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Abstract

There has been an increasing appreciation of the role in which elasticity plays in

soft matter. The understanding of many shapes and conformations of complex sys-

tems during equilibrium or non-equilibrium processes, ranging from the macroscopic

to the microscopic, can be explained to a large extend by the theory of elasticity. We

are motivated by older studies on how topology and shape couple in di↵erent novel

systems and in this thesis, we present novel systems and tools for gaining fundamental

insights into the wonderful world of geometry and soft matter.

We first look at how defects, topology and geometry come together in the physics of

thin membranes. Topological constraint plays a fundamental role on the morphology

of crumpling membranes of genus zero and suggest how di↵erent fundamental shapes,

such as platonic solids, can arise through a crumpling process. We present a way of

classifying disclinations using a generalized “Casper-Klug” coordination number. We

show that there exist symmetry breaking during the crumpling process, which can

be described using Landau theory and that thin membranes preserve the memory of

their defects.

Next we consider the problem of the shapes of Bacillus spores and show how one

can understand the folding patterns seen in bacterial coats by looking at the simplified
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problem of two concentric rings connected via springs. We show that when the two

rings loses contact, rucks spontaneous formed leading to the complex folding patterns.

We also develop a simple system of an extensible elastic on a spring support to study

bifurcation in system that has adhesion. We explain the bifurcation diagram and

show how it di↵ers from the classical results.

Lastly, we investigate the statistical mechanics of the Sadowsky ribbon in a sim-

ilar spirit to the famous Kratky-Porod model. We present a detail theoretical and

numerical calculations of the Sadowsky ribbon under the e↵ect of external force and

torsion. This model may be able to explain new and novel biopolymers ranging from

actin, microtubules to rod-like viruses that lies outside the scope of WLC model. This

concludes the thesis.
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Chapter 1

Introduction, Motivation, and

Outline

If I were to convey the main message of the thesis to a non-expert reader, I would

say that it is about understanding the geometry of crumpled membranes, the buckling

of rings and the twisting of ribbons. Looking up the English-language dictionary, I

find that:

Crumple crush (something, typically paper or cloth) so that it becomes creased and

wrinkled,

Buckle bend and give way under pressure or strain,

Twist form into a bent, curling, or distorted shape,

and surprisingly, the basic ideas of the physics are explained in these three words. Of

course, there is much more richness in this three systems that I will present, which I

hope is conveyed in clear manner in this thesis.

1



Chapter 1: Introduction, Motivation, and Outline 2

Let us start with a reminder of the basic physics of deformation of a thin, isotropic,

homogeneous, naturally flat sheet. In the long-wavelength limit, the sheet has two

primary modes of deformation: an out-of-plane bending and an in-plane stretching.

Bending deformations produce strains of order z at a distance z along the normal to

the middle surface. The elastic energy of pure bending is then U
B

⇠
R

dz z2 ⇠ h3.

On the other hand, stretching of the middle surface produces homogeneous strains

through the cross-section, so that U
S

⇠ h. The total energy may be written in a

cavalier manner as

energy = h3(bending) + h(stretching).

Indeed, as Rayleigh and others observed more than 100 years ago,

...thickness is diminished without limit, the actual displacement will be one of pure

bending, if such there be, consistent with the given conditions

Such bending/buckling in thin elastic shell membranes are ubiquitous in nature,

in both physical and biological systems, over a wide length scale. We can observe it in

viruses (10-100nm), where the icosahedral packings of protein capsomeres proposed by

Caspar and Klug for spherical viruses become unstable to faceting for su�ciently large

virus size, in analogy with the buckling instability of disclinations in two-dimensional

crystals [55, 109, 93]; vesicles (1µm) take on various shape under osmotic pressure

di↵erence by tuning the excess area [112, 78]; microspheres (1µm) show buckling

due to dissolution of the core in the external medium [116, 117, 81], pollen grain

(10-100µm) is able to fold onto itself to prevent excess desiccation due to presence

of axially elongated apertures of high compliance [47]; armored bubble (10-100µm)

can form faceted polyhedral shapes that are stable to dissolution [1]; buckling in
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droplets due to drying (1mm) [99]; wrinkling in skin/apple (10cm) [18]; phyllotaxis

in plants (10cm) arise from a cooperation and competition between mechanical and

biochemical processes [76, 91] to name a few (See Fig. 1.1).

Figure 1.1: Crumpling occurs on a wide range of length scale (a) The rhinovirus
(left) and the larger adenovirus (right) both exhibits icosahedral symmetry. (b) Block
copolymer vesicles in solution. (c) Folding of a pollen grain. (d) Faceted shape of
armored bubbles. White arrows indicate missing particle defects at the vertices of
the bubble. The four images are taken from Ref. [84, 114, 47, 1] respectively.

Amazingly, continuum elastic theory works in all these length scale, a wonderful

feat for a theory and we can use the theory to describe the shape of the membrane.

Due to the nonlinearity of elasticity theory, they are essentially impossible to solve

in analytical form except in some one-dimensional cases, so that one has to resort

to either computations or a semianalytical approach using scaling and asymptotic

arguments to make progress. As my adviser, Maha noted:
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The contrast is self-evident in an experiment that is the result of many a failed

calculation: how easy it is to crumple a piece of paper, and yet how hard it is

to understand it!

As we go from 2D membranes to 1D strings/rods/ribbons, we will discuss bending

and twisting but the basic idea behind the physics remains the same. Namely, that

1D systems tend to reduce its curvature and torsional stress and will take on confor-

mations that reduce its elastic energy.

1.1 Outline of Thesis

This thesis discusses three problems in soft matter physics:

1. Crumpling morphologies of crystalline shells with frozen defects (Chapter 2),

2. Buckled rings and its relations to bacterial spore (Chapter 3),

3. Statistical Mechanics of twisted ribbons (Chapter 4).

These topics represent disparate physical systems and require di↵erent toolkits

of theory and computer simulation to understand them. However, they can all be

understood in the context of elasticity theory as will become clear later in this thesis.

The first part contains the most interesting simulations and I have spent the most

time on it. All the chapters are self-contained and can be read independently.
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1.2 Role of defects in the crumpling of crystalline

shell

Continuum elasticity works until we go to small enough length scales, where crys-

tallinity matters, and the role of topological defects become important [90, 55, 70]

and we have to resort to discrete elasticity theory. Here, let us digress briefly to dis-

cuss about the armored bubbles experiment [1]. These fascinating objects can adopt

stable faceted shapes as gas dissolves into the surrounding liquid. It is reported that

the colloids tend to have six-fold sites and the five-fold disclination site is often unoc-

cupied by a particle. This observation, is a manifestation of topological defects played

out on a microscopic scale (10-100µm). These armored bubbles shapes are part of a

continuous transition as a function of the ratio of the particle (radius a) to bubble

radius (radius R) from clusters (a/R ⇡ 1), to facets (a/R ⇡ 0.1), to crumpled shapes

(a/R ⌧ 0.1) [1] and this dimensionless parameter is analogous to ratio of bond length

to size of system if one were to think about crystalline systems.

On a spherical surface of genus 0, it is known that crystalline structure (or equiv-

alently, spring mass system) will exhibit a minimum of twelve five-fold disclinations

and this number of topological defect is often expressed as:

N
5

�N
7

= 12,

where N
5

refers to the number of sites (or particles) with coordination number 5 and

similarly for N
7

. This is the well know geometrical frustration that is a consequence

of the more general Euler-Poincaré formula, given by �
E

= V � E + F , where �
E

is the Euler characteristic and F , E, V are the number of faces, edges and vertices
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in a covering respectively. Since we are forming a discrete surface that is closed,

this means that it is in fact polyhedron and it is homeomorphic to the sphere. In

particular, �
E

= 2(1 � g) = 2 for a polyhedron. When we triangulate the surface

of a sphere, since there are exactly three vertices per face and two vertices per edge,

we find that 3F = 2E. Let N
z

be the number of vertex with z-coordination number.

Then V =
P

z

N
z

and
P

z

zN
z

= 2E. Using these geometric relations, we find that

X

z

(6� z)N
z

= 6�
E

= 12. (1.1)

Thus we see that we can form higher order discrete surface surfaces that involves

three-, four- and five-fold disclinations or combinations of them as long as they satisfy

(1.1). We show that on surfaces where stocasticity is quenched, then the crumpling

of a drying surface [99] is completely driven by the presence and locations of the

disclinations. Depending on the set and locations of the disclinations, we can produce

buckled shapes that look like Platonic solids, Archimedean solids and so on. It is

rather amazing how the symmetry of the discrete surface manifest itself outwardly

in its geometry as it crumple. We were able to map out a phase diagram of the

morphology of the buckled shells based on two dimensionless parameters h/R an

R/a, where R is the characteristic size of the surface, h is the thickness of the surface

and a is the characteristic size of the bonds (or edges). As this is an elastic system,

we expect there to exist a significant amount of hysteresis and we investigated the

hysteresis loop in the Platonic shells and found that it exhibit a sharp first order

transition. We were able to write down a simple Landau free energy that characterize

the buckling transition that involves the rotationally invariant parameters Q
`

and W
`

.
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1.3 Spores and buckled elastica

Bacillus spores are dormant cells that exhibit high resistance to environmental

stresses. In spite of its dormancy, once nutrient is available the spore is able to resume

metabolic activity and return to vegetative growth. The core of the bacteria spore

is surrounded by a loosely cross linked peptidoglycan layer called the cortex, that is

thought to maintain the dehydrated state of the core. The spore outermost protective

layer, the coat, is a structurally complex multilayered protein shell, which protects

the genetic material while permitting the di↵usion of water and small molecules to

the spore interior and is largely responsible for the resilience of the spore. Spore can

dynamically expand and contract in response to humidity and the coat can exhibit

complex wrinkling patterns during dehydration. Rucks or wrinkles did not unfold

completely even at very high relative humidity, suggesting that the coat does not

limit cortex swelling.

U = Ubending + Ustretching + Ushear + Uspring

We generated a mechanical model predicting the emergence and dynamics of the coat

folding patterns in Bacillus subtilis spores. We believe that the emergent properties

of the assembled coat, such as its elastic modulus and thickness, rather than spe-

cific individual molecular components, are responsible for coat flexibility. From this

viewpoint, a functional coat can be built in a large number of ways and with diverse

protein components. Such freedom in design parameters could facilitate evolutionary

adaptation (particularly with respect to material properties) and the emergence of

the wide range of molecular compositions found among Bacillus spore coats.
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We wrote down the simplest mathematical model that describe our mathematical

model, namely, an compressible elastic connected to a bed of springs and under ap-

plied load at the ends. The force and torque balance lead to two equations which can

be reduced to one scalar equation using the reduction method of Liapunov-Schmidt.

The phase space of normalized pressure vs normalized load of this system has very rich

features and there are multiple buckling modes along di↵erent branches. The buckling

can be supercritical or subcritical depending on the values of the parameters.

1.4 Chapter 4: Statistical Mechanics of Twisted

Ribbons

The physics of a “1-dimensional” object is very di↵erent as compared to a 2-

dimensional shell. In 1D chains, there is one length scale that describe most of the

physics, namely the length of the chain. The elastic energy term comes from the

bending, stretching and twisting of this midline. We can describe the deformation of

a segment of the chain by

stretch: u(s), the extensional deformation, measures the fractional change in the

length of a segment ds. u = �(ds)/ds.

bend:  (curvature) measures how the chain unit tangent vector changes as we move

along the arc length.

Twist: ! measures how each succeeding elect has been rotated about the chain’s

axis relative to its neighbor. For example, if the segment is straight but twist
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at its end by a relative angle d�, then ! = d�/ds.

All these three quantities are local but they can be related to the overall deformation of

the chain. A beam that is initially straight can deviate from this geometry by applying

force and torque to it. Of course, most slender chains are not straight naturally due

to entropic reasons (mainly). The chain adopts a random-coil conformation because

there is one way to be straight but many more ways to be coiled up. Such 1D chains

has been used to describe many systems in nature, most notably the DNA, which can

be described very satisfactorily using the phenomenological worm-like chain model. In

this model, we keep the bending and torsion but assume that the chain is inextensible.

Recently, there have been some work on studying the Sadowsky ribbon, which is

very much like the wormlike chain model in spirit but there exist nonlinear coupling

between the curvature and torsion term. This nontrivial coupling make the ribbon

a very interesting model to study since it has many interesting physics waiting to

be explored. A wormlike chain has tangent-tangent correlation function that decays

exponentially. On the other hand, the Sadowsky ribbon has both tangent-tangent

and binormal-binormal correlation function to worry about. The binormal-binormal

correlation function falls o↵ exponentially while the tangent-tangent has an oscillatory

exponential decay that signifies the presence of an underlying helical structure that

persists at any finite temperature. Using MC methods, we found the force extension

curve of the Sadowsky with and without applied torque and found it to be to be much

sti↵ener compared to the WLC in both cases. At low force and no applied torque, the

e↵ective di↵usion constant of the Sadowsky ribbon is much sti↵er than WLC and this

is stems from the tangent-tangent persistence length of the Sadowsky ribbon. The
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force-extension curve for the ribbon under di↵erent applied torque is very interesting.

At small forces, the ribbon tend to stay as an entangled coil but beyond a critical

force, it starts to extend sharply, analogous to a first order transition.



Chapter 2

Buckling morphologies of

crystalline shells with frozen

defects

2.1 Introduction

Imagine a thin spherical shell membrane of thickness h and radius R initially filled

with some fluid. As the fluid is removed from the interior of the shell, the membrane

will start to crumple and form rich and interesting faceted structure. As the shell

deform, it will find a balance between the bending energy and strain energy that re-

sults in the lowest energy configuration. The elastic energy stored in a deformed thin

shell can be subdivided into two contributions, one from the bending deformation,

which is achieved by changing the curvature of the surface, and one from the in-plane

stretching. The bending modulus  scales as the third power of the shell thickness

11
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h while the in-plane stretching modulus Y scales linearly with h. Therefore, if R

is the characteristic size of the shell, as the ratio h/R approaches zero, stretching

deformations become increasingly costly compared to bending deformations. For a

given load, the thin shell will primarily respond by bending rather than stretching.

However, in closed shells such as a soccer ball, pure bending is not possible without

some stretching. Since stretching is energetically prohibitive, the deformed shape

will mostly be an inextensional deformation of the original shape, with stretching

being concentrated at ridges, resulting in a faceted structure. This tendency to form

faceted structure is due to energy focusing [110] where the elastic energy, which is

initially smoothly distributed, becomes more and more non-uniform, with high energy

concentrated in the bent regions. This energy focusing becomes more prominent on

membranes with thinner shells and the buckling behavior of the shell can be char-

acterized by a dimensionless parameter h/R (or equivalently the Foppl-von Karman

number � ⇠ (R/h)2 [55, 109]).

Such bending/buckling in thin elastic shell membranes are ubiquitous in nature,

in both physical and biological systems, over a wide length scale. We can observe it in

viruses (10-100nm), where the icosahedral packings of protein capsomeres proposed by

Caspar and Klug for spherical viruses become unstable to faceting for su�ciently large

virus size, in analogy with the buckling instability of disclinations in two-dimensional

crystals [55, 109, 93]; vesicles (1µm) take on various shape under osmotic pressure

di↵erence by tuning the excess area [112, 78]; microspheres (1µm) show buckling

due to dissolution of the core in the external medium [116, 117, 81], pollen grain

(10-100µm) is able to fold onto itself to prevent excess desiccation due to presence
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of axially elongated apertures of high compliance [47]; armored bubble (10-100µm)

can form faceted polyhedral shapes that are stable to dissolution [1]; buckling in

droplets due to drying (1mm) [99]; wrinkling in skin/apple (10cm) [18]; phyllotaxis

in plants (10cm) arise from a cooperation and competition between mechanical and

biochemical processes [76, 91] to name a few.

The theory of thin shell is highly non-linear and for the most cases, requires nu-

merical solutions to extract meaningful information. One of the key ingredient is the

discretization of the surface of the continuous crumpled membrane into a set trian-

gulated subregion. A flat two-dimensional surfaces can be triangulated into a lattice

of equally sized equilateral triangles, with each lattice site (or vertex) having a coor-

dination number of six, e.g. honeycomb lattice. However, such perfect triangulation

is impossible on a curve manifold with nonzero Gaussian curvature such as a sphere.

This is the well know geometrical frustration that is a consequence of Euler-Poincaré

formula, given by

�
E

= V � E + F,

where �
E

is the Euler characteristic and F , E, V are the number of faces, edges and

vertices in a covering respectively. In particular, �
E

= 2(1 � g) = 2 for a sphere

(genus zero). When we triangulate the surface of a sphere, since there are exactly

three vertices per face and two vertices per edge, we find that 3F = 2E. Let N
z

be the

number of vertex with z-coordination number. Then V =
P

z

N
z

and
P

z

zN
z

= 2E.

Using these geometric relations, we find that

X

z

(6� z)N
z

= 6�
E

= 12. (2.1)

Thus, Euler-Poincaré formula implies that it is impossible to have a triangulation
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with only 6-fold coordinated sites and if we consider a covering of a sphere of radius R

consisting of only 5-, 6- and 7-fold coordinated sites, there will be exactly twelve more

5-fold than 7-fold sites due to the topology of the sphere. A disclination is a lattice

site with coordination other than six. In most numerical studies, the triangulated

mesh is generated via a prescribed algorithm of subdivision and the resulting mesh

is usually considered to be “random” and does not a↵ect the final solution of the

problem. In fact, there is a whole sub-community within the Finite Element field

studying mesh implementation and adaptivity. Definitely, in the study of partial

di↵erential equations, the way the domain is discretized is a personal choice in solving

the problem. However, in the field of elasticity, where the surface itself contains

information about the local stress and strain, it is less obvious why mesh discretization

does not matter, since the mesh is the problem itself.

It is only recently that such topological defects have been studied in depth [55,

109, 90, 10, 8, 7, 9, 51, 21] and each disclination has a “energy” associated with it

known as the core energy [70]. Due to the long range character of such disclinations,

it is argued that the lowest energy state is one where there are exactly twelve 5-

fold sites in an otherwise 6-folded triangulation and these twelve defects are located

on the vertices of an icosahedron inscribed in the sphere of radius R. Such 5-fold

disclinations are responsible for the faceting of an otherwise spherical triangulation

into an icosahedral-like structure [55]. There are two time scales in this problem,

namely, (1) time scale of the defect dynamics (⌧
defect

), which is the characteristic

time a defect takes to move over a certain length on the surface and (2) time scale

of the surface dynamics (⌧
surface

), which is the characteristic time the topography
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of the surface changes appreciably. Most of the study of the physics of topological

disinclinations has been done either in the regime where the time scale of the defect

dynamics is much smaller than that of the deformation time scale of the ambient

surface, i.e., ⌧
defect

/⌧
surface

⌧ 1, which we will refer to as the frozen topography

limit or at the other end of the spectrum where the embedding surface is changing

on a time scale that is small compared to the time scale of the defect dynamics,

i.e., ⌧
defect

/⌧
surface

�, which is the frozen defects limit. The immediate case where

⌧
defect

/⌧
surface

⇠ 1 has only been studied recently on spherical shells [51] and it is

found that the spontaneous emergence of defect scars reduce elastic strain stress and

delays the onset of the buckling transition.

For the case of frozen topography, the defects are allowed to move, interact with

one another and proliferate on a surface with fixed geometry. The defects will move

to regions of the surface that results in the least strain and the migration of defects

do not influence the geometry (curvature) of the surface. This is analogous to the

motion of small particles in a strong gravitational field where we can neglect the

gravitational contribution of the particles to the original field. It has been found that

when the number of topological defects become large, the disclinations may form

more complicated structures (depending on what one assume for the core energy of

a disclination) [10, 8, 7, 38] on the sphere. In the limit of small core energies and

large R/a (R is the radius of sphere and a is the lattice spacing), it is energetically

favorable for the disclinations to form one dimensional arrays of dislocations, which

are tightly bound (5-7)-fold disclination pairs with one net excess 5-fold disclination,

also known as grain boundary “scars” [10, 9, 71]. In the limit of large core energies,
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Figure 2.1: We illustrate here the di↵erence between frozen topography and frozen
defects. a) Frozen topography: There is one four-fold disclination (blue square), one
five-fold disclination (red pentagon) and one seven-fold disclination (green heptagon)
that are free to move on a spherical surface. These disclinations are embedded in a
“sea” of 6-fold sites (grey hexagons). b) Frozen defects: The defects are frozen (fixed
mesh) and the overall geometry (shape) of the surface can deform.
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the creation of additional disclinations will be strongly penalized and the sphere will

contain only the minimum allowed twelve 5-fold disclinations. The physics (in the

zero temperature limit) is therefore characterized by the competition between the

core energy cost of creating a topological defect and the compensating gain from the

screening of Gaussian curvature when defects are allowed to proliferate.

For the case of frozen defects, we have a flexible membranes with crystalline order

where the defects are frozen on the fluctuating surface. This is analogous to the

motion of massive particles in general relativity where the curvature of the space is

changing as the particles migrate in positions. It has been found that disclination

plays an important role in the buckling of a flat membrane [90]. More recently, this

methodology has been used to study the buckling of colloidal particles [81, 116, 117]

and the folding of pollen grain [47]. In this paper, we look at the crumpling of spheres

where the topological defects are frozen and see how the triangulation a↵ect the shape

of the deformed shell during shrinking. More precisely, we would like to know 1) How

does the triangulation a↵ects the morphology of a thin spherical shell that is shrinking

with time and 2) How large must the mesh be until e↵ects of the small number of

disclinations is washed out? We consider the case where the core energies is large

so it is energetically favorable to have the smallest set of topological defects. In

particular, we created spheres that have defects associated with the Platonic solids

and investigated the change in energy as the volume shrinks. The di↵erence between

frozen topography and frozen defects is shown in Fig. 2.1.

The organization of the paper is as follows. In Sec. 2.2, we present the math-

ematical model used in our numerical study. The di↵erent types of disclinations is
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described in Sec. 2.3 and we study the crumpling process of spheres with di↵erent

combinations of topological defects. The energy for the di↵erent spheres during the

crumpling process is discussed in Sec. B.3, and we discussed about possible transition

pathways among the di↵erent Platonic shells. The phase space as a function of the

two dimensionless parameters containing all relevant length scales of the problem is

discussed in Sec. 2.5. Sec. 2.6 contains a discussion of the classification of the spheri-

cal crystal lattice. We analyzed the shape of the crumpled spheres by looking at the

spherical harmonic modes and calculated various rotationally invariant quantities in

Sec. 2.7. In Sec. 2.8, we considered the e↵ects of hysteresis for the di↵erent Platonic

solids and show that there is a spontaneous breaking of the symmetry of the shell

during the buckling phase and that the hysteresis loop display return point memory.

In Sec. 2.9, we present a simple Landau free energy model that describe the symmetry

breaking shape transition. We conclude in Sec. 2.10 our important results as well as

a thought experiment that may be relevant to future studies.

2.2 Elastic Theory

The elastic energy E
T

of a deformed shell may be regarded as the sum of bending

and that due to stretching of the middle surface as follows [110, 54]:

H
T

= H
s

+H
b

=

Z

dA(E
s

+ E
b

)

=
1

2

Z

dA(2µ�2
ij

+ ��2
kk

) +
1

2

Z

dA(DH2 + 2D
G

K), (2.2)
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where �
ij

is the strain tensor, µ and � are the two-dimensional (2D) Lamé coe�cients,

D is the bending rigidity, D
G

is the Gaussian rigidity, H and K are the mean and

Gaussian curvatures respectively. If R
1

and R
2

are the principal radii of curvature,

then H = 1/R
1

+ 1/R
2

and K = 1/R
1

R
2

.

In order to understand the morphology of a crumpling thin shell, we use Surface

Evolver [13] to simulate the deformation of the sphere under the constraint of a

decreasing volume. Surface Evolver is an interactive program for the study of surfaces

shaped by surface tension or other energies, and subject to various constraints. The

total energy of a thin two-dimensional shell can be expressed as a sum of the stretching

energy and the bending energy, i.e., U
T

= U
S

+ U
B

[110, 54] and evolves toward

minimal energy via a gradient or conjugate gradient descent method. For a closed

surface with fixed topology, and when 
G

is a constant, the Gaussian curvature term

integrates to a constant by the Gauss-Bonnet theorem and will henceforth be dropped,

as it will have no influence on the morphology of the shell. Hence the bending energy

only includes the contribution from the mean curvature. Thus in our numerics, we

need only consider the elastic strain from the stretching of the shell and the bending

energy from mean curvature.

The surface is implemented as a simplicial complex, that is a union of triangles,

and each triangle (face) is uniquely defined by its three vertices v
1

, v
3

and v
3

. Let

s
1

= v
2

� v
1

and s
2

= v
3

� v
1

be the unstrained sides of the triangle, and construct

column matrices S = [s
1

, s
2

]. When the surface is strained, the three vertices of

each triangle is deformed from v
i

to v0
i

. In a similar manner, let r
1

= v0
2

� v0
1

and

r
2

= v0
3

� v0
1

be the strained sides and construct R = [r
1

, r
2

]. The deformation
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gradient matrix D satisfies DS = R and the Cauchy-Green strain matrix is given

by C = (DTD � I)/2, where I is the 2 ⇥ 2 identity matrix. Then the strain energy

density is

Y

2(1 + ⌫)

✓

Tr(C2) +
⌫

(1� ⌫)
(TrC)2

◆

, (2.3)

where Y = Eh is the two-dimensional Young’s modulus and ⌫ is the Poisson ratio.

Each vertex v has a star of triangles around it of total area A
v

. The force on each

vertex v is

F
v

= �@Av

@V
. (2.4)

Since each triangle has 3 vertices, the area associated with v is A
v

/3. Then the mean

curvature is

h
v

=
F
v

2(A
v

/3)
. (2.5)

The bending energy density is then

h2

v

(A
v

/3) = 
F 2

v

4(A
v

/3)
, (2.6)

where  = Eh3/12(1 � ⌫2) is the bending rigidity. The ratio of bending rigidity to

2D Young’s modulus /Y and the poisson ratio ⌫ defines the thickness of the shell

h, since

h2 = 12(1� ⌫2)


Y
. (2.7)

Our model for the undeformed spherical shell has varying thickness h, initial

volume V
0

= 4⇡R3/3 = 1 (initial radius R
0

= 0.62) and spontaneous mean curvature

equal to c
0

= 1/R
0

= 1.61. The Poisson ratio is determined to be ⌫ = 1/3 [90, 81]

and the material is assumed to be isotropic with constant elastic moduli E. In our

simulations, we vary the 2D Young’s constant Y and fix  = 1 so as to get a reasonable
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range of h/R. Starting from a initial sphere, we then decrease the volume at a given

constant rate � until a final volume. For � ⌧ 1, the shell is evolving quasi-statically

and is always at equilibrium. We control the volume and the pressure appear as

a Lagrange multiplier. At each time step, Surface Evolver will evolve the surface

toward the minimal energy by a gradient descent method. In order to create spheres

with di↵erent topological defects, we first create a surface of our desired polyhedron

in Surface Evolver. We turn o↵ the bending and stretching energies and turn on

the surface tension and let the surface evolve. For a fixed volume, the sphere is the

solid with the smallest surface area. Hence this polyhedron will evolve to a sphere of

volume V
0

since it is the minimal energy surface. The sphere hence created will have

the defects associated with the original polyhedron. Then we turn on the bending

and stretching energies and proceed with our deformation procedure.

2.3 Topological defects on crystalline shells

2.3.1 Set of minimal topological defects

Let us consider the set of minimal number of topological defects on a triangulated

spherical surface that satisfy the Euler-Poincaré formula. This is the regime where the

core energies are large so that the creation of topological defects is heavily penalized

and the spherical shell prefers to have the minimum number of disclinations that

satisfy equation (2.1). On a triangulated spherical surface, we can have 3-, 4-, 5-, 6-,

7-, 8-, 9-fold vertices. It may be useful to think of each site, with coordination number

z, as having a topological charge of 6� z (indicating the strength of the disclination),
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e.g. 3-fold site has charge +3, 4-fold site has charge +2 etc. Then equation (2.1)

can be understood as a conservation of topological charge statement, i.e., the sum

of topological charges on a spherical crystal lattice must add up to 12. Since 3-, 4-,

5-fold defects contribute positively, while 7-, 8-, 9-fold defects contribute negatively to

the summation in equation (2.1), this means that any triangulated spherical surface

must have a net excess of 3-, 4-, 5-fold defects compared to 7-, 8-, 9-fold defects in

a sea of 6-fold sites that must add up to 12. There is a beautiful analogy to the

BCS theory of superconductivity: the sea of 6-fold vertices are like the condensate of

Cooper pairs in superconductivity and the various n-fold disclinations (n = 3, 4, 5, 7,

8, 9) are similar to the quasi-particle excitations which have long range interaction.

