of individual words was not solely a result of differential 

representation of low-level properties of the auditory stimulus such as acoustic power. 

 

FIGURE II-7: AUDITORY STIMULUS SVM REGRESSION. 

Utilizing the same features and SVM algorithm as in the classification of individual words, the SVM 
was run in regression mode to attempt prediction of auditory stimulus power in 5 frequencies 
bands.  The null distribution was computed by shuffling trials 2000 times.  Obtaining a p-value of 
less than 0.05 required the mean squared error of the regression to be less than 1.21x105.  
However, the resulting error was 1.33x105 with a corresponding p-value of 0.44.  This is not 
statistically significant and suggests that a basic stimulus property such as band-power did not 
contribute to the classification of individual words. 

3.9. INTER-SUBJECT AND INTER-MODALITY DECODING 

To investigate supramodal contributions to the generated classifiers, SVMs were trained 

on one stimulus modality and tested on the other modality.  When training on visual data and 

testing on auditory data, statistically significant decode accuracies was obtained in 3 of 9 

subjects (Figure II-8A) with a mean accuracy across all subjects of 57.5±3.0%.  When training 
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on the auditory modality and testing on the visual modality, data from 5 of 9 subjects showed 

significant decode accuracies with a mean accuracy across all subjects of 67.7±4.1%.  This 

suggests that the models generated with features from either version of the task contain 

supramodal semantic information.  This is more apparent in the case where the training set 

was larger and better able to produce a robust classifier (training on SA, testing on SV).  By 

increasing the number of trials averaged, performance improves, as seen previously (Figure 

II-9). 

 

FIGURE II-8: INTERMODALITY AND INTERSUBJECT CLASSIFICATION SHOWS 
WORD AND CATEGORY REPRESENTATION CONSISTENCIES. 

Accuracies of intermodality and intersubject decoding are shown after averaging 10 trials.  Chance 
accuracy is indicated by solid horizontal line and the statistically significant threshold is shown by 
dashed line (permutation test, p<0.05).  A) Training on living/non-living object data from SV and 
testing on data from SA results in data from 3 of 9 subjects showing statistically significant decode 
ability while training on SA and testing on SV results in data from 5 of 9 subjects showing 
significant decode ability.  This indicates supramodal semantic information is encoded within the 
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(Figure II-8 continued) classification models generated by the SVM.  B) Training an SVM on 
living/non-living object data from all but one subject and testing on the final subject results in data 
from 5 of 9 and 9 of 9 subjects showing statistically significant decode within the SV and SA 
modalities respectively.  C) Training an SVM on individual word representations from all but one 
subject and testing on the final subject results in data from 6 of 9 and 9 of 9 subjects showing 
statistically significant decode ability.  This indicates intersubject consistency in the neural 
representation of these words. 

We also investigated the ability to train a generalized, subject-nonspecific decoder by 

training an SVM on data from all but one subject, and testing on the final subject’s data.  The 

accuracy obtained from such a cross-validation is an indication of the consistency of language-

related representations between individuals.  In the first case, an SVM was trained to 

discriminate between living and non-living object categories.  Data from 5 of 9 subjects for SV 

and all subjects for SA showed statistically significant decoding performance (Figure II-8B, 

p<0.05).  Mean accuracies were 56.8±2.4% and 72.9±2.8% for SV and SA respectively. 

 

FIGURE II-9: INTERSUBJECT AND INTERMODAL DECODE PERFORMANCE WITH 
INCREASING NUMBERS OF TRIALS 

Plots illustrate decoding accuracies per subject as the number of trials averaged increases.  
Horizontal line illustrates chance accuracy with dashed line showing significance threshold   
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(Figure II-9 continued) determined via computation of a permutation distribution (p<0.05).  A) 
Training on animal/object data from SV and testing on data from SA results in 3 of 9 subjects’ data 
showing statistically significant decode ability while training on SA and testing on SV results in 5 of 
9 subjects’ data showing significant decode ability at 10 trials averaged.  This indicates supramodal 
semantic information is encoded within the classification models generated by the SVM.  B) 
Training an SVM on animal/object data from all but one subject and testing on the final subject 
results in data from 5 of 9 and 9 of 9 subjects showing statistically significant decode within the SV 
and SA modalities respectively at 10 averaged trials.  This indicates individual word 
representations are fairly consistent between subjects.  C) Training an SVM on individual word 
representations from all but one subject and testing on the final subject results in data from 6 of 9 
and 9 of 9 subjects showing statistically significant decode ability at 10 averaged trials. 

A generalized SVM was also trained to discriminate between 5 large or small repeated 

words.  Figure II-8C indicates that in 6 of 9 cases for SV and all cases for SA, the decoding 

accuracy was significantly above chance levels.  Mean accuracies were 30.2±3.7% for SV and 

41.3±2.7% for SA (chance = 20%).  Despite the fact that MEG sensor positions are variable 

between subjects, above-chance accuracies were obtained, suggesting that some word-specific 

information is consistent between individuals.  Not surprisingly, however, subject-specific 

classifiers still yield significantly higher decode accuracies. 

3.10. EXTENSIBLE HIERARCHICAL FRAMEWORK 

To explore the potential practical use of machine-learning algorithms to decode larger 

libraries of words, we used SVM classifiers within the larger construct of a hierarchical 

framework (Figure II-10).  Such a paradigm is easily scalable and may allow for the eventual 

decoding of a large number of individual words or concepts.  Utilizing a hierarchical construct 

allows for the incorporation of a priori knowledge about semantic classes and the features 

which best discriminate these categories. 

The average accuracy of all branches of the tree for the SA task was over 80% and 

accuracies at each level of the decoder were above 80% for all but 2 subjects (Figure II-10A-B).  

By examining cumulative accuracies at each level of the tree, we find that errors propagate 
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from earlier levels, as expected, but accuracy ultimately remain above 60% in all cases (Figure 

II-10C).  The mean overall accuracy of the tree decoder was 70%, significantly higher than the 

67% accuracy of a single multiclass SVM trained on all 10 words (Wilcoxon sign-rank, p<0.05) 

(Figure II-10D).  Data from all subjects, but subject 7, showed an improvement over the single 

SVM classifier when using the tree decoder.  Thus, the hierarchical tree framework, by 

incorporating a priori knowledge of semantic properties, and utilizing specific features at each 

level, allows representations of individual word properties to be decoded more accurately than 

using a single multiclass decoder which treats each word as an independent entity. 

 

FIGURE II-10: HIERARCHICAL DECODING IMPROVES CLASSIFICATION 
PERFORMANCE. 

A three-level hierarchical tree decoder was utilized to first decode the large/small distinction 
(utilizing amplitude and spectral features), then the living/non-living object category (utilizing 200-
700ms amplitude features), and finally the individual word (utilizing 250-500ms amplitude 
features).  Data from decoding of the SA task are shown.  A) Average accuracies at each branch of 
the tree are shown with corresponding colors.  Accuracies remain above 80% for all branches.  B) 
Accuracies at each level of the decoder are shown on a per subject basis with dotted lines indicating 
chance accuracy.  C) Cumulative accuracies at each level decrease as errors propagate through 
levels of the tree, but remain above 60%.  D) Performance of the hierarchical tree is a significant 
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(Figure II-10 continued) improvement (Wilcoxon sign-rank, p<0.05) over training a single 
multi-class SVM to discriminate between all 10 words. 

 

FIGURE II-11: HIERARCHICAL DECODING FOR SV TASK. 

This figure is analogous to figure 6 in the main text generated using data from the SV task.  A three-
level hierarchical tree decoder was utilized to first decode the large/small distinction (utilizing 
amplitude and spectral features), then the living/non-living object category (utilizing 200-700ms 
amplitude features), and finally the individual word (utilizing 250-500ms amplitude features).  A) 
Average accuracies at each branch of the tree are shown with corresponding colors.  B) Accuracies 
at each level of the decoder are shown on a per subject basis with dotted lines indicating chance 
accuracy.  C) Cumulative accuracies at each level decrease as errors propagate through levels of the 
tree.  D) Performance of the hierarchical tree is a significant improvement (Wilcoxon sign-rank, 
p<0.05) over training a single multi-class SVM to discriminate between all 10 words. 

4. DISCUSSION 

Understanding not only the spatial, but also the temporal representation of semantic 

categories and individual words requires analysis techniques robust to the high dimensionality 

of multichannel EEG and MEG data.  In this chapter, we have demonstrated that a machine-

learning technique, such as SVMs, can detect distributed differences in neural activity and 

robustly extract language-related information from electrophysiological recordings.  These 
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representations are supramodal and are relatively consistent between individuals.  Utilization 

of a scalable hierarchical classification construct allows us to decode various word properties 

sequentially and further improves decoding performance.  

Previous imaging studies investigating the neural basis of living/non-living object 

representations have yielded variable results.  The most consistent findings have been 

activation of the posterior middle temporal gyrus to tools and man-made objects and activation 

of inferior temporo-occipital cortex to animals (Moore and Price, 1999, Mummery et al., 1998, 

Mummery et al., 1996, Martin et al., 1996, Perani et al., 1995, Chao et al., 1999, Perani et al., 

1999, Damasio et al., 1996).  Despite this, inconsistencies exist in the literature.  While only a 

few studies report entirely conflicting results, many of the brain areas identified as showing 

differential activation to living or non-living objects have only been reported in a single study.  

Moreover, one other MEG study failed to find any statistically significant differences between 

the perception of natural and man-made objects (Low et al., 2003).  This may be due, in part, to 

experimental design, but may also be due to the statistical mapping analysis used to analyze 

these neuroimaging data.  These techniques must correct for multiple comparisons and thus 

are most sensitive to brain areas which demonstrate large differences in activation between 

conditions.  Often, multiple comparison corrections are based on spatial clustering, thus biasing 

the results toward contiguous arrays of activated voxels.  The decoding of single channel data 

shown here demonstrates that the information from single sensors in insufficient to provide 

the same accuracy obtained when utilizing all sensors together, but that a large number of 

sensors contribute small amounts of information.  This is consistent with the idea of a 

distributed representation of semantic knowledge, and may partly explain why statistical 

techniques that are most sensitive to large, concentrated effects may yield variable results if 

the distribution of information is instead widespread and subtle. 
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The SVM weights from our recordings are generally consistent with these previous 

imaging results, however, several important differences exist.  The MEG data suggest that the 

bilateral anterior temporal, bilateral inferior frontal, and left parietal regions contribute to non-

living object category representation from 400-500ms.  Frontal activity sensitive to object 

category has been mainly observed the left hemisphere.  There is growing evidence that the 

anterior temporal lobes play a crucial part in the representation of semantic knowledge, and 

the large SVM weights observed in this chapter are consistent with this hypothesis (Patterson 

et al., 2007, Lambon Ralph et al., 2009, Lambon Ralph et al., 2010).  I will further explore the 

role of the anteroventral temporal lobe in semantic representations in Chapter III. 

Also consistent with previous results, left inferior temporal-occipital SVM weights 

specific for living objects are apparent from 400-500ms, but early 200ms non-living object-

specific weights are also present in the same area.  Activation to inanimate objects has not 

previously been seen in left inferior temporal-occipital cortex via functional neuroimaging.  

This finding suggests that a single brain area may respond to living and non-living categories at 

different latencies, but more focal intracranial recordings may be necessary to further 

substantiate this hypothesis and will be explored in Chapter III.   

Utilizing a recording modality with sufficient time resolution, and an analysis technique 

designed to handle high-dimensional data, allows for the discrimination of such time-separated 

effects.  In contrast, the temporal blurring in fMRI and PET may only allow detection of the 

larger or more prolonged effect.  This may explain discrepancies in previous imaging results; it 

is possible that the particular cognitive demands of each experimental task may elicit varying 

latencies of activity that manifest themselves differently in low time-resolution neuroimaging 

data.   
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Furthermore, while the N400 event related potential (ERP) is known to be modulated 

by various semantic effects (Kutas and Hillyard, 1984, Kutas and Hillyard, 1980, Holcomb and 

Neville, 1990), our results suggest that earlier components (possibly as early as 200-300ms) 

may also contribute to the encoding of object category.  This is especially pronounced in left 

inferior temporal-occipital sensors at 200ms when classifying living versus non-living objects 

in both visual and auditory modalities. 

The results presented here also suggest a potential structure to the underlying 

representation of individual words.  Because extracranial electrodes record the activity of large 

networks of concurrently active neurons, it is possible that the word-specific responses 

observed in our data are the superposition of many specific neural responses to lexico-

semantic features of each word, as others have suggested (Pulvermuller, 2005, Tyler and Moss, 

2001, Tyler et al., 2000, Caramazza et al., 1990).  For example, the neural response to the word 

“banjo” may be comprised of the sum of the specific activations related to how a banjo sounds, 

the visual characteristics of a banjo, the fact that “banjo” is a noun, and all the associative 

elements specific to the individual.  One might expect that concepts with large amounts of 

overlapping characteristics would incorporate similar neural networks, and thus would have 

similar macro-scale representations.  The confusion matrix analysis supports this idea by 

indicating that, while the classifier was able to decode individual words, fewer errors were 

made between living and non-living objects than within either of these semantic categories.  

This supports the intuitive notion that the representation of semantically related words may be 

more similar than the representation of words which are distant in semantic space.  Under this 

hypothesis, it is not surprising that the novel trials separate nicely into living and non-living 

object categories. 
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The results of this chapter also demonstrate the ability to extract semantic category and 

individual word representations from spatiotemporal features generated from noninvasive 

neurophysiology.  The successful inter-modal classification shows that our machine-learning 

models are able to extract semantic information that is not specific to a single sensory 

modality.  Not surprisingly, the cross-modality decode performance was lower than single 

modality performance; this may be partially due to differences in sensor placement and 

cognitive state between performance of the SV and SA tasks, often separated by months. 

Despite the variability in recording conditions, inter-subject classification also 

performed significantly above chance levels, suggesting that the representations of various 

objects, concepts, and semantic categories may be fairly consistent across individuals.  

However, it is important to note that the generalized decoder performs far worse than the 

subject-specific decoders.  Variable electrode placement, variable cortical language-related 

representations, or both may account for this.  Potential intersubject variability often decreases 

the sensitivity of traditional statistical mapping techniques used in imaging studies.  Subject-

specific decoding analyses, like the one presented in this chapter, overcome this by training and 

testing on a subjects own data. 

A few other studies have attempted to decode word processing information from 

electrophysiology (Suppes et al., 1997, Suppes and Han, 2000, Suppes et al., 1999).  These 

studies utilize specifically chosen single channels of EEG.  The minimum-squared-error 

classifiers they used were therefore appropriate for decoding these low-dimensional data.  In 

our case, however, feature vectors capture the entire spatiotemporal dynamics of each trial, 

and thus machine-learning techniques which are robust to high-dimensional data were 

necessary.  We achieved higher average accuracies after averaging 5 trials than these previous 
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studies have reported after averaging 10 trials (Suppes et al., 1997).  In another study, 

Gonzalez Andino et al. (2007) also utilized SVMs to decode multichannel EEG recordings 

related to word and image processing.  While the reported accuracies are impressive, the 

authors perform discrimination between distinct classes of stimuli (written words, 

pseudowords, line drawings, and scrambled images), rather than the more difficult task of 

decoding conceptual categories within a single stimulus modality. 

While language information was extracted from both EEG and MEG recordings, MEG-

based features yielded significantly higher accuracies.  This differential accuracy of MEG versus 

EEG may be simply due to increased numbers of sensors in the MEG modality.  However, 

despite the lower performance of the EEG features, combining EEG and MEG features improved 

performance over either recording modality alone, indicating that the information provided by 

EEG and MEG is not completely redundant.  This suggests that neither recording modality is 

strictly superior to the other, and that EEG and MEG each provide unique information 

regarding neural processes.  This notion is supported by widespread evidence that MEG and 

EEG are sensitive to different neurophysiological processes (Cuffin and Cohen, 1979, Wolters et 

al., 2006, Cohen and Cuffin, 1983, Huang et al., 2007, Dehghani et al., 2010).   

While we have demonstrated that support vector machines are able to extract 

distributed language information from EEG and MEG recordings, not all multivariate 

classification techniques are equally successful.  A naïve Bayes classifier performs significantly 

poorer than the SVM, suggesting that analysis of EEG and MEG data requires algorithms which 

are robust against overfitting, and can handle high-dimensional data. 

The use of this decoding analysis not only provides insight into the nature of distributed 

language processing, but also has implications for the development of a language-based 
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neuroprosthesis.  Machine learning algorithms, such as SVMs, can be trained on a patient’s own 

data, making individual variability inconsequential.  Furthermore, SVMs are robust to high-

dimensional data, allowing for successful decoding broadly distributed semantic 

representations. 

It is important to note, however, that the results presented here are extremely 

preliminary with regard to the development of a practical communication prosthesis.  Various 

practical barriers must be overcome before a language prosthesis is viable.  The tasks used 

here are language comprehension tasks while a language prosthesis involves language 

production.  However, in most models of language processing, the same underlying semantic 

representations of each of word are activated in both production and comprehension (Martin, 

2003, Dell and O'Seaghdha, 1992, Patterson et al., 2007, Indefrey and Levelt, 2004).  We have 

demonstrated that the representations we are decoding are supramodal, suggesting that 

semantic content is a major source of information in these recordings.  This semantic 

representation is the desired decoding target for a language prosthetic device, so utilizing these 

language comprehension tasks as an initial pass in decoding analysis is not unreasonable.  

Furthermore, others have reported an ability to decode the motor commands associated with 

articulation, and we believe incorporating semantic information, as seen in this chapter, may 

greatly benefit such efforts (Kellis et al., 2010, Guenther et al., 2009).  This idea is explored 

briefly in Chapter V. 

An algorithm which narrows the search space of possible words by first determining 

various word properties (grammatical class, semantic category, visual attributes, etc.) before 

decoding individual concepts may require much less training and provide an extensible 

classification algorithm.  We have shown that this is possible with a hierarchical decoding 
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framework, and that performance improves as a result.  The hierarchical framework presented 

here would allow for the decoding of a large library of concepts given the appropriate features 

to sequentially divide the search space.  For example, concrete nouns and verbs produce 

different patterns of synchrony in EEG recordings (Weiss and Mueller, 2003), making 

coherence features a logical choice for discriminating this grammatical distinction.  Given an 

adequate number of such distinctions, more realistically sized vocabularies may be utilized.  

The inclusion of a probabilistic syntactic/semantic language model, such as those used in 

automatic speech recognition (Baker, 1975), may further assist in narrowing the search-space 

and facilitate improved communication when moving beyond the decoding of single words.  

While, in general, imposing hard constraints on a learning algorithm reduces its flexibility and 

potentially prevents it from examining all pieces of data simultaneously, in this case, the 

hierarchical framework presented here can help to deal with limited amounts of data and 

provide extensibility.  A variety of other methods may be used to combine multiple classifier 

models, including using meta-classifiers that take as input the discriminant scores of a 

“committee” of other classifiers to make a final decision. 

The decoding analyses used in this chapter allow for the study of distributed, but 

potentially subtle, representations of semantic information within the human cortex.  These 

multivariate techniques offer advantages over traditional univariate statistical mapping 

analyses.  We have shown that high-dimensional machine-learning techniques, in conjunction 

with EEG and MEG recordings, provide insight into both spatial and temporal aspects of 

language processing.  Furthermore, the ability to decode living/non-living category or 

individual words between subjects and stimulus modality suggests that these representations 

are consistent and supramodal.  We have also shown that utilizing word property information 
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in an informed manner to decode individual words provides a potential framework for 

decoding larger libraries of words or concepts. 

Given the recent evidence suggesting the importance of the anterior temporal lobes 

(ATL) in coordinating this distributed semantic information (Patterson et al., 2007, Lambon 

Ralph et al., 2010), consistent with the large anterior temporal SVM weights observed here, 

examining spatiotemporal aspects of processing during a semantic task in this area may be 

insightful.  While the broad spatial coverage of EEG and MEG is well-suited for the study of 

distributed representations, it is not ideal for the study of the anterior inferior temporal lobes 

at finer spatial scales.  In the next chapter, in order to investigate the semantic processing that 

occurs in the ATL, we shall move inside the skull and record from intracranial EEG electrodes. 
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III. EARLY SEMANTIC INFORMATION IN HUMAN 
ANTEROVENTRAL TEMPORAL LOBE 

1. INTRODUCTION 

While the previous chapter explored the distributed representations of semantic 

knowledge, in this chapter, we focus on one particular area that may be crucial for the 

coordination of this widespread information.  EEG and MEG provide excellent coverage of most 

of the cortical surface, however, they are unable to reliably record activity from the inferior and 

medial temporal surfaces.  Inferior temporal lobe is known to be a crucial part of the ventral 

visual stream for object recognition, and a portion of it may be equally important in the amodal 

representation of objects (Binney et al., 2010, Grill-Spector et al., 2004, Halgren et al., 1999, 

Haxby et al., 2001a, Mishkin et al., 1983).  In this chapter, intracranial recordings are used to 

record from anterior inferior and medial temporal cortices to examine the differences in 

representation of two important semantic categories. 

