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Abstract

Micro-air vehicles (MAVs)—small versions of full-scale aircraft—are the product of

a continued path of miniaturization which extends across many fields of engineering.

Increasingly, MAVs approach the scale of small birds, and most recently, their sizes

have dipped into the realm of hummingbirds and flying insects. However, these non-

traditional biologically-inspired designs are without well-established design methods,

and manufacturing complex devices at these tiny scales is not feasible using conven-

tional manufacturing methods. This thesis presents a comprehensive investigation

of new MAV design and manufacturing methods, as applicable to insect-scale hov-

ering flight. New design methods combine an energy-based accounting of propulsion

and aerodynamics with a one degree-of-freedom dynamic flapping model. Important

results include analytical expressions for maximum flight endurance and range, and

predictions for maximum feasible wing size and body mass. To meet manufacturing

constraints, the use of passive wing dynamics to simplify vehicle design and con-

trol was investigated; supporting tests included the first synchronized measurements

of real-time forces and three-dimensional kinematics generated by insect-scale flap-

ping wings. These experimental methods were then expanded to study optimal wing
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shapes and high-efficiency flapping kinematics. To support the development of high-

fidelity test devices and fully-functional flight hardware, a new class of manufacturing

methods was developed, combining elements of rigid-flex printed circuit board fab-

rication with “pop-up book” folding mechanisms. In addition to their current and

future support of insect-scale MAV development, these new manufacturing techniques

are likely to prove an essential element to future advances in micro-optomechanics,

micro-surgery, and many other fields.
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Chapter 1

Introduction

1.1 Preface

In his 1844 short story, The Artist of The Beautiful, Nathaniel Hawthorne writes

of a master watch repairer who is consumed with the idea of building a mechanical

butterfly. So fine are the features of his creation, that an errant tremor of the wrist,

a moment of distraction, might wipe out a month’s work. No matter. It is the act of

creation itself that drives him.

It is difficult to tell others, seriously, that you are trying to build and study

mechanical insects. You could say there are important applications to be had (people

have now seen video feeds from aerial drones flown into the maw of a destroyed nuclear

reactor station—usually this is a convincing story), or that it provides a vehicle for

the study and understanding of real insects. This last point might be true, and a few

results from this thesis breed enormous temptation for speculation in this regard, but

such an exercise is, almost always, very dangerous. I hope that warnings within are

1



Chapter 1: Introduction 2

enough to at suppress these temptations until a more serious approach on the matter

is made.

The contributions to our understanding of aerodynamics and insect flight made by

this thesis are minor and technical in nature, but some of the tools developed will be

very useful for continued exploration. The design methods I developed for flapping-

wing mechanical insects are likely more significant, and while not in design or practice

an attempt to understand the diversity of insect form and function, a few results

might indicate new ways of approaching that issue. The manufacturing techniques

I developed (with great inspiration from and close collaboration with my colleague,

P. S. Sreetharan) have been the unexpected jewel of these efforts. The wide success

of our manufacturing work and its promising future renew me to continue exploring

new things for no other reason than because they are interesting and challenging.

1.2 Flying insects

Insects fly in a manner distinctly different than fixed-wing aircraft (“planes”)

and with only passing similarity to rotary-wing aircraft (“helicopters”). Figure 1.1

presents a range of species (hummingbirds are commonly studied alongside insects

due to strong biomechanical similarities). The smallest flying insects, thrips, may

be smaller than 1 millimeter in length, while several large moths (and many hum-

mingbirds) are 10 centimeters or larger in size. Reynolds numbers extend from as

low as 10 up to the low 10000s. In spite of a wide diversity of size, shape, and life

cycle, flying insects share a relatively similar flight apparatus. Two (or perhaps four)

wings stroke back and forth, turning over at the ends of each stroke and meeting the
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A B

C D

Figure 1.1: (A) Apis mellifera “Western honey bee” (image: Hans Hillewaert). (B)
Drosophila melanogaster “Fruit fly” (image: Andre Karwath). (C) Eugenes fulgens
“Magnificent hummingbird”. (D) Polyommatus icarus “Common blue” (image: Luc
Viatour).

air, mid-stroke, at a rather large “angle-of-attack” of around 45 degrees. This wing

motion is quite apart from human-made aircraft.

1.2.1 Flapping kinematics

The flapping cycle is divided by convention into the “upstroke” and “downstroke”;

the former is the semiperiod when the wings are drawn from their full extent forward

(toward the anterior), back (and frequently up as well) to their most posterior. The

forward-backward flapping angle, here denoted φ, is projected onto the mean stroke

plane and measured from the plane extending laterally and normal to the anterior-

posterior axis. The wings rotate or “pitch” about their proximal-distal axis with an

angle ψ, and the axis of rotation may deviate out-of-plane with an angle θ. These
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upstroke

downstroke

Figure 1.2: Conventions for flapping semiperiods.

angles are measured relative to either a reference rigid plane attached to the wing,

or, alternatively, the instantaneous mean wing plane (it need not remain flat and

rigid). Although there is much variation between insect species, flapping kinematics

are generally similar in shape, with max(φ) > max(ψ) > max(θ) in most cases. A

review of the detailed variations in flapping kinematics, and associated aerodynamic

effects, can be found in [14].

The amazing maneuverability of insects derives from an array of flight muscles

which directly or indirectly adjust wing motion, allowing exquisite control of flapping

kinematics. On the other hand, insect wings and attachment points are flexible,

which allows for passive motion and deformation of wings as well. The degree of

importance of these effects has been much debated [5, 17, 16]; it is hypothesized that

passive wing dynamics reduce the power required to flap the wings by either reducing

inertial power consumption, or allowing passive tailoring of wing shape to optimize

aerodynamic efficiency.
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Figure 1.3: Definitions for angular specification of rigid-body wing kinematics.

1.2.2 Aerodynamics

The violent motions and large angles of attack seen by an insect wing are quite

apart from traditional aircraft. Such conditions, for an aircraft wing, would normally

lead to stalled flow and a precipitous drop in efficiency. However, in the case of wings

with low aspect ratios, low Reynold number, and revolving (rather than translating)

motion, it is frequently found that the wing does not stall and a leading-edge vortex

(LEV) grows, but does not separate from the wing. Traditionally this was explained

as a “dynamic stall” phenomenon; the idea being that the reciprocating nature of flap-

ping allows the wing to “flip” and reset the vortex before it has a chance to detach.

However, recent experiments [28] have observed this effect for wings in continuous

revolution (as in a helicopter); the vortex remains attached in spite of steady-state
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(albeit revolving) motion. Such stability has been ascribed to centrifugal accelera-

tion [28] or to spanwise flow [38]. Whatever the mechanism, insect wings generate a

significant amount of lift, and are not subject, in hover, to the usual restrictions on

wing angle-of-attack.

Given their scale, measuring insect flight forces directly has always proved chal-

lenging. It is relatively straightforward to measure the mean value of a single com-

ponent of the total aerodynamic force using a precision balance, but measuring time-

varying flight forces at a bandwidth exceeding the flapping frequency, and with suf-

ficient resolution has proven very challenging. With the advent of Reynolds-number

matching scaled-model experiments [11], our understanding of insect aerodynamics

has advanced greatly. In these experiments, a scaled-up model of the wing is flapped

using a mechanical drive system while immersed in a tank of high-viscosity oil or

other liquid. By carefully selecting the size of the wing, oil viscosity and flapping

frequency, it is feasible to match the Reynolds numbers seen by actual insects, but

with a much larger magnitude of the aerodynamic forces and with a much lower flap-

ping frequency. This allows the use of standard force transducers, regular-speed video

cameras and the use of traditional flow visualization techniques.

The primary downside of scaled-model testing is that inertial forces are not scaled

appropriately. The density of oil is almost 1000 times greater than air, so matching

the ratio of wing density to fluid density is not possible, even for thickened wings of

plate tungsten. Thus, the exploration of wing deformation and passive dynamics is

not possible with these experiments.
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1.3 Flapping-wing micro air vehicles

While insects and aircraft share the use of wings to generate lift, similarities ex-

tend much further. Insects use carbohydrates or fats (fuel) to power flight muscles

(engines) and their central nervous system (flight controls). Angular accelerations

are measured using vibrating halteres (gyroscopes), augmenting visual feedback from

compound eyes (cameras). Although these associations seem obvious or quaint, the

investigation and understanding of insects is a treasure trove of ideas for MAV design-

ers, particularly with respect to sensing and control strategies. They are a convenient

benchmark for aerodynamic performance, efficiency and maneuverability, and provide

a motivating existence proof for the development of high-performance MAVs.

The result of this greater understanding of insect flight and improvements in

battery energy density have spawned several recent efforts to develop insect-scale

flapping-wing MAVs. Efforts to date are primarily concerned with the feasibility of

these devices, rather than the optimization of their performance or the establish-

ment of general design principles. Investigations have focused on maximizing thrust-

to-weight or minimizing power consumption. Work in the design and optimization

of individual vehicle subsystems include efforts to optimize stroke kinematics, wing

shape and compliance, transmission efficiency, and actuator performance. As a result

of these efforts, and as evidenced by recent successful prototypes [18][33][29][30][26],

development of practical insect-scale flight vehicles is imminent.

As the required technologies mature, there is an increasing need to establish

system-level design principles. The design space for these vehicles is very large, and

the relationships between design parameters and performance can be complex and
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counter-intuitive.—Does minimizing wing loading maximize flight endurance? What

impact will the wing size have on the achievable resonant frequency? Is there an

optimal flapping frequency? Do larger or smaller vehicles have longer range? Will an

optimal design have a large battery mass fraction?—Once the feasibility of achieving

hover has been addressed, these and many other design questions rise to our attention.

Fixed-wing and rotary-wing aircraft have almost a century of development be-

hind them. Standardized design principles have been developed for every stage of the

design cycle, beginning with the conceptual design phase: here, gross vehicle param-

eters are determined, including estimates of vehicle mass, wing/rotor size, propulsion

requirements, and estimates of the mass fractions of each subsystem. An early step

in the conceptual design of a fixed-wing aircraft is called vehicle sizing [35]. In this

process, vehicle performance requirements are plotted against potential choices for

thrust-to-weight ratio (T/W) and wing loading (W/S). The minimum weight vehicle

that meets all performance requirements is selected. Variations of this method con-

sider fixed propulsion systems or “rubber engine” models that scale with vehicle size.

Similar methods exist for helicopter design: rotor tip speed is usually chosen by con-

straints on rotor stall and flow compression speeds, autogyration requirements, and

rotor noise limits [27]. The main rotor is then sized to balance induced and viscous

drag losses. In both fixed and rotary vehicle design, accumulated knowledge of past

performance informs the designer “what works”.
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A B

C D
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Figure 1.4: (A) Aerovironment “Nano Hummingbird” [26]. (B) Berkeley “Microme-
chanical Flying Insect” (MFI) [18]. (C) The Caltech/UCLA “Microbat” [33]. (D)
Rubber-band powered butterfly by H. Tanaka [44]. (E) Harvard Microrobotic Fly
(HMF) [49]. (F) Delft University “delfly micro” [29].
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1.4 Thesis outline

The task of designing and building a fully-functional insect-scale MAV is daunting.

Not only are design methods lacking, but scale and material-appropriate manufac-

turing methods are not available. The biomechanics of flying insects are incredibly

complex, all packaged in a space smaller than a swiss watch. This thesis reports on

two parallel and complimentary efforts to attack this problem: the first approach is

to extract only the essential mechanical structures and kinematic behaviors required

for basic flight function, reducing the manufacturing, assembly and integration chal-

lenges. The second approach is to develop improved manufacturing techniques, al-

lowing the construction of three-dimensional electromechanical devices with a level

of complexity approaching insects, while meeting challenging mass and material com-

patibility requirements. In addition to these tasks, this thesis presents a new system-

level design approach, adapted from traditional aircraft conceptual design methods

to flapping-wing flight.

The following chapters are organized thusly:

Chapter 2: Flapping kinematics can be simplified by removing out-of-plane stroke

deviations, θ(t) = 0, and by allowing wing rotation, ψ(t), to occur passively,

rather than actively. Under this scheme it is possible to develop control torques

about all three axes with only two actuators, greatly simplifying the MAV de-

sign. However, passive rotation has not been studied experimentally for flapping

MAVs. This chapter develops a dynamic model of passive rotation using simple

aerodynamic modeling, a rigid-plate approximation for the wing, and a linear

model for the compliant wing hinge. These approximations are validated with
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the first experiments to combine simultaneous measurement of time-varying

forces and three degree-of-freedom angular kinematics of insect-scale flapping

wings. To achieve controlled flight with only two actuators, it is necessary to

effect intra-period modulation of wing rotation; the efficacy of such a scheme

under conditions of passive rotation is experimentally verified.

Chapter 3: This chapter presents a new design procedure for flapping-wing vehicle

design, establishing conceptual design procedures analogous to fixed-wing and

rotary-wing aircraft design. Important results include a prediction for maxi-

mum vehicle size and weight in the case of a reciprocating (non-rotational) drive

mechanism. An investigation of wing stiffness and moment of inertia yields sur-

prising results with implications for MAV design and (potentially) insect wing

morphology. Design insights resulting from vehicle performance optimization

are used to direct experiments measuring of the influence of wing aspect ratio,

shape, and flapping kinematics on aerodynamic efficiency.

Chapter 4: A report on new manufacturing techniques, used not only to make the

test devices in chapters 2 and 3, but fully-functional flight vehicles. These tech-

niques are quickly finding use outside of insect-scale MAVs and micro-robotics;

a discussion of additional advances in manufacturing are beyond the scope of

this thesis, but are presented briefly.

Chapter 5: Concluding remarks and a discussion of the trajectory of future research

on these topics.



Chapter 2

Wing Aeromechanics and Passive

Rotation

2.1 Introduction

It is almost certain that insects directly exert rotational moments to actively

control wing rotation, as they possess musculature so able [14]. However, it is an

open question whether or not these muscles provide a significant amount of the power

required to flip the wing during “nominal” flapping, or whether they are used only

to apply small corrections to the wing’s trajectory for control purposes.

For some insects, there is direct evidence of passive rotation from observations of

torsional waves that begin at the tip rather than the base of a wing [17]. In addition,

aerodynamic estimates have shown that it is possible to achieve rotation purely by

passive means for some insects [5], but there is insufficient evidence to make this

claim for all insects. For an MAV, relying on passive rotation is not an inevitability,

12
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but a design choice, and one that may significantly reduce the weight and mechanical

complexity.