Since we are looking at the minimal number of topological defects (i.e., lowest

energy configurations), we can restrict our attention to combinations of 3-, 4-, 5-fold

defects. Let us denote the number of 3-, 4-, 5-fold disclinations by {n
1

, n
2

, n
3

}, e.g. a

sphere with 12 5-fold disclinations would be denoted by {0, 0, 12}. There are a total

of 19 di↵erent possibilities and they fall into three distinct universality classes based

on the number of distinct topological defects they have as shown in Table 2.1.

Table 2.1: Di↵erent configurations of topological defects.

# distinct defects Di↵erent cases
1 {0, 0, 12}, {4, 0, 0}, {0, 6, 0}
2 {0, 1, 10}, {0, 2, 8}, {0, 3, 6}, {0, 4, 4}, {0, 5, 2}, {1, 0, 9},

{2, 0, 6}, {3, 0, 3}, {2, 3, 0}
3 {1, 1, 7}, {1, 2, 5}, , {1, 3, 3}, {1, 4, 1}, {2, 1, 4}, {2, 2, 2},

{3, 1, 1}
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2.3.2 Spheres with one type of disclination

Consider a sphere created from an icosahedron that has defects associated with the

{0, 0, 12} class. This triangulation, which we will call the icosahedral-sphere (M
1

), has

exactly 12 5-fold defects at the vertices of an inscribed icosahedron. As the membrane

shrinks, it starts to deform into a structure resembling that of an icosahedron (Fig.

2.2a), where there are noticeable buckling at the 12 disclination points which agrees

with findings by earlier work [55, 109]. This shows that the disclination have very

high energy and it is energetically favorable to buckle a 5-fold defect than to strain

it.

On the other hand, the dodecahedral-sphere (M
2

), which is dual to the icosahedral-

sphere (M
1

) and in the same {0, 0, 12} class, the 5-fold disclinations lie in the center

of the 12 pentagonal faces of an inscribed dodecahedron. M
2

will evolve to a structure

that resembles a dodecahedron but with a protrusion from the center of each of the

12 pentagon face as shown in Fig. 2.2b. Although both M
1

and M
2

have 12 5-fold

defects in them and they are all located on the vertices of an inscribed icosahedron, the

defects on the two sphere have di↵erent relative orientation to one another as shown

in Fig. 2.2. This di↵erence in relative orientation among the 5-fold defects a↵ects the

pattern of the sea of 6-fold lattice sites surrounding them. This is the source of the

long range e↵ect of the disclination. Even as we refine the mesh and add more lattice

sites between the disclinations, the relative orientations of the closest disclinations

dictate the geometry of the membrane. Thus M
1

and M
2

evolve to di↵erent faceted

surface under deformation even though they have the same number of topological

defects. The positive (convex) disclination at the 5-fold site is also unsurprising since
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Figure 2.2: Simulations of a sphere with di↵erent disclinations shrinking with time
(left to right). Diagrams are to scale. Leftmost picture of each row shows the original
polyhedron. The second picture in each row shows the sphere formed from the di↵er-
ent polyhedron before deformation. Third picture shows the sphere after shrinking by
⇠ 20% and the fourth picture shows the sphere after shrinking by ⇠ 40%. Blue and
green color denote convex and concave regions respectively. The disclinations are cir-
cled and zoomed in. (a) Icosahedron (M

1

). (b) Dodecahedron (M
2

). (c) Octahedron
(M

3

). (d) Cube (M
4

). (e) Tetrahedron (M
5

).
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topological charges are attracted to regions of like-sign Gaussian curvature [70, 10, 20].

Next, we consider a sphere formed from the octahedron, the octahedral-sphere

(M
3

). There are six 4-fold defects on M
3

, four of them equally space along the

equator and one each on the North pole and South pole. The defects are oriented like

a diamond along the equator and meridian as shown in Fig. 2.2c. Under deformation,

M
3

evolves to a structure resembling an octahedron and the six 4-fold disclinations

have buckled significantly compared to the rest of the shell. The sphere formed from

a cube (M
4

), which is dual to an octahedron and share the same symmetry group

O, has six 4-fold disclinations and hence is in the same {0, 6, 0} class as M
3

. In this

case, the six 4-fold defects are oriented like a square along the equator and meridian

as shown in Fig. 2.2d. Under deformation, M
4

evolve to a octahedral-like surface and

the location around the disclinations su↵ers the most buckling and lies at the vertices

of the resulting deformed structure.

To complete the study of Platonic solids, we form a sphere made from a tetrahe-

dron, the tetrahedral-sphere (M
5

). In this case, there are exactly four 3-fold discli-

nations ({4, 0, 0} class) and they lie on the vertices of an inscribed tetrahedron. This

sphere will deform into a tetrahedral-like structure with the 3-fold disclinations lo-

cated at the four vertices of the deformed structure. If we return to the Euler-Poincaré

formula and think of 6 � z as the topological charge indicating the strength of the

disclination, we see that sites with greater charge have a tendency to bend/buckle

more, i.e., 4-fold sites can buckle more positively (convex) compared to a 5-fold site

and 3-fold sites can buckle more positively (convex) compared to a 4-fold site. Con-

versely, 8-fold sites can buckle more negatively (concave) compared to 7-fold sites and
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so on.

2.3.3 Spheres with more than one type of disclinations

Thus far, we have only considered spheres with only one type of disclination. Be-

sides the Platonic solids, we find that the cuboctahedron ({0, 6, 0}), prism-6 ({0, 6, 0})

and antiprism-5 ({0, 0, 12}), also form spheres with singular defect type, to name a

few. Next, let us consider spheres that contain 2 types of defects. We find that

spheres formed from an antiprism-4 ({0, 2, 8}), pyramid-5 ({0, 5, 2}) or dipyramid-3

({2, 3, 0}) fall under such category. The sphere formed from the antiprism-4 has a

4-fold disclination at the North and South poles each and eight 5-fold disclinations at

the vertices of an inscribed antiprism-4 that zig zags along a belt around the equator

(2(+2) + 8(+1) = 12). Upon deformation, the disclination sites will start to buckle

and form and a structure that looks like a top as shown in the rightmost picture in

Fig. 2.3a. The upper and lower half of the final shape are actually mirror images

rotated by 90�, i.e., if you cut the top horizontally into two equal halves and rotate

the lower half by 90� about a vertical axis and reflect it into the horizontal line, you

will get the upper half.

The sphere formed from the pyramid-5 polyhedron (2(+1) + 5(+2) = 12) has a

5-fold disclination at the North and South pole each and five 4-fold defects evenly

spaced along a line of latitude slightly below the equator as shown in Fig. 2.3b.

The final shape after deformation looks somewhat like a pyramid-5 except with a

bulging bottom. The sphere formed from a dipyramid-3 (2(+3) + 3(+2) = 12) has a

3-fold disclination at the North and South pole each and three 4-fold defects evenly
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Figure 2.3: Simulations of a sphere with di↵erent disclinations shrinking with time
(left to right). Diagrams are to scale. Leftmost picture of each row shows the original
polyhedron. The second, third and fourth picture of each row shows the sphere
at di↵erent time during the shrinking process. Blue and green color denote convex
and concave edges respectively. The disclinations are circled and zoomed in. (a)
Antiprism-4. (b) Pyramid-5. (c) Dipyramid-3. (d) Prism-7.
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spaced along the equator as shown in Fig. 2.3c. This sphere slowly shrinks to form

a structure that looks like a dipyramid-3 with sharper vertices at the North and

South tip compared to the three vertices along the equator. This agrees with our

understanding that sites with higher topological tend to buckle more.

2.3.4 Sphere with positive and negative disclinations

Lastly, let us consider polyhedrons that formed spheres with higher order disclina-

tions other than the 3-, 4-, 5-fold defects that we have looked at so far. One example

is a sphere created from a prism-7 as shown in Fig. 2.3d. The sphere thus formed has

a 7-fold disclination at the North and South poles each and seven 4-fold disclinations

(2(�1) + 7(+2) = 12). Under deformation, this sphere forms a beautiful structure

with seven sides and a slightly pointed top and bottom cap, which closely resembles

a prism-7, i.e., it is a prism-7 which bulging top and bottom surface as shown in Fig.

2.3d. The small area around the 7-fold disclination concave slightly inwards.

2.4 Elastic energies of thin crystalline shells

The spheres created from di↵erent polyhedrons have very di↵erent energies since

the total energy U
T

depends sensitively on the structure of the mesh, which as we

saw in previous sections, is determined by the number of defects and their relative

orientations. Most triangles in a spherical lattice are not equilateral (e.g. when

we triangulate a square, we get four congruent right angle triangles instead of four

equilateral triangles) and we will define the average length of the edges, ā to be the

lattice spacing a. As we refine the mesh, we get smaller lattice spacing a. We find that
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as the ratio R/a & 10 (continuum limit), the total energy of the sphere asymptotes,

indicating that the minimal energy surface that we create under surface tension from

the original polyhedron starts to approaches that of the perfect sphere. When R/a .

1, there are too few lattice sites on the sphere and hence the triangulation is not

smooth. Refer to the Appendix for details.

Figure 2.4: Plot of Energy vs Volume as the sphere shrinks for di↵erent values of
h/R. Before deformation, the icosahedral-sphere (M

1

) has the lowest energy followed
closely by the dodecahedral-sphere (M

2

). However, as we shrink the spheres, at some
point, the octahedral-sphere (M

3

) becomes energetically favorable. Thus for di↵erent
volume reduction, the system will undergo structural transitions such as M

1

! M
2

,
M

1

! M
2

! M
3

and M
1

! M
3

.

Depending on the mesh picked, there will be di↵erent stress and strain on the
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shell. We find that the icosahedral-sphere (M
1

) has the lowest energy, which agrees

with previous studies [55, 109, 10]. This is followed closely by the dodecahedral-sphere

(M
2

), with an energy di↵erence of less than 10%. This small di↵erence in energy is

unsurprising considering both M
1

and M
2

have the same symmetry. However, the

di↵erence in the relative orientation of the 5-fold disclinations results in dramatically

di↵erent strain energy distribution on the sphere [7]. The octahedral-sphere is the

third lowest followed by the cubical-sphere. The tetrahedral-sphere has significantly

larger energy and this is because the four 3-fold disclinations create high amount of

long range in-plain strain on the surface. Our findings also indicate that structures

with (P, 0) CK coordinates tend to have lower energies than their (P, P ) counterparts.

Also, di↵erent triangulations have di↵erent energy even as R/a ! 1. This implies

that once we pick a certain mesh, the allowable modes of excitations are already

‘locked in’. If we think in terms of spherical harmonic modes `, this means that

only certain ` modes are permissible depending on the symmetry of the mesh. This

observation will be expounded in greater detail in a later section.

Although the icosahedral-sphere (M
1

) has the lowest energy before deformation,

at some point during the shrinking process, the dodecahedral-sphere (M
2

) starts to

be energetically favorable. The full result of the total elastic energy as a function of

volume for the five Platonic spherical shells at di↵erent h/R is shown in Fig. 2.4. As

can be seen from Fig. 2.5, at high volume reduction, the dodecahedral-sphere (M
2

)

starts to form more bumps on its surface compared to the icosahedral-sphere (M
1

)

which is able to more e↵ectively “screen” the 5-fold disclinations from one another.

The total energy is a fine balance between bending and stretching and the small
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increase in bending energy is more than compensated by the larger decrease in strain

energy. The deformed shells appear to retains its original symmetry throughout the

course of crumpling. This introduces the possibility of structural transition from M
1

to M
2

as the deformation becomes more pronounced.

Figure 2.5: Comparison of the extend of buckling for shell with same symmetry group
G but di↵erent CK coordinates for h/R = 0.118 at volume shrinkage of ⇠ 40%. (a)
dodecahedral-sphere (P, P ) is more faceted than the icosahedral-sphere (P, 0). (b) On
the other hand, the faceting of the octahedral-sphere (P, 0) is significantly di↵erent
from the cubical-sphere (P, P ).

For thin shells (h/R . 0.15), the octahedral-sphere can become the energetically

favored state at high enough volume contraction and we see the possibility of struc-

tural transition pathways such as M
1

! M
2

, M
1

! M
2

! M
3

and M
1

! M
3

. The

energy of the tetrahedral-sphere drops rapidly once it starts to crumple and form

highly faceted structure as shown in Fig. 2.5 and the structural transition pathway

M
4

! M
5

.

2.5 Phase space

When we shrink a spherical covering created from a particular polyhedron, most

of the times we get a highly complex structure at high volume reduction and rarely, if
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ever, do we get a crumpled structure that resembles original polyhedron. The shape

of the deformed shell depends sensitively on the thickness of the shell h, the radius

of the sphere R and the lattice spacing a and we would like to understand in what

region of phase space (h,R, a) do we get a crumpled sphere that resembles the original

polyhedron. Given a particular mesh type, we will explore the phase space of the final

crumpled shape based on two dimensionless parameters, namely: h/R (aspect ratio)

and R/a (lattice ratio). In particular, we have narrowed our attention to the class of

spheres formed from Platonic solids and the final results are shown in Figs. 2.6, 2.7

and 2.8. h/R can be varied freely since it is controlled by the two elastic modulus Y

and  that we can set arbitrarily. Due to the algorithm that we use for subdivision,

in which each edge is divided in two, and each triangle is divided into four new ones

in a regular manner, R/a can only take on certain values at each step of the mesh

refinement resulting in a somewhat coarseness in the R/a direction in the phase space

diagrams.

The phase digram for the di↵erent spherical lattices appear to have the same

qualitative features. As we vary the aspect ratio h/R, we find that thick spheres

(h/R & 0.1) tend to crumple isotropically and the deformed structure is generally

smooth with no noticeable faceting; thin spherical shells tend to crumple into highly

faceted structures. On the other hand, at low lattice ratio R/a, we generally get

simpler crumpled structures since there are less degrees of freedom; as we increase

R/a, we get more and more complicated deformed structures. At intermediate values

of h/R and R/a, we do get structures that look like the original polyhedron. The

striking similarities in the five phase diagrams suggest that the crumpling behavior is
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Figure 2.6: (a) The morphological phase diagram of sphere with icosahedral defect
(M

1

) as a function of the aspect ratio h/R and lattice ratio R/a. (1) corresponds
to a shell with h/R = 0.12, R/a = 3.1; (2) corresponds to h/R = 0.15, R/a = 6.2;
(3) corresponds to h/R = 0.12, R/a = 6.2 (This corresponds to the final crumpled
shape of Fig. 2.2a); (4) corresponds to h/R = 0.05, R/a = 12.4; (5) corresponds to
h/R = 0.22, R/a = 24.8; (6) corresponds to h/R = 0.04, R/a = 24.8. In all the
simulations, the volume of the sphere is reduced by 40%. Color scheme used: White
= spherical; Black = crumpled; Grey = polyhedral. (b) The morphological phase
diagram of sphere with dodecahedral defect (M

2

) as a function of the aspect ratio
h/R and lattice ratio R/a. The final crumpled shape of Fig. 2.2b is (4).
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Figure 2.7: (a) The morphological phase diagram of sphere with octahedral defect
(M

3

) as a function of the aspect ratio h/R and lattice ratio R/a. (b) The morpholog-
ical phase diagram of sphere with cubical defect (M

4

) as a function of the aspect ratio
h/R and lattice ratio R/a. (1) corresponds to a shell with h/R = 0.3, R/a = 4.0; (2)
corresponds to h/R = 0.12, R/a = 4.0; (3) corresponds to h/R = 0.12, R/a = 8.0; (4)
corresponds to h/R = 0.05, R/a = 8.0; (5) corresponds to h/R = 0.12, R/a = 16.0;
(6) corresponds to h/R = 0.04, R/a = 16.0. In all the simulations, the volume of the
sphere is reduced by 40%. Color scheme used: White = spherical; Black = crumpled;
Grey = polyhedral. The final crumpled shape of Fig. 2.2c lies somewhere around (3)
and (4). (b) The morphological phase diagram of sphere with cubical defect (M

4

) as
a function of the aspect ratio h/R and lattice ratio R/a. The final crumpled shape
of Fig. 2.2d is (4).
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Figure 2.8: The morphological phase diagram of sphere with tetrahedral defect (M
5

)
as a function of the aspect ratio h/R and lattice ratio R/a. (1) corresponds to a
shell with h/R = 0.12, R/a = 1.4; (2) corresponds to h/R = 0.15, R/a = 2.8;
(3) corresponds to h/R = 0.15, R/a = 11.6 (This is the final crumpled shape of
Fig. 2.2e); (4) corresponds to h/R = 0.03, R/a = 5.8; (5) corresponds to h/R = 0.12,
R/a = 11.6; (6) corresponds to h/R = 0.05, R/a = 23.2. In all the simulations,
the volume of the sphere is reduced by 40%. Color scheme used: White = spherical;
Black = crumpled; Grey = polyhedral.
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Figure 2.9: Phase diagram as a function of h/R and R/a. For small h/R and R/a,
we get simple faceted crumpled final states. As R/a increase, the crumpled state gets
more complex. On the other hand, as h/R increase, bending becomes increasingly
energetically prohibitive, hence the sphere shrinks isotropically.
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very generic and the phase diagram for any triangulated lattice should look qualita-

tively like Fig. 2.9. The boundaries are not well defined and it is a smooth transition

going from one region to another.

2.6 Classification of shell type

From the numerical simulation, we find that if we form a triangulated spherical

covering and put in some defects denoted by {n
1

, n
2

, n
3

}, such that the disclinations

obeys certain group symmetry G, i.e., the set of topological defects are invariant

under the action of group G, then we expect that such as a sphere would, under

shrinking, deform into a structure that resembles a polyhedron that has the symmetry

of G. Consider two thin spherical shells formed from an octahedron and a cube

respectively as shown in Fig. 2.10. Both spheres are invariant under the 48 element

octahedral symmetry group O
h

' O ⇥ C
2

and yet they deform to slightly di↵erent

structure under shrinking (see Fig. 2.2). We see that specifying the group is not a

su�cient classification as the relative orientation of the defects to one another, which

plays an important role in determining the final shape of the deformed sphere, is not

specified by the symmetry group. This issue with orientation stems from the long

range interaction of disclinations and forbids a simple global defect theory to explain

shell deformation.

The icosadeltahedral lattice [55, 93, 17], i.e., vertices on the lattice have coordi-

nation number either five or six, can be classified by a pair of integers (P,Q) known

as the “Casper-Klug” (CK) coordinates, which indicates how the 5-fold sites are

connected. The shortest path connecting a pair of nearest neighbor 5-coordinated
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Figure 2.10: Spheres formed from octahedron (M
3

) and cube (M
4

). (a) Octahedron:
The defects are oriented like a diamond at the six intersections of the x-, y-, z-
axis with the sphere. “Casper-Klug” coordination is (P, 0): takes P steps to move
between a pair of closest neighbor 4-fold disclination as shown. (b) Cube: The defects
are oriented like a square at the six intersection points. (P, P ): takes P steps in one
direction and P steps in another to move between a pair of closest neighbor 4-fold
disclination.

vertices consist of P edges (steps) in some direction and Q edges in another direction

on the spherical triangulation. Structures with P and Q non-zero and P 6= Q are

chiral. Their symmetry group is the chiral icosahedral symmetry group I of order 60.

Structures with P or Q = 0, or with P = Q are non-chiral and has the full icosahedral

symmetry I
h

= I⇥C
2

. In particular, the icosahedral-sphere (M
1

) belongs to the class

(P, 0) while the dodecahedral-sphere (M
2

) belongs to (P, P ). The T number of the

covering is given by T = P 2 + Q2 + PQ, and is related to the number of vertices

V = 10T + 2.

The “Casper-Klug” (CK) coordinates (P,Q) let us specify the relative orientation

of the disclinations in an unambiguous manner for the icosadeltahedral lattice. In a

similar fashion, we can extend the “Caspar-Klug” classification to include 3-, 4-fold
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sites. The summary is shown in Table 2.2. Thus, we see that to fully classify the

defects on a spherical lattice, it is necessary and su�cient to include

1. number and type of disclinations,

2. the full symmetry group of the defects G,

3. the “Casper-Klug” coordinates (P,Q).

Table 2.2: “Caspar-Klug” classification for thin crystalline shells.

Type of sphere Symmetry CK coordinates # vertices
icosahedral-sphere (M

1

) I
h

(P, 0) V = 10T + 2
dodecahedral-sphere (M

2

) I
h

(P, 0) V = 10T + 2
octahedral-sphere (M

3

) O
h

(P, 0) V = 4T + 2
cubical-sphere (M

4

) O
h

(P, P ) V = 4T + 2
Tetrahedral-sphere (M

5

) T
d

(P, 0) V = 2T + 2
Antiprism-4-sphere D

4d

(P, 0) V = 8T + 2
Pyramid-5-sphere C

5v

(P, 0) V = 5T + 2
Dipyramid-3-sphere D

3h

(P, 0) V = 3T + 2
Prism-7-sphere D

7h

(P, P ) V = 7T + 2

2.7 Shape Analysis

2.7.1 Group Theory

There are only three symmetry groups associated with the Platonic solids rather

than five, since the symmetry group of any polyhedron coincides with that of its dual.

Any symmetry of the original polyhedron must be a symmetry of the dual and vice-

versa. The three polyhedral groups are: 1) the tetrahedral group T 2) the octahedral

group O (which is also the symmetry group of the cube), and 3) the icosahedral group
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I (which is also the symmetry group of the dodecahedron). Group theory tells us

that O ' S
4

⇥C
2

and I ' A
5

⇥C
2

, which implies that O and I have point inversion

symmetry. For example, under point inversion, any point located at (✓,�) in spherical

coordinates will be transformed to (⇡ � ✓,�+ ⇡). Suppose we choose to parametrize

a surface r(✓,�) using spherical harmonics, i.e.,

r(✓,�) =
1
X

`=0

`

X

m=�`

am
`

Y m

`

(✓,�). (2.8)

If the surface has either O or I symmetry and hence obey point inversion, then

P [r(✓,�)] = r(⇡ � ✓,�+ ⇡) =
1
X

`=0

`

X

m=�`

am
`

Y m

`

(⇡ � ✓,�+ ⇡),

where P is the point inversion operator. Since

Y m

`

(⇡ � ✓, ⇡ + �) = (�1)`Y m

`

(✓,�), (2.9)

we see that such a surface can only be described by a sum of even ` spherical har-

monics. The tetrahedral group does not have point inversion symmetry so there is

no restrictions on the allowed ` for the spherical harmonics. Also, since the surface

r(✓,�) is real, this means that

r(✓,�) =
1
X

`=0

`

X

m=�`

am
`

Y m

`

=
1
X

`=0

`

X

m=�`

(am
`

)⇤ (Y m

`

)⇤.

Using the fact that

(Y m

`

)⇤ = (�1)mY �m

`

,

this implies that

(a�m

`

)⇤ = (�1)mam
`

. (2.10)

One simple consequence is that a0
`

is always real.
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2.7.2 Comparison with crumpled spheres

We can analyze the shapes of the deformed shells by looking at the spherical

harmonics expansion of the vertices. The radial density of the vertices on the surface

is defined by

D(✓,�) =
N

X

i

R
i

�(�� �
i

)�(cos ✓ � cos ✓
i

), (2.11)

where (✓
i

,�
i

, R
i

) represents the polar coordinates of vertex i (i = 1, . . . N). Expanding

the radial density in spherical harmonics up to ` = L,

D(✓,�) =
L

X

`=0

`

X

m=�`

am
`

Y m

`

(✓,�), (2.12)

we can understand the important small ` modes that are excited. For example, we

look at the spherical harmonic expansion of some of the h/R = 0.118 shells that

have been shrunk by approximately 20% (See Fig. 2.11). These shells have R/a of

Figure 2.11: Crumpled shells (with volume shrinkage 20%) on the top row are the
images from Surface Evolver. The images on the bottom row are the spherical har-
monic approximation of the crumpled shells from the top shell as described by equa-
tion (2.13). The small dots on the bottom figures are the data points of the vertices.

around 20. For this set of five crumpled spheres, we find that the spherical harmonic
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expansion is given by:

r
cube

(✓,�) ⇡ Y 0

0

+ (0.003)Y 0

4

+ (0.002)(Y 4

4

+ Y �4

4

) + ...,

r
oct

(✓,�) ⇡ Y 0

0

+ (0.094)Y 0

4

+ (�0.056)(Y 4

4

+ Y �4

4

) + ...,

r
ico

(✓,�) ⇡ Y 0

0

+ (0.082)Y 0

6

+ (�0.066)(Y 5

6

� Y �5

6

) + ...

r
dodec

(✓,�) ⇡ Y 0

0

+ (0.032)Y 0

6

+ (�0.027)(Y 5

6

� Y �5

6

) + ..., (2.13)

r
tetra

(✓,�) ⇡ Y 0

0

+ (0.059)Y 0

3

+ (�0.036)(Y 3

3

� Y �3

3

)

+(0.038)Y 0

4

+ (0.046)(Y 3

4

� Y �3

4

) + (�0.007)Y 0

6

+(0.004)(Y 3

6

� Y �3

6

) + (�0.004)(Y 6

6

+ Y �6

6

) + ...,

where we have rescaled a0
0

to 1 and shown only the first few non-zero ` terms. This

result can be compared to the spherical harmonic expansion for the Platonic solids

resulting from Onaka’s formulation [77]:

r
cube

(✓,�) ⇡ Y 0

0

+ (�0.086)Y 0

4

+ (�0.051)(Y 4

4

+ Y �4

4

) + ...,

r
oct

(✓,�) ⇡ Y 0

0

+ (0.076)Y 0

4

+ (0.046)(Y 4

4

+ Y �4

4

) + ...,

r
ico
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The same ` modes appear in both equations (2.13) and (2.14), suggesting that the

disclinations are largely responsible for the geometry of the crumpled shells. Here we

find that the spherical harmonic expansion of the crumpled icosahedral-sphere (M
1

),

dodecahedral-sphere (M
2

), octahedral-sphere (M
3

) and cubical-sphere (M
4

) contain

even ` harmonics and that the low ` modes are the dominant modes at the onset of

crumpling. On the other hand, the tetrahedral-sphere (M
5

) have both even and odd

` modes. As the shell crumple even further, we find that in general, lower ` modes

will shrink while the higher ` modes will grow in magnitude and importance.

2.7.3 “Shape” Spectroscopy

The set of spherical harmonics Y m

`

(✓,�) for a given ` forms a (2`+1)-dimensional

representation of the rotational group SO(3). This means that the am
`

’s for a given

` can be scrambled by a simple rotation of coordinates. Therefore, it is better to

look at rotationally invariant quantities formed from the various am
`

that measure the

angular projection onto the di↵erent ` [95, 113, 95]. One such invariant quantity is

Q
`

, defined as

Q
`

=

 

4⇡

2`+ 1

`

X

m=�`

|am
`

|2
!

1/2

. (2.15)

Q
`

measures the “magnitude” of the (2` + 1) order parameter am
`

. The quantity a0
0

,

which corresponds to a constant spherical harmonics Y 0

0

= 1/
p
4⇡, is always nonzero,

and scales with the size of the initial sphere R. Therefore, it is useful to normalized

the various Q
`

by Q
0

, so that it is independent of the overall magnitude of the {a0
0

}

for any given `, namely,

Q̂
`

= Q
`

/Q
0

. (2.16)
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A larger Q̂
`

implies a greater degree of aspherity.