Evidence for selective effects of lesions on the ability to comprehend and produce 

words associated with living animals versus manmade objects has been reported since at least 

1946 (Nielsen, 1946, Warrington and Shallice, 1984, Warrington and McCarthy, 1983).  Deficits 

in production and comprehension of animal-related concepts are associated with lesions of the 

left inferior temporal and ventral occipital cortex, while deficits in naming and comprehending 

tools and manmade objects are associated with lesions of frontal premotor and posterior 

middle temporal gyri (McCarthy, 1995, Tranel et al., 1997, Mahon and Caramazza, 2009).  

Building on these findings, fMRI and PET studies have shown increased activity in lateral 

posterior fusiform gyrus and ventrolateral occipital cortex for animal versus tool stimuli (Chao 

et al., 1999, Martin et al., 1996, Hauk et al., 2008, Devlin et al., 2005), while manmade objects 
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evoke increased activation of middle temporal gyrus (Perani et al., 1999, Hauk et al., 2008) and 

medial fusiform gyrus (Chao et al., 1999, Devlin et al., 2005). 

The selective hemodynamic responses to pictures depicting objects versus animals in 

the ventral occipitotemporal cortex have been interpreted as examples of high-level visuo-

perceptual areas specialized for various categories of objects including faces and buildings 

(Martin, 2007, Kanwisher et al., 2001).  Some neuroimaging studies have found that this 

selective response to animals versus objects extends to the words that refer to them (Chao et 

al., 1999, Devlin et al., 2005), others, however, have not (Phillips et al., 2002, Price and Devlin, 

2003, Mummery et al., 1998).  Since the tasks where words are effective are thought to invoke 

elaborative processing, and the areas involved are also activated by visual imagery (Ishai et al., 

1999), the hypothesis has been advanced that this area is involved in structural, rather than 

semantic representations (Devlin et al., 2005). That is, in tasks which invoke extended 

processing of words, top-down projections from semantic areas are hypothesized to activate 

ventral occipitotemporal areas specialized for the perceptual processing of objects and animals 

(Devlin et al., 2005, Noppeney et al., 2006), whereas images activate this area in a bottom-up 

fashion (Mechelli et al., 2004, Mechelli et al., 2003, Noppeney et al., 2006).  Devlin notes that the 

posterior occipitotemporal lesions producing category-selective visual agnosia often spare 

general semantic knowledge concerning the same categories, implying that the region is higher 

order visual-perceptual rather than semantic per se (Arguin, 1996, Etcoff et al., 1991, 

Humphreys et al., 1997) 

This hypothesis predicts that words would evoke a relatively early and selective 

response in the semantic area in order to evoke the later, selective, feedback activation.  

Hemodynamic methods lack the temporal resolution to determine the latency of category-
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specific activity.  Here, we utilize intracranial EEG (iEEG) to study category-selective responses 

in anteroventral temporal lobe (avTL) to words referring to animals and manmade objects.  

Utilizing written and spoken words, as well as multiple tasks, allows for the exploration of 

supramodal, task-independent semantic representations.  Microelectrode and macroelectrode 

arrays provide the spatiotemporal resolution for the detection of early, potentially first-pass, 

category-specific activation in ventral temporal lobe. 

2. METHODS 

2.1. PARTICIPANTS 

Nine patients, five female and four male, at the Massachusetts General Hospital or Beth 

Israel Deaconess Medical Center with medically intractable epilepsy participated in this 

research while undergoing clinical evaluation using intracranial electrodes.  Patients were 

between ages of 17 and 65 and were all right handed.  As discussed below, patients were 

implanted with a variable number of depth electrodes as determined by a clinical team caring 

for the patients.  Patients were enrolled in this study under the auspices of local IRB oversight 

in accord with the declaration of Helsinki.  See Table III-1 for detailed subject information. 
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2.2. INTRACRANIAL ELECTRODES AND RECORDING 

Intracranial EEG (iEEG) recordings were obtained from up to 80 channels of clinical 

macroelectrode arrays.  Six or eight contact depth electrodes, manufactured by Adtech Medical 

(Racine, WI), were utilized to record from both medial and lateral cortical areas of the frontal 

and temporal lobes.  Contacts were platinum cylinders, 1.1mm in diameter and 2.3mm in 

length, with 5mm between the center of adjacent contacts. The decision to implant electrodes 

and the type, number and spatial configuration of electrode placement was determined entirely 

on clinical grounds.  iEEG was continuously recorded at 500Hz with band-pass filtering from 

0.1 to 200Hz.  These macroelectrode depth recordings were obtained from six of the nine 

patients. 

Intracranial macroelectrodes were localized by using a volumetric image coregistration 

procedure (Dykstra et al., 2012).  Using Freesurfer scripts 

(http://surfer.nmr.mgh.harvard.edu), the pre-operative T1-weighted MRI (showing the brain 

anatomy) is aligned with a post-operative CT (showing electrode locations), and both are 

transformed into Talairach coordinates.  Electrode coordinates were manually determined 

from the CT and also placed into Talairach space.  To visualize electrode locations, coordinates 

were plotted on the average Freesurfer pial surface (fs-average) and individual coronal MRI 

slices were obtained for each contact. 

The remaining three patients were implanted with linear arrays of microelectrodes 

capable of recording local field potentials (LFPs) and multi-unit activity (MUA) across the 

cortical layers.  These arrays were 3.5mm in length with 24 platinum-iridium contacts (40µm 

diameter) spaced 150µm apart.  Recordings from these laminar electrodes were obtained in 

dual bands: 2kHz sampling rate for field potentials, and 20kHz for unit activity.  The amplifier 
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utilized a bipolar electrode configuration to minimize noise.  For details of construction and use 

of these arrays, refer to Ulbert et al. (2001), Cash et al. (2009), Csercsa et al. (2010) and Keller 

et al. (2010).  In these three patients, post-operative T1 and T2 weighted MRIs were obtained 

with the electrodes in place.  Direct visualization localized the microelectrodes to the 

inferotemporal cortex (IT) in patient L1, perirhinal cortex (PR) in patient L2, and entorhinal 

cortex (ER) in patient L3 (Table 1).  Localization in the MRI, informed by the known laminar 

cytoarchitecture of the respective cortical areas, and confirmed and refined by determination 

of background activity (e.g., white matter and CSF have different amplitude local field 

potentials as compared to gray matter) permitted the individual contacts of each laminar 

electrode to be assigned to putative cortical layers (Ulbert et al., 2004a, Ulbert et al., 2004b, 

Halgren et al., 2006, Fabo et al., 2008). 

2.3. ANALYSIS 

Averaged local field potentials (LFPs) were computed for all macroelectrode recordings.  

Continuous signals from each iEEG channel were initially low-pass filtered at 30Hz and 

subsequently epoched from one second before to two seconds after stimulus onset.  Trials 

containing large artifacts were rejected using a predefined amplitude threshold, and trials 

containing epileptic discharges were rejected manually.  After alignment to stimulus onset, 

waveforms from all channels were baseline corrected using a 500ms pre-stimulus period.  

These preprocessing steps were performed within MATLAB, using the EEGLAB 6.03b toolbox 

(Delorme and Makeig, 2004). 

Gamma-band responses were also computed for macroelectrode recordings.  Power 

was first computed from 30 to 100Hz in 2Hz increments using a Morlet wavelet time-frequency 

analysis.  The number of wavelet cycles was increased linearly from 3.6 to 12 as frequencies 
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ranged from 30 to 100Hz, providing a constant temporal and frequency resolution across the 

entire band.   The resulting temporal resolution (σt) was 30ms with a corresponding frequency 

resolution (σf) of 8Hz.  Spectral power at each frequency was normalized to the power in a 

500ms pre-stimulus baseline before averaging across the entire band to generate a single 

gamma-band event-related spectral perturbation waveform. 

From the laminar microelectrodes, population current source density (CSD) and multi-

unit activity (MUA) were estimated.  The CSD estimates the transmembrane current in each 

cortical layer, while MUA estimates changes in firing rate of the same population of neurons.  

CSD was computed as the second spatial derivative of field potentials after applying a 5-point 

Hamming filter (Ulbert et al., 2001).  Differential transmembrane current sources between 

conditions were displayed by plotting the subtraction of the mean CSD for objects from the 

mean CSD for animals.  When comparing between more than two conditions, the F-statistic 

from a one-way ANOVA of the CSD computed across individual trials was plotted as a measure 

of the difference between conditions.  MUA was computed by first filtering the 20kHz signal 

from each channel between 500 to 3000Hz and subsequently rectifying the signal.  This 

rectified signal was then low-pass filtered at 30Hz. 

To test the statistical significance of response differences between animal and object 

categories, a cluster-based non-parametric Monte-Carlo hypothesis test was used on LFP and 

MUA waveforms, gamma-band power, and CSD plots (Maris and Oostenveld, 2007).  This 

corrects for multiple-comparisons while preserving sensitivity in the time-domain.  All 

reported temporal regions of significant differences within averaged LFP, gamma waveforms, 

CSD or MUA plots are at a p<0.05 level. 



88 
 

To quantify and study the information content contained in the microelectrode 

recordings, support vector machine classifiers were trained and tested using features 

computed from CSD and MUA.  A two-class SVM was used with a radial-basis function kernel 

with parameters C=10 and γ=0.01 determined by cross-validation within the training set.  To 

evaluate the accuracy of the SVM with a given set of features, 10-fold cross validation was 

performed.  Extracted features included averaged CSD and MUA for each channel within a 

specified window.  Depending on the analysis, various sizes and numbers of windows were 

used.  For example, for quantifying information in time, a single sliding window, or a set of 

cumulative windows, were used to train and test the SVM at a number of latencies. 

To study the firing of single-units in the microelectrode recordings, signals were high-

pass filtered at 250Hz, and a threshold was automatically chosen as 4 times the standard 

deviation of the signal.  1600ms of action potential waveforms that crossed the threshold were 

extracted, and manually clustered in the 2D space defined by the first two principal 

components.  Filtering, thresholding, and spike sorting was performed using Offline Sorter 

(Plexon, Dallas TX). 

2.4. LANGUAGE TASKS 

All participants performed a language task involving written words (SV) while two 

participants also performed an auditory-word version (SA) of the same task.  These tasks 

presented words referring to animals or objects.  To require access of semantic information of 

these words, the subject was asked to press a button if the object being referred to was larger 

than a foot in any dimension.  These tasks are described in detail in Section II.2.2. 
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A word memory task (WM) was also performed on the three subjects implanted with 

microelectrode arrays. Subjects were first asked to remember a list of 10 words, each 

presented 3 times.  During the experiment, words were visually presented for 300ms with a 

stimulus onset asynchrony of 2000ms.  Subjects were asked to press a button whenever any 

word from the initial list was visually displayed.  The target words were shown 12 times each 

(for a total of 120 trials) while 120 novel words were displayed only once over the course of 

the experiment.  Words were either animals, manmade objects, or abstract nouns (e.g. 

“respect”, “honor”). 

Patient D5 performed a picture naming task (PN) in which he was shown pictures 

corresponding to concrete objects in one of eight categories: dogs, cats, roses, trees, balls, bats, 

cars, and boats.  These images were displayed for 300ms on screen and subsequently 

extinguished.  After 450-550ms, a go cue would be displayed on the screen and the subject 

would be required to say the category of the picture.  All images were only shown once and 

were normalized for intensity and contrast. 

Finally, patient L2 also performed an abstractness judgment task (DI) in which the 

subject was asked to view visually presented words and respond to any words that were 

“abstract” (e.g. love, honesty) rather than “concrete” (e.g. cat, house).  A total of 480 novel 

words were presented, with no repetition, and words referred to animals, objects, or abstract 

nouns. 



90 
 

3. RESULTS 

3.1. AVERAGED LFP DIFFERENCES BETWEEN ANIMALS AND MANMADE OBJECTS 

In general, averaged LFP waveforms in anteroventral temporal lobe showed large 

deflections at approximately 400-500ms (Figure III-1).  This is likely an intracranial 

manifestation of the well-studied scalp N400 potential (Kutas and Federmeier, 2000, 

Marinkovic, 2004). 

Robust animal/object specific activity was observed in bilateral ventral and medial 

temporal areas in the averaged LFPs of the six patients with macroelectrode recordings (Figure 

III-1, solid-lined plots).  Specifically, electrodes in or near collateral and occipito-temporal sulci, 

both anteriorly and posteriorly (relative to the span of recorded sites), demonstrated category-

specific activity.  Two electrodes near right hippocampus and parahippocampal gyrus also 

showed category-specific activity.  Significant differences between the two semantic categories 

were observed as early as 200ms and as late as 1500ms.  While category-specific differences 

were apparent at the 400-500ms peak in seven of the thirteen electrodes, six electrodes 

demonstrated differences within the slow return to baseline beyond 500ms.  In all but two 

cases, the right hemisphere electrodes in patient D3, the response to animals yielded more 

negative LFP waveforms than the response to manmade objects. 
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FIGURE III-1: VENTROTEMPORAL CATEGORY SPECIFICITY IN AVERAGED LOCAL 
FIELD POTENTIALS  

(center) Depth electrode coordinates from all patients in Talairach space plotted on the Freesurfer 
average surface.  Blue electrodes indicate temporal recording sites demonstrating significant 
averaged LFP differences, gray electrodes indicate temporal recording sites without significant LFP 
differences, and yellow dots indicate Talairach coordinates of either the center or maximally 
significant voxel for category-specific fMRI or PET responses as reported in previous literature.  
Coronal MRI slices of the temporal lobe are shown for each significant electrode location.  (sides) 
Averaged LFP waveforms (solid lines) or gamma power (dashed lines) for animals (blue) versus 
objects (red).   Electrodes in occipito-temporal sulcus (OTS), collateral sulcus (ColS), and 
hippocampus/parahippocampal gyrus (HC/PH) demonstrate category specificity.  Differences are 
seen largely starting at 400ms and in some cases, remain until 1500ms after stimulus onset.  In four 
subjects, gamma-band power (30-100Hz) was differentially modulated by animals and objects.  
Latencies of significant differences are seen as early as 300ms and as late as 1200ms. 

In the two subjects who also performed the auditory version (SA) of the size judgment 

task, D5 and D6, the electrodes which demonstrated written word category specificity also 

exhibited category-specific responses to spoken words.  The averaged LFP waveforms in both 
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task modalities exhibit similar morphology, and category-specific differences occur at similar 

latencies.  This suggests that these ventral temporal regions are supramodal with respect to the 

encoding of semantic category. 

Patient D5 also performed a picture naming task in which the subject was shown a 

series of images that corresponded to one of eight categories of objects: cats, dogs, roses, trees, 

balls, bats, cars, and boats.  High gamma power (HGP) in the left anterior occipito-temporal 

sulcus electrode demonstrated larger increases in response to images of manmade objects 

(balls, bats, cars and boats) and smaller changes in response to animals and plants (dogs, cats, 

roses and trees) (Figure III-2).  This is consistent with the category-specific differences 

observed in response to words at this electrode, and demonstrates that these category-effects 

are present for non-lexical stimuli that activate the same semantic information.  This category 

difference is less apparent in the LFP, but interestingly in both LFP and high gamma power, 

statistically significant differences occur at approximately the same latencies, although 

significant differences in HGP begin slightly later at 450-500ms as opposed to 350-400ms for 

the lexical stimuli.   
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FIGURE III-2: RESPONSES TO PICTURES ALSO DEMONSTRATE CATEGORY-
SPECIFICITY 

Category-specific differences are apparent in the visual and auditory word stimuli as seen 
previously, but are also apparent in picture stimuli in the high gamma power (HGP).  These 
differences are less clear in the LFP traces for picture stimuli, but the latency of category-specific 
differences are similar for both words and pictures. 

The location of the electrodes demonstrating category-specificity found here are further 

anterior than the posterior ventral temporal locations reported in hemodynamic studies of 

activation to pictures or words representing objects or animals (Thompson-Schill et al., 1999, 

Chao et al., 1999, Devlin et al., 2005, Perani et al., 1999, Noppeney et al., 2006, Price et al., 

2003a, Mechelli et al., 2006, Whatmough et al., 2002) (Table III-2).  While the Talairach 

coordinates of fusiform-specific category-selective activity reported in those studies ranged 

from y=-33 to -83 (mean = -58) in the anterior-posterior axis, the coordinates of the involved 

electrodes in this chapter ranged from y=-11 to -37 (mean = -24).  In four other studies, PET or 

fMRI category-specific activity was observed in response to pictures at the temporal poles 

(Mummery et al., 1996, Damasio et al., 1996, Devlin et al., 2002, Moore and Price, 1999).  This 

activity is further anterior than the recording sites reported here.  Category-specific activity in 

this portion of the ventral temporal lobe has not previously been reported by neuroimaging. 
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Because these category-specific findings are generally consistent across subjects 

despite the varying epilepsy etiologies and seizure foci (Table III-1), it is likely that the 

semantic processing observed in the avTL is representative of the normal function of this area. 
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TABLE III-2: TALAIRACH COORDINATES OF CATEGORY-SPECIFIC RESPONSES IN 
PREVIOUS NEUROIMAGING STUDIES 

Study Contrast Modality x y z 

Chao et al. (1999) animals>tool (viewing) fMRI 38 -56 -12 
 animals>tool (viewing)  -40 -59 -10 
 animals>tool (matching)  41 -53 -20 
 animals>tool (matching)  -35 -59 -20 
 animals>tool (naming)  37 -52 -20 
 animals>tool (naming)  -37 -55 -20 
 animals>tool (reading)  37 -55 -21 
 animals>tool (reading)  -40 -56 -21 
 tool>animals (viewing)  26 -48 -9 
 tool>animals (viewing)  -26 -47 -5 
 tool>animals (matching)  32 -65 -19 
 tool>animals (matching)  -26 -53 -17 
 tool>animals (naming)  26 -47 -16 
 tool>animals (naming)  -27 -50 -15 
 tool>animals (reading)  23 -59 -11 
 tool>animals (reading)  -32 -53 -17 
Thompson-Schill et al. 
(1999) 

living>nonliving (visual questions) fMRI -41 -53 -11 

 living>nonliving (nonvisual 
questions) 

 -45 -45 -8 

 nonliving>living (visual questions)  -41 -53 -11 
Perani et al. (1999) living>nonliving (discrimination) PET -44 -82 -32 
 living>nonliving (discrimination)  -46 -82 -20 
 living>nonliving (matching)  -28 -83 -16 
 living>nonliving (matching)  -36 -74 -12 
Whatmough et al. (2002) tools>animals fMRI 24 -64 -9 
 tools>animals  -17 -64 -12 
 animals>tools  40 -47 -17 
 animals>tools  46 -71 -5 
 animals>tools  -40 -76 2 
Price et al. (2003) natural>manmade fMRI -42 -62 -20 
 natural>manmade  40 -54 -14 
Devlin et al. (2005) natural>manmade fMRI -36 -52 -18 
 manmade>natural  26 -56 -10 
 natural>manmade  36 -66 -14 
Noppeney et al. (2006) tools>animals fMRI -24 -57 -15 
 tools>animals  -33 -33 -24 
 animals>tools  39 -60 -21 
Mechelli et al. (2006) artifacts>animal (relevance) fMRI -28 -52 -14 
 artifacts>animal (relevance)  32 -50 -16 

Mummery et al. (1996) natural>manmade PET -16 -10 -16 
 natural>manmade  22 4 -12 
Moore et al. (1999) natural>manmade fMRI -28 0 -14 
 natural>manmade  42 10 -18 
Devlin et al. (2002) living>manmade PET 24 8 -24 
 living>manmade  -30 6 -18 
Damasio et al. (1996) faces>animal+tools PET 46 1 -27 
 faces>animal+tools  -46 -4 -28 
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3.2. GAMMA-BAND SELECTIVITY 

In three of the subjects, category-specificity was found in gamma-band power (30-

100Hz) in medial and inferior temporal electrodes (Figure III-1, dash-lined plots).  In these 

subjects, gamma-band power increases at approximately the same time as the major deflection 

of the averaged LFP.  However, in several cases, these responses continue beyond the 400-

500ms peak in the field potentials, demonstrating that increased gamma power may continue 

even after the field potential returns to baseline.  Time-frequency plots of these channels 

indicate that the high-frequency activity observed here is a result of increases in frequencies 

between 30 to approximately 120Hz.  The most pronounced example of category-specificity is 

seen in subject D5.  In this subject, gamma-band category differences are clearly visible in both 

visual and auditory modalities of the size judgment task in the left anterior occipito-temporal 

sulcus electrode.  While significantly more gamma-power is visible in response to object trials, 

gamma-power increases for both semantic categories.  Significant differences begin at 300ms 

and last until 1200ms.  These latencies begin slightly earlier than the corresponding LFP 

differences observed in the same electrode. 