While it is not possible to claim, in general, that passive rotation is the most effi-

cient flapping configuration, its observation in nature and reduced complexity strongly

warrant further study. This chapter develops the passive rotation equations of motion

and models aerodynamic forces and moments using a blade-element approach. How-

ever, the simplifications of the blade-element method present many uncertainties, and

experiments are needed to validate its applicability. These experiments must measure

and correlate wing forces and kinematics for passively rotating wings.

Experiments in the literature reporting measurements of wing forces and kine-

matics are numerous. Dickinson [11] used a Reynolds number matched fruit fly

(Drosophila melanogaster) wing model to measure time varying aerodynamic forces

and correlate them to three degree-of-freedom flapping kinematics. Fry [21] and

Ristroph [37] used hull reconstruction techniques to measure the three dimensional

wing trajectories, and body trajectories, of free-flying Drosophila. Taylor [46] used

photogrammetric reconstruction to measure complete wing trajectories, including

higher order deformations, of locusts (Schistocerca gregaria) and hoverflies (Eristalis

tenax ) in a wind tunnel. Graetzel [23], in experiments with Drosophila, used a single

high-speed video camera to extract the projected flapping angle, while simultaneously

measuring vertical forces using a silicon micromachined capacitive force sensor.

The experiments reported here use high-speed video stereophotogrammetry to

measure three degree-of-freedom kinematics (flapping, rotation, and out-of-plane mo-

tion). Forces are measured, in real-time, using a capacitive-based force sensor. Ar-
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tificial wings, with varying torsional compliance, are flapped at different frequencies

and amplitudes and allowed to passively rotate. The measured forces and kinematics

provide a direct assessment of the blade-element assumptions, and evaluation of the

derived equations of motion for several test cases. The quantitative agreement is very

good, validating both the wing dynamics model and the continued and expanded use

of the experimental setup for studying at-scale flapping wing aerodynamics.

2.2 Aeromechanics

2.2.1 Wing morphology

Passive rotation characteristics have a strong dependence on the detailed shape

and mass distribution of a wing. Natural and artificial wings display great variation

in size, planform, material composition, and vein structure [10]. Development of a

concise wing parametrization is required. The commonly used definitions by Elling-

ton [15] provide a starting point in the formulation of a complete parametrization.

Figure 2.1 illustrates a generic wing planform. The x-axis is aligned with the

wing’s axis of rotation (torsional axis), where r the radial distance along it. The

intersection of the x-axis and y-axis (O′) shall be called the shoulder. Typically the

wing root—defined as the most proximal point on the leading edge—is not coincident

with the shoulder. The radial distance from the wing root, along the r′-axis, is r′.

The wing root offsets xr and yr are labeled in figure 2.1.

The wing length, R, is defined here as projected distance along the r′-axis from

the wing root to the most distal point on the wing. The mean chord, c̄, is defined



Chapter 2: Wing Aeromechanics and Passive Rotation 15

y
r

x
r

dr

dy

c(r')

R

x
r'

y 

y'

y
LE

(r')

O'

Figure 2.1: Coordinates and dimensions for a generic insect wing planform. Differen-
tial elements for radial and chord-wise integration are shown.

as the area of one wing divided by the wing length, Aw/R. Radial coordinates may

be made nondimensional by R and chordwise coordinates by c̄ [15]. Resulting values

are radial distance (relative to root) r̂ ≡ r′/R, chord profile ĉ ≡ c/c̄, leading edge

profile ŷLE ≡ yLE/c̄, x-root offset x̂r ≡ xr/R, and y-root offset ŷr ≡ yr/c̄. Passive

rotation dynamics depend critically on the shape of the leading edge, as this alters

the chordwise location of the center of lift. It is customary to define the wing’s aspect

ratio as A ≡ R/c̄. A wing’s shape can be fully specified by R, A, ĉ(r̂), and ŷLE(r̂).

The choice of R as the sole dimensional parameter was arbitrary—c̄ or Aw could

serve equally. In addition, the offset parameters x̂r and ŷr define the hinge location.

Frequently, it is convenient to define x̂r = 0 and fold any radial offset into ĉ(r̂).

While the wing shape has been fully specified and nondimensionalized, it still

contains two arbitrary shape functions, ĉ(r̂) and ŷLE(r̂). This is not a drawback

when analysing one specific wing, but it is highly desirable to reduce these functions

to a small number of constant parameters which capture only the essential nature of
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the wing’s shape. This can be accomplished in part by defining radius moments [15]

of the form

r̂k
k ≡

∫
1

0

ĉ (r̂) r̂kdr̂, (2.1)

where the subscript is the moment index and the superscript is an exponent. These

parameters can be dimensionalized by multiplying by the wing length. The first-order

radius moment, r1 = Rr̂1, is the wing’s center of area. Higher order moments describe

the area distribution of the wing. For insect wings, there is a strong correlation

between r̂1 and r̂2. The analytical relationship

r̂2 = 0.929 (r̂1)
0.732 (2.2)

was found to closely fit experimental measurements from insect wings of all shapes

and sizes [15]. A beta distribution can be used to reconstruct the non-dimensional

wing shape,

ĉ = r̂p−1 (1 − r̂)q−1 /B (p, q) , (2.3)

where B(p, q) is the beta function

B (p, q) =

∫
1

0

r̂p−1 (1 − r̂)q−1 dr̂. (2.4)

If the beta function parameters are chosen as

p = r̂1

(
r̂1 (1 − r̂1)

r̂2

2
− r̂2

1

− 1

)
(2.5)

q = (1 − r̂1)

(
r̂1 (1 − r̂1)

r̂2

2
− r̂2

1

− 1

)
, (2.6)

then the first and second radial moments of (2.3) will be r̂1 and r̂2. Measurements

from a wide range of insects, in both species and scale, were made and have been
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shown to match this distribution to within 5% [15]. Combined with the relationship

given in (2.2), the nondimensional radial area distribution of many insect wings, ĉ(r̂),

can be completely determined from a single constant parameter, the non-dimensional

radial location of the wing’s center of area, r̂1.

The variety in insect wing shapes are due not just to variations in r̂1 (which

ranges from 0.4 to 0.6), but to their many different leading edge profiles. An attempt

at parametrizing ŷLE is not known at this time, but would be helpful in analysing the

importance of leading edge shape on passive rotation dynamics as well as aerodynamic

efficiency in general.

2.2.2 Flapping kinematics

Figure 2.2 shows coordinate systems and angles necessary for a basic description

of the rigid-wing flapping kinematics of most insects. A left wing is shown close to the

end of its downstroke. The X ′Y ′Z ′-coordinate frame has its origin O′ at the shoulder

of the left wing. The X ′-axis is normal to the mean stroke plane, with the Y ′-axis

pointing in the right lateral direction. The Z ′-axis points in the ventral direction.

The xyz-axes are wing-fixed. These are the same axes as those shown in Figure 2.1,

though here they are shown offset, next to the wing hinge, for clarity. It is important

to place the xyz-frame at O′ when calculating moments of inertia.

The x′′y′′z′′-axes rotate with the flapping angle, φ, defined as the angle between

the negative Y ′-axis and the x′′-axis, where the axis of rotation is the negative X ′-axis.

The x′y′z′-axes (not to be confused with the r′y′-axes in figure 2.1) rotate with the

flapping angle and with the stroke-plane-deviation angle, θ, defined as the angle
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between the x′′-axis and the x-axis, where the axis of rotation is the z′′-axis. The

rotation angle, ψ, is defined as the angle between the y′-axis and y-axis, rotating about

the x-axis. The total angular velocity of the wing is the sum of flapping, deviation,

and rotation:

ω = −φ̇eX′ + θ̇ez′′ + ψ̇ex. (2.7)

In the wing-bound frame, this becomes

ω =
(
ψ̇ − φ̇ sin θ

)
ex +

(
−φ̇ cos θ cosψ + θ̇ sinψ

)
ey +

(
φ̇ cos θ sinψ + θ̇ cosψ

)
ez.

(2.8)

It is useful to define the velocity of the hinge line, vh. The hinge has no radial

velocity component,

vh = V0ey +W0ez, (2.9)

and is defined by ωh × rex, where ωh is given by ω − ωxex. The inertial and virtual

mass moments depend (v.i.) on the acceleration of the wing at the hinge, which is

given by

v̇h = V̇0ey + Ẇ0ez

= ω̇h × rex + ωh × vh

= r (ω̇z + ωxωy)ey + r (−ω̇y + ωxωz) ez. (2.10)

Aerodynamic forces and moments are not directly related to the angle of rotation

ψ, but rather to the angle-of-attack, α, which is defined as the angle between the

wing chord and the instantaneous local velocity:

α = atan2(−ωy, ωz). (2.11)

This definition gives α a right-hand-rule sign convention relative to the x-axis.
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Figure 2.2: Coordinate systems and angles used to specify wing kinematics. All
coordinate frames share the same origin, O′—they are shown offset here only for
clarity.
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Figure 2.3: A wing of this design is used for experiments performed in this chapter.
Wing length is 15mm, measured from “shoulder” to tip. The spars are 80µm thick
carbon fiber, bonded to the wing membrane, 1.5µm thick polyester film.

2.2.3 Wing hinge

For insect-scale flapping-wing robots, passive rotation can be achieved by attach-

ing the wing to the driving spar with an elastic hinge [49]. Figure 2.3 shows a hinge

near the base of the wing. The hinge stiffness is controlled by adjusting the geometry

and material of a flexible polymer layer sandwiched between rigid structural layers.

The rotational stiffness is approximated by that of a linear elastic beam deforming

under an external moment,

κh =
Eht

3

hwh

12Lh
, (2.12)

where th, wh, and Lh are the thickness, width, and length of the central layer, as

shown in figure 2.4, and Eh is the modulus. For all experiments presented here, Lh

has sufficient length to prevent the top and bottom structural portions of the hinge

from colliding when the wing is maximally rotated.
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Figure 2.4: Canonical flexure-based wing hinge using a variation of material and
geometry to create a compliant joint. Bending stiffness is carefully tailored to optimize
passive wing dynamics.

2.2.4 Passive rotation equations of motion

Insect wings flex and deform when flapped, as a result of their distributed radial

and chord-wise compliance [10]. However, if these deflections are small, assuming

rigid body motion of the entire wing is greatly simplifying. With the wing shoulder

as an origin, the motion of the wing is entirely rotational. Under these assumptions,

the Euler equations are the governing equations of motion. The inertia tensor is

defined here as

Ijk =

∫

V

ρw (r)
(
r2δjk − xjxk

)
dV, (2.13)

where ρw(r) is the wing density, and r is the displacement vector for the xyz-axes.

The Euler equation describing rotation about the x-axis is

Mx = Ixxω̇x − (Iyy − Izz)ωyωz + Ixy (ω̇y − ωxωz) + Iyz

(
ω2

y − ω2

z

)

+ Ixz (ω̇z + ωxωy) , (2.14)

where Mx is the sum of all external moments about the x-axis. For a wing of char-

acteristic thickness tw, assuming a thin wing (tw � c̄, R) allows the simplification

Ixz = Iyz = 0, and, by the perpendicular axis theorem, Ixx + Iyy = Izz, resulting in



Chapter 2: Wing Aeromechanics and Passive Rotation 22

the simplified rotational equation of motion

Mx = Ixx (ω̇x + ωyωz) + Ixy (ω̇y − ωxωz) . (2.15)

In the absence of out-of-plane motion (θ = θ̇ = 0), this simplifies to

Ixxψ̈ = Mx + Ixyφ̈ cosψ +
1

2
Ixxφ̇

2 sin 2ψ, (2.16)

where the kinematic variables have been substituted using 2.8. The net externally

applied moment about the x-axis, Mx, includes aerodynamic moments and the elastic

restoring moment from the wing hinge. It would also include direct rotational input

torques by the insect or robot.

The second terms on the right-hand sides of 2.16 and 2.15 are the “inertial”

moment that results when the wing hinge line does not pass through the center of

mass of the wing, helping to “flip” the wing when it is accelerated. With the hinge

acceleration given by 2.10, notice in 2.15 that ω̇y − ωxωz = −Ẇ0/r. This “inertial

flip” term is proportional to the angular acceleration normal to the instantaneous

stroke plane.

Given φ(t), θ(t), a model for the aerodynamic torque, a model for the elastic wing

hinge, and the inertia components Ixx and Ixy, 2.15 is simply integrated in time to

determine the passive rotation response, ψ(t).

2.2.5 Aerodynamics

A passive rotation simulation requires a model of the aerodynamic forces and

moments exerted on the wing. The Reynolds number for flapping flight may be



Chapter 2: Wing Aeromechanics and Passive Rotation 23

defined as

Re ≡ ūc̄

ν
, (2.17)

where ū is the mean translational velocity of the wing tip and ν is the kinematic

viscosity of air. The mean translational velocity is given by 2ΦfR, where Φ is the

total flapping angular amplitude (peak-to-peak) and f is the flapping frequency. Most

insects have a Reynolds number in the 100-1000 range, though some as low as 10 or

as high as 10,000 [15].

Flapping kinematics are characterized by large angles-of-attack and high rates of

rotation. Massive separation of boundary layers, possible reattachment, and strong

vortex shedding at both the leading and trailing edges are possible features of this

type of flow. The wing also interacts with its own wake, especially in hover, po-

tentially leading to significant time-dependent aerodynamic forces. Many different

aerodynamic effects have been identified, and are reviewed in [38]. Often, experi-

ments attempt to explain the aerodynamics for a single wing at a single operating

point, usually with the aim of identifying the important aerodynamic mechanisms

for a particular insect species. Recent work [28] reverses this trend; they investigate

aerodynamic performance under the systematic variation of (effectively) wing aspect

ratio, Re , and flapping amplitude.

Two and three-dimensional computational fluid dynamics (CFD) calculations are

an alternative to flapping experiments [47, 53, 55]. They provide detailed information

on not only the forces and moments, but the structure of the wake and surround-

ing fluid. Published calculations show good general agreement with experiments.

Two-dimensional CFD calculations can now be run fast enough, on supercomputers,
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to perform design optimization studies [6]. Performing two-dimensional CFD-based

passive rotation design and optimization studies is likely feasible.

Whether aerodynamic force and moment data comes from computation or experi-

ment, it is highly desirable to reduce it to a non-dimensional form. A proper reduction

will allow the data to be applied as broadly as possible. The blade element method is

a quasi-static technique for applying nondimensional experimental and computational

results to similar operating conditions. The success of this method is critically limited

by the quality of the force and moment coefficients and its quasi-static assumptions.