The initial sphere has perfect spherical symmetry and the only nonzero mode is

the ` = 0 mode, i.e., only a0
0

is non-vanishing. However, as the sphere crumples, the

deformed shell starts to take on interesting shapes, with nonvanishing Q̂
`

’s, where

` 6= 0. For example, Q̂
4

measures tetrahedral or cubic symmetry and Q̂
6

measures

the icosahedral symmetry and so on. We calculate the Q̂
`

’s for the di↵erent Platonic-

spheres at the end of the crumpling process, at volume shrinkage of around 40%. We

find that the crumpled icosahedral-sphere has nonzero spherical harmonics only for

` = 0, 6, 10, 12, ..., which strongly suggests that the set of topological defects is able

to enforce the icosahedral symmetry as it crumples. The dodecahedral-sphere has the

same angular momentum ` modes as the icosahedral-sphere. The cubical-sphere and

octahedral-sphere have nonvanishing spherical harmonics for ` = 0, 4, 6, 8, 10, ... and

the tetrahedral-sphere has ` = 0, 3, 4, 6, 7, 8, 9, 10, .... Some typical values of Q̂
`

for

the Platonic-spheres with h/R = 0.118 is shown in table 2.3.

Table 2.3: Normalized invariant Q̂
`

for the di↵erent Platonic-spheres with h/R =
0.118. Note that Q̂

0

= 1 by definition.

Type of shell R/a Q̂
3

Q̂
4

Q̂
6

Q̂
7

Q̂
8

Q̂
9

Q̂
10

Icosahedron 10.9 0 0 0.0351 0 0 0 0.0093
Dodecahedron 9.5 0 0 0.0142 0 0 0 0.0170
Cube 12.3 0 0.0235 0.0126 0 0.00629 0 0.0099
Octahedron 7.3 0 0.0412 0.0492 0 0.00030 0 0.0098
Tetrahedron 9.7 0.0287 0.0251 0.0030 0.0047 0.00034 0.00234 0.0009

The normalized invariant Q̂
`

varies as we change the two non-dimensional param-

eters h/R as well as R/a. The values of the normalized Q̂
`

is illustrated in Table 2.4,

which shows Q̂
6

and Q̂
10

for di↵erent values of h/R andR/a for the icosahedral-sphere.

As R/a increases, we find that Q̂
6

decreases while Q̂
10

increases, which implies that
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higher order ` modes becomes more important as the mesh spacing becomes finer,

which is very reasonable. Similarly, we find that as the shell becomes thinner (smaller

h/R), Q̂
6

decreases while Q̂
10

increases since more excitations are transferred from

the lower order ` modes to the higher order ` modes.

Table 2.4: Normalized invariant Q̂
6

and Q̂
10

for di↵erent values of h/R and R/a of
the icosahedral-sphere.

h/R R/a Q̂
6

Q̂
10

h/R R/a Q̂
6

Q̂
10

0.235 5.55 0.0363 0.0095 0.0745 5.55 0.0177 0.0150
0.235 11.55 0.0080 0.0003 0.0745 11.55 0.0200 0.0155
0.235 22.87 0.0039 0.0012 0.0745 22.87 0.00580 0.00001
0.118 5.55 0.0363 0.0095 0.0372 5.55 0.00583 0.00004
0.118 11.55 0.0357 0.0097 0.0372 11.55 0.00819 0.0199
0.118 22.87 0.0038 0.0170 0.0372 22.87 0.00517 0.0014

There is another important normalized invariant quantity that measures the sym-

metry of a cluster of points, namely [95],

W
`

=
X

m1+m2+m3=0

0

B

@

` ` `

m
1

m
2

m
3

1

C

A

am1
`

am2
`

am3
`

, (2.17)

where
0

B

@

j
1

j
2

j
3

m
1

m
2

m
3

1

C

A

(2.18)

is the Wigner 3j-symbol. The Wigner 3j-symbol is zero unless all these conditions

are satisfied [67]:

m
1

+m
2

+m
3

= 0, (2.19)

j
1

+ j
2

+ j
3

2 Z (Integer perimeter rule), (2.20)

|m
i

|  j
i

; m
i

2 Z, (2.21)
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and

|j
1

� j
2

|  j
3

 j
1

+ j
2

. (2.22)

W
`

is a sensitive measure of the orientational symmetry of the shell. Similarly to Q
`

,

we can normalize W
`

so that it does not depending on the overall scale of am
`

:

Ŵ
`

=
W

`

[
P

m

|am
`

|2]3/2
. (2.23)

For example, if we rescale each am
`

by a constant factor c, the magnitude of Ŵ
`

remains

the same since it is invariant under overall scaling.

The Q̂
`

and Ŵ
`

are akin to “shape spectroscopy” and will shed light to the geom-

etry of the shell. Q̂
`

measures the importance of the di↵erent ` 6= 0 modes relative

to ` = 0 mode while |Ŵ
`

| measures the symmetry of the shell. Given a shell, we can

find how cubical, icosahedral or tetrahedral it is by evaluating the Ŵ
`

’s and compare

them with the entries in Table 2.5, which are the |Ŵ
`

|’s of the Platonic solid calcu-

lated using the Onaka’s formula [77]. Despite their rather di↵erent shapes, we find

that the icosahedral-sphere and dodecahedron sphere have identical Ŵ
`

’s, except for

a sign. This result is not so surprising in light of the fact that they belong to the same

symmetry group I since the parameters are a direct index of the symmetry of the

vertices. The closer the set of Ŵ
`

’s of the crumpled shell to the values for the ideal

Platonic solid, the greater the degree of resemblance. The sign of the Ŵ
`

depends on

the sign of a0
`

, which in turn depends on the coordinate system. We can relate the

am
`

’s in one coordinate system to another using the Wigner matrices D(`)

m,m

0 viz.

(am
`

)new =
X

m

0

D(`)

m,m

0(↵, �, �)am
`

, (2.24)
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where ↵, �, � are the usual Euler angles. The Wigner matrices D(`)

m,m

0 form a (2`+1)-

dimensional representation of the rotational group. Since we are only interested in

the symmetry of the surface, only the magnitude is of significance and hence, we will

consider |Ŵ
`

| instead of Ŵ
`

for the rest of this paper. We will elaborate further on

this point in Sec. 2.9.

Table 2.5: Normalized invariant |Ŵ
`

| for the five Platonic solids.

Type |Ŵ
4

| |Ŵ
6

| |Ŵ
8

| |Ŵ
10

| |Ŵ
12

|
Icosahedron – 0.169754 – 0.0939683 0.0990394
Dodecahedron – 0.169754 – 0.0939683 0.0990394
Cube 0.159317 0.0131606 0.0584548 0.0901302 0.0146554
Octahedron 0.159317 0.0131606 0.0584548 0.0901302 0.0268426
Tetrahedron 0.159317 -0.0131606 0.0584548 0.0901302 0.0129313

For the case of the icosahedral-sphere, we find that the first two non-zero |Ŵ
`

|’s

are |Ŵ
6

| = 0.169754 and |Ŵ
10

| = 0.0939683 and that Ŵ
`

appear to be independent

of h/R and R/a based on the phase space we considered. Additionally, for our

icosahedral-sphere, we find that all the am
6

vanish except a0
6

and a±5

6

, and that

✓

a0
6

◆

2

=
11

7
|a±5

6

|2. (2.25)

This agrees exactly with earlier works [95, 14, 87] and that this is in fact an extremal-

izing solution that maximizes equation (2.17). We find that for all the crumpled

icosahedron-shells listed in Table 2.4, equation (2.25) is satisfied to within 1%, show-

ing a strong signature of icosahedral symmetry. The values of the |Ŵ
`

| for the five

crumpled Platonic-spheres shown in Fig. 2.11 agrees with those of the pure Platonic

solids listed in Table 2.5. Similarly, for the cubical-sphere and icosahedral-sphere, we
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find the order parameter satisfy

✓

a0
4

◆

2

=
14

5
|a±4

4

|2, (2.26)

with all other am
4

= 0. Such a set of am
4

is known to maximize |Ŵ
4

| [95, 14, 87]. We

will elaborate further on this point in Sec. 2.9.2.

2.8 Hysteresis

Hysteresis refers to the history dependence of a material under an external strain.

Hysteresis phenomena occur naturally in many physical systems, ranging from mag-

netic materials, elastic systems, to electric systems, in which a lag occurs between the

application and the removal of a force or field and its subsequent e↵ect. In a system

with hysteresis, the output depends in part on the internal state of system and not

only on its input. Many systems that exhibit hysteresis will return to precisely the

same state after being cycled. For example, magnetic tapes can be re-recorded, vortex

clusters can enter and leave superconductors leaving the system in largely the same

state it began in and so on. However, there are systems which do not show return

point memory. If one bends a table fork too far, it will deform and not spring back to

its original shape. Beyond the elastic limit, the fork starts to exhibit hysteresis and

repeated cycles introduce work hardening and eventual fracture [88]. The thermody-

namic properties of a system are defined completely by the temperature, pressure,

etc., and are independent of how the system reached these conditions. Therefore a

hysteretic state must be out of equilibrium, or metastable. Also, hysteresis is often

associated with first order phase transition in which there is a discontinuity in the
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order parameter.

When we apply an external pressure to a thin spherical shell, it will quickly evolve

into a polyhedral shape and the shape depends on the mesh type as we showed in

the Sec. 2.3. As the external pressure is further increased, we find that beyond a

critical point, i.e. buckling pressure, the shell will undergo an abrupt buckling or

“snap through” transition that is di�cult to reverse. There will be the formation of

bulges at the facets of the polyhedral structure. The bulge to the first approximation

is like an inverted mirror image of the original shell. Imagine cutting the sphere along

a plane and then inverting the cut cap. Then glue it back to the sphere such that

there are no discontinuities in the curvature along the rim, and the stretching of the

inverted cap is minimized. All the stretching will be concentrated at the bending

strip, the ridge of the bulge while the rest of the shell is unstrained [54]. Decreasing

the external load again will generally not cause the shell to “pop out back into its

undeformed shape, as it can be trapped in a local minimum di↵erent than the zero

deformation minimum. This “snap-through” transition is therefore hysteretic, much

like a first order phase transition [48].

Elastic hysteresis is more pronounced when the loading and unloading is done

quickly than when it is done slowly [45]. Some materials such as hard metals do not

show elastic hysteresis under a moderate load, while other materials such as rubber

exhibit a high degree of elastic hysteresis. In our simulation, we set �p/p
b

⇠ 5% (p
b

is characterize buckling pressure) in order to get a reasonable number of simulation

points. In this part of the simulation, we control the pressure instead of the volume

in order to get a reasonably spaced set of data. Due to the hysteresis nature of elastic
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system, changing the pressure step �p will yield slightly di↵erent elastic hysteresis.

The hydrostatic pressure p is increased in a stepwise manner �p, with a minimization

via gradient descent method at each pressure step. The initial volume of the spherical

surface is V
0

= 1 and the shell is assumed to be unstrained. The initial spherical thin

shell quickly loses stability and evolves toward a polyhedral shape depending on the

mesh type. Further increment in pressure leads to more pronounced faceting as we

have found in previous sections. However, at a high enough pressure, something

dramatic occurs. The crumpled structure becomes more and more unstable and

eventually collapses and a “snap-through” transition occurs. This transition happens

when the final volume is around 30% of the initial volume V
0

. The pressure is then

reduced at this point and the cycle is reversed. As the hydrostatic pressure is slowly

decreased, the sphere does not return to the inflated condition by the same path in

the pressure-volume diagram, but remain “trapped at the collapsed state until the

pressure reached values as low as 20% of p
b

. For this set of simulations, we use  = 1

and Y = 500.

2.8.1 icosahedral-sphere

We first consider the most fundamental mesh type, the icosahedral-sphere, also

known as the (P, 0) Icosadeltahedral shell. In our simulations, we consider the case

P = 8, which has 642 vertices, 1920 edges and 1280 facets. The initial spherical

shell quickly becomes slightly pointed at the locations of the twelve symmetrically

positioned five-fold coordinated points of the triangular mesh. As we increase the

pressure, the shell shrinks and becomes more and more faceted, eventually, at a
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critical buckling pressure p
b

⇠ 220, the shell becomes unstable and starts to collapse,

undergoing a dramatic change in shape, becoming more cubic-like with depressions at

six faces of the “cube” as seen in Fig. 2.12. Due to the multiple concave regions that

we normally associate with buckling, we identify this sharp transition as a buckling

transition. From classical continuum elastic theory, the buckling pressure of a sphere

under hydrostatic pressure is p
b

⇠ 4
p
Y /R2 ⇠ 230. So it is rather amazing that

we get very similar numbers for the critical buckling pressure if we think of this

“snap-through” transition as a buckling event.

As we reduce the pressure, the shell remains cubic-like with the six bulges be-

coming less pronounced. Eventually, at some low enough pressure, the bulges pop

back out and the shell ceases to have any noticeable concave regions. As we further

reduce the pressure, the shell recovers its initial shape. From this, we can conclude

that there are four distinct parts to the hysteresis loop, the crumpling phase as we

go from shape (1) to (2) (refer to Fig. 2.12); the buckling phase from shape (2) to

(4); the relaxation phase from shape (4) to (6) and finally the restoration phase from

shape (6) to (8). This size of the elastic hysteresis is approximately 50.

We can analyze the shapes of the deformed shell by looking at the spherical

harmonics expansion of the vertices and looking at the various rotational invariant

quantities such as Q
`

and W
`

[113, 95] as defined in the previous section. We will

expand the radial density in spherical harmonics using a least square fit up to L =

16. From the initial spherical shell, as we increase the pressure, we find that ` =

6, 10, 12, . . . modes become more prominent. This is consistent with the results from

previous sections. What is surprising is that as the shell becomes more and more
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Figure 2.12: (a) P-V response of a crushed icosahedral-sphere. The labels (1) to
(8) show the shape of the shell at during loading and unloading. As the pressure is
gradually increased from p = 3, the shell becomes more faceted as reflected in (2).
At the critical buckling pressure p

b

⇠ 210, the icosahedral-like shell undergoes an
abrupt collapse into a vastly di↵erent looking shell (4). As the pressure is decreased,
the shell does not return to the inflated condition by the same path at the pressure-
volume diagram, but slowly inflates via a di↵erent pathway as reflected by (6) and
(7). The dotted arrows denote the direction of the loading-unloading cycle. (b) The
values of the normalized Q̂

`

(according to Eqn. (2.16)) of the icosahedral-sphere at
di↵erent pressure point of loading-unloading cycle. The various Q̂

`

grow during the
buckling transition, with ` = 4 mode being the most pronounced. The asymmetry of
the curves about point (4) reflects the hysteretic behavior of the system. (c) The Ŵ

`

(according to Eqn. (2.23)) paint a similar picture. We see significant deviation from
icosahedral-symmetry and the emergence of octahedral symmetry
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faceted, we start to see the emergence of ` = 4, 8, . . . modes, typically associated

with octahedral-symmetry as well as the ` = 2 mode which does not belongs to the

icosahedral group I, tetrahedral group T or the octahedral group O. During the

“snap-through” transition, akin to first order phase transition, these are the modes

that are the most excited as seen from Fig. 2.12. From the values of Q̂
`

, it appears

that ` = 4 mode is the most enhanced followed by ` = 2 mode. The asymmetry

of the curves about point (4) reflects the hysteretic behavior of the system. The

` = 2, 4 modes remain significant even as the hydrostatic pressure is reduced. The Ŵ
`

highlight the same picture and we see significant deviation from icosahedral-symmetry

at high external pressure and the emergence of octahedral symmetry. At hysteresis

point (4), we find that the buckled shell has |Ŵ
4

| = 0.152948 and |Ŵ
6

| = 0.03106

which are both very close to that of the cube, given by |Ŵ cube

4

| = 0.159317 and

|Ŵ cube

6

| = 0.05845. All these show that there is a spontaneous breaking of icosahedral

symmetry during the buckling transition and that there is an emergence of higher

order symmetry groups. Also, we see that |Ŵ
2

| ⇡ 0.225 during the return portion of

the hysteresis loop. This is some sort of d-wave excitations (` = 2) mode that emerge

during buckling. The hysteresis also exhibit return point memory [88], namely the

system returns to the original curve at exactly the same state that it left. The results

are summarized in Fig. 2.12.

2.8.2 dodecahedral-sphere

The buckling behavior of the dodecahedral-sphere (also known as the (P, P )

Icosadeltahedral shell) is rather di↵erent from the icosahedral-sphere. In our case,
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Figure 2.13: (a) P-V response of a crushed dodecahedral-sphere. The labels (1)� (8)
show the shape of the shell at di↵erent points of the hysteresis. As the pressure is
gradually increased from p = 3, the shell becomes more faceted as reflected in shapes
(2) and (3). At a critical pressure p

b

⇠ 230, the icosahedral-like shell undergoes an
abrupt collapse into a vastly di↵erent looking shell (4) that resembles a cube. As the
pressure is reduced, the number of depressions (bulges) decreased from twelve to six.
As the pressure is further decreased, the number of bulges reduces to two as reflected
by shape (6). The dotted arrows denote the direction of the LU cycle. (b) The values
of the normalized Q̂

`

(according to Eqn. (2.16)) of the dodecahedral-sphere at di↵erent
pressure point of LU cycle. The various Q̂

`

grow during the buckling transition. The
asymmetry of the curves about point (4) reflects the hysteretic behavior of the system.
At shape (6), we see that there is a spike in the ` = 2 mode. (c) The Ŵ

`

(according
to Eqn. (2.23)) paint a similar picture. We see significant deviation from icosahedral-
symmetry and the emergence of octahedral-symmetry. |Ŵ

2

| stays roughly constant
at 0.23 after buckling.
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we consider P = 4, which has 482 vertices, 1440 edges and 960 facets. The initial

spherical shell quickly becomes slightly pointed at the locations of the twelve sym-

metrically positioned five-fold coordinated points of the triangular mesh. Due to

the di↵erent orientations of the five fold disclinations ((P, P ) icosadeltahedral shell),

we get a structure that resembles the dodecahedron. As we increase the pressure,

the facets of the shell concave inward, and we see the emergence of twelve bulges

as shown in Fig. 2.13. The depressions become more pronounced as we increase

the pressure until at a critical buckling pressure p
b

⇠ 230, the shell loses stability

and collapses, forming a structure that looks like a cube (label (4)). The number

of bulges reduces from twelve to six and they become deeper, resulting in a smaller

overall volume. Presumably, the decrease in number of bulges allows for more con-

cave bulges and facilitates a smaller shell volume. As we increase the pressure, the

bulges become shallower until eventually four of the bulges disappear and the shell

forms a discocyte-like structure. It is axi-symmetrical with two bulges at the north

and south poles (label (6)). As the pressure is reduced to the original pressure, the

sphere resumes its original form as shown in label (7) of Fig. 2.13. There are four

phases in the hysteresis cycle: 1) the crumpling phase as we go from shape (1) to (3)

(refer to Fig. 2.13); the buckling phase from shape (3) to (4); the relaxation phase

from shape (4) to (6) and finally the restoration phase from shape (6) to (8). The

size of the elastic hysteresis is approximately 65 which is larger than the case for the

icosahedral-sphere. Due to higher buckling pressure p
b

, the hysteresis is larger for the

dodecahedral-sphere compared to the icosahedral-sphere.

Our shape analysis of the dodecahedral-sphere under hydrostatic pressure reveals
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a similar picture as compared to the icosahedral-sphere as illustrated in Fig. 2.13.

During the buckling phase, there is a spontaneous breaking of the icosahedral sym-

metry and the emergence of other ` modes. As evident from Fig. 2.13b, the ` =

2, 4, 6, 8 modes become comparable (⇠30%) to ` = 0 mode. The asymmetry of the

curves about point (4) reflects the hysteretic behavior of the system. At the shape

(6), we see that there is a spike in ` = 2 mode. Fig. 2.13b is even more reveal-

ing. As the shell crumple, |Ŵ
4

| went from 0 to 0.13, suggesting the emergence of

octahedral/tetrahedral-symmetry. The value of |Ŵ
4

| stays pretty constant at 0.13

along the hysteresis loop except at the start and end points where it is approximately

zero. Also, we see that during the buckling transition, |Ŵ
6

| decreases from 0.17 to

0.015 indicating a suppression of icosahedral-symmetry (|Ŵ ico

6

| = 0.17) and the emer-

gence of the octahedral-symmetry (|Ŵ cube

6

| = 0.013). |Ŵ
8

| stays around 0.05 during

buckling, which is fairly close to that of the octahedral/tetrahedral symmetry (See

Table 2.5 for complete comparison). Additionally, |Ŵ
2

| ⇡ 0.23 after buckling, sim-

ilar to what we found for the icosahedral-sphere, indicating the presence of d-wave

excitations. Thus, we find that qualitatively, the dodecahedral-sphere display similar

hysteretic behavior to the icosahedral-sphere.

2.8.3 cubical-sphere and octahedral-sphere

Let us now consider the cubical-sphere, which has 770 vertices, 2304 edges and

1536 facets. From our simulation, we find that the initial spherical surface quickly

becomes cubical. As we reduce the pressure, the shell becomes more and more faceted,

with well-defined ridges. As we increase the pressure, the crumpled shape remains
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approximately cubical and we do not observe any noticeable buckling behavior. The

six evenly distributed bulges become deeper as we increase the pressure resulting in

a more shriveled structure. As we decrease the pressure, the shell starts to swell up

again, along a di↵erent pathway. At a certain pressure, p ⇠ 50, the bulges disappear

and the shell becomes globally convex and there is a noticeably jump in the volume.

This process is summarized in Fig. 2.14. The hysteresis of the cycle is about 72,

which is greater than the previous two cases. There are three distinctive parts to the

hysteresis loop: 1) the crumpling phase from label (1) to (3); 2) the relaxation phase

from shape (3) to (5) and the restoration (or pop-out) phase from label (5) to (6).

There is no buckling phase here as structurally, the shell appears to retain cubical

symmetry throughout the cycle. This is a significant departure from the icosahedral-

sphere or dodecahedral-sphere, which are manifestly first order transition. Here it

appears that the transition is smooth and inherently second order.

The plots of Q̂
`

and |Ŵ
`

| reveal a similar picture as shown in Fig. 2.14. During the

crumpling phase, the Q̂
4

, Q̂
6

, Q̂
8

, Q̂
10

and Q̂
12

all become more prominent. The most

important mode is the ` = 4, which is almost twice as large as the second highest

mode ` = 8. However, as we decrease the pressure, all the excited modes decrease in

magnitude, as the shell resumes a more spherical shape. Ŵ
`

for ` = 4, 6, 8, 10 remain

constant throughout the hysteresis cycle and only Ŵ
12

show a slight departure from

the initial value. This indicate that the shrinking shell retain its cubical symmetry to

a high extent through the crumpling process. There is no symmetry group breaking

terms such as the ` = 2 term appearing.

The case for the octahedral-sphere is very similar to the cubical-sphere, which is
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Figure 2.14: (a) P-V response of a crushed cubical-sphere. The shapes (1) � (7)
shows the shape of the shell at di↵erent points of the hysteresis. As the pressure is
gradually increased from p = 3, the shell becomes more faceted as reflected in shapes
(2) and (3). There is no well-defined buckling pressure as the crumpled shell appears
cubical even at high pressures. As the pressure is reduced, the bulges of the shell
become shallower (shape (4)) until at shape (5), p ⇠ 50, the bulges “pop” out and
the shell becomes globally convex in appearance as we can see from shape (6). The
dotted arrows denote the direction of the LU cycle. (b) The values of the normalized
Q̂

`

(according to Eqn. (2.16)) of the cubical-sphere at di↵erent pressure point of LU
cycle. The various Q̂

`

grow during the buckling transition, with ` = 4 mode being the
most pronounced. The asymmetry of the curves about point (4) reflects the hysteretic
behavior of the system. (c) The Ŵ

`

(according to Eqn. (2.23)) paint a similar picture.
We find that the Ŵ

`

for ` = 4, 6, 8, 10 remain fairly constant during the hysteresis
cycle and only ` = 12 mode shows any departure from its initial value. The crumpled
shell retains its octahedral-symmetry to a high degree and we do not see any ` = 2
emerging.
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Figure 2.15: (a) P-V response of a crushed octahedral-sphere. The shapes (1) � (6)
shows the shape of the shell at di↵erent points of the hysteresis. As the pressure
is gradually increased from p = 3, the shell becomes more faceted as reflected in
shapes (2) and (3). There is no well-defined buckling pressure as the crumpled shell
appear cubical even at high pressures. As the pressure is reduced, the bulges of the
shell become shallower (shape (4)) until at shape (5), p ⇠ 80, the bulges “pop” out
and the shell becomes convex in appearance. The dotted arrows denote the direction
of the LU cycle. (b) The values of the normalized Q̂

`

(according to Eqn. (2.16))
of the octahedral-sphere at di↵erent pressure point of LU cyclethe various Q̂

`

grow
during the buckling transition, with ` = 4 and 10 modes being the most pronounced,
followed by ` = 4 and 8. We do see ` = 2 mode appear although its e↵ect appear to
be relatively small. (c) The Ŵ

`

(according to Eqn. (2.23)) paint a similar picture. We
see small deviation from octahedral-symmetry and the emergence of d-wave modes (`
= 2). |Ŵ

2

| ⇡ 0.0225 throughout the crumpling process.
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unsurprising since they are dual to one another. The mesh we used has 1026 vertices,

3072 edges and 2048 facets. The spherical shell quickly becomes octahedral-like in

shape at the start of the simulation, consistent with what we observed in the previous

section. As we reduce the pressure, the shell retains the octahedral symmetry, and

we see eight triangular bulges appear symmetrically on the surface. As the pressure

is further increased, the bulges become deeper, facilitating a smaller volume. There is

no noticeable buckling behavior as the shell remains octahedral-like throughout. As

we go the opposite sense in the hysteresis loop (decreasing pressure), the shell starts

to swell up and the depressions become shallower and at p ⇠ 80, the depressions

disappear as the volume jumped significantly and all the concave regions disappear

from the shell. The whole hysteresis loop is summarized in Fig. 2.15. In terms of

the Q̂
`

, we find that the most important modes are ` = 6 and 10 followed by ` = 4

and 8. We do see ` = 2 mode appear although its e↵ect appear to be relatively small

compared to the other modes as seen in Fig. 2.15b. For the case of |Ŵ
`

|, we find that

|Ŵ
4

|, |Ŵ
6

| and |Ŵ
8

| remain fairly constant during the whole hysteresis cycle. As the

shell becomes crumpled, we see the simultaneous emergence of |Ŵ
2

| ⇡ 0.225 and the

reduction in |Ŵ
10

| and |Ŵ
12

|. We see small deviation from octahedral-symmetry and

the emergence of d-wave modes (` = 2).

Comparing the hysteresis e↵ect of the octahedral-sphere and cubical-sphere, we

see that qualitatively they are very similar as both shells manifestly exhibit octahe-

dral symmetry during crumpling and the shells maintain high degree of octahedral-

symmetry throughout the hysteresis cycle as seen from the constant values in |Ŵ
`

|

(See Fig. 2.14 and 2.15). The only significant deviation is that for the octahedral-
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sphere, we see the emergence of ` = 2 mode, which is absent in the cubical-sphere.

2.9 Landau Theory

2.9.1 Order Parameter

The results discussed empirically in Sec. 2.8 can be understood more easily in the

context of Landau’s general theory of phase transition [42, 72, 95]. As explained in

Sec. 2.7, the radial density can always be expanded in the spherical harmonics, which

form a complete set of functions on the unit sphere:

D(✓,�) =
1
X

`=0

`

X

m=�`

am
`

Y m

`

(✓,�).