Gamma-band and LFP specificity, although spatially correlated, were not 

simultaneously present for every electrode.  In patients D1, D4 and D6, none of the channels 

showing LFP category specificity showed differential gamma-band activity.  In patients D2 and 

D3, one of the three electrodes that showed LFP specificity also showed gamma-band 

specificity.  In patient D5, one electrode showed only LFP specificity, one showed only gamma-

band specificity, and two showed specificity in both types of activity.  These data demonstrate 

that while LFP and gamma-band activity often occur together, they can also occur 

independently.  In all electrodes showing gamma band differences except for one, LFP 

differences were also seen, suggesting that gamma activity tends to be more focal. 
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3.3. MULTIUNIT ACTIVITY AND CURRENT SOURCE DENSITY 

In the three subjects with laminar microelectrode arrays, CSD plots illustrate robust 

task-related responses in IT, PR, and ER (Figure III-3).  Category-specific differences are 

observed in the size judgment (SZ), abstractness judgment (DI), and word memory (WM) tasks. 

This suggests that even in a task which does not require explicit access of visual-structural 

information (the word memory task), category-selective responses are still observed. 
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FIGURE III-3: LAMINAR MICROELECTRODE RECORDINGS DEMONSTRATE 
CATEGORY-SELECTIVE RESPONSES 

Current source density (CSD) and multi-unit activity (MUA) show category-specific differences 
between animals and manmade objects for the three implanted patients.  CSD was computed as the 
second spatial derivative of laminar recordings.  In CSD plots, outlined regions indicated 
statistically significant differences between animals and objects for the SZ task, or animals, objects 
and abstract nouns in the WM or DI tasks (p<0.05).  ‘ani-obj’ plots were generated by subtracting 
the mean CSD for objects from the mean CSD for animals.  Plots of the F-statistic from a one-way 
ANOVA indicate differences between three conditions (object/animal/abstract) for the WM or DI 
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(Figure III-3 continued) tasks.  In MUA waveform plots, shaded regions indicate time-points 
with statistically significant differences.  (L1) The right IT electrode shows a layer IV sink beginning 
at 160ms that is modulated by semantic category in both SZ and WM tasks.  (L2) In the right PR 
electrode, the first sink occurs around 100ms in layers IV/V in all three tasks.  Category-specificity 
is seen in these same layers beginning as early as 150ms.  Differential MUA responses are seen in 
deeper layers and demonstrate animal-specific increases in firing beginning as early as 200ms.  
(L3) In the left ER electrode, an initial layer V/VI sink is present beginning as early as 100ms in the 
SZ task and around 200ms in the WM task.  Category-selectivity is present in deeper layers at 
130ms and more superficial layers later. MUA responses for the WM task demonstrate animal-
specific increases in firing. 

In the inferotemporal electrode in patient L1, activation begins with a sink in putative 

layer IV with a concurrent source in layers II/III peaking at 160ms in both SZ and WM tasks.  

Category-specific differences are seen within this first layer IV sink starting at 150ms, and 

again at 900ms in both layer IV and upper layers.  This difference can be characterized by a 

larger layer IV sink in response to animals.   

In the right perirhinal cortex electrode in patient L2, an early sink is again present in 

putative layer IV beginning at 120ms and peaking at 150ms followed by a superficial layer 

II/III sink at around 500ms for the SZ task.  Category differences are observed within this first 

activation in layers IV/V starting at 150ms, and are again characterized by a larger sink in 

response to animals.  Early responses to the WM and DI tasks are very similar in terms of 

laminar distribution, latency, and category-specific difference. 

Patient L2 also yielded reliable multiunit activity for SV and WM tasks.  Robust 

increases in MUA are apparent in layers IV and V with clear differences between animals and 

objects.  This increase in unit-firing implies that the early layer IV/V sink in the CSD is 

excitatory in nature.  The MUA response to animals is significantly larger than the response to 

manmade objects with differences beginning around 200ms.  Similarly, in the WM task, the 

MUA response to animals was significantly larger than the response to objects or abstract 

nouns, but no difference was found between these latter two categories (p>0.05).  These 
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differences begin at 230ms.  In the abstract judgment task, the CSD response to animals was 

again larger than either man-made objects or abstract concepts, with no difference between the 

two latter categories, mirroring the MUA differences in the SZ and WM tasks. 

In the entorhinal cortex electrode in patient L3, activation begins with a sink in layer 

V/VI at 120ms followed by a sink in superficial layers II/III around 190ms.  In the ER electrode, 

differences are seen starting at 130ms in deeper layers with additional differences appearing in 

more superficial layers around 450ms.  These differences are quite prolonged, and last beyond 

1500ms. Robust multiunit activity was also observed in layers V/VI for the WM task in this 

patient.  As in the case of the perirhinal electrode, the activity in this entorhinal electrode 

increases over baseline, indicating an excitatory early sink.  Again, the MUA shows a larger 

increase to animals but no differences between manmade objects and abstract objects. 

In all cases, category-specific differences occur at the layer and latency of the first 

current sink in the CSD, suggesting that first-pass activation of these areas contains semantic 

information.  Furthermore, the layer IV location of this initial current sink in IT and PR is 

consistent with the typical layer where feed-forward activation arrives. This also suggests that 

the main source of this information is from longer-distance cortico-cortical afferents rather 

than local interneurons. 

3.4. DECODING OF SEMANTIC CATEGORIES 

To quantify the semantic information present in the microelectrode recordings, we 

performed a decoding analysis using Support Vector Machines as described in Section I.3.  

Similar to the feature extraction in Section II.2.4, the mean CSD or MUA values in four windows 
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from 100-800ms were used as the features for the SVM classifier.  Features from all channels 

were concatenated to form the final feature vector. 

Data from all three microelectrode patients allowed for significant decoding 

performance of animal or object category.  Accuracies approached 95% in patient L1, 85% in 

patient L2, and 70% in patient L3 when using only CSD features (Figure III-4).  When using 

MUA features in patient L2, accuracies reached 94%.  Also, as expected, with increasing 

numbers of averaged trials, the accuracy increased.  Most of the gains in accuracy could be 

achieved after averaging 10-15 trials.  Furthermore, by combining both MUA and CSD features 

in patient L2, decoding performance improved as seen with the combination of EEG and MEG in 

Section II.3.3. 

By examining the SVM weights, we are able to determine the CSD/MUA features that the 

classifier relied most heavily upon.  In the case of the perirhinal microelectrode (L2), deep MUA 

and CSD features provided the most information over a wide range of latencies.  The entorhinal 

electrode in patient L3 demonstrated that both deep and superficial layers provided the most 

information in the time window from 250-400ms, although in the earlier time window from 

100-250ms, the deeper layers provided the majority of the contribution to the classification.  

The IT electrode in patient L1 showed a scattered distribution of SVM weights, a predominance 

in deep layers early on followed by more superficial layers contributing to the classification 

later.  In general, the significant weights for all three microelectrodes reflect the observed 

patterns of animal/object significance seen in Figure III-3. 
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FIGURE III-4: DECODE PERFORMANCE USING FEATURES FROM LAMINAR 
MICROELECTRODE. 

Left) The decode accuracy as a function of the number of trials averaged when attempting to 
discriminate between animal and object categories.  Purple lines indicate performance when using 
CSD features, orange indicates the use of MUA features, and black indicates the use of both types of 
features.  Right) The SVM feature weights for CSD and MUA features reflect early contributions to 
the final classifier model. 

To quantify the time evolution of semantic information in the microelectrode 

recordings, we performed a decoding analysis of consecutive time windows (Figure III-5).  In 

the first case, animal or object category was decoded using cumulative 25ms time windows 
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such that by the end, the time windows spanned from 0 to 1000ms.  In the second analysis, a 

sliding 50ms window (overlapped by 40ms) quantified the information existing at particular 

time points.  Both cumulative time windows (Figure III-5A) and sliding windows (Figure III-5B) 

demonstrate that significant semantic information is present as early as 150ms in all three 

microelectrode arrays.  In the sliding window analysis, it is also clear that a cluster of 

information is present from approximately 150-350ms, and another cluster of information at 

500-600ms.  These plots also make it clear that the MUA features of the perirhinal electrode 

provide more semantic information than the CSD features. 

 

FIGURE III-5: DECODE PERFORMANCE OF CSD AND MUA FEATURES 
DEMONSTRATE EARLY SEMANTIC INFORMATION. 

A) The decoding of animal or object category from CSD (solid lines) or MUA (dashed line) features 
computed in cumulative 25ms windows.  The x-axis is the time of the last window used for the 
decoding (e.g. a time of 250ms indicates that 10 windows from 0ms to 250ms were used in the 
decoding).  The dash-dotted line indicates chance accuracy (50%) while the dashed line indicates 
the significance threshold (p<0.05).  B) The decoding of animal or object category using 50ms 
sliding window features.  Therefore, the x-axis value indicates the beginning of the window used to 
obtain the corresponding decoding accuracy.  Windows were shifted by 10ms (overlapped by 
40ms). 
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3.5. SINGLE UNIT CATEGORY SELECTIVITY 

Single-unit firing was identified in the perirhinal microelectrode recordings of patient 

L2 (Figure III-6).  A total of eight distinct units were identified across the 24 channels.  A raster 

plot of a representative unit is shown in Figure III-6A.  In this case, firing decreased after 

stimulus onset.  While mean firing rates were low (~0.1Hz), three of the eight units 

demonstrated statistically significant differences in firing for animal and object trials between 

0 to 300ms (Wilcoxon rank-sum, p<0.01) (Figure III-6C).  In all three cases, more spiking was 

observed in response to animals than objects, which is consistent with increased MUA 

response to animals in the same electrode. 

 

FIGURE III-6: PERIRHINAL CORTEX SINGLE UNIT FIRING RATES SHOW 
ANIMAL/OBJECT INFORMATION SPECIFICITY 

A) Single unit raster-plot and peri-stimulus time histogram for a representative unit.  B) Mean firing 
rate in five time bins for the same unit shown in (A) for animals (blue) and objects (red).  From 0 to 
300ms, the drop in firing rate for objects is much larger than the drop in response to animals.  C) 
Number of spikes per trial (sorted into animal and object trials) for each of 8 identified units.  
Percentages indicate the proportion of trials with at least one spike in which the stimulus was a 
word associated with an animal (blue) or manmade object (red).  Stars indicate the three units with 
statistically significant differences in firing between animal and objects trials (Wilcoxon rank-sum, 
p<0.01). 
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4. DISCUSSION 

While many studies have demonstrated category-specific hemodynamic activity to 

images in posterior ventral temporal areas, responses to words in these areas have been more 

variable, and little has been seen more anteriorly.  We report focal electrophysiological 

responses selective for words referring to animals versus objects in the inferotemporal, 

perirhinal and entorhinal sectors of the human anteroventral temporal lobe (avTL).  

Differences were observed both in measures sensitive to synaptic activity (LFP, gamma-band 

power, and CSD), and to unit-firing (MUA and single units) at multiple spatial scales. The 

timing, laminar location, and task correlates of this activity have implications for the 

mechanisms whereby more posterior ventral visual regions may show similar differential 

activation to the same stimuli. The avTL categorical responses may also contribute to stimulus-

selective cuing of the hippocampal formation for recall, and of the amygdala for emotional 

evaluation.  More generally, these findings provide additional evidence for a key role of avTL in 

semantic encoding. 

Semantic category selectivity is present in the initial responses recorded in IT and PR at 

latencies as early as 130ms.  Using CSD analysis (Ulbert et al., 2001, Einevoll et al., 2007, 

Pettersen et al., 2006), we identified the initial response as a sink in what was estimated to be 

middle cortical layers, the location where feed-forward afferents terminate (Van Hoesen and 

Pandya, 1975, Saleem et al., 1993, Saleem and Tanaka, 1996).  These afferents are excitatory, as 

confirmed by the concurrent increase of category-selective multiunit activity.  The principle 

source of feed-forward afferents to these structures in macaques arise largely in ventral 

occipitotemporal cortex (Mishkin et al., 1983, Suzuki, 1996, Suzuki and Amaral, 1994, Lavenex 

and Amaral, 2000, Martin-Elkins and Horel, 1992, Desimone et al., 1980).  In humans these 

structures could correspond to the various high-level visual material-specific processors that 
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generally show their first peak of activity between 150-200ms and lie just anterior to classical 

retinotopic cortical areas (Allison et al., 1994, Allison et al., 1999, VanRullen and Thorpe, 2001, 

Halgren et al., 1999). 

Indeed, it is possible that these afferents arise in the ventral occipitotemporal regions 

that respond selectivity to pictures of objects and animals (Liu et al., 2009, Chao et al., 1999, 

Chao and Martin, 2000, Devlin et al., 2005, Perani et al., 1999, Noppeney et al., 2006).  However, 

we consider this possibility unlikely because these occipitotemporal areas do not reliably 

respond to words referring to these categories, but rather, their response is task dependent 

(Devlin et al., 2005, Mummery et al., 1998, Phillips et al., 2002, Price et al., 2003a). 

In contrast, the category-selective responses to words reported here were present 

regardless of the task, including size, familiarity, and abstract/concrete judgment tasks. In fact, 

the word-memory task, which does not require explicit activation of an object’s visual form, 

also yielded category-specific responses in these areas.  Rather, our data suggest that avTL 

projections to ventral occipitotemporal cortex may cause it to display category-selective 

hemodynamic responses to words.  Strong feedback projections between homologous areas 

have been demonstrated in macaques (Lavenex et al., 2002, Van Hoesen, 1982, Suzuki et al., 

2000, Halgren et al., 1999).  This hypothesis posits that occipitotemporal areas encode visual 

structural, rather than supramodal semantic information, resulting in automatic bottom-up 

activation by images, consistent with the early latencies reported by Liu et al. (2009).  

However, category-specific activation to words would only be observed in this area during 

tasks which required a full instantiation of that item’s structural form.  This interpretation is 

consistent with that proposed previously by Devlin et al. (2005) based on fMRI and 

neuropsychological results.  MEG studies have also shown that more anterior areas in the 
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ventral stream provide feedback to ventral occipitotemporal areas after first pass processing of 

pictures to participate in the successful identification of visual objects (Bar et al., 2006), 

especially when precision is required (Clarke et al., 2011).  Feedback projections arise in 

infragranular pyramidal cells in deep cortical layers.  The current work recorded sustained 

activity in deep layers of avTL sites, also selective for semantic category, immediately after the 

feedforward peak in putative layer IV.  Thus, the results of this chapter demonstrate category-

specific synaptic and unit-activity in input layers at early latencies reflecting feedforward 

activation, and in deep layers at longer latencies reflecting the presumed source of feedback to 

ventral occipitotemporal areas.  The large animal-object SVM weights seen in Chapter II at 

posterior temporal-occipital sensors around 400ms may be an extracranial manifestation of 

this feedback processing in visual structural areas. 

Figure III-7 illustrates this model of category-selective perceptual and semantic 

information flow in the temporal lobe.  The implication that activation of perceptual processing 

areas by words is secondary to lexico-semantic encoding, as well as being non-obligatory and 

task-dependent, may be inconsistent with some of the stronger claims of embodied cognition 

(Martin, 2007, Mahon and Caramazza, 2009).  In our model, semantic category responses in 

avTL would reflect projections from the ‘visual word form area’ (VWFA) in the fusiform gyrus 

at the occipitotemporal junction (Dehaene et al., 2005, Crone et al., 2001b, Cohen et al., 2000, 

Halgren et al., 1994), and a possibly homologous auditory area in the superior temporal sulcus 

(Parker et al., 2005, Saur et al., 2008, Scott et al., 2000).  It may be possible to conceive of the 

category-selective responses reported here as a continuation of progressively greater 

abstraction, a general theme of the ventral stream (Mishkin et al., 1983, Ungerleider and Haxby, 

1994, Vinckier et al., 2007, Mesulam, 1998). 
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FIGURE III-7: MODEL OF LEXICO-SEMANTIC INFORMATION FLOW IN THE 
TEMPORAL LOBE 

Visual inputs (either pictures or written words) are preprocessed by low-level occipital areas.  
Visual information proceeds to material-selective visual form areas in ventral occipito-temporal 
cortex that represent the structural information present in an image, or the orthographic 
representation of a written word.  Category-specificity is possibly seen in this area to images due to 
the structural differences between living and non-living objects.  This information then proceeds to 
anteroventral temporal cortex in which lexico-semantic associations are processed.  Spoken word 
information proceeds along a similar pathway within the superior temporal cortices.  When the 
particular task requires access of visuo-structural information after a written or auditory word 
input is perceived, feedback pathways (blue arrows) activate ventral occipito-temporal cortices. 

In several sites, semantic category-selective responses were evoked by both visual and 

auditory words.  This implies that there may also be input to avTL from auditory areas 

analogous to the VWFA, consistent with projections from the superior temporal lobe to this 

region in macaques (Saleem et al., 2000, Seltzer and Pandya, 1978), MEG co-localization of 

N400 responses to auditory and visual words in avTL (Marinkovic et al., 2003), and activation 

of anterior temporal lobe (aTL) to written and spoken language in fMRI (Spitsyna et al., 2006).  

Unfortunately, we did not record responses to auditory words from the laminar microarrays, 

and so could not determine if these responses were feedback or associative.  In addition, the 

finding that images also evoke category-specific gamma responses in these same electrodes at 

approximately the same latency, or slightly later, is strong evidence that the information seen 



109 
 

in avTL is not visual-structural information.  In this case, our model would predict that this 

picture information activates these visual-spatial representations in posterior occipito-

temporal areas before amodal semantic information is sent anteriorly in a feedforward, rather 

than feedback, manner.   

These supramodal category-selective responses to words are consistent with proposals 

that the avTL plays a central role in semantic representations (Lambon Ralph et al., 2010).  

Anomias and semantic dementia can be caused by lesions of this area (Bozeat et al., 2000, 

Davies et al., 2004, Damasio et al., 2004, Patterson et al., 2007, Jefferies et al., 2009, Mion et al., 

2010), and the main generator of the N400, an event-related potential associated with lexico-

semantic associations, is found here (Smith et al., 1986).  Neuroimaging studies have often 

failed to find responses in aTL due to susceptibility artifacts or limited field-of-view (Visser et 

al., 2010b), however recent studies using distortion-corrected fMRI (Binney et al., 2010, Visser 

et al., 2010a), and rTMS (Lambon Ralph et al., 2009, Pobric et al., 2010a, Pobric et al., 2007, 

Pobric et al., 2010b) have provided further evidence for the importance of aTL in semantic 

processing.  Interestingly, these studies have shown category-general semantic processing in 

lateral aTL (Pobric et al., 2010a, Lambon Ralph et al., 2010), while the results presented here 

demonstrate category-specific effects in more inferior and medial areas.  This is consistent with 

the finding that semantic dementia patients generally do not show a category-specific deficit, 

however herpes simplex virus encephalitis patients, who have significantly greater medial 

involvement, do show such an effect (Lambon Ralph et al., 2007, Noppeney et al., 2007). 

Our recordings demonstrated strong modulation of gamma-band activity by category 

membership when retrieving knowledge about the objects or animals represented by words.  

Gamma-band power from 30-40Hz, recorded extracranially, has previously been associated 
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with feature binding and the semantic lookup of lexical items (Pulvermuller et al., 1996a, 

Pulvermuller et al., 1996b, Lutzenberger et al., 1994, Tallon-Baudry and Bertrand, 1999).  The 

data presented here are broadly consistent with a role for gamma activity in the semantic 

encoding of lexical items within the avTL.  Our results also suggest that gamma-band activity 

tends to be more focal than low-frequency LFP activity, as others have proposed (Linden et al., 

2010). 

The anteroventral, inferotemporal and perirhinal areas showing early semantic 

category-selective responses project strongly to entorhinal cortex, the gateway to the 

hippocampus (Insausti et al., 1987, Burwell, 2000).  O’Keefe and Nadel (1987) originally 

proposed that the human hippocampus maps semantic space in a manner analogous to the 

rodent mapping of physical space.  Indeed, human hippocampal neurons selectively fire to 

specific words (Heit et al., 1988) which may correspond to the firing of  rodent hippocampal 

neurons to specific places. More recently, the apparent raw material for constructing place cells 

has been identified as the grid cells of EC in rats (Hafting et al., 2005).  In a similar way, the 

firing of human entorhinal cells to specific semantic categories may provide the inputs used by 

hippocampal cells to select for individual words (Kreiman et al., 2000, Heit et al., 1988). 

In this chapter, we have also seen that SVMs allow for the robust decoding of semantic 

category information from microelectrode recordings.  In fact, because of the increased signal-

to-noise ratio of the microelectrode recordings, we are able to achieve much higher accuracies 

when decoding from single trials (~75% for microelectrodes versus ~60% for MEG).  Similar 

to the improved accuracy when combining EEG and MEG features, an improvement is also 

observed when combining CSD and MUA features.  In this case, while CSD and MUA and highly 

correlated, they carry slightly different information.  MUA contains information regarding that 
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output of neurons that, by definition, is super-threshold excitation.  CSD, on the other hand, 

reflect the depolarization of this population of cells and may contain a great deal of sub-

threshold information that is not necessarily transmitted further.  Therefore, the greater 

information content of the MUA signal is consistent with the idea that the firing rate of neurons 

is the main method of communication between cells and brain areas.  However, the CSD may 

contribute additional information because it reflects the firing rates of neurons that are 

upstream from the population in question, or simply because it provides another correlated 

measurement that, in a sense, helps increase the signal-to-noise ratio. 