2.2.6 Blade-element method

Lift and drag coefficients provide a convenient way to apply computational or

experimental results to different operating conditions or configurations. The general

form of an aerodynamic force coefficient is

CF =
F

pdynS
, (2.18)

where F is the force in question, pdyn is the dynamic pressure, and S is a reference

area. The dynamic pressure is defined as (1/2)ρV 2, where ρ and V are the reference

air density and velocity, usually the free stream values. The reference area is usually

the area over which the force acts or an area characteristic to the body. A constant

force coefficient is not sufficient to predict forces for all flow conditions. For example,

aerodynamic force coefficients may be a function of Mach number and Reynolds

number (Re). If the relevant forces are a weak function of these parameters, using an

off-condition coefficient (slightly different geometry, different size, etc.) can still give

a reasonable prediction of force magnitudes.
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The blade-element method is simply the application of 2.18 to chord-wise strips

along a flapping wing. Figure 2.1 shows a sample wing strip. The wing must be

divided into strips because the local velocity varies along the wing. For the decidedly

subsonic insect flapping regime, force coefficients should vary with α, Re , and wing

shape. Ideally, these variations will be clear trends that experiments can identify. If

force (or moment) coefficients begin to vary with the details of the flapping kinematics,

or if they depend on products of these changes, the usefulness of the blade-element

method is severely reduced.

The blade-element method estimates forces based only on instantaneous flow con-

ditions, making the method quasi-static. Unsteady flow features, such as wake cap-

ture, cannot be directly modelled. They may enter indirectly, for example, if the

force coefficient is a function of α, and the time-dependent force appears periodically,

with the time of occurrence corresponding to a particular α. However, if the flapping

motion becomes aperiodic, such as during a maneuver, or if the periodic flapping

kinematics are changed significantly, then the previously-tailored α-dependence will

produce erroneous results.

Aerodynamic forces

In hover, the ambient air velocity is negligible, so the dynamic pressure on the wing

develops only through its relative motion. Thus, the aerodynamic force components

on each chord-wise strip can be expressed as

dFaero =
1

2
ρω2

h (r′ + xr)
2

︸ ︷︷ ︸
q

CF (α)
︸ ︷︷ ︸
CF

c(r′)dr′

︸ ︷︷ ︸
dS

, (2.19)
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which is simply a rearranged form of 2.18. When there is no stroke plane deviation,

ωh = −φ̇.

The total aerodynamic force is commonly decomposed into lift and drag compo-

nents, FL and FD. Drag is directed in opposition to the relative ambient velocity,

and lift, orthogonal. Experiments and CFD calculations [11, 2] have shown consistent

functional forms for the variation of lift and drag coefficients with α,

CL(α) = CLmax
sin (2α) ,

CD(α) =

(
CDmax

+ CD0

2

)
−

(
CDmax

− CD0

2

)
cos (2α) . (2.20)

For the Reynolds number (≈ 100), geometry, and flapping kinematics of a typical

Drosophila wing, [11] found by experiments that these coefficient forms are best fit

by

CLmax
= 1.8

CD0
= 0.4

CDmax
= 3.4 (2.21)

These values are a common starting point for blade-element force estimates. Ex-

periments or CFD simulations are used to refine them for specific wing shapes and

Reynolds numbers.

Integrating 2.19 for the lift component leads to

FL =
1

2
ρω2

hCL(α)c̄R3

∫
1

0

(r̂ + x̂r)
2 ĉ(r̂)dr̂

︸ ︷︷ ︸
≡ F̂

(2.22)

where F̂ is the non-dimensional aerodynamic force. The integral is easily performed
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to yield

F̂ = r̂2

2
+ 2x̂rr̂1 + x̂2

r . (2.23)

If x̂r is zero (which can always be arranged), then the non-dimensional aerodynamic

force is simply equal to r̂2

2
. The drag force has an identical expression, the only differ-

ence being the coefficient. The unit vectors for lift, drag, and the normal component

of the aerodynamic force are defined as

eL = −eωh

eD = −evh

eN = − sgn (α)ez. (2.24)

These definitions take into account the chosen sign convention for α, and the sign

conventions of CL and CD, as used in 2.20. The normal force coefficient is found by

a simple rotation, CN = cos(α)CL + sin(α)CD.

Rotational-axis aerodynamic moment

The aerodynamic moment about the axis of rotation (x-axis) is more complicated

because the chord-wise position of the center of pressure depends on the instantaneous

angle-of-attack and on the detailed shape of the leading edge. The required integral

is

Mx,aero =
1

2
ρω2

hCN(α)

∫ R

0

ycp(r
′) (r′ + xr)

2
c(r′)dr′, (2.25)

where ycp(r
′) is the distance from the hinge line to the center of pressure. Dickson [12]

reports experimental data on the location of the center of pressure as a function of
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α, for Drosophila,

d̂cp =
0.82

π
|α| + 0.05, (2.26)

where α is in radians, and d̂cp is the non-dimensional location of the center of pressure,

measured back from the leading edge (i.e. 0 for the leading edge and 1 for the trailing

edge). In the xy-frame, the location of the center of pressure for each strip is

ycp = yr + yLE(r′) − c(r′)d̂cp. (2.27)

Inserting into 2.25 yields

Mx,aero =
1

2
ρω2

hCN(α)c̄2R3

∫
1

0

[
ŷr + ŷLE(r̂) − ĉ(r̂)d̂cp(α)

]
(r̂ + x̂r)

2 ĉ(r̂)dr̂. (2.28)

Thus the location of the net center of pressure is

Ŷcp =

∫
1

0

[
ŷr + ŷLE(r̂) − ĉ(r̂)d̂cp(α)

]
(r̂ + x̂r)

2 ĉ(r̂)dr̂

F̂
, (2.29)

with the resulting rotational moment expression

Mx,aero = − sgn(α)
1

2
ρω2

hCN(α)c̄2R3F̂ Ŷcp(α)ex. (2.30)

Calculating and measuring aerodynamic moments is notoriously more difficult

than aerodynamic forces. The root of this problem is that moments are highly sen-

sitive to changes in the location of the center of pressure. For an insect wing, the

distance between the torsional axis and center of pressure may only be 10% of the

mean chord, so even small changes in position have a large effect on the resulting

moment.
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Rotational aerodynamic forces

The aerodynamic force previously described, sometimes called the “translational”

aerodynamic force, is not a function of the instantaneous rotation rate. The influence

of rotation is felt only indirectly through the α-dependence of the force coefficients.

There is evidence [39] that independent “rotational” forces exist, which are a function

of the instantaneous rotation rate.

The original adopted model for these forces is that of a thin wing fluttering at low

α, with the rotational forces arising from a coupling of translation and rotation. This

force has the form

dFrot =
1

2
ρωxωhc(r

′ + xr)CR(α)c(r′)dr′. (2.31)

Experiments [39] have shown that CR varies both with rotation rate (ωx) and the

location of the rotational axis (ŷr). This force is not included in any calculations pre-

sented here, primarily because improved predictions of lift force could not be realized,

and contributions to rotational moment could not be measured. Future experimental

investigations, should they investigate this force, especially for the purposes of passive

rotation, must include direct measurements of rotational moments to calculate the

center of pressure of these rotational forces.

Aerodynamic damping

The aerodynamic forces and moments discussed so far provide limited rotational

damping to the system. Passive rotation experiments (v.i. section 2.3.3) confirmed

that without such a term, the predicted wing trajectories are severely under-damped.

In addition, consider the pathological case of a wing rotating, but not flapping.
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Clearly there will be aerodynamic moments exerted on the wing, though the transla-

tional and rotational aerodynamic force terms (equations 2.22 and 2.31) would predict

none.

For this term, the relative velocity due only to rotation of the wing is considered.

The relative air velocity is zero at the hinge axis and increases linearly away from

it, as illustrated in figure 2.5. Using a dynamic pressure based on this velocity, it is

straightforward to adapt 2.19 to form the rotational damping moment for a differential

element as

d(δMrd) = −1

2
ρ(ωxy)

2Crd|y|dr′dy, (2.32)

where each chordwise strip is further divided, as in figure 2.1, into differential elements

of height dy which are located a distance y from the hinge axis. Integrating with

respect to y yields δMrd, the damping moment contribution from a single chordwise

strip:

δMrd = −1

2
ρω2

xCrddr
′

∫ y1

y0

|y|y2dy (2.33)

= −1

2
ρω2

xCrddr
′

(
1

4
|y1|y3

1
− 1

4
|y0|y3

0

)
, (2.34)

where

y0 = yr + yLE(r) − c(r) and

y1 = yr + yLE(r) (2.35)

are the coordinates of the trailing and leading edges of the wing. Switching to non-

dimensional coordinates results in

δMrd = −1

2
ρω2

xCrdc̄
4Rŷrd(r̂)dr̂, (2.36)
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where

ŷrd(r̂) =
1

4

[
|ŷr + ŷLE|(ŷr + ŷLE)3 − |ŷr + ŷLE − ĉ|(ŷr + ŷLE − ĉ)3

]
(2.37)

is the non-dimensional location of the effective moment arm of the rotational damping

term for a single wing strip. Integrating these chordwise strips results in the total

damping moment for the wing,

Mx,rd = −1

2
ρωx|ωx|Crdc̄

4RŶrdex, (2.38)

where

Ŷrd =

∫
1

0

ŷrd(r̂)dr̂. (2.39)

This approach was also used [2] in experiments with tumbling cards, using a

rotational damping moment coefficient Crd = 2.0, likely because this is the classical

result for the two-dimensional drag coefficient of a flat plate normal to a uniform

flow. As the rotationally-induced velocity is normal to the wing, it would be natural,

in the present case, to use CDmax
. For all calculations in this work, a value of 5.0

was used. This value, in general, led to the best agreement between measured and

predicted passive rotation trajectories. However, the predictions were not highly

sensitive to the exact value. Values of Crd in the 3–6 range all showed good agreement.

The main challenge in determining this term to higher precision is the difficulty in

separating errors in the value of Crd from errors in the location of the center of

pressure. Experiments that explicitly measure the moment about the rotational axis

are likely required to better clarify the magnitude and variation of this parameter.

If the rotational axis does not pass through the chord center, a net force will also

result. For all calculations in this paper, these forces were neglected. The main reason
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Figure 2.5: The left image shows a wing segment in pure rotation, and the result-
ing relative velocity profile seen by the wing. The right image shows the pertinent
dimensions and variables for calculating the added mass forces and moments.

is one of complexity. It is easy to quickly amass several coefficients which may be

“tuned” for a specific experimental result. It would be difficult to decide what is a

result of pure rotational damping, and what is a result of a flapping–rotation coupled

“rotational” aerodynamic force.

Added mass effects

The concept of “added mass” (or “virtual” mass) is best understood as the aero-

dynamic forces and moments that are dependent upon a body’s acceleration, be it

translational or rotational. In the strictest sense, added mass forces and moments are

only those that result from the solution of the Euler equations without circulation

(potential flow). Aerodynamic forces and moments dependent upon acceleration may

also occur as a result of viscous effects, a notable example being the Basset force [54],

which represents forces that occur due to an acceleration-dependent lag in boundary
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layer development, though all viscous-based acceleration forces are sometimes called

Basset forces. Without strong evidence of their importance and an accurate method

to predict them, Basset forces will not be accounted for separately. Their influence,

if any, will find its way into the standard aerodynamic force and moment coefficients,

which are derived from experiments.

There is no analytical solution to the potential flow equations for a general two

dimensional wing planform moving in a three dimensional fashion. However, the

potential flow solution for an arbitrary two dimensional body translating and rotating

in two dimensions is well known. Application of this solution easily gives the added

mass forces and moments for a thin wing section. From [40],

Z0 = −λzẆ0 − λzyV̇0 − λzωω̇x − ωx (λzyW0 + λyV0 − λyωωx)

Y0 = −λzyẆ0 − λyV̇0 − λyωω̇x + ωx (λzW0 + λzyV0 + λzωωx)

M0 = −
[
λzωẆ0 + λyωV̇0 + λωω̇x + λzy(V

2

0
−W 2

0
)

+ (λz − λy)W0V0 + ωx(λzωV0 − λyωW0)
]
, (2.40)

where Z0 and Y0 are the added mass forces (per unit depth) in the z- and y-directions,

and M0 is the added mass moment per unit depth. W0 and V0 are the components

of the velocity of the wing at its axis of rotation (see figure 2.5). The λab terms are

the “coefficients of added mass”. Repeated subscripts are dropped. The wing section

shown in figure 2.5 has effectively zero thickness and a rotational axis offset from the

midpoint by yh, which can be expressed non-dimensionally as

ŷh(r̂) =
1

2
ĉ(r̂) − ŷLE(r̂) − ŷr. (2.41)
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The non-zero added mass coefficients for a thin flat wing section are

λz = πρa2

λzω = −πρa2yh

λω = πρa2y2

h +
1

8
πρa4, (2.42)

where a is the semi-chord and ρ is the density of the surrounding air. Notice that many

of the terms in 2.40 are “cross-term” accelerations and not pure rotations. These will

not be considered, as they will duplicate existing blade-element terms with similar

forms, such as the rotational force and damping terms. The validity of these terms (as

well as the pure acceleration terms) is already in question, as this formulation assumes

fully attached irrotational flow in two dimensions. After eliminating cross-terms and

terms with zero-valued coefficients, 2.40 is reduced to

Z0 = −λzẆ0 − λzωω̇x

Y0 = 0

M0 = −λzωẆ0 − λωω̇x. (2.43)

The normal acceleration is given by Ẇ0 = −r(ω̇y − ωxωz). Substitution and radial

integration yields

Mx,am = −
(π

4
ρc̄3R2Îxy,am

)
(ω̇y − ωxωz) −

(π
4
ρc̄4RÎxx,am

)
ω̇x (2.44)

where

Îxy,am =

∫
1

0

(r̂ + x̂r)ĉ(r̂)
2ŷh(r̂)dr̂

Îxx,am =

∫
1

0

ĉ(r̂)2

(
ŷh(r̂)

2 +
1

32
ĉ(r̂)2

)
dr̂. (2.45)
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A similar integration yields the added mass term, Fz,am.

2.3 Passive rotation experiments and analysis

Using the blade-element method to estimate aerodynamic torques raises two

major concerns. The first is whether the quasi-steady approximation is overly limit-

ing. Wake capture effects and other path-dependent phenomena must be negligible.

The second concern is the validity of force and moment coefficients. The method is

useless if different force and moment coefficients are required for every operating con-

dition and wing shape. More precisely, aerodynamic coefficients must change little

for reasonable changes in flapping frequency, flapping kinematics, and wing shape.

Quantification of “little” and “reasonable” is arbitrary.

Experiments are needed to assess the performance of the blade-element method

in predicting time-dependent forces and moments. If wing kinematics and forces are

measured simultaneously, force coefficients for each wing and kinematics configuration

can be extracted. If the experiments are done with passively rotating wings, the

validity of 2.15 can be directly assessed.