For the initial sphere, which is a perfect sphere, all the am
`

except a0
0

are zero. As

the shell crumple, some of the am
`

for ` 6= 0 will become non-zero. A shell with a

broken spherical symmetry is characterized by some smallest value of `⇤ > 0 for which

am
`

6= 0:

�D(✓,�) = D(✓,�)� a0
0

Y 0

0

⇡
`⇤
X

m=�`⇤

am
`⇤ Y

m

`⇤ (✓,�) + · · · , (2.27)

where the ellipsis stands for higher order harmonic terms. This set of am
`⇤ can be

thought of as a rotational order parameters that forms a (2`⇤ + 1)-dimensional order

parameter describing the low-temperature phase (or equivalently low-pressure phase

since p / T ).
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2.9.2 Simplest Landau model

We can write down the simplest Landau free energy describing the departure from

spherical symmetry involving rotationally invariant combinations of {am
`

} [42, 72, 95,

14]:

F
`

= r
`

`

X

m=�`

|am
`

|2 + w
`

X

m1+m2+m3=0

0

B

@

` ` `

m
1

m
2

m
3

1

C

A

am1
`

am2
`

am3
`

+O(am
`

)4, (2.28)

where r
`

and w
`

are pressure-dependent parameters. From hereon, we will drop the

asterisk in the ` for brevity. We see that the first term is proportional to Q
`

and the

second term is proportional to W
`

. Assuming that the second-order coupling r
`

(p)

becomes negative with decreasing pressure, then eventually F
`

will be minimized by

a state such that

am
`

6= 0

at low pressures when the first term in (2.28) dominates the free energy landscape.

Recall that the rotationally invariant quantity

`

X

m=�`

|am
`

|2 / Q2

`

,

measures the “magnitude” of the (2` + 1)-dimensional order parameter so the first

summation in (2.28) is always positive and the sign depends on the sign of the r
`

(p).

If the third-order coupling w
`

is nonzero, Landau theory predicts that the transition

to this state will be first order [95, 20]. If we fixed the magnitude Q
`

, we can ask what

are the preferred states. If the transition is weakly first order, then the preferred state

can be found by minimizing the third order term in (2.28), with the second order term

held fixed.
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Thus, the problem reduces to finding extrema of the symmetry invariant Ŵ
`

. If w
`

is positive, then we need to minimize Ŵ
`

; conversely, if w
`

is negative, then we need

to maximize Ŵ
`

. In general, the sign of Ŵ
`

depends on the sign of â0
`

, which depends

on the coordinate system we used to perform our spherical harmonics expansion (See

Eqn. (2.24)). The problem of finding the extrema of Ŵ
`

has been investigated in

the context of patterns in fluid convection in spherical shell [14, 87] and in bond

orientation order in liquids and glasses [95] and we will just summarize the relevant

results here.

The trivial solution of Eq. (2.23) for any given ` is the spherical solution

a0
`

= 1, am
`

= 0 otherwise. (2.29)

The magnitude of Ŵ
`

in this case is given by:

Ŵ trivial

`

= 2�
1
2+`

p
⇡

v

u

u

t

2�2`

�

�1

2

+ `

2

�

!3`
2

!
��

�1

2

� `

2

�

!
�

2

�

`

2

!
�

3

�

1

2

+ 3`

2

�

!
. (2.30)

However, the trivial solution is not the one realized physically since there are other

solutions with larger values of Ŵ
`

.

For the case of ` = 2, the relevant extrema is the axisymmetric solution with all

the am
2

real and that

�

a±1

2

�

2

=
1

3
(1 + a0

2

)(1� a0
2

) and a±2

2

=
1p
6
(1� a0

2

). (2.31)

This is a one parameter family of solution in a0
2

and the magnitude of Ŵ
2

is given by

|Ŵ axi

2

| = 0.239046, (2.32)

which is independent of a0
2

.
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For ` = 4, the extrema of interest is the cubic solution with all the am
4

real and

(a0
4

)2 =
14

5
|a±4

4

|2 nonozero, am
4

= 0 otherwise. (2.33)

This solution subspace is spanned by a0
4

and a±4

4

. If a0
4

> 0, then the extrema is a

maximum, otherwise, the extrema is a minimum. The maximum corresponds to the

cubic symmetry while the minimum us associated with its “dual”, the octahedron.

The magnitude of Ŵ
4

is given by

|Ŵ cube

4

| = 0.159317, (2.34)

in agreement with the values we found for the cube as listed in Table 2.5.

For the case ` = 6, there are two extrema that are relevant. The first is the

icosahedral solution that is spanned by real-valued a0
6

and a±5

6

with all other am
6

= 0

and they obey the relation
✓

a0
6

◆

2

=
11

7
|a±5

6

|2. (2.35)

The magnitude of Ŵ
6

is given by

|Ŵ ico

6

| = 0.169754, (2.36)

in agreement with what we found for the icosahedron. In this special coordinate

system, we find that if a0
6

> 0, then the extrema is a maximum, which display

“icosahedral” symmetry. Conversely, if a0
6

< 0, then the extrema is a minimum and

it corresponds to “dodecahedral” symmetry [95]. However, if we used a di↵erent

coordinate system, then the meaning of the sign of the Ŵ
6

becomes less clear. For

example, using the spherical harmonics expansion of Onaka’s formula for Platonic

solids in equation (2.14), we find that Ŵ ico

6

= Ŵ ico

6

= �0.169754 and the sign loses

its meaning.
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On the other hand, if we consider the “cubic” solution spanned by a0
6

and a±4

6

with all other am
6

= 0, the extrema is satisfied when

✓

a0
6

◆

2

=
2

7
|a±5

6

|2, (2.37)

and the corresponding Ŵ
6

is given by

|Ŵ cubic

6

| = 0.013161. (2.38)

These two configurations are shown by Busse [14] to be extrema in the full 13-

dimensional space of ` = 6 spherical harmonics and has further conjectured that

|Ŵ ico

6

| is a global maximum of |Ŵ
6

|.

2.9.3 Coupling between Order Parameters

We see that Eq. (2.28) is reasonably adequate at describing the “crumpling” phase

of the shell but is totally inadequate in describing the “buckling” phase, where there

are a few `’s, say `
1

and `
2

that are equally important, with possible couplings between

them. In this case, the most general Landau free energy one can write is for a system

with two distinct ` is

F = F
`1 + F

`2 + F
`1,`2 + F

`2,`1 + · · · , (2.39)

where F
`

is given by Eq. (2.28), ellipsis refers to higher order harmonic terms that

are neglected and

F
`i,`j = w

`i,`j

X

m1+m2+m3=0

0

B

@

`
i

`
i

`
j

m
1

m
2

m
3

1

C

A

am1
`i

am2
`i

am3
`j

. (2.40)
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The parameter w
`i,`j measures the coupling between the modes `

i

and `
j

. The presence

of the coupling term F
`i,`j means that nonzero `

i

spherical harmonics can act like an

ordering field which couples linearly to the am
`j
, generating `

j

modes if these are not

already nonzero.

This expression (2.39) can be generalized easily to more spherical harmonics. In

general, if there are n distinct `’s, namely, `
1

, `
2

, . . . `
n

, the most generally Landau

free energy expression one can write down is

F =
X

i

F
`i +

X

i 6=j

F
`i,`j + · · · . (2.41)

where there are at most n + n(n � 1) = n2 terms. The coupling terms F
`i,`j are

nonzero only when the Wigner selection rules given by (2.19), (2.20), (2.21), (2.22)

are satisfied, so in general, some of the n(n� 1) coupling terms may vanish.

For simplicity, let us we consider a simple system with two di↵erent `’s, say `
1

= 4

and `
2

= 6, similar to an earlier work [95]. The most general Landau free energy is

F = F
4

+ F
6

+ F
6,4

+ F
4,6

, (2.42)

where there is coupling between ` = 6 mode and ` = 4 mode. Suppose that the

crumpled shell initially only has ` = 6 mode and that am
4

= 0 8m. The authors

in [95] noted that nonzero am
4

can still be generated even if they do not minimize

the corresponding free energy F
`

. The presence of the coupling term F
6,4

means

that nonzero ` = 6 spherical harmonics can act like an ordering field which couples

linearly to the am
4

, generating ` = 4 modes if these are not already nonzero. In order

to prevent this type of feedback mechanism, the ` = 6 spherical harmonics must
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satisfy 2(4) + 1 = 9 nonlinear equations, namely,

X

m1(m1+m2=�m)

X

m2

0

B

@

6 6 4

m
1

m
2

m

1

C

A

am1
6

am2
6

= 0, m = 0,±1 · · · ± 4. (2.43)

These nine constraints completely specify the ` = 6 spherical harmonics, up to an

arbitrary rotation (3 degrees of freedom) and an overall amplitude (1 degree of free-

dom), i.e. 9 + 3 + 1 = 2(6) + 1 = 13. Similar argument works for the reverse case

where we start with a crumpled shell with only nonzero ` = 4 mode and vanishing

` = 6 mode, except here F
4,6

leads to 2(4) + 1 = 9 constraints.

Interestingly, if we consider the set of icosahedral harmonics that maximizes Ŵ
6

defined by Eq. (2.35), we find that Eq. (2.43) is satisfied. Incidentally, the icosahedral

harmonics do not generate ` = 2 mode since they satisfy the five nonlinear equations:

X

m1(m1+m2=�m)

X

m2

0

B

@

6 6 2

m
1

m
2

m

1

C

A

am1
6

am2
6

= 0, m = �2,�1, 0, 1, 2. (2.44)

Therefore, if we consider the icosahedron (solid), we find that all the coupling terms

are irrelevant and we can describe the Icosahedron by

F = F
6

+ F
10

+ F
12

+ . . . . (2.45)

However, we do not expect this kind of miraculous cancelation to occur on any regular

basis and that in general, for any crumpled surface, we do expect to see some of the

coupling terms to become relevant..

From this example, we see that, say we are interested in the `
i

spherical harmonics,

in order to not have feedback coupling between `
i

and `
j

mode, a necessarily condition
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is for the set of spherical harmonics {am
`i
} to satisfy the 2(`

j

)+1 nonlinear constraints:

hm

`i,`j
=

X

m1(m1+m2=�m)

X

m2

0

B

@

`
i

`
i

`
j

m
1

m
2

m

1

C

A

am1
`i

am2
`i

= 0, m = 0,±1, . . . ,±`
j

.

(2.46)

This will lead to the vanishing of the coupling term F
`i,`j in the Landau Free energy

since

F
`i,`j = w

`i,`j

X

m

hm

`i,`j
am
`j
= 0. (2.47)

Alternatively, even if the 2(`
j

) + 1 nonlinear constraints given by (2.46) are not fully

satisfied, the coupling term can still vanish if the summation of all the nonzero hm

`i,`j

vanishes:

F
`i,`j/w`i,`j =

X

m

hm

`i,`j
am
`j
= 0. (2.48)

Suppose we have a system with n distinct `’s and we would like to only consider

certain couplings, then we need to write down a few sets of 2` + 1 constraints and

in general, we will have many di↵erent sets of algebraic solutions that satisfy these

equations (up to rotations and amplitude) and in the rare case where we have only 4

degrees of freedom in each of the 2`
i

+1 manifolds, then will we get a unique solution.

Let us now consider the hysteresis of the icosahedral-sphere and try to construct

a simple Landau model that can describe the symmetry breaking process. A careful

analysis of the icosahedral-sphere shows that in fact hm

`i,`j
are generally nonzero as we

traverse the hysteresis loop so that the constraints given by (2.46) are not satisfied.

However, it may be that there might exist miraculous cancelation with the hm

`i,`j
such

that Eqn. (2.48) is satisfied, resulting in a simpler Landau model. Our calculations

show that this is not the case and the result is summarized in Fig. 2.16. The coupling
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Figure 2.16: The coupling term given by Eqn. (2.48) is plotted for the various points
along the loading-unloading cycle of the icosahedral-sphere (Refer to Fig. 2.12). We
see that the coupling terms are initially zero and become nonzero during the buck-
ling phase (points 3-5), a signature of the symmetry breaking. As we move to the
relaxation phase (5-6), the values of the coupling terms become greatly diminished
and they vanish completely during the restoration phase.
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terms F
`i,`j become during the buckling and relaxation phase and vanishes during

the crumpling and restoration phase. Therefore, we find that we cannot simplify

the Landau free energy and it is necessarily of the form given by Eqn. (2.41) with

` = 2, 4, 6, 8, 10, 12, . . . .

2.10 Conclusion

The shrinking of spherical crystal lattices (frozen defects) with di↵erent topological

defects satisfying Euler-Poincaré formula in the frozen topography (⌧
defect

/⌧
surface

�

1) limit is studied. The shape of the crumpled shells depend sensitively on the number

and types of disclinations on the lattice. Shells with only one type of disclination were

found to crumple into shapes that resembles that of the Platonic solids. Spherical

lattices with multiple types of disclinations deformed into more complex structures

and sites with greater topological charge have a tendency to bend/buckle more. We

analyzed the the energies of the crumpled shells formed from Platonic solids and found

that although the icosahedral-sphere is initially the most stable, it does not remain

the lowest energy state during the full process of shrinking and will undergo structural

transition pathways into other lattice type. By changing the thickness of the shell,

the radius of the sphere and the lattice spacing, we explored the phase space of the

crumpled spheres belonging to the Platonic solids and found striking similarities in

the di↵erent phase diagrams suggesting that di↵erent spherical lattices have the same

qualitative behavior under shrinking. We present a satisfying way to classify spherical

crystal lattice based on listing the number and type of disclinations, the full symmetry

group of the defects and a generalized “Casper-Klug” coordinates. Elastic systems
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often exhibit hysteresis and we studied the hysteresis in the five Platonic shells and

found that for the icosahedral-sphere, dodecahedral-sphere and octahedral-sphere,

there is a spontaneous symmetry breaking with the appearance of ` = 2 mode and

other symmetry related modes during the buckling process. The icosahedral-sphere

and dodecahedral-sphere appear to have a well-defined“snap-through transition, much

like a first order phase transition; the cubical-sphere and octahedral-sphere appear

to have no snap-through transition and is much like a second order phase transition.

Lastly, we presented a Landau free energy model that captures the shape changing

symmetry breaking transition of the shell during hysteresis.

Throughout this work, we made the key assumption that we are working in the

regime where the core energies of the defects are large and so the spherical shell prefers

to have the minimum number of disclinations. When the core energies is small, the

number of defects will proliferate and it is something we hope to understand better in

the future. Studies in topological defects have been done primarily either in the limit

of frozen defects (as in this paper) or frozen topography. The intermediate case where

defects and topology are both allowed to vary, i.e. ⌧
defect

/⌧
surface

⇠ 1 has only been

investigated in one work [51] and it is an area of research that is largely untapped.

Here is a Gedankenexperiment that we ponder. Suppose we have some topological

defects on a spherical shell and they are evenly spaced along a Riemannian circle that

contains the North and South pole. This great circle divides the sphere into two equal

caps. Imagine that a cylindrical portion starts to continuously grow between the two

caps so the sphere is slowly deformed into a elongated pill-like shape. If the defects

are allowed to move as the geometry of the surface deformed, do the defects prefer
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to migrate to the cylindrical region (zero Gauss curvature) or the spherical region

(non-zero Gauss curvature)? We can even add an interesting twist to this thought

experiment. When this elongated pill reaches a critical length, it start to bend in the

equatorial plane such that it form a torus-like ring. Now there are regions of positive,

zero and negative Gauss curvature [100]. How will the defects distribute themselves?



Chapter 3

Physical basis of the bacterial

spore coat architecture and its

relation to the elastic

3.1 Introduction

Bacillus spores are highly resistant dormant cells formed in response to starvation.

The spore is surrounded by a structurally complex protein shell, the coat, which pro-

tects the genetic material while permitting the di↵usion of water and small molecules

to the spore interior [27, 43, 26, 103]. In spite of its dormancy, once nutrient is avail-

able the spore is able to resume metabolic activity and return to vegetative growth,

a process requiring the coat to be shed. Spores dynamically expand and contract in

response to humidity, demanding the coat be flexible [105, 25]. Despite the coats crit-

ical biological functions essentially nothing is known about the design principles that

73
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allow the coat to be tough but also flexible and, when metabolic activity resumes,

to be e�ciently shed. Here, we investigated the hypothesis that these apparently in-

compatible characteristics derive from an adaptive mechanical response that endows

them simultaneously with strength and pliancy as well as the capacity to be shed

rapidly.

A simple theoretical model of the coat allows us to understand the folding pat-

terns seen in bacterial coats. Furthermore, we show how the spore architecture and

mechanical properties prevent coat shedding until the cell volume increases past a

threshold associated with a critical cell size preceding the first cell division. Consis-

tent with this prediction, it has been found that coat shedding does not occur when

the cell volume expansion is inhibited using antibiotics. These results suggest that

the bacterial spore coat has adapted mechanically to serve several critical functions

including regulating the release of the outgrowing cell. The spore and its protective

coat represent a simple paradigm likely used in diverse cell types [28] where regu-

lated flexibility of a surface layer is adaptive, and may inspire novel applications for

controlled release of materials.

Bacillus spores consist of multiple concentric shells encasing dehydrated genetic

material at the center (the core). One of these shells is a loosely cross linked pep-

tidoglycan layer, called the cortex, surrounding the core. Encasing this is the coat,

which exhibits a unique folding geometry (Fig. 3.1a-c). Paradoxically, the coat must

be chemically resilient and physically tough but still possess significant flexibility in

responding to environmental stimuli [43, 26, 105, 25, 19, 79, 104, 80, 44]. During

germination, the coat must be broken apart so it can be rapidly shed [89].
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Figure 3.1: Morphology of the B. subtilis spore. Wild type (strain PY79) spores were
analyzed by SEM (a), TEM17 (b, c) or AFM (d). c is a magnification of part of b.
Cortex (Cx), coat (Ct) and a ruck (R) are indicated in panels b and/or c. (d) Height
profiles measured across the short axis of a spore are recorded at low (35%, solid)
and high (95%, dashed) relative humidity depict partial unfolding of the wrinkles at
high relative humidity. To plot the two curves as close as possible, an o↵set is added
to the height profile at low relative humidity because the overall height of the spore
increases with relative humidity. The size bars indicate (a, c) 250 nm or (b) 500 nm.
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The ridges of the B. Subtilis coat emerge during the process of sporulation in

which water is expelled from the spore core and cross links occur in the cortex. The

mature spore is not static. It expands and contracts in response to changes in relative

humidty [105, 25]. The height profiles of a B. Subtilis in Fig. 3.1d show that a partial

unfolding of the ridges accompanies the expansion of the spore at high humidity.

Although ridges are present in many if not most species [19, 12, 11] of the Bacillus

genus, they are very poorly understood; we do not understand the forces guiding

their formation, how their topography is influenced by the coats materials properties

or their biological function, if any. To address these questions, we first considered

that ridges could emerge spontaneously, as in the case of wrinkles that form when

a thin layer of material that adheres weakly to a support is under compression [18].

The coat and cortex form such a system, because the core volume (and, therefore, its

surface area) decreases during sporulation [86].

Rucks can form if the stress in the system overcomes the adhesive forces between

the coat and the underlying cortex [52]. The critical size of a ruck in 2-dimension can

be estimated in two ways. Firstly, let us consider the size of a ruck in soft, extensible

films that adhere to a substrate as shown in Fig. 3.2b. The energy per unit width of

the film of length ` is

W = U
a

+ U
b

+ U
c

where U
a

⇠ J` is the adhesive energy, U
b

⇠ (Eh3)�2/`3 ⇠ (Eh3)✏/`2 is the bending

energy and U
c

⇠ (Eh)✏2/` is the compressive strain energy (h is the thickness of the

film). The longitudinal displacement ✏ is related to the lateral displacement � via

� ⇠ (✏`)1/2. Minimizing W(✏, `) with respect to ✏ and ` yields scaling laws for the
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critical compression

✏
c

⇠ (Jh3/E)1/4 (3.1)

required to form a ruck of critical size

`
c

⇠ (Eh5/J)1/4. (3.2)

The elastic modulus of the spore coat is measured using an atomic force microscope

to be around 12 GPa. Using the typical dimensions of a spore ruck `
c

⇠ 100nm,

� ⇠ h ⇠ 40nm, we estimate that ✏ ⇠ 16nm and J ⇠ 12 N/m. So we expect the

amount of compression to be ✏/` ⇠ 9%.

Figure 3.2: (a) SEM image of B. subtilis. CX: cortex, IC: Inner spore Coat, OC:
Outer spore Coat. We make no distinction between the inner and outer coat in our
modeling. (b) A thin ruck on a flat adhesive substrate of height � and length `

1

. For
the extensible elastica, `

1

= ` + ✏, where the original length of the elastica is `
2

= `
as indicated by the dotted line and ✏ is the amount the elastica is stretched. For the
inextensible elastica under stress, `

1

= ` and `
1

= `� ✏. � ⇠ (✏`)1/2 for either model.

Alternatively, if we assume that the film is inextensible and is compressed an

amount ✏ by an applied stress F in the longitudinal direction, then the energy per

unit width of the film of length ` is W = U
a

+ U
b

+ U
c

where U
a

⇠ J` is the adhesive
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energy, U
b

⇠ (Eh3)✏/`2 is the bending energy and U
c

⇠ F ✏ is the energy due to the

applied force. Minimizing W(`) with respect to ` yields scaling law for the critical

ruck size

`
c

⇠ (Eh3✏/J)1/3. (3.3)

Under the same parameters as before, we find that this model predicts that J ⇠

30N/m. The energy of adhesion between the coat and the cortex, associated with

nonspecific electrostatic interactions between the positively charged cortex peptido-

glycan [66] and the negatively charged coat [22], was measured to be J ⇠10 Joules/m2,

so either model gives reasonable approximations.

3.2 Numerical Simulations

In order to simulate ruck formation when the spore shrinks, we model the spore

as two concentric rings (or polygons) of radii R
1

and R
2

that are comprised of N

edges and N vertices. This model is based on our analysis of the cross section of the

bacteria spore as shown in Fig. 3.1 and 3.2a, which shows that the cross section of

the cortex appear roughly circular while the coat appear to form many rucks along

the circumference. The SEM images show that there are delamination along the

circumference of the cross section of the bacteria spore during dehydration. The

formation of rucks along the circumference will explain the emergence of the ridges

along the long axis of the bacteria.

The outer polygon models the coat while the inner polygon models the core and

cortex. For each vertex on the inner polygon there is a corresponding vertex on the

outer polygon, lying on the same radial line. The polygon asymptotes a circle as
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N increases. In the simulation, the inner polygon oscillates sinusoidally between the

initial radius R
1

and minimum radius R
2

. We did not allow bending and stretching.

This periodic motion is suppose to simulate the cyclical expansion and contraction of

a bacteria spore due to changes in humidity as observed in experiments. Again, from

SEM images, we see that the cross section of core remains circular during expansion

and contraction and hence, we picked a simple motion in our numerical simulations.

Thus, each cortex vertex oscillates between R
1

and R
2

with a characteristic period

T
c

. The outer polygon, modeling the coat, has more complex mechanical behavior. In

addition to the bending and stretching energy associated with the elastic extensible

ring [54], we added substrate energy between the two concentric rings to model the

adhesion force between the coat and cortex, which is Hookean and of finite range.

Finally, we added a shearing penalty between the two layers to prevent the two

polygons from sliding relative to one another.

We calculated the response of this structure to gradual reductions in volume using

a combination of scaling analyses and numerical simulations, restricting ourselves to

two dimensions, both because the wrinkle morphology is that of long ridges along the

spore, and in order to focus on a minimal model. The inner polygon is allowed to

shrink slowly to some minimum radius R
0

via a hookean restoring force. We do not

allow it to bend and stretching is not penalized since the core is known to be extremely

soft., i.e. each core vertex slowly shrinks along its radial line. The outer polygon,

which is used to model the spore coat, has more interesting mechanical behavior.

In addition to the bending and stretching energy associated with the elastic ring

[54], we added a substrate energy between the two concentric polygons that models
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the adhesion force that exist between the coat and the core. This adhesion force is

hookean and of finite range as shown in figure 3.3.

Figure 3.3: Finite range hookean restoring force between spore coat and core substrate

We will label the outer vertices by (x
i

, y
i

) and the inner vertices by (xc

i

, yc
i

). Let

us define �x
i

= x
i+1

�x
i

, �y
i

= y
i+1

�y
i

, then the length of an outer edge is given by

�r
i

=
p
(�x2

i

+�y2
i

). The angle between the ith edge (tangent vector of ith vertex)

and the x-axis is give by ✓
i

, where tan ✓
i

= �y
i

/�x
i

. Similar notations hold for the

inner polygon, with the addition of a superscript c. In all, the total energy of the

spore coat is given by:

U(coat) = U
bend

+ U
stretch

+ U
substrate

+ U
shear

, (3.4)
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where

U
bend

= �
b

X

i

cos(✓
i+1

� ✓
i

� �) , � =
2⇡

N
, (3.5)

U
stretch

=

h

2

X

i

✓

�r
i

� `

`

◆

2

, ` = 2R
2

sin
⇡

N
, (3.6)

U
substrate

=

s

2

X

i

(r
i

� rc
i

)2 , r
i

=
q

x2

i

+ y2
i

, (3.7)

U
shear

= �
r

X

i

cos(✓c
i

� (i� 1)�). (3.8)

U
bend

and U
stretch

denote the bending and stretching energy respectively, while U
substrate

denotes the adhesive restoring energy between the cortex and the coat. rc
i

is the equi-

librium separation and U
shear

is the shear energy when the two layers slide relative

to one another.

Figure 3.4: Schematic of the B. Spore: model and notations
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The outer (coat) vertices (x
i

, y
i

) evolve via an overdamped dynamics:

⌘
dx

i

dt
= �@U(coat)

@x
i

, ⌘
dy

i

dt
= �@U(coat)

@y
i

, (3.9)

On the other hand, since the inner polygon undergoes a simple harmonic motion

R
core

(t) = R
m

+ A cos!t,

where R
m

= (R
1

+R
2

)/2 and A = (R
2

�R
1

)/2, the inner vertices (xc

i

; yc
i

) move via

dxc

i

dt
= �!A sin(!t) cos(�c

i

), (3.10)

dyc
i

dt
= �!A sin(!t) sin(�c

i

). (3.11)

Where �c

i

is the angle of the ith inner vertice relative to the x-axis. Additionally, the

Hookean adhesion force is assumed to be of finite range and the bonds linking two

rings will break if the force exceeds some cuto↵ separation x⇤, where x⇤ = max()

denotes the maximum extension of the spring at each vertex before it breaks. We can

relate the elastic modulus for the substrate to the adhesion constant J . If we assume

that there is one spring per edge `, then

1

2

s

(x⇤)2 =
1

2

s

[max(r
i

� rc
i

)]2 = J`. (3.12)

3.3 Discussions

Once the simulation starts running, the inner core region will shrink to its mini-

mum radius R
1

, resulting in the outer coat being pulled inwards due to the Hookean

adhesion force between the two layers and forming complex patterns of wrinkles/rucks.

Typical parameter values in our model are as follows: spore radius R
coat

, and thick-

ness, h, of the coat to be ⇠300nm and ⇠40nm, respectively [104, 98] (See Table 3.1),
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the measured elastic modulus of the B. subtilis coat E ⇠13.6 GPa using an atomic

force microscope (AFM), and the energy of adhesion between the coat and the cor-

tex, J ⇠10 Joules/m2, associated with nonspecific electrostatic interactions between

the positively charged cortex peptidoglycan [66] and the negatively charged coat [22].

Even though we do not know much about the biology happening at the spore coat, our

collaborator has made measurements on the elastic properties of the coat and found

that the elastic modulus of the bacteria spore remains fairly constant under various

conditions such as di↵erent humidities and even after mutations, so the assumption

of a constant elastic modulus is fairly reasonable.

We would like to relate the numerical values to experimentally observable quan-

tities. Since

0
h

⇠ Eh,

and

0
b

⇠ Eh3,

where E = 13.9GPa is the elastic constant and h ⇠ 40nm is the thickness of the coat,

we find that 0
h

⇠ 500N/m, 0
b

⇠ 9⇥10�13Nm and J ⇠ 1N/m. Here the prime on the

parameters represent physical values from the corresponding numerical values used

in the simulation. By matching the analytical expressions for bending and stretching

energy to the numerical expressions given by eqs. (3.5) and (3.6), we find


h

/ 0
h

`
,


b

/ 0
b

`
.