Interestingly, the decoding using sliding windows demonstrated two peaks of increased 

information in the CSD/MUA features 150-350ms and 500-600ms.  While this early increase in 

accuracy likely reflects the first-pass semantic information coming into perirhinal, entorhinal, 

or inferotemporal cortices, the origin of the later peak is less clear.  It is possible that this later 

activity, that roughly corresponds to the CSD activity in the upper layers, is due to recurrent 

processing within these areas or feedback information from other areas. 

The results of this chapter demonstrate not only that category selectivity is present in 

avTL, but that this selectivity is present on the first pass of activity through this area.  This 

activity is seen in measures sensitive to both synaptic and unit-firing activity at multiple spatial 

scales.  The model proposed here suggests that avTL encodes semantic categories and provides 

this information to posterior ventral temporal areas when task demands so require, resulting 

in their variable category-selective hemodynamic response to words.  In addition, SVMs are 

able to robustly extract this information from the microelectrode recordings and verify that 

semantic information occurs early.  The results presented in this chapter are consistent with 

the idea of an anterior temporal semantic hub that coordinates the modality specific 
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information that is distributed across the cortex, although further research is necessary to 

support this claim.   

While the results in this chapter suggest that both auditory and visual information leads 

to amodal semantic information in avTL, whether the lexical inputs to this system are also 

amodal, or instead modality-specific, is unclear.  One may imagine that visual and auditory 

words have separate lexical representations that directly feed into this semantic system.  At the 

other extreme, auditory and visual information may need to activate a completely separate 

supramodal word representation before semantic information may be retrieved.  A number of 

intermediate possibilities also exist, but further study is necessary for distinguishing between 

these options.  Regardless, it is important to understand how low-level auditory and visual 

word stimuli are processed for lexical recognition and eventual input into the semantic system.  

Similar to the ventral visual object recognition pathway that maps visual words or images to 

meaning, potentially passing through the VWFA, the speech perception system is hypothesized 

to have an anteroventral “what” pathway that maps sounds to meaning (Hickok and Poeppel, 

2007).  In the next chapter, we will study the role of one stage of this pathway in the processing 

of speech stimuli. 
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IV. SPEECH-SPECIFIC TUNING OF SINGLE NEURONS IN HUMAN 
TEMPORAL LOBE 

1. INTRODUCTION 

While Chapters II and III examined the neural basis of semantic information, it is 

equally important to understand how low-level visual and auditory information, in the form of 

written and spoken words, leads to lexical representations and eventually interfaces with the 

semantic knowledge system.  The high frequency of obtaining temporal lobe coverage in 

epilepsy patients with implanted electrodes makes the study of the auditory word processing 

pathway potentially more fruitful than examination of visual word processing in ventral 

occipital regions.  Understanding the fundamental acoustic/phonetic building blocks the brain 

uses to construct words is of crucial importance to understanding speech processing, however 

little regarding these features is known.  Many important questions regarding the processing of 

speech can be raised.  For example, despite the recent evolutionary origin of language, are 

there neurons in the human brain that are tuned exclusively to speech that fail to respond to 

non-speech sounds that are equally complex in structure (e.g. environmental sounds)?  If so, 

are the receptive fields of such neurons best described in terms of phonemes or other linguistic 

constructs?  Is there evidence of columnar organization in speech-sensitive neurons?  Do such 

neurons respond to written words in a manner that reflects activation of phonological 

information?  Creutzfeldt et al. (1989a) have demonstrated that neurons in lateral temporal 

lobe respond to speech, however, many of these important questions are left unanswered. 

The neural processing steps used to recognize words from low-level acoustic features 

remain to be specified.  It is widely accepted that auditory processing is hierarchical in nature 

where relatively simple features are progressively combined to build more complex 

representations in downstream areas (Hickok and Poeppel, 2007, Rauschecker and Scott, 



114 
 

2009).  This pathway begins with tonotopic frequency tuning in primary auditory cortex 

(Bitterman et al., 2008, Howard et al., 1996), and in primates and other animals, it has been 

shown that downstream neurons are tuned to frequency-modulated sweeps and other complex 

spectrotemporal representations (Rauschecker, 1998, Rauschecker and Scott, 2009).  In 

humans, neuroimaging studies have suggested that this hierarchy applies to speech stimuli 

(Binder et al., 2000, Wessinger et al., 2001), however, hemodynamic activation is a population 

measure that does not determine the receptive fields of single neurons.  Further, the temporal 

resolution of hemodynamic activations does not permit conclusions regarding their temporal 

sequence, and thus the observed spatial hierarchy may not necessarily reflect sequential 

processing, but rather feedback or interactive activity. 

In addition, multiple hypotheses exist for the neuroanatomical organization of the 

speech processing stream.  The traditional view suggests that the posterior superior temporal 

cortex, near Wernicke’s area, is the main region involved in the representation of speech 

sounds (Steinschneider et al., 2011, Desai et al., 2008, Chang et al., 2010, Boatman et al., 1995, 

Crone et al., 2001a, Geschwind and Levitsky, 1968, Wernicke, 1874).  There is growing 

evidence, however, that anterior superior temporal cortex is important for phonetic processing 

of speech and is part of the auditory “what” stream, involved in mapping auditory inputs to 

meaning (Obleser et al., 2006, Obleser et al., 2010, Arnott et al., 2004, Zatorre et al., 2004, 

Binder et al., 2004, Scott et al., 2000, Warren et al., 2006, Scott et al., 2006). 

This chapter is a detailed examination of the auditory and language responses of a large 

number of single-units recorded from the left anterior superior temporal gyrus (aSTG) of a 31 

year old, right-handed male patient with epilepsy.  A 96 microelectrode array allowed for the 

recoding of single-unit extracellular action potentials in layer III/IV of auditory-responsive 
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cortex.  The patient performed a large battery of auditory and language tasks that required 

semantic (size) judgments of auditory words referring to objects or animals (SA), comparison 

of spoken words to vocoded-speech during picture-word matching (WN), passive listening to 

pure tones, environmental sounds, and time-reversed words, repetition of a set of spoken 

words, and participation in spontaneous conversation.  The patient also performed the visual 

counterpart of the SA task using written (instead of auditory) words (SV). 

2. METHODS 

2.1. PARTICIPANT 

The patient was a 31 year old right-handed male with medically intractable epilepsy 

who was admitted to Massachusetts General Hospital for semi-chronic electrode implantation 

for surgical evaluation.  The patient was left-hemisphere language dominant based on a WADA 

test, and was a native English speaker with normal hearing, vision, and intelligence.  His 

seizures were partial complex in nature and typically began in mesial temporal depth electrode 

contacts.  Resected tissue included left anterior temporal lobe (including the site of the 

microelectrode implantation), left parahippocampal gyrus, left hippocampus, and left 

amygdala.  The patient was seizure-free at ten months post-resection.  The patient gave 

informed consent and was enrolled in this research under the auspices of Massachusetts 

General Hospital IRB oversight in accordance with the declaration of Helsinki. 

2.2. ELECTRODES AND RECORDING 

A microelectrode array (Blackrock Microsystems, Salt Lake City, UT), capable of 

recording the action potentials of single units, was implanted in left anterior superior temporal 

gyrus.  This 4x4mm array consists of 100 (96 active) penetrating electrodes, each 1.5mm in 
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length with a 20µm exposed platinum tip, spaced 400µm apart.  Recordings were obtained by a 

Blackrock NeuroPort data acquisition system at 30kHz with bandpass filtering from 0.3Hz to 

7.5kHz.  The decision to implant the array in the superior temporal gyrus was based on clinical 

considerations; this was a region that was within the expected resection area and was, in fact, 

resected upon completion of the intracranial EEG (iEEG) investigation.  The region surrounding 

the array was removed en bloc and submitted for histological processing. Staining with 

hematoxylin and eosin revealed that the tips of the electrodes were at the bottom of cortical 

layer III, close to layer IV, and that the surrounding cortical tissue was normal. 

 In addition to this microelectrode, clinical intracranial macroelectrodes were 

implanted based on clinical reasoning alone, and covered a large portion of left lateral cortex 

including frontal, temporal, and anterior parietal areas.  Electrodes consisted of one 8x8 grid of 

subdural macroelectrode contacts (spaced 1cm apart), two 4-contact macroelectrode strips 

covering the left posterior-inferior temporal lobe, one 4-contact strip covering the left orbito-

frontal region, and two 4-contact strips over the left frontal pole (Adtech Medical, Racine, WI).  

iEEG was continuously recorded from these clinical electrodes at 500Hz with bandpass filtering 

from 0.1 to 200Hz.  Electrodes were localized using a volumetric coregistration algorithm to 

align the anatomical information of the pre-operative MRI with the electrode localization in the 

post-operative CT (Dykstra et al., 2012). 

2.3. AUDITORY TASKS 

The patient performed a number of auditory tasks designed to examine various aspects 

of speech and non-speech sound processing.  The auditory size judgement task (SA), described 

in Section II.2.2, was performed in which the participant was presented with spoken words 

corresponding to various objects, and was asked to press a button for objects that were larger 
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than one foot in any dimension.  Words were spoken by a male speaker, normalized in power 

and length (500ms), and presented with a 2200ms stimulus onset asynchrony (SOA).  800 

randomly ordered trials were evenly split between novel words presented only once for the 

entire experiment (400 trials), and repeated words which consisted of a set of 10 words 

repeated 40 times each.  The ten repeated words were “claw,” “cricket,” “flag,” “fork,” “lion,” 

“medal,” “oyster,” “serpent,” “shelf,” and “shirt.”  Half of the trials required a button press 

yielding a 2x2 balanced design.  Sounds were presented binaurally using Etymotic ER-1 

earphones (Elk Grove Village, IL).  A visual version of the SA task was also performed (SV) as 

described in Section II.2.2. 

A word-noise task (WN) was performed in which an object picture was presented 

followed by a spoken word or noise.  The picture (<5% visual angle) appeared for the entire 

trial duration of 1300ms, and the auditory stimulus, either a congruously or incongruously 

paired word or noise stimulus, was presented binaurally 500ms after picture onset.  Four 

conditions were presented in random order: picture matched-words, picture matched-noise, 

picture mismatched-words, picture mismatched-noise.  The participant was asked to press a 

button to matches.  Words were single-syllable nouns recorded by a female native speaker.  

Noise stimuli were band-passed and amplitude-modulated white noise made to match the 

acoustic structure of a corresponding word.  The power in each of 20 equal bands from 50-

5000 Hz, and the exact time versus power waveform for 50-247, 248-495Hz and 496-5000Hz 

were matched between the noise and word stimuli (Shannon et al., 1995).  Sounds (mean 

duration= 445±63ms; range= 304-637ms; 44.1kHz; normalized to 65dB average intensity) 

were presented binaurally through Etymotic ER-1 earphones. 
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Several sets of other sounds were also presented to the patient.  7.2 second sequences 

of randomly selected pure tones were presented to explore responses to simpler acoustic 

stimuli.  Tones were 100ms in length including 10ms raised cosine on and off ramps and were 

centered at 0.239, 0.286, 0.343, 0.409, 0.489, 0.585, 0.699, 0.836, 1, 1.196, 1.430, 1.710, 2.045, 

2.445, 2.924, 3.497, 4.181, or 5.000kHz. Tones were placed randomly in time and frequency 

within each band with an average within-band stimulus-onset asynchrony (SOA) of 800ms 

(range: 100-1,500 ms). Within each band, the exact frequency of any given tone was within an 

estimated equivalent rectangular bandwidth (ERB), where ERB=24.7*(4.37*fc+1), where fc is 

the center frequency of a given band, in kHz. 

In addition to the pure tones, the participant was presented the SA word stimuli and 

asked to repeat them out loud.  The subject began speaking, on average, 411±119ms after the 

end of the stimulus, and the SOA was 3000ms.  The auditory word stimuli from the SA task 

were also time-reversed and presented to the participant who was asked to passively listen.  

Words were presented with the same 2200ms SOA as the SA task.  Time reversal of words 

preserves the spectral content of the stimuli but changes the temporal structure of the sounds.  

A set of environmental sounds, natural (e.g. birds chirping, waterfall) and manmade (e.g. 

clapping hands, breaking glass), were also presenting to the patient.  A total of 30 

environmental sounds were presented 5 times each in pseudorandom order with a 3500ms 

SOA.  Finally, a spontaneous conversation between the patient and researchers was recorded 

using a far-field microphone.  The entire conversation was manually transcribed and all word-

boundaries were marked. 
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2.4. SPIKE SORTING AND ANALYSIS 

To extract spikes from the microelectrode recordings, continuous data was highpass 

filtered at 250Hz using a 6th-order Bessel filter, and an amplitude threshold of 4 standard 

deviations was used to choose action potential waveforms.  Extracted spikes were manually 

sorted using Offline Sorter (Plexon, Dallas, TX) in various feature spaces including principal 

components, peak-valley amplitude, and non-linear energy.  To allow for characterization of 

units that were present across experiments, multiple sessions were concatenated and sorted 

together.  Units were characterized as single or multi-units based on quality of sorted clusters 

and amplitude of waveforms.  For all subsequent analyses, both single-units and multi-units 

were included.  Putative inhibitory interneurons were identified based on waveform shape, 

full-width at half max, and valley-to-peak time (Bartho et al., 2004, Peyrache et al., 2012). 

To statistically determine and quantify the magnitude and latency of unit responses to 

particular stimuli, a non-parametric cluster-based statistical test was used.  Similar to the non-

parametric test utilized for testing continuous LFP and HGP data in Section III.3.1 (Maris and 

Oostenveld, 2007), statistics were computed for individual bins of peri-stimulus time 

histograms (PSTHs).  Specifically, the binned firing rates of a baseline period from -300 to 0ms 

before the stimulus are compared to each bin after stimulus onset using a two-sided T-test.  

Clusters of consecutive bins with bin-level significance of pbin<0.05 are found, and the summed 

T-statistic of each cluster is computed.  The null distribution of cluster-level statistics is 

computed by randomly permuting the bins in time and recomputing clusters 1000 times.  The 

cluster-level summed T statistics are compared to the null distribution and a cluster is deemed 

significant if the cluster level probability was pcluster<0.05.  The earliest bin in a statistically 

significant cluster is taken to be the response latency of that particular unit, and the average 

firing rate within that cluster is taken to be the magnitude of the response. 
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To quantify responses to phonemes, all phoneme boundaries were manually marked for 

all relevant stimuli.  Formants were computed using Wavesurfer 

(http://www.speech.kth.se/wavesurfer/) using 20ms windows overlapping by 10ms.  For each 

vowel phoneme, the midpoint was chosen to determine the characteristic formants for each 

vowel.  For analysis of phonological information in written words, the Carnegie Mellon 

University Pronouncing Dictionary was used to obtain phonetic transcriptions of words in the 

SV task (http://www.speech.cs.cmu.edu/cgi-bin/cmudict).  To obtain word frequency 

information, words from the SV task were looked up in the HAL corpus (Lund and Burgess, 

1996), resulting in a mean word frequency of 2849, median of 1422, and range of 2 to 37,798.  

To group words into two frequency classes, words below the median value of 1422 were 

grouped into the low-frequency class, with words above this median taken as the high-

frequency class. 

2.5. SPECTROTEMPORAL RECEPTIVE FIELD ESTIMATION 

To compute the spectrotemporal receptive fields of each unit, two sets of spectral 

features of the stimuli were used: power in linearly-spaced frequencies from 50Hz to 4kHz, and 

Mel-frequency cepstral coefficients.  Features were computed in 20ms windows overlapped by 

10ms for all stimuli in the SA and WN tasks.  To compute the Mel-frequency cepstral 

coefficients, melfcc MATLAB function was used to compute the cepstral coefficients between 

200Hz and 8kHz using a liftering exponent of 22.  The first 13 coefficients were extracted, and 

an additional broadband energy term, computed in 20ms windows shifted by 10ms, was 

concatenated to form the final feature vector.  MFCCs and band-power were computed for all 

auditory stimuli in the SA and time-reversed word tasks. 
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The method described by Theunissen et al. (2001) was used to estimate the STRFs for 

each unit.  This method compensates for correlations within the stimuli to generate the optimal 

linear filter, or impulse response, which best characterizes the relationship between stimulus 

features and firing rate.  To predict the firing rate of these units to words, firing rate was 

smoothed using a 120ms Gaussian kernel, and the STRFs were computed using the novel 

words in the SA task.  The resulting impulse response was convolved with the time-course of 

stimulus features generated for the repeated words, yielding a predicted PSTH. 

More specifically, if the impulse response, or STRF, of a given neuron is time-invariant, 

we can predict the response,  ̂, of the neuron to a given stimulus by, 

 ̂[ ]  ∑∑  [   ] [     ]

   

   

   

   

 

where h is the impulse response, s is the stimulus, index i is summed over N points in time, and 

j is summed over M spectral features.  If we combine the temporal and spectral indices, we can 

write this as  ̂[ ]      .  By minimizing 〈( ̂   ) 〉, the solution for h becomes      
     , 

where     is the stimulus autocorrelation matrix,     is the cross-correlation vector between 

the stimulus, s, and the response, r. 

2.6. DECODING 

To decode either repeated words or phonemes, a set of features was computed from the 

unit firing rates for each trial.  For the repeated word classification task, all units which 

demonstrated a statistically significant response to auditory words were used.  For each unit, a 

time window was computed in which the unit’s firing rate significantly changed from baseline.  

Subsequently, for each trial, the number of spikes occurring within each unit’s chosen time 
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window was used as one of the features for the classifier.  For phoneme decoding, this window 

was fixed from 50 to 250ms after phoneme onset. 

To examine changes in information over time, either sliding windows or cumulative 

windows were used to compute firing rates.  For sliding windows, the firing was computed in a 

50ms window for each unit beginning at 0ms (the window therefore covered 0-50ms) and after 

decoding the information in this window, the window was shifted 10ms forward.  For the 

cumulative window analysis, 25ms windows were used, and instead of shifting the window, 

subsequent non-overlapping windows were concatenated to the growing feature vector 

between each round of decoding.  This allowed for analysis of information in a time frame of 0-

25ms up to 0-1000ms. 

A Naïve Bayes Classifier (as discussed in Section I.3) was used to decode word or 

phoneme-specific information from the computed features.  The Naïve Bayes Classifier 

assumes that all features, f1, f2, …, fn, are independent which makes joint probabilities simply 

the product of the marginal probabilities.  Because the number of features used in the 

classification of these data was smaller than the number used in Chapter II, the choice of the 

Naïve Bayes classifier over SVM is reasonable.  Furthermore, because spike trains can naturally 

be treated as Poisson processes, using a Poisson distribution for modeling the probabilities was 

logical, intuitive, and simple.  To train the classifier, for each combination of unit and class, a 

Poisson distribution of spike counts was estimated (via maximum likelihood) allowing for 

computation of probabilities of observed firing rates.  Accuracies were estimated via 10-fold 

cross-validation. 
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3. RESULTS 

3.1. SINGLE UNIT SORTING RESULTS 

Units were manually sorted for each of the seven experiments.  Because experiments 

were performed over the course of 3 days, identified units varied from task to task.  For 

analyses where units were compared between experiments, sorting was performed 

simultaneously over all tasks of interest.  From the SA task, a total of 142 units were identified 

with 58 units characterized as likely single-units and 84 potential multi-units.  A total of 146 

units were identified from the WN task (63 single-units, 83 multi-units), 166 units during 

presentation of the time-reversed words (77 single-units, 89 multi-units), 144 units during 

presentation of pure tone sequences (77 single-units, 67 multi-units), 169 units during 

repetition of auditory words (79 single-units, 90 multi-units), 171 units during a spontaneous 

conversation (77 single-units, 94 multi-units), and 181 units during the SV task (86 single-

units, 95 multi-units).  Single-units demonstrated overall firing rates between 0.0004 and 11.1 

spikes/sec (mean = 0.37 spikes/sec).  17% of the identified single-units were putative 

inhibitory interneurons based on waveform shape, full-width at half max, and valley-to-peak 

time (Bartho et al., 2004, Peyrache et al., 2012).  The mean firing rate of these inhibitory cells 

was 1.96 spikes/sec as compared to the mean firing rate of excitatory single units at 0.17 

spikes/sec.  Responses were similar for single and multi-units, and for putative pyramidal cells 

and interneurons, and they are combined for subsequent analyses unless specifically indicated. 

3.2. SINGLE UNIT WORD SPECIFICITY 

The patient was first asked to listen through headphones to a set of recorded spoken 

words that corresponded to concrete objects or animals, and indicate if the item was larger 

than a foot in any dimension (SA task).  Half of the trials involved 400 words that were only 
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presented once during the experiment while the other half involved 10 words that were 

presented 40 times each.  It was immediately clear that many of the units present on the 

microelectrode array responded strongly to these spoken word stimuli.  Offline analysis of 

these responses demonstrated that a large number of units not only responded to the auditory 

word stimuli in general, but responded very differently to specific words.  Two examples of 

such units are shown in Figure IV-1.  These two cells demonstrated bidirectional monosynaptic 

connectivity (based on cross correlation and waveform shapes, Figure IV-1B) and strong word-

specific responses to the repeated words in the SA task.  Interestingly, the excitatory cell 

demonstrated narrower tuning than the inhibitory cell (Figure IV-1c).  Unit 6a, the putative 

inhibitory interneuron, demonstrated differences in firing rate to the 10 repeated words with 

the largest responses being to the words “claw,” “cricket,” and “oyster.”  For unit 6b, the 

putative pyramidal cell, while “claw” and “cricket” also evoked large responses, “oyster” did 

not. 
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FIGURE IV-1: UNITS DEMONSTRATE DIFFERENTIAL FIRING TO INDIVIDUAL 

WORDS. 