2.3.1 Experimental setup and calibration

A testing setup, illustrated in figure 2.6, was constructed for the synchronized

measurement of three degree-of-freedom flapping kinematics (φ(t), θ(t), ψ(t)) and

lift forces on robotically-driven wings. Although all wings tested here are of artificial

construction, the setup does not preclude the use of natural wings. Kinematics are de-

termined a posteriori using stereoscopic reconstruction of high-speed video recordings.



Chapter 2: Wing Aeromechanics and Passive Rotation 36

high-speed

video camera
“virtual
  camera”

mirror

A

anterior view

A

dorsal view

capacitive sensor head

target plate

carbon fiber
wing-driver frame

piezoelectric bimorph
bending actuator

Invar double-cantilever beam

wing-driver flapping 
transmission

driving spar

wing hinge

(camera sizes and camera 

 positions not to scale)

wing

(mirrored)

Figure 2.6: Diagram of experimental setup for measuring lift forces and capturing
wing motion using high-speed video. The wing-driver is attached to an Invar double-
cantilever beam. The beam deflection is measured by a capacitive displacement sen-
sor. A mirror generates a second camera view, allowing stereoscopic reconstruction.

The wing driver mechanism is mounted on the end of a double-cantilever beam. The

beam’s deflection is measured with a capacitive displacement sensor. To my knowl-

edge, these are the first reported experiments that measure three degree-of-freedom

flapping kinematics, synchronized to real-time force measurements, for insect-scale

flapping wings.

The wing is flapped using a piezoelectric bimorph actuator, of the type described

by [51], mounted in a carbon fiber frame. The linear displacement of the drive actuator

is mapped to an angular flapping motion using a transmission mechanism of the type

described by [49]. The actuator is made as small as possible to minimize the effective

mass of the beam–driver system, thus maximizing sensor bandwidth.

The double-cantilever beam is laser-cut and folded from 150µm sheet Invar [52].

Abutting folded edges are soldered or laser-welded together. The double-cantilever
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Figure 2.7: The one-wing flapping mechanism and attached wing are manufactured
using the same methods used to make flight-worthy flapping wing MAVs.

topology ensures that the beam deflects linearly without rotation. The dual beams are

7mm long, 4mm wide, and spaced vertically by 3mm. The 10mm diameter capacitive

sensor target plate, also laser-cut from Invar sheet, is attached to the end of the beam

with a pair of triangular support ribs. These ribs also serve to stiffen the end-plate

of the beam to maintain the desired built-in boundary condition. The mass of the

wing driver (frame, actuator, transmission) is approximately 150mg. Using simple

beam theory, the predicted sensor resonant frequency is 950Hz. This includes the

effect of wing driver mass, target plate and support rib mass, and the theoretical

effective mass of the sensor beam. The measured resonant frequency of the system,

determined by impulse testing, is 810Hz. All reported force data has been post-

processed with a high-order zero-phase 750Hz digital low-pass filter. The force sensor

was calibrated using multi-point static loading with known masses. No attempts at

dynamic calibration (cf. [22]) have been made. Sensor output is 1.04mg/mV, with

a measured noise floor of 1.5mV, at full bandwidth. All force data is reported as
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mass-equivalent using a gravity acceleration of 9.8m/s2.

A high-speed video camera is used to record wing motion. All video recordings

were captured at 10, 000 frames per second, with exposure times of 30µs. As shown

in figure 2.6, a mirror provides a second camera view. The camera points toward

the wing from approximately φ = −60◦. The camera is positioned at least 150mm

away from the wing (10 wing lengths) to minimize aerodynamic disturbance. The

primary view and virtual camera view are illuminated by backlight; fiber-optic light

guides direct light from standard tungsten halogen illuminators onto diffusion screens,

each positioned 150mm behind the wing. The ground plane (optical table) is located

200mm below the wing.

A computer with a real-time control board sends drive signals to high-voltage am-

plifiers, which drive the piezoelectric actuator. The same board issues camera trigger

signals and samples the capacitive displacement sensor at 5kHz. Synchronization

between the trigger signal and the camera frame buffer was confirmed by recording

a light-emitting diode being driven directly by the trigger signal. Synchronization

between video frames and the force signal was confirmed by recording an impulse

impact on the driving spar and matching the time-of-impact video frame with the

force signal.

2.3.2 Extracting flapping kinematics

Stereoscopic calibration of the camera setup is accomplished using the methods

of [56] and [8]. Several images of a checkerboard with known dimensions are taken.

The checkerboard is placed at several positions and with several orientations to the
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camera, with care that the complete pattern is seen by both the real and virtual

camera. The images are used to fit a lens distortion model and the relative positioning

between the two cameras is calculated. The resulting calibration maps row-column

pixel coordinates for the real and virtual images (corresponding to the same physical

point) to a three-dimensional location relative to the real camera.

Three points are tracked on the wing, with their coordinates used to define an

instantaneous mean wing plane for each video frame. Figure 2.3 shows a photograph

of the wing used for all experiments presented here. The first, second, and fourth

(proximal to distal) spar ends are used for the tracking points. A normal vector

defined by these points is projected onto fixed axes to extract the flapping, out-

of-plane, and rotational angles. Figure 2.8 shows a sample frame from a captured

video recording. For all experiments carried out, the wing stayed very flat, and did

not deviate very far from the rigid body ideal. Figure 2.9 shows a frame sequence

which is characteristic of the maximal amount of wing fluttering and spar bending

observed. While in these experiments the intent was to suppress wing deformations,

these tracking techniques could easily be used to reconstruct higher-order oscillation

and deflection modes by tracking more points.

Each video recording consists of two full flapping periods. The hinge line (torsional

axis) is determined from an image of the wing at rest; it is identified as the midline

of the wing hinge flexure. The position and orientation of the hinge line in then

determined by offset in local coordinates for each frame in the flapping sequence.

A plane is fit through the track left by the hinge line, over the full time sequence,

to define the so-called mean stroke plane, which establishes a reference for defining



Chapter 2: Wing Aeromechanics and Passive Rotation 40

Figure 2.8: The 11th frame of the baseline 100Hz case is shown in both images.
The top image highlights the mirror edge and labels the real and virtual images,
and shows tracked spar endpoints for the first 11 frames. The bottom image shows
tracking results from a complete 200-frame, 2-period sequence. The high degree of
periodicity is evident from the pair-wise clustering of the points. The spar ends are
tracked manually, for each frame, on a sub-pixel basis.
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Figure 2.9: This sequence, taken from the 100Hz baseline case, shows observed mem-
brane fluttering and spar bending. The two most distal spars are clearly seen to flex
between the fourth and fifth frames.

out-of-plane motion, θ(t). The wing orientation calculated from an image of the wing

at rest is used to define the flapping angle origin, (φ = 0). A sphere is fit to the point

cloud left by the track of the distal edge of the wing hinge to determine the radial

offset of the wing from the center of rotation.

All plots of measured angular trajectories are shown unfiltered, in degrees. How-

ever, when derivatives are calculated for use by the blade-element method, filtering

is applied to prevent excessive noise.

2.3.3 Experimental results

The following experiments all use the same wing design. The two experiments

flapping at 100Hz use the same “short” wing hinge, and the 70Hz case uses the
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“long” hinge.

The measured values of ψ and ψ̇ at t = 0 provide the initial condition. All

calculations to predict the rotational trajectory of the wing are made by integration

of equation 2.15. This means that measurements of out-of-plane deviation, θ(t),

contribute to the solution. However, all experiments presented here do not contain

significant out-of-plane motion, as the flapping mechanism does not support it. In

practice, trajectories predicted by 2.16 are very similar. The small amount of out-of-

plane deviation that does occur is a result of wing hinge compliance. While designed

to be much more compliant in the rotational axis, the off-axis compliance is enough

to allow a few degrees out-of-plane motion when under high load.

Lift coefficient, CLmax
= 1.7, is used for all calculations. This value provides good

general agreement with all experiments performed, and is very close to 1.8, the classic

Drosophila value. Drag data from [11], and the d̂cp(α) trend reported by [12], given in

equation 2.26 is used, as none of the current experiments directly measure these values.

The same rotational damping coefficient (Crd = 5.0) was used for all calculations.

Unless otherwise noted, no rotational aerodynamic forces or rotational added inertia

terms were applied (though the added mass lift force is included).

In the following plots, unless otherwise noted, the term “lift” indicates the reaction

force of the wing on the drive spar, i.e.

FN = Faero,X′ −m aX′ , (2.46)

where FN is the total lift, Faero,X′ is the projection of the total aerodynamic force

vector onto the X ′-axis, m is the wing mass, and aX′ is the linear acceleration of the

center of mass of the wing. It is important to note that “lift” in the current sense
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is different than “lift” in the sense of the blade-element method. The unit vector eL

used in blade-element calculations always points normal to the instantaneous stroke

plane, rather than the mean stroke plane, which is the plane of reference for FN and

Faero,X′ .

All measured mean lift values are obtained by averaging over 10 periods, while

the calculated lift values are derived from the kinematics captured during the first

two of those periods. The inertial component has zero mean when the wing motion

is perfectly periodic, but the instantaneous values of the inertial contribution are

non-trivial, and must be added to aerodynamic lift predictions when comparing to

experimental measurements.

In general, working at-scale poses the extra challenge of dealing with wing inertial

forces, which are typically of the same order as the aerodynamic forces. Subtracting

them out requires high quality kinematics measurements to extract the crucial angular

accelerations. Measuring wing mass with an electrobalance is easy, but measuring

inertias and products of inertia is not trivial. The Ixx and Ixy values used here were

calculated from a three dimensional computer model of the wing, using measured

material densities. The wing center of mass was also calculated from this model. As

a check, measured masses were confirmed to agree with predicted masses from the

model.

The hinge stiffness is simply calculated using equation 2.12, using the hinge ge-

ometry parameters and the specification-sheet modulus for the polyimide film used

to make the hinge flexure. Potential hinge stiffness non-linearity and damping have

not been characterised.
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Figure 2.10: Baseline 100Hz flapping case (short hinge). Measured kinematics are
plotted unfiltered. Predicted wing rotation does not include any rotational aerody-
namic force or rotational added inertia terms. Predicted lift includes inertial reaction
of the wing and theoretical added mass lift.

Baseline 100Hz flapping experiment

The first case (the “baseline”) examines passive rotation at 100Hz. The flapping

amplitude, Φ, is 108◦. Figure 2.10 plots the measured kinematics and predicted

rotation in the top graph. The out-of-plane motion is only a few degrees. The

transmission mechanism is not perfectly symmetric, and real-time position feedback

is not currently available. The downstroke experiences larger lift forces, as the wing

velocity is slightly higher then. The mean measured lift is 71.6mg, and the calculated

lift is 73.7mg.
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Figure 2.11: Baseline 100Hz flapping case (short hinge). Measured wing rotation and
predicted wing rotation using each combination of the theoretical rotational added
inertia terms.

Figure 2.11 shows predicted rotation, for the same case, with different combina-

tions of the Ixx,am and Ixy,am terms. It appears that inclusion of the Ixy,am term

improves the prediction of the maximum amount of negative rotation, but the agree-

ment is compromised in other areas. These differences were investigated in other

experimental data sets, and no consistent improvement for any of these added inertia

terms could be found. This does not mean that they are not important, but their

contribution is simply less than the uncertainty introduced by other factors, such as

center of pressure location and non-linear hinge compliance.

Figure 2.12 shows each component of the predicted lift force. It is clear that

subtracting the inertial contribution is critical for analyzing the aerodynamic contri-

bution. At end of a stroke, when the wing flips, wing velocity, and thus lift, is low,

while vertical acceleration of the center of mass is high (centripetal acceleration),

leading to an inertial reaction peak (negative lift peak). This effect is more or less

relevant depending on the mass of the wing, rate of flip, and other factors.

From Figure 2.13, it is clear that an additional rotational aerodynamic damping
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Figure 2.12: Baseline 100Hz flapping case (short hinge). The predicted total lift force
is broken down into constituent components.
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Figure 2.13: Baseline 100Hz flapping case (short hinge). Measured (all) and predicted
(rotational only) kinematics are again plotted, except the prediction does not include
a pure rotational damping term.

term is critical to the prediction of realistic rotational dynamics. As mentioned ear-

lier, refinement of this component will require experiments that can directly measure

rotational torques.

Split-cycle flapping experiment

The next experiment presented uses the same wing, with the same wing hinge,

flapping at the same fundamental frequency. However, the full flapping period is a
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concatenation of a longer duration upstroke and a shorter duration downstroke. The

upstroke-to-downstroke duration ratio, called τss, is 0.62 in this case. The asymmetry

in φ(t) is readily apparent in figure 2.14. This type of flapping is called “split-cycle”,

which is aimed at breaking the upstroke-downstroke symmetry to create net (roll)

moments about the vertical axis. This technique [13] was proposed as a method to

control roll for a flapping-wing robotic insect without needing a separate actuator to

control ψ independently. For this case, the measured lift is 71.2mg, almost identical

to the baseline case. The predicted lift, using the same lift coefficient as the baseline

case, is 75.7mg. Since roll torques were not measured, the effectiveness in generating

a net moment cannot be assessed, but it is clear that the rotational kinematics can

be made very asymmetric without changes in mean lift, while operating under the

restrictions of a passively rotating system.

Agreement between the predicted and measured lift forces, on a time-varying as

well as mean value basis, is excellent, even though the peak lift force in the split-cycle

case is almost twice that of the baseline case. The blade-element method, in this

case, is highly tolerant of drastic changes in flapping and rotational kinematics. In

spite of the uncertainties in drag coefficients, center of pressure location, damping,

and rotational forces, the approximate values based on published data for Drosophila

lead to good predictions of passive rotation dynamics.

70Hz flapping experiment

For the final experiment, the wing hinge was lengthened, allowing the wing to

achieve sufficient rotation when flapped at 70Hz. The total flapping angle is also
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Figure 2.14: 100Hz flapping case (short hinge), now with τss = 0.62 split-cycle flap-
ping angle kinematics.
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reduced to 90◦. The measured lift is 30.4mg, and the predicted lift is 26.6mg (same

coefficients as all other cases). Trajectory and force results are plotted in figure 2.15.

There appears to be a small phase discrepancy between the measured and predicted

rotation angle, while the amplitude prediction is excellent. On the other hand, the

baseline case showed excellent phase agreement, with small disagreements at times

in amplitude. The various model uncertainties are not small enough to draw general

conclusions on the sources of these discrepancies. It is possible that wake capture

effects and rotational aerodynamic effects are contributing to the observed forces,

but, at this time, the data available is not fine enough to separate these effects from

other aerodynamic uncertainties. It is clear, at least for the range of cases examined

here, that exclusion of these effects does not preclude accurate estimates of wing

passive rotation trajectories.