The simulations show that as the rings shrink when the strain is larger than a

critical threshold, so that the coat first buckles to form a symmetric wavy pattern
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Figure 3.5: Model of formation of folds in the spore coat and their response to spore
swelling. (a-c) Simulation of the ruck formation as the radius of spore interior (R

in

)
shrinks during sporulation. Rout is the average outer diameter. Using bending and
stretching modulus values estimated from thickness and mechanical measurements of
the coat, the model predicts the emergence of rucks that are comparable in width,
height and number to previous reports [29]. (d) Upon spore expansion, rucks formed
during sporulation do not reattach readily, but rather decrease their height and in-
crease their width.
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Table 3.1: Descriptions and values of the parameters used in simulations.

Name Description Numerical values used in simulation
N Number of discretization 150

b

Bending modulus 2⇥ 106


h

Stretching modulus 105


s

Adhesion modulus 360

r

Shearing Modulus 106

T
c

Period of cortex oscillation 2
� Equilibrium angle 2⇡/N
⌘ Damping constant 1
R

1

Initial size of inner coat 250
R

2

Initial size of outer coat 300
A Amplitude of cortex oscillation 18
J Adhesion constant 52000
` Equilibrium length of outer edge 2R

2

sin(⇡/N)
x⇤ Maximum extension of bonds

p

2J`/
s

around the cortex. This pattern then loses stability to delamination to form rucks

(Fig. 3.5a-c). Wrinkles formed according to the mechanism in Fig. 3.5a-c are per-

sistent. They do not readily attach back to the cortex, since they arise due to a

subcritical (nonlinear) instability. This has implications for the dormant spore, since

it suggests that after completion of sporulation the spore volume can increase or de-

crease in response to ambient relative humidity. By keeping the coat flexible, the

persistence of rucks prevents the coat from resisting these changes in the volume

[105, 25], thereby providing a mechanism for maintaining structural integrity of the

spore. Fig. 3.5(d) shows the simulated coat geometry when the spore expands after

the rucks are formed corresponding to the case when sporulation is complete.

The rucks unfold by decreasing their height and increasing their width, in quali-

tative agreement with our biological observations, Fig. 3.1d. Interestingly, the rucks

did not unfold completely even at very high relative humidity in the AFM analy-
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sis (Fig. 3.5d). We obtained similar results for B. anthracis spores (See Appendix

Fig. D.1). Fully hydrated B. atrophaeus spores were previously shown to exhibit

similar characteristics [79], suggesting that this behavior is not limited to a single

species. This observation suggests that the expansion of the dormant spore is not

limited by the coat. Instead, the cortex of the dormant spore has a limited ability to

swell. Consistent with this view, B. subtilis spores lacking most of the coat due to

mutations in cotE and gerE [31] were not larger than wild type spores at high relative

humidity (See Appendix Fig. D.2 for experimental results done by my collaborator

Ozgur Sahin). The cortexs limited ability to swell can be explained by its rigidity,

as our AFM based mechanical measurements on the cotE gerE mutant revealed an

elastic modulus around ⇠6.9 GPa. A rigid cortex is also needed to sustain pulling

forces on the coat, as well as in creating a tight girdle around the dehydrated core.

Thus, it seems that our simple double concentric elastic extensible ring model is able

to explain the formation of rucks on the bacteria spore coat satisfactorily.

3.4 Mathematical Model

Our analysis of the buckling states of an extensible elastic ring is based on the

Euler-Bernoulli theory of elastic beam [60, 54, 2, 3]. The Euler-Bernoulli’s hypothesis

states that plane cross sections which are perpendicular to the neutral axis before

deformation remain plane and perpendicular to the neutral axis after deformation,

i.e. no shear strain. Consider a rod of length ` initially along the horizontal axis

connected to a system of elastic hookean springs . A compressive force P is applied

to the ends so that the rod bends. The point that is initially at (x, 0) will be deformed
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to (x+u(x), w(x)) as shown in figure C.1. A small element along the rod dx becomes

ds = (1 + ✏)dx after deformation and experience a restoring force in the vertical

direction proportional to w. Let ✓ be the angle that the tangent to the midline makes

with the horizontal axis and denote A
x

⌘ dA/dx. From geometric consideration, we

find that

Figure 3.6: Deformation of a beam cross-section. The point (x, 0) moved to (x +
u(x), w(x)) after deformation where w(x) is the vertical displacement and u(x) is the
horizontal displacement. The length of the segment dx is stretched to ds = (1+ ✏)dx,
where ✏ =

p

(1 + u
x

)2 + w2

x

� 1. Blue curly lines denote the elastic hookean springs.

cos ✓(x) =
1 + u

x

1 + ✏
, sin ✓(x) =

w
x

1 + ✏
, (3.13)
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where

1 + ✏ =
p

(1 + u
x

)2 + w2

x

. (3.14)

The curvature is

 =
d✓

ds
=

✓
x

1 + ✏
. (3.15)

The potential energy of the system is given by

U =

Z

`

0

dx

✓

1

2
EI✓2

x

+
1

2
EA✏2 +

1

2
Kw2

◆

+ P�u, (3.16)

where 1

2

Kw2 represents the elastic spring support energy per unit length and P�u

represents the work done by the applied force P . Since

�u = u(L)� u(0) =

Z

`

0

dx((1 + ✏) cos ✓ � 1), (3.17)

we find that we can rewrite (3.16) as

U =

Z

`

0

dx

✓

1

2
EI✓2

x

+
1

2
EA✏2 +

1

2
Kw2 + P ((1 + ✏) cos ✓ � 1)

◆

. (3.18)

Let us define a new variable ⌘ such that ⌘
x

= w. Requiring that the first variation

of the potential energy to vanish, we find that

�U =

Z

`

0

dx {�EI✓
xx

� (1 + ✏)P sin ✓ �K⌘(1 + ✏) cos ✓} �✓

+

Z

`

0

dx {P cos ✓ �K⌘ sin ✓ + EA✏} �✏

+ [EI✓
x

�✓]`
0

+ [K⌘�w]`
0

= 0, (3.19)

where we use

�w
x

= sin ✓�✏+ (1 + ✏) cos ✓�✓ (3.20)
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to get rid of �w
x

. Since the variations �✏, �✓ are arbitrary, the terms in the parenthesis

must necessarily vanish separately. The last two boundary terms vanish due to the

boundary conditions (for a pinned-pinned beam):

✓
x

(0) = ✓
x

(`) = w(0) = w(`) = 0. (3.21)

We find that

✏ = � P

EA
cos ✓ +

⌘K

EA
sin ✓. (3.22)

After going through some algebra, we find that a compressible elastic beam with

spring support can be described by two ordinary di↵erential equations

✓
xx

= �↵P (1� �P cos ✓ + �K⌘ sin ✓) sin ✓

� ↵K⌘(1� �P cos ✓ + �K⌘ sin ✓) cos ✓, (3.23)

⌘
xx

= (1� �P cos ✓ + �K⌘ sin ✓) sin ✓, (3.24)

subject to the boundary conditions given by (3.21) where we have defined ↵ = (EI)�1

and � = (EA)�1. Notice that this problem has reflectional symmetry or Z
2

-symmetry:

(✓, ⌘) ! (�✓,�⌘). The trivial solution is simply (✓, ⌘) = (0, 0), i.e. the fundamental

solution. We are interested in the bifurcation from the fundamental solution. Let us

expand the 2 ODE in a Taylor series as follows:

✓
xx

=� ↵K(1� �P )⌘ � ↵P (1� �P )✓

� ↵�K2⌘2✓ +
1

2
↵K(1� 4�P )⌘✓2 +

1

6
↵P (1� 4�P )✓3 + ... (3.25)

⌘
xx

=(1� �P )✓ + �K⌘✓2 � 1

6
(1� 4�P )✓3 + ... (3.26)

Note that when we set K = 0 into (3.25), we recover the well-known Du�ng’s equa-

tion.
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3.5 Bifurcation Analysis

Let us rewrite the system of ODE (3.25) and (3.26) in an abstract form more

suitable for analysis [40]. Let

�(✓, ⌘) = L

0

B

@

✓

⌘

1

C

A

+N(✓, ⌘) = 0, (3.27)

where the linear part is given by

L

0

B

@

✓

⌘

1

C

A

=
@2

@x2

0

B

@

✓

⌘

1

C

A

+

0

B

@

↵P (1� �P ) ↵K(1� �P )

�(1� �P ) 0

1

C

A

0

B

@

✓

⌘

1

C

A

, (3.28)

and the nonlinear part is given by

N(✓, ⌘) =

0

B

@

↵�K2⌘2✓ � 1

2

↵K(1� 4�P )⌘✓2 � 1

6

↵P (1� 4�P )✓3

��K⌘✓2 + 1

6

(1� 4�P )✓3

1

C

A

. (3.29)

The In this form, �(✓, ⌘;P,K,↵, �) : X ⇥R4 ! Y is a mapping between Banach

spaces defined as follows. The domain X is the space of all real-valued, twice con-

tinuously di↵erentiable vector function ~q(x) = (✓(x), ⌘(x))T defined on x 2 [0, `] that

has vanishing first derivatives at the boundaries, i.e. ~q(0) = ~q(`) = ~0. R4 refers to the

space spanned by the four real variables {P,K,↵, �}. The range Y is the space of

continuous vector function defined on x 2 [0, `]. Observe that �(0, 0;P,K,↵, �) = 0

for all P , K. In other words, the undeformed configuration satisfies the equilibrium

equations for any external load P and spring constant K. In our analysis, we will

treat P as the bifurcation parameter and keep K,↵, � fixed.
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3.5.1 Linearized Problem

We claim that all eigenfunctions of linear part L have the form
0

B

@

✓

⌘

1

C

A

= cos
⇣n⇡x

`

⌘

0

B

@

c
1

c
2

1

C

A

, (3.30)

where n is a positive integer. Observe that the two parameters c
1

and c
2

span a

two-dimensional subspace of functions which is invariant for L and they satisfy the

boundary conditions (3.21). For each n, there exist two linearly independent eigen-

functions of L. By Fourier analysis,

{cos(n⇡x/`) : n = 1, 2, 3, ...} (3.31)

is a complete set of scalar functions. Arguing componentwise, it follows that (3.30)

provides a complete set of vector functions. Thus, we can restrict L to this two-

dimensional subspace, namely L
2

, which is
0

B

@

��2 + ↵P (1� �P ) ↵K(1� �P )

�(1� �P ) ��2

1

C

A

, (3.32)

where � = n⇡/`. The determinant is given by

det(L
2

) = �2(�2 � ↵P (1� �P )) + ↵K(1� �P )2. (3.33)

The linear map L
2

is invertible unless the determinant vanishes in which case, the

implicit function theorem fails and we have a bifurcation. Solving for P , we find that

P (n)

± =
2↵�K + ↵�2 ± �2

p

↵(↵� 4�2K � 4��2)

2↵�2K + 2↵��2
. (3.34)

Let us define the e↵ective spring constant µ = �K, the slenderness � =
p

A`2/I =
p

↵`2/� and the Euler load P
E

= ⇡2EI/`2 = ⇡2/(↵`2). Then we can rewrite (3.34)
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more compactly as

P (n)

±
P
E

=
�2

2⇡2

"

(2µ+ �2)

(µ+ �2)
± �2

(µ+ �2)

r

1� 4`2(µ+ �2)

�2

#

. (3.35)

Notice that P (n)

± /P
E

is real-valued only when

�2 � �2
0

(n) = 4`2(µ+ (n⇡/`)2). (3.36)

When �2 < �2
0

(1), P (1)

± /P
E

is not real, implying that bifurcation is not possible

and the fundamental mode (✓, ⌘) = (0, 0) is the only solution. This can be interpreted

as the shortening of the beam is su�cient to accommodate the increased in external

load that buckling never occurs. When �2 = �2
0

(n), we have a double root since

P (n)

+

= P (n)

� and there is only one bifurcation. This point will be further elucidated

in a latter section.

As �! 1, we find that

P�

P
E

⇡ �2

⇡2

✓

µ

µ+ (n⇡/`)2
+

2n2⇡2

�2

◆

+O(��2) (3.37)

and

P
+

P
E

⇡ �2

⇡2

✓

1� n2⇡2

�2

◆

+O(��2). (3.38)

For the case µ = 0, we find that (3.35) reduces to

P±

P
E

=
�2

2⇡2

 

1±
r

1� 4⇡2n2

�2

!

, (3.39)

which agrees with earlier work by Magnusson et al [60].



Chapter 3: Physical basis of the bacterial spore coat architecture and its relation to
the elastic 93

3.5.2 Stability of Fundamental Solution

Let us now consider the stability of the fundamental solution, (✓, ⌘) = (0, 0). The

matrix L
2

has two eigenvalues, which are the roots of the characteristic equation

�2 � trace(L
2

)�+ det(L
2

) = 0. (3.40)

The system is stable if the two eigenvalues have negative real parts, otherwise it is

unstable [53, 23]. We will study the stability by looking at the trace and determinant

of L
2

. The trace of L
2

is

trace(L
2

) = ↵P (1� �P )� 2�2, (3.41)

and the determinant is given by (3.33). There are four possible combinations for the

signs of det(L
2

) and trace(L
2

). Whenever det(L
2

) < 0, one of the eigenvalues must

be real and positive so the system is unstable regardless of the sign of trace(L
2

). If

det(L
2

) > 0 and trace(L
2

) > 0, the system is unstable since the eigenvalues are either

both real and positive or are a pair of complex conjugates with positive real part.

Hence we find that the system is stable only if det(L
2

) > 0 and trace(L
2

) < 0. In this

case, the two eigenvalues of L
2

are either a pair of complex conjugates with negative

real parts or real and negative. Since the eigenvalues have negative real parts, the

system is stable. The graph of trace(L
2

) and det(L
2

) for typical values of ↵, � and K

is plotted in figure 3.7.

The trace changes sign when

↵P (1� �P ) = 2�2. (3.42)
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Figure 3.7: Stability diagram. Plot of det(L
2

) (solid blue line) given by Eqn. (3.33)
and trace(L

2

) (dashed red line) given by Eqn. (3.43) as a function of P for typical
values of ↵, �, K and n = 1. Refer to Eqns. (3.34) and (3.35). The determinant
vanishes at P = P± as defined by (3.35). The trace vanishes at P = P

1,2

as defined
by (3.43). In this case, the fundamental solution is stable for P < P

1

and P > P
+

.

Solving for P , we find that

P (n)

1,2

P
E

=
�2

2⇡2

 

1±
r

1� 8n2⇡2

�2

!

, (3.43)

where P (n)

1

is the smaller of the two roots. At P (n)

1,2

, if det(L
2

) > 0, we find that the

pair of complex conjugate eigenvalues of the linearization crosses the imaginary axis

of the complex plane. This is the well-known Poincaré-Andronov-Hopf bifurcation.

If det(L
2

) < 0 at P (n)

1

, the eigenvalues are real, equal in magnitude and opposite in

signs. This point is a saddle node. Since one of the eigenvalues is positive, the system

is unstable. By inspection, we see that

min
n

P (n)

1

= P (1)

1

, and max
n

P (n)

2

= P (1)

2

. (3.44)

Following the discussion in Magnusson et al [60], we similarly require that ✏ > �1

and that ✏  �1 is nonpermissible. This material model corresponds to a “spring-

like” material that is linear until the two ends of the spring touch where it becomes
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infinitely sti↵. This implies that for the fundamental path, i.e. (✓, ⌘) = (0, 0), the

admissible region, defined by ✏ > �1, we obtain

P

P
E

<
�2

⇡2

. (3.45)

Let us define

P
a

= min
n

n

P (n)

� , P (1)

1

o

and P
b

= max
n

n

P (n)

+

, P (1)

2

o

. (3.46)

Thus, we conclude that the fundamental solution, (✓, ⌘) = (0, 0), is stable when

0 < P < P
a

and P
b

< P < �2P
E

/⇡2. This is a region bordered by the following

curves: P = �2/⇡2, P = P
a

and P = P
b

.

3.5.3 Phase Diagram

We see that three types of bifurcation can arise in this system. When det(L
2

) = 0,

we get the steady-state bifurcation (codimension one) whereby one of the two eigen-

values becomes zero. When trace(L
2

) = 0 and det(L
2

) > 0, we get Hopf bifurcation

(codimension one), whereby the two eigenvalues crosses the imaginary axis. Lastly,

when trace(L
2

) = 0 and det(L
2

) = 0, we get the the Bogdanov-Takens (BT) bifur-

cation (codimension two) at which the critical equilibrium has a zero eigenvalue of

(algebraic) multiplicity two [53]. At each BT bifurcation point, the Hopf bifurcation

curve turns into the neutral saddle curve (with real �
1

= ��
2

). The case for n = 1 is

plotted in figure 3.8 and the graphs for n = 2, 3, . . . look qualitatively similar. We can

piece all these information to get the complete phase diagram as shown in figure 3.9.

For n = 1 and � = 10, there exist two buckling loads with the same eigenmode. For

� = 20, we get a total of five buckling loads belonging to two eigenmodes(n = 1, 2),
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Figure 3.8: Phase diagram of the applied load versus slenderness for µ = 0.1, ` = 1
and n = 1. Solid black line denotes steady-state bifurcation whereby det(L

2

) = 0.
The blue solid line denotes Hopf bifurcation while the blue dash line denotes neutral
saddle curve, both of which satisfy trace(L

2

) = 0. The Bogdanov-Takens (BT) point
occurs when the curves det(L

2

) = 0 and trace(L
2

) = 0 intercepts.

four of which are steady-state bifurcation and one is the Hopf bifurcation. When �

is increased past 50, a second Hopf bifurcation appears.

Along the steady-state bifurcation, we need to calculate the normal form in order

to determine the type of codim 1 bifurcation that arises. As we will see in the next

section, we will get supercritical or subcritical pitchfork bifurcation depending on the

parameters. On the other hand, along the Hopf bifurcation branches as shown by

the blue dashed curves in figure 3.9, depending on the value of the first Lyapunov

coe�cient `
1

, we may have supercritical (`
1

< 0), subcritical (`
1

> 0) or Bautin (also
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Figure 3.9: Phase diagram of the applied load versus slenderness for µ = 0.1 and
` = 1. Black dashed lines denote P+(n) and the solid black line denote P�(n), which
are the two roots of det(L

2

) = 0 given by Eqn. (3.33) for the di↵erent values of
n. n = 1, ..., 5 is shown. P= Pitchfork, H=Hopf. The black points B(n) denotes
P+(n) = P�(n); the points A(n) (blue square) and C(n) (red star) mark where the
pitchfork bifurcation changes stability. The bifurcation for each n is supercritical
between A(n) and C(n) and subcritical otherwise. The points D(n) marked where
di↵erent n’s crosses, i.e. D(1) marks n = 1 crosses n = 2. The non-admissible shaded
grey is bordered by the vertical axis and the red curve P/P

E

= �2/⇡2. The blue
dashed line denotes the Hopf bifurcation. The Bogdanov-Takens (BT) point (black
diamond) occurs when the curves det(L

2

) = 0 and trace(L
2

) = 0 intercepts. The
hatched region denotes where the fundamental solution is stable.



Chapter 3: Physical basis of the bacterial spore coat architecture and its relation to
the elastic 98

known as generalized Hopf) bifurcations (`
1

= 0). Bautin bifurcation arises naturally

when a supercritical Hopf transit into a subcritical Hopf [53]. We will show later that

the Hopf bifurcation is a subcritical one for all values of �.

3.6 Recognition problem

3.6.1 Steady-State bifurcation

In this section, we will determine the type of steady state bifurcation along the

det(L
2

) = 0 branches in the phase space. We will carry out our analysis of (3.27)

using Liapunov-Schmidt reduction methods [40]. First, let us decompose X and Y

as follows

X = kernel(L
2

)� (kernel(L
2

))?, (3.47)

Y = range(L
2

)� (range(L
2

))?. (3.48)

The one-dimensional kernel of L
2

is spanned by m
1

(x), where

m
1

(x) = cos(n⇡x/`)

0

B

@

�2

�(1� �P±)

1

C

A

= c(x)

0

B

@

a
1

a
2

1

C

A

, (3.49)

where P± is a solution to (3.34) and c(x) = cos(n⇡x/`). By Fredholm alternative, we

have

(range(L
2

))? = kernel(L⇤
2

). (3.50)

The one-dimensional kernel of L⇤
2

0

B

@

��2 + ↵P (1� �P ) �(1� �P )

↵K(1� �P ) ��2

1

C

A

, (3.51)
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is spanned by n
1

(x), where

n
1

(x) = cos(n⇡x/`)

0

B

@

�2

↵K(1� �P±)

1

C

A

= c(x)

0

B

@

b
1

b
2

1

C

A

. (3.52)

We find that L
2

is Fredholm with index 0 since dim(kernel(L
2

)) = codim(range(L
2

)) =

1. Using m
1

(x) as a basis for kernel(L
2

) and n
1

(x) as a basis for (range(L
2

))?,

we can formally calculate the reduced scalar equation g(u, P ) where u parametrizes

kernel(L
2

), i.e. um
1

(x). Since our problem has the trivial solution ✓ = ⌘ = 0, from

which it follows that g(0, P ) ⌘ 0. Thus at the singularity at the origin, we have

g = g
u

= g
P

= g
PP

= 0. (3.53)

In order to find the normal form of the scalar function g(u, P ), we need to calculate

the di↵erent derivatives of g w.r.t. u and P . In particular, we find that

(d�)
0,P

= L
2

. (3.54)

Due to the Z
2

symmetry, at the trivial point [40],

(d2�)
0,P

= 0 and �
P

=
@�

@P
= 0, (3.55)

which implies that

g
uu

= 0. (3.56)

We would like to calculate g
uuu

and g
uP

and they are given by [40]:

g
uuu

= hn
1

, d3�(m
1

,m
1

,m
1

)i, (3.57)

g
uP

= hn
1

, d�
P

·m
1

i. (3.58)
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The k-th order di↵erential of a mapping � at a point u 2 X is given by the following

formula,

(dk�)
u

(v
1

, ..., v
k

) =
@

@t
1

· · · @

@t
k

�

 

u+
k

X

i=1

t
i

v
i

!

�

�

�

�

�

t=0

. (3.59)

Using this formula, we find that

d�
P

·m
1

= d

✓

@�

@P

◆

·m
1

= c(x)

0

B

@

↵(1� 2�P±)a1 � ↵�Ka
2

�a
1

1

C

A

, (3.60)

and

d3�(m
1

,m
1

,m
1

) = c3(x)

0

B

@

6↵�K2a
1

a2
2

� 3K(1� 4�P±)a2
1

a
2

� ↵P±(1� 4�P±)a3
1

�6�Ka2
1

a
2

+ (1� 4�P±)a3
1

1

C

A

.

(3.61)

Plugging these expressions into (3.57) and (3.58), we find that

g±
uP

= A ((↵(1� 2�P±)a1 � ↵�Ka
2

)b
1

+ �a
1

b
2

)

= ⌥A�4
p

↵(↵� 4�(µ+ �2))

= ⌥A
�

`2
�4
p

�2(�2 � 4`2(µ+ �2))), (3.62)

where A =
R

`

0

cos2(n⇡/`)dx = `/2. If �2 � �2
0

(n), g
uP

is real. In particular, g
uP

=

g+
uP

< 0 when P = P
+

and g
uP

= g�
uP

> 0 when P = P�. Similarly, we find that

g±
uuu

= B

0

B

@

6↵�K2a
1

a2
2

� 3K(1� 4�P±)a2
1

a
2

� ↵P±(1� 4�P±)a3
1

�6�Ka2
1

a
2

+ (1� 4�P±)a3
1

1

C

A

·

0

B

@

b
1

b
2

1

C

A

= B�8
3↵(2µ+ �2)� 8�(µ+ �2)(3µ+ �2)± 3�2

p

↵(↵� 4�(µ+ �2))

2�(µ+ �2)

= B�8
3�2(2µ+ �2)� 8`2(µ+ �2)(3µ+ �2)± 3�2

p

�2(�2 � 4`2(µ+ �2))

2`2(µ+ �2)

(3.63)
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where B =
R

`

0

cos4(n⇡/`)dx = 3`/8. If �2 � �2
0

(n), g
uuu

is always real. The plot of

g±
uP

and g±
uuu

is shown in figure 3.10.

Figure 3.10: Term in the normal form, g±
uuu

, given by Eqn. (3.63) as a function of
slenderness �. g+

uuu

is always positive while the sign of g�
uuu

depends on �. g�
uuu

vanishes when � = �±
c

The dashed lines denote P+; the solid lines denote P�. At
�
0

(n), P+(n) = P�(n). These are the points B(n) as shown with black dots. ��
c

(n) are
the points A(n) (shown as blue squares) while �+

c

(n) mark the points C(n). (shown as
red star) Inset: g±

uP

(n = 1) as a function of �. g+
uP

(n = 1) = g�
uP

(n = 1) at �
0

(n = 1).
From these two plots, we find that P+ is always subcritical while P� is subcritical
when �

0

(n) < � < ��
c

(n), supercritical when ��
c

(n) < � < �+
c

(n) and subcritical
when �+

c

(n) < �.

Along the bifurcating branch P
+

, we find that g+
uuu

> 0 and g+
uP

< 0 for all values

of � > 0. Together with (3.53) and (3.56), this means that the normal form along P
+

is

g(u, P ) ⇠ u3 � P
+

u, (3.64)
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which is a supercritical pitchfork. The bifurcation branch along P� is more interest-

ing. g�
uuu

vanishes when

(�±
c

)2 = `2
�4 + 20µ�2 + 24µ2 ± �3

p

�2 � 24µ

6µ
. (3.65)

We can substitute this value into (3.35) to find P
c

. These critical points where

the cubic term g�
uuu

vanishes are shown as the points A(n) and C(n), n = 1, 2, .. in

figure 3.9, where A(n)’s denote the smaller root. For small values of P�, g�
uuu

is

positive. However, as we increase P�, g�
uuu

decreases until it vanishes at ��
c

, and

g�
uuu

becomes negative until the point �+
c

, beyond which g�
uuu

becomes positive again.

Therefore, we see that when �
0

(n) < � < ��
c

, i.e. small slenderness, g�
uuu

> 0 and

g�
uP

> 0 and so this is a subcritical bifurcation. The normal form is given by

g(u, P�) ⇠ u3 + P�u. (3.66)

When ��
c

< � < �+
c

, i.e. intermediate slenderness, g�
uuu

< 0 and g�
uP

> 0 and so this

is a supercritical bifurcation. The normal form changes to

g(u, P�) ⇠ �u3 + P�u. (3.67)

Finally, when �+
c

< �, i.e. large slenderness, g�
uuu

> 0 and g�
uP

> 0 and we get back a

subcritical bifurcation, and the normal form is given by (3.66).

At � = �
0

(n) (points B(n)’s in figure 3.9) where P
+

and P� meet, we have a double

root (P
+

= P�) and the normal form of the bifurcation is

g(u, P�) ⇠ u3 � (P � P±)
2u. (3.68)

In this special case, g exhibits a nondegenerate cubic symmetry of Z
2

-codimension

one (Z
2

symmetry). When � = ��
c

or � = �+
c

, g±
uuu

vanishes and the normal form
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Figure 3.11: Bifurcation diagrams associated with the buckling of the compressible
beam on elastic spring support as a function of the applied force P . Vertical axis
is u and the horizontal axis is P . g+

uuu

> 0 and g+
uP

< 0 holds true for di↵erent
values of �. a) When �

0

(n) < � < ��
c

or �+
c

< �, g�
uuu

> 0, g�
uP

> 0 and we get a
subcritical pitchfork. b) When � = �

0

(n), we have a double root since P
+

= P�. c)
If ��

c

< � < �+
c

, g�
uuu

< 0 and g�
uP

> 0 which is a supercritical bifurcation. d) When
� = ��

c

or � = �+
c

, g±
uuu

vanishes and the canonical form is ±x5 � P�x = 0.

g(u, P ) takes on a canonical form given by

±x5 � P�x = 0, (3.69)

provided the fifth-order derivative is nonzero. Thus we see that at small slenderness,

the pitchfork bifurcation along the P� branch is subcritical and it transits into a

supercritical bifurcation at intermediate values of slenderness. At large slenderness,

the pitchfork bifurcation is subcritical. The pitchfork bifurcation is always subcritical

along the P+ branch. The full bifurcation diagrams for the elastic beam with spring

support are shown in figure 3.11.
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When we set µ = 0, we find that

g±
uuu

(µ = 0) = B�8
3�2�2 � 8`2�4 ± 3�2

p

�2(�2 � 4`2�2)

2`2�2
. (3.70)

In particular, we find that g±
uuu

(µ = 0) = 0 when

�2
M

=
16

3
�2`2 =

16n2⇡2

3
) P�

M

P
E

=
4

3
n2 (3.71)

which agrees with [60].