A) PSTHs and raster plots of units 6a (top) and 6b (bottom) in response to word stimuli.  B) 
Autocorrelograms for units 6a and 6b (top and bottom respectively), and crosscorrelogram for unit 
6b in relation to unit 6a (middle) suggesting bidirectional, monosynaptic connectivity between an 
inhibitory interneuron (6a) and pyramidal cell (6b).  C) Firing rates for units 6a and 6b to each of 
the 10 repeated words demonstrate robust word-specific firing.  D) PSTHs for unit 6a in response 
to three example words with corresponding stimulus spectrogram and waveform plots below show 
differences in magnitude and latency of response. 

In total, 66 of the 141 units exhibited a statistically significant response to auditory 

words in the SA task (p<0.05, Figure IV-2b).  59 units demonstrated an increase in firing to 

words while 7 showed a decrease in firing.  Baseline firing rates of responsive units varied from 

0 to 5.16 spikes/sec (mean=0.31 spikes/sec) with changes in firing rate from 0.03 to 12.4 

spikes/sec (mean=0.75 spikes/sec).  Peak firing rates ranged from 0.31 to 14.3 spikes/sec 

(mean = 0.50 spikes/sec).  Response latencies varied from 20 to 940ms (mean = 308ms) after 

word onset.  Of the identified units, 31 demonstrated differential firing to the 10 repeated 
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words in the SA task (p<0.05, Kruskal-Wallis, between 100-900ms).  No cells responded 

differentially to words referring to animals versus manmade objects (like the units reported in 

Section III.3.5), or to novel versus repeated words. 

While these units demonstrate differential firing to words, tuning to a number of 

different features may lead to this apparent word specificity.  At the lowest level, it is possible 

that these units simply respond to a particular frequency or sound intensity that is present in a 

subset of the presented words.  It is also possible that these units are responding to specific 

acoustic features of spoken words such as complex time-frequency components, combinations 

of formant frequencies, or even phoneme identity.  At the highest levels, these units may 

encode the auditory representations of full words.  We therefore tested the response of these 

units to a diverse set of auditory stimuli that spanned a wide range of acoustic complexity. 

3.3. SPATIAL ORGANIZATION OF RESPONSES 

The regular spacing of the 10x10 microelectrode array allowed the spatial organization 

of unit response properties to be examined.  Although the identified units were fairly evenly 

distributed across the array (Figure IV-2A), those responding to the auditory word stimuli 

were clustered on one side of the array (Figure IV-2B).  More specific properties such as 

response latency (Figure IV-2C) and word-specific response profiles also demonstrated spatial 

correlations across the array.  The correlation of responsiveness to words extended to 800µm, 

the correlation for response latencies was significant to 600µm, and the maximum correlation 

distance for 10-word response profiles was 400µm (Figure IV-2D).  Thus, more general 

response properties exhibit spatial correlations over larger distances than do more specific 

response properties.  Therefore, similar to the spatial arrangement of frequencies in primary 

auditory cortex, high order auditory information may also be spatially organized. 
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This analysis shows that the response profiles across words were similar for multiple 

units recorded by a given contact, and slightly correlated with the profiles of neurons recorded 

at adjacent contacts.  We also tested if the HGP responses at contacts showing correlated 

profiles showed significantly different response profiles to different words. This was found in 2 

of 11 such electrodes, thus indicating that the specificity of local cells for particular words can 

also be observed at the population level. 

 

FIGURE IV-2: UNITS DISPLAY SPATIAL ORGANIZATION FOR RESPONSE AND 

TUNING PROPERTIES. 

A) Number of identified units on each electrode of the array during the SA task, organized spatially.  
A total of 141 units were identified.  B) The number of units on each electrode which demonstrated 
a statistically significant response to word stimuli greater than baseline.  A total of 66 units 
responded to auditory word stimuli.  C) The distribution of response latencies across each channel 
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(Figure IV-2 continued) of the array.  The mean latency is shown for electrodes with more than 
one unit.  D) Significant spatial correlation of any response to words was found up to 800µm 
(green), for response latency up to 600µm (blue) and for individual-word selective responses up to 
400µm (red) (t-test, p<0.05).  Inset shows the anterior STG location of the microelectrode array. 

3.4. RESPONSES TO NON-SPEECH SOUNDS 

In order to test whether these units responded to non-speech auditory stimuli, the 

patient was asked to passively listen to sequences of 100ms pure tones ranging from 240Hz to 

5kHz.  None of the units showed statistically significant responses to these simple sounds at 

any frequency (p>0.05, Figure IV-3A). 

The patient also listened to auditory words and noise-vocoded speech that was matched 

with each word.  The noise-vocoded stimuli contained the same time-course of power in 3 

frequency bands as the matched word, but the fine-scale spectral information within these 

bands was replaced with amplitude modulated, band passed white noise. The task was to 

decide if the words matched a picture presented immediately prior. Three of the 60 units that 

responded to words also responded to noise-vocoded speech, however firing rates were 

significantly lower; on average signal-correlated noise elicited only 35% of the firing rate to 

words (Figure IV-3B).  This suggests that neurons in this area largely respond to 

acoustic/phonetic features specific to words, and not to the amplitude envelope or the rough 

matching between band-power found in noise-vocoded speech. 
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FIGURE IV-3: UNITS FAIL TO RESPOND TO NON-SPEECH SOUNDS. 

A) PSTHs for unit 6a to 100ms pure tones at 18 different frequencies demonstrate no changes in 
firing rate.  B) Unit 6a demonstrates a large response to auditory words but a much reduced 
response to word-matched noise. Local Field Potential waveforms are superimposed on the raster 
plot. C) PSTHs to each of the 10 repeated words for the SA task played forward (blue) or time-
reversed (red) demonstrates shifted latencies and relatively reduced responses in most cases.  D) 
Only unit 6a (black) and unit 36a (gray) demonstrated statistically significant responses to any of 
the presented environmental sounds (Monte-Carlo permutation test, p<0.05).  Unit 6a only 
responded to laughter while unit 36a only responded to a baby crying, both human vocal sounds.  
Magnitude of responses was significantly lower than the response to spoken words. 

The patient was then asked to passively listen to the same auditory words in the SA task 

that had been time-reversed.  Time-reversed words contain the same frequency information 

and acoustic complexity as the original words, however the temporal structure of the 

frequency information is changed and many of the sounds are not-phonetically possible.  Such 

stimuli have often been used as controls in hemodynamic studies of word responses (Howard 

et al., 1992, Perani et al., 1996, Price et al., 1996, Hirano et al., 1997, Binder et al., 2000, Crinion 

et al., 2003).  In essence, vowel sounds are relatively preserved while consonants (especially 

stop consonants) are often distorted.  A total of 17% of the identified units responded to time-
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reversed words (as opposed to 47% for normal words), and the magnitude of the response was 

significantly smaller.  The mean increase in firing for time reversed words was 0.21 spikes/sec 

(versus 0.75 spikes/sec for normal words).  For several units, responses were also significantly 

delayed in latency (Figure IV-3C).  The fact that some of these units respond to time-reversed 

words suggest that they are responding to complex auditory features rather than full words, 

however the smaller magnitude of the response suggests that they are tuned to meaningful 

speech sounds. 

While these control stimuli elicit relatively smaller responses than spoken words, they 

are artificially constructed synthetic sounds.  It is possible that the identified units respond 

equally well to naturally occurring environmental sounds.  A set of 30 environmental sounds, 

both man-made and natural, were presented to the subject.  Only two of the identified units 

demonstrated statistically significant responses to any of the stimuli (Figure IV-3D).  Unit 6a 

only responded to male laughter while unit 36b only responded to a baby crying.  Interestingly, 

both of these stimuli are human vocalizations. 

3.5. RESPONSES TO PHONEMES 

To explore what property of spoken words these units responded to, the first and 

second formants (F1 and F2) of all stimulus words were computed, and phoneme boundaries 

marked and labeled manually using Wavesurfer (http://www.speech.kth.se/wavesurfer/).  

Formant values at the midpoint of each vowel was correlated to the firing in response to that 

vowel from 50-250ms for all units.  Only unit 6a demonstrated significant correlations, with a 

moderate negative F1 correlation of ρ=-0.13 (Spearman, p<0.01) and positive F2 correlation of 

ρ=0.11 (Spearman, p<0.05). 
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Peri-stimulus time histograms (PSTHs) were generated for each of the phonemes 

present in the SA and WN stimuli.  While the firing rates of many units were too low to 

confidently infer a pattern of response across different phonemes, unit 6a clearly showed 

phoneme specific firing to several vowel sounds beginning at approximately 70ms and peaking 

at 100ms (Figure IV-4).  These phonemes included the high-front vowels [ɪ], [i], [oɪ], [oʊ], and 

[u].  Several consonants, such as [p], [b], [t] and [f] also demonstrate increases in firing around 

100ms.  Because the probability of a particular phoneme occurring in a specific location in a 

word is not independent from the surrounding phonemes (i.e. phonemes have significant 

correlations within words), some of the phoneme PSTHs, such as [ŋ], demonstrate increases in 

firing before 0ms.  This is likely due to the high probability of occurrence of specific preceding 

vowel-sounds (e.g. [ɪ] as in words ending with “ing”).  Overall, 22 units demonstrated 

significant responses to at least one phoneme, with 16 of the 22 units responding to more than 

one phoneme (Figure IV-4C).  Furthermore, while more units exhibited significant responses to 

consonants (Figure IV-4D), 9 of the 22 units responded to both consonants and vowels. 
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FIGURE IV-4: PSTHS DEMONSTRATE FIRING TO A SUBSET OF PHONEMES. 

A) PSTHs for unit 6a for each vowel phoneme approximately arranged in formant space.  B) PSTHs 
for each consonant.  C) Number of consonants or vowels each unit significantly responded to 
relative to baseline (p<0.05).  Each horizontal line represents a different unit.  Bars with an adjacent 
black dot indicate single (versus multi) units.  D) Distribution of units responding to each phoneme 
with vowels on the left and consonants on the right. 

The fact that many of these units respond to a number of different phonemes suggests 

that they may be tuned to particular combinations of consonants and vowels.  In fact, many 

previous studies utilize consonant-vowel (CV) pairs as stimuli for examining phonological 

representations, although the basis for doing so is unclear (Jancke et al., 2002, Liebenthal et al., 

2005, Obleser et al., 2010, Steinschneider et al., 2011).  By grouping vowels into high, mid, or 

low categories based on first formant frequency, and grouping consonants into nasals, plosives, 
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fricatives, and liquids, we examined firing rates to CV pairs (Figure IV-5).  While most units did 

not demonstrate a clear selectivity to any particular CV pair, several units showed moderate 

sensitivity to the combination of particular consonant and vowel classes.  This may be due to a 

tuning of units to these particular combinations of sounds, or, because phonemes are affected 

by their phonemic context, this relationship may be due to changes in phoneme properties 

when adjacent to different types of sounds. 

 

FIGURE IV-5: UNITS DEMONSTRATE MODERATE SELECTIVITY FOR CONSONANT-
VOWEL PAIRS 

Firing rates for unit 6a (left) and unit 24b (right) for given consonant-vowel pairs demonstrate 
increases in firing for high-plosive pairs (left) and high-nasal pairs (right). 

To explore whether the position of phonemes within the words affected the responses 

of the identified units, we calculated the firing rate for each unit from 50-250ms after onset of 

each phoneme.  Of the 22 units with significant responses to particular phonemes, 7 units 

responded preferentially to phonemes within the first syllable, 5 units responded preferentially 

to phonemes within the second syllable, and 10 responded equally well to phonemes within 

either syllable. 
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This relationship was further examined by plotting firing rate versus the latency of the 

phoneme after word onset (using only the phonemes the unit responds to).  Units 

demonstrated a variety of responses including a preference to phonemes at the beginning of 

the word, no phoneme timing preference, or a preference to phonemes near the end of the 

word (Figure IV-6A).  In these data, the first syllable of stimuli words was almost always 

stressed, meaning larger phoneme amplitudes were often found earlier in the word.  Phoneme 

power and firing rate for these units was also correlated in a predictable fashion; if the unit 

preferred earlier phonemes, it also fired more to phonemes with higher power (Figure IV-6B).  

Thus, it is difficult to disentangle the effects of phoneme power and phoneme position in this 

dataset. 

 

FIGURE IV-6: RESPONSES TO PHONEMES DEPEND ON AMPLITUDE AND 

TIMING WITHIN THE WORD. 

A) These units demonstrate a difference in firing depending on the position of the preferred set of 
phonemes within the word (unit 6a: ρ=-0.23, p<0.0001, unit14d: ρ=-0.001, p>0.05, unit 28d: 
ρ=0.19, p<0.0001).  B) Examples of the same three units which respond differently to varying 



135 
 

(Figure IV-6 continued) phoneme power (but always above perceptual threshold).  The left unit 
shows an increasing (but saturating) firing rate to louder phonemes (ρ=0.34, p<0.0001), the middle 
unit demonstrates relative insensitivity to changing phoneme power (ρ =-0.06, p>0.5), and the right 
unit shows a decrease in firing rate depending on phoneme power (ρ =-0.15, p<0.01).  In this figure, 
only preferred phonemes were used. 

3.6. SPECTROTEMPORAL RECEPTIVE FIELDS 

Formants and phonemes are well-established intermediate features between the 

acoustic signal and the word. We also attempted to characterize the units’ responses in a 

manner less constrained by a priori categories by computing spectrotemporal receptive fields 

(STRFs) for unit 6a.  The STRF computes the spectral and temporal stimulus that best drives a 

given unit assuming a linear relationship between firing rate and a chosen set of features.  In 

this case, two sets of spectral features of the stimuli were utilized to compute the STRFs: power 

within linear frequencies from 50Hz to 4kHz, and Mel Frequency Ceptral Coefficients (MFCCs).  

MFCCs are a commonly used set of spectral features in automatic speech recognition and 

robustly represent speech information on the Mel frequency scale (which approximates the 

logarithmic frequency representation of the human auditory system) (Davis and Mermelstein, 

1980).  Furthermore, MFCCs allow for a separation of the fundamental excitation frequency of 

vocal chords (source) from the shape and properties of articulatory chamber (filter).  In this 

source-filter model of speech, information that allows for discrimination of various speech-

sounds is present exclusively in the “filter”, while properties of the “source” are crucial in 

speaker-specific identification.  By utilizing the first 13 Mel Frequency Cepstral Coefficients, we 

discard speaker-specific information that is present in the higher coefficients. 

STRFs were computed using the 400 novel words from the SA task.  The resulting STRF 

computed with linear frequency features shows a complex combination of low (50-500Hz) and 

high (~2.5kHz) frequency components between 0 and 100ms contributing to the firing of unit 
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6a (Figure IV-7A).  Similarly, the STRF computed with MFCCs demonstrates a wide range of 

cepstral components, at a similar latency, contributing to the firing of this unit (Figure IV-7B). 

 

FIGURE IV-7: COMPUTED SPECTROTEMPORAL RECEPTIVE FIELDS (STRFS) 

CAN PREDICT UNIT FIRING RESPONSES TO WORDS. 

A) STRF for unit 6a computed for linear frequency features from 50Hz to 4kHz where 0 is the firing 
of the unit. Power after zero indicates the frequencies that predict the cell firing at the indicated 
delay. B) STRF for unit 6a computed using the first 13 Mel Frequency Ceptral Coefficients (MFCCs) 
and an energy term.  C) Predicted versus actual firing rates of unit 6a to the repeated words in the 
SA task.  MFCC features resulted in a better prediction (R2=0.42 vs R2=0.16).  D) Prediction of firing 
rates for reversed words using the STRF computed from MFCCs results in overestimation of firing 
rates with R2=0.14. 

To evaluate the accuracy of these representations, we attempted to predict the firing of 

this unit to the repeated words of the SA task by convolving the features generated from the 

stimuli with the computed STRFs (Figure IV-7C).  The STRFs generated using the MFCCs better 

predicted the actual firing rates to each of the 10 repeated words than the linear frequency 

representation (R2=0.42 and R2=0.16 respectively).  Despite this, both sets of features 

consistently underestimate the actual firing rates of this unit. 

The computed MFCC STRF was used to predict the firing to the time-reversed words 

(Figure IV-7D).  In this case, the predicted firing rates tended to overestimate the actual firing 
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rates, resulting in R2=0.14.  The fact that this set of acoustic features fails to adequately predict 

time-reversed words suggests that there are features present in words that are destroyed in 

time-reversal that are not being accounted for here. 

3.7. RESPONSES TO WRITTEN WORDS 

The patient also performed a visual word size judgment task (SV) that was equivalent to 

the SA task, but using written words presented on a computer screen instead of spoken words.  

In this task, 177 units were identified and 26% of these units demonstrated significant 

responses to the written words.  In total, 46 units were present in both the auditory and visual 

tasks of which 19 did not respond to either task, 18 responded to auditory words only, and 

nine responded to both visual and auditory words (Figure IV-8A).  All nine of the units that 

responded to both written and spoken words had longer response latencies to visual words 

than to auditory words with a mean delay of 170±31ms (mean±s.e.) (Figure IV-8C).  On 

average, auditory words elicited an 8.04-fold increase in firing over baseline while visual words 

elicited a 3.02-fold increase over baseline. 
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FIGURE IV-8: AUDITORY SINGLE UNITS RESPOND TO WRITTEN WORDS 

BASED ON PHONEMES IN PRONUNCIATION. 

A) PSTHs and raster plots for two units (24b and 28d) for presentation of written (top) or spoken 
(bottom) words.  B) Firing rates (between 0 and 1000ms) to words containing a given phoneme are 
significantly correlated between visual and auditory words (Spearman, Unit24b: ρ=0.54, Unit28d: 
ρ=0.56, p<0.01).  Solid line represents best linear fit.  C) Response latency to written words is 
delayed by an average of 170ms compared to auditory words (dashed-line).  Solid line represents 
no delay between modalities.  D) Correlation of firing rates between auditory words containing 
given phonemes between 0-1000ms and written words containing the same phonemes in 300ms 
sliding time windows.  Windows for both visual and auditory words begin at the time post-word 
onset indicated on the x-axis.  The onset of significant correlation for unit 24b was in the 175-
475ms time window, and peak correlation was from 330-630ms.  For unit 28d, significant 
correlation started at 325-625 and peaked from 450-750ms. 

To explore whether the responses to these visual words were due to phonological 

properties of the words, we correlated the mean firing rates from 0-1000ms in response to 

phonemes present in the auditory word stimuli to the firing rates to the same phonemes in the 

pronunciation of the written word stimuli.  The phoneme tuning properties of two of the nine 

units showed significant correlations with ρ=0.54 for unit 24b and ρ=0.56 for unit 28d 
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(Spearman, p<0.01) (Figure IV-8B).  The peak firing rates of all but one of the remaining units 

were below 1 spike/sec, likely leading to poor estimates of phoneme tuning; it is possible that 

these other units have consistent phonological response properties to both visual and auditory 

words that are hidden by insufficient statistical power.  Psychophysical studies have suggested 

that phonological recoding is stronger for low frequency words (Seidenberg, 1985).  By 

dividing words into low and high frequency words (using the median HAL frequency of 1422), 

this correlation was recomputed for each set.  For low frequency words, the correlation 

remained high at ρ=0.44 (unit 24b) and ρ=0.55 (unit 28d) (Spearman, p<0.01).  For high 

frequency words, the correlation became insignificant for unit 24b (ρ =-0.11, p>0.05) and 

dropped for unit 28d (ρ=0.34, p<0.05). 

To examine the latency of this correlation in these two units, the correlation coefficient 

was computed between the firing rate in response to auditory words from 0-1000ms 

containing given phonemes, to the firing rate in response to visual words containing the same 

phonemes in 300ms sliding windows starting from 0 to 700ms after stimulus onset (Figure 

IV-8D).  Significant correlations began 175-475ms and peaked at 330-630ms for unit 24b, and 

began at 325-625ms and peaked at 450-750ms for unit 28d.   

3.8. DIVERSITY OF UNIT TUNING ALLOWS FOR DECODING OF WORDS 

In order to characterize the amount and diversity of information present in the firing 

rates of the identified units, we attempted to decode the 10 repeated words from the SA task 

using unit responses.  We trained and tested a Naïve Bayes classifier after adding a single unit 

at each step with the goal of maximizing the accuracy (Figure IV-9A).  We achieved a peak 

accuracy of 39.25% using 28 units (chance accuracy = 10%).  Figure IV-9A demonstrates that 

most of the information gain can be achieved using only 10 units.  The decrease in performance 



140 
 

after more than 30 units are added is likely due to the fact that at above 30 units, there is little 

information gain with each additional unit, but a continual increase in the complexity of the 

classifier, leading to poorer performance. 