2.4 Discussion

In these experiments, the predicted and measured lift forces show excellent agree-

ment, both in mean value and detailed time-history. These predictions were con-

sistent across large changes in flapping kinematics, flapping frequency, and flapping

amplitude, without any changes to model coefficients. These experiments reveal that

coping with inertial wing forces is an important challenge when working with actual-

size wings. Minimizing the influence of these inertial forces in isolating aerodynamic

loads will be critical for continued success in at-scale studies of flapping wing aerody-

namics. It is difficult to quantify the agreement of measured kinematics with passive

rotation predictions. Qualitatively, the rotational dynamics were well captured, in-
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Figure 2.15: 70Hz flapping case (long hinge). A longer hinge (more hinge compliance)
allows an appropriate amount of wing rotation when flapping at a lower frequency.
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cluding sub-period modes. Quantitatively, peak rotational amplitudes, rates, and

phases showed good agreement with measured values. Demonstration of asymmet-

ric split-cycle kinematics, without reductions in lift force, strongly motivate further

investigation of this wing control strategy.

Improvements in passive rotation trajectory predictions will not come without a

great deal of work in measuring and characterising flight forces and moments. Rota-

tional moments in particular must be measured for a variety of wing shapes, sizes, and

flapping profiles. In spite of this lack of data, the blade-element method, when used

with published data, provides very good predictions of passive rotation trajectories.

It is eminently useful in the design of robotic wing hinges. These methods can now

be used, with confidence, to study achievable optimal kinematics under the reduced

input control available with a passive rotation system.

These experiments lay the groundwork for exciting future studies of natural in-

sect wings, and artificial wings that include distributed compliance. This work has

demonstrated the measurement of real-time forces and three-dimensional kinematics,

for at-scale flapping wings. Because the wings are mechanically driven, it is possible

to precisely control experimental parameters in ways not possible when working with

live insects. Since the experiments are at-scale, actual insect wings can be tested.

The demonstrated quality of the measured forces motivates future work focused di-

rectly on the aerodynamics. Methods to more precisely control flapping kinematics,

combined with flow visualization techniques, will compliment existing capabilities in

measuring and understanding detailed wing deformations and real-time forces.



Chapter 3

Flapping-Wing MAV Conceptual

Design

3.1 Introduction

The work in this thesis is a continuation of work by Wood [49] in developing the

Harvard Microrobotic Fly (HMF). To design this device, Wood pursued a simple,

yet elegant strategy. He chose the total mass for the vehicle (100 mg), and then

designed an actuator optimized for high energy density with a mass somewhat less

to leave room for a battery, airframe, etc. Then he looked at morphology data for

actual insects, and selected a flapping frequency common for insects of this mass

(Diptera, 120 Hz). With a chosen actuator stiffness and flapping frequency, he sized

the wing such that its inertia was low enough to flap at resonance at this frequency.

The passive wing hinge was sized by trial-and-error to achieve an optimal amount

of wing rotation. While batteries are not yet available to achieve untethered flight

52
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at this mass, Wood’s original design has been very successful, not only by his clever

engineering, but from the hints provided by nature.

In spite of this success, such bio-mimicry methods don’t carry any guarantee of

optimal performance, and without a more formal process, the influence of each design

parameter (wing length, vehicle mass, flapping frequency, etc.) on each performance

metric (flight endurance, speed, etc.) is not evident. It is also useful to establish design

sensitivities. Should I work more on actuator efficiency or aerodynamic efficiency?

Are there limits to the sizes and masses of feasible designs? This chapter develops a

formal process to answer these and other questions.

When trying to model an entire system, simplifications must be made to make an

analytical (or even numerical) solution tractable. The approximations of this vehicle

design model have been carefully chosen to preserve the influence of all relevant design

parameters which are of interest for a first-cut “clean sheet” conceptual design.

3.2 System dynamics

We shall model the actuator-transmission-wing system of a flapping vehicle with

an equivalent one degree-of-freedom (DOF) lumped-parameter (LP) linear model,

characterized by effective mass, stiffness, and damping coefficients. We seek analyt-

ical expressions associating these coefficients with a set of independent parameters

describing the properties and performance of the actuator, transmission, and wings.

Figure 3.1 shows a simplified flapping configuration with a single power actuator driv-

ing two wings, and the equivalent translational LP model. We assume that the wings

flap symmetrically in a horizontal stroke plane, with peak-to-peak flapping amplitude
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Figure 3.1: (A) Canonical flapping configuration consistent with our model: a single
linear actuator drives both wings symmetrically through an (assumed) linear trans-
mission, as viewed normal to the stroke plane. (B) Equivalent lumped-parameter
(LP) linear model used in our analysis.

Φ.

The wings are coupled to the drive actuator through a linear, lossless transmission

with transmission ratio T , where the time-varying flapping angle φ(t) and actuator

displacement x(t) are related by φ = Tx. The drive actuator is modeled as an ideal-

ized force source, characterized by its blocked force Fb and “static” or “free” deflection

δst. These values should be taken from operating conditions if DC measurements de-

grade at high frequencies. The effective mass m is the sum of the actuator effective

mass ma,eff and the effective mass of the wings 2IwT
2, where Iw is the mass moment
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of inertia of a single wing.

With the effective mass m and stiffness k = Fb/δst in hand, we need only the

damping coefficient b to complete our LP model. Damping results from aerodynamic

drag, labeled FD in figure 3.1, acting through the aerodynamic center of pressure at

radial position rcp. We use the blade-element model from chapter 2 to estimate lift

and drag. The damping force seen by the actuator during symmetric flapping is twice

the drag of one wing, reflected through the transmission,

Fdamp = 2FDr̂cpRT, (3.1)

where r̂cp is the non-dimensional radial position of the centre of pressure (r̂cp = rcp/R).

For a linear model, the damping force must be proportional to φ̇, but there is a φ̇2

dependence on FD. We replace the quadratic term φ̇2 with φ̇0φ̇, where φ̇0 is the

angular velocity at mid-stroke (φ = 0). This “secant” approximation is a standard

way to cope with a quadratic damping term [34].

Sinusoidal excitation, Fb cos(ωt), results in a displacement X cos(ωt− φp), where

X is the amplitude of linear translation, with phase φp. Using φ̇ = T ẋ and φ̇0 = ωXT

we find that Fdamp = ωXcẋ and b = ωXc, where

c = T 3ρC̃D
R5A r̂2

2
r̂cp. (3.2)

Notice that the damping coefficient b is a parametric function of the solution am-

plitude and frequency. Since it does not depend on x—only the parameters X and

ω—the LP model is still linear. Parametric dependence of b ensures the correct value

of φ̇0 is used in the approximation for different flapping amplitudes and frequencies.

Since c must be constant, CD(α) has been replaced with C̃D ≡ CD(α0), where α0 is

the angle-of-attack at mid-stroke. Since CD is fixed to the midstroke value, we expect
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errors in Fdamp away from φ = 0. In figure 3.2, the actual drag, computed using (3.1)

for sinusoidal flapping and rotation, is compared against the secant approximation

(dashed) for a range of values of α0. Notice how the faults of fixed CD are offset by our

previous fault in assuming φ̇2 → φ̇0φ̇, particularly for α0 = 35◦ and α0 = 45◦. Away

from mid-stroke we underestimate α (drag prediction low) and overestimate φ̇2 (drag

prediction high). For high wing pitching (small α0), a significant under-prediction of

drag levels occurs away from φ = 0. With less pitching (α0 large) the velocity error

dominates, and drag is over-predicted.

We now have analytical expressions for all the coefficients in our LP model,

mẍ+ ωXc︸︷︷︸
“b”

ẋ+ kx = Fb cos(ωt). (3.3)

The solution is computed using the usual methods, giving

X̂ =
q2

r2

[
−(1 − r2)2

2
+

√
(1 − r2)4

4
+
r4

q4

]1/2

, (3.4)

where X̂ is X/δst and r = ω/ωn, with ωn =
√
k/m the natural frequency. The

constant q is defined to be

q =

√
mk

cFb
=

√
m

cδst
. (3.5)

We assume hereafter that flapping in hover is designed to occur at the natural fre-

quency ωn, unburdening the actuator from the task of storing and returning negative

power. At r = 1, X̂ = q; thus, q is, by one common definition, the quality factor for

this system.

Experiments show that a linear LP model captures the primary resonance of

symmetric-flapping insect-scale MAVs [19]; high frequency behavior resulting from

structural modes, nonlinear harmonics and rotational dynamics are not captured.
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Figure 3.2: Our conceptual design model assumes sinusoidal flapping and symmetric
sinusoidal wing pitching. One half of a flapping period is plotted, with Φ = 115◦ and
α0 = 45◦. In the lower plot, damping force (arbitrary units) due to drag (solid) is
compared with the linear damping force (dashed) obtained with the secant approxi-
mation (φ̇2 → φ̇0φ̇ and CD(α) → CD(α0)).
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3.3 Energetics of hovering

With a model and solution for the dynamics of flapping, we can begin our con-

ceptual design. For a vehicle of a given wing radius R and weight W , we size the

actuator by first determining the required blocked force. At the natural frequency,

X̂ = q; when combined with (3.5) we find

Fb = cω2

nX
2. (3.6)

Note that we can easily transform any expression into its rotational equivalent; here,

Fb = cω2

nΦ2/(2T )2. We define the total and static total flapping angles (peak-to-

peak), Φ ≡ 2TX and Φst ≡ 2Tδst. To determine the required flapping frequency we

employ the constraint that at hover, W = 2L, where W is the total vehicle weight

and L is the stroke-averaged lift (thrust) generated by each wing, defined by our

conventions as the net vertical aerodynamic force. Substitute (2.20) into (2.22) and

take the average over one half-period,

L =
1

2
ρ
R5A r̂2

2

1

π

∫ π

0

CLmax
sin (2α(s)) φ̇2

0
cos2(s)ds. (3.7)

This yields

L =
1

2
ρ
R5A r̂2

2

1

2
C̃Lω

2T 2X2, (3.8)

where we have defined a mean lift coefficient

C̃L ≡ CLmax

2

π

∫ π

0

sin (2α(s)) cos2(s)ds. (3.9)

We do not incorporate the factor of 1/2 seen leading C̃L throughout the paper because

it represents the cos2(ωt) reduction in lift that results from sinusoidal flapping. If

we assume that wing pitching is also sinusoidal, then C̃L = 0.94CLmax
for the case
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α0 = 45◦; the reduction in effective CL is largely due to the sinusoidal flapping profile

and not wing pitching.

We substitute L = W/2 into (3.8) and rearrange to find the angular flapping

frequency required to maintain steady hover

ωn =
1

r̂2R2 1

2
Φ

√AW
1

2
C̃Lρ

. (3.10)

After substituting (3.2) and (3.10) into (3.6) we obtain the required blocked force

Fb = TW
C̃D

1

2
C̃L

r̂cpR. (3.11)

This simple result makes sense intuitively; the blocked force the actuator must supply

is proportional to the mean drag force, which is simply the vehicle weight divided by

L/D. The quantity T r̂cpR represents magnification of the drag force through the

transmission. In the wing-frame, the blocked torque is Qb = Fb/T .

3.3.1 Sizing the actuator

To develop a mass budget, we divide total vehicle mass mt into mt = mp+mb+ma,

the sum of payload, battery, and actuator masses. Here, “payload” refers to all non-

useful mass, including structure, sensors, control actuators, electronics, etc. Any

vehicle components which are not the actuator and battery must be accounted for.

We also define mass fractions µp = mp/mt, etc., for these components.

Lacking extensive data from successful designs, we shall assume a fixed value for

µp and decide how to divide the remaining mass budget 1 − µp between the actuator

and battery. The actuator is sized to deliver the required δst and Fb. Any remaining
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mass is left to the battery, µb = 1−µp −µa. Under this scheme, we have made µa an

independent variable; vehicle performance will drive its selection.

To develop a model for actuator mass, we follow the approach of [25], in which

the actuator is sized based on the energy it must deliver each flapping period and

the energy density Sa (i.e. J/kg) characteristic to actuators of its type. For a linear

bimorph actuator, this balance is given by

maSa = Fbδst. (3.12)

If the actuator requires power electronics or amplifier circuitry, then the mass of these

components must be accounted for by including them in µp or by reducing Sa.

It is very important to clarify that with this expression we are assuming a type of

actuator in which the actuation frequency and the flapping frequency are required to

be the same. This includes piezoelectric, electrostatic, SMA, EAP, and other linear1

strain-based actuators. Pneumatic, chemical, and insect flight muscles are other

examples. The only actuators that do not qualify are rotary-type (motors) which can

use a gearbox to decouple the actuation frequency from the flapping frequency. The

major weakness of linear actuators is that their power density will drop as flapping

frequency drops, while a motor can maintain peak power output and power density

with a gearbox.

If a motor is used, the designer might consider a helicopter MAV over a flapping-

wing MAV, especially for larger vehicles. There is some indication that revolving

wings outperform flapping wings in hover [28], but in practice, the superiority of

1Here “linear” refers to “action along a straight line”, not linearity of an actuator’s input-output

relationship.
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either approach has not been demonstrated conclusively for gram-scale and sub-gram

MAVs. Since helicopter design is not the focus of this paper, we will primarily consider

linear actuators, which are not appropriate for helicopter configurations.

Returning to (3.12), we substitute (3.11) to obtain

µa =
g

Sa

C̃D

C̃L

r̂cpRΦst. (3.13)

Based on this relationship, µa is no longer an independent design parameter—its value

is set when the designer selects R. Note that µa does not depend on vehicle weight,

but increases linearly with R. This means that for R large enough, no feasible design

is possible; as R increases, µa grows until µa = 1−µp, consuming all available vehicle

mass and leaving no room for a battery. This critical wing radius Rcrit sets an upper

bound on the size of the flapping vehicle, independent of vehicle mass,

Rcrit =
(1 − µp)

Φstr̂cp

C̃L

C̃D

Sa

g
, (3.14)

and thus the actuator mass fraction becomes

µa = (1 − µp)
R

Rcrit
. (3.15)

There is a limit to how small µp can be reduced and L/D maximized; Rcrit depends

primarily on the energy density of the actuator technology. To get an idea of the

magnitude of Rcrit we can make a few rough assumptions, namely: µp = 0.25; r̂cp =

0.6, this value is representative of typical insect wings [15]; sinusoidal flapping with

Φ = Φst = 115◦ and symmetric sinusoidal wing pitching with α0 = 45◦, which yields

C̃L = 1.8 and C̃D = 1.9 from the robofly coefficients and equations (2.20) and (3.9);

Sa = 1.5J/kg: this value is chosen because it is representative of both insect flight
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muscle [14] and piezoelectric bimorph actuators [51]. With these numbers (on Earth,

g = 9.8m/s2) we obtain Rcrit = 91mm. With less payload, better aerodynamic

efficiency or higher actuator energy density, larger-winged vehicles are possible.