3.6.2 Hopf bifurcation

In this section, we will determine the type of Hopf bifurcation along the trace(L
2

) =

0 branches in the phase space. The analysis will follow closely that of [53]. The fol-

lowing change of variables are useful: �P = P⇡2/(P
E

�2), ↵�K2 = �2µ2, ↵K = �2µ,

↵P = ⇡2P/P
E

and we have set ` = 1 in our calculations. Along the Hopf branches

in the phase space, we find that trace(L
2

) = 0 and

det(L
2

) = �n4⇡4 � 2n2⇡2µ+
1

2

 

1 +

r

1� 8n2⇡2

�2

!

�2µ = !2

0

. (3.72)

We can construct two complex vectors p and q such that

L
2

q = i!
0

q, LT

2

p = �i!
0

p, hp, qi = 1, (3.73)

where hp, qi = p̄
1

q
1

+ p̄
2

q
2

and the overhead bar denotes complex conjugation. We

find that

q =

8

<

:

� 2n2⇡2 + 2i!
0

1 +
q

1� 8n

2
⇡

2

�

2

, 1

9

=

;

T

, (3.74)

p
1

=

8

>

>

<

>

>

:

2n2⇡2 � 2i!
0

✓

1 +
q

1� 8n

2
⇡

2

�

2

◆

�2µ

, 1

9

>

>

=

>

>

;

T

, (3.75)
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where hp
1

, qi = s and p = p
1

/s̄. Next, we will construct the expression

H(z, z̄) = hp,�(zq + z̄q̄)i (3.76)

and find the coe�cients g
20

, g
11

, and g
21

in the formal Taylor series

H(z, z̄) = i!
0

+
X

j+k�2

1

j!k!
g
jk

zj z̄k. (3.77)

The first Lyapunov coe�cient is given by

`
1

=
1

2!2

0

Re(ig
20

g
11

+ !
0

g
21

). (3.78)

If `
1

< 0 (`
1

> 0), then the equilibrium at of the Fundamental solution (✓, ⌘) = (0, 0)

is stable (unstable). As shown in figure 3.12, the first Lyapunov coe�cient along

the Hopf branch for n = 1, 2, 3, . . . is always positive and hence Hopf bifurcation

is subcritical and unstable. The appearance of the Hopf bifurcation is somewhat

surprising and implies the existence of (✓, ⌘) orbits at the critical values of P and �.

However these orbits are highly delicate and unstable.

3.7 conclusion

In this Chapter we showed that the folding pattern of the bacteria coat can be

explained using a simple mechanical model and our simulations were able to explain

experimental observations. Our numerical studies show that as the rings shrink when

the strain is larger than a critical threshold, the coat first buckles to form a symmetric

wavy pattern around the cortex. This pattern then loses stability to delamination to

form rucks. Also, these wrinkles do not readily attach back to the cortex, since they

arise due to a subcritical (nonlinear) instability, which we modelled as a finite range
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Figure 3.12: Plot of first Lyapunov coe�cient as a function of slenderness. The
first Lyapunov coe�cient along the n = 1 Hopf branch for µ = 0.1 and ` = 1 is
always positive and hence is a subcritical Hopf bifurcation. Inset: Log-log plot of
first Lyapunov coe�cient vs. slenderness for values near the B(1).

hookean spring. From these, we propose that the coat takes advantage of mechani-

cal instabilities to fold into a wrinkled pattern during sporulation and accommodate

changes in spore volume without compromising structural and biochemical integrity.

Furthermore, the degree of spore swelling and coat flexibility are finely tuned such

that coat shedding is resisted until unfolding is complete, thereby keeping the coat

intact prior to germination. Importantly, we argue that the emergent properties of

the assembled coat, such as its elastic modulus and thickness, rather than specific

individual molecular components, are responsible for coat flexibility and much of the

mechanism of shedding. In this view, a functional coat can be built in a large num-
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ber of ways and with diverse protein components. Such freedom in design parameters

could facilitate evolutionary adaptation (particularly with respect to material proper-

ties) and the emergence of the wide range of molecular compositions and arrangements

found among Bacillus spore coats.

For simplicity, we have modelled the bacteria spore coat as a ring instead of the

spherinder, i.e., spherical cylinder, which is a huge simplification. Clearly, there are

many interesting elastic feature that is lost as we go from a two-dimensional membrane

to a one-dimensional ring. In the future, we hope to do a more sophisticated numerical

modelling that can reproduce experimental observations. An interesting observations

that we noticed in our numerical simulations is the appearance of the wavy patterns

when the circular ring buckles. We tried to analyze the bifurcation of the a ring under

elastic support but due to the di�culty of the problem, we analyzed the simpler

problem of an elastica on a spring support, which is still similar to our numerical

model.

We study the stability of an extensible elastic beam on a flexible spring support

under the action of a compressive force to illustrate how adhesion and elasticity

interact with each other. Our model is based on the general Euler-Bernoulli theory

of elastic beam and can be described by two di↵erential equations. The bifurcation

analysis of the ODEs was done using the methods of Liapunov-Schmidt. We found

that the null space of the linearized di↵erential equations has dimension one and on

the basis of a single bifurcation equation, we obtain the bifurcation diagram. There

are two types of bifurcation, namely pitchfork and hopf. For the pitchfork bifurcation,

at small slenderness, the pitchfork bifurcation along the P� branch is subcritical and
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it transits into a supercritical bifurcation at intermediate values of slenderness. At

large slenderness, the pitchfork bifurcation is subcritical. The pitchfork bifurcation

is always subcritical along the P+ branch. The hopf bifurcation is always subcritical

and unstable



Chapter 4

Statistical Mechanics of Twisted

Ribbons

4.1 Introduction

Advances in experimental techniques the past twenty years have expanded our

understanding of biopolymers enormously, which in turn have stimulated progress

on the theoretical side. For example, the direct manipulation of single molecules

of DNA provided invaluable insights into their structure and mechanical properties

[15, 16]. The relevant physics of DNA in many biological context can be described

using a coarse-grained treatment, the worm-like chain (WLC) model [63, 64] where

the polymer is described as a continuous flexible chain that bends smoothly under the

influence of random thermal fluctuations. The WLC model has an e↵ective bending

rigidity and the polymer flexibility is determined by a single parameter, the persis-

tence length `
p

which measures the tangent-tangent correlations. In addition, the

109
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supercoiling behavior of a DNA has been investigated in the landmark experiments

of Strick et al. [96, 97]. By anchoring one end of the DNA to a glass surface and

the other to a magnetic bead, they were able to exert torsional control over the DNA

thereby studying the statistical mechanics of DNA under fixed tension and linking

number. The quantitative analysis of the supercoiling behavior of DNA begun with

the seminal work of White and Fuller [106, 35, 36, 107, 108] and new experimen-

tal results in the 90s led to further exciting theoretical developments in the field

[101, 65, 33, 6, 74, 62].

DNA aside, there has been a lot of recent experimental interest in other systems

of biopolymers ranging from actin, microtubules to rod-like viruses. These biopoly-

mers require a more microscopic description that goes beyond the homogenous elastic

rods of the WLC model and new models proposed include the railway track model

of Everaers-Bundschuh-Kremer (EBK) [32, 57, 39] and more recently the Sadowsky

ribbon [85, 94, 37]. In these microscopic models, the interaction between the bend

and twist degrees of freedom is inherent, which is fundamentally di↵erent from the

WLC model where the twist degrees of freedom is accounted by adding extra terms

to the free energy. In an earlier report [37], we showed that the tangent-tangent cor-

relation function exhibits an oscillatory decay at any finite temperature, implying an

underlying helical structure even in absence of any natural twist at zero temperature.

The Sadowsky ribbon is isometric to a flat strip at any temperature and thus bends

when twisted. In this work, we will present a detailed description of our theoretical

and numerical calculations of the statistical mechanics of the Sadowsky ribbon under

the e↵ect of external force and torsion.
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4.2 Physical Model

Let us consider a rectangular strip of length L, width w and thickness h. We

will assume the strip to be inextensible so that it can store elastic energy exclusively

through bending. The elastic energy can be expressed in the usual form [61] given by

E =
1

2
D

Z

dA [(
1

+ 
2

)2 � 2(1� ⌫)
1


2

], (4.1)

where D = Eh

3

12(1�⌫

2
)

is the bending rigidity, E the Young modulus and ⌫ the Poisson

ratio of the material. 
1

and 
2

are the principal curvatures. Next, let us assume that

the plate is developable (zero Gauss curvature). Thus the smaller principal curvature


2

is zero everywhere and the elastic energy reduce to the simple form:

E =
1

2
D

Z

dA2
1

(4.2)

We can rewrite (4.2) in terms of the curvature  and the torsion ⌧ of the centerline

of the ribbon:

E =
1

2
D

Z

L

0

ds2
✓

1 +
⌧ 2

2

◆

2

Z

w
2

�w
2

dt
2

2 + (⌧ 0� ⌧0)t

=
1

2
D

Z

L

0

ds
(2 + ⌧ 2)2

⌧ 0� ⌧0
log



2 + w

2

(⌧ 0� ⌧0)

2 � w

2

(⌧ 0� ⌧0)

�

. (4.3)

Assuming that L � w, 4.3 simplifies to

E =
1

2
Dw

Z

L

0

ds
(2 + ⌧ 2)2

2
. (4.4)

Technical details of the derivation are discussed in the Appendix G. The nonlinear

coupling between curvature and torsion in 4.4 implies that an inextensible ribbon can

bend without twisting (⌧ = 0,  6= 0), but cannot twist without bending (⌧ 6= 0 !

 6= 0).
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Consider the special case of the Sadowsky ribbon whose base configuration is a

helical band whose centerline has curvature 
0

and torsion ⌧
0

. Calling R and C the

radius and the pitch of such a helical reference centerline, 
0

and torsion ⌧
0

are given

by:


0

=
R

C2 +R2

, ⌧
0

=
C

C2 +R2

,

both constant across the system. The coe�cient of the first and second fundamental

form of the base configuration can be calculated straightforwardly:

g0
ss

= 1, g0
st

=
⌧
0


0

, g0
tt

= 1 +
⌧ 2
0

2
0

,

b0
ss

= 
0

, b0
st

= b0
tt

= 0,

from which the spontaneous principal curvature are given by:

0
1

= 
0

✓

1 +
⌧ 2
0

2
0

◆

, 0
2

= 0.

The bending energy ((4.2)), including a spontaneous principle curvature, becomes

thus:

E =
1

2
D

Z

dA
�


1

� 0
1

�

2

=
1

2
D

Z

L

0

ds

Z

w
2

�w
2

dt f





f

✓

1 +
⌧ 2

2

◆

� 0
1

�

2

.

Now, calling:

 = 

✓

1 +
⌧ 2

2

◆

, ' =
⌧ 0� ⌧0

2
,

the integral over t becomes:

Z

w
2

�w
2

dt
[ � 0

1

(1 + ' t)]2

1 + ' t

= w0
1
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0
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the second term on the right-hand side is precisely the Wunderlich functional (4.3).

Thus, in the limit w/L ⌧ 1 the above expression becomes:

w0
1

�

0
1

� 2 
�

+ w 2 = w( � 0
1

)2,

from which a generalized expression of the Sadowsky functional for a naturally helical

developable ribbon can be found in the form:

E =
1

2
Dw

Z

L

0

ds

✓

2 + ⌧ 2


� 0

1

◆

2

. (4.5)

The above expression implies a continuous set of zero energy configurations. To

illustrate this point, we can restrict on the class of deformations that preserve the

preferential helical shape. Thus, in place of  and ⌧ , we can adopt as independent

variable the radius r and the pitch c of the deformed ribbon. With this choice the

generalized Sadowsky functional becomes simply:

E =
1

2
Dw

Z

L

0

ds

✓

1

r
� 1

R

◆

2

(4.6)

which doesn’t depend on the pitch of the helix!. In other words, in the limit of w ⌧ L,

any deformation that varies the pitch of the centerline while leaving unchanged its

radius of curvature costs zero elastic energy. To get a better feeling of this somewhat

surprising result one can try to construct a paper model of a helical ribbon by rolling a

paper strip around a cylinder. If we now try to untwist the paper ribbon by increasing

the pitch while keeping the radius of curvature constant, we can experience that such

a deformation costs a very little energy (zero if nothing by the elasticity of the strip

is taken into account). This special class of geometrical transformations consisting in

changing the pitch a helical centerline without changing the radius of curvature is in
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fact a type of transformation that preserve both the first and the second fundamental

form of the surface.

We study the e↵ect of such microscorpic ribbon under the e↵ect of a force F = Fe

z

and a torque ⌦. The two stresses on the ribbon introduces two additional energy terms

[63, 64, 68, 69]:

E
f

= �F ·
Z

L

0

ds t(s) = �F

Z

L

0

ds t
z

(s), (4.7)

and

E
t

= �2⇡⌦Lk, (4.8)

where Lk is the linking number. From the theory of elasticity, we know that a

macroscopic stretched elastic rod remains straight as we apply increasing torque to

the ends, then buckle at a critical value of torque ⌦
c

= 2
p
FAk

B

T [58, 68, 69]. This

critical value of torque increases with the applied stretching force. Microscopic rods

behave similar in that it can bend to relieve stresses. However, more importantly, it

is under constant thermal fluctuations which prevents the rod from being straight.

Every Fourier mode of its shape is excited according to the equipartition theorem

and even small applied torque can result lead to deviation from a straight line. In

our simulations, we will vary ⌦ so that we obtain the desired linking number Lk.

4.3 Ribbon Theory

Let C and A be two space curves in one-to-one correspondence. This means that

every point p on C is connected to a point q on A and that no point on either curve

is doubly connected. The linking number Lk between two curves A and C can be
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represented using Gauss’s formula:

Lk(A,C) =
1

4⇡

Z

A

Z

C

(dr
A

⇥ dr
C

) · (r
A

� r

C

)

|r
A

� r

C

|3 . (4.9)

Lk(A,C) is topological invariant that calculates how much a curve A “links” around

another curve C. As a result of Călugăreanu-White-Fuller theorem [36, 35, 107, 108,

24], the linking number Lk(A,C) can be expressed by a sum of local strain field (the

twist, Tw) and a global configurational integral (writhe, Wr), namely

Lk = Tw +Wr. (4.10)

The writhe of a curve C, Wr(C), is given by

Wr(C) =
1

4⇡

Z

C

Z

C

(dr
1

⇥ dr
2

) · (r
1

� r

2

)

|r
1

� r

2

|3 , (4.11)

which is a non-local formula involving a double integral around the closed curve C.

Wr measures the non-planarity of the axis curve.

Tw measures how much the ribbon is twisted about its own axis. We denote the

twist of curve A about curve C by Tw(A,C) and in a similar manner, the twist of C

about A by Tw(C,A). The twist is a property of two ordered curves and of a one-

to-one correspondence between them and cannot be calculated for a single curve in

isolation [107, 108]. Let z
CA

be a vector joining a point in C to its corresponding point

on A. This vector is known as the correspondence vector and the surface generated

by all the correspondence vectors is known as the correspondence surface. Let t
C

be

the unit tangent vector to C. Since t

C

and z

CA

are in general not orthogonal, we

can define a unit vector v

CA

that lies in the plane spanned by z

CA

and t

C

and is

perpendicular to t

C

. Then the twist of A about C is

Tw(A,C) =
1

2⇡

Z

C

[t
C

⇥ v

CA

] · dv
CA

. (4.12)
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Similarly, we define the twist of C about A as

Tw(C,A) =
1

2⇡

Z

A

[t
A

⇥ v

AC

] · dv
AC

. (4.13)

The form of 4.12 and 4.13 implies that the twist is additive, i.e., the total twist is

equal to the sum of the twists of its constituent parts.

The two quantities Tw(A,C) and Tw(C,A) are generally not equal to one another

and the order of A and C matters. However, the linking number is independent of

the order of the curves as evident from 4.9, so Lk(A,C) = Lk(C,A) and it follows

that

Tw(A,C) +Wr(C) = Tw(C,A) +Wr(A). (4.14)

Thus if the linking number is fixed, then the chain is only allowed to distribute the

topologically invariant Lk between the degrees of freedom associated with Tw and

Wr.

In general, Lk is defined only for closed loops. Since we have an open chain

with both ends held at fixed orientations, we can draw a fixed, imaginary path that

connects the two ends at infinity to form a closed contour as shown in 4.1 [65, 68,

69, 75]. Choosing the return contour such that Lk = 0 when the rod is straight and

unstressed, we can then apply CFW theorem Lk = Tw +Wr, where the right hand

side is calculated only along the actual chain. Whenever a straight rod becomes bend

or twisted, Lk 6= 0 and it is supercoiled.

Let us then pick the centerline (t = 0) of the ribbon x(s) to be C and one of the

edge (t = w/2) to be A, which we will call the auxiliary curve. In this case, we find

that

r

0
A

= R

0(s,
w

2
) = t+

w

2

✓

b

0 +
⌧


t

0 +
⌧ 0� ⌧0

2
t

◆

. (4.15)
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Figure 4.1: a) A flat ribbon with zero linking number Lk. The black portion represents
an actual straight ribbon and the white portion represent the imaginary return loop,
forming a closed contour. In actual experiment, one end of the DNA is held fixed
while a magnetic bead is typically attached to the other end of the DNA to allow for
mechanical control. b) Situation where the ribbon becomes distorted. The end of the
ribbon that is attached to the magnetic bead may not be flat as in the undistorted
configuration in (a), and in order to join the end to the imaginary contour properly
may incur an additional twist of at most ±1/2, which is neglected in the numerics.

Using the Frenet-Serret equations, we find that

r

0
A

= t

✓

1 +
w(⌧ 0� ⌧0)

22

◆

, (4.16)

and it follows that

t

A

= t

C

= t. (4.17)

Let us pick v

AC

= b, then we find that the twist of C about A is

Tw(C,A) =
1

2⇡

Z

A

ds [t⇥ b] · b0 =
Z

A

ds

2⇡
⌧. (4.18)

In a similar fashion, we can calculate the twist of A about C. In this case, using
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v

CA

= �v

AC

= �b, we find that

Tw(A,C) =

Z

A

ds

2⇡
⌧, (4.19)

and hence Tw(C,A) = Tw(A,C). The choice of t = w/2 is arbitrary and the pre-

ceding calculations work for any t and hence we can conclude that the twist of a

developable ribbon is given by total torsion of the ribbon (divided by 2⇡).

4.4 Numerical Methods

Figure 4.2: A discrete framed curve consisting of N + 1 vertices x

0

,x
1

, ...,x
N

, and
an orthogonal Frenet frame F

i

= (n
i

, b
i

, t
i

), i = 1, ..., N . Angle between t

i�1

and t

i

is ✓
i

. The distance between adjacent vertices is a, i.e. |x
i+1

� x

i

| = a. Inset: The
angle between b

0

and b

1

is �
1

.

Let us discretize the ribbon as a chain of total length L with N + 1 vertices

x

i

= {x
0

,x
1

, ...,x
N

} separated by a fixed length a as shown in 4.2. For each pair of

nearest neighbor vertices x
i�1

,x
i

, we can introduce a unit tangent vector

t

i

=
x

i

� x

i�1

|x
i

� x

i�1

| . (4.20)

If t
i�1

and t

i

are not parallel, the binormal and normal vector can be given by

b

i

=
t

i�1

⇥ t

i

|t
i�1

⇥ t

i

| , (4.21)



Chapter 4: Statistical Mechanics of Twisted Ribbons 119

and

n

i

= b

i

⇥ t

i

. (4.22)

Otherwise, we simply define b

i

= b

i�1

and n

i

= n

i�1

. Let us define the discrete

bending angle ✓
i

, (�⇡ < ✓
i

 ⇡) by

cos ✓
i

= t

i

· t
i�1

, (4.23)

and the discrete bond angle �
i

, (�⇡ < �
i

 ⇡) by

cos�
i

= b

i

· b
i�1

. (4.24)

The curvature at vertex i is given by

2
i

=
|t

i

� t

i�1

|2

a2
=

2(1� cos ✓
i

)

a2
, (4.25)

and the torsion is

⌧ 2
i

=
|b

i

� b

i�1

|2

a2
=

2(1� cos�
i

)

a2
. (4.26)

At each vertex, there is an orthonormal discrete Frenet frame F

i

= (t
i

,n
i

, b
i

),

i = 1, ..., N . The Frenet frames F

i

are orthogonal 3 ⇥ 3 matrices, whose column

vectors are t
i

,n
i

and b

i

. We can write down an iterative relation between two adjacent

discrete Frenet frame [37, 83]

F

i

= F

i�1

R

i

(4.27)

where

R

i

=

0

B

B

B

B

B

B

@
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� sin ✓
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0

sin ✓
i

cos�
i

cos ✓
i

cos�
i

� sin�
i

sin ✓
i

sin�
i

cos ✓
i

sin�
i

cos�
i

1

C

C

C

C

C

C

A

. (4.28)
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We note that t
i

· n
i�1

= (R
i

)
21

= sin ✓
i

cos�
i

and t

i

· b
i�1

= (R
i

)
31

= sin ✓
i

sin�
i

. If

we set F
0

= (e
z

, e
x

, e
y

), then F

i

along the discrete chain can be calculated iteratively

if we know all the discrete bending ✓’s and bond angles �’s since

F

i

= F

0

R

1

· · ·R
i

. (4.29)

In order to test our model, we performed a Monte Carlo simulation using the dis-

cretized versions of the various expressions derived in the previous section by making

the following discretization:
Z

ds !
X

a. (4.30)

We find that the energy expressions become

E
ribbon

k
B

T
=

Dw

ak
B

T

N�1

X

i=1

[(1� cos ✓
i

) + (1� cos�
i

)]2

(1� cos ✓
i

)
, (4.31)

E
f

k
B

T
= � Fa

k
B

T

N

X

i=0

tz
i

, (4.32)

and

E
t

k
B

T
= � ⌦

k
B

T
Lk = � ⌦

k
B

T
(Tw +Wr). (4.33)

The twist is given by

Tw =
1

2⇡

N�1

X

i=1

arccos(b
i�1

· b
i

) sign(b
i�1

· t
i

), (4.34)

where the positive direction of rotation is defined by the right hand rule, i.e. sign((b
i�1

⇥

b

i

) · t
i�1

). Since b

i

is proportional to t

i�1

⇥ t

i

, we find that b

i�1

⇥ (t
i�1

⇥ t

i

) =

t

i�1

(b
i�1

· t
i

) � t

i

(b
i�1

· t
i�1

) = t

i�1

(b
i�1

· t
i

), where we have used the vector triple

product identity. Thus, we arrive at sign((b
i�1

⇥ b

i

) · t
i�1

) = sign(b
i�1

· t
i

). The



Chapter 4: Statistical Mechanics of Twisted Ribbons 121

writhe can be expressed as a double sum:

Wr =
1

2⇡

N�1

X

i=2

X

j<i

⌦
ij

, (4.35)

where ⌦
ij

is the Gauss integral along the segments at
i

, at
j

and is the discrete version

of

d⌦(r
1

, r
2

) =
(dr

1

⇥ dr
2

) · (r
1

� r

2

)

|r
1

� r

2

)|3 . (4.36)

From inspecting either 4.11 or 4.36, we see that ⌦
ij

= ⌦
ji

and ⌦
ii

= ⌦
i,i+1

= 0. See

Appendix H.2 on how to calculate ⌦
ij

.

We fixed one end of the chain, i.e. F
0

while the other end is free to take on arbitrary

conformations. This is similar to the approach of Moroz and Nelson [68, 69] where the

desired linking number is achieved by tuning the applied torque on the DNA. Let us

define three new dimensionless parameters, the normalized temperature, normalized

force and normalized torque

⇤ =
ak

B

T

Dw
, f =

Fa2

Dw
, � =

⌦a

Dw
. (4.37)

Consider a randomly selected discrete chain composing of N = 100 segments of

length a at temperature ⇤, force f and torque � and its conformation is updated

using pivot moves sequentially along the chain. The starting discrete Frenet frame,

F

0

, is fixed and during the first step, we randomly picked two new angles ✓
1

and

�
1

, and update the positions of the chain using 4.29. This configuration is accepted

via a Metropolis algorithm. Then we proceed to the next link and randomly picked

two new angles ✓
2

and �
2

and repeat the process. This procedure terminates when

we reach the end of the chain and this constitutes one Monte Carlo sweep. For our

simulations, we performed 106 Monte Carlo sweeps per chain, the first half of which
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is devoted to equilibration. Since Dw/k
B

T ⇠ 50nm and a ⇠ 50nm, we expect ⇤ ⇠ 1.

Also, in the WLC experiments, F ⇠ 0.01� 10 [k
B

T/nm], so we expect f ⇠ 0.5� 500.

In our simulations, we used ⌦ ⇠ �1 to 1, in order to get the range of Lk that we

want.

4.5 Theoretical Methods

The partition function of the Sadowsky ribbon is given by

Z
N

=

Z

D[t(s)]D[b(s)] exp

✓

� Dw

2k
B

T

Z

ds(2 + 2⌧ 2 + ⌧ 4/2)

◆

. (4.38)

The exact calculation of this partition using path integral is hopeless. Fortunately,

when we discretize Z
N

, we find that the the partition function factorizes into N single

node partition, namely Z
N

= zN
1

with

z
1

=

Z

d⌦

4⇡
e�

1
2Ba

2
(

2
+2⌧

2
+⌧

4
/

2
), (4.39)

and we have defined a new variable B = Dw/(ak
B

T ). The coupling term between

the curvature and torsion makes the analytical calculation much complicated. We

shall employ a trick involving Gaussian integral to remove the coupling:

e
�Ba2⌧4

22 =

s

✓

Ba22

2⇡

◆

Z 1

�1
dye�

1
2Ba

2
(

2
y

2
+2i⌧

2
y). (4.40)

With this substitution, the single node partition function z
1

becomes

z
1

=

✓

B

⇡

◆

1/2

Z 1

�1
dy

Z

d⌦

4⇡
(1� cos ✓)1/2e�B[�(1�cos ✓)+µ(1�cos�)]

=

✓

B

4⇡

◆

1/2

Z 1

�1
dy

e�BµI
0

(Bµ)�(3
2

, 2B�)

(B�)3/2
, (4.41)
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where � = (1 + y2), µ = 2(1 + iy), I
0

is the modified Bessel function of zeroth order

and � is the incomplete gamma function. We now have the machinery to calculate

the single node ensemble average

h·i = z�1

1

Z

d⌦

4⇡
(·)e� 1

2Ba

2
(

2
+2⌧

2
+⌧

4
/

2
). (4.42)

This expression allows us to calculate the various quantities in R, from which we can

extract useful quantities such as the persistence lengths and the wave number k

The tangent-tangent and binormal-binormal correlation functions from the iter-

ated transfer matrix, namely [37]

ht
0

· t
p

i = hR
1

R

2

· · ·R
p

i
11

, (4.43)

and

hb
0

· b
p

i = hR
1

R

2

· · ·R
p

i
33

. (4.44)

Since the energy (4.31) is a sum over the individual segments, the Boltzmann factor

exp(�E/k
B

T ) in the partition function is factorable and hR
1

R

2

· · ·R
p

i = hRip. For

su�ciently large separation, the behavior of the correlation functions will be dictated

by the largest eigenvalue in the spectrum of R. Assuming that the system is invariant

for chirality flipping hsin�i = 0, the transfer matrix R becomes block diagonal. The

binormal-binormal correlation function exhibits an exponential decay

hb
0

· b
p

i = hcos�ip = e�s/`⌧ , (4.45)

where s = pa and the torsional persistence length is given by

`
⌧

= �a(lnhcos�i)�1. (4.46)
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The tangent-tangent correlation function depends on the eigenvalues of the remaining

block 2⇥2 matrix which has characteristic equation

�2 � b�+ c = 0, (4.47)

where b = hcos ✓i+ hcos ✓ cos�i and c = hcos ✓ihcos ✓ cos�i+ hsin ✓ihsin ✓ cos�i. The

eigenvalues are

�± =
b±

p
�

2
, (4.48)

where � = b2 � 4c. It has been shown [37] that � < 0 8T > 0 and therefore the

eigenvalues are always complex and

ht
0

· t
p

i = e�s/`p cos ks, (4.49)

with k = a�1 arctan(
p
��/b) and `

p

= �2a(ln c)�1. The fact that the tangent-

tangent correlation function is always oscillatory 8T > 0 implies the presence of an

underlying helical structure that persists at any finite temperature.