 

FIGURE IV-9: UNITS PROVIDE DIVERSE INFORMATION THAT ALLOWS FOR 

DECODING OF INDIVIDUAL WORDS AND PHONEMES. 

A) Accuracy of decoding 10 words (chance = 10%) obtained by sequentially adding firing rate 
information from one unit at a time.  The blue line is obtained by maximizing the accuracy at each 
step (i.e., selecting the most informative unit).  The red line demonstrates the accuracy when units 
are randomly added.  B) The decoding of either phonemes (blue) or discretized formant classes 
(red) demonstrate that these units provide more information on phoneme identity than formant 
space.  C) The word decoding accuracy using a cumulative set of 25ms windows and the top 5, 10, 
20, or 30 units identified by the analysis performed in panel A.  Decoding is effective beginning 
shortly after 100ms and rises rapidly. D) First vowel decoding accuracy using a 50ms sliding 
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(Figure IV-9 continued) window, from the repeated words (red) and from a matched set of new 
words (blue). Higher performance for repeated words indicates that much more than single 
phoneme information is being expressed. 

To explore the temporal evolution of information in this population of units, a classifier 

attempted to decode word information from cumulative 25ms windows starting at 0ms (Figure 

IV-9C).  Within 200ms, 34% accuracy (chance = 10%) is reached when using the top 5 units as 

determined by the above analysis.  Adding up to 30 units improves accuracies at longer 

latencies. 

The same neuron adding analysis was performed for decoding vowels and yielded a 

peak accuracy of 24.6% (chance = 13.6%) (Figure IV-9B).  To test whether location in formant 

space provided equivalent information, each phoneme was reclassified to the vowel that had 

the closest mean F1-F2 value in this formant space.  All classes were balanced such that they had 

the same number of instances before and after reassignment.  The accuracy of a decoder 

trained on this formant data yielded poorer accuracy at 22%.  This suggests that these neurons 

encode phoneme identity better than formant values. 

To test whether phonetic context affected the firing rates of the identified neurons we 

attempted to decode the first vowel in the repeated words in the SA task, or the first vowel in 

the new words.  A matched set of new words were chosen so that an equivalent number of 

instances of each vowel were present.  If these neurons only encoded information about the 

first vowel identity, equal decoding accuracy would be expected in both cases.  The fact that the 

classifier was able to decode the consistent context of the repeated words better than the 

variable contexts found in the new words suggests that these neurons are encoding more than 

single phoneme identity (Figure IV-9D). 
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3.9. SPEAKER INVARIANCE AND SPONTANEOUS SPEECH 

While it is clear that many of these units demonstrate strong responses to word-specific 

acoustic features, it is unclear whether they demonstrate invariance to the acoustic properties 

of different speakers.  The speaker for the SA stimuli was male while the speaker for the WN 

stimuli was female.  This is clearly seen in the differences in fundamental frequency of the two 

speakers: the fundamental frequency of the male speaker in the SA task was 113±15Hz 

(mean±SD) while the fundamental frequency of the female speaker in the WN task was 

165±35Hz.  The first two vowel formants were also different for each speaker (Figure IV-10).  

To check for speaker invariance, we analyzed the 37 words that were present in both the SA 

and WN tasks for units 6a and 6b.  The spiking rates between 100 and 900ms were computed 

for each word, and were significantly correlated for the 37 words (Pearson, ρ=0.38, p<0.05), 

however, paired t-test failed to demonstrate any statistical differences (p=0.96, mean 

difference = 0.032 spikes/sec). 
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FIGURE IV-10: FORMANT DIFFERENCES FOR MALE AND FEMALE SPEAKERS 

IN SA AND WN TASKS. 

Mean vowel first and second formant frequencies (F1, squares, and F2, triangles) vary between the 
male speaker of the SA task (blue) and the female speaker of the WN task (red).  Bars indicate 
standard errors of the mean. 

To further characterize speaker invariance, a 40 minute segment of spontaneous speech 

between the patient, his family, and the researchers was transcribed and all word boundaries 

were manually marked.  When looking at the 50 most commonly produced words, the profile of 

firing to each of these words was significantly correlated between speakers (ρ =0.41, p<0.01) 

while a paired t-test failed to indicate any significant difference in the firing rates between 

speakers (p=0.35). 

3.10. SELF-VOCALIZATION AUDITORY SUPPRESSION 

Previous studies have demonstrated a suppression of auditory responses to self-

vocalization (Flinker et al., 2010, Baess et al., 2011, Houde et al., 2002, Heinks-Maldonado et al., 

2005, Heinks-Maldonado et al., 2006, Creutzfeldt et al., 1989b).  During the repetition 

experiment, a total of 162 units were identified, of which 42 responded to external speech.  Of 

these 42 units, 7 showed no difference in firing to self-produced speech (Wilcoxon rank-sum, 
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p>0.05), 5 showed a reduced (but still significant) firing rate, and 30 showed no significant 

response to self-produced speech (Figure IV-11).  On average, the peak firing rate to external 

speech was 2.43 spikes/sec higher than to self-produced speech (range = 0.21 to 13.1 

spikes/sec higher).  This corresponds to an average reduction to self-produced speech of 65% 

(range = 11% to 100% reduction). 

 

FIGURE IV-11: VARIABLE AUDITORY SUPPRESSION DURING SELF-INITIATED 

SPEECH PRODUCTION. 

A) Representative PSTH and raster plots of auditory responses during self-initiated speech (red) 
versus external speech (blue) during the repetition task for an excitatory cell (left) and inhibitory 
cell (right).  Below, the averaged LFP and high gamma power (70-100Hz, bottom) for the 
corresponding electrodes demonstrate minimal changes to self-produced speech suggesting 
suppression in earlier areas.  B) Firing rates of responding units during self-produced speech 
versus external speech.  The unity line indicates no change in firing rate between the two conditions 
with points lying below the line indicating a reduction in firing during self-produced speech. 

Five putative inhibitory interneurons were present within the 42 units that responded 

to external speech.  All five units demonstrated a decrease in firing rate to self-produced speech 

relative to external speech (2.36 spikes/sec vs. 1.32 spikes/sec).  Additionally, averaged local 

field potential (LFP) of the corresponding electrodes demonstrate minimal responses to self-
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produced speech while showing large responses to external speech at all latencies (Figure 

IV-11A). 

4. DISCUSSION 

In this chapter, we characterized single units recorded from left anterior superior 

temporal gyrus that demonstrated highly selective responses to spoken words with little or no 

responses to pure-tones, environmental sounds, or vocoder-transformed speech.  Many cells 

fired specifically to particular words or subsets of phonemes, demonstrated spatial-

organization of tuning properties, and were suppressed in response to self-produced speech.  

Computed spectrotemporal receptive fields predicted responses to spoken words and a period 

of spontaneous conversation demonstrated invariance to speaker.  Some units showed 

correlated responses to phonemic properties of visual and auditory words. 

The classical model of the auditory language processing stream involves the posterior, 

rather than anterior, superior temporal gyrus; speech information is posited to initially activate 

primary auditory cortex in Heschel’s gyrus, and then move back towards Wernicke’s area as 

processing becomes more complex (Boatman et al., 1995, Chang et al., 2010, Crone et al., 

2001a, Desai et al., 2008, Geschwind and Levitsky, 1968, Wernicke, 1874, Arnott et al., 2004).  

The existence of single units in aSTG that are tuned to speech sounds suggests that this 

processing may be more distributed than initially thought.  Instead, processing of speech for 

semantic understanding may proceed in an anterior-ventral direction, as suggested by the 

dual-pathway model for speech processing wherein the aSTG is an early stage in the auditory 

speech-specific “what” stream (Rauschecker and Scott, 2009, Hickok and Poeppel, 2007, Saur et 

al., 2008).  In this view, the neurons reported in this chapter are likely analogous to 

inferotemporal (IT) cells within the ventral visual stream that respond to increasingly complex 
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visual objects (Tanaka, 1996).  Similar to these IT visual cells, the units described here also 

demonstrate spatial organization of selectivity (Fujita et al., 1992).  The “what” stream likely 

continues to anteroventral temporal neurons that fire differentially to words referring to 

objects versus animals (Chan et al., 2011a), and even to particular words (Heit et al., 1988).  

Thus, although highly and selectively responsive to spoken words, firing by aSTG neurons do 

not reflect semantic modulations.  Furthermore, macroelectrode electrocorticography (ECoG) 

recordings directly over the microelectrode site fail to show language-specific responses, 

suggesting that this activity may be very focal, engaging a limited neuronal population (Figure 

IV-12). Despite this, posterior temporal areas do show robust ECoG responses, and this may 

explain why speech-specific activation of aSTG has been relatively unseen when compared to 

pSTG activity in recording modalities with lower spatial resolution. 
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FIGURE IV-12: MACROELECTRODE GRID HIGH-GAMMA POWER FAILS TO 

SHOW WORD-SPECIFIC RESPONSES NEAR THE MICROELECTRODE ARRAY. 

High gamma power from 70-200Hz was computed over the macroelectrode grid for the words 
versus noise-vocoded words in the WN task (A) and for the 10 repeated words in the SA task (B).  
The largest responses are seen around posterior superior temporal lobe near Wernicke’s area (red 
arrows).  The white shading indicates areas that demonstrate significant differences between 
words and noise, or the 10 repeated words.  Macroelectrode contacts near the microelectrode array 
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(Figure IV-12 continued) (blue arrows) fail to demonstrate high gamma power responses, 
despite the robust speech-specific unit firing directly under these electrodes. 

The cells reported here demonstrate significant responses to specific subsets of 

phonemes, and in the most robust cell, to a subset of vowel sounds.  The observation that unit 

firing is invariant to speaker, regardless of differences in formant frequencies, F0, F1, and F2 

underlying the production of these vowel sounds, suggests that these units are tuned in vowel-

space rather than formant space.  Furthermore, the decoding of phonemes resulted in 

significantly higher accuracies than the decoding of F1, F2-derived classes.   

The results from the STRF analysis provide additional evidence that low-level acoustic 

features fail to fully characterize the response properties of these units.  Power in frequency 

bands is a poor predictor of firing rate when compared to MFCCs that model the phonetic and 

discard speaker-specific information in speech.  However, even the MFCCs fail to robustly 

predict the firing rate in time-reversed speech.  This may suggest that MFCCs do not completely 

capture some other high-level acoustic features of words, and that time-reversal destroys, or at 

least reduces the presence of, these features.  Phoneme identity is one such feature; time 

reversing the acoustic waveform associated with a phoneme, especially consonants, often 

produces a percept that is non-phonemic in nature.  It is possible that these units are tuned to 

high-level properties of phonemes that we are unable to completely characterize. 

Response latencies to words varied widely between the identified units, and in fact, 

different units demonstrated different levels of firing depending on the timing within the word 

at which the preferred phonemes occur.  Because most of the bisyllabic stimulus words were 

stressed on the first syllable, it is difficult to disentangle the effects of phoneme position within 

a word, and phoneme stress.  Despite this, one might imagine that a population of units which 
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respond to different sets of phonemes in different contexts/timings could serve as the building 

blocks by which any word may be represented. 

The current results also may be relevant to the long-standing controversy as to whether 

written words must activate their phonological representations in order to be understood.  One 

theory posits that written words have a direct access to meaning as well as an indirect access 

via phonological recoding (Seidenberg, 1985, Yvert et al., 2012, Coltheart et al., 1993).  This 

theory suggests that skilled readers reading high frequency words access lexical representation 

too quickly for phonological information to contribute.  In contrast, another model suggests 

that written words necessarily undergo phonological processing before lexical identification, 

regardless of word frequency or task demands (Frost, 1998).  Several studies have compared 

scalp ERPs to written words, pseudohomophones (nonwords that sound like an actual word), 

and other control nonwords (Braun et al., 2009, Newman and Connolly, 2004).  The differential 

response to pseudohomophones is taken to represent a conflict between orthographic and 

phonological information at the lexical level, and therefore the presence of ERP differences 

prior to 200ms has been taken as evidence for obligatory early phonological recoding of 

written words (Braun et al., 2009).  Despite this, the observed effects are quite small, several 

studies have failed to find them (Ziegler et al., 1999, Newman and Connolly, 2004) or estimate 

their latency as ~300ms (Niznikiewicz and Squires, 1996), and their localization is unclear.  

The visual word form area in the fusiform gyrus produces its major response at this latency, 

and it is highly sensitive to the combinatorial frequency of letters (Binder et al., 2006, Vinckier 

et al., 2007), raising the possibility that some signal could arise from this area, perhaps 

analogous to the automatic mismatch negativity commonly studied in the auditory modality 

(Näätänen and Picton, 1987). 
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While MEG constrained with MRI and fMRI has localized activity in the posterior 

superior temporal cortex to visual words beginning at around 200ms (Marinkovic, 2004, Dale 

et al., 2000), there is no evidence that this activity represents phonological recoding. 

Conversely, although fMRI identifies this general region as activated by written words in tasks 

that require phonological recoding (Fiebach et al., 2002), it is not possible to know if such 

activation is before or after lexical access.  In contrast to these previous studies, the finding 

presented here is a direct demonstration of phonological recoding: unit firing that is correlated 

between spoken auditory phonemes and phonemes present in the idealized pronunciation of 

visual words.  Lexico-semantic access for visual words is generally thought to occur by ~240ms 

(Halgren et al., 2002, Kutas and Federmeier, 2011).  In our data, the firing of one cell reflecting 

phonological recoding of written words began slightly before this time in the window 

beginning 175ms after word onset.  Furthermore, high-frequency words demonstrated 

reduced correlation between phonemes in visual and auditory words, presumably reflecting a 

smaller need for phonological recoding.  Thus, these limited data are consistent with the dual-

route hypothesis of phonological recoding, in that we demonstrate that neural activity with the 

expected characteristics occurs in the STG at a latency that may allow it to contribute to word 

identification.  However, it is possible that phonological recoding is not evoked by all words, 

since the auditory-visual correlation was greatly decreased for high frequency words.  

The use of the microelectrode array in this chapter allowed for the examination of 

spatial organization that previous studies have been unable to explore.  Interestingly, we found 

that nearby cells often had correlated response properties, but this correlation disappears at 

distances of over 1mm.  This may suggest that even in high-order processing areas that do not 

have a clear spatial or spectral “space” (such as orientation or frequency), nearby cortical 

columns perform similar processing tasks.  It is also important to note that more general 
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response characteristics (e.g. whether the unit responded to auditory word stimuli at all) 

showed broader spatial correlation than more specific response characteristics (e.g. 10-word 

response profile), which tended to exhibit narrower spatial correlations.  This is similar to the 

columnar organization of inferotemporal visual cells that demonstrate spatial organization of 

visual object selectivity (Fujita et al., 1992, Tanaka, 1996). The consistency of firing profiles 

across the set of words for different units recorded at a given contact could be reflected in the 

population activity (high gamma power) recorded by the same contact. 

Studies using PET, EEG, MEG and intraoperative microelectrodes have shown that 

auditory cortex is suppressed during self-produced speech, when compared to external speech 

perception, and it has been suggested that this is a result of speech-feedback monitoring (Baess 

et al., 2011, Heinks-Maldonado et al., 2005, Heinks-Maldonado et al., 2006, Houde et al., 2002, 

Tourville et al., 2008, Christoffels et al., 2007, Curio et al., 2000, Numminen et al., 1999, Paus et 

al., 1996, Creutzfeldt et al., 1989b).  These studies have suggested that this phenomenon occurs 

globally across auditory cortex, however units in primary auditory cortex of primates (Eliades 

and Wang, 2005) have demonstrated a diversity of responses to self-produced vocalizations.  

Flinker et al. (2010) have shown that ECoG recordings in humans demonstrate a varying 

degree of suppression across regions of auditory cortex.  In this chapter, we show that this 

variability in is present to an even smaller scale; single units within a 4mm2 area demonstrate 

variable amounts of suppression by self-produced speech.  Our additional finding that putative 

inhibitory interneurons also exhibit reduced firing, and that LFPs to self-produced speech are 

suppressed from their onset, suggest that the suppression begins at an earlier processing stage 

and that decreased local firing is due to decreased input. 
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It is important to note that these recordings come from the unique case of a single 

patient with epilepsy.  The cortical location containing the microelectrode was included in the 

final resection, and subsequent staining and histology failed to find abnormal pathology at the 

array site.  Furthermore, the patient’s seizures were found to start in medial temporal sites, 

making it less likely that aSTG was actively involved in seizure initiation.  However, we cannot 

rule out the possibility that medications or long-standing epilepsy affected the responses we 

recorded, or that other idiosyncrasies in this patient’s data exist that we could not assess. It is 

also possible that, despite the large number of tasks this patient performed, we failed to 

present a critical stimulus category. 

Taken together, these data suggest that the anterior STG contains a spatially-organized 

processing unit specialized for extracting lexical identity from acoustic stimuli, lying midway 

between acoustic input in medial Heschl’s gyrus and supramodal semantic representations in 

anteroventral temporal cortex.  This module encodes high order acoustic/phonetic information 

during the perception of both spoken and written words, suggesting the aSTG is involved in 

phonological recoding during reading.  Single units robustly represent perceptual phonemic 

information, and it is possible that a small population of cells, each encoding a different set of 

phonemes in different phonological contexts, could represent the acoustic form of a specific 

word. 
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V. CONCLUSIONS 

In this dissertation, we began by examining semantic representations from extracranial 

electro/magnetophysiological recordings.  We demonstrated that machine learning techniques 

could robustly decode both category and word-specific information from both EEG and MEG, 

and that this information was highly distributed across the cortical surface.  Furthermore, 

information was consistent across subjects as well as between presentation modalities.  

Interestingly, the ability to decode individual words surpassed the ability to decode the two 

semantic categories.  Several possibilities may account for this difference.  It is possible that 

animal/object category-specific information is localized to an area that is not well recorded 

through extracranial techniques, or that the features utilized for the decoding did not 

adequately capture this information.  Also, if semantic concepts are represented by the 

combination of features which define an object, then discriminating between individual words 

would potentially use many of these features to distinguish between the two concepts.  

However, the living/nonliving contrast is only one such contrast, potentially providing fewer 

distinguishing features and making it more difficult to successfully decode these two semantic 

categories. 

We subsequently proceeded to intracranial recordings that provide higher spatial 

resolution, and allow for the examination of structures that are more difficult to record from in 

EEG and MEG.  By using depth electrodes to examine differences in local field potential and 

gamma band power, we observed robust differences between animals and nonliving objects in 

anterior collateral sulcus and occipito-temporal sulcus.  These differences began at a latency of 

approximately 350-400ms and were observed in both the visual and auditory versions of the 

language task, suggesting a semantic basis for this activity.  The use of laminar microelectrodes 

allowed for the study of medial temporal structures and showed that the category-selectivity 



154 
 

was present in entorhinal cortex, perirhinal cortex, and inferotemporal cortex, and came with 

the first pass of activity through these areas beginning at approximately 200ms.  Multi-unit 

activity and CSD measures provided features by which accurate decoding of semantic category 

was possible.  A small number of perirhinal single units were also observed that demonstrated 

category-specific differences in firing rate.  These observations suggest that the avTL is 

important for semantic representations, and that previously seen posterior temporal-occipital 

animal/object differences are likely differences in structural/visual, rather than conceptual, 

representations. 

Finally, we examined the transformation of auditory signals into word-specific 

representations at an even finer spatial scale.  A unique opportunity was described in which a 

microelectrode array was implanted in superior anterior temporal lobe that allowed for the 

recording of a large number of auditory-responsive neurons in a patient with epilepsy.  These 

units demonstrated robust firing to particular speech sounds and are insensitive to equally 

complex non-speech sounds.  These units also fired to written words in a manner consistent 

with the phonological properties underlying the pronunciation of the word, providing direct 

neural evidence of the phonological recoding hypothesis in reading.  Furthermore, the firing 

rates of a small number of units allowed for the decoding of individual word identity.  These 

results suggest that the superior anterior temporal lobe supports population coding of the 

acoustic/phonetic features of speech and that these neurons may be the building blocks by 

which auditory word-specific representations are built. 

In this final chapter, I will synthesize the results presented in the previous three 

chapters and place them in the context of the whole of the language processing system.  I shall 

also discuss common themes and pathways observed throughout this dissertation and present 
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an overall model of the processing of visual and auditory words.  I will then discuss the 

potential applications of decoding language information and explore possible ways the 

accuracy of such decoders might be improved.  Finally, I will comment on potential future 

directions and natural extensions of the work presented here. 

1. MODEL OF WORD PROCESSING 

1.1. HIERARCHICAL PROCESSING AND GRANDMOTHER CELLS IN LANGUAGE SYSTEM 

The results presented in Chapter IV demonstrate that like the visual and auditory 

systems, word recognition likely proceeds in a hierarchical fashion.  For spoken words, this 

would begin with pure frequency selectivity in primary auditory cortex from which more 

complex time-frequency features would be built, leading to speech-specific acoustic features 

and eventually auditory word-specific representations.  For written words, this would proceed 

through V1 from which simple edges and shapes would be derived, leading to representations 

of individual graphemes and eventually full visual words.  While in both these cases, there is 

clear evidence that low level stimuli (e.g. edges of light intensity or simple frequency tones) are 

encoded at the single unit level (Hubel and Wiesel, 1962, Bitterman et al., 2008, Howard et al., 

1996), it is still unclear how complex or abstract a representation might be that a single neuron 

could be tuned to.  One might imagine that after a certain point, highly complex stimuli, like full 

words, are represented only by the population activity of many neurons. 