For this example we have chosen q = 1 (Φ = Φst). It appears that a design

with q > 1 (Φ held constant) will reduce actuator mass and allow designs with

larger wings. Whether this is true or not depends on the details of the actuator.

For example, piezoelectric actuators are typically strain limited, not field limited, so

raising q results in an equivalent reduction of Sa. You can reduce Φ and Φst both,

maintaining q = 1, but experiments have shown that reducing flapping amplitude

is aerodynamically inefficient. The issue of high-q designs is complex, and demands

independent attention.

3.3.2 Flight endurance

We know the required actuator mass fraction, but which R and W do we pick?

Answering this requires a performance goal. We start by identifying designs that

maximize flight endurance, and later address flight speed and range. Endurance is a

good starting point because it speaks directly to the feasibility of a hovering MAV.

The expression for hover endurance is simply

tf =
Sbmb

P/η
, (3.16)

where Sb is the battery energy density, η is the electrical-to-mechanical efficiency

of the actuator and associated power electronics, and P is the mechanical power

consumed in flapping the wings. From our dynamic model of flapping, the expression
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for power consumption at r = 1 is

Pn =
1

2
FbωnX. (3.17)

Substituting Fb and ωn using (3.11) and (3.10) gives

Pn

W
=

√
2
C̃D

C̃
3/2

L

r̂cp

r̂2

√AW

ρR2
. (3.18)

This expression is ubiquitous in aircraft design—nearly identical forms exist for air-

planes and rotorcraft: P/W is proportional to the square root of wing loading or disk

loading, defined as W/S, where S is an airplane’s total wing area or the area swept by

a helicopter’s main rotor. Since tf is proportional to W/Pn, it is clear that minimizing

wing loading is critical to maximizing flight endurance. After substitution, we obtain

the following expression for flight endurance,

tf =

√
2

2
η
Sb

g

(1−µp)√
W

C̃
3/2

L

C̃D

r̂2
r̂cp

√
ρA R

(
1− R

Rcrit

)
. (3.19)

The dependence of flight endurance on wing radius is illustrated by figure 3.3. For a

wing radius R∗ = Rcrit/2, flight endurance is maximized. This quadratic dependence

onR results from two conflicting requirements: minimizing Rminimizes µa, increasing

available battery energy; maximizing R minimizes wing loading, reducing the power

required to hover. When R = R∗, actuator and battery mass fractions are identical,

µ∗

a = µ∗

b =
1 − µp

2
, (3.20)

and the expression for maximum flight endurance is

t∗f =

√
2

8
η
Sa

g

Sb

g

(1 − µp)
2

√
W

C̃
5/2

L

C̃2

D

r̂2
r̂2
cp

√
ρA 1

Φst
. (3.21)
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Figure 3.3: For a given vehicle weight, flight endurance depends quadratically on
wing length. When R = Rcrit, µa = 1 − µp, leaving no room for a battery, resulting
in a flight time of zero. Maximum flight time t∗f occurs at R∗ = Rcrit/2.

Why is there an inescapable reduction in tf asW increases? Flight time is inversely

proportional to P/W . Notice from (3.18) that maintaining P/W while increasing W

requires holding the wing loading constant; if we increase W , a concomitant increase

in R2 is required. Increasing R, however, is not possible; when raised above Rcrit,

savings from reduced power consumption are more than wiped out by the decrease

in flight time resulting from a smaller battery.

With a few more assumptions, we can generate representative flight endurance

numbers: we assume η = 10%, a figure again in line with piezoelectric actuators

and insect flight muscles [51][14]; r̂2 = 0.56 and A = 4, characteristic values for

insect wings [15]; Sb = 500kJ/kg, a typical value for lithium polymer batteries [25];

air density ρ = 1.2kg/m3. Our choice for Sb may be optimistic because we do not

account for capacity derating during high C-rate discharges.

In figure 3.4 we plot flight endurance over R and mt. Flight endurance continues
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Figure 3.4: Flight endurance (plotted in minutes) for two different payload mass
models. A fixed payload requirement results in a local maximum in flight endurance.
Assumed performance values for the battery, actuator, and aerodynamics are given
in the text.

to increase as mt decreases. Our assumption of constant lift and drag coefficients

breaks down for Re less than about 100, which corresponds to a vehicle mass of about

1mg. Variation of other parameters we have assumed to be constant is likely, such

as a probable increase of µp as W drops. Fabrication limitations prevent continuous

miniaturization of vehicle components. For example, if an additional fixed payload of

100mg is applied, a local maximum for flight endurance occurs, as shown in figure 3.4.

If variations in CL, CD, η, Sa, Sb, or µp with changes in R and W are known, either

from previous designs or more sophisticated models, these results should be modified

appropriately.

From these results it is clear that η are Sb are critical parameters, with a great

potential to increase flight endurance. Insects are fortunate to carry carbohydrate or
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fat energy stores with approximately 50 times the energy density of lithium polymer

batteries. Increasing the actuator energy density Sa will increase flight time, but

large improvements in Sa present diminishing returns unless the designer is willing

to increase R to follow resulting increases in R∗. We’ll see shortly that increasing R

negatively impacts flight velocity and range.

It is tempting to use these results to optimize wing shapes through variation of

r̂cp, r̂2, andA. Low aspect ratios, for a fixed R, decrease wing loading by increasing

wing area. However, low A wings may suffer reduced lift and drag coefficients from

increased tip loses and a reduction in chord-normalized flapping amplitude. Addition-

ally, our simplified estimates of lift and drag do not account for induced flow effects

and their dependence on wing size and shape. Detailed optimization of wing shape

and flapping kinematics are second-order effects to be investigated experimentally at

a later design stage.

3.3.3 Flight speed and range

A simple way to predict flight speeds uses the advance ratio, a non-dimensional

parameter, J , defined as the ratio between forward flight speed V and the mean

wingtip velocity,

J =
V

2ΦfR
. (3.22)

From this expression we can estimate V by assuming a “reasonable” cruise value for J .

A recent flapping MAV capable of controlled hover and forward flight has a reported

advance ratio of 0.5 at top speed [26]. As J approaches and exceeds 1, our in-hover

model cannot accurately predict lift and drag; a tilted stroke plane is required to
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overcome rising parasitic body drag, and the relative velocity from forward flight is

non-negligible in modeling wing aerodynamics. These issues will affect our ability to

accurately predict power consumption and maximum range. Classically, aircraft and

helicopters benefit from a reduction in induced drag as flight speed increases, but this

is not universally observed in metabolic data from insects [14]. The following analysis

seeks only the basic scaling of vehicle range at small J , assuming power consumption

is constant with flight speed. We begin by substituting the flapping frequency (3.10)

into (3.22) to obtain

V =
2J

πr̂2R

√AW
1

2
C̃Lρ

. (3.23)

Achieving high flight speed implies heavy vehicles with small wings. This trend

toward smaller wings conflicts with the prescription for maximum flight endurance,

which is to grow the wings until reaching the energy density limits of the actuator.

Using the results for V (3.23) and tf (3.19), an estimate of range dmax is obtained,

dmax = η
2J

π

Sb

g

C̃L

C̃D

1

r̂cp

(
1 − R

Rcrit

)
(1 − µp). (3.24)

Range is not a function of vehicle weight W ; it decreases linearly from a maximum

at R = 0 (obviously pathological) to zero when R = Rcrit. An endurance-optimized

design achieves half the maximum theoretical range. Since flight endurance depends

quadratically on R in the neighbourhood of Rcrit/2, a balanced design (e.g. R =

Rcrit/4) might trade a small endurance penalty (−25%) for a larger gain in range

(+50%).
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3.4 Flapping dynamics and wing structural-inertial

efficiency

For every R–W combination there is a unique flapping frequency, given by (3.10),

which ensures L = W/2. Actuator stiffness k = Fb/δst is also fixed by this combina-

tion; wing inertia is then set to achieve the required frequency ωn =
√
k/m. Since

wing inertia cannot be reduced indefinitely, there may be regions of the design space

where hover cannot be achieved. To explore this limitation, we need a predictive

model for wing mass moment of inertia Iw as a function of R and W .

Lightening the wings will negatively impact their structural performance. To

determine the lightest feasible wings we must establish a wing stiffness criteria. We

model each wing as a beam with mean cross-sectional area Ac, length R, and mean

density ρw. Under these assumptions, wing inertia Iw scales as

Iw ∝ ρwAcR
3. (3.25)

Bending stiffness requirements determine Ac. The actual loading and deflection of a

wing is very complex; we are only interested in how wing deflection scales with changes

in wing length R and vehicle weight W . To assess wing stiffness, we hypothetically

clamp the wing at its base and load it at the tip with a force equal to the vehicle weight

W , and measure the resulting tip deflection w. The Euler-model of beam-bending

yields

w ∝ WR3

EwIw,a
, (3.26)

where Ew is the Young’s modulus and Iw,a is the second moment of area of the beam
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cross-section. Following Ashby [4], we write the second moment of area as

Iw,a = I0φ
e
B =

A2

c

4π
φe

B, (3.27)

where I0 is the second moment of area of a circle, and φe
B is the shape factor of

the beam cross-section. High-efficiency shapes, such as I-beams, have a large shape

factor; corrugations in insect wings contribute to a high shape factor. We substitute

this expression into (3.26), substitute the non-dimensional tip deflection ŵ = w/R,

and solve for cross-sectional area:

Ac ∝
√
WR√
Ewφe

Bŵ
. (3.28)

Substituting into (3.25) we obtain,

Iw =

√
WR4

M1

, (3.29)

where we have defined,

M1 ≡ φw

√
Ew

ρw

√
ŵ, (3.30)

a performance measure of the wing’s structural efficiency, which we seek to maximize.

The term φw is an over-all measure of wing structural-inertial efficiency, encompassing

φe
B and efficiency improvements from wing tapering. We recognize

√
Ew/ρw as the

classic material selection figure-of-merit for bending stiffness [4]. Permitting more tip

deflection (larger ŵ) reduces the stiffness requirement and allows wings with lower

inertia (larger M1). We cannot easily calculate M1. This would require detailed

knowledge of the shape and mass distribution of the wing, and determination of ac-

ceptable tip deflection ŵ. For a conceptual design, it is much easier to empirically

determine M1 from insect and artificial wing data using (3.29). If our scaling as-

sumptions are correct, M1 will show little variation with R and W , as it represents
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a wing “technology factor” with respect to inertial and structural efficiency. With a

representative value for M1, we can estimate the minimum achievable wing inertia

for each R–W combination.

Insect wing data is a good source for testing the scaling prescribed by (3.29); using

data from reference [15], figure 3.5 plots M1, derived from reported values of R, W ,

and Iw. Also included is a carbon fibre artificial wing, as reported in [30]; for this

wing, W is set to the maximum lift obtained from a pair of these wings in tethered

flight testing. This wing is representative of the “state-of-the-art” in artificial wing

fabrication; the spars are laser-cut unidirectional ultra-high modulus (UHM) carbon

fiber prepreg, cured and bonded to a 1.5µm polyester film. While bending tests

have confirmed that these wings are comparable in stiffness to similarly-sized natural

wings [45], their moment of inertia is higher, yielding low M1 values (∼ 70) relative

to most natural insect wings.

This Iw-scaling analysis is one of many plausible schemes. For example, it could

be assumed that wing cross-sectional area scales with R2 or that wing inertial loads

drive bending stiffness criteria; basic dimensional analysis might predict Iw ∼ WR2.

We could not, however, find an alternative scaling method with better correspondence

to published insect wing data. Figures-of-merit derived from these schemes showed

much stronger dependence on R and W . Future work in optimizing wing structural-

inertial efficiency may improve our understanding of the scaling of Iw—particularly

with respect to artificial wings—but the chosen scaling is adequate for the conceptual

design phase.

With an estimate for the minimum achievable Iw, the maximum achievable flap-
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ping frequency is ωmax =
√
κ/(2Iw +ma,effT−2), where κ = k/T 2. Comparing this

maximum frequency with the required frequency (3.10), we obtain a minimum wing

radius,

Rmin =
ΦstA√

W

M1r̂cpr̂
2

2
C̃Dρ

1

4
Φ2
, (3.31)

where we have assumed that the actuator effective mass is a negligible contributor to

overall effective mass. This assumption is tested for high mass vehicles, but achievable

transmission ratios—up to 3 rad/mm in a single-stage flexure-based transmission is

feasible without extraordinary effort—are sufficient to reduce actuator effective mass

to an insignificant level.

For a given W , designs with a wing radius below Rmin cannot flap with a natural

frequency high enough to generate sufficient lift to hover. Figure 3.6 repeats the

performance plots of figure 3.4 with equation (3.31) overlaid. Feasible designs must

lie above the inertia-limit curves. For large enough M1, maximum endurance is not

restricted, but fast or heavy long-range designs may still be limited. Where the

inertia-limit curve crosses the horizontal line R = Rcrit, we find a hard upper-bound

on vehicle weight,

Wmax =

[
M1(1 − µp)

Sa

g

C̃Lr̂
2

2
ρ

4A (
Φ

Φst

)2
]2

. (3.32)

Using our previously-set representative values, we find maximum vehicles masses of

12 and 20 grams for M1 = 70 and M1 = 90, respectively. While it is exciting to

speculate on the implications of this equation, particularly with respect to establishing

an upper bound on, say, hummingbird mass, the quadratic dependence on nearly all

parameters, especially Sa, M1, and µp, precludes accurate predictions. On the other

hand, the scaling trend is clear: there are limits on the maximum feasible weight for
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Figure 3.6: Wing structural-inertial limits, for different values of the M1 figure-of-
merit overlay flight endurance results from figure 3.4. Feasible designs must lie above
these curves.

hovering MAVs.

The existence of large helicopters appears to contradict this result. We determined

Wmax by equating the expressions for Rmin (3.31) and Rcrit (3.14). However, Rcrit is

only defined for linear-type actuators; if a motor-and-gearbox drive the wings, this

expression does not apply. If the actuator is characterized by its power density, S ′

a,

then the actuator-sizing equation—(3.12) for linear-type actuators—is replaced with

Pn = S ′

aµamt, and the expression for actuator mass fraction becomes

µa =
g

S ′

a

Pn

W
, (3.33)

There is no upper-limit on R; as wing length increases, actuator size and aerody-

namic power decrease monotonically. From (3.33) it is straightforward to re-derive

expressions for flight endurance and range. However, previous results for aerodynamic
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power (3.18) and flight speed (3.23) remain the same. Wing inertial-structural limits,

and the expression for Rmin are also unchanged.