In the low temperature (⇤ ⌧ 1) limit, the persistence length is given by [37]

`
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✓
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64
� 25

9⇡

◆�1 Dw

k
B

T
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T
, (4.50)
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B

T
, (4.51)

and

k =
5

3

r

2

⇡a

k
B

T

Dw
⇡ 1.33

r

k
B

T

aDw
. (4.52)

As a consequence of the coupling between the curvature and torsion, the persistence

length is a factor 3.476 larger than the WLC at the same temperature.
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The mean square end to end distance of the Sadowsky ribbon can be calculated

as follows:

hr2i = a2
X

i,j
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· t
j

i

= a2
1

a2
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ds
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ds0 exp(
�|s� s0|

`
p

) cos k|s� s0|
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p
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p
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. (4.53)

In the low temperature limit, we find that

hr2i ⇡ L
6.95 Dw

kBT

1 + 21.368 Dw

akBT

. (4.54)

The closely related Kuhn length, bSR, is given by

bSR =
2`

p

1 + `2
p

k2

. (4.55)

which is distinctly di↵erent from the WLC, where bWLC = 2⇠, where ⇠ is the persis-

tence length of the WLC. Refer to Appendix F for more information.

Consider the force extension curve of the Sadowsky ribbon under a small applied

force in the z-direction. Using F.29, we find that

z ⇡ 1

3

F

k
B

T
hr2i+O(F 2)

⇡ 1

3

F
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, (4.56)

or alternatively,

Fa

k
B

T
=

3a

2

1 + `2
p

k2

`
p

z

L
. (4.57)
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Next, let us consider the force extension curves at large F (F `
p

/k
B

T � 1). In

the continuum model, the Sadowsky ribbon is given by
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2
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In this limit, we can approximate the tangent vector by
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In which case the energy can be written as

E ⇡ 1
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ds (4.60)

There is not much we can do at this point due to the coupling between t and b.

However, if we assume that in this regime, the physics is described by an e↵ective

Hamiltonian where t and b are uncoupled but with new renormalized parameters

Dw ! � then we can use the same technique for WLC (See steps leading to F.43 in

Appendix F) to find:

z

L
⇡ 1� 1

2⇡

Z 1

�1
dq

k
B

T

�q2 + F
= 1� k

B

T

2
p
F�

. (4.61)

The e↵ective parameter � can be fitted from simulation.
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Figure 4.3: Simulated extension of a torque-free (� = 0) ribbon at di↵erent normalized
temperatures ⇤. As the temperature increases, it becomes harder to stretch the
ribbon. The relative extension vary linearly with applied force at low applied forces
(Curie’s law).

4.6 Results and Discussions

Let us first consider the case of the ribbon under an applied force without any

external torque. As the temperature ⇤ increases, it becomes harder to stretch the

ribbon, in agreement with the wormlike chain (WLC) model in earlier studies. At

low stretching forces, the relative extension vary linearly with the applied force, i.e.
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Curie’s law:

f

⇤
=

Fa

k
B

T
= 7

z

L
. (4.62)

This is very di↵erent from the WLC which behaves like

Fa

k
B

T
=

3

2

z

L
. (4.63)
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Figure 4.4: Force versus extension curves. The data for di↵erent ⇤’s collapses onto a
single curve . The black dotted curve is the best fit to the data. The interpolation
formula for the WLC is shown in red.

The Sadowsky ribbon is evidently harder to stretch compared to the WLC. It

requires a much greater force in order to realize a given extension. At low extension,
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a ribbon behaves as a spring, that is, it obeys a Hooke relation: F = kz, and the spring

constant depends linearly on the temperature. At high forces, the ribbon prefers to

be straight as the nonlinear coupling term ⌧ 4/2 forces ⌧ to approach zero faster than

. and the ribbons relative extension z/L asymptotes toward 1 in a similar way as

the WLC: z/L ⇡ 1� 1/
p
F , except at a slower rate. A useful interpolation formula

for the WLC, correct to within 10%, was proposed by Bustamante et al. [16, 97] to

join these two regimes at intermediary forces:

Fa

k
B

T
=

1

4



1

(1� z/L)2
� 1

�

+
z

L
. (4.64)

We can replot 4.3 by dividing the normalized force f by the normalized temperature

⇤, and we see that the di↵erent curves collapse into one curve as shown in 4.4. The

best fit interpolation formula for the Sadowsky ribbon is given by

Fa

k
B

T
= 0.24

1

(1� z/L)2
+ 6.87

z

L
� 0.29. (4.65)

Next, we consider the force extension curve of a ribbon under the additional

e↵ect of a torque. In this case, we find that the ribbon tend to stay supercoiled and

jumbled up for small applied force. However, beyond some critical force, the ribbon

starts to disentangle and extend sharply, reminiscent of a first order phase transition.

The force extension behavior at high force reverts to the case of the ribbon under

no applied torque. The ribbon in the entangled state has very high linking and

writhe number with relatively low twist. Once untangled, the ribbon tend to stretch

rapidly and the linking and writhe number falls o↵ drastically, while the twist steadily

increases. In the stretched state, the bulk of the contribution of the linking number

comes predominantly from the twist. This is a phenomenon that we find in everyday
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ribbons whereby the writhe of an initial coiled up ribbon is converted into twist as

it is being stretched. The summary of the results is shown in 4.5. We also show

some characteristic shapes of the ribbon at di↵erent f in and the conformations of

the ribbons agree with our intuition, and is a good sensibility check.

Figure 4.5: Force-Extension curve for a ribbon at ⇤ = 1 under di↵erent applied torque
�. At zero torque, the ribbon has an underlying helical structure, which is destroyed
in the presence of an applied torque. At small forces, the ribbon under torsion tend
to stay as an entangled coil but beyond a critical force, it starts to extend sharply,
analogous to a first order transition. At small applied force (f = 3), the ribbon is in
a highly clustered conformation. As we increase the force, the ribbon becomes more
stretched and twisted. At high force (f = 8), the ribbon becomes highly twisted.
The amount of excess link in the ribbon has depends on the strength of the external
torque. The higher the torque, the more “twisted” the ribbon is. Some characteristic
ribbon conformations are shown.

Lastly, we consider a ribbon under the e↵ect of a constant force and varying

torque. We will impose torsional constraint through a fixed applied torque � rather
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than directly through a fixed linking number. The result is plotted in 4.6. In our

simulations, we ignored the e↵ects of knotting since the segments of the chain were

allowed to cross one another during trial moves in the MC run. To check for knot-

checking, one would evaluate the Alexander polynomial and reject any trial moves

that changes the topology of the chain. Such a test is omitted in this study as it

has been found that such an e↵ect is not too significant and topology checking is

computationally intensive. [59, 102, 65, 68, 69].

−80 −60 −40 −20 0 20 40 60 80
35

40

45

50

55

60

65

70

75

80

re
la

ti
v
e
 e

x
te

n
s
io

n
 z

/L

Excess Link ∆ Lk

 

 

F=7

F=10

Figure 4.6: Relative extension of ribbon versus excess linking number at di↵erent
fixed applied force and ⇤ = 1.

Physically, we can see that at high enough tension F , the problematic loops and

knots will be so rare such that it is negligible since the elastic rod will be very straight.

Apart from the restriction of these phantom crossing, it is also unnecessary to consider
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the DNA stretching under high applied force since real DNA molecules undergoes

structural transformations at high tensions and torques and the WLC/ribbon (no

stretching) model breaks down. The graph is generally symmetrical about �Lk = 0

since our Sadowsky Hamiltonian 4.4 has no symmetry breaking term unlike the WLC

model, where the DNA chirality is introduced explicitly in the twist strain term of

coupling strength C. The relative extension z/L increases with force and decreases

sharply as excess link �Lk deviates significantly from zero.

4.7 Conclusion

Our study has shown that at low applied force, the Sadowsky ribbon behaves

very much like a spring, that is, it obeys a Hooke relation: f = khzi. However, at

high applied force, the Sadowsky ribbon prefers to be straight and this stems from

the nonlinear coupling term ⌧ 4/2 which forces ⌧ to approach zero faster than .

In the presence of applied torsion, we find that the ribbon tends to adopt a com-

pact random-coil structure in the low applied force regime, destroying the underlying

helical structure. This preference stems from the phenomenon of entropic elasticity:

extended chain is entropically unfavourable, as there are fewer possible conformations

at longer extensions, with only a single possible conformation (a perfectly straight

line) for maximum extension. However, beyond some critical force, the ribbon starts

to disentangle and extend sharply, reminiscent of a first order phase transition. Once

disentangled, the ribbon tend to stretch rapidly and the linking and writhe number

falls o↵ drastically, while the twist steadily increases. In the stretched state, the bulk

of the contribution of the linking number comes predominantly from the twist. Fi-
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nally, our simulations show that at fixed applied force, an increase in torsion leads

to an increment in linking number, resulting in the ribbon becoming more coiled and

less extended.



Appendix A

Continuum-Elastic Theory

The elastic energy E
T

of a deformed shell may be regarded as the sum of bending

and that due to stretching of the middle surface as follows [110, 54]:

H
T

= H
s

+H
b

=

Z

dA(E
s

+ E
b

)

=
1

2

Z

dA(2µ�2
ij

+ ��2
kk

) +
1

2

Z

dA((2H � c
0

)2 + 2
G

K), (A.1)

where �
ij

is the strain tensor, µ̂ and �̂ are the two-dimensional (2D) membrane Lamé

coe�cients,  is the bending rigidity, 
G

is the Gaussian rigidity, H and K are the

mean and Gaussian curvatures respectively and c
0

is the spontaneous curvature. If

R
1

and R
2

are the principal radii of curvature, then H = (1/R
1

+ 1/R
2

)/2 and

K = 1/R
1

R
2

.
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A.1 Föppl-von Kármán-Donnell equations

Consider an isolated shallow section S
0

(bulge) of the sphere. Cartesian coordi-

nates x and y are chosen for the base plane of the shallow section and z is normal

to this plane, the Monge representation. The stress-strain relations and the bending-

strain displacements of the shallow shell theory are linear while the membrane strain

displacement relations are nonlinear. Let the tangential displacements be given by

u
1

= U and u
2

= V and the normal displacement to be W . The components of the

membrane strain tensor �
ij

are given by [46, 92]

�
xx

= U
,x

+W/R +
1

2
W 2

,x

, (A.2)

�
yy
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+W/R +
1

2
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, (A.3)

�
xy
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2
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1

2
W

,x

W
,y

. (A.4)

Here and elsewhere in the paper, a comma followed by an additional subscript denotes

partial di↵erentiation with respect to the subscript, i.e. A
,x

⌘ @A/@x. Using tensor

notation, we can represent the strain tensor succinctly as

�
ij

=
1

2
(@

i

u
j

+ @
j

u
i

+ @
i

W@
j

W ) +W
�
ij

R
. (A.5)

Similarly, the components of the curvature tensor ⇢
ij

are given by

⇢
xx

= 
x

= �W
,xx

, (A.6)

⇢
yy

= 
y

= �W
,yy

, (A.7)

⇢
xy

= ⌧ = �W
,xy

. (A.8)

In other words, ⇢
ij

= �W
,ij

. The mean curvature H and the Gauss curvature K are
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related to the curvature tensor ⇢
ij

via

H = r ·
 

rW
p

1 + |rW |2

!

⇡ r2W = �Tr⇢
ij

and

K =
det(⇢

ij

)

(1 + |rW |2)2 ⇡ det(⇢
ij
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(Tr⇢
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)2 � Tr(⇢2
ij

)
�

.

The area element dA =
p
gdxdy. In the same spirit, we can ignore the factor

p
g =

p

1 + |rW |2

in the measure, so dA ⇡ dxdy.

The 2D Young’s modulus Y = Eh where E is the Young’s modulus and h is the

thickness of the shell. When the membrane is made of isotropic material, we can

express the two-dimensional Lamé coe�cients to the 2D Young’s modulus Y and the

Poisson ratio ⌫ [110, 82]:
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Y

2(1 + ⌫)
.

Note that the 2D Poisson ratio ⌫̂,

⌫̂ =
�̂

�̂+ 2⌫̂
= ⌫,

thus we will not make the distinction between material Poisson ratio to the membrane

Poisson ratio. This way, the membrane stretching term can be rewritten in the more

common form:
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(A.9)
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The strain tensor C is related to stress tensor � by the (constitutive) bidimensional

Hooke law
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ij
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E
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�
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kk
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, (A.10)

or equivalently
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. (A.11)

Similarly, we can express the bending and Gaussian rigidity in terms of Y and ⌫:

 =
Eh3

12(1� ⌫2)
,


G

= � Eh3

12(1 + ⌫)
.

This allow us to rewrite the bending term as
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The slenderness of the shell is characterize by the ratio h/R or equivalently the Föppl-

von Kármán-Donnell number � defined as

� =
Y R2


. (A.13)

Thin shells tend to form faceted structure while thick shell prefer to remain spherical

at its spontaneous mean curvature c
0

.

Thus we can see that the elastic energy is a functional of the displacements U , V

and W . The Föppl-von Kármán-Donnell (FvKD) shell equations arise as the Euler-

Lagrange variations with respect to (w.r.t.) U , V and W . The variations with respect
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to U and V give

✓

@E
s

@�
xx

◆

x

+

✓

@E
s

@�
xy

◆

y

= 0,

✓

@E
s

@�
yy

◆

y

+

✓

@E
s

@�
xy

◆

x

= 0. (A.14)

These two equations imply that we can define a potential F such that
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The tensor N
ij

is the tensor of stresses �
ij

averaged through the width of the shell,

i.e. N
ij

=
R
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dz. If the stresses do not vary over the width of the shell, then
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. Note that N
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has units of force/length so that F has units of force·length.

F is commonly known as the Airy stress function. We can represent N
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is the alternating tensor. The variation w.r.t. W yield
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Using the Airy stress function (A.18), we can simplify (A.19) into

r4W +
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R
r2F � {F,W} = 0, (A.20)

where

{A,B} ⌘ A
,xx

B
,yy

+ A
,yy

B
,xx

� 2A
,xy

B
,xy

,



Appendix A: Continuum-Elastic Theory 139

r4 is the two-dimensional biharmonic operator and r2 is the two-dimensional Lapla-

cian operator. This is the first FvKD equation. We need another equation in order

to close our system which have 2 variables, namely, F and W . This comes from

compatibility consideration which we require eqn. (A.5) to be equal to eqn. (A.10).

Consider the “incompatibility operator” given by

✏
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✏
jl

@
k

@
l

,

and apply it to (A.5) and (A.10). The tensor identity

✏
ik

✏
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kl

,

will come in useful in subsequent calculations. Contracting eqn. (A.5) with the

“incompatibility operator”, we get

✏
ik

✏
jl

@
k

@
l

�
ij

=
1

Y
r4F. (A.21)

On the other hand, when we contract eqn. (A.10), we get contributions from 3 terms.

The first contribution is

✏
ik

✏
jl

@
k

@
l

✓

1

2
(@

i

u
j

+ @
j

u
i

)

◆

= s(r), (A.22)

where s(r) is the density of disclinations [90]. In the continuum limit, we can ignore

this term and set it to zero. The second contribution

✏
ik

✏
jl

@
k

@
l

✓

1

2
(@

i

W@
j

W )

◆

= �1

2
{W,W} = �det(⇢) = �K.

The last contribution is

✏
ik

✏
jl

@
k

@
l

✓

W
�
ij

R

◆

=
1

R
r2W.
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Putting everything together, we find that

1

Y
r4F =

1

R
r2W � 1

2
{W,W}, (A.23)

giving us the second FvKD equation. If we include the e↵ect of a hydrostatic (inward)

pressure p, we need to include an additional energy term

H
p

= p

Z

dAW, (A.24)

which on variation, gives the contribution p. In summary, we have shown that the

equilibrium equation and the compatibility equation of a spherical shell under hydro-

static pressure are given by the FvKD equations

r4W +
1

R
r2F � {F,W} = �p, (A.25)

and

1

Y
r4F � 1

R
r2W +

1

2
{W,W} = 0. (A.26)

In the case R ! 1, we recover the von Kármán plate equations.

We can write the energy as

H
T

=

Z

dA





2
(r2W )2 � 1

2Y
(r2F )2 + F

✓

1

R
r2W � 1

2
{W,W}

◆

+ pW

�

(A.27)

and eqns. (A.25) and (A.26) can be derived as variational equations from

�H
T

�W
= 0,

�H
T

�F
= 0.

A.2 Linear Buckling Analysis

We will use nonlinear shallow shell equations to determine the buckling pressure

[46]. This analysis is only valid in the limit where the characteristic buckle wave-

lengths are small compared to the radius of the shell R. Let us determine the trivial
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solution to equations (A.25), (A.26) for arbitrary p. For the trivial solution, the shell

remains spherical and is in a constant state of stress. Denoting the trivial solution

by superscript 0, we require that

W 0 = const. and N0

x

= N0

y

= �1

2
pR. (A.28)

Substituting into equations (A.25), (A.26), we find that

F 0 = �1

4
(x2 + y2)pR, (A.29)

and

W 0 = �(1� ⌫)pR2/(2Eh). (A.30)

Let f and w be perturbation to F and W so that

F = F 0 + f and W = W 0 + w. (A.31)

Prior to buckling, f and w are zero. The buckling pressure p
b

at which bifurcation

from the pre-buckling state of stress can be calculated using linear buckling analysis.

After substituting, we find that

r4w +
1

R
r2f +

1

2
pRr2w = 0, (A.32)

and

1

Eh
r4f � 1

R
r2w = 0. (A.33)

Consider periodic solutions of the form:

w = cos(k
x

x/R) cos(k
y

y/R) (A.34)

and

f = C cos(k
x

x/R) cos(k
y

y/R). (A.35)
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After some calculations, it can be shown that

p =
2Eh

R

⇥

(k2

x

+ k2

y

)�1 + q�4

0

(k2

x

+ k2

y

)
⇤

, (A.36)

where

q4
0

= 12(1� ⌫2)

✓

R

h

◆

2

,

and

C = �EhR(k2

x

+ k2

y

)�1. (A.37)

The classical buckling pressure can be found by minimizing p with respect to k
x

and

k
y

. After some algebra, we find that

p
b

=
4Eh

Rq2
0

=
4
p
Y

R2

=
2E

p

3(1� ⌫2)

✓

h

R

◆

2

, (A.38)

and that

k2

x

+ k2

y

= q2
0

. (A.39)

Another way of estimating the buckling pressure p
b

is by balancing the stretching

strain energy of the bulge to the bending strain as done in [54]. If the radius of

the bulge is r, and the characteristic width of the ridge d, then the characteristic

radial displacement ⇣ of the points on the ridge will be given by ⇣ = dr/R, where

we have assumed r ⌧ R. The stretching strain energy of the rim scales like ⇣/R,

so that the stretching energy is E
s

⇠ h(2⇡rd)(⇣/R)2. Similarly, the curvature in

the rim scales like ⇣/d2, and bending energy which is concentrated around the rim

can be approximated by E
b

⇠ h3(2⇡rd)(⇣/d2)2. By di↵erentiating the total energy

E
t

= E
b

+ E
s

with respect to d, we can determine the width of the strip d that

minimizes the energy stored in the rim of the bulge. After some calculation, we find
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that d ⇠
p
(hR), which is the geometric mean of the thickness and the radius of the

sphere. If we now assume that the deformation is caused by a hydrostatic pressure

p, then the work done by the pressure is approximately W ⇠ pHr2, where H is the

depth of the bulge given byH ⇠ R(1�cos(r/R)) ⇠ r2/R. The total elastic energy has

a maximum at H
max

⇠ h5/(R2p)2. The zero deformation shape of the shell H = 0

is a local minimum, so even for finite pressure the spherical shell will not deform.

However, for p > p
b

⇠ (h/R)2 ⇠
p
(Y )/R2, the depth of the minimum indentation

that will render the spherical shell unstable becomes smaller than the shell thickness

h. The above analysis does not change significantly if the spontaneous curvature of

the sphere 1/R
0

is non-zero as shown in [48].
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Surface Evolver

B.1 Elastic energy

Let s
1

= v
2

� v
1

and s
2

= v
3

� v
1

be the unstrained sides of the triangle,

and r
1

= v0
2

� v0
1

and r
2

= v0
3

� v0
1

be the strained sides. Construct column matrices

S = [s
1

s
2

] and R = [r
1

r
2

]. The deformation gradient matrix D satisfies DS = R. The

Gram symmetric (2⇥ 2) matrix of an unstrained triangle is defined as Q = STS, and

the Gram matrix of a strained triangle is F = RTR. If everything were happening

in a plane, then S is a 2 ⇥ 2 matrix with inverse S�1 and D = RS�1. Therefore

DTD = (S�1)TRTRS�1. Using the cyclic property of the trace of a matrix, namely,

Tr(ABC) = Tr(CAB) = Tr(BCA), we find that

Tr(DTD) = Tr((S�1)TRTRS�1) = Tr(RTRS�1(S�1)T )

= Tr(RTR(STS)�1) = Tr(FQ�1).
(B.1)

This last expression Tr(FQ�1) makes sense when mapping from 2D to 3D, since the

inverse of S itself never appears and STS is a well-defined square matrix. The Cauchy-

144
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Green strain matrix is C = (DTD�I)/2. Let C
1

= (FQ�1�1). Since the trance of the

matrix is a linear map, namely, Tr(cA) = cTr(A) and Tr(A+B) = Tr(A) + Tr(B),

we can see immediately that Tr(C
1

) = Tr(C) and Tr(C2

1

) = Tr(C2). Thus for the

calculation of elastic strain energy density given by

Y

2(1 + ⌫)

✓

Tr(C2) +
⌫

(1� ⌫)
(TrC)2

◆

, (B.2)

where only the trace of the strain matrix matters, one can use C
1

as the Cauchy-

Green strain matrix in place of the usual C since either definition will give the same

answer.

B.2 Triangulation

In Surface Evolver, any non-triangular face will be automatically triangulated by

putting a vertex at its center and putting in edges to each of the original vertices.

Faces do not have to be planar. Surface Evolver has a built-in function that allow any

user defined surface to be further refined (triangulated) whereby each edge is divided

in two, and each triangle is divided into four new ones as shown in Figure B.1.

Figure B.1: a) Part of a triangulation. (b) The original triangle is sub-divided into
four smaller ones after refinement.
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B.3 Energy of thin Shell

The spheres created from di↵erent polyhedrons have very di↵erent energies since

the total energy U
T

depends sensitively on the structure of the mesh, which is deter-

mined by the number of defects and their relative orientations. Most triangles in a

spherical lattice are not equilateral (e.g. when we triangulate a square, we get four

congruent right angle triangles instead of four equilateral triangles) and we will define

the average length of the edges, ā to be the lattice spacing a. As we refine the mesh,

we get smaller lattice spacing a. We find that as the ratio R/a & 10 (continuum

limit), the total energy of the sphere asymptotes, indicating that the minimal energy

surface that we create under surface tension from the original polyhedron starts to

approaches that of the perfect sphere. When R/a . 1, there are too few lattice

sites on the sphere and hence the triangulation is not smooth. The result for the

platonic-spheres are shown in Fig. B.2.



Appendix B: Surface Evolver 147

0 5 10 15 20 25 30 35 40 45 50
0

100

200

300

400

500

600

R/a

E
n

e
rg

y

 

 
Cube
Octahedron
Icosahedron
Dodecahedron
Tetrahedron

Figure B.2: Plot of Energy vs R/a for the platonic solids for h/R = 0.15.



Appendix C

Mathematical description of

Platonic solids

C.1 Onaka’s formulation

In this Appendix, I will discuss briefly the analytical equations that describe

platonic solids. Although the platonic solids has been known to mathematician since

antiquity, surprisingly, simple equations describing their shapes have not been derived

in a unified form until recently [77]. Let

g(a, b, c) = a(sin ✓ cos ) + b(sin✓ cos ) + c(cos ✓). (C.1)

Then the platonic solids can be described succinctly by the following equations in

spherical coordinates (✓,�). For the cube, we have

r
cube

(✓,�) =
1

[G
0

(1, 0, 0)]1/p
, (C.2)

148
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where

G
0

(1, 0, 0) = |g(1, 0, 0)|p + |g(0, 1, 0)|p + |g(0, 0, 1)|p. (C.3)

For the octahedron, we have

r
octa

(✓,�) =
1

[G
1

(�, �, �)]1/p
, (C.4)

where

G
1

(�, �, �) = |g(�, �, �)|p + |g(��, �, �)|p + |g(�,��, �)|p + |g(�, �,��)|p (C.5)

and � = 1/
p
3. The dodecahedron is described by

r
dodec

(✓,�) =
1

[G
2

(�, ✏, 0)]1/p
, (C.6)

where

G
2

(�, ✏, 0) = |g(�, ✏, 0)|p + |g(�,�✏, 0)|p + |g(0, �, ✏)|p

+|g(0, �,�✏)|p + |g(✏, 0, �)|p + |g(✏, 0,��)|p

and � =
p
((5�

p
5)/10), ✏ =

p
((5 +

p
5)/10). The icosahedron is described by

r
ico

(✓,�) =
1

[G
1

(�, �, �) +G
2

(⇣, ⌘, 0)]1/p
, (C.7)

where ⇣ =
p
((3�

p
5)/6), ⌘ =

p
((3+

p
5)/6). The equation describing a tetrahedron

is slightly more complicated since it does not have parallel faces. Let us define a new

function h(a, b, c) given by

h(a, b, c) = {|g(a, b, c)|� g(a, b, c)}/2. (C.8)

The tetrahedron can then be described by

r
tetra

(✓,�) =
1

[H(�, �, �) + (1/p)p�2H(��,��,��)]1/p , (C.9)
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where

H(�, �, �) = {h(�, �, �)}p + {h(�,��,��)}p

+{h(��, �,��)}p + {h(��,��, �)}p. (C.10)

This set of five equations given by (C.2) to (C.9) changes from a sphere when p = 2

to the respective regular polyhedron when p ! 1.

Figure C.1: The Platonic solids plotted using Onaka’s formulas using p = 100.



Appendix D

Information on Bacterial Spores

D.1 Surface topography and height measurements

of bacterial spores

We have used an atomic force microscope to observe changes in surface topography

of wild type and mutant spores at low and high relative humidity. Supplementary

Figure D.1a and D.1b shows height profiles across a B. Anthracis (Sterne strain) spore

and a cotE-gerE mutant of B. Subtilis.

D.2 Identification of coat proteins not required for

significant coat sti↵ness

We do not know which coat protein(s) are required for the high elastic modulus

of the coat. To at least partially clarify this question, we took advantage of previous
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Figure D.1: Height profiles at low (35%, black) and high (95%, orange) relative
humidity on wild type B. Anthracis (Sterne strain) (a) and cotE-gerE mutant of B.
Subtilis (b). Horizontal and vertical axes are arbitrarily referenced. The average
heights of the spores increase at high humidity. To compare local curvatures, profiles
obtained at high relative humidity are vertically o↵set. The profile on B. Anthracis at
95% relative humidity shows that the coat does not unfold completely and maintains
wrinkles.

results showing that the B. subtilis cotE mutant spore coat is unfolded, lacks most

if not all outer coat proteins and has an only partially intact inner coat [115, 56, 4,

30, 66]. The unfolded state of the cotE mutant coat could be due to a significant

decrease in coat sti↵ness or its adhesion to the cortex. Therefore, analysis of the cotE

mutant spore coat elastic modulus might allow us to address the roles of a subset

of coat proteins in spore mechanical properties. We found the elastic modulus of

the cotE mutant coat to be ⇠ 6GPa, which is comparable to that of the wild type

coat and inconsistent with a significant reduction in sti↵ness due to the mutation.