In the visual system, one study by Mormann et al. (2008) suggests that this hierarchical 

processing applies to representation of complex visual objects at the level of single units as far 

as the medial temporal lobe.  Likewise, it is also possible that as we proceed upstream, single 

neurons continue to be tuned to more and more complex language representations.  In the 
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visual system, the idea that an individual cell would be tuned to a highly complex and very 

specific visual object is known as the Grandmother Cell hypothesis (Desimone, 1991).  This 

hypothesis posits that the visual representation of one’s grandmother might be represented by 

a single neuron.  In an extension of this for the representation of speech information, one might 

imagine that individual cells are tuned to particular auditory word representations, and this 

might lead to single cells that are tuned to supramodal word representations that may lead to 

cells that encode specific supramodal semantic concepts. 

While the Grandmother Cell hypothesis is difficult to test, Chapter III demonstrated that 

single cells in avTL demonstrate category-selectivity.  Furthermore, Heit et al. (1988) have 

demonstrated single unit firing in human medial temporal lobe to specific visual words, 

Kreiman et al. (2000) have demonstrated visual category selective cells in the same region, and 

Quiroga et al. (2005) have shown visual object selective cells in MTL.  While none of these 

studies suggest that these cells only respond to the particular stimulus they responded best to 

(e.g. pictures of Jennifer Aniston), they do claim that these data strongly suggest that the 

representations are sparse, i.e. that any given cell responds to a very limited set of complex 

stimuli (Quiroga et al., 2008).  Furthermore, it is highly unlikely that the recorded cells in these 

studies are the only cells that are selectively tuned for these complex objects.  In fact, Waydo et 

al. (2006) suggests that on the order of two million cells represent a given percept in the visual 

system.  Unfortunately, it is impossible to ever fully test the infinite space of all possible stimuli 

to determine how specific the tuning of such cells is, but the Grandmother Cell hypothesis is 

likely an overly extreme position. 

Quiroga et al. (2009) have called these neurons in human MTL “concept cells” because 

they often respond to multimodal stimuli referring to the same “concept”.  For example, a cell 
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that fires to an image of Hale Berry may also fire to the written and spoken name of the actress.  

While it is possible that these cells encode very specific high-level amodal conceptual 

knowledge, it is also possible that they instead encode high level visual information that is 

activated when encountering a word that refers to this concept.  Regardless of what these 

single units represent, the data in this dissertation demonstrate that, at the very least, 

semantic/conceptual information is robustly represented in these medial temporal areas by 

small populations of neurons (Section III.3.3). 

While the visual system clearly demonstrates single unit hierarchical processing for 

highly complex stimuli, whether this is also true for the evolutionarily younger development of 

words and language is unclear.  The results in Chapter IV demonstrate that in the auditory 

word processing stream, fairly high level speech sounds are still encoded by single neurons.  

The lateral temporal cells observed here are clearly along the hierarchical stream of speech 

processing towards representation of auditory words.  While the data in this dissertation is 

unable to answer whether single units also represent full word (auditory or visual) lexical 

representations, this possibility exists.  There are two potential models for the interface 

between the units shown here, and the semantic/conceptual representation associated with 

words (Figure V-1).  First, there may exist single units that sparsely represent a full auditory 

word/lexical item and receive converging information from the high-level acoustic-phonetic 

neurons observed here.  The report by Heit et al. (1988) provides some evidence for this 

possibility.  These neurons may subsequently activate a diverse population of cells (potentially 

located in MTL and other cortical areas) that represent the full conceptual knowledge 

associated with that lexical item (Figure V-1A).  The possibility also exists that there are no 

single neurons that represent these full acoustic words and instead the representation of a 

lexical item is solely determined by the population activity of the underlying phonetically-
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tuned cells.  This distributed representation may then go on to activate the distributed 

semantic representation of the lexical item (Figure V-1B).  While the testing of these models is 

difficult, performing additional single unit recordings in left anterior temporal lobe may 

provide informative data in this regard. 

 

FIGURE V-1: TWO MODELS OF THE INTERFACE BETWEEN PHONETIC AND 
CONCEPTUAL INFORMATION 

 In each of these models, circles represent individual populations of single neurons.  A) In this 
model, single neurons represent the representation of a spoken word or lexical item by combining 
the information from individual high-level acoustic/phonetic cells.  These single neurons can then 
activate the potentially distributed set of cells that represent the various aspects of the conceptual 
knowledge regarding this lexical item.  B) The alternative is that a lexical item is purely represented 
by the population activity of the phonetic cells and/or semantic/conceptual cells and there are no 
single units that are solely responsible for the representation of a full word acoustic form. 

The processing of written words proceeds along the ventral visual stream and studies 

have suggested that this stream is also structured hierarchically (Vinckier et al., 2007, Nobre et 

al., 1994, Cohen et al., 2000, Cohen et al., 2002, Dehaene et al., 2005, Dehaene et al., 2002, 

Vinckier et al., 2006).  In this case, letter-like symbols are first constructed from lines and edges 

of particular orientations and curvature, from which prelexical bigrams and larger 

combinations may be represented, finally yielding representations of meaningful words 

(Dehaene et al., 2002, Vinckier et al., 2007).  Similar to the speaker invariance seen in the single 
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unit recordings presented in Chapter IV, the visual word form area (VWFA) demonstrates 

invariance to the case (upper or lowercase) of text as well as the font (Dehaene et al., 2001).  

While this dissertation has demonstrated that auditory neurons can be tuned specifically to the 

acoustic-phonetic components of spoken words, it is unknown whether single units along the 

visual word processing pathway are tuned to each of these written word elements.  Written 

language is even younger, evolutionarily, than spoken language, and this may make it more 

likely that purely population coding is present for written language representations. 

1.2. SPECIALIZATION AND SEPARATION OF LANGUAGE PROCESSING 

As mentioned previously, language is a relatively new evolutionary development when 

compared to general audition, object recognition, or other sensory-motor functions.  It is 

therefore natural to question whether the processing of speech and written words occurs 

within areas and circuits that originally process, and potentially continue to process, other 

types of auditory or visual stimuli.  In other words, at what point, if ever, do language 

processing streams diverge from general auditory/visual processing into specialized areas?  

This question is highly contentious and numerous debates have occurred on various aspects of 

this subject (Cohen and Dehaene, 2004, Liberman and Mattingly, 1989, Price et al., 2005, Price 

and Devlin, 2003, Price et al., 2003b).  Cohen and Dehaene (2004), described three potential 

forms of specialization when describing the VWFA: functional specialization, reproducible 

localization, and regional selectivity.  Functional specialization is the idea that a particular 

neural system is adapted for performing a specific functional task, regardless of how this 

system is localized.  Reproducible localization refers to the idea that the processing in question 

is performed in a localized brain area that is consistent between subjects.  Finally, regional 



160 
 

selectivity is the hypothesis that regions of cortex are devoted exclusively to the specific 

functional task. 

In terms of the speech recognition, several studies suggest that the processing of speech 

occurs, at least at some level, in dedicated neuronal circuitry (Vouloumanos et al., 2001, 

Turkeltaub and Coslett, 2010, Obleser et al., 2006, Obleser et al., 2010, Scott et al., 2000, 

Liebenthal et al., 2005, Whalen et al., 2006), while other have rejected the idea that speech 

processing occurs in specialized areas, but instead occur in areas that also support non-verbal 

sound processing, pitch monitoring, or conceptual processing (Price et al., 2005, Price et al., 

2003b).  At the very least, many of these studies have demonstrated that speech stimuli, when 

compared to non-linguistic auditory stimuli, elicit consistent activity in STG and STS, largely on 

the left side, demonstrating reproducible localization (Vouloumanos et al., 2001, Whalen et al., 

2006, Liebenthal et al., 2005, Binder et al., 1996).  Whalen et al. (2006) even hypothesizes that 

speech specialization, in the functional sense, begins as early as primary auditory cortex in 

Heschl’s Gyrus. 

The results presented in Chapter IV are consistent with the localization demonstrated in 

these earlier studies, and the fact that these neurons robustly respond to speech stimuli but 

largely fail to respond to other non-speech stimuli (e.g. vocoder transformed speech, pure 

tones, environmental sounds) suggests that this set of neurons demonstrates functional 

specialization and regional selectivity.  The data are in line with the idea that, at least at the 

level of phonetic information, a specialized speech processing pathway exists in anterior 

superior temporal lobe that is not utilized for processing general nonspeech stimuli.  Despite 

this, it is nearly impossible to conclusively prove specialization due to the infinite space of 

stimuli that cannot be exhaustively searched in any experimental paradigm. 
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While specialization for the processing of speech, which is tens to hundreds of 

thousands of years old, may plausibly be an evolutionarily-derived separate pathway, the 

development of written language (approx. five thousand years old) is too young to have 

evolutionary origins (Tallerman and Gibson, 2012).  On an evolutionary time scale, written 

language is a very young invention, and until relatively recently, only a small portion of the 

human population was able to read.  Despite this, several authors argue that a specialized 

system exists for the explicit purpose of reading (Cohen and Dehaene, 2004, Cohen et al., 2000, 

Dehaene et al., 2005, Dehaene et al., 2002, Dehaene et al., 2001).  This specialized function, 

therefore, must be adapted from existing neural architecture that may have originally been 

designed for other visual processing tasks.  There is no a priori reason that the localization of 

this function should be consistent between subjects given the plasticity of the brain.  Dehaene 

and Cohen (2007) have put forth the Neuronal Recycling hypothesis in which they state that 

the brain has a set of architectures, and corresponding constraints, for the processing of 

different evolutionarily-derived functions.  They suggest that culturally-acquired functions 

such as reading and arithmetic, in a sense, find a “foster home” in a set of neural circuits that 

are sufficiently close in processing to allow for a repurposing of this segment of cortex.  In the 

case of reading, they argue that this position (along the mesial edge of the posterior occipito-

temporal sulcus) in the ventral visual stream is optimized for the detection of visual objects of 

the correct complexity and form, and this originally general visual area has been repurposed 

for the representation of orthographic information (Dehaene and Cohen, 2007). 

It is unclear whether such “neuronal recycling” is at play in the speech processing 

system.  It is possible that specific human evolution has provided a distinct pathway for speech, 

however it is also possible that speech recognition is a repurposing of the general hierarchical 

stream of auditory processing.  Linguists and psychologists have noted that a “critical period” 
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exists for language acquisition, after which it becomes nearly impossible to acquire a first 

language, and becomes increasingly difficult to fluently acquire a second language (Johnson 

and Newport, 1989, Lenneberg, 1967).  At the very least, this suggests that the acquisition of 

speech processing partially depends on the early plasticity of the human brain. 

1.3. PHONOLOGICAL BASIS OF LANGUAGE SYSTEM 

The evidence for the phonological recoding of visual word stimuli presented in Section 

IV.3.7 raises questions regarding the relationship between orthographic and phonological 

representations.  Given the preceding discussion regarding the relative age of spoken versus 

written language, it may be possible that the recognition of written words is inextricably linked 

to the speech recognition processing pathway.  One extreme position might suggest that the 

mental lexicon exists purely in a phonological space, and that no direct pathway exists from 

sublexical orthographic elements to lexical word representations and conceptual knowledge.  

This would require written words to be necessarily recoded from orthographic elements to an 

acoustic-phonetic representation before the corresponding semantic knowledge of the lexical 

item can be accessed (Frost, 1998).  In other words, the development of written language, while 

potentially requiring the neuronal recycling of visual cortex, is built such that it feeds 

orthographic processing into the phonological processing system rather than developing a 

separate visual lexicon. 

While some claim that a purely phonological route for reading may be too strong due to 

the presence of pre-linguistically deaf individuals who are still able to read (Seidenberg, 1985), 

others have shown that these individuals still demonstrate sensitivity to the phonological 

properties of written words (Dodd and Hermelin, 1977, Hanson and Fowler, 1987).  A weaker 

hypothesis is that while phonological recoding of a written word may occur when a task 
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requires it, it is not necessary for lexical access, and may in fact occur after lexical/semantic 

processing (Humphreys et al., 1982).  In this view, phonological processing of visual words may 

be due to feedback from lexical processing areas rather than a bottom up translation of 

orthography to phonology.  This model would also imply that the latency of phonological access 

would occur later than lexical access (Braun et al., 2009).  A number of studies have attempted 

to examine the latency of phonological access during written word recognition, however 

results remain highly variable and do not provide clear conclusions in this regard (Braun et al., 

2009, Ziegler et al., 1999, Barnea and Breznitz, 1998, Bentin et al., 1999, Newman and Connolly, 

2004, Niznikiewicz and Squires, 1996, Proverbio et al., 2004). 

The third possibility, known as the dual route hypothesis, is a combination of the two 

options discussed above that suggests that visual words can take one of two paths to access 

lexical information (Humphreys and Evett, 1985, Coltheart et al., 1993, Seidenberg, 1985).  

Visual information may either directly activate the corresponding lexical item, or a translation 

of orthography to phonology may lead to a mediated recognition via the phonological path.  

Some versions of this hypothesis suggest that for common words, phonological information is 

unnecessary, but for infrequently encountered or novel words, the phonological route is 

utilized (Seidenberg, 1985).  The results presented in Section IV.3.7 suggest this aspect of the 

hypothesis may be true, however, it is also clear the phonological recoding occurs even in a 

task that does not explicitly require it.  Further experiments would need to be done to explore 

whether this information is accessed pre or post-lexically by determining the relative latencies 

of orthographic encoding, lexical access, and phonological recoding.  Examination of 

simultaneous intracranial macroelectrode recordings of anterior STG, anterior fusiform, and 

posterior fusiform gyrus may allow for determination of the sequence of processing when 

written words are used as stimuli. 
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1.4. SEMANTIC HUB REVISITED 

The end goal of the word recognition system is to interface with the semantic 

representation of the lexical item.  Chapter II very clearly demonstrated that semantic 

representations are highly distributed over the cortical surface.  While it is still debated 

whether a semantic hub is necessary for the coordination of this semantic knowledge, the 

results in Chapter III, at the very least, suggest that the anterior temporal lobe is important for 

semantic representations.  One possibility is that this area of the avTL is in fact part of the 

semantic hub system, and the semantic category differences observed in Chapter III are a 

manifestation of the differences in retrieval/coordination of conceptual knowledge needed to 

represent animals or manmade objects.  This part of the avTL may not directly encode semantic 

features of animals or objects, but may instead be responsible for retrieving that information 

from distributed cortical areas, and this difference in feature retrieval is captured in the 

LFP/gamma-band/MUA differences observed in our intracranial recordings.  The available 

data is, unfortunately, insufficient to determine whether this might be the case. 

If the anterior temporal lobe is the location of a semantic hub, it should be amodal and 

demonstrate clear distinctions between many groups of semantic categories.  Given sufficient 

recording coverage of the aTL, we would expect category-specific activation in the semantic 

hub to be identical regardless of input or output modality.  In addition, we would expect to be 

able to decode category information from a number of different conceptual classes (e.g. 

animals, tools, dwellings, fruit, faces) solely from information obtained from the aTL.  

Therefore, discriminating between an orange and a basketball may be difficult when using 

primarily visual information, but this might be an easy task in the aTL.  Similarly, the reverse 

might be true when discriminating between a clam and a fish due to mutual classification as 

“seafood” despite highly distinct visual properties. 
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When viewing the hypothesis of a semantic hub in terms of the theories of semantic 

organization presented in Section I.1.5, it would seem plausible that in actuality, a combination 

of the “feature-based” and “category-driven” theories could be in effect (Patterson et al., 2007, 

Caramazza and Shelton, 1998).  The distributed network of potentially modality-specific 

information may embody the features that define any given semantic concept, but this 

information may be coordinated and organized in a category-specific fashion by the semantic 

hub in the ATL.  While the importance of the anterior temporal lobe in semantic 

representations is slowly becoming more recognized, definitively demonstrating that it has all 

the characteristics of an amodal region for the coordination of semantic knowledge is far from 

complete. 

1.5. OVERALL MODEL OF WORD RECOGNITION 

We can synthesize the results in this dissertation and previous literature into an overall 

model of word processing (Figure V-2).  Incoming words initially enter either through the 

primary visual or auditory cortices.  In the case of speech, after low-level acoustic processing, 

information is split into two streams (Saur et al., 2008, Hickok and Poeppel, 2007).  The dorsal 

stream is responsible for the mapping of sound onto articulation or spatial location and 

proceeds posteriorly from Heschl’s Gyrus along the STG to Wernicke’s area, and may eventually 

lead to Broca’s area in the inferior frontal lobe, or other prefrontal areas.  The anterior/ventral 

stream is responsible for mapping sound to meaning and proceeds forward and inferiorly from 

Heschl’s to aSTG and STS and eventually interfaces with lexical and semantic representations, 

presumably located in anterior-inferior temporal areas.  This dual pathway theory of speech 

perception fits nicely with the observed single unit tuning for discriminative speech sounds in 

aSTG as well as the observed phonemic specificity other studies have found in pSTG (Crone et 
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al., 2001a, Desai et al., 2008, Steinschneider et al., 2011, Turkeltaub and Coslett, 2010).  In both 

cases, phonological information must be extracted, but for different purposes.  In the 

anterior/ventral “what” stream, we would expect to find representations of lexical identity, 

while the posterior/dorsal pathway would not necessarily contain this information.  We would 

also expect to encounter representations of phonemes that could be grouped in terms of place 

(e.g. bilabial, labio-dental, palatal) and manner of articulation (e.g. frication, rounding, voicing) 

in this dorsal stream.  Given the presence of single units that represent speech sounds for 

lexical identification in aSTG, we might also predict that these phonetic-articulatory 

representations  are represented by single units within the pSTG or elsewhere in the dorsal 

pathway.  The idea of the dorsal stream being important for recognizing articulatory features is 

also consistent with lesions of this area leading to cases of conduction aphasia in which a 

patient is unable to repeat a spoken word (Damasio and Damasio, 1980).  
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FIGURE V-2: FUNCTIONAL NEUROANATOMICAL MODEL OF WORD PROCESSING 

This model of word processing suggests that auditory speech information is split into two 
pathways, the anterior/ventral pathway that maps sound onto meaning and moves through aSTG 
and STS while the dorsal stream maps sound onto articulation and location and moves posteriorly 
through Wernicke’s area to inferior frontal lobe.  Visual words enter through primary visual cortex 
and have orthographic information extracted by a potential visual word form area.  It is also 
possible that some aspects of word processing occur within the dorsal visual stream.  Visual 
orthographic elements may be phonologically recoded before lexical access can occur.  Lexical 
access results in semantic access that involves anteroventral temporal lobe that may act as a 
semantic hub.  This hub coordinates distributed domain-specific semantic information (e.g. 
information regarding structure, color, motor/functional attributes, auditory features, or visual 
motion) on a task-specific basis (gray lines). 

The anterior STG is present within the auditory “what” stream and represents complex 

speech-specific sounds at the level of single units.  This area has many of the same properties as 

the VWFA (e.g. prelexicality, invariance to speaker/font), and may in fact be the auditory 

analog for word processing (auditory word form area).  The information from the 
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anterior/ventral stream continues to form an auditory word representation, yet whether this 

auditory lexicon is localized or distributed is unclear.  The left STS also appears important for 

high-level speech feature representation, and may be the next processing stage for the 

information observed in aSTG (Warren et al., 2006, Liebenthal et al., 2005).  The auditory 

representation of full words may potentially be represented by single units, although further 

evidence is necessary to strongly make this claim.  While the dorsal pathway has traditionally 

been viewed as the main speech processing pathway of the human brain (Wernicke, 1874, 

Geschwind and Levitsky, 1968), the model presented here would suggest that the 

anteroventral pathway may be more important for the mapping of speech onto meaning. 

Written word perception, on the other hand, necessarily starts in primary visual cortex.  

Visual processing typically is split into a ventral “what” stream and a dorsal “where” stream, 

although most previous studies have focused on the ventral visual areas for word processing.  

Orthographic information is extracted from low-level visual features, and these sublexical 

orthographic representations may be housed in the so-called visual word form area of the 

posterior fusiform gyrus (Dehaene et al., 2002).  Whether the dorsal pathway is necessary for 

visual word processing is unclear, although several studies have suggested that it plays a role in 

recognizing words and strings of letters that are outside of normal formatting or presentation 

(Cohen et al., 2008, Vinckier et al., 2007).  Given the role of the dorsal-speech pathway for 

mapping sound to articulation, one might hypothesize that the dorsal visual stream is 

important for mapping visual words to writing representations.  In fact, one study 

demonstrated visual presentation of letters activated premotor areas involved in writing 

(Longcamp et al., 2003).  Regardless of how much the dorsal visual stream contributes to word 

recognition, most current evidence suggests that the VWFA is the main brain region involved in 
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the processing of written words, and this fits with the idea that the ventral stream maps visual 

inputs to meaning. 