3.5 Wing optimization

From these results it is clear that simply maximizing C̃L is not sufficient to achieve

maximum performance. Equations 3.19 and 3.21 indicate that a wing which maxi-

mizes C̃
3/2

L /C̃D or C̃
5/2

L /C̃2

D, respectively, will achieve maximum performance. These

expressions also prescribe a particular combination of r̂cp, r̂2 and A for maximizing

flight endurance. However, the highly three-dimensional nature of the flow-field calls

into question the validity of the cutting the wing into strips, assuming completely

two-dimensional sectional flow, and integrating radially. The force scaling is most

likely correct, but the leading order constants are not necessarily of great predictive

value.

When testing different wings, we will report nondimensional coefficients using

equation 2.18, rather than the more complex form of equation 2.22. With a reference

velocity V equal to the mean tip velocity 2ΦfR, and a reference area S = Rc̄, we

obtain

C̄L =
AL̄

2ρΦ2f 2R4
(3.34)

and, for the mean power consumption, we define

C̄P =
AP̄

4ρΦ3f 3R5
. (3.35)

L̄ is the mean lift and P̄ is the mean aerodynamic power consumption. We have

defined C̄P through the expression P̄ = C̄PpdynSV . With these definitions, it is
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straightforward to derive alternative forms to 3.19 and 3.21 more amenable to the

reduction of experimental data,

tf = ηSb

√
ρ

2AW

(1 − µp)

g

C̄L
3/2

C̄P

R

[
1 − R

Rcrit

]
, (3.36)

t∗f = η
SaSb

g2

√
ρ

2AW

(1 − µp)
2

4Φ

C̄L
5/2

C̄P
2
. (3.37)

Thus, the relevant figures of merit are C̄L
3/2
/(C̄P

√A) and C̄L
5/2
/(C̄P

2
Φ
√A). Low-

eringA is advantageous because, for a fixed wing length, this indicates a larger wing

area, and therefor a lower wing loading. In these experiments we only considered

C̄L
3/2
/(C̄P

√A) as a figure of merit because of technical limitations that prevented

us from testing all wings over a large enough range of Φ to allow a fair comparison

based on the latter figure-of-merit.

These results indicate that a low aspect ratio (large area) wing flapped at as low

a total flapping angle Φ as possible is optimal. However, both of these conditions, in

the extreme, will likely lead to unfavorable aerodynamics and thus a drop in C̄L and

a rise in C̄P .

3.5.1 Experimental setup

The experimental setup from chapter 2 was modified in a few ways. First, an

optical displacement sensor was installed, allowing real-time monitoring of the flap-

ping angle via a measurement of the actuator deflection. A calibration table was

constructed mapping the actuator deflection to the flapping angle, φ. Additionally,

isolating amplifiers and precision shunt resistors were installed, allowing real-time

measurement of the current (and therefore electrical power) flowing to the drive ac-
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Figure 3.7: Wings tested to investigate the influence of aspect ratio and shape.

tuator. To remove the effect of dielectric losses, a large calibration set was taken by

driving the actuator over a wide frequency range at several voltages, with no wing

attached. These power measurements were subtracted from power values taken when

driving a wing.

Figure 3.7 shows the five different wings tested. They all have R = 15mm, and

their aspect ratios and r̂1 values were selected to cover a common range spanned by

actual insect wings [15]. For each r̂1, the value of r̂2 was selected using equation 2.2.

Planform shape was determined by equation 2.3 for all wings. The leading edge profile

was chosen arbitrarily. The wing hinge axis is positioned to intersect the wing tip.

Spar thickness was chosen based on experience with wings of similar size, thickened

slightly to ensure the wings remained flat during testing, so as to remove that variable

from consideration.

All wings used the same wing hinge, and were flapped over a wide range of fre-
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quencies at several operating voltages. Each test consisted of a sweep from 50–200 Hz

or 50–300 Hz, with 10 periods for each 1 Hz step concatenated together. Averaged

over each 10 period sequence, Φ, L̄ and P̄ were measured. Figure 3.8 presents sample

data for the caseA = 2.5. As flapping frequency is increased, the wing rotates more

and more. At some point, the amount of rotation leading to a maximum value of C̄L

is reached. Usually at a slightly higher frequency, the power factor C̄L
3/2
/(C̄P

√A)

reaches a maximum. This is because optimal power efficiency results at a slightly

lower angle-of-attack (higher ψ) than the point of maximum C̄L. The plot of flapping

amplitude in figure 3.8-A indicates resonance. While, for testing purposes, it is highly

desirable to test well below the frequency of actuator-wing resonance, the reality is

that an actuator stiff enough to arrange this will lead to a large reduction in the

sensor bandwidth due to increased load mass. Not only will this prevent the accurate

measurement of real-time forces, but damping losses from the sensor beam itself will

begin to corrupt the electrical power measurements.

Figure 3.9 presents the results from testing all five wings. Each point represents

the optimal operating point from the sweep over flapping frequency. The high aspect

ratio wing (A = 5) performs rather poorly. This might be explained by the hypothesis

that since the wing chord is smaller, the wing travels more chord-lengths each flapping

cycle, and is effectively translating rather than rotating, relative to the lowerA wings.

This leads to a reduction in the vortex-stabilizing effect of centrifugal acceleration [28].

To some degree, we expect that higher A wings will perform better as a result of a

decrease in tip-losses, but such a phenomenon is not observed here. The lower aspect

ratio wings (A = 2.5 and A = 3.5) have quite similar performance, and indicate
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additional testing with even lower aspect ratios.

There appears to be a general trend where C̄L increases as flapping amplitude Φ de-

creases. Without detailed measurements of rotation kinematics it is difficult to spec-

ulate on the reason for this trend. Previous scaled-model experiments [28, 11] used

fixed-α flapping kinematics during most of the mid-stroke, rather than the mostly-

sinusoidal variation resulting from sinusoidally-driven passively-rotating wings. Power

factor remains more or less constant over the ranges of Φ tested, and is seen to drop

off precipitously for A = 2.5 below approximately Φ = 35◦. It is expected that this

drop will occur at higher Φ as A is decreased. We might expect an improvement in

power factor as Φ increases, through a reduction in “disk loading”, but again, a full

understanding of the absence of this effect requires detailed measurements of ψ(t).

For these experiments, such data would require automated tracking of hundreds of

thousands of video frames—a goal we are working toward, but not yet achieved. Al-

ternatively, additional on-line optical sensors could be installed to measure ψ in real

time.

Plot (B) in figure 3.9 examines the influence of wing shape by varying r̂1. As a

result of different values of r̂2, we find that C̄L increases as r̂2 increases, as expected.

The power factor for r̂1 = 0.45 is not plotted because the power factor did not peak

until above system resonance, so the rotational kinematics would be quite different

and not comparable to the other cases. In retrospect, it would have been better to

hold r̂2 constant and change R for different values of r̂1. This would ensure the wings

would develop their optimal performance with similar magnitudes of lift. If a softer

wing hinge was used for the r̂1 = 0.45 wing, it would obtain a peak power factor at a
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lower flapping frequency, but then the magnitudes of lift force and power consumption

would be lower, reducing accuracy of the measurements.

These preliminary experiments have produced interesting results, but also un-

covered several limitation to the current flapping experimental setup. The power

calibration curves in figure 3.8-D should be straight lines—dielectric losses scale lin-

early with input frequency. However, there are resonances in the flapping device

which cause deviations from this linear behavior. If the behavior of these modes is

completely linear, then the calibration data will yield the correct power consumption.

However, if the system is nonlinear, when a wing is installed and flapped, these extra

modes may consume more or less power than predicted from the unloaded calibration

at that particular frequency. Stiffer wing drivers are certainly in order.

There are also problems with stability of the capacitive force sensors. Each sensor

probe is held by a two-axis angular positioning mount, allowing the probe and target

plate to be aligned parallel to one another. Linear stages allow precision adjustment

of the gap between sensor and target. However, these mounts are subject to creep

and stiction, and occasionally the force measurements have small jumps or other

problems. Next generation force sensors should remove all adjustment stages from

the target-sensor force loop and “machine-in” the required alignment accuracy, for

example by using precision-machined fixtures to hold the Invar sensor beam during

laser welding.

We continue to have problems with wing hinge degradation. By using a discrete

wing hinge, inertial and aerodynamic forces are concentrated at the hinge. It is also

hypothesized that thermal effects are affecting results, due either to heating at the
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wing hinge from repeated flexing, or heat generated by the actuator itself. Convec-

tive cooling from wing airflows may also affect force measurements. Thermocouple

instrumentation of the drive actuator and sensor beam should be employed to diag-

nose these problems.

3.6 Discussion

There are several important results worth summarizing. When driven by linear

(non-gearbox) actuators, a reduction in flapping frequency decreases actuator power

density. This sets up a conflict between minimizing aerodynamic power and maximiz-

ing actuator power density. For fixed payload mass fraction, there is a fixed maximum

wing length, independent of vehicle mass; endurance-maximizing designs will have a

wing length half this maximum. For these designs, the battery mass fraction and ac-

tuator mass fraction will always be equal, no matter their respective energy densities.

Using a motor and gearbox to drive the wings removes the upper limit on wing size,

allowing high-mass designs that are not feasible when using linear actuators.

Wing inertia determines the maximum possible flapping frequency, which sets a

lower bound on wing length and an upper bound on flight velocity. These bounds

hold for both linear and motor actuators, but for linear actuators, finite wing inertia

also leads to a limit on maximum vehicle mass. Physical reasoning and morphological

insect data indicate that wing mass moment of inertia scales, roughly, as the product

of wing radius to the fourth power and the square root of body/vehicle mass.

Opportunities for improvement and expansion of these models are manifold. If

the type of actuator is known, then an improved model of power efficiency can be
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included. For example, the low efficiency of piezoelectric actuators results primarily

from dielectric losses; a loss model can replace the generic efficiency factor used here.

If chemical or pneumatic actuators are used, the effect of time-varying mass can

be included. Structural models and experimental data can replace the assumption of

constant payload mass fraction. Payload models are easily modified to include known

masses, such as processing and power electronics, sensors, and other fixed payloads.

Our conceptual design does not yet cover the control system. Many different

control schemes are under active research, and clear winners have not yet emerged.

The designer is forced to complete a detailed control system design before performing

vehicle sizing. In time, the performance characteristics of the best control methods

will be determined, and these data will provide preliminary mass and power estimates

of the control system, allowing sizing and performance calculations to be performed

before the detailed design phase.

Past the conceptual design phase, further refinements include detailed selection

and modelling of flapping kinematics, transmission design, passive or active wing

rotation design, wing testing and planform selection, and design and modelling of a

vehicle control architecture; existing research on these topics is extensive.

It would be unwise to draw quantitative conclusions from any numerical results

presented; for different actuator types and battery technologies, there is a large varia-

tion in energy density and efficiency—specifications which have a tremendous impact

on system performance. In spite of this, the analytical results present clear design

trends worthy of examination. MAVs driven by linear actuators are most appropriate

for low-mass designs. As vehicle mass drops, there is greater flexibility in selecting



Chapter 3: Flapping-Wing MAV Conceptual Design 84

wing size, and flight endurance rises; fabrication limitations will set the minimum

feasible size. As vehicle mass rises, at some point it becomes necessary to switch to

motors. The precise cross-over mass—perhaps in the range of a few grams—depends

on the efficiency and performance of available motors and linear actuators. Once the

switch to motors is made, the designer must consider the advantages and disadvan-

tages of moving to a helicopter design. It is not yet clear if flapping MAVs are faster

or more maneuverable than their helicopter counterparts.

Flapping-wing MAVs show promising advantages, especially at the scale of small

flying insects. Advances in fabrication and miniaturization continue to expand the

feasible design space of these tiny vehicles, but the dependence of vehicle performance

on design parameters is not always direct or intuitive. Designs must meet a range

of competing performance requirements, such as size, payload, flight endurance, and

speed. Optimizing indirect quantities, such as power consumption and lift, is an

incomplete approach. Traditional aircraft conceptual design methods provide a model

for balancing design requirements and optimizing performance. These ideas are easily

and powerfully adapted to flapping-wing MAVs; useful not only for current designs,

but in efficiently directing future research efforts to improve performance.
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Microfabrication

4.1 Introduction

Previous chapters have demonstrated the feasibility of all-axis control authority

for insect-scale MAVs, sufficient lift to hover and maneuver, and adequate energy den-

sity of batteries and actuators for flight times on the order of minutes. Manufacturing

challenges have forced the development of simplified designs and highly underactuated

flapping mechanisms. As a result, these MAVs achieve only a very basic level of ma-

neuverability, and in practice, stability margins are very slim. This stands in contrast

to the amazing maneuverability and adaptability of actual insects. They are capa-

ble of complex aerial acrobatics as well as crawling and jumping behaviors. Future

designs can only hope to develop this level of performance with more sophisticated

mechanical designs, supported with many sensory inputs and multiple control actu-

ators. Manufacturing techniques capable of providing this level of three-dimensional

complexity and electromechanical integration in millimeter to centimeter-scale devices

85
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did not previously exist.

Many machines realize greater performance and economy if made smaller. How-

ever, when shrunk to millimeter and micron sizes, new challenges arise in their con-

struction. Monolithic fabrication must replace traditional methods, enabling efficient

batch processing while eliminating the onerous assembly and handling of individ-

ual components. Integrated circuit technology has strongly influenced and informed

this monolithic approach. Fabrication techniques include optical lithography, phys-

ical and chemical vapor deposition, spin coating of polymers, electroplating, ther-

mal treatment, chemical and plasma etching, abrasive polishing and laser machining.

Micro-devices with a variety of electrical and mechanical functions manufactured us-

ing these (and other) techniques are named microelectromechanical systems (MEMS).

Many MEMS devices have found wide commercial success, including miniaturized ac-

celerometers, gyroscopes, displays, electrical and optical switches, scanning mirrors

and pressure sensors [24]. The success of these devices is due not only to the increased

performance and reduced costs associated with miniaturization and batch fabrication,

but to their tolerance of the limitations imposed by monolithic fabrication using in-

tegrated circuit techniques.

Most MEMS devices are made using surface micromachining [9]. Material is

deposited onto a substrate, masked, and then etched. These steps are repeated to

build up layers. As most methods of deposition are isotropic, chemical-mechanical

polishing is often used to planarize each layer. Free-standing mechanical structures

are created by removing sacrificial material or etching undercuts. When multiple

materials are used, earlier layers must survive later deposition, etching, and thermal
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treatment steps, potentially limiting the combinations of materials that can be used.