Therefore, most or all the outer coat proteins are dispensable for a significantly sti↵

coat. Additionally, we infer that in cotE mutant spores, defects in the inner coat

prevent it from folding and/or properly adhering to the cortex.
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Figure D.2: Height measurements on wild type and mutant B. Subtilis, and Sterne
strain of B. Anthracis at low (35%) and high humidity (95%). The mutant B. Subtilis
spore lacks most of its coat, yet its expansion is comparable to wild type spores.



Appendix E

Mathematical background on

Bifurcation

The material presented in this section is taken from [49, 41]

E.1 Implicit Function Theorem

Theorem 1. Suppose X, Y , Z are Banach Spaces and f(x, ✏) is a C1 mapping of an

open set U of X ⇥ Y into Z. Suppose there is an x
0

2 X satisfying f(x
0

, 0) = 0 and

the partial derivative f
x

(x
0

, 0) is an invertible linear map of X onto Z. Then there

are open sets W ⇢ Y , and V ⇢ U with 0 2 W , and (x
0

, 0) 2 V , and a C1 mapping

g of W into X, such that x = g(✏) for ✏ in W satisfies f(x, ✏) = f(g(✏), ✏) = 0 for

(x, ✏) 2 V . In other words, there is a solution of the implicit equation f(x, ✏) = 0

given by x = g(✏). This solution is unique in some open subset of W .

The implicit function theorem is useful because it tells us that if we know how
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to solve a reduced problem, and the linearized operator of the reduced problem is

invertible, then the more di�cult problem has a solution locally.

E.2 Fredholm Alternative

The Fredholm Alternative Theorem is one of the most important theorem in

applied mathematics. It is easier to understand this theorem in finite dimensional

vector spaces. Suppose we wish to solve the matrix problem Ax = b where A is an

n⇥m matrix (not necessarily square). We want to know if there is a solution, and if

so, how many solutions are possible.

Theorem 2 (Fredholm Alternative Theorem). The equation Ax = b has a solution

if and only if hb, vi = 0 for every vector v satisfying A⇤v = 0, where A⇤ = A† is the

adjoint (or Hermitian) matrix.

A useful follow-up theorem is

Theorem 3. A solution of Ax = b (if it exists) is unique if and only if x = 0 is the

only solution of Ax = 0.

In Hilbert space H, the Fredholm Alternative Theorem takes on the following

form.

Theorem 4 (Fredholm Alternative Theorem). If L is a bounded linear di↵erential

operator in the H with boundary operator B, the solution of Lu = f and Bu = g

exists if and only if hf, vi � J(u, v) = 0 for every v satisfying L⇤v = 0 and B⇤v = 0.
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Here J(u, v) represent boundary contributions. If L is in the Sturm-Liouville form,

then the boundary contribution is given by

J(u, v) = p(x)

✓

du

dx
v � dv

dx
u

◆

�

�

�

�

b

a

.

It follows that Lu = f , Bu = g can be solved for any f, g if and only if L⇤v = 0,

B⇤v = g implies v = 0.

E.3 Liapunov-Schmidt reduction method

To get a picture how bifurcation occurs in a more general setting, consider the

nonlinear eigenvalue problem

Lu+ �u+ f(u) = 0 (E.1)

subjected to homogenous separated boundary conditions. It is apparent that small

solutions of the nonlinear eigenvalue problem exist. However, the implicit function

theorem cannot be invoked for the problem as formulated. The Liapunov-Schmidt

reduction method provide a way to reformulate nonlinear problem to overcome this

di�culty. Suppose we let � = �
0

+ µ and u = ✏� + ✏v, where hv,�i = 0. In terms of

these new variables, the equation (E.1) becomes

Lv + �
0

v = �µ✏(�+ v)� f(✏�+ ✏v).

This equation is solvable if and only if its right hand side is orthogonal to �, so we

project its right hand side onto the range of the operator L+ �
0

by writing

Lv + �
0

v = �µ✏(�+ v)� f(✏(�+ v)) + hµ✏(�+ v) + f(✏(�+ v)),�i�

= �µ✏v � f(✏(�+ v)) + hf(✏(�+ v)),�i�. (E.2)
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However, for this to be the same problem, we must also require

hµ✏(�+ v) + f(✏(�+ v)),�i = µ✏+ hf(✏(�+ v)),�i = 0. (E.3)

We collect (E.1) and (E.3) into the system for v and µ

0

B

B

B

B

B

@

Lv + �
0

v

µ

hv,�i

1

C

C

C

C

C

A

=

0

B

B

B

B

B

@

�µ✏v � f(✏(�+ v)) + hf(✏(�+ v)),�i�

1

✏

hf(✏(�+ v)),�i

0

1

C

C

C

C

C

A

. (E.4)

The right hand side of (E.4) is fully nonlinear, i.e., it has no linear terms when ✏ = 0,

and a solution of this problem is v = 0, µ = 0 when ✏ = 0. Furthermore, the linear

operator is invertible, so that the implicit function theorem can be invoked, namely,

there exist a unique solution v = v(✏), µ = µ(✏) for all ✏ su�ciently small. The

perturbation calculation given above is a way to explicitly determine this solution.

We will present a slightly more formal treatment now. For a more thorough

treatment, please refer to [41], p290. Let X and Y be Banach spaces. A bounded

linear operator L : X ! Y is called Fredholm if 1) the Kernel of L is finite-dimensional

space of X and 2) Range L os a closed subspace of Y of finite codimension. The index

of a Fredholm operator is

i(L) = dimker L� codim rangeL.

For example, if W is a linear subspace of a finite-dimensional vector space V , then

the codimension of W in V is the di↵erence between the dimensions:

codimW = dim(V )� dim(W ).
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If L : X ! Y is Fredholm, then there exist closed subspaces M and N of X and Y

such that

X = Ker L�M, (E.5)

Y = N � rangeL. (E.6)

Note that M = (Ker L)? and N = (rangeL)?. By the Fredholm alternative, we

have

(rangeL)? = ker L⇤. (E.7)

Let

� : X⇥ Rk+1 ! Y, �(0, 0) = 0 (E.8)

be a smooth mapping between Banach space and Rk+1 is the parameter space, which

also include the bifurcation parameter. We want to use Liapunov-Schmidt reduction

to solve the equation

�(u,�) = 0 (E.9)

Let L be the di↵erential of � at the origin,

Lu = lim
h!0

�(hu)� �(0, 0)

h
,

and we will assume L is Fredholm of index zero. The Liapunov-Schmidt reduction

method involves five steps:

1. Decompose X and Y according to (E.5) and (E.6).

2. Split (E.6) into a pair of equivalent equations:

E�(u,�) = 0,
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(I � E)�(u,�) = 0. (E.10)

where E : Y ! rangeL is the projection associated to the splitting defined in

(E.6).

3. Use (E.5) to write u = v + w, where v 2 ker L and w 2 M . Apply the implicit

function theorem to solve (2) for w as a function of v and �. This leads to a

function

W : ker L⇥ Rk+1 ! M

such that

E�(u+W (v,�),�) ⌘ 0.

4. Define � : ker L⇥ Rk+1 ! N by

�(v,�) = (I � E)�(u+W (v,�),�).

5. Choose a basis v
1

, . . . , v
n

for ker L and a basis v⇤
1

, . . . , v⇤
n

for (rangeL)?. Define

g : Rn ⇥ Rk+1 ! Rn by

g
i

(x,�) = hv⇤
i

,�(x
1

v
1

+ · · · x
n

v
n

,�)i. (E.11)

Since L is Fredholm with index zero, we have

dimker L = dim(rangeL)?

and both dimensions are finite. Thus the bases for ker L and (rangeL)? contain

the same number of vectors.

The important result from Liapunov-Schmidt reduction is that if the linearization

of �(u,�) = 0 is a Fredholm operator of index zero, then the solutions of (E.9) are
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(locally) in one-to-one correspondence with the solutions of the finite system defined

by (E.11).



Appendix F

Review of DNA models

F.1 Random Walk Model

Consider a N -step random walk in 3D [34, 5]. The probability of the walker at a

distance r after N steps is given by

P
N

(r) =
g
N

(r)

gtot
N

=
1

(2⇡Na2/3)3/2
exp

✓

� 3r2

2Na2

◆

, (F.1)

where g
N

(r) is the tool number of walks of N steps terminating at the position r, a is

the size of each step and gtot
N

is the total number of walks of length N . The partition

function of a random walker is

Z =
X

states

exp(�E
n

/k
B

T ) =
X

E

g(E) exp(�E/k
B

T )

=
X

E

exp(ln g(E)� E/k
B

T ) =
X

E

exp(�G(E)/k
B

T ), (F.2)

where g(E) is the degeneracy of states with energy E and G = E � TS is the free

energy, S = k
B

ln g(E) is the entropy. For a floppy polymer, E ⌘ 0 and we find that

G = �TS = const.+
1

2

3k
B

T

Na2
r2 = const.+

1

2
kr2. (F.3)
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When we apply a force F to the random walk model, we need to include an

additional energy term given by

E = �F · r. (F.4)

In this case, we find that the partition function becomes

Z
N

=
X

E

g(E) exp(�E/k
B

T )

= const.

Z

d3r exp(�kr2/2k
B

T ) exp(F · r/k
B

T )

= const. exp(F 2/2k(k
B

T )). (F.5)

In this case we find that the

hri = k
B

T
@

@F
lnZ =

F

k
=

1

3

La

k
B

T
F . (F.6)

F.2 Freely Joint Chain

A simple extension to the random walker model is the freely joint chain (FJC)

[73]. This model defines the state of the polymer by its tangent t
i

, i = 0, ..., N � 1,

namely

r = a
X

i

t

i

. (F.7)

The partition function of a freely joint chain is

Z(F ) =

Z

d⌦
0

4⇡
· · ·

Z

d⌦
N�1

4⇡
exp

 

Fa
X

i

cos ✓
i

/k
B

T

!

=
N�1

Y

i=0



1

4⇡

Z

2⇡

0

d�
i

Z

⇡

0

d✓
i

sin ✓
i

exp(Fa cos ✓
i

/k
B

T )

�

=

✓

k
B

T

Fa
sinh(Fa/k

B

T )

◆

N

. (F.8)
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We can calculate the extension z which is given by

z = a
X

i

cos ✓
i

= k
B

T
@

@F
lnZ

= Na [coth(Fa/k
B

T )� k
B

T/Fa] . (F.9)

When F is small, we find that (coth x� 1/x ⇡ x/3 for small x)

z

L
⇡ 1

3

Fa

k
B

T
. (F.10)

When F is large, we find that (cothx� 1/x ⇡ 1� 1/x for large x)

z

L
⇡ 1� k

B

T

Fa
. (F.11)

The end to end distance is given by

hr2i = a2h(
X

j

t

j

)2i = a2
X

i,j

ht
i

· t
j

i. (F.12)

For a floppy polymer, the tangents are uncorrelated and hence

ht
i

· t
j

i = �
ij

, (F.13)

and we find that

hr2i = Na2 = La. (F.14)

F.3 Worm-Like Chain Model

In the Kratky-Porod or Worm-Like Chain Model [73, 63], the tangents are coupled,

namely

E[t(s)] =
1

2
A

Z

L

0

✓

dt(s)

ds

◆

2

ds =
1

2
A

Z

L

0

2ds, (F.15)
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where (s) is the curvature of the chain at arclength s. We can discretize the curvature

as

2
i

=
|t

i

� t

i�1

|2

a2
= const.� 2a�2

t

i

· t
i�1

(F.16)

and so

E[{t
i

}] = �(Aa�2a)
X

i

t

i

· t
i�1

= �A0
N�1

X

i=1

cos ✓
i

, (F.17)

where A0 = Aa�1 and we have dropped an unimportant constant from the energy.

The exact zero partition function for the WLC is

Z
N

=

Z

d⌦
0

4⇡

N�1

Y

i=1

Z

d⌦
i

4⇡
exp(�E

i

/k
B

T )

=
N�1

Y

i=1

Z

2⇡

0

d�
i

4⇡

Z

⇡

0

d✓
i

sin ✓
i

exp(�A0 cos ✓
i

/k
B

T )

=



sinh↵

↵

�

N�1

, (F.18)

where ↵ = A0/k
B

T . The tangent-tangent correlation function is

C(p) = ht
0

· t
p

i = 3htz
0

tz
p

i

= 3

✓

Z

D[⌦
i

] tz
0

tz
p

exp(�E/k
B

T )

◆

/Z
N

= 3

 

N�1

Y

i=0

Z

d⌦
i

4⇡
cos 

0

cos 
p

exp(�↵ cos ✓
i

)

!

/Z
N

= 3

Z

d⌦
0

4⇡
cos 

0

⇥
Z

d⌦
1

4⇡
· · ·

Z

d⌦
p�1

4⇡
exp(�↵

p�1

X

i=1

cos ✓
i

)

⇥
Z

d⌦
p

4⇡
cos 

p

exp(�↵ cos ✓
p

)/



sinh↵

↵

�

p

, (F.19)

where  is the angle relative to the fixed lab frame. This di↵ers from the angles in the

measure D[⌦
i

] =
Q

i

d⌦
i

/4⇡ =
Q

i

d cos ✓
i

d�/4⇡ which are the polar angles relative
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to the polar axis defined by t

i�1

. In the t

p�1

coordinate systems, we have

t

p

=

0

B

B

B

B

B

@

sin ✓
p

cos�
p

sin ✓
p

sin�
p

cos ✓
p

1

C

C

C

C

C

A

, ẑ =

0

B

B

B

B

B

@

sin 
p�1

0

cos 
p�1

1

C

C

C

C

C

A

. (F.20)

We have chosen the �
p�1

= 0 since we are only interested in the plane defined by

t

p�1

and ẑ. So we find that

cos 
p

= ẑ · t
p

= cos ✓
p

cos 
p�1

+ sin ✓
p

cos�
p

sin 
p�1

. (F.21)

Inserting this into (F.19), we find that

C(p) = C(p� 1) (coth↵� 1/↵) . (F.22)

The term involving sin 
p�1

vanishes since

Z

2⇡

0

d�
p

cos�
p

= 0.

By iteration, we find that

C(p) = (coth↵� 1/↵)p C(0). (F.23)

Since C(0) = ht
0

· t
0

i = 1, we find that

C(p) = exp(�ap/⇠) (F.24)

where we have defined the persistence length to be

⇠(T ) =
�a

ln (coth↵� 1/↵)
. (F.25)

Therefore we see that the tangent-tangent correlation C(p) exhibits exponential decay

with persistence length ⇠. The persistence length is finite 8T > 0 so we see that there
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is no phase transition in the WLC model. The persistence length is very useful in

describing elastic properties of semiflexible polymers and measures the length along

the chain over which the tangent vectors of the chain become de-correlated. When

↵ � 1 (small temperature k
B

T or largeA limit), we find that (ln(1+x) ⇡ x�x2/2+· · ·

for small x):

⇠ ⇡ �a

ln(1� 1/↵)
= a↵ =

A

k
B

T
. (F.26)

The mean square end to end distance of a WLC can be calculated as follows:

hr2i = a2
1

a2

Z

Na

0

ds

Z

Na

0

ds0 exp(�|s� s0|/⇠)

⇡ Na

Z 1

�1
d�s exp(�|�s|/⇠)

= 2Na⇠ = 2L⇠. (F.27)

Comparing with eqn. (F.14) of FJC model, we see that for the WLC, the Kuhn

length [34] is

a(T ) = 2⇠(T ) =
2A

k
B

T
. (F.28)

Consider the force extension curve at small forces with the simplifying assumption

that the force is along the z-direction. We find that

z = hri
F

· ẑ = aẑ ·
X

i

ht
i

i
F

= ah
X

i

tz
i

(1 +
Fa

k
B

T

X

j

tz
j

+ · · · )i
F=0

⇡ Fa2

k
B

T

X

i,j

htz
i

tz
j

i
F=0

=
1

3

F

k
B

T
hr2i+O(F 2). (F.29)

The notation h·i
F

denotes the weighted average with respect to partition function Z

with the inclusion of a force term in the free energy. We have made use of the fact
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that for small F ,

exp(Fa
X

i

tz
i

/k
B

T ) ⇡ 1 +
Fa

k
B

T

X

j

tz
j

+ · · · (F.30)

and when the applied force is zero,

htz
i

tz
j

i
F=0

=
1

3
ht

i

· t
j

i
F=0

, (F.31)

due to rotational symmetry. Thus we find that for a WLC,

z =
1

3

2L⇠(T )

k
B

T
F =

1

3

La

k
B

T
F. (F.32)

Next, let us consider the force extension curves at large F (F ⇠/k
B

T � 1). In the

continuum model, the WLC is given by

E =
1

2
A

Z

L

0

✓

dt

ds

◆

2

ds� F ·
Z

L

0

t(s)ds. (F.33)

In this limit, we can approximate the tangent vector by

t(s) =

0

B

B

B

B

B

@

t
x

(s)

t
y

(s)

p

1� t2
x

� t2
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1
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C

C
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@

t
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t
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1
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C
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A

. (F.34)

In which case the energy can be written as

E ⇡ 1

2

Z

L

0

�

A[(dt
x

/ds)2 + (dt
y

/ds)2] + F (t2
x

+ t2
y

)
 

ds� FL. (F.35)

Let us make the following Fourier transformation:

t
x

(s) =
1

L

X

q

exp(iqs)t̂
x

(q). (F.36)

Assume periodic boundary conditions so t
x

(s+ L) = t
x

(s) so we get

q =
2⇡

L
m
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Since t
x

(s) is real, we find that

t̂⇤
x

(q) = t̂
x

(�q). (F.37)

Similar expressions hold for t
y

(s). Using the identity

1

L

Z

L

0

exp(i(q + k)s)ds = �
q+k,0

,

the energy can be expressed in Fourier modes:

E ⇡ 1

2L

X

q

(Aq2 + F )(|t̂
x

(q)|2 + |t̂
y

(q)|2). (F.38)

The partition function Z is

Z =

Z

D[t̂(q)] exp

 

� 1

2Lk
B

T

X

q

(Aq2 + F )(|t̂
x

(q)|2 + |t̂
y

(q)|2)
!

. (F.39)

The path integral is defined as

Z

D[t̂(q)] =
Y

µ=x,y

Y

q�0

Z 1

�1
d(Ret̂

µ

(q))

Z 1

�1
d(Imt̂

µ

(q)),

where the wavenumber q is over the positive real space due to eqn. (F.37). A

straightforward calculation reveals that

ht̂
µ

(q)t̂
⌫

(k)i = L
k
B

T

Aq2 + F
�
µ,⌫

�
q+k,0

. (F.40)

Using this result, we can show that

ht
µ

(s)t
⌫

(s)i =
1

L2

X

q,k

exp(i(q + k)s)ht̂
µ

(q)t̂
⌫

(k)i

=
1

L

X

q

k
B

T

Aq2 + F
. (F.41)

The “order parameter”

z = hẑ ·
X

i

t

i

i = Lht
z

i ⇡ L

✓

1� 1

2
ht2

x

(s)i � 1

2
ht2

y

(s)i
◆

, (F.42)
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and therefore

z

L
⇡ 1� 1

2⇡

Z 1

�1
dq

k
B

T

Aq2 + F
= 1� k

B

T

2
p
FA

. (F.43)



Appendix G

Sadowsky Functional

In order to derive Sadowsky’s result, we need now to express the geometrical

quantities in (4.2) (i.e. the area form dA and the principal curvature 
1

) in terms of

the centerline. To do this we can choose the following parameterization for the strip:

R(s, t) = r(s) + t



b(s) +
⌧(s)

(s)
t(s)

�

, (G.1)

where r represents the centerline,  and ⌧ are its curvature and torsion respectively,

t and b are the tangent and binormal vectors respectively and s 2 [0, L] and t 2
⇥

�w

2

, w
2

⇤

. Moreover we have that ⌧/ = cot , where  is the angle formed by the

generator of this developable surface with the tangent direction. We recall here that

t = r

0 where the prime indicate the derivative with respect to s and that the vectors

t, n and b satisfy the following cross-product relations:

t = n⇥ b, n = b⇥ t, b = t⇥ n, (G.2)

as well as the Frenet-Serret formulas:

t

0 = n, n

0 = �t+ ⌧b, b

0 = �⌧n. (G.3)
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Next, let us the tensors g
ij

and b
ij

of the first and second fundamental form of

the surface. As a starting point we calculate the tangent vectors g
i

= @
i

R associated

with the coordinates s and t. Making use of (G.3), we have then:

g

s

= r

0 + t



⌧ 0� ⌧0

2
t+

⌧


t

0 + b

0
�

= f(s, t) t, (G.4)

where we have called:

f(s, t) = 1 +
⌧ 0� ⌧0

2
t. (G.5)

Analogously, we find that

g

t

= b+
⌧


t. (G.6)

Thus the coe�cients of the tensor of the first fundamental form, g
ij

= g

i

·g
j

are given

by:

g
ss

= f 2, g
st

=
⌧


, f g

tt

= 1 +
⌧ 2

2
, (G.7)

from which the area form is immediately given by:

dA =
p
g ds dt =

p
detI ds dt = f ds dt. (G.8)

Next we show that the normal vector N of the strip coincides with the normal

vector n of the centerline. Taking the cross-product between the two tangent vectors

and using Eqs. (G.2) yields:

g

t

⇥ g

s

=
⇣

b+
⌧


t

⌘

⇥ f t = fb⇥ t = fn. (G.9)

Thus:

N =
g

t

⇥ g

s

|g
t

⇥ g

s

| = n. (G.10)
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With the normal vector in hand, we can now calculate the elements of the tensor of

the second fundamental form b
ij

= �g

i

· @
j

N = �g

i

· @
j

n. These are evidently:

b
ss

=  f, b
st

= b
tt

= 0. (G.11)

It follows immediately that det II = 0 and 
G

= det II/det I = 0, as expected.

Knowing g
ij

and b
ij

we can calculate the principal curvature 
1

:


1

= 2H = gijb
ij

= gssb
ss

=


f

✓

1 +
⌧ 2

2

◆

. (G.12)

Upon replacing 
1

and dA in (4.2) we obtain:

E =
1

2
D

Z

L

0

ds2
✓

1 +
⌧ 2

2

◆

2

Z

w
2

�w
2

dt
2

2 + (⌧ 0� ⌧0)t

=
1

2
D

Z

L

0

ds
(2 + ⌧ 2)2

⌧ 0� ⌧0
log



2 + w

2

(⌧ 0� ⌧0)

2 � w

2

(⌧ 0� ⌧0)

�

. (G.13)

The latter is the expression found by Wunderlich for a generic developable strip

[111]. Now, the term w(⌧ 0� ⌧0) appearing in the logarithm has order of magnitude

(w/L)2 (assuming  ⇠ ⌧). Thus when w/L ⌧ 1, using log(x+ ✏y) = log x+ ✏ y/x+

o(✏2), we find:

log



2 + w

2

(⌧ 0� ⌧0)

2 � w

2

(⌧ 0� ⌧0)

�

⇡ w(⌧ 0� ⌧0)

2
, (G.14)

upon substituting in 4.3 gives finally the famous Sadowsky’s result [85]:

E =
1

2
Dw

Z

L

0

ds
(2 + ⌧ 2)2

2
. (G.15)



Appendix H

Twist and Writhe

When we look at a closed circular DNA in some direction we can distinguish

two possible types of crossings between its strands, as illustrated in Figure H.1 [50].

The twist crossings result from helical winding of one strand around the other. The

writhe crossings are caused by self-intersections of the DNA axis. The total number

of crossings of each type is even. The twist crossings (1) are formed by helical winding

of one strand about the other. Twist is the rate of rotation of the ribbon around its

axis, a local property of the ribbon while writhe is a measure of non-planarity of the

ribbon’s axis curve, a global property. Work by Călugăreanu, White and Brock Fuller

led to the Călugăreanu-White-Fuller theorem that

Lk = Wr + Tw. (H.1)
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Figure H.1: Crossings of the strands in a two-dimensional projection of a closed
circular DNA. The twist crossings (1) are formed by helical winding of one strand
about the other. The writhe crossings (2) are caused by self-intersections of the DNA
axis.

H.1 Twist

For example, let C be a right handed helix of constant radius R and pitch 2⇡P

parameterized by

x

C

(s) = {R cos(s/`), R sin(s/`), Ps/`}, (H.2)

where ` =
p
(R2 + P 2) and 0  s  L = 2⇡n`. Let the curve A be a straight line

given by

x

A

(s) = {0, 0, Ps/`}. (H.3)

We adopt the correspondence x

A

(s) ! x

C

(s) and hence the correspondence vector

z

AC

(s) is the di↵erence of the two vectors given by

z

AC

(s) = {R cos(s/`), R sin(s/`), 0}. (H.4)
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Since z

AC

(s) is perpendicular to the curve A, we find that

v

AC

(s) = {cos(s/`), sin(s/`), 0}. (H.5)

From this, a straightforward calculation reveals that the twist of C about A is

Tw(C,A) = n. (H.6)

A similar calculation shows that the twist of A about C is

Tw(C,A) =
nP

`
. (H.7)

A diagrammatic illustration of the importance of the ordering in the calculation of

twist is presented in H.2.

H.2 Numerical implementation of Writhe

The writhe of a discrete curve is given by

Wr =
1

2⇡

N�1

X

i=2

X

j<i

⌦
ij

(H.8)

where ⌦
ij

is the Gauss integral along the segments at
i

, at
j

The Gauss integral can be calculated using a geometrical approach. Let points 1

and 2 be the front and end of the first segment r
12

= at
i

and points 3 and 4 be the

start and end of the second segment r
34

= at
j

respectively. The magnitude of ⌦
ij

is

the solid angle formed by all those view directions in which the vectors r

12

and r

34

apparently cross. It can be shown that |⌦
ij

| is given by the area of the quadrangle

on a unit sphere with the apexes formed by the intersections of the sphere with the
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Figure H.2: Curve A is a straight line and curve C is a right-handed circular helix of
radius R and pitch 2⇡P . The correspondence vector z

AC

is directed as shown from
the straight axis to the helix. In this case, Tw(C,A) = n while Tw(A,C) = nP/`
where ` =

p
R2 + P 2, so the two quantities are di↵erent.

rays originating at the center of the sphere and parallel to the lines (31), (41), (42),

and (32) [50]. The area of the quadrangle on a unit sphere is

|⌦
ij

| = ↵
1

+ ↵
2

+ ↵
3

+ ↵
4

� 2⇡, (H.9)

where ↵
1

, ..,↵
4

are the angles of the quadrangle. Let

n

1

=
r

13

⇥ r

14

|r
13

⇥ r

14

| , n

2

=
r

14

⇥ r

24

|r
14

⇥ r

24

| , (H.10)

n

3

=
r

24

⇥ r

23

|r
24

⇥ r

23

| , n

4

=
r

23

⇥ r

13

|r
23

⇥ r

13

| , (H.11)
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Figure H.3: a) Points 1 and 2 are the front and end of the first segment r
i

and points
3 and 4 are the start and end of the second segment r

j

respectively. We can draw four
line segments (32), (42), (31), and (41). b) |⌦

ij

| is the solid angle on a unit sphere
bounded by the four planes: (134), (124), (234), and (123).

be the four unit vectors normal to the planes bounding the solid angle |⌦
ij

|. For

example, n
1

is normal to the plane (134), n
2

is normal to the plane (124) and so on.

Taking into account of their orientation, we find that

↵
1

= arccos(�n

1

· n
2

) =
⇡

2
+ arcsin(n

1

· n
2

). (H.12)

Similar relations hold for ↵
2

, ↵
3

, and ↵
4

. Putting everything together, we find that

|⌦
ij

| = arcsin(n
1

· n
2

) + arcsin(n
2

· n
3

) + arcsin(n
3

· n
4

) + arcsin(n
4

· n
1

). (H.13)

The sign of ⌦
ij

can be found in the following way: ⌦
ij

is positive if the two segment

r

i

and r

j

form a right-handed crossing and negative otherwise. Hence, in all, the

Gauss integral

⌦
ij

= |⌦
ij

| sign((r
j

⇥ r

i

) · r
13

) (H.14)
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