How visual orthographic information eventually interfaces with the mental lexicon from 

this point forward is unknown.  The evidence presented in Chapter IV suggests that 

phonological access occurs during visual word processing, even for tasks that do not explicitly 

require phonological proceeding, but it is not clear whether this is necessary for lexical access 

or not.  Therefore, othorgraphic information may directly yield lexical recognition, or may first 

proceed through phonological routes to access word identity. 

Regardless of the details of phonological recording, both spoken and written word 

representations eventually interface with the underlying semantic representation.  The 

anteroventral temporal lobe is clearly important for semantic knowledge retrieval and the 

supramodal category-specific activity seen with the depth and laminar electrodes may in fact 

be a manifestation of the categorical organization of the aTL semantic hub.  Semantic 

knowledge retrieval, with or without a hub, relies on the activity of distributed brain regions 

that may each contribute different domain-specific knowledge to the full instantiation of the 

particular semantic concept.  Furthermore, the precise representations that are activated may 

be highly task specific.  For example, when accessing the knowledge regarding concrete objects, 

if the task demands structural/visual knowledge, the posterior occipital-temporal region in the 

ventral visual stream may be activated as suggested in Section III.4.  Or, if knowledge regarding 

the functional associations of tool use is necessary, motor areas in the frontal lobe may be 

accessed.  This hypothesis would explain the apparent task dependence of seeing posterior 

occipital-temporal activity differentiating animals and object when presented with written 

words opposed to pictures (Devlin et al., 2005). 
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Overall, this model is consistent with the results presented in this dissertation and 

much of the existing literature regarding word processing.  While the work presented here has 

examined specific aspects of semantic representations, and auditory/visual word processing, 

further research is necessary to fully understand the flow of sub-lexical, lexical, and semantic 

information required for language processing. 

2. APPLICATIONS OF LANGUAGE DECODING 

In this dissertation, we have utilized multivariate machine learning techniques to 

demonstrate that we are able to extract a wide variety of language-related information from 

electrophysiological information.  The ability of support vector machines to handle high-

dimensional data allowed for the decoding of semantic category and individual words from 

dense arrays of EEG and MEG sensors, and examination of highly distributed representations 

(Chapter II).  The use of these classification techniques also allowed for a quantification of the 

amounts of information in various modalities of neurophysiological recordings such as EEG vs. 

MEG, or MUA vs. CSD.  Finally, we were able to use decoding algorithms to demonstrate the 

time-course of information present in these recordings, showing early semantic information in 

avTL, and the temporal extraction of phonetic information from single unit recordings.  

However, besides simply studying the neural basis for language, the decoding of language 

information has other potential practical applications. 

2.1. FEASIBILITY AND PERFORMANCE 

Over the last several years, interest in decoding brain activity has increased 

substantially (Kellis et al., 2010, Bradberry et al., 2010, Chadwick et al., 2010, Formisano et al., 

2008, Haxby et al., 2001a, Kamitani and Tong, 2005, Kay et al., 2008, Kim et al., 2008, Liu et al., 
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2009, Pasley et al., 2012, Donoghue et al., 2007, Hochberg et al., 2006, Brumberg et al., 2009, 

Guenther et al., 2009), and many studies of neural decoding have received increasing attention 

by the popular press.  While in some cases, the decoding is sufficiently accurate for practical 

purposes (e.g. single unit motor imagery decoding), in many cases, decoding is only viable as a 

novel technique to explore underlying neural information in a multivariate fashion.  The results 

presented here largely fall into the latter category, although with additional research and study, 

language decoding may approach practical levels of accuracy. 

While in this dissertation, we mainly utilize machine learning techniques for the study 

of language representations, this work may provide a foundation by which language decoding 

for communication prostheses may be viable in the future.  The work reported here suggests 

that while language information can be extracted from electrophysiological recordings, further 

work is needed to improve the performance of such a language prosthetic device.  Ideally, 

adequate performance from the decoding of a single trial would be required for a viable 

language decoding device. 

One method that may improve classifier performance would be to employ more 

aggressive feature selection.  In Chapter II, the SVM and computed features were not tuned to 

maximize performance, but instead allowed for the utilization of information from all sensors 

and times to investigate the spatiotemporal representation of semantic information.  While 

SVMs generate a sparse model for classification that helps prevent overfitting, very high 

dimensional feature spaces can often prevent sufficient sparsity when using a small training 

set.  Therefore, by limiting the sensor selection to particular regions of interest (such as ventral 

temporal areas, inferior frontal areas, and posterior temporal occipital areas), the number of 

considered features can be reduced while maintaining a majority of the available information.  
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The other way to prevent overfitting would be to simply increase the size of the training set, a 

task that is often challenging due to constraints on subjects’ time and patience. 

While overfitting may reduce the generalization performance of decoding algorithms, it 

is perhaps more important to ensure that the computed features carry as much language 

information as possible.  Optimizing features for any decoding task is not a trivial process, and 

entirely domain-specific.  In this dissertation, we have explored time-domain features for the 

decoding of semantic information from extracranial EEG and MEG, frequency-domain 

information in the form of gamma-band activity and multi-unit activity for decoding semantic 

category in depth electrodes, and firing rate activity for the decoding of complex 

acoustic/phonetic information from single unit recordings.  From the results of the preceding 

chapters, one might conclude that information based on unit-firing measures (e.g. gamma-band 

activity, MUA, and single unit firing) perform the best.  We have yet to explore features based 

on measures of synchrony (e.g. correlation, coherence), phase, or spike timing for single unit 

recordings.  Studies have suggested that coherence measures may be important for 

discriminating grammatical classes (e.g. nouns vs. verbs) (Khader and Rosler, 2004, Weiss and 

Mueller, 2003), that the phase of oscillations in the brain is important for auditory perception 

(Ding and Simon, 2012, Saoud et al., 2012), and a spike timing may be as informative as spike 

firing rate (Mehta et al., 2002, Huxter et al., 2003).  It is important that these features are 

explored in the future with regard to contributing to decoding performance of language 

information. 

For any communication device based on the decoding of language information, it is 

important that the available vocabulary be large enough for sufficient expressive power.  In the 

English language, it has been shown that the 1,000 most frequent words provide coverage of 
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approximately 75% of a variety of text corpora, 6,000 words provide 90% coverage, and 

15,000 words provide 95% coverage (Nation and Waring, 1997).  These vocabulary sizes are 

likely overestimates of the number of words needed to communicate at the most basic levels.  

In fact, by looking at the text coverage for novels aimed at teenagers, it was found at 

approximately 3,000 words provides over 95% coverage (Hirsh and Nation, 1992).  It is likely 

that even smaller vocabularies might be useful in particular contexts, however, the 10-word 

decoding in Chapter II is far from adequate even for limited tasks.  While this dissertation 

relied heavily on the use of machine learning classifiers, these algorithms, by themselves, are 

not ideal for the decoding of large vocabularies.  An algorithm that is highly extensible is 

necessary for the decoding of semantic information.  In Section II.2.7, a hierarchical decoding 

method was presented in which object size was first decoded using one set of features, 

followed by the decoding of semantic category, and finally individual words.  This cascaded 

structure would allow for the decoding of general categories using relevant information before 

extracting detailed word-level information.  For example, one might imagine first the decoding 

of grammatical class (e.g. nouns, verbs), followed by the decoding of semantic category (e.g. 

animals, tools), followed by even finer distinctions (e.g. birds, mammals, insects).  This could 

drastically narrow the semantic search space before attempting to resolve specific concepts.  A 

number of other approaches may also allow for the use of larger vocabularies, but it is clear 

that this is a major hurdle for language decoding based on semantic properties. 

2.2. DECODING MULTIPLE LEVELS OF LANGUAGE 

Considering the level of language processing a potential communication prosthesis 

would attempt to decode is important.  This choice is highly dependent on the patient 

population such a device would target.  For a patient with an expressive aphasia, the 
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impairment exists at the level of generating coherent, fluent sentences, usually leaving the 

semantic system intact.  Therefore, extracting information at the semantic/conceptual level 

may be required for this type of patient.  On the other hand, for a patient with amyotrophic 

lateral sclerosis, the deficit comes at the level of the motor neurons.  In such a case, the entire 

language system is intact except for the very last stage of execution of articulatory commands.  

In this case, while a semantic-level decoder would still work, the incorporation of low-level 

lexical, phonetic, and articulatory information could significantly improve the performance of a 

communication prosthesis. 

Even with just the information examined in this dissertation, it may be possible to 

elegantly merge phonetic information with semantic information to obtain higher word 

decoding performance.  Automatic speech recognition (ASR) algorithms do this well, and it is 

possible such a solution may work for the decoding of language information from the brain.  In 

ASR paradigms, the phonetics are modeled with Hidden Markov Models (HMMs) from which 

language models, or word transition probabilities, influence the likelihood of a particular word 

given the past history of words (Church and Hanks, 1990).  In the case of neural data, one could 

treat the firing rates from individual neurons (if microelectrodes are used) or gamma-band 

power (from macroelectrodes) that carry phonetic information as the observed output 

variables of an HMM.  Using a separate set of semantically relevant features, one could estimate 

probabilities of various words based on their semantic class.  These probabilities can be treated 

as a prior probability, and combining this with the estimated HMM probability would yield a 

posterior probability for individual words within the set vocabulary.  This method of 

combining phonetic and semantic information might improve decoding performance and may 

provide another extensible framework by which larger vocabularies can be used. 
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As a proof of principle, this technique for decoding individual words was tested on 

phonetic information from the patient discussed in Chapter IV as well as semantic information 

from one of the patients with implanted laminar electrodes (L2) as seen in Chapter III.  A HMM 

trained on high gamma power (HGP) from intracranial surface electrodes over posterior 

temporal-parietal junction as well as firing activity from unit 6a allowed for the decoding of 

phonological information from a time-course of HGP and unit firing activity (Figure V-3B).  

Therefore, given a set of input features Y, the HMM provides the likelihood of these features 

given each of ten possible repeated words from the SA task,  (      ), by which the word 

with the largest likelihood could be chosen as the decoded word.  Utilizing this phonological 

information alone yielded an accuracy of 41%.  A Naïve Bayes Classifier trained to decode 

animal/object category from MUA information in patient L5 generates probabilities that a 

given trial is a word referring to an animal or object (Figure V-3C).  These probabilities can be 

used to compute the probabilities of each individual word by assuming a uniform distribution 

within each category.  

 (    )   (       )     (    )  
 (      )
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 (      )

 
 
   (      )

 
 

By incorporating these probabilities into the HMM model, we can, in a sense, compute 

the joint probabilities,  (      ) (    )   (      ) which improves our decoding 

accuracy.  In this case, incorporating the semantic information from the MUA features of 

patient L2 yields a final accuracy of 69% (versus 41% for phonological information alone).  

While this proof-of-principle uses data from two patients, which is not a realistic scenario for 

accurately judging the performance of such a technique, it does show that combining 
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information in this way can lead to higher decoding accuracies.  In the future, utilizing language 

information from various stages of processing could allow for high performing word decoding 

from neural signals. 

 

FIGURE V-3: COMBINATION OF PHONOLOGICAL AND SEMANTIC INFORMATION 
USING HIDDEN MARKOV MODELS 

A) An example of a Hidden Markov Model that has hidden states 1, 2 and 3 that emit observed 
features that are characterized by a mean and standard deviation.  Transitions between states are 
given by transition probabilities of moving from one state to the next, for remaining in the same 
state.  This type of model is commonly used in automatic speech recognition, and can be used to 
model the phonological information in a time-course of high gamma power or unit firing.  B) The 
mean high gamma power features (computed over a set of surface electrodes) as well as firing rate 
for unit 6a for the trained HMM model for each of four example words.  Each phoneme would 
represent a single state that, on average, corresponds to the HGP and firing rate measures as 
shown.  These features were computed for the patient described in Chapter IV.  C) MUA features 
computed for patient L5 in Chapter III can be decoded by a Naïve Bayes Classifier (NBC).  Trials are 
represented as points on a 2-dimensional plane.  For each trial the NBC generates the probabilities 
 (      ) and  (      )     (      ).  These probabilities can be used to generate 
probabilities for each of the 10 words by assuming a uniform probability within each category.  D) 
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(Figure V-3 continued) The HMM trained on the phonological features can use the word 
probabilities from the semantic NBC to improve decoding accuracy from 41% to 69%. 

While this dissertation has utilized experiments that require language comprehension, a 

future language prosthetic device would aim to decode language production.  In most models of 

language production, a single source of semantic knowledge underlies both comprehension 

and production (Martin, 2003, Patterson et al., 2007, Caramazza and Mahon, 2003).  Therefore, 

it is reasonable to begin exploring the decoding of semantic knowledge from language 

comprehension experiments.  It will eventually be necessary to understand the differences in 

the time course of activity when accessing semantic knowledge for production, yet it is likely 

that the spatial distribution of activity will be consistent.  On the other hand, understanding the 

neural basis of articulation for particular phonemes would provide another source of relevant 

speech-specific information that could be extracted in patients with preserved motor planning 

ability.  Several studies have examined the decoding of articulatory activity with relative 

success (Brumberg et al., 2009, Guenther, 2009, Guenther et al., 2009).  Incorporating low-level 

motor planning activity with higher level lexico-semantic activity could prove to be a powerful 

set of features for decoding language intent. 

One might also imagine that the same phonological lexicon is utilized for both speech 

comprehension and speech production.  In Chapter IV, we demonstrated that speech-specific 

neurons fired in response to self-generated speech, although at a lower rate.  This activity is 

most likely a response to the self-generated auditory input, however, a component of this 

activity may be due to phonological access for speech production.  Studying the activity of such 

phonologically-tuned neurons during covert speech could potentially separate these two 

effects, and would provide an additional level of information for speech decoding.  Several 

studies have indicated that the input and output phonological representations overlap, at least 
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partially, at the pSTG and STS (Buchsbaum et al., 2001, Price et al., 1996, Indefrey and Levelt, 

2004, Liebenthal et al., 2005, Binder et al., 2000), consistent with the potential function of the 

dorsal auditory stream in which sound in mapped onto articulation.  Investigation into whether 

the aSTG neurons described in Chapter IV, that are potentially in anterior/ventral auditory 

“what” stream, play an active role in speech production is an important next step. 

2.3. RECORDING MODALITY 

The recording modality of a potential language prosthetic device is important to 

consider.  Several choices, such as MEG and fMRI, are not viable solutions simply due to their 

lack of portability.  The main division between the available modalities is whether the 

electrodes are non-invasive or intracranially implanted.  As seen in Chapter II, EEG electrodes 

provide excellent coverage of the cortical surface and can allow for the extraction of distributed 

semantic information.  On the other hand, the spatial resolution and ability to more robustly 

record high frequency information in the intracranial macroelectrodes provided increased 

decoding performance given an appropriate recording location.  Moving to penetrating 

microelectrodes provides the highest spatial resolution and the ability to record highly specific 

unit-firing activity.  Therefore, the quality of the recorded information tended to improve as the 

electrodes became more invasive, at the cost of reduced cortical coverage. 

It is unclear whether non-invasive recording techniques like EEG will be sufficient for a 

fully functional language-prosthetic device.  However, if the severity of the communication 

deficit justifies the use of invasive recording techniques, a combination of microelectrodes for 

the recording of very specific phonetic/articulatory activity and macroelectrodes for recording 

more distributed lexico-semantic information may prove to work well.  In the end, the choice of 
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modality will depend on a combination of the accuracy and effectiveness of the decoding given 

the available information and the severity of the communication impairment. 

One final aspect of consideration and research when attempting to decode language 

information for practical purposes is the idea of patient-specific or patient-general 

classification.  This is also highly affected by choice of modality due to the variable stability of 

the recordings.  Single unit recordings are typically only stable for several hours due to shifting 

of microelectrodes with respect to cell bodies.  This necessarily requires a retraining or 

adaptation of any generated classifier as the population of recorded units change.  On the other 

hand, recording techniques that measure population activity are more stable over time.  

Chapter II demonstrated that a patient-general classifier could be trained on EEG data due to 

the large lead fields of extracranial electrodes.  Despite this, adapting such a classifier with 

patient specific data improves classifier performance (Section II.2.6).  Intracranial 

macroelectrodes tend to demonstrate fairly stable recordings, however these electrodes 

depend on precise placement and implantation if generalization across subjects is desired.  

3. FUTURE DIRECTIONS 

While this dissertation has explored a number of aspects of language processing using 

classification algorithms, many questions remain to be explored.  Chapter II demonstrated that 

semantic representations are widely distributed, however the functional organization of 

semantic knowledge still requires examination.  As discussed in Section I.1.5, whether semantic 

knowledge is organized categorically, as a weighting and summation of individual features, or a 

combination of both remains unclear (Caramazza et al., 1990, Caramazza and Mahon, 2003, 

Mummery et al., 1998, Patterson et al., 2007).  To more thoroughly test the idea of a feature-

based semantic space, one could first compute the distances between various semantic 
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concepts using n-gram co-occurrences, as done by Mitchell et al. (Mitchell et al., 2008), or use a 

variety of other semantic measures such as the Google Similarity Index (Budanitsky and Hirst, 

2006, Cilibrasi and Vitanyi, 2007, Jiang and Conrath, 1997).  Neural “distances” in response to 

these semantic concepts (presented as words or images) could subsequently be computed 

using distance measures between a computed set of neural features (e.g. gamma band power 

across a select set of electrodes) and these two sets of distance matrices could be compared.  

One would expect that a feature-based semantic organization would yield very similar distance 

measures, while a category-based organization might not show correlations between these two 

distance measures.  By examining neural features computed from different regions of interest 

(e.g. ATL, lateral cortical areas, or posterior temporal-occipital areas), we would be able to 

examine the organization of different cortical areas. 

It is also important to examine the fluidity of representations in the language processing 

system.  While much of this dissertation has worked under the assumption that semantic, 

lexical, and phonetic representations are fixed on the timescales being examined, these 

representations may fluidly change over the course of hours or days, even at the level of single 

units (Quiroga et al., 2009).  One potential method for the examination of potentially changing 

representations would be to train a decoding algorithm on early presentations of a set of 

words, and observe the performance of the algorithm over time.  A similar technique would 

also be useful for the quantification of the stability of both neural representations and 

recording techniques for uses in language decoding.  Furthermore, utilization of online learning 

algorithms would allow for the incremental update of classifier models and could also be useful 

both practically and for the study of plasticity of neural representations. 
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As discussed in section V.2.2, it is also important to understand which portions of the 

language comprehension pathway are also utilized for language production.  To study 

phonological representations during speech production, it will be important to require covert, 

rather than overt, speech to prevent confounded auditory input.  It is unclear whether a single 

phonological lexicon exists for both comprehension and production, and the recording of high 

level acoustic-phonetic single units during a production task may provide insights into this 

question.  The use of covert speech is also very important because any patient in need of a 

communication prosthesis would be unable to overtly produce speech.  Guenther et al. (2009) 

have demonstrated that it is possible to extract imagined phoneme production at the level of 

decoding articulation information from motor areas, and it would be important to demonstrate 

the feasibility of decoding higher level concepts from imagined language production. 

The work in this dissertation has focused on single word comprehension, but it is 

important to study how the processing and production of entire phrases or sentences differs.  

Single words do not carry syntactic information and it is important to understand this for any 

model of language processing.  The processing of syntax requires integrating information over 

longer time scales, and the continued use of electrophysiology would provide high resolution 

temporal information that may provide insights into parallel or feedback processes.  Also, while 

Section IV.3.7 provided some evidence that the phonetic coding of spontaneous speech may 

utilize the same representations as those observed during single word processing, higher levels 

of language comprehension are expected to be significantly different.  Even at the acoustic-

phonetic level, single words spoken in “citation form” carry significantly different auditory 

information than continuous speech; many phonemes and sounds are significantly reduced or 

omitted completely when speaking rapidly (Jurafsky and Martin, 2009).  For many of the 

epilepsy patients who are admitted for electrode implantation and monitoring, continuous and 
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spontaneous conversations and electrophysiological data are recorded over the course of one 

to two weeks.  This provides an enormously large dataset by which it may be possible to 

examine natural unconstrained speech perception and production. 

Finally, one important future direction for the decoding of language information from 

neurophysiological recordings would be to demonstrate that this can be performed in real 

time.  The work performed in this dissertation has exclusively been performed offline, and it is 

necessary to demonstrate that the speed of feature extraction and classification is sufficient to 

support online decoding.  Furthermore, if a language prosthetic device is to be viable, it may 

also be necessary to investigate the tradeoff between computational complexity and 

performance of machine learning algorithms so that these techniques may be efficiently 

implemented on an embedded processor. 

While many potential paths exist to extend this work, I believe that this dissertation has 

demonstrated that multivariate decoding and machine learning techniques are powerful 

methods for exploring multiple scales of neural processing and the extraction of language 

information from neurophysiological recordings.  I hope that this work provides a foundation 

upon which further research into the spatiotemporal representation of language information 

can build upon.  More importantly, I have confidence that given sufficient thought and research, 

a rapid, intuitive brain-based language prosthesis can be developed to significantly benefit 

patients who are unable to adequately communicate with the outside world. 
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