Complex MEMS devices may have several material layers and require hundreds of

sequential process steps. This highly serial nature compounds the impact of defects

introduced at each step. To achieve economical device yields it is then necessary

to reduce the number of layers and shrink the size of the individual devices. Most

commercially successful MEMS devices are not hindered by a restriction to planar

structures, material limitations, or increasing miniaturization. Indeed, many of the

devices previously listed consist of a silicon structural element oscillating at high

speed along a single axis. These requirements are well met by tiny, planar silicon

components. Silicon has excellent specific stiffness and low thermal distortion, and

processing methods are well-developed [31].

There is strong interest in constructing non-planar miniature devices that do not

conform to traditional MEMS processing. Insect-scale MAVs, in particular, would

be very challenging to make using surface micromachining. There are practical lim-

itations on the types and thicknesses of material that can be deposited by vapor

deposition, spin coating, and electroplating. It is not practical to use more than a

few device layers. Bulk machining—a technique in which multiple substrates are ma-

chined separately and then bonded together—is an alternative MEMS process which

eliminates the need for sequential planarization and allows layer substrates to be pro-

cessed in parallel. Bulk machining enables thicker layers and allows for a wider range

of layer materials. It has been used to create a variety of structurally complex minia-

ture devices, including gas turbines [20], multi-axis force sensors [7], and microfluidic

devices [1].
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To overcome planar limitations inherent to MEMS, there have been many efforts

to create three-dimensional structures through folding. Surface machined pin-and-

staple hinges [32] and polymer flexures [42] are two common methods used to create

folding linkages. Schemes to exploit deposition stresses [3] or solder/polymer surface

tension during reflow [43] are common ways to induce folding. Co-fabricated assembly

actuators [36], though bulky, allow for a highly controlled fold sequence. If latching

mechanisms are present, stochastic assembly through simple agitation might also be

used.

4.2 Smart Composite Microstructures

Work at Berkeley in support of the MFI project led to the development of the

so-called smart composite microstructures (SCM) fabrication process [50]. These

techniques were inspired, particularly, by previous work in folding MEMS. SCM was

developed to create devices at MEMS-scale but with a wider range of materials,

including high performance carbon fiber composites. It was also realized that flexure-

based mechanisms avoid the unfavorable scaling of friction forces seen by sliding

bearings as sizes shrink. An example MFI device is shown in figure 4.1. Each wing

is driven by two actuators which are coupled to the wing through a spherical 5-bar

transmission. This allows direct control over the flapping and pitching of the wing.

Figure 4.2 illustrates the main concept behind SCM. The device is designed such that

individual parts can be manufactured as rigid-flex laminates which are manufactured

flat, and then folded up into “origami” components. These flexures are similar to

those used on the wing hinge shown in figure 2.3. These flexure hinges in the rigid-
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Figure 4.1: MFI prototype [18]. A spherical five-bar drive mechanism for one of the
wings is highlighted.

flex laminate serve either as assembly fold-points or as mechanism flexures in the

device.

Figure 4.3 illustrates the process of machining and laminating a 2D rigid-flex

laminate. Laser machining and sequential lamination are used to build up the required

layers. The rigid layers are made of unidirectional carbon fiber, pre-impregnated with

an B-staged resin. During the bonding cycles, this resin is cured, adhering the rigid

layers to adjacent flexible layers. Unfortunately, several problems plague this process.

First, each layer of each part must be aligned by hand. These tiny parts are frequency

only 1 millimeter or smaller in size, and each layer of each part must be handled

individually and aligned under a microscope. There is also a tendency for the resin to

flow into flexure gaps during bonding. A lower curing pressure relieves this problem,

but at the expense of decreased bonding strength—rigid links frequently de-laminate.

Figure 4.4 is the result of an exercise to build the smallest flapping-wing MAV

demonstration device possible with the SCM process. This device weighs only 8
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5 mm

(1) 3D CAD design

(2) Fabricate 2D rigid-flex laminate

(3) Hand-fold
      and glue

Figure 4.2: First, a 3D model of the part is constructed (A). Then, a scheme to
flatten the 3D part into a 2D rigid-flex laminate is designed (B). After this part is
manufactured, it is manually folded and glued into final form (C).
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Figure 4.3: Process of making an SCM rigid-flex flat laminate.
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A B

C

250 µm

Figure 4.4: (A) An 8 milligram “micro-fly” demonstrator device. (B) Close-up of the
transmission and wing hinges. (C) Transmission component prior to folding.
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milligrams, flaps its wings at 600 Hz, and fits into a box only 10 millimeters on a

side. Each part (actuator, airframe, wings (×2), wing hinges (×2), transmission) was

fabricated separately and hand-assembled. The close-up view (B) clearly shows its

“hand-crafted” character: misaligned and asymmetric parts, blobs of glue, etc. In

(C) the transmission is shown pre-folding, and cutting debris and resin are clearly

seen in the flexure gaps.

The SCM process, with great effort, can produce functional devices. However, the

level of manual skill required is very high, and each device is slightly different and

always asymmetrical. These problems not only extend the design cycle, but cause

challenges when trying to operate and control devices in flight.

4.3 Printed-Circuit MEMS

To address the shortcomings of SCM fabrication, a new approach was developed,

which has been named Printed Circuit MEMS (PC-MEMS). The name reflects the

source of primary inspiration, the manufacture of high density rigid-flex printed circuit

boards (PCBs). In particular, we have adopted adhesive bonding, mechanical layer

alignment and parallel lamination—all common PCB fabrication methods.

Multilayer PCBs use precision dowel pins to maintain alignment during lamina-

tion. Alignment holes are punched or laser-drilled in each layer. The laminate is

placed between precision die plates with relief holes for the alignment pins and then

bonded in a heated press. Multiple layers are easily aligned and bonded simultane-

ously. Since mechanical alignment persists throughout the bonding cycle, misalign-

ment from adhesive shearing and layer migration is largely eliminated. The challenges
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of achieving high bond strength, low adhesive flow, and high accuracy alignment are

well understood, and a wide array of highly optimized materials, tools and techniques

are commercially available to support high-accuracy parallel lamination.

Our process, shown in figure 4.5, begins with the production of multilayer lami-

nates. Individual layers are first bulk machined to define part geometry (A). Layers—

post machining—must remain contiguous to preserve structural integrity of the layer

and provide a stable mechanical connection from each device component to the align-

ment pins. Usual practice is to machine features while leaving small tabs or “bridges”

connecting parts to the surrounding bulk material, similar to break-off tabs in panel-

ized circuit boards. After lamination, a second round of machining, the “singulation”

step, will free the individual parts. Any method of machining that is sufficiently accu-

rate and compatible with the layer materials can be used. For our research purposes

we use laser micromachining for its mask-less nature and compatibility with a wide

range of materials. We employ a diode pumped Nd:YVO4 laser, q-switched and fre-

quency tripled to 355nm. Maximum average power is 1.5W, which we find sufficient

for machining layers in the 1 to 150µm thickness range. The beam is focused to a

spot approximately 8µm in diameter using a telecentric objective lens. Full-range

accuracy and repeatability of beam/part positioning is 2µm or better.

After each layer is machined, optional steps—such as electropolishing, ultrasonic

cleaning and plasma treatment—may be performed to prepare each layer for lamina-

tion. In flex circuit construction, circuit layers are usually bonded with acrylic sheet

adhesives. PCB sheet adhesives are highly engineered materials with tailored thermal

expansion properties, and they exhibit very little flow during the bonding cycle. We
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Figure 4.5: (A) machining of each laminate layer. (B) Layers are aligned using
precision dowel pins and laminated in a heated press. (C) After lamination, devices
are freed from the surrounding frame by a second machining pass. (D) The completed
device is folded into shape.
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use Dupont FR1500, a commercially-available acrylic sheet adhesive, 12.5µm thick.

The adhesive is used in two ways; it is either machined with alignment holes and

included as a free-standing layer, or it is tack-bonded to an adjacent layer. For either

technique, laser machining is used to pattern the adhesive. Other adhesives or meth-

ods of adhesion could certainly be used, but we find the combination of properties

present in this type to be suitable for our purposes.

After stacking the layers, the layup and tooling are placed in a heated press for

bonding (B). The typical lamination cycle used was one hour at 190◦C with 400kPa

of pressure. Alignment accuracy is determined by several factors: alignment hole

and pin accuracy, coefficients of thermal expansion for each layer material, bonding

temperature, and the laminate dimensions. For alignment, we use precision dowel

pins (1/16in); layer material permitting, alignment holes are undersized by a few

microns to exploit elastic averaging. In practice, post-lamination alignment is better

than 5µm. The exact accuracy is difficult to measure since the material uniformity

and edge roughness of our current materials and machining process are of a similar

scale.

SCM requires two lamination steps, and each layer for each part must be handled

and aligned individually. In the PC-MEMS process, there is only one lamination step,

and all layers are aligned mechanically rather than manually. Hundreds of parts can be

manufactured in parallel without individual handling, similar to the “panelization”

of PCBs. These techniques have dramatically improved the quality, accuracy, and

uniformity of parts made. Fabrication time has been reduced from approximately

one week to less than one day, dramatic increasing the number of designs and design
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variations that may be explored.

4.4 Advanced PC-MEMS

These techniques have been advanced further still1. Now that alignment is achieved

by mechanical means, it is feasible to laminate many layers together at once (up to

18 layers at once has been achieved). It is then possible to make very complicated

structures akin to “pop-up books”. Such complexity allows devices to be made out of

fewer parts, each of greater complexity; in the extreme, devices may consist of a sin-

gle part. Similarly, assembly degrees-of-freedom may be reduced, even down to one.

Another advance is the replacement of manual gluing with reflow or wave soldering

to freeze assembly degrees-of-freedom. Figure 4.6 gives a high-level overview of this

advanced process and figure 4.7 shows several devices that have been manufactured

using these techniques. A full account of these methods and devices are beyond the

scope of this thesis, but may be found in references [48] and [41].

Previously, fabrication concerns have limited vehicles to very simple configura-

tions. With clever design, it is possible to create vehicles with a very simplified me-

chanical design which can achieve basic stability and control. These new fabrication

methods enable future designs which restore functionality and complexity, allowing

the gap between MAV performance and insect performance to be closed. Advanced

flapping and control mechanisms, integrated sensing, and greater maneuverability are

all possible through advanced PC-MEMS and monolithic design.

1Expanded PC-MEMS methods were developed in collaboration with P. S. Sreetharan.
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Lamination

Micromachining

Folding

Locking

Micromachining

Fabrication

Assembly

Release

Pick-and-place

Figure 4.6: PC-MEMS has been extended to the creation of multi-level rigid-flex
laminates. The most sophisticated devices consist of only one part which assembles
with a single degree-of-freedom. This assembly degree-of-freedom is then fixed with
a re-flow or wave soldering step, removing the need to manually glue parts together.
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A B

C D

Figure 4.7: (A) 1:900 scale model of the 1903 Wright Flyer [48]. This device is
laminated in one step, and folds with a single degree-of-freedom. Wing span is 14
millimeters and wing spars are 100µm by 100µm in cross-section. (B) A flapping-wing
MAV which is laminated in two steps, assembles with a single degree-of-freedom, and
is bonded with wave soldering, using the process shown in figure 4.6. A complete
description is given in [41]. (C) A 500-link carbon fiber chain, manufactured mono-
lithically with no assembly [48]. (D) This PC-MEMS device self-assembles through
the use of a pre-strained elastic layer integrated into the laminate [48].
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Conclusions and Future Work

This thesis work was completed as part of a larger project at Harvard called

the “Robobees” project. The goal of this project is, ostensibly, to create a colony

of autonomous robotic bees tasked with pollinating a field of crops. However, this

goal is really a framework to address several engineering challenges in low-power

computation, battery and fuel-cell technology, microfabrication, etc. Future work

arising from this thesis will be directed toward supporting the Robobees project

and meeting its remaining challenges. In particular, the development of a high-

performance control scheme is currently under investigation. This thesis established

the feasibility of a passively-rotating split-cycle control strategy, and current work

aims to understand the real-world performance of such a scheme through free-flight

stability and control experiments. In fact, recent work indicates that the ability of the

wings to effect sufficient control torques may be a more important topic of research

than maximizing aerodynamic efficiency. Wings with greater compliance may be more

suited to this task, and at-scale testing is essential to investigating flexible wings. To
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this end, the clearest path forward from this thesis work is to improve wing testing

facilities, allowing not only the testing of a wing in steady state, but the integration of

candidate control mechanisms. Improving models of passive wing dynamics will likely

require the measurement of wing moments as well as forces. Ideally a six-component

force-torque sensor, sufficiently miniature, can be developed.

Upgrading testing facilities to more precisely control wing kinematics and more

easily isolate inertial and aerodynamic force effects is highly desirable. Testing in high

density gases (such as sulfur hexafluoride—approximately five times denser than air)

reduces inertial forces and allows an easier investigation of aerodynamic forces and

moments in isolation. Flapping frequencies are reduced for the same force level, and

a wider range of wing Reynolds number can be tested as well. It would also be very

useful, for the purposes of testing, to control wing rotation directly with a separate

actuator and a spherical 5-bar transmission. However, this will add mass to the wing

driver, reducing the bandwidth of the force sensor, so this type of testing may only

make sense for high-density gas testing.

Lacking full direct control over wing rotation, the addition of on-line measurement

of wing rotation is highly desirable. This would allow wing tests to control more easily

for variations in wing kinematics, and would also allow closed-loop control (albeit

underactuated) of wing rotation. As our ability to employ automatic tracking of wing

features in high-speed video improves, it will become much easier to study compliant

wings and extract measurements of wing twist and camber. Such measurements are

very useful for testing different control strategies as well for improving hover efficiency.

Improvement of conceptual design methods can occur in a few areas. In practice,
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we find that wings are limited not only by flexibility, but also by stress and fatigue

at the wing root. The current methods also make no accounting for the impact of

wing aspect ratio on flapping limits. It would also be interesting to carry this work

further with respect to real insect wings. If wing stiffness can be measured along

with wing inertia, then it is possible to characterize their structural-inertial efficiency

independent of the choice of acceptable deflection. Further reductions in wing inertia

will certainly expand the space of feasible designs, and can also improve wing testing

by reducing inertial loads. Further reductions will most likely require investigation

of manufacturing methods which can produce corrugated wings; there is little room

remaining for material improvements.

The most immediately successful outcome of this thesis has been the improved

manufacturing process. These techniques are under active development for new ap-

plications outside of microrobotics, including applications in micro-surgery, micro-

optomechanics, and other millimeter-scale machines in many other fields. Future de-

vices will have much tighter integration of electrical and mechanical components using

PCB materials and methods. There is a strong analogy between integration of PCB

methods and PC-MEMS and the integration of CMOS with surface-micromachined

MEMS. The clear path toward economical mass production of Robobee devices is a

feature shared by any new applications for PC-MEMS.
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